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Abstract

To enable a reliable SASE (self-amplified spontaneous emission) process at free-electron
lasers, stable electron beam properties are needed. The slow longitudinal feedback sys-
tem compensates long term drifts of the accelerating modules using toroids, beam arrival
monitors and beam compression monitors. To optimize the current system, various ap-
proaches are investigated. Beginning with the evaluation of the current mathematical
model and moving on towards the inversion of linear and nonlinear response matrices, a
description of the system needs to be found. As measurable outcomes, the RSME and
the amount of mismatching derivatives signs are considered. Furthermore, the system is
checked for dynamics. Finally, a modified version of the SINDy-algorithm is introduced
and all approaches are compared to each other.

To access the necessary data for the optimization, a parameter scan at the particle accel-

erator FLASH was performed by scanning all actuators randomly and simultaneously

Abstrakt

Um einen zuverlassigen SASE (self-amplified spontaneous emission) Prozess an Freie-
Elektronen-Lasern zu ermoglichen, werden stabile Eigenschaften des Elektronenstrahls
benotigt. Das langsame, longitudinale Feedbacksystem kompensiert langsames Driften
der Beschleunigermodule indem Toroiden, beam arrival monitors und beam compression
monitors fiir die Regelung verwendet werden. Um das vorhandende System zu optimieren,
werden unterschiedliche Ansétze untersucht. Beginnend mit der Bewertung des aktuellen
Ansatzes und dem zugrundeliegenden mathematischen Modell, tiber die Invertierung lin-
earer und nichtlinearer Antwortmatrizen wird eine Beschreibung des Systems gesucht.
Als messbare Groflen werden hierbei der RSME und die falsch vorhergesagten Vorzeichen
der Ableitung verwendet. Weiterhin wird das System auf dynamisches Verhalten unter-
sucht. SchliefSlich wird eine modifizierte Version des SINDy-Algorithmus eingefiihrt und
die verschiedenen Ansétze miteinander verglichen.

Um die notwendigen Daten fiir die Optimierung zu erheben, wurde ein Parameterscan am
Teilchenbeschleuniger FLASH durchgefiihrt. Hierbei wurden zeitgleich alle Aktuatoren

zufillig verandert.

IT
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1. Introduction

The Deutsches Elektronen-Sychrotron (DESY) is one of the leading institutes for accel-
erator physics worldwide. It has two different sites in Germany, on the one hand, there
is a campus in Zeuthen, where astrophysical experiments are developed and performed.
In addition to this, the development of new injectors for particle accelerators takes place
there, too. On the other hand, there is a site in Hamburg where different particle acceler-
ators are developed and prosecuted. In total, DESY has about 2700 employees and about

3000 scientists visiting the campus every year.

On campus in Hamburg, there are accelerators of different types for various purposes.
There are ring accelerators like PETRAIII, with its pre-accelerators PIA and DES)Y
as well as linear accelerators e.g., FLASH and the EuXFEL. An overview of the main

facilities is provided in fig.1.

Figure 1: Accelerators at DESY[1]

1.1. X-ray free electron lasers

In the last years, X-ray free-electron lasers (XFEL) became a significant factor in ex-
periments with matter and fluids. Compared to synchrotron radiation facilities like
PETRAIII, they have the advantage that a large number of photons can be used for
the exploration of different probes on a femtosecond scale, whereas synchrotron radia-
tion sources deliver the photons on a picosecond scale. This leads to new opportunities
for experiments. With XFELs it is possible to explore dynamic processes of atoms or

molecules.[13]
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Fig. 2 shows the basic principle of an XFEL. First, electron bunches exit the electron
gun in a certain bunch pattern and get accelerated e.g. with radio frequency in supercon-
ducting cavities. After the acceleration, the bunch is often compressed with the help of
a magnetic chicane (bunch compressor), acceleration and compression can repeat several
times. Finally, the beam enters a wiggler or undulator, which usually consist of many per-
manent magnets of different orientation in longitudinal and transversal direction. When
the electrons change their direction according to the magnets, self-amplified spontaneous
emission (SASE) is generated which is transported to the experiment while the electron

beam is dumped.

Source of
Accelerated
Electrons

Electron Dump or
Recirculation Path

Laser Beam

Figure 2: Schematic of a basic free electron laser|2]

Two XFELs are prosecuted by DESY:

e 'LASH

e Furopean XFEL

Their specific structures will be explained in the following subsections.

1.1.1. FLASH

The FLASH facility was the world’s first short-wavelength free-electron laser facility.[3] Tt
was developed as test faciltiy for the superconducting TESLA-accelerator technology and
has a length of 315 m. Today, the facility is used as photon source for two experimental

halls with five and six measuring stations (3).[3][14]

By using two independent photocathode lasers, it is possible to create different bunch
patterns for two beamlines. This enables the synchronous operation of the beamlines
FLASH1 and FLASH2. Before the electrons are sent into the different beamlines, they

get accelerated and compressed in seven accelerating modules and two magnetic chicanes.

13
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Figure 3: FLASH Layout[3]

1.1.2. European XFEL

The European XFEL (EuXFEL) (fig. 4) is one of the world’s brightest XFELs with a
peak brilliance of 5 - 1033, [15] The whole facility has a length of 3.4 km and starts on
the DESY campus, Hamburg. The experimental hall with currently four different exper-

imental set-ups is located in Schnenefeld, Schleswig-Holstein.

After the injection, the electrons pass a superconducting linear accelerator (LINAC) with
a total length of 1.7 km that basically uses the same components as FLASH. Due to the
usage of 98 accelerating modules the electron beam can reach up to 17.5 GeV. Afterwards,
the electrons enter the SASE sections where 27,000 ultra-short light flashes per second
with a wavelength of 0.05 nm to 4.7 nm can be achieved. The photons are sent to the
experimental stations whereas the electrons are dumped in a water cooled graphite block.
Finally, the scientists can use the light for experiments in various disciplines to explore

the world on a femtosecond scale.

Figure 4: XFEL Layout[4]

1.2. Task

To fulfill the requirements of the experiments of high and stable photon energies, it is
crucial to have a reliable SASE process with electron beam parameters that always saty
the same, such as compression and energy. For that reason, a good control of the beam
in front of the undulators is needed. Hence, the settings in the injector and the acceler-

ating modules, such as gun phase and amplitude as well as sumvoltage and chirp in the

14



modules, are the enabling factors for successful operation of the system.

To enhance a stable beam with constant properties, various feedback systems are used.
This thesis essentially deals with the slow longitudinal feedback system of the FLASH
accelaerator which is responsible for the compensation of long term drifts during oper-
ation caused by e.g., temperature or humidity changes. The control system currently
used works only to a certain state of the machine before it starts to drift. It contains six
independent control loops for the FLASH accelerator with the option for nine additional
loops [5]. By measuring a response matrix of the machine by applying small changes
to the different actuators, a linear control loop is enabled [5]. The response matrix is
inverted by singular value deposition (SVD), so that the control system recalculates the
necessary actuator changes out of the changes in arrival time and bunch length measured

by different monitors [5].

Hitherto, the behavior of the system during operation is not satisfying due to occurring
drifts and the subsequent adjustments made by the operators and their experience. For
this reason, a closer look into the slow longitudinal feedback is necessary. With focus on
the actuators and monitors as closed and dependent system as well as the recalculation
of response matrices, a new approach including e.g. nonlinearites should be developed
and implemented by using machine learning methods. Due to the similarity of EuXFEL
and FLASH, an adaption of the dependencies found at FLASH to the EuXFEL control

system is possible.
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2. Basics and current status

This chapter deals with the different components of the slow longitudinal feedback system
and the system itself. To understand the longitudinal feedback in a sufficient way, a basic

knowledge about the different diagnostics like

e Laser based synchronization systems
e Toroids
e Beam arrival monitors (BAM)

e Beam compression monitors (BCM)

is necessary. In addition to this, the location of the actuators and monitors as well as the

principle of the control system are pointed out.

2.1. Diagnostics

The schematic diagram of the FLASH longitudinal feedback system (fig. 5) shows the
layout of the different components for diagnostics for the longitudinal feedback system of
FLASH and the accelerating modules as well as the parameters gained from the compo-
nents. Starting from the electron gun, the functionality of the different diagnostics will

be explained in the following subsections.

BAM BCM BAM BCM Energy

GUN .._| ACGe5 H A:::::s? }—\

Figure 5: Schematic diagram of FLASH longitudinal feedback|5]

2.1.1. Laser based synchronization systems

To allow a precise control of the accelerator parameters, all components have to run with a
higher precision than the demanded measurement precision, in this case within a femtosec-
ond resolution. For this reason, a laser based synchronization system was implemented.
A master laser oscillator provides ultra short laser pulses via fibre links to the different
components. To compensate environmental influences, the fibers are stabilized with piezo

actuators that adjust the length of the fiber according to humidity and temperature by

16



comparing the reflected part of the pulse with a new pulse.|6]

The master laser oscillator is locked to the radio frequency master oscillator that works as
a time reference for other accelerator systems. Both systems are located in a temperature
stabilized room to avoid environmental influence. A schematic layout of the whole system

is presented in fig. 6.[6]

Injector laser

BAM 1
Master

RF -Iﬁa:ter laser Sl
oscillator | REF lock oscillator

Seeding laser

Pump-probe laser

Free-space Stabilised  End stations
distribution fibre links

Figure 6: Schematic layout of the laser-based synchronization system|6]

2.1.2. Toroids

To measure the current and the charge of the electron beam, toroids are used. The
induced current which appears when a charged particle passes a toroidal core can be used
to extract the beam current without distracting the beam itself.[16] For the accelerators
FLASH and EuXFEL, a toroid coil works in combination with a frontend device. It has
a two channel arrangement with two amplifiers of different gains so that an extended
dynamic range of the current can be covered (fig. 7). Then, the signals are provided to a
MTCA 4 crate which processes the data.[7]

17
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Toroid

Frontend amp. RTM AMC CPU
(close to toroid) MTCA.4 crate

Figure 7: Hardware setup with high dynamic range feature (simplified) system|7]

2.1.3. Beam arrival monitors

Gaining information about the arrival time of the bunch is crucial for the control system
because it allows an indirect measurement of the energy of the electron bunches. For that
reason, beam arrival monitors are implemented at several positions of both accelerators as
shown in fig. 5. By electro-optical modulation of the electric field of the passing electron
beam, a comparison to the laser-based synchronization is possible. A schematic of the

measurement principle is shown in fig. 8.[6]

Optical Synchronisation System

Optical

Delay
Line

Electronics

Figure 8: Basic layout of the BAM cabling scheme|6]

There are two opposing pick-ups implemented in the beam pipe which receive the electric
field from the beam. Next, the signals are combined so that the orbit dependence of
the measured values is reduced. The signal is transferred to an electro-optical modulator
(EOM) that adjusts the amplitude of laser pulses to the voltage received. By adding the
pulses from the laser-based synchronization to the modulated pulses from the EOM, the

timing of the bunch arrival can be calculated with the help of the detector electronics.[6]

18



2.1.4. Beam compression monitors

After each bunch compression chicane a beam compression monitor is installed (fig. 5).
Due to an elliptic aperture with a 45°-angle to the electron beam, coherent diffraction
radiation (CDR) is perpendicularly emitted when an electron bunch passes. It does not

affect the electron beam.[8]

The perpendicularly emitted CDR exits the beam pipe through a vacuum window made
of e.g., diamond or fused silica. Outside of the beam pipe, it hits a mirror that points the
radiation through a splitter and several filters towards the detectors that convert it into
an electric signal. In order to achieve a larger measurement range, two detectors with
different sensitivities are used. Switching the detectors also leads to a different aperture in
the beam. A CAD-model is shown in fig. 9, while the whole system is shown in fig.10.[6][8]

in-vacuum CDR screen
‘_'H’E:

23.75 mm

80mm FH—

screen - 7 mm

mover

vacuum

—
T
n
=)
=]

18.75 mm

window
electron 32 mm
CDR beam

Figure 9: CAD model of the screen station and CDR screen[8]
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Figure 10: Diffraction radiation measurement with BCM]6]

The spectral intensity of the CDR is dependent on the current profile as well as on the
bunch length so that an approximated value for the bunch length can be calculated.
This scalar value provided by a BCM does not describe the longitudinal bunch profile
completely but can be used for the estimation of the total bunch length, or even for

substructures.[6]

2.2. Layout of the slow longitudinal Feedback System at FLASH and
European XFEL

This chapter deals with the slow longitudinal feedback systems of the EuXFEL and
FLASH. Both facilities are similar to each other with only small differences as pointed out
in chapter 1.1. In the following subsections, the FLASH feedback system with its actua-
tors and monitors will be explained, starting from the electron gun and moving towards
the experimental halls. Finally, the differences to the EuXFEL will be pointed out.

2.2.1. Gun

To extract electrons from a cathode material, a laser is used. By hitting the cathode
material with a pulsed laser, a certain number of electrons (bunch) exit the gun within a

short time window to get accelerated in the modules further downstream (fig. 11).
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Figure 11: Gun[9]

For FLASH, two lasers are used to provide the different branches with bunches of different
pattern, charge and phase. Both lasers are connected to the same fibre which leads their

pulses to the cathode material as shown in fig. 12.

Gun

Figure 12: Laser schematic

The machine runs with 10Hz. There are certain time slots for bunching available, called
beam regions. For the longitudinal feedback system, a toroid right after the gun is used
to gain information about the charge of the electron bunch so that the amplitudes of the
lasers can be adjusted by in- or decreasing the voltage. In addition to this, the phase
of the laser can be tuned by using a BAM which is located after the first accelerating
modules. A possible sequel of amplitude and phase over time is shown in fig. 13. The
different beam regions are colored blue (FLASH1) and orange (FLASH2).
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Figure 13: Gun amplitude and phase over time

2.2.2. First accelerating modules

After a bunch exits the gun, it enters the first accelerating modules where radio frequency
(RF) is applied to the bunch in superconducting cavities. By increasing the electric field
of the RF, the bunch gets accelerated.
leads to a different acceleration of single electrons within a bunch depending on their lo-
cation when the radio frequency is applied. Fig. 14 shows the dependency of the applied
electric field E and the phase ¢. The influence over the time ¢ is shown in fig. 15. The

The bunch itself has got a significant length that

change of the electric field d E' over the time is called chirp.

Figure 14: Energy E over phase ¢, black line is the desired working point
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Figure 15: Energy change E over time ¢ in working point

The accelerating modules (fig. 16) work as actuators for the control system, but the
tunable parameters are not phase and amplitude of the applied radio frequency. Instead,
the chirp and the voltage applied over the whole structure are used and automatically
recomputed to phase and amplitude. The beam properties generated in the accelerating
modules are monitored by a BAM for the amplitude or sumvoltage downstream of the

accelerating modules and a BCM for the phase or chirp after the first bunch compressor.

Figure 16: Accelerating modules|9]

2.2.3. First bunch compressor

After leaving the first accelerating modules, the beam has several disadvantageous prop-
erties: On the one hand, the bunches are streched and need to be compressed. On the

other hand, there is no exact Gaussian distribution of the electrons over the time (fig. 17).
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Figure 17: Current distribution over a time[10]

As mentioned in chapter 2.2.2, the electrons leave the accelerating modules with different
energies. Under the assumption that all electrons are moving very close to the speed of
light, it is now possible to compress the bunch by sending it through a magnetic chicane
as shown in fig. 18. The electrons with high energies are less distracted by the magnets
than the ones with lower energies whose way become longer so that the bunch will be

compressed.

bunch with E-chirp

Figure 18: Magnetic chicane [11]

The beam arrival time corresponds directly with the chirp and the sumvoltage as shown
in fig. 18. The chicane cannot be tuned because the magnets run with constant current
and power. To allow a variation of the bunch compression, the information gained from
the BAM and the BCM after the chicane is provided to the accelerating modules and can
be used to adapt the chirp and the sumvoltage for the first modules. For the compression

of the beam, the chirp parameter is dominant.
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2.2.4. Accelerating modules 2,3 and second bunch compressor

After the first bunch compressor, the layout repeats. The next accelerating modules can
be found further downstream. They are also controlled by a BAM and a BCM after
the following second bunch compressor chicane. Here, it is also possible to tune the
beam properties like chirp and sumvolatage to compress and accelerate the bunches in

the direction of the properties desired by the experiments.

2.2.5. Accelerating modules 4,5 and 6,7

For the last accelerating modules only the sumvoltage is needed for operation because
the bunches are already in final compression. To monitor the acceleration of the bunches,
BAMs are used as well as beam position monitors. Depending of the orbit of several beam

position monitors, the energy of the beam can be recalculated and adapted.

2.2.6. Differences between FLASH and EuXFEL

In general, both machines work with the same principles but due to the higher photon
energies provided by EuXFEL, the electrons need more energy, too. For that reason, more
accelerating modules are needed (in total 98). This large amount of modules leads to a
subdivision with more groups for a specific sumvoltage and chirp control. Furthermore,
the EuXFEL has an additional bunch compressor. Hence, the monitor layout is also
slightly different, the EuXFEL has more monitors but at similar positions (e.g. BCM

behind bunch compressors).

2.3. Control system data

The control system allocates each measured or set and time dependent value to a bunch
train number. Furthermore, there are two different types of data. On the one hand, there
are single values e.g. for the accelerating modules, on the other hand, there are spectral
values e.g. of the monitors for every bunch train which are written into the control system.

Both types are shown and explained in the following subsections.

2.3.1. Monitors

The monitors mentioned in chapter 2.1 provide data for every bunch within a bunch train.
These spectra are used for both beam regions, so that the values can vary strongly within
a bunch train. Due to the fact that the different beam regions are aligned to a specific

time slot, it is possible to sort the different bunches. A typical spectrum for a BCM is
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shown in fig. 19.

Figure 19: Macrobunch BCM downstream of bunch compressor 1

The different beam regions with the different compression levels can be seen in fig. 19. In
this case, very few bunches are needed for FLASH2. When spectra are used for control
loops, one has to decide which value should be used for the control e.g. the first, the last

or the mean value. The current control system works only with the first entries.

2.3.2. Actuators

Corresponding to the monitors mentioned above, fig. 20 shows the values of the acceler-
ating modules ACC23 at the same time (identical TrainID). There is only a single value

available per bunch train so that a decision of the right value is not needed.
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Figure 20: Sumvoltage and chirp values of ACC23

2.4. Slow longitudinal feedback control system

In general, there are up to six feedback loops as shown in fig. 5. The changes of the
monitors dm shall be compensated with the change (adjustment) of the actuators da.
Under the assumption of small changes, a linear response of the monitors can be expected.
By inverting the responses R of all monitors, a global correction can be achieved as shown
in eq. 2.1.[5]

da=R"'-om (2.1)

The full global equation for all relevant monitors an actuators is shown in the following
eq. 2.2.[5]

[ damplace: - L
5phase Rll R12 RlS R14 R15 R16 R17 R18 ng RllO 5BAM1UBCQ
Acet Ryt Ry Ray Ros Rys Ras Ror Ras Ray Raug §BAMpes
damplaccag
5phase R31 R32 R33 R34 R35 R36 R37 R38 R39 R310 6BCMBC’2(fine)
ACC
“|' |Ru R Ry Ru Rs R R Ris Ri Ruo| |SBCMposorse
damplaccas
dphase = |flsr Bs2 sz I Rss Hse flsr Iss Hso Lo dBAMpcs
ACC
Sampl v Re1 Rez Rez Res Res Res Rer Res Heo Reio dBCMpcs(fine)
ACCA
Sphase i R7y Ree Rgz Ryy Rps Reug Rer Reg Rrg Rrio 0 BCMpc3(coarse)
ACC4
5 RS]. R82 R83 R84 R85 R86 R87 RSS ng R810 5BAM18ACC7
damplaccer
_R91 R92 R93 R94 Rg5 R96 Rg7 Rgg Rgg Rglo_ L 5EnergyDogleg ]
_5PhGS€ACCG7_

(2.2)
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For the calculation of the inverse response matrix, singular value decomposition (SVD)
is applied to generate the matrix RT. To simplify this (often) fully filled matrix, a
binary matrix B is multiplied element-wise (Hadamard product) to allow a single loop

combination of actuators and monitors for the feedback control (C') chosen by the operator
(eq. 2.3).[5]

C=BoR" (2.3)

After all the simplifications mentioned above, this leads to eq. 2.4 that is implemented in

the control system.

da=C-om (2.4)

Several measured response matrices depending on the beam energies can be found in the
expert panel of the control system (fig. 21). Screenshots of the actuators and monitors
as well as their combination (matrix B) are provided in fig. 22 and fig. 23. Usually, it
does not change so that smaller adjustments can be applied in a simplified panel for the

operators of the machine.

350.00...| -470.0...|-100

Figure 21: Response Matrix FLASH expert panel
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Enabled MName SP SP min max Status
B ACTUATORY  Laser 1 Phase 233 sof[ 2200 T[]
W ACTUATOR2  Laser3Phase 000 00 1o [ TTTTTTT]
B ACTUATOR3  Gun phase se8[  so[  eo [ [TT[TTT]
M ACTUATOR4  Gun Amplitude 50.00 | oo sao ][ TTTTTTT]
M ACTUATORS  Laser 1 Attenuator 27.00 | U.UIjH 900&“ [N
B ACTUATORG  Laser 2 Aftenuator 3000 0oF[ eoH[TTTIIT]
M ACTUATOR7  Laser 2 Attenuator 3000 | 0o [ w000 [ TTTTTTT]
B ACTUATORS  ACC1 Phase 279 20 120 [T T[TI]
W ACTUATORS  ACC39 Phase 663 00 soo ][ [T [[TTT]
B ACTUATOR10 ACC139 Chirp 590 100 1w TTT]TTT]
B ACTUATOR11  ACC1 Amplitude 158.57 [ 1500FH[ 1640 [ T T T TTT]
B ACTUATOR12 ACC39 Amplitude 19.44 | oo 20 ][ TTITTIT]
B ACTUATOR13 ACC139 Sum Voltage 14300 1300 1s0o [ [T TTTTT]
B ACTUATOR14 ACC23 Phase 1202 20 300[TTT[TTT]
H ACTUATOR15 ACC23 Chirp 500 <00 1o [TTTTTT]
W ACTUATOR1E ACC23 Amplitude 41931 3000 as0oH[ [T [T TT]
B ACTUATOR17 ACC23 Sum Voltage 20700 00 4s0o ][ [[T]TTT]
M ACTUATOR1S ACCA45 Sumvoltage 300.00 [ 3000 3s0o [ T[T TTT]
B ACTUATOR19 ACCE7 Sumuoltage aazo0| -0 azoo [ [T TTTTT]
FB Loop enable Monitor WMessage

[ LASER_AT [MONITOR3 | BAMFLOUBC1 [ACTUATOR1 | Laser1Phase

[ GUN_PHASE MONITOR3 [acTusToR2 | Gun phase

] GUN_AMPL [MONITOR3 | BAMFLO.UBC1 [ACTUATOR4 | Gun Amplitude

[] CHARGE [MONITOR1 | Toroid 3GUN  [ACTUATORG | Laser 2 Attenuator

[] BC1_BCM [MONITORS | BCMFLO.DBC1.2 [ACTUATOR10 | ACC139 Chirp

[] BC1_BAM MONITORT ACC129 Sum V..

[[] BC2_BCM MONITOR10 BCMFLO.DBC2.2 [ACTUATOR1E | ACC23 Chirp

[] BCZ_BAM MONITORS BAMFLODBC2  [ACTUATOR17 | ACG23 Sum Volt

[] ENERGY [MONITOR16 | EnergyDogleg  [ACTUATOR19 | ACCE7 Sumvolt...

Figure 22: actuators FLASH expert panel
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[ General [ Server [ Monitors | Actuators = RM settings |

Enabled MName RB avg(RB) RMS RMS [%] Delta avg. RM Fudge CHAMN_OFF Status
 MONITOR1  Toroid 3GUN 0132 04128 0.003 272 022 [ [1z0000 [ o W
® MONITORZ  Toroid 8FLODBC1 0000 -0.000 0000 3333 03s [0 [ toom] [ |
® MONITOR3  BAM FLO.UBCT -1537.494 -1545 865 2157 140 1541 [ 30 [ ooomoolq [ |
® MONITOR4  BAM FLO.DBCA 339.623 391046 29.85 763 246 |33 [ o100 [ ]
™ MONITORS  BCM FLO.DBC1.1 0005 0005 0000 1151 001 [_eold [ soomop [ [
W MONITORS  BCM FLO.DBC1 .2 0056 0057 0.001 2.59 oo [ arH] [ 02000 [ ]
® MONITOR7  BAM FLO.UBC2 -1388.194 1392 496 4998 036 2070, | 83+ [ too00} [ 1l ]
® MONITORS ~ BAM FLO.DBC2 -1126.560 -1152.183 28.01 243 3837 [ s3] [ oo [ |
® MONITORS  BCM FLO.DBC2.1 0036 0039 0.002 595 004 [ 10 [ toom0] [ W
 MONITOR10 BCM FLO.DBC2.2 0048 0051 0.002 454 o4 [_3sp] [ o200 [ ]
 MONITOR11 BAM FL1.SFELC -1008.257 -996.842 9523 097 1016 [ 3 [ teeooq [ |
® MONITOR1Z BAM FL2.SEEDS 0500 -0500 0.000 0.00 050 [ o] [ eooooq [ ]
™ MONITOR13 BCM FL2 SEED5.1 0009 -0002 0007 3731 coo [ 10F] [ eoooolq [ [
™ MONITOR14 BCM FL2 SEED5 2 -0.000  -0.000 0000 1380 ooo [ 10F [ oooooq [ ]
B MONITOR15  BAM FLF MAFF 12783.20612786 397 1447 001 28 [ o [ oooso [ [
 MONITOR16 Energy Dogleg 1200.917 1209895 0.105 001 &5 [ 57 [ oveoolq [ |
FB Loop enable Monitor Actuator Message
[] LASER_AT MONITOR3 BAMFLOUBC1 [ACTUATOR1 | Laser1Phase
[] GUN_PHASE MONITOR3 | BAMFLO.UBC1  [ACTUATOR3 | Gun phase
] GUN_AMPL [MONITOR3 | BAMFLO.UBC1  [ACTUATOR4 | Gun Amplitude
[] CHARGE MONITORA Toroid 3GUN ACTUATOR6 | Laser 2 Attenuator
] BC1_BCM [MONITORS | BCMFLO.DBC1.2 [ACTUATOR10 | ACC139 Chirp
] BC1_BAM MONITORT BAMFLOUBC2 [ACTUATOR13 | ACC139 SumV
[] BC2_BCM [MONITOR10 | BCM FLO.DBC22 [ACTUATOR1S | ACC23 Chirp
] BCZ_BAM MONITORS BAMFLODBCZ  [ACTUATOR17 | ACC23 Sum Volt..

[] ENERGY [MONITOR16 | EnergyDogleg  [ACTUATOR1S | ACCA7 Sumwolt

Figure 23: monitors FLASH expert panel

For the operators, another panel was prepared as shown in fig. 24. There, the moni-
tor/actuator combination is displayed together with the information whether the feedback
control is enabled. Furthermore, the number of samples to build an average value for each
of the monitors can be set and will be processed by the control system. This procedure
has the advantage to keep the system stabilized even if single events with extreme values
occur. Finally, there is the opportunity to change certain values of the response matrix

by applying a gain factor (RM Fudge) on single entries of the response matrix to adapt

it to the current machine operation mode.
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Figure 24: slow RF Feedback Control Panel
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3. Analysis of the existing system

In this chapter, the functionality of the existing mathematical system will be analyzed
with the given matrices from chapter 2.4. The reaction of the model is compared to the
real system so that similarities and differences can be pointed out to gain information

about the accuracy and the stability of the current control approach.

3.1. Simplified model

To simulate the slow longitudinal feedback system according to [5], the matrix approach
from chapter 2.4 is used without regarding the averaged values as well as the gain factors.
With the starting point of all monitor changes dm and the measured response matrix R
and its simplified inverse C' it is possible to calculate the first change of all actuators to
compensate the applied change of the beam properties as described in chapter 2.4. For
the first monitor values, the corresponding entries of the control system were chosen and
the changes actuators calculated. With the new actuator values now given da, a linearized
answer of the system’s monitors can be calculated like shown in the following algorithm
1.

Algorithm 1 Linearized, simplified model
procedure ACTUATORS(dm, R, B,n)

C+ R'oB

for:=1:ndo

da — C-om > new actuator values

end for

1:
2
3
4
5: om <+ R-da > new monitor values
6
7 plot da,dom

8:

end procedure

The matrices-based simulation shows that both actuator and monitor values start to di-
verge quickly by oscillating with increasing amplitudes. This does not cover the behavior
of the real system, hence the actuator values are many decades above the highest possible
values and do not show a slow drifting behavior. A visualization of the data can be found

in appendix A.

3.2. Extended model

To adapt the simplified model to the current control system, additional functionalities are

applied to the existing control loop introduced in algorithm 1. Firstly, a running average
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is implemented for each monitor value so that single events do not effect the control loop
massively. The values for each monitor can be found in a vector avg. Furthermore, the
gain factor (RM fudge) is added with the help of a matrix F' that is multiplied element-
wise to the simplified response matrix C'. Lastly, a matrix ltmits with the actuator limits
is given by the operator. avg and limits were extracted from the control system while F' is
filled with ones. The entire extended approach for the first actuator/monitor combination

is shown in the algorithm 2.

By extending the model according to algorithm 2 and after applying a random jitter of
up to three percent to the monitor values, the following result for the monitors occurs
(fig. 25). The corresponding actuator values are shown in fig. 26. It can be shown, that
many actuators drive quickly towards their limits and according to the linear model, the
monitor changes are kept stable as well. This behavior does not represent the real system
hence it diverges like the simplified approach with the difference that the changes are

restricted to the boundaries of the actuators.
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Algorithm 2 Linearized, extended model

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

procedure ACTUATORS(dm, R, B,n, F, avg, limits)
C+— R'oBoF

fori=1:ndo

then

dal(i) « da(1)
om1(i) < dm(1)

dm(1)

avg (D) isnatural and actuator/monitor combination isnan then

buf ferl < 0

for j = length(oml) — avg(1) 4+ 1) : length(ém1(j)) do
buf ferl < buf ferl 4+ dml(j)

end for

dml < m ~buf ferl

dml1(i) « dml
dm(1) < om1(s)
0alyew <— C - M

if limits(1,1) < dalpey(Actuatorl) and limits(1,2) > dal,e,(Actuatorl)

da(Actuatorl) < dal,e,(Actuatorl)
else
da(Actuatorl) < da(Actuatorl)

end if

end if

end for

plot da, om

35: end procedure
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In comparison to the results of the simulation with the simplified inverse response matrix
C, the next simulation investigates the linearized system reaction with the full inverse
response matrix R. The simplification of the response matrix leads to very different re-
sults in the simulation and it occurs that both calculated system reactions are hardly
comparable. The values for the actuators do not run directly into their limits and the
monitor changes move according to them. These differences could be caused by numerical
errors during the inversion of the matrix R or direct linear coupling between actuator and
monitor values in the simulation. The linearization can not be validated on a small scale
due to a diverging model which is only stopped by its actuator limits. A visualization of

the system with fully inverted matrix can be found in appendix A.

For this reasons, an optimization with the given information is not leading towards an
acceptable solution. Regarding the fact that many actuator/monitor combinations, actu-
ator limits, averaged values and fudge factors have to be chosen by experience and with
the introduced model uncertainty, it is questionable whether a sufficient working solution
for the problem can be found. Before the optimization of the feedback loop can be real-

ized, more information about the system’s behavior should be collected.

The linearization of the system’s answer as well as the simplification of the response
matrix have lead to different results. The variation in the responses might be a hint
towards numerical problems in the real system in which case the operators have to adapt
the values fudge factor and the actuators which are enabled in the control loops frequently.
Summarizing, the measured response matrix R is insufficient for description of the system
using the presented algorithms. For the following chapters of this report, this approach

will not further be part of the scope and data driven approaches will be tested.
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4. Machine learning approaches

In this chapter, the machine learning approaches used and the tools needed are introduced.
Static and dynamic methods for system identification will be explained as well as convex

optimization.

4.1. Regression

To find an optimal fit with functions of different order, regression models can be applied
to the given data set. In an one-dimensional and linear case with the features x and y

and the coefficients a and b, the following equation 4.1 shall describe the model.[17]

y=a-z+b (4.1)

Now, a system of equations with the length of the data set n can be created.[17]

Yo =0 Ty +b (4.2)

Subtracting the original feature values g from the right side of eq. 4.2 leads to the mean

squared error cysp (MSE) after summation.[17]

CMSE((Z, b) = Zn

Minimizing the mean square error delivers the best linear fit for the given data set. After

1((@ -k +b) — 4i)? (4.3)

deviation of eq. 4.3 to eqs. 4.4-4.5 the best fit coefficients a and b are calculated (egs.
4.6-4.7).[17]

8cM5;l(a,b) . (4.4)
acMgégb(a,b) . (4.5)
oo azle) _ ) 4
B:b(m%b(“’b) = 0) (4.7)

Transferring the principle to higher dimensional problems e.g., with multiple actuators
and multiple monitors, makes a matrix notation neccessary. With the vectors dm for
the changes of the monitors m (size m) and da for the changes of the actuators a from
the original set point (size n), a coefficient matrix R with the size m x n is needed (egs.

4.8-4.9. A term for the static offset like in eq. 4.1 is here neglicated because only the
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changes to the working point are considered. This relationship is shown in eq. 4.10.

om =m; —my (4.8)
da = a; — agp (4.9)
ym=R-da (4.10)

The following least square problem can be described with the following eq. 4.13 where M
is the coefficient matrix to be optimized using the Frobenius norm. Furthermore, all set

points are combined to the matrices dm and da like shown in eqs. 4.11-4.12. [18]

om = [dmy, dmy, dms, ..., om,,] (4.11)
da = [ay, bay, das, ..., Oay] (4.12)

om — Méal|p (4.13)

R = argminyrcgmxn

Instead of the Frobenius norm, other norms, like the Euclidean norm, can also be applied.

[18]

The approach described above can be extended by adding additional functions like the
higher polynomials, exponential functions, logarithmic functions etc. to the actuator
values so that the coefficient matrix grows as well as the computation time. Eq. 4.14
shows the dependency of the coefficient matrix R, the change of the monitor values dm

and the different approaches for da combined in the vector w.

om = R-u(1,8a,da*, e, log(dy), ...) (4.14)

Now, the procedure can be executed like in the linear regression.

4.2. Sparse identification of nonlinear dynamics (SINDy)

For the identification of an unknown dynamic system, the so called SINDy (sparse identi-
fication of nonlinear dynamics) algorithm can be applied. With the help of the algorithm,
the governing equations of a dynamic system can be estimated from measured data. A
main assumption of the algorithm is that the only a few terms are sufficient for an accu-

rate identification of the system whereas most of the other terms are negligible and can
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be set to 0 in the corresponding matrix. [12][19]

For high dimensional, nonlinear problems, combinatric brute-force methods were state
of the art for a very long time. For that reason, system identification needed a lot of
computational power and was hardly usable for multidimensional problems. The progress
in nonlinear optimization nowadays allows for the performance of nonlinear optimization

algorithms with huge data sets. [12]

Today, algorithms like DMD (dynamic mode decomposition) with a linear, dynamic re-
gression are dominant. Their disadvantage is that the functions have to be estimated from
the form of the given problem. SINDy results in a sparse, nonlinear regression which au-

tomatically finds the relevant terms of the system’s behavior. [12]

A multidimensional, measured data set y € R™ might be represented by a linear combi-
nation of different library terms © € R"™*? (feature matrix). The combination of these

terms is given by the vector £ € RP. This relationship is shown in eq. 4.15. [12]

y = 06¢ (4.15)

A standard regression for solving £ would lead to a non-zero solution for each element
of the library matrix. Performing an L'-regularization with the weighting factor A and

using the euclidean norm results in the following LASSO-regression (eq. 4.16) [12]:

= ng?’bm||9§,—y||2+)\||f/||1 (4.16)

The goal of the algorithm is to show the behavior of a a nonlinear dynamic system with

different states z and the time-based deviation . [12]

i = f(x(t)) (4.17)

The state of the system at the time ¢ is represented by the vector z(t) = [x1(t)...x,(t)]* €
R™, at the same time the dynamic boundaries are given by the function f(z(¢)) that define
the system equations (eq. 4.17). [12]

To gain the function f(z(t)) of eq. 4.17 from a data set, the states and their time-based

deviations are aligned as demonstrated in the following equations (eqs. 4.18-4.19) [12]:
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xT(t1> xl(tl) l‘g(tl) cee Q?n(tl)

x=|" @ = xl@ wQ(:tQ) xnftz) (4.18)
xT(tm) xl(tm) xQ(tm) $N(tm)
T (ty) i(ty)  da(ty) - dn(ty)

e (119)
7 (t,,) 1(ty) @a(ty) -+ Zn(tm)

Now, the feature matrix can be built with polynomials of different orders as well as other

functions like trigonometric functions (eq. 4.20). [12]

OX)= |1 X X XP ... sin(X) cos(X) sin(2X) cos(2X) --- (4.20)

The entry for polynomials of second degree (P2) would look like shown in eq. 4.21. [12]

wi(t)  w(t)we(t) - 23(t)  wa(t)zs(t) - xh(t)
P2 _ $1(.t2) xl(tz).ﬂfz‘(fz) e 562@2) 562@2)'503(752) E xngtz) (4.21)
x%(tm) o1 (tm) 2o (tm) - x%(tm) To(tm)3(tm) - x%@?ﬂ)

Each column of the library matrix ©(X) represents a candidate function for the left side
of eq. 4.22, the sparse vectors £ are combined to the matrix = that controls the terms of

the (nonlinear) polynomials. [12]

X =0(X)= (4.22)

As a solution for the whole problem and to identify the system, the following equation

can be solved (eq. 4.23). The matrix x contains the symbolic functions. [12]

&= f(z) =E(0@"))" (4.23)

To reduce the computational time, the convex optimization has recently been replaced by

a sequential least squares approach. The accuracy of the system identification is hardly
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influenced and for certain problems it is advantageous. The algorithm performs a linear
least squares fit with an additional cut-off value A which converts every entry that is < A
to zero. This procedure is repeated several times until a certain number of iterations is
reached and the result converged. A visualization of the algorithms principle is shown in
fig. 27 [12]

Figure 27: Visualization of the SINDy-algorithm for the Lorenz system [12]

4.3. Convex optimization

Convex optimization problems often occur in machine learning in form of eq. 4.24. The
functions f; and R are convex and A > 0 is a fixed parameter. f; is hereby the cost of

using  on the 7" element of the data set. R is a regularization term.[20]

min Y ~ fi(x) + AR(z) (4.24)

r€ERM 4

By choosing f; as demonstrated in eq. 4.25 and R = 0, the original least squares problem

(eq. 4.26) occurs again when M is the coefficient matrix to be optimized. [20]

fi = (&"mi — ;) (4.25)
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min ||[Mz — Y||,> (4.26)

zER™

By adding regularization term R = ||z||; in eq. 4.27, the LASSO-problem from chapter
4.2 is set up again. [20]

. 2
min ||Mz —Y," — ||z[]; (4.27)

If the problem is formulated once, various algorithms were developed to solve it. A further

look into the different calculation techniques is provided e.g. in [21].
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5. Generating data sets at FLASH

Hence, the simplified and equation-based model is insufficient to achieve a mathematical
accurate model of the accelerator. As pointed out in chapter 3, other approaches have
to be considered. For that reason, real machine data is needed to identify the system’s

behavior properly.

In general, there are two different ways to achieve data from FLASH. On the one hand
side, there is the data acquisition server (DAQ) which saves all machine data for two
weeks. A big advantage of this method is that data from user runs can be downloaded
easily without influencing the operation or even the experiments. On the other hand, it
is possible to run a parameter scan directly on the accelerator during the set up of the

machine. This has several advantages that will be pointed out later (chapter 5.2).

Furthermore, the influences of the current monitor states will not be investigated. They
are not readjusted every time the machine is set up, so that the values only allow to show
a tendency instead of e.g. the real arrival time at the BAMs which could be negative in
the data.

5.1. Data from DAQ and user operation

To extract data from the DAQ), it is necessary to create an .xml-file with the corresponding
addresses of the control system. Now, the data can be downloaded as an .hdf5-file which
contains all the data from actuators and monitors defined in the xml.-file for the desired
time slot. It has to be mentioned that there is no differentiation between beam region 1
and 2 in the data. Hence, the downloaded .hdf5-file contains the complete raw data of
the run. Due to the fact that every bunch train has its own ID, it is possible to follow
it through the whole accelerator. Nevertheless, one has to be careful and choose the
right ID-numbers for the analysis of the data set. Actuator and monitor values do not
necessarily have the same shape, because the monitors save spectra for every bunch train
while actuators are usually set to a certain value for a bunch. For example, spectra of the
gun from the first macro bunch as well as the first entries of every macro bunch of a user

run are shown in fig. 28.
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Figure 28: Gun amplitude and phase beam region 1

In fig. 28 the amplitude is the same for both beam regions, hence it is not possible to find
the right position in the bunch train to define the start of the different beam regions. As
described in chapter 2.4, the control system works with the first entries of the demanded
beam region. For that reason, the gun phase is much more important to estimate the
start and end of each beam region. Using the first non-zero entries (as the control sys-
tem does) would not lead to the set value of the operator but will still be on the rising
part. This can be demonstrated by comparing the values of the gun phase over a macro
bunch (bottom left) where the maximum value is -22° with the first entries of each macro
bunch of the data set (bottom right) where the value oscillates around -2.5°. For this
reason, it might be useful to investigate the highest value for a beam region or an aver-
aged value. But since the original control system uses the first entries, this approach will
be followed for a first look into the data set. As the control system works with changes

of the actuator values referring to a given set point, the first set point is given as reference.

Looking at the monitor values e.g., in fig. 29, the difficulties with data sets from user
runs become visible. Apart from the fact that the current control system tends to drift
over a long period of time (several hours), larger adjustments of the actuators are not
needed. Single events can influence the data massively. Whether these extreme events
occur randomly or whether the changes in the arrival time were intended by the oper-
ator, remains unclear. Maybe the experiment asked for slightly other beam properties
or the SASE-experts enhanced the performance by adjusting the different actuators by

Intervention.
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Figure 29: Example of BAM spectra and the first entries of each spectrum

In summary, it can be concluded that using data from a user run would not lead to
a sufficiently accurate system identification due to the uncertainty of the information
extracted from the DAQ system. Also, the changes applied by the running control system

are too small to identify nonlinearities.

5.2. Parameter scans

To identify nonlinearities, larger actuator changes are necessary, furthermore the machine
status during the measurements should be known. For that reason, parameter scans dur-
ing the set up of FLASH were performed. To collect as much data as possible at once,
all actuators were scanned randomly and in parallel. Not all actuators could be used to
perform the scan. For example, randomly changing the gun amplitude during the pa-
rameter scan could harm the performance of the machine for a longer time because the
machine reacts very sensitively to it. Once changed, it is very difficult to readjust the gun
and a longer set up time is needed. Depending on the schedule, FLASH runs with dif-
ferent energies, in case lower energies were needed the sumvoltage and chirp actuators of
the accelerating modules 6 and 7 (ACC67 sumvoltage, ACCG67 chirp) were turned off, too.

The following actuators took part in the parameter scan:

e Gun phase

e Accelerating modules 1 and 3.9 GHz sumvoltage (ACC139 SV)
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e Accelerating modules 1 and 3.9 GHz chirp (ACC139 C)
e Accelerating modules 2 and 3 sumvoltage (ACC23 SV)
e Accelerating modules 2 and 3 chirp (ACC23 C)

e Accelerating modules 4 and 5 sumvoltage (ACC45 SV)
The following monitors were taken into account:

e Toroid3Gun

e BAM UBCI1 (upstream of bunch compressor 1)

e BAM DBCI1 (downstream of bunch compressor 1)

e BCM DBC1.1 (downstream of bunch compressor 1, coarse)
e BCM DBC1.2 (downstream of bunch compressor 1, fine)

e BAM UBC2 (upstream of bunch compressor 2)

e BAM DBC2 (downstream of bunch compressor 2)

e BCM DBC2.1 (downstream of bunch compressor 2, coarse)
e BCM DBC2.2 (downstream of bunch compressor 2, fine)

e BAM FL1.SFELC (beamline FLASHI)

To perform the parameter scan, boundaries are needed. Each actuator has a different
influence on the whole system. In combination, actuators can add up, for example, by
increasing the energy of the beam by increasing sumvoltage values in multiple modules at
the same time. So, the maximum boundaries of the actuators in combination with each
other have to be defined to avoid beam losses during the scan. Loosing the beam multiple
times in a short period of time could trigger the machine protection system (MPS) which

would permit operation by stopping the laser at the gun.

Hence, the boundaries were set with the operators by adjusting the actuator values step
by step from the gun to ACC45 permanently checking the losses until a configuration was
found that enables a wide range of scan parameters and protects the machine from beam

losses. The boundaries can be found in table 1.
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Actuator value | unit
Gun phase 0.4 °
ACC139 sumvoltage | 0.2 | MeV
ACC139 chirp 0.1 %
ACC23 sumvoltage 0.2 | MeV
ACC23 chirp 0.4 %
ACC45 sumvoltage 0.5 | MeV
ACCA45 chirp — W%
ACC67 sumvoltage — MeV
ACCG67 chirp — %

Table 1: Allowed changes during the parameter scan

Again, the first entries of the beam regions are taken for all monitors. To avoid seeing
influences in the data from dynamics within the monitors each set point of actuators will
last for 25 laser shots at the gun, the values are averaged over each set point for system
identification. An example of the absolute actuator values is shown in fig. 30 as well as
an example of the absolute monitor values in fig. 31. Since the changes of the actuator

values are used and not the absolute values, the changes are calculated as the difference

to the first set point.

Figure 30: Actuator values of the parameter scan
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Figure 31: Monitor values of the parameter scan
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6. Analysis of the data sets

After the data is prepared for the analysis, this chapter shall deal with the different ap-
proaches used to estimate the system precisely. Firstly, the linear response matrix will be
recalculated from the data using various methods. Secondly, the given approach with a
linear response matrix will be refined by using nonlinear response matrices. Furthermore,
it will deal with the SINDy algorithm and its application to the data set.

For the analysis of the data set with different approaches, it is divided into a test and a

training data set. The training data set contains the first 233 setpoints which refer to ~ %
of the data set while the rest of the data is used for testing. The data set does not contain
values for ACC67 because these modules were not turned on during the measurements

due to a low energy machine configuration.

6.1. Recalculation of the linear response matrix

According to [18], which describes, among others, the calculation of the linear response
matrix for the SwissFEL, it is possible to calculate the response matrix from data taken
in a parameter scan. The response matrix can be calculated by a convex optimization

using eq. 6.1 [18].
Furthermore, the size of the matrix R has changed because only the actuators participat-
ing in the parameter scan and the monitors for the accelerating section of FLASH1 are

considered.

R = argminye gmxn||0m — Méa||p (6.1)

Applying the concept to the FLASH training data leads to the following matrix 6.2:
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—0.0075 0.0005 0.0014  —0.0001 —0.0007  0.0003 |
537.8070  —28.5905  —23.1756 2.8716 —0.1150 —0.7232
—73.4628 —551.6643 —171.9084 38.3144 —36.0219 —58.3953
—0.0003 —0.0004 —0.0147  —0.0002 —0.0002 —0.0001
—0.0004 —0.0066 —0.1010  —0.0008 —0.0007  0.0002

—66.1864 —1036.3414 —168.6875 81.0404  2.4956  —63.7593
—55.2405 —1620.2112 —224.6894 —-1.7692 224.1198 —87.7105

RFLASHmeasured =

0.0009 0.0206 —0.5106 —0.0004 —0.0671 —0.0009
0.0013 0.0325 —0.7106  —0.0073 —0.0971 0.0013
_—59.7441 —1028.9428 —252.9879 86.0236 109.8687 —90.2930_

(6.2)

The matrix RprasmH,0,, used for operation of the slow feedback system for FLASH1 looks
like shown in eq. 6.3. It was reduced to the actuators and monitors participating in the

parameter scan, too.

[0 0 0 0 0 0 |
500 —180  —3100 0 0 0
0 —3200 700 0 0 0
0 —0.0080 —0.0250 0 0 0
0 —0.0400 —0.0200 0 0 0
froasion = | 0 3100 740 0 0 0 6.3)
0 —2500 600 —430 —45 —100
0 —0.0600 —0.2000 0 —0.0400 0
0 —0.1300 —0.6000 0 —0.0800 0
0 0 —440 100 0 0

It is clearly visible that neither the values nor their sign match in a sufficient way.
To show the mismatch of both matrices, the difference Rgir between Rprasm,y,, and

Rrrasw,,,..... Was calculated and is presented in eq. 6.4.
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[ 0.0075 —0.0005 —0.0014 0.0001 0.0007 —0.0003 |
—37.8070 —151.4095 —3076.8244 —2.8716 0.1150 0.7232
73.4628 —2648.3357 871.9084  —38.3144  36.0219 98.3953
0.0003 —0.0076 —0.0103 0.0002 0.0002 0.0001
0.0004 —0.0334 0.0810 0.0008 0.0007 —0.0002
66.1864 —2363.6586  908.6875  —81.0404  —2.4956  63.7593
595.2405  —879.7888  824.6894  —428.2308 —269.1198 —12.2895
—0.0009 —0.0806 0.3106 0.0004 0.0271 0.0009
—0.0013 —0.1625 0.1106 0.0073 0.0171 —0.0013
09.7441  1028.9428  —187.0121 13.9764  —109.8687  90.2930 |

(6.4)

Ryirs =

With the given matrices a calculation of the necessary actuator changes out of the mea-
sured changes of the monitors can be achieved. The values from this simulation are
compared to the original changes applied during the parameter scan. For both matrices,

the approach shown in eq. 6.5 from chapter 2.4 is used again.

da=R"-6m (6.5)

Because R is a non-square matrix the calculation of the inverse was realized by creating
the Moore-Penrose pseudo-inverse. The results for the test data set are shown in fig.
32. Applying the calculated response matrix to the test data leads to huge errors in the
recalculated actuator values which should compensate the monitor changes. For example,

the gun phase shows a maximum change of over 400° which is not feasible with the gun.
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Figure 32: Comparison of original actuator changes and recalculated changes with FLASH
2024 response matrix and measured linear response matrix (test dataset)

The calculated matrix Rrrasy allows non-zero entries everywhere. This might be

measured
the best linear fit for the given data but in reality there is no possibility to see influences of
actuators on monitors upstream of themselves. Hence, constraints were set to the convex
optimization that allow non-zero entries in the response matrix only if the monitors can
be influenced by the actuators due to their location in the accelerator. Furthermore, only
BAMs can measure the impact of sumvoltage actuators and BCMs can only measure the

impact of chirp actuators. The resulting constraints are shown in table 2.
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Gun Ph | ACC139 SV | ACC139 C | ACC23 SV | ACC23 C | ACC45 SV
Toroid3Gun v
BAM UBC1 v v
BAM DBC1 v v
BCM DBC1.1 v v
BCM DBC1.2 v v
BAM UBC2 v v v
BAM DBC2 v v v
BCM DBC2.1 v v v
BCM DBC2.2 v v v
BAM FL1SFELC v v v v

Table 2: Constraints for the combination of actuators and monitors for a reduced matrix

approach

After implemention of the constraints from table 2, a multivariante regression using con-

vex optimization is applied to the data set again. The resulting response matrix R, cquced

(eq. 6.6) is shown below.

Rreduced =

0

537.4258

0

0
0
0
0
0
0
0

0 0 0 0
—38.5409 0 0 0
—718.4483 0 0 0

0 —0.0148 0 0

0 —0.1042 0 0
—1132.9877 0 178.5237 0
—1774.9346 0 185.3860 0

0 —0.4981 0 —0.0691

0 —0.6802 0 —0.1032
—1101.5214 0 149.2003 0

0
0
0
0
0
0 (6.6)
0

0

0
—107.1350

In comparison to the original changes of the actuators (see fig. 33), this approach shows

a better fit, especially for the gun phase, but still with insufficient accuracy for the other

actuators.
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Figure 33: Comparison of original actuator changes with recalculated changes using a

reduced response matrix

The current control system operates with single loops (one actuator is only influenced by

one monitor). For this reason, a further simplification can be made by enabling these

single loops during the calculation of the response matrix. The combination of actuators

and monitors for this approach is given by often used combinations by the operators and
is described in table 3.

Gun Ph

ACC139 SV

ACC139 C

ACC23 SV

ACC23 C

ACC45 SV

Toroid3Gun
BAM UBC1
BAM DBCl1
BCM DBCI1.1
BCM DBC1.2
BAM UBC2
BAM DBC2
BCM DBC2.1
BCM DBC2.2
BAM FL1SFELC

v

v

Table 3: Constraints for the combination of actuators and monitors for a single loop

approach

This results in the following modified response matrix for single loop operation Rg;ngieio0p
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(eq. 6.7). The comparison of the recalculated actuator values to the original values is

shown in fig. 34.

[0 0 0 0 0 0 ]
533.3103 0 0 0 0 0
0 —718.4483 0 0 0 0
0 0 —0.0148 0 0 0
0 0 0 0 0 0
Rsingleloop - 0 0 0 0 0 0 (67)
0 0 0 859.1272 0 0
0 0 0 0 0.0735 0
0 0 0 0 0 0
0 0 0 0 0 —281.2989

Figure 34: Comparison of original actuator changes with recalculated changes using a

single loop response matrix

The error egsy g is calculated using the root mean square error (RSME) for every set
point i (eq. 6.8). The influence of the different matrices on the derivatives sign is shown
in table 5 for the test data set. This value is important to evaluate the correct change of
the actuator values because a control system operating in the wrong direction leads to in-

creasing errors followed by a performance decrease of the machine. The approach with the
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biggest total differences (full response matrix) to the original values predicts the sign the

best, but the reduced matrix approach leads to the smallest overall RSME-value (table 4).

€ERSME = \/5afmeasured<i)2 - 5amatrix(i)2 (68)

| Gun Ph | ACCI139 SV | ACC139 C | ACC23 SV | ACC23 C | ACC45 SV | average

Full 0.2816 0.7796 0.2563 1.0508 0.5429 1.2567 0.6947
Reduced 0.2455 0.9432 0.6534 0.1585 1.0247 0.2361 0.5436
Single loop | 0.1626 0.9432 0.7480 0.2153 0.9867 0.2397 0.5493

Table 4: RSME of the calculated actuator values for the test data set

\ Gun Ph \ ACC139 SV | ACC139 C | ACC23 SV | ACC23 C | ACC45 SV | total

Full 4 47 17 51 50 45 214
Reduced 4 69 106 68 61 66 374
Single loop 4 69 97 65 59 65 359

Table 5: False signs of the calculated actuator changes for the test data set

None of the approaches shown above leads to a sufficient and realiable control system due

to significant errors during the recalculation of the actuator values. This can be caused

by:
e an insufficient described system

e numerical errors during the calculation of the inverse response matrix

e non optimal data input (normalization)

The influence of nonlinearites will be shown in chapter 6.2. But the consideration of nu-
merical errors due to the invertation of the response matrices might give a hint towards
better preparation of the data and calculation techniques. To analyze the impact of nu-
merical errors during inversion the condition numbers of all three approaches are shown
in table 6.
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method condition number

FLASHypo4 6.7026 - 10*
full matrix 9.1778 - 103
reduced matrix 1.5562 - 10°

single loop matrix 5.7920 - 10%

Table 6: Condition numbers linear

Looking at the condition numbers, it is obvious that a badly conditioned problem cannot
lead to an accurate control system because tiny disturbances could have a big influence
on the solution (in this case the necessary actuator change to contain a stable beam).
Regarding the fact that the values of the actuators and monitors are in very different
regimes, a normalization of the data could fix the high condition numbers and enhance
the quality of the output of the algorithm. For this reason, a normalization of the data

was performed in a way that the data contains only values within the interval [1, 2].

After normalization, the algorithms for the calculation of the full, reduced and single loop
response matrices were performed again. The resulting fit can be seen in fig. 35. With the
normalized data, the prediction of the necessary actuator changes improves. Especially
the gun phase is still predictable with high accuracy. But the further away the actua-
tors are located from the electron gun, the less precise the prediction becomes. Further,
variations of the derivatives sign are visible so that a control system built around these
linear models might lead to a counterproductive effect that amplifies the misbehavior of
the beam. Nonetheless, the condition numbers have improved significantly (table 7), so

that the normalized data set will be investigated with additional approaches.

method condition number
full matrix 35.5079
reduced matrix 2.8321
single loop matrix 1.4947

Table 7: Condition numbers linear after normalization
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Figure 35: Comparison of original actuator changes with recalculated changes using a full,
reduced and single loop response matrix after normalization of the data within

the interval [1,2] and rescaling

The error egsy g is calculated after rescaling the normalized actuator changes da,orm by
applying the standard deviation S as well as the mean values p to da,escarea (€q. 6.9)
and is shown in fig. 36. The influence of the different matrices on the derrivatives sign
is shown in table 9. The full matrix approach with the biggest total differences (full re-
sponse matrix) to the original values still achieves the best results at predicting the sign,
whereas the single loop approach delivers the best RSME (table 8). In comparison to the
not normalized approach, the RSME is half as big, whereas the number of false calculated

signs of the derivative stays the same.

5a7‘escaled - 5an07“m =S + H (69)
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Figure 36: RSME of actuator changes after recalculation with different response matrices

and after normalization of the data within the interval [1,2] and rescaling

| Gun Ph | ACCI39 SV | ACC139 C | ACC23 SV | ACC23 C | ACC45 SV | average

Full 0.2181 0.4198 0.0597 0.8892 0.2838 1.5284 0.5665
Reduced 0.1910 0.3474 0.1333 0.0923 0.4168 0.1143 0.2159
Single loop | 0.1275 0.3474 0.1428 0.1223 0.4124 0.1165 0.2115

Table 8: RSME of the calculated actuator values for the normalized test data set

| Gun Ph | ACC139 SV | ACC139 C | ACC23 SV | ACC23 C | ACC45 SV | total

n
Full 4 47 17 o1 50 45 214
Reduced 4 69 106 68 61 66 374
Single loop 4 69 97 65 59 65 359

Table 9: False signs of the calculated actuator changes for the normalized test data set

6.2. Nonlinear response matrix

The linear approach evaluated in the previous chapter 6.1 shows that a linearized reac-
tion of the monitors to actuator changes does not lead to a sufficiently accurate response

matrix. For that reason, the data set will be analysed for nonlinearities which could be
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implemented in a nonlinear response matrix R(da).

To achieve a better understanding about how nonlinearities could affect the system and

the basic equation for the current control system (eq. 6.10) is

dm =R -da (6.10)

the response matrix can be calculated by eq. 6.11

R=dm-da"" (6.11)

Assuming that the monitor values are sufficiently accurate and their measurement princi-
ple is not affected by the changes in value of single actuators, R might be dependend on
a nonlinear behavior of the actuators. Doubling the da might not lead to a doubled dm,
instead, the changes of the monitors might be slightly larger or smaller. This leads to eq.
6.12 with a dependent response matrix R(da).

R = R(a) (6.12)

To evaluate whether there is a dependency between the height of the changes of the ac-

tuators and the corresponding monitor answer, the derivative % was calculated for every
taken data point with the normalized data set from chapter 6.1 and visualized in fig. 60.
A similar looking plot of the non-normalized data is attached in appendix B. In contrast
to the assumption of linear behavior of the accelerator, the scatter plots definitely show
nonlinear dependencies. Especially the BAMs downstream of the accelerating modules 1
and 39 shows strong nonlinear behaviors in combination with this actuator. Furthermore,
it can be estimated that BAMs and sumvoltage actuators show the greatest codepen-
dency; so do BCMs and chirp values. The gun phase, as the first part of the system, is

influencing BAMs in the same amount as the BCMs.
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Figure 37: nonlinear dependencies between changes of actuators and monitors

The implementation of the nonlinear behavior into the response matrix approach will be
achieved by fitting polynomials of different order to the measured values and the derived
entries for every measurement point. Hence, every machine set point has its own specific
response matrix according to the actuator settings. Afterwards, the response matrices
will be inverted by SVD to realize a recalculation of actuator changes out of the measured

monitor changes during the operation of the FLASH accelerator.

For the fit of the different monitor-actuator combinations, polynomials of orders up to
four were used. This results in a fit calculated via least squares for all actuators with all
monitors e.g., the gun phase (fig. 65). The fit for the other actuators can be found in
appendix C. Table 10 shows the order of the chosen polynomials as well as the RSME of
the fit.
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Figure 38: Fitted data for gun phase with polynomials of order 2

Actuator polynomial (order) | RSME | RSME linear
Gun phase 2 0.1101 0.1143
ACC139 sumvoltage 0.0947 0.1253
ACC139 chirp 0.0971 0.1143
ACC23 sumvoltage 0.1336 0.1358
ACC23 chirp 0.1355 0.1429
ACC45 sumvoltage 0.1288 0.1314
ACC45 chirp — —
ACC67 sumvoltage — — —
ACC67 chirp — — —

DN DN DN DN W~

Table 10: Parameters contained in the data set, polynomials used and RSME of the fit
compared to a linear fit

With a better fit, the recalculation of the monitor values according to the actuator set-
tings is possible. To achieve a matrix that is filled with the corresponding entries of the
polynomial fit, it is necessary to refill the matrix every time. The calculation of the first
column with the known coefficients of the fit coef f1, the actuator values actuators and
the given monitor values monitors is shown within the algorithm 3. With the polynomials
of different orders according to table 10, all entries for the nonlinear response matrix for

a specific working point can be estimated.

63



Algorithm 3 calculation of R,,,,inear—entries for gun phase

1. procedure (actuators,., monitors, coef f1)

2: for h = 1: height(monitors) do

3:

4: Fitcunphase(h) —  coeffl(h,1) - actuators;,.(1)> + coeff1(h,2)
actuatorsiye(1) + coef f1(h,3)

end for

Rnonlinear(:a ]-) = FitGunPhase

end procedure

Being able to create nonlinear response matrices allows to test the accuracy of the calcu-
lation. Therefore, the actuator values are recalculated with the help of the Moore-Penrose
pseudo-inverse as explained in chapter 2.4. The recalculated values now can be compared
to the real actuator values for every set point of the machine. A graphical comparison is

presented in fig. 39.

Figure 39: Comparison measured values and estimated values from the nonlinear full ma-

trix approach

Although the polynomial fit seems to be more accurate, the calculation of new actuator
values is not possible with the current matrices. To understand why this uncertainty in
the result occurs, one has to take a closer look into the matrices themselves, again. As

example, a random picked matrix Ryoninear, fuu 1S picked from the calculation (eq. 6.13).
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The condition number can be found in table 11 and is even larger than for the linear case.

This shows that building the inverse is a serious problem for the nonlinear approach with

a fully filled nonlinear matrix.

1.3385
0.9903
1.3820
0.9908
1.1524
1.4058
1.1581
1.1631
1.0995
1.4102

Rnonlinear,full =

1.0367
1.0415
1.3605
0.8601
1.0056
1.3518
1.0516
1.0200
0.9652
1.3401

1.1240
1.1604
1.3348
1.0913
1.2667
1.3547
1.1075
1.3037
1.2249
1.3550

0.9929
1.0182
1.1740
0.8286
0.9700
1.1922
0.9800
0.9828
0.9305
1.1963

1.0928
1.1286
1.3074
0.9141
1.0656
1.3278
1.0856
1.1021
1.0402
1.3284

1.0089]
1.0364
1.1904
0.8517
0.9873
1.2065
0.9858
1.0057
0.9501
1.2047

(6.13)

Following the path from chapter 6.1, the matrices will be optimized in a way like the

linear matrix for a reduced (table 2) and a single loop approach (table 3). The condition

numbers as well as a comparison to the values from the linear approaches can be found

in table 11. In addition to this, the matrices of the reduced (R,oniincar reduced) and single

100D (Ryontinear,singleloop) approaches belonging to the random chosen set point are shown

in eq. 6.14 and eq. 6.15. The recalculation of the actuator changes for all approaches can

be found in fig. 40.

[1.3385
0.9903
1.3820
0.9908
1.1524
1.4058
1.1581
1.1631
1.0995
1.4102

Rnonlinear,reduced =

0

0
1.3605

0

0
1.3518
1.0516

0

0
1.3401

0

0

0
1.0913
1.2667

0

0
1.3037
1.2249

0
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0
1.1922
0.9800

0

0
1.1963

1.1021
1.0402
0

1.2047

(6.14)



[ 0 0 0 0 0 0 ]
0.9903 0 0 0 0 0
0 1.3605 0 0 0 0
0 0 1.0913 0 0 0
0 0 0 0 0 0
Rnonlinear,singleloop = 0 0 0 0 0 0 (6 15)
0 0 0 0.9800 0 0
0 0 0 0 1.1021 0
0 0 0 0 0 0
i 0 0 0 0 0 1.2047_

Figure 40: Comparison gun phase, measured values and estimated values from full, re-

duced and single loop approach

method ‘ condition number linear ‘ condition number nonlinear
full matrix 35.5076 1095.3483

reduced matrix 2.8321 6.4345

single loop matrix 1.4947 1.5655

Table 11: Condition numbers non linear after normalization

The RSME for the nonlinear approaches were calculated and are shown in table 12 as well

as the amount of values derivatives with false signs (table 13). The data shows that there
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is no significant improvement of the prediction with the new approach, although a slighly
better system identification took place. Especially the reduced and single loop matrices
allow precise predictions with the given monitor changes. For this reason, a closer look on
the combinations of monitors used for the prediction of the actuator values will be taken

as per below.

| Gun Ph | ACC139 SV | ACC139 C | ACC23 SV | ACC23 C | ACC45 SV | average

Full 0.5377 0.2602 0.2055 0.4868 0.0706 20.9878 3.7581
Reduced 0.1578 1.5353 0.8725 2.0607 1.3683 4.1859 1.6967
Single loop | 0.1530 0.0801 0.0568 0.3793 0.2256 0.2815 0.1960

Table 12: RSME of the calculated actuator values

| Gun Ph | ACC139 SV | ACCI139 C | ACC23 SV | ACC23 C | ACC45 SV | total

Full 43 50 41 42 66 50 292
Reduced 4 66 102 61 6] 61 369
Single loop 4 10 16 27 20 32 109

Table 13: False signs of the calculated actuator values

The gun phase can already be predicted with high accuracy. Looking at the enabled
monitors which take part in the calculation of the needed actuator values the BAM
UBC1 is the dominant monitor. The single loop approach is the best fit for the gun
phase as presented in table 12. Nevertheless, adding the BCMs and BAMs to the fit
is investigated, too. A comparison of the gun phase recalculated with this nonlinear
approach to the original values is shown in fig. 41. A comparison of the errors and signs
can be found in table 14.

Figure 41: Fitted data for gun phase with polynomials of order 2 compared to the original

values

Since the gun phase seems to gather the dominant terms, they were neglected for the fit
of the ACC139 parameters the results can be found in fig. 42. The fit improved clearly,
the RSME and the false predicted signs of the derivatives can be found in table 14.
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Figure 42: Fitted data for ACC139 sumvoltage and chirp with polynomials of order 4 and

2 compared to the original values

Following the scheme for the accelerating modules 2 and 3 the values of the gun and the

modules 1 and 3.9 GHz were neglected and the results presented in fig. 43 and table 14.

Figure 43: Fitted data for ACC23 sumvoltage and chirp with polynomials of order 2 com-

pared to the original values

Again, all actuators upstream of ACC45 were neglected but for this actuator the fit
improved again when the upstream BCMs were considered, too. The results are shown
in fig. 44 and table 14.

Figure 44: Fitted data for ACC45 sumvoltage and chirp with polynomials of order 2 com-

pared to the original values

| Gun Ph | ACC139 SV | ACC139 C | ACC23 SV | ACC23 C | ACC45 SV | avg. /total
0.1459 0.0790 0.0467 0.3987 0.2324 0.1238 0.1711
9 24 19 89 74 89 304

RMSE
false signs

Table 14: RSME and false prediced signs of the actuator changes of the calculated actuator
values

6.3. Sparse ldentification of Nonlinear Dynamics

From chapter 4.2, the introduced SINDy algorithm for the identification of the governing

equations of nonlinear dynamic system is applied to the measured data set to evaluate
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the influence of dynamics. Furthermore, a version of the SINDy algorithm with control
terms will be presented which results in a sequential least squares regression of the data

with the included coupling of the actuators.

6.3.1. SINDy

To evaluate whether there is a certain dynamic in the system, it will be applied to the
data set taken from FLASH1. As Maximum polynomial order, two was chosen and \ was
set to 0.5. The results show that no coincidence between time dependent derivatives of
the monitor values and the monitor values can be found since nearly every third sign is
constantly predicted incorrectly over all monitors as shown in fig. 45 and table 15. This

result was expected because the monitor values were averaged in the data preparation.

Figure 45: Derivatives of dm calculated with SINDy with A = 0.5 and maximum polyno-

mial order of 2

| Toroid3Gun | BAMygen | BAMpger | BOMppovy | BOMppes | BAMysos | BAMpsos | BCMpgoar | BCMpposs | BAMepisrsie |
0.2608 0.2330 0.2331 0.2961 03176 03181 0.2819 0.1335 0.1444 0.2012
40 42 51 52 43 53 45 48 a7 47

RMSE
false signs

Table 15: RSME of the calculated monitor values and false signs of the monitor changes
during test with 117 setpoints using the SINDy algorithm and the normalized
data set

6.3.2. SINDy with control

For a controlled system there is an extension of the library matrix possible by including

the actuators [22]. The resulting system of equations is shown in eq. 6.16.
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dm = ©(0m, da)= (6.16)

Solving the equations leads to the results shown in fig. 46 and table 16. They do not
show improvements of the RMSE compared to the classical SINDy approach but instead

the amount of falsely predicted signs increases.

Figure 46: Derivatives of dm calculated with SINDy with control terms with A = 0.5 and

maximum polynomial order of 2

| Toroid3Gun | BAMyper | BAMpper | BOMppera | BCMppers | BAMyges | BAMppes | BCMppeas | BOMppezs | BAMppisesic |
0.1890 0.2341 0.3779 0.1483 0.4443 0.3348 0.1540 0.4794 0.4377 0.3259
45 42 59 51 49 56 50 58 54

RMSE
false signs

55

Table 16: RSME of the calculated monitor values during test with 117 setpoints (nor-
malized data)

As both approaches are not suitable for a sufficiently accurate system identification, they

are not followed further in subsequent investigations.
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6.4. SINDy modified

To achieve a better prediction of actuator values, the SINDy algorithm is modified in a
way that the time dependent derivatives will be replaced by the values to be predicted.
For that reason, a direct and indirect approach for the recalculation of the actuator values

will be presented as well as further modifications to the algorithm.

6.4.1. Indirect calculation of the actuator values using a modified SINDy algorithm

In case of adapting the approach with the inversion of a response matrix from chapter

2.4, the monitor values must be calculated as shown in eq. 6.17.

dm = O(da)= (6.17)

An estimation of combinations of polynomials up to order two build the governing equa-
tions for the system, a sequential least squares regression is performed with a value of
A = 0.5. The plots for the sparsity matrix = as well as explanations to the various matrix
entries can be found in fig. 47. The plot shows that the modified SINDy algorithm has
found similar dependencies like the reduced linear approach but also implements several

nonlinear terms.
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Figure 47: Sparsity matrix visualization with A = 0.5 and maximum polynomial order of
2

With the now given sparsity matrix = a new nonlinear response matrix is set up with the
governing equations from the modified SINDy algorithm. Hence, © contains all variations
of the polynomials up to the chosen order as well as the actuator values themselves, it is

possible to extract the actuator values from a recalculated ©, as shown in eq. 6.18.

O(da) = om - =" (6.18)

The prediction of the monitor values does not work perfectly although the RMSE as well
as the deviation in sign seem to be accurate enough to recalculate actuator values, as
shown in table 18 and table 19. A visualization of the recalculated monitor values can be
found in fig. 48
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Figure 48: Visualization of the recalculated monitor changes with A = 0.5 and maximum

polynomial order of 2 using a modified version of the SINDy algorithm

As already pointed out for the response matrices in the previous chapters, the sparsity of
the matrix = leads to numerical problems during the inversion. The condition number of
Zis 3.4274-10%, so that the recalculation of the actuator values from © cannot work with
high accuracy. This can be shown by plotting the recalcultated values for the actuators for
the test data set (fig. 49) and by looking at the RMSE and the derivatives sign (table 17).

73



Figure 49: Recalculated actuator changes from the modified SINDy approach (test data
set)

| Gun Ph | ACC139 SV | ACC139 C | ACC23 SV | ACC23 C | ACC45 SV | avg. /total
0.1487 0.3018 0.0937 2.4615 1.4530 4.2352 1.4490
3 22 6 67 99 86 283

RMSE

false signs

Table 17: RSME and false predicted signs of the derivatives of the recalculated actuator

values from the test data set using the indirect approach

| Toroid3Gun | BAMyger | BAMpger | BCMppeia | BOMppers | BAMyges | BAMppes | BCMppess | BOMpgeas | BAMppispesc |
0.0003 333614 | 213.2382 |  0.0007 ‘ 0.0034 | 1363491 | 266.8926 |  0.0291 ‘ 0.0392 ‘ 96.2755 ‘

RMSE

false signs 10 6 17 11 6 11 31 10 10 12

Table 18: RSME and false predicted sign of the derivatives of the calculated monitor

values during training using the indirect approach

| Toroid3Gun | BAMyper | BAMpger | BOMpscia | BOMpscra | BAMysc: | BAMpgca | BCMpscas | BOMpicaz | BAMrnsrecc |
0.0011 65.7849 | 346.6004 | 0.0011 0.0075 | 421.0094 | 293.082 0.049 0.0717 375.1127
1 4 10 8 10 4 22 9 8 8

RMSE

false signs

Table 19: RSME and false predicted signs of the derivatives of the calculated monitor

values during testing using the indirect approach
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6.4.2. Direct calculation of the actuator values using the modified SINDy

algorithm

Another possibility to receive the actuator values from the measured monitor values is a
direct approach using the changes of the monitors with different polynomials, it is shown

in eq. 6.19. Due to the changed input parameters, the sparsity matrix changes, too.

da = O(om)= (6.19)

Because this approach shows the combination of monitors affecting the actuator values,
the sparsity matrix looks different as shown in fig. 50. The chosen parameters for the
modified SINDy algorithm stay the same at first (A = 0.5 , max. polynomial order 2).
A closer look at the sparsity matrix = raises the idea that much more terms have to be
taken into account for the calculation than for the approach based on the current control

system using the inversion of =.
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Figure 50: Sparsity matrix visualization with A = 0.5 and maximum polynomial order of

2 of the direct approach

Nevertheless, the actuator values are recalculated and a plot for the test data set is shown
in fig. 51. At first glance, the behavior seems to fit the actuator values quite well. A closer
look at the RMSE and the amount of wrong predicted signs of the derivatives for training

(table 20) and test (table 21) shows a better accuracy than the nonlinear approaches.
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Figure 51: Sparsity matrix visualization with A = 0.5 and maximum polynomial order of

2 using the direct approach

| Gun Ph | ACC139 SV | ACC139 C | ACC23 SV | ACC23 C | ACC45 SV | avg./total
0.0785 0.0585 0.0305 0.3295 0.1467 0.2791 0.1538

RMSE

false signs 5 10 4 26 18 83 146

Table 20: RSME and false predicted signs of the derivatives of the recalculated actuator

values from the training data set using the direct approach

| Gun Ph | ACC139 SV | ACC139 C | ACC23 SV | ACC23 C | ACC45 SV | avg. /total
0.1491 |  0.1185 00373 | 01038 | 00880 | 02261 | 0.1205
1 13 ) 24 15 62 120

RMSE

false signs

Table 21: RSME and false predicted signs of the derivatives of the recalculated actuator

values from the test data set using the direct approach

The advantage of the direct approach is certainly the avoidance of matrix inversions that
were already presented in the previous chapters. Hence, the inversions always lead to nu-
merical problems resulting in inaccurately calculated actuator values, a direct calculation
of the actuator changes from the monitor changes allows a more accurate prediction of the
necessary actuator changes. Nonetheless, there is also a disadvantage of this approach:
The direct dependencies between actuators and monitors cannot be shown, because the
already inverted nonlinear and with coupled terms filled response matrix is calculated

directly.
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6.4.3. Optimization of the modified SINDy algorithm

Because the values for A and for the order of the polynomials were chosen by experience
for the first iteration of the modified SINDy algorithm, further investigations are needed
to optimize the performance of the system identification. This can be achieved with a
brute force approach by scanning with polynomials from order one up to the highest pos-

sible order with A-values in the intervall [0, 1] with 100 steps in between.

Especially for the higher order polynomials, one has to consider that the maximum amount
of degrees of freedom (=coefficients) is given by the sample size. For this reason, the
highest possible polynomial order p is chosen by calculating the amount of coefficients
Cneededa USing the binomial coefficients and comparing them to the sample size (eq. 6.20,
table 22). The amount of actuators ngeuators = 11 was raised by one to implement the

constants of the polynomials.

actuators + P — 1 actuators
Cneeded = (n tuat P ) - ((n tuat )) (620)
p p

polynomial order p | coefficients C,eeqeq | Ok With data set length?
1 11 v
2 66 v
3 286 X
4 1001 X
5 3003 X

Table 22: Possible polynomial orders referring to the given training data set with 233

setpoints

With the given table 22, it is now possible to set up an optimization for the polynomial
orders p = {1,2} with the goal to find the combination with the lowest RMSE errors
averaged over all actuators. As fig. 66-67 shows, with a polynomial order of two, the
best results can be achieved. The optimal value for the spasification hyper-parameter
A is 0.794795. RSME and misinterpreted signs are presented in table 23. It has to be
mentioned that this value fits this specific data set best and can vary for other data sets.
In addition to this, the optimum found is located next to a large decrease of accuracy
by only margins in the value of A\. A lower value in the region A ~ 0.1 would lead to a

slightly worse control system accuracy but increases the safety margin towards the big
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increase significantly.

Figure 52: Optimization of the modified SINDy approach: scan A in the range of [0, 1]

using sequential least squares and polynomial order 1 to find lowest RSME

Figure 53: Optimization of the modified SINDy approach: scan A in the range of [0, 1]

using sequential least squares and polynomial order 2 to find lowest RSME

79



| Gun Ph | ACC139 SV | ACC139 C | ACC23 SV | ACC23 C | ACC45 SV | avg. /total

RMSE 0.1290 0.1315 0.0293 0.0924 0.0709 0.2261 0.1132
false signs 4 12 6 21 12 62 117
improvement RMSE % | 13.47 -10.95 21.42 11.02 19.44 0.00 6.04
improvement signs % -300.00 7.69 -20.00 12.50 20.00 0.00 2.50

Table 23: RSME and false predicted signs of the derivatives of the recalculated actuator
values from the test data set using the optimized direct approach compared to

the not optimized, direct SINDy approach

Furthermore, the method to sparsify the = was chosen to be a sequential least squares
algorithm. As presented in chapter 4.2, a convex optimization is also possible but takes
more computational time and will be investigated in this chapter, too. For this reason,
the same optimization is performed again, only the sequential least squares approach was

exchanged with a convex optimization without additional restrictions.

The optimized sparsity matrices are presented in figure 54 and show that the convex op-
timization has lead to a less sparse solution than the sequential least squares approach.
The results (RMSE, wrong calculated signs of the derivatives and comparison to the not
optimized model) can be found in table 24. They show an improvement in the RSME-
values as well as in the false predicted signs of the derivatives. Graphs of both criteria

over \ are attached in appendix D.
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Figure 54: Sparsity matrices from the optimized approaches

| Gun Ph | ACC139 SV | ACC139 C | ACC23 SV | ACC23 C | ACC45 SV | avg. /total

RMSE 0.1514 0.1194 0.0300 0.1036 0.0678 0.2052 0.1129
false signs 5 13 4 21 14 57 114
improvement RMSE % | -1.53 -0.69 19.54 0.21 22.99 9.23 6.30
improvement signs % -400.00 0.00 20.00 12.50 6.67 8.06 5.00

Table 24: RSME and sign evaluation of the direct SINDy approach using LASSO-

regression compared to the non-optimized, direct SINDy approach

The results show that the convex optimization leads to better results, hence, this approach
will be followed.
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6.5. Adding further base functions to SINDy modified

Furthermore, other base functions aside the polynomials like e*, % and y/x can be added
to perform a system identification. By adding these terms to the algorithm, the library
matrix © and the sparsified matrix = increase in size. So, checking whether the amount
of coefficients needed exceeds the length of the training data set is necessary and provided

in eq. 6.21.

p

Nactuator
Cneeded,extended = << actuato S>> + Cex + C% + C/z (621)

With a maximum polynomial order of p = 2 and the number of actuators ngeuators = 10,
the coefficients of the added base functions refer to ten, too, because they do not have

any combinations of monitors themselves but only the single values (eq. 6.22).

C; = Nactuators (622)

As result of eq. 6.22 96 coefficients face a data set of 233 setpoints so that all three
functions can be implemented at once. Again, the results are evaluated using the RSME

and the false calculated derivative signs (table 25).

| Gun Ph | ACC139 SV | ACC139 C | ACC23 SV | ACC23 C | ACC45 SV | avg. /total

RMSE 0.1023 0.0405 0.0234 0.1887 0.0742 0.1680 0.0995
false signs 3 6 3 20 10 58 100

improvement RMSE % | 31.36 65.79 37.15 -81.81 15.70 25.69 17.37
improvement signs % -200.00 53.85 40.00 16.67 33.33 6.45 16.67

Table 25: RSME and false predicted signs of the derivatives of the recalculated actuator
values from the test data set compared to the not optimized, direct SINDy
approach

A visualization of the matrix = can be found in fig. 55. There are improvents in both

criteria, so the additional terms will stay for the subsequent investigations.
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Figure 55: Visualization of the sparsity matrix using convex optimization and additional
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6.6. Influence of the bunch number for control

As described in chapter 2, only the first entry of each macrobunch is currently used for
the control system. Since the spectra for the data set analyzed in this chapter have ten
entries for beam region 1, this subsection deals with the influence of the bunch number
on the control system. For this reason, the following variations will be performed for the

entries of the macrobunches of beam region 1 and compared:

e averaged value

e median value

The general setup for the comparison is again the modified SINDy algorithm with ad-
ditional terms using a convex optimization. The value for A was not changed after the

previous optimization.

For comparison RSME and falsely calculated signs of the derivatives are taken again and
shown in table 26 and table 27. Both, averaged value and median value result in similar
predictions of the actuator values which just vary slightly from the approach using the
first entries of the macrobunch. Therefore, the influence of the bunch number is low and

almost negligible.

| Gun Ph | ACC139 SV | ACC139 C | ACC23 SV | ACC23 C | ACC45 SV | avg./total

RMSE 0.1020 0.0092 0.0351 0.1889 0.0823 0.1987 0.1027
false signs 3 6 2 21 10 59 101

improvement RMSE % | 31.57 92.21 5.94 -81.92 6.56 12.10 14.76
improvement signs % -200.00 53.85 60.00 12.50 33.33 4.84 15.83

Table 26: RSME and falsely predicted derivatives signs of the recalculated actuator values
from the test data set compared to the not optimized, direct SINDy approach

using the mean value of the macrobunch

| Gun Ph | ACC139 SV | ACC139 C | ACC23 SV | ACC23 C | ACC45 SV | avg. /total

RMSE 0.0940 0.0142 0.0342 0.1973 0.0874 0.2148 0.1070
false signs 3 5 2 20 10 59 99

improvement RMSE % | 36.94 87.99 8.29 -90.09 0.72 5.02 11.19
improvement signs % -200.00 61.54 60.00 16.67 33.33 4.84 17.50

Table 27: RSME and falsely predicted derivatives signs of the recalculated actuator values
from the test data set compared to the non-optimized, direct SINDy approach

using the median value of the macrobunch
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7. Conclusion and Outlook

It has been shown that the current control system has room for improvement by build-
ing a mathematical model based on the information given by the control system and by
examining data from the DAQ during user runs. Firstly, several matrix approaches were
tested using response matrices. The results of these approaches show a better prediction
with the nonlinear matrices than with the linear ones. All these approaches were followed
by the same problem: the inversion of the response matrices, which lead to inaccurate
predictions of the actuator changes due to high condition numbers of the response matri-
ces even after normalization. Furthermore, it has been shown that dynamics do not take
a measurable share in the control system by applying the SINDy algorithm. Nevertheless,
a modification of this algorithm by excluding dynamics and using the coupled terms of
various order to fit the system firstly indirectly and later on directly, allowed to identify

the system with high precision.

Although, the first calculations with the modified SINDy algorithm already lead to good
results for an update of the current control system, the algorithm was improved con-
stantly. A deeper look into other parameters like additional equations for the fit, the
influence bunch train number, the value of the sparsification parameter A as well as the
implementation of a convex optimization to replace the initial sequential least squares

method improved the system identification step by step.

A comparison of all approaches for test data used within this work is provided in table
28 (RSME) and in table 29 (sign of the derivatives). The modified SINDy algorithm
delivers the best solution in combination with additional terms in both criteria. With
the current control system, an average RSME of 6.8334 was calculated for the test data
set. In contrast to this, the best SINDy approach reaches a value of 0.0995. Further, the
total amount of misinterpreted signs of the derivatives could be reduced from 336 to 100.
Further investigations on the bunch number did not lead to better results although they

achieved the same level.
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Table 28: Comparison of all approaches applied to the test data set (RSME)
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Table 29: Comparison of all approaches applied to the test data set (derivative sign)

For further improvement of the control system, taking new data with all accelerating
modules in operation would be beneficial and could lead to an even better understanding

of the system.

Shortly after taking the data of the parameter scans, the FLASH accelerator has gone
into a long shutdown during which all accelerating modules got warmed up and the whole
beamline of FLASH 1 gets renewed. For this reason, further testing of the dependencies
found or even an update of the control system is impossible until summer of 2025 when

operation starts again.
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In the meantime, data sets are taken at the EuXFEL that should be used to prove the
modified SINDy algorithm on another (fairly similar) machine. If the test is successful,
the test-wise implementation into the control system would be the next step before a

permanent solution will be implemented.
For the first implementation, it is necessary to run parameter scans for every set point

of the machine, this takes about half an hour for roughly 350 setpoints, which was the

amount of setpoints used in this thesis.
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Appendix A Additional figures for the analysis of the

existing system
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Appendix B plot with raw data

Figure 60: nonlinear dependencies between changes of actuators and monitors
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Appendix C Nonlinear fit for all actuators

Figure 61: Fitted data for ACC139 sumvoltage with polynomials of order 4

Figure 62: Fitted data for ACC139 chirp with polynomials of order 2
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Figure 63: Fitted data for ACC23 sumvoltage with polynomials of order 2

Figure 64: Fitted data for ACC23 chirp with polynomials of order 2

C-2



Figure 65: Fitted data for ACC45 sumvoltage with polynomials of order 2
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Appendix D Optimization of the LASSO regressed

model

vorage RSME cvar all sctustors potyomial order 1 sum of all wroesg calculated siges

Figure 66: Optimization of the modified SINDy approach: scan A in the range of [0, 1]

using convex optimization and polynomial order 1 to find lowest RSME

verages RSME over all actustors polynomial order 2 i sum of all wroesg calculated siges

Figure 67: Optimization of the modified SINDy approach: scan A in the range of [0, 1]

using convex optimization and polynomial order 2 to find lowest RSME
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