
BACHELOR THESIS
Suraj Shrestha

Evaluation von
Visualisierungstypen und
Bibliotheken für Energiedaten
in Python

FAKULTÄT TECHNIK UND INFORMATIK
Department Informations- und Elektrotechnik

Faculty of Engineering and Computer Science
Department of Information and Electrical Engineering

HOCHSCHULE FÜR ANGEWANDTE
WISSENSCHAFTEN HAMBURG
Hamburg University of Applied Sciences

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung
im Studiengang Bachelor of Science Regenerative Energiesysteme und Energie-
management
am Department Informations- und Elektrotechnik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Kolja Eger
Zweitgutachter: Prof. Dr. Wolfgang Renz

Eingereicht am: 26.04.2024

Suraj Shrestha

Evaluation von Visualisierungstypen und
Bibliotheken für Energiedaten in Python

Suraj Shrestha

Thema der Arbeit

Evaluation von Visualisierungstypen und Bibliotheken für Energiedaten in Python

Stichworte

Energiedaten, Visualisierungstypen, Python-Bibliotheken, Evaluation

Kurzzusammenfassung

Die Grundidee der Datenvisualisierung ist die geeignete Darstellung von Daten in visu-
eller Form, die dem Menschen einen Einblick in die Struktur der Daten, das Ziehen von
Schlussfolgerungen aus den Daten und die direkte Interaktion mit den Daten ermöglicht
[28]. Visuelle Datenexplorations-Techniken werden deshalb in vielen Anwendungsberei-
chen wie Industrie, Wirtschaft, Energiebranche, Medizin usw. eingesetzt.
Das Ziel dieser Arbeit besteht darin, unterschiedliche Visualisierungstypen für Ener-
giedaten zu identifizieren und diese unter Verwendung gängiger Python-Bibliotheken
umzusetzen. Zu den Visualisierungen gehören ein Liniendiagramm zur Darstellung der
Entwicklung der jährlichen Stromverbrauchsdaten, ein Balkendiagramm zur Darstellung
des monatlichen Stromverbrauchs der Gesamtnetzlast und der Residuallast sowie Histo-
gramme, Boxplots und Violinplots zur Visualisierung der Datensatzverteilung. Mit ei-
nem Kreisdiagramm wird die monatliche Zusammensetzung dargestellt. Zur Analyse des
Einflusses von Tageszeit, Wochentagen und Feiertagen auf den Stromverbrauch werden
unterschiedliche Versionen der Heatmap vorgestellt. Ein Sankey-Diagramm wird benutzt,
um die Energieflüsse fester Brennstoffe darzustellen. Darüber hinaus sind Karten erstellt,
um Elektroladesäulen auf Bundes- und Landkreisebene darzustellen. Dashboards sind so
konzipiert, dass sie eine interaktive Analyse der Daten für unterschiedliche Jahre mit
unterschiedlichen Visualisierungstypen ermöglichen. Matplotlib und Seaborn werden zur
statischen Visualisierung eingesetzt. Für die interaktive Visualisierung von Daten werden
Vega, Bokeh und Plotly verwendet, während Folium, Geopandas und Plotly zur Erstel-
lung von Karten genutzt werden. Dash und Streamlit werden genutzt, um Dashboards
zu erstellen. Alle verwendeten Python Datenvisualisierungsbibliotheken sind leistungsfä-
hig und erfüllen die Anforderungen, um Energiedaten zu visualisieren. Jede Bibliothek
hat ihre eigenen Stärken und Schwächen. Die Visualisierungstypen und Bibliotheken,
die für die Energiedaten verwendet werden sollen, können je nach den Bedürfnissen gut
ausgewählt werden.

iii

Suraj Shrestha

Title of Thesis

Evaluation of visualisation types and libraries for energy data in Python

Keywords

Energy data, Visualisation types, Python libraries, Evaluation

Abstract

The basic idea of data visualisation is to present data in an appropriate visual form, which
allows people to gain insight into the structure of the data, to draw conclusions from the
data and to interact directly with the data [28]. Visual data exploration techniques are
therefore being used in a wide range of application areas such as industry, business, the
energy sector, medicine, etc.

The aim of this work is to identify different types of visualisations for energy data and
to implement them using common Python libraries. The visualisations include a line
chart to show the development of the annual electricity consumption data, a bar chart
to show the monthly electricity consumption of the total grid load and the residual
load as well as histograms, box plots and violin plots to visualise the distribution of
dataset. The monthly composition is visualised with a pie chart. Different versions of
the heat map are presented to analyse the influence of time of day, weekdays and public
holidays on electricity consumption. A Sankey diagram is used to visualise the energy
flows of solid fuels. In addition, maps are created to show electric charging points at
national and county level. Dashboards are designed to allow interactive analysis of data
for different years with different visualisation types. Matplotlib and Seaborn are used for
static visualisation. Vega, Bokeh and Plotly are used for the interactive visualisation of
data, while Folium, Geopandas and Plotly are used to create maps. Dash and Streamlit
are used to create dashboards. All Python data visualisation libraries used are powerful
and meet the requirements for visualising energy data. Each library has its own strengths
and weaknesses. The visualisation types and libraries for energy data can be selected
according to the needs.

iv

Inhaltsverzeichnis

Abbildungsverzeichnis ix

Tabellenverzeichnis xii

Abkürzungen xiii

1 Einleitung 1
1.1 Hintergrund und Motivation . 2
1.2 Aufgabestellung, Forschungsziele und Forschungsfragen 3
1.3 Gliederung der Arbeit . 4

2 Theoretische Grundlagen 6
2.1 Visualisierungstypen . 6
2.2 Python Bibliotheken . 7
2.3 Datensatz . 8
2.4 Datenanalyse . 9
2.5 EDA . 10
2.6 Zeitreihenanalyse . 10

3 Anforderungen 11
3.1 Analyse Visualisierungstypen für Energiedaten 11
3.2 Anforderungen für die Visualisierung . 15
3.3 Analyse Pythonbibliotheken für Energiedaten 15
3.4 Anforderungen für die Bibliotheken . 16

3.4.1 Anforderungen für die statische Visualisierungs Bibliotheken (Mat-
plotlib und Seaborn) . 16

3.4.2 Anforderungen für die interaktive Visualisierungs Bibliotheken (Plot-
ly, Bokeh, Vega-Altair) . 17

3.4.3 Anforderungen für die Karten Visualisierungs Bibliotheken (Plotly,
Folium, Geo-pandas) . 18

v

Inhaltsverzeichnis

4 Entwurf 19
4.1 Visualisierungstypen . 19
4.2 Python . 20
4.3 Jupyter Notebook . 21

5 Implementierung 23
5.0.1 EDA . 23

5.1 Daten Visualisierung mit Matplotlib . 29
5.1.1 Liniendiagramm . 29
5.1.2 Balkendiagramm . 30
5.1.3 Boxplot . 31
5.1.4 Kreisdiagramm . 32
5.1.5 Flächendiagramm . 32
5.1.6 Histogramm . 33
5.1.7 Violinplot . 33
5.1.8 Wärmekarte . 34

5.2 Daten Visualisierung mit Seaborn . 38
5.2.1 Liniendiagramm . 38
5.2.2 Balkendiagramm . 38
5.2.3 Boxplot . 39
5.2.4 Kreisdiagramm . 39
5.2.5 Flächendiagramm . 40
5.2.6 Histogramm . 40
5.2.7 Violinplot . 41
5.2.8 Wärmekarte . 41

5.3 Daten Visualisierung mit Vega-Altair . 44
5.3.1 Liniendiagramm . 44
5.3.2 Balkendiagramm . 44
5.3.3 Boxplot . 45
5.3.4 Kreisdiagramm . 46
5.3.5 Flächendiagramm . 46
5.3.6 Histogramm . 47
5.3.7 Violinplot . 47
5.3.8 Wärmekarte . 48

5.4 Daten Visualisierung mit Bokeh . 51
5.4.1 Liniendiagramm . 51

vi

Inhaltsverzeichnis

5.4.2 Balkendiagramm . 51
5.4.3 Boxplot . 52
5.4.4 Kreisdiagramm . 52
5.4.5 Flächendiagramm . 53
5.4.6 Histogramm . 53
5.4.7 Violinplot . 54
5.4.8 Wärmekarte . 54

5.5 Daten Visualisierung mit Plotly . 56
5.5.1 Liniendiagramm . 56
5.5.2 Balkendiagramm . 57
5.5.3 Boxplot . 57
5.5.4 Kreisdiagramm . 58
5.5.5 Flächendiagramm . 58
5.5.6 Histogramm . 59
5.5.7 Violinplot . 60
5.5.8 Wärmekarte . 60

5.6 Sankey Diagramm . 63
5.7 Dashboard Erstellung . 64

5.7.1 Dashboard mit Dash . 65
5.7.2 Dashboard mit Streamlit . 67

5.8 Karten Visualisierung . 68
5.8.1 Karten mit Folium . 68
5.8.2 Karten mit Geopandas . 70
5.8.3 Karten mit Plotly . 72
5.8.4 Zeitreihenanalyse . 74

6 Evaluierung 82
6.1 Statische und interaktive Visualisierung 83

6.1.1 Funktionalität . 83
6.1.2 Dokumentation . 84
6.1.3 Leistung . 85

6.2 Dashboard Erstellung . 86
6.2.1 Funktionalität . 86
6.2.2 Benutzerfreundlichkeit . 86
6.2.3 Interaktivität . 87
6.2.4 Komplexität . 87

vii

Inhaltsverzeichnis

6.3 Karten Visualisierung . 87
6.3.1 Funktionalität . 88
6.3.2 Interaktivität . 88
6.3.3 Dokumentation . 88

7 Zusammenfassung 90
7.1 Überprüfung von Forschungszielen und -fragen 90
7.2 Grenzen der Arbeit . 94
7.3 Zukünftige Arbeiten . 94

Literaturverzeichnis 95

A Anhang 100
Selbstständigkeitserklärung . 101

viii

Abbildungsverzeichnis

2.1 Zweck der Visualisierung . 7
2.2 Python Visualisierungslandschaft . 8

4.1 Entwurf Visualisierungstypen . 19
4.2 Entwurf Pythonbibliotheken . 21

5.1 Datenanalyse zur Gewinnung erster Erkenntnisse 25
5.2 Deskriptive statistische Analyse . 26
5.3 Boxplot zur Erkennung von Ausreißern . 27
5.4 Histogramm zur Bestimmung der Form der Verteilung 28
5.5 Punktendiagramm zur Ermittlung von Muster und Trend im Datensatz . 28
5.6 Liniendiagramm mit matplotlib . 29
5.7 Balkendiagramm mit matplotlib . 30
5.8 Boxplot mit matplotlib . 31
5.9 Kreisdiagramm mit matplotlib . 32
5.10 Flächendiagramm mit matplotlib . 32
5.11 Histogramm mit matplotlib . 33
5.12 Violinplot mit matplotlib . 33
5.13 Heatmap Betrachtung Variante 1 mit matplotlib 34
5.14 Heatmap Betrachtung Variante 2 mit matplotlib 35
5.15 Heatmap Betrachtung Variante 3 mit matplotlib 36
5.16 Heatmap Betrachtung Variante 4 mit matplotlib 37
5.17 Liniendiagramm mit Seaborn . 38
5.18 Balkendiagramm mit Seaborn . 38
5.19 Boxplot mit Seaborn . 39
5.20 Kreisdiagramm mit Seaborn . 39
5.21 Flächendiagramm mit Seaborn . 40
5.22 Histogramm mit Seaborn . 40
5.23 Violinplot mit Seaborn . 41

ix

Abbildungsverzeichnis

5.24 Heatmap Betrachtung Variante 1 mit Seaborn 41
5.25 Heatmap Betrachtung Variante 2 mit Seaborn 42
5.26 Heatmap Betrachtung variante 3 mit Seaborn 42
5.27 Heatmap Betrachtung Variante 4 mit seaborn 43
5.28 Liniendiagramm mit Vega-Altair . 44
5.29 Balkendiagramm mit Vega-Altair . 44
5.30 Boxplot mit Vega-Altair . 45
5.31 Kreisdiagramm mit Vega-Altair . 46
5.32 Flächendiagramm mit Vega-Altair . 46
5.33 Histogramm mit Vega-Altair . 47
5.34 Violinplot mit Vega-Altair . 47
5.35 Heatmap Betrachtung Variante 1 mit Vega-Altair 48
5.36 Heatmap Betrachtung Variante 2 mit Vega-Altair 48
5.37 Heatmap Betrachtung Variante 3 mit Vega-Altair 49
5.38 Heatmap Betrachtung Variante 4 mit Vega-Altair 49
5.39 Liniendiagramm mit Bokeh . 51
5.40 Balkendiagramm mit Bokeh . 51
5.41 Kreisdiagramm mit Bokeh . 52
5.42 Flächendiagramm mit Bokeh . 53
5.43 Histogramm mit Bokeh . 53
5.44 Heatmap Betrachtung Variante 1 mit Bokeh 54
5.45 Heatmap Betrachtung Variante 2 mit Bokeh 54
5.46 Heatmap Betrachtung Variante 3 mit Bokeh 55
5.47 Liniendiagramm mit Plotly . 56
5.48 Balkendiagramm mit Plotly . 57
5.49 Boxplot mit Plotly . 57
5.50 Kreisdiagramm mit Plotly . 58
5.51 Flächendiagramm mit Plotly . 58
5.52 Histogramm mit Plotly . 59
5.53 Violinplot mit Plotly . 60
5.54 Heatmap Betrachtung Variante 1 mit Plotly 61
5.55 Heatmap Betrachtung Variante 2 mit Plotly 61
5.56 Heatmap Betrachtung Variante 3 mit Plotly 62
5.57 Heatmap Betrachtung Variante 4 mit Plotly 62
5.58 Sankeydiagramm für feste Brennstoff . 64
5.59 Dashboard mit Dash . 65

x

Abbildungsverzeichnis

5.60 Dashboard mit Streamlit . 67
5.61 Kartenvisualisierung auf Bundeslandebene 69
5.62 Kartenvisualisierung auf Landkreisebene 69
5.63 Kartenvisualisierung auf Bundeslandebene mit Geopandas 71
5.64 Kartenvisualisierung auf Landkreisebene mit Geopandas 72
5.65 Choropleth Karten auf Bundeslandebene mit Plotly 73
5.66 Choropleth Karten auf Landkreisebene mit Plotly 74
5.67 Visualisierung aller Spalten des Datensatzes 75
5.68 Resampling . 76
5.69 Rolling . 77
5.70 Zeitreihenzerlegung . 78
5.71 Trend und Saisonalität . 79
5.72 Autocorrelation . 80

6.1 Codekomplexität und Ausführungszeit . 85

7.1 Zusammenfassung RO1 . 91
7.2 Python Bibliotheken für die Datenvisualisierung 92

xi

Tabellenverzeichnis

3.1 Überblick über Plattformen und Visualisierungstypen 12
3.2 Überblick über die verschiedenen Visualisierungszwecke, die entsprechen-

den Datenanforderungen und die Visualisierungstypen 14
3.3 Anforderungen für die statische Visualisierungs Bibliotheken (Matplotlib

und Seaborn) . 16
3.4 Anforderungen für die interaktive Visualisierungs Bibliotheken (Plotly, Bo-

keh, Vega-Altair) . 17
3.5 Anforderungen für die Karten Visualisierungs Bibliotheken (Plotly, Foli-

um, Geo-pandas) . 18

4.1 Die beliebtesten Python-Bibliotheken für Datenvisualisierung 20

5.1 Komponenten der Programmierungsumgebung und ihre Versionen 23

6.1 Vergleich von Visualisierungsbibliotheken 83
6.2 Überblick über Bibliotheksdokumentationsstruktur und mögliche Code-

beispiele . 84
6.3 Überblick über Codebeispiele und Community 88

7.1 Einzelbewertungen . 93

xii

Abkürzungen

CM Cloud Manufacturing

IoT Internet der Dinge (Internet of Things)

CPS Cyber-Physische Systeme (Cyber-Physical Systems)

BDA Big Data Analytics

EnEfG Energieeffizienzgesetz

EU Europäische Union

EDA Explorative Datenanalyse

SMARD Strommarktdaten

EE Erneuerbare Energien

ENTSO-E Verband Europäischer Übertragungsnetzbetreiber (European Network of Trans-
mission System Operators for Electricity)

PNG Portable Network Graphic

HTML Hypertext Markup Language

JPG Hypertext Markup Language

SVG Scalable Vector Graphics

JSON JavaScript Object Notation

xiii

1 Einleitung

Grafische Darstellungen von Daten sind schnell und mächtig. Schnell, da Sie die effizi-
enteste Methode zur Vermittlung komplexer Informationen darstellen. Und mächtig, da
Bilder in den Köpfen hängen bleiben. Zahlenreihen werden vergessen, Bilder nicht. In
der Historie war die Datenvisualisierung enorm aufwändig, von der Datenbeschaffung
bis hin zur eigentlichen Produktion des Bildes – welches in früheren Jahren üblicher-
weise als Holzstich, als Kupferstich oder als Lithografie ausgeführt wurde. In der Da-
tenvisualisierungscommunity wird Charles-Joseph Minard heute oft als wichtige Figur
in der Entwicklung der Datenvisualisierung angesehen. Seine Darstellung aus dem Jah-
re 1869 zeigt geografische Positionen, die Truppenbewegungen, den Verlust an Soldaten
und die Temperaturen im Laufe von Napoleons Russlandfeldzug – technisch ausgeführt
als so genanntes Sankey-Diagramm [44]. Die Arbeit von John Snow trug dazu bei, eine
Cholera-Epidemie in London im Jahr 1854 zu beenden. Er identifizierte einen verseuchten
Brunnen und verglich die Sterblichkeitsraten in den von zwei Unternehmen versorgten
Gebieten. Seine Punktekarte und seine statistischen Vergleiche gelten als Teil der An-
fänge der modernen Epidemiologie, der Reform der sanitären Grundversorgung und des
Verständnisses der Infektionswege der Cholera. Während der Choleraepidemie von 1854
betreute Florence Nightingale die Patienten des Middlesex Hospitals und bemühte sich,
die sanitären Verhältnisse zu verbessern. Sie visualisiert die monatlichen Todesfälle durch
Infektionskrankheiten bei Soldaten, die angeblichen Auswirkungen der Verbesserung der
sanitären Verhältnisse als Mittel zur Bekämpfung von Krankheiten und die Sterblich-
keitsrate vor dem Eintreffen der Gesundheitskommission [29][12].

Heute sind wir an einem ähnlichen Punkt: Die Nachfrage nach Datenvisualisierungen
nimmt überall zu. Industrie 4.0 verändert die Fertigung durch fortschrittliche Technolo-
gien wie CM, IoT, CPS und BDA. Sie fördert intelligente Fabriken und datengesteuerte
Prozesse, die eine sorgfältige Implementierung von Visualisierungstechniken und Softwa-
re erfordern. Die Echtzeit-Visualisierung ermöglicht die grafische Darstellung komplexer
Prozessgrößen zu einem Bruchteil der Kosten einer vollständigen Digitalisierung [4]. In

1

1 Einleitung

der Wirtschaft helfen Datenvisualisierung, Verkaufszahlen, Kundenverhalten und Markt-
trends zu analysieren, was zu fundierteren Entscheidungen führt. In der wissenschaftli-
chen Forschung wird die Datenvisualisierung eingesetzt, um experimentelle Ergebnisse
zu analysieren, komplexe wissenschaftliche Konzepte zu visualisieren und die Ergebnis-
se anderen Forschern und der Öffentlichkeit zu vermitteln. Im Gesundheitsbereich wird
die Datenvisualisierung zur Analyse von Patientendaten und in der medizinischen For-
schung eingesetzt und bietet Einblicke in Krankheitsmuster und Behandlungsergebnisse.
Im Energiesektor bietet Datenvisualisierung einen detaillierten Einblick in den bisherigen
Verbrauch und die Nachfrage und ermöglicht es Energieversorgern, fundierte Prognosen
auf der Grundlage der tatsächlichen Datentrends zu erstellen [6].

1.1 Hintergrund und Motivation

Das Energieeffizienzgesetz (EnEfG) setzt klare Ziele zur Senkung des Energieverbrauchs
bis 2030, im Einklang mit EU-Richtlinien. Firmen mit einem Jahresverbrauch über 7,5
GWh müssen jetzt Energie- oder Umweltmanagementsysteme einführen. Unternehmen
mit einem Jahresenergieverbrauch von mehr als 2,5 Gigawattstunden müssen konkre-
te Pläne zu wirtschaftlichen Energieeffizienzmaßnahmen veröffentlichen. Rechenzentren
sind zur Einhaltung von Energieeffizienzstandards und zur Nutzung von Abwärme ver-
pflichtet [13]. Die Energiewende erfordert eine höhere Energieeffizienz, um den Verbrauch
zu senken und die Klimaziele zu erreichen. Energieeffizienz spart Geld für Haushalte,
Unternehmen und Kommunen und macht die Wirtschaft wettbewerbsfähiger. Daten-
visualisierung kann dazu beitragen, die Energieeffizienz zu verbessern, indem Daten aus
verschiedenen Quellen gesammelt und analysiert werden, um aktuelle Energieverbrauchs-
muster zu verstehen, Einsparpotenziale zu identifizieren und realistische Ziele zu setzen.
Studien zeigen, dass der Energieverbrauch durch Echtzeitinformationen deutlich gesenkt
werden kann [31]. Technologische Fortschritte in der Datenvisualisierung bieten echte
Möglichkeiten für die Erforschung des Energieverbrauchsbewusstseins mit Techniken wie
Energiemonitor, um eine browserbasierte Applikation für die Visualisierung, Auswertung
und Optimierung von Energieverbräuchen. Durch dieses Tool wird es möglich, Energieer-
zeugung und -verbrauch nahezu in Echtzeit zu beobachten. Grafisch aufbereitet werden
die Energiedaten in einem digitalen Dashboard visualisiert und alle 15 Minuten aktuali-
siert. Außerdem können bestimmte Kennzahlen in verschiedenen Zeiträumen abgebildet
werden, um den Verlauf des Tages, des Monats oder des Jahres zu sehen [14].

2

1 Einleitung

1.2 Aufgabestellung, Forschungsziele und
Forschungsfragen

Ziel dieser Arbeit ist die Verkürzung der Lernkurve für zukünftige Forscherinnen und
Forscher im Projekt. Dies beinhaltet die Identifikation geeigneter Visualisierungstypen
für Energiedaten, die Auswahl und Evaluierung geeigneter Bibliotheken für die Visuali-
sierung von Energiedaten in Python und die Erläuterung der erstellten Visualisierungsty-
pen durch zahlreiche Bibliotheken anhand verschiedener Jupyter-Notebooks. Diese Note-
books enthalten Python-Code zur Erstellung von Plots sowie weitere Erläuterungen zur
Nutzung und Interpretation der erstellten Visualisierungen. Um die Aufgabenstellung zu
erfüllen, sind mehrere Aspekte zu berücksichtigen. Diese werden in Forschungszielen (Re-
search Objectives, RO) zusammengefasst und in einzelnen Forschungsfragen (Research
Questions, RQ) bearbeitet.

Das erste Forschungsziel behandelt die Identifikation geeigneter Visualisierungstypen für
Energiedaten.

RO1: Wie können Energiedaten am besten visualisiert werden und welche
Visualisierungstypen sind dafür geeignet?

Um das Forschungsziel zu erreichen, müssen die folgenden Forschungsfragen beantwortet
werden:

RQ 1.1: Welche Online-Plattformen bieten Tools und Dienste zur Visualisierung von
Energiedaten an?

RQ 1.2: Welche Visualisierungstypen bieten die aufgeführten Plattformen zur Darstellung
von Energiedaten an?

RQ 1.3: Wann eignen sich welche Visualisierungstypen am besten für die Energiedaten?

Nach der Erarbeitung des ersten Forschungszieles werden die gängigen Pythonbibliothe-
ken untersucht.

RO2: Welche Python-Bibliotheken sind gängig für die Datenvisualisierung?

RQ 2.1: Welche Python-Bibliotheken werden am häufigsten für die Datenvisualisierung
verwendet?

3

1 Einleitung

RQ 2.2: Können die in RQ 1.3 genannten Visualisierungstypen mit diesen Bibliotheken
realisiert werden?

RQ 2.3: Welche Anforderungen müssen Bibliotheken erfüllen, um Energiedaten zu visua-
lisieren?

Nach der Erarbeitung des zweiten Forschungsziels werden die in RQ1 aufgelisteten Vi-
sualisierungstypen anhand der in RQ2 erforschten Python-Bibliotheken untersucht und
implementiert. Für jede dieser Bibliotheken wird ein eigenes Notebook erstellt. Im nächs-
ten RO geht es darum, verschiedene Bibliotheken anhand verschiedener Kriterien zu
bewerten.

RO3: Wie können Python-Bibliotheken evaluiert werden?

RQ 3.1: Was sind die verschiedenen Bewertungskriterien, um die Bibliotheken zu verglei-
chen und zu bewerten?

RQ 3.2: Welche Vor- und Nachteile haben die einzelnen Bibliotheken?

RQ3.3: Für welche Anwendungsfälle sind welche Bibliotheken am besten geeignet?

Durch die Beantwortung der Forschungsziele und -Fragen entsteht am Ende ein handvol-
les Notebook für die Visualisierung der Energiedaten sowie Evaluierungen und Empfeh-
lungen dazu.

1.3 Gliederung der Arbeit

• Kapitel 1 beinhaltet neben der Einführung zum Thema auch die Aufgabestellung,
Forschungsziele und Forschungsfragen.

• Kapitel 2 gibt eine kurze Einführung in die theoretischen Grundlagen.

• Kapitel 3 analysiert die verschiedenen Visualisierungstypen und listet die Anfor-
derungen an Bibliotheken auf.

• Kapitel 4 beschreibt den Entwurf für die Umsetzung.

• Kapitel 5 implementiert alle in unseren Anforderungen beschriebenen Visualisie-
rungstypen mit Hilfe verschiedener gängiger Python-Bibliotheken.

4

1 Einleitung

• Kapitel 6 bewertet die Bibliotheken anhand verschiedener Kriterien.

• Kapitel 7 fasst die Arbeit zusammen und überprüft die Beantwortung der For-
schungsfragen.

5

2 Theoretische Grundlagen

In diesem Kapitel werden allgemeine Informationen über die Visualisierungstypen, Py-
thonbibliotheken, Datenanalyse, EDA und Zeitreihenanalyse vermittelt.

2.1 Visualisierungstypen

Die Datenvisualisierung basiert auf Variablen, die univariate, bivariate oder multivariate
Daten darstellen. Sie können quantitativ oder qualitativ sein und werden durch Zahlen
oder Text dargestellt. Datenvisualisierungen werden häufig verwendet, um quantitati-
ve Datenmengen darzustellen. Bei quantitativen Variablen unterscheidet man zusätzlich
noch in diskrete und stetige Variablen [33]. Entscheidungsbäume werden verwendet, um
den geeigneten Visualisierungstyp auszuwählen, wobei Faktoren wie der Zweck der Visua-
lisierung, der Datentyp und die Anzahl der Variablen berücksichtigt werden. Der Zweck
der Visualisierung gibt eine Antwort auf die Frage, welche Art von Information über die
Daten vermittelt werden soll. Es gibt zahlreiche Online-Lösungen, die bei der Auswahl
einer geeigneten Visualisierung helfen. [19][49][1] sind in dieser Arbeit berücksichtigt. Die
Anwendungszwecke bei der Anzeige von Daten sowie der empfohlene Diagrammtyp für
den jeweiligen Zweck sind in der Abbildung 2.1 zusammengefasst.

6

2 Theoretische Grundlagen

Abbildung 2.1: Zweck der Visualisierung

2.2 Python Bibliotheken

Es gibt eine Reihe verschiedener Datenvisualisierungsbibliotheken und -module, die mit
Python kompatibel sind. Die meisten Python-Datenvisualisierungsbibliotheken lassen
sich in eine der folgenden Gruppen einteilen: Matplotlib-basierte Bibliotheken, JavaScript-
Bibliotheken, JSON-Bibliotheken und WebG-Bibliotheken.

Auf Matplotlib basiert die erste große Gruppe von Bibliotheken. Matplotlib existiert
nun seit mehr als zwei Jahrzehnten und ist sozusagen das Hauptwerkzeug. Es gibt viele
Dinge, die um Matplotlib herum gebaut wurden. Basemap/Cartopy wird für geogra-
phische Visualisierungen verwendet. Pandas und Seaborn haben Verbindungen zu Mat-
plotlib, während ggpy eine ggplot-Schnittstelle auf Matplotlib aufbaut. Networkx bietet
Netzwerkvisualisierung. Yellowbrick und Scikit-Plot bieten Visualisierungswerkzeuge für
maschinelles Lernen.

In den letzten Jahren haben viele dieser Python-Bibliotheken begonnen, von JavaScript
abzuhängen und JavaScript zu nutzen, um eine großartige interaktive Visualisierung zu
erhalten. Die beiden Größten davon sind Plotly und Bokeh. Es gibt noch Toyplot und

7

2 Theoretische Grundlagen

BQplot, die interessant sind. Ipyleaflet, ipyvolume, pythreejs mit denen man verschiedene
Aspekte von JavaScript für die interaktive Visualisierung im Notebook nutzen kann, was
ziemlich cool ist. Es gibt noch andere Dinge, wie Cufflinks, das auf Plotly aufbaut ist.

Um Javascript in Matplotlib einzubinden, gibt es die Möglichkeit, d3.js zu verwenden
und MPLd3 verbindet Matplotlib mit d3. Allerdings ist diese Methode nicht optimal
unterstützt. Es gibt Vega und Vega-Lite für interaktive Grafiken. Vega-Spezifikationen
definieren, wie interaktive Visualisierungen in JavaScript-Object-Notation (JSON) er-
stellt werden. Altair basiert auf den Standards Vega und Vega-Lite.

Die Open Graphics Library OpenGL ist eine API-Spezifikation für 2D- und 3D- Grafi-
kanwendungen [18][30].

Abbildung 2.2: Python Visualisierungslandschaft

2.3 Datensatz

Im Rahmen des EcoCharge-Projekts werden die Daten von der Open-Source-Website
(SMARD) heruntergeladen und für alle Projektteilnehmer auf GitHub zur Verfügung
gestellt. SMARD ist eine Daten- und Informationsplattform mit dem Ziel, die Transpa-
renz im deutschen Strommarkt durch die Bereitstellung von Echtzeitdaten zu Erzeugung,

8

2 Theoretische Grundlagen

Verbrauch, Import und Export von Strom zu erhöhen. In dieser Arbeit werden Strom-
verbrauchsdaten betrachtet. Der Datensatz für den realisierten Stromverbrauch ab dem
Jahr 2015 enthält Datentypen wie die Gesamtnetzlast und die Residuallast für den reali-
sierten Stromverbrauch [9]. Für das Sankey-Diagramm wird der Datensatz von Eurostat
verwendet [15][16]. In dieser Arbeit wird nur der Fluss der festen Brennstoffe betrachtet.
Die Kartenvisualisierung basiert auf dem von der Bundesnetzagentur veröffentlichten Da-
tensatz, der Informationen zu Elektroladesäulen in Deutschland auf Bundesland- sowie
Landkreisebene bereitstellt [8].

2.4 Datenanalyse

Von historischen Trends bis hin zu zukünftigen Erkenntnissen kann das Interesse an den
Daten reichen. Für ein stabiles statistisches Umfeld sind verschiedene Analyseebenen
erforderlich. Die verschiedenen Analyseebenen umfassen die deskriptive, prädiktive und
diagnostische Analyse. Bei der deskriptiven Analyse werden Daten aggregiert, um vergan-
gene Ereignisse zu analysieren, während bei der prädiktiven Analyse statistische Modelle
und Prognosetechniken verwendet werden, um zukünftige Ergebnisse vorherzusagen. Die
diagnostische Analyse liefert in Verbindung mit der deskriptiven Analyse eine detaillierte
Erklärung eines Szenarios durch das Verständnis von Verhaltensmustern [41][22].

Der Fokus der Arbeit liegt auf der deskriptiven Analyse. Dabei werden Daten aggre-
giert, um vergangene Ereignisse zu analysieren und Fragen zum Geschehen zu beantwor-
ten. Zunächst werden Daten aus verschiedenen Quellen wie SMARD, Eurostat und der
Bundesnetzagentur gesammelt. Nach der Datenerfassung beginnen die Bereinigung und
Vorverarbeitung, d. h. die Umwandlung der Daten in eine einheitliche Struktur, die Stan-
dardisierung der Formate und die Behandlung fehlender oder falscher Werte. Ziel dieser
Datenanalyse ist das Verständnis der Struktur und der Merkmale des Datensatzes durch
den Einsatz explorativer Datenanalysemethoden wie z. B. Histogramme, Boxplot, Punk-
tediagramm, Balkendiagramm und deskriptive (beschreibende) Statistik. Die Deskriptive
Statistik beinhaltet somit alle Verfahren, mit denen sich durch die Beschreibung von Da-
ten Informationen gewinnen lassen. Zu diesen Methoden bzw. Verfahren gehören unter
anderem die Erstellung von Grafiken und Tabellen und die Berechnung von deskriptiven
Kennzahlen bzw. Parametern. Mit Ihrer Hilfe können die zentrale Tendenz, die Streuung
und die Verteilung eines Datensatzes ermittelt werden [11][42].

9

2 Theoretische Grundlagen

2.5 EDA

Die explorative Datenanalyse bezeichnet statistische Verfahren zur Aufdeckung von Da-
tenstrukturen, Abhängigkeiten und Abweichungen einer vorhandenen Grundstruktur [vgl.
Gabler Wirtschaftslexikon, 2015]. Sie umfasst häufig grafische Verfahrensweisen und dient
dazu, Daten zunächst zu explorieren, d. h. sie zu erkunden, um darin durch Visualisie-
rungsmethoden besser die enthaltenen Muster und Strukturen zu erkennen, Schlussfol-
gerungen zu ziehen sowie mit den Daten interagieren zu können. Der Begriff explorative
Datenvisualisierung bezeichnet die interaktive Visualisierung der Ergebnisse aus der ex-
plorativen Datenanalyse (EDA) oder auch explorativen Statistik [34].

Exploratory data analysis can never be the whole story, but nothing else can serve as
the foundation stone as the first step. John W. Turkey, 1977.

2.6 Zeitreihenanalyse

Die Zeitreihenanalyse ist eine statistische Methode zur Untersuchung von Datenpunkten
über einen bestimmten Zeitraum. Die Zeitreihenanalyse verfolgt vier Ziele: Beschreibung,
Erklärung, Prognose und Kontrolle. Der erste Schritt der Analyse besteht darin, die Da-
ten grafisch darzustellen und die grundlegenden Merkmale der Reihe zu ermitteln. Dies
kann so einfach sein wie die Suche nach Trends oder so komplex wie die Analyse saisonaler
Veränderungen. Diagramme können verwendet werden, um nach Ausreißern zu suchen,
die nicht mit dem Rest der Daten übereinstimmen. Durch die grafische Darstellung der
Zeitreihe ist es möglich, einen Wendepunkt zu erzeugen, an dem ein Aufwärtstrend in
einen starken Abwärtstrend übergeht. Darüber hinaus ermöglicht die Zeitreihenanaly-
se die Erklärung von Ereignissen in der Vergangenheit. Basierend auf der beobachteten
Zeitreihe können zukünftige Werte vorhersagen. Bei den Kontrolltechniken werden die
Beobachtungen in eine Kontrollkarte eingetragen und die Reihe wird mit Hilfe eines
stochastischen Modells angepasst. Eine Zeitreihe besteht aus vier Komponenten: einem
Trend, der auf regelmäßige Muster in den Daten hinweist, saisonalen Schwankungen,
d. h. kurzfristigen Veränderungen in einer Zeitreihe, die typischerweise innerhalb eines
Jahres auftreten. Zu diesem Zweck werden häufig stündliche, tägliche, wöchentliche, vier-
teljährliche und monatliche Daten für die Analyse aggregiert. Außerdem gibt es zyklische
Schwankungen, die über einen Zeitraum von mehr als einem Jahr auftreten, und zufällige
Schwankungen, die unregelmäßig und zufällig sind [27].

10

3 Anforderungen

Die zentrale Aufgabe der Arbeit besteht darin, verschiedene Visualisierungstypen für
Energiedaten zu bestimmen und diese mit gängigen Python-Bibliotheken zu implemen-
tieren. Ziel dieses Kapitels ist die Bearbeitung der Forschungsziele 1 und 2.

3.1 Analyse Visualisierungstypen für Energiedaten

Es werden verschiedene Onlineplattformen untersucht, die Werkzeuge und Dienste zur
Visualisierung von Energiedaten anbieten. Es wird analysiert, welche Visualisierungsty-
pen die aufgeführten Plattformen zur Darstellung von Energiedaten verwenden. Tabelle
3.1 gibt einen Überblick über Plattformen und Visualisierungstypen.

11

3 Anforderungen

Plattform zur
Visualisierung
der Energiedaten

Verwendete
Visualisierungs-
typen

Was für Energiedaten?

SMARD.de [9]
Flächendiagramm,
Liniendiagramm

Realisierter Erzeugung, Prognostizierter Erzeu-
gung Day-Ahead, Prognostizierter Erzeugung In-
traday, Realisierter Stromverbrauch, Prognosti-
zierter Stromverbrauch, Stromhandel (Importe
und Exporte)

Balkendiagramm
(gestapelt)

Installierter Erzeugungsleistung durch unter-
schiedliche Energieträger

Karte (Maps) Kraftwerke

Energy-Charts [20]

Flächendiagramm,
Liniendiagramm

Öffentliche Nettostromerzeugung, Speicherfüll-
stände

Wärmekarten Öffentliche Nettostromerzeugung aus konventio-
nellen und EE-Quellen.

Punktendiagramme Prognose vs. Real werte darzustellen
Kreisdiagramme Öffentliche Nettostromerzeugung aus konventio-

nellen und EE-Quellen.
Säulendiagramme Monatlicher Anteil Erneuerbarer Energien an der

öffentlichen Nettostromerzeugung
Karte (Maps) Anteil EE an der elektrischen Last, Stromhan-

del (Import & Export), Durchschnittliche Day-
Ahead-Börsenstrompreise von EU

ENTSO-E [45]
gestapeltes Balken-
diagramm

Tatsächliche Erzeugung nach Erzeugungsart

Balkendiagramm,
Kreisdiagramm

Installierte Leistung nach Erzeugungsart

Flächendiagramm,
Liniendiagramm

Prognostizierter Erzeugung Day-Ahead, Wasser-
speicher und Wasserspeicherkraftwerke

Tabelle 3.1: Überblick über Plattformen und Visualisierungstypen

Weitere Online-Plattformen zur Visualisierung von Energiedaten sind die IEA (Inter-
nationale Energieagentur) [24], das Energy Visualisation Portal (Eurostat) [17] und der
Optenda Energiemonitor [32]. Alle Plattformen verwenden ähnliche Visualisierungstypen
für vergleichbare Energiedaten.

12

3 Anforderungen

Abbildung 2.1 zeigt verschiedene Visualisierungstypen für unterschiedliche Zwecke. Als
Nächstes werden die Anforderungen an die zu vermittelnden Informationen sowie die
passenden Visualisierungstypen für SMARD-Datensatz analysiert und in einer Tabelle
zusammengefasst.

13

3 Anforderungen

Zweck der Vi-
sualisierung

Datenanforderungen
Visualisierungstypen

Anzeigen von
Verteilungen

Darstellung der numerischen Daten des Da-
tensatzes durch ihre Quartile mit Anzeige
von Median, höherem/geringerem Quartil und
Maximum/Minimum und Ausreißern.

Boxplot

Darstellung der Verteilung des Datensatzes,
wie oft Werte in Bereiche(bins) fallen.

Histogramm

Darstellung Boxplot mit einer gedrehten
Kernel-Dichte auf jeder Seite

Violinenplot

Anzeigen von
Vergleichen

Anzeige der jährlichen Gesamtnetz- und Resi-
duallast

Liniendiagramme

Die Saisonalität, d.h. der Einfluss unterschied-
licher Zeiten wie Tageszeit, Wochenzeit, Fei-
ertage auf den Energieverbrauch durch ver-
schiedene Varianten der Wärmekarte verdeut-
lichen.

Wärmekarte

Verlauf von jährlichen Gesamtnetz- und Resi-
duallast anzeigen

Punktediagramme

Darstellung des Gesamtnetz- und Residuallast
nebeneinander und Gruppierung nach Mona-
ten auf derselben Achse.

Balkendiagramm

Anzeigen von
Beziehungen

Korrelation zwischen Gesamtnetzlast und re-
siduallast

Punktediagramme

Anzeigen von
Trend

Anzeige der jährlichen Gesamtnetzlast und
wöchentlicher gleitender Mittelwert

Liniendiagramm

Anzeige der jährlichen Gesamtnetz- und Resi-
duallast

Flächendiagramm

Anzeigen von
Zusammenset-
zungen

Anzeige der numerischen Proportionen des
monatlichen Energieverbrauchs

Kreisdiagramm

Anzeigen von
Geografie

Darstellung der Elektroladesäule in Deutsch-
land

Kartendiagramm,
Punktdichtekarte

Anzeigen von
Energieflüsse

Darstellung Energieflüsse Sankeydiagramm

Tabelle 3.2: Überblick über die verschiedenen Visualisierungszwecke, die entsprechenden
Datenanforderungen und die Visualisierungstypen

14

3 Anforderungen

3.2 Anforderungen für die Visualisierung

Im Rahmen dieser Arbeit sollen die Visualisierungstypen der Tabelle 3.2 mit Hilfe ver-
schiedener Python-Bibliotheken implementiert werden. Dabei wird zwischen einfachen
und komplexen Visualisierungen unterschieden. Zu den einfachen Visualisierungen gehö-
ren Liniendiagramme, Balkendiagramme, Kreisdiagramme, Flächendiagramme, Punkt-
diagramme, Histogramme, Boxplots und Violinplots. Zu den komplexen Visualisierungen
gehören Wärmekarten, Sankeydiagramme und Karten. Darüber hinaus sollten interaktive
Visualisierungstechnologien eingesetzt werden, um Trends schnell zu erkennen, Zusam-
menhänge in den Daten besser zu verstehen und komplexe Daten zu vereinfachen. Inter-
aktive Datenvisualisierung verwendet Interaktionstools, um Parameter zu ändern, Details
zu zeigen und neue Erkenntnisse zu gewinnen. Eine wichtige Aufgabe dieser Arbeit ist die
Implementierung des Dashboards. Der Benutzer kann mit dem Dashboard interagieren
und sich die Kennzahlen anzeigen lassen, die seinen Wünschen entsprechen.

3.3 Analyse Pythonbibliotheken für Energiedaten

Es gibt viele verschiedene Tools, von denen jedes auf seine eigene Anwendung spezialisiert
ist oder seine eigenen Stärken hat. Ziel dieser Arbeit ist es, einen Überblick über die Land-
schaft der Data-Visualisierungstools in Python zu geben und zu ermitteln, welche Biblio-
theken für die Energiedatenvisualisierung am besten geeignet sind. Abbildung 2.2 gibt
einen groben Überblick über die Python-Visualisierungslandschaft. Zur Erfüllung der Vi-
sualisierungsanforderungen sind die auf Matplotlib basierenden Bibliotheken Matplotlib
und Seaborn ausgewählt. Matplotlib ist eine Kernbibliothek für die Datenvisualisierung
in Python und Seaborn ist eine auf Matplotlib aufbauende High-Level-Schnittstelle zum
Zeichnen ansprechender statistischer Grafiken. Unter den auf Java-Script basierenden
Bibliotheken sind Plotly und Bokeh ausgewählt. Plotly und Bokeh sind die Kernbiblio-
theken von Python, auf denen mehrere übergeordnete Bibliotheken aufbauen. Als JSON-
basierte Bibliothek ist Vega-Altair ausgewählt, das eine kurze deklarative JSON-Syntax
für die Erstellung der Visualisierungen bietet. Diese Arbeit behandelt die populärsten
Python-Datenvisualisierungsbibliotheken, die in die oben definierten Kategorien fallen.
Diese Bibliotheken können je nach Bedarf statische und interaktive Visualisierungen im-
plementieren. Fast jede Python-Bibliothek kann verwendet werden, um statische PNG-,
SVG-, HTML- oder andere Ausgaben zu erstellen, die in eine Präsentation eingefügt, per
E-Mail versendet oder als Abbildung in einem Dokument veröffentlicht werden können.

15

3 Anforderungen

Viele möchten Python-basierte Dashboards erstellen, mit denen Benutzer Daten unter-
suchen oder analysieren können. Python bietet mehrere Bibliotheken für diesen Zweck.
Dash und Streamlit werden verwendet, um webbasierte Dashboards zu erstellen. Für die
Kartenvisualisierung werden Plotly, Folium und Geopandas ausgewählt, um mit geogra-
phischen Koordinaten zu arbeiten. Die in dieser Arbeit behandelten Bibliotheken sind:
Matplotlib, Seaborn für die statische Visualisierung, Plotly, Bokeh, Altair für die interak-
tive Visualisierung, Dash und Streamlit für die Erstellung von Dashboards und Folium,
Geopandas und Plotly für die Kartenvisualisierung.

3.4 Anforderungen für die Bibliotheken

3.4.1 Anforderungen für die statische Visualisierungs Bibliotheken
(Matplotlib und Seaborn)

“Muss”-Anforderungen “Soll”-Anforderungen “Kann”-Anforderungen
Visualisiert alle in Tabel-
le 3.2 aufgeführten Visua-
lisierungstypen.

Integrierte Themen, Figu-
renästhetik und Farbpalet-
ten

Interaktivität

Anpassung des Dia-
gramms (X-Y-Achse und
Ticks formatieren, Be-
schriftung, Legende, Titel
hinzufügen)

Erweiterte Visualisie-
rungstypen

Integration mit Dashboard
Bibliothek wie Streamlit

Möglichkeit zum Export
von Plots in einer Vielzahl
von Formaten

Leistungseffizienz bei
großen Datensätzen

Erweiterte Anpassungen
von Text und Anmerkun-
gen wie z.B. Logo und
Fußnote für Quelle

Integration mit Pandas
zur Datenmanipulation

Umfassende Dokumentati-
on und aktive Support-
Community

Tabelle 3.3: Anforderungen für die statische Visualisierungs Bibliotheken (Matplotlib
und Seaborn)

16

3 Anforderungen

3.4.2 Anforderungen für die interaktive Visualisierungs Bibliotheken
(Plotly, Bokeh, Vega-Altair)

“Muss”-Anforderungen “Soll”-Anforderungen “Kann”-Anforderungen
Alle Muss-Anforderungen
von statischer Visualisie-
rung erfüllen.

Alle Soll-Anforderungen
von statischer Visualisie-
rung erfüllen.

Erweiterte Diagramm-
typen wie Karten und
Sankey-Diagramme.

Interaktive Visualisierung
(Hover infos, zoom, pan,
reset, download)

Hinzufügen von benut-
zerdefinierten Steuerele-
menten wie Schaltflächen,
Dropdown-Menüs, Schie-
bereglern und Selektoren.

globale Bereitstellung von
interaktiven Plots.

Exportmöglichkeiten
(statisches Bildformat
(JPG,PNG,SVG) für Be-
richt und Veröffentlichung,
interaktives Web-Format
für Dashboard)

Benutzerfreundlichkeit
(Intuitive API und über-
sichtliche Dokumentation)

Tabelle 3.4: Anforderungen für die interaktive Visualisierungs Bibliotheken (Plotly, Bo-
keh, Vega-Altair)

17

3 Anforderungen

3.4.3 Anforderungen für die Karten Visualisierungs Bibliotheken
(Plotly, Folium, Geo-pandas)

“Muss”-Anforderungen “Soll”-Anforderungen “Kann”-Anforderungen
Choroplethkarte der
Elektroladesäule auf
Bundesland-und Land-
kreiseebene

Erweiterung mit inter-
aktiven Funktionen wie
HTML Popups, Search
usw.

Karte auf PLZ Ebene

Hovern Funktion um In-
formation über Bundes-
länder ggf. Landkreise und
Anzahl der Ladesäulen zu
erfahren

ClusterMarker und weiter
Plugins zur Verbesserung
der Sichtbarkeit und Be-
nutzerfreundlichkeit

Layerliste auf Bundesland-
, Landkreis- und PLZ-
Ebene

Alle Standorte von Lade-
stationen markieren

Leistungseffizienz bei
großen Datenpunkten

Filter für normale und
schnelle Ladesäulen

Tabelle 3.5: Anforderungen für die Karten Visualisierungs Bibliotheken (Plotly, Folium,
Geo-pandas)

18

4 Entwurf

In diesem Kapitel werden die analysierten Visualisierungstypen und Bibliotheken zusam-
mengefasst.

4.1 Visualisierungstypen

In der Tabelle 3.2 wird ein Überblick über die verschiedenen Visualisierungszwecke gege-
ben. Es wird gezeigt, welche Informationen aus den Daten gewonnen werden sollen und
welche Visualisierungstypen dafür geeignet sind. Abbildung 4.1 gliedert die ausgewählten
Visualisierungstypen in drei Gruppen: einfache Visualisierungen, statistische Diagramme
und komplexe Visualisierungen.

Abbildung 4.1: Entwurf Visualisierungstypen

19

4 Entwurf

4.2 Python

Für die Auswahl der Python-Bibliotheken werden die Anzahl der Github-Sterne, die An-
zahl der Downloads und die Anzahl der Mitwirkenden als Kriterien herangezogen. Dar-
über hinaus werden auch einzelne Gruppen aus der Python-Visualisierungslandschaft be-
rücksichtigt. Dazu gehören Matplotlib und Seaborn für Matplotlib-basierte Bibliotheken,
Bokeh und Plotly für JavaScript-basierte Bibliotheken und Vega-Altair für JSON-basierte
Bibliotheken. Zusätzlich werden bei der Auswahl der Bibliotheken Benutzeranforderun-
gen berücksichtigt. Z. B. statische Visualisierung, interaktive Visualisierung, Erstellung
von Dashboards und Visualisierung von Karten.

Bibliotheken
Gemeinschaft

Sterne Mitwirkenden Downloads
Matplotlib 19k 417 59M/monat
Seaborn 12k 185 18M/monat
Vega-Altair 8.9k 144 22M/monat
Bokeh 19k 391 4.9M/monat
Plotly 15k 231 14M/monat
Dash 20k 124 2.8M/monat
Streamlit 31k 208 4M/monat
Folium 6.6k 153 978k/monat
Geopandas 4.1k 209 6.4/monat

Tabelle 4.1: Die beliebtesten Python-Bibliotheken für Datenvisualisierung

Die Tabelle 4.1 zeigt die gängigen Python-Bibliotheken, die den Auswahlkriterien für
Bibliotheken entsprechen.

20

4 Entwurf

Abbildung 4.2: Entwurf Pythonbibliotheken

Die Abbildungen 4.1 und 4.2 geben einen Überblick über die Struktur der vorliegenden
Arbeit.

4.3 Jupyter Notebook

Die Visualisierungstypen werden von verschiedenen Pythonbibliotheken implementiert
und von jeder Bibliothek wird ein Jupyternotebook erstellt. Im Rahmen dieser Arbeit
werden den künftigen Forscherinnen und Forschern die nachfolgend aufgeführten Notiz-
bücher in GitHub des EcoCharge Projekts zur Verfügung gestellt.

• Datenvisualisierung mit Matplotlib-Bibliothek

• Datenvisualisierung mit Seaborn-Bibliothek

• Datenvisualisierung mit Vega-Altair-Bibliothek

• Datenvisualisierung mit Bokeh-Bibliothek

• Datenvisualisierung mit Plotly-Bibliothek

• Sankey-Diagramm mit Plotly

• Kartenvisualisierung mit Plotly

• Kartenvisualisierung mit Folium

21

4 Entwurf

• Kartenvisualisierung mit Geopandas

• EDA und Zeitreihenanalyse

• Dashboard mit Streamlit

22

5 Implementierung

In Abschnitt 4 wird ein Entwurf zur Implementierung im Rahmen dieser Arbeit vor-
gestellt. Die folgende Tabelle 5.1 bietet einen Überblick über die verwendete Kompo-
nente der Programmierumgebung. Darüber hinaus werden Informationen über die erste,
aktuelle und für die vorliegende Arbeit verwendete Version bereitgestellt. Alle Visuali-
sierungstypen werden anhand ausgewählter Bibliotheken implementiert. Die implemen-
tierten interaktiven Funktionen lassen sich anhand der gespeicherten HTML-Dateien in
GitHub nachvollziehen.

Komponente Erstes Veröffentlichungsjahr Erste Version Aktuelle Version Verwendete Version
Python 1991 0.9.0 3.12.3 3.11.5
Visual Studio Code 2015 1 1.88 1.85.2
Jupyter Notebook 2015 4 7.1.3 7.0.8
Matplotlib 2003 0.1 3.8.3 3.8.2
Seaborn 2012 0.1 0.13.2 0.12.2
Vega-Altair 2016 1.0.0 5.3.0 5.2.0
Bokeh 2013 0.1.0 3.4.1 2.4.3
Plotly 2013 0.6 5.21.0 5.18.0
Folium 2014 0.1.3 0.16.0 0.15.1
Geopandas 2014 0.1.0 1.0.0 0.14.3
Streamlit 2019 0.1.0 1.33.0 1.31.0

Tabelle 5.1: Komponenten der Programmierungsumgebung und ihre Versionen

5.0.1 EDA

Die explorative Datenanalyse ist ein wichtiger Schritt in jedem Datenanalyseprojekt. Sie
hilft, die Daten besser zu verstehen und Muster, Beziehungen, Trends und Anomalien
zu erkennen. Diese Arbeit gibt einen kurzen Überblick über die Schritte der EDA mit
Python für den Datensatz 2022.

23

5 Implementierung

Schritte 1. Bibliotheken und Datensätze importieren

1 # Import necessary libraries

2 import pandas as pd

3 import numpy as np

4 import matplotlib.pyplot as plt

5
6 # Read CSV file into a DataFrame

7 def read_SMARD_data(path):

8 df = pd.read_csv(path, delimiter=’;’, thousands=’.’, decimal=’,’,

parse_dates=[[0,1]], dayfirst="True")

9
10 # Spalten umbenennen

11 df = df.rename(

12 columns={

13 ’Datum_Anfang’: ’Datum’,

14 ’Gesamt (Netzlast) [MWh] Originalauflsungen’: ’Gesamt_Netzlast’,

15 ’Residuallast [MWh] Originalauflsungen’: ’Residuallast’,

16 ’Pumpspeicher [MWh] Originalauflsungen’ : ’StrombezugPumpspeicher’

17 }

18)

19 df.pop(’Ende’)

20
21 return df

22 #Load the data into a pandas dataframe

23 SMARD_df = read_SMARD_data("../../data/SMARD Data/Real data/

Realisierter_Stromverbrauch_202201010000_202212312359_Viertelstunde.csv")

Listing 5.1: Schritte 1: Bibliotheken und Datensätze importieren

Schritte 2. Datenanalyse zur Gewinnung erster Erkenntnisse

1 #check the shape of dataset

2 print("Data shape :", SMARD_df.shape)

3
4 #view the first few rows of the dataset

5 print("Data’s first few rows :\n", SMARD_df.head())

6
7 #check the data types of each feature

8 print("Data type of the attributes :\n", SMARD_df.dtypes)

9
10 print("Checking for missing values :\n",

11 SMARD_df.isnull().sum())

Listing 5.2: Schritte 2: Datenanalyse zur Gewinnung erster Erkenntnisse

24

5 Implementierung

Abbildung 5.1: Datenanalyse zur Gewinnung erster Erkenntnisse

Der Datensatz enthält 35.040 individuelle Datensätze und vier Variablen. Die Einträge
sind in 15-Minuten-Intervallen aufgeführt. Die Variablen sind Datum vom Typ date-
time64[ns], das für die Verarbeitung von Datum-Zeit-Daten verwendet wird, und die
Gesamtnetzlast, die Residuallast und der StrombezugPumpspeicher sind alle quantitativ
kontinuierliche Variablen vom Typ float64. Die Anzahl der Nullen in jeder Spalte des
Datensatzes zeigt, dass keine Werte im Datensatz fehlen.

Schritte 3. Deskriptive statistische Analyse

Nach einem ersten Überblick über die Daten wird eine deskriptive statistische Analy-
se durchgeführt, bei der deskriptive Statistiken wie Mittelwert, Median, Minimum und
Standardabweichung mit der Funktion ‚describe()‘ erstellt werden.

1 SMARD_df.describe()

Listing 5.3: Schritte 3: Deskriptive statistische Analyse

25

5 Implementierung

Abbildung 5.2: Deskriptive statistische Analyse

Die Gesamtnetzlast variiert zwischen 7963,75 MWh/15min (Grundlast) und 19707 MWh/15min
(Spitzenlast). Der Mittelwert beträgt 13773,90 MWh/15min, während der Median mit
13777,75 MWh/15min etwas höher liegt, was auf eine symmetrische Verteilung der Daten
um den Mittelwert hinweist. Eine Standardabweichung von 2400,05 MWh/15min zeigt
eine mäßige Schwankung der Gesamtnetzlast.

Schritte 4. Datenbereinigung

Im nächsten Schritt erfolgt eine Datenbereinigung, bei der fehlende Werte im Datensatz
behandelt und visualisiert, irrelevante Merkmale entfernt und Ausreißer mit Techniken
wie Boxplots, Z-Score und IQR erkannt werden. In Schritt 1 ist festgestellt worden, dass es
keine fehlenden Werte im Datensatz gibt. Die Variable ‚StrombezugPumpspeicher‘ wird
bei der Analyse nicht berücksichtigt und die Spalte wird aus dem Dataframe entfernt.
Ausreißer werden mit Boxplots veranschaulicht.

1 import seaborn as sns

2 import matplotlib.pyplot as plt

3
4 fig, axes = plt.subplots(1, 2)

5
6 sns.boxplot(ax = axes[0], data = SMARD_df[’Gesamt_Netzlast’], notch=True,

flierprops={"marker": "x"},

7 medianprops={"color": "r", "linewidth": 1}, whiskerprops={’

color’: ’red’, ’linewidth’: 1, ’linestyle’: ’:’},

8 capprops={’color’: ’black’, ’linewidth’: 1}, palette=’bright’,

orient=’h’, width=.2)

9
10 axes[0].set_xlabel(’Realisierter Stromverbrauch in [MWh/15min]’)

26

5 Implementierung

11
12 sns.boxplot(ax = axes[1], data = SMARD_df[’Residuallast’], notch=True,

flierprops={"marker": "x"},

13 medianprops={"color": "r", "linewidth": 1}, whiskerprops={’

color’: ’red’, ’linewidth’: 1, ’linestyle’: ’:’},

14 capprops={’color’: ’black’, ’linewidth’: 1}, palette=’bright’

, orient=’h’, width=.2)

15 axes[1].set_xlabel(’Residuallast in [MWh/15min]’)

16
17 plt.show()

Listing 5.4: Schritte 3: Deskriptive statistische Analyse

Abbildung 5.3: Boxplot zur Erkennung von Ausreißern

Aus der Abbildung 5.3 ist ersichtlich, dass es Ausreißer in Residuallast gibt.

Schritte 5. Datenvisualisierung

Bei der Datenvisualisierung wird eine univariate Analyse durchgeführt, um Ausreißer und
ungewöhnliche Beobachtungen mittels Boxplot zu identifizieren. Zur Beschreibung der
Streuung und Dispersion der Variablen werden die Spannweite, Varianz oder Standard-
abweichung berechnet. Außerdem wird die Form der Verteilung der Variablen durch Er-
stellen eines Histogramms identifiziert. Anschließend wird eine bivariate Analyse durch-
geführt, um die Beziehung zwischen zwei Variablen in einem Datensatz zu untersuchen.
Dabei werden Muster und Trends in einem Datensatz identifiziert, indem ein Punktedia-
gramm erstellt wird.

Univariate Analyse

27

5 Implementierung

Ein Beispiel für einen Boxplot ist in Abbildung 5.3 zu sehen. Die Funktion pandas des-
cribe() liefert Mittelwert und Median zur Bestimmung der Streuung, während die Stan-
dardabweichung zur Bestimmung der Streuung der Variablen dient (siehe 5.0.1). Der
Medianwert liegt nur wenig über dem Mittelwert, was auf eine symmetrische Verteilung
der Daten um den Mittelwert hindeutet, was auch in Abbildung 5.4 erkennbar ist.

Abbildung 5.4: Histogramm zur Bestimmung der Form der Verteilung

Bivariate Analyse Die Abbildung 5.5 zeigt ein Punktendiagramm zur Ermittlung mög-
licher Trends und Muster im Datensatz.

Abbildung 5.5: Punktendiagramm zur Ermittlung von Muster und Trend im Datensatz

28

5 Implementierung

Die Abbildung 5.5 zeigt die täglichen Höchst- und Tiefstwerte. Der gleitende Mittelwert
zeigt eine steigende Tendenz des Stromverbrauchs im Winter und eine fallende Tendenz
im Sommer. Die monatliche Darstellung der Stromverbrauchskurve zeigt den Einfluss
von Wochenenden, Feiertagen und Wochentagen auf den Stromverbrauch.

Im nächsten Abschnitt werden verschiedene Visualisierungstypen mit Hilfe verschiedener
Python-Bibliotheken implementiert. Dadurch können zusätzliche Informationen über den
Datensatz gewonnen werden.

5.1 Daten Visualisierung mit Matplotlib

5.1.1 Liniendiagramm

Abbildung 5.6: Liniendiagramm mit matplotlib

Das Liniendiagramm zeigt die sich täglich wiederholenden Höchst- und Tiefstwerte des
Energieverbrauchs. Damit wird der typische Tagesverlauf dargestellt. Ein gleitender Durch-
schnitt zeigt einen höheren Stromverbrauch im Winter und einen niedrigeren Stromver-
brauch im Sommer. Dies weist auf saisonale Einflüsse hin. Die geglättete Durchschnitts-
linie zeigt auch den allgemeinen Trend des Energiebedarfs im Jahresverlauf.

29

5 Implementierung

5.1.2 Balkendiagramm

Abbildung 5.7: Balkendiagramm mit matplotlib

Das Balkendiagramm zeigt die monatlichen Stromverbrauchsdaten für Deutschland im
Jahr 2018. Es unterscheidet zwischen zwei verschiedenen Arten von Energielasten: der
Gesamt(Netzlast) und der Residuallast. Die Residuallast stellt die Differenz zwischen der
gesamten Netzlast und der Stromerzeugung aus erneuerbaren Energiequellen dar und ist
durch kleinere Balken dargestellt. Der Stromverbrauch zeigt ein saisonales Muster mit
höherem Verbrauch in den kälteren Monaten (Januar, Februar) und gegen Ende des
Jahres (Oktober, November, Dezember). Dies könnte auf einen erhöhten Heizbedarf in
diesen Zeiträumen zurückzuführen sein.

30

5 Implementierung

5.1.3 Boxplot

Abbildung 5.8: Boxplot mit matplotlib

Das erste Subplot zeigt die Verteilung der Gesamtnetz- und Residuallast für das gesamte
Jahr. Es ist zu erkennen, dass der Median und der Mittelwert nahe beieinander liegen,
was auf eine symmetrische Verteilung der Daten um die zentrale Tendenz hinweist. Die
Whisker erstrecken sich, um den Bereich der Daten zu zeigen, und die Box zeigt den Inter-
quartilsbereich (IQR), der die mittleren 50% der Datenpunkte darstellt. Die Residuallast
enthält Ausreißer, die von den typischen Tageswerten abweichen und auf Extremwerte
hinweisen.

Im zweiten Subplot ist die monatliche Verteilung der Gesamtnetzlast dargestellt. Ähnlich
wie bei der vorherigen Analyse scheint es einen saisonalen Trend zu geben. In den kälte-
ren Monaten sind die Medianwerte höher als in den wärmeren Monaten. Die Länge der
Kästchen und die Whisker zeigen die Variabilität innerhalb jedes Monats. Die kälteren
Monate weisen eine höhere Variabilität mit längeren Whiskern auf.

31

5 Implementierung

5.1.4 Kreisdiagramm

Abbildung 5.9: Kreisdiagramm mit matplotlib

Große Anteile sind in den Monaten Januar, Februar und Dezember zu sehen, was auf
einen höheren Stromverbrauch in den kälteren Monaten aufgrund des Heizbedarfs hin-
weist, was auch die Auswirkungen der Jahreszeiten auf den Stromverbrauch verdeut-
licht.

5.1.5 Flächendiagramm

Abbildung 5.10: Flächendiagramm mit matplotlib

32

5 Implementierung

5.1.6 Histogramm

Abbildung 5.11: Histogramm mit matplotlib

Das Histogramm zeigt die Häufigkeitsverteilung von Gesamtnetzlast und Residuallast,
wobei die gestrichelte Linie den Median, den Mittelwert der beiden Werte, darstellt. Die
x-Achse zeigt den Wertebereich des Datensatzes, die y-Achse die Anzahl der Datenpunkte
in jedem Bereich.

Die Daten sind symmetrisch, wobei der Mittelwert und der Median annähernd gleich
sind, und das Histogramm weist auf beiden Seiten seiner Mitte eine ähnliche Form auf. Im
Residuallastdiagramm gibt es zwei markante Spitzen, die auf einen bimodalen Datensatz
hinweisen.

5.1.7 Violinplot

Abbildung 5.12: Violinplot mit matplotlib

33

5 Implementierung

Die gedrehte Kerneldichte der Gesamtnetzlast und Restiduallast zeigt die Wahrscheinlich-
keitsdichte der Daten bei verschiedenen Werten. Der Median und der Interquartilbereich
sind durch Markierungen und Kästen gekennzeichnet.

5.1.8 Wärmekarte

Betrachtung variante 1

Abbildung 5.13: Heatmap Betrachtung Variante 1 mit matplotlib

Diese Heatmap zeigt den durchschnittlichen Stromverbrauch für jede Viertelstunde des
Tages für jeden Monat.

Spitzenzeiten: Es scheint bestimmte Tageszeiten zu geben, zu denen der Stromverbrauch
am höchsten ist, was an den helleren (oder wärmeren) Farben zu erkennen ist. Dies
könnte mit der Rush Hour zusammenhängen, wenn die Menschen wach sind, wenn die
Geschäfte geöffnet sind und wenn die industrielle Aktivität am intensivsten ist.

Übergangszeiten: Der Stromverbrauch steigt ab den frühen Morgenstunden allmählich
an, erreicht seinen Höhepunkt gegen Mittag oder am frühen Nachmittag und sinkt dann
gegen Abend wieder ab. Dieses Muster entspricht dem typischen Tagesablauf von Strom-
verbrauch.

Saisonale Schwankungen: Im Winter ist der Gesamtstromverbrauch höher. Es gibt leichte
Schwankungen in den Spitzenzeiten des Stromverbrauchs während der verschiedenen Jah-

34

5 Implementierung

reszeiten, die auf Veränderungen der Tageslichtstunden und des menschlichen Verhaltens
zurückzuführen sind.

Konstanz: Die Ähnlichkeit der Muster über die Monate hinweg (auch wenn die Intensität
variiert) deutet auf konsistente Alltagsroutinen und Stromverbrauchsgewohnheiten in
Haushalten, Gewerbe und Industrie hin.

Betrachtung variante 2

Abbildung 5.14: Heatmap Betrachtung Variante 2 mit matplotlib

Diese Heatmap zeigt die tägliche Summe des Stromverbrauchs für jeden Tag des Monats
im Laufe des Jahres.

Tägliche Schwankungen: Die Stromnachfrage ist an Wochenenden und Feiertagen im
Allgemeinen niedriger als an Wochentagen, was auf eine geringere gewerbliche und in-
dustrielle Nachfrage zurückzuführen ist.

Saisonale Schwankungen: Höherer Stromverbrauch in den Wintermonaten.

Sie können auch erkennen, dass nach jeweils 5 Kästchen mit warmer Farbe (hohem Strom-
verbrauch) ein helles Kästchen erscheint, das für Wochenenden steht. Wenn mehr als 2
helle Kästchen erscheinen, handelt es sich um einen Feiertag, wie z. B. im Dezember
wegen der Weihnachtsferien oder in der ersten Aprilwoche wegen der Osterferien.

35

5 Implementierung

Betrachtung variante 3

Abbildung 5.15: Heatmap Betrachtung Variante 3 mit matplotlib

Konsistenz im Tagesverlauf: Der Farbverlauf von Blau zu Rot und wieder zurück zu Blau
zeigt ein konsistentes Muster des Stromverbrauchs, der im Laufe des Tages ansteigt,
seinen Höhepunkt erreicht und wieder abfällt. Dies deutet auf eine regelmäßige tägliche
Aktivität und einen regelmäßigen Stromverbrauch hin.

Tageszeitliche Schwankungen: Der Stromverbrauch ist tagsüber höher als in der Nacht.

Saisonale Schwankungen: Die Verbrauchsintensität folgt einem eindeutigen saisonalen
Muster, das im Winter höher und im Sommer niedriger ist.

Spitzenstunden: In Winter gibt es zwei Spitzen im Stromverbrauch – eine am Nachmittag
und eine am Abend und im Sommer weist der Stromverbrauch eine einzige Spitze auf,
typischerweise während des Tages.

36

5 Implementierung

Betrachtung variante 4

Abbildung 5.16: Heatmap Betrachtung Variante 4 mit matplotlib

Die Heatmap stellt den viertelstündlichen Stromverbrauch für jeden Tag des Jahres dar.
Diese Variante der Heatmap zeigt die Konsistenz des Stromverbrauchs über den gesamten
Tag, die täglichen und saisonalen Schwankungen, die Spitzenzeiten und den Einfluss von
Wochentagen und Wochenenden auf den Energieverbrauch.

Matplotlib ist eine vielseitige und leistungsstarke Bibliothek zur Erstellung von hochwer-
tigen Grafiken für wissenschaftliche Publikationen. Sie bietet sowohl eine einfache und
intuitive Schnittstelle (Pyplot) als auch eine objektorientierte Architektur, die es erlaubt,
alles innerhalb eines Plots zu verändern [23]. Alle grundlegenden Plots und komplexen
Visualisierungen, wie Wärmekarten und deren verschiedene Varianten, sind mit Matplot-
lib implementiert. Für fast jede Eigenschaft lassen sich in Matplotlib Voreinstellungen
definieren: Größe und DPI der Grafik, Linienbreite, Farbe und Stil, Achsen, Achsen-
und Rastereigenschaften, Text- und Schrifteigenschaften und so weiter [25]. „Nice-to-
have“-Funktionen für statische Plots, wie z. B. die erweiterte Anpassung von Text und
Anmerkungen wie Logo und Fußnote für die Quelle, sind ebenfalls implementiert. Die
Community von Matplotlib ist riesig, da sie externe Ressourcen wie Bücher, Kapitel,
Artikel, Videos und Tutorials zur Verfügung stellt und eine ausführliche Dokumentation
für Anfänger bietet, um mit der Visualisierung zu beginnen [26].

37

5 Implementierung

5.2 Daten Visualisierung mit Seaborn

5.2.1 Liniendiagramm

Abbildung 5.17: Liniendiagramm mit Seaborn

5.2.2 Balkendiagramm

Abbildung 5.18: Balkendiagramm mit Seaborn

38

5 Implementierung

5.2.3 Boxplot

Abbildung 5.19: Boxplot mit Seaborn

5.2.4 Kreisdiagramm

Abbildung 5.20: Kreisdiagramm mit Seaborn

39

5 Implementierung

5.2.5 Flächendiagramm

Abbildung 5.21: Flächendiagramm mit Seaborn

5.2.6 Histogramm

Abbildung 5.22: Histogramm mit Seaborn

40

5 Implementierung

5.2.7 Violinplot

Abbildung 5.23: Violinplot mit Seaborn

5.2.8 Wärmekarte

Betrachtung variante 1

Abbildung 5.24: Heatmap Betrachtung Variante 1 mit Seaborn

41

5 Implementierung

Betrachtung variante 2

Abbildung 5.25: Heatmap Betrachtung Variante 2 mit Seaborn

Betrachtung variante 3

Abbildung 5.26: Heatmap Betrachtung variante 3 mit Seaborn

42

5 Implementierung

Betrachtung variante 4

Abbildung 5.27: Heatmap Betrachtung Variante 4 mit seaborn

Mit Seaborn können alle grundlegenden Plots und komplexe Visualisierungen wie Heat-
maps und deren Varianten erstellt werden. Matplotlib ist sehr anpassungsfähig, aber es
kann schwierig sein zu wissen, welche Einstellungen optimiert werden müssen, um eine
ansprechende Darstellung zu erhalten. Seaborn kommt mit einer Reihe von angepassten
Themen und einer High-Level-Schnittstelle zur Steuerung des Aussehens von Matplotlib-
Grafiken. Seaborn erleichtert die Verwendung von Farben, die gut zu Dateneigenschaften
und Visualisierungszielen passen. Einige Diagramme, wie z. B. Kreisdiagramm und Flä-
chendiagramm, haben keine eigenen eingebauten Funktionen. Daher wird Matplotlib ver-
wendet, um das Diagramm zu erzeugen, und die Seaborn-Funktionen werden verwendet,
um ansprechende Diagramme zu erstellen. Die Daten von 2019 werden mit Seaborn vi-
sualisiert und die Ergebnisse werden ähnlich wie die mit Matplotlib erstellten Diagramme
analysiert [48].

43

5 Implementierung

5.3 Daten Visualisierung mit Vega-Altair

5.3.1 Liniendiagramm

Abbildung 5.28: Liniendiagramm mit Vega-Altair

5.3.2 Balkendiagramm

Abbildung 5.29: Balkendiagramm mit Vega-Altair

44

5 Implementierung

5.3.3 Boxplot

Abbildung 5.30: Boxplot mit Vega-Altair

45

5 Implementierung

5.3.4 Kreisdiagramm

Abbildung 5.31: Kreisdiagramm mit Vega-Altair

5.3.5 Flächendiagramm

Abbildung 5.32: Flächendiagramm mit Vega-Altair

46

5 Implementierung

5.3.6 Histogramm

Abbildung 5.33: Histogramm mit Vega-Altair

5.3.7 Violinplot

Abbildung 5.34: Violinplot mit Vega-Altair

47

5 Implementierung

5.3.8 Wärmekarte

Betrachtung variante 1

Abbildung 5.35: Heatmap Betrachtung Variante 1 mit Vega-Altair

Betrachtung variante 2

Abbildung 5.36: Heatmap Betrachtung Variante 2 mit Vega-Altair

48

5 Implementierung

Betrachtung variante 3

Abbildung 5.37: Heatmap Betrachtung Variante 3 mit Vega-Altair

Betrachtung variante 4

Abbildung 5.38: Heatmap Betrachtung Variante 4 mit Vega-Altair

Vega-Altair ist eine Python-Bibliothek für deklarative statistische Visualisierung, basie-
rend auf Vega und Vega-Lite. Bei der Erstellung eines Diagramms in Altair erfolgt au-
tomatisch eine Übersetzung des Codes in eine Vega-Lite-Spezifikation im JSON-Format.
Diese Spezifikation beschreibt die Struktur des Diagramms, einschließlich der darzustel-
lenden Daten, der verwendeten Marker (wie Balken, Linien und Punkte) und der Kodie-
rungen, die Datenvariablen auf visuelle Eigenschaften abbilden (wie die x-Achse, y-Achse
und Farbe). Dies sollte auch alle weiteren Anpassungen wie Achsenbeschriftungen, Titel

49

5 Implementierung

und Legenden umfassen. Der Kerngedanke besteht darin, Verbindungen zwischen den
Datenspalten und den visuellen Kodierungskanälen zu erklären [46].

Altair implementiert sowohl einfache Plots als auch komplexere Visualisierungen wie
Heatmaps und ihre Varianten mit Vega-Lite. Altair verwendet eine deklarative Gram-
matik für die Visualisierung und Interaktion, die es ermöglicht, den Plot durch Aktionen
wie das Erhöhen oder Verringern der Deckkraft und die Auswahl von Intervallen durch
Klicken und Ziehen zu verändern. Widgets sind an den Plot gebunden, um datengesteu-
erte Lookups zur Anzeige ausgewählter Variablen zu ermöglichen. Für logikgesteuerte
Vergleiche wird dem Diagramm ein Farbwähler hinzugefügt, mit dem der Benutzer inter-
aktiv Diagrammfarben auswählen kann. Außerdem sind zwei Ansichten derselben Daten
vertikal miteinander verbunden, wobei die Auswahl im unteren Diagramm die Anzeige im
oberen Diagramm aktualisiert. Grundlegende Interaktionen wie Schwenken und Zoomen
sind nicht hinzugefügt, da dies die Leistung beeinträchtigt. Stattdessen ist nur Tooltips
implementiert, die es dem Benutzer ermöglichen, den Mauszeiger über die Daten zu be-
wegen, um Informationen zu erhalten. Diagramme können in JSON, HTML, PNG, SVG
und PDF gespeichert werden [47].

50

5 Implementierung

5.4 Daten Visualisierung mit Bokeh

5.4.1 Liniendiagramm

Abbildung 5.39: Liniendiagramm mit Bokeh

5.4.2 Balkendiagramm

Abbildung 5.40: Balkendiagramm mit Bokeh

51

5 Implementierung

5.4.3 Boxplot

Bokeh bietet keine integrierte Funktion, um Boxplots zu erstellen.

5.4.4 Kreisdiagramm

Abbildung 5.41: Kreisdiagramm mit Bokeh

52

5 Implementierung

5.4.5 Flächendiagramm

Abbildung 5.42: Flächendiagramm mit Bokeh

5.4.6 Histogramm

Abbildung 5.43: Histogramm mit Bokeh

53

5 Implementierung

5.4.7 Violinplot

Ähnlich wie Boxplot bietet Bokeh keine integrierte Funktion, um Violinplot zu erstel-
len.

5.4.8 Wärmekarte

Betrachtung variante 1

Abbildung 5.44: Heatmap Betrachtung Variante 1 mit Bokeh

Betrachtung variante 2

Abbildung 5.45: Heatmap Betrachtung Variante 2 mit Bokeh

54

5 Implementierung

Betrachtung variante 3

Abbildung 5.46: Heatmap Betrachtung Variante 3 mit Bokeh

Bokeh bietet keine integrierte Funktion zur direkten Erstellung von Boxplots und Violin-
plots. Alle anderen Visualisierungstypen werden jedoch von Bokeh unterstützt. Es gibt
mehrere Möglichkeiten, auf browserbasierte Benutzerinteraktionen zu reagieren. Plottools
wie xpan, pan, box_zoom, lasso_select, zoom_in, crosshair, save und reset erleichtern
das Hinzufügen bestimmter Interaktionsarten zwischen Plots. Hovertool wird verwendet,
um Tooltips anzuzeigen, wenn der Mauszeiger über bestimmte Bereiche des Plots be-
wegt wird. Legenden, die zu Bokeh-Plots hinzugefügt werden, sind interaktiv, d. h. auf
die Legendeneinträge zu klicken oder zu tippen, blendet die entsprechende Glyphe in
einem Plot aus. Die Widgets von Bokeh bieten eine Reihe von interaktiven Funktionen,
um eine Front-End-Benutzeroberfläche für eine Visualisierung bereitzustellen. Zur Ver-
arbeitung dieser Interaktionen werden Java-Script-Callbacks verwendet. Es gibt einen
Color-Picker zur Auswahl einer Farbe für das Diagramm, ein Div-Element zur Anzeige
von Text, das HTML unterstützt, einen Toggle-Button, um ein bestimmtes Diagramm
ein- oder auszublenden, und ein Range-Tool, um den Bereich eines anderen Diagramms
zu steuern. Bokeh kann Bilder im RGBA-Format für Portable Network Graphics (PNG)
mit der Funktion export_png() und Bilder für Scalable Vector Graphics (SVG) mit der
Funktion export_svg() aus Layouts erzeugen [7]. Bokeh bietet Werkzeuge zur Erstellung
komplexer, interaktiver und webfähiger Diagramme. Die Bibliothek ist gut dokumen-
tiert und ermöglicht es, das Aussehen des Diagramms mit Bokeh-Themen anzupassen.

55

5 Implementierung

Darüber hinaus können Legenden, Texte und Anmerkungen hinzugefügt sowie Achsen,
Gitter und Symbolleisten angepasst werden.

5.5 Daten Visualisierung mit Plotly

5.5.1 Liniendiagramm

Abbildung 5.47: Liniendiagramm mit Plotly

Die Daten für 2020 werden mit Plotly visualisiert. Der Bereichsschieberegler ermöglicht
die Interaktion mit dem Diagramm, um Daten eines bestimmten Wertebereichs zu fil-
tern. Die Datenpunkte können mit der Maus überfahren und die Darstellung kann ge-
zoomt, geschwenkt und zurückgesetzt werden. Mit Hilfe des Dropdown-Menüs können
auch Viertelstundenwerte, Stundenwerte und Wochenwerte für die Trendanzeige ausge-
wählt werden.

56

5 Implementierung

5.5.2 Balkendiagramm

Abbildung 5.48: Balkendiagramm mit Plotly

5.5.3 Boxplot

Abbildung 5.49: Boxplot mit Plotly

Wie bei den statischen Diagrammen sind Median, Mittelwert, oberes/unteres Quartil,
Maximum/Minimum und Ausreißer sichtbar. Beim Überfahren mit der Maus werden die
entsprechenden Werte angezeigt.

57

5 Implementierung

5.5.4 Kreisdiagramm

Abbildung 5.50: Kreisdiagramm mit Plotly

5.5.5 Flächendiagramm

Abbildung 5.51: Flächendiagramm mit Plotly

58

5 Implementierung

Ähnlich wie beim Liniendiagramm gibt es verschiedene Funktionen, um mit den Daten zu
interagieren, z. B. das Hovern über die Daten, den Bereichsschieber, das Dropdown-Menü
und benutzerdefinierte Schaltflächen als Selektoren.

5.5.6 Histogramm

Abbildung 5.52: Histogramm mit Plotly

Das Histogramm zeigt die Häufigkeitsverteilung der Gesamtnetz- und Residuallast, wobei
die Anzahl in den Bins sichtbar ist. Zur Darstellung der Wahrscheinlichkeitsdichte der
Daten bei verschiedenen Werten wird ein Violindiagramm verwendet. Beim Hovern über
die Daten werden die Größe des Bins und die Häufigkeit des Wertes im Bin angezeigt.

59

5 Implementierung

5.5.7 Violinplot

Abbildung 5.53: Violinplot mit Plotly

Boxplot und eine gedrehte Kerneldichte auf jeder Seite, die die Wahrscheinlichkeitsdichte
der Daten bei verschiedenen Werten zeigt. Beim Hovern über die Daten werden der
Interquartilsbereich, das Maximum, das Minimum, der Mittelwert, der Median und der
Ausreißer angezeigt.

5.5.8 Wärmekarte

Betrachtung variante 1

60

5 Implementierung

Abbildung 5.54: Heatmap Betrachtung Variante 1 mit Plotly

Diese Heatmap zeigt den durchschnittlichen Stromverbrauch über die Stunden des Tages
für jeden Monat. Mit dem Mauszeiger kann über die Heatmap interagiert werden, um
Informationen zu erhalten. Es wird auch gezeigt, wie mehrere Datenattribute aktualisiert
werden können: Farbskala, Richtung der Farbskala und Liniendarstellung.

Betrachtung variante 2

Abbildung 5.55: Heatmap Betrachtung Variante 2 mit Plotly

Betrachtung variante 3

61

5 Implementierung

Abbildung 5.56: Heatmap Betrachtung Variante 3 mit Plotly

Betrachtung variante 4

Abbildung 5.57: Heatmap Betrachtung Variante 4 mit Plotly

Plotly basiert auf der Plotly-JavaScript-Bibliothek (plotly.js) und ermöglicht es Python
Benutzern, ansprechende interaktive Webvisualisierungen zu erstellen, die in Jupyter-
Notizbüchern angezeigt, als eigenständige HTML-Dateien gespeichert oder als Teil von
reinen Python-Webanwendungen mit Dash bereitgestellt werden können. Die Kernfunk-
tionalität ist in JavaScript geschrieben und bietet Anbindungen an verschiedene Sprachen
wie Python, R, Julia, JavaScript, ggplot2, F# und Matlab. Mit Plotly werden alle Dia-
gramme erstellt, die im Rahmen der vorliegenden Arbeit benötigt werden. Plotly bietet

62

5 Implementierung

eine vollständige Dokumentation für alle Diagramme. Dies erhöht die Benutzerfreund-
lichkeit. Standardmäßig bietet Plotly grundlegende Interaktionsfunktionen wie die Aus-
wahl von Intervallen zur Auswahl von Diagrammelementen durch Klicken und Ziehen,
Zoom, Pan, Autoscale, Hover-Informationen und eine interaktive Legende zur Anzeige
der ausgewählten Variablen. Der Bereichsschieber ermöglicht die Auswahl eines Wertebe-
reichs innerhalb eines definierten Minimal- und Maximalbereichs. Der Bereichsselektor
ist ein Werkzeug zur Auswahl der im Diagramm darzustellenden Bereiche. Es stehen
Schaltflächen zur Verfügung, um vorkonfigurierte Bereiche im Diagramm auszuwählen.
Ein Dropdown-Menü für die Auswahl von Viertelstunden-, Stunden- und Wochenwer-
ten im Liniendiagramm wurde hinzugefügt, damit Trend und Saisonalität erkannt und
verschiedene Datenattribute wie Farbskala, Richtung der Farbskala und Linienanzeige in
Heatmaps aktualisiert werden können [36].

5.6 Sankey Diagramm

Sankey-Diagramme sind eine spezielle Art von Flussdiagrammen, bei denen die Breite
der Pfeile proportional zum Fluss ist. Sie werden normalerweise zur Visualisierung von
Energieübertragungen zwischen Prozessen verwendet. Für das Verständnis der Sankey-
Diagramme und der Flüsse sind Quelle (Ausgangsknoten), Ziel (zu dem die Quelle eine
Verbindung herstellt) und der Wert für das Volumen des Verbindungsflusses grundle-
gend.

Der Eurostat-Datensatz für das Sankey-Diagramm enthält die Energiebilanzflüsse für
verschiedene Energieträger wie feste Brennstoffe, erneuerbare Energien usw. In dieser
Arbeit wird nur der Fluss der festen Brennstoffe betrachtet. Um den Durchfluss in einem
Datensatz darzustellen, sind manuelle Eingaben erforderlich. Es müssen der Quellknoten,
der Zielknoten, sowie ein Wert zur Darstellung des Durchflussvolumens definiert werden.
Der Datensatz für feste Brennstoffe ist komplex und erfordert eine Vorverarbeitung der
Daten. Die visuelle Darstellung des Sankey-Plots auf der Webseite von Eurostat dient
zur Bestimmung der Quelle und des Ziels. Diese werden anschließend aus der Excel-Datei
gefiltert und ihr jeweiliger Wert wird im Code zugewiesen. Die Beschriftung sowie die
Farbe der Knoten helfen bei der Differenzierung zwischen Knoten- und Quellennamen.
Im Vergleich zu anderen Visualisierungstypen, bei denen die eingebauten Funktionen die
wesentliche Grundlage bilden, erfordert die Erarbeitung des Sankey-Plots einen beträcht-
lichen zeitlichen Aufwand. Die sorgfältige Definition der Quelle und des Ziels sowie die

63

5 Implementierung

Suche des Wertes in einer komplexen Excel-Tabelle sind zeitintensiv und manuell durch-
zuführen. Im Vergleich zu anderen Bibliotheken für die Datenvisualisierung bietet Plotly
ausführliche Dokumentation und hilfreiche Beispiele zur Erstellung komplexer Sankey-
Diagramme, Aus diesem Grund ist Plotly die stärkste Bibliothek für die Darstellung von
Sankeydiagrammen [37].

Abbildung 5.58: Sankeydiagramm für feste Brennstoff

Die Abbildung 5.58 zeigt das Energieflussdiagramm für feste Brennstoffe. Es lässt sich
feststellen, dass ein erheblicher Teil dieser Brennstoffe importiert wird, wobei Erdöl den
größten Anteil ausmacht. Es zeigt auch die Umwandlungs- und Raffinerieprozesse, die die-
se Brennstoffe durchlaufen, bevor sie den Endverbraucher erreichen. Beim Hovern über
das Diagramm können zusätzliche Informationen über Menge, Quelle und Ziel angezeigt
werden. Anhand verschiedener Farben lassen sich die Art der Brenstoffe feststellen. Dar-
über hinaus ist es möglich, die Knoten zu verschieben. Um die Standardansicht zu opti-
mieren, werden die Knoten verschoben und eine Bildschirmaufnahme zur Dokumentation
gespeichert.

5.7 Dashboard Erstellung

Praktisch jede Python-Bibliothek kann verwendet werden, um eine statische PNG, SVG,
HTML oder andere Ausgabe zu erzeugen, die in eine Präsentation eingefügt, per EMail
verschickt oder als Abbildung in einem Dokument veröffentlicht werden kann. Es ist auch
möglich, auf Python basierende Live-Anwendungen oder Dashboards zu erstellen, die
Benutzer verwenden können, um Daten zu untersuchen oder zu analysieren. Python bietet
mehrere Bibliotheken für die Erstellung webbasierter Dashboards. Die vier wichtigsten
hierfür entwickelten Tools sind Dash, Streamlit, Panel und Voila. Das Dashboard mit

64

5 Implementierung

Dash und Streamlit wird im Rahmen dieser Arbeit implementiert, weil sie mehr Github-
Sterne haben, was bedeutet, dass sie bei den Benutzern beliebt sind. Dash arbeitet auch
mit Plotly zusammen und verbessert die Leistung dieser Bibliothek durch zusätzliche
Funktionen. Streamlit ist strukturierter und auf Einfachheit ausgerichtet [18].

5.7.1 Dashboard mit Dash

Abbildung 5.59: Dashboard mit Dash

Dash ist ein Low-Code-Framework, um schnelle Datenanwendungen in Python zu entwi-
ckeln. Es wird mit der Grafikbibliothek Plotly geliefert. Mit Dash kann eine Anwendung
mit nur wenigen Zeilen Code erstellt werden. Dash-Anwendungen setzen sich aus zwei
Teilen zusammen: dem Layout, das beschreibt, wie die Anwendung aussieht, und den
Callbacks, die beschreiben, wie Dash-Anwendungen mit Hilfe von Callback-Funktionen
erstellt werden. Das Layout besteht aus einer hierarchischen Baumstruktur von Kom-
ponenten. Dash HTML Components (dash.html) stellt Klassen für alle HTML-Tags zur
Verfügung. Die Schlüsselwort-Argumente beschreiben die HTML-Attribute wie z. B. sty-
le, class und id. Dash-Core-Components (dash.dcc) erzeugen übergeordnete Komponen-
ten wie Controls und Diagramme. Callback-Funktionen werden automatisch aufgerufen,
wenn sich eine Eigenschaft einer Eingabekomponente ändert. Dadurch wird eine Eigen-
schaft in einer anderen Komponente (der Ausgabe) aktualisiert [2].

65

5 Implementierung

Nach dem Import der Pakete und der Initialisierung der Anwendung mit dem Dash-
Konstruktor wird das Layout definiert, um die Komponenten der Anwendung darzustel-
len, die im Webbrowser angezeigt werden, normalerweise in einer html.div. Dash-HTML
und Dash-Core-Components werden verwendet, um das Layout des Dashboards anzu-
passen. Die Pandas-Bibliothek wird verwendet, um ein CSV-Datenblatt in einen Pandas-
Datenrahmen einzulesen und um die Daten in die Anwendung einzufügen. Alle Plots
aus der Plotly-Bibliothek werden von Dash unterstützt. Um die Daten zu visualisieren,
wird das DCC-Modul importiert und dcc.Graph verwendet, um interaktive Diagramme
zu erstellen. Die Figure-Eigenschaft von dcc.Graph wird verwendet, um die Diagramme
in unserer Anwendung anzuzeigen. Um dem Benutzer mehr Freiheit bei der Interak-
tion mit der Anwendung zu geben und die Daten detaillierter zu untersuchen, werden
zwei Dropdown-Menüs implementiert. Diese ermöglichen die Auswahl des Jahres und des
Visualisierungstyps. Um dies zu implementieren, muss die Callback-Funktion zur Anwen-
dung hinzugefügt werden. Zuerst werden zwei Dropdown-Komponenten hinzugefügt, um
dem Benutzer ein erweiterbares Dropdown-Menü zu bieten. Dann werden das Callback-
Modul und die beiden Argumente Output und Input importiert, die normalerweise im
Callback verwendet werden, um die Interaktion zwischen den Dropdowns und der Graph-
Komponente zu ermöglichen. Beide erhalten eine ID, die vom Callback zur Identifizierung
der Komponenten verwendet wird. Jedes Mal, wenn der Benutzer ein anderes Jahr oder
eine andere Darstellung auswählt, wird der Graph aktualisiert.

66

5 Implementierung

5.7.2 Dashboard mit Streamlit

Abbildung 5.60: Dashboard mit Streamlit

Streamlit ist eine Open-Source-Python-Bibliothek, mit der benutzerdefinierte Weban-
wendungen einfach erstellt und gemeinsam genutzt werden können. Nach der Ausfüh-
rung des Skripts wird lokal ein Streamlit-Server gestartet, der die Anwendung in einem
neuen Tab des Webbrowsers öffnet. Es können Diagramme, Text, Widgets und Tabellen
erstellt werden. Für weitere Informationen wird auf die API-Dokumentation verwiesen.
Die Anwendung in Abbildung 5.60 verwendet st.write zur Anzeige von Argumenten. Ver-
schiedene andere Textelemente wie z. B. st.markdown werden für die Anzeige von Strings
im Markdown-Format verwendet. st.title wird für die Anzeige von Text im Titelformat
verwendet. Datenelemente wie st.dataframe werden verwendet, um einen Datensatz als
interaktives Element darzustellen. Streamlit unterstützt alle unsere Python-Bibliotheken,
nämlich Matplotlib, Seaborn, Plotly, Bokeh und Vega-Altair. Aus diesem Grund können
alle implementierten Visualisierungen von jeweiligen Bibliotheken in Streamlit angezeigt
werden. Eingabewidgets wie Buttons und Selectboxen sind implementiert. Sie ermögli-
chen die Auswahl mehrerer Jahre an Datensätzen sowie verschiedener Visualisierungsty-
pen und -bibliotheken zur Visualisierung der Daten [43].

67

5 Implementierung

5.8 Karten Visualisierung

5.8.1 Karten mit Folium

Folium ist eine leistungsstarke Python-Bibliothek, mit der verschiedene Arten von Leaflet-
Karten erstellt werden können. Folium nutzt die Stärken des Python-Ökosystems bei der
Datenverarbeitung und der Leaflet.js-Bibliothek beim Mapping. Die Bibliothek bietet
eine Vielzahl von integrierten Tilesets von OpenStreetMap, Mapbox und Stamen und
unterstützt benutzerdefinierte Tilesets mit Mapbox- oder Cloudmade-API-Schlüsseln.
Folium unterstützt die Verwendung von GeoJSON- und TopoJSON-Overlays sowie die
Bindung von Daten an diese Overlays, um Choroplethen-Karten mit Farbschemata zu
erstellen und die Platzierung von Markern auf der Karte. Die interaktiven Ergebnisse
machen diese Bibliothek besonders nützlich für die Erstellung von Dashboards [39].

Elektroladestationen in Deutschland werden auf der Karte visualisiert. Nach Installati-
on und Import von Folium kann mit nur einer Zeile Code eine einfache Beispielkarte
erstellt werden, indem ein Tileset wie z. B. OpenStreetMap ausgewählt wird und Mar-
ker mit Popup- und Tooltip-Funktionalität hinzugefügt werden. Außerdem können Cho-
roplethen durch die Verknüpfung von Daten zwischen Pandas DataFrames/Series und
Geo/TopoJSON-Geometrien erstellt werden. Folgende Funktionen sind implementiert:
Skalierung am unteren Kartenrand, Zoom-Steuerung, Setzen von Grenzen, so dass die
Karte nicht über diese Grenzen hinausscrollt. UI-Elemente wie die LayerControl zum
Ein- und Ausblenden von Layern sowie einfache und HTML-Popups zur Anzeige von
Informationen wurden der Karte hinzugefügt. Vektorebenen wie Polygone werden ver-
wendet, um die Grenzen von Bundesländern und Landkreisen zu markieren, die in einer
Geometriespalte unserer JSON-Datei enthalten sind. Die Groupby-Operation gruppiert
alle Ladestationen nach Bundesland und zählt, wie viele Ladestationen jedes Bundesland
hat. Für Geojson-Popup und Tooltip werden json und csv zusammengeführt, sodass die
Geometriespalte, in der das Polygon für das Bundesland steht, eine gemeinsame Spalte
mit dem Namen des Bundeslandes und der Zählspalte für die Anzahl der Ladestationen
in jedem Bundesland enthält. Es sind Funktionen wie FitOverlays implementiert, die das
Schwenken und Zoomen ermöglichen, um die Overlays anzuzeigen. Außerdem sind Plug-
ins wie Draw, Minimap, Fullscreen, Mouseposition, ScrollZoomToggler, MarkerCluster
und Search implementiert, um zusätzliche Interaktion zu ermöglichen. Folium verfügt
nicht über eine integrierte Methode zum Speichern einer Karte als PNG-Datei. Stattdes-

68

5 Implementierung

sen wird die Karte als HTML-Datei gespeichert und anschließend ein Bildschirmfoto als
PNG-Datei gespeichert [40].

Abbildung 5.61: Kartenvisualisierung auf Bundeslandebene

Abbildung 5.62: Kartenvisualisierung auf Landkreisebene

69

5 Implementierung

Abbildung 5.61 zeigt die Visualisierung von Elektroladesäulen auf Bundeslandebene und
Abbildung 5.62 auf Landkreisebene. Alle oben genannten interaktiven Funktionen sind in-
tegriert. Einige Punkte liegen außerhalb Deutschlands. Dies liegt daran, dass die Längen-
und Breitengrade in der CSV-Datei der Bundesnetzagentur nicht korrekt sind. Bei der
Überprüfung hat sich gezeigt, dass die Elektroladesäule zwar existiert, aber nicht an
den geographischen Koordinaten. Choroplethmap zeigt die Visualisierung, bei der die
Bundesländer oder Landkreise im Verhältnis zur Anzahl der Ladesäuledichte eingefärbt
sind. Beim Hovern über die Bundesländer/Landkreise und Anklicken werden die Infor-
mationen zum Bundesland bzw. Landkreis und die Anzahl der Ladesäulen angezeigt. Ein
Marker mit Popup- und Tooltip-Funktion zeigt den Standort der Ladesäulen an. Durch
die Verwendung von Marker-Clustern werden die Marker je nach Zoom-Stufe angezeigt,
was die Leistung und Nutzbarkeit von Karten mit einer großen Anzahl von Markern ver-
bessert. Die Darstellung erfolgt dynamisch, d. h. beim Herauszoomen werden die Cluster
aufgelöst, um einzelne Marker oder kleinere Cluster anzuzeigen, und beim Hineinzoomen
wieder zu Clustern zusammengeführt. Die drei Bundesländer mit der höchsten Dichte
an Elektroladesäulen sind Bayern, Nordrhein-Westfalen und Baden-Württemberg. Die
acht Landkreise mit der größten Anzahl an Elektroladestationen sind Berlin, Hamburg,
München, Hannover, Wolfsburg, Stuttgart, Groß-Gerau und Ingolstadt.

5.8.2 Karten mit Geopandas

GeoPandas erweitert die Data-Science-Bibliothek pandas um die Unterstützung von Geo-
daten. Die zentrale Datenstruktur in GeoPandas ist der geopandas.GeoDataFrame, eine
Unterklasse von pandas.DataFrame, der Geometriespalten speichert und spatiale Opera-
tionen ausführen kann. Der geopandas.GeoSeries ist eine Unterklasse von pandas.Series.
Er verarbeitet die Geometrien. Ein GeoDataFrame ist eine Kombination aus einem pan-
das.Series mit traditionellen Daten (numerisch, boolesch, textuell usw.) und einem geo-
pandas.GeoSeries mit Geometrien (Punkte, Polygone usw.) [21].

Die GeoJSON-Daten enthalten sowohl Daten als auch Geometrie. Diese können mit der
Funktion geopandas.read_file() gelesen werden. Die Funktion erkennt automatisch den
Dateityp und erzeugt einen GeoDataFrame. Anschließend muss der GeoDataFrame mit
der Funktion GeoDataFrame.to_file() wieder zurück in die Datei geschrieben werden.
GeoPandas erleichtert die Erstellung von Choroplethenkarten. Dazu wird einfach der Be-
fehl ‚plot‘ mit dem Argument ‚column‘ verwendet, das die Spalte angibt, deren Werte
für die Farbzuweisung verwendet werden sollen. Sie können entweder eine statische Karte

70

5 Implementierung

mit mehreren Ebenen erstellen (Choropleth und Ladestationen als Punkte) oder eine in-
teraktive Karte mit der Methode explore(). Die interaktive Darstellung bietet weitgehend
die gleichen Anpassungsmöglichkeiten wie die statische und darüber hinaus noch einige
zusätzliche Funktionen. Für das Choropleth wird die Spalte NAME_1 mit den Namen
der Bundesländer als Eingabe verwendet und beim Überfahren mit dem Mauszeiger nur
der Name im Tooltip angezeigt, beim Anklicken aber alle Werte. Die Methode explore()
gibt ein folium.Map-Objekt zurück, auf dem die Folium-Funktionalität direkt genutzt
werden kann, indem zwei GeoDataFrames auf derselben Karte dargestellt werden und
Folium-Features hinzugefügt werden.

Abbildung 5.63: Kartenvisualisierung auf Bundeslandebene mit Geopandas

71

5 Implementierung

Abbildung 5.64: Kartenvisualisierung auf Landkreisebene mit Geopandas

Bei der Kartenvisualisierung mit Geopandas sind die Funktionen von Folium ebenfalls
implementiert. Im Gegensatz zu Folium müssen Popups und Tooltips nicht programmiert
werden, sondern werden standardmäßig angezeigt. Wichtige interaktive Funktionen, wie
z. B. das Hovern über die Karte, um weitere Informationen zu erhalten, sowie das Hinein-
und Herauszoomen, um einzelne Marker oder kleinere Cluster anzuzeigen oder zusam-
menzuführen, sind ebenfalls implementiert.

5.8.3 Karten mit Plotly

Die Python-Grafikbibliothek Plotly ermöglicht, interaktive Karten in Publikationsqua-
lität online zu erstellen. Zur Erstellung von Choropleth-Karten mit Plotly sind zwei
Arten von Eingaben erforderlich: GeoJSON-formatierte Geometriedaten, bei denen je-
des Feature entweder ein id-Feld oder einen identifizierenden Wert in den Eigenschaf-
ten hat, sowie eine Liste von Werten, die durch den Feature-Identifier indiziert sind.
Die GeoJSON-Daten werden dem geojson-Argument übergeben und die Daten werden
in derselben Reihenfolge wie die IDs im location-Argument in das color-Argument von
px.choropleth_mapbox übergeben [35][38]. Zuerst werden die GeoJSON-Datei und die
CSV-Datei für die Ladesäulen geladen. Diese enthalten die Geometrieinformationen für

72

5 Implementierung

die Bundesländer und die Landkreise sowie die Längen- und Breitengrade für die Lade-
säulen. Wie bei anderen Bibliotheken müssen die Bundesländer gruppiert und die Anzahl
der Ladestationen gezählt werden. Die Funktion px.choropleth_mapbox stellt dann jede
Zeile des DataFrames als eine Region des Choropleths dar.

Abbildung 5.65: Choropleth Karten auf Bundeslandebene mit Plotly

73

5 Implementierung

Abbildung 5.66: Choropleth Karten auf Landkreisebene mit Plotly

5.8.4 Zeitreihenanalyse

Eine Zeitreihe ist eine Datensammlung, die regelmäßig über einen bestimmten Zeitraum
erhoben wird. Die Daten von SMARD.de werden von 2015 bis 2022 alle 15 Minuten als
Zeitreihe erhoben. Bei der Analyse von Zeitreihendaten ist es wichtig, die beiden grund-
legenden Konzepte Trend und Saisonalität zu verstehen. Ein Trend liegt vor, wenn die
Daten langfristig zunehmen oder abnehmen. Saisonalität liegt vor, wenn die Zeitreihe ein
regelmäßiges Muster aufweist, das mit dem Kalender zusammenhängt, z. B. ein tägliches,
wöchentliches oder jährliches Muster. Wenn das Verhalten einer Zeitreihe periodisch vom
Kalender beeinflusst wird, spricht man von Saisonalität.

Der erste Schritt jeder Datenanalyse ist die Darstellung der Daten. Dazu importieren wir
den Datensatz in einen Pandas-Datenrahmen, benennen die Spalten um und verknüpfen
alle Jahresdateien mit pandas.concat() zu einem einzigen Datenrahmen. Dann werden
alle Spalten angezeigt, um ihre Kurven gleichzeitig zu betrachten. Die Abbildung 5.67
zeigt die Visualisierungen aller Spalten des Datensatzes.

74

5 Implementierung

Abbildung 5.67: Visualisierung aller Spalten des Datensatzes

Die Gesamtnetzlastdaten im Zeitverlauf werden für die weitere Analyse betrachtet. Zeitrei-
hendaten sind manchmal nicht im gewünschten Format verfügbar. In diesem Fall können
grundlegende Zeitreihenoperationen wie Resampling, Shifting, Rolling und Differenz-
bildung in Pandas verwendet werden. Resampling ändert die Aggregationsebene einer
Zeitreihe. In dieser Arbeit wird es verwendet, um 15-Minuten-Datensätze in tägliche,
wöchentliche und monatliche Gesamtwerte umzuwandeln. Die Abbildung 5.68 zeigt die
Daten für die Gesamtnetzlast nach dem Resampling. Shifting ist eine Technik, bei der
die gesamte Reihe um eine bestimmte Anzahl von Perioden nach oben oder unten ver-
schoben wird. Diese Technik ist nützlich, um die Autokorrelation der Daten mit Ihrem
verzögerten Wert zu berechnen. Das Konzept der gleitenden Durchschnitte ist eine nütz-
liche Technik zur Glättung von Zeitreihendaten. In Abbildung 5.69 sind die täglichen,
wöchentlichen, monatlichen und jährlichen gleitenden Durchschnitte für unsere Daten
dargestellt. Schließlich wird die Differenzierung verwendet, um die Zeitreihen stationär
zu machen, was für die Erstellung von Prognosemodellen unerlässlich ist.

75

5 Implementierung

Abbildung 5.68: Resampling

Die Abbildung 5.68 zeigt die aggregierte Gesamtnetzlast auf verschiedenen Zeitebenen.
Die viertelstündliche Aggregationsebene ist aufgrund der großen Anzahl von Datenpunk-
ten sehr dicht und die Informationen sind schwer zu erkennen. Auf der täglichen Aggre-
gationsebene sind die Tageshöchst- und -tiefstwerte erkennbar. Auf der wöchentlichen
Ebene zeigt sich ein deutlicher Aufwärtstrend des Stromverbrauchs in den Wintermona-
ten und ein Abwärtstrend in den Sommermonaten. Darüber hinaus ist über die Jahre
hinweg die Saisonalität des Stromverbrauchs sehr gut zu erkennen.

76

5 Implementierung

Abbildung 5.69: Rolling

Die wöchentlichen und monatlich gleitenden Mittelwerte zeigen wiederum einen Auf-
wärtstrend des Energieverbrauchs in den Wintermonaten und einen Abwärtstrend in den
Sommermonaten. Der gleitende Jahresdurchschnitt zeigt zunächst einen stabilen Trend
mit einem leichten Anstieg im Jahr 2017 und einem nahezu gleichbleibenden Wert im
Jahr 2018 im Vergleich zu 2017. Im Jahr 2019 ist ein deutlicher Rückgang des Stromver-
brauchs zu verzeichnen. Im Vergleich zu den Vorjahreswerten sinkt der Stromverbrauch
im Jahr 2020 kontinuierlich, was auf die Maßnahmen zur Eindämmung der Coronapan-
demie zurückgeführt werden kann. Ab Anfang 2021 ist ein Aufwärtstrend zu beobachten
und der Stromverbrauch erreicht wieder das Niveau von 2019, da die Maßnahmen zur
Eindämmung der Coronapandemie geringer ausfallen. Im letzten Quartal 2022 ist ein
Rückgang des Stromverbrauchs im Vergleich zum Vorjahresquartal zu beobachten. Die
aus der Abbildung 5.69 extrahierten Informationen können durch Quellen wie SMARD,
den Bericht von AGEB und BDEW bestätigt werden [10][5][3].

Zeitreihenzerlegung ist eine weitere statische Methode, um Trends und Saisonalitäten zu
erkennen und die aus der Abbildung 5.69 gewonnene Informationen zu bestätigen, bei
der eine Zeitreihe in mehrere Komponenten zerlegt wird, von denen jede ein zugrunde
liegendes Muster repräsentiert. In der Regel setzt sich eine Zeitreihe aus den folgenden
drei Komponenten zusammen:

• Trend: Auf- oder Abwärtstrend der Zeitreihe über einen längeren Zeitraum.

• Saisonalität: Der wiederkehrende kurzfristige Zyklus der Zeitreihe.

77

5 Implementierung

• Residual: Die zufällige Variation, die nach Abzug von Trend und Saisonalität übrig
bleibt.

Die Abbildung 5.70 zeigt die Zeitreihenzerlegung unseres Datensatzes, wobei der Gesamt-
netzlast wöchentlich aggregriert ist.

Abbildung 5.70: Zeitreihenzerlegung

Was in Abbildung 5.69 in Bezug auf den Trend und die Saisonalität zu erkennen ist,
kann durch die in der Abbildung 5.70 dargestellte Trend- und Saisonalitätskomponente
veranschaulicht werden. Dies bestätigt, dass der Datensatz ein saisonales Muster und
einen Trend aufweisen. Dies bedeutet, dass Prognosen für die Zukunft möglich sind.

Zur Analyse von Trend und Saisonalität wird zusätzlich noch der Einfluss von Tageszeit,
Wochentagen, Jahreszeiten und Feiertagen im Energieverbrauch untersucht. Für den Ein-
fluss von Tageszeit wird Zeit-Spalte mit pandas gruppiert, den Mittelwert zu den ein-
zelnen Zeitpunkten berechnet und visualisiert. Der Einfluss der Wochentage werden auf
Basis eines monatlichen Datensatzes, der am ersten Montag beginnt, gefiltert und visuali-
siert. Der Einfluss der Jahreszeiten werden zunächst als wöchentlicher Durchschnittswert
aus einem jährlichen Datensatz zusammengerechnet und dargestellt. Darüber hinaus wird
mithilfe der Wärmekarte der Einfluss von Feiertagen bestimmt.

78

5 Implementierung

Abbildung 5.71: Trend und Saisonalität

Die Abbildung 5.71 verdeutlicht den Einfluss von Tageszeit, Wochentagen, Jahreszeiten
und Feiertagen. Das erste Subplot zeigt einen typischen Tagesablauf mit zwei Höhepunk-
ten am Mittag und am frühen Nachmittag. Im zweiten Subplot lässt sich der Wochenver-
lauf erkennen. Dabei wird am Wochenende im Vergleich zu Wochentagen weniger Strom
verbraucht. Der jährliche Verlauf kann im dritten Subplot beobachtet werden. Dabei
wird in Wintermonaten im Vergleich zu Sommermonaten eine höhere Strom verbraucht.
Darüber hinaus lässt sich im vierten Subplot deutlich erkennen, wie sich Feiertage wie
Ostern und Weihnachten auswirken.

79

5 Implementierung

Ein weiteres Ziel der Zeitreihenanalyse ist die Prognose. Es ist festgestellt, dass der Da-
tensatz ein saisonales Muster und einen Trend aufweist. Bevor eine Prognose erstellt
wird, muss zudem geprüft werden, ob eine Autokorrelation besteht. Die Autokorrelation
stellt eine Methode zur Ermittlung der Korrelation zwischen einer Zeitreihe und einer
verzögerten Version ihrer selbst dar. Die Abbildung 5.72 präsentiert die Autokorrela-
tionskurve für unterschiedliche Lags, darunter 96 Lags für den täglichen, 672 Lags für
den wöchentlichen, 2688 Lags für den monatlichen und 32256 Lags für den jährlichen
Zyklus.

Abbildung 5.72: Autocorrelation

Das erste Sub-Plot zeigt den täglichen Zyklus. Die Verzögerung 0 ist der Mitternachtswert
für Samstag, den 3. Januar 2015 und ist hoch korreliert, da er mit sich selbst korreliert.
Mittags, d.h. genau 12,5 Stunden später (50 Lags), gibt es keine Korrelation, da der
Stromverbrauch zu diesem Zeitpunkt seinen Höhepunkt erreicht. Bei Lag 96, also nach
24 Stunden, besteht wieder eine Korrelation von fast 75%, was auf einen ähnlichen Wert
am nächsten Tag zur gleichen Zeit hindeutet.

Die zweite Sub-Plot zeigt die Autokorrelation für Wochenzyklen. Mit Tiefpunkten bei
50 Lags (12,5 Stunden) und Spitzenwerten bei 96 Lags (24 Stunden) wird in der zweiten
Sub-Plot der typische tägliche Stromverbrauch untersucht, wobei die Spitzenwerte um
Mitternacht und die Tiefpunkte um die Mittagszeit liegen.

Die dritte Sub-Plot zeigt den monatlichen Zyklus und macht deutlich, dass die Wer-
te für jeden Tag stark mit den Werten der folgenden Woche korrelieren. Zum Beispiel

80

5 Implementierung

zeigt die Verzögerung 0 die Autokorrelation für Samstag um Mitternacht am 3. Januar
2015 und die Autokorrelation nach einem Intervall von 672 Verzögerungen, d.h. für die
kommenden Wochen zur gleichen Zeit, ist fast 80%, was auf eine hohe Korrelation mit
den Werten der Vergangenheit hinweist. Ähnliche Informationen können für alle Tage
abgelesen werden.

Als nächster Schritt können verschiedene Prognoseverfahren wie Prophet, SARIMA usw.
untersucht werden, die im Rahmen dieser Arbeit nicht berücksichtigt werden.

81

6 Evaluierung

Im Rahmen der Evaluierung werden Python-Bibliotheken für die Visualisierung von
Energiedaten miteinander verglichen und anhand einer Reihe von Evaluierungskriteri-
en bewertet. Folgende sind die Bewertungskriterien für die Evaluierung von Python-
Bibliotheken:

1. Funktionalität

Können diese Bibliotheken alle in unseren Anforderungen aufgelisteten Visualisierungs-
typen darstellen und haben eigene eingebaute Funktionen dafür?

2. Dokumentation

Gibt es eine aktive Entwicklergemeinschaft und ausreichende Unterstützung (z. B. Do-
kumentation, Foren, Tutorials, Codebeispiele) für die Umsetzung der Visualisierungsauf-
gabe?

3. Leistung anhand Ausführungszeit

Wie lange hat die Ausführung des Codes gedauert?

4. Benutzerfreundlichkeit

Wie einfach ist es, die Bibliothek zu erlernen und zu verwenden, besonders für Anfän-
ger?

5. Interaktivität

Bietet die Bibliothek zahlreiche Funktionen zur Interaktion mit den Visualisierungen?

6. Komplexität

Wie viele Codezeilen sind erforderlich, um die Plots ohne Kommentare und Leerzeilen
zu reproduzieren

82

6 Evaluierung

6.1 Statische und interaktive Visualisierung

6.1.1 Funktionalität

Es soll geprüft werden, ob die Bibliotheken die Muss-Anforderungen aus der Tabelle
3.3 und 3.4 erfüllen. Außerdem soll untersucht werden, mit welchen Soll- und Kann-
Anforderungen die Visualisierungen erweitert werden können.

Bibliotheken
Visualisierungs-
typen

matplotlib seaborn vega altair bokeh plotly

Einfache
Visualisierungen

Liniendiagramm + + + + +
Balkendiagramm + + + + +
Kreisdiagramm + - + + +
Flächendiagramm + + + + +
Punktediagramm + + + + +

Visualisierungs-
typen für die
Datenanalyse

Boxplot + + + - +
Histogramm + + + + +
Violinenplot + + + - +

Komplexe
Visualisierungen

Wärmekarte + + + + +
Sankeydiagramm - - - - +
Karten - - - - +

Interaktive Vi-
sualisierung

Interaktive
Visualisierung - - + + +

Tabelle 6.1: Vergleich von Visualisierungsbibliotheken

Tabelle 6.1 gibt einen Überblick über alle Diagrammtypen, die auf unseren Anforderun-
gen basieren. Sie enthält statische und interaktive Visualisierungsbibliotheken. Das Plus-
Zeichen zeigt an, dass diese Visualisierungstypen aus diesen Bibliotheken implementiert
werden können, während das Minus-Zeichen anzeigt, dass für diese Visualisierungstypen
keine direkte eingebaute Funktion zur Verfügung steht.

Alle Visualisierungstypen in der Tabelle 3.2 und die MUSS-Anforderungen in den Ta-
bellen 3.3 und 3.4 werden erfüllt. Die einzige Ausnahme ist, dass Seaborn die Funktion
Matplotlib zum Plotten von Kreisdiagrammen und Flächenplots verwendet und dass
Bokeh keine eigene eingebaute Funktion für Box- und Violinplots hat. Seaborn als stati-
sche Visualisierungsbibliothek bietet zusätzlich integrierte Themen, Figurenästhetik und
Farbpaletten für ansprechende Diagramme. Textanpassungen und Anmerkungen wie z. B.
HAW-Logo und Quellenangabe, die als optional aufgelistet sind, werden mit Matplotlib

83

6 Evaluierung

implementiert. Die Visualisierungen aller Bibliotheken lassen sich gut in ein Streamlit-
Dashboard integrieren. Zu beachten ist, dass Streamlit nur die Bokeh-Version 2.4.3 un-
terstützt und einige interaktive Elemente von Bokeh nur mit höheren Bokeh-Versionen
verfügbar sind. Interaktive Funktionen wie das Hinzufügen von benutzerdefinierten Steu-
erelementen wie Schaltflächen, Dropdown-Menüs, Schiebereglern und Selektoren gemäß
den Anforderungen des Benutzers wurden ebenfalls implementiert.

6.1.2 Dokumentation

Tabelle 6.2 fasst die Struktur der Dokumentation für jede Bibliothek in der statischen und
interaktiven Visualisierung zusammen und gibt nützliche Beispiele für die Umsetzung der
Visualisierungsaufgabe.

Bibliotheken Documentation Struktur Nützliche Webseiten

Matplotlib
Dokumentation, Visualisierungsty-
pen, Benutzerhandbuch, Anleitun-
gen, Beispiele

Anpassung von Diagrammen,
Gleitender Mittelwert, Tick-
Formatierer, Achsen und Subplots,
Diagramme speichern, Matplotlib
anpassen mit rcParams, Arbeits-
blätter

Seaborn Offizielle Website, Visualisierungs-
typen, Anleitungen, Figurästhetik, Arbeitsblätter

Vega-Altair Offizielle Website, Benutzerhand-
buch, Beispiele

Kodierungen, Markierungen, In-
teraktive Diagramme, Altair-
Diagramme speichern, Anpassen
von Visualisierungen

Bokeh Offizielle Website, Dokumentation,
Anleitungen

Grundlegendes Plotten, Visualisie-
rung anpassen , Zeitreihendiagram-
me, Interaktion, Ausgabeoptionen

Plotly Kurzübersicht, Beispiele Zeitreihendiagramm , Statistische
Diagramme, Karten

Tabelle 6.2: Überblick über Bibliotheksdokumentationsstruktur und mögliche Codebei-
spiele

Die Dokumentationsstruktur sowie die Beispiele, die in allen Bibliotheken zur Verfügung
gestellt werden, ermöglichen es, verschiedene Visualisierungstypen leichter umzusetzen.
Es gibt viele Möglichkeiten, die Darstellung mit Matplotlib zu verbessern, und es könn-
te zeitaufwendig sein, die passenden Beispiele dafür zu finden. Bokeh und Vega-Altair
sind bekannt für ihre Interaktivität. Daher liegt der Fokus dieser Bibliotheken eher auf

84

6 Evaluierung

der Interaktivität als auf der Darstellung der Diagramme allein. Daraus ergeben sich
nur wenige Erläuterungen zur Implementierung der Visualisierungstypen und nur weni-
ge Kommentare zum Code. Deshalb ist Plotly im Vergleich zu Bokeh und Vega-Altair
benutzerfreundlicher, da es viele Beispiele und ausreichende Dokumentation enthält, um
die Visualisierungstypen sowie die Interaktivität umzusetzen.

6.1.3 Leistung

Die Leistung der einzelnen Bibliotheken wird anhand der Anzahl der Codezeilen und
der Ausführungszeit bewertet. Abbildung 6.1 zeigt ein Balkendiagramm zum Vergleich
der Anzahl der Codezeilen und der Ausführungszeit der jeweiligen Bibliotheken für die
Visualisierung von Liniendiagrammen. Das Liniendiagramm ist gewählt, da die anderen
Visualisierungstypen keinen großen Unterschied in der Ausführungszeit des Codes auf-
weisen, während die Ausführungszeit des Liniendiagramms je nach Bibliothek variiert.

Abbildung 6.1: Codekomplexität und Ausführungszeit

Es ist deutlich zu erkennen, dass Seaborn zwar nur wenige Codezeilen zur Darstellung
des Liniendiagramms benötigt, aber sehr lange für die Ausführung braucht. Alle anderen
Visualisierungstypen mit Seaborn werden jedoch innerhalb von 10 Sekunden ausgeführt.
An zweiter Stelle folgt Vega-Altair, das die längste Ausführungszeit hat. Nicht nur für
Liniendiagramme, sondern auch für andere Visualisierungstypen wie Flächendiagramm
(ca. 2 min 50 sec) benötigt Vega-Altair viel mehr Zeit. Die Anzahl der Codezeilen steigt,
je nachdem, wie der Code erweitert wird, z. B. durch zusätzliche Anpassung von Dia-
grammen wie in Matplotlib oder durch die Verwendung interaktiver Funktionen wie in
Vega-Altair, Ploty und Bokeh. Matplotlib hat eine schnellere Ausführungszeit für die

85

6 Evaluierung

statische Visualisierung und Bokeh für die interaktive Visualisierung. Außerdem ist die
Ausführungszeit von Plotly relativ schnell.

6.2 Dashboard Erstellung

Die gängigen Open-Source-Python-Bibliotheken Streamlit und Dash werden für die Er-
stellung des Dashboards verwendet. Die Hauptanforderung an das Dashboard ist, dass es
dem Benutzer verschiedene Jahre unseres Datensatzes und verschiedene Visualisierungs-
typen aus den Anforderungen zur Auswahl als ein Dropdown-Menü anbietet. Nachdem
eine Auswahl getroffen wurde, sollte ein entsprechendes Diagramm angezeigt werden.
Diese werden nach den folgenden Kriterien bewertet.

6.2.1 Funktionalität

Streamlit unterstützt alle statischen und interaktiven Visualisierungsbibliotheken, die für
die Arbeit aufgelistet sind. Benutzer können nicht nur die Visualisierungstypen, sondern
auch die Bibliotheken in einem einzigen Dashboard auswählen, was hilfreich ist, um die
Stärken und Schwächen der einzelnen Bibliotheken zu identifizieren. Dadurch wird es
dem Benutzer ermöglicht, selbst zu entscheiden, welche Bibliothek für die Visualisierung
ausgewählt werden soll. Streamlit unterstützt nur Python als Programmiersprache.

Mit Dash können nur von Plotly erstellte Visualisierungen im Dashboard angezeigt wer-
den. Dash unterstützt nicht nur Python, sondern andere Programmiersprachen wie R,
Julia und F#.

6.2.2 Benutzerfreundlichkeit

Dash ist ein Framework für Webanwendungen. Es bietet eine reine Python-Abstraktion
um HTML, CSS und JavaScript herum. Sie benötigen keine tiefgreifenden Kenntnisse
in HTML, CSS oder JavaScript, aber es kann etwas Zeit in Anspruch nehmen, sich mit
den Dash-HTML-Komponenten wie html.div, html.label, den Dash-Kernkomponenten
wie dcc.graph, dcc.dropdown und den Callback-Funktionen vertraut zu machen, um In-
teraktivität in Ihre Dash-Anwendung zu bringen.

86

6 Evaluierung

Streamlit ist ein Open-Source-Python-Framework für Datenwissenschaftler und KI/ML-
Ingenieure, das die Erstellung dynamischer Datenanwendungen mit nur wenigen Zeilen
Code ermöglicht. Es folgt einem deklarativen Paradigma, bei dem zunächst Bibliotheken
importiert werden, die Seite konfiguriert wird, Daten geladen werden, bei Bedarf eine
Seitenleiste hinzugefügt wird, Visualisierungstypen und Bibliotheken definiert werden
und schließlich alles zu einem Anwendungslayout zusammengefügt wird. Im Gegensatz
zu Dash ist Streamlit für Nutzer ohne Vorkenntnisse deutlich benutzerfreundlicher sowie
einfacher zu verstehen.

6.2.3 Interaktivität

In beiden Bibliotheken kann eine Auswahl verschiedener Jahre sowie verschiedener Vi-
sualisierungstypen als Drop-down-Menü vorgenommen werden, was die Anforderungen
an die Interaktivität erfüllt. Alle interaktiven Funktionen, die in unterschiedlichen Bi-
bliotheken vorhanden sind, mit Ausnahme von Bokeh, sind auch in Streamlit enthalten.
Dash enthält auch Visualisierungstypen, die in Plotly enthalten sind. Da Streamlit nur
Bokeh 2.4.3 Version unterstützt, können Fuktionen von höheren Versionen von Bokeh
nicht in Streamlit angezeigt werden.

6.2.4 Komplexität

Da nur die Visualisierungstypen von Plotly in Dash implementiert werden können, ist
die Anzahl der Codezeilen in Dash im Vergleich zu Streamlit sehr gering. Im Gegensatz
dazu macht das Einfügen verschiedener Visualisierungstypen mit unterschiedlichen Bi-
bliotheken den Code in Streamlit sehr komplex und die Anzahl der Codezeilen sehr groß.
Aus diesem Grund ist die Implementierung von Dashboard mit Streamlit komplex und
zeitintensiv, obwohl es im Vergleich zu Dash sehr einfach zu verstehen ist.

6.3 Karten Visualisierung

Im Rahmen dieser Arbeit sind die Karten mit den gängigen Bibliotheken in Python wie
Plotly, Folium und Geopandas implementiert. Zur Evaluierung dieser Bibliotheken sind
folgende Kriterien festgestellt.

87

6 Evaluierung

6.3.1 Funktionalität

Jede Bibliothek ist einzigartig und bietet zahlreiche Funktionen und Erweiterungsmög-
lichkeiten für Visualisierungstypen. Nicht alle Funktionen können im Rahmen der Arbeit
implementiert werden. Daher wird eine vorläufige Liste von Anforderungen erstellt, die
die Bibliotheken mindestens erfüllen müssen. Eine Übersicht ist in Tabelle 3.5 zu finden.
Es wird untersucht, ob die ausgewählten Bibliotheken zur Kartenvisualisierung die not-
wendigen Anforderungen erfüllen. Die »Muss«-Anforderungen werden von Folium und
von Geopandas erfüllt. Plotly eignet sich nur für die Visualisierung von Choroplethen-
karten auf Bundesland- und Landkreisebene und bietet keine Möglichkeit, zwei Geoda-
taframes auf einer Karte zu plotten.

6.3.2 Interaktivität

Während Plotly nur grundlegende Interaktivität wie Hovern über die Karte, Ein- und
Auszoomen, Speichern usw. bietet, verfügt Folium über zahlreiche interaktive Funktionen
wie ClusterMarker, Search, LayerControl usw. Geopandas nutzt Folium-Funktionen, um
die Interaktivität zu erweitern und ansprechende Karten anzuzeigen.

6.3.3 Dokumentation

Je besser die Dokumentation ist, desto einfacher ist es, die Schritte zur Kartenvisualisie-
rung mit diesen Bibliotheken nachzuvollziehen. Tabelle 6.3 zeigt nützliche Beispiele, die
ausreichende Informationen zur Kartenvisualisierung enthalten. Mit Hilfe der Communi-
ty lässt sich feststellen, in wie weit diese Bibliotheken verbreitet sind.

Bibliotheken Nützliche Beispiele
Community

Stars Contributers Downloads
Plotly Choropleth Maps, Scatter Plots on Maps 15k 417 59M/Month
Folium User guide, GeoJSON and choropleth, Features, MarkerCluster 6.6k 153 978k/Month
Geopandas Mapping and plotting tools, Interactive mapping, 4.1k 209 6.4M/Month

Tabelle 6.3: Überblick über Codebeispiele und Community

Da sich Plotly nicht ausschließlich auf die Kartenvisualisierung konzentriert, bietet es
nur eingeschränkte Funktionen. Im Vergleich zu Plotly und Geopandas bietet Folium
eine bessere Dokumentation für die Visualisierung von Karten an. Allerdings ist auch

88

6 Evaluierung

die Dokumentation von Plotly und Geopandas ausreichend. Plotly wird am häufigsten
verwendet, da es für verschiedene Zwecke eingesetzt werden kann. Geopandas ist die am
weitesten verbreitete Bibliothek für Kartenvisualisierung, da sie eine gute Grundlage für
die Datenvorbereitung vor der Kartenvisualisierung bietet und über eine große Anzahl
von Mitwirkenden und Downloads verfügt. Folium ist jedoch aufgrund seiner zahlreichen
interaktiven Funktionen sehr bekannt, wenn es um die Visualisierung von Karten in
Python geht.

89

7 Zusammenfassung

7.1 Überprüfung von Forschungszielen und -fragen

In diesem Abschnitt werden die in Kapitel 1.2 entwickelten Fragen daraufhin überprüft,
ob sie im Rahmen der Arbeit beantwortet wurden.

RO1: Wie können Energiedaten am besten visualisiert werden und welche
Visualisierungstypen sind dafür geeignet?

90

7 Zusammenfassung

Abbildung 7.1: Zusammenfassung RO1

91

7 Zusammenfassung

RO2: Welche Python-Bibliotheken sind gängig für die Datenvisualisierung?

RQ 2.1: Welche Python-Bibliotheken werden am häufigsten für die Datenvi-
sualisierung verwendet?

Abbildung 7.2: Python Bibliotheken für die Datenvisualisierung

Abbildung 7.2 zeigt einen Überblick über die Pythonbibliotheken, die am häufigsten für
die Datenvisualisierung verwendet werden.

RQ 2.2: Können die in RQ1.3 genannten Visualisierungstypen mit diesen
Bibliotheken realisiert werden?

Alle gängigen Python-Bibliotheken zur Datenvisualisierung sind leistungsfähig und erfül-
len unsere Anforderungen. Jede dieser Bibliotheken hat ihre eigenen Stärken und Schwä-
chen. Zum Beispiel können mit Matplotlib und Seaborn publikationsfähige statische Vi-
sualisierungen erstellt werden. Vega-Lite, Bokeh und Plotly mit ihren zusätzlichen inter-
aktiven Funktionen helfen, ansprechende und interaktive Diagramme zu erstellen, wenn
der Benutzer Interaktivität wünscht. Im Vergleich zu Bokeh und Vega-Altair verfügt
Plotly über eingebaute Funktionen für alle Arten von Visualisierungen. Darüber hinaus
verfügt Plotly über das Dash Framework, mit dem die von Plotly erstellten Visualisierun-
gen in Form eines Dashboards dargestellt werden können. Bokeh erfüllt auch die Anfor-
derungen an interaktive Visualisierungen und bietet zahlreiche Widgets zur Erweiterung
der Interaktivität. Allerdings hat Bokeh keine eingebaute Funktion für einige statistische
Diagramme, wie z.B. Boxplots und Violinplots, und für die Erfüllung dieser Anforde-
rungen ist eine sehr komplexe Programmierung erforderlich. Im Gegensatz zu Plotly und

92

7 Zusammenfassung

Bokeh ist Vega-Altair nicht standardmäßig interaktiv, sondern muss individuell program-
miert werden. Folium bietet zahlreiche Funktionen, um mit Karten zu interagieren und
ist daher sehr gut für die Kartenvisualisierung geeignet. Geopandas bildet die Grundlage
für die Datenaufbereitung und integriert die Funktionen von Folium, um ansprechende
Karten zu erstellen. Eine Kombination von Geopandas und Folium wird für die Karten-
visualisierung empfohlen. Plotly kann Choroplethen sehr gut visualisieren, bietet aber
keine Möglichkeit, zwei Geodatenrahmen auf einer Karte zu plotten und erfüllt daher
nicht die Anforderungen für die Kartenvisualisierung. Streamlit ist eine gute Wahl für
die Erstellung von Dashboards mit Visualisierungstypen aus anderen Bibliotheken, da
es mit allen anderen Bibliotheken, einschließlich Plotly, interagieren und die von diesen
Bibliotheken erstellten Visualisierungen in das Dashboard integrieren kann.

RQ2.3: Welche Anforderungen müssen Bibliotheken erfüllen, um Energieda-
ten zu visualisieren?

Die Anforderungen an die Bibliotheken sind im Kapitel 3.4 in tabellarischer Form do-
kumentiert. Für jede Bibliothek sind die Muss-, Soll- und Kann-Anforderungen aufgelis-
tet.

RO3: Wie können Python-Bibliotheken evaluiert werden?

Je nach Anwendungsfall sind verschiedene Kriterien wie Funktionalität, Dokumentation,
Leistung, Interaktivität, Komplexität usw. für die Evaluation von Python-Bibliotheken
verwendet. Für jede Bibliothek wird eine Tabelle mit Einzelbewertungen erstellt.

Bibliothek Funktionalität Benutzerfreundlichkeit Leistung Interaktivität Dokumentation Komplexität
Matplotlib 5 3 5 2 5 5
Seaborn 4 4 3 2 4 3
Vega-Altair 4 3 2 3 4 2
Bokeh 3 3 5 5 4 4
Plotly 5 5 5 5 5 5
Dash 5 3 5 4 5 4
Streamlit 5 5 5 5 5 5
Geopandas 4 4 4 3 5 5
Folium 5 4 4 5 5 5

Tabelle 7.1: Einzelbewertungen

93

7 Zusammenfassung

7.2 Grenzen der Arbeit

Die Implementierung zahlreicher Visualisierungstypen mit Hilfe verschiedener Python-
Bibliotheken ist zeitaufwändig und erfordert viel Geduld. Daher können im Rahmen
dieser Arbeit einige Implementierungen nicht berücksichtigt werden. Die API’s jeder Bi-
bliothek haben sicherlich noch weitere interessante Funktionen. Diese können die Visua-
lisierungen noch attraktiver und interaktiver machen. In dieser Arbeit wird nur auf die
wichtigsten eingegangen, die ausreichen, um die Anforderungen zu erfüllen. Darüber hin-
aus gibt es viele weitere Visualisierungstypen zur Darstellung eines Datensatzes. In dieser
Arbeit werden nur die gängigsten Visualisierungstypen für Energiedaten betrachtet.

7.3 Zukünftige Arbeiten

Falls möglich, sollte die Erweiterung des Dashboards um zusätzliche Funktionen unter-
sucht werden. In der vorliegenden Arbeit liegt der Schwerpunkt auf der deskriptiven und
der diagnostischen Analyse. Als nächster Schritt könnte die prädiktive Analyse, d.h. die
Vorhersage der zukünftigen Stromverbrauchsentwicklung mit verschiedenen Prognosever-
fahren durchgeführt werden.

94

Literaturverzeichnis

[1] 2019, PyViz authors. From data to viz | find the graphic you need. https://

datavizproject.com/. Accessed: 2023-11-29.

[2] 2024 Plotly. Dash documentation & user guide | plotly. https://dash.plotly.
com/. Accessed: 2023-11-15.

[3] AG Energiebilanzen e.V. Energieverbrauch in deutschland im jahr 2017.
https://ag-energiebilanzen.de/wp-content/uploads/2021/02/

ageb_jahresbericht2017_20180315-02_dt.pdf. Accessed: 2024-04-16.

[4] Louis Allen, Jack Atkinson, Dinusha Jayasundara Mudiyanselage, Joan Cordiner,
and Peyman Moghadam. Data visualization for industry 4.0: A stepping-stone to-
ward a digital future, bridging the gap between academia and industry. Patterns,
2:100266, 05 2021.

[5] BDEW. Bundesverband für energie- und wasserwirtschaft. https:

//www.bdew.de/presse/presseinformationen/zahl-der-woche-

gesamtstromverbrauch-deutschland/. Accessed: 2024-04-16.

[6] bimanu. Datenvisualisierung: Definition, beispiele und vorteile. https://bimanu.
de/blog/datenvisualisierung/. Accessed: 2023-11-20.

[7] Bokeh Contributors. Bokeh documentation. https://docs.bokeh.org/en/

latest/index.html. Accessed: 2024-01-20.

[8] Bundesnetzagentur. Bundesnetzagentur - ladesäulenkarte. https://www.

bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/E-

Mobilitaet/Ladesaeulenkarte/start.html. Accessed: 2023-02-15.

[9] Bundesnetzagentur. SMARD | SMARD - Strommarktdaten, Stromhandel und
Stromerzeugung in Deutschland. https://www.smard.de/home. Accessed:
2023-11-15.

95

Literaturverzeichnis

[10] Bundesnetzagentur. SMARD | SMARD - Strommarktdaten, Stromhan-
del und Stromerzeugung in Deutschland. https://www.smard.de/home/

energiemarkt-aktuell/2020. Accessed: 2024-04-16.

[11] Thomas Cleff. Deskriptive Statistik und Explorative Datenanalyse, pages 4–5.
Springer-Verlag, 3 2015.

[12] DataCamp. Florence nightingale: Pioneer of data visualization, 2021. Accessed:
2023-11-10.

[13] ETA-SOLUTIONS. Klare ziele für mehr energieeffizienz. https:

//www.energiewechsel.de/KAENEF/Redaktion/DE/Standardartikel/

energieeffizienzgesetz.html#:~:text=Das%20Gesetz%20sieht%

20vor%2C%20den,daf%C3%BCr%20notwendigen%20Ma%C3%9Fnahmen%

20zu%20ergreifen. Accessed: 2024-04-11.

[14] ETA-SOLUTIONS. Leitfaden: Monitoring von energieeffizienzmaßnah-
men. https://www.ptw.tu-darmstadt.de/media/fachgebietptw/

dokumente_3/wissenssammlung_ptw/leitfaeden_2/Leitfaden_

Energiemonitoring.pdf. Accessed: 2023-11-25.

[15] European Union. Eurostat. https://ec.europa.eu/eurostat/

databrowser/view/nrg_bal_sd__custom_10511268/default/table?

lang=en. Accessed: 2023-12-15.

[16] European Union. Eurostat. https://ec.europa.eu/eurostat/cache/

sankey/energy/sankey.html?geos=EU27_2020&year=2022&unit=

KTOE&fuels=RA000&highlight=_&nodeDisagg=0101000000000&

flowDisagg=true&translateX=246.54633366907507&translateY=

99.46374603487897&scale=0.6597539553864471&language=EN. Acces-
sed: 2023-12-15.

[17] eurostat. Energy visualisation portal. https://ec.europa.eu/eurostat/

cache/infographs/energy_portal/enviz.html?language=EN. Acces-
sed: 2023-12-05.

[18] ferdio. Python tools for data visualization — pyviz 0.0.1 documentation. https:
//pyviz.org/index.html. Accessed: 2023-12-02.

96

Literaturverzeichnis

[19] Financial-Times (F.). Chart-doctor/visual-vocabulary at main · financial-
times/chart-doctor. https://github.com/Financial-Times/chart-

doctor/tree/main/visual-vocabulary. Accessed: 2023-11-28.

[20] Fraunhofer-Institut für Solare Energiesysteme ISE. Energy-charts. https://www.
energy-charts.info/index.html?l=de&c=DE. Accessed: 2023-12-05.

[21] GeoPandas developers. Introduction to geopandas. https://geopandas.org/

en/stable/getting_started/introduction.html. Accessed: 2024-02-25.

[22] GfG. What is Data Analysis? https://www.geeksforgeeks.org/what-is-

data-analysis/?ref=previous_article. Accessed: 2023-12-10.

[23] family=Rougier given i=N, given=Nicolas. Scientific visualization.

[24] International Energy Agency. Iea–international energy agency - iea. https://

www.iea.org/data-and-statistics. Accessed: 2023-12-06.

[25] John Hunter, Darren Dale, Eric Firing, Michael Droettboom and the Matplotlib
development team. Customizing matplotlib with style sheets and rcparams —
matplotlib 3.8.4 documentation. https://matplotlib.org/stable/users/
explain/customizing.html#the-matplotlibrc-file. Accessed: 2024-
12-05.

[26] John Hunter, Darren Dale, Eric Firing, Michael Droettboom and the Matplot-
lib development team. External resources — matplotlib 3.8.4 documentation.
https://matplotlib.org/stable/users/resources/index.html. Ac-
cessed: 2024-12-05.

[27] Jonath Jose. Introduction to time series analysis and its applications. 08 2022.

[28] Daniel A. Keim. 21 Datenvisualisierung und Data Mining, pages 363–370. K. G.
Saur, Berlin, Boston, 2004.

[29] Dirk Lehmann, Georgia Albuquerque, Martin Eisemann, Andrada Tatu, Daniel
Keim, H. Schumann, Marcus Magnor, and Holger Theisel. Visualisierung und ana-
lyse multidimensionaler datensätze. Informatik Spektrum, 33:589–600, 12 2010.

[30] D. Nelson. Data Visualization in Python: Explore and Manipulate Data and Create
Engaging Interactive Plots with 9 Python Libraries, pages 2–6. StackAbuse, 2021.

97

Literaturverzeichnis

[31] M. Nurminen, A. Lindstedt, M. Saari, and P. Rantanen. The requirements and
challenges of visualizing building data. In 2021 44th International Convention on
Information, Communication and Electronic Technology (MIPRO), pages 968–972,
2021.

[32] Optenda. Energiemonitoring software energy monitor | optenda. https:

//ec.europa.eu/eurostat/cache/infographs/energy_portal/

enviz.html?language=EN. Accessed: 2023-12-05.

[33] Patrick Planing. Statistik grundlagen. https://statistikgrundlagen.de/

ebook/chapter/chapter-1-2/. Accessed: 2023-11-28.

[34] Quirine Philipsen. (explorative) datenvisualisierung. https://users.

informatik.haw-hamburg.de/~ubicomp/projekte/master-nm-rv-

2015/philipsen.pdf. Accessed: 2023-02-20.

[35] Plotly. Choropleth maps in python. https://plotly.com/python/

choropleth-maps/. Accessed: 2024-01-16.

[36] Plotly. Plotly open source graphing library for python. https://plotly.com/
python/. Accessed: 2024-01-25.

[37] Plotly. Sankey. https://plotly.com/python/sankey-diagram/. Accessed:
2024-02-20.

[38] Plotly. Scatter plots on maps in python. https://plotly.com/python/

scatter-plots-on-maps/. Accessed: 2024-01-16.

[39] Rob Story. Folium — folium 0.1.dev1+g3b79310 documentation. https://

python-visualization.github.io/folium/latest/index.html. Ac-
cessed: 2024-01-17.

[40] Rob Story. User guide — folium 0.1.dev1+g3b79310 documentation.
https://python-visualization.github.io/folium/latest/user_

guide.html. Accessed: 2024-01-17.

[41] Jesus Rogel-Salazar. Statistics and Data Visualisation with Python, pages 2–3. CRC
Press, 1 2023.

[42] Jesus Rogel-Salazar. Statistics and Data Visualisation with Python, page 145. CRC
Press, 1 2023.

98

Literaturverzeichnis

[43] Snowflake Inc. Streamlit • a faster way to build and share data apps. https:

//streamlit.io/. Accessed: 2024-01-10.

[44] Timotheos Frey. Grundlagen der datenvisualisierung. https://timfrey.

files.wordpress.com/2018/09/intro_dataviz_201809.pdf. Accessed:
2023-11-10.

[45] Unicorn a.s. Entso-e transparency platform. https://transparency.entsoe.
eu/. Accessed: 2023-12-06.

[46] Jacob VanderPlas, Brian Granger, Jeffrey Heer, Dominik Moritz, Kanit Wongsu-
phasawat, Arvind Satyanarayan, Eitan Lees, Ilia Timofeev, Ben Welsh, and Scott
Sievert. Altair: Interactive statistical visualizations for python. Journal of Open
Source Software, 3(32):1057, 2018.

[47] Vega-Altair Developers. Interactive charts — vega-altair 5.3.0 documentati-
on. https://altair-viz.github.io/user_guide/interactions.html.
Accessed: 2024-01-15.

[48] Michael L. Waskom. seaborn: statistical data visualization. Journal of Open Source
Software, 6(60):3021, 2021.

[49] Yan Holtz And Conor (Y. H. A. C.) Healy. From data to viz | find the graphic you
need. https://www.data-to-viz.com/. Accessed: 2023-11-29.

99

A Anhang

100

Erklärung zur selbstständigen Bearbeitung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig
verfasst und nur die angegebenen Hilfsmittel benutzt habe. Wörtlich oder dem Sinn
nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich
gemacht.

Ort Datum Unterschrift im Original

101

A Anhang

102

