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Kurzzusammenfassung

Spezies, einschließlich Vögel, können Verschiebungen in ihrer Verbreitung und Häufigkeit
erfahren, was sich auf Ökosysteme und die Biodiversität auswirken kann. Change-
Point-Detection (CPD)-Methoden sind wertvolle Werkzeuge zur Identifikation solcher
Veränderungen. Citizen Science bietet hierfür großflächige Datensätze, bringt jedoch
auch beobachterbedingte Verzerrungen mit sich. Dies wirft Fragen zur Verlässlichkeit
etablierter CPD-Algorithmen bei der Anwendung auf solche Daten sowie zu ihrer Akzep-
tanz unter Fachexperten auf.
Diese Arbeit greift diese Problematik auf, indem sie einen CPD-Ansatz unter Verwen-
dung des "Bayesian Estimation of Abrupt Change, Seasonality, and Trend" (BEAST)-
Algorithmus auf einen Citizen-Science-Vogeldatensatz anwendet. Vor der BEAST-
Analyse wird eine Preprocessing-Pipeline entwickelt, um Beobachterverzerrungen zu re-
duzieren. Die Evaluation untersucht die Genauigkeit von BEAST sowie dessen ökologis-
che Relevanz im Kontext von Citizen Science. Detektierte Veränderungspunkte wurden
quantitativ mit dokumentierten ökologischen Ereignissen validiert, während Ornitholo-
gen die ökologische Plausibilität und praktische Relevanz qualitativ bewerteten.
Die Ergebnisse zeigen, dass BEAST ökologisch bedeutsame Veränderungspunkte zuver-
lässig erkennt, wobei seine Sensitivität von der Datenaggregation und den gewählten
Preprocessing-Strategien abhängt. Obwohl CPD manuelle Bewertungen nicht ersetzt,
wird es als wertvolle Ergänzung angesehen, um subtile oder unerwartete Veränderungen
aufzudecken, die Echtzeit-Überwachung ökologischer Prozesse zu unterstützen und das
Retraining von Machine-Learning-Modellen zu informieren.
Trotz des spezifischen Anwendungsfalls, unterstreicht diese Studie das breitere Potenzial
von CPD in der Citizen Science, indem sie zeigt, dass mit robustem Preprocessing und
Expertenvalidierung zeitnahe ökologische Erkenntnisse gewonnen werden können.
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Abstract

Species, including birds, can undergo sudden shifts in distribution and abundance due
to environmental changes, human activities, or natural variability, which can impact
ecosystems and biodiversity. Change Point Detection (CPD) methods are valuable for
identifying these shifts. For this, citizen science offers large-scale datasets, but also intro-
duces observer-related biases, raising questions about the reliability of established CPD
algorithms when applied to such data, and their trustworthiness among domain experts.
This thesis addresses this concern by implementing a CPD approach using the Bayesian
Estimation of Abrupt Change, Seasonality, and Trend (BEAST) algorithm on a citizen
science bird dataset. Prior to BEAST analysis, a tailored preprocessing pipeline is de-
veloped to mitigate user bias.
Evaluation examines BEAST’s accuracy and ecological relevance in citizen science con-
texts. Detected change points were quantitatively validated against documented ecologi-
cal events, while ornithologists qualitatively assessed ecological plausibility and practical
relevance.
Findings indicate that BEAST reliably detects ecologically meaningful change points,
though its sensitivity depends on data aggregation and preprocessing strategies. While
not replacing manual assessments, CPD is seen as a valuable complement to uncover
subtle or unexpected changes, supporting real-time ecological monitoring, and informing
machine learning model retraining.
Though case-specific, this study underscores CPD’s broader potential in citizen science,
enabling timely ecological insights when paired with robust preprocessing and expert
validation.
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1 Introduction

Ecological systems are inherently dynamic, shaped by intricate interactions among species,
environmental factors, and human activities. While gradual changes are common, ecosys-
tems can also experience abrupt shifts due to external pressures such as environmental
changes, human influence, and natural variability. These sudden transitions can fun-
damentally alter ecosystem structure, function, and biodiversity, often with long-term
consequences (Storch & Day 2020).

Accurately detecting these shifts is critical in ecology and conservation biology, as it
can inform effective environmental management, conservation strategies, and policy de-
cisions. A key methodological approach for this task is Change Point Detection (CPD),
a statistical technique used to identify moments when underlying processes experience
sudden or sustained changes.

However, the reliability of such analyses depends on comprehensive and geographically
dense data. In recent years, citizen science initiatives have become a valuable resource
for large-scale ecological monitoring. Through online platforms and mobile applications,
volunteers record their sightings, collectively producing datasets that can far exceed the
spatial and temporal coverage of conventional survey methods.

Despite their strengths in data volume and geographic reach, citizen science data also
pose unique challenges: sightings are typically “presence-only”, meaning absence data are
not systematically recorded, and volunteers vary widely in observation skill, reporting
frequency, and geographic preferences. Such biases can obscure true ecological signals,
making it difficult to differentiate between genuine ecological changes and artifacts of
reporting behavior.
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1 Introduction

1.1 Research Gap

Regardless of these complexities, citizen science datasets continue to play a growing
role in ecology, raising two key gaps regarding the adoption of Change Point Detection
methods:

1. Algorithmic Transferability to Citizen Science Contexts: While Change
Point Detection algorithms have proven reliable in various time-series applications,
research is limited on how they perform with the distinct properties of citizen sci-
ence data in general, or bird sighting data in particular. The biases introduced
by volunteer-driven data may affect the detection of true shifts in species distribu-
tions and abundances, raising questions about an algorithm’s trustworthiness when
transferred to such data.

2. Lack of Systematic Expert Involvement: Currently, domain experts are sel-
dom involved in evaluating the practical relevance of CPD algorithms in ecology.
Yet, their systematic input is crucial for verifying whether detected change points
align with meaningful ecological events and for assessing the overall utility of the
method. Without expert involvement, any misalignment with established ecolog-
ical understanding or issues with interpretability can undermine trust and hinder
integration, regardless of the algorithm’s technical sophistication.

1.2 Objective and Research Questions

This thesis aims to address these gaps in applying Change Point Detection to citizen
science data by focusing on bird species distributions in Germany and Switzerland.

At the core of this investigation is the Bayesian Estimation of Abrupt Change, Sea-
sonality, and Trend (BEAST) algorithm, applied to volunteer-collected observations. A
structured framework is introduced to (1) mitigate biases through data preprocessing,
(2) detect potential shifts with BEAST, and (3) present the results through an accessible
user interface.

By centering on the transferability of CPD approaches to citizen science data and en-
suring ornithological expertise is incorporated, this thesis pursues both practical and
scientific outcomes. In particular, five key questions guide the research, aiming not only
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1 Introduction

to provide use-case insights but also to extract broader lessons for applying CPD algo-
rithms in citizen science contexts:

• RQ1: Accuracy and Correspondence with Ecological Phenomena How ac-
curate is the BEAST algorithm in detecting significant change points in citizen sci-
ence time series data, and to what extent do these change points reflect actual eco-
logical shifts and align with known real-world events? Motivation: Assess whether
BEAST can robustly identify true changes and minimize false positives, while de-
termining the degree to which detected breakpoints match expert-confirmed bird
population phenomena.

• RQ2: Role of Data Preprocessing How does the applied data preprocessing
method affect BEAST’s ability to detect true ecological change points? Motiva-
tion: Understanding how data aggregation strategies can either highlight or obscure
certain types of change events, thus influencing both detection rates and precision.

• RQ3: Influence of Citizen Science Bias In what ways can observer bias
lead BEAST to detect false change points? Motivation: Exploring how volunteer-
collected data may introduce artifacts.

• RQ4: Expert Perception and Usability How do ornithological experts perceive
the usability and trustworthiness of BEAST for monitoring bird populations, and
what are their perspectives on integrating it into ongoing research and workflows?
Motivation: Examining the practical value of BEAST, including ease of interpre-
tation, confidence in its outputs, and potential roles in expert-driven ecological
monitoring.

• RQ5: Generalization and Best Practices What best practices and method-
ological insights emerge from this study for applying Change Point Detection meth-
ods to citizen science data in ecology? Motivation: Consolidating findings on into
actionable guidelines to inform future research and ecological applications utilizing
Change Point Detection on citizen science datasets.

3



1 Introduction

To answer these questions, a complementary evaluation strategy is employed:

• Quantitative Testing compares detected change points to documented ecological
events, testing BEAST’s accuracy in reflecting actual population shifts.

• Qualitative Interviews with ornithologists assess whether the algorithm’s out-
puts align with expert knowledge and whether the framework is trustworthy, inter-
pretable, and practically applicable.

Through this combined approach, the thesis offers two major contributions. First, it
delivers a case-specific assessment of how effectively BEAST—supported by bias-
mitigating preprocessing—deals with large-scale, volunteer-collected bird sightings. Sec-
ond, it produces broader guidelines for practitioners seeking to implement CPD on
presence-only data, informed by expert feedback and grounded in real-world ecological
contexts. These findings aim to help researchers and conservation professionals design,
validate, and deploy robust CPD strategies that meet technical standards while earning
the confidence of domain experts.

1.3 Outline

The work is organized as follows. First, the Background chapter is presented. This
chapter provides an introduction to citizen science and Change Point Detection (CPD).
Further, the BEAST algorithm is detailed.

The Related Work chapter examines existing strategies for mitigating user bias in cit-
izen science data, explores CPD algorithms and their applications in ecological research,
and reviews common evaluation methods for CPD algorithms.

In the following Implementation chapter, the framework developed for this thesis is
presented. It details the data preprocessing pipeline—spatial discretization, weekly ag-
gregation, and user bias mitigation—followed by the application of BEAST to each
species’ time series. Finally, a web-based user interface for visualizing detected shifts
is introduced.

The Evaluation chapter explains the overall design of the evaluation methods. It covers
two complementary strategies—semi-structured interviews with ornithologists to gather
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1 Introduction

expert feedback and a quantitative comparison of BEAST outputs with archival records
of documented bird population changes.

The Results chapter compiles the outcomes of both the qualitative and quantitative eval-
uations. It presents ornithologists’ perspectives on the accuracy and utility of BEAST,
along with detection rates measured against the archival data.

Building on the evaluation results, the Discussion chapter systematically discusses each
Research Question in light of the findings. It addresses the strengths and limitations of
BEAST under the chosen preprocessing strategy, highlights the algorithm’s real-world
applicability, and presents broader implications for applying CPD methods to citizen
science datasets.

The final Outlook chapter presents future directions for research and practical inte-
gration. It offers recommendations for improving the adopted methodology, addresses
remaining challenges, and outlines potential avenues for future research, thereby offering
a roadmap toward more agile, data-driven ecological monitoring.

1.4 Context of this work

This thesis was developed within the Ornitho project, supported by the Federation of
German Avifaunists (DDA) and the Swiss Ornithological Institute. Their platforms
collect millions of bird observations across multiple European countries, providing a major
resource for biodiversity research but also posing challenges related to data reliability and
volunteer biases.

To improve data quality, Ornitho is exploring AI-driven methods to flag implausible
sightings. Motivated by this need for adaptive models, the concept of building a Change
Point Detection system for each bird species was proposed. This thesis serves as a first
step in this direction by assessing whether Change Point Detection is applicable to citizen
science data in general and the Ornitho use case in particular.

This thesis represents a collaborative effort between the University of Applied Sciences
Hamburg (HAW), the DDA, the Swiss Ornithological Institute, and inovex GmbH, bring-
ing together academic, domain, and technical expertise to explore CPD’s potential in
large-scale citizen science contexts.
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2 Background

2.1 Citizen Science

Citizen science refers to the involvement of non-professional scientists in the research
process, encompassing activities such as data collection, analysis, and dissemination of
scientific knowledge (Vohland et al. 2021). It represents a collaborative approach where
members of the public contribute to scientific projects, often in partnership with profes-
sional scientists and institutions; this participation can take various forms, ranging from
recording observations of natural phenomena to analyzing astronomical or medical data
(Davis et al. 2023).

Advancements in technology and the proliferation of internet connectivity have signifi-
cantly expanded the scope and scale of citizen science (Bonney 2021). Online platforms,
mobile applications, and GPS-enabled devices have made it easier for volunteers to par-
ticipate in projects worldwide, enabling real-time data collection and analysis (Johnston
et al. 2023). This technological evolution has transformed citizen science into a global
phenomenon, engaging participants in diverse research initiatives.

2.1.1 Relevance

Citizen science contributes substantially to the advancement of scientific knowledge by
facilitating large-scale data collection that would be otherwise impractical for individual
researchers or small teams (Berghen et al. 2025). Projects like eBird leverage the con-
tributions of birdwatchers globally to monitor bird distributions and migration patterns,
generating large datasets that inform conservation efforts and ecological studies (Zhu &
Newman 2024).

Engaging the public in scientific research fosters a greater appreciation and understanding
of science. According to Smith et al. (2024), citizen science projects not only advance

6



2 Background

scientific research but can also foster a more scientifically literate society and increase
civic action.

Additionally, citizen science enhances the democratization of science by making it more
accessible and participatory. It breaks down barriers between professional scientists and
the public, encouraging collaboration and dialogue. This inclusive approach can lead to
increased trust in scientific institutions (Hall et al. 2024).

2.1.2 Fields of Application

Citizen Science is applied to a vast amount of research fields, including Food Science
(e.g. PataFEST ), Astronomy (e.g. Galaxy Zoo), and Epidemiology (e.g. Flu Near You).
However, one of the most prominent applications of citizen science is in environmental
monitoring.

Figure 2.1 shows the proportion of ecological citizen science projects per taxonomic group,
compared to their abundance on Earth and the number of professional scientists in that
field. It highlights that birds, amphibians, reptiles, and mammals are significantly over-
represented in citizen science projects compared to their relative abundance on Earth.
This bias is likely due to the ease of observing and identifying these species, as well as the
public’s general interest in them; meanwhile, less charismatic species or taxonomic groups
that are harder to access are underrepresented, leading to potential gaps in biodiversity
monitoring (Theobald et al. 2015).

7
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(a) eBird (b) iNaturalist

Figure 2.3: Input interface for a new observation in the two most commonly used bird
citizen science project apps in Europe.

For bird species in particular, the most widespread citizen science projects include pro-
grams such as eBird, operated by the Cornell Lab of Ornithology, which allows bird-
watchers worldwide to record and share their observations. In Europe, the most prevalent
citizen science effort is the Ornitho project, used in multiple countries. The mobile app
for this project is iNaturalist. These projects engage volunteers in large-scale data col-
lection, helping researchers monitor bird populations, migration patterns, and long-term
ecological changes. Figure 2.3 displays the two similar input interfaces used for logging
new observations of both mobile apps.
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2 Background

2.1.3 Presence-Only and Presence-Absence Data Collection

Citizen science projects employ various data collection methods tailored to the project’s
objectives and the participants’ capabilities. For citizen science projects in ecology, specif-
ically, data can be collected in different ways. The most prevalent types are presence-only
and presence-absence data.

For presence-only data, volunteers report sightings of species without noting their ab-
sences. This type of data collection is straightforward as it only involves recording obser-
vations when they occur, without the need for systematic surveys or additional tracking
efforts. However, it requires careful analysis to address sampling bias and spatially un-
even observation efforts (Di Febbraro et al. 2023), which can result in under-sampled
regions. These gaps in data coverage may lead to inaccurate assumptions, such as falsely
concluding the absence of species in poorly surveyed areas. Platforms like eBird and
Ornitho collect presence-only data.

Another important type is presence-absence data, in which participants record both
the presence and confirmed absence of species in surveyed areas. This comprehensive
data provides deeper insights into species distributions and is crucial for monitoring
changes over time. However, collecting reliable absence data necessitates rigorous proto-
cols to ensure that non-detections represent true absences rather than overlooked pres-
ences (Cruickshank et al. 2019).

2.1.4 User Bias

A key challenge in analyzing ecological citizen science data lies in understanding that this
data source does not provide direct estimates of abundance. In contrast to structured
surveys, where individuals are systematically counted, citizen science data represent a
continuous accumulation of sighting reports. This introduces several factors that distort
the true number of individuals present in a given area.

First, spatial biases can arise when observations are concentrated in easily accessible
or popular locations, leading to uneven data coverage (Backstrom et al. 2025). Conse-
quently, remote or less accessible regions tend to be undersampled. Furthermore, users
may select sites based on ecological factors, favoring biodiversity hotspots or areas where
they anticipate finding a particular species of interest (Johnston et al. 2020).
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Temporal biases can also be present in the data. Volunteers tend to be more active on
weekends and during specific times of the year. In bird monitoring, for example, user
activity peaks during spring and autumn due to bird migration, when birds are more
visible and active (La Sorte & Somveille 2020).

Further, a bias exists due to user errors, which stem from inaccurate or incomplete sub-
missions. These errors can take the form of False Positives, where an observer mistakenly
records a species that was not present (Johnston et al. 2023). Likewise, False Negatives
occur when a species is present but goes unreported due to lack of detection (Rempel
et al. 2019).

Another critical source of bias arises from taxonomic preferences. Volunteers are often
motivated by encounters with interesting wildlife. Observers are more likely to travel
further to record rare or more charismatic species like the White-tailed Eagle while ne-
glecting more common taxa, such as the Wood Pigeon. This introduces an additional layer
of bias toward species that are considered more noteworthy (Johnston et al. 2023).

These factors, collectively, contribute to significant user bias in the data, making it
difficult to directly link sighting records to the actual number of individuals present. If
not addressed, this can significantly affect the outcomes of ecological studies (Backstrom
et al. 2025). For Change Point Detection, this is particularly relevant as it aims to identify
disruptions that reflect real changes in bird populations, rather than patterns influenced
by user behavior. Therefore, it is critical to develop methodologies that account for these
biases and ensure that the detected change points correspond to actual shifts.

2.2 Change Point Detection

Change Point Detection (CPD) is a fundamental statistical task used to detect shifts
in a dataset over time. A change point marks an instance in time where the statistical
properties of a time series experience a significant alteration. Detecting these points is
essential for understanding underlying dynamics in data.
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2.2.1 Definition

Formally, given a sequence of observations {Xt}Nt=1, a change point exists if the statistical
properties of the sequence before and after a certain time τ differ. That is, τ partitions
the time series into segments with different probability distributions. Change Point
Detection involves identifying the number and positions of these change points.

Considering a sequence of time series variables {xm, xm+1, . . . , xn}, Change Point De-
tection can be formulated as a hypothesis testing problem between two alternatives.
According to Aminikhanghahi & Cook (2017), this can be expressed as:

• Null hypothesis H0 (no change occurs):

H0 : PXm = PXm+1 = · · · = PXn (2.1)

• Alternative hypothesis HA (a change occurs at some point τ):

HA : ∃m < τ < n such that PXm = · · · = PXτ ̸= PXτ+1 = · · · = PXn (2.2)

where PXi denotes the probability distribution of Xi, and τ is the change point. The
goal of CPD is to determine whether and where such a point τ exists within the interval
(m,n) at which the distribution of the observations changes.

The types of changes that may constitute a change point include, but are not limited
to, alterations in the mean, dispersion, count, or slope of the data (see Figure 2.4). A
common type of change point is a sudden shift in the mean of the data, where the average
value of observations changes abruptly at point τ . Similarly, a change in the variance
or standard deviation refers to alterations in the data’s dispersion, indicating that ob-
servations become more or less spread out after the change point. Further, a change in
the slope denotes a shift in the trend component of the time series, where the rate of
increase or decrease changes at τ . Lastly, changes in periodicity involve modifications in
the cyclical patterns within the data, such as the emergence or disappearance of seasonal
effects.
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Figure 2.4: Types of change points in time series data, differentiated by statistical prop-
erties. Adopted from Arcgis (2024).

The exact nature of what constitutes a change point is not strictly defined regarding the
suddenness or gradualness of the transition. Some researchers consider only abrupt shifts
as change points, while others also include gradual transitions (Zhao et al. 2019). The
ambiguity arises because real-world data often exhibit changes that are neither instan-
taneous nor entirely smooth. As such, the definition of a change point can be context-
dependent, and detecting gradual changes may require different analytical approaches
than detecting abrupt ones.

2.2.2 Relevance

Detecting change points in time series data is crucial across various scientific fields,
including ecology, finance, and engineering (Aminikhanghahi & Cook 2017). It is vital
for identifying events, which may be subtle yet significant. In ecological studies, for
example, change point analysis can reveal shifts in species population, water quality, or
vegetation development, indicating environmental changes, habitat loss, climate change
effects, or anthropogenic impacts (Fan et al. 2024). Understanding these changes is
essential for timely conservation efforts to mitigate adverse effects. Moreover, identifying
periods of significant change can help scientists focus on investigating potential causes,
leading to better-informed policy decisions.
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Another relevant contribution of automatic Change Point Detection is the significant
reduction in time required to identify predefined events within large-scale time series
datasets. This automation minimizes the need for repetitive manual processing. For
example, change point analysis can mark an organism’s time of death based on a sudden
decline in brain activity (Aqel et al. 2024).

2.2.3 Change Point Detection Methods

Methods for detecting change points changes can be broadly categorized into model-
based and non-parametric approaches, as well as supervised and unsupervised techniques
(Aminikhanghahi & Cook 2017). Additionally, they can be distinguished as offline meth-
ods, which analyze the entire time series retrospectively, and online methods, which
detect changes as new data arrives (Van den Burg & Williams 2020).

Statistical methods form the foundation of Change Point Detection. Basic approaches,
such as Cumulative Sum (CUSUM) and Likelihood Ratio Tests, identify structural breaks
by measuring deviations from an expected pattern. CUSUM accumulates small devia-
tions over time and signals a change when the cumulative sum exceeds a predefined
threshold (Horváth et al. 2022). Likelihood Ratio Tests compare the probability of the
data fitting two different models, one assuming no change and the other incorporating a
possible break (Skrobotov 2023).

Segmentation-based methods take a different approach by dividing the time series into
distinct segments, optimizing a predefined cost function. Binary Segmentation is a recur-
sive technique that detects the most significant change point and then applies the same
process to the resulting segments until no further substantial changes are found (Kovács
et al. 2023). The Pruned Exact Linear Time (PELT) method improves upon this by
applying a pruning strategy, which reduces computational complexity to O(n) (Truong
et al. 2020).

More advanced techniques include Bayesian approaches, which treat change points as
random variables and use Bayesian inference to compute their distributions. This prob-
abilistic framework allows the incorporation of prior knowledge and the quantification
of uncertainty regarding the location and number of change points (Zhao et al. 2019).
Bayesian methods can be particularly powerful in applications where prior information
is available or where uncertainty quantification is crucial.
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Machine learning methods, including Kernel-Based methods and Clustering algorithms,
can capture complex, non-linear relationships in the data, detecting structural changes
that traditional methods might miss (Aminikhanghahi & Cook 2017). While unsuper-
vised clustering algorithms such as K-means can identify change points as transitions
between clusters, supervised learning approaches such as Decision Trees can be trained
to recognize patterns associated with change points (Aminikhanghahi & Cook 2017).

Online detection methods are essential in scenarios where immediate response to changes
is required. Online CUSUM is an extension of the standard CUSUM approach that con-
tinuously updates its calculations as new data arrives, triggering an alert when deviations
exceed a defined threshold (Wei & Xie 2022). Bayesian online Change Point Detection
models estimate a probability distribution for the time that has passed since the most
recent change point (Van den Burg & Williams 2020). Both supervised and unsupervised
machine learning models can process streaming data within a sliding window with size n,
allowing for near-real-time Change Point Detection (Aminikhanghahi & Cook 2017).

Ultimately, selecting the appropriate Change Point Detection method depends on multi-
ple factors, including data complexity, computational efficiency, and the need for real-time
analysis.

BEAST Algorithm

The Bayesian Estimator of Abrupt Change, Seasonal Change, and Trend (BEAST) by
Zhao et al. (2019) is an advanced time series decomposition algorithm developed to ad-
dress the challenges of analyzing complex, nonlinear dynamics in ecosystems. BEAST
was initially developed using satellite time series data to track land-use changes, vege-
tation dynamics, and ecosystem disturbances. However, the authors emphasize that its
ability to capture both subtle and prominent changes makes it applicable in fields such
as disturbance ecology, climate science, and land resource management. The algorithm
is suitable for a broad range of time series data types, including Normalized Difference
Vegetation Index (NDVI), climate variables, and various ecological indicators. It has
been successfully applied in various other research fields for Change Point Detection,
including wildlife research, forestry, oceanography, geophysics, euthanasia, and food sci-
ence (Smith & Pauli n.d., Mulverhill et al. 2024, Oehlert et al. 2023, Mu et al. 2023, Aqel
et al. 2024, Zaytsev et al. 2024). Thise wide applicability and strong acceptance within
the ecology research community were key factors in selecting BEAST for this thesis.
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Unlike conventional single-model approaches, BEAST employs a Bayesian ensemble method,
which integrates multiple model outcomes to produce a comprehensive and probabilis-
tically reliable estimate of temporal patterns. The authors suggest that, rather than
aiming to identify a single best-fit model, each model should be viewed as valuable in
its own way, contributing unique insights that collectively enhance overall understanding
(Zhao et al. 2019). This Ensemble approach helps mitigate issues stemming from trying
to select one single model based on an arbitrary criterion, such as the Akaike’s Informa-
tion criterion (AIC) or the Bayesian information criterion (BIC), which might lead to
misinterpretations and fortuitous conclusions of the data (Zhao et al. 2019). Such mis-
conceptions may significantly influence our understanding of ecosystems and the policy
decisions we implement.

Using BEAST, the input data can have multiple, overlapping sources of variation, in-
cluding seasonality and trend. It is suited for cases where there is a need to detect
both abrupt (high-magnitude) and subtle (low-magnitude) changes (Zhao et al. 2019).
Further, in its latest version, BEAST accounts for outliers in the data, preventing these
atypical data points from skewing the model’s understanding of the underlying seasonal
and trend patterns. The output of the BEAST analysis also includes additional valuable
statistical diagnostics, such as change point probabilities and confidence intervals.

The BEAST algorithm decomposes a time series into four primary components: trend,
seasonality, noise, and abrupt change (i.e., change points). Its goal is to accurately repli-
cate the given, complex original signal by estimating these components. To achieve this,
BEAST views a time series y(t) as the sum of its trend, seasonal, and noise components.
Mathematically, this can be expressed as:

y(t) = S(t; Θs) + T (t; ΘT ) + ϵ (2.3)

where S(t; Θs) represents the seasonal component parameterized by Θs, T (t; ΘT ) is the
trend component parameterized by T (ΘT ), and ϵ is the noise component, accounting
for the portion of the data not explained by the seasonal and trend components. The
seasonality component S(t; Θs) is modeled as a piecewise harmonic function with specified
frequencies, while the trend component T (t; ΘT ) is modeled as a piecewise linear function.
Change points for seasonality and trend are introduced as breaks in the time series where
either the seasonal frequency or the trend slope changes. Each change point in the
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trend or seasonal component allows the algorithm to capture abrupt shifts in the data’s
behavior.

The seasonal component of the time series is mathematically represented as a piecewise
harmonic model, divided by p seasonal change points. These change points split the
signal into p + 1 segments, each with its own phase and amplitude. Thus, the seasonal
signal is given by:

S(t) =

Lk∑
l=1

(
ak,l sin

2πlt

P
+ bk,l cos

2πlt

P

)
(2.4)

where Lk is the harmonic order of the k-th segment, P is the seasonal period (funda-
mental frequency), and ak,l and bk,l are the amplitudes for the sins and cosines term
in the segment. Partitioning the harmonic component of the time series results in a
non-continuous signal with unknown parameters, specifically the number and timing of
change points, as well as the phase and amplitude of each harmonic oscillation.

The trend component of the time series is modeled as a piecewise linear function, where
each segment is represented as

T (t) = aj + bjt (2.5)

where aj and bj are the intercept and slope of the j-th segment, respectively. The points
in time where segments transition are the change points of the trend component. In
addition to the parameters of the linear segments, the trend component also has unknown
parameters, similar to the seasonal component, namely the number and timing of change
points, which need to be estimated.

Thus, in order to estimate the time series, the algorithm must estimate the following
parameters, which collectively define the structure of the time series:

• Model Structure M

– Number and timing of change points for trend and seasonality

– Harmonic orders of the seasonal elements

• Segment-Specific Coefficients βM
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– Trend: Slopes and intercepts of the linear trend segments

– Seasonality: Sine and cosine coefficients of the harmonic functions

• Noise Parameter σ2

– Describes the noise component

The estimation process begins with an initial guess, after which the quality of this model
is evaluated using the posterior probability. As formulated by Zhao et al. (2019), the
posterior probability p(βM , σ2,M |D) is calculated based on Bayes’ Theorem:

p(βM , σ2,M |D) =
p(D|βM , σ2,M) · p(βM , σ2,M)

p(D)
(2.6)

where p(βM , σ2,M |D) is the posterior probability, p(D|βM , σ2,M) is the likelihood,
p(βM , σ2,M) is the prior probability, and p(D) is the marginal likelihood, which nor-
malizes the posterior distribution across all possible models, ensuring that the posterior
probabilities sum to 1.

The prior p(βM , σ2,M |D) reflects general assumptions set by the authors, including
constraints on the change points’ minimum and maximum numbers and their minimum
separation distance. These settings are customizable, allowing for flexibility across differ-
ent application contexts. The authors intentionally designed the prior to be generic and
non-informative, ensuring the algorithm’s applicability to a broad range of time series
(Zhao et al. 2019).

The likelihood p(D|βM , σ2,M) is distinct from the prior as it is purely data-driven,
depending on the input time series. In BEAST, the likelihood quantifies how well the
model M explains the observed data D. Given the model structure M , the coefficients βM
, and the noise parameters σ2, the time series data is decomposed into trend and seasonal
components, with the likelihood p(D|βM , σ2,M) reflecting the fit of these components
to the actual data points. The likelihood calculation involves estimating how closely the
observed data yi matches the predicted values based on the current model configuration,
accounting for both the seasonal and trend components.

BEAST employs a Monte Carlo-based inference approach for exploring the vast model
space of BEAST, as it allows efficient sampling of possible model configurations without
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requiring an exhaustive search. The MCMC sampling process iteratively generates sam-
ples of model parameters by alternately sampling the model structure M , the parameters
βM of the seasonal and trend components for the chosen model, and the noise variance
σ2. Each iteration updates the model parameters based on the current data and model,
refining the posterior distribution with each step. This iterative process eventually con-
verges, yielding a set of models and associated parameter estimates that reflect the data’s
underlying patterns.

After the MCMC sampling process, BEAST combines the results from all sampled mod-
els using Bayesian Model Averaging (BMA). This allows the algorithm to handle model
uncertainty by combining multiple candidate models rather than selecting a single best-
fit model. The posterior inference is performed on the aggregated set of sampled models,
where each model M is weighted by its calculated posterior probability. This approach
yields an overall estimate for the time series decomposition, combining the trend, sea-
sonality, and change point estimates across models. The posterior distribution for each
parameter is used to calculate uncertainty intervals, providing a measure of confidence
in the results.

The final estimate ŷ(t) of the time series is derived as follows:

ŷ(t) =
1

N

N∑
i=1

y
(i)
M (t) (2.7)

where N is the total number of sampled models, and y
(i)
M (t) represents the time series

decomposition from the i-th sampled model.

Through posterior inference, BEAST produces a robust time series decomposition with
confidence intervals around trend and seasonal estimates, capturing the variability and
uncertainties in the model space. This approach allows for the reliable detection of
change points and seasonal patterns, which are essential for interpreting ecological and
environmental dynamics accurately.

After performing the change point analysis, the BEAST package provides a comprehen-
sive array of output plots, compiled in Figure 2.5. In Figure 2.5a, an exemplary input
time series y(t) is shown in red, illustrating the observed data that is analyzed. Its true
underlying dynamics are decomposed in Figure 2.5b, with distinct seasonal and trend
components shown as separate curves.
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(a) A simulated time series with seasonal and trend components.

(b) True dynamics of the time series in (a). (c) Dynamics extracted by BEAST.

Figure 2.5: Illustration of BEAST analysis on a simulated time series. The figure shows
the input time series (a), the true dynamics (b), and the outputs of BEAST
(c), including detected seasonal and trend signals, change points (scp/tcp),
uncertainty envelopes, and the probability of observing a scp or tcp at any
given time. Adopted from Zhao et al. (2019).
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Figure 2.5c depicts the dynamics extracted by BEAST. Highlighted in green, the sea-
sonal component detected by BEAST is shown, along with the identified seasonal change
points, labeled as scp1 and scp2, and marked with blue vertical bars. Bayesian Model
Averaging enables the a confidence estimation at each time step, providing probabilities
for the presence of a change point, which are shown below the extracted seasonal signal.

The subsequent plot, highlighted in yellow, illustrates the trend component, which is
modeled as piecewise linear segments. This plot also includes the probabilities for a
trend change point, shown as probability curves below the trend. Credible intervals of
the estimated trend signal are displayed as gray envelopes, offering a more comprehensive
uncertainty range compared to single-best-model approaches. The final plot shows the
residuals in blue, which represent the portions of the signal not classified as either seasonal
or trend components by BEAST.

Additionally, BEAST provides further insights (see Figure 2.6), such as the probability
distribution of the estimated total number of change points for both seasonal and trend
components, the order of seasonal harmonics per seasonal segment, and the probability
of a positive trend change at any given time.

Figure 2.6: Additional output of BEAST, showing further estimation analytics. Adopted
from Zhao et al. (2019).
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In the development and evaluation of the proposed framework, three main components
are considered: a preprocessing scheme to reduce user bias in the applied citizen science
data, the application of a Change Point Detection algorithm, and the evaluation of its
performance. To provide context for these components, this chapter presents an overview
of Related Work in these areas.

3.1 User Bias Reduction of Citizen Science Data

While citizen science has democratized data collection and greatly expanded geographical
coverage, it also introduces challenges pertaining to data quality and reliability. As
discussed in Chapter 2.1.4, a major concern is user bias, which arises from variations in
observer effort, expertise, and reporting practices.

To mitigate the spatial unevenness of sampling effort, Matutini et al. (2021) and Steen
et al. (2021) propose subsampling procedures. Such approaches have, among others,
been tested on eBird data (Johnston et al. 2021). Typically, density-based sampling is
employed, whereby a lower proportion of records is retained from densely sampled areas,
thus achieving more balanced dataset coverage.

However, subsampling leads to a loss of valuable data. As an alternative, artificial im-
putation can replace missing values with plausible estimates (Bowler et al. 2025). For
instance, Grattarola et al. (2023) employ species distribution models (SDMs) to estimate
species presences, thereby reducing spatial imbalances. Similarly, Dakki et al. (2021)
developed an imputation method to address spatial and temporal data gaps simultane-
ously.

Zbinden et al. (2014) applied the SOPM abundance index to address the issue of un-
even sampling efforts in opportunistic biological records. Although published some time
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ago, this method remains relevant (Bowler et al. 2025). SOPM (Summe der Ortspen-
tadenmaxima) is a German acronym describing its computation: for a target species, it
represents the sum of the maximum number of records within a selected area and over
a five-day period. This index has already been successfully applied to the same dataset
used in this thesis by ornithologists from the Swiss Ornithological Institute, and was
therefore chosen to be applied in this thesis.

In contrast to post-processing solutions, Callaghan et al. (2023) suggest reducing bi-
ases at the data collection stage. They recommend motivating participants to record
observations during underrepresented periods and in underrepresented locations.

3.2 Change Point Detection for Ecological Studies

3.2.1 Algorithms

Performing Change Point Detection in ecology is inherently complex due to the intricate
and dynamic nature of ecological systems. These complexities necessitate sophisticated
CPD methods that can accurately discern genuine shifts from natural fluctuations. This
section reviews prominent Change Point Detection algorithms applied for ecological stud-
ies, emphasizing traditional methods, their limitations, and recent advancements that
have enhanced robustness and flexibility.

Traditional methods, such as global linear models applied by Myneni et al. (1997), pro-
vided foundational insights but often oversimplified nonlinear ecological processes (Zhao
et al. 2019). Piecewise linear models improved flexibility by segmenting time series,
enabling the detection of abrupt shifts, but remained sensitive to noise and required
user-defined parameters (Banesh et al. 2019).

To better capture ecological dynamics, additive models like DBEST and bfast were intro-
duced. DBEST integrates a level-shift detection mechanism with thresholds to identify
discontinuities in trends, followed by decomposition into trend and seasonal components
using STL (Seasonal and Trend decomposition using Loess) (Li et al. 2022). The Breaks
For Additive Seasonal and Trend (bfast) algorithm developed by Verbesselt et al. (2010)
decomposes time series data into trend, seasonal, and remainder components, allowing for
the detection of structural changes in both trend and seasonality. However, both models
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rely on fixed parameter choices, which can lead to inconsistencies. For example, conflict-
ing interpretations of Amazon forest responses to droughts highlight the limitations of
single-model approaches (Zhao et al. 2019).

Probabilistic methods, such as BEAST, address these challenges by estimating change
point probabilities rather than making binary decisions. Unlike bfast, BEAST does not
require pre-specified change point numbers and can model complex trends and seasonal
variations more flexibly. By averaging multiple models, it provides a nuanced perspective
on ecosystem shifts, improving reliability in ecological decision-making (Zhao et al. 2019).
BEAST is further detailed in Chapter 2.2.3.

Li et al. (2022) conducted a comparative evaluation of BEAST, DBEST, and bfast for
land surface temperature time series analysis, specifically. Their study demonstrated
that BEAST outperformed the other methods in terms of accuracy and robustness to
noise, particularly in capturing abrupt changes and non-linear dynamics. Further, they
proposed an improved version of BEAST, which addressed its susceptibility to false
breakpoints by introducing thresholds based on trend magnitude, slope changes, and
breakpoint probabilities.

Beyond its measured superiority, BEAST is also widely applied in recent research to
detect regime shifts, disturbances, and ecological changes. It has been used across various
domains, including wildlife research, forestry, oceanography, and geophysics (Smith &
Pauli n.d., Mulverhill et al. 2024, Oehlert et al. 2023, Mu et al. 2023), making it a valid
choice for the analyses conducted in this thesis.

3.2.2 Applications using Citizen Science Data

While citizen science data is increasingly recognized as a valuable resource for large-
scale ecological monitoring, the application of CPD algorithms to such datasets remains
limited. Several studies have explored methods for detecting ecological changes using
citizen science data, demonstrating both the potential and the challenges associated
with these approaches. In this section, some influential papers will be reviewed, with no
claim to completeness.

Gouraguine et al. (2019) investigated the effectiveness of marine citizen science programs
in detecting long-term ecosystem changes, particularly in resource-limited areas where
no alternative data sources exist. Using an 11-year dataset collected by volunteers in
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Southeast Sulawesi, Indonesia, the study analyzed changes in coral reef ecosystems by
examining benthic cover and fish communities. The authors employed generalized linear
models (GLMs) to identify trends and assess whether changes over time were statistically
significant. Their findings demonstrate that citizen science data can effectively track long-
term ecosystem changes, though data quality control remains a significant challenge.

Although relatively dated, the work of Walker & Taylor (2017) remains highly relevant,
as it closely aligns with the use case examined in this thesis. The study evaluates the
reliability of citizen science data from the eBird platform in modeling long-term popula-
tion trends of migratory bird species. By comparing eBird data with the North American
Breeding Bird Survey (BBS), the study assessed whether volunteer-collected data could
provide accurate estimates of population changes. The results showed that eBird data
successfully detected similar population trends as the BBS for many bird species. How-
ever, for species with low detection rates in eBird, trend estimates were more uncertain.

Habel et al. (2022) integrated presence-only data from multiple sources, including volunteer-
collected contributions, and employed Linear and segmented regression to identify change
points in species traits and habitat associations over time. These techniques enabled re-
searchers to pinpoint critical changes in butterfly populations.

3.2.3 Methods for CPD algorithm evaluation

Due to the wide use of CPD, extensive effort has gone into evaluating algorithm perfor-
mance, often by assessing accuracy in retrieving known change points. While straight-
forward with ground-truth labels, this becomes challenging in fields like ecology, where
true changes are often uncertain (Zhao et al. 2019). Researchers address this with diverse
validation approaches, offering a broader view of algorithm reliability.

A common approach is using synthetic data with known parameters, providing a baseline
for algorithm performance. If an algorithm fails to detect embedded change points in
such data, it is unlikely to succeed in real-world scenarios. Li et al. (2022) compared
BEAST and bfast using this method.

Beyond controlled settings, Zhao et al. (2019) recommend qualitative and quantitative
validation against general or expected patterns to assess whether detected changes align
with expected patterns. For instance, a failure to identify deforestation in a documented
region may indicate algorithmic shortcomings.
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Van den Burg & Williams (2020) demonstrated that expert annotations offer a validation
method by comparing algorithm-detected changes to human-labeled events using met-
rics such as accuracy and F1-score. This be particularly useful for evaluating whether
algorithms capture the transitions that humans interpret as significant.

In addition, Browning et al. (2017) applied proxy data to provide indirect confirmation
of change. They demonstrated how a detected major shift in vegetation greenness can
be cross-referenced with climate variables, fire severity indices, and changes in moisture
levels.

Each validation method has limitations: synthetic data oversimplifies real-world com-
plexities, qualitative assessments and expert annotations can be subjective, and proxy
data may not establish causality. Consequently, Zhao et al. (2019) recommend combining
multiple strategies to build a more holistic view of performance.
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To answer the research questions posed in this thesis, a framework capable of identifying
significant shifts within bird sighting data is developed. This framework is designed
to analyze spatio-temporal changes in bird populations, specifically targeting abrupt
alterations in the trend trajectories of various bird species over the defined observation
period and within specified spatial grids. This approach includes a preprocessing scheme
to mitigate biases, Change Point Detection with BEAST, and result presentation via a
user interface.

The chapter starts with a requirement analysis, outlining the functional and non-functional
requirements. It then introduces the modular software design and details key modules:
data acquisition, preprocessing, time series construction, Change Point Detection, post-
processing, and result presentation.

4.1 Requirement Analysis

The following requirement analysis outlines the core objectives and constraints that the
solution must satisfy to effectively detect spatio-temporal shifts in bird sighting data.
These requirements ensure that the system is not only functionally robust—capable of
accurate data preprocessing, Change Point Detection, and result presentation—but also
adheres to stringent performance, reproducibility, and maintainability standards.
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4.1.1 Functional Requirements

1. Data Preprocessing:

• The system shall aggregate individual sighting records into defined spatial
units and organize them into time series.

• The system shall implement mechanisms to reduce known user-induced biases.

2. Change Point Detection:

• The system shall perform statistical Change Point Detection on the aggregated
time series to identify significant shifts in the temporal patterns of species
observations.

• The system shall provide interpretable outputs, including the identification of
abrupt trend changes and corresponding confidence measures for each detected
change.

3. Result Presentation:

• The system shall offer a clear, interpretable User Interface for evaluation pur-
poses.

4.1.2 Non-Functional Requirements

1. Performance:

• The system shall handle millions of sighting records efficiently.

• The system shall perform Change Point Detection on numerous species with-
out prohibitive runtimes.

2. Reproducability & Maintainability:

• The system shall ensure that data preprocessing, merging, and Change Point
Detection are reproducible, documented, and transparent for future validation
and extension.
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4.2 Software Design

To address the above requirements effectively, a modular software architecture was cho-
sen. This design facilitates a clear separation of the functional responsibilities into dis-
crete modules. Each module can then be implemented, tested, and extended indepen-
dently, which is particularly advantageous in notebook-based development environments.
The system is structured into the following components:

1. Data Acquisition

2. Data Preprocessing

3. Time Series Construction

4. User Bias Correction

5. Change Point Detection (BEAST Analysis)

6. Postprocessing & Result Consolidation

7. User Interface

Figure 4.1 conceptually illustrates how these components interact, starting with raw data
ingestion through to final result presentation.
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4.3 Component Descriptions

4.3.1 Data Acquisition

The core input data consist of bird sighting records collected via two national citizen-
science platforms where users can log observations of various taxa, including birds, via
websites or the mobile application iNaturalist. The Ornitho network operates across
multiple countries; however, this study exclusively employs data from the platforms of
Germany (ornitho.de) and Switzerland (ornitho.ch), available as dataframes. The
time period is limited to 2018–2022.

Each record contains the following essential fields:

(species name and ID, date, latitude, longitude, observer ID, optional metadata)

For the purposes of this study, only the date, location, and species are relevant for Change
Point Detection; therefore, observer ID and optional features are not considered.

4.3.2 Data Preprocessing

Dataset Merging

While both datasets fundamentally have the same information and structure, they differ
in some aspects. To address this, each dataset was preprocessed to standardize data
structure, format, and terminology. The difference and resulting standardized format
are detailed in the Table 4.1 below.

Feature German Data Swiss Data Merged Data
Date Format dd.mm.yyyy yyyy-mm-dd yyyy-mm-dd
Feature Names lowercase UPPERCASE lowercase
Species IDs German-specific IDs International IDs International IDs
Species Names German Swiss German German

Table 4.1: Comparison of key feature differences between the German and Swiss bird
sighting datasets and the resulting standardized format in the merged dataset.
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Since the two datasets are gathered independently and cover disjoint geographical areas
(i.e., no overlap in exact coordinates), the merged dataset D is their set union:

D = Dde ∪Dch.

where Dde and Dch are the german and swiss sightings, respectively. As each record
is uniquely identified, there is no intersection. Hence, the datasets can be merged by
simply concatenating their records without requiring deduplication or conflict resolution.
Therefore, the total number of records in the merged dataset D is simply the sum of the
records from both original datasets:

|D| = |Dde|+ |Dch|.

Taxonomic Filtering

The merged dataset comprises observations of 821 unique bird species, of which 497 and
708 species have been recorded in Switzerland and Germany, respectively. Collectively,
the dataset encompasses approximately 50 million individual sightings, equating to an
average of about 27,000 sightings per day. While this extensive dataset offers a wealth
of information, the volume significantly exceeds the processing capacity of available re-
sources.

Therefore, only a relevant species subset

S′ ⊆ S

is chosen for deeper analysis, based on domain-expert recommendations. They iden-
tified 27 bird species as especially valuable for investigation based on their ecological
significance, population trends, or other relevant criteria. Additionally, species essential
for the quantitative analysis (see Chapter 5.2.2) were included based on ornithologists’
evaluations indicating that they had undergone significant changes in recent years. In
total, S′ encompasses 184 out of 821 bird species available. They provide a focused yet
representative sample for the initial evaluation of the methodology. All subsequent steps
apply only to species s ∈ S′.
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Spatial Discretization

For change point analysis, multiple sightings must be aggregated within a defined spatial
area to construct a cohesive time series from a collection of individual sightings. To
achieve this, each sighting is assigned to a standardized grid cell based on geographic
location (ϕ, λ) (latitude ϕ and longitude λ). To discretize the sighting locations, obser-
vations are aggregated into standardized grid cells defined by the European Environment
Agency (EEA)1 in EPSG:4326, which references the WGS84 coordinate system. As a
balance between grid size, species density per grid cell, and computational complexity, a
50x50 km grid was selected.

To perform grid assignment, let G be the set of all 50× 50 km EEA grid cells covering
Germany and Switzerland. Each grid cell

g ∈ G

can be represented as a polygon poly(g) in WGS84 coordinates. Figure 4.2 shows all
selected grid cells of G.

1https://www.eea.europa.eu/en. Accessed on 26th Oct 2024
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Figure 4.2: Standardized 50x50 km grid cells covering Germany and Switzerland, pro-
vided by the European Environment Agency (EEA). Each cell serves as a
spatial unit for aggregating sightings per species, enabling the construction
of species- and grid-specific time series for detecting change points.

Each sighting record (si, ti, ϕi, λi) with species si, timestamp ti, and location ϕi, λi is
mapped to exactly one grid cell gi for which:

(ϕi, λi) ∈ poly(gi).

Since each location belongs to exactly one 50× 50 km cell, the assignment is unique.
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4.3.3 Time Series Construction

The primary goal is to detect temporal changes in bird sightings. Hence, the merged and
filtered records are transformed into time series defined per species–grid combination. To
achieve this, the number of sightings is counted for each combination of species, grid cell,
and date. Mathematically, the time series for each species-grid combination is defined
as:

S(s, g, t) =
∑
i

1(si = s, gi = g, ti = t)

where:

• S(s, g, t) represents the number of sightings for species s in grid cell g on date t,

• i indexes individual sightings,

• si, gi, ti are the species, grid cell, and date of sighting i, respectively,

• 1(·) is the indicator function, which equals 1 if the condition inside holds (i.e., if
the sighting matches the species, grid, and date), and 0 otherwise.

This results in continuous time series spanning the entire observation period for each
species-grid combination, providing a temporal framework for tracking occurrences and
detecting shifts in species presence over time.

An example time series for the Pygmy Owl sightings in a grid cell near Basel, Switzerland,
is shown in Figure 4.4a, illustrating this methodology for a single species within a defined
spatial area.

4.3.4 User bias correction

The factors described in Chapter 2.1.4 highlight that the true number of individuals
present cannot be accurately inferred from the number of daily sightings, as the data is
influenced by user bias. While most of these biases cannot be easily quantified, temporal
biases can be observed in the data itself. Figure 4.3a demonstrates that both Swiss
and German users tend to report sightings predominantly on weekends, leading to an
overrepresentation of sightings during these periods. Additionally, it is evident from
Figure 4.3b that users primarily record bird sightings in spring.
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To achieve this, the overall study period (i.e., 2018–2022) is divided into weekly intervals
W1,W2, . . . ,WN . For a given species s and grid g, define

xs,g(Wn) =
∑

τ ∈Wn

1
(
at least one sighting of s in g on day τ

)
,

where 1(·) is the indicator function. Typically, |Wn| = 7 days, so xs,g(Wn) ∈ {0, 1, . . . , 7}.

To mitigate user bias, a sighting ratio is defined:

rs,g(Wn) =
xs,g(Wn)

|Wn|

where:

• rs,g(Wn) represents the fraction of days in week Wn on which species s was observed
in grid g,

• xs,g(Wn) is the number of days within Wn where at least one sighting occurred,

• |Wn| is the total number of days in the week (typically 7).

For a standard 7-day week, rs,g(Wn) is the fraction of days in Wn on which species s was
observed in grid g. By definition, the sighting ratio is bounded within the interval:

0 ≤ rs,g(Wn) ≤ 1

with

• rs,g(Wn) = 0: no sightings in that week,

• rs,g(Wn) = 1: sightings occurred every day of that week.

This ensures the sighting ratio remains a normalized metric, preventing overestimation
from sporadic high counts while capturing consistent observation patterns. The impact of
this procedure on the time series is illustrated in Figure 4.4, using an example time series
of Pygmy Owl sightings. As shown, the time series after user bias reduction, depicted in
Figure 4.4b exhibits reduced fluctuations and fewer outliers when compared to its raw
state, as seen in Figure 4.4a. The value of each data point is consistently between 0
and 1, reflecting the proportion of days within each week where sightings were recorded.
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Summary

To detect and analyze temporal changes in bird sighting patterns across different regions,
a total of 184 bird species were considered, with each species analyzed individually to
capture species-specific trends and changes. The study area was divided into 50x50km
spatial grids. For each species, all grids where the species had been observed were
extracted, ensuring that the analysis was geographically comprehensive for that species.

The time series were constructed using data from January 1, 2018, to December 31, 2022.
Weekly intervals were used to provide a consistent temporal resolution and smoothing
out daily fluctuations. For each species-grid combination, a sighting ratio was calculated,
defined as the ratio of days per week where the respective species was sighted at least
once.

4.3.5 Change Point Detection (BEAST Analysis)

After preprocessing the data, aggregating sightings spatially into grid cells, and con-
structing weekly time series, a univariate weekly time series

Ts,g =
{(

W1, rs,g(W1)
)
, . . . ,

(
WN , rs,g(WN )

)}
can be obtained for each species–grid pair (s, g). For each time series, the Bayesian Esti-
mation of Abrupt Change, Seasonality, and Trend (BEAST) (Zhao et al. 2019) algorithm
is applied to detect statistically significant shifts. It is available as open-source in the
corresponding package Rbeast2 For mathematical details on the algorithm, please refer
to Chapter 2.2.3.

2https://github.com/zhaokg/, Accessed on 9th Feb 2025.
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Implementation Parameters

The following parameters were specified for the algorithm:

• Time Parameters:

– Start date: January 1, 2018

– End date: December 31, 2022

– Delta t: 7 days (weekly intervals)

• Priors:

– Seasonality: A period of one year is specified to account for annual seasonal
effects in bird sightings. This is used as the lowest harmonic order, i.e., the
fundamental frequency

– Accepted range of number of changepoints: A minimum of 0 and a maximum
of 10 change points for both the seasonal and trend components are allowed.

– Accepted minimal space between neighbouring changepoints: A minimum
spacing of one data point between neighboring change points is allowed for
both seasonal and trend components.

• Outlier Detection: Outlier detection is enabled to allow the model to identify
and account for anomalous data points.

• Number of MCMC samples to collect: A total of 8,000 MCMC samples are
collected during the analysis. This number is recommended to balance compu-
tational efficiency with the need for sufficient samples to accurately estimate the
posterior distributions of the model parameters (Rbeast Documentation 2019).

• Reproducibility: A fixed random seed is used to ensure consistent results across
runs.
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BEAST Results

For each time series Ts,g, BEAST outputs:

• The posterior median of trend change points, k̂.

• The estimated times {t̂1, . . . , t̂k̂} of these change points.

• Posterior probabilities P (t̂i) for each t̂i.

• Trend slopes mt at each time point t in Ts,g.

These results are stored in a dataframe for subsequent postprocessing.

4.3.6 Postprocessing & Result Consolidation

For each time series Ts,g, the median of the estimated number of change points k̂ is used
to determine how many change points to consider. If k̂ = 0 or k̂ = NaN (e.g., due to
insufficient data), no trend changes are recorded.

Otherwise, each trend change point t̂i is further labeled as:

label(t̂i) =

positive, if P (slope > 0) > P (slope < 0),

negative, otherwise.

Based on this classification, the number of positive trend change points, indicating sudden
trend increases, is denoted as k+, with estimated times {t̂+1 , . . . , t̂

+
k+

}, and the number of
negative trend change points, indicating sudden trend decreases, is denoted as k−, with
estimated times {t̂−1 , . . . , t̂

−
k−

}.

These change points are associated with their posterior probabilities P (t̂+i ) and P (t̂−i ),
indicating the confidence in each detected shift.

BEAST further provides the trend slope at each time point in the time series. Let mt

denote the estimated slope at time t. The mean trend m̄ is then computed as the average
of all individual slopes across the time series:

m̄ =
1

T

T∑
t=1

mt
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where mt is the trend slope at time t, and T is the total number of time points in the
series. This metric provides an additional summary of the species’ temporal development
over the observation period.

All detected change points and relevant metadata are compiled into a unified dataset.
For each species-grid combination (s, g), this dataset includes:

• The number of positive trend change points, k+, their estimated times {t̂+1 , . . . , t̂
+
k+

},
and their posterior probabilities P (t̂+i ).

• The number of negative trend change points, k−, their estimated times {t̂−1 , . . . , t̂
−
k−

},
and their posterior probabilities P (t̂−i ).

• The mean trend slope m̄

• A data availability flag indicating whether the time series Ts,g contained sufficient
data for analysis.

By consolidating these results into a comprehensible dataset, further analyses can be
performed without re-running the entire pipeline. This was particularly important for
the implemented User Interface (see Chapter 4.3.7) where rapid access to results is nec-
essary.

4.3.7 User Interface

To facilitate the systematic exploration and analysis of species abundance, distribution,
temporal dynamics, and the identification of significant shifts (i.e., change points), an
interactive, web-based user interface was developed. This interface serves both as a tool
for subsequent evaluations and a potential resource for ornithologists and researchers in
related fields. It integrates data visualizations and statistical BEAST analysis, enabling
the detection and examination of change points and trends in bird sightings.

This chapter delineates the key components of the user interface, detailing the function-
alities and methodologies employed to analyze species data, filter change points, visualize
spatial and temporal trends, and conduct BEAST analyses. The user interface was built
with gradio3 (Python). Figure 4.5 provides a screenshot of the entire application. The
individual components are presented and described in detail below.

3https://www.gradio.app/. Accessed on 9th Feb 2025.
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Figure 4.5: Overview of the user interface built with gradio. For a detailed view and
description of each component, refer to the screenshots provided below.
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Species selection

Figure 4.6 shows the Species Selection field. It allows users to select the species to be
analyzed. Multiple selections are supported, enabling comparisons of change points and
trends across different species or identifying regions with a high concentration of change
points.

Figure 4.6: Species selection field. This component enables users to select one or multiple
species for analysis.

Change Point filters

Below the species selection, change points can be filtered (see Figure 4.7). These filters
directly impact the change point map, as described in Chapter 4.3.7.

Figure 4.7: Change point filters field. This allows to select the type and date range of
the change points to be shown in the change point heatmap.

Change Point Type With the first filter, users can specify whether to display positive
or negative change points. This distinction allows for targeted analysis of trends, enabling
researchers to focus on either growth or decline patterns.

Temporal Filtering Temporal filtering enables the restriction of change points to a
specific time interval within the overall study period of 2018-2022. Users can adjust the
timeframe with day-level granularity, allowing for precise temporal analysis. By default,
the entire period from 2018 to 2022 is selected.
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Map visualizations

This section encompasses all map-based visualizations, each presented as a heatmap with
data points corresponding to individual grid cells (see Figure 4.8). These visualizations
provide insights into the spatial distribution of change points, trends in sighting ratios,
and the number of sightings across the entire study period.

Figure 4.8: Map visualizations. This component shows the distribution of change points,
trends, and number of sightings for the selected species. As an example, maps
of the White-tailed Eagle are presented for the entire study period.

Number of change points This map shows the distribution of change points across
Germany and Switzerland. Depending on the selection in the change point filters (see
Section 4.3.7), either positive or negative change points are displayed for the chosen
species. Each colored grid cell indicates the presence of change points within the selected
timeframe, with color intensity representing the number of detected change points—the
darker the color, the higher the count. Hovering over a tile reveals detailed information,
including the grid ID, the number of change points, and the corresponding dates for each
change point.

Overall trend of sighting ratios This map presents the average trend slope of sight-
ing ratios over the entire period as a heatmap. Green tiles denote a positive trend, indi-
cating an overall increase in sighting ratios, while red tiles signify a negative trend, rep-
resenting a decrease. The intensity of the color reflects the magnitude of the trend—the

45



4 Implementation

darker the shade, the more pronounced the trend. White tiles indicate stability in sight-
ing ratios for the respective species within that grid cell over the study period. The exact
trend slope can be obtained by hovering over a tile.

Number of sightings The third map provides an overview of the absolute number
of sightings for the selected species from 2018 to 2022. Unlike sighting ratios, this plot
displays the actual count of sightings. Each grid cell indicates that the species was sighted
at least once, with lighter colors representing a higher number of sightings. Detailed
counts are accessible via the hover text on each tile.

BEAST analysis

The BEAST analysis component allows for a detailed examination of the time series and
its change points for an individual grid cell. It consists of three subcomponents: grid
selection, a change point timeline, and the BEAST results visualization.

Grid selection BEAST is designed to perform analyses on univariate time series; it
can process data from only one grid cell at a time. Consequently, users must select a
specific grid ID for analysis via the dropdown menu shown in the Figure 4.9 below. The
selection pool includes all grid cells where the chosen species have been sighted at least
once, ensuring that the analysis is relevant and data-driven.

Figure 4.9: Grid selection field. This allows to select the grid ID for which the BEAST
results are shown.

Change point timeline The change point timeline visualization displays the absolute
number of change points over the study period. If a single species is selected, this allows
for quick identification of when change points occurred. An example for this is shown in
Figure 4.10, where a single changepoint is shown in Summer 2020.
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Figure 4.10: Changepoint timeline. This shows identified change points of the selected
type over time.

However, this temporal representation is particularly valuable when multiple species are
selected for simultaneous examination, as shown in Figure 4.11. It enables the identi-
fication of coinciding change points across different species within the same region and
timeframe. Such patterns may suggest that the observed change points are not species-
specific but rather attributable to local environmental factors, such as landscape modi-
fications or weather variations. Identifying these non-species-specific change points can
provide deeper insights into broader ecological or climatic influences affecting multiple
species concurrently.

Figure 4.11: Change point timeline when multiple species are selected. Exemplarily, the
timeline for a grid near Magdeburg, Germany is depicted.
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Visualization of BEAST results In the last component of the interface, the BEAST
analysis results for the specified species and grid are presented, providing detailed insights
into the temporal dynamics of the species’ sighting ratios. These results include the
sighting ratios over time, the decomposition of this time series into seasonal and trend
components, and the identification of change points within both components.

Figure 4.12 below shows an exemplary visual output of the BEAST algorithm. This
output can be directly generated using the Rbeast package.

Figure 4.12: An exemplary output from BEAST. This analysis pertains to the White-
tailed Eagle within a 50x50km grid near Ingolstadt, Germany.

At the top, depicted in black, is the input time series, where the sighting ratio is plotted
over the observation period. In this instance, the time series represents the sighting
ratios of White-tailed Eagles within a grid near Ingolstadt, Germany. The data cover the
observation period from 2018 to 2022. Each entry in the time series indicates the ratio
of days per week during which at least one eagle sighting occurred.

In red below is the seasonal component identified by BEAST, along with the estimated
probability of an existing seasonal change point, denoted as Pr(scp). The seasonal
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component demonstrates regular fluctuation between summer and winter months, ac-
companied by a credible interval surrounding the assumed seasonal curve.

In green is the estimated trend component, as well as the estimated probability of an
existing trend change point, denoted as Pr(tcp). A notable increase is observed in autumn
2020. At the peak of the probability curve, which results from the averaging of multiple
models through Bayesian Model Averaging (BMA), BEAST identifies a change point,
marked by a vertical black line. Since the trend does not exhibit an abrupt increase but
rather extends over several months, BEAST indicates that the precise location of the
change point may not be exact but is likely probabilistically distributed within the range
of the increase.

Beneath these main components, additional information is provided regarding the slope
sign, outlier analysis, and the residual or error component, which comprises data points
that BEAST could neither assign to the seasonal nor to the trend component and did not
classify as outliers. The slope sign is visually represented as slpsgn. In this panel, the
upper red portion indicates the probability of a positive trend slope, the middle green
portion the probability of a zero slope, and the lower blue portion the probability of a
negative trend slope (Rbeast Documentation 2019). The outlier analysis highlights data
points that BEAST has detected as outliers.

4.3.8 Summary

In summary, the software framework follows a modular design that separates data ac-
quisition, aggregation, and preprocessing from the core BEAST analysis. Postprocessing
and an interactive user interface complete the workflow, enabling transparent and re-
producible detection of spatio-temporal shifts in citizen-science bird sighting data. The
chosen approach satisfies both functional and non-functional requirements, offering scal-
ability, maintainability, and user-friendliness.
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The BEAST algorithm has been previously evaluated on diverse datasets by its develop-
ers and independent researchers. These studies have demonstrated satisfactory accuracy
and have shown that BEAST outperforms similar algorithms employing best-model ap-
proaches (Li et al. 2022).

However, two gaps in the application of change point detection methods to citizen sci-
ence data were identified (see Chapter 1). First, no dedicated study currently inves-
tigates the performance of CPD algorithm—such as BEAST—on citizen science data.
This gap is significant because citizen science data may contain inconsistencies or biases,
which could affect the algorithm’s ability to capture genuine real-world phenomena. The
second challenge is the insufficient involvement of domain experts in most existing stud-
ies. Consequently, the perceived trustworthiness and practical value of BEAST from a
domain-expert standpoint have not been thoroughly explored, despite being critical fac-
tors in determining whether the algorithm will be adopted and relied upon in real-world
applications.

To address these challenges, this chapter evaluates the BEAST algorithm using two com-
plementary approaches. First, qualitative interviews with ornithological experts capture
in-depth, domain-specific perspectives on algorithm outputs, perceived trustworthiness,
and usability. Second, a quantitative comparison of detected change points with archival
records from the Swiss Ornithological Institute assesses how closely BEAST aligns with
documented real-world changes.

The remainder of this chapter presents a detailed overview of the methodology for both
the qualitative and quantitative evaluations. For overview purposes, the evaluation
methodology is visualized at the end of the chapter.
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5.1 Evaluation Design

To investigate the five Research Questions posed in Chapter 1, this study employs two
complementary strategies:

• Qualitative Expert Interviews: Semi-structured interviews with ornithological
experts uncover in-depth, context-rich feedback on BEAST’s outputs, revealing
how well the algorithm’s detected changes align with real-world ecological shifts
and whether experts find the method trustworthy and useful (RQ1, RQ2, RQ3,
RQ4). The interviews also yield broader insights on best practices for CPD in
citizen science (RQ5), helping to generalize the outcomes beyond the specific use
case at hand.

• Quantitative Archival Comparison: Documented changes in bird populations
from the Swiss Ornithological Institute serve as a partial ground truth. By match-
ing BEAST-detected change points to these archival records, detection rates across
different types of events are measured, providing a systematic, data-driven per-
spective on algorithm performance (RQ1, RQ2). These findings also inform best
practices for CPD in citizen science (RQ5).
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5.2.1 Qualitative Evaluation

This section describes the design of the semi-structured interviews conducted with four
ornithologists of varying statistical and ecological expertise. The primary purpose is to
gather domain-specific insights related to RQ1, RQ2, RQ3, and RQ4, while also informing
broader methodological considerations (RQ5). The methodology is visualized in Figure
5.1.

Interview Design and Procedures

A semi-structured interview format was chosen due to its flexibility and depth of in-
quiry, aligning with guidelines from Kallio et al. (2016), Castillo-Montoya (2016), and
Turner (2010). An initial set of open-ended questions was developed to guide discussions
around:

1. Algorithm Accuracy: Experts were shown 10 BEAST outputs (plots indicating
change points and trends) for a range of bird sighting time series. They were
prompted to evaluate the perceived correctness of the detected change points, the
adequacy of the extracted trends, and the overall placement of these change points
within the time series data.

2. Correspondence to Real-World Phenomena: Experts were presented with
five change points phenomena detected by BEAST, and asked to evaluate whether
the detected change points align with known real-world events (detailed below).
Further, experts were asked to prepare known real-world phenomena, and results
produced by BEAST were compared against this ground truth. The questionnaire
seeked to identify reasons for any discrepancies between the algorithm’s detections
and actual ecological changes, such as algorithm limitations, data quality issues, or
user biases. Lastly, experts were prompted to quantify the perceived trustworthi-
ness of the algorithm to detect real-world phenomena.

3. Utility, Usability, and possible application fields of BEAST: The ques-
tionnaire gathered feedback on the clarity and comprehensibility of the algorithm’s
outputs, evaluated the perceived benefits it brings to their work, and seeked to
identify areas for improvement.
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Following best practices in semi-structured interviewing (Turner 2010, Castillo-Montoya
2016), the questionnaire was pilot-tested with a colleague to refine clarity and flow.
The final protocol include both predefined open-ended questions and space for probing
emergent topics. The questionnaire is provided in the Appendix.

To identify the most relevant change points for part (2.) of the interviews, each detected
change point k̂i,s,g with timestamp t̂i,s,g for species s in spatial grid g was assigned to its
respective species-grid combination (s, g). These change points were then grouped into
clusters based on temporal proximity, such that any two change points timestamps t̂i,s,g

and t̂j,s,g belong to the same cluster Ck if:

|t̂i,s,g − t̂j,s,g| ≤ 30 days

for all t̂i,s,g, t̂j,s,g ∈ Ck.

Each resulting cluster Ck thus represents a cohesive spatio-temporal event rather than
isolated outliers, ensuring that change points occurring within a 30-day window are
treated as a single event rather than independent detections.

Two species, the Kingfisher and the European Stonechat, collectively accounted for ap-
proximately 21% of Ck (13% and 8%, respectively). To avoid skewing the assessment
toward these species, only one representative cluster per species was selected, prioritizing
the largest and most spatially widespread. Additionally, a single phenomenon indicating
a synchronous decrease in sightings during summer 2021 was formed by grouping phenom-
ena observed in multiple species. A distinct example involving the Pygmy Cormorant was
deliberately included to illustrate a striking transition from zero to numerous sightings,
despite it being less geographically widespread. Figure 5.2 summarizes the phenomena
chosen for expert review.
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Data Collection and Analysis

Each of the four interviews lasted approximately 90 minutes and was audio-recorded
with participant consent. The recordings were transcribed automatically using f4 1, then
manually verified for accuracy. Transcripts were thematically analyzed, comparing re-
curring insights across participants. To enhance consistency and uncover patterns, a
Large Language Model (ChatGPT 4o) was employed as a supportive tool for grouping
statements with shared themes and highlighting differences. This application of Chat-
GPT followed the guidelines laid out by Zhang et al. (2023), ensuring transparent and
structured prompts, traceability of model outputs, and thorough manual cross-checking
to avoid hallucinations or misinterpretations.

Mapping to the Research Questions

The qualitative analysis is designed to provide insights into all proposed research ques-
tions in the following ways:

• RQ1 (Accuracy & Correspondence): Experts’ perceptions of BEAST’s out-
puts and alignment with known ecological phenomena uncover the algorithm’s ac-
curacy in real-world contexts.

• RQ2 (Data Preprocessing): Discussions on how the proposed preprocessing
scheme, grid size, and outlier handling influenced detected change points illuminate
the role of preprocessing.

• RQ3 (Citizen Science Bias): Experts’ reflections on volunteer observer behavior
provide evidence of how BEAST might be influenced by user-induced biases.

• RQ4 (Expert Perception & Usability): The interview data capture whether
experts found BEAST’s outputs and results trustworthy, comprehensible, and valu-
able for their work, and informed possible areas for integration and improvement.

• RQ5 (Generalization & Best Practices): Emerging strengths and limitations
contribute to broader guidelines for CPD in citizen science settings.

1https://www.audiotranskription.de/f4/automatische-transkription/. Accessed 30th
Jan 2025
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5.2.2 Quantitative Analysis Using Archival Records

The second part of this evaluation quantifies how well BEAST detects documented real-
world changes in bird populations, responding especially to RQ1, RQ2, and RQ5. The
methodology is visualized in Figure 5.1.

Data Collection

A ground truth was assembled from the ID-Bulletin journals curated by the Swiss Or-
nithological Institute. These records, referred to as archival data, included 748 docu-
mented changes in bird species distribution and abundance from January 1, 2018, through
December 31, 2022. These records are sourced from the same data as was used for BEAST
analysis. However, the archives themselves employed a different preprocessing workflow
(e.g., calculating occurrence indices while correcting for general increases in reporting
effort).

Data Categorization

To determine the strengths and weaknesses of the BEAST algorithm in different types
of changes, the records were divided into categories. These categories were formed by
feeding all archival records into a Large Language Model (ChatGPT o1 ), which extracted
patterns by clustering similar descriptions of change events based on contextual similar-
ities. The following six categories were identified: (1) rare observations and individual
cases, (2) population dynamics, (3) discrete day events, (4) phenological shifts, (5) spatial
expansion and decline, and (6) invasions and influxes. Additionally, population dynamics
events were further subdivided into (1) real change points, denoting clear, sudden shifts
in population trends, and (2) trends to account for more gradual changes or ambiguous
records. This subdivision aimed to clarify whether BEAST’s results aligned better with
distinct population breakpoints rather than long-term trend shifts.

Comparison Procedure

In line with how BEAST was configured (e.g., ignoring outliers and change points in the
seasonal component), changes classified as rare observations and individual cases, discrete
day events, and phenological shifts were deemed out of scope for detection under current
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parameters. For the remaining three categories—population dynamics, spatial expansion
and decline, and invasions and influxes—an evaluation was conducted by comparing
the archival record for each documented change with the algorithm’s detected change
point(s), in the relevant time period and spatial grid(s).

Limitations In many archival records, change events were documented only at the
semiannual level and often lacked precise geographical information at the 50×50 km grid
resolution. This uncertainty required a broader matching strategy, whereby a detection
was considered valid if at least two grids in the relevant six-month window showed a
change. Consequently, the evaluation results should be interpreted with an awareness of
both temporal and spatial imprecision in the ground truth.

Mapping to the Research Questions

Although this quantitative analysis is most directly aligned with RQ1 (accuracy and
ecological correspondence), it also informs RQ2 and RQ5:

• RQ1 (Accuracy & Correspondence): By matching BEAST detections against
documented changes in the archival records, it is quantified how often BEAST
identifies true ecological shifts. True Positive Rates (TPR) and False Negative
Rates (FNR) indicate whether the algorithm is capturing relevant phenomena or
missing key events.

• RQ2 (Data Preprocessing): The evaluation highlights how weekly presence data
and 50×50km grids affect detection capabilities. If certain archival changes—especially
local or short-term events—are consistently missed, it may underscore limitations
in the current preprocessing strategy.

• RQ5 (Generalization & Best Practices): Identifying systematic mismatches
between BEAST and the archives helps pinpoint limitations and guide recommen-
dations for adapting CPD methods to citizen science data.
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5.3 Summary

The evaluation strategy in this thesis draws on two complementary methods—expert
interviews and archival data comparisons—to address five central Research Questions.
By combining qualitative insights from domain experts with a quantitative performance
analysis, a comprehensive view of BEAST’s capabilities and limitations in citizen science
contexts are realized.
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This chapter presents the outcomes of both the qualitative and quantitative evaluations
of the BEAST algorithm. The first part details the outcomes of the expert interviews con-
ducted with ornithologists. The second part offers a quantitative comparison of BEAST’s
detections against documented archival records of bird population changes, exploring its
performance across various categories such as population dynamics, spatial expansions,
and invasions.

6.1 Qualitative Study with Ornithological Experts

This chapter presents the results of the qualitative evaluation conducted with ornitholog-
ical experts, focusing on the accuracy, reliability, and usability of the BEAST algorithm
for detecting change points in bird sighting time series data. The results are struc-
tured according to the main discussion points (1) algorithm accuracy, (2) correspondence
to real-world phenomena, and (3) perceived usability, utility, and possible applications
fields.

6.1.1 Accuracy of the BEAST Algorithm in Identifying Change Points

Overall, the interviewed ornithologists expressed that BEAST generally performs well in
detecting change points that are visually evident in the data. In instances where a bird
population trend changed abruptly or in a sustained fashion, BEAST reliably flagged
these points. In the 10 examples presented, there were no instances where an expert
indicated a desire for BEAST to have detected a change point where it had not. Hence,
all interviewees rated their confidence in BEAST’s ability to detect a visually apparent
change point in the data as 5 out of 5.
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Despite this generally positive assessment, all experts recognized a tendency of BEAST to
produce False Positives. In other words, BEAST sometimes flagged minor, subtle changes
as significant change points. The interviews revealed that while BEAST is sensitive and
rarely misses a clearly visible abrupt change, it can also be too sensitive in some cases,
setting change points at relatively subtle or inconsequential shifts. Consequently, all
interviewees rated their confidence that a change point detected by BEAST would align
with a change point they would identify themselves as 3 out of 5, indicating a moderate
level of trust.

6.1.2 Correspondence of Identified Change Points with Real-World
Changes

Phenomena prepared by interviewer

When experts were asked about concrete phenomena and whether the change points
identified by BEAST aligned with known real-world changes, the results were generally
promising. To confirm or reject the detected phenomena, the ornithologists used various
tools, such as biannual expert reports or direct examination of sighting data through
their current visualization tools. Five main phenomena were discussed (visualized in
Figure 5.2):

Kingfisher: Crash in Winter 2021 Three out of four experts confirmed that the
winter 2020/21 event was a well-known real-world occurrence. A severe winter with frozen
waterways caused substantial Kingfisher mortality. Consequently, their numbers dropped
abruptly, which was detected by BEAST. While BEAST detected this phenomenon across
numerous grids throughout Germany and Switzerland, it was primarily concentrated in
northern regions. The interviewees indicated that this geographic distribution of the
identified changes aligns with observed real-world patterns. Further, they praised BEAST
for capturing not only the sharp decline but also, in some instances, the subsequent
recovery period.

Stonechat: Increase in Spring 2020 For the Stonechat, BEAST identified a positive
shift in spring 2020. Experts confirmed this event and attributed it to mild winter
conditions leading to higher survival and possibly earlier breeding. Although they found
the initial increase plausible and correlating with warmer weather, subsequent declines
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or plateaus were not always as clearly explained. Nonetheless, experts acknowledged the
initial positive trend as realistic.

Meadow Pipit: Increase in Autumn/Winter 2020 BEAST detected a rise in
sightings in late 2020. Experts explained that unusually mild conditions delayed migra-
tion or caused an extended stay of these birds, resulting in higher sighting probabilities.
This phenomenon was seen as well-founded and reflective of actual ecological conditions.
Thus, the alignment with a real-world event was again positively confirmed.

Pygmy Cormorant: Influx in 2021 There was a noted influx of Pygmy Cormorants
in 2021, which significantly changed their status from a rare vagrant to a more regularly
encountered species. Experts confirmed that BEAST’s detection of these changes closely
matched a known influx and establishment event, which was a well-documented shift in
the species’ presence.

Multiple Species (e.g., Tree Sparrow, Egyptian Goose, Great Crested Grebe):
Decrease in Summer 2021 BEAST identified concurrent declines for multiple species
in summer 2021. For the Tree Sparrow in particular, an interviewee confirmed this change
point; there is an ongoing mystery about steep declines potentially linked to agricultural
chemicals, which BEAST’s shown trend and detected change points highlighted. How-
ever, experts struggled to pinpoint a common ecological factor that explains why multi-
ple species experienced a simultaneous shift during summer 2021. They proposed several
theories: a particularly rainy summer may have reduced detectability due to less field
activity by observers, lowered breeding success due to unfavorable weather conditions,
or other external factors like changes in observer behavior post-COVID lockdowns.

Overall, based on the shown examples, all experts rated their trust that a phenomenon
detected by BEAST aligns with real-world events as 4 out of 5. While this suggests a
high trust level, it remains below their trust in domain expert assessments.

Phenomena prepared by interviewees

To evaluate whether BEAST identified known change points, two of four experts pre-
sented several known changes, such as unusual mortality events of the Common Murre,
Eurasian Woodcock influxes, or an increase in population of the Whooper Swan at Lake
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Constance. In most cases, these events were not clearly detected by BEAST. Experts
concluded that the reason often lay in the chosen data preprocessing steps. In the given
examples, the aggregated weekly presence data did not produce a strong enough signal
for BEAST to detect a clear change point. Further, using presence in a week rather than
absolute counts or maximum counts per time unit made it harder for BEAST to detect
abundance-driven events. Moreover, the chosen grid size of 50x50km was found to be
too broad to detect some smaller-scaled changes. In such scenarios, the lack of detection
does not mean no change occurred; it simply was not apparent in the processed data
available to BEAST.

Additionally, for species that appear sporadically or for singular events (like rare mi-
grants), BEAST tended to mark these occurrences as outliers rather than genuine change
points. The experts noted that this can be appropriate methodologically but also means
that known short-term or sporadic changes may go unnoticed as change points. Hence,
genuine changes that do not produce a strong or sustained alteration in the weekly pres-
ence ratio may remain undetected.

When asked whether they would recommend an alternative preprocessing method or
a smaller grid size, the experts noted that it would be challenging to define a prepro-
cessing strategy or grid size that ensures BEAST can detect all possible change points.
This difficulty arises from the inherent variability and diverse characteristics of change
points.

The experts indicated that the chosen presence-focused methodology is particularly suit-
able for detecting large-scale changes and general spatial expansions or declines of a
species. A method focused on abundance instead of presence could reveal change points
associated with population size fluctuations but might fail to detect broader spatial
patterns. Similarly, reducing the grid size could capture more localized changes while
potentially overlooking larger-scale dynamics.

Given these trade-offs, the experts expressed confidence that BEAST can detect various
types of changes but acknowledged that its ability is inherently limited to the charac-
teristics of the data it processes—thus constrained by the chosen preprocessing method.
Therefore, they rated their confidence that BEAST would detect any real-world change
as moderate (ranging from 2 to 4 out of 5). Instead of pursuing a one-size-fits-all ap-
proach, one expert suggested applying BEAST across multiple preprocessing methods
and spatial scales to capture a wider range of change types.
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6.1.3 Usefulness and Possible Application Fields

Regarding BEAST’s usefulness and user-friendliness, experts agreed that the tool pro-
vides a valuable addition to their analytical methods. After being introduced to the
plots, the experts found the visual outputs, underlying logic, and interpretation pro-
cess easy to follow and relatively clear. Some suggested small improvements, such as
increasing the size of the input data plot for better visibility, refining axis labeling for
greater intuitiveness, and using terminology other than “seasonality” to prevent biological
misunderstandings. Others mentioned that normalizing or refining the scale could help
highlight more subtle changes.

When asked about fields in which they see value in integrating BEAST, the experts high-
lighted two main areas. First, they noted that BEAST could support retraining machine
learning models in an adaptive manner, initiating updates when the data indicate actual
shifts in species presence rather than relying on fixed schedules. One expert suggested
that, for this specific use case, it could be beneficial to delay retraining after a detected
change to avoid premature retraining triggered by very short-lived events.

Secondly, they emphasized that BEAST could offer valuable insights into when and
where a species undergoes a drastic change, enabling experts to recognize shifts they
might otherwise miss. Currently, identifying sudden changes often depends on retro-
spective annual or biannual data checks, personal expertise, networking, or pre-formed
expectations based on external events (e.g., harsh winter periods). Experts noted that
while they have exceptionally high trust in these outcomes, two limitations remain: First,
feedback is delayed as reports are only published biannually; incorporating BEAST could
introduce a more proactive, data-driven approach, where shifts are flagged as they occur
rather than being detected long after the fact. Second, relying primarily on networking
and focusing on species where changes are anticipated may lead to confirmation bias,
potentially overlooking more subtle or unexpected shifts; BEAST, which systematically
analyzes all species and locations, could detect such changes.

Further, one experts considered BEAST’s capacity to operate as an automated alert sys-
tem a key advantage. Instead of relying on human observers to detect anomalies over
months or years, BEAST could rapidly highlight unexpected changes, allowing ornithol-
ogists to respond more promptly.

While experts note that they do not expect BEAST to detect every change point—particularly
those not well-represented by the data’s preprocessing methods—they view it as an addi-
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tion for their current range of analytical tools. Rather than replacing existing workflows
or human expertise, BEAST could serve as a complementary analytical tool, highlighting
detected shifts that domain experts can further evaluate, confirm, or reject.

6.1.4 Summary

In summary, experts believe that BEAST can deliver valuable insights, revealing previ-
ously unnoticed trends and allowing more real-time responses to shifts in bird popula-
tions. This potential for more immediate and data-driven monitoring stands in contrast
to current, more reactive methods. While they highlighted that BEAST may not cap-
ture every type of change, and they would always recheck the correctness of a detected
change point with a human expert, its capacity to uncover subtle or unexpected shifts
underscored their perceived usefulness to the field. The interviewees believe that with
thoughtful adjustments to data preprocessing (e.g., exploring appropriate spatial and
temporal resolutions), BEAST could become an even more powerful instrument for or-
nithologists.

6.2 Quantitative Analysis Using Archival Records

This chapter presents the results of the quantitative evaluation conducted by comparing
BEAST results with archival records, as described in the Evaluation methodology in
chapter 5.2.2.

Out of the total 748 documented changes, 409 were classified as rare observations and in-
dividual cases, 33 were discrete day events, and 27 involved phenological shifts—categories
that, by design, BEAST was not set up to detect under the current parameters, as high-
lighted in 5.2.2. As shown in Figure 6.1, these categories account for 62.7% of the observed
changes. In contrast, the changes corresponding to the categories population dynamics,
spatial expansions and declines, and invasions and influxes—which are expected to be
captured by BEAST—comprise 37.3% of the total recorded changes. Here, the absolute
changes amount to 238, 21, and 20 listed changes, respectively. Within the context of
population dynamics, further subdivision revealed an identifiable group of 40 records that
explicitly correspond to abrupt or significant population shifts, designated as real change
points. Consequently, these represent 16.8% of the total population dynamics subset.
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Figure 6.1: Distribution of change points in the archival records, by category. Categories
highlighted in red denote those for which the BEAST algorithm is not config-
ured to detect, while those highlighted in green denote categories for which
change points are expected to be detected by BEAST.

Table 6.1 summarizes the percentages of archival changes that were recognized by BEAST
for each category where the algorithm is expected to detect changes.

Category Detected (%)
(TPR)

Not Detected (%)
(FNR)

Population Dynamics (all) 47.48 52.52

Population Dynamics (real change points) 62.86 37.14

Invasions and Influxes 50.00 50.00

Spatial Expansions and Declines 66.67 33.33

Table 6.1: Performance of the BEAST algorithm in detecting change points across cate-
gories where it is expected to be effective. Percentages represent the proportion
of archival changes successfully identified (True Positive Rate, TPR) and those
missed (False Negative Rate, FNR) for each category.

66



6 Results

For population dynamics, BEAST identified 47.48% of changes, whereas for the real
change point subset, the detection rate increased to 62.86%. In the invasions and in-
fluxes category, half of the documented events were captured by the algorithm. BEAST
performed best with spatial expansions and declines, detecting two-thirds of the changes
reported by the archives in that category.
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This chapter discusses the implications of the evaluation results for each of the five Re-
search Questions (RQ1–RQ5). Drawing on both the qualitative interviews with ornithol-
ogists and the quantitative comparison with archival records, the discussion combines
two distince vantage points and reflects on the strengths and limitations of BEAST in
detecting real-world phenomena in citizen science data. Further, it identifies method-
ological considerations and best practices for applying Change Point Detection in citizen
science contexts.

RQ1: Accuracy and Correspondence with Ecological
Phenomena

The first question (RQ1) concerns how accurately the BEAST algorithm detects signifi-
cant change points in citizen science time series data and whether these detected change
points align with known real-world phenomena.

When evaluated solely based on the provided time series during the interviews, ornitho-
logical experts gave high marks to BEAST’s ability to detect abrupt shifts in bird popu-
lations that are visually evident in the data. Experts never felt that BEAST missed an
obvious change. However, the interviewees also identified False Positives. These obser-
vations align with the findings of Li et al. (2022). This emphasizes an inherent trade-off:
while high sensitivity helps minimize the risk of missing genuine changes, it can also
lead to extraneous detections that require domain experts to distinguish truly significant
shifts from background noise.

However, examining whether BEAST detections correspond to actual ecological phenom-
ena goes beyond straightforward time series analysis. Both qualitative and quantitative
evaluations offer useful perspectives.
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From a qualitative standpoint, ornithologists demonstrated high confidence in the eco-
logical validity of identified phenomena: out of five phenomena presented, four were
confirmed as genuine. While they do not expect BEAST to detect every true change,
they do anticipate the tool to be most effective at uncovering spatial expansions, declines,
and pronounced influxes.

These observations align with the quantitative results. Although a 67% detection rate
indicates room for improvement, spatial expansions and declines produced the high-
est detection rates—presumably because the shift from near-zero to consistent presence
(or vice versa) is relatively pronounced. Similarly, invasions and influxes were detected
reliably when the species remained present over multiple weekly intervals. However,
short-term influxes lasting only a few days were generally classified as outliers rather
than true changes, thereby reducing the detection rate to only 50%. More gradual popu-
lation dynamics or short-lived influxes fell below the detection threshold in many cases.
Conversely, the subset of population dynamics labeled as real change points exhibited
more abrupt changes, aligning better with how BEAST detects breakpoints in the time
series. In these instances, the algorithm successfully captured the transition points in
approximately 63% of cases.

It is important to note that the sample sizes for these categories were highly imbalanced,
ranging from n = 20 for influxes to n = 238 for population dynamics. Consequently,
any conclusions drawn from these results should be interpreted with caution, as the
uneven distribution of samples may influence the observed detection rates and limit the
generalizability of the findings.

Nevertheless, the findings from both evaluations underscore that BEAST, in its current
parameterization and given the preprocessed input data, is more attuned to distinct
breakpoints than to subtle or quickly vanishing anomalies.

RQ2: Role of Data Preprocessing

RQ2 examines how data preprocessing decisions influence BEAST’s ability to detect true
ecological breakpoints. Both the interviews and the archival comparison show that the
choice of metrics (e.g., presence versus abundance) and spatial resolution (e.g., 50×50
km grids) plays a central role in shaping BEAST’s detection capabilities. When species
presence is aggregated weekly over relatively large geographic areas, the resulting time
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series effectively captures large-scale trends and abrupt declines or expansions that persist
over multiple weeks. However, such a setup can overlook local or short-lived spikes
and dips, even if those shifts represent ecologically significant events. Several experts
illustrated this point with examples of localized or transient phenomena—such as rare
influxes or short mortality events—that did not produce a clear enough change signal at
the chosen level of aggregation.

Significantly, neither the quantitative nor the qualitative findings suggest a fundamental
flaw in BEAST itself; rather, they point to a mismatch between how certain ecological
changes manifest in nature and how the current preprocessing pipeline translates them
into time series data.

Thus, the success of BEAST is partly determined by whether a target phenomenon is
prominent under the data’s chosen temporal and spatial breakdown. As experts sug-
gested, no single data-processing approach can reliably capture every type of change
because different types of ecological change points vary considerably, and any single
method risks discarding information relevant to certain phenomena. Instead, applying
BEAST across multiple data representations may be necessary to detect the broadest
possible range of changes. This approach increases the likelihood of detecting a broader
spectrum of important changes, particularly those that might otherwise remain hidden
under a single preprocessing scheme.

RQ3: Influence of Citizen Science Bias

The third question (RQ3) considers how observer bias in volunteer-collected data might
lead BEAST to detect spurious change points. The expert interviews, in particular, shed
light on how fluctuations in observer behavior may create artificial signals.

The findings partially confirm this concern. While experts deemed most of the algo-
rithmically identified change points to be consistent with plausible ecological events, the
simultaneously detected declines in summer 2021 across multiple species illustrate how
observer-related factors, such as altered monitoring efforts, pandemic-induced changes in
field activities, or simply shifts in reporting behavior, could explain the apparent ‘change’
rather than any real ecological phenomenon. This underscores that citizen science data
can introduce extraneous signals, which in turn can yield False Positives if not care-
fully interpreted. Hence, although BEAST remains robust in highlighting distinct shifts
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within the time series, and despite efforts to minimize user biases, some detected changes
still likely stem from user bias rather than genuine population dynamics.

In light of these findings, it is apparent that citizen science data require careful handling
if they are to be used reliably in automated change detection. Temporally changing
participation rates, uneven sampling intensities, and geographical biases can all create
data artifacts. Although BEAST itself does not differentiate between an ecological shift
and a shift caused by observer behavior, expert review can help distinguish real from
artificial breakpoints. This underscores the need for domain expertise and methodological
safeguards—such as standardizing by observation effort—in any final interpretation of
detected change points.

RQ4: Expert Perception and Usability

RQ4 addresses how ornithologists perceive the usability and trustworthiness of BEAST
and whether they envision integrating it into their ongoing workflows.

Across the interviews, experts unanimously stated that they found the BEAST outputs
intuitive, once they became familiar with the method’s underlying logic. They expressed
substantial enthusiasm for using BEAST in a complementary capacity.

An especially promising application identified by the experts was to use BEAST in near-
real-time alert systems, notifying them of emerging shifts rather than relying on biannual
reporting and ad hoc communications. They viewed such an automated approach as a
useful complement to current analytical practices, able to capture unexpected or subtle
changes they might otherwise overlook. Moreover, this data-driven method could help
reduce the risk of confirmation bias by highlighting phenomena that observers might not
anticipate. Further, experts highlighted the possible integration of BEAST to realize an
empirically driven model retraining schedule.

Equally important is the realization that BEAST does not replace expert judgment.
Experts viewed the tool as a complement to, rather than a replacement for, existing
analytical workflows. While BEAST’s capacity to detect unexpected or subtle changes
is considered an advantage, the experts underscored that final validation requires human
interpretation and reference to additional evidence, such as biannual species reports or
specialized knowledge. This notion resonates with the dual requirements of high sensi-
tivity and strategic expert oversight, especially in contexts where erroneous or unverified

71



7 Discussion

change point detection could lead to misallocated conservation efforts. Nevertheless, the
experts were positive regarding BEAST’s utility, believing that it can streamline the pro-
cess of monitoring bird populations by rapidly highlighting anomalies that merit further
inquiry.

RQ5: Generalization and Best Practices for Applying CPD
to Citizen Science Data

Beyond the specific findings concerning BEAST, this study highlights several broader
implications for the use of change point detection methods on citizen science data in
ecological research.

First, while the large spatial and temporal coverage provided by volunteer-collected ob-
servations is a clear strength, the potential for observer biases and inconsistencies means
that automated analytics must always be interpreted with caution. Despite efforts to mit-
igate user bias, certain change points indicative of observer behavior—such as changes
associated with Covid-related restrictions or inclement weather—persisted in the data.
Small shifts in reporting habits can appear as abrupt changes in a time series, underscor-
ing the importance of transparent preprocessing strategies designed to mitigate or flag
these effects.

Second, although advanced methods like BEAST can identify meaningful patterns even
in noisy data, domain expertise remains central for validating whether these patterns
reflect real ecological phenomena or simply artifacts of sampling variability. Involving
experts early and often fosters a reciprocal learning process: algorithmic outputs gain
ecological credibility while domain practitioners gain exposure to new analytical insights
they might not otherwise detect.

Finally, the importance of selecting or combining complementary preprocessing methods
becomes especially pronounced in citizen science contexts, where data quality and gran-
ularity can vary dramatically across regions, seasons, and species. As illustrated in this
study, detecting a specific ecological shift often depends on the interplay between how
data are aggregated and the nature of the phenomenon itself. A multi-scale or multi-
metric approach broadens the scope of detectability and reduces the risk of missing crucial
events.
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In summary, change point detection can be effectively applied to citizen science data
when approached with care. This involves thoughtfully addressing potential observer
biases, selecting appropriate preprocessing methods, and conducting thorough validation
with the help of domain experts. These steps ensure that the identified shifts accurately
reflect genuine ecological processes rather than being mere artifacts of data collection.

Conclusion

Taken together, the results from both the qualitative and quantitative analyses demon-
strate that BEAST can indeed detect a wide array of ecologically relevant changes, but
is constrained by how input data are aggregated.

Both the qualitative interviews and the quantitative evaluation revealed in which cases
detected breakpoints corresponded with real phenomena, and highlighted how easily
smaller-scale or short-lived phenomena can be overlooked. Both perspectives empha-
size employing multiple, complementary preprocessing methods can expand the range
of events that BEAST can detect while still benefiting from its strengths in identifying
large-scale trend changes.

In sum, this study shows that BEAST can deliver considerable value in ecological change
detection. While it does not replace existing workflows or human expertise, it can op-
erate as a complementary analytical layer, providing timely alerts, uncovering subtle or
unexpected shifts, and informing Machine Learning related operational applications. The
experts’ proposals for a proactive alert system and adaptive model retraining demonstrate
avenues for practical deployment that could enhance ecological monitoring.

At the same time, the findings confirm that neither the algorithm nor its results can stand
alone; effective change point detection in citizen science data requires an iterative process,
combining algorithmic sensitivity, expert verification, and flexible data representations
to capture the full spectrum of ecological shifts.

Ultimately, by combining methodical preprocessing, bias correction, and continuous ex-
pert oversight, the BEAST algorithm can serve as a powerful complement to existing ap-
proaches, helping researchers, conservationists, and citizen scientists alike respond more
effectively to shifting bird population dynamics.
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The findings of this study highlight that the BEAST algorithm can detect meaning-
ful shifts within ornithological time series data, especially when such shifts manifest
as spatial expansions, declines, or noteworthy influxes of particular bird species. How-
ever, as underscored by both quantitative and qualitative evaluations, the algorithm’s
performance ultimately depends on data preprocessing choices, parameter settings, and
subsequent interpretation. This final chapter therefore outlines potential directions for
further research and development, focusing on algorithmic refinements, integration with
ornithological workflows, and more comprehensive assessments of BEAST’s detection
capabilities.

A primary avenue for algorithmic refinement lies in reducing the number of False Posi-
tives. The expert assessments demonstrated that BEAST tends to identify certain minor
fluctuations as significant change points. A straightforward yet effective approach to
addressing this issue would be to impose a threshold on the probability of a trend change
point, Pr(tcp), to filter out less certain breakpoints. Moving beyond this probability-
based approach, researchers could adopt strategies proposed by Li et al. (2022), who
introduced four additional features for identifying unjustified breakpoints: the magni-
tude of trend change, the change in slope, the probability of the breakpoint itself, and
the fraction of anomalous residuals. By defining suitable thresholds for these features,
false breaks can be identified and removed. Such refined filtering can further ensure
that only change points with strong supporting evidence are retained, thus making the
detection process more robust and reliable.

In addition, the built-in features provided by BEAST can be evaluated for their overall
utility. For instance, BEAST’s outlier detection can be deactivated. In contexts where
short-lived yet intense events are ecologically significant, designating such outliers as
meaningful change points—rather than excluding them—can yield more informative re-
sults. Moreover, BEAST is capable of detecting change points in the seasonal component,
which may offer further insights and potentially reveal shifts in phenology.
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However, possibly the most significant avenue for further investigation is the systematic
experimentation with alternative preprocessing strategies. As the interviews showed,
under the current preprocessing scheme, user biases remained in the data. Further, dif-
ferent spatial resolutions, temporal aggregations, and measures of abundance or presence
can capture different types of ecological change. Comparative studies of multiple pre-
processing pipelines would help determine which strategy is most suitable for user bias
reduction and for each class of change (e.g., local population expansions vs. short-lived
influx events), enabling a more targeted design of analytical workflows. Possible alterna-
tive preprocessing approaches are discussed in the Related Work chapter. For example,
species distribution models (SDMs) could be utilized to artificially increase sample den-
sity in undersampled regions, as suggested by Grattarola et al. (2023).

In parallel to algorithmic developments, there is considerable scope for the integration of
BEAST into active ornithological workflows. Domain experts from both DDA and the
Swiss Ornithological Institute are developing models that automatically flag implausible
bird sightings contributed by citizen scientists. These models aim to reduce the manual
effort required to validate untrustworthy reports. Currently, these models are trained
on historical data. The findings of this thesis demonstrate that bird populations are
constantly in flux—through invasions, expansions, contractions, and other events—so
that existing outlier-detection models must be periodically retrained to avert model drift.
A reactive approach to retraining, triggered by the detection of genuine shifts, would be
particularly valuable. For example, whenever BEAST finds a plausible change point for
a given species, an adaptive mechanism could schedule a model update. This dynamic
strategy addresses model drift more precisely than a rigid, calendar-based retraining. As
noted by one expert, however, a brief delay in retraining may be necessary to ensure that
short-lived fluctuations do not prematurely trigger full model updates. Formalizing and
testing such a reactive training strategy would be an essential step in operationalizing
automated model updates.

Beyond adaptive training, many experts saw promise in using BEAST as a near-real-
time alert mechanism, enabling practitioners to receive timely notifications of emer-
gent changes. By offering an early-warning system, BEAST would complement current
observer-based monitoring and biannual reporting cycles, making it easier for ornitholo-
gists to detect unexpected shifts at an earlier stage. Technical and organizational details
surrounding how BEAST could be triggered, how often it would run, and how results
would be fed back to domain experts would require further planning. Nonetheless, adopt-
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ing an online or continually updated approach would help ensure that the algorithm’s
outputs remain as current as possible.

In practice, an incremental approach—running BEAST weekly or monthly on newly
added data—would be required to operationalize both an alert system and reactive model
update schedules. The user interface developed in this thesis, alongside the available soft-
ware code, provides a foundation for integrating BEAST into existing analytical plat-
forms, thereby making continual or near-real-time change point monitoring feasible.

Lastly, a deeper, more structured evaluation of BEAST’s performance would further re-
inforce its utility for long-term ecological monitoring. Although the present evaluation
employed archival records and expert interviews, these sources are not free from spatial
and temporal uncertainties, thereby constraining the precise validation of change points.
Future studies could undertake a more fine-grained labeling effort by narrowing the ge-
ographical scope or by assigning higher temporal resolutions to documented ecological
events. To complement these expert-based approaches, one might also incorporate simu-
lation techniques and species distribution modeling (SDM). Such methods could generate
synthetic or semi-synthetic datasets that incorporate known population shifts, providing
a robust ground truth for detecting not only the strengths of BEAST but also its vul-
nerabilities. More accurate benchmarks would sharpen the algorithm’s calibration and
further clarify which categories of change points are captured consistently and which
remain elusive.

In summary, while this thesis demonstrates the potential of Bayesian-based change point
detection for ornithological time series, the algorithm’s successful application relies on
additional refinements in post-processing, data preparation, model integration, and eval-
uation design. Implementing advanced filtering methods, expanding or customizing the
scope of preprocessing, and aligning algorithmic workflows more closely with expert
practices could collectively enhance both the scientific and practical value of automated
change point analysis in bird population studies. Integrating BEAST into regular mon-
itoring processes—whether as a trigger for adaptive model retraining, a near-real-time
alert system, or a tool for retrospective discovery of hidden shifts—promises more agile,
data-driven responses to the ongoing changes in bird distributions and abundances.
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A Anhang

A.1 Applied Tools

Table A.1 lists the tools and resources used for this Master thesis.

Table A.1: Used Tools and Resources
Tool Usage
LATEX Typesetting and layout tool used for the creation

of this document
gradio Python package for building the presented user interface
Rbeast Python package for performing the BEAST analysis
EEA Reference grid Geographical grid system for spatially discretizing bird sightings
f4 Automatic transcription of expert interview recordings

for the qualitative analysis
ChatGPT 4o and o1 Extraction of categories for the quantitative analysis;

Extraction of patterns for the qualitative analysis;
Translation tasks for the creation of this document
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A.2 Questionnaire for Expert Interviews

A.2.1 Accuracy of BEAST

• Per displayed time series:

– Do you find the extracted trend reasonable?

– Do you find the placed change points meaningful?

– Would you place an additional change point at another location?

– How would you rate the placement of the change points overall? (1 = very
inappropriate, 5 = very appropriate)

• To what extent do you agree with the following statement: "I trust that when I
see a change point in the data, BEAST will recognize it as well." (1 = strongly
disagree, 5 = strongly agree)

• To what extent do you agree with the following statement: "I trust that when
BEAST displays a change point, there is indeed something visible there." (1 =
strongly disagree, 5 = strongly agree)

A.2.2 Agreement of Change Points with Reality

Prepared Ecological Events

• Per bird species: Based on your expertise, do the change points match real phe-
nomena?

– In cases where BEAST identifies a change point that does not correspond to
real events: What could be the reasons?

– How do you assess your knowledge about this bird species? (1 = little knowl-
edge, 5 = expert)

• To what extent do you agree: "I trust that a change point reported by BEAST
is associated with a real change in the bird species." (1 = strongly disagree, 5 =
strongly agree)

84



A Anhang

Bird Species from Ornithologists

• Per bird species: Based on your expertise, do the change points correspond to
actual changes?

– In cases where BEAST failed to detect a known change: What could be the
reason? (e.g., gradual change, insufficient data, inappropriate preprocessing)

– How do you assess your knowledge about this bird species? (1 = little knowl-
edge, 5 = expert)

• To what extent do you agree: "I am confident that if a change point is occurring
in reality, then BEAST detects it." (1 = strongly disagree, 5 = strongly agree)

A.2.3 Usefulness

• How easy to understand do you find BEAST’s plots? (1 = difficult to understand,
5 = easy to understand)

• Does BEAST contribute to new insights for you, or do you already have a tool for
that?

• In which application areas do you see a benefit for BEAST, whether for trend
analysis or change point analysis?

• How likely is it that you would use BEAST? (1 = very unlikely, 5 = very likely)

• Where do you see possible improvements?

• Do you have any additional comments?
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