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Modelling blockage effects

« Betzlimit only applies for some cases
* Flow confinement allows a pressure
drop to develop, enabling greater

Cpu = (1—0%) -
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Cp — — —— DBetz Rotor
—— == Betz Rotor with Global Blockage
— Multi-scale Rotor without Global Blockage

—— Multi-scale Rotor with Global Blockage

Streamwise Evolution

thrust and power on rotor m__~ - R

. o e . . . Tr — eI Cp
Wake mixing is important for allowing T T 3 iA <
pressure recovery in the wake //

» Multi-scale mixing can allow greater Tt s T S
pressure drops to be sustained, and F S S AT .
thus greater power T s=n-1

* Alot of energy can be dissipated in the
wake - trade-off between energy extraction
efficiency and resource utilisation efficiency




Multi-scale modelling

e Multi-scale models developed to
account for differences in local and
global confinement

CPG ,Jmax

0.5

« Max Cptends to unity for many 0 10 2 30 10 50
scales of mixing, even when the .
outermost scale is unblocked 1.6 . . . . o
« Max Cpis higher when the outermost 1l Provcne g A4 ne0
scale is blocked a ' |
:
Q(?
. . QO
Can theoretical performance improvements _
be aChleved by rea, turblneS? 0.64 Far-Field Pressure Differential -
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BEM + Blockage 1o B
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® |nViSCid b|OCkage effeCtS - Power coefficient ) Thrust coefficient
can be incorporated into | |
rotor models e.qg. BEM

 Momentum equations are M 1

modified to account for  &'* s,
blockage |

- Generally good agreement | _
with blade-resolved ] N S N SN [ N S O S
SimU|a tl ONSs Tip speed ratio (A) [] Tip speed ratio (A) [-]

e Limitations: — Blade resolved  —%-B = 0010 —&-B = 0065 —=B =009 —°— B=0.196 Confined BEM

e Sensitive to input lift and drag polars
e Possible issues with high-thrust correction models




Rotor-rotor interactions .
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» Side-by-side testing of a single and " southturbine || Northturbine |
two 1.2 m diameter turbines at
FloWave, University of Edinburgh

e Co-rotating turbines designed for
tip-to-tip spacing s/d=0.25

71
N

TTD Coupling Encoder Slip ring TTD
mounting

Turbine locations

: South turbine North turbine

Effective channel N\ A 4 4 (Twin only) (Single & Twin)
width (w) ' « s=dl4

— e 3 » : o d -~
R ' H 1 h = 2 m

_ Rotorplane /' kLD 4111 @\.13d AN L
f Midplane [ | | ANINAANE S 1 Nodfe
Servo Gearbox Cables exit Bearings Shaft Centre-line 9005—.‘.{) () 270°
motor through tower seals , ""l-é-é';" "Tsoe

McNaughton et al. (2022) J. Fluid Mech. 943: A38 ¢ 25m J ; - .
Supergen UKCMER 24865948 = wa 12m 3




Rotor-rotor interactions = =~ "~
10 / South rotor
Flow S R U —=  — souside
Single: flow deceleration in wake, N P
acceleration around rotor. il i %—" T Nomhside
Twin: acceleration observed between = N —— -
m — e — ——p

rotors and stronger bypass acceleration.™s o 2s 20 s 10 s o 05 10 s 20 25 0 s
Thrust coefficient Power coefficient

(a) 14 (b) 0.50 ——=—

) - | Performance

12 035 I Increase in power and thrust from
Cr 11 Cr o] | single to twin configurations is

10, 020| | larger than expected from

09! ol | - a beneficial

B s s oo n s s w1 nrotorinteraction occurs.




Interactions depend on turbine speed 7.
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° |nteraCt|OnS between Thrust coefficient Power coefficient
1.40 . - . ‘ . - 0.55 T ‘ - .
rotors erend on both o Y O R
proximity and also how 130l Vable e tC g R
. spee » PR X N
the rotors are operating 125 R a 0.40| N
* Impact on turbine is c, "% o e, ™ N A
. 1.15} P ] 0.30 % A
observed due to changing | X | sl Variable®, |
. . ) -IsH.mj'\‘i— __%__________‘+ ) speed \\
operation of neighbour, sk ] R Lo
. _;;:j onstant spee \ +
even when the turbine YO e, ] O i
0.95 Y : | ‘ ' — 0.10— ‘ - . -
Operates at Constant Speed 5 6 7. 8 9 .10 11 1.0 1.1. 1.2 1.3. 1.4
A (variable-speed turbine) C (variable-speed turbine)

Overall observation:
Exploiting rotor-rotor interactions led to ~207% increase in
peak power with corresponding ~10% increase in thrust




Impact of rotor spacing i/

:]Ij ENGINEERING
\ SCIENCE OXFORD

e Towing tank experiments performed at
SSPA, Gothenburg
e Turbines mounted from above onabeamto
allow spacing to vary
* Tank sidewall used as a symmetry plane
* Measurements: utban e
- Whole-rotor thrust and power =~  relr ™~ roor . 5 <2
* Blade root bending moments \&ﬁ:\»
(flapwise and edgewise) -
» Reynolds-independence above  °"
tow speeds about 0.8 ms™

Zp =1 m

T P~d=12m

Tank wall used
as symmetry
plane

AN N N e NN NN

Yyttt rieds
+d
S

w=10m




Impact of rotor spacing

Jecreasing tip-to-tip spacing increased peak
power coefficient, little change observed for C;
Power of 2p frequency fluctuation in flapwise

root bending moment increases as turbine
spacing decreases - stronger interactions
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Outboard rotor
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Power coefficient

* Rotors closer
together




Flapwise RBM

Outboard A= 5.50 Inboard
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Edgewise RBM
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Rotor interactions depend on thrust /e
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* Blockage defined as a
geometric ratio, but
interaction strength
depends on thrust

 Above rated flow speed
Inter-turbine interactions
can become small

e Support structures (not
simulated here) may have
an important influence on
interactions

T

{

HM

Further above rated flow speed

JMf

I
\

Vogel & Willden (2018) Int. Marine Energy 1(1) : 61-70 "



Conclusions /d -
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Modelling

e Far-field pressure changes drive the improved performance available
to multi-scale and multi-rotor systems

* Specific corrections for BEM & actuator-based modelling of closely-
spaced rotors are likely required

Loads

 Proximity to neighbouring rotors can increase power and thrust

* Interactional effects are thrust-dependent

 C(Close spacing of rotors enhances 2p load frequencies - potentially
iImportant for fatigue calculations
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Thank you for your attention
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