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Kurzzusammenfassung

Eine der häufigsten Herausforderungen bei der Einführung und Nutzung von KI-
Anwendungen liegt in der Beschaffung der Trainingsdaten. Einerseits mangelt es an aus-
reichend vielen und qualitativ hochwertigen Daten, andererseits können sensible Daten
aufgrund der Gefahr des Privatsphärenverlusts nicht genutzt werden. Mit dem Ziel schüt-
zenswerte Daten nutzbar zu machen, ohne die Privatsphäre zu gefährden, setzt sich die
Thesis mit der Implementierung von Differential Privacy (DP) in Generative Adversarial
Networks (GAN) auseinander. Im Rahmen des Forschungsprojektes DaFne wird konkret
nach einem geeigneten DP-GAN gesucht, das zum einen die Eigenschaften der realen
Daten abbildet und zum anderen die Privatsphäre schützt. Untersucht werden die Ur-
sprungsmodelle DPGAN & PATE-GAN und die fortgeschrittenen Modelle CTAB-GAN+
& DP-CGANS anhand von zwei Datensätzen unterschiedlicher Komplexität sowie unter
Berücksichtigung verschiedener Größen des Privatsphären Budgets. Zusammenfassend
überzeugt das CTAB-GAN+ bezüglich Trainingsdauer, Datenqualität sowie Privatsphä-
renschutz. Insbesondere übertrifft es die anderen Modelle durch eine hohe Datenqualität
auch bei geringem Privatsphären Budget sowie durch seine Leistung bei der Generierung
hoch-dimensionaler Daten.
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Abstract

One of the most common challenges in the introduction and utilization of AI-applications
lies in the procurement of training data. On the one hand there is a lack of sufficient
and high-quality data, while on the other hand sensitive data cannot be used due to
the risk of privacy loss. With the aim of rendering data both valuable and safeguarded
while maintaining privacy, the thesis explores the integration of Differential Privacy (DP)
into Generative Adversarial Networks (GAN). The DaFne research project is specifically
looking for a suitable DP-GAN that on the one hand maps the properties of real data
and on the other hand protects privacy. The original models DPGAN & PATE-GAN
as well as the advanced models CTAB-GAN+ & DP-CGANS are analyzed using two
data sets of different complexity and considering different sizes of the privacy budget.
In summary, CTAB-GAN+ is convincing in terms of training duration, data quality,
and privacy protection. In particular, it outperforms the other models due to its high
data quality even with a low privacy budget, and its performance in generating high-
dimensional data.
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1 Einleitung

Seit einigen Jahren wird der Begriff Künstliche Intelligenz (KI) nicht mehr einzig von
der Wissenschaft geprägt. Weltweit erfolgen Investitionen in diverse KI-Anwendungen in
unterschiedlichen Wirtschaftszweigen [57]. Auch nimmt die Präsenz von KI im privaten
Bereich durch Anwendungen wie Chatbots (z.B. ChatGPT) und die Integration von KI
in Alltagsgegenständen wie Smartphones, Smart-Home-Geräten oder Zahnbürsten stetig
zu.

Zu den häufigsten Schwierigkeiten bei der Ausweitung von KI-Initiativen zählt, vor der
eigentlichen Implementierung der KI-Technologien, die Beschaffung der Trainingsdaten
für Machine Learning (ML)-Modelle. Das Management von KI-bezogenen Risiken, Vor-
schriften wie die DSGVO und die Skepsis der Bevölkerung gegenüber KI verstärken die
Herausforderungen [57]. Das mit dieser Thesis im Zusammenhang stehende Forschungs-
projekt Data Fusion Generator für die Künstliche Intelligenz (kurz: DaFne) stellt sich
der Problematik des begrenzten Zugangs zu ausreichenden und qualitativ hochwertigen
Daten. Hierzu können tabellarische Daten auf Basis verschiedener Datensätze fusioniert
und mittels Regeln oder Reproduktion generiert werden.

Ein nicht zu vernachlässigender Grund für den Mangel an nutzbaren Daten besteht in
der Gefahr eines Verlusts an Privatsphäre. In den vergangenen Jahren ereigneten sich
zahlreiche große Datenschutzverletzungen [88]. Der Wettbewerb „Netflix-Prize“ zählt zu
einem der bekanntesten Vorfälle, bei dem Filmbewertungen ohne persönliche Identifika-
toren veröffentlicht wurden und dennoch Forscher unter Inanspruchnahme zusätzlicher
Datenquellen die Verfasser der Bewertungen zu 99% identifizieren konnten [61]. Auch
weitere Beispiele beweisen, dass traditionelle Anonymisierungs-Techniken gegenüber Da-
tenverknüpfungen invalide sind und darüber hinaus die Genauigkeit von Modellen senken.
Ohne die Gewissheit, dass die zu anonymisierenden Daten ausschließlich im Kontext der
eigenen Datenverarbeitung genutzt werden, kann mit herkömmlichen statistischen Ver-
fahren keine garantierte Privatsphäre sichergestellt werden.
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1 Einleitung

Um dennoch ohne Bedenken mit Daten arbeiten zu können, die personenbezogene In-
formationen beinhalten, besteht die Alternative, Datenverteilungen mittels Generativer
ML-Modelle zu lernen und auf Basis dessen neue Daten zu synthetisieren. In Kombination
mit der Differential Privacy (DP) [23] können Datenschutzbudgets vorab festgelegt und
während der Evaluation überprüft werden. Als eine Art von Generativen ML-Modellen
werden in dieser Thesis Generative Adversarial Networks (GAN) [34] untersucht.

Mit dem Ziel schützenswerte Daten ohne Verlust von Privatsphäre nutzbar zu machen,
beschäftigt sich die Thesis daher mit der Integration von Differential Privacy in Genera-
tive Adversarial Networks. Im Kontext des Forschungsprojekts DaFne wird konkret nach
einem DP-GAN gesucht, das sowohl die Eigenschaften der realen Daten abbildet als auch
die Privatsphäre schützt. Daher lautet die Forschungsfrage der Thesis:

Welches Generative Adversarial Network eignet sich für eine adäquate Syn-
these sensibler tabellarischer Daten unter Berücksichtigung von Differential
Privacy?

Zur Beantwortung der Forschungsfrage erfolgt eine Evaluation von drei Teilaspekten:

1. Wie viel Zeit benötigt das Modell für die Synthese von Daten? (Performance)
2. Inwiefern entsprechen die Eigenschaften der vom Modell generierten Daten denen

der Trainingsdaten? (Datenqualität)
3. Wie sicher sind die vom Modell generierten Daten gegenüber Angriffen? (Privat-

sphärenschutz)

Um sich der Forschungsfrage zu nähern, werden zunächst in Kapitel 2 die Grundlagen zu
GANs, DP sowie Praktiken zur Integration von DP in GANs erklärt. Darauf aufbauend
werden in Kapitel 3 die zu evaluierenden Modelle vorgestellt sowie eine Auswahl an er-
weiterter Literatur aufgezeigt. Bevor in Kapitel 5 die Evaluationsergebnisse präsentiert
werden, wird der Aufbau der Experimente beschrieben (Kapitel 4). Mit Hilfe eines simu-
lierten Fallbeispiels sowie einem komplexeren realen Datensatz werden die ausgewählten
Modelle bezüglich der drei genannten Teilaspekte unter Berücksichtigung verschiedener
Privatsphären Budgets bewertet. Auf die Evaluation folgt die Diskussion in Kapitel 6.
Zusätzlich zur kritischen Bewertung einzelner Ergebnisse wird die Forschungsfrage be-
antwortet und die Modellauswahl für DaFne getroffen. Abschließend erfolgt in Kapitel 7
eine Zusammenfassung der Thesis inklusive Ausblick.
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2 Grundlagen

Im folgenden Kapitel werden die für das Verständnis der Thesis erforderlichen Grund-
lagen vermittelt. Beginnend mit einer konzentrierten Einführung in das übergreifende
Themengebiet Machine Learning werden anschließend die beiden Hauptkomponenten
Generative Adversarial Networks (GAN) und Differential Privacy (DP) vorgestellt. Dar-
auf aufbauend folgt die Darstellung der zwei am häufigsten verwendeten Methoden zur
Integration von DP in GANs: „Differentially Private Stochastic Gradient Descent“ sowie
„Private Aggregation of Teacher Ensembles“.

2.1 Machine Learning (ML)

Im Bereich der Künstlichen Intelligenz (KI) hat sich über die letzten zwei Jahrzehnte vor
allem das Teilgebiet Machine Learning (ML) etabliert. Das übergeordnete Ziel der KI,
menschliche Verhaltensmuster zu imitieren, wird im ML durch das Training von Modellen
basierend auf Daten erzielt [66]. Im Gegensatz zu den anfänglichen Vorgehensweisen
von KI müssen keine konkreten Verhaltensregeln definiert und keine Wissensdatenbank
aufgebaut werden. Die heute am stärksten ausgeprägte ML-Variante nennt sich Deep
Learning (DL). Die Inspiration für diese Art des Lernens stammt aus der Funktionsweise
und dem Aufbau biologischer Neuronaler Netze [8].

2.1.1 Aufbau Neuronaler Netze

Häufig wird ein Künstliches Neuronales Netz (engl. artificial neural network, ANN) für
Aufgabenbereiche wie Klassifikation, Regression, Bildverarbeitung oder Generierung von
Daten eingesetzt. Explizit zielt das Neuronale Netz darauf ab, komplexe Muster und
Zusammenhänge in vorhandenen Daten zu lernen [8]. ANNs bestehen aus Input, Hidden
sowie Output Schichten, wobei jede Schicht Knoten bzw. Neuronen enthält, die durch
Kanten mit Neuronen anderer Schichten verbunden sind [83].

3



2 Grundlagen

Abbildung 2.1 zeigt ein Fully Connected Netz. Jedes Neuron des Netzes ist mit allen
Neuronen der vorherigen sowie nachfolgenden Schichten verbunden. Die Tiefe des Netzes
bezieht sich auf die Anzahl der Schichten des gesamten Netzes und beträgt in Abbildung
2.1 vier (1x Input, 2x Hidden, 1x Output). Ein ANN mit mehr als einer Hidden Schicht
nennt sich Deep Neuronal Network (DNN). Moderne Neuronale Netze besitzen zumeist
mehrere Hidden Schichten, tausende bis Millionen Neuronen sowie hunderte Millionen
von Verbindungen [8].
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Abbildung 2.1: Aufbau eines Neuronalen Netzes der Tiefe 4 (eigene Darstellung)

2.1.2 Funktionsweise Neuronaler Netze

Optimierer wie Stochastic Gradient Descent (SGD) trainieren Neuronale Netze, indem
sie das Ziel verfolgen eine Kostenfunktion zu minimieren. Inkrementell werden die Gra-
dienten aller lernbaren Parameter über die Backpropagation berechnet und anschließend
genutzt, um die Parameter des Netzes zu aktualisieren [83]. Typische lernbare Parameter
sind Gewichte an den Verbindungen zwischen Neuronen, Bias-Werte von Neuronen sowie
Dropout-Wahrscheinlichkeiten. Dropout erlaubt eine vorübergehende zufällige Deaktivie-
rung einzelner Verbindungen zwischen Neuronen, um ein Overfitting zu reduzieren.

Auch die unterschiedlichen Aktivierungsfunktionen der Neuronen besitzen einen großen
Einfluss auf die Funktionalität des Netzes. In der Regel handelt es sich bei ihnen um nicht-
lineare Funktionen, die das Lernen von komplexen Zusammenhängen ermöglichen. Häu-
fig verwendete Aktivierungsfunktionen sind die Sigmoid, ReLU (Rectified Linear Unit)
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2 Grundlagen

und Tangens Hyperbolicus (tanh) Funktionen [33]. Durch ihre unterschiedlichen Verläu-
fe und Wertebereiche eignen sie sich für verschiedene Problemstellungen und besitzen
unterschiedliche Herausforderungen.

Im Wesentlichen sind folgende Schritte relevant für den Lernprozess des Netzes [33]:

1. Forward pass: Nachdem die Eingabedaten über die Input Schicht im Netzwerk
integriert sind, beginnt sukzessiv (Schicht für Schicht) die Datenpropagation.
a) Jedes Neuron multipliziert die Gewichte w seiner Eingangsverbindungen mit

seinen Eingangsdaten x, summiert alle Eingänge n auf und addiert sie mit
einem Bias-Wert b. Der Bias-Wert ist ein zusätzlicher Parameter in jedem
Neuron. Er ermöglicht durch eine Verschiebung der Aktivierungsfunktion Vor-
hersagen besser an die Eingangsdaten anzupassen.

z =
∑n

i=1
wi · xi + b (2.1)

b) Im Anschluss wird die Aktivierungsfunktion des Neurons auf das Ergebnis z
angewendet.

Das Gesamtergebnis bildet dann wiederum ein Eingangsdatum für verbundene Neu-
ronen der folgenden Schicht. Sobald die Output Schicht des Neurons erreicht ist,
erfolgt die Berechnung des Fehlers.

2. Loss calculation: Mithilfe einer definierten Kostenfunktion wird der Fehler des
Netzes bestimmt. Berechnet wird er unter Berücksichtigung des Vergleichs von
Zielwert zur tatsächlichen Ausgabe des Netzes. Der Fehler gibt Aufschluss über die
Leistung bzw. die Genauigkeit der Vorhersagen des Modells.

3. Backward pass: Mit dem Ziel Parameter zu finden, die den Fehler minimieren,
wird bei der Rückpropagation die Kostenfunktion partiell nach allen lernbaren Pa-
rametern des Neuronalen Netzes abgeleitet. Unter Inanspruchnahme der Ketten-
regel werden die Gradienten der Gewichte und Bias-Werte basierend auf den Ab-
leitungen von Kostenfunktion, Aktivierungen vorheriger Schichten und gewichteter
Summe der Eingänge (inkl. Bias-Wert) berechnet.

4. Parameter update: Gemäß der Lernrate α nehmen die im Backward Pass errech-
neten Gradienten ∇θL(θ) Einfluss auf die Aktualisierung der einzelnen Parameter
θ. Da beim Lernen ein Minimierungsproblem gelöst werden soll, wird die Berech-
nung mit dem negativen Gradienten durchgeführt.

θnew = θold − α · ∇θL(θold) (2.2)

5



2 Grundlagen

Mit dem Update aller Parameter endet eine Lern-Iteration. Iterationen durch den gesam-
ten Trainingsdatensatz werden zu einer Epoche zusammengefasst [83]. Je nach Komple-
xität eines Modells, Größe des Datensatzes und Anforderungen an das Problem ist eine
geeignete Epochenanzahl unterschiedlich groß. Die Anzahl an Iterationen pro Epoche ist
ebenfalls von mehreren Faktoren abhängig. Zusätzlich zur Größe des Datensatzes können
auch unterschiedliche Optimierungsverfahren die Anzahl beeinflussen. Im Gegensatz zum
SGD, bei dem die Parameter pro Datum aktualisiert werden, aktualisiert das Mini-Batch
Gradienten Verfahren beispielsweise die Parameter pro Datensatzgruppe (Batch).

Ergänzend zum SGD gibt es weitere fortgeschrittene Optimierer. Monumentum zum Bei-
spiel sorgt durch die Berücksichtigung vorheriger Gradienten für eine beschleunigte Suche
des Minimums der Kostenfunktion. Andere gängige Optimierer wie Ada Grad, RMS Prop
und Adam verwenden adaptive Lernraten, um das Modelltraining zu verbessern. Jeder
Parameter kann seine eigene Lernrate besitzen, die in Abhängigkeit von vorherigen Er-
gebnissen optimiert werden kann [33].

2.1.3 Generative Modelle

Im Fokus dieser Arbeit stehen Generative Adversarial Networks (GAN). GANs gehören
zu den Generativen Modellen. Im Gegensatz zum Deskriptiven Modell, das Wahrschein-
lichkeiten abschätzt, lernt das Generative Modell pmodel eine Wahrscheinlichkeitsvertei-
lung pdata [27]. Mit dem Ziel, die Trainingsdaten (Beobachtungen) möglichst gut abzu-
bilden, wird pdata während des Modelltrainings optimiert. Eine weit verbreitete Methode
zur Anpassung der Parameter von generativen Modellen ist die Maximum likelihood esti-
mation (MLE) [32]. Bei der MLE werden die Modellparameter θ derart geschätzt, dass
die Wahrscheinlichkeit (Likelihood) der Beobachtungen maximiert wird.

Die Lernvarianten zur Umsetzung der Methode unterscheiden sich in der Darstellung und
Approximation des Likelihoods. Im Wesentlichen wird zwischen expliziten und implizi-
ten Dichtemodellen unterschieden. Die expliziten Dichtemodelle definieren eine konkrete
Likelihood-Funktion pmodel(x; θ), die maximiert werden kann. Im Anschluss an das Trai-
ning erfolgt in einem zweiten Schritt die Generierung der Daten. Implizite Dichtemodelle
stellen keine Wahrscheinlichkeitsverteilung bereit. Sie ermöglichen hingegen eine indirek-
te Interaktion mit pdata durch die Erstellung unmittelbarer Stichproben. Das Training der
Generative Adversarial Networks beruht auf dem impliziten Modell. Neue Daten werden
direkt aus der durch das Modell repräsentierten Verteilung generiert [32].
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2.2 Generative Adversarial Network (GAN)

Ian Goodfellow et. al [34] publizieren 2014 die erste Forschungsarbeit zu Generative
Adversarial Networks. Zusätzlich zur Vorstellung des Aufbaus und der Funktionsweise
von GANs, generieren die Autoren erste Bilddateien und diskutieren Vor- und Nachteile
des vorgeschlagenen Frameworks. Aufbauend auf dieser Grundlage wurden GANs in den
letzten Jahren auf unterschiedliche Weise optimiert und für verschiedene Datenarten
modifiziert. Neben unterschiedlichen Lernverfahren haben sich weitere Komponenten als
Ergänzung zur Grundstruktur als vorteilhaft erwiesen [45]. Während GANs zu Beginn
insbesondere für die Generierung von Bilddaten [35, 64, 80, 43] verwendet wurden, werden
sie heute u.a. auch für die Generierung von Texten [52, 94], Zeitreihendaten [39, 24]
und Musik [60, 91, 36] genutzt. Die Synthese tabellarischer Daten liegt im Fokus dieser
Thesis.

Das Fehlen von geeigneten Daten und die hohe Performance von GANs spiegeln sich
zudem in der Menge an Publikationen sowie in ihrer weit verbreiteten Anwendung wi-
der [35]. Insbesondere im Bereich der Medizin gibt es zahlreiche Implementierungen von
GANs. Beispielsweise werden die Modelle für das Design von DNA-Strukturen [48], die
Verarbeitung medizinischer Bilder [5, 50, 68, 84] oder die Nutzung privater Patientenak-
ten [16] verwendet. In der Informatik unterstützen sie u.a. in den Gebieten Cybersecu-
rity [42], Datenschutz [1, 7] oder auch Data Science [98, 86, 29]. Diese Arbeit legt den
Schwerpunkt auf das Konzept Smart City. Die expliziten Anwendungsfälle werden in 4.4
beschrieben.

2.2.1 Aufbau und Funktionsweise von GANs

Auf Grundlage der Ursprungspublikation [34] werden folgend der Aufbau sowie die Funk-
tionsweise von GANs vorgestellt. Der Name des Frameworks, Generative Adversarial Net-
works (dt. erzeugende gegnerische Netze), beschreibt seine wesentlichen Eigenschaften.
Mit dem Ziel Daten zu erzeugen, trainieren zwei Neuronale Netze gegeneinander. Konkret
trainieren ein Generator-Modell und ein Diskriminator-Modell gegeneinander.

7



2 Grundlagen

Generator G entspricht dem impliziten Generativen Modell (siehe 2.1.3). Auf Basis eines
Rauschvektors z und der gelernten Wahrscheinlichkeitsverteilung pdata werden die
Daten G(z) erzeugt.

Diskriminator D handelt gleich einem binären Klassifikator. Als Input erhält dieser die
vom Generator erzeugten Daten (fake data: G(z)) sowie einen originalen Trainings-
datensatz (real data: x). Ohne die Quelle der Eingaben zu kennen, lernt D die
Daten nach Herkunft zu klassifizieren. In Abhängigkeit zu seiner Leistung erfolgt
im Anschluss die Optimierung der eigenen Parameter sowie der Parameter des Ge-
nerators.

Ziel des GANs ist erreicht, sobald der Generator den originalen Trainingsdatensatz so
imitieren kann, dass der Diskriminator seine Eingangsdaten nicht mehr unterschei-
den kann. Zu diesem Zeitpunkt wird das Training des Modells beendet und der
Generator steht für die Generierung neuer Daten bereit. Der Diskriminator wird
nicht weiter benötigt.

Je nach Dateneigenschaften und Modellarchitekturen kann es sinnvoll sein, die beiden
Modelle einzeln oder unterschiedlich häufig zu trainieren. Demzufolge müssen der Gene-
rator und Diskriminator nicht immer hintereinander ausgeführt werden. Abbildung 2.2
visualisiert den Aufbau samt Ein- und Ausgaben eines GANs.

Real data 
x

Rausch-
vektor z

Fake data 
G(z)

D(x)

D(G(z))

D loss

G loss

Generator G

Diskriminator D

Abbildung 2.2: Aufbau eines Generative Adversarial Networks (in Anlehnung an [67])
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Während Neuronale Netze üblicherweise nach einem Minimum suchen, hat der Diskri-
minator ein Maximierungsproblem zu lösen. Dementsprechend werden seine Parameter
im Lernprozess nicht entlang des Gradientenabstiegs (Gradient Descent) neu berechnet,
sondern mit Hilfe des Gradientenanstiegs (Gradient Ascent) optimiert. Beim Generator
wird das übliche Gradientenabstiegs-Verfahren verwendet, um ein Minimierungsproblem
zu lösen. Die Zielfunktion eines GANs verdeutlicht das Min-Max-Spiel zwischen Genera-
tor und Diskriminator:

V (D,G) = Ex ∼ pdata(x)[logD(x)] + Ez ∼ pz(z)[log(1−D(G(z)))] (2.3)

Der erste Summand der Funktion misst die Wahrscheinlichkeit, dass der Diskriminator
den realen Trainingsdatensatz korrekt identifiziert und folgend D(x) = 1 ergibt. Der
zweite Summand misst die Wahrscheinlichkeit, dass der Diskriminator den generierten
Datensatz korrekt identifiziert und folgend D(G(z)) = 0 bzw. 1 - D(G(z)) = 1 ergibt.
Der Diskriminator zielt auf die Maximierung beider Teile ab, wohingegen der Generator
ausschließlich Einfluss auf den zweiten Teil der Gleichung besitzt. Diesen versucht er zu
minimieren, sodass der Diskriminator nicht mehr zwischen den realen und generierten
Daten unterscheiden kann und D(x) = 0,5 entspricht.

2.2.2 Fortgeschrittene Architekturvarianten

Die Grundarchitektur von GANs hat sich über die vergangenen Jahre in verschiedene
Richtungen weiterentwickelt. Entsprechend der in [67] vorgeschlagenen Taxonomie zur
Gestaltung und Optimierung von GANs lassen sich die erweiterten Modellarchitekturen
in sechs Kategorien unterteilen:

Bedingte Generierung Bei einem bedingten GAN erhält das Modell zusätzliche Infor-
mationen über die Trainingsdaten. Diese beeinflussen die Wahrscheinlichkeitsver-
teilung und unterstützen die Generierung der einzelnen Datengruppierungen. Ein
weit verbreitetes bedingtes GAN ist das Conditional GAN (CGAN) [59]. Die Be-
dingung (engl. condition) c steht bei diesem Modell sowohl dem Generator als auch
dem Diskriminator zur Verfügung.

Generator-Discriminator Paare Herkömmliche GANs zeigen aufgrund des Min-Max-
Spiels eines einzelnen Generator-Diskriminator-Paars Probleme bei der Konver-
genz, insbesondere bei komplexen Daten. Das Einführen von mehreren Generatoren
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und Diskriminatoren kann dieser Herausforderung entgegenwirken und die Gene-
rierungsfähigkeit von GANs erhöhen. Folgend bestehen zusätzlich zum einfachen
GAN auch Modelle, die mehrere Generatoren oder Diskriminatoren besitzen.

(a) Training eines Generators: Modelle dieser Art bestehen aus einem Genera-
tor-Diskriminator-Paar. Unterschiedliche Modifikationen wie z.B. die Zunah-
me von Modellschichten während des Trainings (vgl. ProcessGAN [47]) oder
die Bereitstellung gebündelter Daten an den Diskriminator (vgl. PacGan [53])
optimieren die Geschwindigkeit und Stabilität des Trainings eines einfachen
GANs.

(b) Training mehrerer Generatoren: Diese Modelle besitzen mehrere Gene-
ratoren. Die Anzahl der Diskriminatoren kann sich je nach Modelltyp unter-
scheiden. Während das MAD-GAN [30] beispielsweise aus einem Diskrimina-
tor und mehreren Generatoren besteht, verwendet das cGANs Framework [81]
GAN-Ensembles. Mehrere GANs werden hintereinandergeschaltet und mit un-
terschiedlichen Teilen der Trainingsdaten trainiert.

(c) Training mehrerer Diskriminatoren: Diese Modelle setzen sich aus einem
Generator sowie mehreren Diskriminatoren zusammen. Mit dem Ziel das Trai-
ning des Generators auf einen stabilisierten Zustand zu beschleunigen, erhält
der Generator aggregiertes Feedback mehrerer Diskriminatoren (vgl. GMAN
[21]).

Kombinierte Architektur Eine Kombination aus einer Encoder-Decoder und GAN Ar-
chitektur kann ebenfalls den Generierungsprozess verbessern. Bekannte Beispiele
sind die Modelle ALIGAN [20] und BiGAN [19]. Diese setzen sich aus dem bekann-
ten Generator und Diskriminator sowie einem Encoder Netz zusammen. Während
der Generator wie gewöhnlich unter Einfluss des Rauschvektors z neue Daten gene-
riert, erzeugt der Encoder aus den realen Daten Vektoren im latenten Raum. Der
Diskriminator wird anschließend nicht nur darauf trainiert reale und generierte Da-
ten zu unterscheiden, sondern lernt auch die Zusammenhänge zwischen Daten im
ursprünglichen Raum und der Darstellungen im latenten Raum. Als Eingabe erhält
er dafür zusätzlich zu den realen und generierten Daten ihre jeweiligen Vektoren.
Im Backpropagation Schritt kann der Diskriminator dem Generator dadurch ein er-
weitertes Feedback zur Kopplung zwischen dem latenten Raum und den generierten
Daten geben.
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Verbesserter Diskriminator Diese Architekturvariante konzentriert sich auf ein stabile-
res Trainingsverhalten des Diskriminators. Das EBGAN [95] zum Beispiel verwen-
det anstelle eines klassischen Diskriminators eine Auto-Encoder-Architektur. Der
Diskriminator erfüllt nicht mehr die Aufgabe eines simplen binären Klassifikators,
sondern bewertet mit Hilfe einer Energiefunktion die Qualität der Daten. Die Be-
wertung zeigt wie realistisch die generierten Daten sind, wobei niedrige Werte auf
hochwertige reale Daten und hohe Werte auf generierte minderwertige Daten hin-
weisen. Wie gängig versucht der Generator den Diskriminator zu täuschen und zielt
entsprechend auf niedrige Bewertungen ab.

Netzwerkspeicher Kim et. al [49] erweitern die Architektur um einen GAN-Speicher.
Dieser hilft dem Generator verschiedene Klassen sowie Strukturen in den Daten
zu unterscheiden und ermöglicht dem Diskriminator auf frühere erzeugte Daten
zurückzugreifen. Dadurch wird die Trainingsstabilität des Diskriminators verbes-
sert und der Generator bei der Generierung unterschiedlicher Dateneigenschaften
unterstützt.

Flexibler latenter Raum GANs dieser Art erlernen eine verbesserte Rauschverteilung,
um unausgewogene Klassenverteilungen innerhalb der Daten auch bei einem gerin-
gen Vorkommen berücksichtigen zu können. Das DeLiGAN [38] stellt den latenten
Raum als Gaussians Mixture Model (GMM) dar. Während des Modelltrainings
werden die Parameter des Mixture Modells optimiert.

2.2.3 Herausforderungen beim Training von GANs

Auch wenn GANs eine hohe Performance erzielen können und zu den fortgeschrittenen
Generativen Modellen zählen, bestehen verschiedene Herausforderungen beim Training
von GANs. Im Folgenden werden zunächst allgemeine Probleme erläutert und anschlie-
ßend konkrete Schwierigkeiten im Zusammengang mit tabellarischen Daten nahegelegt.

Allgemeine Herausforderungen

Jabbar et. al [45] geben einen Überblick über den aktuellen Stand von GANs und benen-
nen die wesentlichen Schwierigkeiten beim Training.

Für ein stabiles Training ist es entscheidend ein Nash-Gleichgewicht zu erreichen.
Beim Nash-Gleichgewicht handelt es sich um ein Konzept aus der Spieltheorie, wobei
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die einzelnen Strategien der Spieler voneinander abhängen. In Bezug auf GANs wird
entsprechend ein Zustand angestrebt, in dem weder der Generator noch der Diskriminator
sich eigenständig optimieren können. Werden unabhängig voneinander Veränderungen
angestrebt, kann das Training instabil verlaufen und das Modell evtl. nicht konvergieren.
Die Ursache dieses Verhaltens liegt darin, dass sich Gewichtsoptimierungen auf ein Netz
positiv und gleichzeitig negativ auf das andere Netz auswirken können.

Ein Internal Covariate Shift (ICS) entsteht, wenn Parameteränderungen während
des Trainings die Verteilungen von Ausgabedaten der Hidden Neuronen beeinflussen.
Schwanken diese Verschiebungen stark, kann dies ebenfalls zu einer erschwerten Kon-
vergenz führen. Um dieser Problematik entgegenzuwirken, muss die Lernrate minimiert
werden, was zu einer erhöhten Trainingszeit des Modells sowie einem höheren Ressour-
cenverbrauch führt.

Eine der am häufigsten genannten Herausforderungen bildet der Mode Collapse [67,
17, 40, 45]. Der Generator konzentriert sich ausschließlich auf die Generierung ähnli-
cher Klassen der abzubildenden Datenverteilung. Die generierten Daten besitzen eine
geringe Datenvielfalt und berücksichtigen ausschließlich einen Teil des gesamten Daten-
bestands.

Eine weitere Herausforderung ist das Problem des verschwindenden Gradienten
(engl. Vanishing Gradient). Wenn der Diskriminator schnell konvergiert und er die ge-
nerierten Daten von den realen unterscheiden kann, wird der an den Generator zurück-
gegebene Gradient sehr klein. Der Generator kann seine Gewichte höchstens minimal
optimieren. Verstärkt werden kann die Abnahme des Gradienten zudem durch die Ver-
wendung bestimmter Aktivierungsfunktionen (bspw. Sigmoid) sowie einer großen Anzahl
von Schichten. Der Gradient nimmt durch die Multiplikation der Ableitungen exponen-
tiell ab. Das globale Optimum wird nicht erreicht.

Aufgrund des Min-Max Spiels zwischen Generator und Diskriminator ist die Evalua-
tion eines GANs besonders komplex und zeitaufwändig. Kostenfunktionen wie bei der
Bewertung einfacher Neuronaler Netze sind nicht nutzbar. Es fehlen geeignete Be-
wertungsmetriken, um die Performance sowie die Trainingsstabilität unterschiedlicher
GANs evaluieren und vergleichen zu können. In Abhängigkeit des Datentyps, der Domäne
und Motivation der Datensynthese ist die Wahl der Metriken einzeln zu treffen [67].
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Herausforderungen mit tabellarischen Daten

Zusätzlich zu den allgemeinen Schwierigkeiten beim Training von GANs sind die kom-
plexen Eigenschaften tabellarischer Daten im Rahmen der Herausforderungen zu berück-
sichtigen [87]:

Gemischte Datentypen In der Regel bestehen tabellarische Daten aus unterschiedlichen
Datentypen. Im Wesentlichen wird zwischen diskreten und kontinuierlichen Typen
unterschieden. Im Gegensatz zu diskreten Daten, die eine endliche Anzahl von
möglichen Werten besitzen, haben die kontinuierlichen Daten einen unendlichen
Wertebereich. Die Aufbereitung und Verarbeitung der Daten unterscheiden sich
nach Datentyp.

Nicht-Gaußsche Verteilungen Dadurch, dass die kontinuierlichen Datenwerte für ge-
wöhnlich keiner Gauß-ähnlichen Verteilung entsprechen, führt eine Normalisierung
nach einer Min-Max Transformation zu verschwindenden Gradienten.

Multimodale Verteilungen Unter einem Modus wird in der Wahrscheinlichkeitstheorie
ein Wert verstanden, der besonders häufig in einem Datensatz vorkommt. Kontinu-
ierliche Spalten bestehen zu meist aus komplexen Datenverteilungen, die sich aus
mehreren Modi zusammensetzen. GANs zeigen Schwierigkeiten bei der Modellie-
rung dieser multimodalen Verteilungen [69].

One-hot-encoded Vektoren Die diskreten Trainingsdaten werden als One-hot-encoded
Vektor dem Diskriminator zur Verfügung gestellt. Die vom Generator erzeugten
diskreten Daten bestehen jedoch nicht aus Vektoren mit einer eindeutigen Zuord-
nung, sondern beinhalten Wahrscheinlichkeiten zur Zugehörigkeit zu einzelnen Ka-
tegorien. Der Diskriminator kann die realen und generierten Daten einzig an ihrem
Format identifizieren.

Unausgewogene kategoriale Spalten Viele diskrete Datensätze sind stark unausgewo-
gen und besitzen eine Hauptkategorie, die mehr als 90% der Daten ausmacht.
Nebenkategorien sind aufgrund der geringen Menge an Trainingsdaten zum einen
schwer zu erlernen, zum anderen verursacht das Fehlen von Nebenklassen nur ge-
ringe Änderungen in der Datenverteilung. Diese sind schwer für den Diskriminator
zu erkennen und fördern die ausschließliche Generierung der Hauptkategorien.
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2.2.4 Datenvorverarbeitung

Infolge der Herausforderungen bei der Verwendung tabellarischer Daten entwickeln Xu et
al. [87] grundlegende Verfahren zur Datenvorverarbeitung, die auch in aktuellen Modellen
integriert sind (vgl. [97, 77]). Um unterschiedliche Methoden je nach Datentyp anwenden
zu können, werden die Datenspalten als diskret oder kontinuierlich gekennzeichnet.

Da die kontinuierlichen Daten häufig nicht gaußförmige, aber multimodale Daten-
verteilungen aufweisen, wird für diese ein Mode-Specific Normalization (MSN) [87]
Verfahren vorgeschlagen. Mittels eines Variational Gaussian Mixture Models (VGM) wird
die Anzahl von Modi innerhalb der Datenverteilung geschätzt. Anschließend wird für je-
den ermittelten Modus eine Hilfsspalte angelegt und für jeden Wert der ursprünglichen
kontinuierlichen Spalte der am besten passende Modus ermittelt. Die Speicherung folgt
einer One-Hot-Kodierung, wobei die Spalte des zutreffenden Modus mit einer Eins und
alle restlichen mit Nullen versehen werden. Abschließend wird der ursprüngliche konti-
nuierliche Wert anhand des ausgewählten Modus normalisiert.

Die Verarbeitung der diskreten Daten beschränkt sich auf eine One-Hot-Kodierung.
Im Gegensatz zu den kontinuierlichen Werten, die nach der Vorverarbeitung wieder in
einer Spalte gespeichert werden, erhöhen die diskreten Daten die Anzahl an Dimensio-
nen der tabellarischen Daten. Für jede Kategorie der diskreten Datenspalte wird eine
neue Spalte angelegt. Das Problem von unausgewogenen kategorialen Spalten wird unter
Inanspruchnahme eines für den Generator vorgeschalteten Vektors (Conditional Vektor)
verbessert. Mit dem Training-by-Sampling [87] Ansatz lernt das Modell nicht mehr
die gesamte Datenverteilung, sondern eine Verteilung in Abhängigkeit zur ausgewählten
Kategorie einer diskreten Spalte.

Alter

Ursprüngliche Daten Vorverarbeitete Daten

Abbildung 2.3: Verarbeitung kontinuierlicher und diskreter Daten (eigene Darstellung)
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Abbildung 2.3 zeigt beispielhaft die Verarbeitung der beiden Datentypen. Die Spalte
„Alter“ repräsentiert den kontinuierlichen Datentyp. Mit dem VGM werden zwei Modi
identifiziert, die Alters-Werte einem Modus zugeordnet und im Anschluss anhand des
Modus Mittelwert und Standardabweichung das Alter normalisiert. In der SpalteAlterneu
befinden sich die normalisierten Werte zwischen null und eins. Die One-Hot-Kodierung
von diskreten Datentypen wird anhand der Spalte „Beruf“ verdeutlicht.

2.2.5 Evaluation tabellarischer Daten

Da GANs zu dem unüberwachten Lernansatz zählen und das Min-Max-Spiel zwischen
Generator und Diskriminator nicht direkt interpretierbar ist, sind Modell-Genauigkeit
und Fehlerrate nicht in der Art messbar, wie es bei überwachten Lernansätzen mit Mi-
nimierungsproblem der Fall ist [40]. Aus diesem Grund wird die Leistung der GANs
häufig ausschließlich anhand der Vielfalt und Qualität der generierten Daten gemessen.
Es fehlen einheitliche Metriken, um verschiedene GAN-Algorithmen direkt miteinander
vergleichen zu können und die einzelnen Modelle präziser zu optimieren. Je nach Anwen-
dung werden aktuell unterschiedliche Datenevaluationen vorgeschlagen und verwendet.
Die folgenden Verfahren konzentrieren sich auf die Evaluation tabellarischer Daten.

Expertenmeinung Um insbesondere die Logik in den Daten stichpunktartig zu überprü-
fen, können Personen mit Fachwissen die Daten subjektiv bewerten. Beispielsweise
sind Bewertungen zur Realitätsnähe und Nützlichkeit der Daten denkbar [7].

Visualisierung Die Exploration der generierten Daten kann durch grafische Methoden
vertieft werden. Für einzelne Spalten eigenen sich z.B. die Abbildung von Wahr-
scheinlichkeitsverteilungen, Histogrammen oder Box-Plots. Ausreißer und die Viel-
falt der Datenmodi können sichtbar gemacht werden. Mit der bivariaten Analyse
lassen sich die Beziehungen zwischen Features abbilden. Streudiagramme, Heat-
maps und Korrelationsdiagramme sind hierfür gängige Visualisierungen.

Statistische Metrik Die Berechnung statistischer Eigenschaften hilft beim Vergleich von
generierten und realen Daten. Metriken wie der Durchschnitt, Standardabweichung,
Minima und Maxima oder der Median können erste Hinweise auf Abweichungen
und Gemeinsamkeiten zwischen generierten und realen Daten geben [25].
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Distanzmetrik Für die direkte Berechnung der statistischen Ähnlichkeit von realen und
generierten Daten bestehen konkrete Metriken. Die Jensen-Shannon-Divergenz (JSD)
und die Wasserstein Metrik berechnen die Differenz der Wahrscheinlichkeitsmas-
senverteilungen einzelner diskreter Spalten. Darüber hinaus kann die Korrelation
zwischen zwei Features durch den Korrelationskoeffizienten nach Pearson (kon-
tinuierliche Daten) oder Unsicherheits-Koeffizienten nach Theil (diskrete Daten)
bestimmt werden. Die Berechnung überprüft, ob Wechselwirkungen zwischen den
Merkmalen in den generierten Datensätzen erhalten bleiben. Beim anschließenden
Vergleich der Korrelationsmatrizen von realen und generierten Daten werden Un-
terschiede bzw. Gemeinsamkeiten sichtbar [96].

Datenschutz-Metrik Weitere Metriken zur Distanz zwischen den Datensätzen geben
Hinweise auf den Schutz der Privatsphäre. Beim Distance to Closest Record (DCR)
und Nearest Neighbour Distance Ration (NNDR) wird der euklidische Abstand
zwischen einem generierten Datenpunkt und seinen nächsten realen Nachbarn ge-
messen. Je größer die Werte, desto höher auch der Datenschutz [96].

Klassifikator Test Eine zusätzliche Möglichkeit die Ähnlichkeit der generierten sowie
realen Daten zu bewerten, bietet ein Klassifikator. Generierte und reale Daten
werden gelabelt und in Trainings- sowie Testdaten eingeteilt. Der Klassifikator lernt
anhand der Trainingsdaten die Daten in real und generiert zu unterteilen. Kann das
trainierte Modell anschließend die Testdaten unterscheiden, sind die Unterschiede
zwischen realen und generierten Daten groß.

ML-Modell Dieses Evaluationsverfahren prüft, ob sich die generierten Daten für das
Training von ML-Modellen genauso eignen wie die realen Daten. Die realen Daten
werden in Trainings- sowie Testdaten unterteilt und das GAN mit den Trainingsda-
ten trainiert. Anschließend wird ein zu testendes ML-Modell (z.B. Entscheidungs-
baum oder logistische Regression) mit den Trainingsdaten (ModellReal) sowie ein
zweites mit den generierten Daten (ModellFake) trainiert. Anschließend werden
beide Modelle mittels der realen Testdaten bewertet. Mithilfe von weiteren Metri-
ken wie der Genauigkeit oder des F1-Scores können schließlich die Leistungen der
ML-Modelle verglichen werden [25, 96].
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2.3 Theorie der Differential Privacy (DP)

Über die letzten Jahre waren Angriffe auf ML-Modelle erfolgreich bei der Identifizie-
rung zugrunde liegender Daten [88, 61]. Da diese Modelle häufig sensible Daten aus
unterschiedlichen Bereichen wie z.B. Gesundheitswesen, Finanzwesen oder Verkehrswe-
sen verarbeiten, ist der Schutz der Privatsphäre ein entscheidender Bestandteil bei ihrer
Entwicklung. Darüber hinaus fordern die unterschiedlichen Datenschutzvorschriften wie
die Datenschutzgrundverordnung der EU (DSGVO) oder die „Federal Policy for the Pro-
tection of Human Subjects“ der USA Daten zu schützen. Nach der Vorstellung einzelner
traditioneller Techniken zum Schutz von Daten wird das für die synthetische Daten-
verarbeitung zahlreich verwendete mathematische Konzept Differential Privacy erläutert
[65].

2.3.1 Traditionelle Anonymisierungsverfahren

Zwei verbreitete Ansätze zum Schutz der Privatsphäre sind die k-Anonymität [78] sowie
ihre Erweiterung l-Diversität [55]. Beide Verfahren teilen ein Datenmodell bestehend aus
Identifikatoren, Quasi-Identifikatoren sowie sensiblen Attributen. Als Identifikatoren
werden die Datenpunkte bezeichnet, die zur eindeutigen Identifizierung einer Person füh-
ren können. Beispiele sind der Name oder eine persönliche ID. Quasi-Identifikatoren
ermöglichen in Kombination mit weiteren Quasi-Identifikatoren Rückschlüsse auf eine
Person, wie z.B. Postleitzahl, Alter oder Geschlecht. Datenpunkte, die sensible Informa-
tionen über eine Person enthalten (z.B. eine explizite Krankheit), zählen zu den sensi-
blen Attributen.

Sweeney [78] schlägt die k-Anonymität zum Datenschutz vor. Bei dieser Methodik
werden im ersten Schritt alle Identifikatoren aus dem Datensatz entfernt und anschlie-
ßend die verbliebenen Daten in k-Gruppen bzw. Äquivalenzklassen unterteilt. Die Grup-
pierung ergibt sich aus den Einträgen, die dieselben Quasi-Identifikatoren besitzen. Die
anschließende Generalisierung der (quasi-)identifizierenden Attribute, wie z.B. Alterspan-
nen, verhindert Rückschlüsse auf Verbindungen zwischen sensiblen Attributen und ein-
zelnen Personen. Da bei der k-Anonymität die Privatsphäre einer Person jedoch durch
verschiedene Angriffe erheblich verletzt werden kann, wurde die l-Diversität [55] entwi-
ckelt. Aufbauend auf der k-Anonymität ermöglicht sie eine höhere Datenschutzgarantie,
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indem sie mindestens ein unterschiedlich sensibles Attribut je Äquivalenzklasse voraus-
setzt. Auch wenn die l-Diversität im Vergleich zur k-Anonymität Daten besser schützen
kann, besteht weiterhin die Gefahr des Verlustes von hochsensiblen Informationen.

2.3.2 (ε, δ)-Differential Privacy

Mit dem Ziel eine Datenschutzgarantie zu realisieren, die auch bei jeglichem Hintergrund-
wissen eingehalten wird, definiert Dwork [22] das mathematische Konzept Differential
Privacy (DP). Im Wesentlichen werden die Informationen geschützt, indem Unterschiede
zwischen verschiedenen Datensätzen verborgen bleiben. Dadurch soll verhindert werden,
dass zu viele Informationen über eine bestimmte Person ermittelt werden können, ohne
allgemeine Muster innerhalb der Datenbasis zu verlieren. Die Grenzen an zur Verfügung
stehenden Informationen werden durch die Parameter Epsilon (ε) und Delta (δ) festge-
legt und mittels eines randomisierten Algorithmus M auf einen bestimmten Datensatz D
angewendet. Beispiele für randomisierte Algorithmen sind das Training von GANs oder
sonstige ML-Modelle.

Das Privatsphären Budget ε definiert den maximal gestatteten Verlust der Privat-
sphäre. Konkret wird die maximale Differenz zwischen Analyseergebnissen benachbarter
Datensätze festgelegt. Unter benachbarten Datensätzen werden zwei beliebige Datensät-
ze verstanden, die sich genau in einem Datenpunkt unterscheiden. Je kleiner der ε-Wert,
desto besser sind die Daten geschützt. Der zweite begrenzende Parameter ist die Fehler-
wahrscheinlichkeit δ. Sie gibt die Wahrscheinlichkeit für einen Verstoß gegen DP an
und sollte dementsprechend einen sehr niedrigen Wert besitzen. Zusammenfassend lässt
sich Differential Privacy wie folgt definieren.

Definition 2.1 ((ε, δ)-Differential Privacy) Sei M : D → R ein randomisierter Al-
gorithmus. M erfüllt (ε, δ)-DP mit ε ∈ R+ und δ ∈ [0, 1], falls für alle benachbarten
Datensätze D und D’ sowie für alle möglichen Teilmengen der Ausgabemenge S ⊆ R gilt,
dass

Pr[M(D) ∈ S] ≤ eε · Pr[M(D′) ∈ S] + δ (2.4)

In Worten beschrieben besagt die Definition, dass sich die Wahrscheinlichkeiten der Pro-
duktion eines Ausgabewertes in der Menge S zwischen den Mechanismen M(D) und

18



2 Grundlagen

M(D’) nicht mehr unterscheiden dürfen als es die Multiplikation mit eε und Addition mit
δ zulassen. Eine Erweiterung zum einfachen DP, bietet die Rényi Differential Priva-
cy (RDP) [58]. Sie verwendet im Vergleich zum einfachen DP strengere Grenzen für
das Privatsphären Budget ε und bietet Vorteile insbesondere in Bezug auf das Training
von GANs sowie bei der Verarbeitung großer Datenräume. RDP basiert auf der Rényi
Divergenz, der die Ähnlichkeit zwischen Verteilungen berechnet.

Um Differential Privacy einzuhalten und die Ergebnisse der benachbarten Datensätze
anzugleichen, wird mathematisches Rauschen verwendet. Aus einer statistischen Vertei-
lung wie z.B. Gauß- oder Laplace-Verteilung wird ein zufälliger Rauschvektor gebildet
und auf die realen Ergebnisse addiert. Die wahren Ergebnisse können nach der Addition
nicht mehr mit Sicherheit prognostiziert werden. Die Verteilung steht im Zusammenhang
mit dem gewählten Privatsphären Budget ε. Ein niedrig gewählter ε-Wert führt zu ei-
nem hohen Rauschen und folglich zu einem erhöhten Datenschutz. Die Kalibrierung des
Rauschens auf den definierten ε-Wert wird durch die Berechnung der Parameterwerte des
Rauschmechanismus anhand der Sensitivität ermöglicht. Diese beschreibt den maxima-
len Abstand, um den sich der Output zwischen den benachbarten Datensätzen verändern
darf [10].

2.3.3 Local vs. Global Differential Privacy

Die Umsetzung von Differential Privacy unterscheidet sich in den Ansätzen Local Diffe-
rential Privacy (LDP) und Global Differential Privacy (GDP)[90, 56]. Das lokale
Modell zielt darauf ab, eine Datenbank mit bereits geschützten Daten zu entwickeln.
Der randomisierte Algorithmus wird direkt auf die Daten der einzelnen Personen ange-
wendet und anschließend in der Datenbank gespeichert. Bereits während der Erfassung
der individuellen Informationen werden die Daten geschützt, nicht erst bei der Abfrage
von Daten. Der Vorteil besteht darin, dass Data Scientisten aufgrund des Post-Processing
Theorems unzählig viele Abfragen an die Datenbank stellen können, ohne die Differential
Privacy Garantie zu verletzen.

Das Post-Processing Theorem besagt, dass die Ergebnisse aller Berechnungen auf einem
DP garantierten Output ebenfalls Differential Privacy erfüllen [23].
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Definition 2.2 (Post-Processing Theorem) Sei M : N|x| → R ein randomisierter
Algorithmus der (ε, δ)-Differential Privacy erfüllt. Sei f: R → R’ eine beliebige randomi-
sierte Abbildung. Dann garantiert auch f ◦ M : N|x| → R’ (ε, δ)-Differential Privacy.

Im Gegensatz zum LDP wird beim Global Differential Privacy der randomisierte Algo-
rithmus auf die Antwort einer Datenbankabfrage der Data Scientisten angewendet. Die
Datenbank enthält hierbei unbearbeitete individuelle Informationen der einzelnen Perso-
nen. Beim GDP ist das Kompositionstheorem der Differential Privacy von den Anwendern
zu berücksichtigen. Schließlich dürfen auch verschiedene Datenbankabfragen zusammen
den vorgegebenen ε-Wert nicht überschreiten.

Das Kompositionstheorem zielt darauf ab, die Garantie der Privatsphäre auch über
mehrere Anwendungen hinweg aufrechtzuerhalten [23]. Das Theorem berücksichtigt den
Gesamtverlust an Privatheit, welches das Privatsphären Budget nicht überschreiten darf.
Die Basis Komposition für die (ε, δ)-Differential Privacy addiert für alle Durchläufe k die
ε-Werte und δ-Werte (siehe Formel 2.5). Während die Basis Komposition konservative
Obergrenzen der verwendeten ε-Werte und δ-Werte berechnet, können fortgeschrittene
Kompositionstheoreme genauere Angaben für die verwendeten Parameter berechnen.

(
∑k

i=1
εi,

∑k

i=1
δi)−DP (2.5)

Auch wenn die Local Differential Privacy gegenüber der Global Differential Privacy einen
stärkeren Privatsphärenschutz bietet, kann aber das erhöhte Rauschen auf die individu-
ellen Datenpunkte zu stark verzerrten Analyseergebnissen führen und somit die Plausibi-
lität von LDP in Frage stellen [56]. Abbildung 2.4 veranschaulicht die unterschiedlichen
Herangehensweisen der beiden Differential Privacy Ansätze.
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Abbildung 2.4: Local vs. Global Differential Privacy (in Anlehnung an [90])

2.3.4 Trade-Off zwischen Nutzbarkeit und Privatsphäre

Grundsätzlich besteht bei der Arbeit mit sensiblen Daten ein Trade-Off zwischen der
Nutzbarkeit der Analysen und der Privatsphäre der Daten [10, 41]. Der Schutz der Pri-
vatsphäre erfolgt auf Kosten der Genauigkeit von Analysen. Beim ML führt ein erhöhter
Datenschutz zu einer verschlechterten Modellgenauigkeit. Je kleiner das Privatsphären
Budget, desto mehr Rauschen muss auf die Ergebnisse addiert werden und desto gerin-
ger wird der Analysenutzen. Im Extremfall (ε-Wert = 0) muss die Ausgabe immer gleich
sein, unabhängig von der Eingabe. In diesem Fall sind Datenanalysen nutzlos. In Ab-
hängigkeit zur Problemstellung muss folglich zwischen der Nutzbarkeit der Analyse und
dem Privatsphärenschutz abgewogen werden. Tendenziell wird mit Zunahme der Daten-
menge der Trade-Off geringer und es lassen sich auch plausible Analyseergebnisse unter
erhöhtem Privatsphärenschutz erzielen.

2.4 Praktiken zur Integration von DP in GANs

Um ML-Modelle unter Datenschutzgarantien zu entwickeln, wird in vielen Ansätzen die
Einbettung von Differential Privacy in die Trainingsphase der Modelle empfohlen [2, 92,
75]. Zu den bekanntesten Verfahren der Integration von DP in GANs zählen Differentially
Private Stochastic Gradient Descent (DP-SGD) [2] sowie Private Aggregation of Teacher
Ensembles (PATE) [63].
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2.4.1 Differentially Private Stochastic Gradient Descent (DP-SGD)

Differentially Private Stochastic Gradient Descent [2] ist eine häufig verwendete Metho-
de, um Differential Privacy in Deep-Learning-Modelle zu integrieren. Mit der Grundidee,
dass der Einfluss einzelner Trainingspunkte auf die Aktualisierung der Modellparameter
begrenzt wird, soll das Modell keine sensiblen Informationen über einzelne Trainingsda-
ten lernen können. Beim einfachen SGD wird der Gradienten-Vektor für jedes einzelne
Trainingsdatum unmittelbar in die Aktualisierung der Modellparameter einbezogen (sie-
he Kapitel 2.1.2). Ein einzelnes Datum kann dadurch zu starken Veränderungen der
Modellparameter führen und das trainierte Modell nachfolgend sensible Informationen
einzelner Datensätze preisgeben.

Um das zu verhindern, werden beim DP-SGD die Gradienten der einzelnen Daten modi-
fiziert. Im Detail werden die Gradienten in einem ersten Schritt gekürzt (engl. clipping)
und anschließend kalibriertes Rauschen (engl. noise) hinzugefügt. Mittels einer definierten
Clipping Grenze kann der Gradient auf einen Bereich begrenzt und die Sensitivität eines
Trainingsschritts unter Kontrolle gehalten werden. Die Wahl der richtigen Größe für die
Clipping Grenze ist entscheidend. Während ein zu starkes Verkürzen der Gradienten zu
einem Verlust von zentralen Informationen führen kann, schützt ein zu niedrig gewählter
Grenz-Wert die Privatsphäre nicht ausreichend. Der Trade-Off zwischen Nutzbarkeit und
Privatsphärenschutz wird sichtbar. Das im zweiten Schritt hinzugefügte Rauschen folgt
einer Gauß-Verteilung mit dem Rauschfaktor σ und bewirkt die zufällige Verschiebung
des Gradienten. Informationen über individuelle Datenpunkte werden verfälscht und ge-
mittelt. DP-SGD wird in der Regel ausschließlich auf das Training des Diskriminators
angewendet. Aufgrund des Post-Processing Theorems (vgl. Definition 2.2) und der Tat-
sache, dass der Generator die realen Trainingsdaten nicht verwendet, erfüllt ein auf einem
differentiell privaten Diskriminator trainierter Generator ebenfalls Differential Privacy.
Abbildung 2.5 zeigt den Aufbau des DPGANs [85], eines der ersten GANs das DP-SGD
verwendet.
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Abbildung 2.5: Aufbau und Trainingsprozess des DPGANs (in Anlehnung an [46])

Um die Trainingsstabilität und Konvergenz-Rate zu verbessern, werden unterschiedli-
che Optimierungsstrategien zum Gradienten-Clipping vorgeschlagen [93]. Beispiels-
weise passt ein Adaptives Clipping die Clipping-Werte während des Trainings an und
eine Parametergruppierung fasst Parameter mit ähnlichen Clipping Grenzen zusammen,
um einen Kompromiss zwischen dem Privatsphären-Verlust und der Konvergenz jeder
Gruppierung zu erreichen. In [28] wird eine Clipping Decay Strategie vorgestellt. Diese
ermöglicht das Rauschen in Abhängigkeit zur Größe der Gradienten zu reduzieren. Der
Clipping-Wert selbst nimmt hierbei mit jedem Generator-Update exponentiell ab. Unter
Verwendung der Wasserstein-Kostenfunktion (Wloss) [4] in Verbindung mit dem
Gradient Penalty Term [37] kann der Clipping-Wert zudem automatisch erzwungen
werden. Ein zu starkes Beschneiden der Gradienten wird beim Gradient Penalty durch
das Einhalten der Lipschitz-Kontinuität verhindert. Ein explizites Clipping der Gewichte
wird nicht mehr erforderlich, was zu einer erhöhten Trainingsstabilität führt.

Das auf der Wloss aufbauende Wasserstein-GAN (WGAN) [4] versucht im Wesent-
lichen das Problem des Mode Collapse zu reduzieren. Im Gegensatz zum ursprünglichen
GAN [34], das die Jensen-Shannon-Divergenz als Maß für die Abstände zwischen den
synthetischen und realen Datenverteilungen nutzt, erzielt das fortgeschrittene WGAN
eine erhöhte Trainingsstabilität durch die Verwendung der Earth-Mover-Distanz (bzw.
Wasserstein-1-Distanz). Die Earth-Mover-Distanz misst die minimalen Kosten für die
Transformation von Datenpunkten einer beliebigen Verteilung in eine Zielverteilung. Mit
der Absicht real aussehende Daten zu erzeugen, die den Diskriminator täuschen kön-
nen, wird beim Training des WGANs der Wasserstein-Abstand zwischen der generierten
Datenverteilung pz und der realen Datenverteilung pdata minimiert.
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Die Anzahl der Trainingsiterationen des Diskriminators wird durch das Privatsphären
Budget begrenzt. Auf Basis des Kompositionstheorems (vgl. Formel 2.5) werden die Ver-
luste an Privatsphäre bei jeder Ausführung von differentiell privaten Mechanismen akku-
muliert. Um das definierte Privatsphären Budget dennoch nicht zu übersteigen, wird bei
jeder Trainingsiteration der Wert mittels des Privacy Accountant Konzepts über-
prüft. Sobald das Gesamtbudget den definierten Wert überschreitet, wird der Trainings-
prozess beendet. Zwei weit verbreitete Privacy Accountant Techniken sindMoment Ac-
countant [2] undRényi Differential Privacy Accountant [58]. Die Techniken können
nicht den exakten Privatsphären-Verlust ermitteln, sondern berechnen den höchstmög-
lichen Verlust. Da das RDP-Accountant im Vergleich zum Moment Accountant jedoch
eine engere Schranke liefert, kann das Modell bei gleich definierten Privatsphären Budget
länger trainiert werden und zufolge verbesserte Daten generieren [26].

Ergänzend zum Post-Processing und Kompositionstheorem beschäftigen sich Wang et. al
[82] mit den Datenschutzgarantien von Stichproben. Ihr Theorem „RDP für Subsam-
pled Mechanismen“ besagt, dass ein Mechanismus M, der RDP erfüllt, den gleichen
Schutz garantieren kann, wenn er auf einer Teilmenge der Daten angewendet wird. Durch
die Verwendung einer Subsampling-Rate, die sich aus der Division von Batch-Größe durch
Datensatzgröße berechnet, entsteht eine weitere Zufälligkeit, die den Datenschutz des Dis-
kriminators zusätzlich verstärkt. Die Wahrscheinlichkeit der Preisgabe von Informationen
einzelner Individuen verringert sich auf die Trainingsiterationen, in denen sie vertreten
sind. Darüber hinaus führt das Theorem dazu, dass das Privatsphären Budget aufgrund
des kleineren Trainingsdatensatzes effizienter und exakter berechnet werden kann.

2.4.2 Private Aggregation of Teacher Ensembles (PATE)

Eine alternative Variante zur Integration von DP in Deep-Learning Modelle bietet das
Private Aggregation of Teacher Ensembles Framework [63]. PATE besteht aus einem En-
semble von Lehrermodellen (Teacher) sowie einem Schülermodell (Student). Das Training
der Lehrermodelle basiert auf disjunkten Partitionen der sensiblen Trainingsdaten, wobei
jedem Lehrermodell eine feste Partition zugeteilt ist. Nach dem Training der Lehrermo-
delle sind diese in der Lage Vorhersagen für neue Datensätze zu treffen. Aufgrund der
unterschiedlichen Trainingsdaten können die Vorhersagen jedoch unterschiedlich ausfal-
len. Entsprechend werden die Ergebnisse aggregiert und mit Rauschen versehen, um DP
zu gewährleisten. Im Anschluss wird das Schülermodell anhand der aggregierten Vorher-
sagen der Lehrer trainiert und steht schließlich für die Klassifizierung bereit. Dadurch
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dass das Schülermodell keinen Zugriff auf die sensiblen Daten besitzt, erfüllen das Schü-
lermodell selbst sowie seine generierten Daten Differential Privacy.

Beim vorgeschlagenen PATE-GAN [46] wird der Diskriminator durch den PATE Mecha-
nismus ersetzt. Der Generator bleibt im Vergleich zum traditionellen GAN unverändert.
Sowohl die Lehrermodelle als auch das Schülermodell haben die Aufgabe die eingehen-
den Daten als real bzw. fake zu identifizieren. Das Training der Lehrermodelle gleicht
der Weise des klassischen Diskriminators, jedoch auf Basis einzelner Partitionen. Die
größere Neuerung des PATE-GANs ergibt sich durch die Implementierung des Schüler-
Diskriminators. Für das Training des Schülermodells klassifizieren die trainierten Lehrer-
modelle die generierten Daten als real (falsche Prognose) oder fake (richtige Prognose).
Darauf werden die einzelnen Prognosen der Lehrer aggregiert und mit Rauschen ver-
fälscht. Im letzten Schritt erfolgt das eigentliche Training des Schülermodells. Anhand
der generierten Daten sowie der Prognosen der Lehrer lernt das Schülermodell die gene-
rierten Daten zu klassifizieren.

Alle drei Modelltypen (Lehrer, Schüler, Generator) werden iterativ trainiert. Jede Trai-
ningsiteration des Generators besteht aus nt Aktualisierungen aller Lehrer sowie ns Ak-
tualisierungen des Schülers. Auch bei dieser Variante ist die Anzahl an Iterationen ab-
hängig vom Privatsphären Budget ε. Mit Hilfe des Moment Accountants wird dieses
während des Trainings berechnet. Abbildung 2.6 visualisiert den Trainingsprozess des
PATE-GANs.
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Abbildung 2.6: Aufbau und Trainingsprozess des PATE-GANs (in Anlehnung an [46])
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3 Verwandte Literatur

In zahlreichen Arbeiten der letzten Jahre wird Differential Privacy auf das Training von
GANs angewendet. Der nachfolgende Überblick vorhandener Modelle und verwandter
Literatur beschränkt sich auf GANs, die zum einen den Schutz von Privatsphäre be-
rücksichtigen und zum anderen tabellarische Daten generieren. Zunächst werden die im
Hauptteil verwendeten Modelle beschrieben, bevor anschließend weitere Modellarten und
Techniken vorgestellt werden.

3.1 Verwendete Modelle

DPGAN Xie et. al [85] entwickeln eines der ersten differential private GANs namens
DPGAN, das zusätzlich zur Generierung von tabellarischen Daten auch zur Syn-
these von Bilddateien verwendet werden kann. DPGAN nutzt für die Integration
von DP beim Training des Diskriminators die DP-SGD Methode. Der Generator
profitiert von dem Post-Processing Theorem der DP und kann daher auch ohne ex-
plizite Gradienten-Verzerrung Differential Privacy garantieren. Verschiedene Arten
des Gradienten-Clippings werden ausschließlich auf die Parameter der Gewichte an-
gewendet und durch einen definierten Grenz-Wert beschränkt. Zudem wird für eine
verbesserte Trainingsstabilität die Kostenfunktion des WGANs [4] gewählt und mit
dem Moment Accountant das Privatsphären Budget kontrolliert.

Die Architektur des DPGANs baut auf der Struktur des Deep Convolutional Ge-
nerative Adversarial Network (DCGANs) [64] auf und verwendet die Leaky ReLu
Aktivierungsfunktion im Diskriminator sowie die ReLu Funktion im Generator.
Um ein Overfitting des Modells zu vermeiden, integrieren die Autoren eine L2-
Regularisierung in die Aktualisierung der Gewichte beider Netze und führen mit
dem Optimierungsalgorithmus RMSProp eine an die Größe der Gradienten sich
anpassende Lernrate ein. Für nachfolgende Publikationen bildet DPGAN in vielen
Fällen die Basis und wird nahezu immer als Benchmark verwendet.
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CTAB-GAN+ Die Autoren des CTAB-GANs [96] konzentrieren sich auf die Generierung
tabellarischer Daten. Im Fokus stehen die Verarbeitung von gemischten Datenty-
pen, bestehend aus kontinuierlichen sowie diskreten Datenwerten, und der Umgang
mit Datenverteilungen, die lange Verteilungsenden besitzen. Zudem wird die Ge-
nerierung von verzerrten kontinuierlichen Variablen mit mehreren Modi verbessert.
Realisiert werden die dem CTAB-GAN zugrundeliegenden Ziele durch die Erwei-
terungen der herkömmlichen GAN-Architektur.

Aufbauend auf dem Conditional GAN (CGAN) [59] wird ein Conditional Vektor
in Verbindung mit der Training-by-Sampling Methode eingeführt. Diese Techni-
ken ermöglichen Modi gezielt zu erzeugen und einen Mode Collapse zu verhindern.
Des Weiteren wird in Ergänzung zum Generator und Diskriminator eine dritte
Komponente C als Klassifikator oder Regressor eingeführt. Diesbezüglich wird im
Vorfeld eine Spalte des Trainingsdatensatzes ausgewählt, die C anhand der übrigen
Zeileninformationen prognostizieren soll. Die Prognose von C hilft dem Generator
die semantische Integrität der generierten Daten zu verbessern. Um eine geeigne-
te Darstellung von gemischten Datentypen sowie einen verbesserten Umgang mit
fehlenden Daten zu realisieren, wird zudem ein neuartiger Mixed-Type Encoder
vorgestellt.

Die Integration von Differential Privacy erfolgt in dem erweiterten Modell CTAB-
GAN+ [97]. Zusätzlich zu den Bestandteilen und Zielen des CTAB-GANs wird die
Kostenfunktion Wloss in Zusammenhang mit dem Gradient Penality eingeführt und
die DP-SGD Methode für das Training des Diskriminators verwendet. Die Gewähr-
leistung für das gewählte Privatsphären Budget wird durch das RDP-Accountant
kontrolliert. Abbildung 3.1 visualisiert den Aufbau des CTAB-GAN+.
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Abbildung 3.1: Aufbau des CTAB-GAN+ (in Anlehnung an [97])
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DP-CGANS Genau wie das CTAB-GAN+ nutzt DP-CGANS [77] aufgrund von grup-
pierten Samples Wloss in Verbindung mit dem Gradient Penality die DP-SGD
Methode für das Training des Diskriminators sowie das RDP-Accountant zur Kon-
trolle des Privatsphären-Verlusts. Auch die Grundstruktur des CGANs wird als
Basis implementiert, um mithilfe des Conditional Vektors unterrepräsentierte Klas-
sen nicht zu vernachlässigen. Das Neuartige des DP-CGANS besteht in der ergän-
zenden Unterstützung bei der Simulation von Korrelationen und Abhängigkeiten
zwischen unausgewogenen Variablen. Diese wird ebenfalls mit dem Conditional
Vektor umgesetzt. Im Gegensatz zum einfachen Conditional Vektor, bei dem die
Datenverteilung in Abhängigkeit zu einer einzigen ausgewählten Kategorie einer
diskreten Spalte gelernt wird, ermöglicht DP-CGANS das Erlernen der Verteilun-
gen anhand von zufällig ausgewählten Kategorie-Paaren. Da mit diesem Konzept
die Generierung nicht realistischer Konstellationen - wie z.B. Männer und Gebär-
mutterhalskrebs - unterbunden werden soll, muss die Zusammensetzung des Paares
in den realen Daten vorhanden sein.

PATE-GAN Auch wenn die Mehrheit der GANs mit DP-Garantie auf der DP-SGD Me-
thode beruht, erzielt das in Kapitel 2.4.2 vorgestellte PATE-GAN (siehe Abbil-
dung 2.6) vergleichbare Ergebnisse (siehe [46, 97]) auf Basis einer grundlegend
anderen Herangehensweise. Zwar stützt es sich ebenfalls auf das Post-Processing
Theorem und wendet DP ausschließlich auf das Training des Diskriminators an, je-
doch besteht der Diskriminator aus mehreren Modellen. Ein Ensemble von Lehrer-
Diskriminatoren unterrichtet einen Schüler-Diskriminator, der die Klassifikation
zwischen generierten und realen Daten vornimmt. G-PATE [54] verwendet eben-
falls die PATE-Variante, um DP bei der Generierung von Bildern sowie tabellari-
sche Daten zu berücksichtigen. Beim G-PATE entspricht das Schülermodell dem
Generator. Dieser wird mithilfe der aggregierten und verrauschten Gradienten der
Lehrermodelle trainiert. Die Autoren erzielen einen geringeren Nutzenverlust der
Trainingsdaten bei gleich bleibendem Privatsphären Budget.
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GAN DPGAN [85] PATE-GAN [46] CTAB-GAN+ [97] DP-CGANS [77]

Autoren Xie et. al Jordon et. al Zhao et. al Sun et. al
Jahr 2018 2019 2022 2023

DP Algorithm DP-SGD PATE DP-SGD DP-SGD

Kostenfunktion Wloss Kullback–Leibler
Divergence

Wloss
& Gradient Penality

Woss
& Gradient Penality

Gradient Clipping Ja Nein Nein Nein
Noise Gaussian Noise Laplacian Noise Gaussian Noise Gaussian Noise
Accountant Moment Accountant Moment Accountant RDP-Accountant RDP-Accountant

Grundarchitektur Deep Convolutional
GAN (DCGAN) - Conditional GAN

(CGAN)
Conditional GAN
(CGAN)

Erweiterungen -
+ mehrere
Diskriminator-Modelle
(Schüler + Lehrer)

+ Klassifikatior / Regressor
Komponente C
+ Mixed-Type Encoder

+ Conditional Vektor
für Kategorie-Paare

Datenart Tabellarische Daten
& Bilder Tabellarische Daten Tabellarische Daten Tabellarische Daten

Domäne Gesundheitsdaten
& Zahlen

Gesundheitsdaten
& Verschiedenes Verschiedenes Sozioökonomische Daten

& Gesundheitsdaten

Tabelle 3.1: Verwendete Modelle sortiert nach Erscheinungsjahr

Zusammenfassend zeigt Tabelle 3.1 die maßgeblichen Unterschiede der verwendeten Mo-
delle.

3.2 Weitere Literatur

Federated Learning Während die meisten Differential Private GANs mit zentralisierten
Trainingsdaten arbeiten, wird bei einzelnen Ansätzen Federated Learning berück-
sichtigt. Beim Federated Learning werden ML-Modelle auf Basis von verteilten
Trainingsdaten trainiert. Im Wesentlichen unterscheiden sich der verteilte und zen-
tralisierte Ansatz in dem Speicherort der Trainingsdaten sowie dem Ausführungsort
der Modelle. Das Federated Average GAN (Fed-Avg GAN) [6] garantiert Dif-
ferential Privacy auf Benutzerebene. Bei jeder Iteration stellt ein zentraler Server
das GAN-Modell für eine Teilmenge der Geräte zu Verfügung. Der Diskriminator
wird lokal von den einzelnen Endgeräten mittels derer privater Daten trainiert und
die Aktualisierung zurück zum Server gesendet. Der Server aggregiert anschließend
alle Änderungen und verfälscht sie mit Rauschen. Ein weiteres bekanntes Modell
ist GS-WGAN [15]. Im Vergleich zum Fed-Avg GAN werden die Diskriminatoren
nicht zwischen dem Server und Endgerät geteilt, sondern auf Letzterem gespeichert.
Darüber hinaus werden die neu berechneten Gradienten nicht erst auf dem Server,
sondern direkt auf den Endgeräten verfälscht.
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Privatsphäre vs. Genauigkeit Ergänzend um die Vorstellung einzelner Differential Pri-
vate GANs beschäftigen sich einige Arbeiten mit dem Trade-Off zwischen Privat-
sphäre und Genauigkeit. Kossen et. al [50] entwerfen ein GAN für den Bereich der
Neurobildgebung. Innerhalb ihrer Evaluation fokussieren sich die Autoren insbe-
sondere auf den Einfluss unterschiedlicher Privatsphären Budgets. Während sie bei
einem ε-Wert von 7,4 im Vergleich zum Training ohne Differential Privacy nur ge-
ringe Einbußen in der Genauigkeit erreichen, sinkt die Leistung bei ε-Werten kleiner
fünf so stark, dass die generierten Bilder unbrauchbar sind. Um ein geeignetes Ver-
hältnis zwischen Genauigkeit und Privatsphäre zu erhalten, entwickelt Bernau [9]
Techniken zur Quantifizierung eines geeigneten Maßes an Privatsphäre. Diesbezüg-
lich werden zwei Hauptprobleme untersucht. Zum einem wird der minimal notwen-
dige Grenzwert an Privatsphären-Verlust durch Membership Inference-Angriffen
gesucht; zum anderen wird überprüft wie die Differential Privacy Garantien mit
rechtlichen und ethischen Normen in Verbindung gebracht werden können.

Individualisierte Differential Privacy Mit der Annahme, dass verschiedene Personen auch
unterschiedliche Erwartungen in Bezug auf Privatsphäre besitzen, erweitern Boe-
nisch et. al die Methoden PATE [12] sowie DP-SGD [11] um individualisierte Diffe-
rential Privacy Garantien. Während sich ein einheitliches Privatsphären Budget an
der strengsten Datenschutzanforderung aller Datenbesitzer orientieren muss, kön-
nen bei der Verwendung individualisierter Privatsphären Budgets Datenpunkte mit
geringeren Anforderungen verbesserte Informationen für das ML-Training bereit-
stellen. Infolgedessen kann die Leistung des Modells erhöht werden, ohne einzelne
Datenschutzanforderungen zu verletzen.

ADS-GAN Im Gegensatz zu den vorherigen Modellen und Methoden verwendet das
ADS-GAN [89] kein Differential Privacy. Stattdessen führen die Autoren die Epsilon-
Identifizierbarkeit ein. Ihre Grundannahme besteht darin, synthetische Datenpunk-
te zu generieren, die sich ausreichend von den realen Datenpunkten unterscheiden.
Daher sollte der Abstand jedes Datenpunkts im realen Datensatz zu seinem nächs-
ten synthetischen Datenpunkt kleiner sein als der Abstand zum nächsten realen
Datenpunkt. Diese Mindestentfernung wird dabei mithilfe des euklidischen Ab-
stands berechnet. Bis auf die unterschiedliche Herangehensweise der Messung von
Privatsphäre unterscheidet sich ADS-GAN wenig von den zuvor vorgestellten DP-
GANs. Ebenfalls wird das Wasserstein-GAN mit Gradient Penalty für eine verbes-
serte Trainingsstabilität eingesetzt sowie das CGAN als Basis für eine ausgewogene
Datensynthese verwendet.

30



4 Experimenteller Aufbau

Im Folgenden werden basierend auf den Anforderungen der DaFne-Plattform die Zielset-
zung sowie Forschungsfrage der Thesis definiert. Ferner wird die zentrale Fragestellung
untergliedert und ein Überblick über die einzelnen Experimente gegeben. Darüber hinaus
werden die Architekturen inklusive Modifikationen der ausgewählten Modelle, Trainings-
datensätze sowie verwendete Evaluations-Metriken erläutert.

4.1 DaFne Plattform

Das der These zugrundeliegende Forschungsprojekt „Data Fusion Generator für die Künst-
liche Intelligenz“ (DaFne) verfolgt das Ziel tabellarische Daten für KI-Applikationen
bereitzustellen. Vom Anwender benötigte Daten lassen sich auf einer frei verfügbaren
Plattform auf unterschiedliche Weise generieren. Im Wesentlichen stehen die drei Syn-
thesemethoden Reproduktion, regelbasierte Erzeugung und Daten Fusion zur Verfügung.
In Abhängigkeit vom Anwendungsfall, der bereits vorhandenen Daten und Komplexität
der benötigten Daten wird eine der drei Methoden ausgewählt.

Abbildung 4.1: Überblick über die Funktionalitäten der DaFne-Plattform [51]
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Abbildung 4.1 gibt einen Überblick über die grundlegende Funktionalität der Plattform.
Konkret zielen die Experimente dieser Arbeit auf eine Erweiterung im Bereich der Repro-
duktion Methode (rot markiert) ab. Bei der Reproduktion werden auf Basis vorhandener
Daten Eigenschaften sowie Verteilungen gelernt und anschließend verwendet, um neue
Daten zu generieren. Grundsätzlich zielt die Methode darauf ab, einen kleinen Datensatz
um weitere Zeilen zu erweitern, ohne ursprüngliche Dateneigenschaften zu verändern.

In dieser Arbeit wird sie nicht primär für die Vergrößerung eines Datensatzes, sondern
vielmehr für die Sicherstellung von Privatsphäre in schützenswerten Daten genutzt. Aus
einem vorhandenen Datensatz werden Muster gelernt und nachfolgend ein vollständig
neuer Datensatz generiert. Rückschlüsse auf ein reales Datum sind nicht mehr möglich.
Die für den privaten Reproduktion-Service zu berücksichtigenden funktionalen und nicht-
funktionalen Anforderungen werden folgend definiert.

4.1.1 Funktionale Anforderungen

Die funktionalen Anforderungen lassen sich in die Kategorien Modellaufbau, Modelltrai-
ning sowie generierte Daten unterteilen. Aus Sicht des Nutzers ergeben sich die folgenden
funktionalen Anforderungen für einen privaten Reproduktion-Service:

Id Beschreibung
Modellaufbau

FA_01 Modell garantiert beim Training Privatsphäre
FA_02 Architektur des Modells ist skizziert
FA_03 Modelltraining, Vor- und Nachbearbeitung sind nachvollziehbar
FA_04 Trainiertes Modell bleibt für erneute Datensynthese gespeichert

Modelltraining
FA_05 Beispieldatensatz steht zur Verfügung
FA_06 Trainingsparameter sind frei wählbar
FA_07 Hilfestellung bei der Wahl der Trainingsparameter ist vorhanden
FA_08 Default Trainingsparameter werden angezeigt
FA_09 Trainingsdauer und benötigte Epochenanzahl werden prognostiziert
FA_10 Trainingsfortschritt der Generierung wird angezeigt
FA_11 Sobald die Daten generiert sind erfolgt eine Benachrichtigung
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Generierte Daten
FA_12 Unabhängig von Eigenschaften und Domäne sind Trainingsdaten wählbar
FA_13 Generierte Daten lassen keinen Rückschluss auf reale Daten zu
FA_14 Generierte Daten besitzen die Eigenschaften der realen Daten
FA_15 Metriken zur Überprüfung der einzuhaltenden Privatsphäre sind verfügbar
FA_16 Metriken zur Qualitätsüberprüfung sind vorhanden
FA_17 Generierte Daten sind in gleicher Weise geeignet für KI-Anwendungen

Tabelle 4.1: Funktionale Anforderungen an einen privaten Reproduktion-Service

4.1.2 Nicht-Funktionale Anforderungen

Neben den funktionalen Anforderungen sind weitere Punkte entscheidend für eine lang-
fristige Praktikabilität. Die Nutzer der Plattform stehen im Mittelpunkt bei der Aus-
wahl und Verwendung eines geeigneten Modells. Im Bezug zur Benutzerfreundlichkeit
(NFA_01) müssen unterschiedliche Fähigkeiten der Nutzer bei der Informationspreis-
gabe und Anpassungsoptionen Berücksichtigung finden. Zudem spielt die Performance
(NFA_02) eine große Rolle bei der Wahl eines passenden Modells. Auch wenn große und
komplexe Datensätze zum Training genutzt werden, sollen Trainings- und Evaluations-
zeit bei hoher Qualität möglichst gering gehalten werden. Ebenso muss die vorhandene
Rechenleistung angemessen genutzt werden. Weniger Rechenintensive Modelle erlauben
eine höhere Anzahl an zu trainierenden und evaluierenden Modellen. Die Zuverlässig-
keit (NFA_03) nimmt durch eine erhöhte Verfügbarkeit zu.

Des Weiteren soll die Möglichkeit bestehen weitere private Modelle der Plattform hin-
zuzufügen (Erweiterbarkeit (NFA_04)). Die Einführung von Modularität fördert
hierbei zusammen mit einer ausführlichen Dokumentation (NFA_05) die Wieder-
verwendbarkeit. Neben einem kommentierten Programmcode dienen Beispiele und vor-
eingestellte Parameter dazu, die Funktionsweise des Modells verständlicher zu gestalten.
Darüber hinaus darf die Sicherheit (NFA_06) nicht vernachlässigt werden. Unbefugte
Dritte dürfen nicht auf das Training des Modells zugreifen bzw. Änderungen vornehmen
können.
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4.2 Zielsetzung und Forschungsfrage

Abgeleitet aus den Anforderungen an einen Reproduktion-Service mit Fokus auf Privat-
sphäre ergeben sich Ziele und Forschungsfrage der Thesis.

Zielsetzung:
Aus einem schützenswerten tabellarischen Datensatz wird ein vollständig neuer
Datensatz mit gleichen Eigenschaften generiert, der ohne Bedenken an Dritte wei-
tergegeben werden kann.

Die übergeordnete Zielsetzung lässt sich insbesondere in zwei Hautziele unterteilen. Zum
einen sollen qualitativ hochwertige Daten mit gleichen Eigenschaften generiert werden
(Z1) und zum anderen die Privatsphäre der ursprünglichen Daten geschützt werden (Z2).
Desgleichen sind die unterschiedlichen Vorerfahrungen der Nutzer zu berücksichtigen
und entsprechend Informationsbedarf sowie Änderungsmöglichkeiten anzupassen (Z3).
Der Trainingsdatensatz für die Experimente dieser Thesis muss so gewählt sein, dass er
realitätsnahe Verteilungen und Eigenschaften widerspiegelt (Z4).

Die Umsetzung der Hauptziele Z1 und Z2 erfolgt durch die Verwendung eines GANs
unter Einbezug von Differential Privacy. Aus diesem Grund fokussiert sich die zentrale
Forschungsfrage auf das für den privaten Service bereitzustellende Modell.

Forschungsfrage:
Welches Generative Adversarial Network eignet sich für eine adäquate Synthese
sensibler tabellarischer Daten unter Berücksichtigung von Differential Privacy?

Die zentrale Forschungsfrage wird mit Hilfe der Evaluationen von drei Teilaspekten be-
antwortet:

Frage 1 Performance: Wie viel Zeit benötigt das Modell für die Synthese von Daten?

Frage 2 Datenqualität: Inwiefern entsprechen die Eigenschaften der vom Modell gene-
rierten Daten denen der Trainingsdaten?

Frage 3 Privatsphärenschutz: Wie sicher sind die vom Modell generierten Daten gegen-
über Angriffen?

34



4 Experimenteller Aufbau

4.3 Überblick der Experimente

Die definierten Teilaspekte werden anhand der in Kapitel 3.1 vorgestellten GANs (1)
DPGAN, (2) PATE-GAN, (3) CTAB-GAN+ und (4) DP-CGANS untersucht. Die Expe-
rimente werden mit Hilfe von zwei Datensätzen aus dem Bereich Smart City durchgeführt
(siehe Kapitel 4.4) und die generierten Daten mittels der in Kapitel 4.7 beschriebenen
Evaluations-Metriken analysiert.

Zusätzlich zum Vergleich der Modelle und Datensätze wird bei der Evaluation zwischen
vier Privatsphären Budgets (ε) unterschieden. Die Auswahl der Größe des ε-Wertes geht
sowohl aus den Forschungsarbeiten der jeweiligen Modelle hervor als auch aus einer Zu-
sammenstellung von Beispielen namhafter Tech-Unternehmen und US-Behörden. Das
National Institute of Standards and Technology der USA (NIST) [62] fasst die aktuellen
Erfahrungen wie folgt zusammen:

• ε-Werte im Bereich 0 < ε ≤ 5 garantieren einen starken Schutz der Privatsphäre,
der als konservativ angesehen wird.

• Zunehmende Erfahrungen zeigen jedoch, dass auch ε-Werte im Bereich 5 < ε ≤
20 in vielen Situationen einen ausreichend hohen Schutz an Privatsphäre bieten.

• Auch ε-Werte > 20 können einen sinnvollen Schutz an Privatsphäre ermöglichen.
Allerdings bedarf es weiterer Erfahrungen zur präzisen Einschätzung von höheren
ε-Werten.

Um den Einfluss der verschiedenen Privatsphären Budgets zu verdeutlichen, werden die
Daten mit den ε-Werten = 3, 10, 50 (mit Privatsphärenschutz) sowie ε = ∞ (kein Pri-
vatsphärenschutz) generiert. Während die ε-Werte mit Privatsphärenschutz die Anzahl
an Epochen begrenzen, ist bei der Generierung ohne Privatsphärenschutz die Anzahl an
Epochen auf 500 bzw. 400 (CTAB-GAN+ und AGMA Datensatz) festgelegt.

Zusammenfassend ergeben sich folgende zu untersuchende Kriterien:

1. Modelle: DPGAN, PATE-GAN, CTAB-GAN+, DP-CGANS (DP-SGD vs. PATE)
2. Privatsphären Budget: 3, 10, 50, ∞ (DP vs. kein Privatsphärenschutz)
3. Datensätze: Energie, AGMA (simulierte vs. reale Daten)

Die Benennung der generierten Daten entspricht: Modell_Datensatz_ε-Wert
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4.4 Smart City Datensätze

Das Forschungsprojekt DaFne konzentriert sich auf die Datensynthese im Bereich von
Smart City. „Smart City“ impliziert den digitalen Wandel auf Infrastrukturen der Grund-
versorgung einer Region wie z.B. Beförderungsmöglichkeiten, Wasser- und Energieversor-
gung oder Müllbeseitigung. Neben der Digitalisierung der einzelnen Sektoren stehen auch
deren Vernetzungen im Fokus. Der Einsatz Intelligenter Informations- und Kommunikati-
onstechnologien (IKT) soll dabei zu einer ökonomisch, ökologisch und sozial nachhaltigen
Region beitragen [14].

In Übereinstimmung mit dem Forschungsprojekt verwendet auch die Thesis Fallbeispiele
aus dem Bereich Smart City. Hierbei handelt es sich um einen simulierten Datensatz mit
Schwerpunkt Energieverbrauch einzelner Haushalte sowie um einen leicht modifizierten
realen Datensatz zum Thema Mobilitätsströme und Tagesaktivitäten einzelner Personen.
Die Nutzung eines simulierten sowie eines realen Datensatzes unterstützt den Vergleich
von GANs bei unterschiedlicher Komplexität und Realitätsnähe, wobei die Zeilenanzahl
beider Datensätze auf 40.000 begrenzt wird. Das im Zusammenhang mit der Generierung
(simulierte Daten) stehende Jupyter Notebook ist der Thesis beigefügt (siehe Anhang
A.1).

4.4.1 Energieverbrauch pro Haushalt: simulierter Trainingsdatensatz

Im Sektor smarte Energieversorgung existieren zahlreiche Use Cases bei denen Ener-
gieverbrauchsdaten benötigt werden. Sowohl Energieunternehmen als auch Verbraucher
profitieren von intelligenten Technologien. Beispielsweise können Energie Engpässe und
allgemeiner Bedarf vorhergesagt und somit die Zuverlässigkeit des Netzes verbessert wer-
den. Auch eine effizientere Nutzung erneuerbarer Energien oder intelligenter Gebäude-
managementsysteme für eine erhöhte Überwachung des Verbrauchs einzelner Ressourcen
ist vorstellbar.

Der simulierte Energieverbrauch pro Haushalt beschränkt sich auf simple Verteilungen
einzelner Spalten und Zeilen. Pro Haushalt wird eine Zeile generiert, die Informationen
zur befragten Person (z.B. Alter, Geschlecht, Berufsabschluss), Haushaltsdaten (z.B.
Wohnsituation, Personenanzahl, Nettoeinkommen) und konkrete Energieverbrauchs-
daten (z.B. Stromverbrauch, Raumwärme) beinhaltet. Insgesamt besteht der simulierte
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Datensatz aus 17 Spalten, die sich aus acht diskreten (kategorialen) sowie neun konti-
nuierlichen (numerischen) Spalten zusammensetzen. Tabelle 4.2 gibt einen Überblick der
Energieverbrauchsdaten.

Spaltenname Beschreibung Datentyp Quelle

Person:
Geschlecht Weiblich | Männlich Kategorisch [72]
Alter 25 ≤ Alter ≤ 80 Numerisch [73]
Familienstand Ledig, Verheiratet usw. Kategorisch [74]
Bildungsabschluss Ohne Schulabschluss, Realschulabschluss usw. Kategorisch [74]
Beruf Selbständiger, Angestellter usw. Kategorisch [74]

Haushalt:
Wohnsituation Miete, Eigenes Haus usw. Kategorisch [44]
Personenanzahl 1 ≤ Anzahl ≤ 5 (zur Vereinfachung: 5+ ist gleich 5) Numerisch [74]
Nettoeinkommen Unterteilt nach Werten z.B. <500, 2.00 - 2.500 Kategorisch [74]
Gemeindegröße Unterteilt nach Werten z.B. 20.00 - 50.000, >= 500.000 Kategorisch [74]
Bundesland Niedersachsen, Hamburg, Bayern usw. Kategorisch [74]

Verbrauchsdaten:

Stromverbrauch
Ø Verbrauch je Person: 1PH = 1.978 | 2PH = 1.626
ab 3PH = 1.442 (Variabilität von 10%)

Numerisch [71]

Energieverbrauch
Ø Verbrauch je Person: 1PH = 11.785 | 2PH = 9.340
ab 3PH = 6.915 (Variabilität von 10%)

Numerisch [70]

Raumwärme 70,3% des Energieverbrauchs (Variabilität von 10%) Numerisch [70]
Warmwasser 14,7% des Energieverbrauchs (Variabilität von 10%) Numerisch [70]
Sonstige Prozesswärme 5,59% des Energieverbrauchs (Variabilität von 10%) Numerisch [70]
Sonstiger Betrieb
Elektrogeräte

8% des Energieverbrauchs (Variabilität von 10%) Numerisch [70]

Beleuchtung 1,41% des Energieverbrauchs (Variabilität von 10%) Numerisch [70]

Tabelle 4.2: Beschaffenheit der Energieverbrauchsdaten

Während die Verteilungen der einzelnen Spalten auf den angegebenen Quellen basieren,
wird die Abbildung von Korrelationen zwischen den Spalten in den meisten Fällen ver-
nachlässigt. Lediglich die Spalten Strom- und Energieverbrauch werden in Abhängigkeit
zur Anzahl an Personen im Haushalt berechnet. Die Verbrauchshöhe pro Person variiert
entsprechend der zugrundeliegenden Statistik. Darüber hinaus wird der durchschnittliche
Verbrauch mit einer Varianz von bis zu 10% generiert. Der Energieverbrauch untergliedert
sich in Raumwärme, Warmwasser, sonstige Prozesswärme, sonstiger Betrieb von Elektro-
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geräten sowie Beleuchtung. Auch die Zusammensetzung der Unterkategorien basiert auf
Daten der Realität mit leichten Abweichungen zur durchschnittlichen Verteilung.

Auch wenn die einzelnen Spalten auf realen Verteilungen basieren, ist zu berücksichtigen,
dass die Statistiken häufig nur stark aggregierte Informationen wie Durchschnittswerte
preisgeben. Des Weiteren werden die Verbrauchsdaten ausschließlich auf Basis der Per-
sonenanzahl im Haushalt generiert. Weitere relevante Einflussfaktoren wie z.B. Wohnsi-
tuation, Beruf oder Nettoeinkommen werden vernachlässigt.

4.4.2 AGMA Daten: realer Trainingsdatensatz

Im Kontrast zu den vereinfachten Energieverbrauchsdaten, bestehen die AGMA Daten
aus realen Befragungen zu Tagesaktivitäten und Mobilitätsströmen. Im Smart City Kon-
text können Daten dieser Thematik insbesondere bei einer smarten Stadtplanung und
bei smarten Transportwegen nützlich sein. Use Cases im Bereich der smarten Stadtpla-
nung betreffen beispielsweise die Standortwahl neuer Einkaufsfilialen, Bildungsstätten
oder Gesundheitszentren. Ein anderes Beispiel betrifft eine verbesserte Beleuchtung und
Müllentsorgung öffentlicher Plätze oder Straßen. Smarte Transportwege beziehen sich
sowohl auf den privaten als auch auf den öffentlichen Verkehr. Verkehrsflusssteigerung,
intelligente Parkplatzverwaltung oder eine optimierte Integration verschiedener Verkehrs-
träger entsprechen beispielhafter Anwendungsfelder.

Hinter der Abkürzung AGMA verbirgt sich die Arbeitsgemeinschaft Media-Analyse e.V.
[3], ein Forschungsverbund bestehend aus mehr als 200 Unternehmen der Werbe- und
Medienwirtschaft. Gemeinsam verfolgen diese das Ziel Leistungswerte für die Nutzung
von Werbeträgern zu schaffen. Die dieser Thesis zur Verfügung stehenden Daten stam-
men aus ihrer „Media-Analyse: Out of Home“. Mit dem Ziel eine Grundlage zur Planung
von Außenwerbung bereitzustellen, werden GPS-Messungen sowie Befragungen zur De-
mographie und Mobilität erhoben.

Im Fokus dieser Arbeit stehen die Daten aus der Befragung, da diese primär schützens-
werte Daten einzelner Personen beinhalten. Nachdem redundante Spalten (z.B. Dupli-
kate, Aggregation) entfernt wurden, verbleiben 67 relevante Spalten. Diese teilen sich
in 57 diskrete (kategoriale) sowie zehn kontinuierliche (numerische) Spalten auf. Klei-
ne Modifikationen seitens AGMA wie die Entfernung von fehlenden Werten sowie die
Aggregation einzelner Spalten verzerren den Umgang mit realen Daten leicht, sind aber
vorerst vernachlässigbar.

38



4 Experimenteller Aufbau

Anhand der Spalteninhalte ergeben sich acht übergeordnete Kategorien:

1. Angaben zur Person: z.B. Geschlecht, Alter, Bildung, Beruf
2. Angaben zum Haushalt: z.B. Ort, Nettoeinkommen, Personenanzahl
3. Häufigkeit an Einkäufen: z.B. in einem Supermarkt, Drogeriemarkt, Baumarkt
4. Häufigkeit an Freizeitaktivitäten: z.B. Nutzung von Medien, Tätigkeiten außer

Haus, Reisen, Sport treiben, Raucher, Biertrinker
5. Transportmittel: z.B. Häufigkeit der Nutzung von Auto, Fahrrad, Bahn, Flugzeug
6. Bewertungen zu unterschiedlichen Aussagen: z.B. „Für besondere Qualität

gebe ich gern mehr aus“, „Werbung ist eigentlich ganz hilfreich für den Verbraucher“
7. Dauer außer Haus - Schätzung (Wegezeit): z.B. Montags, Samstags
8. Daten zum Interview: Monat und Jahr

Die exakt verwendeten Spalten werden im Anhang A.3 in der genannten Gruppierung
aufgeführt. Um einen fairen Vergleich zu den simulierten Daten zu ermöglichen, werden
die über 75.000 Teilnahmen auf zufällig ausgewählte 40.000 Zeilen begrenzt.

4.5 Überblick der verwendeten Modelle

Die bereits in Kapitel 3.1 eingeführten Modelle (1) DPGAN, (2) PATE-GAN, (3) CTAB-
GAN+ sowie (4) DP-CGANS werden in den Experimenten verglichen und auf Grund-
lage dessen wird die Forschungsfrage beantwortet. Tabelle 3.1 fasst die grundlegenden
Eigenschaften sowie Unterschiede zwischen den Modellen zusammen. Ergänzend um die
allgemeine Vorstellung werden in diesem Kapitel tiefgehende Architekturkonzepte und re-
levante Parameter kompakt erklärt. Im Wesentlichen lassen sich die Parameter in die drei
übergeordneten Kategorien Netzwerk Architektur, Netzwerk Training sowie Privatsphä-
renschutz einteilen. Eine detailreiche Übersicht aller wichtigen Parameterwerte befindet
sich im Anhang A.4.

4.5.1 Netzwerk Architektur

In den Bereich Netzwerk Architektur fallen verwendete Verfahren zur Datenvorverarbei-
tung, Anzahl an Hidden Schichten und Knoten, Aktivierungsfunktionen sowie Regulari-
sierungen der Netze.
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Während DPGAN und PATE-GAN eine vereinfachte Vorverarbeitung der Daten - beste-
hend aus einer Skalierung (Bereich [0,1]) für kontinuierliche sowie One-Hot-Kodierung für
diskrete Spalten - nutzen, profitieren CTAB-GAN+ und DP-CGANS von den Weiterent-
wicklungen im Bereich tabellarischer Datensynthese (siehe Kapitel 2.2.4). Beide Modelle
wenden die Mode-Specific Normalization auf die kontinuierlichen sowie zusätzlich zur
One-Hot-Kodierung das Training-by-Sampling auf die diskreten Daten an.

Um ein tieferes Verständnis möglicher Architekturvarianten zu erhalten, erfolgt eine bei-
spielhafte Vorstellung der Architektur des DP-CGANS. Wie Abbildung 4.2 zeigt, besitzen
Generator sowie Diskriminator zwei Hidden Schichten, die jeweils aus 256 Knoten be-
stehen. Der Generator verwendet in den Hidden Schichten ReLU als Aktivierungsfunkti-
on mit Unterstützung einer Batch-Normalization. Die Batch-Normalization beschleunigt
und stabilisiert das Netztraining, indem sie die Daten vor der Anwendung der Aktivie-
rungsfunktion normalisiert und somit das Problem eines verschwindenden Gradienten
minimiert. Die Output Schicht des Generators nutzt Tangens Hyperbolicus und Softmax
als Aktivierungsfunktionen, um sowohl kontinuierliche als auch diskrete Daten erzeugen
zu können. Die Hidden Schichten des Diskriminators beinhalten die LeakyReLU Aktivie-
rungsfunktion sowie Dropout zur Regularisierung. Indem Dropout zufällig Verbindungen
zwischen den Knoten ausschaltet, wird ein Overfitting vermieden. Das Netz wird gezwun-
gen verschiedene Teilkombinationen seiner Knoten zu berücksichtigen und damit eine zu
starke Anpassung an die Trainingsdaten verhindert. [77]

Fake data 
G(z,c)

Hidden Schicht 1

F
u

ll
y 

co
n

n
ec

te
d

B
at

ch
-N

or
m

al
iz

at
io

n

R
eL

U

Hidden Schicht 2

F
u

ll
y 

co
n

n
ec

te
d

B
at

ch
-N

or
m

al
iz

at
io

n

R
eL

U

F
u

ll
y 

co
n

n
ec

te
d

ta
n

h
 /

 s
of

tm
ax

Architektur des Generators

Hidden Schicht 1

F
u

ll
y 

co
n

n
ec

te
d

L
ea

ky
R

eL
U

D
ro

p
ou

t

Hidden Schicht 2

F
u

ll
y 

co
n

n
ec

te
d

L
ea

ky
R

eL
U

D
ro

p
ou

t

F
u

ll
y 

co
n

n
ec

te
d

Architektur des Diskriminators

Real data x

Conditional 
Vektor c

D(x,c)

D(G(z,c),c)

Rausch-
vektor z

Conditional 
Vektor c

Abbildung 4.2: Architektur des DP-CGANS (in Anlehnung an [77])

40
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CTAB-GAN+ integriert ebenfalls die Aktivierungsfunktionen ReLU und LeakyReLU.
Die ergänzte Komponente C (Klassifikator oder Regressor) gleicht dem Aufbau des Dis-
kriminators. Auch diese macht Gebrauch von der Aktivierungsfunktion LeakyReLu in
Verbindung mit dem Dropout. Im Gegensatz zum DP-GANS besteht der Diskrimina-
tor sowie das zusätzliche Modell aber nicht aus zwei, sondern aus vier Hidden Schich-
ten. DPGAN und PATE-GAN besitzen im Generator sowie Diskriminator jeweils eine
Hidden Schicht, die beide die ReLU Aktivierungsfunktion nutzen. Dropout und Batch-
Normalization finden bei beiden Modellen keine Anwendung. Die Anzahl an Lehrermo-
dellen des PATE-GAN ist zudem auf zehn begrenzt.

4.5.2 Netzwerk Training

Das Netzwerk Training beinhaltet Informationen zur Epochenanzahl, Batchgröße, Opti-
mierungsalgorithmus sowie Lernrate. Die Epochenanzahl liegt beim Training ohne Pri-
vatsphäre bei 500 (400 beim AGMA Training mit CTAB-GAN+), andernfalls ist die
Anzahl vom erlaubten Privatsphären Budget abhängig. Die Batchgröße beträgt bei den
Modellen DPGAN, CTAB-GAN+ sowie DP-CGANS in der Regel ebenfalls 500. Bei einer
Anzahl von 40.000 Datenzeilen ergeben sich 800 Trainingsiterationen pro Epoche, die auf
Grund einer hohen Trainingsdauer beim DP-CGANS bei einem Privatsphären Budget
von 50 auf 400 (Batchgröße 1.000) reduziert werden. Darüber hinaus gleicht die Eingabe
des Diskriminators beim DP-CGANS die eines PacGans [53]. Er trifft seine Entscheidung
über real oder fake demnach nicht anhand eines Datensatzes, sondern erhält jeweils zehn
Datensätze derselben Klasse als Grundlage für seine Bewertung.

Fast alle Modelle verwenden außerdem den Optimierungsalgorithmus Adam. Neben der
Berechnung adaptiver Lernraten je Parameter beschleunigt Adam das Konvergieren des
Netzes und gilt als weit verbreiteter Optimierungsalgorithmus. Die zugehörige Lernrate
und der Weight Decay beeinflussen die Geschwindigkeit und Leistung des Modells.

4.5.3 Privatsphärenschutz

Zusätzlich zum Privatsphären Budget und der Fehlerwahrscheinlichkeit werden Noiseart,
DP-Accountant, sowie die Größe von Sigma im Privatsphärenschutz aufgelistet. Sigma
entspricht hierbei dem Gaussian Noise Variance Multiplier, der die Stärke des dem Gradi-
enten hinzugefügten Rauschen bestimmt. Je größer der Wert, desto höher das Rauschen
und so mehr Trainingsiterationen sind bei gleichem Privatsphären Budget möglich.
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4.6 Modifikationen am Programmcode

Nachfolgend werden die verwendeten Programmcode-Repositorys der einzelnen Modelle
genannt sowie vorgenommene Modifikationen aufgeführt. Die Programmcodes des DP-
GANs sowie PATE-GANs stammen aus einer Zusammenführung verschiedener Gene-
rativer Modelle [13]. Im Unterschied zu ihren ursprünglichen Veröffentlichungen bauen
sie auf einer bedingten Architektur auf. Auf Basis einer zu Beginn festgelegten Spalte
werden alle anderen Spalteninhalte generiert. In den Experimenten wird auf den Spal-
ten „Wohnsituation“ (Energie) und „BIK-Regionstyp“ (AGMA) trainiert. Darüber
hinaus wird beim DPGAN das RDP-Accountant anstelle des Moment Accountant ange-
wendet. Vom Autor zur Verfügung gestellte Beispieldaten liegen bereits in vorverarbei-
teter Version im Repository. Explizite Klassen zur Vor- und Nachbearbeitung der Daten
sind nicht vorhanden und werden entsprechend ergänzt. Die Daten der kontinuierlichen
Spalten werden auf den Bereich null bis eins skaliert und die diskreten Daten mit Hilfe
der One-Hot-Kodierung verarbeitet.

Die Datengenerierung mit den Modellen CTAB-GAN+ [79] und DP-CGANS [76]
erfolgt auf Grundlage der primären Repositorys. Der CTAB-GAN+ Programmcode wird
um eine Main-Klasse erweitert. Diese unterstützt dabei Konfigurationen vereinfacht vor-
zunehmen und das Modell aus dem Code zu starten. Die Komponente C klassifiziert in
den Experimenten die Spalten „Wohnsituation“ (Energie) und „Nutzung des Ver-
kehrsmittels U-Bahn, S-Bahn oder Regionalbahn in der Region“ (AGMA).
CTAB-GAN+ und DP-CGANS werden in ihrem ursprünglichen Programmcode für eine
bestimmte Anzahl an Epochen trainiert. Da die Modelle in den Experimenten jedoch so
lange trainiert werden sollen, bis sie ein definiertes Privatsphären Budget erzielen, wird
die Kontroll-Variable Target-Epsilon eingeführt. Beim Erreichen dieser Ziel-Variable en-
det das Modelltraining und die Daten werden mit aktuellem Stand des Generators gene-
riert. Des Weiteren werden automatisiert für alle vier Modelle CSV-Dateien angelegt, die
die Trainingsdauer und verbrauchten Privatsphären Budget je Epoche dokumentieren.
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4.7 Evaluations-Metriken

Mit dem primären Ziel qualitativ hochwertige Daten unter Berücksichtigung von Privat-
sphäre zu generieren, liegt der Fokus der Evaluation auf Datenqualität und Sicherheit
der verwendeten sensitiven Trainingsdaten. Darüber hinaus spielt die Performance der
Modelle eine entscheidende Rolle bei der Modellwahl für die DaFne Plattform.

4.7.1 Metriken zur Datenqualitätskontrolle

Die gewählten Metriken zur Prüfung der Datenqualität entstammen aus der frei ver-
fügbaren Python-Library „Synthetic Data Metrics (SDMetrics)“, die Teil des Synthetic
Data Vault Projektes ist [18]. SDMetrics unterstützt den Vergleich von realen und ge-
nerierten Daten anhand unterschiedlicher Metriken, die teils visuell aufbereitet und in
Reports gebündelt werden. Die einzelnen Metriken lassen sich zudem in die folgenden
Arten untergliedern:

- Single Column: Prüfung einer Spalte (real vs. generiert)
- Column Pairs: Korrelationsvergleich zwischen zwei Spalten
- Single Table: Analyse einer gesamten Tabelle
- Multi Table: Untersuchung des Zusammengangs mehrerer Tabellen (hier irrelevant)
- Sequential: Kontrolle sequentieller Datenzeilen (hier irrelevant)

Neben der Art der Metrik gibt es Unterscheidungen in ihrer Anwendbarkeit. Während
sich einige Metriken nur für diskrete oder kontinuierliche Datenspalten eignen, ermögli-
chen andere die Analyse beider Eigenschaften. In der Thesis werden der Quality sowie
Diagnostic Report durchgeführt. Beide Reports enthalten sowohl Metriken für die Un-
tersuchung diskreter als auch kontinuierlicher Datenspalten. Zur Ausführung werden die
realen und generierten Daten sowie ihre Metadaten benötigt. Tabelle 4.3 gibt eine Über-
sicht zu den in den Reports inkludierten Metriken samt Beschreibung und Eigenschaften.
Generell sind die Ergebnisse aller Metriken auf den Bereich 1.0 (beste Leistung) bis 0.0
(schlechteste Leistung) skaliert. Im Anschluss an die allgemeinen Reports werden Daten-
spalten mit auffällig schlechtem Ergebnis tiefgründiger analysiert.
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Metrikname Beschreibung Metrikart Datenart

Quality Report

KS Complement
Kolmogorov-Smirnov-Statistik vergleicht die
Wahrscheinlichkeitsverteilungen der numerischen
Werte.

Single Column Numerisch

TV Complement
Total Variation Distance berechnet den Unterschied
der Häufigkeiten jeder Kategorie.

Single Column Kategorisch

Correlation Similarity
Pearson-Korrelationskoeffizient misst die lineare
Beziehung zwischen zwei Spalten.

Column Pairs 2x Numerisch

Contingency Similarity
Berechnung der Ähnlichkeit eines Paares
kategorischer Spalten mit Vergleich des realen sowie
synthetischen Datenpaars.

Column Pairs 2x Kategorisch

Discretize numerical &
Contingency Similarity

Aufteilung der numerischen Werte in Kategorien
und anschließender Vergleich mittels Contingency
Similarity.

Column Pairs
1x Kategorisch
& 1x Numerisch

Diagnostic Report

New Row Synthesis
Metrik überprüft, ob in den generierten Daten
Zeilen existieren, die identisch mit Zeilen aus den
realen Daten sind.

Single Table
Kategorisch
& Numerisch

Range Coverage
Metrik misst, ob eine generierte Spalte den gesamten
Wertebereich seiner realen Spalte abdeckt.

Single Column Numerisch

Category Coverage
Metrik prüft, ob generierte Spalte alle Kategorien
der realen Spalte im richtigen Verhältnis abdeckt.

Single Column Kategorisch

Boundary Adherence
Metrik berechnet den Anteil der generierten Werte
einer Spalte, die innerhalb der Grenzen (Min-Max)
der realen Daten liegen.

Single Column Numerisch

Tabelle 4.3: Verwendete Qualitäts-Metriken unterteilt in Reports [18]

4.7.2 Verfahren zur Überprüfung von Privatsphäre

Aufbauend auf den Ergebnissen der Qualitätskontrolle werden die als qualitativ hoch-
wertig eingestuften generierten Daten in einem zweiten Schritt auf ihren Privatsphären-
schutz überprüft. Für die Sicherheitsanalyse wird das von Giomi et al. [31] entwickelte
frei verfügbare Framework „Anonymeter“ verwendet. Mit dem Ziel in synthetisierten ta-
bellarischen Datensätzen verbleibende Datenschutzrisiken aufzudecken und zu bewerten,
integrieren die Autoren die Hauptindikatoren für Anonymisierung gemäß Datenschutz-
bestimmungen wie der Europäischen Datenschutzgrundverordnung (DSGVO). Explizit
beinhaltet Anonymeter verschiedene Angriffsalgorithmen, um Risiken der Identifizierung,
Verknüpfbarkeit und Inferenz zu ermitteln.
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1. Risiko der Identifizierung (Singling-out): berechnet die Wahrscheinlichkeit, dass
ein Angreifer eine bestimmte Person im Datensatz isolieren kann. Anonymeter über-
prüft in diesem Fall den Datensatz auf einzigartige Kombinationen von Ausprägun-
gen, die auf eine Person zutreffen.

2. Risiko der Verknüpfbarkeit (Linkability): berechnet die Wahrscheinlichkeit,
dass ein Angreifer zwei oder mehrere Einträge aus verschiedenen Datensätzen, die
zur selben Person gehören, verknüpfen kann. Anonymeter erhält zwei disjunkte
Mengen an Ausprägungen und bewertet mithilfe des synthetischen Datensatzes, ob
die Teildatensätze zu derselben Person gehören oder nicht.

3. Risiko der Inferenz (Inference): berechnet die Wahrscheinlichkeit, dass ein An-
greifer sensible Informationen über eine Person im Datensatz ableiten kann. An-
onymeter analysiert diesbezüglich Korrelationen zwischen verschiedenen Spalten im
Datensatz.
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Bezugnehmend auf die drei Teilfragen zur Beantwortung der Forschungsfrage (definiert
in 4.2) erfolgt die Präsentation der Evaluationsergebnisse. Nach einer Analyse der Mo-
dellperformance in Bezug auf Geschwindigkeit und Eigenschaften der Epochen, wird die
Datenqualität auf unterschiedliche Merkmale geprüft und anschließend der Privatsphä-
renschutz mittels ML-Angriffen getestet. Zu Beginn jedes Unterkapitels werden aus den
gewonnen Erkenntnissen der Kapitel 2 bis 4 Hypothesen (HT) aufgestellt. Ihre Defini-
tion unterstützt das Aufdecken von Schwachstellen sowie Stärken der einzelnen Modelle
und offenbart unerwartete Ergebnisse. Abschließend werden die Hypothesen abgeglichen
und die wichtigsten Resultate zusammengefasst. Alle im folgenden Kapitel gemachten
Aussagen beziehen sich ausschließlich auf die durchgeführten Experimente und sind auf
den Rahmen dieser Untersuchungen beschränkt. Um allgemeingültige Nachweise zu er-
bringen, bedarf es weiterer Experimente.

5.1 Modellperformance

Um die erste Teilfrage zu untersuchen, wird die Modellperformance bezüglich absoluter
Trainingszeit und Dauer, Anzahl sowie Anstieg des Privatsphären Budgets pro Epoche
verglichen. Insbesondere die Trainingsdauer besitzt einen großen Einfluss auf die Verwen-
dung des ML-Modells.

Id Beschreibung
HT_1.1 Je größer das Privatsphären Budget, desto zeitintensiver die Generierung.
HT_1.2 Je größer die Spaltenanzahl, desto zeitintensiver die Generierung.
HT_1.3 Die Dauer einer Epoche ist beim Modelltraining mit DP im Vergleich zum

Modelltraining ohne DP erhöht.
HT_1.4 Die Anzahl an Epochen steigt mit dem Privatsphären Budget.

Tabelle 5.1: Hypothesen zur Modellperformance
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Trainingsdauer Grundsätzlich demonstrieren alle vier Modelle, dass ein höheres Pri-
vatsphären Budget zu einer höheren Trainingszeit führt (HT_1.1). Bei gleichem
Privatsphären Budget erweist sich das CTAB-GAN+ fast immer als schnellstes
Modell. Lediglich bei der Generierung der synthetischen Energiedaten ohne Pri-
vatsphäre liegt das DP-CGANS vor dem CTAB-GAN+. Als besonders langsam
trainierendes Modell offenbart sich das PATE-GAN. Allein für die Generierung der
Energiedaten mit einem Privatsphären Budget von 50 benötigt das Modell über
zehn Tage. Unter anderem aus diesem Grund wird auf die Generierung der AGMA
Daten mit einem Privatsphären Budget von 50 beim PATE-GAN verzichtet.

Die Generierung der Energiedaten benötigt im Vergleich zu den AGMA Daten
weniger Zeit und bestätigt somit im Rahmen der hier durchgeführten Experimente
HT_1.2. Die Spannbreite der unterschiedlichen Dauer je Datensatz ist stark vom
verwendeten Modell abhängig. Während beim CTAB-GAN+ nur wenige Minuten
zwischen der Generierung der AGMA und Energie Daten liegen, zeigt das DP-
CGANS Geschwindigkeitsprobleme bei der Synthese von Daten hoher Dimension.
Folglich wird der AGMA Datensatz für das Training mit dem DP-CGANS auf 25
Spalten gekürzt.

Zeit pro Epoche Auch wenn die absolute Trainingsdauer ohne Differential Privacy nicht
die kürzeste ist, deutet die benötigte Zeit pro Epoche auf ein deutlich schnelleres
Training hin (HT_1.3). Des Weiteren fällt auf, dass alle Modelle bis auf das DP-
CGANS bei unterschiedlich hohem Privatsphären Budget eine konstante Trainings-
dauer je Datensatz pro Epoche besitzen. Die Trainingsdauer pro Epoche wird beim
DP-CGANS durch das gewählten Privatsphären Budget beeinflusst. Mit Zunahme
des Privatsphären Budgets steigt die benötigte Zeit pro Epoche stark an.

Anstieg des Privatsphären Budgets Im Gegensatz zur häufig konstanten Trainingszeit
pro Epoche weisen alle vier Modelle eine Anstiegsreduktion des Privatsphären Bud-
gets pro Epoche im Trainingsverlauf vor. Vor allem beim DP-CGANS führt dies zu
einer verstärkten Verlängerung der Trainingsdauer. Hier treffen die im Verlauf stei-
gende Zeit sowie der immer kleiner werdende Anstieg des Privatsphären Budgets
pro Epoche aufeinander (vgl. Abbildung 5.1).
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Abbildung 5.1: Dauer und ε-Anstieg je Trainingsepoche des DP-CGANS

Anzahl an Epochen Der immer kleiner werdende Anstieg des Privatsphären Budgets
spiegelt sich in der Anzahl an Epochen wider. Mit größer werdendem Privatsphären
Budget wächst die Anzahl gravierend (HT_1.4). Auffällig ist ein großer Unter-
schied zwischen den Modellen, der durch die ebenfalls sich stark unterscheidenden
Größen im Anstieg des Privatsphären Budgets pro Epoche entsteht (siehe Anhang
A.5).

5.2 Datenqualität

Um sich der Teilfrage zur Datenqualität zu nähern, werden die Eigenschaften der ge-
nerierten Daten mit den Eigenschaften der realen Daten unter Inanspruchnahme der
verschiedenen Metriken (vorgestellt in 4.7.1) verglichen. Für eine verbesserte Übersicht
sind die Ergebnisse des Quality Reports und Diagnostic Reports separat aufgeführt.

Id Beschreibung
HT_2.1 Modelltraining ohne DP führt im Vergleich zum Modelltraining mit DP

zu einer verbesserten Datenqualität.
HT_2.2 Je größer das Privatsphären Budget, desto besser die Datenqualität.
HT_2.3 Je komplexer der Datensatz, desto schlechter die Datenqualität.
HT_2.4 Kategoriale Spalten können im Vergleich zu kontinuierlichen Spalten besser

abgebildet werden.
HT_2.5 Je geringer die Anzahl an unterschiedlichen Kategorien einer Spalte, desto

besser die Datenqualität.
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HT_2.6 Je schwächer die Korrelation zwischen zwei Spalten, desto besser die Da-
tenqualität.

Tabelle 5.2: Hypothesen zur Datenqualität

5.2.1 Quality Report

Nach der Untersuchung eines zusammengefassten Wertes zur Gesamtqualität der Daten,
erfolgt die Evaluation der einzelnen Bestandteile des Quality Reports. Die expliziten Me-
triken werden den Kategorien Beschaffenheit der einzelnen Spalten sowie Korrelationen
zwischen Spalten zugeordnet und nachfolgend analysiert.

Gesamtqualität Aggregiert über alle Metriken des Quality Reports gibt die Gesamtqua-
lität erste Hinweise auf verwendbare Daten. Aus der Abbildung 5.2 werden große
Qualitätsunterschiede zwischen den DP-Ursprungsmodellen PATE-GAN und DP-
GAN sowie den fortgeschrittenen Modellen CTAB-GAN+ und DP-CGANS unmit-
telbar sichtbar. Während das PATE-GAN nur ein Qualitätsniveau von 0,3 erreicht,
erzielt das CTAB-GAN+ immer Ergebnisse über 0,8. Die definierten Hypothesen
treten ausschließlich beim CTAB-GAN+ und DP-CGANS ein. Die Datenqualität
beim DPGAN und PATE-GAN nimmt weder mit steigendem Privatsphären Bud-
get zu (HT_2.2) noch weist der weniger komplexe Energie Datensatz eine höhere
Qualität auf (HT_2.3).
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Im Gegensatz dazu ist die Datenqualität beim CTAB-GAN+ und DP-CGANS
vielversprechend. Insbesondere das CTAB-GAN+ überzeugt in allen Generierun-
gen unabhängig vom Datensatz und Privatsphären Budget. Beide fortgeschrittenen
Modelle erzielen die besten Ergebnisse beim Training ohne DP (HT_2.1) und er-
reichen zumeist auch beim Training mit DP eine hochwertige Datenqualität.

Wie vermutet ist die Qualität beim Training mit einem Privatsphären Budget von
50 am besten. Dennoch trifft die Hypothese HT_2.2 nicht in allen Fällen zu.
Bis auf das Training von CTAB-GAN+ mit den AGMA Daten, zeigt sich, dass
die Qualität beim Training mit einem Privatsphären Budget von 10 schlechter
abschneidet als die bei 3. Entgegen der Erwartung lassen sich zudem die AGMA
Daten im Vergleich zu den weniger komplexen Energiedaten mit einer besseren
Datenqualität generieren (HT_2.3).

Beschaffenheit der Spalten Die Beschaffenheit der einzelnen Spalten übersteigt die Ge-
samtqualität (vgl. Abbildung 5.3). Daraus lässt sich schließen, dass sich die Ei-
genschaften individueller Spalten einfacher erlernen lassen als ihre Korrelationen.
Ansonsten gleichen die Befunde denen, die sich auf die Gesamtqualität beziehen.
CTAB-GAN+ und DP-CGANS generieren eine deutlich bessere Qualität als PATE-
GAN und DPGAN. Eine Vergrößerung des Privatsphären Budgets führt nicht im-
mer zu einer erwarteten Qualitätsverbesserung (HT_2.2) und die AGMA Daten
lassen sich in einer höheren Qualität abbilden als Energie Daten (HT_2.3).
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Abbildung 5.3: Ergebnisse des Quality Reports zu den Modellen CTAB-GAN+ und
DP-CGANS

Ein detaillierter Blick in die explizit verwendeten Metriken zur Berechnung der
Beschaffenheit der Spalten (vgl. Abbildung 5.4) enthüllt bei allen Datensätzen und
Modellen eine große Differenz zwischen den Ergebnissen des TV Complements (ka-
tegorische Daten) und KS Complements (numerische Daten). Die Kategorien lassen
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sich besser in der realen Wahrscheinlichkeitsverteilung reproduzieren als der Wer-
tebereich bei den numerischen Spalten (HT_2.4). Angesichts der Struktur der
Trainingsdaten wird ersichtlich, weshalb die AGMA Daten im Vergleich zu den
Energiedaten insgesamt präziser repräsentiert werden können. Ein Verhältnis von
57:10 (Kategorisch: Numerisch) der AGMA Spalten steht dem Verhältnis von 8:9
der Energie Daten gegenüber (HT_2.3).
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Abbildung 5.4: Vergleich der Metriken TV- und KS-Complement beim CTAB-GAN+

Sowohl bei den generierten Energiedaten als auch bei den AGMA Daten wird au-
ßerdem sichtbar, dass es den Modellen schwer fällt kategorische Daten mit hoher
Ausprägungsanzahl zu generieren (HT_2.5). Die Modelle zeigen Schwierigkeiten
die Spalte „Bundesland“, die die größte Anzahl an Ausprägungen in beiden Daten-
sätzen besitzt, exakt abzubilden. Im Gegensatz dazu kann die Spalte „Geschlecht“
besonders zuverlässig vorhergesagt werden.

Korrelationen zwischen Spalten Wie im vorherigen Absatz angedeutet, erzeugen die
Modelle bei der Abbildung von Korrelationen zwischen Spalten schlechtere Ergeb-
nisse als bei der Reproduktion von unabhängigen Spalteneigenschaften. Mit Zunah-
me der Gesamtqualität zeichnet sich eine Reduktion dieser Differenz ab. Andernfalls
veranschaulichen die Korrelationswerte bezüglich der verschiedenen Kriterien ein
ähnliches Verhalten wie die zuvor untersuchten Metriken (vgl. Abbildung 5.3).

Auch in diesem Fall belegen die zugrundeliegenden Metriken eine Diskrepanz zwi-
schen der Contigency Similaritiy und der Correlation Similarity. Im Kontrast zur
Datenbeschaffenheit fällt auf, dass sich die Korrelationen zwischen den numerischen
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Datenspalten (Correlation Similarity) am besten erlernen lassen. Ferner verdeut-
lichen die Ergebnisse, dass schwache Korrelationen zwischen den Spalten besser
reproduziert werden können als hohe Korrelationen (HT_2.6).

Abbildung 5.5 zeigt die Korrelationen zwischen den numerischen Werten. Es wird
deutlich, dass mit zunehmendem Privatsphären Budget die realen Korrelationen
gezielter reproduziert werden. Darüber hinaus werden unterschiedlich ausgeprägte
Korrelationen zwischen Energie (links) und AGMA (rechts) Daten sichtbar.
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Abbildung 5.5: Korrelationen zwischen numerischen Daten des CTAB-GAN+

Bei der Contigency Similaritiy bedarf es einer Unterteilung in der Bewertung von
Korrelationen zweier kategorischer Spalten und von Korrelationen zwischen einer
kategorischen und numerischen Spalte. Vor allem treten hier Schwierigkeiten beim
Abbilden der Korrelationen zwischen kategorischer und numerischer Spalten auf.
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5.2.2 Diagnostic Report

Die Evaluation des Diagnostic Reports gibt Aufschluss über die Syntheseleistung der
Modelle, überprüft inwiefern die Wertebereiche einzelner Spalten abgedeckt werden und
ob die numerischen Daten ihre ursprünglichen Grenzwerte überschreiten.

Syntheseleistung Eine Eigenschaft, die alle vier Modelle erfüllen, ist die Fähigkeit zu
100% neue Daten zu generieren. Im Abgleich zwischen realen und generierten Daten
lassen sich keine identischen Datensätze wiederfinden. Es existieren demnach in
keinem Fall Kopien, die unmittelbare Rückschlüsse auf ein komplettes Datum aus
den realen Daten zulassen könnten.

Abdeckung des Wertebereichs Auch bei der Abdeckung des Wertebereichs einzelner
Spalten zeigen die meisten Modelle wenige Probleme. Insbesondere die Modelle
DPGAN und CTAB-GAN+ decken den Wertebereich bei jeder Generierung zu
über 90% ab. PATE-GAN umfasst den Wertebereich der AGMA Spalten ebenfalls
zufriedenstellend, hat aber Herausforderungen den Wertebereich der Energie Spal-
ten geeignet abzubilden. Beim DP-CGANS fallen die generierten Daten mit einem
Privatsphären Budget von zehn auf. Im Verhältnis zu den übrigen Ergebnissen
werden die Wertebereiche hier weniger gut abgedeckt (vgl. Abbildung 5.6).
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Abbildung 5.6: Abdeckung des Wertebereichs unterteilt nach Datensatz

Beim Abgleich der konkreten Metriken wird sichtbar, dass das PATE-GAN bei der
Synthese der Energiedaten größere Schwierigkeiten mit dem Category Coverage als
mit dem Range Coverage besitzt. Im Kontrast dazu weist das DP-CGANS beim
Category Coverage nahezu immer eine Abdeckung von 100% auf, offenbart aber
bei einem Privatsphären Budget von zehn Schwächen bei der Erfassung aller Werte
des Range Coverages (HT_2.4).
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Einhaltung von Grenzwerten Die größte Unterscheidung zwischen den ursprünglichen
und fortgeschrittenen DP-Modellen liegt im Einhalten von Grenzwerten der nu-
merischen Spalten (vgl. Abbildung 5.7). Während CTAB-GAN+ und DP-CGANS
keine numerischen Daten außerhalb der Grenzbereiche der realen Datenbasis gene-
rieren, scheinen DPGAN und PATE-GAN die ursprünglichen Wertegrenzen voll-
ständig zu ignorieren. Beispielsweise enthält die Spalte „Alter“ negative Werte und
Maxima von über mehreren 1.000. Als Folge sind viele numerische Werte beim
DPGAN sowie PATE-GAN unsinnig und ihre Spalten nicht verwendbar.
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Abbildung 5.7: Einhaltung von Grenzwerten unterteilt nach Datensatz

5.3 Privatsphärenschutz

Die Analyse zum Privatsphärenschutz erfolgt mittels des in Kapitel 4.7.2 eingeführten
Frameworks Anonymeter. Die integrierten Angriffs-Modelle werden genutzt, um die zwölf
qualitativ hochwertigsten Datensätze bezüglich ihres Risikos gegenüber Identifizierung,
Verknüpfbarkeit und Inferenz zu überprüfen. Explizit handelt es sich bei den ausge-
wählten Datensätzen um alle vom CTAB-GAN+ generierten Datensätze sowie die vom
DP-CGANS generierten Datensätze mit einem Privatsphären Budget von 50 und∞. Die
Ergebnisse der Angriffs-Modelle enthalten jeweils drei Werte: das vorhergesagte Risiko
(Mittelwert aller Angriffe) sowie die Minima und Maxima des 95%-Konfidenzintervalls.
Um möglichst zuverlässige Einschätzungen zum Privatsphärenschutz zu geben, werden
bei der Auswertung insbesondere die Maxima analysiert. Die konservative Haltung führt
dazu, dass mit einer 95% Sicherheit die Risiken maximal so hoch sein werden, wie die
berechneten Werte. Alle Experimente werden drei Mal durchgeführt und ihre Resultate
anschließend gemittelt.
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Id Beschreibung
HT_3.1 Modelltraining mit DP führt im Vergleich zum Modelltraining ohne DP

zu einem erhöhten Datenschutz.
HT_3.2 Je niedriger das Privatsphären Budget, desto höher der Datenschutz.
HT_3.3 Je mehr Informationen einem Angreifer zur Verfügung stehen, desto hö-

her das Risiko, dass unbekannte Spaltenausprägungen ermittelt werden
können.

Tabelle 5.3: Hypothesen zum Privatsphärenschutz

Abbildung 5.8 zeigt einen aggregierten Überblick zu den maximalen Risiken der einzelnen
Angriffsformen. Während die oberen beiden Diagramme Ergebnisse zu den AGMA Daten
präsentieren, berücksichtigen die beiden unteren die Energie Daten. Zu beachten sind
die unterschiedlichen Wertebereiche der Y-Achse, die auf zum Teil unsichere Energie
Daten hinweisen. Darüber hinaus wird deutlich, dass die Risiken zur Verknüpfbarkeit
besonders niedrig sind und fast immer bei unter 1% liegen. Im Folgenden werden weitere
Auffälligkeiten herausgestellt und analysiert.
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Abbildung 5.8: Gegenüberstellung von Risiken im Privatsphärenschutz nach Angriffsart
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Identifizierung Basierend auf der Annahme, dass seltene Ausprägungen von Spalten in
den realen Datensätzen ebenfalls selten in den generierten Daten vorkommen, wird
mit dieser Angriffsart die Identifizierbarkeit einzelner Personen untersucht. Unter-
schieden wird zwischen der Uni- und Multi-Variante.

Mit dem Ziel Spalten zu entdecken, die viele verschiedene Ausprägungen (bspw.
IDs, Adressen, Telefonnummer) besitzen, berechnet die Uni-Variante die Risiken
anhand einer Spalte. Mit einer Anzahl von 750 Attacken je Durchlauf liegen die
Risiken unabhängig vom Datensatz und Privatsphären Budget beim CTAB-GAN+
zwischen 1% und 3%. Hingegen weisen die Auswertungen zu den vom DP-CGANS
generierten Daten hohe Differenzen zwischen den Daten auf, die mit und ohne
Differential Privacy trainiert wurden. Die Ergebnisse befinden sich beim Training
ohne DP bei über 4% (AGMA) bzw. 6% (Energie) und fallen beim Training mit
einem Privatsphären Budget von 50 unter 1% (vgl. Abbildung 5.8).

Deutlich höher sind die Risiken für eine Identifikation bei der Analyse zusam-
menhängender Spalten. Für den AGMA und Energie Datensatz werden bei der
Multi-Variante jeweils fünf, zehn und fünfzehn Spalten ausgewählt und ihre jewei-
ligen Ausprägungen verknüpft. Die verwendeten Spalten können im zugehörigen
Jupyter Notebook (siehe Anhang A.1) eingesehen werden. Aufsteigend von fünf
auf fünfzehn verknüpften Spalten zeigt sich, dass die Risiken einer Identifikation
abnehmen. Maximale Wahrscheinlichkeiten von bis zu 23% sind beim Datensatz
CTAB_agma_noPrivacy mit der Verknüpfung von fünf Spalten möglich. Bei glei-
chen Trainingsdaten und Modell, aber einem Privatsphären Budget von zehn, kann
das Risiko um 10% gesenkt werden.

Abbildung 5.9 veranschaulicht die Risiken der Multi-Variante. Bei allen Variationen
wird sichtbar, dass das Training ohne DP höhere Risiken im Vergleich zum Training
mit DP birgt (HT_3.1). Jedoch kann nicht bewiesen werden, dass bei Abnahme
des Privatsphären Budgets auch immer die Risiken minimiert werden (HT_3.2).
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Abbildung 5.9: Risiken der Identifizierung unter Nutzung der Multi-Variante

Verknüpfbarkeit Bei Angriffen im Rahmen der Verknüpfbarkeit wird davon ausgegan-
gen, dass dem Angreifer zwei Teile aus dem realen Datensatz vorliegen und dieser
zusammen mit den generierten Daten versucht die Teile zu verknüpfen. Konkret
sucht der Angreifer mittels des Nearest-Neighbor Algorithmus für jedes Datum im
ersten Teil eine definierte Anzahl k an synthetischen Daten, die den Eigenschaften
des jeweiligen Datums am ähnlichsten sind. Diese werden dann verwendet, um im
zweiten Datenteil Datensätze zu finden, die derselben Person gehören könnten.

Für die Evaluation stehen dem Angreifer jeweils Teildatensätze bestehend aus drei,
fünf oder acht Spalten zur Verfügung. Darüber hinaus wird die Anzahl an zu su-
chenden synthetischen Datensätzen ähnlicher Eigenschaften auf zwei, vier, sechs,
acht sowie zehn festgelegt. Grundsätzlich fällt bei allen Experimenten auf, dass
die Risiken begrenzt sind. Die Wahrscheinlichkeit Datensätze zu verknüpfen, liegt
nahezu immer bei unter 1%. Auch spiegeln sich die Erkenntnisse zur Identifizier-
barkeit in diesen Angriffen wider. Erneut sind die mit DP generierten Daten mit
einzelnen Ausnahmen besser geschützt als die ohne (HT_3.1) und ein niedrigeres
Privatsphären Budget weist entgegnen der Erwartungen nicht in jedem Fall auf
besser geschützte Daten hin (HT_3.2).
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Des Weiteren zeichnet sich ab, dass das Risiko mit der Anzahl vom Angreifer ver-
wendeten synthetischen Datensätzen ansteigt (vgl. Abbildung 5.10). Tendenzen
deuten zudem daraufhin, dass das Risiko der Verknüpfbarkeit zunimmt, wenn die
realen Teilmengen eine größere Anzahl an Spalten beinhalten (HT_3.3).
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Abbildung 5.10: Risiken der Verknüpfbarkeit unterschiedlich großer Datensätze

Inferenz Bei den Angriffen zur Berechnung des Inferenz-Risikos wird davon ausgegangen,
dass dem Angreifer Informationen zur Ausprägung einzelner Spalten vorliegen. Un-
ter dieser Prämisse verfolgt der Angreifer das Ziel, weitere sensible Informationen
zu einzelnen Personen herauszufinden. Ähnlich wie beim Risiko Verknüpfbarkeit
wird der Nearest-Neighbor Algorithmus verwendet, um den synthetischen Daten-
satz nach Einträgen mit möglichst ähnlichen Ausprägungen durchzusuchen.

Auf Basis der Annahme, dass dem Angreifer alle Ausprägungen bis auf eine Spalte
zur Verfügung stehen, wird für jede Spalte einzeln das Risiko der Inferenz berech-
net. Je Datensatz werden anschließend die zehn Spalten mit dem größten Risiko
gegenübergestellt. Große Unterschiede zeigen sich zwischen den generierten AGMA
und Energie Daten. Während risikoreiche Spalten im AGMA Datensatz mit einer
Wahrscheinlichkeit von über 10% vorhergesagt werden können, erreichen Spalten
im Energie Datensatz nur ein Risiko von 4% (HT_3.3). Ein verhältnismäßig hohes
Risiko bergen im AGMA Datensatz die Spalten: „Einkauf in Großmärkten“ sowie
„Berufliche Flugzeugnutzung“. Diese Spalten teilen die Eigenschaft eine Ausprä-
gung zu besitzen, die den Großteil der Vorkommen ausmacht. 91% der befragten
Personen nutzen beruflich kein Flugzeug und 87% gehen selten bzw. nie in Groß-
märkten einkaufen (vgl. Abbildung 5.11).
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Abbildung 5.11: Bezüglich Inferenz gefährdete Spalten mit beispielhafter Eigenschaft der
Spalte „Berufliche Flugzeugnutzung“

Werden die Ergebnisse der einzelnen Spalten zusammen betrachtet, zeigt sich, dass
die Risiken aggregiert beim Energie Datensatz höher ausfallen. Wie in Abbildung
5.8 zu sehen, liegen sie bis auf eine Ausnahme über 4%, während sich die Risiken
beim AGMA Datensatz des Öfteren bei und unter 3% befinden.

5.4 Zusammenfassung der Ergebnisse

Tabelle 5.4 fasst die Ergebnisse der untersuchten Hypothesen zusammen. Obgleich sich
die meisten Hypothesen als gültig herausstellen, werden HT_2.3 (Komplexität beein-
trächtigt Qualität) widerlegt und HT_2.2 & HT_3.2 (Privatsphären Budget beein-
flusst Datenqualität und Datenschutz) nur teilweise bestätigt. Da vor allem letztere je-
doch entscheidende Annahmen dieser These sind, werden ihre Ergebnisse im Kapitel 6
infrage gestellt. Ein Grund für die Entkräftung der Hypothese HT_2.3 konnte bereits
in den unterschiedlichen Verhältnisse von kontinuierlichen sowie diskreten Spalten in den
Datensätzen identifiziert werden. Die Bestätigung von HT_2.6 (Korrelationsstärke be-
einflusst Datenqualität) unterstützt die Argumentation, denn auch in diesem Fall sind
die Eigenschaften der kontinuierlichen Daten des Energie Datensatzes im Vergleich zum
AGMA Datensatz schwieriger zu reproduzieren.
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Erfüllt Id Beschreibung
Modellperformance

X HT_1.1
Je größer das Privatsphären Budget, desto zeitintensiver die
Generierung.

X HT_1.2
Je größer die Spaltenanzahl, desto zeitintensiver die
Generierung.

X HT_1.3 Die Dauer einer Epoche ist beim Modelltraining mit DP im Ver-
gleich zum Modelltraining ohne DP erhöht.

X HT_1.4 Die Anzahl an Epochen steigt mit dem Privatsphären Budget.
Datenqualität

X HT_2.1 Modelltraining ohne DP führt im Vergleich zum Modelltraining
mit DP zu einer verbesserten Datenqualität.

(7) HT_2.2
Je größer das Privatsphären Budget, desto besser die
Datenqualität.

7 HT_2.3 Je komplexer der Datensatz, desto schlechter die Datenqualität.
X HT_2.4 Kategoriale Spalten können im Vergleich zu kontinuierlichen

Spalten besser abgebildet werden.
X HT_2.5 Je geringer die Anzahl an unterschiedlichen Kategorien einer

Spalte, desto besser die Datenqualität.
X HT_2.6 Je schwächer die Korrelation zwischen zwei Spalten, desto besser

die Datenqualität.
Privatsphärenschutz

X HT_3.1 Modelltraining mit DP führt im Vergleich zum Modelltraining
ohne DP zu einem erhöhten Datenschutz.

(7) HT_3.2
Je niedriger das Privatsphären Budget, desto höher der
Datenschutz.

X HT_3.3 Je mehr Informationen einem Angreifer zur Verfügung stehen,
desto höher das Risiko, dass unbekannte Spaltenausprägungen
ermittelt werden können.

Tabelle 5.4: Abgleich der Hypothesen
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Ergänzend zum Abgleich der Hypothesen lassen sich weitere interessante Erkenntnisse
für die Beantwortung der Forschungsfrage ableiten:

E_1.1 Unabhängig von der Größe des Privatsphären Budgets bleibt die Trainingsdauer
pro Epoche konstant (Ausnahme: Modell DP-CGANS).

E_1.2 Die Anstiegsgröße des Privatsphären Budgets je Epoche verringert sich im Trai-
ningsverlauf, was zu einer Verstärkung von HT_1.4 führt.

E_2.1 Es bestehen große Qualitätsunterschiede zwischen den DP-Ursprungsmodellen
(DPGAN & PATE) und den fortgeschrittenen Modellen (CTAB-GAN+ & DP-
CGANS).

E_2.2 Die Beschaffenheit einzelner Spalten lässt sich besser erlernen als die Korrelation
zwischen Spalten.

E_2.3 Korrelationen zwischen zwei numerischen Spalten werden besser erlernt als Kor-
relationen zwischen unterschiedlichen bzw. kategorischen Spalten.

E_2.4 Das Abbilden der Korrelation zwischen einer kategorischen und numerischen
Spalte fällt den Modellen besonders schwer.

E_2.5 Es werden ausschließlich neue Datensätze generiert (keine Kopien).
E_2.6 DPGAN & PATE-GAN reproduzieren die numerischen Spalten nicht geeignet.

Auch wenn sie die Wertebereiche weitgehend abdecken, ergeben die Daten ohne
Einhaltung der Grenzwerte keinen Sinn.

E_3.1 Die Risiken einer Verknüpfbarkeit von Daten sind begrenzt (kleiner 1%) und
liegen unterhalb der anderen durch Angriffe entstehenden Risiken.

E_3.2 Die Risiken für eine Identifikation bei Angriffen mit zusammenhängenden Spalten
(Multi-Variante) sind hoch. Beim Training ohne Differential Privacy erreichen sie
Werte über 20%.

E_3.3 Kategoriale Spalten, bei denen eine Ausprägung den Großteil der Vorkommen
ausmacht, bergen ein vergleichsweise hohes Risiko der Inferenz.
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Folgend werden der Nutzen der Integration von DP in GANs diskutiert sowie die nicht
eingetroffenen Hypothesen HT_2.2 und HT_3.2 (Privatsphären Budget beeinflusst
Datenqualität und Datenschutz) untersucht. Ferner werden Verbesserungspotentiale der
Evaluation aufgezeigt sowie die Forschungsfrage anhand der Ergebnisse der Teilfragen
beantwortet. Abschießend erfolgt die Modellauswahl für DaFne einschließlich eines An-
forderungsabgleichs sowie einer kurzen Erläuterung zum Quellcode.

6.1 Anwendbarkeit von DP in GANs

Die Ergebnisse aus Kapitel 5 demonstrieren den Einfluss der Integration von Differen-
tial Privacy in GANs. Es zeigt sich, dass DP erfolgreich für einen verbesserten Schutz
der Privatsphäre genutzt werden kann. Fast in allen Fällen besitzen die mit Differential
Privacy generierten Daten ein geringeres Sicherheitsrisiko als die Daten, die ohne DP
trainiert wurden (HT_3.1). Gleichermaßen wird sichtbar, dass die mit DP generierten
Daten eine vergleichsweise geringere Qualität aufweisen (HT_2.1). Der in Kapitel 2.3.4
vorgestellte Trade-Off zwischen Nutzbarkeit und Privatsphäre wird ersichtlich.

Obgleich die Reduzierung von Risiken allgemein (DP vs. kein DP) belegt werden kann,
können die Hypothesen zur Auswirkung der Größe des Privatsphären Budgets auf Daten-
qualität (HT_2.2) und Datenschutz (HT_3.2) nicht vollständig bestätigt werden. Da
dieses Verhalten aufgrund der kürzeren Trainingsdauer wenig sinnvoll erscheint, bedarf
es einer Analyse möglicher Ursachen dieses Verhaltens.

Beim Fokus auf die Fälle der fortgeschrittenen Modelle (CTAB-GAN+ & DP-CGANS),
bei denen die Hypothese HT_2.2 nicht zu trifft, wird deutlich, dass vor allem Daten
mit einem Privatsphären Budget von drei im Vergleich zu zehn besser abschneiden. Die
zwei Metriken KS Complement (Beschaffenheit von numerischen Daten) und Contigen-
cy Similarity (Korrelationen zwischen unterschiedlichen Datentypen) tragen hierfür die
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Verantwortung. Die Ergebnisse zeigen, dass diese beiden Metriken Eigenschaften unter-
suchen, die für die Modelle schwierig zu erlernen sind (vgl. HT_2.4 & E_2.4). Darüber
hinaus fällt auf, dass bei der Generierung der Energie Daten die Hypothese HT_2.2 öf-
ter nicht zutrifft. Es handelt sich auch hierbei um den Datensatz, der von den Modellen
schwerer zu erlernen ist (vgl. HT_2.3).

Im Gegensatz zur Qualität wird die Hypothese HT_3.2 beim Energie Datensatz im
Vergleich zum AGMA Datensatz häufiger eingehalten. Lediglich bei den Angriffen zur
Inferenz sowie bei der Multi-Variante zur Identifizierung mit fünf verknüpften Spalten
übersteigen die Daten mit einem Privatsphären Budget von zehn die Risiken der Daten
mit einem Privatsphären Budget von 50. Bei den AGMA Daten fallen vergleichswei-
se zu hohe Risiken bei den Datensätzen mit einem Privatsphären Budget von 3 sowie
10 auf. Unmittelbare Auswirkungen von Qualität auf Risiken können nicht identifiziert
werden.

Um fundierte Gründe für die unerwarteten Ergebnisse der Hypothesen HT_2.2 und
HT_3.2 liefern zu können, werden zusätzliche Analysen zur Datenqualität und Sicher-
heit in weiterführenden Forschungsarbeiten notwendig. Bei diesen sollte auch über eine
Erweiterung der Experimente dieser Thesis nachgedacht werden. Dadurch dass die Mo-
delle weder während des Trainings noch bei der direkten Synthese deterministisch sind,
sollten die Datensätze sowie die zugehörigen Modelle nicht nur einmal generiert bzw. trai-
niert werden. Zukünftige Evaluationen sollten daher auf mehrmals trainierten Modellen
mit mehrfach generierten Daten aufbauen.

Für eine zuverlässige Vergleichbarkeit von Datensätzen mit unterschiedlichen Privatsphä-
ren Budgets sollten zukünftig zudem alle Datensätze mit Privatsphären Budget innerhalb
eines Modelltrainings generiert werden. Konkret werden dann Daten nach dem Erreichen
des jeweiligen Privatsphären Budgets generiert und nicht das Modelltraining jeweils neu
gestartet. Des Weiteren sollten zusätzlich zu den Evaluationen mit SDMetrics und An-
onymeter ergänzende Metriken bei der Validierung der Qualität und des Privatsphären-
schutzes unterstützen.

6.2 Beantwortung der Forschungsfrage

Auch wenn die Evaluation Verbesserungspotential aufweist, kann die Forschungsfrage mit
Hilfe der zugehörigen Teilfragen eindeutig beantwortet werden:
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Performance: Wie viel Zeit benötigt das Modell für die Synthese von Daten?
Bis auf eine zu vernachlässigende Ausnahme generiert das CTAB-GAN+ am schnells-
ten die geforderten Daten. Insbesondere mit der Zunahme des Privatsphären Bud-
gets und der damit einhergehenden verlängerten Trainingsdauer werden große Un-
terschiede zwischen dem CTAB-GAN+ und den anderen drei Modellen sichtbar.
Beim Training ohne DP und dem niedrigen Privatsphäre Budget von drei erzielt
das DP-CGANS mit dem CTAB-GAN+ vergleichbare Zeiten. Beim DP-CGANS
muss jedoch berücksichtigt werden, dass die Anzahl an Dimensionen im Datensatz
einen großen Einfluss auf die Dauer besitzt und folglich der AGMA Datensatz für
dieses Modell auf 25 Spalten gekürzt werden musste.

Zusammenfassend sticht das CTAB-GAN+ bei der Modell-Performance beson-
ders durch seine vergleichsweise kurzen Trainingszeiten bei hohen Privatsphären
Budgets sowie bei der Generierung von Daten mit einer großen Anzahl an Dimen-
sionen hervor. Die benötigten Zeiten für die unterschiedlichen Generierungen der
AGMA Daten betragen bei verwendeter Parameterwahl (siehe Tabelle A.1) 4min
(ε=3), 57min (ε=10), 12h 47min (ε=50) und 1h 20min (ε=∞). Minimal
geringer sind die Zeiten bei der Generierung der Energie Daten (vgl. Tabelle A.2).

Datenqualität: Inwiefern entsprechen die Eigenschaften der vom Modell gene-
rierten Daten denen der Trainingsdaten?
Im Allgemeinen existieren bezüglich der Qualität der generierten Daten große
Unterschiede zwischen den Ursprungsmodellen sowie fortgeschrittenen Modellen.
Während beim DPGAN und PATE-GAN die numerischen Spalten ungenügend re-
produziert werden und sich die Gesamtqualität immer unter einem Wert von 0,5
befindet, erreicht CTAB-GAN+ in allen Fällen eine Gesamtqualität von über 0,8
und Spitzenwerte um die 0,95. Auch DP-CGANS generiert nutzbare Daten mit ei-
ner Gesamtqualität von über 0,8 unabhängig von der Datenart. Hierbei überzeugt
insbesondere die Datenqualität der ohne DP generierten Daten sowie die AGMA
Daten, die mit einem Privatsphären Budget von 50 generiert wurden. Dennoch un-
terliegen alle Teilergebnisse des DP-CGANS den Qualitätsergebnissen des CTAB-
GAN+. Darüber hinaus ist die Datenqualität auch bei den vom CTAB-GAN+
generierten Daten mit einem Privatsphären Budget von 3 und 10 hoch.

Analog zur Performance erzielt das CTAB-GAN+ ebenfalls die beste Datenqua-
lität. Die AGMA Daten können besser abgebildet werden als die Energie Daten.
Die Datenbeschaffenheit der einzelnen Spalten kann bei den AGMA Daten zu 89%
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(ε=3), 90% (ε=10), 92% (ε=50) und 94% (ε=∞) abgedeckt werden. Die Kor-
relationen werden etwas schlechter nachgebildet, erreichen aber auch Werte von
85% (ε=3), 87% (ε=10), 89% (ε=50) und 93% (ε=∞). Mit eine Gesamtqua-
lität von mind. 82%, Datenbeschaffenheit von mind. 84% sowie Korrelationswerten
von mind. 80% kann das CTAB-GAN+ die Energie Daten etwas weniger präzise
abbilden. Die Ergebnisse bleiben dennoch im Vergleich zu den anderen Modellen
die mit der höchsten Qualität.

Privatsphärenschutz: Wie sicher sind die vom Modell generierten Daten gegen-
über Angriffen?
Die Risikobewertung für einen Verlust der Privatsphäre wurde ausschließlich auf
Datensätzen mit hoher Qualität vorgenommen. Folglich existiert nur ein Vergleich
zwischen den vom DP-CGANS und CTAB-GAN+ generierten Datensätzen. Es
zeigt sich, dass die Höhe der Risiken sowie dessen Minimierung durch die Inte-
gration von DP im Wesentlichen von der Angriffsart abhängt. Während sich die
Risiken einer Verknüpfbarkeit als gering herausstellen, entstehen höhere Risiken
bei der Identifizierung (vor allem bei der Multi-Variante) sowie bei der Inferenz
einzelner Spalten. Auffällig sind die vergleichsweise hohen Risiken der Identifizie-
rung (Uni-Variante) bei den vom DP-CGANS ohne DP generierten Daten, die bei
einem Training mit Privatsphären Budget von 50 fast vollständig eliminiert wer-
den können. Auch die Risiken der Multi-Variante können vom DP-CGANS durch
den Einsatz von DP reduziert werden und unterliegen zumeist den Risiken des
CTAB-GAN+. Bei den Risiken der Inferenz erzielt das CTAB-GAN+ geringere
Werte beim AGMA Datensatz und das DP-CGANS geringere Werte beim Energie
Datensatz.

Im Gegensatz zur präzisen Modellwahl bezüglich Performance und Qualität kann
beim Privatsphären Schutz keine eindeutige Auswahl getroffen werden. Beide Mo-
delle generieren Daten mit Risiken, die jedoch durch die Integration von DP redu-
ziert werden können. Generell trägt die Angriffsart maßgeblich zu den unterschied-
lich hohen Risiken bei. Insbesondere bei der Identifizierung bestehen hohe Risiken,
die bei der Multi-Variante mit fünf Spalten beim AGMA Datensatz ihre Höchst-
werte erreichen. CTAB-GAN+ senkt die Risiken von 23% (Training ohne DP)
auf 17% (Training mit ε=50) und DP-CGANS von 20% auf 15%. Ergänzend
sollte betont werden, dass der Vergleich von zwei Datensätzen keine abschließen-
de Entscheidung über das sicherere Modell zulässt. Weitere Experimente werden
nötig.
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Forschungsfrage: Welches Generative Adversarial Network eignet sich für ei-
ne adäquate Synthese sensibler tabellarischer Daten unter Berücksichti-
gung von Differential Privacy?
Auf Grundlage der Ergebnisse der Teilfragen fällt die Wahl für ein geeignetes GAN
mit Integration von DP auf das CTAB-GAN+. Das Modell überzeugt sowohl
bei der Trainingsdauer als auch bei der generierten Datenqualität und gewähr-
leistet einen verbesserten Privatsphärenschutz durch die Integration von DP. Vor
allem aufgrund der guten Datenqualität trotz geringem Privatsphären Budget und
der unproblematischen Generierung von hoch-dimensionalen Daten kann sich das
CTAB-GAN+ gegenüber den anderen untersuchten Modellen durchsetzen. Nichts-
destotrotz besitzt auch das CTAB-GAN+ Verbesserungspotentiale, die in fortfüh-
renden Arbeiten Berücksichtigung finden sollten. Indizien geben hierfür beispiels-
weise die gewonnen Erkenntnisse E_2.2 bis E_2.4 und Hypothesen wie HT_2.4
bis HT_2.6 (siehe Kapitel 5.4).

6.3 Modellauswahl für DaFne

Durch die im Zuge dieser Arbeit durchgeführten Experimente, fällt die Modellauswahl für
die DaFne Plattform auf das CTAB-GAN+. Wie aus den Ergebnissen und beantworteten
Forschungsfragen hervorgeht, setzt es sich insbesondere durch eine kurze Trainingsdauer
und der Generierung von qualitativ hochwertigen Daten durch. Darüber hinaus kann
der positive Einfluss der Integration von DP auf den Privatsphärenschutz belegt werden.
Tabelle 6.1 gibt einen Überblick der umgesetzten funktionalen Anforderungen (definiert
in Kapitel 4.1.1). Die offenen Anforderungen weisen auf Handlungspotentiale für weiter-
führende Arbeiten hin.

Erfüllt Id Beschreibung
Modellaufbau

X FA_01 Modell garantiert beim Training Privatsphäre
X FA_02 Architektur des Modells ist skizziert
X FA_03 Modelltraining, Vor- und Nachbearbeitung sind nachvollziehbar
7 FA_04 Trainiertes Modell bleibt für erneute Datensynthese gespeichert
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Modelltraining
X FA_05 Beispieldatensatz steht zur Verfügung
X FA_06 Trainingsparameter sind frei wählbar
X FA_07 Hilfestellung bei der Wahl der Trainingsparameter ist vorhanden
X FA_08 Default Trainingsparameter werden angezeigt
7 FA_09 Trainingsdauer und benötigte Epochenanzahl werden prognos-

tiziert
(7) FA_10 Trainingsfortschritt der Generierung wird angezeigt
7 FA_11 Sobald die Daten generiert sind erfolgt eine Benachrichtigung

Generierte Daten
X FA_12 Unabhängig von Eigenschaften und Domäne sind Trainingsda-

ten wählbar
X FA_13 Generierte Daten lassen keinen Rückschluss auf reale Daten zu
X FA_14 Generierte Daten besitzen die Eigenschaften der realen Daten
X FA_15 Metriken zur Überprüfung der einzuhaltenden Privatsphäre sind

verfügbar
X FA_16 Metriken zur Qualitätsüberprüfung sind vorhanden
7 FA_17 Generierte Daten sind in gleicher Weise geeignet für KI-

Anwendungen

Tabelle 6.1: Abgleich der funktionalen Anforderungen

Die nicht-funktionalen Anforderungen betreffen nicht nur das untersuchte Private Mo-
dell, sondern die gesamte Plattform. Spezifisch kann festgehalten werden, dass beim
CTAB-GAN+ sowohl vorgegebene Parameter als Default verwendet als auch von er-
fahrenen Nutzern modifiziert werden können (NFA_01). Des Weiteren überzeugt das
Modell durch seine hohe Perfomance bezüglich generierter Qualität und Trainingsdauer
(NFA_02). Seine Architektur sowie gewählten Parameterwerte werden in dieser Thesis
vorgestellt und können in einer ausführlichen Dokumentation für die Plattform bereitge-
stellt werden (NFA_05).
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Während der Generator des GANs selbst und auch die generierten Daten einen erhöh-
ten Privatsphärenschutz garantieren, muss auch die Plattform im Allgemeinen vor An-
griffen geschützt werden (NFA_06). Zudem sind Zuverlässigkeit (NFA_03) und
Erweiterbarkeit (NFA_04) weitere wichtige Anforderungen die ferner bei der Ent-
wicklung der Plattform Berücksichtigung finden sollten.

In Ergänzung zu der Vorstellung der Architektur des CTAB-GAN+ (Kapitel 3.1) und
der Beschreibung sowie Wahl der Parameter (Kapitel 4.5 & Tabelle A.1) befindet sich im
Anhang A.2 der für die Experimente modifizierte Quellcode. Anhand des häufig verwen-
deten Beispieldatensatzes „Adult Income“ können Nutzer erste private Daten generieren.
Als Input benötigt das Modell folgende Informationen:

1. Realer Datensatz (CSV-Datei)
2. Metadaten mit Informationen zur Datenart der einzelnen Spalten und die ausge-

wählte Spalte für die zusätzliche Komponente C (JSON-Datei)
3. Integration von DP (Boolean):

a) True: Privatsphären Budget (Integer)
b) False: Anzahl an zu trainierenden Epochen (Integer)

Zusätzlich zur Terminalausgabe des Modellfortschritts werden Zeit, Anzahl der Epoche
sowie Privatsphären Budget in einer CSV-Datei für eine anschließende Evaluation der
Performance gespeichert. Die generierten Daten befinden sich nach der Synthese im Ord-
ner: Fake_Datasets.

Ein für die Plattform ebenfalls relevanter Nutzen, jedoch nicht Hauptbestandteil dieser
Arbeit, liegt in der Analyse und Bereitstellung geeigneter Evaluations-Metriken. Die in
der Evaluation angewendeten Skripte (Anonymeter) und Metriken (SDMetriks) sind der
Thesis ebenfalls angehängt (siehe Anhang A.1 & A.2). Sie können als Ausgangspunkt für
Projekte dienen, die sich auf die Evaluation der erzeugten Daten konzentrieren, insbe-
sondere im Hinblick auf Datenschutz.
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Abschließend werden in diesem Kapitel die zentralen Elemente der Thesis zusammenge-
fasst und um einen Ausblick auf nachfolgende Projekte ergänzt.

Zielsetzung Mit dem Ziel schützenswerte Daten ohne Verlust von Privatsphäre nutzbar
zu machen, beschäftigt sich die Thesis mit der Integration von Differential Privacy
in Generative Adversarial Networks. Im Rahmen des Forschungsprojektes DaFne
wird konkret nach einem geeigneten DP-GAN gesucht, das zum einen die Eigen-
schaften der realen Daten abbildet (1) und zum anderen die Privatsphäre schützt
(2). Darüber hinaus beeinflusst die Modellperformance, insbesondere die Trainings-
dauer, die Verwendung des Modells (3).

Aufbau der Experimente Auf Grundlage der drei Anforderungen erfolgt der Aufbau der
Experimente. Nach der Untersuchung von Trainingszeit und Eigenschaften ein-
zelner Epochen werden Qualitäts-Metriken auf die generierten Daten angewendet
sowie die Risiken unterschiedlicher Angriffsformen berechnet. Die Evaluation ba-
siert auf einem realen sowie einem simulierten Datensatz, die jeweils von vier un-
terschiedlichen DP-GANs reproduziert werden. Da die Größe des Privatsphären
Budgets Einfluss auf Qualität und Privatsphärenschutz besitzen kann, werden zu-
sätzlich zum allgemeinen Vergleich vom Training mit und ohne DP explizit Daten
mit ε-Werten von drei, zehn und fünfzig generiert. Aufgrund der Tatsache, dass sich
nicht alle Modelle für ein Training ohne DP eignen sowie einzelne Modelle zu viel
Trainingszeit beanspruchen, ergeben sich insgesamt 27 zu evaluierende Datensätze.
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Evaluationsergebnisse Die verwendeten Modelle unterscheiden sich einerseits in der Art
der Integration von Differential Privacy in GANs (DP-SGD vs. PATE), andererseits
in ihrem Entwicklungsstand. Die Ursprungsmodelle DPGAN & PATE-GAN stehen
den fortgeschrittenen Modellen CTAB-GAN+ & DP-CGANS gegenüber. Vor allem
innerhalb der Qualitätskontrolle der Daten werden große Unterschiede sichtbar. Die
sich über die letzten Jahre weiterentwickelten Vor- & Nachbearbeitungsschritte ta-
bellarischer Datenverarbeitung (verwendet in CTAB-GAN+ & DP-CGANS) tragen
u.a. zu einer erhöhten Datenqualität bei.

Beim Vergleich der Modelle zeigt sich zudem, dass die Eigenschaften der Datensät-
ze einen großen Einfluss auf die Modellleistung haben. Während das DP-CGANS
Schwierigkeiten bei der Reproduktion hoch-dimensionaler Daten besitzt, können
DPGAN und PATE-GAN numerische Daten nicht geeignet abbilden. Grundsätz-
lich fällt auf, dass alle vier Modelle kategoriale Daten besser reproduzieren können
als numerische und die Datenbeschaffenheit einzelner Spalten gegenüber Korre-
lationen zwischen Spalten verbessert abgebildet wird. Außerdem beeinflussen die
Anzahl unterschiedlicher Kategorien sowie die Korrelationsstärke zwischen Spal-
ten die generierte Datenqualität. Die Resultate der Risikoberechnungen für einen
Verlust der Privatsphäre demonstrieren, dass die Höhe der Risiken sowie dessen
Minimierung im Wesentlichen von der Angriffsart abhängt. Im Gegensatz zur Ver-
knüpfbarkeit, bei der die Risiken unter 1% liegen, erreichen die Risiken bezüglich
der Identifikation Werte über 20%.

Insgesamt belegen die Evaluationsergebnisse, dass die Integration von Differential
Privacy in GANs einen erhöhten Privatsphärenschutz ermöglicht. Auf der anderen
Seite offenbart sich aber auch der Trade-Off zwischen Nutzbarkeit und Datenschutz.
Der gesteigerte Schutz geht mit einer Beeinträchtigung der Datenqualität einher.
Darüber hinaus erhöht sich die Trainingsdauer durch die Integration von DP. Ent-
gegen den Erwartungen kann innerhalb der durchgeführten Experimente nicht voll-
ständig bewiesen werden, dass sich mit Zunahme des Privatsphären Budgets die
Datenqualität verbessert und der Datenschutz sinkt. Weitere Evaluationen werden
benötigt, um zuverlässige Aussagen zu den Ursachen dieses Verhaltens ableiten zu
können.
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Beantwortung der Forschungsfrage Final kann die Forschungsfrage hinsichtlich der Aus-
wahl eines passenden GANs unter Einbeziehung von DP durch die Auswertung
der einzelnen Aspekte beantwortet werden. Das Modell CTAB-GAN+ überzeugt
bezüglich Trainingsdauer sowie Datenqualität und erzielt einen erhöhten Privat-
sphärenschutz durch die Integration von DP. Insbesondere übertrifft es die anderen
Modelle durch eine hohe Datenqualität auch bei geringem Privatsphären Budget
sowie durch seine Leistung bei der Generierung hoch-dimensionaler Daten.

Verbesserungspotential Es ist wichtig zu betonen, dass die Evaluationsergebnisse aus-
schließlich auf den durchgeführten Experimenten beruhen und auf den Rahmen
dieser Untersuchung beschränkt sind. Zusätzlich zu einer erweiterten Evaluation
besteht Verbesserungspotential bezüglich der Wiederholungen von Modelltraining
und Datengenerierung. Aufgrund des nicht deterministischen Charakters beim Trai-
ning der Modelle sowie bei der Generierung der Daten, sollten Daten unter der
gleichen Bedingung (Modell & Datensatz & Privatsphären Budget) mehrfach ge-
neriert werden. Darüber hinaus fehlt in den Experimenten eine Überwachung zum
Overfitting der Modelle. Vor allem beim Training ohne DP besteht das Risiko ei-
ner zu exakten Anpassung, weshalb für die Generierung bestmöglicher Daten auch
Evaluationen von Zwischenergebnissen erforderlich werden.

Des Weiteren sollten die Hypothesen zum Einfluss der Größe des Privatsphären
Budgets (HT_2.2 & HT_3.2) erneut überprüft werden. Für eine zuverlässige Ver-
gleichbarkeit von Datensätzen mit unterschiedlichem Privatsphären Budget sollten
zukünftig alle Datensätze mit Privatsphären Budget innerhalb eines Modelltrai-
nings generiert werden. Konkret werden dann Daten nach dem Erreichen des je-
weiligen Privatsphären Budgets generiert und nicht das Modelltraining jeweils neu
gestartet.

71



7 Zusammenfassung

Ausblick Im Rahmen des Forschungsprojekts DaFne sind die nächsten Schritte dar-
auf ausgerichtet, die verbleibenden Anforderungen zu erfüllen. Explizit muss das
trainierte Modell für eine erneute Datensynthese gespeichert und Prognosen so-
wie Anzeigen zum Trainingsfortschritt integriert werden. Darüber hinaus ist zu
überprüfen, ob sich die generierten Daten genauso gut wie die realen Daten für
KI-Anwendungen eignen. Abschließend sollte das CTAB-GAN+ in einem Docker-
Container bereitgestellt werden, um Modularität für Erweiterbarkeit, Wiederver-
wendung und Wartbarkeit zu gewährleisten. In Ergänzung zur Bereitstellung des
eigentlichen Modells können die in der Evaluation verwendeten Metriken als Ein-
stiegspunkt für eine Analyse und Auswahl geeigneter Evaluations-Metriken u.a. mit
Fokus auf Datenschutz für die Plattform genutzt werden.

Generell können die Evaluationsergebnisse nicht nur zur Wahl eines geeigneten Mo-
dells beitragen, sondern weisen auch auf Schwachstellen und Stärken der Modelle
hin. Insbesondere die schwieriger abzubildenden Eigenschaften der Datensätze (wie
z.B. kontinuierliche Daten oder Korrelationen zwischen Spalten) können auf Opti-
mierungspotentiale in den Modellen hinweisen, die Fokus weiterführender Arbeiten
sein könnten.

Im Bezug auf den Trade-Off zwischen Qualität und Privatsphäre bleibt die Frage
idealer Parametergrößen offen. In Abhängigkeit vom Zweck, Datensatz und Mo-
dell sollten Empfehlungen zur Initialisierung von ε & δ gegeben werden. Auch der
Vorschlag einer individualisierten Differential Privacy von Boensich et. al (siehe
Kapitel 3.2) könnte weiterverfolgt und in den Modellen zur Reduzierung des Trade-
Offs integriert werden. Ferner könnte der Differential Privacy Ansatz alternativen
Varianten zur Sicherstellung von Privatsphäre gegenübergestellt werden.
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A Anhang

A.1 Jupyter Notebooks

1. Energie Datensatz
2. Evaluation: Anonymeter

A.2 Quellcode

1. Modell: CTAB-GAN+
2. Evaluation: SDMetrics

A.3 AGMA Spaltennamen

Folgende Auflistung gruppiert die verwendeten Spalten der AGMA Daten anhand ihrer
Inhalte:

1. Angaben zur Person (11 Spalten)

- Geschlecht, Alter, Staatsangehörigkeit, Familienstand
- Bildung: Schulart , Höchster allgemeiner Schulabschluss
- Beruf: Berufstätigkeit, Beruf, Nettoeinkommen, Arbeitsort, Arbeitsweg

2. Angaben zum Haushalt (10 Spalten)

- Wohnungsart, Haushaltsnettoeinkommen, Anzahl PKWs
- Personenanzahl: 1-Personen-Haushalt, Personen im Haushalt, Anzahl Kinder
- Ort: Bundesland, Bundeslandgruppe, Gemeindegrößenklasse, BIK-Regionstyp

3. Häufigkeit an Einkäufen (8 Spalten)
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- Drogeriemarkt, Getränkemarkt, Baumarkt, Elektrofachmarkt, Discounter, Su-
permarkt, Großmarkt, Shopping Center

4. Häufigkeit an Freizeitaktivitäten (15 Spalten)

- Medien: Internetnutzung, Fernsehen, Radio, Zeitung, Zeitschrift
- Unterwegs: Kino, {Theater, Konzert, kulturelle Veranstaltungen}, {Restaurant,
Gaststätte, Kneipe, Disco, Club}

- Kreativität: {Basteln, Heimwerken}, {Stricken, Häkeln, Schneidern}
- Reise: Letzte größere Ferienreise, Kurzurlaub in den letzten 12 Monaten
- Verhaltensweisen: Sport treiben, Rauchen, Bier trinken

5. Transportmittel (11 Spalten)

- Häufigkeit der Nutzung: Auto (auch Mitfahrer), Fahrrad, Bahn auf längeren Stre-
cken, Bus bzw. Straßenbahn in der Region, {U-Bahn, S-Bahn oder Regionalbahn
in der Region}, Berufliche Flugzeugnutzung, Private Flugzeugnutzung

- Führerscheinbesitz: PKW, Motorrad, Moped/Mofa
- Überwiegend genutzte Fahrkartenart

6. Bewertungen zu Aussagen (6 Spalten)

- Markenartikel sind qualitativ besser als markenlose Ware
- Für besondere Qualität gebe ich gern mehr aus
- Werbung ist eigentlich ganz hilfreich für den Verbraucher
- Werbung gibt manchmal recht nützliche Hinweise über neue Produkte
- Bei den täglichen Einkäufen probiere ich gern mal ein neues Produkt aus
- Ich bin immer auf der Suche nach Billigangeboten

7. Dauer außer Haus - Schätzung (Wegezeit) (4 Spalten)

- Allgemein, Montags-Freitags, Samstags, Sonntags

8. Daten zum Interview (2 Spalten)

- Monat, Jahr
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A.4 Modellparameter

Tabelle A.1 fasst relevante Parameterwerte der verwendeten Modelle zusammen.

GAN DPGAN [85] PATE-GAN [46] CTAB-GAN+ [97] DP-CGANS [77]

Netzwerk Architektur
Datenvorverarbeitung -
Kontinuierliche Daten

Skalierung
(Bereich [0,1])

Skalierung
(Bereich [0,1])

Mode-Specific
Normalization

Mode-Specific
Normalization

Datenvorverarbeitung -
Diskrete Daten

One-Hot-Kodierung One-Hot-Kodierung
One-Hot-Kodierung &
Training-by-Sampling

One-Hot-Kodierung &
Training-by-Sampling

Hidden Layer (G) 1 Layer 1 Layer 2 Layer 2 Layer
Aktivierungsfunktion (G) ReLU ReLU ReLU ReLU

Hidden Layer (D) 1 Layer
Student = 1 Layer
Teacher = 1 Layer

4 Layer 2 Layer

Aktivierungsfunktion (D) ReLU ReLU LeakyReLU LeakyReLU

Komponente C irrelevant irrelevant
4 Hidden Layer &
LeakyReLU

irrelevant

Anzahl Teacher irrelevant 10 irrelevant irrelevant
Softmax irrelevant irrelevant 0,2 0,2
LeakyReLU irrelevant irrelevant 0,2 0,2
Dropout irrelevant irrelevant 0,5 0,5

Netzwerk Training
Epochenanzahl
(keine Privacy)

irrelevant irrelevant
Energie: 500,
AGMA: 400

500

Batch-Size m 500 64 500 500 (1000 bei ε = 50)
PacGAN (Pac) irrelevant irrelevant irrelevant 10
Optimierunsalgorithmus RMSprop Adam Adam Adam
Lernrate 5e-5 1e-4 2e-4 2e-4

Weight Decay Default: 0 Default: 0 1e-5 1e-6

Gradient Penality Factor irrelevant irrelevant 10 10

Differential Privacy
Privatsphären Budget (ε) 3, 10, 50 3, 10, 50 3, 10, 50, ∞ 3, 10, 50, ∞
Fehlerwahrscheinlichkeit (δ) 1e-5 1e-5 1e-5 2e-6

Accountant RDP-Accountant Moment Accountant RDP-Accountant RDP-Accountant
Noise Gaussian Noise Laplacian Noise Gaussian Noise Gaussian Noise
Sigma (Gaussian Noise) 2 irrelevant 1,02 1

Tabelle A.1: Parameterwahl der verwendeten Modelle
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A.5 Modellperformance

Tabelle A.2 stellt die wichtigsten Eigenschaften zur Performance gegenüber.

Datensatz Gesamtdauer
Anzahl
an Epochen

∅ ε-Anstieg
pro Epoche

∅ Zeit
pro Epoche

ctab_agma_3 4min 10 0,141 31s
ctab_agma_10 57min 113 0,073 31s
ctab_agma_50 12h und 47min 1.526 0,032 31s
ctab_agma_notPrivate 1h und 20min 400 - 12s
ctab_energie_3 4min 10 0,141 27s
ctab_energie_10 49min 113 0,073 27s
ctab_energie_50 11h und 9min 1.526 0,032 27s
ctab_energie_notPrivate 1h und 10min 500 - 9s

dpcgans_agma_3 9min 14 0,115 42s
dpcgans_agma_10 11h und 25min 142 0,06 292s
dpcgans_agma_50 117h und 7min 921 0,052 458s
dpcgans_agma_notPrivate 1h und 44min 500 - 13s
dpcgans_energie_3 8min 14 0,115 37s
dpcgans_energie_10 11h und 53min 142 0,06 303s
dpcgans_energie_50 118h und 18min 921 0,052 463s
dpcgans_energie_notPrivate 1h und 2min 500 - 7s

dpgan_agma_3 31min 97 0,027 20s
dpgan_agma_10 4h und 47min 863 0,011 20s
dpgan_agma_50 58h und 59min 10.842 0,005 20s
dpgan_energie_3 32min 97 0,027 20s
dpgan_energie_10 4h und 53min 863 0,011 20s
dpgan_energie_50 60h und 26 Minute 10.842 0,005 20s

pate_agma_3 2h und 18min 270 0,0107 31s
pate_agma_10 20h und 27min 2.407 0,004 31s
pate_energie_3 2h und 11min 270 0,0107 29s
pate_energie_10 19h und 48min 2.407 0,004 30s
pate_energie_50 248h und 15min 30.068 0,0017 30s

Tabelle A.2: Modellperformance
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