> >

MBURG

L I

BACHELOR THESIS
Maximilian Boje

Hyperparameter Optimization
for Deep Neural Networks
using Reinforcement Learning

Faculty of Engineering and Computer Science
Department Information and Electrical Engineering

HOCHSCHULE FUR ANGEWANDTE
WISSENSCHAFTEN HAMBURG

Hamburg University of Applied Sciences

Maximilian Boje

Hyperparameter Optimization for Deep Neural
Networks using Reinforcement Learning

Bachelor thesis submitted for examination in Bachelor s degree

in the study course Bachelor of Science Regenerative Energiesysteme und FEn-
ergiemanagement - Elektro- und Informationstechnik

at the Department Information and Electrical Engineering

at the Faculty of Engineering and Computer Science

at University of Applied Sciences Hamburg

Supervisor: Prof. Dr. Kolja Eger
Supervisor: Prof. Dr. Wolfgang Renz

Submitted on: 28th of June 2025

Maximilian Boje

Thema der Arbeit

Hyperparameteroptimierung fiir Tiefe Neuronale Netze mit Hilfe von Reinforcement

Learning

Stichworte

Hyperparameteroptimierung, Tiefe Neuronale Netzwerke, Reinforcement Learning, Par-

tikelschwarmoptimierung, Multi-Fidelity-Optimierung

Kurzzusammenfassung

In dieser Arbeit wird ein Ansatz einer Partikelschwarmoptimierung mit unterliegendem
Q-learning (QLPSO) fiir die Hyperparameteroptimierung von Machine-Learning Mod-
ellen implementiert und ausgewertet. QLPSO verwendet Reinforcement Learning um
die zugrundeliegenden Optimierungsparameter des Partikelschwarmoptimierers wihrend
des Suchprozesses dynamisch anzupassen. Dieser Ansatz wird iiber das Ray Tune frame-
work implementiert und mit etablierten Optimierunsmethoden verglichen. Dafiir werden
drei verschiedene Experimente durchgefiihrt: ein tiefes neuronales Netwerk fiir die Prog-
nose von Stromverbrauch, eine Support-Vektor-Maschine fiir Klassifizierung des MNIST-
Datensatzes und zwei mathematische Testfunktionen mit variierender Dimensionalitét
und unterschiedlicher Topologie. Der QLPSO Ansatz weist konkurrenzfihige Leistun-
gen fiir die Optimierung des tiefen neuronalen Netzwerkes und bei niederdimensionalen
Tesfunktionen auf, aber zeigt Schwierigkeiten bei der Optimierung der Support-Vektor-
Maschine und hochdimensionalen Problemen auf. In dieser Arbeit werden die Grenzen
der urspriinglichen QLPSO-Implementierung aufgezeigt und mogliche Verbesserungen

fiir die zukiinftige Forschung vorgeschlagen.

iii

Maximilian Boje

Title of Thesis

Hyperparameter Optimization for Deep Neural Networks using Reinforcement Learn-

ing

Keywords

Hyperparameter Optimization, Deep Neural Networks, Reinforcement Learning, Particle

Swarm Optimization, Multi-fidelity Optimization

Abstract

This thesis implements and evaluates a Q-learning-based particle swarm optimization
(QLPSO) approach for hyperparameter optimization (HPO) of machine learning (ML)
models. QLPSO uses reinforcement learning (RL) to dynamically adjust optimization
parameters of the underlying particle swarm optimization (PSO) algorithm during the
search process. This approach is implemented in the Ray Tune framework and bench-
marked against established methods. Experiments span three problem domains: a deep
neural network model for electricity consumption forecasting, support vector machine
(SVM) classification on the MNIST dataset, and two mathematical test functions with
varying dimensionality and distinct topology. The QLPSO approach displays competitive
results for the deep neural network optimization and in lower-dimensional test functions,
but struggles with the SVM task and high-dimensional problems. The thesis identifies
limitations in the original QLPSO implementation and proposes potential improvements

for future research.

v

Contents

List of Figures

List of Tables

List of Abbreviations

1 Introduction

1.1 Background
1.2 Objectives
2 Theory
2.1 Machine Learning oo
2.1.1 Neural Networks
2.1.2 Generalization
2.1.3 Reinforcement Learning L.
2.2 Hyperparameter Optimization
221 Trialand Error Lo
222 Grid Search
2.23 Random Search
2.24 Hyperband
2.2.5 Bayesian Optimization
2.2.6 Bayesian Optimization with Hyperband
2.2.7 Particle Swarm Optimization
2.2.8 Q-Learning-based Particle Swarm Optimization

3 Methodology

3.1
3.2
3.3
3.4

SMARDCast Model . .

Support Vector Machine on MNIST

Test Functions

Evaluation Methodology

vii

ix

10
11
12
14
16
18

20
20
21
23
24

Contents

4 Implementation
4.1 Ray Tune: Hyperparameter Optimization Framework
4.2 PSO Implementation
4.3 QLPSO Implementation
4.4 Stochastic Rounding
4.5 Experiment Setup
4.6 Practical Considerations
5 Results and Discussion
51 SMARDCast
52 SVMon MNIST
5.3 Test Functions
5.3.1 Rastrigin
5.3.2 Styblinski
54 QLPSO Behavior
6 Conclusion
6.1 Thesis Summary
6.2 Future Work
Bibliography

A Appendix

Declaration of Authorship

25
25
27
29
31
32
35

36
36
42
45
45
47
49

53
53
54

56

63

69

vi

List

2.1
2.2
2.3
24
2.5

3.1
3.2

4.1

5.1
5.2
5.3
5.4
9.5
9.6
5.7
5.8
5.9
5.10
5.11
5.12

Al
A2
A3
A4

of Figures

Grid search vs. random search illustration
Successive halving illustration
Bayesian optimization Gaussian process illustration
Tree parzen estimator illustration
QLPSO illustration

Test error of Nystroem approximated SVM for different values of s
Rastrigin (left) and Styblinski-Tang function (right), cyan points represent

respective minima oL L L0
Flowchart showing the QLPSO process

SMARDCast: Average performance over time
SMARDCast: Average rank of optimizers over time (lower is better)

GPU usage of optimizers L
Epochs and time per trial for all optimizers
Learning rate sampling by optimizer
SVM on MNIST: Average performance over time
Rastrigin-10D: Average performance over time
Rastrigin-50D: Average performance over time
Styblinski-10D: Average performance over time
Styblinski-50D: Average performance over time
Ensemble plot for QLPSO behavior over time

Decision state region size illustration

Hyperband brackets example with R=8landn=3
Sigmoid probability function used for stochastic rounding
SMARDCast: Average rank of optimizers over samples (lower is better)
Validation MAPE over learning rate of fully trained models, hue represents

the number of epochs

vii

List of Figures

A.5 SVM evaluation time differences 67
A.6 Histogram ensemble plot for QLPSO behavior 68

viii

List of Tables

21

5.1
5.2

Al
A2
A3
A4
A5

QLPSO reward function parameters m, and b, by action 19
Number of evaluations SMARDCast 39
Number of evaluations SVM on MNIST 44
SMARDCast model performance variance 63
Hyperparameter settings for the SMARDCast model 64
Fixed parameter settings for the SMARDCast model 64
Hyperparameter settings for SVM on MNIST 65
Fixed parameter settings for SVM on MNIST 65

1X

List of Abbreviations

BO Bayesian optimization.

BOHB Bayesian optimization with Hyperband.
CNN Convolutional neural network.

ECDF Empirical cumulative distribution function.
El Expected improvement.

HB Hyperband.

HPO Hyperparameter optimization.

KDE Kernel density estimator.

LSTM Long short-term memory.

MAPE Mean absolute percentage error.

ML Machine learning.

NN Neural network.

PSO Particle swarm optimization.

QLPSO Q-Learning-based particle swarm optimization.
RL Reinforcement learning.

RS Random search.

SH Successive halving.

SVM Support vector machine.

TPE Tree-structured parzen estimator.

List of Abbreviations

UCB Upper/lower confidence bound.

X1

1 Introduction

1.1 Background

The past decade has witnessed an unprecedented rise in machine learning (ML) ap-
plications, fueled by a significant increase in computational power and the widespread
adoption of GPU technology [11]. From transformative language models such as Chat-
GPT to advanced autonomous driving systems, these technologies have revolutionized
both research and industry landscapes, while simultaneously exerting significant societal
impacts. This technological leap has enabled the training of increasingly complex neural
network (NN) architectures, leading to notable achievements in computer vision, natural
language processing, and predictive analytics [23].

As ML models grow in complexity, the importance of hyperparameter optimization
(HPO) becomes increasingly apparent. Unlike internal model parameters that are learned
during training, hyperparameters are configuration settings specified before the learning
process and may strongly affect a model’s performance. Despite their critical impor-
tance, manual hyperparameter tuning remains commonplace in practice, introducing
human bias and inefficiency into the development process [6]. HPO approaches offer a
systematic and efficient alternative to manual tuning, allowing a more thorough explo-
ration of the hyperparameter space, while reducing human effort and potentially leading
to near-optimal configuration selection [52].

The field of HPO presents several significant challenges. The parameter spaces of ML
models are often complex mixtures of continuous, discrete, categorical, and even condi-
tional variables existing in high-dimensional, non-convex topologies. Optimal hyperpa-
rameter configurations may depend on the specific dataset and problem domain, e.g., a
high learning rate being effective for one problem type may prove detrimental for an-
other one. Although numerous optimization approaches have emerged, each exhibits
distinct strengths and weaknesses. Sample efficiency is essential for problems with com-

putationally expensive evaluations (such as training large NNs), but may be less critical

1 Introduction

for low-cost optimization problems. As a result of these differences, most optimization
algorithms excel only in specific problem types, with few universal methods applicable
across all scenarios [52].

Somewhat counterintuitively, many HPO algorithms introduce their own set of parame-
ters that need to be selected, effectively transforming rather than solving the underlying
optimization challenge. These meta-parameters often remain problem-specific, possibly
requiring expertise or prior knowledge of a problem’s search space characteristics [6].

A Q-Learning-based particle swarm optimization (QLPSO) approach seeks to address
this challenge by combining particle swarm optimization (PSO) with reinforcement learn-
ing (RL) [32]. By dynamically adjusting its parameters during the optimization process,
QLPSO aims to adapt to the underlying problem characteristics without requiring pa-

rameter tuning itself.

1.2 Objectives

This thesis pursues three primary objectives. Firstly, it provides a comprehensive overview
of common HPO algorithms, explaining their theoretical foundations, mechanisms, and
respective strengths and weaknesses. Secondly, through implementation in the Ray Tune
framework, these algorithms are benchmarked across diverse optimization problems to
verify theoretical assumptions through empirical results. While HPO for deep neural
networks is a primary focus, the benchmarks intentionally span a broader range of ML
models and optimization scenarios: tuning of the SMARDCast model (a deep neural
network architecture for electricity consumption forecasting), support vector machine
(SVM) optimization on the MNIST dataset, and two standard optimization test functions
with varying dimensionality and topological characteristics. This diverse set of problems
allows for a more comprehensive evaluation of optimizer performance across different
contexts. Finally, this thesis implements the QLPSO approach to evaluate its perfor-
mance on these benchmarks, extending previous research by comparing it to established
methods for HPO. Using the test function, the underlying behavioral characteristics are

examined for different optimization scenarios.

2 Theory

This chapter establishes the theoretical foundation necessary to understand the topics
discussed and methods used in this thesis. This includes a basic overview on the topic
of ML with a more in-depth explanation of RL and an extensive overview of commonly

used HPO algorithms including an RL approach.

2.1 Machine Learning

A diverse subfield of artificial intelligence is ML, which encompasses numerous method-
ologies and applications. ML enables models to learn from data and make predictions
without being explicitly programmed [25]. These models range in complexity from
straightforward approaches like ordinary least squares regression to sophisticated ar-
chitectures such as neural networks and transformer models that power large language
models such as ChatGPT and Claude [12, 44]. ML approaches typically fall into one of
three main categories: supervised, unsupervised and reinforcement learning [47].

For brevity, this section focuses only on concepts relevant to the thesis.

Supervised Learning

Supervised learning involves training models on input data paired with corresponding
expected outputs or labels, enabling the model to perform regression or classification
tasks [8]. In the energy sector, a common regression application is forecasting renewable
energy production. For instance, predicting solar or wind power output relies on labeled
historical generation data (actual measured power) as well as corresponding input fea-
tures such as solar irradiation, wind speed and other meteorological variables [46]. The
trained model can then forecast future power generation based on new weather data

inputs.

2 Theory

Unsupervised Learning

Unlike supervised learning, unsupervised learning works with unlabeled data, focusing
not on direct prediction but on discovering underlying patterns, structures, and relation-
ships within datasets [8]. One application is clustering audio content based on features
such tempo, valence, energy levels, and harmonic characteristics to group similar songs
together. These clusters might organically reveal musical genres or moods without pre-
defined categories, helping to organize large music libraries or power recommendation

systems of music streaming services [1].

The third fundamental category of ML is RL, which is explored in greater depth in

section 2.1.3 due to its importance to this thesis.

2.1.1 Neural Networks

Inspired by the human’s brain structure, NNs are computational frameworks composed
of interconnected processing nodes (neurons or perceptrons) arranged in layers designed
to identify patterns and resolve complex problems through data-driven learning and rep-
resent a large branch of ML [36].

In a feedforward NN, information flows in one direction from an input layer through hid-
den layers to an output layer. Each connection between neurons has an associated weight
that determines the strength of influence. The learning process involves a forward pass,
where input data propagates through the network, with each neuron computing the sum
of its weighted inputs in addition to a bias term, then applying an activation function.
The network’s output is then compared to the desired output using a loss function which
quantifies the prediction error (e.g. absolute or squared error). During backpropaga-
tion the network’s weights are then adjusted using gradient descent to minimize this loss
function [43].

NNs with multiple hidden layers (deep neural networks) excel at identifying complex,
non-linear relationships between data. Each layer transforms the data representation,
with deeper layers capturing increasingly abstract features. Initial layers might detect
simple patterns, middle layers combine these into more complex features, and deep layers
recognize high-level concepts. This hierarchical feature extraction is the foundation of
deep learning [4].

Despite their effectiveness, NNs are often characterized as ’black boxes’ because the inter-
nal decision-making process is not easily interpretable by humans, the learned represen-

tations are distributed across thousands or millions of parameters, and the relationship

2 Theory

between inputs and outputs lacks transparency compared to traditional algorithms [35].
Convolutional neural networks (CNNs) specialize in processing grid-like data by employ-
ing convolutional layers that apply learnable filters across the input to detect spatial
patterns [45]. They incorporate pooling operations to reduce dimensionality while pre-
serving essential features, making them particularly effective for image recognition tasks
[21]. Long short-term memory (LSTM) networks are recurrent NNs designed to process
sequential data by maintaining information over extended time intervals through spe-
cialized memory cells [38]|. Their gating mechanisms control information flow, enabling
the network to learn long-term dependencies in tasks such as language modeling, speech

recognition and time series forecasting.

2.1.2 Generalization

A fundamental goal in ML is developing models that generalize effectively, such that it
is capable of performing well on previously unseen data rather than merely memorizing
training examples (overfitting) [49].

To counteract and measure overfitting, the data is typically split into training and val-
idation datasets. The model learns exclusively from the training data but is evaluated
on the validation set to estimate its performance on unseen examples. Training usually
terminates early when the validation performance reaches a plateau or deteriorates sig-
nificantly, preventing further overfitting. In some cases, a third subset of the data is
implemented called the test data, which is reserved to assess the model once the training
process is finished. This can help to determine real world performance since it remains
entirely unused during the model’s training phase, offering an unbiased evaluation of the

model’s generalization capabilities.

2 Theory

2.1.3 Reinforcement Learning

RL distinguishes itself from supervised and unsupervised learning by not training on a
static dataset, but instead learning through dynamic interaction with an environment.
In this learning paradigm, an RL model, or ’agent’, explores its environment to gather
information through interaction. The core RL concepts outlined in this section are pri-
marily based on information provided by OpenAlT [39].

The core components of an RL system can be defined as:

e State s: The observation provided by the environment that represents its current

condition
e Action a: The agent’s response to a given state

e Reward R: Numerical feedback signal indicating the quality of an action in a given

state
e Policy m: The strategy that determines the agent’s action

The environment provides the agent with observations in the form of a state s, which
the agent then acts upon through an action a and learns through positive and negative
feedback in the form of a reward signal R. Environments can be characterized through
a state transition function P, which is oftentimes stochastic and describes the likelihood

of transitioning to a new state s’ given the current state s and action a:

s~ P(-]s,a) (2.1)

This transition function can also be deterministic instead of stochastic.

RL algorithms that predict these state transitions through modeling or direct access to
environment behavior are known as model-based methods. While these can significantly
improve performance, they are often infeasible in practice and may be difficult to deploy if
the modeled environment does not exactly match the real-world counterpart. In practice,
mostly model-free methods are used due to their easier implementation and ability to be
deployed on any kind of environment, such that model-based methods are not discussed

further in this chapter.

2 Theory

The agent itself can be described through a stochastic policy 7, which describes the

likelihood of choosing any action when the environment is in a given state.

a~mw(-]s) (2.2)

The policy may also be expressed deterministically, directly mapping actions to states.
Since there is no labeled data available, feedback for the training process is provided
through a custom reward function. This reward function returns a numerical value that

signifies whether the action chosen in this state was beneficial or detrimental.

R(s,a,s') - R (2.3)

Based on the reward signal received after taking an action, the agent’s behavior is ad-
justed to maximize for the cumulative sum of rewards over an episode, such that intu-
itively positive values serve to reinforce behaviors, while negative values penalize chosen
actions.

For model-free RL, this learning process falls into one of two approaches: value-based
and policy-based. Value-based approaches aim to assess the quality of a given state or a

state-action pair in the form of a Value- or Q-function respectively

V™(s) = E[R(s,a,s") +yV™(s')] (2.4)

Q"(s,a) = E[R(s, a, ") + 7E[Q"(s", a)]] (2.5)

where v € [0, 1] represents a discount factor and E denotes the expected value, which
essentially weighs outcome values with their respective probability. Both equations as-
sume actions drawn according to equation 2.2 from the current policy 7 (on-policy) and
state transitions occurring as per equation 2.1. The discount factor serves two purposes:
it ensures mathematical convergence of the sum for infinite-horizon problems, and it
captures the intuitive notion that immediate rewards are typically more valuable than
distant ones.

Equations 2.4 and 2.5 are based on the Bellman equations, which express a state’s value

through the expected reward of the current state and the next state’s estimated value.

2 Theory

Assuming these state-values V(s) are representative of the underlying truth, an agent
may adapt its policy to seek high-value states while avoiding low-value ones. With using
Q-values Q(s, a), the agent’s decision-making becomes even more direct, as it may simply
select the action a that maximizes this value for a given state s.

A simple and popular value-based approach is Q-learning. In its most practical applica-
tion, this involves using a Q-table, which represents Q-values for all state-action pairs,
such that given a state, the policy would be to select the action assigned with the highest

Q-value.

m(s) = arginax Q(s,a) (2.6)

Q-values are typically updated each step by considering the current reward signal and

the next state’s expected reward, modeled by the maximum Q-value of s’

Q(s,a) = (1 —a)Q(s,a) + a |R(s,a,s") + y max Q(s',a’) (2.7)

where « is the learning rate [15]. This update rule balances retaining previously learned
information with incorporating new experiences through the Bellman equation 2.5 for
calculating expected Q-values.

While Q-learning through a Q-table is straightforward to implement, it struggles with
high dimensionality and continuous state and action spaces. To address these limitations,
deep Q-networks approaches attempt to model the Q-function through a NN, enabling
better handling of continuous spaces and higher dimensionalities.

Policy-based methods change a policy function’s parameters directly, instead of assigning
values to states or state-action pairs, often using gradient methods for updating. Value
and policy methods can also be combined into so-called Actor-Critic models, with the
actor representing a policy-based method for selecting actions and the critic estimating
the Value-function for additional feedback. As only a Q-learning method is used in this

thesis, policy-based and Actor-Critic methods fall beyond the scope of this work.

2 Theory

2.2 Hyperparameter Optimization

When training any ML model, some meta parameters must be chosen, which affect
both the model’s final performance and its training process. These parameters, which
do not directly change the model’s internal parameters such as the weights in a NN,
are conventionally referenced as hyperparameters. Finding optimal hyperparameters is
crucial for maximizing model performance, but presents a significant challenge due to the
complex, often non-convex nature of the hyperparameter space. Although rule-of-thumb
approaches were common in the formative years of ML, more sophisticated algorithms
have been developed to systematically optimize model performance [52]. This section
covers the most popular HPO methods, explains their mechanisms, and analyzes their

respective strengths and weaknesses.

2.2.1 Trial and Error

The trial and error method, colloquially known as 'Grad Student Descent’, is the man-
ual method of choosing hyperparameters [52]|. This approach involves the student or
researcher selecting parameters based on their prior experiences and fine-tuning these
until either sufficient performance or a deadline is reached. While domain knowledge can
help find a decent configuration, this approach has several major limitations: it is not
automated, results exhibit strong human bias, and the final performance will likely be
suboptimal. This approach can be used for initial prototyping, but is generally to be

avoided due to its poor efficiency and performance issues.

2.2.2 Grid Search

Arguably, the most commonly used HPO method is grid search, which requires a set of
predetermined values chosen for each hyperparameter by the user. Parameter configura-
tions are then evaluated systematically until all combinations are tried. This method is
straightforward to implement, allows for maximum user control, and is easily paralleliz-
able. However, it has severe limitations. Similar to trial and error, grid search suffers
from human bias, especially for continuous parameters, as manually selecting optimal
discrete values is essentially impossible. Additionally, its computational complexity in-

creases exponentially with O(n¥), assuming k parameters with n distinct values each,

2 Theory

making it inefficient for high-dimensional configuration spaces [52]. Due to the necces-
sarily involved human bias and efficiency issues laid out in the next section, usage of this

approach should be limited to prototyping in low-dimensional configuration spaces.

2.2.3 Random Search

Random search (RS) samples values using probability distributions (typically uniform)
within user-defined ranges. This method is more straightforward to implement than grid
search, as only parameter ranges need to be specified rather than specific values. This
reduces human bias while still allowing for parallelization. A significant advantage of
RS over grid search, empirically and theoretically demonstrated by Bergstra and Bengio
[5], is its superior efficiency, especially for continuous parameters, as illustrated in Figure
2.1. In this 2-dimensional illustration, both search algorithms evaluate nine parameter
combinations for a function f(z,y) = g(z) + h(y) =~ g(x), with g(z) displayed in green
and h(y) in yellow. Since parameter y has virtually no impact on the resulting value, grid
search evaluates only three distinct values for g(z), while RS explores the space more
efficiently, using all nine evaluations [5|. Although RS is typically more efficient than
grid search, it still suffers from low sample efficiency, as it does not take previous results
into account, making it nearly unviable for expensive-to-evaluate objective functions like
HPO of large ML models [52].

Figure 2.1: Grid search vs. random search illustration. Source: [5]

10

2 Theory

2.2.4 Hyperband

The Hyperband (HB) algorithm proposed by Li et al. [30] is essentially a highly effi-
cient version of random search for multi-fidelity optimization problems, which can be
approached incrementally with increasingly accurate but computationally more expen-
sive evaluations. A typical example for a multi-fidelity task is the HPO of an ML model,
as the model can be evaluated after only a few training epochs, saving computation time
at the cost of less accurate performance estimates.

At the core of the HB algorithm is the Successive halving (SH) subroutine proposed by
Jamieson and Talwalkar [26]. SH uniformly distributes a resource budget across a set
of parameter configurations and terminates the worse-performing half of configurations
after this budget is exhausted. This process repeats until only one configuration remains,
which is then evaluated on the maximum budget, as illustrated in Figure 2.2. For ex-
ample, in HPO of a NN with ten sampled configurations and a resource budget of 50
epochs, each parameter configuration would initially be trained for five epochs. After
this initial training, only the five best-performing configurations would continue with

additional training on a larger budget.

Figure 2.2: Successive halving illustration. Source: [30]

Under the assumption that low-fidelity evaluations correlate with high-fidelity results,
SH minimizes resources allocated to unpromising configurations, achieving more exten-

sive exploration of the hyperparameter space than random search. Building upon the

11

2 Theory

SH subroutine, HB uses brackets s to regulate the number of configurations n; and their
respective resource allocation r; for each SH round ¢. This bracketing system requires two
inputs: R, representing the maximum resources to be allocated to a single configuration
(e.g., maximum number of epochs), and 7, the proportion of configurations discarded
in each round of SH. The number of brackets is calculated through sy, = [log,(R)],
and they are sequentially run until the optimization process is complete (see Appendix
Figure A.1 for an example).

According to the authors, this is "in essence performing a grid search over feasible values
of n" (Li et al. [30], p. 7), which may produce suboptimal results since each HPO prob-
lem would have an optimal bracket. However, the practical advantage of using various
brackets is ensuring decent performance across tasks without manually determining the
optimal resource allocation parameters for each specific HPO problem. While optimizer
parameters generally add complexity, HB’s two parameters are manageable, as "results
are not very sensitive to the choice of n" (Li et al. [30], p. 8), and R typically being pre-
determined by the task requirements (e.g., how many epochs a model should be trained).
Although HB significantly improves resource allocation compared to RS, it still relies on

random sampling for initial configurations.

2.2.5 Bayesian Optimization

Bayesian optimization (BO) represents a sophisticated HPO approach grounded in Bayes
theorem that constructs a probabilistic model of the objective function through sequen-
tial evaluation, using this model to identify the most promising points for sampling new
configurations. This surrogate model works in conjunction with an acquisition function
that aims to balance between exploring uncertain regions and exploiting areas of po-
tential value. Figure 2.3 illustrates this iterative process specifically for the Gaussian
process surrogate model. While Gortler et al. [22] provides an in-depth explanation of
Gaussian processes, the fundamental mechanism involves the usage of a kernel function
to create a distribution across possible functions that align with observed data. For any
new input, it predicts a normal distribution AN (u, o) where the mean p represents the
expected function value, and the standard deviation o captures the model’s uncertainty.
This uncertainty is typically larger in regions farther from observed data points. This
probabilistic representation forms the foundation upon which acquisition functions oper-
ate, determining the strategy for selecting the next sampling point based on the current

model’s predictions and uncertainties.

12

2 Theory

==
e
-

"' 7 o
______ - objective fn (f{)}
observation (x)

¥ acquisition max

acquisition function (u(-))

t=3

posterior mean (u()}

posterior uncertainty
() £a(-)) 4

Figure 2.3: Bayesian optimization Gaussian process illustration. Source: [7]

The acquisition function plays a critical role in the BO framework, with several estab-
lished approaches available for this purpose. Among these, the upper/lower confidence
bound (collectively referred to as UCB throughout this thesis) and expected improve-
ment (EI) methods are well-established options.

The UCB method represents the most straightforward acquisition function, simply rep-

resenting the surrogate model’s uncertainty bounds with a scaling factor .

UCB(z) = p(z) £ X-o(x) (2.8)

The operation depends on whether the objective is to maximize (adding the scaled de-
viation) or minimize (subtracting the scaled deviation) the function. The scaling factor
A serves as a regulator for the exploration-exploitation trade-off, with higher values pro-
moting exploration and lower values incentivizing exploitation. The optimal value for
this parameter may change depending on the objective function at hand and while a
decay parameter can be added to linearly decrease A over time for more flexibility, these
values still need to be selected manually by the user. As implemented in Nogueira [37],
A defaults to 2.576 without a decay factor.

13

2 Theory

The other acquisition function used in the experiments is EI, which takes both the prob-
ability and the magnitude of improvement into account by calculating the expected value
of improvement upon the current best observation by a new configuration. The param-
eter & allows further control over this trade-off, with higher values encouraging broader
exploration of the search space. A blog post by ekamperi [16] offers more detailed insights
into EI and alternative acquisition functions, including mathematical derivations. The
parameter £ is typically set at 0.01 as noted by Adyatama [2].

Despite its advantages, using a Gaussian process for surrogate function modeling presents
significant limitations, as it natively only supports usage of continuous parameters and
poses high computational costs with a time complexity of O(n3) and a space complex-
ity of O(d?) [52]. Furthermore, its sequential nature of building a surrogate after each
sample severely restricts parallelization potential. For low-dimensional, continuous, and
computationally expensive optimization problems, it still remains among the superior

HPO approaches due to its high sample efficiency.

2.2.6 Bayesian Optimization with Hyperband

Bayesian optimization with Hyperband (BOHB), proposed by Falkner et al. [18], repre-
sents an approach that combines the strengths of both BO and HB to more efficiently
solve multi-fidelity optimization problems. Unlike traditional BO implementations that
use Gaussian processes, BOHB employs a tree-structured parzen estimator (TPE) as
its surrogate model [51]. The TPE approach illustrated in Figure 2.4 divides samples
into two distinct groups based on a threshold value y” (represented by the green line
in the illustration). New samples with values y < y? are assigned to the better group
DO (shown in red), while values y > 3 are assigned to the worse group D (shown
in blue). This method then utilizes kernel density estimators (KDEs), which essentially
apply normal distributions around samples and aggregate these distributions separately

for each group to derive two probability density functions:

(@) = pla | D) (2.9)

g(z) = p(z | DY) (2.10)

14

2 Theory

Figure 2.4: Tree parzen estimator illustration. Source: [51]

In Figure 2.4, I(z) and g(z) are represented by the red and blue KDEs respectively.
The acquisition function is then described through the ratio of these probability density

functions:

z | DO T
TPE(z | D) :=]f((x |‘ g(g))) - ;((x)) (2.11)

with D representing the set of all observations thus far. This ratio effectively weighs
each point’s estimated likelihood of belonging to the better group against its likelihood
of belonging to the worse group. Falkner et al. [18] opted for this TPE approach instead
of a Gaussian process due to its lower time complexity and capability to handle discrete
parameters by employing a probability mass function, i.e., a discrete probability distri-
bution.

The algorithm achieves parallelization by intentionally restricting the number of samples
drawn from an adjusted KDE ['(x), the same distribution [(x) but with its bandwidths
multiplied to promote exploration [18]. The sample with the highest attached acquisition
function value as per Equation 2.2.6 is selected. This results in a deliberately sub-optimal
configurations to avoid duplicates, which in turn enables concurrent evaluations. Addi-
tionally, the algorithm may with a small probability sample at random instead of through
the TPE, "in order to keep the theoretical guarantees of HB" (Falkner et al. [18], p. 4).

15

2 Theory

Since BOHB functions as a multi-fidelity optimization algorithm, the TPE model aims
to represent evaluations with the maximum possible fidelity. For this, it utilizes the
set of evaluations with the highest budget/fidelity that contains a sufficient number of
evaluations Ny, = d + 1, with d representing the dimensionality of the search space.

Through extensive testing on various optimization problems, BOHB has demonstrated

competitive or superior performance in most scenarios [18].

2.2.7 Particle Swarm Optimization

Within the field of optimization algorithms, PSO emerged as an effective nature-inspired
contender. Developed by Kennedy and Eberhart [27], this algorithm draws inspiration
from the collective behavior of animal groups such as bird flocks, where individuals adjust
movements based on both personal experience and social information.

The core mechanism remains consistent across various implementations: multiple par-
ticles navigate through a D-dimensional space, each represented by position vectors
Xj = [le, z7, ... ,a;iD and velocity vectors vi = [vil, vZ, ... ,viD] Each dimension rep-
resents one parameter of the optimization problem, such that each particle’s position
corresponds to a specific parameter configuration to be evaluated. The algorithm op-
erates by iteratively updating the velocity and position of each particle based on three
factors: the particle’s current velocity, its personal best position (b;), and the global best
position discovered by any particle in the swarm (by,). Following evaluation of the entire

swarm, updates occur according to the equations:

V; = wvVv; + clrl(bi — Xi) -+ C27“2(bg — Xi) (2.12)
X; =X; +V; (2.13)
where ¢ = 1,2,..., N denotes a particle’s index in the population size N, w represents

inertia, and r1 and ro are random values drawn from a uniform distribution within the
range [0, 1]. The cognitive parameter ¢; governs how much a particle trusts its own ex-
periences and discoveries, encouraging exploration of promising areas it has individually
found. Complementary, the social parameter ¢y determines the particle’s reliance on the
swarm’s collective knowledge, promoting exploitation of globally promising regions. This
balance between personal and collective information creates the characteristic swarm be-

havior.

16

2 Theory

Despite the algorithm’s conceptual simplicity, several implementation considerations war-
rant attention. The three key parameters - inertia w and the cognitive and social parame-
ters c; and co require careful selection as they directly impact the algorithm’s convergence
properties. Inertia is typically set around 0.9 and may incorporate a decay mechanism to
facilitate exploration in early iterations while promoting exploitation in later stages [3].
This time-varying approach allows particles to broadly search the solution space initially
before focusing on refining promising solutions. The cognitive and social parameters are
commonly assigned equal values, usually between 1.5 and 2, with lower values potentially
enhancing convergence properties [50]. Higher values for these parameters increase the
step sizes particles take, potentially accelerating convergence but risking overshooting
optimal solutions. These parameters should be calibrated in relation to each other, as
excessive values may result in these undesired acceleration behaviors. Implementing ve-
locity limits through clipping may further mitigate such rapid acceleration issues [50].
Given that optimization typically occurs within constrained search spaces, boundary
handling becomes necessary when particles attempt to exceed defined limits. Without
appropriate boundary management, particles might waste computational resources ex-
ploring infeasible regions or become trapped outside the solution space entirely. The
reflection approach with random dampening suggested in Huang and Mohan [24], where
particles encountering boundaries are reflected back with a dampening factor d sampled
through d ~ U(0,1), has demonstrated superior empirical performance compared to al-
ternative methods.

Particle position initialization represents another significant consideration. While uni-
form distribution across the parameter space serves as the standard approach, the findings
in Cazzaniga et al. [10] suggest that alternative distributions such as logarithmic, nor-
mal, or lognormal may yield substantial performance improvements depending on the
objective function’s topology.

Similar to BO, PSO lacks native support for discrete and categorical parameters. Though
various approaches to address this limitation have been proposed, most involve consider-
able complexity, and the issue is still considered a problem due to limited research [50].
PSO offers notable advantages as an optimization technique, as it is easily parallelized
and empirically performs well in high dimensional, continuous optimization problems [52].
However, a big limitation is posed by the numerous parameters and behavioral aspects
requiring user specification, which often depend heavily on the particular optimization
task at hand [50].

17

2 Theory

2.2.8 Q-Learning-based Particle Swarm Optimization

An approach to dynamically control the three swarm parameters during the optimization
process is QLPSO proposed in Liu et al. [32]. This method addresses the fundamental
exploration-exploitation dilemma inherent in optimization algorithms: particles must
broadly explore the search space to avoid local optima while also exploiting promising
regions to find optimal solutions efficiently. Unlike traditional parameter control methods
such as a decreasing inertia weight that follow predetermined schedules as examined in
Alhussein and Haider [3], QLPSO uses a Q-table to adaptively change the parameters of

individual particles based on their current state and performance.

Figure 2.5: QLPSO illustration. Source: [32]

The idea is to promote more explorative or exploitative behavior depending on posi-
tioning, performance and optimization progress as illustrated in Figure 2.5. To capture
these features, two discrete state representations are used - the objective space state and
the decision space state. The prior maps the performance of a particle into four equal
sized sections based on the difference between global best and worst fitness values. To
characterize the positioning of particles, the decision space state divides the parameter
space into four regions based on the Euclidean distance from the global best position
of the swarm. Depending on the region a particle is positioned in, it is assigned the

corresponding decision space state.

18

2 Theory

Actions are represented by four predefined parameter combinations to promote differ-
ent expected characteristics, such as stronger exploration or faster convergence to the
global best. Values of the Q-table are updated following the standard Q-learning update

Equation 2.7 with the reward function from the illustration:

mgt + b for P, < Pyrevi
R _ a a current previous (214)
mqt + ba -5 for Pcurrent > Pprevious

where m, and b, are action-specific slope and intercept values (detailed in Table 2.1 with
action references as per Figure 2.5), t € [0, 1] represents the normalized optimization
progress and Peyrent and Pprevious are the current and previous function evaluations.
The conditions in Equation 2.14 assume the goal of minimizing the objective function,
such that performance improvements of particles are rewarded and conversely a loss of
performance is punished. The action-specific parameters ensure early-stage exploration

is rewarded initially, with convergence behaviors being favored towards the end.

Table 2.1: QLPSO reward function parameters m, and b, by action

Action ‘ mg ‘ ba

Rough exploration | -3 | 4

Fine exploration -1] 3
Slow convergence 1 2
Fast convergence 3 1

The algorithm operates in two phases: during the first 90 % of iterations, particles use
the Q-table for parameter selection (global search). For the final 10 %, QLPSO switches
to a local search configuration (w = ¢; = 0 and ¢ = 3), forcing rapid convergence around
the global best, which is recommended by the authors for its robustness [32].

Notably, QLPSO does not employ generalization capabilities described in section 2.1.2.
Rather than training across different tasks, QLPSO adopts a purely instance-specific
approach. The Q-table is initialized with zeros at the beginning of each new optimiza-
tion task, with no knowledge transfer from previously encountered problems. This design
choice allows the algorithm to adapt exclusively to the current problem’s landscape with-
out any assumptions derived from past experiences, effectively treating each optimization

task as an independent learning problem.

19

3 Methodology

This chapter presents the methods used to evaluate and compare the different HPO
methods. Three distinct optimization problems are examined: a CNN-LSTM model for
electricity consumption forecasting, two optimization test functions with different char-
acteristics, and a multi-fidelity SVM approach from literature applied to the MNIST
dataset [13]. The evaluation methodology chapter addresses the challenges of fairly com-
paring different HPO algorithms across varying problem types. If not stated otherwise,
the used HPO algorithms include RS, BO-UCB, BO-EI, HB, BOHB, PSO and QLPSO.

3.1 SMARDCast Model

The first optimization problem chosen for this thesis is a CNN-LSTM model derived from
a publication on electricity consumption forecasting called SMARDCast [29]. Forecasts
are made daily at 10 a.m. for a 24-hour window with a 15-minute resolution to match the
methodology of the forecast data published on the German Federal Network Agency’s
SMARD platform [9].

For their approach, the authors used several input signals: the previous consumption
values, time features such as hours or weeks transformed into sine and cosine signals
respectively, the day of the week as a categorical feature and a sparse step signal to
represent holidays, where the values are 0 by default, 0.5 the day before a holiday and 1
during the holiday. The CNN-LSTM model used the last 672 values as input, represent-
ing one week of data.

A grid search of 2,688 configurations resulted in a model with a final mean absolute
percentage error (MAPE) of 2.99 % compared to the 3.72 % error of the SMARD fore-
casts. The search space for the HPO methods was extended in this thesis and is shown
in Appendix Table A.2. Parameters marked with an asterisk (*) indicate layer-specific
parameters and are therefore conditional on the number of layers, e.g. if two CNN layers

are chosen, the number of filters in layer three would have no effect on the actual model.

20

3 Methodology

For HPO methods that are unable to handle conditional parameters (BO and PSO) this
creates a “dead region” in the hyperparameter space, since the algorithm still samples
these values even though they have no influence on the results. These dead parameter
regions were maintained across all HPO algorithms for better experimental consistency;,
although it must be noted that this creates an artificially larger hyperparameter space
for RS, HB and BOHB than would be necessary and should be seen as a disadvantage.
Discrete and categorical hyperparameters pose another issue for BO and PSO, as they
only support continuous values. As a pragmatic solution, a stochastic rounding function
is implemented to map between discrete and continuous space. Details of this rounding
function can be found in section 4.4.

Each optimizer is executed three separate times, with each optimization run allocating
a time budget of ten hours, resulting in a total optimization time of 210 hours for this
task.

3.2 Support Vector Machine on MNIST

The second optimization problem involves multi-fidelity training of a SVM on the MNIST
handwritten digits dataset, as introduced by Klein et al. [28] and later used by Falkner
et al. [18] to benchmark the BOHB algorithm. Unlike iterative models, SVMs fit a hy-
perplane through the entire dataset once, so the multi-fidelity approach is implemented
by training on increasingly larger subsets of the original data. Instead of using epochs as
in Section 3.1, this approach uses a variable s = % € (0, 1] to express the ratio of the
subset size to the complete dataset. In the publications, it ranges from 1/512 to 1, with
each step doubling the previous proportion. The two tunable hyperparameters for the
SVM are C' and v (gamma), which both are sampled using a Log-Uniform distribution
(natural logarithm e.g., base e) with the range [e~19, e!0].

Due to computational constraints, a Nystroem kernel approximation was employed in-
stead of the SVM’s radial kernel. The Nystroem approach approximates a kernel matrix
by selecting a subset of m data points from a dataset of size n, reducing time complexity
for matrix operations from O(n?®) to O(nm?) [14]. By setting m = y/n the time complex-
ity becomes quadratic O(n?) instead of the original cubic complexity. This approximated
non-linear kernel map can then be used in combination of a linear SVM with an approxi-
mate time complexity of O(n), significantly reducing overall time complexity [41]. Using
this technique, a reproduction of Figure 1 from Klein et al. [28] was made for qualitative

verification.

21

3 Methodology

(a) s =1/128 (b) s =1/16

(c) s=1/4 (d) s=1

Figure 3.1: Test error of Nystroem approximated SVM for different values of s

Notably, Figure 3.1 shows that smaller subset sizes (s = 1/128, s = 1/16) seem to
perform as well as or better than larger subsets (s = 1/4). This suggests that small,
well-distributed subsets may sufficiently capture the essential structure for the Nystroem
approximation, and that adding more data may have a negative impact on performance.
This non-monotonic performance increase could have significant implications for the
multi-fidelity optimizers HB and BOHB, as they typically assume performance improve-
ments with increasing fidelity.

Still, this optimization task should provide valuable results, due to it offering a direct
comparison with the findings in the BOHB paper and its established unimodal, convex
hyperparameter space topology.

For this task, each optimization algorithm is run five times for two hours each using the
test error (percentage of incorrect classifications) as the evaluation metric. This is due
to increased variance levels in both evaluation and training time, resulting in a total

optimization time of 70 hours.

22

3 Methodology

3.3 Test Functions

The final optimization task performed consists of two test functions, namely the Rastri-
gin and the Styblinski-Tang (abbreviated as Styblinski throughout this thesis) function.
Advantages of using test functions include their topology being known beforehand (see
Figure 3.2) and the ability to easily change their dimensionality. The Rastrigin function
serves as a highly multimodal function featuring many local optima in close proximity
(’bumpy’) while the Styblinski-Tang function exhibits a more convex shape with fewer
and more spread out local minima (’smooth’). This difference in topology and the abil-
ity to compare different dimensionalities serve as a good control for evaluating algorithm

performances.

Figure 3.2: Rastrigin (left) and Styblinski-Tang function (right), cyan points represent
respective minima

The two functions are described through:

JRastrigin(x) = An + Z[xf — Acos(2mz;)] (3.1)

=1

S af — 1637 + by

fS'tyblinski (X) = 9 (32)

where n is the dimensionality (number of parameters) and A = 10 represents a scaling

factor for the Rastrigin function.

23

3 Methodology

Since these functions can not be transformed into a multi-fidelity problem, both HB
and BOHB can not be evaluated on this task. The other optimization algorithms are
executed three times on both test functions, once with n = 10 and once with n = 50, to
observe behavior in different dimensionalities. With five optimizers on essentially four

different objective functions, this results in a total optimization time of 120 hours.

3.4 Evaluation Methodology

Fair evaluation and comparison of different HPO algorithms is a recognized challenge
in the field [52]. Most approaches are not universally robust or usable across diverse
optimization problems, but rather tend to be specialized for specific tasks or parameter
spaces.

The performance metric to use for evaluation can vary depending on the type of the
optimization problem at hand. For expensive optimization problems like training large
ML models, minimizing the number of evaluations (sample efficiency) is often more im-
portant, while for low-cost test functions, the total runtime (time efficiency) becomes
critical as individual evaluations take very little time.

When comparing multi-fidelity approaches like HB and BOHB with traditional methods,
evaluating performance based solely on the number of samples can skew results due to
low-fidelity evaluations typically performing worse than high-fidelity ones.

For better comparability and a more application-grounded approach, total compute time
serves as the limiting factor for all algorithms. Limiting the number of configurations
would unfairly advantage BO since each sample would be drawn optimally according to
its underlying model, despite their significantly higher time complexity. At the same
time, it would be highly disadvantageous for HB and BOHB since only a fraction of their
samples are evaluated at maximum fidelity.

The metrics chosen to be optimized are validation loss for SMARDCast and test error for
SVM on MNIST. Additionally, GPU usage is tracked as an indicator of how efficiently
each optimizer utilizes available resources. However, since GPU parallelization is handled
by RayTune, there may be discrepancies between observed and theoretical performance
that might be difficult to explain precisely. These implementation details may prevent
some algorithms from achieving their theoretically possible performance.

Due to the in parts statistical nature of all used HPO methods, each algorithm is run
multiple times with different random seeds, which should help to obtain statistically

relevant results.

24

4 Implementation

This chapter presents the technical implementation of HPO algorithms built upon the
Ray Tune framework. It details the custom development of PSO and QLPSO algorithms,
addresses implementation challenges such as handling discrete parameters via stochas-
tic rounding, and describes the experimental setup for testing these approaches on the

previously described experiments.

4.1 Ray Tune: Hyperparameter Optimization Framework

Ray Tune is a Python framework designed for HPO that supports all major ML libraries,
including PyTorch, XGBoost, TensorFlow and Keras [31]. For optimization algorithms,
Ray Tune provides access to Gaussian process BO (Bayesian Optimization [37]) and
BOHB (HpBandSter [17]) through their respective external implementations. Addition-
ally, optimizers such as GS, RS, HB and even population based training are available
through Ray Tune’s native internal implementations. However, PSO is not natively sup-
ported in Ray Tune, so a custom algorithm had to be created within the framework,
which was also used for the QLPSO implementation. A detailed description of this PSO
searcher can be found in section 4.2.

This section provides a brief overview of the four main components that comprise the

Ray Tune framework and how they interact.

1. Search Space

The search space or configuration space represents the hyperparameter domain to
be explored during optimization, defining each parameter’s distribution and their
respective value ranges or discrete sets of available values. Ray Tune offers a wide
variety of distributions, with the notable limitation that BOHB is not compatible
with these sampler objects. Instead, HpBandSter’s ConfigSpace class must be used,

which supports most common distribution types.

25

4 Implementation

2. Trainable

Trainables function as the optimization objective to be solved, accepting a config-
uration of parameters as input and returning a corresponding value, such as the
validation loss of an ML model. Since the only requirement is to return results us-
ing Ray Tune’s report method, trainables are highly customizable and allow users
to process hyperparameters as needed. This flexibility is valuable when handling
algorithm limitations, such as BO and PSO’s inability to natively process discrete
hyperparameters, which can be addressed explicitly in the trainable by mapping

continuous values to corresponding discrete ranges using custom logic.

3. Search Algorithm

The search algorithm is responsible for proposing new parameter configurations
for evaluation, potentially leveraging past results, such as BO creating a surrogate
model based on all prior observations. Users can utilize existing models within
the Ray Tune API or implement custom search logic through Ray Tune’s generic

Searcher class.

4. Scheduler

Schedulers in Ray Tune serve as the interface between search algorithm and train-
able, determining when specific configurations are evaluated. The simplest exam-
ple is the FIFOScheduler, which evaluates samples in the order they are suggested.
Schedulers can also manage the pausing or premature termination of trials in multi-
fidelity problems, such as HB’s and BOHB’s successive halving approach. In Ray
Tune terminology, trials typically represent unique parameter sets for evaluation; for
multi-fidelity tasks, each trial encompasses all training iterations using that specific

configuration.

These four building blocks make Ray Tune highly customizable while remaining accessible
for prototyping through its existing API.

Another advantage is Ray Tune’s built-in resource management capabilities. CPU, GPU
and memory usage can be specified per trial, and the number of concurrent trials can
be limited. Multi-threading and parallel processing are handled entirely by Ray Tune,

ensuring seamless deployment for most hardware environments.

26

4 Implementation

4.2 PSO Implementation

As mentioned prior, PSO is not natively supported by Ray Tune, necessitating a custom
implementation of this algorithm through the Searcher class. This section covers both
the technical integration in the Ray Tune framework, as well as details for the exact
values and behaviors chosen, regarding the different possible approaches discussed in the
theory chapter.

Regarding the previously mentioned Searcher class of the Ray Tune API, there are three
corresponding methods that need to be utilized, through which the PSO algorithm is

implemented in form of the custom PSO_ Searcher class.

1. Setting Search Properties

The Searcher.set_search__properties method is called at the beginning of an experi-
ment to initialize the search algorithm by providing the evaluation metric, the mode
(e.g., min or max) and the search space. For PSO implementation, swarm initial-
ization occurs through several steps. First, either linear or logarithmic mappings to
the fixed range [0, 1] are created for each parameter based on their respective lower
and upper bounds. Next, each parameter is sampled N times using the provided
samplers in the configuration dictionary, with N representing the population size of
the swarm, ensuring uniform distribution of particles throughout the hyperparame-
ter space. Finally, these positions are used to initialize particles via a Particle class
described later in this section, which are subsequently added to a list representing

the swarm.

2. On Trial Completion

This method (Searcher.on_trial_ complete) activates upon trial termination and
delivers results from the trainable with that trial’s hyperparameters. Since PSO
requires waiting for all IV particle positions to be evaluated before calling a subrou-
tine for updating, Ray Tune’s ConcurrencyLimiter wrapper is used. This wrapper
restricts the number of concurrent trial suggestions for evaluation by setting the
max_concurrent parameter to the population size N and the batch argument to
true. Upon evaluation of all trials, this method receives N sequential calls return-
ing each particle’s position result, which then updates the global and personal best

positions when applicable.

27

4 Implementation

3. Suggesting new Configurations

After all N results are returned and processed through the previous method, the
searcher provides a new set of hyperparameters via the Searcher.suggest method.
This process is also called sequentially as many times as specified in the Concur-
rencyLimiter each batch, e.g. N times. Due to the sequential nature, an internal
counter serves as a proxy for particle ID, enabling accurate tracking for proper up-
dates of personal best positions. During its first call in an experiment run, as no
prior results are available, the method simply returns the randomly initialized po-
sitions of the particles. On the first call of this method in each batch, all particles’

velocities and positions are updated according to equations 2.12 and 2.13.

Regarding the selection of swarm parameters and behaviors discussed in section 2.2.7,
particle inertia follows a linear decrease! from 0.85 to 0.35 as used in Alhussein and
Haider [3|. Social and cognitive parameters were set to ¢; = ¢ = 1.5 and since PSO
is not too sensitive to population size, N = 20 was chosen [50]. Velocity clipping was
configured to Vyaz = [0.25,0.25,...,0.25] € RP, appearing like the most robust value in
Cazzaniga et al. [10]. Out-of-bounds behavior follows the approach suggested in Huang
and Mohan [24]|, whereby particles at the parameter space edge undergo reflection with
a dampening factor sampled from a uniform random distribution d ~ ¢/(0,1). Regarding
the SMARDCast model’s noisy objective function characteristics, Parsopoulos and Vra-
hatis [40] determined that standard PSO adequately handles noise and may even help
the swarm to avoid local minima, such that no additional mechanism for noise-handling
is required.

Supplementary to the PSO_Searcher class, a Particle class is used to model the individ-
ual particles of the swarm. Each particle instance keeps track of its own position, velocity
and personal best position, while the global best position and inertia are stored as class
variables shared across the entire swarm. The class has two main methods: update veloc-
ity and update_ position, which apply the equations 2.12 and 2.13 of the PSO algorithm,

while handling velocity limits and out-of-bounds corrections as described prior.

! Although Algorithm 3 demonstrated superior results in the paper, the parameters a-d appear highly
tuned, such that ultimately algorithm 2 was chosen as a more pragmatic solution, potentially sacri-
ficing some performance

28

4 Implementation

4.3 QLPSO Implementation

This section details the implementation of the QLPSO search algorithm according to
Liu et al. [32], building upon the previously outlined PSO _searcher class as its founda-
tion. The resulting QLPSO_Searcher class integrates Q-learning functionality through
a qlpso_subroutine method, which is executed after the final trial evaluation in the
batched on_ trial complete method. This subroutine utilizes all recorded performances
to establish objective space state thresholds, since both the SMARDCast and SVM tasks’
objective function boundaries are not known a priori, unlike the QLPSO publication’s
test functions. The implementation employs median absolute deviation (MAD) as a
robust outlier handling technique, creating a filtered performance list containing only
values within a 3 MAD range from the median (equivalent to a 20 range in a normal
distribution). Thresholds are configured as illustrated in Figure 2.5, dividing the filtered
performances into four equal ranges, which are then applied to the current particle per-
formances to determine their objective states. An additional potential benefit of these
dynamic thresholds is that as optimization progresses and performances typically im-
prove, thresholds may shift toward lower values with narrowing intervals, potentially
leading to better distinction between high-quality results compared to static thresholds.
Decision states are subsequently determined using a get decision_ space_ state method
of the Particle class that utilizes the squared distances to the global best directly, elimi-
nating square root calculations for computational efficiency.

Following the completion of the first batch iteration, the algorithm calculates rewards
and updates the Q-table according to equations 2.14 and 2.7. During global search, each
particle’s next action is determined through the Q-table; otherwise, local search parame-
ters are chosen and applied. Finally, particle velocities and positions are updated as per
the previously described PSO implementation, while performances, states, and actions
are preserved for the next iteration’s reward calculation and Q-table updates.

This implementation aligns with Algorithm 1 from Liu et al. [32], though the operation
sequence was slightly modified for practical implementation purposes. A visual represen-
tation of this process is provided through a flowchart with Figure 4.1.

As no values for the parameter selection for the learning rate o and discount factor v for
updating the Q-values per equation 2.7 are defined in Liu et al. [32], values of o = 0.1
and v = 0.99 were chosen [33]. Notably, a was chosen to be larger than typically is the

case in order to promote a faster adaptation due to the online learning approach [34].

29

4 Implementation

Figure 4.1: Flowchart showing the QLPSO process

30

4 Implementation

4.4 Stochastic Rounding

Since ways to deal with discrete values can tend to be quite complex as per the methods
described in Wang et al. [50], a simple stochastic rounding approach was implemented

using a steep sigmoid function

1
1 + e—k(z—|x]-0.5)

psigmoid(ma k) = (41)
that determines the probability of rounding up, with k representing the steepness factor
with a chosen value of 20 and |[z] the rounded down value of z. Using a Bernoulli
random variable B with this corresponding probability, a value will either be rounded up

or down:

Sint(x, k) = x| + B(Psigmoid(x, k)) (4.2)

A visual representation is provided with Appendix Figure A.2.

The controlled randomness introduced with this rounding approach should enable the
PSO-based algorithms to more easily escape local optima by providing gradient informa-
tion, that would be lost with deterministic rounding. This stochastic rounding function
was applied for BO and both PSO based methods for consistency, although more so-
phisticated ways of dealing with discrete values exist for these optimizers, as proposed
in Garrido-Merchan and Hernandez-Lobato [20], a publication by the same authors of
the Bayesian Optimization framework implemented by Ray Tune, that deals with dis-
crete parameters when using BO with surrogate modelling through Gaussian process
[37]. The probabilistic rounding approach used here resembles their 'Basic’ approach of
deterministically rounding values to the nearest integer, with the drawback being, that
the model must sample the same discrete values multiple times to construct an adequate
surrogate model. Although the stochastic nature of this approach may introduce an
additional disadvantage for BO by potentially skewing the surrogate model during rare
rounding occurrences, e.g, a parameter with a value of 0.01 being rounded up to 1 in-
stead of rounded down. If significant performance differences exist between the rounded
values, this could introduce noise into the modeling process, which could potentially
have substantial implications for convergence and should be considered when evaluating

results.

31

4 Implementation

4.5 Experiment Setup

This section details the complete experimental setup and the implementation of the algo-
rithms used. For conducting experiments, setting files in JSON format were created for
the SMARDCast and SVM on MNIST tasks, containing two parameter categories: fixed
parameters and hyperparameters. Fixed parameters include the evaluation metric, opti-
mization mode (minimum or maximum), and the number of epochs, which in the SVM
optimization problem represents the number of multi-fidelity steps. For the SMARDCast
model, additional model-specific runtime parameters were included, such as the number
of output time steps, window split, offset, etc.; both settings can be found in the Ap-
pendix with Tables A.5 and A.4 displaying the hyperparameters and Tables A.3 and A.2
the fixed parameters. The hyperparameters section in the settings was used to create
the search space required by Ray Tune and custom keywords were employed to describe
different samplers. Most of these are straightforward, with equivalent samplers existing
in the Ray Tune API, such as the uniform sampler. Two additional custom keywords
were implemented: pow2 and combination. The pow2 sampler functions as a discrete
uniform distribution, with the distinction that each sampled value represents their re-
spective power of 2 - for example, sampling a 4 would result in 2* = 16. The combination
sampler takes a list of categorical values and assigns either true or false to each one,
thereby generating a random combination of the original values, as the name suggests.
This was used to handle the optional time feature inputs as described in section 3.1. For
the test function, mode and evaluation metric remained static, and the hyperparameters
consisted of D (where D represents the dimensionality of the function) continuous values
uniformly sampled from their respective value ranges, which were implemented directly
in the code.

Mapping these custom samplers to Ray Tune samplers occurs in a create_ param_ space
function (or create_param_ space_bohb as the BOHB equivalent using the ConfigSpace
class as mentioned previously). This function considers whether the optimizer can handle
discrete samplers, ensuring that BO, PSO, and QLPSO receive the continuous equiva-
lents. Another distinction arises due to BO’s inability to use Ray Tune’s loguniform
distribution; similar to the pow2 sampler, it instead uses a uniform distribution with
values representing powers of 10.

Regarding the implementation of trainables, the test functions do not need to handle
these custom samplers and instead take the sampled values as function arguments di-
rectly and return values according to equations 3.1 and 3.2.

The SMARDCast trainable maps continuous parameters into discrete equivalents for BO,

32

4 Implementation

PSO, and QLPSO using the stochastic rounding function described in equation 4.2, while
also handling loguniform parameters when using the BO algorithm. The seed used for
rounding is saved to the configuration dictionary, such that the real parameters used in
the model can be reconstructed when evaluating experiment results. The hyperparame-
ters are then used to instantiate the CNN-LSTM model using the framework provided by
the author of Kriiger et al. [29]. This framework was used as-is, with minor adjustments
such as down-casting the SMARD dataset to float-32 and using mixed float-16 precision
in the model to avoid memory issues and achieve faster training times. Additionally, the
trainable implements a basic failsafe mechanism allowing retries if memory issues occur
during training, halving the batch size up to three times before terminating. For proper
integration of search algorithms and schedulers, a CustomCallback is used alongside the
EarlyStopping callback - the former calls the Ray Tune report function after each com-
pleted epoch, while the latter terminates training if performance fails to improve for three
consecutive epochs, as specified by the patience parameter in the settings file. Following
successful training, the evaluate utility method included in the SMARDCast model is
used to benchmark the trained model on both validation and test data and saves the
performance results to a .parquet file with the according trial_id assigned by Ray Tune
for reference.

In the SVM task, only two hyperparameters with loguniform distribution are used, mean-
ing that for most algorithms, no further processing of the sampled values is needed. Ex-
ceptions include the BO algorithm, as in the SMARDCast task, as well as the BOHB
searcher, since the ConfigSpace class only supports loguniform sampling with base 10,
while the example in the supplementary document of Klein et al. [28] uses e as its base.
The previously mentioned Nystroem approximation using a linear SVM instead of the
radial kernel is realized through the scikit-learn package using the Nystroem and Lin-
earSVC' classes. The MNIST dataset is loaded through Keras with 60,000 images for
training and 10,000 for testing and then normalized. The multi-fidelity approaches HB
and BOHB are implemented through a loop, which increments the fidelity s each itera-
tion as described in section 3.2 and creates the according subset by randomly sampling
data points from the full dataset. The feature map is created using the Nystroem ap-
proximation and subsequently used to fit the linear SVM, which is then evaluated on the
test data to report the test error. The subset size m scales through m = 10y/n with n
being the number of samples, e.g., 60,000 for the full dataset or 15,000 with s = 1/4 in
multi-fidelity approaches. This achieves the reduction from cubic to quadratic complex-
ity, while a scaling value of 10 ensures an adequate number of data points in low-fidelity

evaluations for sufficient coverage of all ten digit classes in the MNIST dataset.

33

4 Implementation

The run_ exp function serves as the central orchestrator for the entire experiment pipeline.
This function first establishes the result path using the experiment ID and algorithm
name, then constructs the appropriate search space via create param_space or the
equivalent create_param_ space_bohb for BOHB configurations. Resource allocation is
managed through Ray Tune’s tune.with resources wrapper, determining the available
hardware - for the SMARDCast task half a GPU per trial is allocated, while test func-
tions and the SVM MNIST task each utilize three CPU cores per trial (the latter one is
also restricted to 4 gigabytes of memory). In contrast to the SMARDCast task, these
two also allow the BO to use 30 cores per trial, which is equivalent to the total number
of cores for the other optimizers (there are 32 cores available in total on the hardware).
Due to an implementation error, this special resource allocation for BO is not used for
the SMARDCast task, such that the one trial running on BO only utilizes half of one
GPU instead of both. The implications of this error should not impact the results in a
substantial way, since the training time of the SMARDCast model in comparison to its
loading time is quite short. The search algorithm and scheduler initialization adapts to
the specified algorithm using the alg argument: by default a Basic VariantGenerator and
a FIFOScheduler are initialized, while specialized algorithms overwrite these accordingly.
After initialization of the search space and the Searcher/Scheduler logic, the optimization
process is launched through Ray Tune’s tune.run method with the according arguments.

On completion, the function collects the reported results and saves them to a CSV file.

34

4 Implementation

4.6 Practical Considerations

Using the batched ConcurrencyLimiter required for standard PSO presents several prac-
tical challenges depending on the specific optimization task. When evaluation time varies
significantly across parameter configurations, PSO efficiency may be negatively affected,
as the algorithm must wait until the longest-running trials are completed before suggest-
ing new configurations. Such variations can occur when parameters influence training
dataset size or model complexity, directly affecting computational requirements. In the
case of the SMARDCast model, execution time remains relatively consistent across dif-
ferent network architectures. However, the SVM implementation on MNIST described
in section 3.2 displays substantial variance in computation time based on the chosen
hyperparameters, as training durations in prior testing ranged from 10 seconds to sev-
eral minutes, which is likely due to the parameter C being too large as noted in the
scikit-learn’s documentation [42]. This temporal disparity is particularly problematic for
the PSO and subsequently QLPSO implementation. Potential solutions may include an
asynchronous PSO searcher that does not require batch completion, or implementing
a custom Scheduler for early termination of trials, although these approaches were not
implemented in this thesis.

A secondary consideration when utilizing the ConcurrencyLimiter involves the coordi-
nation between population size and resource allocation. Ideally, the population size N
should be divisible by the maximum number of concurrent trials permitted by the user’s
allocation of computational resources. For example, with a population size of N = 20
and capacity for six concurrent trials (e.g. three GPUs with two parallel trials each),
three batch completions would result in 18 finished trials, when assuming similar evalu-
ation times. The remaining two trials would then only be able to use one third of the

available resources, leading to suboptimal resource utilization during this phase.

35

5 Results and Discussion

This chapter presents the experimental findings from applying the previously described
HPO methods to the test cases outlined in Chapter 3. Each algorithm’s performance
characteristics and optimization efficiency is examined across optimization problems,
with special attention given to the behavior of the QLPSO approach, which is explored

in detail on the mathematical test functions.

5.1 SMARDCast

As mentioned prior, the grid search used in the SMARDCast paper resulted in the best
model achieving a MAPE of 2.99 % on the test dataset. This result was improved upon
by roughly 0.3 percentage points by a model found using the standard PSO approach,
with a final performance of 2.62 % MAPE on the test data. While this approximately
12 % improvement in accuracy is significant, a total of roughly 75,000 models were fully
trained during this experiment (approximately 30 times as many configurations as in
Kriiger et al. [29]). Considering the influence of random initialization on the perfor-
mance of the model, as characterized in Appendix Table A.1, this improvement may
partially stem from statistical factors rather than just from the choice of hyperparame-
ters.

Figure 5.1 illustrates the average performance across runs of each optimizer over time,
measured by their respective cumulative minimum validation loss, i.e., the best per-
formance of a run up to a given point. Most optimizers reach a performance plateau
relatively quickly, with improvements slowing down rapidly. Notably, the BOHB algo-
rithm requires significantly more time to reach this performance level. Most likely this is
due to the bracketing and resource allocation process, i.e., it takes a while to reach high-
fidelity evaluations with typically better performance, as pausing and reloading models
during a low-fidelity phase takes proportionally more time. A substantial distinction

between optimizers cannot be observed, as the deviation corridors are quite large and

36

5 Results and Discussion

often overlap, again suggesting that randomness in both the SMARDCast model and the

initialization of optimizers in each run may play a substantial role in final performance.

Figure 5.1: SMARDCast: Average performance over time with zoomed inlay, filled areas
represent the standard deviation across runs

Figure 5.2 illustrates the average rank across runs of each optimizer at a given time.
Ranks calculated by sorting all optimizers across all three runs by their best perfor-
mance up until a given timestamp (as per Figure 5.1), resulting in each optimizer being
assigned three rankings ranging from 1 to 21 in this case. These three rankings are
averaged and normalized to the range [1,7] for each timestamp and a rolling average is
applied for better visibility. The same ranking plot using evaluated samples instead of
timestamps can be found in Appendix Figure A.3, displaying a better sample efficiency
for the used BO algorithms, aligning with theoretical assumptions. The QLPSO algo-
rithm is consistently placed first after approximately ten minutes, while other optimizers
display high variance in their rankings. An unexpected result is the poor performance
of both multi-fidelity approaches HB and BOHB, as these are consistently placed in the
last two ranks, performing even worse than the baseline RS. There are two possible ex-

planations for this contradiction of both empirically and theoretically expected results.

37

5 Results and Discussion

Figure 5.2: SMARDCast: Average rank of optimizers over time (lower is better)

First, the number of suggested configurations is much higher than the number of fully
trained models as per the SH algorithm both are implementing, which results in both
optimizers evaluating far fewer configurations with maximum fidelity and thus drawing
from a smaller pool of fully trained models. However this is naturally the case with both
HB and BOHB, such that this should only negatively affect their performance with severe
noise in low-fidelity evaluations. Excessive noise may disrupt the correlation between low-
fidelity and high-fidelity evaluations, causing the selection process to potentially discard
good configurations early. Under such conditions, SH may become counterproductive, as
it reduces the number of fully trained models without effectively identifying promising
candidates. This flawed early filtering may cause multi-fidelity approaches to potentially
perform worse than the baseline RS. This explanation is supported empirically by the
number of evaluations by algorithm in Table 5.1; while RS evaluated roughly 7,000 fully
trained models on average, BOHB and HB only evaluated 2,241 and 869 on the maxi-
mum fidelity respectively. A blog post by Falkner et al. [19] confirms this detrimental

influence of misleading low-fidelity evaluation on overall performance.

38

5 Results and Discussion

Table 5.1: Number of evaluations SMARDCast

Algorithm Average ‘ Run 1 ‘ Run 2 ‘ Run 3
HB (all) 10,011 | 10,032 | 10,009 9,994
RS 7,059 7,077 7,040 7,060
QLPSO 5,903 5,816 6,004 5,889
PSO 5,877 5,852 5,841 5,939
BOHB (all) 5,536 5,518 5,612 5,480
BOHB (max-fidelity) 2,241 2,180 2,229 2,316
BO-UCB 1,645 1,692 1,567 1,677
BO-EI 1,461 1,547 1,434 1,403
HB (max-fidelity) 869 856 867 885

Another practical consideration is the previously mentioned low training time of the
SMARDCast model. The comparatively longer loading times can significantly impact
performance, particularly during early optimization phases when the optimizer must fre-
quently pause and reload models only to train them for a brief amount of time. The issue
of computational benefit being lost due to a proportionally large overhead is recognized
in Li et al. [30]. Figure 5.3 illustrates this through a descending ECDF (empirical cumu-
lative distribution function) plot, where the proportion indicates how often GPU usage
equals or exceeds the corresponding x-value.

Notably, the HB algorithm appears to struggle even more with GPU efficiency, despite
theoretically having less downtime than BOHB as it lacks an underlying Bayesian model
for new sample suggestions, which represents additional computational overhead. This
discrepancy likely stems from implementation differences, as BOHB’s optimizer is used
directly through the authors’ provided package with HpBandster, unlike HB, which Ray
Tune implemented based on the original publication. Since the HB paper does not specify
certain implementation details, Ray Tune actually recommends an asynchronous alter-
native ASHA to the original HB algorithm, though this was not used to maintain better
comparability with BOHB [48].

As to be expected, the BO algorithms exhibit the worst GPU efficiency for two reasons:
only half of GPU 0 was allocated per trial as mentioned in section 4.5, and their inter-
nal modeling logic creates substantially longer downtime, especially in later phases with
O(n?) complexity. PSO, QLPSO and RS demonstrate the best GPU efficiency, with RS

showing slightly more consistency for higher average usage. The somewhat more compu-

39

5 Results and Discussion

Figure 5.3: GPU usage of optimizers

tationally expensive QLPSO mirrors PSO’s GPU usage while experiencing slightly longer
downtimes, resulting in marginally lower GPU efficiency.

Upon closer inspection, RS’s decent GPU usage may partly be explained by its mod-
els’ average training duration. Figure 5.4 presents distributions of both epoch counts
and trial completion times in form of an ECDF plot, with HB and BOHB expressing
their underlying SH subroutine as step functions in the epochs plot. While Bayesian-
and PSO-based optimizers show similar epoch counts, models configured by RS dispro-
portionately train to the 50-epoch limit, leading to longer trial completion times and
consequently less GPU downtime. This pattern can be explained by examining learning
rate parameter sampling, which directly affects model training duration. Lower learning
rates lead to slower training processes, necessitating more epochs to be completed before
overfitting occurs and triggers the EarlyStopping callback, while the opposite holds true

for higher learning rates.

40

5 Results and Discussion

Figure 5.4: Epochs and time per trial for all optimizers

Figure 5.5 displays the learning rate parameter usage by optimizer in a logarithmic ECDF
plot, providing insight into the algorithms’ optimization processes. As both HB and RS
simply draw values from a random loguniform distribution, their sampling is represented
by a diagonal line. Due to the implementation of SH by the HB algorithm, only a subset
of configurations are not discarded prematurely, resulting in only RS fully training the
majority of models with low learning rates. This explains the previously observed high
proportion of models trained to the maximum number of epochs. The UCB variant of BO
predominantly trains models using the highest possible learning rate, exhibiting strong
exploitative behavior. The remaining algorithms display varying curve characteristics,
yet all demonstrate a preference for higher learning rates, with approximately 80% of
sampled learning rates being greater than or equal to 1073. This aligns with empirical
findings, as the best-performing models typically fall within the range of [4 - 1074, 1073]
(see Appendix Figure A.4).

41

5 Results and Discussion

Figure 5.5: Learning rate sampling by optimizer

5.2 SVM on MNIST

The reproduction of the SVM multi-fidelity optimization problem from Klein et al. [28]
with an additional Nystroem approximation was done to verify the strong performance
of BOHB showcased in Falkner et al. [18]. Figure 5.6 shows the performances of all
optimizers in form of the test error. While HB and BOHB show slightly earlier first
evaluations, this difference is almost negligible compared to the results displayed in the
BOHB publication, as this is likely due to the parameter dependent time variance of
the SVM model described in section 4.6 (evaluation time differences are empirically
shown in Appendix Figure A.5). Since all optimizers are sampling randomly at first and
RS’s evaluations start considerably later than those the others, which further points to
the significance of this time variance. Additionally, while the Nystroem approximation
allowed for this experiment to be run considering the time restrains, the performance
implications for multi-fidelity approaches are apparent. This is due the choice of m =
104/n for the Nystroem approximation, the ratio of m/n becomes significantly smaller for
large values of n than for smaller subsets as used by HB and BOHB. This results in less
significant speedups for low-fidelity evaluations and diminishes the possible performance

gains provided by their multi-fidelity approach.

42

5 Results and Discussion

Figure 5.6: SVM on MNIST: Average performance over time with zoomed inlay, filled
areas represent the standard deviation across runs (scaled with 1/5 for visi-
bility)

Due to better random configurations, HB still displays the strongest early performance,
which again shows the problem of statistical significance, as optimizers were run 30 times
in Klein et al. [28] and 512 times (50 for BO) in Falkner et al. [18] respectively, instead
of five times in this experiment. This effect combined with the previously mentioned
time variance result in strong deviations across runs, such that the standard deviation
in Figure 5.6 was scaled down by 1/5. This strong variance is further exemplified by RS
quite consistently outperforming the other HPO algorithms, which directly contradicts
the empirical results |28, 18|.

The practical issues of PSO in respect to high time variance described in section 4.6
can be seen in Table 5.2, as neither PSO based algorithm completed more than 100
evaluations on average. With a population size of 20 the underlying PSO update logic
was oftentimes only called four or five times. Despite this, the standard PSO algorithm
performs considerably well displaying a strong anytime performance excluding RS, while
it seems to have particularly fatal implications for the QLPSO searcher. As it uses online

learning through the Q-table, it may not fully adapt to the optimization problem in such

43

5 Results and Discussion

a short amount of time, such the selection of swarm parameters may occur with a high
amount of randomness. This effect can be observed regarding QLPSO, as it displays a
long phase of stagnation, only converging to competitive results during the final phase.
Presumably this is due to its local search effectively promoting convergence near the real
optimum, as the objective function is unimodal and convex.

Notably, although the topology, low dimensionality and continuous parameters of this
objective function should align well with the modelling approach of the BO methods,
both display comparatively poor performances. A likley explanation for this may yet
again be the high amount of variance combined with an insufficient number of runs, as
results in both Klein et al. [28] and Falkner et al. [18] show an on average superior per-
formance to RS.

Overall the findings of this experiment may not be conclusive, as similar to the SMARD-
Cast experiment the optimization problem suffers from high underlying variance and

thus may not reach the threshold of statistical significance.

Table 5.2: Number of evaluations SVM on MNIST

Algorithm Average ‘ Std ‘ Relative Std
HB (all) 689.2 | 80.9 11.7 %
BOHB (all) 462.0 | 138.4 29.9 %
Random 186.8 | 21.2 11.3 %
HB (max-fidelity) 1146 | 134 11.7 %
QLPSO 96.0 | 314 32.7 %
PSO 77.2 | 26.3 34.0 %
BOHB (max-fidelity) 55.0 | 19.1 34.8 %
BO-EI 29.8 8.0 27.0 %
BO-UCB 26.6 6.8 25.4 %

44

5 Results and Discussion

5.3 Test Functions

This section presents the results for the two test functions: Rastrigin and Styblinski. As
mentioned prior, this experiment excludes the multi-fidelity optimizers HB and BOHB,
with it primarily serving as a controlled analysis of the QLPSO algorithm.

5.3.1 Rastrigin

The Rastrigin function represents a highly multi-modal function with a large number
of local optima (see Figure 3.2) and a global optimum with a value of 0 at the origin
point. Figure 5.7 illustrates the performances over time for the 10-dimensional Rastri-
gin function. The BO using the EI acquisition function demonstrates strong anytime
performance, with only RS outperforming it during early phases due to faster sampling.
BO-UCB exhibits decent performance but struggles with final convergence. Notably, the
QLPSO approach slightly outperforms standard PSO, while both achieve similar final
performances as BO-UCB.

Figure 5.7: Rastrigin-10D: Average performance over time, filled areas represent the stan-
dard deviation across runs (scaled with 1/2 for visibility)

45

5 Results and Discussion

In the 50-dimensional case, illustrated in Figure 5.8, the limitations of RS become ev-
ident, as pure exploration leads to substantially worse final results compared to other
optimizers. The stronger early performance of BO-EI observed in the 10-dimensional case
disappears here, as it only begins outperforming other algorithms after approximately
103 seconds, showing a short, highly exploitative phase resulting in a performance jump,
followed by severe stagnation. Similar behavior appears in BO-UCB at the same time,
though it continues improving after the jump, ultimately outperforming its EI counter-
part. Unlike the 10-dimensional case, QLPSO is substantially outperformed by standard
PSO, which emerges as the best optimizer with a significant lead. This comparatively
stronger performance by the PSO-based algorithms aligns with literature, as PSO typi-

cally excels at optimizing high-dimensional objective functions [52].

Figure 5.8: Rastrigin-50D: Average performance over time, filled areas represent the stan-
dard deviation across runs (scaled with 1/2 for visibility)

46

5 Results and Discussion

5.3.2 Styblinski

The Styblinski function presents another multi-modal function, distinguished by local op-
tima spread toward the edges and a more convex topology compared to Rastrigin. The
global minimum occurs where all variables equal approximately -2.9035, with a value of
-391.66 for the 10D and -1,958.30 for the 50D case respectively.

Figure 5.9 displays the performance of optimizers in the 10-dimensional case. Perfor-
mances resemble those of the Rastrigin-10D experiment, with RS showing strong early
performance, but producing worse final results. QLPSO outperforms standard PSO
again, suggesting an overall improvement in lower dimensionalities. Both Bayesian ap-
proaches demonstrate the strongest performance among all optimizers, with BO-UCB
outperforming BO-EI. Notably, this experiment was required to be rerun for the BO
algorithms, as these terminated their runs early after only around 2,000 seconds. This
resulted from optimizers essentially reaching an impasse where acquisition function accu-
racy proved insufficient to differentiate between similar configurations, interpreting them
as duplicates and failing to generate new suggestions. The parameters patience and re-
peat_ float precision of the BayesOptSearch class were set to a value of 10 each for this

experiment specifically, to prevent early termination.

Figure 5.9: Styblinski-10D: Average performance over time, filled areas represent the
standard deviation across runs (scaled with 1/2 for visibility)

47

5 Results and Discussion

Similar to the Rastrigin function, standard PSO significantly outperforms QLPSO in the
higher-dimensional problem as illustrated in Figure 5.10. This indicates some potential
limitations in the QLPSO’s ability to cope with high dimensionality, which is further ex-
amined and discussed in section 5.4. RS, while remaining the weakest algorithm, displays
more competitive results than in Rastrigin-50D. This may partly stem from the overall
weaker performance of PSO-based approaches, as indicated by their strong stagnation
during the later phases. A possible explanation may be, that the more dispersed local
optima of Styblinski present greater challenges for swarm optimization than the clustered
optima of Rastrigin, which may allow for better incremental improvements during the
exploitation phase. Notably, both BO methods outperform other algorithms, with BO-EI
exhibiting better anytime performance than its UCB counterpart. Similar to Rastrigin,
both BO algorithms display significant performance jumps toward the end, indicating
strong exploitation. Unlike Rastrigin, these jumps occur during different optimization
phases and aren’t followed by performance stagnation; instead, both continue improving
until the conclusion, suggesting potential for further enhancements given longer optimiza-
tion time. The superior performance of the BO methods likely stems from the Styblinski
function’s topology, which features smoother contours and a more convex shape that

aligns well with Gaussian process modeling capabilities.

Figure 5.10: Styblinski-50D: Average performance over time, filled areas represent the
standard deviation across runs (scaled with 1/2 for visibility)

48

5 Results and Discussion

5.4 QLPSO Behavior

This section examines the optimization behavior and inner workings of the QLPSO ap-
proach, with particular attention to the characteristics exhibited by the Q-learning com-
ponent. As mention prior, the analysis focuses on the test functions, as they allow
consideration of both objective function shapes and dimensionalities without evaluation
time inconsistencies. Since QLPSO employs an online learning process, the changes and
diversity of states and actions over time are of particular interest.

Figure 5.11 illustrates these general behavioral characteristics, with rows representing the
respective states and actions, and columns distinguishing between the two test functions.
Each combination displays the rolling average (window size of 200 seconds) across runs
with a 95% confidence interval (@ 4 1.960) for both dimensionalities.

Actions largely remain constant across both test functions and dimensionalities, pri-
marily consisting of high exploration actions (0 and 1) during the global search phase.
This pattern was unexpected, as the reward function implemented explicitly promotes a
change from exploration to exploitation based on the optimization progress. A possible
explanation for this discrepancy may be the choice of o and v used in the Q-value update
function 2.7, but needs be further examined to merit a satisfying conclusion. Only the
10-dimensional Styblinski function shows a slight upward trend, though it’s almost negli-
gible. Generally, the QLPSO searcher tends slightly more toward convergent actions with
the Rastrigin function compared to Styblinski, while higher dimensionality contributes
to more exploratory behavior in both cases. The final spike to action 4 represents the
local search initiated after 90 % of runtime.

Interestingly, dimensionality appears to have the most significant impact on decision
states, with particles predominantly occupying the 'farther’ and ’farthest’ categories (ex-
pressed with values of 2 and 3) in the 50-dimensional examples, while in lower dimension-
ality they often inhabit the lower threshold areas. According to the categories proposed
by Liu et al. [32], this would suggest greater distances from the global optimum, but
this approach may be misleading, as with increasing dimensionality, the farthest’ region
becomes disproportionately large. This effect is illustrated in the extreme example for
2-dimensional space in Figure 5.12, where the global optimum is at the origin point. Al-
though equally sized regions for decision states may not have been the original intention,
the strong influence of dimensionality suggests a need for a mechanism to handle the
potential skewing of decision states, as particles become increasingly more likely to fall
in the ’farthest’ regions as dimensionality increases. Additionally, as shown in Figure

2.5, when the global optimum falls toward the center of the hyperparameter space, the

49

5 Results and Discussion

'farthest’ region may become completely obsolete, further reducing granularity of the de-
cision state by limiting the Q-table to only use the remaining three states. This may also
explain the Styblinski function seemingly promoting more distant decision states than
Rastrigin, as the latter features an inherently more centered topology than Styblinski,
where local and global optima are distributed more toward the corners of the space.

Overall, the downward trends in decision states display the expected transitioning from
exploration to exploitation more pronounced than the chosen actions. Although an in-
teresting observation to be made is the severe stagnation of the decision state occurring
in the 50-dimensional Styblinski experiment, as the majority of particles seem to con-
sistently be stuck in the farthest two regions, without converging to the global best. A
possible explanation may be the similar stagnation of explorative actions in this example,
which are characterized by higher cognitive and lower social parameters. Considering the
topology of this function, particles seem to mostly keep exploring in proximity to their
respective local optima and are unable to escape, as the attraction toward their personal
best exceeds that toward the global best. The fact that local optima occupy large regions
in the space may reinforce this stagnation effect, as particles may not be able to approach
the global best through incremental improvements, like in the Rastrigin function. The
final convergence effect visible across experiments simply reflects the local search param-
eters, as particles only consider the current global best for velocity updates and thus

converge to that point.

50

5 Results and Discussion

Figure 5.11: Ensemble plot for QLPSO behavior over time

Finally, the objective states illustrated in Figure 5.11 display large characteristical dif-
ferences between the two test functions, while exhibiting high variance in all cases. The
Rastrigin function promotes a slight downward trend with both dimensionalities showing
a jump in convergence during the local search. This final convergence behavior is con-
siderably more pronounced in the 50-dimensional case than in the 10-dimensional one.
This pattern is not observed for the Styblinski function, where the objective state on
average remains relatively constant, displaying significantly higher overall variance with
some oscillatory features. The discrepancy may be due to the different topologies yet
again, as the global best in the Rastrigin function is likely near the center, such that
local search would lead to exploitation close to the actual global optimum or a close lo-
cal optimum. Although the convergence of the decision states during local search raises

another issue regarding the objective states in the Styblinski experiment, as convergence

51

5 Results and Discussion

Figure 5.12: Decision state region size illustration

to the region of the global best should in turn lead to results similar to that of the global
best and thus objective states of 0 and 1, especially with the more convex Styblinski
function. A satisfying explanation remains to be found, although it may be related to
the dynamic objective state thresholds used, as the value range of the Styblinski function
is quite large, such that the used outlier handling approach might unintentionally distort
objective state representation for this topology. States and actions are also visualized
using histograms in Appendix Figure A.6, which reveal a consistently strange character-
istic regarding objective states in the Styblinski function, irrespective of dimensionality.
The vast majority of times only the edge categories are represented, further suggesting

a potential issue with the dynamic thresholding approach used.

52

6 Conclusion

This chapter provides a brief summary of the work performed in this thesis and draws
conclusions for the experimental results as a whole. Additionally, some future work ideas

are proposed based on the findings of this thesis.

6.1 Thesis Summary

Regarding the in section 1.2 outlined objectives, this thesis largely achieved the intended
goals. A comprehensive overview of common HPO techniques and their underlying mech-
anisms is provided in section 2.2. Using the Ray Tune framework, custom implementa-
tions of both the standard PSO algorithm and a QLPSO approach are developed and
benchmarked against several other established methods across a variety of optimization
tasks.

The results highlight the importance of taking various practical considerations into ac-
count when comparing HPO algorithms. All optimization methods exhibit individual
strengths and weaknesses, making it crucial to take an array of factors into consideration
such as variance, evaluation cost and resource efficiency. This is especially observable
for both the SMARDCast model and the SVM on MNIST task, as high variance com-
plicates drawing concrete conclusions, although metrics like GPU efficiency still reveal
some underlying characteristics. Notably, the multi-fidelity approaches HB and BOHB
especially struggle to compete due to these issues affecting both efficiency and conver-
gence behavior.

Using optimization test functions, a systematic examination of optimizer behavior is
provided. Different dimensionality and topology of the objective function impact per-
formances in alignment with theoretical expectations. The PSO-based methods display
better comparative performances in high dimensional space, while the BO methods tend
to perform better in lower dimensionality. The more centered arrangement of local and

global optima in the Rastrigin function seemingly allows for better convergence of the

53

6 Conclusion

PSO algorithms, while struggling to escape large local optima regions present in the Sty-
blinski topology. Both BO variations are able to better model the smooth and convex
shape of the Styblinski function.

The QLPSO approach shows overall competitive results compared to other HPO tech-
niques and a superior performance to the standard PSO algorithm in some scenarios.
Despite this, a strong influence of both dimensionality and topology is revealed when
evaluating the test functions. The main issue being the inability to cope with high di-
mensionality, as the decision space state appears to not scale adequately, resulting in
significant performance loss compared to using standard PSO. Actions also seem stag-
nant in contrast to the intended shift from exploration to exploitation modelled with
the reward function. This may be due to the selection of o and -y, possibly suggesting
that manual parameter selection is still required if results prove too sensitive to these
values. Finally, the objective space state is strongly influence by the objective func-
tions’ topology. In the case of the Styblinski function, this state representation does
not seem to provide meaningful information, regardless of dimensionality. Although this
may stem from the custom implemented outlier handling using the MAD instead of the
pre-determined thresholds.

Overall, the most substantial limitation encountered is the statistical significance of the
results. The high run-to-run variance in combination with a limited time budget presents

a material challenge for deriving a conclusive performance comparison.

6.2 Future Work

Based on the in this thesis outlined limitations of the QLPSO approach, there are several

directions for future research:

Reward Function Design

Currently, the reward function considers actions, optimization progress and performance
change, but does not incorporate state information, as is typically the case [39]. A
more sophisticated approach may include state transitions and/or use the combination
of both states to provide meaningful insight. For example, a decision space state of 3
(’farthest’) combined with an objective space state of 0 (’smallest’) may represent an
interesting area for exploration. In this way, the additional reward signal may provide
better dynamic guidance for particle behavior rather than the explicit progress based

exploration-exploitation transitioning.

54

6 Conclusion

Performance Assessment

Step-by-step performance differences can be misleading, as traversing temporarily worse
regions might be necessary to reach global optima. A sequential replay buffer storing
performance changes over a longer time horizon may be used to bridge this gap, promot-
ing more long-term planning instead of pursuing short-term improvements. Addition-
ally, leveraging population-based improvement metrics instead of individual performance

changes may prove beneficial.

State Representation

The decision space state not scaling adequately with higher dimensionality poses a critical
limitation and significantly impacts performance. Currently, particles are assigned to the
"farthest’ region in a disproportionate manner, such that the inclusion of a dimensionality-
aware scaling factor for distance calculation should be examined. Similarly, the threshold
values of the objective space state are defined prior to the optimization process in the
original QLPSO implementation, which is not applicable to 'black box’ objective func-
tions. The in this thesis implemented MAD outlier handling displays shortcoming with
the Styblinski topology, such that the development of alternative dynamic thresholding

methods presents another research direction.

Evaluation of Parameter Influence

As previously mentioned, the initialization of parameters oo and ~ is not explicitly stated
in the publication. The sensitivity of results due to the choice of these parameters
is not quantified, as no extensive testing was done. For further examination of the
QLPSO algorithm, the influence of parameter initialization should be characterized across

dimensionality, topology and optimization budget.

Learning Approach

Another topic for future work could be exploring the usage of a DQN instead of a Q-table,
which would allow for a continuous state space. This may provide a higher resolution of
the optimization environment and represent particle states more accurately. Addition-
ally, adjusting the three swarm parameters individually rather than using pre-defined
combinations would allow for more precise control and minimize human bias. Using a
DQN may also enable generalization and utilize knowledge transfer across optimization

problems instead of the instance-specific approach.

55

Bibliography

(1]

2]

13]

4]

[5]

[6]

7]

Nikita Adarsh. The inner workings of spotify’s ai-powered music recommendations:
How spotify shapes your playlist, 2023. URL https://medium.com/beyond-t
he-build/the-inner-workings-of-spotifys—ai-powered-music-r
ecommendations—how-spotify—-shapes—-your-playlist-al0a9148ee8
d.

Arga Adyatama. Tutorial for bayesian optimization in r. https://rpubs.com/

Argaadya/bayesian-optimization, 2019. Accessed: 2025-04-22.

Musaed Alhussein and Syed Irtaza Haider. Improved Particle Swarm Optimization
Based on Velocity Clamping and Particle Penalization. In 2015 Srd International
Conference on Artificial Intelligence, Modelling and Simulation (AIMS), pages 61—
64, Kota Kinabalu, Malaysia, December 2015. IEEE. doi: 10.1109/aims.2015.20.
URL http://ieeexplore.ieee.org/document/7604552/.

Amazon Web Services. What is deep learning? - deep learning explained - aws, 2025.
URL https://aws.amazon.com/what-is/deep-learning/. Accessed:
April 24, 2025.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimiza-
tion. J. Mach. Learn. Res., 13:281-305, February 2012. ISSN 1532-4435.

Bernd Bischl, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter, Stefan
Coors, Janek Thomas, Theresa Ullmann, Marc Becker, Anne-Laure Boulesteix, Di-
fan Deng, and Marius Lindauer. Hyperparameter Optimization: Foundations, Al-
gorithms, Best Practices and Open Challenges, 2021. URL https://arxiv.or
g/abs/2107.05847. Version Number: 3.

Eric Brochu, Vlad M. Cora, and Nando de Freitas. A Tutorial on Bayesian Opti-
mization of Expensive Cost Functions, with Application to Active User Modeling
and Hierarchical Reinforcement Learning, 2010. URL https://arxiv.org/ab
s/1012.2599. Version Number: 1.

56

Bibliography

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Jason Brownlee. Supervised and unsupervised machine learning algorithms. Machine
Learning Mastery, 2016. Available at: https://machinelearningmastery.c

om/supervised—-and-unsupervised-machine—-learning—algorithms/.

Bundesnetzagentur. Smard: Electricity market data for germany. https://ww
w.smard.de/en, 2025. Online platform by German Federal Network Agency

(Bundesnetzagentur).

Paolo Cazzaniga, Marco S. Nobile, and Daniela Besozzi. The impact of particles
initialization in PSO: Parameter estimation as a case in point. In 2015 IEEE Con-
ference on Computational Intelligence in Bioinformatics and Computational Biol-
ogy (CIBCB), pages 1-8, Niagara Falls, ON, Canada, August 2015. IEEE. doi:
10.1109/cibcb.2015.7300288. URL http://ieeexplore.ieee.org/document
/7300288/.

Michael Copeland. What’s the difference between artificial intelligence, machine
learning, and deep learning?, 2016. URL https://blogs.nvidia.com/blog/
whats—-difference—-artificial-intelligence-machine-learning-d

eep—learning—-ai/.
DataCamp. Machine learning models explained. https://www.datacamp.com

/blog/machine—learning-models—explained, 2023. Accessed: 2025-04-24.

Li Deng. The mnist database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine, 29(6):141-142, 2012.

Aniket Anand Deshmukh. Kernel approximation. Technical Report 608, University
of Michigan, Ann Arbor, 2015. Stats 608.

Thomas G. Dietterich. Hierarchical Reinforcement Learning with the MAXQ Value
Function Decomposition, 1999. URL https://arxiv.org/abs/cs/9905014.

Version Number: 1.

ekamperi. Acquisition functions in Bayesian optimization, 6 2021. URL https:
//ekamperi.github.io/machine%$20learning/2021/06/11/acquisiti
on-functions.html. Blog post.

Stefan Falkner. Hpbandster - a distributed hyperband implementation on steroids,
2018. URL https://github.com/automl/HpBandSter.

57

Bibliography

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust and Efficient
Hyperparameter Optimization at Scale. In Proceedings of the 35th International
Conference on Machine Learning, pages 1437-1446. PMLR, July 2018. URL
https://proceedings.mlr.press/v80/falknerl8a.html. ISSN: 2640-
3498.

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust and efficient hyper-
parameter optimization at scale, 2018. URL https://www.automl.org/blog_
bohb/. Blog post on the AutoML.org website.

Eduardo C. Garrido-Merchén and Daniel Herndndez-Lobato. Dealing with categor-
ical and integer-valued variables in Bayesian Optimization with Gaussian processes.
Neurocomputing, 380:20-35, March 2020. ISSN 09252312. doi: 10.1016/j.neucom.2
019.11.004. URL https://linkinghub.elsevier.com/retrieve/pii/S
09252312193156109.

Google Developers. Convolutional neural networks, 2023. URL https://develo
pers.google.com/machine-learning/practica/image-classificat

ion/convolutional-neural-networks. Image Classification.

Jochen Gortler, Rebecca Kehlbeck, and Oliver Deussen. A visual exploration of
gaussian processes. Distill.pub, 2020. Available at: https://distill.pub/20

19/visual-exploration—-gaussian—-processes/.

History Tools. Deep learning applications: An expert’s guide, 2024. URL https:
//www.historytools.org/ai/deep—-learning—applications. Accessed:
2025-04-25.

T. Huang and A.S. Mohan. A hybrid boundary condition for robust particle swarm
optimization. IEEE Antennas and Wireless Propagation Letters, 4:112-117, June
2005. ISSN 1536-1225, 1548-5757. doi: 10.1109/lawp.2005.846166. URL http:
//ieeexplore.ieee.org/document /1425453 /. Publisher: Institute of
Electrical and Electronics Engineers (IEEE).

IBM. What is machine learning? - ibm think, 2025. URL https://www.ibm.co
m/think/topics/machine—learning. Accessed: April 25, 2025.

Kevin Jamieson and Ameet Talwalkar. Non-stochastic Best Arm Identification and
Hyperparameter Optimization. In Proceedings of the 19th International Conference
on Artificial Intelligence and Statistics, pages 240-248. PMLR, May 2016. URL

58

Bibliography

[27]

28]

[29]

[30]

[31]

[32]

[33]

https://proceedings.mlr.press/v51/jamiesonl6.html. ISSN: 1938-
7228.

James Kennedy and Russell C. Eberhart. Particle swarm optimization. In Proceed-
ings of ICNN’95 - International Conference on Neural Networks, volume 4, pages
1942-1948, Perth, WA, Australia, 1995. IEEE. doi: 10.1109/icnn.1995.488968. URL
http://ieeexplore.ieee.org/document/488968/.

Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter. Fast
Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets.
In Proceedings of the 20th International Conference on Artificial Intelligence and
Statistics, pages 528-536. PMLR, April 2017. URL https://proceedings.ml
r.press/v54/kleinl7a.html. ISSN: 2640-3498.

Nick Kriiger, Kolja Eger, and Wolfgang Renz. SMARDcast: Day-Ahead Forecasting
of German Electricity Consumption with Deep Learning. In 2024 International
Conference on Smart Energy Systems and Technologies (SEST), pages 1-6, Torino,
Italy, September 2024. IEEE. doi: 10.1109/sest61601.2024.10694018. URL https:
//ieeexplore.ieee.org/document/10694018/.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Tal-
walkar. Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimiza-
tion. Journal of Machine Learning Research, 18(185):1-52, 2018. ISSN 1533-7928.
URL http://Jmlr.org/papers/v18/16-558.html.

Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E. Gonzalez,
and Ion Stoica. Tune: A Research Platform for Distributed Model Selection and
Training, 2018. URL https://arxiv.org/abs/1807.05118. Version Number:
1.

Yaxian Liu, Hui Lu, Shi Cheng, and Yuhui Shi. An Adaptive Online Parame-
ter Control Algorithm for Particle Swarm Optimization Based on Reinforcement
Learning. In 2019 IEEE Congress on Evolutionary Computation (CEC), Welling-
ton, New Zealand, June 2019. IEEE. doi: 10.1109/cec.2019.8790035. URL
https://ieeexplore.ieee.org/document/8790035/.

Milvus. How does the discount factor (gamma) affect rl training?, 2023. URL
https://milvus.io/ai-quick-reference/how-does—-the-discoun

t-factor-gamma-affect-rl-training.

59

Bibliography

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Milvus. How is the learning rate used in reinforcement learning?, 2023. URL https:
//milvus.io/ai-quick-reference/how-is-the-learning-rate-use

d-in-reinforcement-learning.

Christoph Molnar. Interpretable machine learning. Online book, 2022. Available at:
https://christophm.github.io/interpretable-ml-book/.

Michael Nielsen. Neural networks and deep learning. Online book, 2019. Available

at: http://neuralnetworksanddeeplearning.com/.

Fernando Nogueira. Bayesian Optimization: Open source constrained global opti-
mization tool for Python, 2014—. URL https://github.com/bayesian—-opt

imization/BayesianOptimization.

Christopher Olah. Understanding lstm networks. Colah’s Blog, 2015. Available at:
https://colah.github.io/posts/2015-08-Understanding-LSTMs/.

OpenAl. Introduction to reinforcement learning. OpenAl Spinning Up documenta-
tion, 2018. Available at: https://spinningup.openai.com/en/latest/sp

inningup/rl_intro.html.

Konstantinos Parsopoulos and Michael Vrahatis. Particle swarm optimizer in noisy

and continuously changing environments. 2001.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Kernel approxima-
tion - mathematical details. scikit-learn documentation, 2011-2024. URL https:
//scikit-learn.org/stable/modules/kernel_approximation.html#
mathematical—-details. Accessed: 2025-04-22.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Support Vector Machines. scikit-
learn, 2024. URL https://scikit-learn.org/stable/modules/svm.ht
ml#complexity. Accessed: 2025-04-22.

Marius-Constantin Popescu, Valentina Balas, Liliana Perescu-Popescu, and Nikos
Mastorakis. Multilayer perceptron and neural networks. WSEAS Transactions on
Circuits and Systems, 8, 07 2009.

60

Bibliography

[44]

[45]

[46]

[47]

48]

[49]

[50]

[51]

[52]

Partha Pratim Ray. ChatGPT: A comprehensive review on background, ap-
plications, key challenges, bias, ethics, limitations and future scope. Internet
of Things and Cyber-Physical Systems, 3:121-154, 2023. ISSN 26673452. doi:
10.1016/j.i0tcps.2023.04.003. URL https://linkinghub.elsevier.co
m/retrieve/pii/S266734522300024X.

Stanford CS231n. Convolutional neural networks. Course notes, 2021. Available at:

https://cs231n.github.io/convolutional-networks/.

Conor Sweeney, Ricardo J. Bessa, Jethro Browell, and Pierre Pinson. The future
of forecasting for renewable energy. WIREs Energy and Environment, 9(2):e365,
March 2020. ISSN 2041-8396, 2041-840X. doi: 10.1002/wene.365. URL https:
//wires.onlinelibrary.wiley.com/doi/10.1002/wene.365.

Tala Talaei Khoei, Hadjar Ould Slimane, and Naima Kaabouch. Deep learning:
systematic review, models, challenges, and research directions. Neural Computing
and Applications, 35(31):23103-23124, November 2023. ISSN 0941-0643, 1433-3058.
doi: 10.1007/s00521-023-08957-4. URL https://link.springer.com/10.1
007/s00521-023-08957-4.

The Ray Team. Ray tune api: Schedulers, 2024. URL https://docs.ray.io/
en/latest/tune/api/schedulers.html. Accessed: 2024-04-25.

Towards Data Science. Understanding the bias-variance tradeoff. Towards Data
Science blog, 2018. Available at: https://towardsdatascience.com/under
standing-the-bias-variance-tradeoff-165e6942b229.

Dongshu Wang, Dapei Tan, and Lei Liu. Particle swarm optimization algorithm:
an overview. Soft Computing, 22(2):387-408, January 2018. ISSN 1432-7643, 1433-
7479. doi: 10.1007/s00500-016-2474-6. URL http://link.springer.com/10
.1007/s00500-016-2474-6. Publisher: Springer Science and Business Media
LLC.

Shuhei Watanabe. Tree-Structured Parzen Estimator: Understanding Its Algorithm
Components and Their Roles for Better Empirical Performance, 2023. URL https:
//arxiv.org/abs/2304.11127. Version Number: 3.

Li Yang and Abdallah Shami. On hyperparameter optimization of machine learning
algorithms: Theory and practice. Neurocomputing, 415:295-316, November 2020.
ISSN 0925-2312. doi: 10.1016/j.neucom.2020.07.061. URL https://linkin

61

Bibliography

ghub.elsevier.com/retrieve/pii/s0925231220311693. Publisher:
Elsevier BV.

62

Appendix

Table A.1: SMARDCast model performance variance

. Validation Test
Metric
Mean Standard Deviation Mean Standard Deviation
MSE* 829.34 +56.41(4+6.2%) 921.11 +72.57(+7.4%)
MAPE* 4.67 +0.38(+7.4%) 5.60 +0.52(£8.5%)

*MSE: Mean Squared Error, MAPE: Mean Absolute Percentage Error

Figure A.1: Hyperband brackets example with R = 81 and n = 3. Source: [30]

A Appendix

Table A.2: Hyperparameter settings for the SMARDCast model

Parameter Sampling Method Range/Options
Learning Rate loguniform [107%,1072
Input Timesteps choice {96, 192, 288}
CNN Layers discrete uniform [1, 3]
CNN Filters* pow2 [24, 28]
CNN Kernel Size* pow?2 (21, 24]
CNN Batch Normalization™ boolean {True, False}
CNN Max Pooling bool {True, False}

LSTM Layers discrete uniform [1, 2]
LSTM Units* pow?2 [25, 28]
LSTM Dropout* uniform [0.0, 0.4]
Time Feature Signals combination {Day, Hour, Month, Week, Year,

Day of the Week, Is Holiday}

* The parameter applies to each layer separately.

Table A.3: Fixed parameter settings for the SMARDCast model

Parameter

Value

Input Columns
Output Timesteps
Output Columns

Offset
Window Split
Epochs
Patience
Batch Size
Evaluation Metric
Metrics
Mode

Total Load [MWh]
96
Total Load [MWh]
0
96
50
3
256
Validation Loss
MAPE, RMSE, MAE
Min

64

A Appendix

Table A.4: Hyperparameter settings for SVM on MNIST

Parameter ‘ Sampling Method ‘ Range/Options

Gamma loguniform [e=10, ¢10]
C loguniform [e710,e10]

Table A.5: Fixed parameter settings for SVM on MNIST

Fixed Parameters

Parameter Value
Epochs 10
Evaluation Metric | Test Error
Mode Min

Figure A.2: Sigmoid probability function used for stochastic rounding

65

A Appendix

Figure A.3: SMARDCast: Average rank of optimizers over samples (lower is better)

Figure A.4: Validation MAPE over learning rate of fully trained models, hue represents
the number of epochs

66

A Appendix

Figure A.5: SVM evaluation time differences displayed as an ECDF plot (’full’ suffix
represents models trained on the maximum fidelity, ’all’ suffix includes low-
fidelity evaluations)

67

A Appendix

Figure A.6: Histogram ensemble plot for QLPSO behavior

68

Erklarung zur selbstiandigen Bearbeitung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbstéindig
verfasst und nur die angegebenen Hilfsmittel benutzt habe. Wortlich oder dem Sinn

nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich

gemacht.

Ort Datum Unterschrift im Original

69

