=

L I

> >

MBURG

BACHELOR THESIS
Suraj Shrestha

Evaluation von
Visualisierungstypen und
Bibliotheken fiir Energiedaten
in Python

FAKULTAT TECHNIK UND INFORMATIK
Department Informations- und Elektrotechnik

Faculty of Engineering and Computer Science
Department of Information and Electrical Engineering

HOCHSCHULE FUR ANGEWANDTE
WISSENSCHAFTEN HAMBURG

Hamburg University of Applied Sciences

Suraj Shrestha

Evaluation von Visualisierungstypen und
Bibliotheken flr Energiedaten in Python

Bachelorarbeit eingereicht im Rahmen der Bachelorpriifung

im Studiengang Bachelor of Science Regenerative Energiesysteme und Energie-
management

am Department Informations- und Elektrotechnik

der Fakultdt Technik und Informatik

der Hochschule fiir Angewandte Wissenschaften Hamburg

Betreuender Priifer: Prof. Dr. Kolja Eger
Zweitgutachter: Prof. Dr. Wolfgang Renz

Eingereicht am: 26.04.2024

Suraj Shrestha

Thema der Arbeit

Evaluation von Visualisierungstypen und Bibliotheken fiir Energiedaten in Python

Stichworte

Energiedaten, Visualisierungstypen, Python-Bibliotheken, Evaluation

Kurzzusammenfassung

Die Grundidee der Datenvisualisierung ist die geeignete Darstellung von Daten in visu-
eller Form, die dem Menschen einen Einblick in die Struktur der Daten, das Ziehen von
Schlussfolgerungen aus den Daten und die direkte Interaktion mit den Daten ermoglicht
[28]. Visuelle Datenexplorations-Techniken werden deshalb in vielen Anwendungsberei-
chen wie Industrie, Wirtschaft, Energiebranche, Medizin usw. eingesetzt.

Das Ziel dieser Arbeit besteht darin, unterschiedliche Visualisierungstypen fiir Ener-
giedaten zu identifizieren und diese unter Verwendung gingiger Python-Bibliotheken
umzusetzen. Zu den Visualisierungen gehoren ein Liniendiagramm zur Darstellung der
Entwicklung der jahrlichen Stromverbrauchsdaten, ein Balkendiagramm zur Darstellung
des monatlichen Stromverbrauchs der Gesamtnetzlast und der Residuallast sowie Histo-
gramme, Boxplots und Violinplots zur Visualisierung der Datensatzverteilung. Mit ei-
nem Kreisdiagramm wird die monatliche Zusammensetzung dargestellt. Zur Analyse des
Einflusses von Tageszeit, Wochentagen und Feiertagen auf den Stromverbrauch werden
unterschiedliche Versionen der Heatmap vorgestellt. Ein Sankey-Diagramm wird benutzt,
um die Energiefliisse fester Brennstoffe darzustellen. Dariiber hinaus sind Karten erstellt,
um Elektroladesédulen auf Bundes- und Landkreisebene darzustellen. Dashboards sind so
konzipiert, dass sie eine interaktive Analyse der Daten fiir unterschiedliche Jahre mit
unterschiedlichen Visualisierungstypen ermdoglichen. Matplotlib und Seaborn werden zur
statischen Visualisierung eingesetzt. Fiir die interaktive Visualisierung von Daten werden
Vega, Bokeh und Plotly verwendet, wihrend Folium, Geopandas und Plotly zur Erstel-
lung von Karten genutzt werden. Dash und Streamlit werden genutzt, um Dashboards
zu erstellen. Alle verwendeten Python Datenvisualisierungsbibliotheken sind leistungsfa-
hig und erfiillen die Anforderungen, um Energiedaten zu visualisieren. Jede Bibliothek
hat ihre eigenen Stdrken und Schwéchen. Die Visualisierungstypen und Bibliotheken,
die fiir die Energiedaten verwendet werden sollen, konnen je nach den Bediirfnissen gut

ausgewahlt werden.

iii

Suraj Shrestha

Title of Thesis

Evaluation of visualisation types and libraries for energy data in Python

Keywords

Energy data, Visualisation types, Python libraries, Evaluation

Abstract

The basic idea of data visualisation is to present data in an appropriate visual form, which
allows people to gain insight into the structure of the data, to draw conclusions from the
data and to interact directly with the data [28|. Visual data exploration techniques are
therefore being used in a wide range of application areas such as industry, business, the

energy sector, medicine, etc.

The aim of this work is to identify different types of visualisations for energy data and
to implement them using common Python libraries. The visualisations include a line
chart to show the development of the annual electricity consumption data, a bar chart
to show the monthly electricity consumption of the total grid load and the residual
load as well as histograms, box plots and violin plots to visualise the distribution of
dataset. The monthly composition is visualised with a pie chart. Different versions of
the heat map are presented to analyse the influence of time of day, weekdays and public
holidays on electricity consumption. A Sankey diagram is used to visualise the energy
flows of solid fuels. In addition, maps are created to show electric charging points at
national and county level. Dashboards are designed to allow interactive analysis of data
for different years with different visualisation types. Matplotlib and Seaborn are used for
static visualisation. Vega, Bokeh and Plotly are used for the interactive visualisation of
data, while Folium, Geopandas and Plotly are used to create maps. Dash and Streamlit
are used to create dashboards. All Python data visualisation libraries used are powerful
and meet the requirements for visualising energy data. Each library has its own strengths
and weaknesses. The visualisation types and libraries for energy data can be selected

according to the needs.

v

Inhaltsverzeichnis

Abbildungsverzeichnis ix
Tabellenverzeichnis xii
Abkiirzungen xiii
1 Einleitung 1
1.1 Hintergrund und Motivation Lo 2

1.2 Aufgabestellung, Forschungsziele und Forschungsfragen 3
1.3 Gliederung der Arbeit 4

2 Theoretische Grundlagen 6
2.1 Visualisierungstypen 6

2.2 Python Bibliotheken 0o 7
2.3 Datensatz 8
2.4 Datenanalyse 9
2.5 EDA . . e 10
2.6 Zeitreihenanalyse Lo 10

3 Anforderungen 11
3.1 Analyse Visualisierungstypen fiir Energiedaten 11
3.2 Anforderungen fiir die Visualisierung 15
3.3 Analyse Pythonbibliotheken fir Energiedaten 15
3.4 Anforderungen fiir die Bibliotheken 16

3.4.1 Anforderungen fiir die statische Visualisierungs Bibliotheken (Mat-
plotlib und Seaborn) o Lo 16
3.4.2 Anforderungen fiir die interaktive Visualisierungs Bibliotheken (Plot-
ly, Bokeh, Vega-Altair) 17

3.4.3 Anforderungen fiir die Karten Visualisierungs Bibliotheken (Plotly,
Folium, Geo-pandas) 18

Inhaltsverzeichnis

4 Entwurf
4.1 Visualisierungstypen
4.2 Python.
4.3 Jupyter Notebook
5 Implementierung
501 EDA
5.1 Daten Visualisierung mit Matplotlib
5.1.1 Liniendiagramm
5.1.2 Balkendiagramm 0o o Lo
5.1.3 Boxplot
5.1.4 Kreisdiagramm
5.1.5 Flachendiagramm oL
5.1.6 Histogramm
5.1.7 Violinplot
5.1.8 Warmekarte
5.2 Daten Visualisierung mit Seaborn
5.2.1 Liniendiagramm
5.2.2 Balkendiagrammo
5.2.3 Boxplot
5.2.4 Kreisdiagramm
5.2.5 Flachendiagramm L oo
5.2.6 Histogramm Lo
5.2.7 Violinplot
5.2.8 Warmekarte oL
5.3 Daten Visualisierung mit Vega-Altair
5.3.1 Liniendiagrammo
5.3.2 Balkendiagramm L oL
5.3.3 Boxplot
5.3.4 Kreisdiagrammo
5.3.5 Flachendiagramm oo
5.3.6 Histogramm Lo
5.3.7 Violinplot
5.3.8 Warmekarte
5.4 Daten Visualisierung mit Bokeh 00000
5.4.1 Liniendiagramm L

19
19
20
21

23
23
29
29
30
31
32
32
33
33
34
38
38
38
39
39
40
40
41
41
44
44
44
45
46
46
47
47
48
51
51

vi

Inhaltsverzeichnis

5.4.2 Balkendiagramm L 0oL 51
54.3 Boxplot 52
5.4.4 Kreisdiagramm 52
5.4.5 Flachendiagramm Lo 53
5.4.6 Histogramm 53
5.4.7 Violinplot 54
5.4.8 Warmekarteo oo 54

5.5 Daten Visualisierung mit Plotly 56
5.5.1 Liniendiagramm Lo 56
5.5.2 Balkendiagrammo Lo 57
5.5.3 Boxplot Y
5.5.4 Kreisdiagramm 58
5.5.50 Flachendiagramm oo 58
5.5.6 Histogramm L Lo 59
5.5.7 Violinplot 60
5.5.8 Warmekarte L Lo 60

5.6 Sankey Diagramm 63
5.7 Dashboard Erstellung oo 64
5.7.1 Dashboard mit Dash, 65
5.7.2 Dashboard mit Streamlit 67

5.8 Karten Visualisierungo Lo 68
5.8.1 Karten mit Folium 0L 68
5.8.2 Karten mit Geopandas oL 70
5.8.3 Karten mit Plotly oo 72
5.8.4 Zeitreihenanalyse Lo 74

6 Evaluierung 82
6.1 Statische und interaktive Visualisierung 83
6.1.1 Funktionalitat. 83
6.1.2 Dokumentation L 84
6.1.3 Leistungo 85

6.2 Dashboard Erstellung oo 86
6.2.1 Funktionalitat. 86
6.2.2 Benutzerfreundlichkeit 0000 86
6.2.3 Interaktivitato 87
6.24 Komplexitdt 87

vii

Inhaltsverzeichnis

6.3 Karten Visualisierung oo 87
6.3.1 Funktionalitdt. 88

6.3.2 Interaktivitato 88

6.3.3 Dokumentation L 88

7 Zusammenfassung 90
7.1 Uberpriifung von Forschungszielen und -fragen 90
7.2 Grenzen der Arbeit 94
7.3 Zukiinftige Arbeiten Lo 94
Literaturverzeichnis 95
A Anhang 100
Selbststandigkeitserklarung oL 101

viii

Abbildungsverzeichnis

2.1
2.2

4.1
4.2

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23

Zweck der Visualisierung Lo 7
Python Visualisierungslandschaft 8
Entwurf Visualisierungstypen oL 19
Entwurf Pythonbibliotheken 21
Datenanalyse zur Gewinnung erster Erkenntnisse 25
Deskriptive statistische Analyse 26
Boxplot zur Erkennung von Ausreifsern 27
Histogramm zur Bestimmung der Form der Verteilung 28
Punktendiagramm zur Ermittlung von Muster und Trend im Datensatz . 28
Liniendiagramm mit matplotlib 29
Balkendiagramm mit matplotlib o000 30
Boxplot mit matplotlib L 31
Kreisdiagramm mit matplotlib 32
Flachendiagramm mit matplotlib 32
Histogramm mit matplotlib 33
Violinplot mit matplotlib 33
Heatmap Betrachtung Variante 1 mit matplotlib 34
Heatmap Betrachtung Variante 2 mit matplotlib 35
Heatmap Betrachtung Variante 3 mit matplotlib 36
Heatmap Betrachtung Variante 4 mit matplotlib 37
Liniendiagramm mit Seaborn 38
Balkendiagramm mit Seaborn 0L 38
Boxplot mit Seaborno Lo 39
Kreisdiagramm mit Seaborn 39
Flachendiagramm mit Seaborn 40
Histogramm mit Seaborn 40
Violinplot mit Seaborn Lo 41

X

Abbildungsverzeichnis

5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
5.35
5.36
5.37
5.38
5.39
5.40
5.41
5.42
5.43
5.44
5.45
5.46
5.47
5.48
5.49
5.50
5.51
5.52
9.53
5.54
5.55
5.56
5.57
5.58
5.59

Heatmap Betrachtung Variante 1 mit Seaborn 41
Heatmap Betrachtung Variante 2 mit Seaborn 42
Heatmap Betrachtung variante 3 mit Seaborn 42
Heatmap Betrachtung Variante 4 mit seaborn 43
Liniendiagramm mit Vega-Altair 44
Balkendiagramm mit Vega-Altair 44
Boxplot mit Vega-Altair, 45
Kreisdiagramm mit Vega-Altair 46
Flachendiagramm mit Vega-Altair 46
Histogramm mit Vega-Altair 47
Violinplot mit Vega-Altair, . 47
Heatmap Betrachtung Variante 1 mit Vega-Altair 48
Heatmap Betrachtung Variante 2 mit Vega-Altair 48
Heatmap Betrachtung Variante 3 mit Vega-Altair 49
Heatmap Betrachtung Variante 4 mit Vega-Altair 49
Liniendiagramm mit Bokeh 51
Balkendiagramm mit Bokeh o000 51
Kreisdiagramm mit Bokeh 0oL 52
Flachendiagramm mit Bokeh00 53
Histogramm mit Bokeh oo 53
Heatmap Betrachtung Variante 1 mit Bokeh 54
Heatmap Betrachtung Variante 2 mit Bokeh 54
Heatmap Betrachtung Variante 3 mit Bokeh 55
Liniendiagramm mit Plotly 56
Balkendiagramm mit Plotly, 57
Boxplot mit Plotly 57
Kreisdiagramm mit Plotly 58
Flachendiagramm mit Plotly 58
Histogramm mit Plotly, 59
Violinplot mit Plotly 60
Heatmap Betrachtung Variante 1 mit Plotly 61
Heatmap Betrachtung Variante 2 mit Plotly 61
Heatmap Betrachtung Variante 3 mit Plotly 62
Heatmap Betrachtung Variante 4 mit Plotly 62
Sankeydiagramm fiir feste Brennstoffo 64
Dashboard mit Dash 65

Abbildungsverzeichnis

5.60
5.61
5.62
5.63
5.64
5.65
5.66
5.67
5.68
5.69
5.70
5.71
5.72

6.1

7.1
7.2

Dashboard mit Streamlit o 0oL 67
Kartenvisualisierung auf Bundeslandebene 69
Kartenvisualisierung auf Landkreisebene 69
Kartenvisualisierung auf Bundeslandebene mit Geopandas 71
Kartenvisualisierung auf Landkreisebene mit Geopandas 72
Choropleth Karten auf Bundeslandebene mit Plotly 73
Choropleth Karten auf Landkreisebene mit Plotly 74
Visualisierung aller Spalten des Datensatzes 75
Resampling 76
Rolling e 7
Zeitreihenzerlegungo oL 78
Trend und Saisonalitdt o 79
Autocorrelation 80
Codekomplexitidt und Ausfithrungszeit 85
Zusammenfassung RO1 oo 91
Python Bibliotheken fiir die Datenvisualisierung 92

X1

Tabellenverzeichnis

3.1
3.2

3.3

3.4

3.5

4.1

5.1

6.1
6.2

6.3

7.1

Uberblick iiber Plattformen und Visualisierungstypen
Uberblick iiber die verschiedenen Visualisierungszwecke, die entsprechen-
den Datenanforderungen und die Visualisierungstypen
Anforderungen fiir die statische Visualisierungs Bibliotheken (Matplotlib
und Seaborn)
Anforderungen fiir die interaktive Visualisierungs Bibliotheken (Plotly, Bo-
keh, Vega-Altair)
Anforderungen fiir die Karten Visualisierungs Bibliotheken (Plotly, Foli-

um, Geo-pandas)
Die beliebtesten Python-Bibliotheken fiir Datenvisualisierung
Komponenten der Programmierungsumgebung und ihre Versionen

Vergleich von Visualisierungsbibliotheken
Uberblick iiber Bibliotheksdokumentationsstruktur und mdogliche Code-
beispiele

Uberblick iiber Codebeispiele und Community

Einzelbewertungen

xii

Abkiirzungen

CM Cloud Manufacturing

IoT Internet der Dinge (Internet of Things)

CPS Cyber-Physische Systeme (Cyber-Physical Systems)
BDA Big Data Analytics

EnEfG Energieeffizienzgesetz

EU Europaische Union

EDA Explorative Datenanalyse

SMARD Strommarktdaten

EE Erneuerbare Energien

ENTSO-E Verband Européischer Ubertragungsnetzbetreiber (European Network of Trans-

mission System Operators for Electricity)
PNG Portable Network Graphic
HTML Hypertext Markup Language
JPG Hypertext Markup Language
SVG Scalable Vector Graphics

JSON JavaScript Object Notation

xiii

1 Einleitung

Grafische Darstellungen von Daten sind schnell und méchtig. Schnell, da Sie die effizi-
enteste Methode zur Vermittlung komplexer Informationen darstellen. Und méchtig, da
Bilder in den Kd&pfen hédngen bleiben. Zahlenreihen werden vergessen, Bilder nicht. In
der Historie war die Datenvisualisierung enorm aufwéndig, von der Datenbeschaffung
bis hin zur eigentlichen Produktion des Bildes — welches in fritheren Jahren iiblicher-
weise als Holzstich, als Kupferstich oder als Lithografie ausgefiihrt wurde. In der Da-
tenvisualisierungscommunity wird Charles-Joseph Minard heute oft als wichtige Figur
in der Entwicklung der Datenvisualisierung angesehen. Seine Darstellung aus dem Jah-
re 1869 zeigt geografische Positionen, die Truppenbewegungen, den Verlust an Soldaten
und die Temperaturen im Laufe von Napoleons Russlandfeldzug — technisch ausgefiihrt
als so genanntes Sankey-Diagramm [44]. Die Arbeit von John Snow trug dazu bei, eine
Cholera-Epidemie in London im Jahr 1854 zu beenden. Er identifizierte einen verseuchten
Brunnen und verglich die Sterblichkeitsraten in den von zwei Unternehmen versorgten
Gebieten. Seine Punktekarte und seine statistischen Vergleiche gelten als Teil der An-
fénge der modernen Epidemiologie, der Reform der sanitdren Grundversorgung und des
Verstéandnisses der Infektionswege der Cholera. Wahrend der Choleraepidemie von 1854
betreute Florence Nightingale die Patienten des Middlesex Hospitals und bemiihte sich,
die sanitidren Verhéltnisse zu verbessern. Sie visualisiert die monatlichen Todesfélle durch
Infektionskrankheiten bei Soldaten, die angeblichen Auswirkungen der Verbesserung der
sanitdren Verhéltnisse als Mittel zur Bekdmpfung von Krankheiten und die Sterblich-

keitsrate vor dem Eintreffen der Gesundheitskommission [29][12].

Heute sind wir an einem &hnlichen Punkt: Die Nachfrage nach Datenvisualisierungen
nimmt {iberall zu. Industrie 4.0 verdndert die Fertigung durch fortschrittliche Technolo-
gien wie CM, IoT, CPS und BDA. Sie fordert intelligente Fabriken und datengesteuerte
Prozesse, die eine sorgfiltige Implementierung von Visualisierungstechniken und Softwa-
re erfordern. Die Echtzeit-Visualisierung ermdglicht die grafische Darstellung komplexer

Prozessgrofien zu einem Bruchteil der Kosten einer vollstdndigen Digitalisierung [4]. In

1 FEinleitung

der Wirtschaft helfen Datenvisualisierung, Verkaufszahlen, Kundenverhalten und Markt-
trends zu analysieren, was zu fundierteren Entscheidungen fiihrt. In der wissenschaftli-
chen Forschung wird die Datenvisualisierung eingesetzt, um experimentelle Ergebnisse
zu analysieren, komplexe wissenschaftliche Konzepte zu visualisieren und die Ergebnis-
se anderen Forschern und der Offentlichkeit zu vermitteln. Im Gesundheitsbereich wird
die Datenvisualisierung zur Analyse von Patientendaten und in der medizinischen For-
schung eingesetzt und bietet Einblicke in Krankheitsmuster und Behandlungsergebnisse.
Im Energiesektor bietet Datenvisualisierung einen detaillierten Einblick in den bisherigen
Verbrauch und die Nachfrage und erméglicht es Energieversorgern, fundierte Prognosen

auf der Grundlage der tatséchlichen Datentrends zu erstellen [6].

1.1 Hintergrund und Motivation

Das Energieeffizienzgesetz (EnEfG) setzt klare Ziele zur Senkung des Energieverbrauchs
bis 2030, im Einklang mit EU-Richtlinien. Firmen mit einem Jahresverbrauch iiber 7,5
GWh miissen jetzt Energie- oder Umweltmanagementsysteme einfithren. Unternehmen
mit einem Jahresenergieverbrauch von mehr als 2,5 Gigawattstunden miissen konkre-
te Plane zu wirtschaftlichen Energieeffizienzmafnahmen veroffentlichen. Rechenzentren
sind zur Einhaltung von Energieeffizienzstandards und zur Nutzung von Abwérme ver-
pflichtet [13]|. Die Energiewende erfordert eine hohere Energieeffizienz, um den Verbrauch
zu senken und die Klimaziele zu erreichen. Energieeffizienz spart Geld fiir Haushalte,
Unternehmen und Kommunen und macht die Wirtschaft wettbewerbsfahiger. Daten-
visualisierung kann dazu beitragen, die Energieeffizienz zu verbessern, indem Daten aus
verschiedenen Quellen gesammelt und analysiert werden, um aktuelle Energieverbrauchs-
muster zu verstehen, Einsparpotenziale zu identifizieren und realistische Ziele zu setzen.
Studien zeigen, dass der Energieverbrauch durch Echtzeitinformationen deutlich gesenkt
werden kann [31]. Technologische Fortschritte in der Datenvisualisierung bieten echte
Moglichkeiten fiir die Erforschung des Energieverbrauchsbewusstseins mit Techniken wie
Energiemonitor, um eine browserbasierte Applikation fiir die Visualisierung, Auswertung
und Optimierung von Energieverbrauchen. Durch dieses Tool wird es moglich, Energieer-
zeugung und -verbrauch nahezu in Echtzeit zu beobachten. Grafisch aufbereitet werden
die Energiedaten in einem digitalen Dashboard visualisiert und alle 15 Minuten aktuali-
siert. Auferdem kénnen bestimmte Kennzahlen in verschiedenen Zeitrdumen abgebildet

werden, um den Verlauf des Tages, des Monats oder des Jahres zu sehen [14].

1 FEinleitung

1.2 Aufgabestellung, Forschungsziele und

Forschungsfragen

Ziel dieser Arbeit ist die Verkiirzung der Lernkurve fiir zukiinftige Forscherinnen und
Forscher im Projekt. Dies beinhaltet die Identifikation geeigneter Visualisierungstypen
fiir Energiedaten, die Auswahl und Evaluierung geeigneter Bibliotheken fiir die Visuali-
sierung von Energiedaten in Python und die Erlduterung der erstellten Visualisierungsty-
pen durch zahlreiche Bibliotheken anhand verschiedener Jupyter-Notebooks. Diese Note-
books enthalten Python-Code zur Erstellung von Plots sowie weitere Erlauterungen zur
Nutzung und Interpretation der erstellten Visualisierungen. Um die Aufgabenstellung zu
erfiillen, sind mehrere Aspekte zu beriicksichtigen. Diese werden in Forschungszielen (Re-
search Objectives, RO) zusammengefasst und in einzelnen Forschungsfragen (Research
Questions, RQ) bearbeitet.

Das erste Forschungsziel behandelt die Identifikation geeigneter Visualisierungstypen fiir

Energiedaten.

RO1: Wie konnen Energiedaten am besten visualisiert werden und welche

Visualisierungstypen sind dafiir geeignet?

Um das Forschungsziel zu erreichen, miissen die folgenden Forschungsfragen beantwortet

werden:

RQ 1.1: Welche Online-Plattformen bieten Tools und Dienste zur Visualisierung von

Energiedaten an?

RQ 1.2: Welche Visualisierungstypen bieten die aufgefiihrten Plattformen zur Darstellung

von Energiedaten an?
RQ 1.3: Wann eignen sich welche Visualisierungstypen am besten fiir die Energiedaten?

Nach der Erarbeitung des ersten Forschungszieles werden die gangigen Pythonbibliothe-

ken untersucht.
RO2: Welche Python-Bibliotheken sind gangig fiir die Datenvisualisierung?

RQ 2.1: Welche Python-Bibliotheken werden am h&ufigsten fiir die Datenvisualisierung

verwendet?

1 FEinleitung

RQ 2.2: Konnen die in RQ 1.3 genannten Visualisierungstypen mit diesen Bibliotheken

realisiert werden?

RQ 2.3: Welche Anforderungen miissen Bibliotheken erfiillen, um Energiedaten zu visua-

lisieren?

Nach der Erarbeitung des zweiten Forschungsziels werden die in RQ1 aufgelisteten Vi-
sualisierungstypen anhand der in RQ2 erforschten Python-Bibliotheken untersucht und
implementiert. Fiir jede dieser Bibliotheken wird ein eigenes Notebook erstellt. Im néchs-
ten RO geht es darum, verschiedene Bibliotheken anhand verschiedener Kriterien zu

bewerten.
RO3: Wie konnen Python-Bibliotheken evaluiert werden?

RQ 3.1: Was sind die verschiedenen Bewertungskriterien, um die Bibliotheken zu verglei-

chen und zu bewerten?
RQ 3.2: Welche Vor- und Nachteile haben die einzelnen Bibliotheken?
RQ3.3: Fiir welche Anwendungsfille sind welche Bibliotheken am besten geeignet?

Durch die Beantwortung der Forschungsziele und -Fragen entsteht am Ende ein handvol-
les Notebook fiir die Visualisierung der Energiedaten sowie Evaluierungen und Empfeh-

lungen dazu.

1.3 Gliederung der Arbeit

e Kapitel 1 beinhaltet neben der Einfithrung zum Thema auch die Aufgabestellung,

Forschungsziele und Forschungsfragen.
e Kapitel 2 gibt eine kurze Einfithrung in die theoretischen Grundlagen.

e Kapitel 3 analysiert die verschiedenen Visualisierungstypen und listet die Anfor-

derungen an Bibliotheken auf.
e Kapitel 4 beschreibt den Entwurf fiir die Umsetzung.

e Kapitel 5 implementiert alle in unseren Anforderungen beschriebenen Visualisie-

rungstypen mit Hilfe verschiedener gingiger Python-Bibliotheken.

1 FEinleitung

o Kapitel 6 bewertet die Bibliotheken anhand verschiedener Kriterien.

e Kapitel 7 fasst die Arbeit zusammen und iiberpriift die Beantwortung der For-

schungsfragen.

2 Theoretische Grundlagen

In diesem Kapitel werden allgemeine Informationen {iber die Visualisierungstypen, Py-

thonbibliotheken, Datenanalyse, EDA und Zeitreihenanalyse vermittelt.

2.1 Visualisierungstypen

Die Datenvisualisierung basiert auf Variablen, die univariate, bivariate oder multivariate
Daten darstellen. Sie konnen quantitativ oder qualitativ sein und werden durch Zahlen
oder Text dargestellt. Datenvisualisierungen werden héufig verwendet, um quantitati-
ve Datenmengen darzustellen. Bei quantitativen Variablen unterscheidet man zusétzlich
noch in diskrete und stetige Variablen [33]. Entscheidungsbdume werden verwendet, um
den geeigneten Visualisierungstyp auszuwéahlen, wobei Faktoren wie der Zweck der Visua-
lisierung, der Datentyp und die Anzahl der Variablen beriicksichtigt werden. Der Zweck
der Visualisierung gibt eine Antwort auf die Frage, welche Art von Information {iber die
Daten vermittelt werden soll. Es gibt zahlreiche Online-Lésungen, die bei der Auswahl
einer geeigneten Visualisierung helfen. [19][49][1] sind in dieser Arbeit berticksichtigt. Die
Anwendungszwecke bei der Anzeige von Daten sowie der empfohlene Diagrammtyp fiir

den jeweiligen Zweck sind in der Abbildung 2.1 zusammengefasst.

2 Theoretische Grundlagen

Abbildung 2.1: Zweck der Visualisierung
2.2 Python Bibliotheken

Es gibt eine Reihe verschiedener Datenvisualisierungsbibliotheken und -module, die mit
Python kompatibel sind. Die meisten Python-Datenvisualisierungsbibliotheken lassen
sich in eine der folgenden Gruppen einteilen: Matplotlib-basierte Bibliotheken, JavaScript-
Bibliotheken, JSON-Bibliotheken und WebG-Bibliotheken.

Auf Matplotlib basiert die erste grofse Gruppe von Bibliotheken. Matplotlib existiert
nun seit mehr als zwei Jahrzehnten und ist sozusagen das Hauptwerkzeug. Es gibt viele
Dinge, die um Matplotlib herum gebaut wurden. Basemap/Cartopy wird fiir geogra-
phische Visualisierungen verwendet. Pandas und Seaborn haben Verbindungen zu Mat-
plotlib, wéhrend ggpy eine ggplot-Schnittstelle auf Matplotlib aufbaut. Networkx bietet
Netzwerkvisualisierung. Yellowbrick und Scikit-Plot bieten Visualisierungswerkzeuge fiir

maschinelles Lernen.

In den letzten Jahren haben viele dieser Python-Bibliotheken begonnen, von JavaScript
abzuhéngen und JavaScript zu nutzen, um eine grofartige interaktive Visualisierung zu
erhalten. Die beiden Groften davon sind Plotly und Bokeh. Es gibt noch Toyplot und

2 Theoretische Grundlagen

BQplot, die interessant sind. Ipyleaflet, ipyvolume, pythreejs mit denen man verschiedene
Aspekte von JavaScript fiir die interaktive Visualisierung im Notebook nutzen kann, was

ziemlich cool ist. Es gibt noch andere Dinge, wie Cufflinks, das auf Plotly aufbaut ist.

Um Javascript in Matplotlib einzubinden, gibt es die Moglichkeit, d3.js zu verwenden
und MPLdA3 verbindet Matplotlib mit d3. Allerdings ist diese Methode nicht optimal
unterstiitzt. Es gibt Vega und Vega-Lite fiir interaktive Grafiken. Vega-Spezifikationen
definieren, wie interaktive Visualisierungen in JavaScript-Object-Notation (JSON) er-

stellt werden. Altair basiert auf den Standards Vega und Vega-Lite.

Die Open Graphics Library OpenGL ist eine API-Spezifikation fiir 2D- und 3D- Grafi-
kanwendungen [18][30].

Abbildung 2.2: Python Visualisierungslandschaft

2.3 Datensatz

Im Rahmen des EcoCharge-Projekts werden die Daten von der Open-Source-Website
(SMARD) heruntergeladen und fiir alle Projektteilnehmer auf GitHub zur Verfiigung
gestellt. SMARD ist eine Daten- und Informationsplattform mit dem Ziel, die Transpa-

renz im deutschen Strommarkt durch die Bereitstellung von Echtzeitdaten zu Erzeugung,

2 Theoretische Grundlagen

Verbrauch, Import und Export von Strom zu erhéhen. In dieser Arbeit werden Strom-
verbrauchsdaten betrachtet. Der Datensatz fiir den realisierten Stromverbrauch ab dem
Jahr 2015 enthélt Datentypen wie die Gesamtnetzlast und die Residuallast fiir den reali-
sierten Stromverbrauch [9]. Fiir das Sankey-Diagramm wird der Datensatz von Eurostat
verwendet [15][16]. In dieser Arbeit wird nur der Fluss der festen Brennstoffe betrachtet.
Die Kartenvisualisierung basiert auf dem von der Bundesnetzagentur verdffentlichten Da-
tensatz, der Informationen zu Elektroladesiulen in Deutschland auf Bundesland- sowie
Landkreisebene bereitstellt [§].

2.4 Datenanalyse

Von historischen Trends bis hin zu zukiinftigen Erkenntnissen kann das Interesse an den
Daten reichen. Fiir ein stabiles statistisches Umfeld sind verschiedene Analyseebenen
erforderlich. Die verschiedenen Analyseebenen umfassen die deskriptive, pradiktive und
diagnostische Analyse. Bei der deskriptiven Analyse werden Daten aggregiert, um vergan-
gene Ereignisse zu analysieren, wihrend bei der pradiktiven Analyse statistische Modelle
und Prognosetechniken verwendet werden, um zukiinftige Ergebnisse vorherzusagen. Die
diagnostische Analyse liefert in Verbindung mit der deskriptiven Analyse eine detaillierte

Erklarung eines Szenarios durch das Versténdnis von Verhaltensmustern [41][22].

Der Fokus der Arbeit liegt auf der deskriptiven Analyse. Dabei werden Daten aggre-
giert, um vergangene Ereignisse zu analysieren und Fragen zum Geschehen zu beantwor-
ten. Zunéchst werden Daten aus verschiedenen Quellen wie SMARD, Eurostat und der
Bundesnetzagentur gesammelt. Nach der Datenerfassung beginnen die Bereinigung und
Vorverarbeitung, d. h. die Umwandlung der Daten in eine einheitliche Struktur, die Stan-
dardisierung der Formate und die Behandlung fehlender oder falscher Werte. Ziel dieser
Datenanalyse ist das Verstédndnis der Struktur und der Merkmale des Datensatzes durch
den Einsatz explorativer Datenanalysemethoden wie z. B. Histogramme, Boxplot, Punk-
tediagramm, Balkendiagramm und deskriptive (beschreibende) Statistik. Die Deskriptive
Statistik beinhaltet somit alle Verfahren, mit denen sich durch die Beschreibung von Da-
ten Informationen gewinnen lassen. Zu diesen Methoden bzw. Verfahren gehéren unter
anderem die Erstellung von Grafiken und Tabellen und die Berechnung von deskriptiven
Kennzahlen bzw. Parametern. Mit Threr Hilfe kbnnen die zentrale Tendenz, die Streuung

und die Verteilung eines Datensatzes ermittelt werden [11][42].

2 Theoretische Grundlagen

2.5 EDA

Die explorative Datenanalyse bezeichnet statistische Verfahren zur Aufdeckung von Da-
tenstrukturen, Abhéngigkeiten und Abweichungen einer vorhandenen Grundstruktur [vgl.
Gabler Wirtschaftslexikon, 2015|. Sie umfasst héufig grafische Verfahrensweisen und dient
dazu, Daten zunéchst zu explorieren, d. h. sie zu erkunden, um darin durch Visualisie-
rungsmethoden besser die enthaltenen Muster und Strukturen zu erkennen, Schlussfol-
gerungen zu ziehen sowie mit den Daten interagieren zu kénnen. Der Begriff explorative
Datenvisualisierung bezeichnet die interaktive Visualisierung der Ergebnisse aus der ex-

plorativen Datenanalyse (EDA) oder auch explorativen Statistik [34].

Exploratory data analysis can never be the whole story, but nothing else can serve as
the foundation stone as the first step. John W. Turkey, 1977.

2.6 Zeitreihenanalyse

Die Zeitreihenanalyse ist eine statistische Methode zur Untersuchung von Datenpunkten
iiber einen bestimmten Zeitraum. Die Zeitreihenanalyse verfolgt vier Ziele: Beschreibung,
Erklarung, Prognose und Kontrolle. Der erste Schritt der Analyse besteht darin, die Da-
ten grafisch darzustellen und die grundlegenden Merkmale der Reihe zu ermitteln. Dies
kann so einfach sein wie die Suche nach Trends oder so komplex wie die Analyse saisonaler
Verdnderungen. Diagramme kénnen verwendet werden, um nach Ausreifsern zu suchen,
die nicht mit dem Rest der Daten iibereinstimmen. Durch die grafische Darstellung der
Zeitreihe ist es moglich, einen Wendepunkt zu erzeugen, an dem ein Aufwirtstrend in
einen starken Abwértstrend iibergeht. Dariiber hinaus erméglicht die Zeitreihenanaly-
se die Erklarung von Ereignissen in der Vergangenheit. Basierend auf der beobachteten
Zeitreihe konnen zukiinftige Werte vorhersagen. Bei den Kontrolltechniken werden die
Beobachtungen in eine Kontrollkarte eingetragen und die Reihe wird mit Hilfe eines
stochastischen Modells angepasst. Eine Zeitreihe besteht aus vier Komponenten: einem
Trend, der auf regelméfkige Muster in den Daten hinweist, saisonalen Schwankungen,
d. h. kurzfristigen Verdnderungen in einer Zeitreihe, die typischerweise innerhalb eines
Jahres auftreten. Zu diesem Zweck werden héufig stiindliche, tégliche, wochentliche, vier-
teljahrliche und monatliche Daten fiir die Analyse aggregiert. Aufserdem gibt es zyklische
Schwankungen, die iiber einen Zeitraum von mehr als einem Jahr auftreten, und zuféllige

Schwankungen, die unregelméfig und zuféllig sind [27].

10

3 Anforderungen

Die zentrale Aufgabe der Arbeit besteht darin, verschiedene Visualisierungstypen fiir
Energiedaten zu bestimmen und diese mit gingigen Python-Bibliotheken zu implemen-

tieren. Ziel dieses Kapitels ist die Bearbeitung der Forschungsziele 1 und 2.

3.1 Analyse Visualisierungstypen fiir Energiedaten

Es werden verschiedene Onlineplattformen untersucht, die Werkzeuge und Dienste zur
Visualisierung von Energiedaten anbieten. Es wird analysiert, welche Visualisierungsty-
pen die aufgefiihrten Plattformen zur Darstellung von Energiedaten verwenden. Tabelle

3.1 gibt einen Uberblick iiber Plattformen und Visualisierungstypen.

11

3 Anforderungen

Plattform zur | Verwendete Was fiir Energiedaten?
Visualisierung Visualisierungs-
der Energiedaten | typen
Flachendiagramm, Realisierter Erzeugung, Prognostizierter Erzeu-
SMARD.de [9] Liniendiagramm gung Day-Ahead, Prognostizierter Erzeugung In-
traday, Realisierter Stromverbrauch, Prognosti-
zierter Stromverbrauch, Stromhandel (Importe
und Exporte)
Balkendiagramm Installierter FErzeugungsleistung durch unter-
(gestapelt) schiedliche Energietrager
Karte (Maps) Kraftwerke
Fldachendiagramm, Offentliche Nettostromerzeugung, Speicherfiill-
Liniendiagramm stande
Warmekarten Offentliche Nettostromerzeugung aus konventio-
Energy-Charts [20]
nellen und EE-Quellen.
Punktendiagramme | Prognose vs. Real werte darzustellen
Kreisdiagramme Offentliche Nettostromerzeugung aus konventio-
nellen und EE-Quellen.
Saulendiagramme Monatlicher Anteil Erneuerbarer Energien an der

offentlichen Nettostromerzeugung

Karte (Maps)

Anteil EE an der elektrischen Last, Stromhan-
del (Import & Export), Durchschnittliche Day-

Ahead-Borsenstrompreise von EU

ENTSO-E [45]

gestapeltes Balken-

Tatsédchliche Erzeugung nach Erzeugungsart

diagramm

Balkendiagramm, Installierte Leistung nach Erzeugungsart
Kreisdiagramm

Flachendiagramm, Prognostizierter Erzeugung Day-Ahead, Wasser-
Liniendiagramm speicher und Wasserspeicherkraftwerke

Tabelle 3.1: Uberblick iiber Plattformen und Visualisierungstypen

Weitere Online-Plattformen zur Visualisierung von Energiedaten sind die IEA (Inter-

nationale Energieagentur) [24], das Energy Visualisation Portal (Eurostat) [17] und der

Optenda Energiemonitor [32]. Alle Plattformen verwenden &hnliche Visualisierungstypen

fiir vergleichbare FEnergiedaten.

12

3 Anforderungen

Abbildung 2.1 zeigt verschiedene Visualisierungstypen fiir unterschiedliche Zwecke. Als
Néchstes werden die Anforderungen an die zu vermittelnden Informationen sowie die
passenden Visualisierungstypen fiir SMARD-Datensatz analysiert und in einer Tabelle

zusammengefasst.

13

3 Anforderungen

Zweck der Vi-

sualisierung

Datenanforderungen

Visualisierungstypen

Anzeigen von

Verteilungen

Darstellung der numerischen Daten des Da-
tensatzes durch ihre Quartile mit Anzeige
von Median, hoherem /geringerem Quartil und

Maximum /Minimum und Ausreifsern.

Boxplot

Darstellung der Verteilung des Datensatzes,

wie oft Werte in Bereiche(bins) fallen.

Histogramm

Darstellung Boxplot mit einer gedrehten
Kernel-Dichte auf jeder Seite

Violinenplot

Anzeigen von

Vergleichen

Anzeige der jahrlichen Gesamtnetz- und Resi-
duallast

Liniendiagramme

Die Saisonalitét, d.h. der Einfluss unterschied-
licher Zeiten wie Tageszeit, Wochenzeit, Fei-
ertage auf den Energieverbrauch durch ver-
schiedene Varianten der Warmekarte verdeut-

lichen.

Warmekarte

Verlauf von jahrlichen Gesamtnetz- und Resi-

duallast anzeigen

Punktediagramme

Darstellung des Gesamtnetz- und Residuallast
nebeneinander und Gruppierung nach Mona-

ten auf derselben Achse.

Balkendiagramm

Anzeigen von

Beziehungen

Korrelation zwischen Gesamtnetzlast und re-

siduallast

Punktediagramme

Anzeigen von
Trend

Anzeige der jahrlichen Gesamtnetzlast und

wochentlicher gleitender Mittelwert

Liniendiagramm

Anzeige der jahrlichen Gesamtnetz- und Resi-
duallast

Flachendiagramm

Anzeigen von|Anzeige der numerischen Proportionen des|Kreisdiagramm
Zusammenset- |monatlichen Energieverbrauchs

zungen

Anzeigen von | Darstellung der Elektroladesdule in Deutsch- | Kartendiagramm,
Geografie land Punktdichtekarte
Anzeigen von | Darstellung Energiefliisse Sankeydiagramm
Energiefliisse

Tabelle 3.2: Uberblick iiber die verschiedenen Visualisierungszwecke, die entsprechenden
Datenanforderungen und die Visualisierungstypen

14

3 Anforderungen

3.2 Anforderungen fiir die Visualisierung

Im Rahmen dieser Arbeit sollen die Visualisierungstypen der Tabelle 3.2 mit Hilfe ver-
schiedener Python-Bibliotheken implementiert werden. Dabei wird zwischen einfachen
und komplexen Visualisierungen unterschieden. Zu den einfachen Visualisierungen gehd-
ren Liniendiagramme, Balkendiagramme, Kreisdiagramme, Flichendiagramme, Punkt-
diagramme, Histogramme, Boxplots und Violinplots. Zu den komplexen Visualisierungen
gehoren Warmekarten, Sankeydiagramme und Karten. Dartiber hinaus sollten interaktive
Visualisierungstechnologien eingesetzt werden, um Trends schnell zu erkennen, Zusam-
menhénge in den Daten besser zu verstehen und komplexe Daten zu vereinfachen. Inter-
aktive Datenvisualisierung verwendet Interaktionstools, um Parameter zu dndern, Details
zu zeigen und neue Erkenntnisse zu gewinnen. Eine wichtige Aufgabe dieser Arbeit ist die
Implementierung des Dashboards. Der Benutzer kann mit dem Dashboard interagieren

und sich die Kennzahlen anzeigen lassen, die seinen Wiinschen entsprechen.

3.3 Analyse Pythonbibliotheken fiir Energiedaten

Es gibt viele verschiedene Tools, von denen jedes auf seine eigene Anwendung spezialisiert
ist oder seine eigenen Stiirken hat. Ziel dieser Arbeit ist es, einen Uberblick iiber die Land-
schaft der Data-Visualisierungstools in Python zu geben und zu ermitteln, welche Biblio-
theken fiir die Energiedatenvisualisierung am besten geeignet sind. Abbildung 2.2 gibt
einen groben Uberblick iiber die Python-Visualisierungslandschaft. Zur Erfiillung der Vi-
sualisierungsanforderungen sind die auf Matplotlib basierenden Bibliotheken Matplotlib
und Seaborn ausgewahlt. Matplotlib ist eine Kernbibliothek fiir die Datenvisualisierung
in Python und Seaborn ist eine auf Matplotlib aufbauende High-Level-Schnittstelle zum
Zeichnen ansprechender statistischer Grafiken. Unter den auf Java-Script basierenden
Bibliotheken sind Plotly und Bokeh ausgewahlt. Plotly und Bokeh sind die Kernbiblio-
theken von Python, auf denen mehrere iibergeordnete Bibliotheken aufbauen. Als JSON-
basierte Bibliothek ist Vega-Altair ausgew&hlt, das eine kurze deklarative JSON-Syntax
flir die Erstellung der Visualisierungen bietet. Diese Arbeit behandelt die populérsten
Python-Datenvisualisierungsbibliotheken, die in die oben definierten Kategorien fallen.
Diese Bibliotheken kénnen je nach Bedarf statische und interaktive Visualisierungen im-
plementieren. Fast jede Python-Bibliothek kann verwendet werden, um statische PNG-,
SVG-, HTML- oder andere Ausgaben zu erstellen, die in eine Prisentation eingefiigt, per

E-Mail versendet oder als Abbildung in einem Dokument verdffentlicht werden konnen.

15

3 Anforderungen

Viele mo6chten Python-basierte Dashboards erstellen, mit denen Benutzer Daten unter-

suchen oder analysieren koénnen. Python bietet mehrere Bibliotheken fiir diesen Zweck.

Dash und Streamlit werden verwendet, um webbasierte Dashboards zu erstellen. Fiir die

Kartenvisualisierung werden Plotly, Folium und Geopandas ausgewéahlt, um mit geogra-

phischen Koordinaten zu arbeiten. Die in dieser Arbeit behandelten Bibliotheken sind:
Matplotlib, Seaborn fiir die statische Visualisierung, Plotly, Bokeh, Altair fiir die interak-

tive Visualisierung, Dash und Streamlit fiir die Erstellung von Dashboards und Folium,

Geopandas und Plotly fiir die Kartenvisualisierung.

3.4 Anforderungen fiir die Bibliotheken

3.4.1 Anforderungen fiir die statische Visualisierungs Bibliotheken
(Matplotlib und Seaborn)

“Muss”-Anforderungen

“Soll”-Anforderungen

“Kann”-Anforderungen

Visualisiert alle in Tabel-

le 3.2 aufgefiihrten Visua-

Integrierte Themen, Figu-

renasthetik und Farbpalet-

Interaktivitat

von Plots in einer Vielzahl

von Formaten

grofen Datenséitzen

lisierungstypen. ten

Anpassung des Dia- | Erweiterte Visualisie- | Integration mit Dashboard
gramms (X-Y-Achse und | rungstypen Bibliothek wie Streamlit
Ticks formatieren, Be-

schriftung, Legende, Titel

hinzufiigen)

Moglichkeit zum Export | Leistungseffizienz bei | Erweiterte Anpassungen

von Text und Anmerkun-
gen wie z.B. Logo und
Fufsnote fiir Quelle

Integration mit Pandas

zur Datenmanipulation

Umfassende Dokumentati-
on und aktive Support-

Community

Tabelle 3.3: Anforderungen fiir die statische Visualisierungs Bibliotheken (Matplotlib

und Seaborn)

16

3 Anforderungen

3.4.2 Anforderungen fiir die interaktive Visualisierungs Bibliotheken
(Plotly, Bokeh, Vega-Altair)

“Muss”-Anforderungen

“Soll”-Anforderungen

“Kann”-Anforderungen

Alle Muss-Anforderungen
von statischer Visualisie-

rung erfillen.

Alle

von statischer Visualisie-

Soll-Anforderungen

rung erfiillen.

Erweiterte Diagramm-
typen wie Karten und

Sankey-Diagramme.

Interaktive Visualisierung
(Hover infos, zoom, pan,

reset, download)

Hinzufiigen von benut-
zerdefinierten Steuerele-
menten wie Schaltflachen,
Schie-

bereglern und Selektoren.

Dropdown-Meniis,

globale Bereitstellung von

interaktiven Plots.

Exportmoglichkeiten
Bildformat
(JPG,PNG,SVQG) fiir Be-
richt und Veréffentlichung,
Web-Format
fiir Dashboard)

(statisches

interaktives

Benutzerfreundlichkeit
(Intuitive API und tiber-

sichtliche Dokumentation)

Tabelle 3.4: Anforderungen fiir die interaktive Visualisierungs Bibliotheken (Plotly, Bo-

keh, Vega-Altair)

17

3 Anforderungen

3.4.3 Anforderungen fiir die Karten Visualisierungs Bibliotheken

(Plotly, Folium, Geo-pandas)

“Muss”-Anforderungen

“Soll”-Anforderungen

“Kann”-Anforderungen

Choroplethkarte der
Elektroladesdule auf
Bundesland-und Land-

kreiseebene

Erweiterung mit inter-

aktiven Funktionen wie
HTML Popups,

Uusw.

Search

Karte auf PLZ Ebene

Hovern Funktion um In-

ClusterMarker und weiter

Layerliste auf Bundesland-

stationen markieren

formation tiber Bundes- | Plugins zur Verbesserung | , Landkreis- und PLZ-
lander ggf. Landkreise und | der Sichtbarkeit und Be- | Ebene

Anzahl der Ladesdulen zu | nutzerfreundlichkeit

erfahren

Alle Standorte von Lade- | Leistungseffizienz bei | Filter fiir normale und

grofen Datenpunkten

schnelle Ladesaulen

Tabelle 3.5: Anforderungen fiir die Karten Visualisierungs Bibliotheken (Plotly, Folium,

Geo-pandas)

18

4 Entwurf

In diesem Kapitel werden die analysierten Visualisierungstypen und Bibliotheken zusam-

mengefasst.

4.1 Visualisierungstypen

In der Tabelle 3.2 wird ein Uberblick iiber die verschiedenen Visualisierungszwecke gege-
ben. Es wird gezeigt, welche Informationen aus den Daten gewonnen werden sollen und
welche Visualisierungstypen dafiir geeignet sind. Abbildung 4.1 gliedert die ausgewéhlten
Visualisierungstypen in drei Gruppen: einfache Visualisierungen, statistische Diagramme

und komplexe Visualisierungen.

Abbildung 4.1: Entwurf Visualisierungstypen

19

4 Entwurf

4.2 Python

Fiir die Auswahl der Python-Bibliotheken werden die Anzahl der Github-Sterne, die An-
zahl der Downloads und die Anzahl der Mitwirkenden als Kriterien herangezogen. Dar-
iiber hinaus werden auch einzelne Gruppen aus der Python-Visualisierungslandschaft be-
riicksichtigt. Dazu geh6ren Matplotlib und Seaborn fiir Matplotlib-basierte Bibliotheken,
Bokeh und Plotly fiir JavaScript-basierte Bibliotheken und Vega-Altair fiir JSON-basierte
Bibliotheken. Zusétzlich werden bei der Auswahl der Bibliotheken Benutzeranforderun-
gen beriicksichtigt. Z. B. statische Visualisierung, interaktive Visualisierung, Frstellung

von Dashboards und Visualisierung von Karten.

Bibliotheken Gemeinschat

Sterne | Mitwirkenden | Downloads
Matplotlib 19k 417 59M /monat
Seaborn 12k 185 18M /monat
Vega-Altair 8.9k 144 22M /monat
Bokeh 19k 391 4.9M /monat
Plotly 15k 231 14M /monat
Dash 20k 124 2.8M /monat
Streamlit 31k 208 4M /monat
Folium 6.6k 153 978k /monat
Geopandas 4.1k 209 6.4/monat

Tabelle 4.1: Die beliebtesten Python-Bibliotheken fiir Datenvisualisierung

Die Tabelle 4.1 zeigt die géngigen Python-Bibliotheken, die den Auswahlkriterien fiir
Bibliotheken entsprechen.

20

4 Entwurf

Abbildung 4.2: Entwurf Pythonbibliotheken

Die Abbildungen 4.1 und 4.2 geben einen Uberblick iiber die Struktur der vorliegenden
Arbeit.

4.3 Jupyter Notebook

Die Visualisierungstypen werden von verschiedenen Pythonbibliotheken implementiert
und von jeder Bibliothek wird ein Jupyternotebook erstellt. Im Rahmen dieser Arbeit
werden den kiinftigen Forscherinnen und Forschern die nachfolgend aufgefiihrten Notiz-

biicher in GitHub des EcoCharge Projekts zur Verfiigung gestellt.

e Datenvisualisierung mit Matplotlib-Bibliothek
e Datenvisualisierung mit Seaborn-Bibliothek

e Datenvisualisierung mit Vega-Altair-Bibliothek
e Datenvisualisierung mit Bokeh-Bibliothek

e Datenvisualisierung mit Plotly-Bibliothek

e Sankey-Diagramm mit Plotly

e Kartenvisualisierung mit Plotly

e Kartenvisualisierung mit Folium

21

4 Entwurf

e Kartenvisualisierung mit Geopandas
e EDA und Zeitreihenanalyse

e Dashboard mit Streamlit

22

5 Implementierung

In Abschnitt 4 wird ein Entwurf zur Implementierung im Rahmen dieser Arbeit vor-

gestellt. Die folgende Tabelle 5.1 bietet einen Uberblick iiber die verwendete Kompo-

nente der Programmierumgebung. Dariiber hinaus werden Informationen iiber die erste,

aktuelle und fiir die vorliegende Arbeit verwendete Version bereitgestellt. Alle Visuali-

sierungstypen werden anhand ausgewéahlter Bibliotheken implementiert. Die implemen-

tierten interaktiven Funktionen lassen sich anhand der gespeicherten HT'ML-Dateien in
GitHub nachvollziehen.

Komponente Erstes Veroffentlichungsjahr | Erste Version | Aktuelle Version | Verwendete Version
Python 1991 0.9.0 3.12.3 3.11.5
Visual Studio Code 2015 1 1.88 1.85.2
Jupyter Notebook 2015 4 7.1.3 7.0.8
Matplotlib 2003 0.1 3.8.3 3.8.2
Seaborn 2012 0.1 0.13.2 0.12.2
Vega-Altair 2016 1.0.0 5.3.0 5.2.0
Bokeh 2013 0.1.0 34.1 2.4.3
Plotly 2013 0.6 5.21.0 5.18.0
Folium 2014 0.1.3 0.16.0 0.15.1
Geopandas 2014 0.1.0 1.0.0 0.14.3
Streamlit 2019 0.1.0 1.33.0 1.31.0

Tabelle 5.1: Komponenten der Programmierungsumgebung und ihre Versionen

5.0.1 EDA

Die explorative Datenanalyse ist ein wichtiger Schritt in jedem Datenanalyseprojekt. Sie

hilft, die Daten besser zu verstehen und Muster, Beziehungen, Trends und Anomalien
zu erkennen. Diese Arbeit gibt einen kurzen Uberblick iiber die Schritte der EDA mit
Python fiir den Datensatz 2022.

23

0 N O U s W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23

© 0 N O U W NN =

— =
= o

5 Implementierung

Schritte 1. Bibliotheken und Datensitze importieren

Import necessary libraries
import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

Read CSV file into a DataFrame
def read_SMARD_data (path) :
df = pd.read_csv(path, delimiter=’;’, thousands=’.’, decimal=',’,

parse_dates=[[0,1]], dayfirst="True")

Spalten umbenennen

df = df.rename (
columns={
"Datum_Anfang’: ’'Datum’,
"Gesamt (Netzlast) [MWh] Originalauflsungen’: ’'Gesamt_Netzlast’,
"Residuallast [MWh] Originalauflsungen’: ’"Residuallast’,
"Pumpspeicher [MWh] Originalauflsungen’ : ’StrombezugPumpspeicher’
}

)

df .pop ("Ende’)

return df

#Load the data into a pandas dataframe

SMARD_df = read_SMARD_data("../../data/SMARD Data/Real data/
Realisierter_Stromverbrauch_202201010000_202212312359_Viertelstunde.csv")

Listing 5.1: Schritte 1: Bibliotheken und Datensédtze importieren

Schritte 2. Datenanalyse zur Gewinnung erster Erkenntnisse

#check the shape of dataset
print ("Data shape :", SMARD_df.shape)

#view the first few rows of the dataset
print ("Data’s first few rows :\n", SMARD_df.head())

#check the data types of each feature
print ("Data type of the attributes :\n", SMARD_df.dtypes)

print ("Checking for missing values :\n",
SMARD_df.isnull () .sum())

Listing 5.2: Schritte 2: Datenanalyse zur Gewinnung erster Erkenntnisse

24

5 Implementierung

Abbildung 5.1: Datenanalyse zur Gewinnung erster Erkenntnisse

Der Datensatz enthéalt 35.040 individuelle Datensédtze und vier Variablen. Die Eintrége
sind in 15-Minuten-Intervallen aufgefiihrt. Die Variablen sind Datum vom Typ date-
time64[ns|, das fiir die Verarbeitung von Datum-Zeit-Daten verwendet wird, und die
Gesamtnetzlast, die Residuallast und der StrombezugPumpspeicher sind alle quantitativ
kontinuierliche Variablen vom Typ float64. Die Anzahl der Nullen in jeder Spalte des

Datensatzes zeigt, dass keine Werte im Datensatz fehlen.
Schritte 3. Deskriptive statistische Analyse

Nach einem ersten Uberblick iiber die Daten wird eine deskriptive statistische Analy-
se durchgefiihrt, bei der deskriptive Statistiken wie Mittelwert, Median, Minimum und

Standardabweichung mit der Funktion ,describe()‘ erstellt werden.

SMARD_df.describe ()

Listing 5.3: Schritte 3: Deskriptive statistische Analyse

25

S T s W N

10

5 Implementierung

Abbildung 5.2: Deskriptive statistische Analyse

Die Gesamtnetzlast variiert zwischen 7963,75 MWh /15min (Grundlast) und 19707 MWh/15min
(Spitzenlast). Der Mittelwert betrdgt 13773,90 MWh/15min, wihrend der Median mit
13777,75 MWh/15min etwas hoher liegt, was auf eine symmetrische Verteilung der Daten
um den Mittelwert hinweist. Eine Standardabweichung von 2400,05 MWh/15min zeigt

eine mafige Schwankung der Gesamtnetzlast.
Schritte 4. Datenbereinigung

Im néchsten Schritt erfolgt eine Datenbereinigung, bei der fehlende Werte im Datensatz
behandelt und visualisiert, irrelevante Merkmale entfernt und Ausreiffer mit Techniken
wie Boxplots, Z-Score und IQR erkannt werden. In Schritt 1 ist festgestellt worden, dass es
keine fehlenden Werte im Datensatz gibt. Die Variable ,StrombezugPumpspeicher® wird
bei der Analyse nicht berticksichtigt und die Spalte wird aus dem Dataframe entfernt.

Ausreifler werden mit Boxplots veranschaulicht.

import seaborn as sns

import matplotlib.pyplot as plt

fig, axes = plt.subplots(l, 2)

sns.boxplot (ax = axes[0], data = SMARD_df[’Gesamt_Netzlast’], notch=True,
flierprops={"marker": "x"},
medianprops={"color": "r", "linewidth": 1}, whiskerprops={’
color’: 'red’, ’linewidth’: 1, ’linestyle’: ’:’},
capprops={’color’: ’"black’, ’'linewidth’: 1}, palette='bright’,
orient="h’, width=.2)

axes[0] .set_xlabel ('Realisierter Stromverbrauch in [MWh/15min]’)

26

11
12

13

14

15

16
17

5 Implementierung

sns.boxplot (ax = axes[l], data = SMARD_df[’Residuallast’], notch=True,
flierprops={"marker": "x"},
medianprops={"color": "r", "linewidth": 1}, whiskerprops={’
color’: ’'red’, ’linewidth’: 1, ’linestyle’: ’:’},
capprops={’color’: 'black’, ’linewidth’: 1}, palette=’"bright’
, orient='h’, width=.2)
axes[1l] .set_xlabel ('Residuallast in [MWh/15min]’)

plt.show ()

Listing 5.4: Schritte 3: Deskriptive statistische Analyse

Abbildung 5.3: Boxplot zur Erkennung von Ausreiffern

Aus der Abbildung 5.3 ist ersichtlich, dass es Ausreifser in Residuallast gibt.
Schritte 5. Datenvisualisierung

Bei der Datenvisualisierung wird eine univariate Analyse durchgefiithrt, um Ausreifer und
ungewohnliche Beobachtungen mittels Boxplot zu identifizieren. Zur Beschreibung der
Streuung und Dispersion der Variablen werden die Spannweite, Varianz oder Standard-
abweichung berechnet. Auferdem wird die Form der Verteilung der Variablen durch Er-
stellen eines Histogramms identifiziert. Anschliefend wird eine bivariate Analyse durch-
gefiihrt, um die Beziehung zwischen zwei Variablen in einem Datensatz zu untersuchen.
Dabei werden Muster und Trends in einem Datensatz identifiziert, indem ein Punktedia-

gramm erstellt wird.

Univariate Analyse

27

5 Implementierung

Ein Beispiel fiir einen Boxplot ist in Abbildung 5.3 zu sehen. Die Funktion pandas des-
cribe() liefert Mittelwert und Median zur Bestimmung der Streuung, wihrend die Stan-
dardabweichung zur Bestimmung der Streuung der Variablen dient (siehe 5.0.1). Der
Medianwert liegt nur wenig tiber dem Mittelwert, was auf eine symmetrische Verteilung

der Daten um den Mittelwert hindeutet, was auch in Abbildung 5.4 erkennbar ist.

Abbildung 5.4: Histogramm zur Bestimmung der Form der Verteilung

Bivariate Analyse Die Abbildung 5.5 zeigt ein Punktendiagramm zur Ermittlung mog-

licher Trends und Muster im Datensatz.

Abbildung 5.5: Punktendiagramm zur Ermittlung von Muster und Trend im Datensatz

28

5 Implementierung

Die Abbildung 5.5 zeigt die téglichen Héchst- und Tiefstwerte. Der gleitende Mittelwert
zeigt eine steigende Tendenz des Stromverbrauchs im Winter und eine fallende Tendenz
im Sommer. Die monatliche Darstellung der Stromverbrauchskurve zeigt den Einfluss

von Wochenenden, Feiertagen und Wochentagen auf den Stromverbrauch.

Im néchsten Abschnitt werden verschiedene Visualisierungstypen mit Hilfe verschiedener
Python-Bibliotheken implementiert. Dadurch kénnen zusétzliche Informationen iiber den

Datensatz gewonnen werden.

5.1 Daten Visualisierung mit Matplotlib

5.1.1 Liniendiagramm

Abbildung 5.6: Liniendiagramm mit matplotlib

Das Liniendiagramm zeigt die sich téglich wiederholenden Hochst- und Tiefstwerte des
Energieverbrauchs. Damit wird der typische Tagesverlauf dargestellt. Ein gleitender Durch-
schnitt zeigt einen hoheren Stromverbrauch im Winter und einen niedrigeren Stromver-
brauch im Sommer. Dies weist auf saisonale Einfliisse hin. Die gegliattete Durchschnitts-

linie zeigt auch den allgemeinen Trend des Energiebedarfs im Jahresverlauf.

29

5 Implementierung

5.1.2 Balkendiagramm

Abbildung 5.7: Balkendiagramm mit matplotlib

Das Balkendiagramm zeigt die monatlichen Stromverbrauchsdaten fiir Deutschland im
Jahr 2018. Es unterscheidet zwischen zwei verschiedenen Arten von Energielasten: der
Gesamt (Netzlast) und der Residuallast. Die Residuallast stellt die Differenz zwischen der
gesamten Netzlast und der Stromerzeugung aus erneuerbaren Energiequellen dar und ist
durch kleinere Balken dargestellt. Der Stromverbrauch zeigt ein saisonales Muster mit
hoherem Verbrauch in den kélteren Monaten (Januar, Februar) und gegen Ende des
Jahres (Oktober, November, Dezember). Dies konnte auf einen erhohten Heizbedarf in

diesen Zeitraumen zuriickzufiithren sein.

30

5 Implementierung

5.1.3 Boxplot

Abbildung 5.8: Boxplot mit matplotlib

Das erste Subplot zeigt die Verteilung der Gesamtnetz- und Residuallast fiir das gesamte
Jahr. Es ist zu erkennen, dass der Median und der Mittelwert nahe beieinander liegen,
was auf eine symmetrische Verteilung der Daten um die zentrale Tendenz hinweist. Die
Whisker erstrecken sich, um den Bereich der Daten zu zeigen, und die Box zeigt den Inter-
quartilsbereich (IQR), der die mittleren 50% der Datenpunkte darstellt. Die Residuallast
enthalt Ausreiffer, die von den typischen Tageswerten abweichen und auf Extremwerte

hinweisen.

Im zweiten Subplot ist die monatliche Verteilung der Gesamtnetzlast dargestellt. Ahnlich
wie bei der vorherigen Analyse scheint es einen saisonalen Trend zu geben. In den kélte-
ren Monaten sind die Medianwerte hoher als in den warmeren Monaten. Die Lange der
Kastchen und die Whisker zeigen die Variabilitdt innerhalb jedes Monats. Die kélteren

Monate weisen eine héhere Variabilitdt mit langeren Whiskern auf.

31

5 Implementierung

5.1.4 Kreisdiagramm

Abbildung 5.9: Kreisdiagramm mit matplotlib

Grofte Anteile sind in den Monaten Januar, Februar und Dezember zu sehen, was auf
einen hoheren Stromverbrauch in den kilteren Monaten aufgrund des Heizbedarfs hin-
weist, was auch die Auswirkungen der Jahreszeiten auf den Stromverbrauch verdeut-

licht.

5.1.5 Flachendiagramm

Abbildung 5.10: Flachendiagramm mit matplotlib

32

5 Implementierung

5.1.6 Histogramm

Abbildung 5.11: Histogramm mit matplotlib

Das Histogramm zeigt die Haufigkeitsverteilung von Gesamtnetzlast und Residuallast,
wobei die gestrichelte Linie den Median, den Mittelwert der beiden Werte, darstellt. Die
x-Achse zeigt den Wertebereich des Datensatzes, die y-Achse die Anzahl der Datenpunkte

in jedem Bereich.

Die Daten sind symmetrisch, wobei der Mittelwert und der Median annidhernd gleich
sind, und das Histogramm weist auf beiden Seiten seiner Mitte eine &hnliche Form auf. Im
Residuallastdiagramm gibt es zwei markante Spitzen, die auf einen bimodalen Datensatz

hinweisen.

5.1.7 Violinplot

Abbildung 5.12: Violinplot mit matplotlib

33

5 Implementierung

Die gedrehte Kerneldichte der Gesamtnetzlast und Restiduallast zeigt die Wahrscheinlich-
keitsdichte der Daten bei verschiedenen Werten. Der Median und der Interquartilbereich

sind durch Markierungen und Késten gekennzeichnet.

5.1.8 Wiarmekarte

Betrachtung variante 1

Abbildung 5.13: Heatmap Betrachtung Variante 1 mit matplotlib

Diese Heatmap zeigt den durchschnittlichen Stromverbrauch fiir jede Viertelstunde des

Tages fiir jeden Monat.

Spitzenzeiten: Es scheint bestimmte Tageszeiten zu geben, zu denen der Stromverbrauch
am hochsten ist, was an den helleren (oder wirmeren) Farben zu erkennen ist. Dies
kénnte mit der Rush Hour zusammenhéngen, wenn die Menschen wach sind, wenn die

Geschifte geoffnet sind und wenn die industrielle Aktivitdt am intensivsten ist.

Ubergangszeiten: Der Stromverbrauch steigt ab den frithen Morgenstunden allméhlich
an, erreicht seinen Hohepunkt gegen Mittag oder am frithen Nachmittag und sinkt dann
gegen Abend wieder ab. Dieses Muster entspricht dem typischen Tagesablauf von Strom-

verbrauch.

Saisonale Schwankungen: Im Winter ist der Gesamtstromverbrauch héher. Es gibt leichte

Schwankungen in den Spitzenzeiten des Stromverbrauchs wahrend der verschiedenen Jah-

34

5 Implementierung

reszeiten, die auf Veranderungen der Tageslichtstunden und des menschlichen Verhaltens

zurickzufiithren sind.

Konstanz: Die Ahnlichkeit der Muster iiber die Monate hinweg (auch wenn die Intensitéit
variiert) deutet auf konsistente Alltagsroutinen und Stromverbrauchsgewohnheiten in

Haushalten, Gewerbe und Industrie hin.

Betrachtung variante 2

Abbildung 5.14: Heatmap Betrachtung Variante 2 mit matplotlib

Diese Heatmap zeigt die tédgliche Summe des Stromverbrauchs fiir jeden Tag des Monats

im Laufe des Jahres.

Téagliche Schwankungen: Die Stromnachfrage ist an Wochenenden und Feiertagen im
Allgemeinen niedriger als an Wochentagen, was auf eine geringere gewerbliche und in-

dustrielle Nachfrage zuriickzufiihren ist.
Saisonale Schwankungen: Hoherer Stromverbrauch in den Wintermonaten.

Sie kénnen auch erkennen, dass nach jeweils 5 Késtchen mit warmer Farbe (hohem Strom-
verbrauch) ein helles Késtchen erscheint, das fiir Wochenenden steht. Wenn mehr als 2
helle Kéastchen erscheinen, handelt es sich um einen Feiertag, wie z. B. im Dezember

wegen der Weihnachtsferien oder in der ersten Aprilwoche wegen der Osterferien.

35

5 Implementierung

Betrachtung variante 3

Abbildung 5.15: Heatmap Betrachtung Variante 3 mit matplotlib

Konsistenz im Tagesverlauf: Der Farbverlauf von Blau zu Rot und wieder zuriick zu Blau
zeigt ein konsistentes Muster des Stromverbrauchs, der im Laufe des Tages ansteigt,
seinen Hohepunkt erreicht und wieder abféllt. Dies deutet auf eine regelméfsige tégliche

Aktivitdt und einen regelméfigen Stromverbrauch hin.
Tageszeitliche Schwankungen: Der Stromverbrauch ist tagsiiber héher als in der Nacht.

Saisonale Schwankungen: Die Verbrauchsintensitit folgt einem eindeutigen saisonalen

Muster, das im Winter héher und im Sommer niedriger ist.

Spitzenstunden: In Winter gibt es zwei Spitzen im Stromverbrauch — eine am Nachmittag
und eine am Abend und im Sommer weist der Stromverbrauch eine einzige Spitze auf,

typischerweise wahrend des Tages.

36

5 Implementierung

Betrachtung variante 4

Abbildung 5.16: Heatmap Betrachtung Variante 4 mit matplotlib

Die Heatmap stellt den viertelstiindlichen Stromverbrauch fiir jeden Tag des Jahres dar.
Diese Variante der Heatmap zeigt die Konsistenz des Stromverbrauchs tiber den gesamten
Tag, die taglichen und saisonalen Schwankungen, die Spitzenzeiten und den Einfluss von

Wochentagen und Wochenenden auf den Energieverbrauch.

Matplotlib ist eine vielseitige und leistungsstarke Bibliothek zur Erstellung von hochwer-
tigen Grafiken fiir wissenschaftliche Publikationen. Sie bietet sowohl eine einfache und
intuitive Schnittstelle (Pyplot) als auch eine objektorientierte Architektur, die es erlaubt,
alles innerhalb eines Plots zu verdndern [23|. Alle grundlegenden Plots und komplexen
Visualisierungen, wie Warmekarten und deren verschiedene Varianten, sind mit Matplot-
lib implementiert. Fiir fast jede Eigenschaft lassen sich in Matplotlib Voreinstellungen
definieren: Groke und DPI der Grafik, Linienbreite, Farbe und Stil, Achsen, Achsen-
und Rastereigenschaften, Text- und Schrifteigenschaften und so weiter [25]. ,Nice-to-
have-Funktionen fiir statische Plots, wie z. B. die erweiterte Anpassung von Text und
Anmerkungen wie Logo und Fufnote fiir die Quelle, sind ebenfalls implementiert. Die
Community von Matplotlib ist riesig, da sie externe Ressourcen wie Biicher, Kapitel,
Artikel, Videos und Tutorials zur Verfiigung stellt und eine ausfiihrliche Dokumentation

fiir Anfinger bietet, um mit der Visualisierung zu beginnen [26].

37

5 Implementierung

5.2 Daten Visualisierung mit Seaborn

5.2.1 Liniendiagramm

Abbildung 5.17: Liniendiagramm mit Seaborn

5.2.2 Balkendiagramm

Abbildung 5.18: Balkendiagramm mit Seaborn

38

5 Implementierung

5.2.3 Boxplot

Abbildung 5.19: Boxplot mit Seaborn

5.2.4 Kreisdiagramm

Abbildung 5.20: Kreisdiagramm mit Seaborn

39

5 Implementierung

5.2.5 Flachendiagramm

Abbildung 5.21: Flichendiagramm mit Seaborn

5.2.6 Histogramm

Abbildung 5.22: Histogramm mit Seaborn

40

5 Implementierung

5.2.7 Violinplot

Abbildung 5.23: Violinplot mit Seaborn

5.2.8 Warmekarte

Betrachtung variante 1

Abbildung 5.24: Heatmap Betrachtung Variante 1 mit Seaborn

41

5 Implementierung

Betrachtung variante 2

Abbildung 5.25: Heatmap Betrachtung Variante 2 mit Seaborn

Betrachtung variante 3

Abbildung 5.26: Heatmap Betrachtung variante 3 mit Seaborn

42

5 Implementierung

Betrachtung variante 4

Abbildung 5.27: Heatmap Betrachtung Variante 4 mit seaborn

Mit Seaborn kénnen alle grundlegenden Plots und komplexe Visualisierungen wie Heat-
maps und deren Varianten erstellt werden. Matplotlib ist sehr anpassungsfiahig, aber es
kann schwierig sein zu wissen, welche Einstellungen optimiert werden miissen, um eine
ansprechende Darstellung zu erhalten. Seaborn kommt mit einer Reihe von angepassten
Themen und einer High-Level-Schnittstelle zur Steuerung des Aussehens von Matplotlib-
Grafiken. Seaborn erleichtert die Verwendung von Farben, die gut zu Dateneigenschaften
und Visualisierungszielen passen. Einige Diagramme, wie z. B. Kreisdiagramm und F1a-
chendiagramm, haben keine eigenen eingebauten Funktionen. Daher wird Matplotlib ver-
wendet, um das Diagramm zu erzeugen, und die Seaborn-Funktionen werden verwendet,
um ansprechende Diagramme zu erstellen. Die Daten von 2019 werden mit Seaborn vi-
sualisiert und die Ergebnisse werden ahnlich wie die mit Matplotlib erstellten Diagramme

analysiert [48].

43

5 Implementierung

5.3 Daten Visualisierung mit Vega-Altair

5.3.1 Liniendiagramm

Abbildung 5.28: Liniendiagramm mit Vega-Altair

5.3.2 Balkendiagramm

Abbildung 5.29: Balkendiagramm mit Vega-Altair

44

5 Implementierung

5.3.3 Boxplot

Abbildung 5.30: Boxplot mit Vega-Altair

45

5 Implementierung

5.3.4 Kreisdiagramm

Abbildung 5.31: Kreisdiagramm mit Vega-Altair

5.3.5 Flachendiagramm

Abbildung 5.32: Flachendiagramm mit Vega-Altair

46

5 Implementierung

5.3.6 Histogramm

Abbildung 5.33: Histogramm mit Vega-Altair

5.3.7 Violinplot

Abbildung 5.34: Violinplot mit Vega-Altair

47

5 Implementierung

5.3.8 Wiarmekarte

Betrachtung variante 1

Abbildung 5.35: Heatmap Betrachtung Variante 1 mit Vega-Altair

Betrachtung variante 2

Abbildung 5.36: Heatmap Betrachtung Variante 2 mit Vega-Altair

48

5 Implementierung

Betrachtung variante 3

Abbildung 5.37: Heatmap Betrachtung Variante 3 mit Vega-Altair

Betrachtung variante 4

Abbildung 5.38: Heatmap Betrachtung Variante 4 mit Vega-Altair

Vega-Altair ist eine Python-Bibliothek fiir deklarative statistische Visualisierung, basie-
rend auf Vega und Vega-Lite. Bei der Erstellung eines Diagramms in Altair erfolgt au-
tomatisch eine Ubersetzung des Codes in eine Vega-Lite-Spezifikation im JSON-Format.
Diese Spezifikation beschreibt die Struktur des Diagramms, einschliefllich der darzustel-
lenden Daten, der verwendeten Marker (wie Balken, Linien und Punkte) und der Kodie-
rungen, die Datenvariablen auf visuelle Eigenschaften abbilden (wie die x-Achse, y-Achse

und Farbe). Dies sollte auch alle weiteren Anpassungen wie Achsenbeschriftungen, Titel

49

5 Implementierung

und Legenden umfassen. Der Kerngedanke besteht darin, Verbindungen zwischen den

Datenspalten und den visuellen Kodierungskanélen zu erkléren [46].

Altair implementiert sowohl einfache Plots als auch komplexere Visualisierungen wie
Heatmaps und ihre Varianten mit Vega-Lite. Altair verwendet eine deklarative Gram-
matik fiir die Visualisierung und Interaktion, die es ermdglicht, den Plot durch Aktionen
wie das Erhéhen oder Verringern der Deckkraft und die Auswahl von Intervallen durch
Klicken und Ziehen zu verdandern. Widgets sind an den Plot gebunden, um datengesteu-
erte Lookups zur Anzeige ausgewihlter Variablen zu erméglichen. Fiir logikgesteuerte
Vergleiche wird dem Diagramm ein Farbwahler hinzugefiigt, mit dem der Benutzer inter-
aktiv Diagrammfarben auswahlen kann. Aufserdem sind zwei Ansichten derselben Daten
vertikal miteinander verbunden, wobei die Auswahl im unteren Diagramm die Anzeige im
oberen Diagramm aktualisiert. Grundlegende Interaktionen wie Schwenken und Zoomen
sind nicht hinzugefiigt, da dies die Leistung beeintrachtigt. Stattdessen ist nur Tooltips
implementiert, die es dem Benutzer erméglichen, den Mauszeiger iiber die Daten zu be-
wegen, um Informationen zu erhalten. Diagramme kénnen in JSON, HTML, PNG, SVG
und PDF gespeichert werden [47].

50

5 Implementierung

5.4 Daten Visualisierung mit Bokeh

5.4.1 Liniendiagramm

Abbildung 5.39: Liniendiagramm mit Bokeh

5.4.2 Balkendiagramm

Abbildung 5.40: Balkendiagramm mit Bokeh

51

5 Implementierung

5.4.3 Boxplot

Bokeh bietet keine integrierte Funktion, um Boxplots zu erstellen.

5.4.4 Kreisdiagramm

Abbildung 5.41: Kreisdiagramm mit Bokeh

52

5 Implementierung

5.4.5 Flachendiagramm

Abbildung 5.42: Flachendiagramm mit Bokeh

5.4.6 Histogramm

Abbildung 5.43: Histogramm mit Bokeh

53

5 Implementierung

5.4.7 Violinplot

Ahnlich wie Boxplot bietet Bokeh keine integrierte Funktion, um Violinplot zu erstel-

len.

5.4.8 Warmekarte

Betrachtung variante 1

Abbildung 5.44: Heatmap Betrachtung Variante 1 mit Bokeh

Betrachtung variante 2

Abbildung 5.45: Heatmap Betrachtung Variante 2 mit Bokeh

54

5 Implementierung

Betrachtung variante 3

Abbildung 5.46: Heatmap Betrachtung Variante 3 mit Bokeh

Bokeh bietet keine integrierte Funktion zur direkten Erstellung von Boxplots und Violin-
plots. Alle anderen Visualisierungstypen werden jedoch von Bokeh unterstiitzt. Es gibt
mehrere Moéglichkeiten, auf browserbasierte Benutzerinteraktionen zu reagieren. Plottools
wie xpan, pan, box zoom, lasso_select, zoom in, crosshair, save und reset erleichtern
das Hinzufiigen bestimmter Interaktionsarten zwischen Plots. Hovertool wird verwendet,
um Tooltips anzuzeigen, wenn der Mauszeiger iiber bestimmte Bereiche des Plots be-
wegt wird. Legenden, die zu Bokeh-Plots hinzugefiigt werden, sind interaktiv, d. h. auf
die Legendeneintrdge zu klicken oder zu tippen, blendet die entsprechende Glyphe in
einem Plot aus. Die Widgets von Bokeh bieten eine Reihe von interaktiven Funktionen,
um eine Front-End-Benutzeroberfliache fiir eine Visualisierung bereitzustellen. Zur Ver-
arbeitung dieser Interaktionen werden Java-Script-Callbacks verwendet. Es gibt einen
Color-Picker zur Auswahl einer Farbe fiir das Diagramm, ein Div-Element zur Anzeige
von Text, das HTML unterstiitzt, einen Toggle-Button, um ein bestimmtes Diagramm
ein- oder auszublenden, und ein Range-Tool, um den Bereich eines anderen Diagramms
zu steuern. Bokeh kann Bilder im RGBA-Format fiir Portable Network Graphics (PNG)
mit der Funktion export png() und Bilder fiir Scalable Vector Graphics (SVG) mit der
Funktion export svg() aus Layouts erzeugen [7]|. Bokeh bietet Werkzeuge zur Erstellung
komplexer, interaktiver und webfdhiger Diagramme. Die Bibliothek ist gut dokumen-

tiert und ermoglicht es, das Aussehen des Diagramms mit Bokeh-Themen anzupassen.

55

5 Implementierung

Dariiber hinaus kénnen Legenden, Texte und Anmerkungen hinzugefiigt sowie Achsen,

Gitter und Symbolleisten angepasst werden.

5.5 Daten Visualisierung mit Plotly

5.5.1 Liniendiagramm

Abbildung 5.47: Liniendiagramm mit Plotly

Die Daten fiir 2020 werden mit Plotly visualisiert. Der Bereichsschieberegler ermoglicht
die Interaktion mit dem Diagramm, um Daten eines bestimmten Wertebereichs zu fil-
tern. Die Datenpunkte kénnen mit der Maus iiberfahren und die Darstellung kann ge-
zoomt, geschwenkt und zuriickgesetzt werden. Mit Hilfe des Dropdown-Meniis kénnen
auch Viertelstundenwerte, Stundenwerte und Wochenwerte fiir die Trendanzeige ausge-

wahlt werden.

56

5 Implementierung

5.5.2 Balkendiagramm

Abbildung 5.48: Balkendiagramm mit Plotly

5.5.3 Boxplot

Abbildung 5.49: Boxplot mit Plotly

Wie bei den statischen Diagrammen sind Median, Mittelwert, oberes/unteres Quartil,
Maximum/Minimum und Ausreifer sichtbar. Beim Uberfahren mit der Maus werden die

entsprechenden Werte angezeigt.

57

5 Implementierung

5.5.4 Kreisdiagramm

Abbildung 5.50: Kreisdiagramm mit Plotly

5.5.5 Flachendiagramm

Abbildung 5.51: Flachendiagramm mit Plotly

58

5 Implementierung

Ahnlich wie beim Liniendiagramm gibt es verschiedene Funktionen, um mit den Daten zu
interagieren, z. B. das Hovern iiber die Daten, den Bereichsschieber, das Dropdown-Menii

und benutzerdefinierte Schaltflachen als Selektoren.

5.5.6 Histogramm

Abbildung 5.52: Histogramm mit Plotly

Das Histogramm zeigt die Haufigkeitsverteilung der Gesamtnetz- und Residuallast, wobei
die Anzahl in den Bins sichtbar ist. Zur Darstellung der Wahrscheinlichkeitsdichte der
Daten bei verschiedenen Werten wird ein Violindiagramm verwendet. Beim Hovern tiber

die Daten werden die Grofe des Bins und die Haufigkeit des Wertes im Bin angezeigt.

59

5 Implementierung

5.5.7 Violinplot

Abbildung 5.53: Violinplot mit Plotly

Boxplot und eine gedrehte Kerneldichte auf jeder Seite, die die Wahrscheinlichkeitsdichte
der Daten bei verschiedenen Werten zeigt. Beim Hovern iiber die Daten werden der
Interquartilsbereich, das Maximum, das Minimum, der Mittelwert, der Median und der

Ausreifler angezeigt.

5.5.8 Wiarmekarte

Betrachtung variante 1

60

5 Implementierung

Abbildung 5.54: Heatmap Betrachtung Variante 1 mit Plotly

Diese Heatmap zeigt den durchschnittlichen Stromverbrauch iiber die Stunden des Tages
flir jeden Monat. Mit dem Mauszeiger kann iiber die Heatmap interagiert werden, um
Informationen zu erhalten. Es wird auch gezeigt, wie mehrere Datenattribute aktualisiert

werden konnen: Farbskala, Richtung der Farbskala und Liniendarstellung.

Betrachtung variante 2

Abbildung 5.55: Heatmap Betrachtung Variante 2 mit Plotly

Betrachtung variante 3

61

5 Implementierung

Abbildung 5.56: Heatmap Betrachtung Variante 3 mit Plotly

Betrachtung variante J

Abbildung 5.57: Heatmap Betrachtung Variante 4 mit Plotly

Plotly basiert auf der Plotly-JavaScript-Bibliothek (plotly.js) und erméglicht es Python
Benutzern, ansprechende interaktive Webvisualisierungen zu erstellen, die in Jupyter-
Notizbiichern angezeigt, als eigenstédndige HTML-Dateien gespeichert oder als Teil von
reinen Python-Webanwendungen mit Dash bereitgestellt werden kénnen. Die Kernfunk-
tionalitét ist in JavaScript geschrieben und bietet Anbindungen an verschiedene Sprachen
wie Python, R, Julia, JavaScript, ggplot2, F# und Matlab. Mit Plotly werden alle Dia-

gramme erstellt, die im Rahmen der vorliegenden Arbeit bendtigt werden. Plotly bietet

62

5 Implementierung

eine vollstdndige Dokumentation fiir alle Diagramme. Dies erhéht die Benutzerfreund-
lichkeit. Standardméfsig bietet Plotly grundlegende Interaktionsfunktionen wie die Aus-
wahl von Intervallen zur Auswahl von Diagrammelementen durch Klicken und Ziehen,
Zoom, Pan, Autoscale, Hover-Informationen und eine interaktive Legende zur Anzeige
der ausgewihlten Variablen. Der Bereichsschieber erméglicht die Auswahl eines Wertebe-
reichs innerhalb eines definierten Minimal- und Maximalbereichs. Der Bereichsselektor
ist ein Werkzeug zur Auswahl der im Diagramm darzustellenden Bereiche. Es stehen
Schaltflichen zur Verfiigung, um vorkonfigurierte Bereiche im Diagramm auszuwéhlen.
Ein Dropdown-Menii fiir die Auswahl von Viertelstunden-, Stunden- und Wochenwer-
ten im Liniendiagramm wurde hinzugefiigt, damit Trend und Saisonalitit erkannt und
verschiedene Datenattribute wie Farbskala, Richtung der Farbskala und Linienanzeige in

Heatmaps aktualisiert werden kénnen [36].

5.6 Sankey Diagramm

Sankey-Diagramme sind eine spezielle Art von Flussdiagrammen, bei denen die Breite
der Pfeile proportional zum Fluss ist. Sie werden normalerweise zur Visualisierung von
Energietibertragungen zwischen Prozessen verwendet. Fiir das Verstdndnis der Sankey-
Diagramme und der Fliisse sind Quelle (Ausgangsknoten), Ziel (zu dem die Quelle eine
Verbindung herstellt) und der Wert fiir das Volumen des Verbindungsflusses grundle-
gend.

Der Eurostat-Datensatz fiir das Sankey-Diagramm enthélt die Energiebilanzfliisse fir
verschiedene Energietriager wie feste Brennstoffe, erneuerbare Energien usw. In dieser
Arbeit wird nur der Fluss der festen Brennstoffe betrachtet. Um den Durchfluss in einem
Datensatz darzustellen, sind manuelle Eingaben erforderlich. Es miissen der Quellknoten,
der Zielknoten, sowie ein Wert zur Darstellung des Durchflussvolumens definiert werden.
Der Datensatz fiir feste Brennstoffe ist komplex und erfordert eine Vorverarbeitung der
Daten. Die visuelle Darstellung des Sankey-Plots auf der Webseite von Furostat dient
zur Bestimmung der Quelle und des Ziels. Diese werden anschliefsend aus der Excel-Datei
gefiltert und ihr jeweiliger Wert wird im Code zugewiesen. Die Beschriftung sowie die
Farbe der Knoten helfen bei der Differenzierung zwischen Knoten- und Quellennamen.
Im Vergleich zu anderen Visualisierungstypen, bei denen die eingebauten Funktionen die
wesentliche Grundlage bilden, erfordert die Erarbeitung des Sankey-Plots einen betracht-

lichen zeitlichen Aufwand. Die sorgfiltige Definition der Quelle und des Ziels sowie die

63

5 Implementierung

Suche des Wertes in einer komplexen Excel-Tabelle sind zeitintensiv und manuell durch-
zufiihren. Im Vergleich zu anderen Bibliotheken fiir die Datenvisualisierung bietet Plotly
ausfiihrliche Dokumentation und hilfreiche Beispiele zur Erstellung komplexer Sankey-
Diagramme, Aus diesem Grund ist Plotly die stérkste Bibliothek fiir die Darstellung von
Sankeydiagrammen [37].

Abbildung 5.58: Sankeydiagramm fiir feste Brennstoff

Die Abbildung 5.58 zeigt das Energieflussdiagramm fiir feste Brennstoffe. Es ldsst sich
feststellen, dass ein erheblicher Teil dieser Brennstoffe importiert wird, wobei Erdél den
grofsten Anteil ausmacht. Es zeigt auch die Umwandlungs- und Raffinerieprozesse, die die-
se Brennstoffe durchlaufen, bevor sie den Endverbraucher erreichen. Beim Hovern iiber
das Diagramm konnen zusétzliche Informationen iiber Menge, Quelle und Ziel angezeigt
werden. Anhand verschiedener Farben lassen sich die Art der Brenstoffe feststellen. Dar-
iiber hinaus ist es moglich, die Knoten zu verschieben. Um die Standardansicht zu opti-
mieren, werden die Knoten verschoben und eine Bildschirmaufnahme zur Dokumentation

gespeichert.

5.7 Dashboard Erstellung

Praktisch jede Python-Bibliothek kann verwendet werden, um eine statische PNG, SVG,
HTML oder andere Ausgabe zu erzeugen, die in eine Présentation eingefiigt, per EMail
verschickt oder als Abbildung in einem Dokument veréffentlicht werden kann. Es ist auch
moglich, auf Python basierende Live-Anwendungen oder Dashboards zu erstellen, die
Benutzer verwenden kénnen, um Daten zu untersuchen oder zu analysieren. Python bietet
mehrere Bibliotheken fiir die Erstellung webbasierter Dashboards. Die vier wichtigsten

hierfiir entwickelten Tools sind Dash, Streamlit, Panel und Voila. Das Dashboard mit

64

5 Implementierung

Dash und Streamlit wird im Rahmen dieser Arbeit implementiert, weil sie mehr Github-
Sterne haben, was bedeutet, dass sie bei den Benutzern beliebt sind. Dash arbeitet auch
mit Plotly zusammen und verbessert die Leistung dieser Bibliothek durch zusétzliche

Funktionen. Streamlit ist strukturierter und auf Einfachheit ausgerichtet [18].

5.7.1 Dashboard mit Dash

(Dashboard for the visualisation of energy data with Dash)

Select a year:

Select a Plot type:

Abbildung 5.59: Dashboard mit Dash

Dash ist ein Low-Code-Framework, um schnelle Datenanwendungen in Python zu entwi-
ckeln. Es wird mit der Grafikbibliothek Plotly geliefert. Mit Dash kann eine Anwendung
mit nur wenigen Zeilen Code erstellt werden. Dash-Anwendungen setzen sich aus zwei
Teilen zusammen: dem Layout, das beschreibt, wie die Anwendung aussieht, und den
Callbacks, die beschreiben, wie Dash-Anwendungen mit Hilfe von Callback-Funktionen
erstellt werden. Das Layout besteht aus einer hierarchischen Baumstruktur von Kom-
ponenten. Dash HTML Components (dash.html) stellt Klassen fiir alle HTML-Tags zur
Verfiigung. Die Schliisselwort-Argumente beschreiben die HTML-Attribute wie z. B. sty-
le, class und id. Dash-Core-Components (dash.dcc) erzeugen tibergeordnete Komponen-
ten wie Controls und Diagramme. Callback-Funktionen werden automatisch aufgerufen,
wenn sich eine Eigenschaft einer Eingabekomponente &ndert. Dadurch wird eine Eigen-

schaft in einer anderen Komponente (der Ausgabe) aktualisiert [2].

65

5 Implementierung

Nach dem Import der Pakete und der Initialisierung der Anwendung mit dem Dash-
Konstruktor wird das Layout definiert, um die Komponenten der Anwendung darzustel-
len, die im Webbrowser angezeigt werden, normalerweise in einer html.div. Dash-HTML
und Dash-Core-Components werden verwendet, um das Layout des Dashboards anzu-
passen. Die Pandas-Bibliothek wird verwendet, um ein CSV-Datenblatt in einen Pandas-
Datenrahmen einzulesen und um die Daten in die Anwendung einzufiigen. Alle Plots
aus der Plotly-Bibliothek werden von Dash unterstiitzt. Um die Daten zu visualisieren,
wird das DCC-Modul importiert und dcc.Graph verwendet, um interaktive Diagramme
zu erstellen. Die Figure-Eigenschaft von dcc.Graph wird verwendet, um die Diagramme
in unserer Anwendung anzuzeigen. Um dem Benutzer mehr Freiheit bei der Interak-
tion mit der Anwendung zu geben und die Daten detaillierter zu untersuchen, werden
zwei Dropdown-Meniis implementiert. Diese erméglichen die Auswahl des Jahres und des
Visualisierungstyps. Um dies zu implementieren, muss die Callback-Funktion zur Anwen-
dung hinzugefiigt werden. Zuerst werden zwei Dropdown-Komponenten hinzugefiigt, um
dem Benutzer ein erweiterbares Dropdown-Menii zu bieten. Dann werden das Callback-
Modul und die beiden Argumente Output und Input importiert, die normalerweise im
Callback verwendet werden, um die Interaktion zwischen den Dropdowns und der Graph-
Komponente zu ermoglichen. Beide erhalten eine ID, die vom Callback zur Identifizierung
der Komponenten verwendet wird. Jedes Mal, wenn der Benutzer ein anderes Jahr oder

eine andere Darstellung auswéhlt, wird der Graph aktualisiert.

66

5 Implementierung

5.7.2 Dashboard mit Streamlit

Z Energy Dashboard

11
= -
> r

MBURG

Energy Data Visualization Dashboard

Abbildung 5.60: Dashboard mit Streamlit

Streamlit ist eine Open-Source-Python-Bibliothek, mit der benutzerdefinierte Weban-
wendungen einfach erstellt und gemeinsam genutzt werden konnen. Nach der Ausfiih-
rung des Skripts wird lokal ein Streamlit-Server gestartet, der die Anwendung in einem
neuen Tab des Webbrowsers 6ffnet. Es konnen Diagramme, Text, Widgets und Tabellen
erstellt werden. Fiir weitere Informationen wird auf die API-Dokumentation verwiesen.
Die Anwendung in Abbildung 5.60 verwendet st.write zur Anzeige von Argumenten. Ver-
schiedene andere Textelemente wie z. B. st.markdown werden fiir die Anzeige von Strings
im Markdown-Format verwendet. st.title wird fiir die Anzeige von Text im Titelformat
verwendet. Datenelemente wie st.dataframe werden verwendet, um einen Datensatz als
interaktives Element darzustellen. Streamlit unterstiitzt alle unsere Python-Bibliotheken,
nédmlich Matplotlib, Seaborn, Plotly, Bokeh und Vega-Altair. Aus diesem Grund kénnen
alle implementierten Visualisierungen von jeweiligen Bibliotheken in Streamlit angezeigt
werden. Eingabewidgets wie Buttons und Selectboxen sind implementiert. Sie ermdogli-
chen die Auswahl mehrerer Jahre an Datensétzen sowie verschiedener Visualisierungsty-

pen und -bibliotheken zur Visualisierung der Daten [43].

67

5 Implementierung

5.8 Karten Visualisierung

5.8.1 Karten mit Folium

Folium ist eine leistungsstarke Python-Bibliothek, mit der verschiedene Arten von Leaflet-
Karten erstellt werden konnen. Folium nutzt die Stirken des Python-Okosystems bei der
Datenverarbeitung und der Leaflet.js-Bibliothek beim Mapping. Die Bibliothek bietet
eine Vielzahl von integrierten Tilesets von OpenStreetMap, Mapbox und Stamen und
unterstiitzt benutzerdefinierte Tilesets mit Mapbox- oder Cloudmade-API-Schliisseln.
Folium unterstiitzt die Verwendung von GeoJSON- und TopoJSON-Overlays sowie die
Bindung von Daten an diese Overlays, um Choroplethen-Karten mit Farbschemata zu
erstellen und die Platzierung von Markern auf der Karte. Die interaktiven Ergebnisse

machen diese Bibliothek besonders niitzlich fiir die Erstellung von Dashboards [39].

Elektroladestationen in Deutschland werden auf der Karte visualisiert. Nach Installati-
on und Import von Folium kann mit nur einer Zeile Code eine einfache Beispielkarte
erstellt werden, indem ein Tileset wie z. B. OpenStreetMap ausgewéahlt wird und Mar-
ker mit Popup- und Tooltip-Funktionalitdt hinzugefiigt werden. Aufterdem kénnen Cho-
roplethen durch die Verkniipfung von Daten zwischen Pandas DataFrames/Series und
Geo/TopoJSON-Geometrien erstellt werden. Folgende Funktionen sind implementiert:
Skalierung am unteren Kartenrand, Zoom-Steuerung, Setzen von Grenzen, so dass die
Karte nicht iiber diese Grenzen hinausscrollt. Ul-Elemente wie die LayerControl zum
Ein- und Ausblenden von Layern sowie einfache und HTML-Popups zur Anzeige von
Informationen wurden der Karte hinzugefiigt. Vektorebenen wie Polygone werden ver-
wendet, um die Grenzen von Bundeslandern und Landkreisen zu markieren, die in einer
Geometriespalte unserer JSON-Datei enthalten sind. Die Groupby-Operation gruppiert
alle Ladestationen nach Bundesland und z&hlt, wie viele Ladestationen jedes Bundesland
hat. Fiir Geojson-Popup und Tooltip werden json und csv zusammengefiihrt, sodass die
Geometriespalte, in der das Polygon fiir das Bundesland steht, eine gemeinsame Spalte
mit dem Namen des Bundeslandes und der Zahlspalte fiir die Anzahl der Ladestationen
in jedem Bundesland enthélt. Es sind Funktionen wie FitOverlays implementiert, die das
Schwenken und Zoomen ermoglichen, um die Overlays anzuzeigen. Auferdem sind Plug-
ins wie Draw, Minimap, Fullscreen, Mouseposition, ScrollZoomToggler, MarkerCluster
und Search implementiert, um zusétzliche Interaktion zu ermdglichen. Folium verfiigt

nicht iiber eine integrierte Methode zum Speichern einer Karte als PNG-Datei. Stattdes-

68

5 Implementierung

sen wird die Karte als HT'ML-Datei gespeichert und anschlieffend ein Bildschirmfoto als
PNG-Datei gespeichert [40].

Abbildung 5.61: Kartenvisualisierung auf Bundeslandebene

Abbildung 5.62: Kartenvisualisierung auf Landkreisebene

69

5 Implementierung

Abbildung 5.61 zeigt die Visualisierung von Elektroladesédulen auf Bundeslandebene und
Abbildung 5.62 auf Landkreisebene. Alle oben genannten interaktiven Funktionen sind in-
tegriert. Einige Punkte liegen auferhalb Deutschlands. Dies liegt daran, dass die Langen-
und Breitengrade in der CSV-Datei der Bundesnetzagentur nicht korrekt sind. Bei der
Uberpriifung hat sich gezeigt, dass die Elektroladesiule zwar existiert, aber nicht an
den geographischen Koordinaten. Choroplethmap zeigt die Visualisierung, bei der die
Bundesléander oder Landkreise im Verhéltnis zur Anzahl der Ladeséduledichte eingefarbt
sind. Beim Hovern iiber die Bundesldnder/Landkreise und Anklicken werden die Infor-
mationen zum Bundesland bzw. Landkreis und die Anzahl der Ladesdulen angezeigt. Ein
Marker mit Popup- und Tooltip-Funktion zeigt den Standort der Lades&dulen an. Durch
die Verwendung von Marker-Clustern werden die Marker je nach Zoom-Stufe angezeigt,
was die Leistung und Nutzbarkeit von Karten mit einer grofen Anzahl von Markern ver-
bessert. Die Darstellung erfolgt dynamisch, d. h. beim Herauszoomen werden die Cluster
aufgelost, um einzelne Marker oder kleinere Cluster anzuzeigen, und beim Hineinzoomen
wieder zu Clustern zusammengefiihrt. Die drei Bundesldnder mit der hochsten Dichte
an Elektroladesdulen sind Bayern, Nordrhein-Westfalen und Baden-Wiirttemberg. Die
acht Landkreise mit der grofiten Anzahl an Elektroladestationen sind Berlin, Hamburg,

Miinchen, Hannover, Wolfsburg, Stuttgart, Grofs-Gerau und Ingolstadt.

5.8.2 Karten mit Geopandas

GeoPandas erweitert die Data-Science-Bibliothek pandas um die Unterstiitzung von Geo-
daten. Die zentrale Datenstruktur in GeoPandas ist der geopandas.GeoDataFrame, eine
Unterklasse von pandas.DataFrame, der Geometriespalten speichert und spatiale Opera-
tionen ausfiihren kann. Der geopandas.GeoSeries ist eine Unterklasse von pandas.Series.
Er verarbeitet die Geometrien. Ein GeoDataFrame ist eine Kombination aus einem pan-
das.Series mit traditionellen Daten (numerisch, boolesch, textuell usw.) und einem geo-

pandas.GeoSeries mit Geometrien (Punkte, Polygone usw.) [21].

Die GeoJSON-Daten enthalten sowohl Daten als auch Geometrie. Diese konnen mit der
Funktion geopandas.read file() gelesen werden. Die Funktion erkennt automatisch den
Dateityp und erzeugt einen GeoDataFrame. Anschliefend muss der GeoDataFrame mit
der Funktion GeoDataFrame.to file() wieder zuriick in die Datei geschrieben werden.
GeoPandas erleichtert die Erstellung von Choroplethenkarten. Dazu wird einfach der Be-
fehl jplot’ mit dem Argument ,column‘ verwendet, das die Spalte angibt, deren Werte

fiir die Farbzuweisung verwendet werden sollen. Sie konnen entweder eine statische Karte

70

5 Implementierung

mit mehreren Ebenen erstellen (Choropleth und Ladestationen als Punkte) oder eine in-
teraktive Karte mit der Methode explore(). Die interaktive Darstellung bietet weitgehend
die gleichen Anpassungsmoglichkeiten wie die statische und dariiber hinaus noch einige
zusétzliche Funktionen. Fiir das Choropleth wird die Spalte NAME 1 mit den Namen
der Bundeslinder als Eingabe verwendet und beim Uberfahren mit dem Mauszeiger nur
der Name im Tooltip angezeigt, beim Anklicken aber alle Werte. Die Methode explore()
gibt ein folium.Map-Objekt zuriick, auf dem die Folium-Funktionalitdt direkt genutzt
werden kann, indem zwei GeoDataFrames auf derselben Karte dargestellt werden und

Folium-Features hinzugefiigt werden.

Abbildung 5.63: Kartenvisualisierung auf Bundeslandebene mit Geopandas

71

5 Implementierung

Abbildung 5.64: Kartenvisualisierung auf Landkreisebene mit Geopandas

Bei der Kartenvisualisierung mit Geopandas sind die Funktionen von Folium ebenfalls
implementiert. Im Gegensatz zu Folium miissen Popups und Tooltips nicht programmiert
werden, sondern werden standardméfig angezeigt. Wichtige interaktive Funktionen, wie
z. B. das Hovern iiber die Karte, um weitere Informationen zu erhalten, sowie das Hinein-
und Herauszoomen, um einzelne Marker oder kleinere Cluster anzuzeigen oder zusam-

menzufiihren, sind ebenfalls implementiert.

5.8.3 Karten mit Plotly

Die Python-Grafikbibliothek Plotly ermdoglicht, interaktive Karten in Publikationsqua-
litdt online zu erstellen. Zur Erstellung von Choropleth-Karten mit Plotly sind zwei
Arten von Eingaben erforderlich: GeoJSON-formatierte Geometriedaten, bei denen je-
des Feature entweder ein id-Feld oder einen identifizierenden Wert in den Eigenschaf-
ten hat, sowie eine Liste von Werten, die durch den Feature-Identifier indiziert sind.
Die GeoJSON-Daten werden dem geojson-Argument libergeben und die Daten werden
in derselben Reihenfolge wie die IDs im location-Argument in das color-Argument von
px.choropleth mapbox iibergeben [35|[38]. Zuerst werden die GeoJSON-Datei und die

CSV-Datei fiir die Ladesdulen geladen. Diese enthalten die Geometrieinformationen fiir

72

5 Implementierung

die Bundeslander und die Landkreise sowie die Léangen- und Breitengrade fiir die Lade-
sdulen. Wie bei anderen Bibliotheken miissen die Bundeslénder gruppiert und die Anzahl
der Ladestationen gezéhlt werden. Die Funktion px.choropleth mapbox stellt dann jede

Zeile des DataFrames als eine Region des Choropleths dar.

Abbildung 5.65: Choropleth Karten auf Bundeslandebene mit Plotly

73

5 Implementierung

Abbildung 5.66: Choropleth Karten auf Landkreisebene mit Plotly

5.8.4 Zeitreihenanalyse

Eine Zeitreihe ist eine Datensammlung, die regelméfig {iber einen bestimmten Zeitraum
erhoben wird. Die Daten von SMARD.de werden von 2015 bis 2022 alle 15 Minuten als
Zeitreihe erhoben. Bei der Analyse von Zeitreihendaten ist es wichtig, die beiden grund-
legenden Konzepte Trend und Saisonalitét zu verstehen. Ein Trend liegt vor, wenn die
Daten langfristig zunehmen oder abnehmen. Saisonalitét liegt vor, wenn die Zeitreihe ein
regelméfiges Muster aufweist, das mit dem Kalender zusammenhéngt, z. B. ein tégliches,
wochentliches oder jahrliches Muster. Wenn das Verhalten einer Zeitreihe periodisch vom

Kalender beeinflusst wird, spricht man von Saisonalitét.

Der erste Schritt jeder Datenanalyse ist die Darstellung der Daten. Dazu importieren wir
den Datensatz in einen Pandas-Datenrahmen, benennen die Spalten um und verkniipfen
alle Jahresdateien mit pandas.concat() zu einem einzigen Datenrahmen. Dann werden
alle Spalten angezeigt, um ihre Kurven gleichzeitig zu betrachten. Die Abbildung 5.67

zeigt die Visualisierungen aller Spalten des Datensatzes.

74

5 Implementierung

Abbildung 5.67: Visualisierung aller Spalten des Datensatzes

Die Gesamtnetzlastdaten im Zeitverlauf werden fiir die weitere Analyse betrachtet. Zeitrei-
hendaten sind manchmal nicht im gewiinschten Format verfiigbar. In diesem Fall kénnen
grundlegende Zeitreihenoperationen wie Resampling, Shifting, Rolling und Differenz-
bildung in Pandas verwendet werden. Resampling dndert die Aggregationsebene einer
Zeitreihe. In dieser Arbeit wird es verwendet, um 15-Minuten-Datensitze in tégliche,
wochentliche und monatliche Gesamtwerte umzuwandeln. Die Abbildung 5.68 zeigt die
Daten fiir die Gesamtnetzlast nach dem Resampling. Shifting ist eine Technik, bei der
die gesamte Reihe um eine bestimmte Anzahl von Perioden nach oben oder unten ver-
schoben wird. Diese Technik ist niitzlich, um die Autokorrelation der Daten mit Ihrem
verzogerten Wert zu berechnen. Das Konzept der gleitenden Durchschnitte ist eine niitz-
liche Technik zur Glattung von Zeitreihendaten. In Abbildung 5.69 sind die téglichen,
wochentlichen, monatlichen und jahrlichen gleitenden Durchschnitte fiir unsere Daten
dargestellt. Schlieflich wird die Differenzierung verwendet, um die Zeitreihen stationér

zu machen, was fiir die Erstellung von Prognosemodellen unerlésslich ist.

75

5 Implementierung

Abbildung 5.68: Resampling

Die Abbildung 5.68 zeigt die aggregierte Gesamtnetzlast auf verschiedenen Zeitebenen.
Die viertelstiindliche Aggregationsebene ist aufgrund der grofsen Anzahl von Datenpunk-
ten sehr dicht und die Informationen sind schwer zu erkennen. Auf der téglichen Aggre-
gationsebene sind die Tageshochst- und -tiefstwerte erkennbar. Auf der wochentlichen
Ebene zeigt sich ein deutlicher Aufwértstrend des Stromverbrauchs in den Wintermona-
ten und ein Abwiértstrend in den Sommermonaten. Dariiber hinaus ist {iber die Jahre

hinweg die Saisonalitat des Stromverbrauchs sehr gut zu erkennen.

76

5 Implementierung

Abbildung 5.69: Rolling

Die wochentlichen und monatlich gleitenden Mittelwerte zeigen wiederum einen Auf-
wartstrend des Energieverbrauchs in den Wintermonaten und einen Abwértstrend in den
Sommermonaten. Der gleitende Jahresdurchschnitt zeigt zunéchst einen stabilen Trend
mit einem leichten Anstieg im Jahr 2017 und einem nahezu gleichbleibenden Wert im
Jahr 2018 im Vergleich zu 2017. Im Jahr 2019 ist ein deutlicher Riickgang des Stromver-
brauchs zu verzeichnen. Im Vergleich zu den Vorjahreswerten sinkt der Stromverbrauch
im Jahr 2020 kontinuierlich, was auf die Mafnahmen zur Einddmmung der Coronapan-
demie zuriickgefiihrt werden kann. Ab Anfang 2021 ist ein Aufwartstrend zu beobachten
und der Stromverbrauch erreicht wieder das Niveau von 2019, da die Mafnahmen zur
Einddmmung der Coronapandemie geringer ausfallen. Im letzten Quartal 2022 ist ein
Riickgang des Stromverbrauchs im Vergleich zum Vorjahresquartal zu beobachten. Die
aus der Abbildung 5.69 extrahierten Informationen kénnen durch Quellen wie SMARD,
den Bericht von AGEB und BDEW bestétigt werden [10][5][3].

Zeitreihenzerlegung ist eine weitere statische Methode, um Trends und Saisonalitédten zu
erkennen und die aus der Abbildung 5.69 gewonnene Informationen zu bestétigen, bei
der eine Zeitreihe in mehrere Komponenten zerlegt wird, von denen jede ein zugrunde
liegendes Muster représentiert. In der Regel setzt sich eine Zeitreihe aus den folgenden

drei Komponenten zusammen:

e Trend: Auf- oder Abwértstrend der Zeitreihe iiber einen lingeren Zeitraum.

e Saisonalitdt: Der wiederkehrende kurzfristige Zyklus der Zeitreihe.

7

5 Implementierung

e Residual: Die zufillige Variation, die nach Abzug von Trend und Saisonalitét iibrig
bleibt.

Die Abbildung 5.70 zeigt die Zeitreihenzerlegung unseres Datensatzes, wobei der Gesamt-

netzlast wochentlich aggregriert ist.

Abbildung 5.70: Zeitreihenzerlegung

Was in Abbildung 5.69 in Bezug auf den Trend und die Saisonalitdt zu erkennen ist,
kann durch die in der Abbildung 5.70 dargestellte Trend- und Saisonalitétskomponente
veranschaulicht werden. Dies bestétigt, dass der Datensatz ein saisonales Muster und

einen Trend aufweisen. Dies bedeutet, dass Prognosen fiir die Zukunft moglich sind.

Zur Analyse von Trend und Saisonalitdt wird zusétzlich noch der Einfluss von Tageszeit,
Wochentagen, Jahreszeiten und Feiertagen im Energieverbrauch untersucht. Fiir den Ein-
fluss von Tageszeit wird Zeit-Spalte mit pandas gruppiert, den Mittelwert zu den ein-
zelnen Zeitpunkten berechnet und visualisiert. Der Einfluss der Wochentage werden auf
Basis eines monatlichen Datensatzes, der am ersten Montag beginnt, gefiltert und visuali-
siert. Der Einfluss der Jahreszeiten werden zunéchst als wochentlicher Durchschnittswert
aus einem jahrlichen Datensatz zusammengerechnet und dargestellt. Dariiber hinaus wird

mithilfe der Warmekarte der Einfluss von Feiertagen bestimmt.

78

5 Implementierung

Abbildung 5.71: Trend und Saisonalitét

Die Abbildung 5.71 verdeutlicht den Einfluss von Tageszeit, Wochentagen, Jahreszeiten
und Feiertagen. Das erste Subplot zeigt einen typischen Tagesablauf mit zwei Hohepunk-
ten am Mittag und am frithen Nachmittag. Im zweiten Subplot lasst sich der Wochenver-
lauf erkennen. Dabei wird am Wochenende im Vergleich zu Wochentagen weniger Strom
verbraucht. Der jahrliche Verlauf kann im dritten Subplot beobachtet werden. Dabei
wird in Wintermonaten im Vergleich zu Sommermonaten eine hohere Strom verbraucht.
Dariiber hinaus lésst sich im vierten Subplot deutlich erkennen, wie sich Feiertage wie

Ostern und Weihnachten auswirken.

79

5 Implementierung

Ein weiteres Ziel der Zeitreihenanalyse ist die Prognose. Es ist festgestellt, dass der Da-
tensatz ein saisonales Muster und einen Trend aufweist. Bevor eine Prognose erstellt
wird, muss zudem gepriift werden, ob eine Autokorrelation besteht. Die Autokorrelation
stellt eine Methode zur Ermittlung der Korrelation zwischen einer Zeitreihe und einer
verzogerten Version ihrer selbst dar. Die Abbildung 5.72 préasentiert die Autokorrela-
tionskurve fiir unterschiedliche Lags, darunter 96 Lags fiir den téglichen, 672 Lags fiir
den wochentlichen, 2688 Lags fiir den monatlichen und 32256 Lags fiir den jahrlichen
Zyklus.

Abbildung 5.72: Autocorrelation

Das erste Sub-Plot zeigt den téglichen Zyklus. Die Verzogerung 0 ist der Mitternachtswert
flir Samstag, den 3. Januar 2015 und ist hoch korreliert, da er mit sich selbst korreliert.
Mittags, d.h. genau 12,5 Stunden spéter (50 Lags), gibt es keine Korrelation, da der
Stromverbrauch zu diesem Zeitpunkt seinen Hohepunkt erreicht. Bei Lag 96, also nach
24 Stunden, besteht wieder eine Korrelation von fast 75%, was auf einen ahnlichen Wert

am nichsten Tag zur gleichen Zeit hindeutet.

Die zweite Sub-Plot zeigt die Autokorrelation fiir Wochenzyklen. Mit Tiefpunkten bei
50 Lags (12,5 Stunden) und Spitzenwerten bei 96 Lags (24 Stunden) wird in der zweiten
Sub-Plot der typische tégliche Stromverbrauch untersucht, wobei die Spitzenwerte um

Mitternacht und die Tiefpunkte um die Mittagszeit liegen.

Die dritte Sub-Plot zeigt den monatlichen Zyklus und macht deutlich, dass die Wer-

te fiir jeden Tag stark mit den Werten der folgenden Woche korrelieren. Zum Beispiel

80

5 Implementierung

zeigt die Verzogerung O die Autokorrelation fiir Samstag um Mitternacht am 3. Januar
2015 und die Autokorrelation nach einem Intervall von 672 Verzogerungen, d.h. fir die
kommenden Wochen zur gleichen Zeit, ist fast 80%, was auf eine hohe Korrelation mit
den Werten der Vergangenheit hinweist. Ahnliche Informationen kénnen fiir alle Tage

abgelesen werden.

Als néchster Schritt kénnen verschiedene Prognoseverfahren wie Prophet, SARIMA usw.

untersucht werden, die im Rahmen dieser Arbeit nicht beriicksichtigt werden.

81

6 Evaluierung

Im Rahmen der Evaluierung werden Python-Bibliotheken fiir die Visualisierung von
Energiedaten miteinander verglichen und anhand einer Reihe von Evaluierungskriteri-
en bewertet. Folgende sind die Bewertungskriterien fiir die Evaluierung von Python-

Bibliotheken:
1. Funktionalitat

Konnen diese Bibliotheken alle in unseren Anforderungen aufgelisteten Visualisierungs-

typen darstellen und haben eigene eingebaute Funktionen dafiir?
2. Dokumentation

Gibt es eine aktive Entwicklergemeinschaft und ausreichende Unterstiitzung (z. B. Do-
kumentation, Foren, Tutorials, Codebeispiele) fiir die Umsetzung der Visualisierungsauf-

gabe?

3. Leistung anhand Ausfiihrungszeit

Wie lange hat die Ausfiihrung des Codes gedauert?
4. Benutzerfreundlichkeit

Wie einfach ist es, die Bibliothek zu erlernen und zu verwenden, besonders fiir Anfan-

ger?

5. Interaktivitét

Bietet die Bibliothek zahlreiche Funktionen zur Interaktion mit den Visualisierungen?
6. Komplexitat

Wie viele Codezeilen sind erforderlich, um die Plots ohne Kommentare und Leerzeilen

zu reproduzieren

82

6 Evaluierung

6.1 Statische und interaktive Visualisierung

6.1.1 Funktionalitat

Es soll gepriift werden, ob die Bibliotheken die Muss-Anforderungen aus der Tabelle
3.3 und 3.4 erfiillen. Auflerdem soll untersucht werden, mit welchen Soll- und Kann-

Anforderungen die Visualisierungen erweitert werden kénnen.

Bibliotheken

Visualisierungs- matplotlib | seaborn | vega altair | bokeh | plotly

typen

Liniendiagramm + + + + 4
Einfache Ball.ien.dlagramm + -+ + 4 4

. . Kreisdiagramm + - + 4 ¥

Visualisierungen - -

Flachendiagramm + -+ + + T

Punktediagramm + + + 4 4
Visualisierungs- | Boxplot + + + - +
typen fiir die Histogramm + + + + +
Datenanalyse Violinenplot + + + - +

Wirmekarte -+ + + + i
Komplexe :

S Sankeydiagramm - - - - n

Visualisierungen

Karten - - - - ¥
Interaktive Vi- In.teralft} Ve + 4+ +

.. Visualisierung

sualisierung

Tabelle 6.1: Vergleich von Visualisierungsbibliotheken

Tabelle 6.1 gibt einen Uberblick iiber alle Diagrammtypen, die auf unseren Anforderun-
gen basieren. Sie enthilt statische und interaktive Visualisierungsbibliotheken. Das Plus-
Zeichen zeigt an, dass diese Visualisierungstypen aus diesen Bibliotheken implementiert
werden kdnnen, wihrend das Minus-Zeichen anzeigt, dass fiir diese Visualisierungstypen

keine direkte eingebaute Funktion zur Verfiigung steht.

Alle Visualisierungstypen in der Tabelle 3.2 und die MUSS-Anforderungen in den Ta-
bellen 3.3 und 3.4 werden erfiillt. Die einzige Ausnahme ist, dass Seaborn die Funktion
Matplotlib zum Plotten von Kreisdiagrammen und Flachenplots verwendet und dass
Bokeh keine eigene eingebaute Funktion fiir Box- und Violinplots hat. Seaborn als stati-
sche Visualisierungsbibliothek bietet zusétzlich integrierte Themen, Figurenésthetik und
Farbpaletten fiir ansprechende Diagramme. Textanpassungen und Anmerkungen wie z. B.

HAW-Logo und Quellenangabe, die als optional aufgelistet sind, werden mit Matplotlib

83

6 Evaluierung

implementiert. Die Visualisierungen aller Bibliotheken lassen sich gut in ein Streamlit-
Dashboard integrieren. Zu beachten ist, dass Streamlit nur die Bokeh-Version 2.4.3 un-
terstiitzt und einige interaktive Elemente von Bokeh nur mit héheren Bokeh-Versionen
verfiighar sind. Interaktive Funktionen wie das Hinzufiigen von benutzerdefinierten Steu-
erelementen wie Schaltflichen, Dropdown-Meniis, Schiebereglern und Selektoren geméf

den Anforderungen des Benutzers wurden ebenfalls implementiert.

6.1.2 Dokumentation

Tabelle 6.2 fasst die Struktur der Dokumentation fiir jede Bibliothek in der statischen und
interaktiven Visualisierung zusammen und gibt niitzliche Beispiele fiir die Umsetzung der

Visualisierungsaufgabe.

Bibliotheken | Documentation Struktur Niitzliche Webseiten

. . .. Gleitend Mittelwert,
Dokumentation, Visualisierungsty- crtender retelwer

Matplotlib pen, Benutzerhandbuch, Anleitun-
gen, Beispiele

blatter

Anpassung von Diagrammen,

Formatierer, Achsen und Subplots,
Diagramme speichern, Matplotlib
anpassen mit rcParams, Arbeits-

Offizielle Website, Visualisierungs-

. Figurasthetik, Arbeitsblatt
typen, Anleitungen, igurdsthetik, Arbeitsblétter

Seaborn

Kodierungen, Markierungen,
Vega-Altair

von Visualisierungen

Offizielle Website, Benutzerhand- | teraktive Diagramme, Altair-
buch, Beispiele Diagramme speichern, Anpassen

Offizielle Website, Dokumentation,

Grundlegendes Plotten, Visualisie-

Bokeh . rung anpassen , Zeitreihendiagram-
Anleitungen . .
me, Interaktion, Ausgabeoptionen
. _ Zeitreihendi tatistisch
Plotly Kurziibersicht, Beispiele citreihendiagramm -, - Statistische

Diagramme, Karten

Tabelle 6.2: Uberblick iiber Bibliotheksdokumentationsstruktur und mdégliche Codebei-
spiele

Die Dokumentationsstruktur sowie die Beispiele, die in allen Bibliotheken zur Verfiigung
gestellt werden, ermoglichen es, verschiedene Visualisierungstypen leichter umzusetzen.
Es gibt viele Moglichkeiten, die Darstellung mit Matplotlib zu verbessern, und es kénn-
te zeitaufwendig sein, die passenden Beispiele dafiir zu finden. Bokeh und Vega-Altair
sind bekannt fiir ihre Interaktivitdt. Daher liegt der Fokus dieser Bibliotheken eher auf

84

6 Evaluierung

der Interaktivitat als auf der Darstellung der Diagramme allein. Daraus ergeben sich
nur wenige Erlduterungen zur Implementierung der Visualisierungstypen und nur weni-
ge Kommentare zum Code. Deshalb ist Plotly im Vergleich zu Bokeh und Vega-Altair
benutzerfreundlicher, da es viele Beispiele und ausreichende Dokumentation enthélt, um

die Visualisierungstypen sowie die Interaktivitdt umzusetzen.

6.1.3 Leistung

Die Leistung der einzelnen Bibliotheken wird anhand der Anzahl der Codezeilen und
der Ausfithrungszeit bewertet. Abbildung 6.1 zeigt ein Balkendiagramm zum Vergleich
der Anzahl der Codezeilen und der Ausfithrungszeit der jeweiligen Bibliotheken fiir die
Visualisierung von Liniendiagrammen. Das Liniendiagramm ist gewahlt, da die anderen
Visualisierungstypen keinen grofsen Unterschied in der Ausfithrungszeit des Codes auf-

weisen, wihrend die Ausfiihrungszeit des Liniendiagramms je nach Bibliothek variiert.

Abbildung 6.1: Codekomplexitit und Ausfiihrungszeit

Es ist deutlich zu erkennen, dass Seaborn zwar nur wenige Codezeilen zur Darstellung
des Liniendiagramms bendétigt, aber sehr lange fiir die Ausfithrung braucht. Alle anderen
Visualisierungstypen mit Seaborn werden jedoch innerhalb von 10 Sekunden ausgefiihrt.
An zweiter Stelle folgt Vega-Altair, das die langste Ausfiihrungszeit hat. Nicht nur fiir
Liniendiagramme, sondern auch fiir andere Visualisierungstypen wie Flachendiagramm
(ca. 2 min 50 sec) benétigt Vega-Altair viel mehr Zeit. Die Anzahl der Codezeilen steigt,
je nachdem, wie der Code erweitert wird, z. B. durch zusétzliche Anpassung von Dia-
grammen wie in Matplotlib oder durch die Verwendung interaktiver Funktionen wie in
Vega-Altair, Ploty und Bokeh. Matplotlib hat eine schnellere Ausfiihrungszeit fiir die

85

6 Evaluierung

statische Visualisierung und Bokeh fiir die interaktive Visualisierung. Auferdem ist die

Ausfithrungszeit von Plotly relativ schnell.

6.2 Dashboard Erstellung

Die géngigen Open-Source-Python-Bibliotheken Streamlit und Dash werden fiir die Er-
stellung des Dashboards verwendet. Die Hauptanforderung an das Dashboard ist, dass es
dem Benutzer verschiedene Jahre unseres Datensatzes und verschiedene Visualisierungs-
typen aus den Anforderungen zur Auswahl als ein Dropdown-Menii anbietet. Nachdem
eine Auswahl getroffen wurde, sollte ein entsprechendes Diagramm angezeigt werden.

Diese werden nach den folgenden Kriterien bewertet.

6.2.1 Funktionalitat

Streamlit unterstiitzt alle statischen und interaktiven Visualisierungsbibliotheken, die fiir
die Arbeit aufgelistet sind. Benutzer konnen nicht nur die Visualisierungstypen, sondern
auch die Bibliotheken in einem einzigen Dashboard auswéhlen, was hilfreich ist, um die
Stéarken und Schwéichen der einzelnen Bibliotheken zu identifizieren. Dadurch wird es
dem Benutzer ermoglicht, selbst zu entscheiden, welche Bibliothek fiir die Visualisierung

ausgewahlt werden soll. Streamlit unterstiitzt nur Python als Programmiersprache.

Mit Dash kénnen nur von Plotly erstellte Visualisierungen im Dashboard angezeigt wer-
den. Dash unterstiitzt nicht nur Python, sondern andere Programmiersprachen wie R,
Julia und F#.

6.2.2 Benutzerfreundlichkeit

Dash ist ein Framework fiir Webanwendungen. Es bietet eine reine Python-Abstraktion
um HTML, CSS und JavaScript herum. Sie benétigen keine tiefgreifenden Kenntnisse
in HTML, CSS oder JavaScript, aber es kann etwas Zeit in Anspruch nehmen, sich mit
den Dash-HTML-Komponenten wie html.div, html.label, den Dash-Kernkomponenten
wie dcc.graph, dcc.dropdown und den Callback-Funktionen vertraut zu machen, um In-

teraktivitat in Ihre Dash-Anwendung zu bringen.

86

6 Evaluierung

Streamlit ist ein Open-Source-Python-Framework fiir Datenwissenschaftler und KI/ML-
Ingenieure, das die Erstellung dynamischer Datenanwendungen mit nur wenigen Zeilen
Code ermoglicht. Es folgt einem deklarativen Paradigma, bei dem zunéchst Bibliotheken
importiert werden, die Seite konfiguriert wird, Daten geladen werden, bei Bedarf eine
Seitenleiste hinzugefiigt wird, Visualisierungstypen und Bibliotheken definiert werden
und schliefslich alles zu einem Anwendungslayout zusammengefiigt wird. Im Gegensatz
zu Dash ist Streamlit fiir Nutzer ohne Vorkenntnisse deutlich benutzerfreundlicher sowie

einfacher zu verstehen.

6.2.3 Interaktivitat

In beiden Bibliotheken kann eine Auswahl verschiedener Jahre sowie verschiedener Vi-
sualisierungstypen als Drop-down-Menii vorgenommen werden, was die Anforderungen
an die Interaktivitdt erfiillt. Alle interaktiven Funktionen, die in unterschiedlichen Bi-
bliotheken vorhanden sind, mit Ausnahme von Bokeh, sind auch in Streamlit enthalten.
Dash enthélt auch Visualisierungstypen, die in Plotly enthalten sind. Da Streamlit nur
Bokeh 2.4.3 Version unterstiitzt, konnen Fuktionen von héheren Versionen von Bokeh

nicht in Streamlit angezeigt werden.

6.2.4 Komplexitit

Da nur die Visualisierungstypen von Plotly in Dash implementiert werden koénnen, ist
die Anzahl der Codezeilen in Dash im Vergleich zu Streamlit sehr gering. Im Gegensatz
dazu macht das Einfiigen verschiedener Visualisierungstypen mit unterschiedlichen Bi-
bliotheken den Code in Streamlit sehr komplex und die Anzahl der Codezeilen sehr grof.
Aus diesem Grund ist die Implementierung von Dashboard mit Streamlit komplex und

zeitintensiv, obwohl es im Vergleich zu Dash sehr einfach zu verstehen ist.

6.3 Karten Visualisierung

Im Rahmen dieser Arbeit sind die Karten mit den géngigen Bibliotheken in Python wie
Plotly, Folium und Geopandas implementiert. Zur Evaluierung dieser Bibliotheken sind

folgende Kriterien festgestellt.

87

6 Evaluierung

6.3.1 Funktionalitat

Jede Bibliothek ist einzigartig und bietet zahlreiche Funktionen und Erweiterungsmog-
lichkeiten fiir Visualisierungstypen. Nicht alle Funktionen kénnen im Rahmen der Arbeit
implementiert werden. Daher wird eine vorldufige Liste von Anforderungen erstellt, die
die Bibliotheken mindestens erfiillen miissen. Eine Ubersicht ist in Tabelle 3.5 zu finden.
Es wird untersucht, ob die ausgewahlten Bibliotheken zur Kartenvisualisierung die not-
wendigen Anforderungen erfiillen. Die » Muss«-Anforderungen werden von Folium und
von Geopandas erfiillt. Plotly eignet sich nur fiir die Visualisierung von Choroplethen-
karten auf Bundesland- und Landkreisebene und bietet keine Moglichkeit, zwei Geoda-

taframes auf einer Karte zu plotten.

6.3.2 Interaktivitat

Wiéhrend Plotly nur grundlegende Interaktivitdt wie Hovern {iber die Karte, FEin- und
Auszoomen, Speichern usw. bietet, verfiigt Folium {iber zahlreiche interaktive Funktionen
wie ClusterMarker, Search, LayerControl usw. Geopandas nutzt Folium-Funktionen, um

die Interaktivitat zu erweitern und ansprechende Karten anzuzeigen.

6.3.3 Dokumentation

Je besser die Dokumentation ist, desto einfacher ist es, die Schritte zur Kartenvisualisie-
rung mit diesen Bibliotheken nachzuvollziehen. Tabelle 6.3 zeigt niitzliche Beispiele, die
ausreichende Informationen zur Kartenvisualisierung enthalten. Mit Hilfe der Communi-

ty lasst sich feststellen, in wie weit diese Bibliotheken verbreitet sind.

o o L Community
Bibliotheken Niitzliche Beispiele -
Stars | Contributers | Downloads
Plotly Choropleth Maps, Scatter Plots on Maps 15k 417 59M /Month
Folium User guide, GeoJSON and choropleth, Features, MarkerCluster | 6.6k | 153 978k /Month
Geopandas Mapping and plotting tools, Interactive mapping, 4.1k | 209 6.4M/Month

Tabelle 6.3: Uberblick iiber Codebeispiele und Community

Da sich Plotly nicht ausschlieflich auf die Kartenvisualisierung konzentriert, bietet es
nur eingeschrinkte Funktionen. Im Vergleich zu Plotly und Geopandas bietet Folium

eine bessere Dokumentation fiir die Visualisierung von Karten an. Allerdings ist auch

88

6 Evaluierung

die Dokumentation von Plotly und Geopandas ausreichend. Plotly wird am haufigsten
verwendet, da es fiir verschiedene Zwecke eingesetzt werden kann. Geopandas ist die am
weitesten verbreitete Bibliothek fiir Kartenvisualisierung, da sie eine gute Grundlage fiir
die Datenvorbereitung vor der Kartenvisualisierung bietet und iiber eine grofse Anzahl
von Mitwirkenden und Downloads verfiigt. Folium ist jedoch aufgrund seiner zahlreichen
interaktiven Funktionen sehr bekannt, wenn es um die Visualisierung von Karten in
Python geht.

89

7 Zusammenfassung

7.1 Uberpriifung von Forschungszielen und -fragen

In diesem Abschnitt werden die in Kapitel 1.2 entwickelten Fragen daraufhin tiberpriift,

ob sie im Rahmen der Arbeit beantwortet wurden.

RO1: Wie konnen Energiedaten am besten visualisiert werden und welche

Visualisierungstypen sind dafiir geeignet?

90

7 Zusammenfassung

Abbildung 7.1: Zusammenfassung RO1

91

7 Zusammenfassung

RO2: Welche Python-Bibliotheken sind gangig fiir die Datenvisualisierung?

RQ 2.1: Welche Python-Bibliotheken werden am hiufigsten fiir die Datenvi-

sualisierung verwendet?

Abbildung 7.2: Python Bibliotheken fiir die Datenvisualisierung

Abbildung 7.2 zeigt einen Uberblick iiber die Pythonbibliotheken, die am hiufigsten fiir

die Datenvisualisierung verwendet werden.

RQ 2.2: Kénnen die in RQ1.3 genannten Visualisierungstypen mit diesen

Bibliotheken realisiert werden?

Alle géngigen Python-Bibliotheken zur Datenvisualisierung sind leistungsfahig und erfiil-
len unsere Anforderungen. Jede dieser Bibliotheken hat ihre eigenen Stéarken und Schwi-
chen. Zum Beispiel kénnen mit Matplotlib und Seaborn publikationsfidhige statische Vi-
sualisierungen erstellt werden. Vega-Lite, Bokeh und Plotly mit ihren zusétzlichen inter-
aktiven Funktionen helfen, ansprechende und interaktive Diagramme zu erstellen, wenn
der Benutzer Interaktivitdt wiinscht. Im Vergleich zu Bokeh und Vega-Altair verfiigt
Plotly iiber eingebaute Funktionen fiir alle Arten von Visualisierungen. Dariiber hinaus
verfiigt Plotly iiber das Dash Framework, mit dem die von Plotly erstellten Visualisierun-
gen in Form eines Dashboards dargestellt werden kénnen. Bokeh erfiillt auch die Anfor-
derungen an interaktive Visualisierungen und bietet zahlreiche Widgets zur Erweiterung
der Interaktivitdt. Allerdings hat Bokeh keine eingebaute Funktion fiir einige statistische
Diagramme, wie z.B. Boxplots und Violinplots, und fiir die Erfiillung dieser Anforde-

rungen ist eine sehr komplexe Programmierung erforderlich. Im Gegensatz zu Plotly und

92

7 Zusammenfassung

Bokeh ist Vega-Altair nicht standardméfig interaktiv, sondern muss individuell program-
miert werden. Folium bietet zahlreiche Funktionen, um mit Karten zu interagieren und
ist daher sehr gut fiir die Kartenvisualisierung geeignet. Geopandas bildet die Grundlage
fiir die Datenaufbereitung und integriert die Funktionen von Folium, um ansprechende
Karten zu erstellen. Eine Kombination von Geopandas und Folium wird fiir die Karten-
visualisierung empfohlen. Plotly kann Choroplethen sehr gut visualisieren, bietet aber
keine Moglichkeit, zwei Geodatenrahmen auf einer Karte zu plotten und erfiillt daher
nicht die Anforderungen fiir die Kartenvisualisierung. Streamlit ist eine gute Wahl fiir
die Erstellung von Dashboards mit Visualisierungstypen aus anderen Bibliotheken, da
es mit allen anderen Bibliotheken, einschliefllich Plotly, interagieren und die von diesen

Bibliotheken erstellten Visualisierungen in das Dashboard integrieren kann.

RQ2.3: Welche Anforderungen miissen Bibliotheken erfiillen, um Energieda-

ten zu visualisieren?

Die Anforderungen an die Bibliotheken sind im Kapitel 3.4 in tabellarischer Form do-
kumentiert. Fiir jede Bibliothek sind die Muss-, Soll- und Kann-Anforderungen aufgelis-
tet.

RO3: Wie kénnen Python-Bibliotheken evaluiert werden?

Je nach Anwendungsfall sind verschiedene Kriterien wie Funktionalitdt, Dokumentation,
Leistung, Interaktivitit, Komplexitdt usw. fiir die Evaluation von Python-Bibliotheken

verwendet. Fiir jede Bibliothek wird eine Tabelle mit Einzelbewertungen erstellt.

Bibliothek | Funktionalitit | Benutzerfreundlichkeit | Leistung | Interaktivitit | Dokumentation | Komplexitit
Matplotlib 5 3 5 2 5 5
Seaborn 4 4 3 2 4 3
Vega-Altair 4 3 2 3 4 2
Bokeh 3 3 5 5 4 4
Plotly 5 5 5 5 5 5
Dash 5 3 5 4 5 4
Streamlit 5 5 5 5 5 5
Geopandas 4 4 4 3 5 5
Folium 5 4 4 5 5 5

Tabelle 7.1: Einzelbewertungen

93

7 Zusammenfassung

7.2 Grenzen der Arbeit

Die Implementierung zahlreicher Visualisierungstypen mit Hilfe verschiedener Python-
Bibliotheken ist zeitaufwéndig und erfordert viel Geduld. Daher kénnen im Rahmen
dieser Arbeit einige Implementierungen nicht beriicksichtigt werden. Die API’s jeder Bi-
bliothek haben sicherlich noch weitere interessante Funktionen. Diese konnen die Visua-
lisierungen noch attraktiver und interaktiver machen. In dieser Arbeit wird nur auf die
wichtigsten eingegangen, die ausreichen, um die Anforderungen zu erfiillen. Dariiber hin-
aus gibt es viele weitere Visualisierungstypen zur Darstellung eines Datensatzes. In dieser

Arbeit werden nur die géngigsten Visualisierungstypen fiir Energiedaten betrachtet.

7.3 Zukiinftige Arbeiten

Falls moglich, sollte die Erweiterung des Dashboards um zusétzliche Funktionen unter-
sucht werden. In der vorliegenden Arbeit liegt der Schwerpunkt auf der deskriptiven und
der diagnostischen Analyse. Als néchster Schritt konnte die préadiktive Analyse, d.h. die
Vorhersage der zukiinftigen Stromverbrauchsentwicklung mit verschiedenen Prognosever-

fahren durchgefiihrt werden.

94

Literaturverzeichnis

1]

2]

13

[4]

[5]

[6]

7]

8]

19]

2019, PyViz authors. From data to viz | find the graphic you need. https://
datavizproject.com/. Accessed: 2023-11-29.

2024 Plotly. Dash documentation & user guide | plotly. https://dash.plotly.
com/. Accessed: 2023-11-15.

AG Energiebilanzen e.V. Energieverbrauch in deutschland im jahr 2017.
https://ag-energiebilanzen.de/wp—content/uploads/2021/02/
ageb_jahresbericht2017_20180315-02_dt.pdf. Accessed: 2024-04-16.

Louis Allen, Jack Atkinson, Dinusha Jayasundara Mudiyanselage, Joan Cordiner,
and Peyman Moghadam. Data visualization for industry 4.0: A stepping-stone to-
ward a digital future, bridging the gap between academia and industry. Patterns,
2:100266, 05 2021.

BDEW. Bundesverband fiir energie- und wasserwirtschaft. https:
//www.bdew.de/presse/presseinformationen/zahl-der-woche-

gesamtstromverbrauch—-deutschland/. Accessed: 2024-04-16.

bimanu. Datenvisualisierung: Definition, beispiele und vorteile. https://bimanu.

de/blog/datenvisualisierung/. Accessed: 2023-11-20.

Bokeh Contributors. Bokeh documentation. https://docs.bokeh.org/en/
latest/index.html. Accessed: 2024-01-20.

Bundesnetzagentur. Bundesnetzagentur - ladesdulenkarte. https://www.
bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/E-
Mobilitaet/Ladesaeulenkarte/start.html. Accessed: 2023-02-15.

Bundesnetzagentur. SMARD | SMARD - Strommarktdaten, Stromhandel und
Stromerzeugung in Deutschland. https://www.smard.de/home. Accessed:
2023-11-15.

95

Literaturverzeichnis

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

Bundesnetzagentur. SMARD | SMARD - Strommarktdaten, Stromhan-
del und Stromerzeugung in Deutschland. https://www.smard.de/home/
energiemarkt—aktuell/2020. Accessed: 2024-04-16.

Thomas Cleff. Deskriptive Statistik und FEzplorative Datenanalyse, pages 4-5.
Springer-Verlag, 3 2015.

DataCamp. Florence nightingale: Pioneer of data visualization, 2021. Accessed:
2023-11-10.

ETA-SOLUTIONS. Klare ziele fiir mehr energieeffizienz. https:
//www.energiewechsel.de/KAENEF/Redaktion/DE/Standardartikel/
energieeffizienzgesetz.html#:~:text=Das%20Gesetz%20sieht%
20vor%2C%20den, daf$C3%BCr%20notwendigen%$20Ma%sC3%9Fnahmen%
20zu%20ergreifen. Accessed: 2024-04-11.

ETA-SOLUTIONS. Leitfaden: Monitoring von energieeffizienzmafnah-
men. https://www.ptw.tu-darmstadt.de/media/fachgebietptw/
dokumente_3/wissenssammlung_ptw/leitfaeden_2/Leitfaden_

Energiemonitoring.pdf. Accessed: 2023-11-25.

European Union. Eurostat. https://ec.europa.eu/eurostat/
databrowser/view/nrg_bal_sd_ custom_10511268/default/table?
lang=en. Accessed: 2023-12-15.

FEuropean Union. FEurostat. https://ec.europa.eu/eurostat/cache/
sankey/energy/sankey.html?geos=EU27_2020&year=2022&unit=
KTOE&fuels=RA000&highlight=_&nodeDisagg=0101000000000&
flowDisagg=true&translateX=246.54633366907507&translate¥Y=
99.46374603487897&scale=0.6597539553864471&language=EN. Acces-
sed: 2023-12-15.

eurostat. Energy visualisation portal. https://ec.europa.eu/eurostat/
cache/infographs/energy_portal/enviz.html?language=EN. Acces-
sed: 2023-12-05.

ferdio. Python tools for data visualization — pyviz 0.0.1 documentation. https:
//pyviz.org/index.html. Accessed: 2023-12-02

96

Literaturverzeichnis

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

Financial-Times (F.). Chart-doctor/visual-vocabulary at main - financial-
times/chart-doctor. https://github.com/Financial-Times/chart-

doctor/tree/main/visual-vocabulary. Accessed: 2023-11-28.

Fraunhofer-Institut fiir Solare Energiesysteme ISE. Energy-charts. https://www.
energy—charts.info/index.html?l=de&c=DE. Accessed: 2023-12-05.

GeoPandas developers. Introduction to geopandas. https://geopandas.org/
en/stable/getting _started/introduction.html. Accessed: 2024-02-25.

GfG. What is Data Analysis? https://www.geeksforgeeks.org/what-is-

data-analysis/?ref=previous_article. Accessed: 2023-12-10.
family=Rougier given i=N, given=Nicolas. Scientific visualization.

International Energy Agency. lea—international energy agency - iea. https://

www.lea.org/data-and-statistics. Accessed: 2023-12-06.

John Hunter, Darren Dale, Eric Firing, Michael Droettboom and the Matplotlib
development team. Customizing matplotlib with style sheets and rcparams —
matplotlib 3.8.4 documentation. https://matplotlib.org/stable/users/
explain/customizing.html#the-matplotlibrc—file. Accessed: 2024-
12-05.

John Hunter, Darren Dale, Eric Firing, Michael Droettboom and the Matplot-
lib development team. FExternal resources — matplotlib 3.8.4 documentation.

https://matplotlib.org/stable/users/resources/index.html. Ac-
cessed: 2024-12-05.

Jonath Jose. Introduction to time series analysis and its applications. 08 2022.

Daniel A. Keim. 21 Datenvisualisierung und Data Mining, pages 363-370. K. G.
Saur, Berlin, Boston, 2004.

Dirk Lehmann, Georgia Albuquerque, Martin Eisemann, Andrada Tatu, Daniel
Keim, H. Schumann, Marcus Magnor, and Holger Theisel. Visualisierung und ana-
lyse multidimensionaler datensétze. Informatik Spektrum, 33:589-600, 12 2010.

D. Nelson. Data Visualization in Python: Explore and Manipulate Data and Create
Engaging Interactive Plots with 9 Python Libraries, pages 2—6. StackAbuse, 2021.

97

Literaturverzeichnis

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

M. Nurminen, A. Lindstedt, M. Saari, and P. Rantanen. The requirements and
challenges of visualizing building data. In 2021 44th International Convention on
Information, Communication and Electronic Technology (MIPRO), pages 968-972,
2021.

Optenda. Energiemonitoring software energy monitor | optenda. https:
//ec.europa.eu/eurostat/cache/infographs/energy_portal/

enviz.html?language=EN. Accessed: 2023-12-05.

Patrick Planing. Statistik grundlagen. https://statistikgrundlagen.de/
ebook/chapter/chapter—-1-2/. Accessed: 2023-11-28.

Quirine Philipsen. (explorative) datenvisualisierung. https://users.
informatik.haw-hamburg.de/~ubicomp/projekte/master—-nm-rv-
2015/philipsen.pdf. Accessed: 2023-02-20.

Plotly. Choropleth maps in python. https://plotly.com/python/
choropleth-maps/. Accessed: 2024-01-16.

Plotly. Plotly open source graphing library for python. https://plotly.com/
python/. Accessed: 2024-01-25.

Plotly. Sankey. https://plotly.com/python/sankey—diagram/. Accessed:
2024-02-20.

Plotly. Scatter plots on maps in python. https://plotly.com/python/
scatter—-plots—-on—-maps/. Accessed: 2024-01-16.

Rob Story. Folium — folium 0.1.dev1+4g3b79310 documentation. https://
python-visualization.github.io/folium/latest/index.html. Ac-
cessed: 2024-01-17.

Rob Story. User guide — folium 0.1.devl+g3b79310 documentation.
https://python-visualization.github.io/folium/latest/user_
guide.html. Accessed: 2024-01-17.

Jesus Rogel-Salazar. Statistics and Data Visualisation with Python, pages 2-3. CRC
Press, 1 2023.

Jesus Rogel-Salazar. Statistics and Data Visualisation with Python, page 145. CRC
Press, 1 2023.

98

Literaturverzeichnis

[43]

[44]

[45]

[46]

[47]

48]

[49]

Snowflake Inc. Streamlit e a faster way to build and share data apps. https:
//streamlit.io/. Accessed: 2024-01-10.

Timotheos Frey. Grundlagen der datenvisualisierung. https://timfrey.
files.wordpress.com/2018/09/intro_dataviz_201809.pdf. Accessed:
2023-11-10.

Unicorn a.s. Entso-e transparency platform. https://transparency.entsoe.
eu/. Accessed: 2023-12-06.

Jacob VanderPlas, Brian Granger, Jeffrey Heer, Dominik Moritz, Kanit Wongsu-
phasawat, Arvind Satyanarayan, Fitan Lees, Ilia Timofeev, Ben Welsh, and Scott
Sievert. Altair: Interactive statistical visualizations for python. Journal of Open
Source Software, 3(32):1057, 2018.

Vega-Altair Developers. Interactive charts — vega-altair 5.3.0 documentati-
on. https://altair-viz.github.io/user_guide/interactions.html.
Accessed: 2024-01-15.

Michael L. Waskom. seaborn: statistical data visualization. Journal of Open Source
Software, 6(60):3021, 2021.

Yan Holtz And Conor (Y. H. A. C.) Healy. From data to viz | find the graphic you
need. https://www.data-to-viz.com/. Accessed: 2023-11-29.

99

A Anhang

100

Erklarung zur selbststandigen Bearbeitung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbsténdig
verfasst und nur die angegebenen Hilfsmittel benutzt habe. Wortlich oder dem Sinn

nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich

gemacht.

Ort Datum Unterschrift im Original

101

A Anhang

102

