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Thema der Arbeit

Tabellarische Datensynthese mit Fokus auf Differential Privacy unter Verwendung von

Generative Adversarial Networks

Stichworte
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liche Intelligenz, Maschinelles Lernen, DakFne, Smart City

Kurzzusammenfassung

Eine der héufigsten Herausforderungen bei der Einfiihrung und Nutzung von KI-
Anwendungen liegt in der Beschaffung der Trainingsdaten. Einerseits mangelt es an aus-
reichend vielen und qualitativ hochwertigen Daten, andererseits konnen sensible Daten
aufgrund der Gefahr des Privatsphérenverlusts nicht genutzt werden. Mit dem Ziel schiit-
zenswerte Daten nutzbar zu machen, ohne die Privatsphéare zu gefahrden, setzt sich die
Thesis mit der Implementierung von Differential Privacy (DP) in Generative Adversarial
Networks (GAN) auseinander. Im Rahmen des Forschungsprojektes DaFne wird konkret
nach einem geeigneten DP-GAN gesucht, das zum einen die Eigenschaften der realen
Daten abbildet und zum anderen die Privatsphére schiitzt. Untersucht werden die Ur-
sprungsmodelle DPGAN & PATE-GAN und die fortgeschrittenen Modelle CTAB-GAN-+
& DP-CGANS anhand von zwei Datensétzen unterschiedlicher Komplexitéit sowie unter
Beriicksichtigung verschiedener Grofen des Privatsphédren Budgets. Zusammenfassend
iiberzeugt das CTAB-GAN+ beziiglich Trainingsdauer, Datenqualitit sowie Privatsphé-
renschutz. Insbesondere iibertrifft es die anderen Modelle durch eine hohe Datenqualitéat
auch bei geringem Privatsphéaren Budget sowie durch seine Leistung bei der Generierung

hoch-dimensionaler Daten.
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Abstract

One of the most common challenges in the introduction and utilization of Al-applications
lies in the procurement of training data. On the one hand there is a lack of sufficient
and high-quality data, while on the other hand sensitive data cannot be used due to
the risk of privacy loss. With the aim of rendering data both valuable and safeguarded
while maintaining privacy, the thesis explores the integration of Differential Privacy (DP)
into Generative Adversarial Networks (GAN). The DaFne research project is specifically
looking for a suitable DP-GAN that on the one hand maps the properties of real data
and on the other hand protects privacy. The original models DPGAN & PATE-GAN
as well as the advanced models CTAB-GAN+ & DP-CGANS are analyzed using two
data sets of different complexity and considering different sizes of the privacy budget.
In summary, CTAB-GAN- is convincing in terms of training duration, data quality,
and privacy protection. In particular, it outperforms the other models due to its high
data quality even with a low privacy budget, and its performance in generating high-

dimensional data.
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1 Einleitung

Seit einigen Jahren wird der Begriff Kiinstliche Intelligenz (KI) nicht mehr einzig von
der Wissenschaft geprigt. Weltweit erfolgen Investitionen in diverse KI-Anwendungen in
unterschiedlichen Wirtschaftszweigen [57|. Auch nimmt die Préasenz von KI im privaten
Bereich durch Anwendungen wie Chatbots (z.B. ChatGPT) und die Integration von KI
in Alltagsgegenstanden wie Smartphones, Smart-Home-Geréten oder Zahnbiirsten stetig

zu.

Zu den haufigsten Schwierigkeiten bei der Ausweitung von Kl-Initiativen zéhlt, vor der
eigentlichen Implementierung der KI-Technologien, die Beschaffung der Trainingsdaten
fiir Machine Learning (ML)-Modelle. Das Management von KI-bezogenen Risiken, Vor-
schriften wie die DSGVO und die Skepsis der Bevolkerung gegeniiber KI verstérken die
Herausforderungen [57]. Das mit dieser Thesis im Zusammenhang stehende Forschungs-
projekt Data Fusion Generator fiir die Kiinstliche Intelligenz (kurz: DaFne) stellt sich
der Problematik des begrenzten Zugangs zu ausreichenden und qualitativ hochwertigen
Daten. Hierzu kénnen tabellarische Daten auf Basis verschiedener Datensétze fusioniert

und mittels Regeln oder Reproduktion generiert werden.

Ein nicht zu vernachléssigender Grund fiir den Mangel an nutzbaren Daten besteht in
der Gefahr eines Verlusts an Privatsphéire. In den vergangenen Jahren ereigneten sich
zahlreiche grofe Datenschutzverletzungen [88]. Der Wettbewerb ,Netflix-Prize zahlt zu
einem der bekanntesten Vorfille, bei dem Filmbewertungen ohne persoénliche Identifika-
toren verdffentlicht wurden und dennoch Forscher unter Inanspruchnahme zuséatzlicher
Datenquellen die Verfasser der Bewertungen zu 99% identifizieren konnten [61]. Auch
weitere Beispiele beweisen, dass traditionelle Anonymisierungs-Techniken gegeniiber Da-
tenverkniipfungen invalide sind und dariiber hinaus die Genauigkeit von Modellen senken.
Ohne die Gewissheit, dass die zu anonymisierenden Daten ausschlieflich im Kontext der
eigenen Datenverarbeitung genutzt werden, kann mit herkémmlichen statistischen Ver-

fahren keine garantierte Privatsphére sichergestellt werden.
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Um dennoch ohne Bedenken mit Daten arbeiten zu konnen, die personenbezogene In-
formationen beinhalten, besteht die Alternative, Datenverteilungen mittels Generativer
ML-Modelle zu lernen und auf Basis dessen neue Daten zu synthetisieren. In Kombination
mit der Differential Privacy (DP) |23] kénnen Datenschutzbudgets vorab festgelegt und
wahrend der Evaluation iiberpriift werden. Als eine Art von Generativen ML-Modellen
werden in dieser Thesis Generative Adversarial Networks (GAN) [34] untersucht.

Mit dem Ziel schiitzenswerte Daten ohne Verlust von Privatsphére nutzbar zu machen,
beschéftigt sich die Thesis daher mit der Integration von Differential Privacy in Genera-
tive Adversarial Networks. Im Kontext des Forschungsprojekts DaFne wird konkret nach
einem DP-GAN gesucht, das sowohl die Eigenschaften der realen Daten abbildet als auch
die Privatsphare schiitzt. Daher lautet die Forschungsfrage der Thesis:

Welches Generative Adversarial Network eignet sich fiir eine adidquate Syn-
these sensibler tabellarischer Daten unter Beriicksichtigung von Differential

Privacy?
Zur Beantwortung der Forschungsfrage erfolgt eine Evaluation von drei Teilaspekten:

1. Wie viel Zeit benétigt das Modell fiir die Synthese von Daten? (Performance)

2. Inwiefern entsprechen die Eigenschaften der vom Modell generierten Daten denen
der Trainingsdaten? (Datenqualitét)

3. Wie sicher sind die vom Modell generierten Daten gegentiber Angriffen? (Privat-

sphéirenschutz)

Um sich der Forschungsfrage zu néhern, werden zunéchst in Kapitel 2 die Grundlagen zu
GANSs, DP sowie Praktiken zur Integration von DP in GANs erkldrt. Darauf aufbauend
werden in Kapitel 3 die zu evaluierenden Modelle vorgestellt sowie eine Auswahl an er-
weiterter Literatur aufgezeigt. Bevor in Kapitel 5 die Evaluationsergebnisse présentiert
werden, wird der Aufbau der Experimente beschrieben (Kapitel 4). Mit Hilfe eines simu-
lierten Fallbeispiels sowie einem komplexeren realen Datensatz werden die ausgewéhlten
Modelle beziiglich der drei genannten Teilaspekte unter Beriicksichtigung verschiedener
Privatsphéaren Budgets bewertet. Auf die Evaluation folgt die Diskussion in Kapitel 6.
Zusétzlich zur kritischen Bewertung einzelner Ergebnisse wird die Forschungsfrage be-
antwortet und die Modellauswahl fiir DaFne getroffen. Abschliefsend erfolgt in Kapitel 7

eine Zusammenfassung der Thesis inklusive Ausblick.



2 Grundlagen

Im folgenden Kapitel werden die fiir das Verstdndnis der Thesis erforderlichen Grund-
lagen vermittelt. Beginnend mit einer konzentrierten Einfiihrung in das tibergreifende
Themengebiet Machine Learning werden anschliefend die beiden Hauptkomponenten
Generative Adversarial Networks (GAN) und Differential Privacy (DP) vorgestellt. Dar-
auf aufbauend folgt die Darstellung der zwei am héufigsten verwendeten Methoden zur
Integration von DP in GANs: , Differentially Private Stochastic Gradient Descent” sowie

,Private Aggregation of Teacher Ensembles”.

2.1 Machine Learning (ML)

Im Bereich der Kiinstlichen Intelligenz (KI) hat sich tiber die letzten zwei Jahrzehnte vor
allem das Teilgebiet Machine Learning (ML) etabliert. Das iibergeordnete Ziel der KI,
menschliche Verhaltensmuster zu imitieren, wird im ML durch das Training von Modellen
basierend auf Daten erzielt [66]. Im Gegensatz zu den anfanglichen Vorgehensweisen
von KI miissen keine konkreten Verhaltensregeln definiert und keine Wissensdatenbank
aufgebaut werden. Die heute am stirksten ausgepridgte ML-Variante nennt sich Deep
Learning (DL). Die Inspiration fiir diese Art des Lernens stammt aus der Funktionsweise

und dem Aufbau biologischer Neuronaler Netze [8].

2.1.1 Aufbau Neuronaler Netze

Héufig wird ein Kiinstliches Neuronales Netz (engl. artificial neural network, ANN) fiir
Aufgabenbereiche wie Klassifikation, Regression, Bildverarbeitung oder Generierung von
Daten eingesetzt. Explizit zielt das Neuronale Netz darauf ab, komplexe Muster und
Zusammenhénge in vorhandenen Daten zu lernen [8]. ANNs bestehen aus Input, Hidden
sowie Output Schichten, wobei jede Schicht Knoten bzw. Neuronen enthilt, die durch

Kanten mit Neuronen anderer Schichten verbunden sind [83].
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Abbildung 2.1 zeigt ein Fully Connected Netz. Jedes Neuron des Netzes ist mit allen
Neuronen der vorherigen sowie nachfolgenden Schichten verbunden. Die Tiefe des Netzes
bezieht sich auf die Anzahl der Schichten des gesamten Netzes und betrédgt in Abbildung
2.1 vier (1x Input, 2x Hidden, 1x Output). Ein ANN mit mehr als einer Hidden Schicht
nennt sich Deep Neuronal Network (DNN). Moderne Neuronale Netze besitzen zumeist
mehrere Hidden Schichten, tausende bis Millionen Neuronen sowie hunderte Millionen

von Verbindungen [8].

Input Hidden Output
Schicht Schichten Schicht
|

Input x;

Abbildung 2.1: Aufbau eines Neuronalen Netzes der Tiefe 4 (eigene Darstellung)

2.1.2 Funktionsweise Neuronaler Netze

Optimierer wie Stochastic Gradient Descent (SGD) trainieren Neuronale Netze, indem
sie das Ziel verfolgen eine Kostenfunktion zu minimieren. Inkrementell werden die Gra-
dienten aller lernbaren Parameter iiber die Backpropagation berechnet und anschliefend
genutzt, um die Parameter des Netzes zu aktualisieren [83]. Typische lernbare Parameter
sind Gewichte an den Verbindungen zwischen Neuronen, Bias-Werte von Neuronen sowie
Dropout-Wahrscheinlichkeiten. Dropout erlaubt eine voriibergehende zuféllige Deaktivie-

rung einzelner Verbindungen zwischen Neuronen, um ein Overfitting zu reduzieren.

Auch die unterschiedlichen Aktivierungsfunktionen der Neuronen besitzen einen grofen
Einfluss auf die Funktionalitit des Netzes. In der Regel handelt es sich bei ihnen um nicht-
lineare Funktionen, die das Lernen von komplexen Zusammenhéngen erméoglichen. Hau-

fig verwendete Aktivierungsfunktionen sind die Sigmoid, ReLLU (Rectified Linear Unit)
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und Tangens Hyperbolicus (tanh) Funktionen [33]. Durch ihre unterschiedlichen Verldu-
fe und Wertebereiche eignen sie sich fiir verschiedene Problemstellungen und besitzen

unterschiedliche Herausforderungen.
Im Wesentlichen sind folgende Schritte relevant fir den Lernprozess des Netzes [33]:

1. Forward pass: Nachdem die Eingabedaten iiber die Input Schicht im Netzwerk
integriert sind, beginnt sukzessiv (Schicht fiir Schicht) die Datenpropagation.

a) Jedes Neuron multipliziert die Gewichte w seiner Eingangsverbindungen mit
seinen Eingangsdaten x, summiert alle Einginge n auf und addiert sie mit
einem Bias-Wert b. Der Bias-Wert ist ein zusétzlicher Parameter in jedem
Neuron. Er ermoglicht durch eine Verschiebung der Aktivierungsfunktion Vor-

hersagen besser an die Eingangsdaten anzupassen.

Z:Z¢:1 wi - x; +b (2.1)

b) Im Anschluss wird die Aktivierungsfunktion des Neurons auf das Ergebnis z
angewendet,.
Das Gesamtergebnis bildet dann wiederum ein Eingangsdatum fiir verbundene Neu-
ronen der folgenden Schicht. Sobald die Output Schicht des Neurons erreicht ist,
erfolgt die Berechnung des Fehlers.

2. Loss calculation: Mithilfe einer definierten Kostenfunktion wird der Fehler des
Netzes bestimmt. Berechnet wird er unter Berlicksichtigung des Vergleichs von
Zielwert zur tatsichlichen Ausgabe des Netzes. Der Fehler gibt Aufschluss tiber die
Leistung bzw. die Genauigkeit der Vorhersagen des Modells.

3. Backward pass: Mit dem Ziel Parameter zu finden, die den Fehler minimieren,
wird bei der Riickpropagation die Kostenfunktion partiell nach allen lernbaren Pa-
rametern des Neuronalen Netzes abgeleitet. Unter Inanspruchnahme der Ketten-
regel werden die Gradienten der Gewichte und Bias-Werte basierend auf den Ab-
leitungen von Kostenfunktion, Aktivierungen vorheriger Schichten und gewichteter
Summe der Eingédnge (inkl. Bias-Wert) berechnet.

4. Parameter update: Geméif der Lernrate o nehmen die im Backward Pass errech-
neten Gradienten VyL£(0) Einfluss auf die Aktualisierung der einzelnen Parameter
f. Da beim Lernen ein Minimierungsproblem gel6st werden soll, wird die Berech-

nung mit dem negativen Gradienten durchgefiihrt.

grew — Hold —a- vgﬁ(@Old) (2'2)
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Mit dem Update aller Parameter endet eine Lern-Iteration. Iterationen durch den gesam-
ten Trainingsdatensatz werden zu einer Epoche zusammengefasst [83]. Je nach Komple-
xitédt eines Modells, Grofse des Datensatzes und Anforderungen an das Problem ist eine
geeignete Epochenanzahl unterschiedlich groff. Die Anzahl an Iterationen pro Epoche ist
ebenfalls von mehreren Faktoren abhéngig. Zusétzlich zur Gréfe des Datensatzes konnen
auch unterschiedliche Optimierungsverfahren die Anzahl beeinflussen. Im Gegensatz zum
SGD, bei dem die Parameter pro Datum aktualisiert werden, aktualisiert das Mini-Batch

Gradienten Verfahren beispielsweise die Parameter pro Datensatzgruppe (Batch).

Ergénzend zum SGD gibt es weitere fortgeschrittene Optimierer. Monumentum zum Bei-
spiel sorgt durch die Beriicksichtigung vorheriger Gradienten fiir eine beschleunigte Suche
des Minimums der Kostenfunktion. Andere géngige Optimierer wie Ada Grad, RMS Prop
und Adam verwenden adaptive Lernraten, um das Modelltraining zu verbessern. Jeder
Parameter kann seine eigene Lernrate besitzen, die in Abhéngigkeit von vorherigen Er-

gebnissen optimiert werden kann [33].

2.1.3 Generative Modelle

Im Fokus dieser Arbeit stehen Generative Adversarial Networks (GAN). GANs gehoren
zu den Generativen Modellen. Im Gegensatz zum Deskriptiven Modell, das Wahrschein-
lichkeiten abschétzt, lernt das Generative Modell pyoger €ine Wahrscheinlichkeitsvertei-
lung pgate [27]. Mit dem Ziel, die Trainingsdaten (Beobachtungen) moglichst gut abzu-
bilden, wird pgqrq wahrend des Modelltrainings optimiert. Eine weit verbreitete Methode
zur Anpassung der Parameter von generativen Modellen ist die Maximum likelihood esti-
mation (MLE) [32]. Bei der MLE werden die Modellparameter 6 derart geschétzt, dass
die Wahrscheinlichkeit (Likelihood) der Beobachtungen maximiert wird.

Die Lernvarianten zur Umsetzung der Methode unterscheiden sich in der Darstellung und
Approximation des Likelihoods. Im Wesentlichen wird zwischen expliziten und implizi-
ten Dichtemodellen unterschieden. Die expliziten Dichtemodelle definieren eine konkrete
Likelihood-Funktion py,eder(; ), die maximiert werden kann. Im Anschluss an das Trai-
ning erfolgt in einem zweiten Schritt die Generierung der Daten. Implizite Dichtemodelle
stellen keine Wahrscheinlichkeitsverteilung bereit. Sie ermdglichen hingegen eine indirek-
te Interaktion mit pgusq durch die Erstellung unmittelbarer Stichproben. Das Training der
Generative Adversarial Networks beruht auf dem impliziten Modell. Neue Daten werden

direkt aus der durch das Modell reprisentierten Verteilung generiert [32].
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2.2 Generative Adversarial Network (GAN)

Ian Goodfellow et. al [34] publizieren 2014 die erste Forschungsarbeit zu Generative
Adversarial Networks. Zusétzlich zur Vorstellung des Aufbaus und der Funktionsweise
von GANSs, generieren die Autoren erste Bilddateien und diskutieren Vor- und Nachteile
des vorgeschlagenen Frameworks. Aufbauend auf dieser Grundlage wurden GANs in den
letzten Jahren auf unterschiedliche Weise optimiert und fiir verschiedene Datenarten
modifiziert. Neben unterschiedlichen Lernverfahren haben sich weitere Komponenten als
Ergénzung zur Grundstruktur als vorteilhaft erwiesen [45]. Wahrend GANs zu Beginn
insbesondere fiir die Generierung von Bilddaten [35, 64, 80, 43| verwendet wurden, werden
sie heute u.a. auch fiir die Generierung von Texten |52, 94|, Zeitreihendaten [39, 24|
und Musik [60, 91, 36] genutzt. Die Synthese tabellarischer Daten liegt im Fokus dieser
Thesis.

Das Fehlen von geeigneten Daten und die hohe Performance von GANs spiegeln sich
zudem in der Menge an Publikationen sowie in ihrer weit verbreiteten Anwendung wi-
der [35]. Insbesondere im Bereich der Medizin gibt es zahlreiche Implementierungen von
GANSs. Beispielsweise werden die Modelle fiir das Design von DNA-Strukturen [48], die
Verarbeitung medizinischer Bilder [5, 50, 68, 84| oder die Nutzung privater Patientenak-
ten [16] verwendet. In der Informatik unterstiitzen sie u.a. in den Gebieten Cybersecu-
rity [42], Datenschutz |1, 7| oder auch Data Science [98, 86, 29]. Diese Arbeit legt den
Schwerpunkt auf das Konzept Smart City. Die expliziten Anwendungsfille werden in 4.4

beschrieben.

2.2.1 Aufbau und Funktionsweise von GANSs

Auf Grundlage der Ursprungspublikation [34] werden folgend der Aufbau sowie die Funk-
tionsweise von GANs vorgestellt. Der Name des Frameworks, Generative Adversarial Net-
works (dt. erzeugende gegnerische Netze), beschreibt seine wesentlichen Eigenschaften.
Mit dem Ziel Daten zu erzeugen, trainieren zwei Neuronale Netze gegeneinander. Konkret

trainieren ein Generator-Modell und ein Diskriminator-Modell gegeneinander.
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Generator G entspricht dem impliziten Generativen Modell (siehe 2.1.3). Auf Basis eines
Rauschvektors z und der gelernten Wahrscheinlichkeitsverteilung pg.t, werden die

Daten G(z) erzeugt.

Diskriminator D handelt gleich einem binédren Klassifikator. Als Input erhélt dieser die
vom Generator erzeugten Daten (fake data: G(z)) sowie einen originalen Trainings-
datensatz (real data: x). Ohne die Quelle der Eingaben zu kennen, lernt D die
Daten nach Herkunft zu klassifizieren. In Abhé&ngigkeit zu seiner Leistung erfolgt
im Anschluss die Optimierung der eigenen Parameter sowie der Parameter des Ge-

nerators.

Ziel des GANSs ist erreicht, sobald der Generator den originalen Trainingsdatensatz so
imitieren kann, dass der Diskriminator seine Eingangsdaten nicht mehr unterschei-
den kann. Zu diesem Zeitpunkt wird das Training des Modells beendet und der
Generator steht fiir die Generierung neuer Daten bereit. Der Diskriminator wird

nicht weiter benotigt.

Je nach Dateneigenschaften und Modellarchitekturen kann es sinnvoll sein, die beiden
Modelle einzeln oder unterschiedlich haufig zu trainieren. Demzufolge miissen der Gene-
rator und Diskriminator nicht immer hintereinander ausgefiihrt werden. Abbildung 2.2

visualisiert den Aufbau samt Ein- und Ausgaben eines GANs.

[
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|
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|

D(G(2))

Diskriminator D

|
|
|
|
|
|
Rausch- Fake data :
vektor z G(z) |
|
|
|

Generator G

Abbildung 2.2: Aufbau eines Generative Adversarial Networks (in Anlehnung an [67])
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Wihrend Neuronale Netze iiblicherweise nach einem Minimum suchen, hat der Diskri-
minator ein Maximierungsproblem zu l6sen. Dementsprechend werden seine Parameter
im Lernprozess nicht entlang des Gradientenabstiegs (Gradient Descent) neu berechnet,
sondern mit Hilfe des Gradientenanstiegs (Gradient Ascent) optimiert. Beim Generator
wird das iibliche Gradientenabstiegs-Verfahren verwendet, um ein Minimierungsproblem
zu l6sen. Die Zielfunktion eines GANs verdeutlicht das Min-Max-Spiel zwischen Genera-

tor und Diskriminator:

V(D,G) = Ex « paxlogD(@)] + B, o, (n[log(1 — D(G(2)))] (2.3)

Der erste Summand der Funktion misst die Wahrscheinlichkeit, dass der Diskriminator
den realen Trainingsdatensatz korrekt identifiziert und folgend D(x) = 1 ergibt. Der
zweite Summand misst die Wahrscheinlichkeit, dass der Diskriminator den generierten
Datensatz korrekt identifiziert und folgend D(G(z)) = 0 bzw. 1 - D(G(z)) = 1 ergibt.
Der Diskriminator zielt auf die Maximierung beider Teile ab, wohingegen der Generator
ausschlieflich Einfluss auf den zweiten Teil der Gleichung besitzt. Diesen versucht er zu
minimieren, sodass der Diskriminator nicht mehr zwischen den realen und generierten

Daten unterscheiden kann und D(x) = 0,5 entspricht.

2.2.2 Fortgeschrittene Architekturvarianten

Die Grundarchitektur von GANs hat sich iiber die vergangenen Jahre in verschiedene
Richtungen weiterentwickelt. Entsprechend der in [67] vorgeschlagenen Taxonomie zur
Gestaltung und Optimierung von GANs lassen sich die erweiterten Modellarchitekturen

in sechs Kategorien unterteilen:

Bedingte Generierung Bei einem bedingten GAN erhélt das Modell zusétzliche Infor-
mationen iiber die Trainingsdaten. Diese beeinflussen die Wahrscheinlichkeitsver-
teilung und unterstiitzen die Generierung der einzelnen Datengruppierungen. Ein
weit verbreitetes bedingtes GAN ist das Conditional GAN (CGAN) [59]. Die Be-
dingung (engl. condition) c steht bei diesem Modell sowohl dem Generator als auch

dem Diskriminator zur Verfligung.

Generator-Discriminator Paare Herkémmliche GANs zeigen aufgrund des Min-Max-
Spiels eines einzelnen Generator-Diskriminator-Paars Probleme bei der Konver-

genz, insbesondere bei komplexen Daten. Das Einfiihren von mehreren Generatoren
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und Diskriminatoren kann dieser Herausforderung entgegenwirken und die Gene-

rierungsfahigkeit von GANs erhohen. Folgend bestehen zusétzlich zum einfachen

GAN auch Modelle, die mehrere Generatoren oder Diskriminatoren besitzen.

(a)

Training eines Generators: Modelle dieser Art bestehen aus einem Genera-
tor-Diskriminator-Paar. Unterschiedliche Modifikationen wie z.B. die Zunah-
me von Modellschichten wéhrend des Trainings (vgl. ProcessGAN [47]) oder
die Bereitstellung gebiindelter Daten an den Diskriminator (vgl. PacGan [53])
optimieren die Geschwindigkeit und Stabilitdt des Trainings eines einfachen
GANSs.

Training mehrerer Generatoren: Diese Modelle besitzen mehrere Gene-
ratoren. Die Anzahl der Diskriminatoren kann sich je nach Modelltyp unter-
scheiden. Wahrend das MAD-GAN |30] beispielsweise aus einem Diskrimina-
tor und mehreren Generatoren besteht, verwendet das cGANs Framework [81]
GAN-Ensembles. Mehrere GANs werden hintereinandergeschaltet und mit un-

terschiedlichen Teilen der Trainingsdaten trainiert.

Training mehrerer Diskriminatoren: Diese Modelle setzen sich aus einem
Generator sowie mehreren Diskriminatoren zusammen. Mit dem Ziel das Trai-
ning des Generators auf einen stabilisierten Zustand zu beschleunigen, erhélt

der Generator aggregiertes Feedback mehrerer Diskriminatoren (vgl. GMAN

[21]).

Kombinierte Architektur Eine Kombination aus einer Encoder-Decoder und GAN Ar-

chitektur kann ebenfalls den Generierungsprozess verbessern. Bekannte Beispiele
sind die Modelle ALIGAN [20] und BiGAN [19]. Diese setzen sich aus dem bekann-

ten Generator und Diskriminator sowie einem Encoder Netz zusammen. Wahrend

der Generator wie gewohnlich unter Einfluss des Rauschvektors z neue Daten gene-

riert, erzeugt der Encoder aus den realen Daten Vektoren im latenten Raum. Der

Diskriminator wird anschliefsend nicht nur darauf trainiert reale und generierte Da-

ten zu unterscheiden, sondern lernt auch die Zusammenhénge zwischen Daten im

urspriinglichen Raum und der Darstellungen im latenten Raum. Als Eingabe erhélt

er dafiir zusétzlich zu den realen und generierten Daten ihre jeweiligen Vektoren.

Im Backpropagation Schritt kann der Diskriminator dem Generator dadurch ein er-

weitertes Feedback zur Kopplung zwischen dem latenten Raum und den generierten

Daten geben.

10
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Verbesserter Diskriminator Diese Architekturvariante konzentriert sich auf ein stabile-
res Trainingsverhalten des Diskriminators. Das EBGAN [95] zum Beispiel verwen-
det anstelle eines klassischen Diskriminators eine Auto-Encoder-Architektur. Der
Diskriminator erfiillt nicht mehr die Aufgabe eines simplen binédren Klassifikators,
sondern bewertet mit Hilfe einer Energiefunktion die Qualitdt der Daten. Die Be-
wertung zeigt wie realistisch die generierten Daten sind, wobei niedrige Werte auf
hochwertige reale Daten und hohe Werte auf generierte minderwertige Daten hin-
weisen. Wie géngig versucht der Generator den Diskriminator zu tduschen und zielt

entsprechend auf niedrige Bewertungen ab.

Netzwerkspeicher Kim et. al [49] erweitern die Architektur um einen GAN-Speicher.
Dieser hilft dem Generator verschiedene Klassen sowie Strukturen in den Daten
zu unterscheiden und erméglicht dem Diskriminator auf frithere erzeugte Daten
zuriickzugreifen. Dadurch wird die Trainingsstabilitdt des Diskriminators verbes-
sert und der Generator bei der Generierung unterschiedlicher Dateneigenschaften

unterstitzt.

Flexibler latenter Raum GANs dieser Art erlernen eine verbesserte Rauschverteilung,
um unausgewogene Klassenverteilungen innerhalb der Daten auch bei einem gerin-
gen Vorkommen beriicksichtigen zu kénnen. Das DeLiGAN [38] stellt den latenten
Raum als Gaussians Mixture Model (GMM) dar. Wéhrend des Modelltrainings

werden die Parameter des Mixture Modells optimiert.

2.2.3 Herausforderungen beim Training von GANs

Auch wenn GANSs eine hohe Performance erzielen kénnen und zu den fortgeschrittenen
Generativen Modellen zihlen, bestehen verschiedene Herausforderungen beim Training
von GANs. Im Folgenden werden zunéchst allgemeine Probleme erldutert und anschlie-

$end konkrete Schwierigkeiten im Zusammengang mit tabellarischen Daten nahegelegt.

Allgemeine Herausforderungen

Jabbar et. al [45] geben einen Uberblick iiber den aktuellen Stand von GANs und benen-

nen die wesentlichen Schwierigkeiten beim Training.

Fiir ein stabiles Training ist es entscheidend ein Nash-Gleichgewicht zu erreichen.

Beim Nash-Gleichgewicht handelt es sich um ein Konzept aus der Spieltheorie, wobei

11
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die einzelnen Strategien der Spieler voneinander abhéngen. In Bezug auf GANs wird
entsprechend ein Zustand angestrebt, in dem weder der Generator noch der Diskriminator
sich eigenstandig optimieren konnen. Werden unabhéngig voneinander Verdnderungen
angestrebt, kann das Training instabil verlaufen und das Modell evtl. nicht konvergieren.
Die Ursache dieses Verhaltens liegt darin, dass sich Gewichtsoptimierungen auf ein Netz

positiv und gleichzeitig negativ auf das andere Netz auswirken konnen.

Ein Internal Covariate Shift (ICS) entsteht, wenn Parameterdnderungen wahrend
des Trainings die Verteilungen von Ausgabedaten der Hidden Neuronen beeinflussen.
Schwanken diese Verschiebungen stark, kann dies ebenfalls zu einer erschwerten Kon-
vergenz fithren. Um dieser Problematik entgegenzuwirken, muss die Lernrate minimiert
werden, was zu einer erhdhten Trainingszeit des Modells sowie einem hoéheren Ressour-

cenverbrauch fihrt.

Eine der am héufigsten genannten Herausforderungen bildet der Mode Collapse [67,
17, 40, 45|. Der Generator konzentriert sich ausschliefslich auf die Generierung &hnli-
cher Klassen der abzubildenden Datenverteilung. Die generierten Daten besitzen eine
geringe Datenvielfalt und beriicksichtigen ausschliefllich einen Teil des gesamten Daten-

bestands.

Eine weitere Herausforderung ist das Problem des verschwindenden Gradienten
(engl. Vanishing Gradient). Wenn der Diskriminator schnell konvergiert und er die ge-
nerierten Daten von den realen unterscheiden kann, wird der an den Generator zuriick-
gegebene Gradient sehr klein. Der Generator kann seine Gewichte héchstens minimal
optimieren. Verstiarkt werden kann die Abnahme des Gradienten zudem durch die Ver-
wendung bestimmter Aktivierungsfunktionen (bspw. Sigmoid) sowie einer grofen Anzahl
von Schichten. Der Gradient nimmt durch die Multiplikation der Ableitungen exponen-

tiell ab. Das globale Optimum wird nicht erreicht.

Aufgrund des Min-Max Spiels zwischen Generator und Diskriminator ist die Evalua-
tion eines GANs besonders komplex und zeitaufwéindig. Kostenfunktionen wie bei der
Bewertung einfacher Neuronaler Netze sind nicht nutzbar. Es fehlen geeignete Be-
wertungsmetriken, um die Performance sowie die Trainingsstabilitdt unterschiedlicher
GANSs evaluieren und vergleichen zu kénnen. In Abhéngigkeit des Datentyps, der Doméne
und Motivation der Datensynthese ist die Wahl der Metriken einzeln zu treffen [67].

12



2 Grundlagen

Herausforderungen mit tabellarischen Daten

Zusétzlich zu den allgemeinen Schwierigkeiten beim Training von GANSs sind die kom-
plexen Eigenschaften tabellarischer Daten im Rahmen der Herausforderungen zu beriick-
sichtigen [87]:

Gemischte Datentypen In der Regel bestehen tabellarische Daten aus unterschiedlichen
Datentypen. Im Wesentlichen wird zwischen diskreten und kontinuierlichen Typen
unterschieden. Im Gegensatz zu diskreten Daten, die eine endliche Anzahl von
moglichen Werten besitzen, haben die kontinuierlichen Daten einen unendlichen
Wertebereich. Die Aufbereitung und Verarbeitung der Daten unterscheiden sich

nach Datentyp.

Nicht-GauBsche Verteilungen Dadurch, dass die kontinuierlichen Datenwerte fiir ge-
wohnlich keiner Gauf-dhnlichen Verteilung entsprechen, fiihrt eine Normalisierung

nach einer Min-Max Transformation zu verschwindenden Gradienten.

Multimodale Verteilungen Unter einem Modus wird in der Wahrscheinlichkeitstheorie
ein Wert verstanden, der besonders héufig in einem Datensatz vorkommt. Kontinu-
ierliche Spalten bestehen zu meist aus komplexen Datenverteilungen, die sich aus
mehreren Modi zusammensetzen. GANs zeigen Schwierigkeiten bei der Modellie-

rung dieser multimodalen Verteilungen [69].

One-hot-encoded Vektoren Die diskreten Trainingsdaten werden als One-hot-encoded
Vektor dem Diskriminator zur Verfiigung gestellt. Die vom Generator erzeugten
diskreten Daten bestehen jedoch nicht aus Vektoren mit einer eindeutigen Zuord-
nung, sondern beinhalten Wahrscheinlichkeiten zur Zugehorigkeit zu einzelnen Ka-
tegorien. Der Diskriminator kann die realen und generierten Daten einzig an ihrem

Format identifizieren.

Unausgewogene kategoriale Spalten Viele diskrete Datensétze sind stark unausgewo-
gen und besitzen eine Hauptkategorie, die mehr als 90% der Daten ausmacht.
Nebenkategorien sind aufgrund der geringen Menge an Trainingsdaten zum einen
schwer zu erlernen, zum anderen verursacht das Fehlen von Nebenklassen nur ge-
ringe Anderungen in der Datenverteilung. Diese sind schwer fiir den Diskriminator

zu erkennen und férdern die ausschliefliche Generierung der Hauptkategorien.

13
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2.2.4 Datenvorverarbeitung

Infolge der Herausforderungen bei der Verwendung tabellarischer Daten entwickeln Xu et
al. [87] grundlegende Verfahren zur Datenvorverarbeitung, die auch in aktuellen Modellen
integriert sind (vgl. [97, 77]). Um unterschiedliche Methoden je nach Datentyp anwenden

zu konnen, werden die Datenspalten als diskret oder kontinuierlich gekennzeichnet.

Da die kontinuierlichen Daten héufig nicht gaufférmige, aber multimodale Daten-
verteilungen aufweisen, wird fiir diese ein Mode-Specific Normalization (MSN) [87]
Verfahren vorgeschlagen. Mittels eines Variational Gaussian Mixture Models (VGM) wird
die Anzahl von Modi innerhalb der Datenverteilung geschétzt. Anschliefsend wird fiir je-
den ermittelten Modus eine Hilfsspalte angelegt und fiir jeden Wert der urspriinglichen
kontinuierlichen Spalte der am besten passende Modus ermittelt. Die Speicherung folgt
einer One-Hot-Kodierung, wobei die Spalte des zutreffenden Modus mit einer Eins und
alle restlichen mit Nullen versehen werden. Abschlieffend wird der urspriingliche konti-

nuierliche Wert anhand des ausgewéhlten Modus normalisiert.

Die Verarbeitung der diskreten Daten beschriankt sich auf eine One-Hot-Kodierung.
Im Gegensatz zu den kontinuierlichen Werten, die nach der Vorverarbeitung wieder in
einer Spalte gespeichert werden, erhohen die diskreten Daten die Anzahl an Dimensio-
nen der tabellarischen Daten. Fiir jede Kategorie der diskreten Datenspalte wird eine
neue Spalte angelegt. Das Problem von unausgewogenen kategorialen Spalten wird unter
Inanspruchnahme eines fiir den Generator vorgeschalteten Vektors (Conditional Vektor)
verbessert. Mit dem Training-by-Sampling [87] Ansatz lernt das Modell nicht mehr
die gesamte Datenverteilung, sondern eine Verteilung in Abhéngigkeit zur ausgewahlten

Kategorie einer diskreten Spalte.

Student Beamter Rentner

Alter Beruf Einkommen

Alter, Alter, Alter,,

Angestellter

50 | Angestellter 4.250,00 € o Alter,(50) o 1 o o

22 Student 1.500,00 € 1 Alter,(22) 1 o o o

20 Student 934,00 € » 1 Alter,(20) 1 o o o

75 Rentner 2.154,00 € [ Alter,(75) o o o 1
Urspriingliche Daten f Vorverarbeitete Daten

Alter

Abbildung 2.3: Verarbeitung kontinuierlicher und diskreter Daten (eigene Darstellung)
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Abbildung 2.3 zeigt beispielhaft die Verarbeitung der beiden Datentypen. Die Spalte
,Alter repréasentiert den kontinuierlichen Datentyp. Mit dem VGM werden zwei Modi
identifiziert, die Alters-Werte einem Modus zugeordnet und im Anschluss anhand des
Modus Mittelwert und Standardabweichung das Alter normalisiert. In der Spalte Alter,e,
befinden sich die normalisierten Werte zwischen null und eins. Die One-Hot-Kodierung

von diskreten Datentypen wird anhand der Spalte ,Beruf* verdeutlicht.

2.2.5 Evaluation tabellarischer Daten

Da GANs zu dem uniiberwachten Lernansatz zdhlen und das Min-Max-Spiel zwischen
Generator und Diskriminator nicht direkt interpretierbar ist, sind Modell-Genauigkeit
und Fehlerrate nicht in der Art messbar, wie es bei liberwachten Lernansétzen mit Mi-
nimierungsproblem der Fall ist [40]. Aus diesem Grund wird die Leistung der GANs
héufig ausschlieflich anhand der Vielfalt und Qualitét der generierten Daten gemessen.
Es fehlen einheitliche Metriken, um verschiedene GAN-Algorithmen direkt miteinander
vergleichen zu konnen und die einzelnen Modelle préziser zu optimieren. Je nach Anwen-
dung werden aktuell unterschiedliche Datenevaluationen vorgeschlagen und verwendet.

Die folgenden Verfahren konzentrieren sich auf die Evaluation tabellarischer Daten.

Expertenmeinung Um insbesondere die Logik in den Daten stichpunktartig zu tiberprii-
fen, konnen Personen mit Fachwissen die Daten subjektiv bewerten. Beispielsweise

sind Bewertungen zur Realitdtsndhe und Niitzlichkeit der Daten denkbar [7].

Visualisierung Die Exploration der generierten Daten kann durch grafische Methoden
vertieft werden. Fiir einzelne Spalten eigenen sich z.B. die Abbildung von Wahr-
scheinlichkeitsverteilungen, Histogrammen oder Box-Plots. Ausreifser und die Viel-
falt der Datenmodi kénnen sichtbar gemacht werden. Mit der bivariaten Analyse
lassen sich die Beziehungen zwischen Features abbilden. Streudiagramme, Heat-

maps und Korrelationsdiagramme sind hierfiir géngige Visualisierungen.

Statistische Metrik Die Berechnung statistischer Eigenschaften hilft beim Vergleich von
generierten und realen Daten. Metriken wie der Durchschnitt, Standardabweichung,
Minima und Maxima oder der Median kénnen erste Hinweise auf Abweichungen

und Gemeinsamkeiten zwischen generierten und realen Daten geben [25].
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Distanzmetrik Fiir die direkte Berechnung der statistischen Ahnlichkeit von realen und
generierten Daten bestehen konkrete Metriken. Die Jensen-Shannon-Divergenz (JSD)
und die Wasserstein Metrik berechnen die Differenz der Wahrscheinlichkeitsmas-
senverteilungen einzelner diskreter Spalten. Dariiber hinaus kann die Korrelation
zwischen zwei Features durch den Korrelationskoeffizienten nach Pearson (kon-
tinuierliche Daten) oder Unsicherheits-Koeffizienten nach Theil (diskrete Daten)
bestimmt werden. Die Berechnung tberpriift, ob Wechselwirkungen zwischen den
Merkmalen in den generierten Datensétzen erhalten bleiben. Beim anschliefenden
Vergleich der Korrelationsmatrizen von realen und generierten Daten werden Un-

terschiede bzw. Gemeinsamkeiten sichtbar [96].

Datenschutz-Metrik Weitere Metriken zur Distanz zwischen den Datensitzen geben
Hinweise auf den Schutz der Privatsphére. Beim Distance to Closest Record (DCR)
und Nearest Neighbour Distance Ration (NNDR) wird der euklidische Abstand
zwischen einem generierten Datenpunkt und seinen néchsten realen Nachbarn ge-

messen. Je grofer die Werte, desto héher auch der Datenschutz [96].

Klassifikator Test Eine zusitzliche Moglichkeit die Ahnlichkeit der generierten sowie
realen Daten zu bewerten, bietet ein Klassifikator. Generierte und reale Daten
werden gelabelt und in Trainings- sowie Testdaten eingeteilt. Der Klassifikator lernt
anhand der Trainingsdaten die Daten in real und generiert zu unterteilen. Kann das
trainierte Modell anschliefend die Testdaten unterscheiden, sind die Unterschiede

zwischen realen und generierten Daten grof.

ML-Modell Dieses Evaluationsverfahren priift, ob sich die generierten Daten fiir das
Training von ML-Modellen genauso eignen wie die realen Daten. Die realen Daten
werden in Trainings- sowie Testdaten unterteilt und das GAN mit den Trainingsda-
ten trainiert. Anschliefend wird ein zu testendes ML-Modell (z.B. Entscheidungs-
baum oder logistische Regression) mit den Trainingsdaten (M odellgeq;) sowie ein
zweites mit den generierten Daten (Modellpqy.) trainiert. Anschlieffend werden
beide Modelle mittels der realen Testdaten bewertet. Mithilfe von weiteren Metri-
ken wie der Genauigkeit oder des F1-Scores konnen schlieflich die Leistungen der
ML-Modelle verglichen werden [25, 96].
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2.3 Theorie der Differential Privacy (DP)

Uber die letzten Jahre waren Angriffe auf ML-Modelle erfolgreich bei der Identifizie-
rung zugrunde liegender Daten [88, 61]. Da diese Modelle héufig sensible Daten aus
unterschiedlichen Bereichen wie z.B. Gesundheitswesen, Finanzwesen oder Verkehrswe-
sen verarbeiten, ist der Schutz der Privatsphére ein entscheidender Bestandteil bei ihrer
Entwicklung. Dariiber hinaus fordern die unterschiedlichen Datenschutzvorschriften wie
die Datenschutzgrundverordnung der EU (DSGVO) oder die ,Federal Policy for the Pro-
tection of Human Subjects” der USA Daten zu schiitzen. Nach der Vorstellung einzelner
traditioneller Techniken zum Schutz von Daten wird das fiir die synthetische Daten-
verarbeitung zahlreich verwendete mathematische Konzept Differential Privacy erldutert
[65].

2.3.1 Traditionelle Anonymisierungsverfahren

Zwei verbreitete Ansétze zum Schutz der Privatsphére sind die k-Anonymitét 78| sowie
ihre Erweiterung l-Diversitét [55]. Beide Verfahren teilen ein Datenmodell bestehend aus
Identifikatoren, Quasi-Identifikatoren sowie sensiblen Attributen. Als Identifikatoren
werden die Datenpunkte bezeichnet, die zur eindeutigen Identifizierung einer Person fiih-
ren konnen. Beispiele sind der Name oder eine personliche ID. Quasi-Identifikatoren
ermoglichen in Kombination mit weiteren Quasi-Identifikatoren Riickschliisse auf eine
Person, wie z.B. Postleitzahl, Alter oder Geschlecht. Datenpunkte, die sensible Informa-
tionen iiber eine Person enthalten (z.B. eine explizite Krankheit), zédhlen zu den sensi-
blen Attributen.

Sweeney [78| schlidgt die k-Anonymitédt zum Datenschutz vor. Bei dieser Methodik
werden im ersten Schritt alle Identifikatoren aus dem Datensatz entfernt und anschlie-
fend die verbliebenen Daten in k-Gruppen bzw. Aquivalenzklassen unterteilt. Die Grup-
pierung ergibt sich aus den Eintrdgen, die dieselben Quasi-Identifikatoren besitzen. Die
anschliefende Generalisierung der (quasi-)identifizierenden Attribute, wie z.B. Alterspan-
nen, verhindert Riickschliisse auf Verbindungen zwischen sensiblen Attributen und ein-
zelnen Personen. Da bei der k-Anonymitét die Privatsphére einer Person jedoch durch
verschiedene Angriffe erheblich verletzt werden kann, wurde die 1-Diversitéat [55] entwi-

ckelt. Aufbauend auf der k-Anonymitét ermdoglicht sie eine hohere Datenschutzgarantie,
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indem sie mindestens ein unterschiedlich sensibles Attribut je Aquivalenzklasse voraus-
setzt. Auch wenn die l-Diversitdt im Vergleich zur k-Anonymitét Daten besser schiitzen

kann, besteht weiterhin die Gefahr des Verlustes von hochsensiblen Informationen.

2.3.2 (e, 0)-Differential Privacy

Mit dem Ziel eine Datenschutzgarantie zu realisieren, die auch bei jeglichem Hintergrund-
wissen eingehalten wird, definiert Dwork [22] das mathematische Konzept Differential
Privacy (DP). Im Wesentlichen werden die Informationen geschiitzt, indem Unterschiede
zwischen verschiedenen Datensétzen verborgen bleiben. Dadurch soll verhindert werden,
dass zu viele Informationen iiber eine bestimmte Person ermittelt werden kénnen, ohne
allgemeine Muster innerhalb der Datenbasis zu verlieren. Die Grenzen an zur Verfiigung
stehenden Informationen werden durch die Parameter Epsilon (¢) und Delta (9) festge-
legt und mittels eines randomisierten Algorithmus M auf einen bestimmten Datensatz D
angewendet. Beispiele fiir randomisierte Algorithmen sind das Training von GANs oder
sonstige ML-Modelle.

Das Privatsphiren Budget ¢ definiert den maximal gestatteten Verlust der Privat-
sphére. Konkret wird die maximale Differenz zwischen Analyseergebnissen benachbarter
Datensétze festgelegt. Unter benachbarten Datensétzen werden zwei beliebige Datensét-
ze verstanden, die sich genau in einem Datenpunkt unterscheiden. Je kleiner der e-Wert,
desto besser sind die Daten geschiitzt. Der zweite begrenzende Parameter ist die Fehler-
wahrscheinlichkeit §. Sie gibt die Wahrscheinlichkeit fiir einen Verstof gegen DP an
und sollte dementsprechend einen sehr niedrigen Wert besitzen. Zusammenfassend lésst

sich Differential Privacy wie folgt definieren.

Definition 2.1 ((e, 6)-Differential Privacy) Sei M : D — R ein randomisierter Al-
gorithmus. M erfillt (e, §)-DP mit e € RT und 6 € [0,1], falls fir alle benachbarten
Datensdtze D und D’ sowie fir alle méglichen Teilmengen der Ausgabemenge S C R gilt,

dass

PrilM(D) e S] <e - Pr[M(D')e S| +6 (2.4)

In Worten beschrieben besagt die Definition, dass sich die Wahrscheinlichkeiten der Pro-

duktion eines Ausgabewertes in der Menge S zwischen den Mechanismen M(D) und
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M(D’) nicht mehr unterscheiden diirfen als es die Multiplikation mit e und Addition mit
0 zulassen. Eine Erweiterung zum einfachen DP, bietet die Rényi Differential Priva-
cy (RDP) [58]. Sie verwendet im Vergleich zum einfachen DP strengere Grenzen fiir
das Privatsphéren Budget € und bietet Vorteile insbesondere in Bezug auf das Training
von GANSs sowie bei der Verarbeitung grofser Datenrdume. RDP basiert auf der Rényi

Divergenz, der die Ahnlichkeit zwischen Verteilungen berechnet.

Um Differential Privacy einzuhalten und die Ergebnisse der benachbarten Datenséitze
anzugleichen, wird mathematisches Rauschen verwendet. Aus einer statistischen Vertei-
lung wie z.B. Gaufs- oder Laplace-Verteilung wird ein zufélliger Rauschvektor gebildet
und auf die realen Ergebnisse addiert. Die wahren Ergebnisse kdnnen nach der Addition
nicht mehr mit Sicherheit prognostiziert werden. Die Verteilung steht im Zusammenhang
mit dem gewédhlten Privatsphéaren Budget e. Fin niedrig gewédhlter e-Wert fiihrt zu ei-
nem hohen Rauschen und folglich zu einem erh6hten Datenschutz. Die Kalibrierung des
Rauschens auf den definierten e-Wert wird durch die Berechnung der Parameterwerte des
Rauschmechanismus anhand der Sensitivitdt ermdglicht. Diese beschreibt den maxima-
len Abstand, um den sich der Output zwischen den benachbarten Datensétzen verdndern

darf [10].

2.3.3 Local vs. Global Differential Privacy

Die Umsetzung von Differential Privacy unterscheidet sich in den Anséitzen Local Diffe-
rential Privacy (LDP) und Global Differential Privacy (GDP)[90, 56]. Das lokale
Modell zielt darauf ab, eine Datenbank mit bereits geschiitzten Daten zu entwickeln.
Der randomisierte Algorithmus wird direkt auf die Daten der einzelnen Personen ange-
wendet und anschlieffend in der Datenbank gespeichert. Bereits wahrend der Erfassung
der individuellen Informationen werden die Daten geschiitzt, nicht erst bei der Abfrage
von Daten. Der Vorteil besteht darin, dass Data Scientisten aufgrund des Post-Processing
Theorems unzéhlig viele Abfragen an die Datenbank stellen kénnen, ohne die Differential

Privacy Garantie zu verletzen.

Das Post-Processing Theorem besagt, dass die Ergebnisse aller Berechnungen auf einem

DP garantierten Output ebenfalls Differential Privacy erfiillen [23].
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Definition 2.2 (Post-Processing Theorem) Sei M : N* — R ein randomisierter
Algorithmus der (e, ¢ )-Differential Privacy erfullt. Sei f: R — R’ eine beliebige randomi-
sierte Abbildung. Dann garantiert auch f o M : N/*l — R’ (e, § )-Differential Privacy.

Im Gegensatz zum LDP wird beim Global Differential Privacy der randomisierte Algo-
rithmus auf die Antwort einer Datenbankabfrage der Data Scientisten angewendet. Die
Datenbank enthélt hierbei unbearbeitete individuelle Informationen der einzelnen Perso-
nen. Beim GDP ist das Kompositionstheorem der Differential Privacy von den Anwendern
zu bertiicksichtigen. Schlieflich diirfen auch verschiedene Datenbankabfragen zusammen

den vorgegebenen e-Wert nicht iiberschreiten.

Das Kompositionstheorem zielt darauf ab, die Garantie der Privatsphére auch iiber
mehrere Anwendungen hinweg aufrechtzuerhalten [23]. Das Theorem berticksichtigt den
Gesamtverlust an Privatheit, welches das Privatsphéiren Budget nicht iiberschreiten darf.
Die Basis Komposition fiir die (¢, §)-Differential Privacy addiert fiir alle Durchléufe k die
e-Werte und §-Werte (siehe Formel 2.5). Wiahrend die Basis Komposition konservative
Obergrenzen der verwendeten e-Werte und §-Werte berechnet, kénnen fortgeschrittene

Kompositionstheoreme genauere Angaben fiir die verwendeten Parameter berechnen.

" @Y &)-DpP (25)

Auch wenn die Local Differential Privacy gegeniiber der Global Differential Privacy einen
starkeren Privatsphérenschutz bietet, kann aber das erhohte Rauschen auf die individu-
ellen Datenpunkte zu stark verzerrten Analyseergebnissen fiihren und somit die Plausibi-
litdt von LDP in Frage stellen [56]. Abbildung 2.4 veranschaulicht die unterschiedlichen

Herangehensweisen der beiden Differential Privacy Ansétze.
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Abbildung 2.4: Local vs. Global Differential Privacy (in Anlehnung an [90])

2.3.4 Trade-Off zwischen Nutzbarkeit und Privatsphire

Grundsétzlich besteht bei der Arbeit mit sensiblen Daten ein Trade-Off zwischen der
Nutzbarkeit der Analysen und der Privatsphére der Daten [10, 41]. Der Schutz der Pri-
vatsphére erfolgt auf Kosten der Genauigkeit von Analysen. Beim ML fithrt ein erhéhter
Datenschutz zu einer verschlechterten Modellgenauigkeit. Je kleiner das Privatsphéren
Budget, desto mehr Rauschen muss auf die Ergebnisse addiert werden und desto gerin-
ger wird der Analysenutzen. Im Extremfall (e-Wert = 0) muss die Ausgabe immer gleich
sein, unabhéingig von der Eingabe. In diesem Fall sind Datenanalysen nutzlos. In Ab-
héngigkeit zur Problemstellung muss folglich zwischen der Nutzbarkeit der Analyse und
dem Privatsphéarenschutz abgewogen werden. Tendenziell wird mit Zunahme der Daten-
menge der Trade-Off geringer und es lassen sich auch plausible Analyseergebnisse unter

erhohtem Privatsphérenschutz erzielen.

2.4 Praktiken zur Integration von DP in GANs

Um ML-Modelle unter Datenschutzgarantien zu entwickeln, wird in vielen Ansétzen die
Einbettung von Differential Privacy in die Trainingsphase der Modelle empfohlen |2, 92,
75|. Zu den bekanntesten Verfahren der Integration von DP in GANs zéhlen Differentially
Private Stochastic Gradient Descent (DP-SGD) [2| sowie Private Aggregation of Teacher
Ensembles (PATE) [63].

21



2 Grundlagen

2.4.1 Differentially Private Stochastic Gradient Descent (DP-SGD)

Differentially Private Stochastic Gradient Descent [2] ist eine héufig verwendete Metho-
de, um Differential Privacy in Deep-Learning-Modelle zu integrieren. Mit der Grundidee,
dass der Einfluss einzelner Trainingspunkte auf die Aktualisierung der Modellparameter
begrenzt wird, soll das Modell keine sensiblen Informationen iiber einzelne Trainingsda-
ten lernen kénnen. Beim einfachen SGD wird der Gradienten-Vektor fiir jedes einzelne
Trainingsdatum unmittelbar in die Aktualisierung der Modellparameter einbezogen (sie-
he Kapitel 2.1.2). Ein einzelnes Datum kann dadurch zu starken Verdnderungen der
Modellparameter fiihren und das trainierte Modell nachfolgend sensible Informationen

einzelner Datensétze preisgeben.

Um das zu verhindern, werden beim DP-SGD die Gradienten der einzelnen Daten modi-
fiziert. Im Detail werden die Gradienten in einem ersten Schritt gekiirzt (engl. clipping)
und anschliefend kalibriertes Rauschen (engl. noise) hinzugefiigt. Mittels einer definierten
Clipping Grenze kann der Gradient auf einen Bereich begrenzt und die Sensitivitit eines
Trainingsschritts unter Kontrolle gehalten werden. Die Wahl der richtigen Grofe fiir die
Clipping Grenze ist entscheidend. Wahrend ein zu starkes Verkiirzen der Gradienten zu
einem Verlust von zentralen Informationen fithren kann, schiitzt ein zu niedrig gewéhlter
Grenz-Wert die Privatsphére nicht ausreichend. Der Trade-Off zwischen Nutzbarkeit und
Privatsphérenschutz wird sichtbar. Das im zweiten Schritt hinzugefiigte Rauschen folgt
einer Gauf-Verteilung mit dem Rauschfaktor ¢ und bewirkt die zufillige Verschiebung
des Gradienten. Informationen iiber individuelle Datenpunkte werden verfalscht und ge-
mittelt. DP-SGD wird in der Regel ausschliefslich auf das Training des Diskriminators
angewendet. Aufgrund des Post-Processing Theorems (vgl. Definition 2.2) und der Tat-
sache, dass der Generator die realen Trainingsdaten nicht verwendet, erfiillt ein auf einem
differentiell privaten Diskriminator trainierter Generator ebenfalls Differential Privacy.
Abbildung 2.5 zeigt den Aufbau des DPGANSs [85], eines der ersten GANs das DP-SGD

verwendet.
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Abbildung 2.5: Aufbau und Trainingsprozess des DPGANs (in Anlehnung an [46])

Um die Trainingsstabilitdt und Konvergenz-Rate zu verbessern, werden unterschiedli-
che Optimierungsstrategien zum Gradienten-Clipping vorgeschlagen [93|. Beispiels-
weise passt ein Adaptives Clipping die Clipping-Werte wéihrend des Trainings an und
eine Parametergruppierung fasst Parameter mit dhnlichen Clipping Grenzen zusammen,
um einen Kompromiss zwischen dem Privatspharen-Verlust und der Konvergenz jeder
Gruppierung zu erreichen. In [28] wird eine Clipping Decay Strategie vorgestellt. Diese
ermoglicht das Rauschen in Abhéngigkeit zur Grofe der Gradienten zu reduzieren. Der
Clipping-Wert selbst nimmt hierbei mit jedem Generator-Update exponentiell ab. Unter
Verwendung der Wasserstein-Kostenfunktion (Wloss) [4] in Verbindung mit dem
Gradient Penalty Term [37| kann der Clipping-Wert zudem automatisch erzwungen
werden. Ein zu starkes Beschneiden der Gradienten wird beim Gradient Penalty durch
das Einhalten der Lipschitz-Kontinuitéat verhindert. Ein explizites Clipping der Gewichte

wird nicht mehr erforderlich, was zu einer erhdhten Trainingsstabilitét fithrt.

Das auf der Wloss aufbauende Wasserstein-GAN (WGAN) [4] versucht im Wesent-
lichen das Problem des Mode Collapse zu reduzieren. Im Gegensatz zum urspriinglichen
GAN [34], das die Jensen-Shannon-Divergenz als Maf fiir die Abstédnde zwischen den
synthetischen und realen Datenverteilungen nutzt, erzielt das fortgeschrittene WGAN
eine erhohte Trainingsstabilitidt durch die Verwendung der Earth-Mover-Distanz (bzw.
Wasserstein-1-Distanz). Die Earth-Mover-Distanz misst die minimalen Kosten fiir die
Transformation von Datenpunkten einer beliebigen Verteilung in eine Zielverteilung. Mit
der Absicht real aussehende Daten zu erzeugen, die den Diskriminator tduschen kon-
nen, wird beim Training des WGANs der Wasserstein-Abstand zwischen der generierten

Datenverteilung p, und der realen Datenverteilung pgata minimiert.
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Die Anzahl der Trainingsiterationen des Diskriminators wird durch das Privatsphéren
Budget begrenzt. Auf Basis des Kompositionstheorems (vgl. Formel 2.5) werden die Ver-
luste an Privatsphére bei jeder Ausfiihrung von differentiell privaten Mechanismen akku-
muliert. Um das definierte Privatsphiren Budget dennoch nicht zu iibersteigen, wird bei
jeder Trainingsiteration der Wert mittels des Privacy Accountant Konzepts {iber-
priift. Sobald das Gesamtbudget den definierten Wert iiberschreitet, wird der Trainings-
prozess beendet. Zwei weit verbreitete Privacy Accountant Techniken sind Moment Ac-
countant [2| und Rényi Differential Privacy Accountant [58]. Die Techniken kénnen
nicht den exakten Privatsphéaren-Verlust ermitteln, sondern berechnen den héchstmdog-
lichen Verlust. Da das RDP-Accountant im Vergleich zum Moment Accountant jedoch
eine engere Schranke liefert, kann das Modell bei gleich definierten Privatsphéren Budget

langer trainiert werden und zufolge verbesserte Daten generieren [26].

Erganzend zum Post-Processing und Kompositionstheorem beschéftigen sich Wang et. al
[82] mit den Datenschutzgarantien von Stichproben. Ihr Theorem ,RDP fiir Subsam-
pled Mechanismen® besagt, dass ein Mechanismus M, der RDP erfiillt, den gleichen
Schutz garantieren kann, wenn er auf einer Teilmenge der Daten angewendet wird. Durch
die Verwendung einer Subsampling-Rate, die sich aus der Division von Batch-Groéfse durch
Datensatzgrofse berechnet, entsteht eine weitere Zufélligkeit, die den Datenschutz des Dis-
kriminators zusétzlich verstiarkt. Die Wahrscheinlichkeit der Preisgabe von Informationen
einzelner Individuen verringert sich auf die Trainingsiterationen, in denen sie vertreten
sind. Dariiber hinaus fiihrt das Theorem dazu, dass das Privatsphiren Budget aufgrund

des kleineren Trainingsdatensatzes effizienter und exakter berechnet werden kann.

2.4.2 Private Aggregation of Teacher Ensembles (PATE)

Eine alternative Variante zur Integration von DP in Deep-Learning Modelle bietet das
Private Aggregation of Teacher Ensembles Framework [63]. PATE besteht aus einem En-
semble von Lehrermodellen (Teacher) sowie einem Schiilermodell (Student). Das Training
der Lehrermodelle basiert auf disjunkten Partitionen der sensiblen Trainingsdaten, wobei
jedem Lehrermodell eine feste Partition zugeteilt ist. Nach dem Training der Lehrermo-
delle sind diese in der Lage Vorhersagen fiir neue Datensétze zu treffen. Aufgrund der
unterschiedlichen Trainingsdaten kénnen die Vorhersagen jedoch unterschiedlich ausfal-
len. Entsprechend werden die Ergebnisse aggregiert und mit Rauschen versehen, um DP
zu gewahrleisten. Im Anschluss wird das Schiilermodell anhand der aggregierten Vorher-

sagen der Lehrer trainiert und steht schlieklich fiir die Klassifizierung bereit. Dadurch
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dass das Schiilermodell keinen Zugriff auf die sensiblen Daten besitzt, erfiillen das Schii-

lermodell selbst sowie seine generierten Daten Differential Privacy.

Beim vorgeschlagenen PATE-GAN [46] wird der Diskriminator durch den PATE Mecha-
nismus ersetzt. Der Generator bleibt im Vergleich zum traditionellen GAN unverédndert.
Sowohl die Lehrermodelle als auch das Schiilermodell haben die Aufgabe die eingehen-
den Daten als real bzw. fake zu identifizieren. Das Training der Lehrermodelle gleicht
der Weise des klassischen Diskriminators, jedoch auf Basis einzelner Partitionen. Die
grofsere Neuerung des PATE-GANs ergibt sich durch die Implementierung des Schiiler-
Diskriminators. Fiir das Training des Schiilermodells klassifizieren die trainierten Lehrer-
modelle die generierten Daten als real (falsche Prognose) oder fake (richtige Prognose).
Darauf werden die einzelnen Prognosen der Lehrer aggregiert und mit Rauschen ver-
falscht. Im letzten Schritt erfolgt das eigentliche Training des Schiilermodells. Anhand
der generierten Daten sowie der Prognosen der Lehrer lernt das Schiilermodell die gene-

rierten Daten zu klassifizieren.

Alle drei Modelltypen (Lehrer, Schiiler, Generator) werden iterativ trainiert. Jede Trai-
ningsiteration des Generators besteht aus n; Aktualisierungen aller Lehrer sowie n, Ak-
tualisierungen des Schiilers. Auch bei dieser Variante ist die Anzahl an Iterationen ab-
héngig vom Privatsphéren Budget e. Mit Hilfe des Moment Accountants wird dieses
wahrend des Trainings berechnet. Abbildung 2.6 visualisiert den Trainingsprozess des
PATE-GANS.
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Abbildung 2.6: Aufbau und Trainingsprozess des PATE-GANs (in Anlehnung an [46])
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3 Verwandte Literatur

In zahlreichen Arbeiten der letzten Jahre wird Differential Privacy auf das Training von
GANs angewendet. Der nachfolgende Uberblick vorhandener Modelle und verwandter
Literatur beschrinkt sich auf GANs, die zum einen den Schutz von Privatsphére be-
riicksichtigen und zum anderen tabellarische Daten generieren. Zunichst werden die im
Hauptteil verwendeten Modelle beschrieben, bevor anschliefend weitere Modellarten und

Techniken vorgestellt werden.

3.1 Verwendete Modelle

DPGAN Xie et. al [85] entwickeln eines der ersten differential private GANs namens
DPGAN, das zusétzlich zur Generierung von tabellarischen Daten auch zur Syn-
these von Bilddateien verwendet werden kann. DPGAN nutzt fiir die Integration
von DP beim Training des Diskriminators die DP-SGD Methode. Der Generator
profitiert von dem Post-Processing Theorem der DP und kann daher auch ohne ex-
plizite Gradienten-Verzerrung Differential Privacy garantieren. Verschiedene Arten
des Gradienten-Clippings werden ausschlieflich auf die Parameter der Gewichte an-
gewendet und durch einen definierten Grenz-Wert beschriankt. Zudem wird fiir eine
verbesserte Trainingsstabilitat die Kostenfunktion des WGANSs [4] gewéhlt und mit

dem Moment Accountant das Privatsphiren Budget kontrolliert.

Die Architektur des DPGANs baut auf der Struktur des Deep Convolutional Ge-
nerative Adversarial Network (DCGANS) [64] auf und verwendet die Leaky ReLu
Aktivierungsfunktion im Diskriminator sowie die RelL.u Funktion im Generator.
Um ein Overfitting des Modells zu vermeiden, integrieren die Autoren eine L2-
Regularisierung in die Aktualisierung der Gewichte beider Netze und fiihren mit
dem Optimierungsalgorithmus RMSProp eine an die Grofse der Gradienten sich
anpassende Lernrate ein. Fiir nachfolgende Publikationen bildet DPGAN in vielen

Fillen die Basis und wird nahezu immer als Benchmark verwendet.
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CTAB-GAN+ Die Autoren des CTAB-GANS [96] konzentrieren sich auf die Generierung
tabellarischer Daten. Im Fokus stehen die Verarbeitung von gemischten Datenty-
pen, bestehend aus kontinuierlichen sowie diskreten Datenwerten, und der Umgang
mit Datenverteilungen, die lange Verteilungsenden besitzen. Zudem wird die Ge-
nerierung von verzerrten kontinuierlichen Variablen mit mehreren Modi verbessert.
Realisiert werden die dem CTAB-GAN zugrundeliegenden Ziele durch die Erwei-
terungen der herkbmmlichen GAN-Architektur.

Aufbauend auf dem Conditional GAN (CGAN) [59] wird ein Conditional Vektor
in Verbindung mit der Training-by-Sampling Methode eingefiihrt. Diese Techni-
ken ermdglichen Modi gezielt zu erzeugen und einen Mode Collapse zu verhindern.
Des Weiteren wird in Ergdnzung zum Generator und Diskriminator eine dritte
Komponente C als Klassifikator oder Regressor eingefiihrt. Diesbeziiglich wird im
Vorfeld eine Spalte des Trainingsdatensatzes ausgewéhlt, die C anhand der iibrigen
Zeileninformationen prognostizieren soll. Die Prognose von C hilft dem Generator
die semantische Integritdt der generierten Daten zu verbessern. Um eine geeigne-
te Darstellung von gemischten Datentypen sowie einen verbesserten Umgang mit
fehlenden Daten zu realisieren, wird zudem ein neuartiger Mixed-Type Encoder

vorgestellt.

Die Integration von Differential Privacy erfolgt in dem erweiterten Modell CTAB-
GAN+ [97|. Zusitzlich zu den Bestandteilen und Zielen des CTAB-GANs wird die
Kostenfunktion Wloss in Zusammenhang mit dem Gradient Penality eingefiihrt und
die DP-SGD Methode fiir das Training des Diskriminators verwendet. Die Gew&hr-
leistung fiir das gewéhlte Privatsphéiren Budget wird durch das RDP-Accountant
kontrolliert. Abbildung 3.1 visualisiert den Aufbau des CTAB-GAN+.
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Abbildung 3.1: Aufbau des CTAB-GAN+ (in Anlehnung an [97])

27



3 Verwandte Literatur

DP-CGANS Genau wie das CTAB-GAN+ nutzt DP-CGANS [77] aufgrund von grup-
pierten Samples Wloss in Verbindung mit dem Gradient Penality die DP-SGD
Methode fiir das Training des Diskriminators sowie das RDP-Accountant zur Kon-
trolle des Privatsphéiren-Verlusts. Auch die Grundstruktur des CGANs wird als
Basis implementiert, um mithilfe des Conditional Vektors unterreprisentierte Klas-
sen nicht zu vernachlassigen. Das Neuartige des DP-CGANS besteht in der ergén-
zenden Unterstiitzung bei der Simulation von Korrelationen und Abhéngigkeiten
zwischen unausgewogenen Variablen. Diese wird ebenfalls mit dem Conditional
Vektor umgesetzt. Im Gegensatz zum einfachen Conditional Vektor, bei dem die
Datenverteilung in Abhéngigkeit zu einer einzigen ausgewéhlten Kategorie einer
diskreten Spalte gelernt wird, ermdéglicht DP-CGANS das Erlernen der Verteilun-
gen anhand von zufillig ausgewdhlten Kategorie-Paaren. Da mit diesem Konzept
die Generierung nicht realistischer Konstellationen - wie z.B. Ménner und Gebér-
mutterhalskrebs - unterbunden werden soll, muss die Zusammensetzung des Paares

in den realen Daten vorhanden sein.

PATE-GAN Auch wenn die Mehrheit der GANs mit DP-Garantie auf der DP-SGD Me-
thode beruht, erzielt das in Kapitel 2.4.2 vorgestellte PATE-GAN (siehe Abbil-
dung 2.6) vergleichbare Ergebnisse (sieche [46, 97]) auf Basis einer grundlegend
anderen Herangehensweise. Zwar stiitzt es sich ebenfalls auf das Post-Processing
Theorem und wendet DP ausschliefslich auf das Training des Diskriminators an, je-
doch besteht der Diskriminator aus mehreren Modellen. Ein Ensemble von Lehrer-
Diskriminatoren unterrichtet einen Schiiler-Diskriminator, der die Klassifikation
zwischen generierten und realen Daten vornimmt. G-PATE [54] verwendet eben-
falls die PATE-Variante, um DP bei der Generierung von Bildern sowie tabellari-
sche Daten zu beriicksichtigen. Beim G-PATE entspricht das Schiilermodell dem
Generator. Dieser wird mithilfe der aggregierten und verrauschten Gradienten der
Lehrermodelle trainiert. Die Autoren erzielen einen geringeren Nutzenverlust der

Trainingsdaten bei gleich bleibendem Privatsphéaren Budget.
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GAN DPGAN |[85] PATE-GAN [46] CTAB-GAN+ [97] DP-CGANS [77]
Autoren Xie et. al Jordon et. al Zhao et. al Sun et. al
Jahr 2018 2019 2022 2023
DP Algorithm DP-SGD PATE DP-SGD DP-SGD

. . Kullback-Leibler Wloss Woss
Kostenfunktion Wloss Divergence & Gradient Penality & Gradient Penality
Gradient Clipping | Ja Nein Nein Nein

Noise

Gaussian Noise

Laplacian Noise

Gaussian Noise

Gaussian Noise

Accountant Moment Accountant Moment Accountant RDP-Accountant RDP-Accountant
Grundarchitektur Deep Convolutional Conditional GAN Conditional GAN
GAN (DCGAN) (CGAN) (CGAN)

) 7'111(-!‘}11'&‘31‘(-! ’ + Klassifikatior / Regressor + Conditional Vektor

Erweiterungen - Diskriminator-Modelle Komponente C fiir Kateeorie-Paare
(Schiiler + Lehrer) + Mixed-Type Encoder ategone-taare

Datenart iag?lli?mhe Daten Tabellarische Daten Tabellarische Daten Tabellarische Daten

. Gesundheitsdaten Gesundheitsdaten . Soziookonomische Daten
Doméne Verschiedenes

& Zahlen

& Verschiedenes

& Gesundheitsdaten

Tabelle 3.1: Verwendete Modelle sortiert nach Erscheinungsjahr

Zusammenfassend zeigt Tabelle 3.1 die mafgeblichen Unterschiede der verwendeten Mo-

delle.

3.2 Weitere Literatur

Federated Learning Wihrend die meisten Differential Private GANs mit zentralisierten

Trainingsdaten arbeiten, wird bei einzelnen Ansétzen Federated Learning beriick-
sichtigt. Beim Federated Learning werden ML-Modelle auf Basis von verteilten
Trainingsdaten trainiert. Im Wesentlichen unterscheiden sich der verteilte und zen-
tralisierte Ansatz in dem Speicherort der Trainingsdaten sowie dem Ausfiithrungsort
der Modelle. Das Federated Average GAN (Fed-Avg GAN) [6] garantiert Dif-
ferential Privacy auf Benutzerebene. Bei jeder Iteration stellt ein zentraler Server
das GAN-Modell fiir eine Teilmenge der Geréte zu Verfiigung. Der Diskriminator
wird lokal von den einzelnen Endgeraten mittels derer privater Daten trainiert und
die Aktualisierung zuriick zum Server gesendet. Der Server aggregiert anschliefsend
alle Anderungen und verfilscht sie mit Rauschen. Ein weiteres bekanntes Modell
ist GS-WGAN |[15]. Im Vergleich zum Fed-Avg GAN werden die Diskriminatoren
nicht zwischen dem Server und Endgerét geteilt, sondern auf Letzterem gespeichert.
Dariiber hinaus werden die neu berechneten Gradienten nicht erst auf dem Server,

sondern direkt auf den Endgeréten verfélscht.
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3 Verwandte Literatur

Privatsphidre vs. Genauigkeit Ergédnzend um die Vorstellung einzelner Differential Pri-
vate GANs beschéftigen sich einige Arbeiten mit dem Trade-Off zwischen Privat-
sphére und Genauigkeit. Kossen et. al [50] entwerfen ein GAN fiir den Bereich der
Neurobildgebung. Innerhalb ihrer Evaluation fokussieren sich die Autoren insbe-
sondere auf den Einfluss unterschiedlicher Privatsphiren Budgets. Wahrend sie bei
einem e-Wert von 7,4 im Vergleich zum Training ohne Differential Privacy nur ge-
ringe Einbufen in der Genauigkeit erreichen, sinkt die Leistung bei e-Werten kleiner
fiinf so stark, dass die generierten Bilder unbrauchbar sind. Um ein geeignetes Ver-
héltnis zwischen Genauigkeit und Privatsphére zu erhalten, entwickelt Bernau [9]
Techniken zur Quantifizierung eines geeigneten Mafes an Privatsphére. Diesbeziig-
lich werden zwei Hauptprobleme untersucht. Zum einem wird der minimal notwen-
dige Grenzwert an Privatsphéren-Verlust durch Membership Inference-Angriffen
gesucht; zum anderen wird iiberpriift wie die Differential Privacy Garantien mit

rechtlichen und ethischen Normen in Verbindung gebracht werden kénnen.

Individualisierte Differential Privacy Mit der Annahme, dass verschiedene Personen auch
unterschiedliche Erwartungen in Bezug auf Privatsphére besitzen, erweitern Boe-
nisch et. al die Methoden PATE [12] sowie DP-SGD [11] um individualisierte Diffe-
rential Privacy Garantien. Wahrend sich ein einheitliches Privatsphéiren Budget an
der strengsten Datenschutzanforderung aller Datenbesitzer orientieren muss, kon-
nen bei der Verwendung individualisierter Privatsphéiren Budgets Datenpunkte mit
geringeren Anforderungen verbesserte Informationen fiir das ML-Training bereit-
stellen. Infolgedessen kann die Leistung des Modells erhéht werden, ohne einzelne

Datenschutzanforderungen zu verletzen.

ADS-GAN Im Gegensatz zu den vorherigen Modellen und Methoden verwendet das
ADS-GAN [89] kein Differential Privacy. Stattdessen fithren die Autoren die Epsilon-
Identifizierbarkeit ein. Ihre Grundannahme besteht darin, synthetische Datenpunk-
te zu generieren, die sich ausreichend von den realen Datenpunkten unterscheiden.
Daher sollte der Abstand jedes Datenpunkts im realen Datensatz zu seinem néchs-
ten synthetischen Datenpunkt kleiner sein als der Abstand zum né#chsten realen
Datenpunkt. Diese Mindestentfernung wird dabei mithilfe des euklidischen Ab-
stands berechnet. Bis auf die unterschiedliche Herangehensweise der Messung von
Privatsphére unterscheidet sich ADS-GAN wenig von den zuvor vorgestellten DP-
GANSs. Ebenfalls wird das Wasserstein-GAN mit Gradient Penalty fiir eine verbes-
serte Trainingsstabilitéit eingesetzt sowie das CGAN als Basis fiir eine ausgewogene

Datensynthese verwendet.
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4 Experimenteller Aufbau

Im Folgenden werden basierend auf den Anforderungen der DaFne-Plattform die Zielset-
zung sowie Forschungsfrage der Thesis definiert. Ferner wird die zentrale Fragestellung
untergliedert und ein Uberblick iiber die einzelnen Experimente gegeben. Dariiber hinaus
werden die Architekturen inklusive Modifikationen der ausgewéhlten Modelle, Trainings-

datensatze sowie verwendete Evaluations-Metriken erlautert.

4.1 DaFne Plattform

Das der These zugrundeliegende Forschungsprojekt ,,Data Fusion Generator fiir die Kiinst-
liche Intelligenz‘ (DaFne) verfolgt das Ziel tabellarische Daten fiir KI-Applikationen
bereitzustellen. Vom Anwender benétigte Daten lassen sich auf einer frei verfligbaren
Plattform auf unterschiedliche Weise generieren. Im Wesentlichen stehen die drei Syn-
thesemethoden Reproduktion, regelbasierte Erzeugung und Daten Fusion zur Verfligung.
In Abhéngigkeit vom Anwendungsfall, der bereits vorhandenen Daten und Komplexitét

der bendétigten Daten wird eine der drei Methoden ausgewéhlt.

Upload Chose Data Idea Connect Public
(Private) Data Public Data Data Interface
i _ Add Generation
Reproduction Data Fusion
: - e Method
Generation

1
Generation Inspect (and Add Evaluation
: Data Repo
M Quality Report download) Data Method

Abbildung 4.1: Uberblick iiber die Funktionalititen der DaFne-Plattform [51]
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Abbildung 4.1 gibt einen Uberblick iiber die grundlegende Funktionalitit der Plattform.
Konkret zielen die Experimente dieser Arbeit auf eine Erweiterung im Bereich der Repro-
duktion Methode (rot markiert) ab. Bei der Reproduktion werden auf Basis vorhandener
Daten Figenschaften sowie Verteilungen gelernt und anschlieffend verwendet, um neue
Daten zu generieren. Grundsétzlich zielt die Methode darauf ab, einen kleinen Datensatz

um weitere Zeilen zu erweitern, ohne urspriingliche Dateneigenschaften zu verdndern.

In dieser Arbeit wird sie nicht primér fiir die Vergrofserung eines Datensatzes, sondern
vielmehr fiir die Sicherstellung von Privatsphére in schiitzenswerten Daten genutzt. Aus
einem vorhandenen Datensatz werden Muster gelernt und nachfolgend ein vollstédndig
neuer Datensatz generiert. Riickschliisse auf ein reales Datum sind nicht mehr moglich.
Die fiir den privaten Reproduktion-Service zu beriicksichtigenden funktionalen und nicht-

funktionalen Anforderungen werden folgend definiert.

4.1.1 Funktionale Anforderungen

Die funktionalen Anforderungen lassen sich in die Kategorien Modellaufbau, Modelltrai-
ning sowie generierte Daten unterteilen. Aus Sicht des Nutzers ergeben sich die folgenden

funktionalen Anforderungen fiir einen privaten Reproduktion-Service:

Id Beschreibung

Modellaufbau

FA 01 Modell garantiert beim Training Privatsphére

FA 02 Architektur des Modells ist skizziert

FA 03 Modelltraining, Vor- und Nachbearbeitung sind nachvollziehbar
FA 04 Trainiertes Modell bleibt fiir erneute Datensynthese gespeichert

Modelltraining

FA 05 Beispieldatensatz steht zur Verfliigung

FA 06 Trainingsparameter sind frei wahlbar

FA 07 Hilfestellung bei der Wahl der Trainingsparameter ist vorhanden
FA 08 Default Trainingsparameter werden angezeigt

FA 09 Trainingsdauer und benotigte Epochenanzahl werden prognostiziert

FA 10 Trainingsfortschritt der Generierung wird angezeigt

FA 11 Sobald die Daten generiert sind erfolgt eine Benachrichtigung
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Generierte Daten

FA 12 Unabhéngig von Eigenschaften und Doméne sind Trainingsdaten wahlbar
FA 13 Generierte Daten lassen keinen Riickschluss auf reale Daten zu

FA 14 Generierte Daten besitzen die Eigenschaften der realen Daten

FA 15 Metriken zur Uberpriifung der einzuhaltenden Privatsphire sind verfiighar
FA 16 Metriken zur Qualitétsiiberpriifung sind vorhanden

FA 17 Generierte Daten sind in gleicher Weise geeignet fiir KI-Anwendungen

Tabelle 4.1: Funktionale Anforderungen an einen privaten Reproduktion-Service

4.1.2 Nicht-Funktionale Anforderungen

Neben den funktionalen Anforderungen sind weitere Punkte entscheidend fiir eine lang-
fristige Praktikabilitdt. Die Nutzer der Plattform stehen im Mittelpunkt bei der Aus-
wahl und Verwendung eines geeigneten Modells. Im Bezug zur Benutzerfreundlichkeit
(NFA 01) miissen unterschiedliche Fahigkeiten der Nutzer bei der Informationspreis-
gabe und Anpassungsoptionen Beriicksichtigung finden. Zudem spielt die Performance
(NFA _ 02) eine grofe Rolle bei der Wahl eines passenden Modells. Auch wenn groke und
komplexe Datensétze zum Training genutzt werden, sollen Trainings- und Evaluations-
zeit bei hoher Qualitdt moglichst gering gehalten werden. Ebenso muss die vorhandene
Rechenleistung angemessen genutzt werden. Weniger Rechenintensive Modelle erlauben
eine hohere Anzahl an zu trainierenden und evaluierenden Modellen. Die Zuverlédssig-
keit (NFA 03) nimmt durch eine erhohte Verfiigbarkeit zu.

Des Weiteren soll die Moglichkeit bestehen weitere private Modelle der Plattform hin-
zuzufiigen (Erweiterbarkeit (NFA 04)). Die Einfithrung von Modularitit fordert
hierbei zusammen mit einer ausfiihrlichen Dokumentation (NFA 05) die Wieder-
verwendbarkeit. Neben einem kommentierten Programmcode dienen Beispiele und vor-
eingestellte Parameter dazu, die Funktionsweise des Modells verstandlicher zu gestalten.
Dariiber hinaus darf die Sicherheit (NFA 06) nicht vernachléssigt werden. Unbefugte
Dritte diirfen nicht auf das Training des Modells zugreifen bzw. Anderungen vornehmen

kénnen.
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4.2 Zielsetzung und Forschungsfrage

Abgeleitet aus den Anforderungen an einen Reproduktion-Service mit Fokus auf Privat-

sphére ergeben sich Ziele und Forschungsfrage der Thesis.

Zielsetzung:
Aus einem schiitzenswerten tabellarischen Datensatz wird ein vollstdndig neuer
Datensatz mit gleichen Eigenschaften generiert, der ohne Bedenken an Dritte wei-

tergegeben werden kann.

Die iibergeordnete Zielsetzung lasst sich insbesondere in zwei Hautziele unterteilen. Zum
einen sollen qualitativ hochwertige Daten mit gleichen Eigenschaften generiert werden
(Z1) und zum anderen die Privatsphére der urspriinglichen Daten geschiitzt werden (Z2).
Desgleichen sind die unterschiedlichen Vorerfahrungen der Nutzer zu berticksichtigen
und entsprechend Informationsbedarf sowie Anderungsmoglichkeiten anzupassen (Z3).
Der Trainingsdatensatz fiir die Experimente dieser Thesis muss so gewahlt sein, dass er

realitdtsnahe Verteilungen und Eigenschaften widerspiegelt (Z4).

Die Umsetzung der Hauptziele Z1 und Z2 erfolgt durch die Verwendung eines GANs
unter Einbezug von Differential Privacy. Aus diesem Grund fokussiert sich die zentrale

Forschungsfrage auf das fiir den privaten Service bereitzustellende Modell.

Forschungsfrage:

Welches Generative Adversarial Network eignet sich fiir eine addquate Synthese

sensibler tabellarischer Daten unter Berticksichtigung von Differential Privacy?

Die zentrale Forschungsfrage wird mit Hilfe der Evaluationen von drei Teilaspekten be-

antwortet:
Frage 1 Performance: Wie viel Zeit benotigt das Modell fiir die Synthese von Daten?

Frage 2 Datenqualitat: Inwiefern entsprechen die Eigenschaften der vom Modell gene-

rierten Daten denen der Trainingsdaten?

Frage 3 Privatsphérenschutz: Wie sicher sind die vom Modell generierten Daten gegen-

iiber Angriffen?
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4.3 Uberblick der Experimente

Die definierten Teilaspekte werden anhand der in Kapitel 3.1 vorgestellten GANs (1)
DPGAN, (2) PATE-GAN, (3) CTAB-GAN+ und (4) DP-CGANS untersucht. Die Expe-
rimente werden mit Hilfe von zwei Datensétzen aus dem Bereich Smart City durchgefiihrt
(sieche Kapitel 4.4) und die generierten Daten mittels der in Kapitel 4.7 beschriebenen

Evaluations-Metriken analysiert.

Zusatzlich zum Vergleich der Modelle und Datensétze wird bei der Evaluation zwischen
vier Privatsphéren Budgets (€) unterschieden. Die Auswahl der Grofe des e-Wertes geht
sowohl aus den Forschungsarbeiten der jeweiligen Modelle hervor als auch aus einer Zu-
sammenstellung von Beispielen namhafter Tech-Unternehmen und US-Behorden. Das
National Institute of Standards and Technology der USA (NIST) [62] fasst die aktuellen

Erfahrungen wie folgt zusammen:

e c-Werte im Bereich 0 < € < 5 garantieren einen starken Schutz der Privatsphére,

der als konservativ angesehen wird.

e Zunehmende Erfahrungen zeigen jedoch, dass auch e-Werte im Bereich 5 < € <

20 in vielen Situationen einen ausreichend hohen Schutz an Privatsphére bieten.

e Auch e-Werte > 20 konnen einen sinnvollen Schutz an Privatsphére ermdglichen.
Allerdings bedarf es weiterer Erfahrungen zur prizisen Einschétzung von héheren

e-Werten.

Um den Einfluss der verschiedenen Privatsphéren Budgets zu verdeutlichen, werden die
Daten mit den e-Werten = 3, 10, 50 (mit Privatsphérenschutz) sowie ¢ = oo (kein Pri-
vatsphérenschutz) generiert. Wahrend die e-Werte mit Privatsphérenschutz die Anzahl
an Epochen begrenzen, ist bei der Generierung ohne Privatsphérenschutz die Anzahl an
Epochen auf 500 bzw. 400 (CTAB-GAN+ und AGMA Datensatz) festgelegt.

Zusammenfassend ergeben sich folgende zu untersuchende Kriterien:

1. Modelle: DPGAN, PATE-GAN, CTAB-GAN +, DP-CGANS (DP-SGD vs. PATE)
2. Privatsphéren Budget: 3, 10, 50, oo (DP vs. kein Privatsphérenschutz)
3. Datensétze: Energie, AGMA (simulierte vs. reale Daten)

Die Benennung der generierten Daten entspricht: Modell Datensatz e-Wert
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4.4 Smart City Datensatze

Das Forschungsprojekt DakFne konzentriert sich auf die Datensynthese im Bereich von
Smart City. ,Smart City* impliziert den digitalen Wandel auf Infrastrukturen der Grund-
versorgung einer Region wie z.B. Beférderungsmoglichkeiten, Wasser- und Energieversor-
gung oder Miillbeseitigung. Neben der Digitalisierung der einzelnen Sektoren stehen auch
deren Vernetzungen im Fokus. Der Einsatz Intelligenter Informations- und Kommunikati-
onstechnologien (IKT) soll dabei zu einer 6konomisch, 6kologisch und sozial nachhaltigen

Region beitragen [14].

In Ubereinstimmung mit dem Forschungsprojekt verwendet auch die Thesis Fallbeispiele
aus dem Bereich Smart City. Hierbei handelt es sich um einen simulierten Datensatz mit
Schwerpunkt Energieverbrauch einzelner Haushalte sowie um einen leicht modifizierten
realen Datensatz zum Thema Mobilitatsstrome und Tagesaktivitaten einzelner Personen.
Die Nutzung eines simulierten sowie eines realen Datensatzes unterstiitzt den Vergleich
von GANs bei unterschiedlicher Komplexitdt und Realitdtsnahe, wobei die Zeilenanzahl
beider Datensétze auf 40.000 begrenzt wird. Das im Zusammenhang mit der Generierung
(simulierte Daten) stehende Jupyter Notebook ist der Thesis beigefiigt (siche Anhang
Al).

4.4.1 Energieverbrauch pro Haushalt: simulierter Trainingsdatensatz

Im Sektor smarte Energieversorgung existieren zahlreiche Use Cases bei denen Ener-
gieverbrauchsdaten benétigt werden. Sowohl Energieunternehmen als auch Verbraucher
profitieren von intelligenten Technologien. Beispielsweise kénnen Energie Engpésse und
allgemeiner Bedarf vorhergesagt und somit die Zuverlassigkeit des Netzes verbessert wer-
den. Auch eine effizientere Nutzung erneuerbarer Energien oder intelligenter Gebaude-
managementsysteme fiir eine erhdhte Uberwachung des Verbrauchs einzelner Ressourcen

ist vorstellbar.

Der simulierte Energieverbrauch pro Haushalt beschréankt sich auf simple Verteilungen
einzelner Spalten und Zeilen. Pro Haushalt wird eine Zeile generiert, die Informationen
zur befragten Person (z.B. Alter, Geschlecht, Berufsabschluss), Haushaltsdaten (z.B.
Wohnsituation, Personenanzahl, Nettoeinkommen) und konkrete Energieverbrauchs-

daten (z.B. Stromverbrauch, Raumwérme) beinhaltet. Insgesamt besteht der simulierte
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Datensatz aus 17 Spalten, die sich aus acht diskreten (kategorialen) sowie neun konti-
nuierlichen (numerischen) Spalten zusammensetzen. Tabelle 4.2 gibt einen Uberblick der

Energieverbrauchsdaten.

Spaltenname Beschreibung Datentyp | Quelle
Person:

Geschlecht Weiblich | Mannlich Kategorisch | [72]
Alter 25 < Alter < 80 Numerisch | [73]
Familienstand Ledig, Verheiratet usw. Kategorisch | [74]
Bildungsabschluss Ohne Schulabschluss, Realschulabschluss usw. Kategorisch | [74]
Beruf Selbstéandiger, Angestellter usw. Kategorisch | [74]
Haushalt:

Wohnsituation Miete, Eigenes Haus usw. Kategorisch | [44]
Personenanzahl 1 < Anzahl < 5 (zur Vereinfachung: 5+ ist gleich 5) Numerisch | [74]
Nettoeinkommen Unterteilt nach Werten z.B. <500, 2.00 - 2.500 Kategorisch | [74]
Gemeindegrofe Unterteilt nach Werten z.B. 20.00 - 50.000, >= 500.000 | Kategorisch | [74]
Bundesland Niedersachsen, Hamburg, Bayern usw. Kategorisch | [74]
Verbrauchsdaten:

@ Verbrauch je Person: 1PH = 1.978 | 2PH = 1.626

Stromverbrauch Numerisch | [71]
ab 3PH = 1.442 (Variabilitdt von 10%)
(@ Verbrauch je Person: 1PH = 11.785 | 2PH = 9.340
Energieverbrauch eroranch Je erso.n . | Numerisch | [70]
ab 3PH = 6.915 (Variabilitidt von 10%)
Raumwérme 70,3% des Energieverbrauchs (Variabilitit von 10%) Numerisch | [70]
Warmwasser 14,7% des Energieverbrauchs (Variabilitit von 10%) Numerisch | [70]
Sonstige Prozesswiarme | 5,59% des Energieverbrauchs (Variabilitdt von 10%) Numerisch | [70]
Sonstiger Betrieb
onstiger betrie 8% des Energieverbrauchs (Variabilitdt von 10%) Numerisch | [70]
Elektrogerite
Beleuchtung 1,41% des Energieverbrauchs (Variabilitdt von 10%) Numerisch | [70]

Tabelle 4.2: Beschaffenheit der Energieverbrauchsdaten

Wiéhrend die Verteilungen der einzelnen Spalten auf den angegebenen Quellen basieren,
wird die Abbildung von Korrelationen zwischen den Spalten in den meisten Féllen ver-
nachléssigt. Lediglich die Spalten Strom- und Energieverbrauch werden in Abhéngigkeit
zur Anzahl an Personen im Haushalt berechnet. Die Verbrauchshohe pro Person variiert
entsprechend der zugrundeliegenden Statistik. Dariiber hinaus wird der durchschnittliche
Verbrauch mit einer Varianz von bis zu 10% generiert. Der Energieverbrauch untergliedert

sich in Raumwérme, Warmwasser, sonstige Prozesswarme, sonstiger Betrieb von Elektro-
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geriten sowie Beleuchtung. Auch die Zusammensetzung der Unterkategorien basiert auf

Daten der Realitdt mit leichten Abweichungen zur durchschnittlichen Verteilung.

Auch wenn die einzelnen Spalten auf realen Verteilungen basieren, ist zu beriicksichtigen,
dass die Statistiken hdufig nur stark aggregierte Informationen wie Durchschnittswerte
preisgeben. Des Weiteren werden die Verbrauchsdaten ausschlieflich auf Basis der Per-
sonenanzahl im Haushalt generiert. Weitere relevante Einflussfaktoren wie z.B. Wohnsi-

tuation, Beruf oder Nettoeinkommen werden vernachléssigt.

4.4.2 AGMA Daten: realer Trainingsdatensatz

Im Kontrast zu den vereinfachten Energieverbrauchsdaten, bestehen die AGMA Daten
aus realen Befragungen zu Tagesaktivitdten und Mobilitatsstrémen. Im Smart City Kon-
text konnen Daten dieser Thematik insbesondere bei einer smarten Stadtplanung und
bei smarten Transportwegen niitzlich sein. Use Cases im Bereich der smarten Stadtpla-
nung betreffen beispielsweise die Standortwahl neuer Einkaufsfilialen, Bildungsstéitten
oder Gesundheitszentren. Ein anderes Beispiel betrifft eine verbesserte Beleuchtung und
Miillentsorgung o6ffentlicher Pléitze oder Strafsen. Smarte Transportwege beziehen sich
sowohl auf den privaten als auch auf den &ffentlichen Verkehr. Verkehrsflusssteigerung,
intelligente Parkplatzverwaltung oder eine optimierte Integration verschiedener Verkehrs-

trager entsprechen beispielhafter Anwendungsfelder.

Hinter der Abkiirzung AGMA verbirgt sich die Arbeitsgemeinschaft Media-Analyse e.V.
[3], ein Forschungsverbund bestehend aus mehr als 200 Unternehmen der Werbe- und
Medienwirtschaft. Gemeinsam verfolgen diese das Ziel Leistungswerte fiir die Nutzung
von Werbetrigern zu schaffen. Die dieser Thesis zur Verfiigung stehenden Daten stam-
men aus ihrer ,Media-Analyse: Out of Home". Mit dem Ziel eine Grundlage zur Planung
von Auflenwerbung bereitzustellen, werden GPS-Messungen sowie Befragungen zur De-

mographie und Mobilitidt erhoben.

Im Fokus dieser Arbeit stehen die Daten aus der Befragung, da diese primér schiitzens-
werte Daten einzelner Personen beinhalten. Nachdem redundante Spalten (z.B. Dupli-
kate, Aggregation) entfernt wurden, verbleiben 67 relevante Spalten. Diese teilen sich
in 57 diskrete (kategoriale) sowie zehn kontinuierliche (numerische) Spalten auf. Klei-
ne Modifikationen seitens AGMA wie die Entfernung von fehlenden Werten sowie die
Aggregation einzelner Spalten verzerren den Umgang mit realen Daten leicht, sind aber

vorerst vernachlassigbar.
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Anhand der Spalteninhalte ergeben sich acht {ibergeordnete Kategorien:

1. Angaben zur Person: z.B. Geschlecht, Alter, Bildung, Beruf

2. Angaben zum Haushalt: z.B. Ort, Nettoeinkommen, Personenanzahl

3. Haufigkeit an Einkidufen: z.B. in einem Supermarkt, Drogeriemarkt, Baumarkt

4. Haufigkeit an Freizeitaktivitaten: z.B. Nutzung von Medien, Tétigkeiten aufter
Haus, Reisen, Sport treiben, Raucher, Biertrinker

Transportmittel: z.B. Hiufigkeit der Nutzung von Auto, Fahrrad, Bahn, Flugzeug

> o

. Bewertungen zu unterschiedlichen Aussagen: z.B. Fiir besondere Qualitét
gebe ich gern mehr aus”, ,\Werbung ist eigentlich ganz hilfreich fiir den Verbraucher
7. Dauer aulter Haus - Schiatzung (Wegezeit): z.B. Montags, Samstags

8. Daten zum Interview: Monat und Jahr

Die exakt verwendeten Spalten werden im Anhang A.3 in der genannten Gruppierung
aufgefithrt. Um einen fairen Vergleich zu den simulierten Daten zu ermoglichen, werden

die iiber 75.000 Teilnahmen auf zuféllig ausgewéhlte 40.000 Zeilen begrenzt.

4.5 Uberblick der verwendeten Modelle

Die bereits in Kapitel 3.1 eingefithrten Modelle (1) DPGAN, (2) PATE-GAN, (3) CTAB-
GAN+ sowie (4) DP-CGANS werden in den Experimenten verglichen und auf Grund-
lage dessen wird die Forschungsfrage beantwortet. Tabelle 3.1 fasst die grundlegenden
Eigenschaften sowie Unterschiede zwischen den Modellen zusammen. Ergdnzend um die
allgemeine Vorstellung werden in diesem Kapitel tiefgehende Architekturkonzepte und re-
levante Parameter kompakt erklart. Im Wesentlichen lassen sich die Parameter in die drei
iibergeordneten Kategorien Netzwerk Architektur, Netzwerk Training sowie Privatsphé-
renschutz einteilen. Eine detailreiche Ubersicht aller wichtigen Parameterwerte befindet
sich im Anhang A.4.

4.5.1 Netzwerk Architektur

In den Bereich Netzwerk Architektur fallen verwendete Verfahren zur Datenvorverarbei-
tung, Anzahl an Hidden Schichten und Knoten, Aktivierungsfunktionen sowie Regulari-

sierungen der Netze.
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Wihrend DPGAN und PATE-GAN eine vereinfachte Vorverarbeitung der Daten - beste-
hend aus einer Skalierung (Bereich [0,1]) fiir kontinuierliche sowie One-Hot-Kodierung fiir
diskrete Spalten - nutzen, profitieren CTAB-GAN—+ und DP-CGANS von den Weiterent-
wicklungen im Bereich tabellarischer Datensynthese (siche Kapitel 2.2.4). Beide Modelle
wenden die Mode-Specific Normalization auf die kontinuierlichen sowie zusétzlich zur

One-Hot-Kodierung das Training-by-Sampling auf die diskreten Daten an.

Um ein tieferes Verstiandnis moglicher Architekturvarianten zu erhalten, erfolgt eine bei-
spielhafte Vorstellung der Architektur des DP-CGANS. Wie Abbildung 4.2 zeigt, besitzen
Generator sowie Diskriminator zwei Hidden Schichten, die jeweils aus 256 Knoten be-
stehen. Der Generator verwendet in den Hidden Schichten ReLU als Aktivierungsfunkti-
on mit Unterstiitzung einer Batch-Normalization. Die Batch-Normalization beschleunigt
und stabilisiert das Netztraining, indem sie die Daten vor der Anwendung der Aktivie-
rungsfunktion normalisiert und somit das Problem eines verschwindenden Gradienten
minimiert. Die Output Schicht des Generators nutzt Tangens Hyperbolicus und Softmax
als Aktivierungsfunktionen, um sowohl kontinuierliche als auch diskrete Daten erzeugen
zu kénnen. Die Hidden Schichten des Diskriminators beinhalten die LeakyReLLU Aktivie-
rungsfunktion sowie Dropout zur Regularisierung. Indem Dropout zuféllig Verbindungen
zwischen den Knoten ausschaltet, wird ein Overfitting vermieden. Das Netz wird gezwun-
gen verschiedene Teilkombinationen seiner Knoten zu beriicksichtigen und damit eine zu

starke Anpassung an die Trainingsdaten verhindert. |77]

Architektur des Diskriminators

Hidden Schicht 1

Hidden Schicht 2

D(G(z,0),c)

Fully connected
Fully connected

Fully connected

Conditional
Vektor ¢

Architektur des Generators

Hidden Schicht 1 Hidden Schicht 2

Rausch-
vektor z

G(z,
Conditional @9
Vektor ¢

Fully connected
Batch-Normalization
Fully connected
Batch-Normalization
Fully connected

Abbildung 4.2: Architektur des DP-CGANS (in Anlehnung an [77])
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CTAB-GAN-+ integriert ebenfalls die Aktivierungsfunktionen ReLLU und LeakyReLU.
Die ergianzte Komponente C (Klassifikator oder Regressor) gleicht dem Aufbau des Dis-
kriminators. Auch diese macht Gebrauch von der Aktivierungsfunktion LeakyReLu in
Verbindung mit dem Dropout. Im Gegensatz zum DP-GANS besteht der Diskrimina-
tor sowie das zusétzliche Modell aber nicht aus zwei, sondern aus vier Hidden Schich-
ten. DPGAN und PATE-GAN besitzen im Generator sowie Diskriminator jeweils eine
Hidden Schicht, die beide die ReLU Aktivierungsfunktion nutzen. Dropout und Batch-
Normalization finden bei beiden Modellen keine Anwendung. Die Anzahl an Lehrermo-
dellen des PATE-GAN ist zudem auf zehn begrenzt.

4.5.2 Netzwerk Training

Das Netzwerk Training beinhaltet Informationen zur Epochenanzahl, Batchgrofe, Opti-
mierungsalgorithmus sowie Lernrate. Die Epochenanzahl liegt beim Training ohne Pri-
vatsphéire bei 500 (400 beim AGMA Training mit CTAB-GAN+), andernfalls ist die
Anzahl vom erlaubten Privatsphiren Budget abhéngig. Die Batchgrofe betrégt bei den
Modellen DPGAN, CTAB-GAN+ sowie DP-CGANS in der Regel ebenfalls 500. Bei einer
Anzahl von 40.000 Datenzeilen ergeben sich 800 Trainingsiterationen pro Epoche, die auf
Grund einer hohen Trainingsdauer beim DP-CGANS bei einem Privatsphiren Budget
von 50 auf 400 (Batchgrofe 1.000) reduziert werden. Dariiber hinaus gleicht die Eingabe
des Diskriminators beim DP-CGANS die eines PacGans [53]. Er trifft seine Entscheidung
iiber real oder fake demnach nicht anhand eines Datensatzes, sondern erhilt jeweils zehn

Datenséatze derselben Klasse als Grundlage fiir seine Bewertung.

Fast alle Modelle verwenden aufserdem den Optimierungsalgorithmus Adam. Neben der
Berechnung adaptiver Lernraten je Parameter beschleunigt Adam das Konvergieren des
Netzes und gilt als weit verbreiteter Optimierungsalgorithmus. Die zugehorige Lernrate

und der Weight Decay beeinflussen die Geschwindigkeit und Leistung des Modells.

4.5.3 Privatspharenschutz

Zusétzlich zum Privatsphéaren Budget und der Fehlerwahrscheinlichkeit werden Noiseart,
DP-Accountant, sowie die Grofe von Sigma im Privatsphérenschutz aufgelistet. Sigma
entspricht hierbei dem Gaussian Noise Variance Multiplier, der die Starke des dem Gradi-
enten hinzugefiigten Rauschen bestimmt. Je grofer der Wert, desto hoher das Rauschen

und so mehr Trainingsiterationen sind bei gleichem Privatsphéaren Budget moglich.
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4.6 Modifikationen am Programmcode

Nachfolgend werden die verwendeten Programmcode-Repositorys der einzelnen Modelle
genannt sowie vorgenommene Modifikationen aufgefiihrt. Die Programmcodes des DP-
GANSs sowie PATE-GANSs stammen aus einer Zusammenfiithrung verschiedener Gene-
rativer Modelle [13|. Im Unterschied zu ihren urspriinglichen Veréffentlichungen bauen
sie auf einer bedingten Architektur auf. Auf Basis einer zu Beginn festgelegten Spalte
werden alle anderen Spalteninhalte generiert. In den Experimenten wird auf den Spal-
ten ,, Wohnsituation“ (Energie) und ,, BIK-Regionstyp* (AGMA) trainiert. Dariiber
hinaus wird beim DPGAN das RDP-Accountant anstelle des Moment Accountant ange-
wendet. Vom Autor zur Verfiigung gestellte Beispieldaten liegen bereits in vorverarbei-
teter Version im Repository. Explizite Klassen zur Vor- und Nachbearbeitung der Daten
sind nicht vorhanden und werden entsprechend ergénzt. Die Daten der kontinuierlichen
Spalten werden auf den Bereich null bis eins skaliert und die diskreten Daten mit Hilfe

der One-Hot-Kodierung verarbeitet.

Die Datengenerierung mit den Modellen CTAB-GAN+ [79] und DP-CGANS [76]
erfolgt auf Grundlage der priméren Repositorys. Der CTAB-GAN+ Programmcode wird
um eine Main-Klasse erweitert. Diese unterstiitzt dabei Konfigurationen vereinfacht vor-
zunehmen und das Modell aus dem Code zu starten. Die Komponente C klassifiziert in
den Experimenten die Spalten ,,Wohnsituation* (Energie) und ,Nutzung des Ver-
kehrsmittels U-Bahn, S-Bahn oder Regionalbahn in der Region“ (AGMA).
CTAB-GAN+ und DP-CGANS werden in ihrem urspriinglichen Programmcode fiir eine
bestimmte Anzahl an Epochen trainiert. Da die Modelle in den Experimenten jedoch so
lange trainiert werden sollen, bis sie ein definiertes Privatsphédren Budget erzielen, wird
die Kontroll-Variable Target-Epsilon eingefiihrt. Beim Erreichen dieser Ziel-Variable en-
det das Modelltraining und die Daten werden mit aktuellem Stand des Generators gene-
riert. Des Weiteren werden automatisiert fiir alle vier Modelle CSV-Dateien angelegt, die

die Trainingsdauer und verbrauchten Privatsphéren Budget je Epoche dokumentieren.
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4.7 Evaluations-Metriken

Mit dem priméaren Ziel qualitativ hochwertige Daten unter Beriicksichtigung von Privat-
sphére zu generieren, liegt der Fokus der Evaluation auf Datenqualitidt und Sicherheit
der verwendeten sensitiven Trainingsdaten. Dariiber hinaus spielt die Performance der
Modelle eine entscheidende Rolle bei der Modellwahl fiir die DaFne Plattform.

4.7.1 Metriken zur Datenqualitatskontrolle

Die gewédhlten Metriken zur Priifung der Datenqualitét entstammen aus der frei ver-
fiigbaren Python-Library ,Synthetic Data Metrics (SDMetrics)“, die Teil des Synthetic
Data Vault Projektes ist [18]. SDMetrics unterstiitzt den Vergleich von realen und ge-
nerierten Daten anhand unterschiedlicher Metriken, die teils visuell aufbereitet und in
Reports gebiindelt werden. Die einzelnen Metriken lassen sich zudem in die folgenden

Arten untergliedern:

Single Column: Priifung einer Spalte (real vs. generiert)
- Column Pairs: Korrelationsvergleich zwischen zwei Spalten

Single Table: Analyse einer gesamten Tabelle

Multi Table: Untersuchung des Zusammengangs mehrerer Tabellen (hier irrelevant)

Sequential: Kontrolle sequentieller Datenzeilen (hier irrelevant)

Neben der Art der Metrik gibt es Unterscheidungen in ihrer Anwendbarkeit. Wahrend
sich einige Metriken nur fiir diskrete oder kontinuierliche Datenspalten eignen, ermdgli-
chen andere die Analyse beider Eigenschaften. In der Thesis werden der Quality sowie
Diagnostic Report durchgefithrt. Beide Reports enthalten sowohl Metriken fiir die Un-
tersuchung diskreter als auch kontinuierlicher Datenspalten. Zur Ausfithrung werden die
realen und generierten Daten sowie ihre Metadaten benétigt. Tabelle 4.3 gibt eine Uber-
sicht zu den in den Reports inkludierten Metriken samt Beschreibung und Eigenschaften.
Generell sind die Ergebnisse aller Metriken auf den Bereich 1.0 (beste Leistung) bis 0.0
(schlechteste Leistung) skaliert. Im Anschluss an die allgemeinen Reports werden Daten-

spalten mit auffillig schlechtem Ergebnis tiefgriindiger analysiert.
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Metrikname Beschreibung Metrikart Datenart
Quality Report
Kolmogorov-Smirnov-Statistik vergleicht die
KS Complement Wabhrscheinlichkeitsverteilungen der numerischen Single Column | Numerisch
Werte.
Total Variation Distance berechnet den Unterschied
TV Complement Single Column | Kategorisch

Correlation Similarity

Contingency Similarity

Discretize numerical &

Contingency Similarity

der Haufigkeiten jeder Kategorie.
Pearson-Korrelationskoeffizient misst die lineare
Beziehung zwischen zwei Spalten.

Berechnung der Ahnlichkeit eines Paares
kategorischer Spalten mit Vergleich des realen sowie
synthetischen Datenpaars.

Aufteilung der numerischen Werte in Kategorien
und anschliefender Vergleich mittels Contingency

Similarity.

Column Pairs

Column Pairs

Column Pairs

2x Numerisch

2x Kategorisch

1x Kategorisch
& 1x Numerisch

Diagnostic Report

New Row Synthesis

Range Coverage

Category Coverage

Boundary Adherence

Metrik tiberpriift, ob in den generierten Daten
Zeilen existieren, die identisch mit Zeilen aus den
realen Daten sind.

Metrik misst, ob eine generierte Spalte den gesamten
Wertebereich seiner realen Spalte abdeckt.

Metrik priift, ob generierte Spalte alle Kategorien
der realen Spalte im richtigen Verhéltnis abdeckt.
Metrik berechnet den Anteil der generierten Werte
einer Spalte, die innerhalb der Grenzen (Min-Max)

der realen Daten liegen.

Single Table

Single Column

Single Column

Single Column

Kategorisch

& Numerisch

Numerisch

Kategorisch

Numerisch

Tabelle 4.3: Verwendete Qualitats-Metriken unterteilt in Reports [18]

4.7.2 Verfahren zur Uberpriifung von Privatsphire

Aufbauend auf den Ergebnissen der Qualitdtskontrolle werden die als qualitativ hoch-
wertig eingestuften generierten Daten in einem zweiten Schritt auf ihren Privatsphéren-
schutz tiberpriift. Fiir die Sicherheitsanalyse wird das von Giomi et al. [31] entwickelte
frei verfiighare Framework ,,Anonymeter* verwendet. Mit dem Ziel in synthetisierten ta-
bellarischen Datensétzen verbleibende Datenschutzrisiken aufzudecken und zu bewerten,
integrieren die Autoren die Hauptindikatoren fiir Anonymisierung geméf Datenschutz-
bestimmungen wie der Européischen Datenschutzgrundverordnung (DSGVO). Explizit
beinhaltet Anonymeter verschiedene Angriffsalgorithmen, um Risiken der Identifizierung,

Verkniipfbarkeit und Inferenz zu ermitteln.
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1. Risiko der Identifizierung (Singling-out): berechnet die Wahrscheinlichkeit, dass
ein Angreifer eine bestimmte Person im Datensatz isolieren kann. Anonymeter tiber-
priift in diesem Fall den Datensatz auf einzigartige Kombinationen von Auspragun-
gen, die auf eine Person zutreffen.

2. Risiko der Verkniipfbarkeit (Linkability): berechnet die Wahrscheinlichkeit,
dass ein Angreifer zwei oder mehrere Eintréage aus verschiedenen Datensétzen, die
zur selben Person gehoren, verkniipfen kann. Anonymeter erhélt zwei disjunkte
Mengen an Auspriagungen und bewertet mithilfe des synthetischen Datensatzes, ob
die Teildatensétze zu derselben Person gehoren oder nicht.

3. Risiko der Inferenz (Inference): berechnet die Wahrscheinlichkeit, dass ein An-
greifer sensible Informationen iiber eine Person im Datensatz ableiten kann. An-
onymeter analysiert diesbeziiglich Korrelationen zwischen verschiedenen Spalten im

Datensatz.
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Bezugnehmend auf die drei Teilfragen zur Beantwortung der Forschungsfrage (definiert
in 4.2) erfolgt die Prisentation der Evaluationsergebnisse. Nach einer Analyse der Mo-
dellperformance in Bezug auf Geschwindigkeit und Eigenschaften der Epochen, wird die
Datenqualitdt auf unterschiedliche Merkmale gepriift und anschliefend der Privatsphé-
renschutz mittels ML-Angriffen getestet. Zu Beginn jedes Unterkapitels werden aus den
gewonnen Erkenntnissen der Kapitel 2 bis 4 Hypothesen (HT) aufgestellt. Thre Defini-
tion unterstiitzt das Aufdecken von Schwachstellen sowie Stérken der einzelnen Modelle
und offenbart unerwartete Ergebnisse. Abschlieftend werden die Hypothesen abgeglichen
und die wichtigsten Resultate zusammengefasst. Alle im folgenden Kapitel gemachten
Aussagen beziehen sich ausschliefslich auf die durchgefiihrten Experimente und sind auf
den Rahmen dieser Untersuchungen beschrinkt. Um allgemeingiiltige Nachweise zu er-

bringen, bedarf es weiterer Experimente.

5.1 Modellperformance

Um die erste Teilfrage zu untersuchen, wird die Modellperformance beziiglich absoluter
Trainingszeit und Dauer, Anzahl sowie Anstieg des Privatsphéiren Budgets pro Epoche
verglichen. Insbesondere die Trainingsdauer besitzt einen grofen Einfluss auf die Verwen-
dung des ML-Modells.

Id Beschreibung

HT 1.1 | Je groker das Privatsphiaren Budget, desto zeitintensiver die Generierung.
HT 1.2 | Je grofer die Spaltenanzahl, desto zeitintensiver die Generierung.

HT 1.3 | Die Dauer einer Epoche ist beim Modelltraining mit DP im Vergleich zum
Modelltraining ohne DP erhoht.

HT 1.4 | Die Anzahl an Epochen steigt mit dem Privatsphiaren Budget.

Tabelle 5.1: Hypothesen zur Modellperformance
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Trainingsdauer Grundsétzlich demonstrieren alle vier Modelle, dass ein hoheres Pri-
vatsphéren Budget zu einer hoheren Trainingszeit fithrt (HT 1.1). Bei gleichem
Privatsphiren Budget erweist sich das CTAB-GAN+ fast immer als schnellstes
Modell. Lediglich bei der Generierung der synthetischen Energiedaten ohne Pri-
vatsphére liegt das DP-CGANS vor dem CTAB-GAN+. Als besonders langsam
trainierendes Modell offenbart sich das PATE-GAN. Allein fiir die Generierung der
Energiedaten mit einem Privatspharen Budget von 50 benétigt das Modell iiber
zehn Tage. Unter anderem aus diesem Grund wird auf die Generierung der AGMA
Daten mit einem Privatsphiren Budget von 50 beim PATE-GAN verzichtet.

Die Generierung der Energiedaten bendtigt im Vergleich zu den AGMA Daten
weniger Zeit und bestéatigt somit im Rahmen der hier durchgefithrten Experimente
HT 1.2. Die Spannbreite der unterschiedlichen Dauer je Datensatz ist stark vom
verwendeten Modell abhéngig. Wahrend beim CTAB-GAN+ nur wenige Minuten
zwischen der Generierung der AGMA und Energie Daten liegen, zeigt das DP-
CGANS Geschwindigkeitsprobleme bei der Synthese von Daten hoher Dimension.
Folglich wird der AGMA Datensatz fiir das Training mit dem DP-CGANS auf 25
Spalten gekiirzt.

Zeit pro Epoche Auch wenn die absolute Trainingsdauer ohne Differential Privacy nicht
die kiirzeste ist, deutet die benotigte Zeit pro Epoche auf ein deutlich schnelleres
Training hin (HT _1.3). Des Weiteren féllt auf, dass alle Modelle bis auf das DP-
CGANS bei unterschiedlich hohem Privatsphéren Budget eine konstante Trainings-
dauer je Datensatz pro Epoche besitzen. Die Trainingsdauer pro Epoche wird beim
DP-CGANS durch das gewahlten Privatsphéaren Budget beeinflusst. Mit Zunahme
des Privatsphéaren Budgets steigt die benotigte Zeit pro Epoche stark an.

Anstieg des Privatsphiren Budgets Im Gegensatz zur hiufig konstanten Trainingszeit
pro Epoche weisen alle vier Modelle eine Anstiegsreduktion des Privatsphéren Bud-
gets pro Epoche im Trainingsverlauf vor. Vor allem beim DP-CGANS fiihrt dies zu
einer verstirkten Verlangerung der Trainingsdauer. Hier treffen die im Verlauf stei-
gende Zeit sowie der immer kleiner werdende Anstieg des Privatsphiren Budgets

pro Epoche aufeinander (vgl. Abbildung 5.1).

47



5 Evaluationsergebnisse

DP-CGANS: Trainingsverlauf
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Abbildung 5.1: Dauer und e-Anstieg je Trainingsepoche des DP-CGANS

Anzahl an Epochen Der immer kleiner werdende Anstieg des Privatsphiaren Budgets
spiegelt sich in der Anzahl an Epochen wider. Mit grofer werdendem Privatsphéren
Budget wiichst die Anzahl gravierend (HT _1.4). Auffillig ist ein grofer Unter-
schied zwischen den Modellen, der durch die ebenfalls sich stark unterscheidenden
Grofen im Anstieg des Privatsphiren Budgets pro Epoche entsteht (siehe Anhang
A5).

5.2 Datenqualitat

Um sich der Teilfrage zur Datenqualitit zu ndhern, werden die Eigenschaften der ge-
nerierten Daten mit den Eigenschaften der realen Daten unter Inanspruchnahme der
verschiedenen Metriken (vorgestellt in 4.7.1) verglichen. Fiir eine verbesserte Ubersicht

sind die Ergebnisse des Quality Reports und Diagnostic Reports separat aufgefiihrt.

Id Beschreibung

HT 2.1 | Modelltraining ohne DP fiihrt im Vergleich zum Modelltraining mit DP
zu einer verbesserten Datenqualitét.

HT 2.2 | Je grofer das Privatsphéiren Budget, desto besser die Datenqualitét.

HT 2.3 | Je komplexer der Datensatz, desto schlechter die Datenqualitat.

HT 2.4 | Kategoriale Spalten kénnen im Vergleich zu kontinuierlichen Spalten besser
abgebildet werden.

HT 2.5 | Je geringer die Anzahl an unterschiedlichen Kategorien einer Spalte, desto

besser die Datenqualitat.
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HT 2.6

tenqualitéat.

Je schwicher die Korrelation zwischen zwei Spalten, desto besser die Da-

Tabelle 5.2: Hypothesen zur Datenqualitat

5.2.1 Quality Report

Nach der Untersuchung eines zusammengefassten Wertes zur Gesamtqualitdt der Daten,

erfolgt die Evaluation der einzelnen Bestandteile des Quality Reports. Die expliziten Me-

triken werden den Kategorien Beschaffenheit der einzelnen Spalten sowie Korrelationen

zwischen Spalten zugeordnet und nachfolgend analysiert.

Gesamtqualitdt Aggregiert iiber alle Metriken des Quality Reports gibt die Gesamtqua-

litdt erste Hinweise auf verwendbare Daten. Aus der Abbildung 5.2 werden grofse
Qualitatsunterschiede zwischen den DP-Ursprungsmodellen PATE-GAN und DP-
GAN sowie den fortgeschrittenen Modellen CTAB-GAN+ und DP-CGANS unmit-
telbar sichtbar. Wahrend das PATE-GAN nur ein Qualitdtsniveau von 0,3 erreicht,
erzielt das CTAB-GAN-+ immer Ergebnisse iiber 0,8. Die definierten Hypothesen
treten ausschliefslich beim CTAB-GAN+ und DP-CGANS ein. Die Datenqualitét
beim DPGAN und PATE-GAN nimmt weder mit steigendem Privatsphéiren Bud-

get zu (HT _2.2) noch weist der weniger komplexe Energie Datensatz eine héhere

Qualitdt auf (HT _2.3).

Gesamtqualitéit: Energie
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0,86 o0 0,88 85
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Abbildung 5.2: Gesamtqualitét aller generierten Daten unterteilt nach Datensatz
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Im Gegensatz dazu ist die Datenqualitidt beim CTAB-GAN+ und DP-CGANS
vielversprechend. Insbesondere das CTAB-GAN-+ iiberzeugt in allen Generierun-
gen unabhéngig vom Datensatz und Privatsphiren Budget. Beide fortgeschrittenen
Modelle erzielen die besten Ergebnisse beim Training ohne DP (HT _2.1) und er-

reichen zumeist auch beim Training mit DP eine hochwertige Datenqualitat.

Wie vermutet ist die Qualitéit beim Training mit einem Privatsphéiren Budget von
50 am besten. Dennoch trifft die Hypothese HT 2.2 nicht in allen Féllen zu.
Bis auf das Training von CTAB-GAN+ mit den AGMA Daten, zeigt sich, dass
die Qualitdt beim Training mit einem Privatsphéren Budget von 10 schlechter
abschneidet als die bei 3. Entgegen der Erwartung lassen sich zudem die AGMA
Daten im Vergleich zu den weniger komplexen Energiedaten mit einer besseren

Datenqualitit generieren (HT _2.3).

Beschaffenheit der Spalten Die Beschaffenheit der einzelnen Spalten iibersteigt die Ge-
samtqualitdt (vgl. Abbildung 5.3). Daraus ldsst sich schliefen, dass sich die Ei-
genschaften individueller Spalten einfacher erlernen lassen als ihre Korrelationen.
Ansonsten gleichen die Befunde denen, die sich auf die Gesamtqualitéit beziehen.
CTAB-GAN-+ und DP-CGANS generieren eine deutlich bessere Qualitét als PATE-
GAN und DPGAN. Eine Vergrékerung des Privatsphéiren Budgets fiihrt nicht im-
mer zu einer erwarteten Qualitatsverbesserung (HT _2.2) und die AGMA Daten
lassen sich in einer hoheren Qualitit abbilden als Energie Daten (HT 2.3).

Quality Report - AGMA - CTAB-GAN+ Quality Report - AGMA - DP-CGANS

1,00 6
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0,6
0,95 0,9
0,93 0,93 0,022 o4
0,90 089 099 87 9,90 0,89
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080 camtaualite 079 079
073 0,73 0,72
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DP_o3 DP_10 DP_50 ohne_DP DP_o3 DP_10 DP_50 ohne_DP

Abbildung 5.3: Ergebnisse des Quality Reports zu den Modellen CTAB-GAN-+ und
DP-CGANS

Ein detaillierter Blick in die explizit verwendeten Metriken zur Berechnung der
Beschaffenheit der Spalten (vgl. Abbildung 5.4) enthiillt bei allen Datensétzen und
Modellen eine grofe Differenz zwischen den Ergebnissen des TV Complements (ka-

tegorische Daten) und KS Complements (numerische Daten). Die Kategorien lassen
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0,95

0,9

0,85
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sich besser in der realen Wahrscheinlichkeitsverteilung reproduzieren als der Wer-
tebereich bei den numerischen Spalten (HT 2.4). Angesichts der Struktur der
Trainingsdaten wird ersichtlich, weshalb die AGMA Daten im Vergleich zu den
Energiedaten insgesamt préziser reprasentiert werden kénnen. Ein Verhéltnis von
57:10 (Kategorisch: Numerisch) der AGMA Spalten steht dem Verhéltnis von 8:9
der Energie Daten gegeniiber (HT _2.3).
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Abbildung 5.4: Vergleich der Metriken TV- und KS-Complement beim CTAB-GAN-+

Sowohl bei den generierten Energiedaten als auch bei den AGMA Daten wird au-
Rerdem sichtbar, dass es den Modellen schwer fallt kategorische Daten mit hoher
Auspragungsanzahl zu generieren (HT _2.5). Die Modelle zeigen Schwierigkeiten
die Spalte ,Bundesland, die die grofte Anzahl an Auspriagungen in beiden Daten-
sétzen besitzt, exakt abzubilden. Im Gegensatz dazu kann die Spalte ,Geschlecht

besonders zuverlassig vorhergesagt werden.

Korrelationen zwischen Spalten Wie im vorherigen Absatz angedeutet, erzeugen die

Modelle bei der Abbildung von Korrelationen zwischen Spalten schlechtere Ergeb-
nisse als bei der Reproduktion von unabhéngigen Spalteneigenschaften. Mit Zunah-
me der Gesamtqualitdt zeichnet sich eine Reduktion dieser Differenz ab. Andernfalls
veranschaulichen die Korrelationswerte beziiglich der verschiedenen Kriterien ein

dhnliches Verhalten wie die zuvor untersuchten Metriken (vgl. Abbildung 5.3).

Auch in diesem Fall belegen die zugrundeliegenden Metriken eine Diskrepanz zwi-
schen der Contigency Similaritiy und der Correlation Similarity. Im Kontrast zur

Datenbeschaffenheit féllt auf, dass sich die Korrelationen zwischen den numerischen
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Datenspalten (Correlation Similarity) am besten erlernen lassen. Ferner verdeut-
lichen die Ergebnisse, dass schwache Korrelationen zwischen den Spalten besser

reproduziert werden kénnen als hohe Korrelationen (HT _2.6).

Abbildung 5.5 zeigt die Korrelationen zwischen den numerischen Werten. Es wird
deutlich, dass mit zunehmendem Privatsphiaren Budget die realen Korrelationen
gezielter reproduziert werden. Dariiber hinaus werden unterschiedlich ausgeprégte
Korrelationen zwischen Energie (links) und AGMA (rechts) Daten sichtbar.
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Abbildung 5.5: Korrelationen zwischen numerischen Daten des CTAB-GAN-+

Bei der Contigency Similaritiy bedarf es einer Unterteilung in der Bewertung von
Korrelationen zweier kategorischer Spalten und von Korrelationen zwischen einer
kategorischen und numerischen Spalte. Vor allem treten hier Schwierigkeiten beim

Abbilden der Korrelationen zwischen kategorischer und numerischer Spalten auf.

52



5 Evaluationsergebnisse

5.2.2 Diagnostic Report

Die Evaluation des Diagnostic Reports gibt Aufschluss {iber die Syntheseleistung der

Modelle, iiberpriift inwiefern die Wertebereiche einzelner Spalten abgedeckt werden und

ob die numerischen Daten ihre urspriinglichen Grenzwerte iiberschreiten.

Syntheseleistung Eine Eigenschaft, die alle vier Modelle erfiillen, ist die Fahigkeit zu

100% neue Daten zu generieren. Im Abgleich zwischen realen und generierten Daten
lassen sich keine identischen Datensétze wiederfinden. Es existieren demnach in
keinem Fall Kopien, die unmittelbare Riickschliisse auf ein komplettes Datum aus

den realen Daten zulassen konnten.

Abdeckung des Wertebereichs Auch bei der Abdeckung des Wertebereichs einzelner
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0,65
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0,55
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Spalten zeigen die meisten Modelle wenige Probleme. Insbesondere die Modelle
DPGAN und CTAB-GAN-+ decken den Wertebereich bei jeder Generierung zu
iiber 90% ab. PATE-GAN umfasst den Wertebereich der AGMA Spalten ebenfalls
zufriedenstellend, hat aber Herausforderungen den Wertebereich der Energie Spal-
ten geeignet abzubilden. Beim DP-CGANS fallen die generierten Daten mit einem
Privatsphiren Budget von zehn auf. Im Verhéltnis zu den iibrigen Ergebnissen

werden die Wertebereiche hier weniger gut abgedeckt (vgl. Abbildung 5.6).

Wertebereich: Energie Wertebereich: AGMA
1,00
0,97...0,97
0,93
88 88 o ,90
u CTAB-GAN+ 79
0,74 = DP-CGANS
68 070
- DPGAN
62 I PATE-GAN
DP_o03 DP_i10 DP_s50 ohne_DP DP_o3 DP_10 DP_50 ohne_DP

Abbildung 5.6: Abdeckung des Wertebereichs unterteilt nach Datensatz

Beim Abgleich der konkreten Metriken wird sichtbar, dass das PATE-GAN bei der
Synthese der Energiedaten groftere Schwierigkeiten mit dem Category Coverage als
mit dem Range Coverage besitzt. Im Kontrast dazu weist das DP-CGANS beim
Category Coverage nahezu immer eine Abdeckung von 100% auf, offenbart aber
bei einem Privatsphéaren Budget von zehn Schwéchen bei der Erfassung aller Werte
des Range Coverages (HT _2.4).
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Einhaltung von Grenzwerten Die grofite Unterscheidung zwischen den urspriinglichen
und fortgeschrittenen DP-Modellen liegt im Einhalten von Grenzwerten der nu-
merischen Spalten (vgl. Abbildung 5.7). Wahrend CTAB-GAN+ und DP-CGANS
keine numerischen Daten aufserhalb der Grenzbereiche der realen Datenbasis gene-
rieren, scheinen DPGAN und PATE-GAN die urspriinglichen Wertegrenzen voll-
stdndig zu ignorieren. Beispielsweise enthélt die Spalte ,, Alter” negative Werte und
Maxima von iiber mehreren 1.000. Als Folge sind viele numerische Werte beim
DPGAN sowie PATE-GAN unsinnig und ihre Spalten nicht verwendbar.

Grenzen: Energie Grenzen: AGMA
1,00
0,90
0,80
0,70
B CTAB-GAN+
0,60
0,50 m DP-CGANS 5
0,40 55 55 50 DPGAN ’ 134 0,31
030 0,18 0,18 PATE-GAN 017 0,16
0,20 0,14
0,10
0,00
DP_o3 DP_10 DP_50 ohne_DP DP_o3 DP_10 DP_50 ohne_DP

Abbildung 5.7: Einhaltung von Grenzwerten unterteilt nach Datensatz

5.3 Privatspharenschutz

Die Analyse zum Privatsphérenschutz erfolgt mittels des in Kapitel 4.7.2 eingefiihrten
Frameworks Anonymeter. Die integrierten Angriffs-Modelle werden genutzt, um die zwolf
qualitativ hochwertigsten Datensétze beziiglich ihres Risikos gegeniiber Identifizierung,
Verkniipfbarkeit und Inferenz zu iiberpriifen. Explizit handelt es sich bei den ausge-
wahlten Datensédtzen um alle vom CTAB-GAN-+ generierten Datensétze sowie die vom
DP-CGANS generierten Datensétze mit einem Privatsphéren Budget von 50 und oco. Die
Ergebnisse der Angriffs-Modelle enthalten jeweils drei Werte: das vorhergesagte Risiko
(Mittelwert aller Angriffe) sowie die Minima und Maxima des 95%-Konfidenzintervalls.
Um moglichst zuverléssige Einschédtzungen zum Privatsphérenschutz zu geben, werden
bei der Auswertung insbesondere die Maxima analysiert. Die konservative Haltung fiihrt
dazu, dass mit einer 95% Sicherheit die Risiken maximal so hoch sein werden, wie die
berechneten Werte. Alle Experimente werden drei Mal durchgefiihrt und ihre Resultate

anschlieffend gemittelt.
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Id Beschreibung

HT 3.1 | Modelltraining mit DP fiihrt im Vergleich zum Modelltraining ohne DP
zu einem erhohten Datenschutz.

HT 3.2 | Je niedriger das Privatsphiren Budget, desto hoher der Datenschutz.

HT 3.3 | Je mehr Informationen einem Angreifer zur Verfiigung stehen, desto ho-
her das Risiko, dass unbekannte Spaltenauspriagungen ermittelt werden

konnen.

Tabelle 5.3: Hypothesen zum Privatsphérenschutz

Abbildung 5.8 zeigt einen aggregierten Uberblick zu den maximalen Risiken der einzelnen
Angriffsformen. Wahrend die oberen beiden Diagramme Ergebnisse zu den AGMA Daten
prasentieren, berticksichtigen die beiden unteren die Energie Daten. Zu beachten sind
die unterschiedlichen Wertebereiche der Y-Achse, die auf zum Teil unsichere Energie
Daten hinweisen. Dariiber hinaus wird deutlich, dass die Risiken zur Verkniipfbarkeit
besonders niedrig sind und fast immer bei unter 1% liegen. Im Folgenden werden weitere

Auffalligkeiten herausgestellt und analysiert.
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Abbildung 5.8: Gegeniiberstellung von Risiken im Privatsphérenschutz nach Angriffsart
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Identifizierung Basierend auf der Annahme, dass seltene Auspriagungen von Spalten in
den realen Datensétzen ebenfalls selten in den generierten Daten vorkommen, wird
mit dieser Angriffsart die Identifizierbarkeit einzelner Personen untersucht. Unter-

schieden wird zwischen der Uni- und Multi-Variante.

Mit dem Ziel Spalten zu entdecken, die viele verschiedene Auspriagungen (bspw.
IDs, Adressen, Telefonnummer) besitzen, berechnet die Uni-Variante die Risiken
anhand einer Spalte. Mit einer Anzahl von 750 Attacken je Durchlauf liegen die
Risiken unabhéngig vom Datensatz und Privatsphéren Budget beim CTAB-GAN-+
zwischen 1% und 3%. Hingegen weisen die Auswertungen zu den vom DP-CGANS
generierten Daten hohe Differenzen zwischen den Daten auf, die mit und ohne
Differential Privacy trainiert wurden. Die Ergebnisse befinden sich beim Training
ohne DP bei iiber 4% (AGMA) bzw. 6% (Energie) und fallen beim Training mit
einem Privatsphéaren Budget von 50 unter 1% (vgl. Abbildung 5.8).

Deutlich hoher sind die Risiken fiir eine Identifikation bei der Analyse zusam-
menhéngender Spalten. Fiir den AGMA und Energie Datensatz werden bei der
Multi-Variante jeweils fiinf, zehn und fiinfzehn Spalten ausgewahlt und ihre jewei-
ligen Ausprdgungen verkniipft. Die verwendeten Spalten kénnen im zugehorigen
Jupyter Notebook (siehe Anhang A.1) eingesehen werden. Aufsteigend von fiinf
auf flinfzehn verkniipften Spalten zeigt sich, dass die Risiken einer Identifikation
abnehmen. Maximale Wahrscheinlichkeiten von bis zu 23% sind beim Datensatz
CTAB agma_noPrivacy mit der Verkniipfung von fiinf Spalten moglich. Bei glei-
chen Trainingsdaten und Modell, aber einem Privatsphiaren Budget von zehn, kann

das Risiko um 10% gesenkt werden.

Abbildung 5.9 veranschaulicht die Risiken der Multi-Variante. Bei allen Variationen
wird sichtbar, dass das Training ohne DP hohere Risiken im Vergleich zum Training
mit DP birgt (HT _3.1). Jedoch kann nicht bewiesen werden, dass bei Abnahme

des Privatsphéren Budgets auch immer die Risiken minimiert werden (HT _3.2).
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Abbildung 5.9: Risiken der Identifizierung unter Nutzung der Multi-Variante

Verkniipfbarkeit Bei Angriffen im Rahmen der Verkniipfbarkeit wird davon ausgegan-

gen, dass dem Angreifer zwei Teile aus dem realen Datensatz vorliegen und dieser
zusammen mit den generierten Daten versucht die Teile zu verkniipfen. Konkret
sucht der Angreifer mittels des Nearest-Neighbor Algorithmus fiir jedes Datum im
ersten Teil eine definierte Anzahl k an synthetischen Daten, die den Eigenschaften
des jeweiligen Datums am &hnlichsten sind. Diese werden dann verwendet, um im

zweiten Datenteil Datensétze zu finden, die derselben Person gehoren konnten.

Fiir die Evaluation stehen dem Angreifer jeweils Teildatensétze bestehend aus drei,
fiinf oder acht Spalten zur Verfiigung. Dariiber hinaus wird die Anzahl an zu su-
chenden synthetischen Datensétzen dhnlicher Eigenschaften auf zwei, vier, sechs,
acht sowie zehn festgelegt. Grundséatzlich féllt bei allen Experimenten auf, dass
die Risiken begrenzt sind. Die Wahrscheinlichkeit Datensétze zu verkniipfen, liegt
nahezu immer bei unter 1%. Auch spiegeln sich die Erkenntnisse zur Identifizier-
barkeit in diesen Angriffen wider. Erneut sind die mit DP generierten Daten mit
einzelnen Ausnahmen besser geschiitzt als die ohne (HT _3.1) und ein niedrigeres
Privatsphiren Budget weist entgegnen der Erwartungen nicht in jedem Fall auf
besser geschiitzte Daten hin (HT _3.2).
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Des Weiteren zeichnet sich ab, dass das Risiko mit der Anzahl vom Angreifer ver-
wendeten synthetischen Datensétzen ansteigt (vgl. Abbildung 5.10). Tendenzen
deuten zudem daraufhin, dass das Risiko der Verkniipfbarkeit zunimmt, wenn die

realen Teilmengen eine grofere Anzahl an Spalten beinhalten (HT _3.3).

CTAB_agma_50 CTAB_agma_noPrivacy

us
[ il Y | L
= [ | |

Spaltenanzahl_3 Spaltenanzahl_5 Spaltenanzahl_8 Spaltenanzahl_3 Spaltenanzahl_5 Spaltenanzahl_8

Abbildung 5.10: Risiken der Verkniipfbarkeit unterschiedlich grofser Datensétze

Inferenz Bei den Angriffen zur Berechnung des Inferenz-Risikos wird davon ausgegangen,

dass dem Angreifer Informationen zur Ausprigung einzelner Spalten vorliegen. Un-
ter dieser Priamisse verfolgt der Angreifer das Ziel, weitere sensible Informationen
zu einzelnen Personen herauszufinden. Ahnlich wie beim Risiko Verkniipfbarkeit
wird der Nearest-Neighbor Algorithmus verwendet, um den synthetischen Daten-

satz nach Eintrdgen mit moglichst dhnlichen Ausprigungen durchzusuchen.

Auf Basis der Annahme, dass dem Angreifer alle Ausprigungen bis auf eine Spalte
zur Verfligung stehen, wird fiir jede Spalte einzeln das Risiko der Inferenz berech-
net. Je Datensatz werden anschliefsend die zehn Spalten mit dem grofsten Risiko
gegeniibergestellt. Grofe Unterschiede zeigen sich zwischen den generierten AGMA
und Energie Daten. Wahrend risikoreiche Spalten im AGMA Datensatz mit einer
Wahrscheinlichkeit von iiber 10% vorhergesagt werden konnen, erreichen Spalten
im Energie Datensatz nur ein Risiko von 4% (HT _3.3). Ein verhaltnisméfig hohes
Risiko bergen im AGMA Datensatz die Spalten: ,Einkauf in Grofméarkten* sowie
,Berufliche Flugzeugnutzung“. Diese Spalten teilen die Figenschaft eine Auspra-
gung zu besitzen, die den Grofteil der Vorkommen ausmacht. 91% der befragten
Personen nutzen beruflich kein Flugzeug und 87% gehen selten bzw. nie in Grof-
mérkten einkaufen (vgl. Abbildung 5.11).
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Abbildung 5.11: Beziiglich Inferenz gefdhrdete Spalten mit beispielhafter Eigenschaft der
Spalte ,Berufliche Flugzeugnutzung*

Werden die Ergebnisse der einzelnen Spalten zusammen betrachtet, zeigt sich, dass
die Risiken aggregiert beim Energie Datensatz hoher ausfallen. Wie in Abbildung
5.8 zu sehen, liegen sie bis auf eine Ausnahme tiber 4%, wahrend sich die Risiken
beim AGMA Datensatz des Ofteren bei und unter 3% befinden.

5.4 Zusammenfassung der Ergebnisse

Tabelle 5.4 fasst die Ergebnisse der untersuchten Hypothesen zusammen. Obgleich sich
die meisten Hypothesen als giiltig herausstellen, werden HT 2.3 (Komplexitét beein-
trachtigt Qualitdt) widerlegt und HT 2.2 & HT 3.2 (Privatsphéren Budget beein-
flusst Datenqualitdt und Datenschutz) nur teilweise bestétigt. Da vor allem letztere je-
doch entscheidende Annahmen dieser These sind, werden ihre Ergebnisse im Kapitel 6
infrage gestellt. Ein Grund fiir die Entkriftung der Hypothese HT 2.3 konnte bereits
in den unterschiedlichen Verhéltnisse von kontinuierlichen sowie diskreten Spalten in den
Datensétzen identifiziert werden. Die Bestétigung von HT 2.6 (Korrelationsstéirke be-
einflusst Datenqualitit) unterstiitzt die Argumentation, denn auch in diesem Fall sind
die Eigenschaften der kontinuierlichen Daten des Energie Datensatzes im Vergleich zum

AGMA Datensatz schwieriger zu reproduzieren.
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Erfillt | Id Beschreibung
Modellperformance
v HT 1.1 Je grofser das Privatsphiren Budget, desto zeitintensiver die
- Generierung.
v HT 1.2 Je groker die Spaltenanzahl, desto zeitintensiver die
- Generierung.
v HT 1.3 | Die Dauer einer Epoche ist beim Modelltraining mit DP im Ver-
gleich zum Modelltraining ohne DP erhéht.
v HT 1.4 | Die Anzahl an Epochen steigt mit dem Privatspharen Budget.
Datenqualitat
v HT 2.1 | Modelltraining ohne DP fiihrt im Vergleich zum Modelltraining
mit DP zu einer verbesserten Datenqualitét.
(X) HT 2.2 Je grofser das Privatsphiren Budget, desto besser die
- Datenqualitét.
X HT 2.3 | Je komplexer der Datensatz, desto schlechter die Datenqualitat.
v HT 2.4 | Kategoriale Spalten konnen im Vergleich zu kontinuierlichen
Spalten besser abgebildet werden.
v HT 2.5 | Je geringer die Anzahl an unterschiedlichen Kategorien einer
Spalte, desto besser die Datenqualitét.
v HT 2.6 | Je schwicher die Korrelation zwischen zwei Spalten, desto besser
die Datenqualitét.
Privatsphirenschutz
v HT 3.1 | Modelltraining mit DP fiihrt im Vergleich zum Modelltraining
ohne DP zu einem erhohten Datenschutz.
(X) HT 3.2 Je niedriger das Privatsphéiren Budget, desto hoher der
- Datenschutz.
v HT 3.3 | Je mehr Informationen einem Angreifer zur Verfiigung stehen,

desto hoher das Risiko, dass unbekannte Spaltenausprigungen

ermittelt werden konnen.

Tabelle 5.4: Abgleich der Hypothesen
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Ergénzend zum Abgleich der Hypothesen lassen sich weitere interessante Erkenntnisse

fiir die Beantwortung der Forschungsfrage ableiten:

E 1.1

E 1.2

E 21

E_25
E_2.6

Unabhéngig von der Grofte des Privatsphéiren Budgets bleibt die Trainingsdauer
pro Epoche konstant (Ausnahme: Modell DP-CGANS).

Die Anstiegsgrofse des Privatsphéiren Budgets je Epoche verringert sich im Trai-
ningsverlauf, was zu einer Verstarkung von HT 1.4 fiihrt.

Es bestehen grofte Qualitdtsunterschiede zwischen den DP-Ursprungsmodellen
(DPGAN & PATE) und den fortgeschrittenen Modellen (CTAB-GAN+ & DP-
CGANS).

Die Beschaffenheit einzelner Spalten ldsst sich besser erlernen als die Korrelation
zwischen Spalten.

Korrelationen zwischen zwei numerischen Spalten werden besser erlernt als Kor-
relationen zwischen unterschiedlichen bzw. kategorischen Spalten.

Das Abbilden der Korrelation zwischen einer kategorischen und numerischen
Spalte féllt den Modellen besonders schwer.

Es werden ausschlieflich neue Datensétze generiert (keine Kopien).

DPGAN & PATE-GAN reproduzieren die numerischen Spalten nicht geeignet.
Auch wenn sie die Wertebereiche weitgehend abdecken, ergeben die Daten ohne
Einhaltung der Grenzwerte keinen Sinn.

Die Risiken einer Verkniipfbarkeit von Daten sind begrenzt (kleiner 1%) und
liegen unterhalb der anderen durch Angriffe entstehenden Risiken.

Die Risiken fiir eine Identifikation bei Angriffen mit zusammenhéngenden Spalten
(Multi-Variante) sind hoch. Beim Training ohne Differential Privacy erreichen sie
Werte iiber 20%.

Kategoriale Spalten, bei denen eine Auspriagung den Grofsteil der Vorkommen

ausmacht, bergen ein vergleichsweise hohes Risiko der Inferenz.
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6 Diskussion

Folgend werden der Nutzen der Integration von DP in GANs diskutiert sowie die nicht
eingetroffenen Hypothesen HT 2.2 und HT 3.2 (Privatsphiren Budget beeinflusst
Datenqualitat und Datenschutz) untersucht. Ferner werden Verbesserungspotentiale der
Evaluation aufgezeigt sowie die Forschungsfrage anhand der Ergebnisse der Teilfragen
beantwortet. Abschiefsend erfolgt die Modellauswahl fiir DaFne einschlieflich eines An-

forderungsabgleichs sowie einer kurzen Erlduterung zum Quellcode.

6.1 Anwendbarkeit von DP in GANs

Die Ergebnisse aus Kapitel 5 demonstrieren den Einfluss der Integration von Differen-
tial Privacy in GANs. Es zeigt sich, dass DP erfolgreich fiir einen verbesserten Schutz
der Privatsphére genutzt werden kann. Fast in allen Fillen besitzen die mit Differential
Privacy generierten Daten ein geringeres Sicherheitsrisiko als die Daten, die ohne DP
trainiert wurden (HT _3.1). Gleichermafen wird sichtbar, dass die mit DP generierten
Daten eine vergleichsweise geringere Qualitét aufweisen (HT _2.1). Der in Kapitel 2.3.4

vorgestellte Trade-Off zwischen Nutzbarkeit und Privatsphére wird ersichtlich.

Obgleich die Reduzierung von Risiken allgemein (DP vs. kein DP) belegt werden kann,
konnen die Hypothesen zur Auswirkung der Gréfe des Privatsphéren Budgets auf Daten-
qualitdt (HT _2.2) und Datenschutz (HT _3.2) nicht vollsténdig bestatigt werden. Da
dieses Verhalten aufgrund der kiirzeren Trainingsdauer wenig sinnvoll erscheint, bedarf

es einer Analyse moglicher Ursachen dieses Verhaltens.

Beim Fokus auf die Fille der fortgeschrittenen Modelle (CTAB-GAN+ & DP-CGANS),
bei denen die Hypothese HT 2.2 nicht zu trifft, wird deutlich, dass vor allem Daten
mit einem Privatsphéren Budget von drei im Vergleich zu zehn besser abschneiden. Die
zwei Metriken KS Complement (Beschaffenheit von numerischen Daten) und Contigen-

cy Similarity (Korrelationen zwischen unterschiedlichen Datentypen) tragen hierfiir die
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Verantwortung. Die Ergebnisse zeigen, dass diese beiden Metriken Eigenschaften unter-
suchen, die fiir die Modelle schwierig zu erlernen sind (vgl. HT 2.4 & E_ 2.4). Dariiber
hinaus fillt auf, dass bei der Generierung der Energie Daten die Hypothese HT 2.2 6f-
ter nicht zutrifft. Es handelt sich auch hierbei um den Datensatz, der von den Modellen

schwerer zu erlernen ist (vgl. HT _2.3).

Im Gegensatz zur Qualitit wird die Hypothese HT 3.2 beim Energie Datensatz im
Vergleich zum AGMA Datensatz haufiger eingehalten. Lediglich bei den Angriffen zur
Inferenz sowie bei der Multi-Variante zur Identifizierung mit fiinf verkniipften Spalten
iibersteigen die Daten mit einem Privatspharen Budget von zehn die Risiken der Daten
mit einem Privatsphéren Budget von 50. Bei den AGMA Daten fallen vergleichswei-
se zu hohe Risiken bei den Datensétzen mit einem Privatsphiaren Budget von 3 sowie
10 auf. Unmittelbare Auswirkungen von Qualitdt auf Risiken kénnen nicht identifiziert

werden.

Um fundierte Griinde fiir die unerwarteten Ergebnisse der Hypothesen HT 2.2 und
HT 3.2 liefern zu kénnen, werden zusétzliche Analysen zur Datenqualitét und Sicher-
heit in weiterfithrenden Forschungsarbeiten notwendig. Bei diesen sollte auch {iber eine
Erweiterung der Experimente dieser Thesis nachgedacht werden. Dadurch dass die Mo-
delle weder wihrend des Trainings noch bei der direkten Synthese deterministisch sind,
sollten die Datensétze sowie die zugehorigen Modelle nicht nur einmal generiert bzw. trai-
niert werden. Zukiinftige Evaluationen sollten daher auf mehrmals trainierten Modellen

mit mehrfach generierten Daten aufbauen.

Fiir eine zuverlassige Vergleichbarkeit von Datenséatzen mit unterschiedlichen Privatspha-
ren Budgets sollten zukiinftig zudem alle Datensétze mit Privatspharen Budget innerhalb
eines Modelltrainings generiert werden. Konkret werden dann Daten nach dem Erreichen
des jeweiligen Privatsphéaren Budgets generiert und nicht das Modelltraining jeweils neu
gestartet. Des Weiteren sollten zusétzlich zu den Evaluationen mit SDMetrics und An-
onymeter ergdnzende Metriken bei der Validierung der Qualitdt und des Privatsphéren-

schutzes unterstiitzen.

6.2 Beantwortung der Forschungsfrage

Auch wenn die Evaluation Verbesserungspotential aufweist, kann die Forschungsfrage mit

Hilfe der zugehorigen Teilfragen eindeutig beantwortet werden:
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Performance: Wie viel Zeit bendtigt das Modell fiir die Synthese von Daten?
Bis auf eine zu vernachléssigende Ausnahme generiert das CTAB-GAN+ am schnells-
ten die geforderten Daten. Insbesondere mit der Zunahme des Privatsphéren Bud-
gets und der damit einhergehenden verldngerten Trainingsdauer werden grofse Un-
terschiede zwischen dem CTAB-GAN-+ und den anderen drei Modellen sichtbar.
Beim Training ohne DP und dem niedrigen Privatsphéire Budget von drei erzielt
das DP-CGANS mit dem CTAB-GAN+ vergleichbare Zeiten. Beim DP-CGANS
muss jedoch berticksichtigt werden, dass die Anzahl an Dimensionen im Datensatz
einen grofien Einfluss auf die Dauer besitzt und folglich der AGMA Datensatz fiir

dieses Modell auf 25 Spalten gekiirzt werden musste.

Zusammenfassend sticht das CTAB-GAN-+ bei der Modell-Performance beson-
ders durch seine vergleichsweise kurzen Trainingszeiten bei hohen Privatsphiren
Budgets sowie bei der Generierung von Daten mit einer groffen Anzahl an Dimen-
sionen hervor. Die benétigten Zeiten fiir die unterschiedlichen Generierungen der
AGMA Daten betragen bei verwendeter Parameterwahl (siehe Tabelle A.1) 4min
(e=3), 57min (¢=10), 12h 47min (¢=50) und 1h 20min (e=oc0). Minimal
geringer sind die Zeiten bei der Generierung der Energie Daten (vgl. Tabelle A.2).

Datenqualitat: Inwiefern entsprechen die Eigenschaften der vom Modell gene-
rierten Daten denen der Trainingsdaten?
Im Allgemeinen existieren beziiglich der Qualitdt der generierten Daten grofse
Unterschiede zwischen den Ursprungsmodellen sowie fortgeschrittenen Modellen.
Wihrend beim DPGAN und PATE-GAN die numerischen Spalten ungeniigend re-
produziert werden und sich die Gesamtqualitdt immer unter einem Wert von 0,5
befindet, erreicht CTAB-GAN+ in allen Féllen eine Gesamtqualitéit von iiber 0,8
und Spitzenwerte um die 0,95. Auch DP-CGANS generiert nutzbare Daten mit ei-
ner Gesamtqualitit von iiber 0,8 unabhéngig von der Datenart. Hierbei iiberzeugt
insbesondere die Datenqualitdt der ohne DP generierten Daten sowie die AGMA
Daten, die mit einem Privatsphéiren Budget von 50 generiert wurden. Dennoch un-
terliegen alle Teilergebnisse des DP-CGANS den Qualitdtsergebnissen des CTAB-
GAN-+. Dariiber hinaus ist die Datenqualitdt auch bei den vom CTAB-GAN+

generierten Daten mit einem Privatsphéren Budget von 3 und 10 hoch.

Analog zur Performance erzielt das CTAB-GAN+ ebenfalls die beste Datenqua-
litdt. Die AGMA Daten kdnnen besser abgebildet werden als die Energie Daten.
Die Datenbeschaffenheit der einzelnen Spalten kann bei den AGMA Daten zu 89%
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(e=3), 90% (¢=10), 92% (¢=50) und 94% (e=00) abgedeckt werden. Die Kor-
relationen werden etwas schlechter nachgebildet, erreichen aber auch Werte von
85% (e=3), 87% (e=10), 89% (¢=50) und 93% (e=00). Mit eine Gesamtqua-
litat von mind. 82%, Datenbeschaffenheit von mind. 84% sowie Korrelationswerten
von mind. 80% kann das CTAB-GAN+ die Energie Daten etwas weniger prézise
abbilden. Die Ergebnisse bleiben dennoch im Vergleich zu den anderen Modellen
die mit der héchsten Qualitét.

Privatsphirenschutz: Wie sicher sind die vom Modell generierten Daten gegen-
iiber Angriffen?
Die Risikobewertung fiir einen Verlust der Privatsphére wurde ausschlieflich auf
Datensétzen mit hoher Qualitdt vorgenommen. Folglich existiert nur ein Vergleich
zwischen den vom DP-CGANS und CTAB-GAN-+ generierten Datensétzen. Es
zeigt sich, dass die Hohe der Risiken sowie dessen Minimierung durch die Inte-
gration von DP im Wesentlichen von der Angriffsart abhidngt. Wéhrend sich die
Risiken einer Verkniipfbarkeit als gering herausstellen, entstehen hohere Risiken
bei der Identifizierung (vor allem bei der Multi-Variante) sowie bei der Inferenz
einzelner Spalten. Auffillig sind die vergleichsweise hohen Risiken der Identifizie-
rung (Uni-Variante) bei den vom DP-CGANS ohne DP generierten Daten, die bei
einem Training mit Privatsphédren Budget von 50 fast vollstdndig eliminiert wer-
den koénnen. Auch die Risiken der Multi-Variante kénnen vom DP-CGANS durch
den Einsatz von DP reduziert werden und unterliegen zumeist den Risiken des
CTAB-GAN-+. Bei den Risiken der Inferenz erzielt das CTAB-GAN-+ geringere
Werte beim AGMA Datensatz und das DP-CGANS geringere Werte beim Energie

Datensatz.

Im Gegensatz zur prazisen Modellwahl beziiglich Performance und Qualitét kann
beim Privatsphéren Schutz keine eindeutige Auswahl getroffen werden. Beide Mo-
delle generieren Daten mit Risiken, die jedoch durch die Integration von DP redu-
ziert werden kénnen. Generell tragt die Angriffsart mafigeblich zu den unterschied-
lich hohen Risiken bei. Insbesondere bei der Identifizierung bestehen hohe Risiken,
die bei der Multi-Variante mit fiinf Spalten beim AGMA Datensatz ihre Hochst-
werte erreichen. CTAB-GAN+ senkt die Risiken von 23% (Training ohne DP)
auf 17% (Training mit e=50) und DP-CGANS von 20% auf 15%. Erginzend
sollte betont werden, dass der Vergleich von zwei Datensdtzen keine abschliefien-
de Entscheidung iiber das sicherere Modell zulésst. Weitere Experimente werden

notig.

65



6 Diskussion

Forschungsfrage: Welches Generative Adversarial Network eignet sich fiir ei-

ne adidquate Synthese sensibler tabellarischer Daten unter Beriicksichti-
gung von Differential Privacy?
Auf Grundlage der Ergebnisse der Teilfragen fallt die Wahl fiir ein geeignetes GAN
mit Integration von DP auf das CTAB-GAN+. Das Modell iiberzeugt sowohl
bei der Trainingsdauer als auch bei der generierten Datenqualitidt und gewéhr-
leistet einen verbesserten Privatsphérenschutz durch die Integration von DP. Vor
allem aufgrund der guten Datenqualitdt trotz geringem Privatsphéiren Budget und
der unproblematischen Generierung von hoch-dimensionalen Daten kann sich das
CTAB-GAN-+ gegeniiber den anderen untersuchten Modellen durchsetzen. Nichts-
destotrotz besitzt auch das CTAB-GAN-+ Verbesserungspotentiale, die in fortfiih-
renden Arbeiten Beriicksichtigung finden sollten. Indizien geben hierfiir beispiels-
weise die gewonnen Erkenntnisse E 2.2 bis E_ 2.4 und Hypothesen wie HT 2.4
bis HT 2.6 (siche Kapitel 5.4).

6.3 Modellauswahl fir DaFne

Durch die im Zuge dieser Arbeit durchgefiihrten Experimente, fallt die Modellauswahl fiir
die DaFne Plattform auf das CTAB-GAN-+. Wie aus den Ergebnissen und beantworteten
Forschungsfragen hervorgeht, setzt es sich insbesondere durch eine kurze Trainingsdauer
und der Generierung von qualitativ hochwertigen Daten durch. Dariiber hinaus kann
der positive Einfluss der Integration von DP auf den Privatsphérenschutz belegt werden.
Tabelle 6.1 gibt einen Uberblick der umgesetzten funktionalen Anforderungen (definiert
in Kapitel 4.1.1). Die offenen Anforderungen weisen auf Handlungspotentiale fiir weiter-
flihrende Arbeiten hin.

Erfillt | Id Beschreibung
Modellaufbau
v FA 01 Modell garantiert beim Training Privatsphére
v FA 02 Architektur des Modells ist skizziert
v FA 03 Modelltraining, Vor- und Nachbearbeitung sind nachvollziehbar
X FA 04 Trainiertes Modell bleibt fiir erneute Datensynthese gespeichert
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Modelltraining

v FA 05 Beispieldatensatz steht zur Verfiigung

v FA 06 Trainingsparameter sind frei wéhlbar

v FA 07 Hilfestellung bei der Wahl der Trainingsparameter ist vorhanden

v FA 08 Default Trainingsparameter werden angezeigt

X FA 09 Trainingsdauer und benétigte Epochenanzahl werden prognos-
tiziert

(X) FA 10 Trainingsfortschritt der Generierung wird angezeigt

X FA 11 Sobald die Daten generiert sind erfolgt eine Benachrichtigung
Generierte Daten

v FA 12 Unabhédngig von Figenschaften und Doméne sind Trainingsda-
ten wahlbar

v FA 13 Generierte Daten lassen keinen Riickschluss auf reale Daten zu

v FA 14 Generierte Daten besitzen die Eigenschaften der realen Daten

v FA 15 Metriken zur Uberpriifung der einzuhaltenden Privatsphire sind
verfiigbar

v FA 16 Metriken zur Qualitétsiiberpriifung sind vorhanden

X FA 17 Generierte Daten sind in gleicher Weise geeignet fiir KI-
Anwendungen

Tabelle 6.1: Abgleich der funktionalen Anforderungen

Die nicht-funktionalen Anforderungen betreffen nicht nur das untersuchte Private Mo-

dell, sondern die gesamte Plattform. Spezifisch kann festgehalten werden, dass beim

CTAB-GAN-+ sowohl vorgegebene Parameter als Default verwendet als auch von er-

fahrenen Nutzern modifiziert werden kénnen (NFA 01). Des Weiteren iiberzeugt das

Modell durch seine hohe Perfomance beziiglich generierter Qualitdt und Trainingsdauer

(NFA _ 02). Seine Architektur sowie gewéhlten Parameterwerte werden in dieser Thesis

vorgestellt und kdnnen in einer ausfithrlichen Dokumentation fiir die Plattform bereitge-
stellt werden (NFA _05).
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Wihrend der Generator des GANs selbst und auch die generierten Daten einen erhéh-
ten Privatsphérenschutz garantieren, muss auch die Plattform im Allgemeinen vor An-
griffen geschiitzt werden (NFA 06). Zudem sind Zuverlissigkeit (NFA 03) und
Erweiterbarkeit (NFA 04) weitere wichtige Anforderungen die ferner bei der Ent-

wicklung der Plattform Beriicksichtigung finden sollten.

In Ergédnzung zu der Vorstellung der Architektur des CTAB-GAN+ (Kapitel 3.1) und
der Beschreibung sowie Wahl der Parameter (Kapitel 4.5 & Tabelle A.1) befindet sich im
Anhang A.2 der fiir die Experimente modifizierte Quellcode. Anhand des héufig verwen-
deten Beispieldatensatzes ,,Adult Income* kénnen Nutzer erste private Daten generieren.

Als Input benétigt das Modell folgende Informationen:

1. Realer Datensatz (CSV-Datei)
2. Metadaten mit Informationen zur Datenart der einzelnen Spalten und die ausge-
wahlte Spalte fiir die zusétzliche Komponente C (JSON-Datei)
3. Integration von DP (Boolean):
a) True: Privatsphédren Budget (Integer)

b) False: Anzahl an zu trainierenden Epochen (Integer)

Zusétzlich zur Terminalausgabe des Modellfortschritts werden Zeit, Anzahl der Epoche
sowie Privatsphiren Budget in einer CSV-Datei fiir eine anschliefende Evaluation der
Performance gespeichert. Die generierten Daten befinden sich nach der Synthese im Ord-

ner: Fake Datasets.

Ein fiir die Plattform ebenfalls relevanter Nutzen, jedoch nicht Hauptbestandteil dieser
Arbeit, liegt in der Analyse und Bereitstellung geeigneter Evaluations-Metriken. Die in
der Evaluation angewendeten Skripte (Anonymeter) und Metriken (SDMetriks) sind der
Thesis ebenfalls angehéngt (siche Anhang A.1 & A.2). Sie kénnen als Ausgangspunkt fiir
Projekte dienen, die sich auf die Evaluation der erzeugten Daten konzentrieren, insbe-

sondere im Hinblick auf Datenschutz.
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Abschliefsend werden in diesem Kapitel die zentralen Elemente der Thesis zusammenge-

fasst und um einen Ausblick auf nachfolgende Projekte ergénzt.

Zielsetzung Mit dem Ziel schiitzenswerte Daten ohne Verlust von Privatsphére nutzbar
zu machen, beschiftigt sich die Thesis mit der Integration von Differential Privacy
in Generative Adversarial Networks. Im Rahmen des Forschungsprojektes DaFne
wird konkret nach einem geeigneten DP-GAN gesucht, das zum einen die Eigen-
schaften der realen Daten abbildet (1) und zum anderen die Privatsphére schiitzt
(2). Dartiber hinaus beeinflusst die Modellperformance, insbesondere die Trainings-
dauer, die Verwendung des Modells (3).

Aufbau der Experimente Auf Grundlage der drei Anforderungen erfolgt der Aufbau der
Experimente. Nach der Untersuchung von Trainingszeit und FEigenschaften ein-
zelner Epochen werden Qualitéts-Metriken auf die generierten Daten angewendet
sowie die Risiken unterschiedlicher Angriffsformen berechnet. Die Evaluation ba-
siert auf einem realen sowie einem simulierten Datensatz, die jeweils von vier un-
terschiedlichen DP-GANSs reproduziert werden. Da die Grofe des Privatsphéren
Budgets Einfluss auf Qualitdt und Privatsphérenschutz besitzen kann, werden zu-
satzlich zum allgemeinen Vergleich vom Training mit und ohne DP explizit Daten
mit e-Werten von drei, zehn und fiinfzig generiert. Aufgrund der Tatsache, dass sich
nicht alle Modelle fiir ein Training ohne DP eignen sowie einzelne Modelle zu viel

Trainingszeit beanspruchen, ergeben sich insgesamt 27 zu evaluierende Datensétze.
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Evaluationsergebnisse Die verwendeten Modelle unterscheiden sich einerseits in der Art
der Integration von Differential Privacy in GANs (DP-SGD vs. PATE), andererseits
in ihrem Entwicklungsstand. Die Ursprungsmodelle DPGAN & PATE-GAN stehen
den fortgeschrittenen Modellen CTAB-GAN+ & DP-CGANS gegeniiber. Vor allem
innerhalb der Qualitdtskontrolle der Daten werden grofse Unterschiede sichtbar. Die
sich tiiber die letzten Jahre weiterentwickelten Vor- & Nachbearbeitungsschritte ta-
bellarischer Datenverarbeitung (verwendet in CTAB-GAN+ & DP-CGANS) tragen

u.a. zu einer erhohten Datenqualitat bei.

Beim Vergleich der Modelle zeigt sich zudem, dass die Eigenschaften der Datensét-
ze einen grofen Einfluss auf die Modellleistung haben. Wahrend das DP-CGANS
Schwierigkeiten bei der Reproduktion hoch-dimensionaler Daten besitzt, konnen
DPGAN und PATE-GAN numerische Daten nicht geeignet abbilden. Grundsétz-
lich fallt auf, dass alle vier Modelle kategoriale Daten besser reproduzieren kénnen
als numerische und die Datenbeschaffenheit einzelner Spalten gegeniiber Korre-
lationen zwischen Spalten verbessert abgebildet wird. Aufierdem beeinflussen die
Anzahl unterschiedlicher Kategorien sowie die Korrelationsstiarke zwischen Spal-
ten die generierte Datenqualitéit. Die Resultate der Risikoberechnungen fiir einen
Verlust der Privatsphére demonstrieren, dass die Hohe der Risiken sowie dessen
Minimierung im Wesentlichen von der Angriffsart abhéngt. Im Gegensatz zur Ver-
kniipfbarkeit, bei der die Risiken unter 1% liegen, erreichen die Risiken beziiglich
der Identifikation Werte iiber 20%.

Insgesamt belegen die Evaluationsergebnisse, dass die Integration von Differential
Privacy in GANSs einen erhéhten Privatsphérenschutz ermdéglicht. Auf der anderen
Seite offenbart sich aber auch der Trade-Off zwischen Nutzbarkeit und Datenschutz.
Der gesteigerte Schutz geht mit einer Beeintrachtigung der Datenqualitét einher.
Dariiber hinaus erhoht sich die Trainingsdauer durch die Integration von DP. Ent-
gegen den Erwartungen kann innerhalb der durchgefiihrten Experimente nicht voll-
stdndig bewiesen werden, dass sich mit Zunahme des Privatsphidren Budgets die
Datenqualitdt verbessert und der Datenschutz sinkt. Weitere Evaluationen werden
benstigt, um zuverléssige Aussagen zu den Ursachen dieses Verhaltens ableiten zu

konnen.
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Beantwortung der Forschungsfrage Final kann die Forschungsfrage hinsichtlich der Aus-
wahl eines passenden GANs unter Einbeziehung von DP durch die Auswertung
der einzelnen Aspekte beantwortet werden. Das Modell CTAB-GAN-+ iiberzeugt
beziiglich Trainingsdauer sowie Datenqualitdt und erzielt einen erhohten Privat-
sphéarenschutz durch die Integration von DP. Insbesondere {ibertrifft es die anderen
Modelle durch eine hohe Datenqualitit auch bei geringem Privatsphéren Budget

sowie durch seine Leistung bei der Generierung hoch-dimensionaler Daten.

Verbesserungspotential Es ist wichtig zu betonen, dass die Evaluationsergebnisse aus-
schliefslich auf den durchgefiihrten Experimenten beruhen und auf den Rahmen
dieser Untersuchung beschrankt sind. Zusétzlich zu einer erweiterten Evaluation
besteht Verbesserungspotential beziiglich der Wiederholungen von Modelltraining
und Datengenerierung. Aufgrund des nicht deterministischen Charakters beim Trai-
ning der Modelle sowie bei der Generierung der Daten, sollten Daten unter der
gleichen Bedingung (Modell & Datensatz & Privatsphiren Budget) mehrfach ge-
neriert werden. Dariiber hinaus fehlt in den Experimenten eine Uberwachung zum
Overfitting der Modelle. Vor allem beim Training ohne DP besteht das Risiko ei-
ner zu exakten Anpassung, weshalb fiir die Generierung bestméglicher Daten auch

Evaluationen von Zwischenergebnissen erforderlich werden.

Des Weiteren sollten die Hypothesen zum Einfluss der Grofe des Privatsphiren
Budgets (HT 2.2 & HT _3.2) erneut tiberpriift werden. Fiir eine zuverldssige Ver-
gleichbarkeit von Datensétzen mit unterschiedlichem Privatspharen Budget sollten
zukiinftig alle Datensétze mit Privatsphdren Budget innerhalb eines Modelltrai-
nings generiert werden. Konkret werden dann Daten nach dem Erreichen des je-
weiligen Privatsphidren Budgets generiert und nicht das Modelltraining jeweils neu

gestartet.

71



7 Zusammenfassung

Ausblick Tm Rahmen des Forschungsprojekts DaFne sind die néchsten Schritte dar-
auf ausgerichtet, die verbleibenden Anforderungen zu erfillen. Explizit muss das
trainierte Modell fiir eine erneute Datensynthese gespeichert und Prognosen so-
wie Anzeigen zum Trainingsfortschritt integriert werden. Dariiber hinaus ist zu
iiberpriifen, ob sich die generierten Daten genauso gut wie die realen Daten fiir
KI-Anwendungen eignen. Abschlieftend sollte das CTAB-GAN+ in einem Docker-
Container bereitgestellt werden, um Modularitdt fiir Erweiterbarkeit, Wiederver-
wendung und Wartbarkeit zu gewédhrleisten. In Ergénzung zur Bereitstellung des
eigentlichen Modells konnen die in der Evaluation verwendeten Metriken als Ein-
stiegspunkt fiir eine Analyse und Auswahl geeigneter Evaluations-Metriken u.a. mit

Fokus auf Datenschutz fiir die Plattform genutzt werden.

Generell konnen die Evaluationsergebnisse nicht nur zur Wahl eines geeigneten Mo-
dells beitragen, sondern weisen auch auf Schwachstellen und Stérken der Modelle
hin. Insbesondere die schwieriger abzubildenden Eigenschaften der Datensétze (wie
z.B. kontinuierliche Daten oder Korrelationen zwischen Spalten) kénnen auf Opti-
mierungspotentiale in den Modellen hinweisen, die Fokus weiterfiihrender Arbeiten

sein konnten.

Im Bezug auf den Trade-Off zwischen Qualitdt und Privatsphére bleibt die Frage
idealer Parametergrofen offen. In Abhéngigkeit vom Zweck, Datensatz und Mo-
dell sollten Empfehlungen zur Initialisierung von € & § gegeben werden. Auch der
Vorschlag einer individualisierten Differential Privacy von Boensich et. al (siehe
Kapitel 3.2) konnte weiterverfolgt und in den Modellen zur Reduzierung des Trade-
Offs integriert werden. Ferner konnte der Differential Privacy Ansatz alternativen

Varianten zur Sicherstellung von Privatsphére gegeniibergestellt werden.
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A Anhang

A.1 Jupyter Notebooks

1. Energie Datensatz

2. Evaluation: Anonymeter

A.2 Quellcode

1. Modell: CTAB-GAN+
2. Evaluation: SDMetrics

A.3 AGMA Spaltennamen

Folgende Auflistung gruppiert die verwendeten Spalten der AGMA Daten anhand ihrer
Inhalte:

1. Angaben zur Person (11 Spalten)

- Geschlecht, Alter, Staatsangehorigkeit, Familienstand
- Bildung: Schulart , Hochster allgemeiner Schulabschluss
- Beruf: Berufstatigkeit, Beruf, Nettoeinkommen, Arbeitsort, Arbeitsweg

2. Angaben zum Haushalt (10 Spalten)

- Wohnungsart, Haushaltsnettoeinkommen, Anzahl PKWs

- Personenanzahl: 1-Personen-Haushalt, Personen im Haushalt, Anzahl Kinder

- Ort: Bundesland, Bundeslandgruppe, Gemeindegrofenklasse, BIK-Regionstyp

3. Héaufigkeit an Eink&ufen (8 Spalten)
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A Anhang

- Drogeriemarkt, Getrankemarkt, Baumarkt, Elektrofachmarkt, Discounter, Su-

permarkt, Groffmarkt, Shopping Center

4. Haufigkeit an Freizeitaktivitdten (15 Spalten)

Medien: Internetnutzung, Fernsehen, Radio, Zeitung, Zeitschrift

- Unterwegs: Kino, {Theater, Konzert, kulturelle Veranstaltungen}, {Restaurant,
Gaststétte, Kneipe, Disco, Club}
Kreativitiat: {Basteln, Heimwerken}, {Stricken, Hékeln, Schneidern}

Reise: Letzte grofsere Ferienreise, Kurzurlaub in den letzten 12 Monaten

Verhaltensweisen: Sport treiben, Rauchen, Bier trinken

5. Transportmittel (11 Spalten)

- Haufigkeit der Nutzung: Auto (auch Mitfahrer), Fahrrad, Bahn auf langeren Stre-
cken, Bus bzw. Strafenbahn in der Region, {U-Bahn, S-Bahn oder Regionalbahn
in der Region}, Berufliche Flugzeugnutzung, Private Flugzeugnutzung

- Fiihrerscheinbesitz: PKW, Motorrad, Moped/Mofa

- Uberwiegend genutzte Fahrkartenart

6. Bewertungen zu Aussagen (6 Spalten)

Markenartikel sind qualitativ besser als markenlose Ware

Fiir besondere Qualitdt gebe ich gern mehr aus

Werbung ist eigentlich ganz hilfreich fiir den Verbraucher

Werbung gibt manchmal recht niitzliche Hinweise iiber neue Produkte

Bei den téglichen Einkdufen probiere ich gern mal ein neues Produkt aus

Ich bin immer auf der Suche nach Billigangeboten

7. Dauer aufier Haus - Schéitzung (Wegezeit) (4 Spalten)
- Allgemein, Montags-Freitags, Samstags, Sonntags
8. Daten zum Interview (2 Spalten)

- Monat, Jahr
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A Anhang

A.4 Modellparameter

Tabelle A.1 fasst relevante Parameterwerte der verwendeten Modelle zusammen.

GAN DPGAN |85] PATE-GAN |[46] CTAB-GAN+ [97] DP-CGANS |77
Netzwerk Architektur
Datenvorverarbeitung - Skalierung Skalierung Mode-Specific Mode-Specific

Kontinuierliche Daten
Datenvorverarbeitung -
Diskrete Daten

(Bereich [0,1])

One-Hot-Kodierung

(Bereich [0,1])

One-Hot-Kodierung

Normalization
One-Hot-Kodierung &

Training-by-Sampling

Normalization
One-Hot-Kodierung &
Training-by-Sampling

Hidden Layer (G) 1 Layer 1 Layer 2 Layer 2 Layer
Aktivierungsfunktion (G) ReLU ReLU ReLU ReLU
Hidden Layer (D) 1 Layer Student =1 Layer 4 Layer 2 Layer
Teacher = 1 Layer
Aktivierungsfunktion (D) ReLU ReLU LeakyReLU LeakyReLU
Komponente C irrelevant irrelevant 4 Hidden Layer & irrelevant
LeakyReLU

Anzahl Teacher irrelevant 10 irrelevant irrelevant
Softmax irrelevant irrelevant 0,2 0,2
LeakyReLU irrelevant wrrelevant 0,2 0,2
Dropout irrelevant wrrelevant 0,5 0,5
Netzwerk Training
Epochenanzahl ) ) Energie: 500,

irrelevant irrelevant 500

(keine Privacy) AGMA: 400

Batch-Size m 500 64 500 500 (1000 bei e = 50)
PacGAN (Pac) irrelevant irrelevant irrelevant 10
Optimierunsalgorithmus RMSprop Adam Adam Adam

Lernrate 5¢70 let 2¢7 2¢7

Weight Decay Default: 0 Default: 0 1e® 1e®

Gradient Penality Factor irrelevant irrelevant 10 10

Differential Privacy

Privatsphéren Budget (e) 3, 10, 50 3, 10, 50 3, 10, 50, co 3, 10, 50, co
Fehlerwahrscheinlichkeit (§) | le™ le® e 2¢6

Accountant

Noise

Sigma (Gaussian Noise)

RDP-Accountant
Gaussian Noise
2

Moment Accountant
Laplacian Noise

irrelevant

RDP-Accountant
Gaussian Noise
1,02

RDP-Accountant
Gaussian Noise
1

Tabelle A.1: Parameterwahl der verwendeten Modelle
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A Anhang

A.5 Modellperformance

Tabelle A.2 stellt die wichtigsten Eigenschaften zur Performance gegeniiber.

Anzahl & e-Anstieg | @ Zeit
Datensatz Gesamtdauer

an Epochen | pro Epoche | pro Epoche
ctab_agma_3 4min 10 0,141 31s
ctab_agma_10 57min 113 0,073 31s
ctab_agma_50 12h und 47min 1.526 0,032 31s
ctab__agma_notPrivate 1h und 20min 400 - 12s
ctab__energie 3 4min 10 0,141 27s
ctab__energie 10 49min 113 0,073 27s
ctab__energie 50 11h und 9min 1.526 0,032 27s
ctab_energie notPrivate 1h und 10min 500 - 9s
dpcgans _agma_ 3 9min 14 0,115 42s
dpcgans _agma_ 10 11h und 25min 142 0,06 292s
dpcgans__agma_ 50 117h und 7min 921 0,052 458s
dpcgans agma_notPrivate 1h und 44min 500 - 13s
dpcgans_energie 3 8min 14 0,115 37s
dpcgans_energie 10 11h und 53min 142 0,06 303s
dpcgans__energie 50 118h und 18min 921 0,052 463s
dpcgans _energie notPrivate | 1h und 2min 500 - s
dpgan _agma_3 31min 97 0,027 20s
dpgan _agma_ 10 4h und 47min 863 0,011 20s
dpgan_agma_ 50 58h und 59min 10.842 0,005 20s
dpgan__energie 3 32min 97 0,027 20s
dpgan__energie 10 4h und 53min 863 0,011 20s
dpgan__energie 50 60h und 26 Minute 10.842 0,005 20s
pate agma 3 2h und 18min 270 0,0107 31s
pate_agma_ 10 20h und 27min 2.407 0,004 31s
pate energie 3 2h und 11min 270 0,0107 29s
pate_energie_ 10 19h und 48min 2.407 0,004 30s
pate_energie_ 50 248h und 15min 30.068 0,0017 30s

Tabelle A.2: Modellperformance
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