

Hochschule für Angewandte Wissenschaften Hamburg

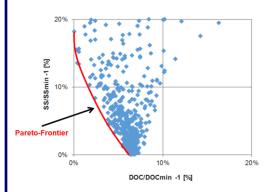
Hamburg University of Applied Sciences

AIRCRAFT DESIGN AND SYSTEMS GROUP (AERO)

Aircraft Design by Scholz – Adopted at Hamburg University of Applied Sciences and Beyond

Dieter Scholz

Aviation Industry Corporation of China (AVIC)


AVIC Aircraft Design and Research Institute

Aircraft Design Seminar
Hamburg University of Applied Sciences, 2025-11-18

$$m_{MTO} = \frac{m_{PL}}{1 - \frac{m_F}{m_{MTO}} - \frac{m_{OE}}{m_{MTO}}}$$

Abstract

Purpose – Presenting an overview of my (Prof. Dr. Scholz) aircraft design teaching and research.

Methodology – A review of lecture notes, short course notes, and guided research of students up to PhD-level.

Findings – Aircraft design teaching by Scholz follows 16 steps in a systematic way, starting with requirements (Step 1) and ending with a three-view drawing or a 3D model of the aircraft (Step 16). Central is Step 5 (preliminary sizing) based on Loftin (1980), making use of a 2D manual optimization. Conceptual design provides the details of cabin and fuselage design (Step 6), wing design (Step 7), design for high-lift (Step 8), empennage design (Step 9 and 11), mass estimation (Step 10), landing gear design (Step 12), drag estimation (Step13), aircraft performance checks (Step 14), design evaluation mainly based on Direct Operating Costs (DOC, Step 15) The method has been adopted at Hamburg University of Applied Sciences and at other universities in Germany.

Limitations – This presentation gives only an overview of methods and tools. For details, the aircraft design lecture notes, supporting documents, and tools may be consulted as referenced.

Practical implications – The overview may prevent getting lost in the details of the aircraft design method.

Originality – For the first time "the method" is clearly linked to the name of the author.

Aircraft Design by Scholz

Table of Content

- Introduction
- My Approach to Aircraft Design
- Our Aircraft Design Tools
- Special Problems Solved
- Search for an Efficient Configuration
- Evaluation in Aircraft Design
- Summary

Aircraft Design by Scholz

Introduction

HAW Hamburg

Numbers

Type Public university

Established 1970 Students 17000

Studies

40 bachelor degree programs 36 master degree programs

4 Main Topics, 4 Campus Locations

Engineering and Computer Science

Business and Social Sciences Design, Media and Information

Life Sciences

Berliner Tor Campus with Main Building (blue)

Berliner Tor Campus

Berliner Tor Campus

Armgartstrasse / Finkenau Campus

Bergedorf Campus

Faculty of Aviation and Automotive Systems (LFS)

Bachelor degree programs: Aeronautical Engineering and Automotive Engineering Master degree programs: Aeronautical Engineering and Automotive Engineering

Mechatronics Bachelor degree program:

=> Aircraft Design and Systems Group (AERO), http://AERO.ProfScholz.de

Aircraft Design Short Courses

Type On and Off Campus

Started 2007

Aircraft Design = 飞行器设计

http://AircraftDesign.ProfScholz.de

Teaching in China / Visiting China

Teaching in China at AVIC and NUAA

2016	AVIC Qingan	Group ((QAG).	Xi'An.	Shaanxi
		. ,	· · · · /,	,	

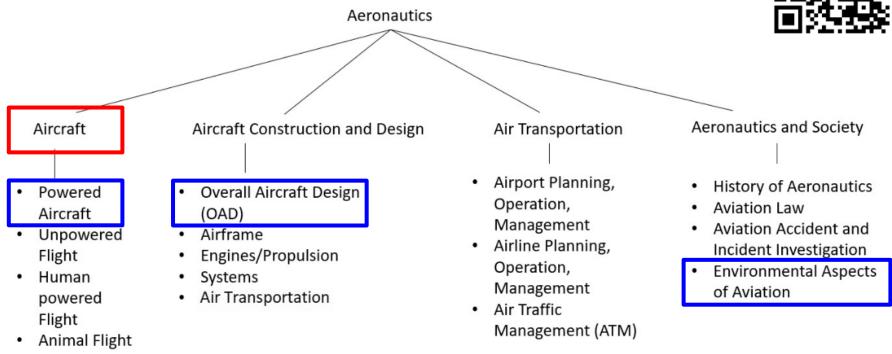
Nanjing University of Aeronautics and Astronautics (NUAA)
Nanjing University of Aeronautics and Astronautics (NUAA)

2021 AVIC Shaanxi Aircraft Corporation (Online Teaching)

Visiting China by Train

Xi'An, Nangin, Wuhan, Beijing, Shanghai, Suzhou, Hangzhou, ... Lhasa (Tibet), Kaxgar, Turpan, ..., Ürümqi (Xinjiang)

Reisebericht, 2019: In China lehren – von China lernen https://perma.cc/4EYH-7REG



https://purl.org/aero/classification/html

Classification for Aerospace: Aeronautics, Astronautics, and Aerospace Sciences

https://nbn-resolving.org/urn:nbn:de:gbv:18302-aero2022-10-06.015

Classification for Aerospace:

Aeronautics (=> Aircraft)

Compare with the (confusing)

Dewey Decimal Classification (DDC)

629.1	Aerospace engineering
629.132 629.133 629.134	Aeronautics Mechanics of flight; flying and related topics Aircraft types Aircraft components and general techniques Aircraft instrumentation (Avionics) Airports
629.4 629.41 629.43 629.44 629.45 629.46 629.47	Astronautics Space flight Unmanned space flight Auxiliary spacecraft Manned space flight Engineering of unmanned spacecraft Astronautical engineering

Aeronautics	100	
Aircraft	110	
Powered Aircraft	111	
 Manned Aircraft 	111.1	
 Heavier than Air Vehicles 	111.11	
 Fixed Wing Aircraft 	111.111	
– Subsonic	111.111.1	
 Supersonic 	111.111.2	
– Transonic	111.111.3	
 Hypersonic 	111.111.4	
 Rotorcraft 	111.112	
 Helicopter 	111.112.1	
Autogiro	111.112.2	
Gyrodyne	111.112.3	
 Lighter than Air Vehicles 	111.12	
Blimps	111.121	
 Zeppelins 	111.122	
Unmanned Aircraft	111.2	
 Unmanned Aerial Systems (UAS) 	111.21	
o Missiles	111.22	
Unpowered Flight	112	
Gliders	112.1	
Kites	112.2	
Balloons	112.3	
o Moored	112.31	
o Free	112.32	
Human Powered Flight	113	
■ Animal Flight	114	

Aircraft Design by Scholz

My Approach to Aircraft Design

SCHOLZ, Dieter, 2015. Aircraft Design. Lecture Notes. Hamburg University of Applied Sciences.

Available from:

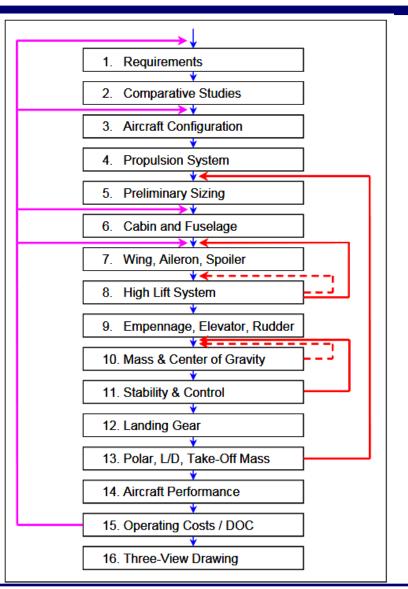
http://LectureNotes.AircraftDesign.org

or

https://purl.org/AircraftDesign

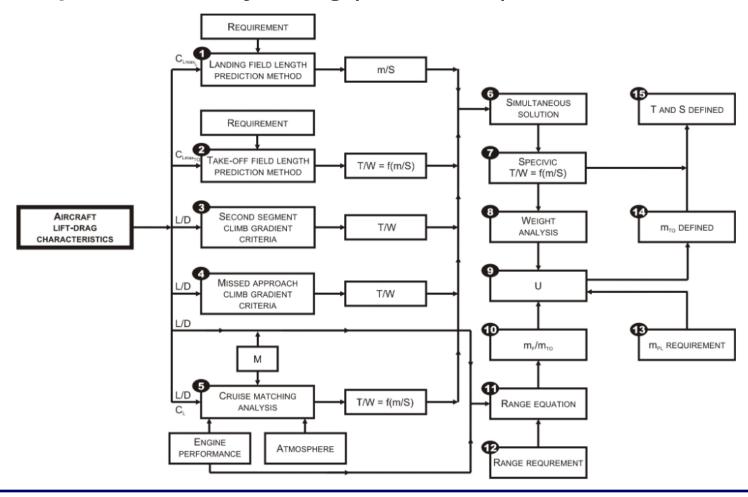
see also the Short Course Aircraft Design (2007)

https://doi.org/10.48441/4427.2747

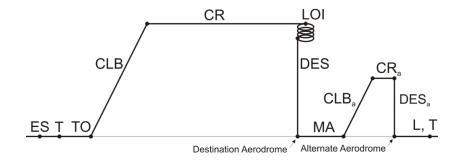

From Requirements to the Three-View Drawing (3D Aircraft) in 16 Steps

Iterations and Optimization

One step is iterative in itself


Iteration over several steps

Optimization possibilities

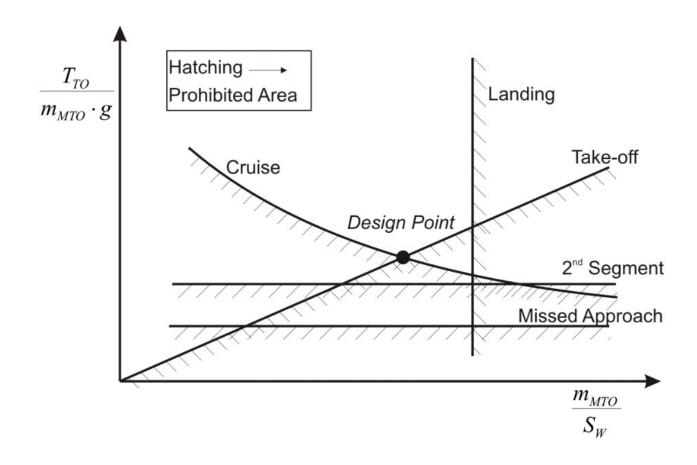

Step 5: Preliminary Sizing (Loftin 1980): The Method

Step 5: Preliminary Sizing: First Law of Aircraft Design

$$m_{MTO} = \frac{m_{PL}}{1 - \frac{m_F}{m_{MTO}} - \frac{m_{OE}}{m_{MTO}}}$$

First Law of Aircraft Design

$$\frac{m_{OE}}{m_{MTO}} = 0.23 + 1.04 \cdot \frac{T_{TO}}{m_{MTO} \cdot g}$$
 $\frac{m_F}{m_{TO}} = 1 - M_{ff}$

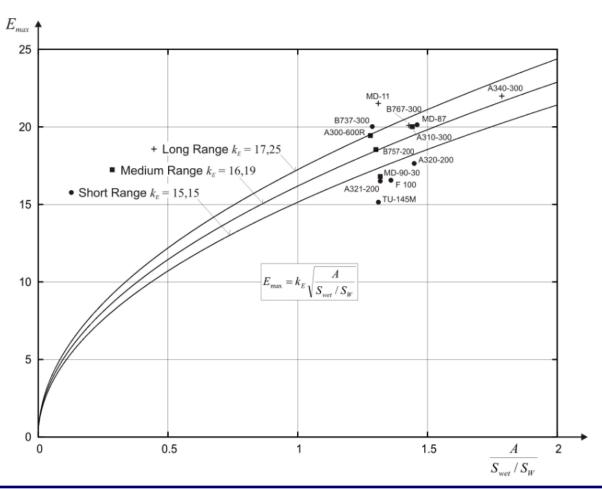

$$\boldsymbol{M}_{\mathit{ff}} = \frac{m_{\mathit{SO}}}{m_{\mathit{T}}} \cdot \frac{m_{\mathit{T}}}{m_{\mathit{L}}} \cdot \frac{m_{\mathit{L}}}{m_{\mathit{DES}}} \cdot \frac{m_{\mathit{DES}}}{m_{\mathit{CR},\mathit{alt}}} \cdot \frac{m_{\mathit{CLB}}}{m_{\mathit{CLB}}} \cdot \frac{m_{\mathit{CLB}}}{m_{\mathit{MA}}} \cdot \frac{m_{\mathit{MA}}}{m_{\mathit{DES}}} \cdot \frac{m_{\mathit{DES}}}{m_{\mathit{LOI}}} \cdot \frac{m_{\mathit{CR}}}{m_{\mathit{CR}}} \cdot \frac{m_{\mathit{CR}}}{m_{\mathit{CLB}}} \cdot \frac{m_{\mathit{CLB}}}{m_{\mathit{TO}}} = \frac{m_{\mathit{SO}}}{m_{\mathit{TO}}}$$

List of Symbols in https://purl.org/AircraftDesign

Step 5: Preliminary Sizing: Matching Chart

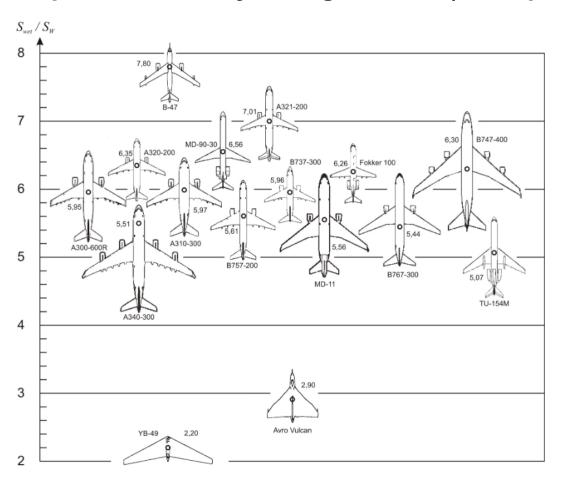
Step 5: Preliminary Sizing: Results

$$T_{TO} = m_{MTO} \cdot g \cdot \left(\frac{T_{TO}}{m_{MTO} \cdot g}\right)$$


$$S_W = m_{MTO} / \left(\frac{m_{MTO}}{S_W}\right)$$

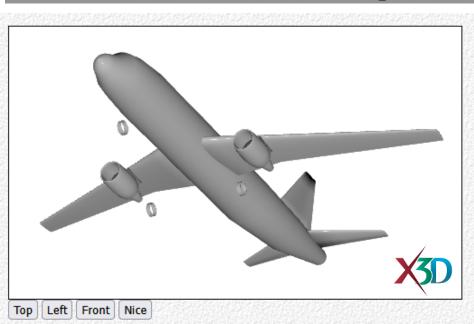
Cruise altitude follows from the Matching Chart

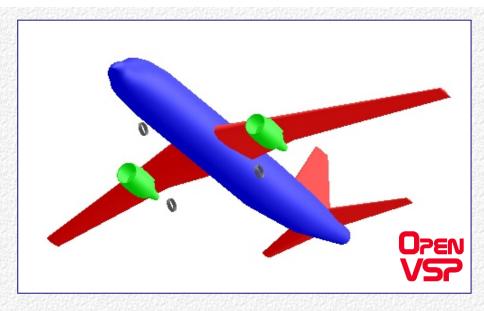
Step 5: Preliminary Sizing: Details (Example)


$$E_{max} = k_E \sqrt{\frac{A}{S_{wet} / S_W}}$$

$$k_E = \frac{1}{2} \sqrt{\frac{\pi e}{c_f}} = 14.9$$

Step 5: Preliminary Sizing: Details (Example)


$$S_{wet} / S_W = 6.0 \dots 6.2$$



Step 16: Three-View Drawing or 3D Geometric Model

OpenVSP-Connect

Connect YOUR Aircraft Design Tool with Vehicle Sketch Pad from NASA

http://OpenVSP.ProfScholz.de

Aircraft Design by Scholz

Our Aircraft Design Tools

Our Aircraft Design Tools

Overview

PreSTo – Aircraft Preliminary Sizing Tool

PreSTo-Classic (Step 5: Preliminary Sizing)
PreSTo-Cabin (Step 6: Cabin and Fuselage)
PreSTo Combined Modules (Steps 5 to 15)

OPerA – Optimization in Preliminary Aircraft Design (PhD-Level)

Optimization of passenger jet aircraft, CS-25

http://PreSTo.ProfScholz.de

http://OPerA.ProfScholz.de

PrOPerA – <u>Propeller Aircraft Optimization in Preliminary Aircraft Design (PhD-Level)</u>

Optimization of passenger propeller aircraft, CS-25 (http://Airport2030.ProfScholz.de)

SAS – Simple Aircraft Sizing and Optimization

Simplified versions of OPerA and PrOPerA (Step 5 and more)

http://SAS.ProfScholz.de

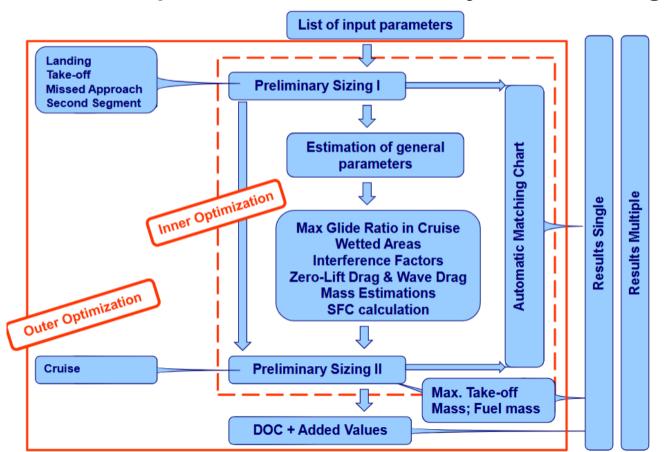
Calculating the Wing Lift Distribution with the Diederich Method in Microsoft Excel

Lift distribution and maximum lift coefficient (http://Diederich.ProfScholz.de)

OpenVSP-Connect (VSP = Vehicle Sketch Pad)

=> Automatically Design Your Aircraft

=> Visualize YOUR Aircraft Sizing Results with NASA's OpenVSP


http://OperVSP.ProfScholz.de

Our Aircraft Design Tools

OPerA – Optimization in Preliminary Aircraft Design

About 230 input variables

About 150 geometry parameters

At least 15 iteration loops

20 optimization variables

15 calculation sheets

Mihaela Niţă, 2012, https://doi.org/10.48441/4427.2587

Aircraft Design by Scholz

Special Problems Solved

Special Problems Solved

Examples

Calculating the Drag Polar

Zero-Lift drag, induced drag, wave drag. Fitting aircraft data. Drag estimation for new aircraft. https://doi.org/10.48441/4427.2893

Specific Fuel Consumption (SFC) Calculation

From theory / from engine data / comparison jet and prop engines https://doi.org/10.48441/4427.2132, https://doi.org/10.48441/4427.2132

8 Methods to Calculate Aircraft Fuel Consumption for Real Aircraft

No other report discusses so many ways to determine fuel consumption of passenger aircraft. https://doi.org/10.48441/4427.1045

Calculating Aircraft Fuel Consumption as Function of Flight Distance

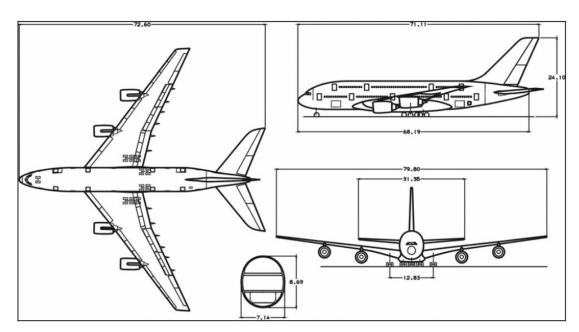
The "Bath Tube Curve" calculated from the payload-range diagram. https://nbn-resolving.org/urn:nbn:de:gbv:18302-aero2017-12-13.019

Mass Estimation for Folding Wings

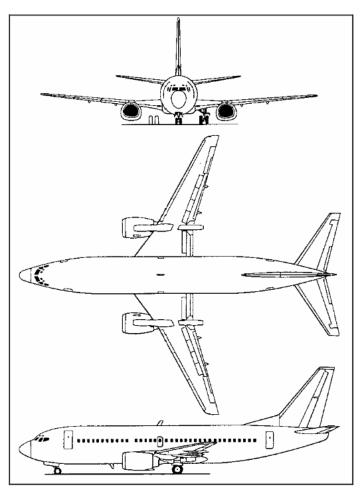
Important to stay within ICAO span limits at airports https://doi.org/10.48441/4427.1586

Aircraft Design by Scholz

Search for an Efficient Configuration



Conventional Aircraft


Conventional aircraft configurations are symmetric and have one fuselage, one pair of wings and an empennage at their rear end.

This configuration is also called **tail aft aircraft**.

http://LectureNotes.AircraftDesign.org

Boeing 737

Conventional Aircraft High Performance German Glider *eta*

Glider aerodynamics: role model for passenger aircraft?

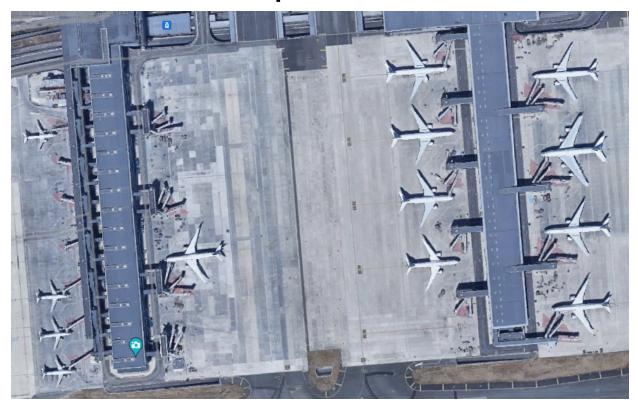
aspect ratio, A = b / c (for c = const) or $A = b^2 / S = b^2 / (c^*b) = b / c$

A = 51.3, b = 30.9 m, aerodynamic efficiency, glide ratio: L/D = 70

https://de.wikipedia.org/wiki/Eta (Flugzeug)

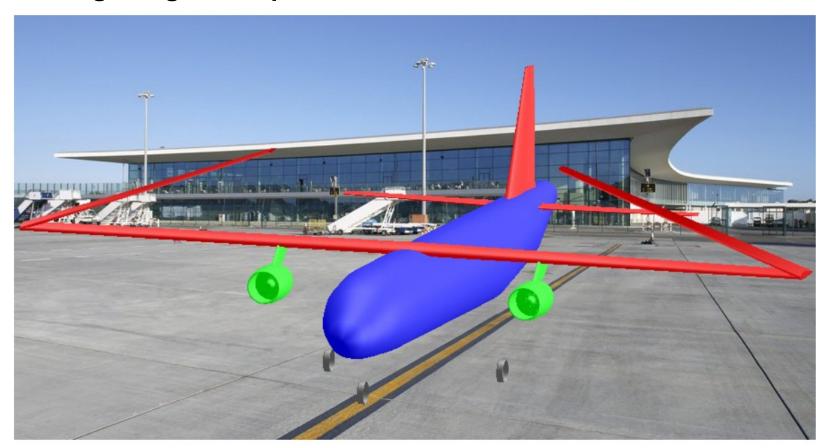
https://wingsandwheels.com/eta-844.html

Wingspan Limitations at Airports: ICAO Aerodrome Reference Code


Code letter	Wingspan	Typical aeroplane
А	< 15 m	PIPER PA-31/CESSNA 404 Titan
В	15 m but < 24 m	BOMBARDIER Regional Jet CRJ-200/DE HAVILLAND CANADA DHC-6
С	24 m but < 36 m	BOEING 737-700/AIRBUS A-320/EMBRAER ERJ 190-100
D	36 m but < 52 m	B767 Series/AIRBUS A-310
Е	52 m but < 65 m	B777 Series/B787 Series/A330 Family
F	65 m but < 80 m	BOEING 747-8/AIRBUS A-380-800
1		

https://skybrary.aero/articles/icao-aerodrome-reference-code

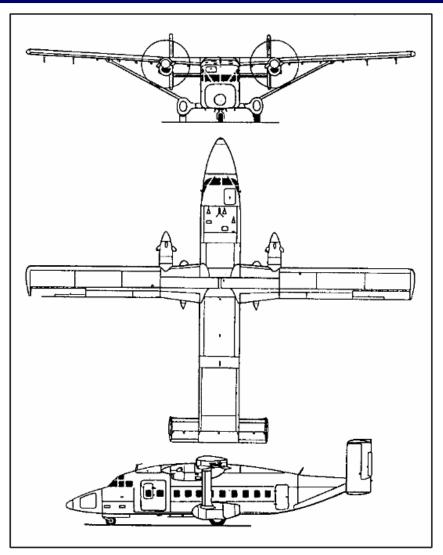
Different Gates at Airports for Different Code Letters (Wingspan)



Airports offer gates for aircraft with different size (wingspan and code letter) according to demand. Airport Charles de Gaulle, Terminal 2, Paris (Google Maps, https://maps.app.goo.gl/m7iAjuBuob71wi6j9)

Folding Wings at Airports

Impression of an aircraft with folding wings (Scholz)


Conventional Aircraft High Aspect Ratio, Braced Wing

The high aspect ratio wing reduces induced drag (drag due to lift). The wing brace keeps wing mass low.

Hurel Dubois HD 31, first flight 1953

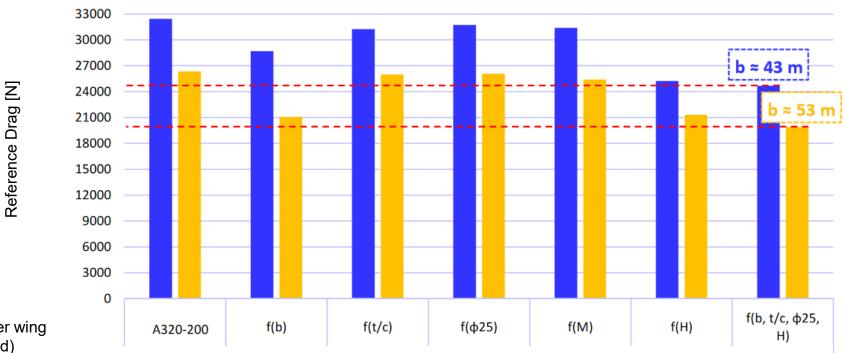
Shorts 330, first flight 1974

Conventional Aircraft High Aspect Ratio, Braced Wing: Boeing Proposal

The high aspect ratio wing reduces induced drag (drag due to lift).

The wing brace keeps wing mass low.

Boeing Transonic Truss-Braced Wing (TTBW) from 2019 based on the Subsonic Ultra Green Aircraft Research (SUGAR) program (2009). Now "Sustainable Flight Demonstrator", Boeing X-66A with NASA. Boeing canceled its part of the research project.



Mahfouz 2024

Conventional Aircraft High Aspect Ratio, Braced Wing: Airbus A320 Possibilities

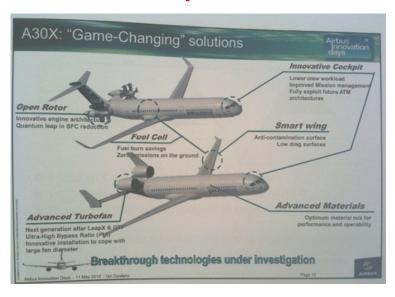
A320 wingspan: 34.1 m (without winglets), 35.8 m (with winglets), ICAO-limited to 36.0 m

cantilever wing (standard)

braced wing

Comparison of a cantilever wing with a braced wing on the Airbus A320

Unlimited span (b) and other single parameters optimized. Parameters optimized in combination.


- => An optimized braced wing allows for more span and reduced drag. => Flying low and slow also helps.
- => Optimizing for more parameters improves results but is not adding up single effects.

Propulsion Concepts at MBB / Airbus: 40 Years of Open Rotor

A propfan, also called open rotor, is an aircraft engine combining features of turbofans and turboprops.

Flight International:

14 June 1986: MBB to build Chinese propfan

21 May 1988: Allison joins MBB/China propfan project

Airbus press conference, 11 May 2010:

"Game-Changing" Solutions:

Open Rotor (propfan)

20 July 2022: On the way to a zero-emission aircraft, Airbus is reviving the open-rotor idea, which is at least 40 years old (Welt)

31 March 2025: Airbus Planning Open Rotor Engine for A320 Replacement

(https://perma.cc/85N5-8LVS, https://perma.cc/4MKB-GUKA)

* The abbreviation "MPC" came from "MBB" and "Peoples Republic of China" – a joint venture of Germany and China.

Turboprop Aircraft for 180 Passengers with Engines of the A400M?

	m_MTO	M_CR	P_eq	Pax
A320	78 t	0,76	XXX	180
A400M	141 t	0,70	4 x 8250 kW	XXX
ATR 72	23 t	0,46	2 x 1950 kW	72
Q400	29 t	0,60	2 x 3780 kW	78
Smart TP	56 t	0,51	2 x 5000 kW	180

The design of the "Smart Turboprop (TP)" on the next pages!

A Larger Propeller Aircraft Is Discussed for More than 10 Years!

PROPULSION JOHN CROFT WASHINGTON DC

05/2011:

90-seat turboprop beckons to P&WC

Engine manufacturer to begin assembling next-generation powerplant to prepare for possible creation of bigger airframes

AIRFRAMES MAVIS TOH SINGAPORE

01/2013:

ATR keen to satisfy 90-seat audience

Turboprop manufacturer yet to convince shareholders despite Asian regional carriers' interest in potential larger aircraft

ANALYSIS MURDO MORRISON LONDON

01/2013:

ATR ascends as Bombardier suffers

Growing demand from lessors helps Franco-Italian airframer beat Canadian rival in turboprop orders and deliveries race

01/2013:

WHO WILL LAUNCH AN ALL-NEW 90-SEAT TURBOPROP?

The chances are, nobody will – but pressure from airline customers might conjure up a 2013 launch of a product that regional aircraft makers agree will eventually be a necessity.

01/2011:

DEVELOPMENT DAVID KAMINSKI-MORROW TOULOUSE

Demand for big turboprops will grow, says ATR

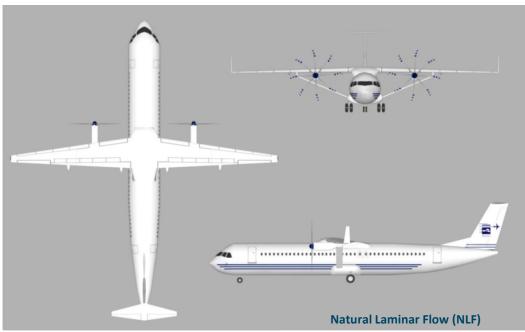
Airframer seeks 'convergent' solution with engine manufacturers to develop future 90-seat models

"I'm insisting on one point. The priority is cost-effectiveness, not spending money on speed"

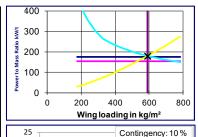
FILIPPO BAGNATO

Chief executive, ATR

"Smart Turboprop": Large Propellers, Braced Wing, Flying Slower and Lower, Partial Natural Laminar Flow on Wing

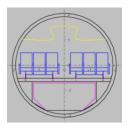


http://Airport2030.ProfScholz.de



"Smart Turboprop": Flying Slow and Low: Low Emission Flight!

Parameter	Value	Deviation from A320*
Requirements		
m_{MPL}	19256 kg	0 %
R_{MPL}	1510 NM	0 %
<i>M</i> _{CR}	0.51	- 33 %
$\max(s_{TOFL}, s_{LFL})$	1770 m	0 %
n _{PAX} (1-cl HD)	180	0 %
m_{PAX}	93 kg	0 %
SP	29 in	0 %

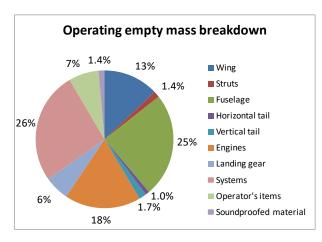


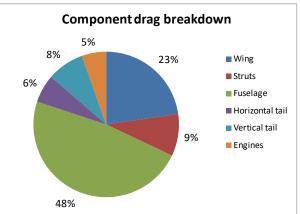
25 -		Contingend	
20 -		Alternate: 2 Loiter time:	
Ξ 15 -		Ref. aircraft	:: A320
B 15 - 10 - 10 - 5 -		$\overline{}$	
ξ ς.			
<u>.</u> 0 -		1	
ŭ	2000	4000	6000
Range [NM]			

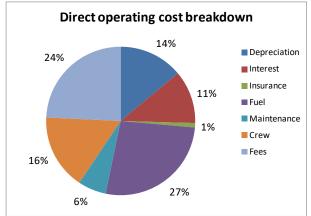
Parameter	Value Deviation from A320					
Main aircraft parameters						
$m_{ m MTO}$	56000 kg	- 24 %				
m_{OE}	28400 kg	- 31 %				
m _F	8400 kg	- 36 %				
S _W	95 m²	- 23 %				
b _{W,geo}	36.0 m	+ 6 %				
$A_{ m W,eff}$	14.9	+ 57 %				
E _{max}	18.8	≈ + 7 %				
$P_{ m eq,ssl}$	5000 kW					
d _{prop}	7.0 m					
$\eta_{ ext{prop}}$	89 %					
PSFC	5.86E-8 kg/W/s					
h _{ICA}	23000 ft	- 40 %				
S _{TOFL}	1770 m	0 %				
S _{LFL}	1300 m	- 10 %				
$t_{\sf TA}$	32 min	0 %				

36 % less fuel consumption (and CO2).

Cruise altitude 23000 ft: low Aviation Induced Cloudiness (AIC). Low warming potential.



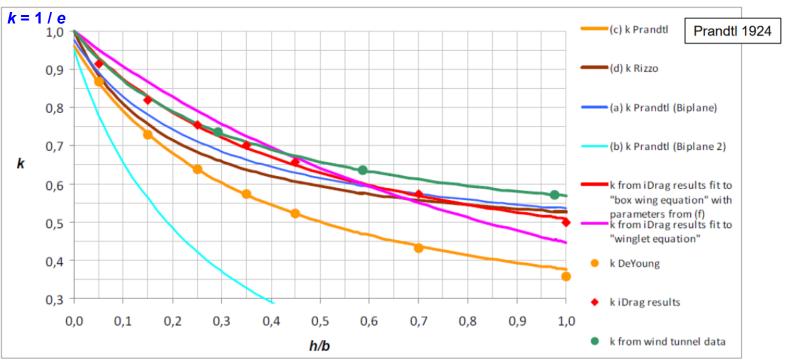



"Smart Turboprop": 17% Less <u>Direct Operating Costs</u>, DOC!

Parameter	Value	Deviation from A320*				
DOC mission requirements						
R _{DOC}	755 NM	0 %				
$m_{PL,DOC}$	19256 kg	0 %				
EIS	2030					
C _{fuel}	1.44 USD/kg	0 %				
Results						
$m_{F,trip}$	3700 kg	- 36 %				
$U_{a,f}$	3600 h	+ 5 %				
DOC (AEA)	83 %	- 17 %				

Box Wing Aircraft (BWA)

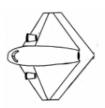
1.45

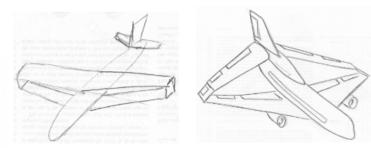

From Winglets via Biplane to Box Wing Aircraft (BWA)

1.46

BWA reduce induced drag (due to lift)

Span efficiency, e for various optimally loaded non-planar systems (h/b = 0.2).


https://purl.org/AircraftDesign/OswaldFactor



Box Wing Aircraft (BWA): Genesis

Hand Sketches

- Creative Methods
 - Brainstorming
 - Gallery Method

VERHEIRE, E.: Systematic Evaluation of Alternative Box Wing Aircraft Configurations. Bachelor Thesis, HAW Hamburg, 2013

• Modified Morphological Analysis

Morphological Analysis Matrix created after down selection

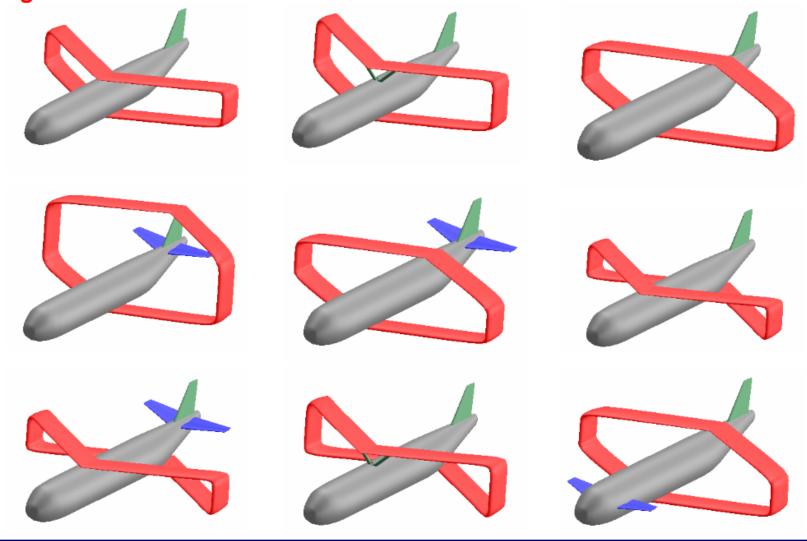
	morphological / many ordinate = more more many ordinate = more more more more more more more more					
Stagger	Sweep	Box Wing	Horizontal	Vertical	Engine	
		Vertical	Stabilizer	Stabilizer	Position	
		Position	Position	Position		
=	<<	L – H	Can	Aft	Fuse – aft	
<u></u>	>>	L – SH	No		Fuse – mid	
	<>		Aft		Wing	

Number of Combinations: $3 \cdot 3 \cdot 2 \cdot 3 \cdot 1 \cdot 3 = 162$

BARUA, P; SCHOLZ, D.: Systematic Approach to Analyze, Evaluate and Select Box Wing Aircraft Configurations from Modified Morphological Matrices. TN, HAW Hamburg, 2013 https://doi.org/10.48441/4427.2477

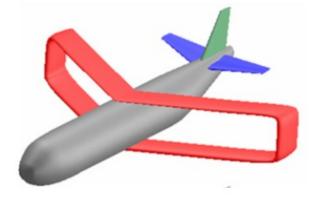
Modified Morphological Analysis:

Successive combination (in "best" order) followed by immediate down selection => 18

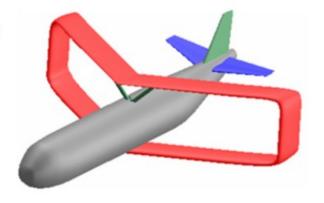

Box Wing Aircraft Downselection: 9 + 9 = 18 configurations were chosen from the 162 configurations.

Box Wing Aircraft

Downselection: 9 + 9 = 18 configurations were chosen from the 162 configurations.



Box Wing Aircraft: General Morphological Analysis: Results


Multi-Criteria Decision Analysis (MCDA): The best known and simplest method is ...

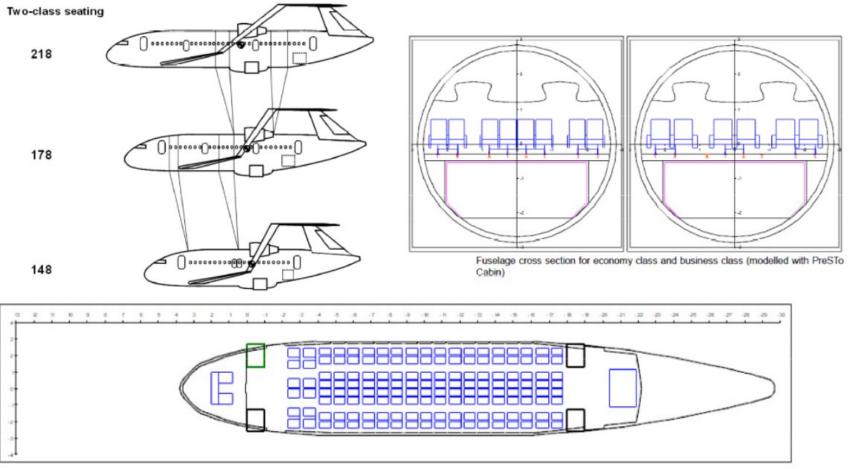
the Weighted Sum Model (WSM) also known as the Weighted Linear Combination (WLC). Used to select 3 from 18:

1.

2.

Configuration 1 and 3 were calculated in detail and built as a model.

3.



Configuration 3 was the best configuration without tail.

Box Wing Aircraft (BWA): Family Concept

http://Airport2030.ProfScholz.de

"Smart Turboprob" (STP) and Box Wing Aircraft (BWA) in the News

RESEARCH DAVID KAMINSKI-MORROW LONDON

Study backs 'smart turboprop' design

Researchers looking to increase medium-haul aircraft efficiency favour an advanced turboprop over box-wing concepts.

In co-operation with Airbus, Hamburg University of Applied Sciences embarked on a study to explore a possible successor to the A320, as part of a project known as Airport 2030.

As well as an optimised conventional jet configuration, the study examines various box-wing designs, as well as the option of a turboprop. The team aims to consider high-efficiency aircraft designs which would avoid changing ground infrastructure.

The project involves studying families of single- and twin-aisle

box-winged aircraft of 126-218 seats. However, while box-wing concepts offer a reduction in drag, this economic advantage is countered by the increased weight of the wing.

The direct operating costs of box-wing models are calculated to be some 20% higher than those of the A320.

However, the "smart turboprop" design's economics prove more promising, the study says, with a 17% lower operating cost and a 36% cut in fuel burn.

This is based on a twin-engined aircraft with a high wing braced by struts, and a T-tail configuration featuring technologies including laminar flow. ■

The project aims to explore a possible successor to the A320

14 | Flight International | 2-8 September 2014

flightglobal.com

Box Wing Aircraft (BWA) and "Smart Turboprop" (STP)

BWA (tail aft)

better, but: not recommended

STP good

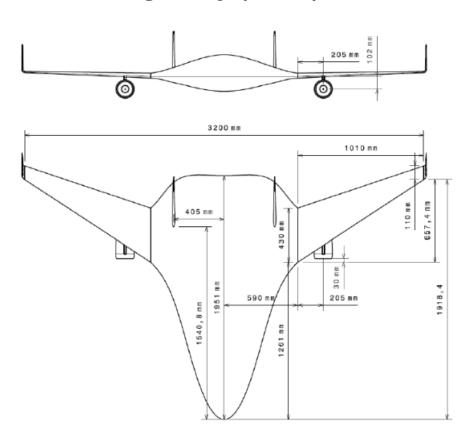
BWA (diamond wing)

not recommended

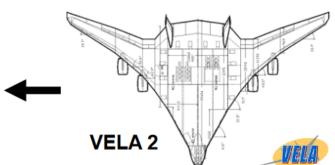
Blended Wing Body (BWB)

- 1) Conventional Configuration: "Tube and Wing" or "Tail Aft" (Drachenflugzeug)
- Blended Wing Body (BWB)
- 3) Hybrid Flying Wing
- 4) Flying Wing

The Blended Wing Body aircraft is a blend of the tail aft and the flying wing configurations:


A wide lift producing centre body housing the payload blends into conventional outer wings.

https://doi.org/10.48441/4427.442



Blended Wing Body (BWB)

Wing profile: MH-45 (Martin Hepperle) t/c = 9.85%, low drag, improved max. lift, low $c_{m, c/4}$, proven even at Reynolds numbers below 200000. Body profile: MH-91.

AC 20.30: geometry is based on VELA 2; student project; sponsor: "Förderkreis"

Blended Wing Body (BWB): Aerodynamic Efficiency

Estimation of maximum glide ratio E = L/D in normal cruise

A: aspect ratio $S_{wet}:$ wetted area

 S_w : reference area of the wing

e: Oswald factor; passenger transports: $e \approx 0.85$

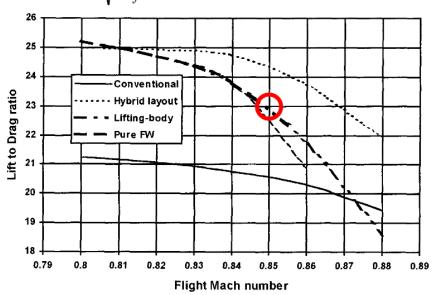
from statistics: $k_F = 15.8$

 S_{wet} / S_W : conv. aircraft 6.0 ... 6.2

BWB ≈ 2.4

A: conv. aircraft 7.0 ... 10.0

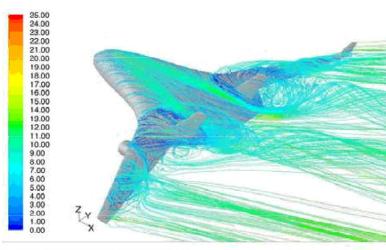
VELA 2 5.2


 $E_{max} = 23,2$

BWB reduce zero-lift drag

TsAGI for Airbus

$$E_{max} = k_E \sqrt{\frac{A}{S_{wet} / S_W}}$$


$$k_E = \frac{1}{2} \sqrt{\frac{\pi e}{\overline{c_f}}} = 14.9$$
 $\overline{c_f} = 0.003$

Blended Wing Body (BWB): CFD, Wind Tunnel, Flight Testing

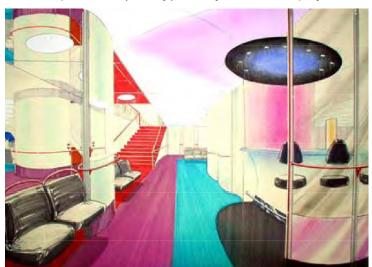
CFD: Stall (high angle of attack)

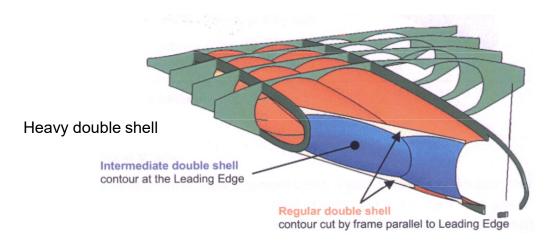
22° Anstellwinkel

Wind tunnel, Dresden, Germany

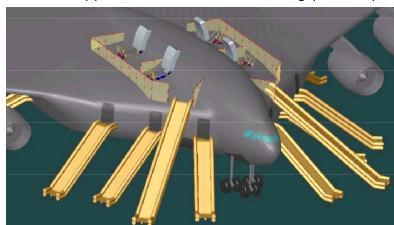
Flight testing

Path Lines Colored by Velocity Magnitude (m/s)

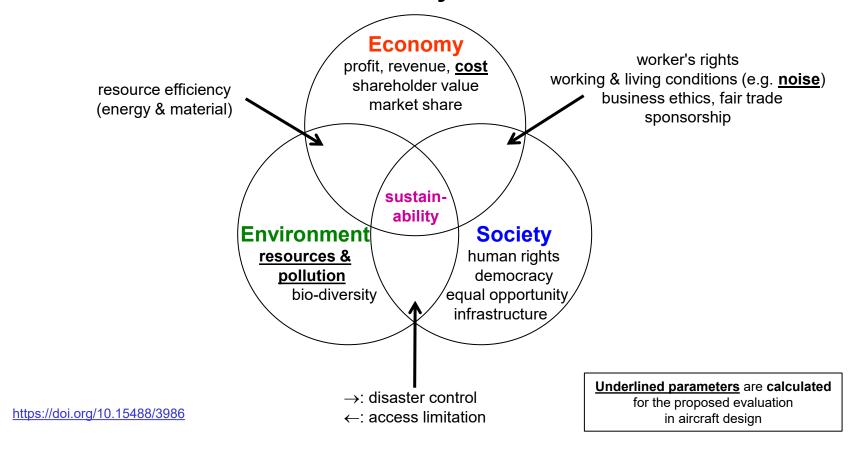




Blended Wing Body (BWB): Cabin Comfort and "Show Stoppers"


Much space for (heavy) luxury. Who can pay for it?

"Show Stopper": Evacuation after ditching (in water)

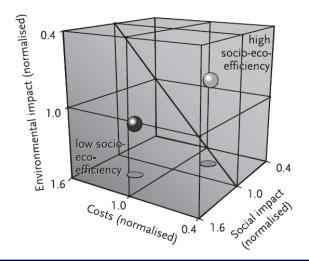


Evaluation in Aircraft Design

The 3 Dimensions of Sustainability

Sustainability Venn Diagram

Evaluation: Purpose


- evaluation of the aircraft for optimum design (definition of an objective function)
- technology evaluation (on an assumed aircraft platform)
- evaluation for aircraft selection (for aircraft purchase by an airline)

Evaluation in the 3 Dimensions of Sustainability: Measuring Socio-Eco-Efficiency

- Economic Evaluation
- Environmental Evaluation
- Social Evaluation

Socio-Eco-Efficiency (SEE)

- Alternative 1
- Alternative 2

Type of Evaluation	Method
Economic	DOC
Environmental	LCA
Social	S-LCA

Schmidt 2004 (BASF SEE)

Scholz 2015

DOC Cost Elements

- depreciation C_{DEP}
- interest C_{NT}
- insurance C_{INS}
- fuel $C_{\scriptscriptstyle F}$
- maintenance C_{M} , consisting of the sum of
 - airframe maintenance $C_{M,AF}$
 - power plant maintenance C_{MPP}
- crew C_C , consisting of the sum of
 - cockpit crew C_{CCO}
 - cabin crew C_{CCA}
- ullet fees and charges $C_{\it FEE}$, consisting of the sum of
 - landing fees C_{FFFID}
 - ATC or navigation charges $C_{FFF,NAV}$
 - ground handling charges $C_{FFE\ GND}$

Annual Costs:

$$C_{DOC} = C_{a/c,a}$$

Trip-Costs:

 $C_{DOC} = C_{DEP} + C_{INT} + C_{INS} + C_F + C_M + C_C + C_{FFE}$

$$C_{a/c,t} = \frac{C_{a/c,a}}{n_{t,a}}$$

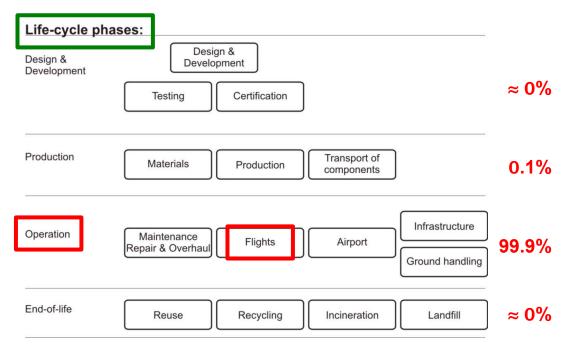
Mile-Costs:

$$C_{a/c,m} = \frac{C_{a/c,t}}{R} = \frac{C_{a/c,a}}{n_{t,a}R}$$

Seat-Mile-Costs:

$$C_{s,m} = \frac{C_{a/c,t}}{n_{pax} R} \text{ or } \frac{C_{a/c,a}}{n_s n_{t,a} R}$$

$$\underline{\textbf{U}} \text{tilization, \underline{a}nnual, \underline{f} light time:} \quad U_{a,f} = t_f \; \frac{k_{U1}}{t_f + k_{U2}}$$


$$n_{t,a} = \frac{U_{a,f}}{t_f}$$

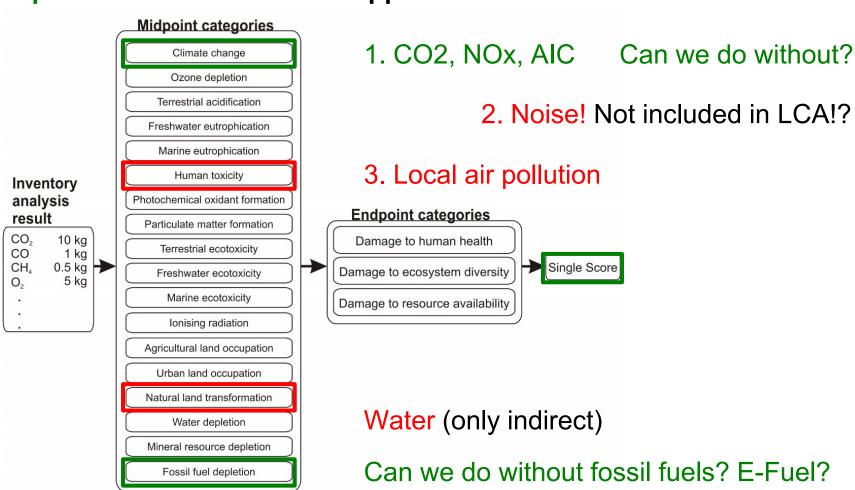
Life Cycle Assessment (LCA) Applied to Aviation

Johanning 2017

"Compilation and evaluation of the inputs, outputs and the potential environmental impacts of a product system during its life cycle"

Standardized according to ISO 14040, ISO 14044

INTERNATIONAL STANDARD ORGANIZATION, 2006. ISO 14040: Environmental management — Life cycle assessment — Principles and framework. July 2006. Available from: https://www.iso.org/standard/37456.html


18 November 2025

Impact Assessment in LCA Applied to Aviation

Johanning 2017

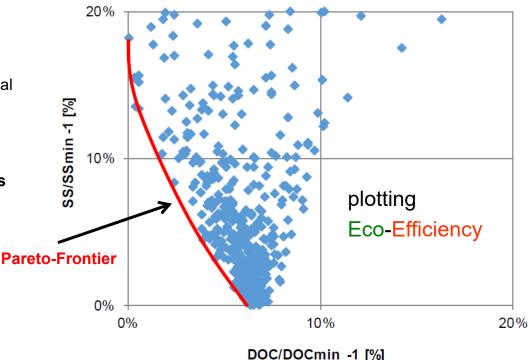
ReCiPe Method – Available from: https://www.leidenuniv.nl/cml/ssp/publications/recipe_characterisation.pdf

Social Life Cycle Assessment (S-LCA)

S-LCAs follow the ISO 14044 framework. They assess **social** and socio-economic **impacts** found along the life cycle (supply chain, use phase and disposal) of products and services. Aspects assessed are those **that** may directly or indirectly **affect stakeholders** positively or negatively. These aspects may be linked to the behaviors of socio-economic processes around enterprises, government, ... (UNEP 2009) (https://doi.org/10.48441/4427.2887)

Stakeholder categories	Subcategories		Noise: Only o	one of many pos	sible indicators i	n an S-LCA
Stakeholder "worker"	Freedom of Association and Collective Bargaining Child Labour Fair Salary Working Hours Forced Labour Equal opportunities/Discrimination Health and Safety	Stakeholder categories	Impact categories	Subcategories	Inv. indicators	Inventory data
Stakeholder "consumer"	Social Benefits/Social Security Health & Safety Feedback Mechanism Consumer Privacy Transparency End of life responsibility	Workers Local community	Human rights Working conditions Living conditions	Aircraft Noise	Noise Level	x EPNdB
Stakeholder "local community"	Access to material resources Access to immaterial resources Delocalization and Migration Cultural Heritage Safe & healthy living conditions Respect of indigenous rights Community engagement Local employment Secure living conditions	Society Consumers	Health and safety Cultural heritage	Aircraft Noise	Noise Level	X EFNUD
Stakeholder "society"	Public commitments to sustainability issues Contribution to economic development Prevention & mitigation of armed conflicts Technology development Corruption	Value chain actor	5 0.0 1 577 1.00			
Value chain actors* not including consumers	Fair competition Promoting social responsibility Supplier relationships Respect of intellectual property rights		Socio-economic repercussions			

Multiple-Criteria Decision Analysis (MCDA)


- Many techniques exist => Literature
- Weighted Sums Analysis: $SS_{total} = k_{DOC} \ DOC + k_{SS,LCA} \ SS_{LCA} + k_{SS,S-LCA} \ SS_{S-LCA}$
- Pareto-Optimum:

Pareto optimality is a state of allocation of resources from which it is impossible to reallocate so as to make any one individual or preference criterion better off without making at least one individual or preference criterion worse off.

Usualy Pareto-Frontiers show **two variables only**.

Here **three plots** could be used to overcome the limitations:

- DOC SS_{LCA}
- DOC SS_{S-LCA}
- $SS_{LCA} SS_{S-LCA}$

Johanning 2017

Summary

Summary

- Method "Aircraft Design by Scholz" used extensively in Germany.
- Many practical tools are available to design and optimize passenger aircraft (jet and propeller driven). Problem solving details are given.
- A good passenger aircraft design:
 - propeller driven, high aspect ratio with braced wing, folding wing
 - The Box Wing Aircraft (BWA) and the Blending Wing Body (BWB) have overall no advantage.
- Aircraft evaluation is important:
 - Direct Operating Costs (DOC), Life Cycle Assessment (LCA),
 Social Life Cycle Assessment (S-LCA)
 - Multi Criteria Decision Making, Pareto Front

"Smart Turboprop" (STP): How It Flys in the Simulator (Video)

Start Video online: https://youtu.be/Q4O1uJmwEzo

Contact

info@ProfScholz.de

http://ProfScholz.de

Quote this document:

SCHOLZ, Dieter, 2025. Aircraft Design by Scholz – Adopted at Hamburg University of Applied Sciences and Beyond. Aircraft Design Seminar for Aviation Industry Corporation of China (AVIC), AVIC Aircraft Design and Research Institute (Hamburg, Germany, 18 November 2025).

Available from: https://doi.org/10.48441/4427.2977.

© Copyright by Author, CC BY-NC-SA, https://creativecommons.org/licenses/by-nc-sa/4.0

References

Note: Most references are given directly in the text as URL, DOI, or link to an archive. Remaining references:

JOHANNING, Andreas, 2017. *Methodik zur Ökobilanzierung im Flugzeugvorentwurf*. Dissertation. Hamburg University of Applied Sciences, Aircraft Design and Systems Group (AERO).

Available from: https://nbn-resolving.org/urn:nbn:de:gbv:18302-aero2017-05-21.01

LOFTIN, L.K., 1980. Subsonic Aircraft: Evolution and the Matching of size to Performance. NASA Reference Publication 1060.

Available from: https://ntrs.nasa.gov/citations/19800020744

MAHFOUZ, Houssein, SCHOLZ, Dieter, 2024. Einfacher Flügelentwurf optimiert hinsichtlich Masse und Widerstand. Poster. Deutscher Luft- und Raumfahrtkongress (Hamburg, 30.09. - 02.10.2024).

Available from: https://doi.org/10.48441/4427.2124

SCHMIDT, I., MEURER, M., SALING, P., KICHERER, A., REUTER, W., GENSCH, C., 2014. SEEbalance – Managing Sustainability of Products and Processes with the Socio-Eco-Efficiency Analysis by BASF. In: Greener Management International, vol. 45, no. 1, pp. 79-94.

Available from: https://www.researchgate.net/publication/228693310

