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Abstract.

The perception module of an Uncrewed Surface Vehicle (USV) is the basis for performing
missions in real-world environments like harbours, rivers, seas, and water canals. Compared
to manned systems, the advanced technology of USVs offers a wide range of applications in
maritime infrastructures, such as inspections, transportation, and surveillance tasks or
multi-agent combinations with other robotic systems like Autonomous Underwater Vehicles
(AUVs). Nonetheless, maritime environments present certain challenges, e.g., disturbances
like winds and waves with dynamic obstacles like ship traffic, buoys, and other moving
objects. An USV needs to perceive and avoid these obstacles to ensure robust navigation
and safe operation. Light Detection and Ranging (LiDAR)-based perception algorithms are
widely used in robotic obstacle detection and avoidance due to their reliable and robust
depth data measurements. The paper explores a deep-learning-based approach using
PV-RCNN. The model takes raw LiDAR points as input and outputs classified boat
detections. A LiDAR dataset was created with manually labeled boats and extended
through augmentation techniques, such as rotation, scaling, and GT-sampling. The model
was trained and evaluated with different hyperparameter settings, with the goal of
improving autonomous navigation of USVs in maritime environments. Experiments showed
that applying a moderate rotation of 10° during augmentation achieved optimal results in
Recall and detection performance at IoU=0.5/0.7, leading to improved generalization and
robustness compared to both no augmentation and higher rotation degrees. In contrast,
longer training durations and extensive augmentation with high rotation angles led to low
performance values. Altogether, the experiments demonstrate that adding more diverse
data and optimizing dataset configuration, model architecture, and hyperparameters (e.g.,
higher batch size, more training epochs, additional object classes) can improve detection
performance. These improvements contribute to more robust and reliable boat detection.

1 Introduction

In recent years, there has been a surge in the development and deployment of waterborne uncrewed
vehicles, with the USVs being used in a wide area of application. USVs present numerous advantages
in some key applications, including maritime surveillance, environmental missions, offshore inspection,
deep-sea resource exploration, autonomous tasks in economic harbours, and military purposes [1].
While there are some commercially available USVs, there are even more experimental platforms, these
being driven by the need for reducing the overall size, increasing the payload, or enhancing the level of
autonomy.

Due to the nature of most applications, USVs usually operate in dynamic maritime environments with
certain challenges. They must navigate through confined spaces (e.g., harbours, rivers, and narrow
channels) with moving objects, like other vessels or buoys, and endure harsh weather conditions and
changing environmental disturbances (e.g., currents, waves, and winds). These factors affect the
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performance of sensors and navigation systems, requiring adaptive capabilities to detect and avoid
obstacles for safe navigation to a specific location.

The ability of these systems to detect obstacles, recognize and track targets, and map environments is,
in turn, heavily dependent on navigation sensors (Global Navigation and Satellite System (GNSS),
Inertia Measuring Unit (IMU), Doppler Velocity Logger (DVL)) and environmental perception sensors
(Camera, Radar, Sonar, Laser, LIDAR)[2]. For the robustness of the navigation solution, there have
been several solutions proposed, most of them using the Guidance Navigation and Control (GNC)
framework, theorized by [3]. While there is a certain degree of robustness in the navigation system
that allows coping with some of the environmental disturbances, the perception system is still critical
for obtaining an accurate understanding of the environment.

Motivated by the SeaClear2.0 Project and its primary goal of employing marine robotics to clean ports
and coastal areas by removing surface and seafloor debris, a medium-sized USV acts as a shuttle
tender, having to autonomously navigate to a specific location, where another USVs is located and
perform a stern-to-stern docking. The latter is assumed to be laden with a piece of litter weighing up
to 250 kg, that can be discarded from a position 1.5 m behind the USV and at least 0.5m above the
water surface. Provided that the shuttle tender USV has safely navigated through the harbour and
reached its docking position, the collected waste is lowered using a grapple onto the USV’s litter bay.
A safe manoeuvre is considered one that avoids colliding with static and dynamic objects that are to
be found on, or in the close proximity of the path followed by the USV.

To achieve this level of navigational safety, the USV is dependent on the perception system’s ability to
sense its environment. Light Detection and Ranging (LiDAR) sensors are a robust key technology for
obtaining accurate depth data and have proven their efficacy numerous times in previous research for
perception in autonomous driving and maritime environments.

A review of current literature reveals that traditional unsupervised learning methods segment and
cluster obstacles [4, 5]. A common approach involves unsupervised methods (partition-based,
hierarchical, and density-based clustering) to segment and classify obstacles in the environment.
However, clustering methods still have limitations and can be unstable. These studies also show that
the usage of deep learning-based supervised methods has been increasing. However, most methods are
image-based, and there is a lack of maritime point-based deep learning methods [6]. Another challenge
is missing benchmarks, training and validation datasets for LIDAR-based 2D /3D object detection and
tracking in maritime scenarios.

In recent years, maritime perception has increasingly depended on image-based object detections to
fulfill maritime use cases. Maritime perception as a research topic has not been explored as thoroughly
as autonomous driving on the road. Two-stage methods (e.g. Faster R-CNN, R-FCN, Cascade
R-CNN, Mask R-CNN), as well as single-stage methods (e.g. the single-shot detector (SSD),
RetinaNet, You Only Look Once (YOLO), and EfficientDet) are widely used in maritime environments
[5]. Recent studies use multi-sensor fusion solutions and various YOLO versions to detect maritime
objects (e.g. buoys, ships) or dynamic obstacles [7, 8, 9]. In contrast, the field of object detectors in
the maritime sector has not been explored as extensively as in the automotive sector, especially with
only point clouds as input data. Benchmarks like the KITTI dataset or other point cloud datasets
aren’t established and widespread in the maritime context. In turn, the KITTI dataset itself is also
used as a benchmark for maritime tasks [10, 11]. Recording and labeling data from different maritime
scenes with various weather conditions is time-consuming and a complex task. Therefore, studies often
use generated synthetic—or a mix of synthetic and recorded data—for training and validation. The
study in [12] used simulated data generated with Gazebo along with real-world data as training and
validation sets. In this study, an adapted PointPillar architecture with a modified SSD detection head
was used to detect 2D objects in harbour areas. Their perception method—which consists of three
functional modules: object detection, multi-object tracking, and static environment mapping—enabled
the mapping of a static environment and simultaneous tracking of floating objects. [6] introduces a
LiDAR point cloud dataset of ships, which addresses the lack of LIDAR point cloud data with a focus
on ships. The dataset combines authentic recorded data collected using a multibeam photon-counting
LiDAR sensor applied for ocean exploration, with simulated data for object detection and object
tracking tasks within marine scenarios. The simulated data was generated using Blensor, featuring
rainy and foggy weather simulation along with data augmentation. The dataset is used to train
SECOND, PointPillars, and PointRCNN and consists of 10,571 frames for training, 1,200 frames for
validation, and 1,500 frames for testing. Among the four distinct classes—Cargo ship, tour boat,
Engineering ship, and Speedboat-the detection object is the cargo ship. The evaluation shows that the
recorded and simulated data in all model training sets achieve higher precision around 50-60% for all
difficulty levels: easy, moderate, and hard.

Identifying the challenges of deep learning-based maritime perception leads to the central research
question of this paper: To what extent can data augmentation techniques compensate for a
limited-scale, real-world maritime LiDAR dataset when training a 3D object detection model for boat
detection using PV-RCNN, known for high accuracy in the 3D detection benchmarks?
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To answer this question and address the identified challenges, this work presents the following
contributions:

e We present a robust LiDAR-based object detection pipeline for dynamic maritime conditions
using the Point—Voxel Feature Set Abstraction for 3D Object Detection (PV-RCNN) with raw
LiDAR points as input, optimized for detecting boats in novel scenes.

e We evaluate and analyze the impact of data augmentation and hyperparameter tuning on the
model’s performance, providing insights of the challenges and opportunities of implementing a
3D LiDAR-based object detection onboard a USVs for achieving autonomous navigation within a
harbour environment.

e We create and validate a custom maritime point cloud dataset, adressing the lack of maritime
point cloud data.

2 Background

2.1 Point cloud-based 3D object detection

Point cloud-based 3D object detection pipeline starts with data acquisition from the LiDAR sensor.
The raw points are often transformed from polar to cartesian coordinates. The next pre-processing
steps are ground removal and noise filtering to remove outlier points. The following step is data
segmentation. The outputs are distinct grouped points to form candidate objects for classification and
detection. Finally, objects are detected and recognised. Traditional object detection algorithms, like
Support Vector Machines (SVM), rely on feature extraction, where the feature vector consists mostly
of common quantities, like real cluster dimensions, the number of points, elements of the covariance
matrix, elements of the inertia tensor, central moments, or reflectance intensity histogram [13]. In
contrast to modern deep learning techniques, the largely manual feature extraction has been replaced
by integrating neural networks. This approach improves accuracy and robustness. However, they also
have a high computational demand and are memory complex. Deep learning approaches have been
applied to point cloud processing inspired by image-based detections [4]. The following Figure 1 shows
an overview of the pipeline for 3D object detection using a custom dataset.
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Figure 1: Workflow overview of point cloud-based object detection using custom dataset

A point cloud dataset from a LiDAR sensor, recorded in different maritime environments, is utilised as
custom input and consists of 3D raw points. The 3D point cloud data are stored as files encoded in
NumPy array format. Corresponding ground truth data describe the object location and size within
the point cloud. A deep learning model (PV-RCNN), implemented within the 3D object detection
method box, processes the custom dataset. The method transforms the input data into output
predictions, represented by 3D bounding boxes around detected objects within the point clouds. A
popular tool in this area is the open-source toolbox OpenPCDet [14]. It supports multiple
LiDAR-based perception models and a variety of state-of-the-art 3D object detection architectures. Its
advantages include adaptability and effectiveness, due to its modular design, YAML-based model and
dataset configurations, as well as various interchangeable backbones, dense-heads, etc. Deep
learning-based 3D object detection methods share an architecture composed of three main
components: Data Representation, Feature Extraction, and Detection Network.
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2.2 Structure of pointcloud-based 3D object detection methods
The following figure 2 shows a general structure and the three main components.
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Figure 2: Main components of a 3D Object Detection model according to [15]

2.2.1 Data representation

Deep learning models efficiently process the input data by transforming the raw data into a structured
format. Several types of data representations and variations for processing LiDAR data are shown in
figure 2. Point-based methods apply point-wise feature learning on raw, unordered point clouds (e.g.,
PointNet, PointNet++). In Vozel-based methods, point clouds are divided into small 3D voxels and
aggregate point features within each voxel. 2D or 3D Convolutional Neural Networks (CNNs) are
applied in these methods (e.g., VoxelNet). In Pillar-based methods (e.g., PointPillars), point clouds are
divided into vertical column pillars on a uniform 2D grid (in the x-y plane). In 2D-Projection-based
methods, point clouds are converted into 2D feature maps using view projection (e.g., bird’s-eye view
or front view), which are processed by CNNs (e.g., MV3D [16]). Frustums-based methods convert point
clouds into frustums using an image-to-point cloud projection approach. [17, 18, 19]

2.2.2 Feature Extraction

The feature extraction stage generates low- and high-dimensional features from the previous data
representation to create a feature map. These feature maps are multi-dimensional tensors capturing
local and global geometric structures and semantic information. They enable the model to understand
spatial relationships, object shapes, and patterns. Depending on the type of data representation,
different feature extraction methods can be applied, including point-wise, segment-wise,
object-by-object, CNNs. [17, 18, 19]

2.2.8 Detection Network

The detection network determines the object classes, bounding box regression, and orientation based on
the encoded feature map. Two detector architectures: single stage and dual stage are used to generate
a 3D box with a class score for the object of interest. The single stage performs detection in one pass
and is faster. A dual stage detector firstly proposes candidate regions and then refines predictions. It is
a slower and more accurate network. Additionally, the region proposal-based detector uses a Region of
Interest (Rol) and anchorless detector suitable for hidden or truncated objects. [17, 18, 19]

2.8 PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection

PV-RCNN [20] is a two-stage 3D object detection framework that integrates the advantages from
point-based and voxel-based feature learning methods to achieve high accuracy. Most detectors have
disadvantages when using either a grid-based method or a point-based method. Grid-based methods
transform irregular points to regular representations (3D voxels or 2D bird-view maps). Then, these
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representations are processed by 3D or 2D CNNs to learn point features. It is computationally efficient,
but the method loses information with fine-grained localization. Point-based methods, like PointNet,
are accurate but computationally heavy. PV-RCNN’s two-step strategy (voxel-to-keypoint encoding
and keypoint-to-grid pooling) combines grid-based processing with the fine-grained localization of
point-based methods for efficiency and balance. With the benchmark of KITTI [21] and Waymo Open
datasets, it’s achieving top ranks in 3D detection benchmarks. Due to its benchmark scores and
memory efficiency, the following experiments show the maritime application by detecting boats.
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Figure 3: Architecture Overview of PV-RCNN [20]

The following section describes the main components of the architecture:

1. Input: Raw point cloud - The input of the model are raw 3D points. The points are
preprocessed by converting them into a sparse 3D grid as voxels.

2. 3D Sparse Convolution - Then, the voxels are processed by 3D sparse convolutions. They
extract multi-scale features while the spatial structure are preserved.

3. Bird’s Eye View (BEV) - The 3D voxel features are projected into a 2D top-down view. It
simplifies detections with only X-Y spatial relationships for proposal generation. Furthermore, it
reduces computational complexity.

4. Proposal Generation - The input of the Region Proposal Network (RPN) is the BEV map to
generate 3D anchor box proposals for objects of interest.

5. Keypoint Feature Aggregation - With Keypoints Sampling, a sparse set of keypoints is
sampled with the Farthest Point Sampling algorithm, which preserves geometric details of the
raw point cloud. The Vozel Set Abstraction (VSA) Module aggregates the multi-scale voxel
features from the 3D CNN backbone into the sampled keypoints. Local voxel features, raw point
features, and BEV features are fused by the VSA. The Predicted Keypoint Weighting Module
processes the keypoints with feature. These features are rich and multi-scale contextual
information about the scene.

6. RoI-Grid Pooling and Refinement - The Rol-Grid Pooling Module samples uniformly for
each proposal (Rol) within the 3D bounding box. Therefore, the set abstraction puts the features
from keypoints into the grid points, which captures local and global context. Then, the FC
(256,256) fully connected layers processes the Rol-grid features for refining object predictions.

7. Output - Finally, a predicted object class with an estimated detection confidence score is
emitted. The Boz Refinement adjust coordinates (center, size and orientation) for a precise 3D
bounding box regression.

2.4 Performance evaluation

Selecting a performance evaluation metric is significant for understanding and improving 3D
point-cloud-based object detection for USVs. In 3D object detection, each predicted bounding box is
represented by the vector (z,y, 2,1, w, h, 8, class) with the center coordinates (z,y, z), dimensions
(length [, width w, height h), 1D orientation (6), and object label [22].

Evaluation of 3D detectors needs to evaluate both classification and localization accuracy. The
OpenPCDet toolkit supports mapping custom datasets into the standard KITTI evaluation protocol,
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which is widely recognized as a benchmark for 3D object detection [23]. In this work, KITTI-format
data is used to evaluate boat detection performance using two common metrics—Average Precision
(AP) at specific Intersection over Union (IoU) threshold and Recall—under the established KITTI
evaluation rules. Table 1 presents a confusion matrix, which reflects the model’s detection accuracy
against ground truth. The matrix has four elements: True Positive (TP) - correct detected objects,
False Positive (FP) - incorrect (non-existent) objects, True Negative (TN) - correct undetected
(non-existent) objects, and False Negative (FN) - missed detections, which are present [22]. Precision
and Recall can be computed through the confusion matrix. Precision is the proportion of true positive
detections among all detections. Recall is the proportion of true positive detections among all existing
ground truth objects for a given class. Mean Average Precision (mAP) summarizes the performance
across multiple classes and measures the model’s Precision-Recall performance with various IoU
thresholds. Precision and recall inherently have a conflict of objectives. A large number of candidate
bounding boxes increases recall since more true objects are detected. On the other hand, it decreases
the precision, as more false positives are introduced.

Table 1: Confusion Matrix for 3D Detection according to [15]

‘ Object detected No Object detected

Object Present True Positive (TP)  False Negative (FN)
No Object Present | False Positive (FP)  True Negative (TN)

TP
Precision = ~——— 1
recision = Fm (1)
TP
Recall = 757§ )

The 3D IoU metric calculates the overlap of the prediction and the ground truth. It measures the
object position accuracy and is used to classify objects, as TP and FP for overall performance
evaluation [22]. To classify predictions, IoU thresholds are used. The detection is considered a TP if
the 3D IoU exceeds a given IoU threshold; otherwise, it is a FP.

Area of Overlap

ToU = (3)

Area of Union
OpenPCDet evaluates two-stage detectors using Recall at IoU thresholds of 0.30, 0.50, 0.70, which
measure the fraction of ground-truth objects correctly proposed (ROI stage) and refined (Region-based
Convolutional Neural Network (RCNN) stage). Table 2 summarizes these metrics used in our
experiments, as presented in section 5. Furthermore, Average Precision (AP) can be further evaluated
by interpolating the precision-recall curve at evenly spaced Recall levels. AP_R/0 samples the curve at
40 evenly distributed recall values. For every detection confidence threshold, a precision is computed
and the precision-recall curve is built. For each Recall value in the range 0.025,0.05,...,0.975,1.0, the
maximum precision at or above that recall is considered. The mean of these interpolated precision
values is the AP_R40 score. Compared to the 11-point AP metric, AP_R40’s samples finer and
captures the precision-recall curve’s shape and granularity.

Table 2: Description of Evaluation Metrics

Metric Description

ROI Recall Recall rate after the Region of Interest proposal stage.

RCNN Recall Recall rate after the refinement (RCNN) stage.

bbox AP Average Precision of the predicted 3D bounding boxes at a given IoU threshold.

BEV AP Average Precision measured in the bird’s-eye view projection at a given IoU.

3D AP Average Precision in full 3D space, evaluating both localization and size.

AOS (Orientation) Average Orientation Similarity; measures the accuracy of estimated object orientations alongside
detection.
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3 Methodology

3.1 High-level Architecture

As depicted in Figure 4, the GNC architecture for USVs (called NJORDIQ Stack), which is a modular
and flexible framework designed to support various USV applications. The stack includes components
for perception, navigation, control, and communication, allowing for efficient integration of different
sensors and algorithms. The perception module processes sensor data (e.g. LIDAR) to detect and
track objects in the environment. The navigation module uses the processed data to plan safe paths
and avoid obstacles, while the control module executes the planned manoeuvers. The communication
module ensures that the USV can exchange information with other systems and operators.

" Module Grouping

‘ HMI }_L, Njordiq Stack
- navigation }—- perception guidance ——  control W
sensing ——

Figure 4: Block view of the main modules of the Njordiq stack. The perception pipeline is integrated
within the general GNC architecture, but has a dedicate module that augments the global planner (inside
the guidance module)

8.2 Perception Deployment on the USV

The perception module’s main responsibility within the NJORDIQ-stack is detecting and localising
static and dynamic obstacles in close proximity to the USV, as well as predicting their future positions.
The output of the perception module is a set of detected objects with their positions, velocities, and
predicted trajectories, which are used by the guidance module’s local path planner for replanning the
USV’s itinerary in real-time, keeping it collision-free. The perception module is implemented on the
USV using the Robot Operating System 2 (ROS2) framework and consists of several components,
including data acquisition, data processing, and data visualization. The data acquisition component
collects sensor data from the environment, while the data processing component applies algorithms to
detect and track objects. The integration of the perception module into the high-level control system,
particularly the guidance module, poses several technical challenges. A primary concern is ensuring
real-time performance, as the perception module must process LIDAR data, detect objects, and predict
both static (e.g.,length or beam) and dynamic parameters (e.g., course or velocity) within a time frame
that allows the guidance module to replan the USV’s path or trajectory effectively. Given that most
pleasure crafts are not mandated to transmit their position via Automatic Identification System (AIS),
there is often no ground truth observation available to validate the perception module’s performance.
Consequently, the accuracy of detections directly influences the set of feasible manoeuvers. Late or
imprecise detections may result in suboptimal path planning, potentially leading to conservative
actions (e.g., station-keeping until the vessel is no longer in proximity) or even collisions with
environmental objects. To mitigate such inaccuracies, a predefined close-proximity safety zone around
the USV is established, within which any detected objects are treated as higher collision risks,
prompting conservative manoeuvers. Additionally, the applicability of COLREG! rules to uncrewed
vehicles remains an open question. A more conservative approach, such as always yielding to other
vessels, may be preferable and would significantly influence the manoeuvring decisions made by the
guidance module. While the integration of the perception module into the overall system architecture
is beyond the scope of this study, it will be addressed in future research.
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8.8 Datasets and Data Annotation pipeline
The OpenPCDet custom dataset requires a customized data structure in order to train PV-RCNN
using raw points. The following figure 5 shows the data preparation and annotation pipeline:
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Figure 5: Data annotation and preparation pipeline.

The Point Cloud Data (PCD) files, which are frame shots of the recorded data (see 4.1), were exported
separately from the ROS2 rosbags and then merged. The raw data (PCD files) for this study was
collected from two distinct maritime environments, Kiel Bay and the Lotsekanal in Hamburg (see
Section 4.1). Visible boat objects with the size of dimensions: z: 37-38m, y: 8-10m, z: 12-20m, as
shown in figure 6 in the frames were extracted from these recordings to form a base dataset. To ensure
the model learns from realistic, imperfect data, the selection criteria focused on capturing a variety of
perspectives and distances to the target objects (boats) without excluding frames due to sensor noise
or partial closures. The data is weighted towards the Lotsekanal recordings, comprising 121 frames
from Hamburg and 260 frames from Kiel, as the Bay environment in Kiel offered more variable
perspectives and a larger acquisition area. Furthermore, the selection of boat types and sizes for
annotation was data-driven. Medium-sized boats were prioritized and were the most frequently and
clearly captured objects in our rosbag recordings. This approach allowed us to build a baseline dataset
centering on the most common objects in the operational domain and offering an opportunity to
extend more boat sizes and classes.

The PCD files were uploaded and annotated using Segment.ai, a multi-sensor data annotation
platform. Each PCD file with boat objects was manually annotated (see figure 6).The base dataset of
361 manually annotated PCD files was used for data preparation. This sample size was chosen to
establish a foundational dataset, acknowledging the time-intensive nature of 3D point cloud
annotation. Segment.ai offered to export a JSON file with the coordinates of the bounding boxes. The
exported JSON data was used to create annotation text files containing the boat object and the
corresponding bounding box coordinates. The PCD data was then converted into NumPy files. Since
OpenPCDet specifies a certain coordinate orientation, the NumPy files were adjusted with a
coordinate transformation and uploaded to a folder. For training and validation, the LiDAR data was
split in a ratio of 80 % for training and 20 % for testing.

The base data of annotated 361 PCD samples is further used for data augmentation. The following
figure 6 shows various labeled boats.
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Figure 6: The figure show the various perspectives in the segment.ai labeling process. It’s visible that
some points are missing to form a boat hull. The noise is created depending, where the USV’s Ouster
LiDAR is pointed and the position of the boat itself. Other conditions, like weather and environment
also affect the sensor measurements.

3.4  Data Augmentation

Annotating objects in 3D is time-consuming and labor-intensive, and manual labeling is subjectively
biased. In order to generalize the training and to enhance the diversity and quantity of data, further
data augmentations are applied to the base dataset. Data augmentation is commonly used to generate
more data for 3D object detection, including basic transformations, such as rotations, scaling,
cropping, mirror flipping, etc. [6]. A rotation of z, y, z with the degrees 10, 30 was applied on each
sample’s axis. The following figure 7 shows an example transformation.

Figure 7: Rotation around z-axis with 10° with corresponding annotated 3D bounding boxes.

Additionally, OpenPCDet also offers data augmentation methods: random world scaling and
GT-sampling. GT-sampling is an advanced augmentation technique, which randomly adds some new
ground-truth objects from other scenes to the current training scenes. It’s used to simulate objects in
various environments. Both methods were applied on the base and augmented datasets. With the
merged data for each degree and accumulating each total sample set to the next one, the total sum
adds up as shown in the Table 3.
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Table 3: Overview of Dataset Splits and Sample Counts

Dataset Split Number of Samples

Base 361
Dataset_10_degree 1.448
Dataset_30_degree 2.534

4 Experiment Setup
The following section describes the experiment setup, including the dataset acquisition site, test vessel,
sensor setup, and the PV-RCNN model configurations.

4.1 Dataset Acquisition Site

One data source was located in the Kiel Bay near WTD 71 and was recorded between June and July
2023. The terrain was around a bay environment, sheltered with an open shallow-water expanse, and
limited wave/tidal action. The primary disturbances were around 8 ms~=! to 10ms~! (15kn to 19kn)
with mostly westerly wind directions. Another dataset site in this study was collected between March
and May 2025 at Lotsekanal (Pilot’s Channel) in Hamburg, Germany, as shown in Figure 8. Located
in the southern part of the port city, the channel is shielded by a lock that minimizes the influence of
the Elbe river’s currents. Consequently, tidal effects and currents are significantly reduced. During the
sea trials, the primary disturbances were caused by wind, which ranged from 6 ms~! to 8ms™! (11kn
to 16kn) and varied in direction from N, NE, to E, depending on the day.

Figure 8: The Lotsekanal (Pilot’s Channel), situated in the Port of Hamburg, has been chosen for
conducting the sea trials. The designed area, marked with dark-red colour, is approximately 200 m long
and 65 m wide in its broadest point

4.2 Test Vessel

The LiDAR Ousterl (OS1) is utilized for the dataset creation and experiments. The sensor was
mounted on the SeaML:SeaDragon USV (see Figure 9), which is a 5.5 m x 2.1 m catamaran, having
350 kg payload and capable of developing up to 6 kn speed. The USV actuation system consists of two
steerable pod drives with 6 kW power each. The USV is designed for autonomous navigation tasks,
including visual perception and LiDAR-based environment mapping.

This LiDAR sensor is a mid-range and high-resolution imaging LiDAR. It’s designed for all-weather
environments and use in industrial automation. The sensor offers a maximum range of 170 m (80 %
Lambertian reflectivity, horizontal resolution 1024 pixels @ 10 Hz mode) according to the
manufacturer’s data sheet [24]. Table 4 shows the settings for the data recordings and dataset creation.
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Figure 9: The LiDAR Ousterl (OS1) is mounted on top of the mast of SeaML:SeaDragon USV. The
recorded data of the LiDAR sensor is used for data collection, training, and evaluation for 3D object
detection of boats.

Table 4: Settings used for the Ouster OS1 rev.7v3.

Ouster OS1 LiDAR

Max. Range up to 170 m
Min. Range 0.3m
Range Accuracy + 0.03m
Vertical Resolution 128
Horizontal Resolution 1024
Rotation Rate 10Hz

The LiDAR coordinate system is oriented as follows: the X-coordinate points to the back, the
Y-coordinate points to the right, and the Z-coordinate is upwards. These coordinates are transformed
into the OpenPCDet coordinate system: the X-coordinate points forward, the Y-coordinate points left,
and the Z-coordinate is still upwards.

4.8  Training setup

OpenPCDet offers two .yaml files to configure the dataset generation and model configurations, for
example, hyperparameters, layers for feature extraction, epoch, voxel size, etc. These files offer
modular adjustments suitable for training to reach higher detection accuracies. The following tables
show dataset (Table 5) and model settings (Table 6) for the experiments:

Table 5: OpenPCDet Dataset Configuration

Parameter Value

cfg.DATA_CONFIG.POINT_CLOUD_RANGE [—243.34063, —218.742655, —75.071892, 365.93937, 216.457345, 75.589012]
cfg.DATA_CONFIG.VOXEL_SIZE [0.16, 0.16, 3.7665226]

cfg.DATA_CONFIG.FILTER_BY MIN_POINTS {boat : 50}

cfg.DATA_CONFIG.SAMPLE_GROUPS {boat : 20}
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Table 6: OpenPCDet Model Configuration

Parameter Value
cfg.0PTIMIZATION.BATCH_SIZE PER_GPU 1
cfg.OPTIMIZATION . NUM_EPOCHS 40, 80
cfg.OPTIMIZATION.OPTIMIZER adam_onecycle

cfg.MODEL . DENSE_HEAD . ANCHOR_GENERATOR_CONFIG  [{’class_name’: ’boat’, anchor_sizes’: [[36.28, 8.95, 14.82]], 'anchor_rotations™ [0,
1.57], ’anchor_bottom heights: [0], ’align_center’: False, ’feature_map_stride’: 8,
‘matched_threshold’: 0.55, 'unmatched_threshold’: 0.4}]

The custom datasets were trained with a NVIDIA RTX A6000, and Intel(R) Xeon(R) Gold 6226R
CPU @ 2.90GHz on an Ubuntu 22.04.5 LTS machine.

5 Results

The following section presents quantitative results of 3D boat detection using PV-RCNN. The
PV-RCNN models with different datasets and hyperparameters were evaluated on the validation set
using KITTI metrics, as explained in section 2.4. Key metrics include Recall at IoU thresholds (0.3,
0.5, 0.7) and 3D detection performance (IoU=0.50/0.70) for bird’s-eye view (BEV), 3D object
detection (3D), orientation similarity (AOS), and bounding box (bbox) tasks. The distinct
performance overview between Region-of-Interest (ROI) and (RCNN) stages allows for detailed insight
into both the feature backbone and the refinement stage. The following Table 7 shows the Recall with
different IoU thresholds. Then, Table 8 and Table 9 present the detection performance at IoU=0.5/0.7.

Table 7: Recall at thresholds 0.3, 0.5, and 0.7 for ROI and RCNN Stage

Dataset (Epoch) ‘ ROI@ 0.3 ROI@0.5 ROI@ Q0.7 ‘ RCNN @ 0.3 RCNN @0.5 RCNN @ 0.7

Base (40) 0.9291 0.9134 0.7165 0.9291 0.8976 0.6929
Base + 10° (40) 0.9863 0.9726 0.8571 0.9863 0.9746 0.9217
Base + 30° (40) 0.9911 0.9788 0.7929 0.9911 0.9833 0.8842
Base (80) 0.9764 0.8976 0.0079 0.9764 0.9685 0.1417
Base + 10° (80) 0.9980 0.9765 0.9022 0.9961 0.9804 0.9374
Base + 30° (80) 1.0000 0.9396 0.0039 1.0000 0.9981 0.1657

The Recall values in Table 7 with 0.3 and 0.5 thresholds remain high above 0.89 in all datasets and
epochs, but significantly drop at the 0.7. Furthermore, the results demonstrate that data augmentation
improves Recall performance: the Base + 10 dataset achieves >90% RCNN recall at ToU=0.7 for both
epochs. The results show that the effect of the rotation degrees affects the performance, as Base + 10
outperforms Base + 30. Extended training (80 epochs) decreases the robustness for Base + 30 and
non-augmented Base datasets.

Table 8: 3D Detection Performance at IoU = 0.50

Dataset (Epoch) | bbox BEV 3D  AOS | bbox R40 BEV_R40 3D_R40 AOS_R40

Base (40) 97.09 7179 6296 77.61 98.14 71.85 64.82 77.16
Base + 10° (40) 96.57 90.28 90.03 94.26 98.80 95.91 95.36 96.33
Base + 30° (40) 95.55 88.70 86.74 43.02 98.14 91.33 87.92 42.79
Base (80) 98.78 76.22 58.59 64.40 99.36 80.34 56.97 64.79
Base + 10° (80) 97.18 90.66 90.66 72.62 99.06 96.36 96.34 74.02
Base + 30° (80) 91.02 0.27 0.16 48.81 91.82 0.13 0.04 49.36

Base + 10 (40) demonstrates strong performance, achieving high scores in BEV (90.28), 3D (90.03),
and AOS (94.26). It shows robust 3D object detection and orientation estimation at a moderate IoU.
Base + 10 (40) performs better than Base (40) and Base + 30 (40) in all 3D metrics, both with and
without R40 evaluation. Overall, the performance results at IoU=0.5 show high accuracies. With Base
+ 30 (80), the detection and orientation values severely drop, suggesting that aggressive data
augmentation can lead to overfitting and degrading generalization. Additionally, the AOS values are
generally lower, which highlights the model’s ability on low object orientation estimation.

Comparing the moderate IoU=0.5 to the stricter IoU=0.7, all 3D detection metrics-BEV, 3D, and
AOS-show a performance drop in all configurations. This emphasizes that the increased difficulty of
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Table 9: 3D Detection Performance at IoU = 0.70

Dataset (Epoch) | bbox BEV 3D  AOS | bbox R40 BEV_R40 3D_R40 AOS_R40

Base (40) 97.09 33.72 20.10 77.61 98.14 28.61 14.76 77.16
Base + 10° (40) 96.57 85.09 66.20 94.26 98.80 85.88 69.36 96.33
Base + 30° (40) 95.55 56.51 41.05 43.02 98.14 54.18 39.55 42.79
Base (80) 98.78 1.01  0.51 64.40 99.36 0.51 0.06 64.79
Base + 10° (80) 97.18 89.06 76.53 72.62 99.06 89.83 78.23 74.02
Base + 30° (80) 91.02 0.04 0.04 48381 91.82 0.01 0.01 49.36

precise object localization, especially regarding depth and orientation, is more difficult. Despite the
performance drop, Base + 10 (40) shows superior generalization and robustness due to its relatively
high performance values. In contrast, Base (80) and Base + 30(80) have very low 3D metrics scores
that are close to 0. Compared to IoU=0.5, Base + 30(80) represents similar values while Base (80)
values show a significant drop. Both configurations fail to generalize and perform complex 3D
localization and orientation tasks, due to overfitting or ineffective generalization.

6 Discussions

The results of this study provide critical insights into the performance of PV-RCNN for 3D object
detection in maritime environments, particularly under conditions of limited data availability. The
experiments demonstrate that data augmentation techniques, specifically moderate rotations,
significantly enhance the model’s generalisation capability and accuracy in detecting boats across
varying orientations and perspectives. By integrating the perception module into the decision-making
process of the GNC system, the model can effectively contribute to the high level of autonomy
envisioned for USVs operating under the NJORDIQ-stack. Specifically on the docking task envisioned
in the SeaClear2.0 Project, the perception module’s output can be utilised to provide precise pose
information required for successful docking onto another USV, even in confined spaces, such as
harbours or marinas. Previous works have relied on the assumption of exact GNSS position and
orientation for docking, an assumption that may not hold in environments where GNSS signals are
obstructed or unreliable. The integration of the perception module offers a more robust and adaptive
approach, enabling the USV to navigate dynamic environments and accurately detect and localise
boats, even under challenging conditions.

6.1 Performance

The training and evaluation of PV-RCNN for LiDAR-based 3D object detection presents several
challenges, including critical insights regarding data augmentation, training duration, configuration
settings, and localization precision.

Firstly, the results indicate that data augmentation is crucial and enhances the model performance.
Compared to the Base (40/80) dataset, the performance of the Base + 10(40) dataset shows superb
generalization and robustness. A moderate rotation (10°) leads to precise localization and helps the
model generalize to minor variations in object orientation and perspective, which are common in
real-world scenarios. However, a higher rotation (30°) increases data diversity and complexity.
Combined with extended training, the model struggled to predict the orientation and localization,
potentially due to exposure to unrealistic, very wide, and rotational variations.

Secondly, the duration of training has a complex and conditional impact on model performance. The
results show that extended training (80 epochs) leads to overfitting for both non-augmented and
augmented datasets, resulting in reduced detection performance. This suggests that extended training
does not necessarily refine the model’s understanding or improve localization precision. Further work
could include validation monitoring and early stopping protocols.

Finally, achieving high localization precision at a strict IToU=0.7 threshold remains challenging. As
seen in the results, the drop in recall and 3D detection metrics indicates that while objects are
detected, the model struggles with accurately localizing fine-grained features.

6.2 Maritime dataset and data augmentation

A small base set of manually annotated real-world samples can lead to promising results using
advanced augmentation techniques. Moreover, different dataset configurations (point cloud range,
voxel size, etc.) should be explored to observe their impact on 3D detection performance. Nevertheless,
the custom-collected maritime data presents limitations, such as variable scenes, missing points in boat
shapes, ship type scarcity, and complex scenes in larger harbours. Furthermore, applying data
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augmentation does not introduce novel scenes, and it can lead to overfitting. This could also result in a
lack of ability to generalize when the model encounters novel scenes or ship types. In future works,
more diverse data should be collected to test different configurations and improve the robustness of the
model in novel maritime scenes.

7 Conclusion

The current work addressed a critical challenge in maritime perception: the lack of large-scale LiDAR
datasets required for training robust 3D object detection models. The research goal was to analyse to
what extent data augmentation techniques can enable PV-RCNN, a model known for its high accuracy
on 3D detection benchmarks, to achieve reliable boat detection when trained on a small, custom point
cloud dataset. The experiments were conducted using a dataset acquired via the onboard sensory
system of a small-sized USV. The envisioned scenario is the autonomous navigation and docking of the
aforementioned USV onto a second USV, in the context of marine litter collection. Experiments
showed that a moderate rotation of 10° achieved optimal results, leading to better generalization and
robustness compared to using no augmentation or applying larger rotation angles during augmentation.
In contrast, increased training duration combined with higher rotations led to reduced performance and
potential overfitting. The primary conclusion of this work is that the parameters of the augmentation
strategy itself are a critical factor. While the technique is an effective method for overcoming data
scarcity in the maritime domain, this study demonstrates that achieving robust detection is highly
dependent on moderate transformations, as shown by 10° performance results. Future work will
explore different configurations (e.g., batch size, number of epochs, additional object classes) and focus
on collecting more diverse data to improve model robustness in novel maritime environments.
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