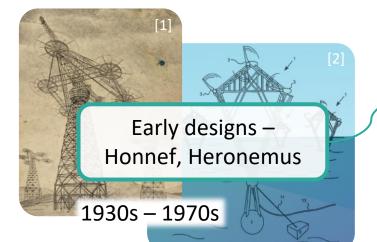


Abdirahman Sheik Hassan, Neha Chandarana, Rainer Groh, Terence Macquart Multi-Rotor System Seminar 2025 – Hamburg, DE

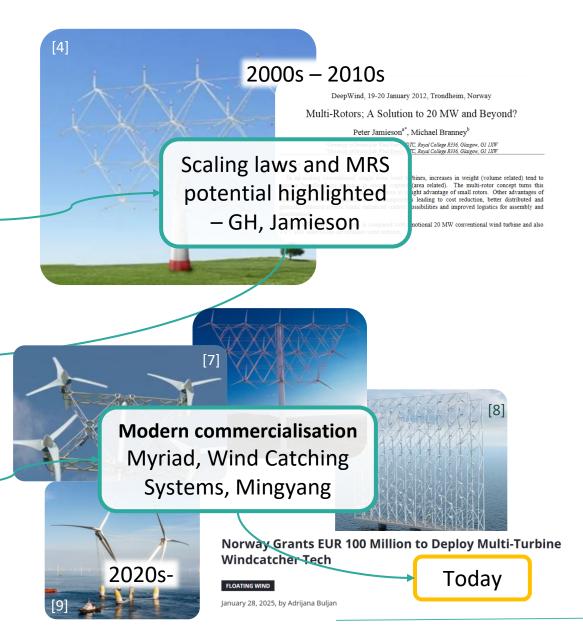


Multi-Rotor Wind Turbines

A History

INNWIND 45-

rotor concept


study

2012-2017

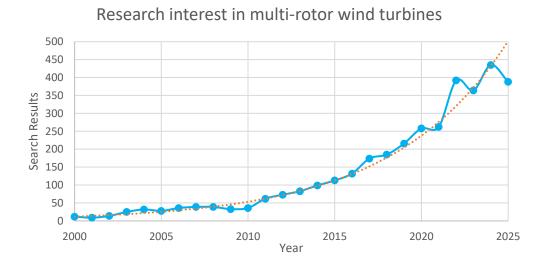
Early commercialisation
Lagerwey

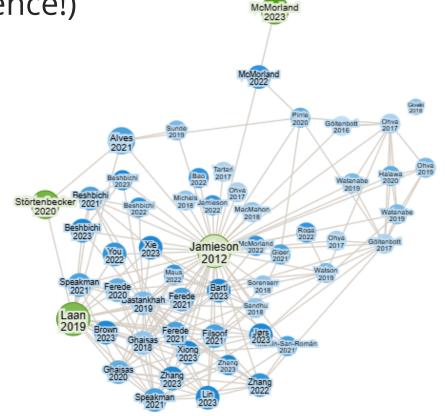
1980s – 1990s

[5]

Motivation

Why a review?

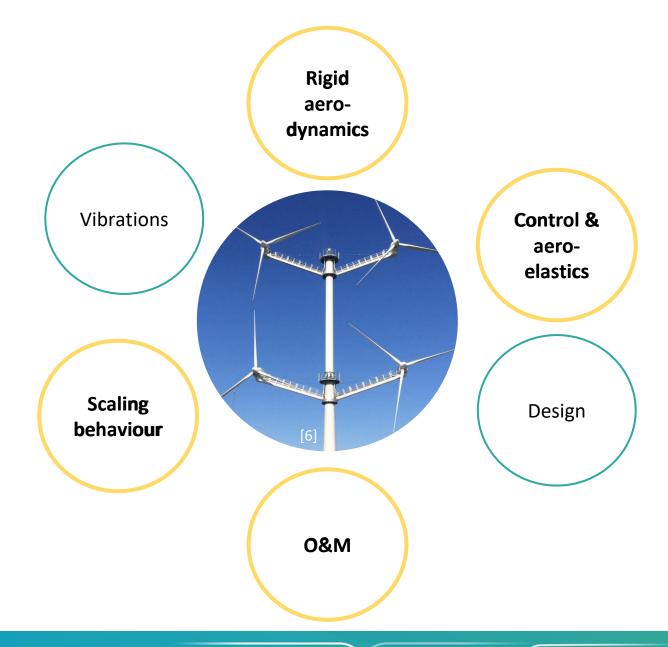

Growing interest in the multi-rotor concept from academia and industry


• Body of research growing (see: this conference!)

Gaps to target

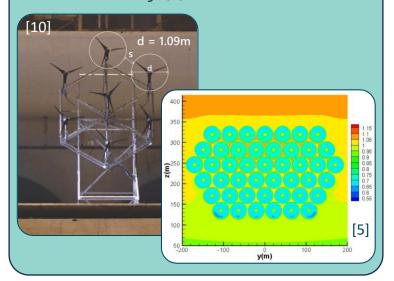
Point of reference for multi-rotor community

• "Launchpad" – ideas for future research

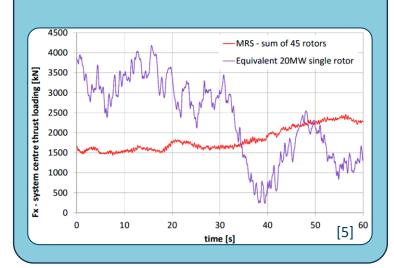


Areas of study

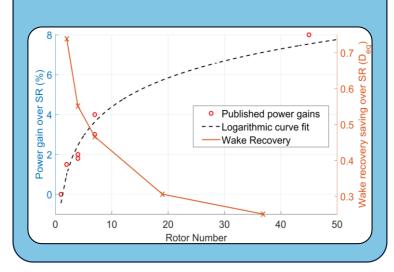
- Scope considered:
 - Co-planar, single support structure
 - Offshore and onshore
 - Experimental and numerical simulations
- Aims of review:
 - Collating research in different areas
 - Highlighting under-researched areas



Rigid Aerodynamics


Effect of Rotor Interaction

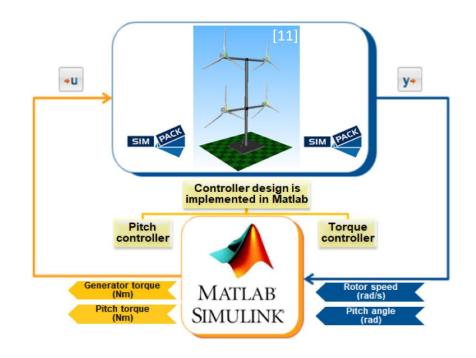
- Power gains from blockage and flow acceleration (1-8%)
- Backed up by measurement and CFD
- Effect on loads (?) Data availability (?)

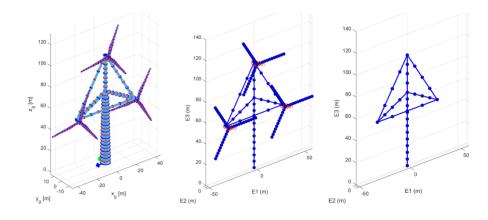

Thrust/Load Averaging

- Incoherent wind > reduced peak system thrust
- Improved reliability and fatigue (?)

Improved Wake Recovery

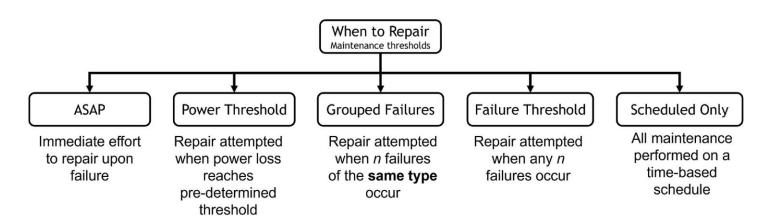
- Reduced wake recovery distance
- Varies with rotor number and spacing
- Long-term AEP gains (?)

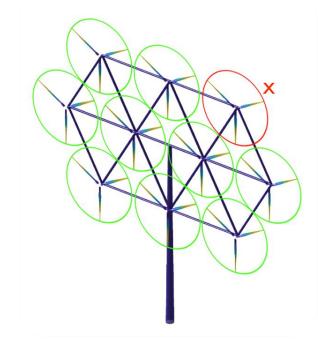




Control & Aeroelasticity

- More moving parts, more interconnectivity
 - ⇒ Greater complexity in modelling & control
- Research ruling out instabilities or critical modes
- Control studies to reduce tower movement
- Modelling simplifications?
 Benchmarking?

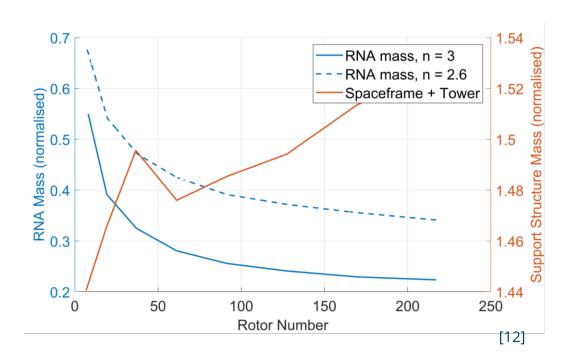

書 HAW HAMBURG

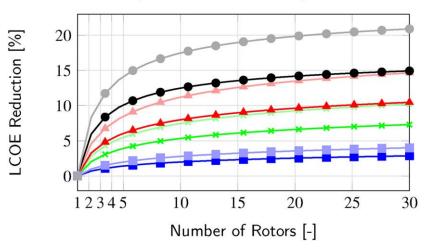

Operations, Maintenance & Reliability

- Built-in redundancy
 - Reduction in lost revenue
 - Potential for maintenance scheduling (?)
- On-site maintenance?

01.10.2025

- Leverage support structure as maintenance scaffold
- Failure rate for complex structure?




Trends in Multi-Rotor Scaling

- Sources of LCoE savings
 - Structural square-cube law, support structure
 - Aerodynamic rotor interaction, wake recovery

$$\Delta LCOE = 0.73X \left(1 - n \left(\frac{1}{\sqrt{n}} \right)^{\alpha} \right)$$

$$\alpha = 2.1, X = 0.25$$
 $\alpha = 2.1, X = 0.35$ $\alpha = 2.3, X = 0.35$ $\alpha = 2.3, X = 0.35$ $\alpha = 2.5, X = 0.25$ $\alpha = 2.5, X = 0.35$ $\alpha = 3.0, X = 0.25$ $\alpha = 3.0, X = 0.35$

Gaps & Limitations

What's left to address?

- System-wide savings
 - Best and worst case LCoE gains?
 - Quality of data?
- High uncertainty, sensitive to assumptions

Priority - reduce uncertainty through:

- Multi-disciplinary detailed design
- Publicly available test data

	Deufermen on Frankrich	I 1 С-Г [9/1	Confidence (0–5)
	Performance Factors	Impact on LCoE [%]	(0-3)
AEP	Power gain from 2 to 7 rotor blockage	-[0, 3]	3
	Power gain from 7 to 40 rotor blockage	-[2, 8]	1
	Farm-level AEP gain from wake saving	-[0, 2]	3
	Faster turbulence response	?	
CAPEX	Reduced cost for 2 to 7 RNAs	-[0, 16]	3
	Reduced cost for 7 to 40 RNAs	-[2, 22]	1
	Increased support structure mass	+[5, 0.3]	2
	Larger production volume	?	
OPEX	Reduced cost of downtime	?	
	On-platform repair equipment	?	
	Reduced vessel size/personnel requirements	?	
	Greater volume of failure	?	
TOTAL		[+5, -30]	

Goal: Improve our understanding of the ceiling of benefit on LCoE offered by the multi-rotor concept

Image credits:

- [1] Timaru Herald, Volume CXXXVII, Issue 19461, 8 April 1933, Page 16
- [2] The Life and Work of Bill Heronemus, Wind Engineering Pioneer. URL: https://www.umass.edu/windenergy/about/history/heronemus.
- [3] Lagerwey Vom Multirotor zur getriebelosen Großturbine mit Kletterkran. (n.d.). Retrieved September 23, 2025, from https://www.erneuerbareenergien.de
- [4] Jamieson, P., & Branney, M. (2012). Multi-rotors; a solution to 20 MW and beyond? Energy Procedia, 24, 52–59. https://doi.org/10.1016/j.egypro.2012.06.086
- [5] Jamieson, P. et. al. (2017). Deliverable 1 . 3 3 Innovative Turbine Concepts Multi- Multi Rotor System August 2015. August 2015, 1–197.
- [6] van der Laan, M. P. et. al (2019). Power curve and wake analyses of the vestas multi-rotor demonstrator. Wind Energy Science, 4(2), 251–271. https://doi.org/10.5194/wes-4-251-2019
- [7] Myriad Home. URL: https://www.myriadwind.com/.
- [8] Wind Catching Systems. (n.d.). Retrieved September 23, 2025, from https://www.windcatching.com/
- [9] Mingyang Smart Energy. Retrieved October 2nd, 2025, from https://en.myse.com.cn/

Thank you.

Contact: a.sh.2019@bristol.ac.uk

Read the paper here →

