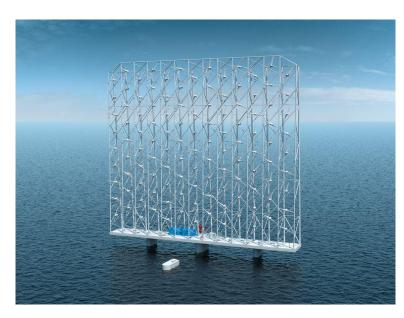
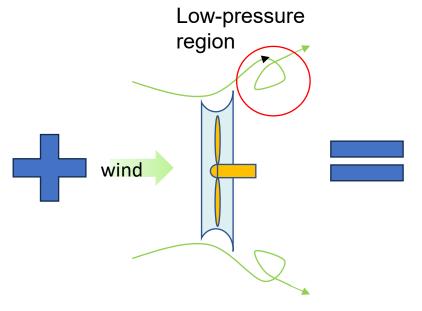


Tianyang Liang, Changhong Hu

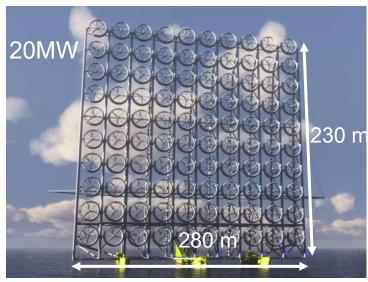

Kyushu University

Introduction


Multi-rotor diffuser-augmented wind turbines system

Multi-rotor system (MRS)

Advantages:


- Cost efficiency
- Maintainability
- Scalability

Diffuser augmented wind turbine (DAWT)

Advantages:

- Increased efficiency
- Compact design

Novel floating offshore multirotor DAWT system

Challenges:

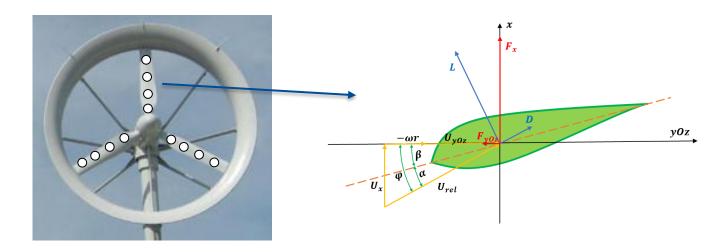
- Blockage effect
- Wake interactions

Actuator Line Method -- Blade model

The incompressible Navier–Stokes equation

$$\frac{\partial V}{\partial t} + (\vec{V} \cdot \nabla)\vec{V} = -\nabla P + \upsilon \nabla^2 \vec{V} + \vec{f}$$

The blade element body force


$$\vec{f} = \frac{1}{2} \rho U_{rel}^2 w_b c_b \left(C_{l,b} \vec{e_l} + C_{d,b} \vec{e_d} \right) \cdot F_{tip}$$

 $C_{l,b}$ and $C_{d,b}$ are the lift and drag coefficients

$$C_l$$
, $C_d = f(\alpha, Re)$

 $\overrightarrow{e_l}$ and $\overrightarrow{e_d}$ are unit vector in the lift and drag directions

w is the segment width, c is the chord length U_{rel} is the local relative inflow velocity F_{tip} is the tip loss correction

The velocity triangle of the cross-sectional blade element

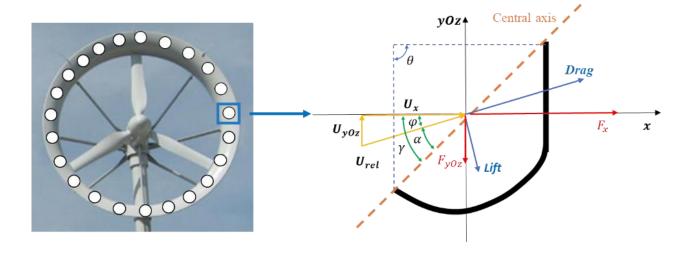
Projection function for blade element

$$g_{iso}(x, y, z) = \frac{1}{\varepsilon^3 \pi^{3/2}} \exp(-\frac{(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2}{\varepsilon^2})$$

arepsilon is the Gaussian projection width

Actuator Line Method -- Diffuser model

The diffuser element body force


$$\vec{f} = \frac{1}{2} \rho U_{rel}^2 w_d c_d \left(C_{l,d} \vec{e_l} + C_{d,d} \vec{e_d} \right)$$

 $\mathcal{C}_{l,d}$ and $\mathcal{C}_{d,d}$ are the lift and drag coefficients of the diffuser structure

 $\overrightarrow{e_l}$ and $\overrightarrow{e_d}$ are unit vectors in the lift and drag directions

 w_d is the width of the diffuser segment, c_d is the chord length

 U_{rel} is the local relative inflow velocity

The velocity triangle of the cross-sectional diffuser element

Local attack angle

$$\alpha = \varphi - \gamma$$

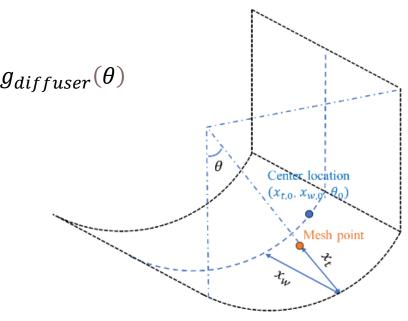
 γ is the local tilt angle

CC4E

$$\varphi = \arctan\left(\frac{U_{yOz}}{U_x}\right)$$

Actuator Line Method -- Diffuser model

Projection function


$$g_{diffuser}(x_t, x_w, \theta) = C \cdot exp(-\frac{\left(x_t - x_{t,0}\right)^2}{\varepsilon_t^2} - \frac{\left(x_w - x_{w,0}\right)^2}{\varepsilon_w^2}) \cdot g_{diffuser}(\theta)$$

 x_t , x_w and θ are the thickness, width, and azimuthal coordinate directions, respectively $\varepsilon_t = a_t t$ and $\varepsilon_w = a_w w$ represent the Gaussian widths in the radial and tangential directions

Normalization factor
$$C = \left[2\pi\varepsilon_t\varepsilon_r\cdot\int_{-\frac{\pi}{2}}^0 f(\theta)\,d\theta\right]^{-1}$$

Force magnitude function

$$g_{diffuser}(\theta) = \frac{2}{\omega} \phi \left(\frac{\theta - \theta_0}{\omega} \right) \Phi \left(\tau \left(\frac{\theta - \theta_0}{\omega} \right) \right)$$
$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \qquad \Phi(x) = \frac{1}{2} \left[1 + \operatorname{erf} \left(\frac{x}{\sqrt{2}} \right) \right]$$

The schematic diagram of force projection

 θ_0 , ω and τ are the center location, scale and shape parameter, respectively

PyFR Slover

The Flux Reconstruction approach is a unifying framework for high-order schemes.

Advantage

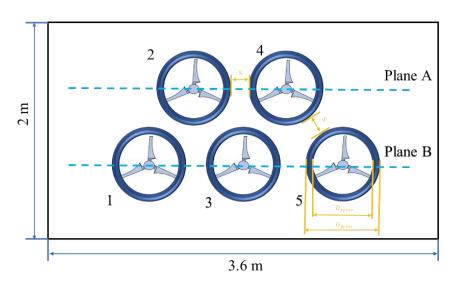
- High accuracy--Achieving more precise results with a smaller number of grids
- 2. High efficiency--Only requires neighboring cells to update physical quantities within a cell

PyFR: An open source framework for solving advection–diffusion type problems on streaming architectures using the flux reconstruction approach*

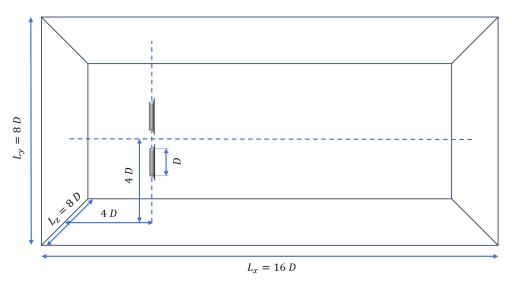
F.D. Witherden*, A.M. Farrington, P.E. Vincent

Department of Aeronautics, Imperial College London, SW7 2AZ, United Kingdom

https://doi.org/10.1016/j.cpc.2014.07.011



Results and discussion

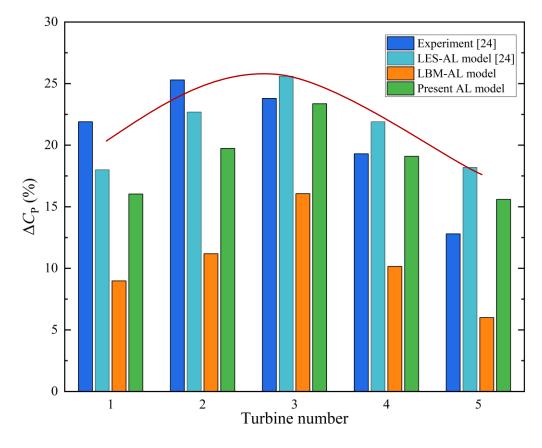

5-rotor DAWT system

Parameter of the multi-rotor system experiment

Parameter	Value
Rotor diameter (D_{rotor})	0.5 m
Brim diameter (D_{brim})	0.669 m
Tip speed ratio (TSR)	4
Inflow speed	6 m/s
Lens shape	Cii type brim 10%
Gap ratio (S)	$0.2D_{rotor}$

Schematic diagram of 5-rotor system experiment

Side view of the computational domain

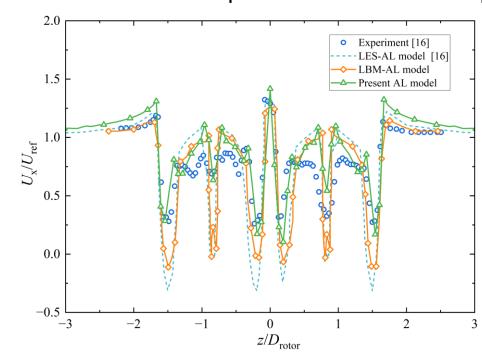

5-rotor DAWT system

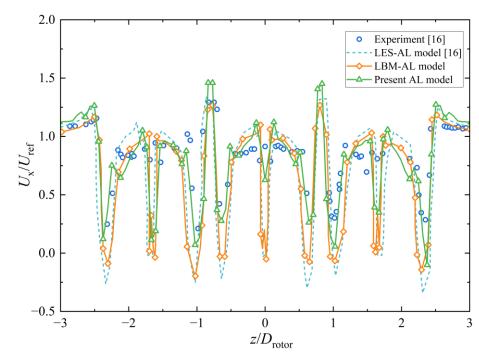
$$\Delta C_{P,i} = \frac{C_{P_i}}{C_{P,standalone}} - 1$$

$$C_P = \frac{P}{\frac{1}{2}\rho A_{D_{brim}} U_{\infty}^3}$$

The results demonstrate that the AL-PyFR(DAWT) model accurately predicts ΔC_P for each rotor in the 5-rotor system.

This asymmetry arises because all rotors rotated in the same direction.

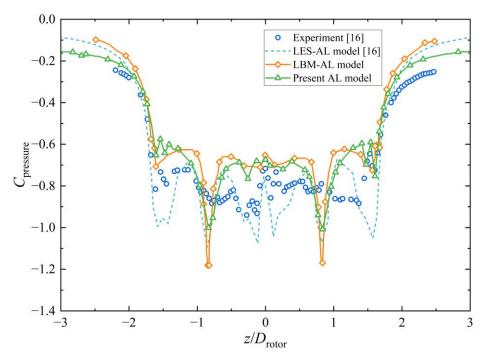

 ΔC_P comparison of each rotor in the 5-rotor system



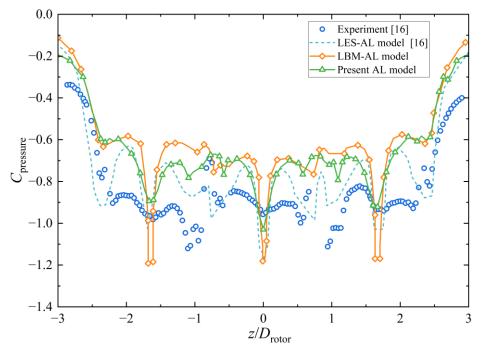
5-rotor DAWT system

The AL-PyFR(DAWT) model wake velocity profiles align well with both experiment result and the predictions from other numerical models.

Mean wake velocity profile at plane A

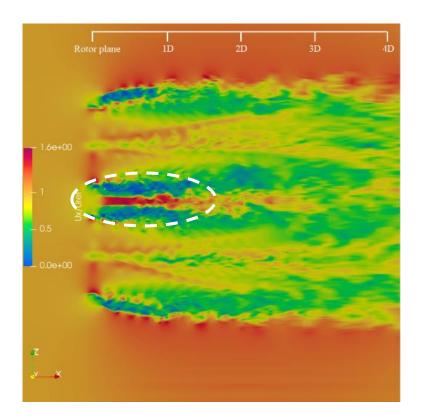


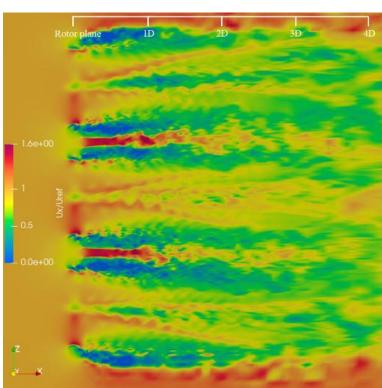
Mean wake velocity profile at plane B


Comparison of the mean wake velocity $x = 0.4D_{rotor}$

5-rotor DAWT system

Mean pressure profile at plane A

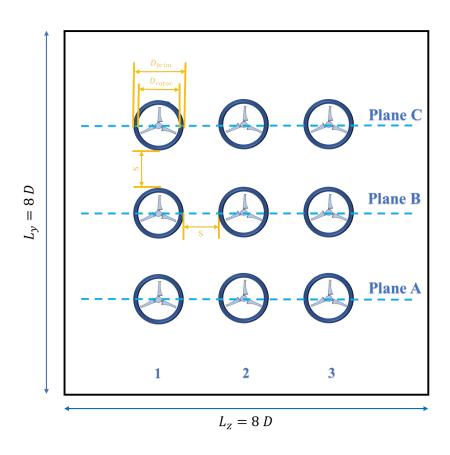

Mean pressure profile at plane B


Comparison of the mean wake pressure $x = 0.4D_{rotor}$

5-rotor DAWT system

This high-speed region arises from the blockage effect among the rotors, resulting in overall higher wake speeds compared to a single rotor case.

Plane A Plane B Contours of the instantaneous streamwise velocity in the x-y plane



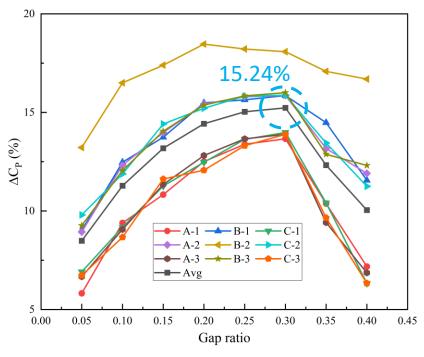
9-rotor DAWT system

The focus is to investigate the influence of rotor spacing and TSR on both aerodynamic efficiency and structural stability.

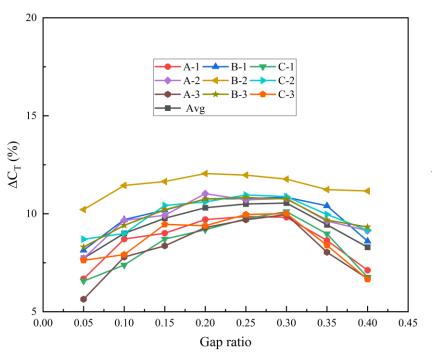
Parameter of the 9-rotor DAWTs system

Parameter	Value
Rotor diameter (D_{rotor})	1 m
Brim diameter (D_{brim})	1.35 m
Tip speed ratio (TSR)	3~5
Inflow speed	10 m/s
Lens shape	Cii type brim 10%
Gap ratio (S)	0.05~0.4

Cross-section of the computational domain at rotor plane

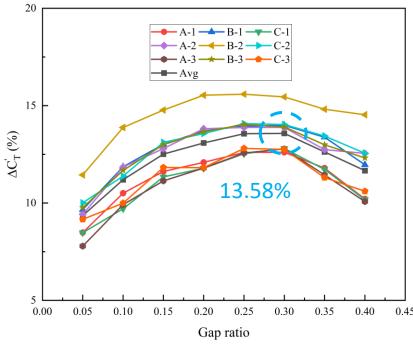


9-rotor DAWT system


The central rotor demonstrating the highest efficiency and lowest sensitivity to spacing.

$$\Delta C_{T,\text{rotor},i} = \frac{C_{T,rotor,i}}{C_{T,\text{rotor},standalone}} - 1$$

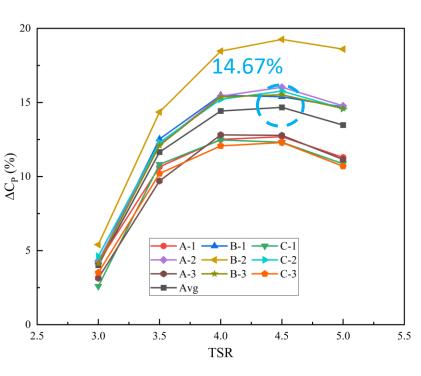
$$C_{T,rotor} = \frac{T_{blade}}{\frac{1}{2}\rho A_{D_{rotor}}U_{\infty}^2}$$

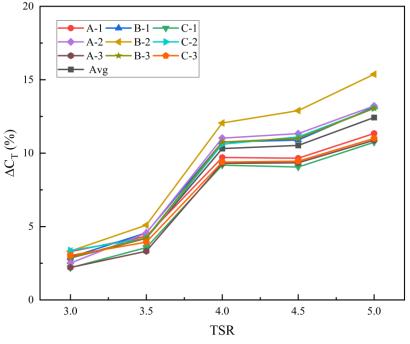

Variation of ΔC_P under different gap ratio

Variation of ΔC_T under different gap ratio

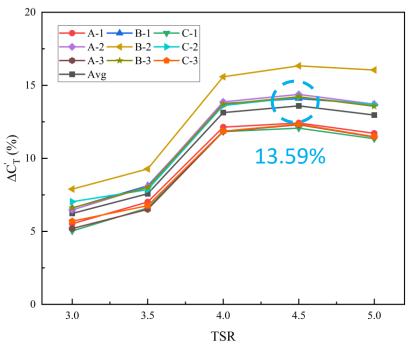
$$\Delta C_{T,\text{brim},i} = \frac{C_{T,brim,i}}{C_{T,\text{brim},standalone}} - 1$$

$$C_{T,brim} = \frac{T_{blade} + T_{diffuser}}{\frac{1}{2}\rho A_{D_{brim}}U_{\infty}^{2}}$$


Variation of $\Delta C_T'$ under different gap ratio



9-rotor DAWT system


Running at the optimal TSR for single rotor case (TSR=4) might not be optimal for the MRDAWT system.

Variation of ΔC_P under different TSR

Variation of ΔC_T under different TSR

Variation of $\Delta C_T'$ under different TSR

Conclusion

- The performance of AL-PyFR(DAWT) model in MRDAWTs system prediction is validated by comparing with LES-AL model, LBM-AL model and experiment results of a 5-rotor system.
- The AL-PyFR(DAWT) model successfully captured ΔC_P due to blockage effect and the asymmetric ΔC_P distribution linked to wake interaction and unidirectional rotation.
- In the 9-rotor system, the gap spacing sensitivity analysis revealed that the maximum average system efficiency occurred at S = 0.3.
- In the TSR sensitivity analysis, optimal system performance was achieved at TSR = 4.5 for both ΔC_P and ΔC_T .
- These results demonstrate that MRDAWTs system performance is highly dependent on rotor layout and operating conditions, providing valuable insights for system optimization.

Future Work

- Develop a generalized diffuser force projection framework using machine learning or adaptive algorithms, eliminating the need for manual adjustment.
- Propose a tip-loss correction model specifically for DAWTs, improving accuracy in bladetip flow predictions.
- Extend the model to include floating platform motions by coupling with structural solvers, enabling realistic offshore simulations.
- Integrate with optimization algorithms to co-optimize rotor layout and operating parameters, balancing efficiency and structural loading.

Contact: Tianyang Liang

liang.tianyang.565@s.kyushu-u.ac.jp

