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Kurzzusammenfassung

Die prozedurale Generierung ist heutzutage vielseitig verwendet, da die automatische
Generierung von Inhalten viel Zeit und Aufwand erspart. Sie ist ein stetig wachsender
Bereich. Darunter gibt es den neuen Markov Junior Algorithmus von Maxim Gumin. Die-
ser erzeugt Rastergrafiken, welche durch das Grundprinzip der visuellen Ersetzungsregeln
generiert werden. Eine Ersetzungsregel beinhaltet ein Eingabemuster, welches durch das
entsprechende Ausgabemuster der Regel im Raster ersetzt wird.

Diese Arbeit beschiftigt sich damit, den Markov Junior Algorithmus nidher darzustellen
und zu analysieren. Dafiir wird in dieser Arbeit ein neuer Ansatz zur Generierung von
perfekten Labyrinthen mit dem Markov Junior Algorithmus entwickelt. Ein perfektes La-
byrinth hat keine geschlossenen Kreise oder unerreichbaren Stellen. Der Ansatz legt den
Fokus auf die Kontrollierbarkeit gewisser Eigenschaften, wie den Verlauf des Losungswe-
ges und der Anzahl an direkten Abzweigungen vom Lésungsweg. Dabei wird dies durch
einen modularen Ansatz gelost, welcher zuerst den Losungsweg, dann die Abzweigungs-
punkte vom Losungsweg und zuletzt die restlichen Wege generiert.

Das Ergebnis zeigt, dass der Markov Junior Algorithmus perfekte Labyrinthe generieren
kann und zudem die Kontrolle iiber die genannten Eigenschaften erlaubt. Der Markov Ju-
nior Algorithmus beweist sich zudem als ein méchtiges Tool zur prozeduralen Generierung
von simplen bis mittel komplexen Grafiken, bei dem durch wenig Code viel dargestellt
werden kann. Jedoch hat die Umsetzung des Ansatzes gezeigt, dass Markov Junior durch
Einschrankungen, wie z. B. das Fehlen von Variablen und die schnelle Uniibersichtlichkeit

der Ersetzungsregeln, eine erhéhte Komplexitat aufweist.
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Abstract

Procedural content generation is widely used today as the automatic generation of content
saves a lot of time and effort. It is a steadily growing field. Among its innovations is the
new Markov Junior algorithm by Maxim Gumin. This algorithm generates grid graphics,
which are produced based on the fundamental principle of visual rewrite rules. A rewrite
rule includes an input pattern, which is replaced in the grid by the corresponding output
pattern of the rule.

This work aims to present and analyze the Markov Junior algorithm in more detail.
To achieve this, a new approach to generating perfect mazes using the Markov Junior
algorithm is developed. A perfect maze has no loops or unreachable areas. The approach
focuses on the controllability of certain properties, such as the course of the solution path
and the number of direct branches from the solution path. This is achieved through a
modular approach that first generates the solution path, then the branching points from
the solution path, and finally the remaining paths.

The results show that the Markov Junior algorithm can generate perfect mazes and also
allows control over the mentioned properties. Furthermore, the Markov Junior algorithm
proves to be a powerful tool for the procedural content generation of simple to moderately
complex graphics, where a lot can be depicted with little code. However, the implemen-
tation of the approach has shown that Markov Junior exhibits increased complexity due
to limitations such as the lack of variables and the rapid lack of clarity of the rewrite

rules.
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1 Einleitung

1.1 Motivation

Prozedurale Generierung ist heutzutage nicht mehr wegzudenken, da sie in vielen Berei-
chen genutzt wird. Vor allem in der Videospielindustrie hat sie einen grofsen Einfluss. Bei
der prozeduralen Generierung geht es um die automatische Generierung von Inhalten,
welche meistens graphischer Natur sind. Daraus ergibt sich der Vorteil, dass die Erstel-
lung solcher Inhalte nicht manuell geschehen muss, was hiufig viel Zeit und Aufwand
kostet. |25, 26, 27|

Wie bei vielen weit verbreiteten Konzepten gibt es auch bei der prozeduralen Generie-
rung verschiedenste Verfahren. Eines der neueren Verfahren ist der Markov Junior (MJ)
Algorithmus von Maxim Gumin 12|, welcher Rastergrafiken erzeugt. Dieser verfolgt das
Grundprinzip von Ersetzungsregeln. Eine Ersetzungsregel beschreibt ein Eingabemus-
ter, was in dem Raster gesucht wird und ein dazugehoriges Ausgabemuster, welches das
Aufkommen des Eingabemusters im Raster ersetzt. Diese werden in Knoten umbhiillt.
Die Knoten bringen jeweils eine Eigenschaft mit sich, welche bestimmt, wie die Regeln
angewendet werden oder wie das Raster manipuliert wird. Dadurch ergibt sich die Mog-
lichkeit komplexere Programme zu erstellen. Eine Anordnung mehrerer Knoten stellt ein
MJ Programm dar. So wird von einem Startraster iiber die Knoten eine Grafik erzeugt.
Vergleichbar ist das Grundprinzip mit herkémmlichen Grammatiken.

Aufgrund der Neuheit des Algorithmus ist dieser noch wenig erforscht. Da die prozedu-
rale Generierung ein immer wachsendes Feld ist, ist es von Interesse, neue Verfahren zu
préasentieren und zu verstehen, um diese dadurch besser etablieren zu konnen. Deswegen

setzt sich diese Arbeit den Fokus, den MJ Algorithmus darzustellen und zu analysieren.

Dafiir wird jener in dieser Arbeit fiir die Generierung von Labyrinthen genutzt. Ein
Labyrinth ist heutzutage als ein Rétsel zu verstehen, in welchem es einen Start und ein
Ziel gibt, welche durch einen Weg verbunden sind. Dazu gibt es mehrere Abzweigungen

und Sackgassen, wodurch das Finden des Losungsweges erschwert wird?.

'nttps://en.wikipedia.org/wiki/Maze - Zugriffsdatum: 20.07.2024



1 Einleitung

In dieser Arbeit liegt der Fokus auf perfekten Labyrinthen. Diese haben keine geschlos-
senen Kreise und keine unerreichbaren Stellen [21]. Dessen manuelle Erstellung kann
schnell aufwendig werden, weshalb die prozedurale Generierung von Labyrinthen ein
schon erforschtes Feld ist. So gibt es auch schon einige Algorithmen zur Generierung von
Labyrinthen [9]. Daher versucht diese Arbeit mithilfe von MJ einen neuen Ansatz zur

Generierung von Labyrinthen zu erstellen.

Dabei wird die Generierung in zwei Teile geteilt: die Generierung des Losungsweges und
die Generierung der Abzweigungen. Die Generierung der Abzweigungen kann auch in zwei
Teile unterteilt werden: die Generierung der Abzweigungspunkte von dem Loésungsweg
und die Generierung der restlichen Wege. Der self-avoiding walk (SAW) bildet hierbei
das Grundprinzip der Generierung der Wege. Ein SAW ist ein zufilliger Weg, der nicht
in sich selbst lduft.

Bereits Kim et al. [15] haben zuerst den Losungsweg und danach die Abzweigungen ge-
neriert. Dieses Prinzip haben sie jedoch aufserhalb des Kontextes von MJ verwendet. Der
SAW wurde von Maxim Gumin [12]| beispielhaft schon in MJ umgesetzt. Die Generierung
der restlichen Wege baut auf einem Ansatz von Bellot et al. [2] auf, welcher aber ebenfalls
aufserhalb des Kontextes von MJ implementiert wurde. Die Umsetzung der bestehenden
Konzepte (aufer des SAWs) in MJ wird somit durch diese Arbeit neu eingefiihrt. Die
Idee und Umsetzung der Generierung des Losungsweges und der Abzweigungspunkte
werden ebenfalls durch diese Arbeit neu eingefiihrt. Dazu ist der allgemeine Ansatz in

der Kombination der einzelnen Komponenten ein in dieser Arbeit entwickeltes Konzept.

1.2 Ziele der Arbeit

In dieser Arbeit soll der MJ Algorithmus vorgestellt werden. Im Mittelpunkt steht da-
bei die Erklarung des grundlegenden Konzeptes der visuellen Ersetzungsregeln und die
Beschreibung der einzelnen Knoten, welche charakteristisch fiir MJ sind. Dies hat das
iibergeordnete Ziel, den MJ Algorithmus selbststéndig anwenden zu konnen.

Dazu soll unter der Nutzung des MJ Algorithmus ein neuer Ansatz zur Generierung
von perfekten Labyrinthen erstellt werden. Im Fokus steht dabei die Kontrollierbarkeit
von einigen Kigenschaften des Labyrinthes, da diese in den herkémmlichen Algorithmen
vernachléassigt wird [9]. Das Ziel dabei ist, dass es der neue Ansatz ermdglichen soll, den
Verlauf des Losungsweges des Labyrinthes und die Anzahl an direkten Abzweigungen

vom Losungsweg steuern zu konnen.



1 Einleitung

Ein weiteres Ziel ist es, auf der Grundlage der Erstellung des Ansatzes zeigen zu konnen,
was mit MJ moglich ist. Dazu wird der MJ Algorithmus kritisch hinterfragt und des-
sen Stirken und Schwichen analysiert. Zusétzlich soll das Potenzial von MJ dargestellt

werden.



2 Stand der Technik

Markov Junior (MJ) wurde 2022 verdffentlicht [12] und ist somit relativ neu, weshalb es
bisher kaum Forschungsarbeiten mit konkretem Bezug dazu gibt. Cooper [3] hat direkte
Inspiration von den Ersetzungsregeln aus MJ geholt. Mit diesem Prinzip hat Cooper
Bedingungen erstellt, um mit den Regeln zu beschreiben, wie ein generiertes Spiellevel

gelost oder gespielt werden kann.

Das allgemeine Konzept der Ersetzungsregeln ist ebenfalls in Grammatiken vorzufinden
und im Grundprinzip ist MJ eng verbunden zu diesen. Grammatiken wurden schon héiufig
fiir prozedurale Generierung verwendet.

Van Rozen und Heijn [22]| analysieren den Nutzen von Grammatiken in Bezug auf die
prozedurale Generierung. Dazu verwenden sie eine Generierung eines einfachen Verlieses
auf einem Raster als Beispiel. Die Grammatik zur Generierung benutzt die Kacheln des
Rasters fiir die Ersetzungsregeln, welche denen aus MJ sehr nahekommen.

Dormans und Bakkes [5] nutzen Grammatiken, um Spiellevel zu erzeugen. Sie teilen dafiir
die Generierung in zwei Teile auf: Missionen und Raum. Fiir die Missionen (Aufgaben
im Spiel) wird eine Graph grammar verwendet, um einen Missionsgraphen zu erstellen.
Dieser stellt dar, was fiir Missionen es in welcher Kombination und Reihenfolge gibt.
Eine Graph grammar unterscheidet sich von einer normalen Grammatik insofern, als
dass statt Strings Graphen ersetzt und erzeugt werden. Fiir die Generierung des Raum-
es (die Spielkarte) wird nach Anpassungen des Missionsgraphens eine Shape grammar
verwendet. Eine Shape grammar ersetzt und erzeugt geometrische Figuren.

Dormans |4] erweitert dies umn die Generierung von Spielmechaniken mithilfe einer Graph
grammar.

Merrell [19] présentiert eine Methode, bei der die Graph grammar aus einem Beispiel
abgeleitet wird, um so lokal dhnliche Inhalte zu generieren.

Auch fiir die Generierung von Labyrinthen kénnen Grammatiken verwendet werden. Et-
chebehere und Eliseo [6] nutzen L-Systeme, um Labyrinthe unterschiedlicher Komplexitét
zu generieren. L-Systeme sind nah verwandt mit Grammatiken, wobei der Hauptunter-

schied eine parallele Ausfithrung der Regeln ist.
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Im Bereich der Labyrinthgenerierung beschéaftigen sich einige Forschungsarbeiten mit den
graphbasierten Algorithmen.

Shah et al. [23] und Kozlova, Brown und Reading [16] geben jeweils einen Uberblick iiber
einen Teil dieser Algorithmen.

Gabrovsek [9] geht dabei zusétzlich noch auf die Performance der einzelnen Algorithmen
ein und analysiert die Schwierigkeit der Labyrinthe. Unter diesen Aspekten werden die

einzelnen Algorithmen miteinander verglichen.

Weitere Forschungsarbeiten beschéftigen sich mit anderen Verfahren, die eine bessere
Kontrolle iiber die generierten Labyrinthe zulassen.

Ashlock, Lee und McGuinness [1] generieren unterschiedliche Typen von Labyrinthen
und experimentieren dazu mit einigen Eigenschaften der Labyrinthe, wie z. B. den Sack-
gassen. Sie nutzen dafiir die such-basierte prozedurale Generierung, bei der man iterativ
den Inhalt generiert und nach dem am besten passenden Inhalt sucht. Dies wird meist
durch Evaluationsfunktionen unterstiitzt, welche auswerten, wie gut der generierte In-
halt ist, um so zukiinftige Generierungen zu verbessern (vergleichbar mit evolutioniren
Algorithmen) [27].

Kim et al. [15] nutzen ebenfalls die such-basierte prozedurale Generierung und legen
dabei den Fokus darauf, moglichst viel vom Labyrinth anpassen zu kénnen. Dazu teilen
Kim et al. die Generierung in die Erzeugung des Losungsweges und die Erzeugung des
restlichen Labyrinthes fiir eine bessere Kontrolle ein.

Peachey [20] nutzt ein mehrschrittiges Verfahren mit einem neuronalen Netz, um so
Labyrinthe einer gewissen Schwierigkeit zu generieren. Das neuronale Netz erzeugt hierbei
die Parameter fiir den eigentlichen Labyrinthgenerator unter Betrachtung der gewollten
Schwierigkeit. Die generierten Labyrinthe werden dann {iber ihre Schwierigkeit analysiert
und diese Ergebnisse werden zum Lernen des neuronalen Netzes genutzt.

Nelson und Smith [24]| nutzen einen logischen Programmieransatz, um dadurch Labyrin-
the und spielbare Verliese zu generieren. Dazu kodieren sie die Logik der Doméne des
Labyrinthes/Verlieses als logisches Problem und fiigen Constraints hinzu, welche vor-
schreiben, wie der Inhalt aussehen soll. Das logische Problem wird dann gel6st, sodass
man diese Mengen an Losungen als Grundlage fiir den zu generierenden Inhalt nutzen

kann.

Die Kombination aus MJ und der Generierung von Labyrinthen wurde lediglich innerhalb

des Projektes von Maxim Gumin [12| kurz erwdhnt. Dabei hat er drei der bekannteren
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graphbasierten Generierungsalgorithmen (Recursive Backtracker!, Aldous-Broder? und
Wilson‘s?) in MJ umgesetzt. Zusitzlich hat er zum Vergleich eine herkémmliche Imple-

mentierung des Wilsons’s Algorithmus vorgezeigt.

"http://weblog. jamisbuck.org/2010/12/27/maze-generation-recursive-backtrack
ing - Zugriffsdatum: 20.07.2024

http://weblog. jamisbuck.org/2011/1/17/maze-generation-aldous—broder-algorit
hm - Zugriffsdatum: 20.07.2024

3http://weblog. jamisbuck.org/2011/1/20/maze-generation-wilson-s-algorithm -
Zugriffsdatum: 20.07.2024



3 Grundlagen

Dieses Kapitel gibt eine Einfiilhrung in die wichtigsten Themen, welche eine Vorausset-
zung filir diese Arbeit sind. Dabei wird zuerst die prozedurale Generierung eingefiihrt.
Darauffolgend wird erklért, wie der Markow-Algorithmus funktioniert und zuletzt wird

erldutert, was ein Labyrinth ist und was dieses ausmacht.

3.1 Prozedurale Generierung

Prozedurale Generierung ist das automatische Generieren von meist graphischen Inhalten
durch Algorithmen. Dabei kénnen die generierten Inhalte aber auch nicht graphisch sein,
wie z. B. Musik oder Gedichte, wie bspw. Haikus. [25]

Zwei Aspekte stehen bei der prozeduralen Generierung im Fokus: Parametrisierung und
Zufalligkeit.

Durch die Parametrisierung ertffnet sich die Mdéglichkeit, das Generierte zu kontrollieren
und nach seinem Belieben anzupassen, indem man gewisse Eigenschaften des generierten
Inhaltes vorgibt (z. B. Grofe/Linge des Inhaltes oder Anzahl der Fenster bei einem
Haus).

Die Zufélligkeit sorgt dafiir, dass generierte Inhalte unterschiedlich aussehen, sodass man
durch einen Algorithmus unbegrenzte Variationen eines Inhaltes generieren kann. Hierbei
bedeutet zuféllig aber nicht, dass ohne Wissen zufillig etwas gemacht wird. Dies wiirde
zu unlogischen Inhalten fiihren, welche normalerweise nicht das Ziel der prozeduralen
Generierung sind. Der Zufall in der prozeduralen Generierung wird daher meist unter

gewissen Bedingungen, die man erfiillen muss, verwendet. [26, 27|

Nennenswert ist dabei, dass es auch prozedurale Generierung ohne Zufélligkeit gibt, also
einen rein deterministischen Algorithmus. Der Nutzen eines solchen Algorithmus liegt
meist in der Speichermenge. Wenn man eine gesamte generierte Welt speichert, nimmt

dies viel Speicher ein. Ein Algorithmus jedoch, wird nicht so viel Speicher einnehmen.
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Zusétzlich zu diesem Vorteil ergeben sich noch zwei weitere Vorteile durch die prozedurale
Generierung. Die Automatisierung erspart das manuelle Designen der Inhalte und spart
somit viel Zeit und Aufwand.

Dazu bietet die prozedurale Generierung Mdoglichkeiten, die manuell nicht umgesetzt
werden konnten: Bspw. kann durch automatische Echtzeitgenerierung den Spielenden

eines Videospiels eine potenziell unendliche Spielerfahrung gegeben werden. [26, 27|

Aufgrund dieser Aspekte ist ein grofer Anwendungsbereich der prozeduralen Generierung
die Videospielindustrie. Dort wird von kleinen Gegenstéinden wie Waffen, z. B. in Bor-
derlands (Gearbox Software 2009), bis hin zu Sternensystemen, z. B. in Elite (Acornsoft
1984), alles Méogliche automatisch generiert. [25, 26, 27|

3.2 Markow-Algorithmus

Der Markow-Algorithmus, benannt nach Andrei Markow, ist ein Stringersetzungssystem
und gilt als Turing-vollstdndig. Als Grundlage existieren ein Alphabet, auf dem der Algo-
rithmus fufst, und eine Menge an Substitutionsregeln von Symbolen aus dem Alphabet,

welche als Grammatik bezeichnet werden.! [14]

3.2.1 Formale Definition

Das Alphabet ist eine nicht leere, endliche Menge an Symbolen. Ein String ist dabei eine
endliche Sequenz aus Symbolen des Alphabets.
Seien p und ¢ zwei Strings aus dem Alphabet und p soll durch ¢ ersetzt werden, so ist

eine Substitutionsregel ein Ausdruck der Form
p — q oder p —. q.

Wobei — und . keine Symbole aus dem Alphabet sind. —. kennzeichnet hierbei eine
Terminationsregel, nach dessen Anwendung der Algorithmus beendet wird.
Der Ausdruck

p—()q

stellt p — q oder p —. ¢ dar.

"https://en.wikipedia.org/wiki/Markov_algorithm - Zugriffsdatum: 20.07.2024
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Die Grammatik ist eine endliche, geordnete Liste an Substitutionsregeln
pi —(.) ¢, miti=1,2,...,1.

Eine Regel i hat eine hohere Prioritdt als eine Regel j, wenn ¢ < j ist.
Bei einem Eingabestring s aus dem Alphabet kann der Markow-Algorithmus wie folgt

beschrieben werden:

1. Setze i =1.

2. Schaue die i-te Substitutionsregel der Grammatik an und suche nach dem am wei-
testen links auftretenden p; in s. Gibt es kein Vorkommen von p;, dann springe zu
Schritt 4.

3. Ersetze das gefundene Vorkommen von p; in s durch ¢;. Ist die i-te Regel eine

Terminationsregel, beende den Algorithmus. Ansonsten springe zu Schritt 1.

4. Setze i = i+ 1. Wenn ¢ > I ist, beende den Algorithmus. Ansonsten springe zu
Schritt 2. [14]

3.3 Labyrinth

Ein Labyrinth besteht aus einem Weg oder mehreren Wegen, wobei es normalerweise

einen Startpunkt und ein Ziel zwischen den Wegen gibt.?

Geschichtlich gesehen gibt es zwei Hauptarten, welche zu unterscheiden sind.
Anfanglich war die Definition eines Labyrinthes ein einzelner Weg, welcher ohne Abzwei-
gungen mit Richtungswechseln von einem &ufleren Startpunkt zum Ziel im Mittelpunkt
des Labyrinthes fithrt (Abbildung 3.1a).

Heutzutage jedoch wird ein Labyrinth als eine Sammlung von abgezweigten Wegen ver-
standen, welche einen Losungsweg vom Start zum Ziel beinhalten. Das Ziel ist es, diesen
zu finden, weshalb Labyrinthe gegenwértig als Rétsel angesehen werden. Diese Art an
Labyrinth wird hiufig auch als Trrgarten bezeichnet (Abbildung 3.1b).3

In dieser Arbeit liegt der Fokus nur auf den Irrgérten, welche hier auch als Labyrinth

bezeichnet werden.

https://en.wikipedia.org/wiki/Maze - Zugriffsdatum: 20.07.2024
3https://de.wikipedia.org/wiki/Labyrinth - Zugriffsdatum: 20.07.2024
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(a) (b)

Abbildung 3.1: Gegeniiberstellung eines klassischen Labyrinthes (a) und eines heutigen
Labyrinthes/Irrgartens (b)
(a): https://de.wikipedia.org/wiki/Labyrinth - Zugriffsdatum: 20.07.2024,
(b): https://en.wikipedia.org/wiki/Maze - Zugriffsdatum: 20.07.2024

3.3.1 Kategorisierung von Labyrinthen

Labyrinthe kénnen unterschiedlichste Eigenschaften und Formen annehmen. Abhéingig
von diesen Eigenschaften kann das Verstdndnis eines Labyrinthes komplett anders sein.

Dabher ist es wichtig zu kldren, was fiir Labyrinthe in dieser Arbeit behandelt werden.

Labyrinthe kann man in sieben Kategorien einteilen [21]|, welche die wichtigsten Eigen-

schaften zusammenfassen:

e Dimension: Diese beschreibt, wie viele Koordinaten benotigt werden, um einen
Punkt im Labyrinth beschreiben zu kénnen. Ein Beispiel wére ein klassisches Laby-
rinth auf Papier, bei dem jeder Punkt durch zwei Koordinaten beschrieben werden
kann. Dieses Labyrinth wire zweidimensional. Wiirde man mehrere zweidimensio-
nale Labyrinthe {ibereinander schachteln und zusétzlich eine Bewegung zwischen
den Etagen zulassen, hétte man ein dreidimensionales Labyrinth. Es hat nun eine

Hohe und ein Punkt kann nur durch drei Koordinaten beschrieben werden.

e Hyperdimension: Hierbei geht es um das Objekt, welches sich durch das Labyrinth
bewegt. In einem zweidimensionalen Labyrinth bewegt man einen Punkt durch die-
ses und hinterldsst eine Linie. Wenn man nun aber eine Linie durch das Labyrinth
fiihrt, welche eine Fliche hinterlésst, spricht man von einem Hyperlabyrinth. Vor-
stellen kann man sich dieses als einen Wiirfel, welcher mehrere Freirdume in einer
Labyrinth-Struktur in sich geschnitzt hat. So wiirde man eine Linie von einer zur
anderen Seite des Wiirfels laufen lassen, um das Labyrinth zu 16sen. Dabei ist die

Linie theoretisch unendlich lang, sodass die Enden immer aufserhalb des Wiirfels

10
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bleiben. Es muss daher darauf geachtet werden, dass sich die Linie nicht in einer

Séule (fester Teil im Wiirfel, der kein Freiraum ist) verfangt.

e Topologie: Diese beschreibt, welche Geometrie der Raum hat, in dem sich das La-

byrinth befindet. Ein Beispiel wére ein Labyrinth auf einem Wiirfel.

e Tessellation: Diese beschreibt, welche Geometrie die einzelnen Zellen eines Laby-

rinthes haben. Ein Beispiel wére ein Labyrinth mit hexagonalen Zellen.

e Routenfithrung: Diese beschreibt, welche Arten an Wegen ein Labyrinth besitzt.

Ein Beispiel wiren Sackgassen und ob ein Labyrinth diese besitzt.

e Textur: Diese beschreibt, wie das Design der einzelnen Wege im Labyrinth ist. Ein

Beispiel dafiir wire die Lange von geraden Strecken in einem Labyrinth.

e Fokus: Dieser beschreibt, welche Art von Generierungstyp fiir das Labyrinth ver-
wendet wurde. Ein Beispiel wére ein Generierungsalgorithmus, welcher nur Wéande

von dem Labyrinth generiert, um so die gesamte Struktur zu erstellen.

In dieser Arbeit werden zweidimensionale, perfekte Gamma-Labyrinthe auf einer Ebene
behandelt. Perfekt ist eine Unterkategorie der Routenfithrung. Ein perfektes Labyrinth
hat keine geschlossenen Kreise und keine unerreichbaren Stellen. Von jedem Punkt im La-
byrinth gibt es exakt einen Weg zu jedem anderen Punkt. Dadurch gibt es auch nur einen
Losungsweg. Gamma ist eine Unterkategorie der Tessellation. Ein Gamma-Labyrinth hat
ein rechteckiges Feld, bei dem die Zellen Wege haben, die in rechten Winkeln abzweigen.
Die vier fehlenden Kategorien sind vorerst nicht relevant und werden zum Teil noch im

Verlauf dieser Arbeit angesprochen.

3.3.2 Generierung von Labyrinthen

Labyrinthe kénnen schnell komplex werden und so auch deren manuelle Erstellung. Daher
ist eine prozedurale Generierung von Labyrinthen sehr praktisch. Dabei gibt es unter-

schiedlichste Punkte, die zu beachten sind und im Folgenden erklirt werden.

Generierungstypen

Im vorherigen Unterkapitel wurde der Fokus angesprochen, welcher den Generierungsty-
pen eines Labyrinthes beschreibt. Dabei werden zwei Arten voneinander unterschieden:
Wand hinzufiigende und Weg schnitzende Algorithmen. Wand hinzufiigende Algorith-

men arbeiten auf einem leeren Feld und fiigen nacheinander alle Winde ein. Bezogen

11
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auf die Realitédt kann das mit Heckenlabyrinthen vergleicht werden. Weg schnitzende Al-
gorithmen hingegen arbeiten in einem schon gefiillten Feld und schnitzen die Wege des
Labyrinthes nacheinander in das Feld. Auf die Realitéit bezogen kann dies mit Minensys-

temen verglichen werden. [21]

In dieser Arbeit liegen Weg schnitzende Algorithmen/Ansétze im Fokus.

Labyrinthe als Graph

Ein Labyrinth mit den beschriebenen Eigenschaften aus dem vorherigen Unterkapitel
kann als ein Graph dargestellt werden. Dafiir betrachtet man ein zweidimensionales Ras-
ter, welches als Darstellung fiir das Labyrinth genutzt wird. Jede Kachel des Rasters wire
ein Knoten und sobald es einen Weg zwischen zwei Kacheln gibt, sind die Knoten iiber
eine Kante miteinander verbunden.

Ein perfektes Labyrinth ist daher wie ein Spannbaum. Fiir die Generierung eines solchen
Labyrinthes ist das Ziel daher einen Spannbaum zu generieren. Dabei ist bei dem Aus-
gangsgraphen fiir diesen Prozess jeder Knoten iiber eine Kante mit jedem seiner direkten
Nachbarn verbunden. Sobald bei der Generierung eine Kante als Teil des Labyrinthes aus-

gewihlt wird, wird die entsprechende Wand, die die Zellen getrennt hat, aufgebrochen.*

19]

‘https://en.wikipedia.org/wiki/Maze_generation_algorithm- Zugriffsdatum: 20.07.2024
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()

Abbildung 3.2: Darstellung des Konzeptes der Generierung von Labyrinthen mithilfe von
Graphen

In Abbildung 3.2 ist dieses Konzept dargestellt. 3.2a zeigt ein Raster mit dessen dazuge-
horigem Graphen (Knoten in Dunkelblau und Kanten in Cyan). In 3.2b ist der isolierte
Graph des Rasters zu sehen und ein Beispiel fiir einen Spannbaum auf diesem. In 3.2c

sieht man, wie dieser Spannbaum genutzt wird, um das Labyrinth zu erzeugen.

Generierungsalgorithmen

Graphbasierte Generierungsalgorithmen fiir Labyrinthe sind weit verbreitet. Zu den wohl
bekanntesten Algorithmen gehéren der rekursive Backtracker, Prim, Kruskal, Aldous-
Broder und Wilson.? [9]

In dieser Arbeit spielt der rekursive Backtracker Algorithmus eine wichtigere Rolle. Dieser
Algorithmus ist ein Weg schnitzender Algorithmus. Die Grundidee hinter dem Algorith-

mus ist eine zufillige Tiefensuche.

13
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Markov Junior (MJ) ist eine probabilistische Programmiersprache, bei der Programme
aus einer Menge an Ersetzungsregeln und weiteren Konstrukten bestehen (siehe Kapitel
4.2), welche auf einem Raster (2D aber auch 3D) agieren. In dieser Arbeit liegt der Fokus
auf einem zweidimensionalen Raster. Im Endeffekt erzeugt MJ zwei- und dreidimensio-
nale Rastergrafiken. MJ und spezifisch dessen Ersetzungsregeln sind inspiriert von dem

Markow-Algorithmus, weshalb es auch seinen Namen tragt. [12]

Eine probabilistische Programmiersprache ist speziell ausgelegt, um probabilistisches
Programmieren zu ermdglichen. Probabilistisches Programmieren beschéftigt sich grob
zusammengefasst mit dem Herausfinden von Eingabeparametern bei einer vorliegenden
Funktion und einer Menge ihrer Ausgabedaten. Dabei wird durch Inferenz aus den Aus-
gabedaten mit einer gewissen Wahrscheinlichkeit berechnet, welche Eingaben zu dem

gewiinschten Ziel fithren konnen. [18]

4.1 Vergleich zum Markow-Algorithmus

Da MJ direkt von dem Markow Algorithmus inspiriert ist, gibt es viele Uberschneidungen.

Jedoch gibt es auch einige Unterschiede, welche im Folgenden erklért werden.

4.1.1 Gemeinsamkeiten

Vor allem im grundlegenden Konzept sind sich MJ und der Markow-Algorithmus &hn-
lich. Statt der Ersetzung einfacher Zeichenketten werden in MJ Kacheln aus einem Raster
ersetzt. Die Kacheln werden durch ihre Farben dargestellt. Die Farben in MJ sind ver-
gleichbar mit dem Alphabet des Markow-Algorithmus. Das Raster in MJ ist vergleichbar
mit dem Eingabestring im Markow-Algorithmus und das MJ Programm mit allen Regeln

kann mit der Grammatik im Markow-Algorithmus verglichen werden.

14
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4.1.2 Unterschiede

Da die Ersetzungen auf einem mehrdimensionalen Raster angewendet werden, gibt es
zwei Eigenschaften des Markow-Algorithmus, welche in MJ keine Anwendung finden und
demnach anders umgesetzt werden miissen. Zum einen gibt es keinen natiirlichen Ansatz,
einen String in einen anderen String einzusetzen in héheren Dimensionen. Dafiir gibt MJ
vor, dass alle Eingabe- und Ausgabemuster der Ersetzungsregeln gleich lang sind. Zum
anderen kann man nicht einfach wie bei dem Markow-Algorithmus das am weitesten
links auftretende Vorkommen ersetzen. Als Losung fithrt MJ zwei Moglichkeiten ein: ein
zufilliges Vorkommen wéhlen oder alle moglichen Vorkommen wéhlen. Dadurch ist MJ
nicht-deterministisch und verliert somit seine Turing-Vollsténdigkeit. [12]

Auferdem unterscheidet sich die Grundlogik des Algorithmus von MJ zu dem Markow-
Algorithmus. In MJ gibt es im Allgemeinen keine Prioritdt von einzelnen Regeln und
eine Terminationsregel gibt es ebenfalls nicht. Zusétzlich gibt es weitere Konstrukte zu
den Ersetzungsregeln, welche mehr Moglichkeiten der Manipulation des Rasters erlauben.

Diese werden im folgenden Kapitel 4.2 n&her erldutert.

4.2 Knoten

Wie schon genannt, ist die Grundlogik des Algorithmus von MJ anders als bei dem
Markow-Algorithmus. Grund hierfiir sind Knoten, welche die Grundbausteine eines MJ
Programms sind. Ein Knoten hat jeweils eine Eigenschaft, die beschreibt, wie einzelne
Regeln angewendet werden oder wie das Raster manipuliert werden soll. Durch die Er-
weiterung der einfachen Ersetzungsregeln durch die Knoten ist es so moglich, komplexere
Programme zu definieren.

Jeder Knoten hat notwendige Parameter, welche diesen ausmachen. Ein Knoten kann
auch optionale Parameter haben, um so zuséitzlich gewisse Eigenschaften des Knoten
steuern zu konnen.

Es gibt drei Kategorien an Knoten, die man unterscheiden kann: Rulenodes, Branchnodes

und spezielle Knoten.

4.2.1 Rulenodes

Rulenodes sind die grundlegenden Knoten von MJ. Sie sind Wrapper fiir Ersetzungsregeln
und sagen aus, wie diese genau angewendet werden sollen. Ein Rulenode muss mindestens
eine Ersetzungsregel beinhalten. Hat ein Rulenode mehr als eine Ersetzungsregel, werden

alle seiner Regeln betrachtet. Wie die Anwendung der Regeln passiert, hdngt von dem
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jeweiligen Rulenode ab. Dabei besteht die Gemeinsamkeit darin, dass der Knoten im
Normalfall so lange ausgefiihrt wird, bis keine Regeln mehr anwendbar sind. Es gibt drei

verschiedene Rulenodes: Onenode, Allnode und Parallelnode.

Ersetzungsregeln

Die notwendigen Parameter eines Rulenodes sind die Ersetzungsregeln. Jede Regel besitzt
ein Eingabemuster und ein Ausgabemuster. Bei mehreren Ersetzungsregeln wird jede

innerhalb des Rulenodes einzeln definiert.

Das Alphabet in MJ fiir die Ersetzungsregeln besteht aus den Farben der Kacheln. Sind
zwei Farben in einem Muster einer Regel nebeneinander, so bedeutet dies, dass sie im
Raster direkt benachbart sind. Man kann sich ein Muster einer Regel also als eine direkte
Abbildung eines Teils des Rasters vorstellen. Eine einfache abstrakte MJ Ersetzungsregel

kann dann wie folgt aussehen:
Eingabemuster: (Weifs, Schwarz) - Ausgabemuster: (Weify, Weif)

Das Eingabemuster beschreibt also eine weife und eine schwarze Kachel, welche direkt
zueinander benachbart sind. Das Ausgabemuster beschreibt zwei weifse, benachbarte Ka-
cheln. Wie beim Markow-Algorithmus wird das Eingabemuster durch das Ausgabemuster
ersetzt. Diese Regel ersetzt also ein Vorkommen zweier Kacheln, welche weifs und schwarz
sind und benachbart sind, durch zwei weife benachbarte Kacheln auf dem Raster.

Da das Raster, auf dem wir agieren, zweidimensional ist, bietet MJ auch die Mdéglichkeit,

Muster iiber zwei Dimensionen zu definieren.

Zusétzlich zu den Farben im Alphabet gibt es noch zwei weitere Konstrukte, die zum
Alphabet gehoren: Wildcards und Unions.

Wildcards stehen fiir jede Farbe. In dem Eingabemuster wird an der Stelle der Wildcard
jede Farbe akzeptiert. In dem Ausgabemuster ist eine Wildcard dafiir zustdndig, dass die
Farbe an dieser Stelle unberiihrt bleibt.

Eine Union wird vor einer Regel definiert und besteht aus einem Symbol und einer
Menge an Farben. Das Symbol kann dann in den Eingabemustern genutzt werden und
steht stellvertretend fiir die definierten Farben. Bei der Anwendung der Regeln wird eine
zufillige Farbe aus der Menge gewiahlt. Man kann mehrere Unions mit unterschiedlichen

Symbolen definieren.
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Eine abstrakte Regel, die eine Union und Wildcards verwendet, kann folgende Struktur
haben:

Union
Parameter Symbol: 7, Werte: (Schwarz, Weif)
Rulenode
Regel  Eingabemuster: (*, 7, *) - Ausgabemuster: (Weifs, Weif, Weif)

Zuerst wird eine Union erstellt, bei der das Fragezeichen fiir eine weifse oder eine schwarze
Kachel steht. Die Wildcard wird hier durch einen Stern (*) dargestellt. Die Ersetzungsre-
gel sagt somit aus, dass eine weifle oder schwarze Kachel und ihre Nachbarn (egal welche

Farbe diese haben), durch drei weife Kacheln ersetzt werden.

Ein Rulenode bietet zusétzlich an, statt eines Eingabe- oder Ausgabemusters auch eine

Datei anzugeben, welche ein Kachelmuster enthélt.

Jeder Rulenode hat einen optionalen Parameter, um die maximale Anzahl an Ausfiih-

rungsschritten des Rulenodes zu bestimmen.

Symmetrie

Standardméfig wird ein Eingabemuster einer Regel in jeglicher Rotation betrachtet. An-
genommen, man hat ein Eingabemuster (Weift, Schwarz, Schwarz). Dies steht fiir eine
weifle Kachel mit zwei benachbarten schwarzen Kacheln. Auch das umgedrehte Mus-
ter (Schwarz, Schwarz, Weift) oder dasselbe Muster vertikal ausgerichtet, wiirden somit

iibereinstimmen, wenn diese in dem Raster gefunden werden.
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Abbildung 4.1: Symmetriegruppen fiir Eingabemuster der Ersetzungsregeln mit einem
Beispielmuster

Dies kann fiir jede Regel durch den Symmetrieparameter gesteuert werden. Dieser erlaubt
es, unter verschiedenen Symmetriegruppen zu wéahlen. Innerhalb einer Gruppe ist eine
spezifische Auswahl an Rotationen des urspriinglichen Musters enthalten. Dabei unter-
scheidet man zwischen sechs verschiedenen Symmetriegruppen. Diese sind in Abbildung
4.1 dargestellt.

Onenode

Der Onenode sucht alle Ubereinstimmungen der Eingabemuster seiner Regeln auf dem
Raster und wahlt zuféllig eine dieser zum Ersetzen aus. Dies entspricht der ersten Mog-
lichkeit, welche zuvor angesprochen wurde, um in einer mehrdimensionalen Umgebung

Ersetzungsregeln auszufiihren.

Allnode

Der Allnode hingegen setzt die zweite Moglichkeit zur Ersetzung von Mustern in mehr-
dimensionalen R&umen um, welche in Kapitel 4.1.2 angesprochen wurde. Er ersetzt alle
Ubereinstimmungen der Eingabemuster mit dem dazugehdrigen Ausgabemuster. Dabei
werden Uberschneidungen von Ersetzungen verhindert. Wird ein Feld schon von einer
Regel angefasst, wird dieses nicht mehr von anderen Regeln beriihrt. Die Wahl der Rei-

henfolge der Ersetzungen geschieht zufillig.

Parallelnode

Der Parallelnode ist #hnlich zum Allnode. Er ersetzt ebenfalls alle Ubereinstimmungen

der Eingabemuster, achtet aber nicht auf Uberschneidungen. Eine spiter definierte Er-
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setzungsregel im Parallelnode wiirde daher eine frithere Regel iiberschreiben, wenn diese

gleiche Felder im Raster betreffen.

Er hat zusétzlich noch einen optionalen Parameter, um die Wahrscheinlichkeit festzule-
gen, dass eine Ubereinstimmung eines Eingabemusters einer Regel ersetzt wird.
Beispielanwendung fiir Rulenodes

Angenommen, der Rulenode besteht aus folgender Ersetzungsregel:

Eingabemuster: (Weifs, Schwarz) - Ausgabemuster: (Weif}, Weif)

Abbildung 4.2: Auschnitt eines Beispielrasters mit schwarzem Hintergrund und einer wei-
fsen Kachel

Zusétzlich nehmen wir an, dass das Raster schwarz ist und auch mindestens eine weifse
Kachel enthilt (siehe Abbildung 4.2). Dann wiirde die Regel iiber die Zeit das schwar-
ze Raster mit weiteren weiffen Kacheln befiillen und zwar beginnend von den schon im
Raster vorhandenen weifsen Kacheln. Abhingig vom Rulenode geschieht das jedoch un-

terschiedlich, was im Folgenden verdeutlicht wird.

Abbildung 4.3: Alle Ubereinstimmungen des Eingabemusters (Weif, Schwarz) im Ras-
terauschnitt aus Abbildung 4.2

Bei dem Zustand in Abbildung 4.2 wiirde es fiir jeden der drei Rulenodes vier Uberein-

stimmungen des Eingabemusters geben (siehe Abbildung 4.3).
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(a) Onenode (b) Allnode (c) Parallelnode

Abbildung 4.4: Ausschnitte des Rasters nach erster beispielhafter Anwendung der Regel

Im ersten Schritt der Ausfithrung ist zu beobachten, dass auch der Allnode wie der
Onenode nur eine Ubereinstimmung ersetzt, welche in dem Beispiel zufillig gleich sind
(siehe Abbildung 4.4). Dies liegt daran, dass die weife Kachel in der Mitte durch die erste
Ausfithrung der Regel schon angefasst wird. Es wird ndmlich Weift durch Weif ersetzt,
was der Allnode auch als Veriinderung versteht. Da der Allnode Uberschneidungen von

Regelanwendungen vermeidet, wendet er somit keine weitere Regel mehr an.

(a) Onenode (b) Allnode (c) Parallelnode

Abbildung 4.5: Ausschnitte des Rasters nach zweiter beispielhafter Anwendung der Regel

Nach der ersten Ausfithrung sind mehr weife Kacheln vorhanden. Somit gibt es auch
mehr Ubereinstimmungen des Eingabemusters als zuvor. Dadurch ist bei der zweiten
Ausfiihrung nun auch der Unterschied zwischen einem One- und Allnode zu erkennen.
Der Onenode hat nur eine Ubereinstimmung ersetzt, wihrend der Allnode alle moglichen
(hier zwei) Ubereinstimmungen ersetzt hat. Der Parallelnode ersetzt wie beschrieben alle

Ubereinstimmungen unabhiingig der Uberschneidungen (siche Abbildung 4.5).
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Erweiterung von Rulenodes

MJ bietet die Moglichkeit, dass Ersetzungen nicht nur zufillig ausgewéhlt werden, son-
dern auch abhéngig von den Begebenheiten des Rasters ausgewéhlt werden konnen. Dafiir

gibt es zwei Moglichkeiten: Fields und Observations.

Innerhalb eines Rulenodes konnen mehrere Fields definiert werden. Ein Field kann eine
Regel lenken, in eine bestimmte Richtung ausgefiihrt zu werden. Dafiir werden die betrof-
fene Farbe, fiir die das Field gilt, und die Zielfarbe fiir die betroffene Farbe definiert. Jede
Regel, die die betroffene Farbe enthélt, ist von dem Field betroffen. Die Zielfarbe wird
entweder angesteuert oder dient im Gegenteil als Farbe, von der sich die Regel versucht
zu entfernen.

Dies wird umgesetzt durch die Berechnung eines einfachen Distanzfeldes von der Zielfarbe
aus. Jede direkt benachbarte Kachel hétte somit den Wert 1 und die Nachbarn davon den
Wert 2 etc. Damit kann entschieden werden, welche Ersetzung das beste Potenzial hat,
sich der Zielfarbe zu ndhern (oder zu entfernen). Ein Field muss daher auch definieren,
auf welcher Farbe das Distanzfeld berechnet werden soll.

Ein Field wird innerhalb eines Rulenodes definiert. Die betroffene Farbe, die Zielfarbe
und die Grundfarbe fiir das Distanzfeld sind die notwendigen Parameter. Angenommen,
das Raster ist schwarz, hat eine weifse und eine gelbe Kachel. Dann kann ein Field fiir

einen Rulenode wie folgt aussehen:

Rulenode
Regel  Eingabemuster: (Weif, Schwarz) - Ausgabemuster: (Weif, Weif)

Field betroffene Farbe: Weif, Zielfarbe: Gelb, Grundfarbe: Schwarz

Diese einfache Ersetzungsregel wiirde von der weifen Kachel aus Richtung gelber Kachel
auf schwarzem Untergrund eine weifte Linie ziehen.

Ein Field hat zudem zwei optionale Parameter: den Nachrechnungsparameter und den
Notwendigkeitsparameter. Der Nachrechnungsparameter sagt aus, ob nach jeder Anwen-
dung einer Regel das Distanzfeld neu berechnet werden soll. Der Notwendigkeitsparame-
ter sagt aus, ob die Regel nur ausgefithrt werden soll, wenn die Grundfarbe fiir das Field

auch existiert.

Auch Observations werden in einem Rulenode definiert und kénnen dafiir sorgen, Regeln
zu lenken. Dies geschieht jedoch strenger als bei den Fields. Eine Observation definiert

fiir eine Farbe, welchen Endzustand (Farbe auf dem Raster) sie annehmen soll, nach
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Anwendung der betroffenen Regeln. So werden Regelanwendungen ausgewihlt, welche

zu diesem Zielzustand fithren werden.

Sowohl Fields als auch Observations bieten an, zu steuern, wie streng Regeln gewdhlt
werden, um das definierte Ziel zu erreichen. Dies kann iiber den Temperatur-Parameter
eingestellt werden. Der Parameter wird auf den zum Field oder zur Observation dazuge-

horigen Rulenode gesetzt.

4.2.2 Branchnodes

Branchnodes kénnen andere Knoten als ihre Kinder haben. Es gibt zwei Typen von

Branchnodes: Einfache Branchnodes und manipulierende Branchnodes.

Einfache Branchnodes haben eine Auswirkung auf den Ablauf der Ausfiihrung der Kind-

knoten. Es gibt zwei einfache Branchnodes: Sequencenode und Markovnode.

Manipulierende Branchnodes verénderen zuerst das aktuelle Raster und lassen dann alle
Kindknoten nacheinander wie in einem Sequencenode auf dem verdnderten Raster aus-
fiihren. Es gibt zwei manipulierende Branchnodes: Mapnode und WaveFunctionCollapse
Node.

Sequencenode

Ein Sequencenode sorgt dafiir, dass alle Kindknoten sequenziell ausgefiihrt werden.

Markovnode

Ein Markovnode funktioniert wie der Markow-Algorithmus. Der erste Knoten wird prio-
risiert ausgefiihrt. Ist dieser nicht mehr anwendbar, werden die néchsten Knoten ange-
schaut. Sobald einer angewendet wurde, springt man wieder zum ersten Knoten zuriick

und versucht diesen erneut anzuwenden.

Mapnode

Der Mapnode ersetzt das aktuelle Raster mit einem neuen Raster, welches sich in der
Grofse unterscheiden kann. Der Mapnode erlaubt es zu Beginn, Ersetzungsregeln zu de-
finieren, bei denen die Eingabemuster im alten Raster gesucht werden und die Ausga-
bemuster im neuen Raster entsprechend angewendet werden. Daher ist es im Mapnode

moglich, dass sich Eingabemuster und Ausgabemuster in der Gréfe unterscheiden.
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Fiir den Mapnode ist die Skalierung ein notwendiger Parameter. Die Skalierung sagt aus,
wie das neue Raster im Vergleich zum alten Raster skaliert werden soll. Dafiir muss fiir
jede Richtung (z,y, z) eine Skalierung angegeben werden. Sollen die einzelnen Muster
im Ausgaberaster die gleiche Proportion wie im Eingaberaster haben, so miissen die
Ausgabemuster ebenfalls skaliert werden.

Angenommen, das alte Raster ist schwarz und hat gelbe Kacheln auf sich verteilt. Dann

kann ein abstrakter Mapnode wie folgt aussehen:

Mapnode
Parameter Skalierung: (2, 2, 1)
Regel  Eingabemuster: (Gelb) - Ausgabemuster: (Weik Weik )
Kindknoten
Kindknoten

Das neue Raster ist in z- und y-Richtung doppelt so grof und hat jede gelbe Kachel
vom alten Raster durch weifse Kacheln auf dem neuen Raster ersetzt. Dabei sind die
Proportionen der gelben Kacheln im urspriinglichen Raster beibehalten, da auch das
Ausgabemuster skaliert wurde. Danach wird mit den inneren Knoten im Mapnode se-

quenziell auf dem neuen Raster standardméfig fortgefahren.

WaveFunctionCollapse Node

Ein WaveFunctionCollapse Node nutzt den WaveFunctionCollapse Algorithmus [11]| von
Maxim Gumin. Dieser ermoglicht das Generieren von Bildern, welche lokal dhnlich zu
einem Eingabebild sind. Lokal dhnlich bedeutet, dass die generierten Bilder nur die NV x
N Muster enthalten, welche auch im Eingabebild zu finden sind. Zusétzlich soll die
Verteilung der Muster &hnlich sein. [13]

Der WaveFunctionCollapse Node ersetzt das alte Raster mit einem gleichgroffen neuen
Raster. Auf dem neuen Raster wird dann von einem Beispielbild oder einem selbst de-
finierten Tileset mit dem WaveFunctionCollapse Algorithmus ein lokal dhnliches Bild
generiert. Das Tileset ist eine Menge aus kleinen Kachelgrafiken und Regeln, wie diese
nebeneinander angeordnet sein diirfen. Anhand dieser Regeln generiert der WaveFunc-

tionCollapse Algorithmus die lokal dhnlichen Bilder. Zusétzlich kann man das alte Raster
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nutzen, um anhand dessen Farben zu bestimmen, an welchen Stellen im neuen Raster

der WaveFunctionCollapse Algorithmus angewendet werden soll.

Besonderheit von Branchnodes

Ist ein Branchnode ein Kind von einem anderen Branchnode, so wird der innere Branchno-
de wiederholend ausgefiihrt, bis kein Knoten in dem inneren Branchnode mehr {iberein-

stimmt. Mapnodes und WaveFunctionCollapse Nodes sind davon ausgeschlossen.

4.2.3 Spezielle Knoten

Spezielle Knoten haben die Eigenschaft, wie Rulenodes das Raster verdndern zu kénnen,
tun dies aber nicht mit einfachen Ersetzungsregeln und sind keine Branchnodes. Es gibt

drei spezielle Knoten: Pathnode, Convolutionnode und Conv Chain Node.

Pathnode

Ein Pathnode erstellt zwischen zwei definierten Farben auf dem Raster einen Weg. Es
wird standardméfig der kiirzeste Weg genommen. Bei mehreren Vorkommen der Farben
wird der kiirzeste Weg gewéhlt. Dieser Knoten wird so lange ausgefiihrt, bis keine Wege

zwischen den definierten Farben mehr erstellt werden konnen.

Convolutionnode

Ein Convolutionnode besitzt wie ein Rulenode mindestens eine Ersetzungsregel. Die Re-
gel gilt aber lediglich fiir eine Kachel, denn Regeln im Convolutionnode werden abhéngig
von den Nachbarn der Eingabekachel angewendet. Nur wenn die Nachbarn der Eingabe-
kachel bestimmte Farben haben, wird diese Kachel durch die Ausgabekachel ersetzt. Man
kann zwischen der Von-Neumann- und Moore-Nachbarschaft wéhlen. Die Nachbarfelder
und deren Farben werden einmal zu Beginn ermittelt. Dann wird jede Regel nacheinan-
der anhand dieser Nachbarschaften angewendet. Spédtere Regeln kénnen daher Vorherige

iiberschreiben.

ConvChain Node

Ein ConvChain Node nutzt den ConvChain Algorithmus [10] von Maxim Gumin. Dieser
ermdglicht anhand eines Beispielbildes, Bilder zu generieren, welche die gleiche Verteilung
an N x N Mustern des Beispielbildes haben.
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Der ConvChain Node wendet den ConvChain Algorithmus dann auf einen definierten

Teil des Rasters an.

4.3 Programmaufbau

Ein MJ Programm besteht aus mindestens einem Knoten. Damit mehrere Knoten ausge-
fiihrt werden konnen, muss ein Branchnode als Wurzelknoten benutzt werden. Standard-
mafig ist dies ein Sequencenode, damit man eine sequenzielle Ausfithrung erméglichen
kann.

Auch das Raster selbst hat Parameter, die zu Beginn eines Programms (oder in einem
manipulierenden Branchnode) angegeben werden miissen. Notwendig sind dabei die Far-
ben, die das Raster annehmen kann. Dazu legt die erste genannte Farbe die Grundfarbe
des Rasters zum Programmstart fest. Zusétzlich gibt es die Option, zu bestimmen, ob
es einen Ursprung geben soll. Der Ursprung ist die Kachel in der Mitte des Rasters. Ist
diese Option gesetzt, so bestimmt die zweite gegebene Farbe die Farbe des Ursprungs.
Diese Parameter werden im Wurzelknoten des Programms gesetzt.

So kann der Beginn eines MJ Programms folgendermafen aussehen:

Sequencenode
Rasterparameter  Farben: (Schwarz, Weifs, Gelb), Ursprung: ja
Kindknoten

Das Raster kann somit die Farben Schwarz, Weifs und Gelb annehmen. Die Grundfarbe
des Rasters zu Beginn ist schwarz. Zuséatzlich ist in der Mitte des Rasters eine Kachel

weifl geférbt.

Aufserdem gibt es allgemeinere Modellparameter fiir das Programm, welche auferhalb des
Programmcodes definiert werden. Der notwendige Parameter in diesem Fall ist die Grofe
des Rasters oder die einzelnen Teilgrofen des Rasters (Lénge, Breite, Tiefe). Das Raster
kann somit ein frei wihlbares Rechteck oder ein frei wihlbarer Quader sein. Optionale
Parameter sind unter anderem die maximale Anzahl an Schritten fiir die Ausfithrung

oder auch die Dimension des Rasters.
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4.4 Beispielanwendung

Ein simples MJ Programm ist BasicSnake aus dem Originalprojekt von Maxim Gumin
[12]. Dieses Programm simuliert ein zufilliges, simples Snake-Spiel.

Im originalen Snake-Spiel bewegt sich eine Schlange gerade oder rechtwinklig auf einem
Raster. Das Ziel ist es wahrenddessen Futter auf dem Spielfeld aufzusammeln, wodurch
die Schlange wéchst. Zusétzlich muss man Hindernissen und dem eigenen Schlangenkor-

per ausweichen.!

4.4.1 Programm

In abstrakter Darstellung und leicht abgewandelt sieht das MJ Programm wie folgt aus:

Allgemeine Parameter — Grofe: 19, Dimension: 2

Sequencenode
Rasterparameter  Farben: (Schwarz, Orange, Grau, Lila, Griin, Rot), Ursprung: ja
Allnode
Regel  Eingabemuster: (Orange, Schwarz, Schwarz) - Ausgabemuster: (*, *, Grau)
Regel Eingabemuster: (Grau, Schwarz, Schwarz) - Ausgabemuster: (*, * Grau)
Onenode
Regel Eingabemuster: (Orange, Schwarz, Grau) - Ausgabemuster: (Lila, Griin, Rot)
Onenode

Parameter Schritte: 2

Regel Eingabemuster: (Rot, Schwarz, Grau) - Ausgabemuster: (Griin, Griin, Rot)
Onenode

Parameter  Schritte: 10

Regel Eingabemuster: (Grau) - Ausgabemuster: (Orange)
Markovnode

Onenode

Regel  Eingabemuster: (Rot, Schwarz, Orange) - Ausgabemuster: (Griin, Griin, Rot)
Allnode

Regel  Eingabemuster: (Rot, Schwarz, Grau) - Ausgabemuster: (Griin, Griin, Rot)

Regel  Eingabemuster: (Lila, Griin, Griin) - Ausgabemuster: (Grau, Schwarz, Lila)

"https://de.wikipedia.org/wiki/Snake_ (Computerspiel) - Zugriffsdatum: 20.07.2024
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4.4.2 Ausgangssituation

Das Raster hat eine Groke von 19 x 19 zu Beginn der Ausfiihrung, welche durch die

allgemeinen Parameter festgelegt wurde.

Abbildung 4.6: Grundraster fiir das Snake-Spiel

Dazu ist es schwarz und hat eine orangene Kachel in der Mitte vorliegen (sieche Abbildung
4.6). Dies wurde durch die Rasterparameter im Wurzelknoten festgelegt. Zudem kann das

Raster die Farben Grau, Lila, Griin und Rot annehmen.

4.4.3 Ablauf

Der Wurzelknoten des Programms ist ein Sequencenode. Daher werden alle weiteren

Knoten sequenziell ausgefiihrt.

Der erste Knoten, welcher ausgefiihrt wird, ist ein Allnode. Dieser beinhaltet zwei Erset-
zungsregeln. Das Raster wird nach allen Ubereinstimmungen beider Eingabemuster der
Regeln durchsucht. Zu Beginn stimmt die erste Regel in der Mitte des Rasters an vier
Stellen iiberein. Da es sich um einen Allnode handelt, werden alle Ubereinstimmungen,
solange diese sich nicht iiberschneiden, angewendet. Aufgrund der Wildcards (*) im Aus-
gabemuster wird lediglich eine schwarze durch eine graue Kachel ersetzt, wihrend die

orangene und benachbarte schwarze Kachel unberiihrt bleiben.
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Abbildung 4.7: Raster nach Anwendung der ersten Regel des ersten Allnodes
Eingabemuster: (Orange, Schwarz, Schwarz) - Ausgabemuster: (¥, *, Grau)

Eingabemuster: (Grau, Schwarz, Schwarz) - Ausgabemuster: (*, *, Grau)

Das Ersetzen der schwarzen Kachel durch die graue Kachel iiberschneidet sich nicht fiir

die vier Ubereinstimmungen, weshalb alle vier wie in Abbildung 4.7 angewendet werden.

Abbildung 4.8: Raster nach voller Ausfithrung des ersten Allnodes

Im n&chsten Schritt stimmt nur noch die zweite Regel {iberein, sodass diese im selben
Prinzip wie im ersten Schritt angewendet wird. Dies wiederholt sich in den nédchsten
Schritten, bis auch die zweite Regel nicht mehr ibereinstimmt (sieche Abbildung 4.8).
Damit wurde die Grundlage des Spielfeldes aufgebaut, bei dem die grauen Kacheln die

begehbaren Felder darstellen. Nun wird der nichste Knoten ausgefiihrt.

Dieser ist ein Onenode mit einer Ersetzungsregel. Es wird wieder nach allen Uberein-
stimmungen des Eingabemusters der Regel gesucht. Wie zuvor stimmt diese Regel an

vier Stellen in der Mitte des Rasters iiberein.
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Abbildung 4.9: Raster nach voller Ausfithrung des ersten Onenodes

Eingabemuster: (Orange, Schwarz, Grau) - Ausgabemuster: (Lila, Griin, Rot)

Da es sich um einen Onenode handelt, wird wie in Abbildung 4.9 zufillig eine Uberein-
stimmung angewendet. Es wurde die Grundlage fiir die Schlange erstellt, die einen roten
Kopf, einen griinen Korper und ein lilafarbenes Ende hat. Danach stimmt die Regel nicht

mehr iiberein und der nichste Knoten ist an der Reihe.

Dies ist wieder ein Onenode, welcher nun auf zwei Schritte beschréankt ist. Das Eingabe-

muster stimmt am Kopf der Schlange an drei Stellen iiberein.

(a) Erste (b) Zweite
Ausfiithrung Ausfiithrung

Abbildung 4.10: Raster nach schrittweiser Ausfithrung des zweiten Onenodes

Eingabemuster: (Rot, Schwarz, Grau) - Ausgabemuster: (Griin, Griin, Rot)

Zufillig wird eine davon ausgesucht. Aufgrund der Beschrinkung der Schritte passiert
dies zweimal (siehe Abbildung 4.10). Dies gibt der Schlange eine Grundlinge fiir den

Anfang. Danach ist der nichste Knoten dran.

Auch dies ist wieder ein Ondenode, der auf zehn Schritte beschriankt ist. Das Eingabe-

muster stimmt bei jeder grauen Kachel iiberein.
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Abbildung 4.11: Raster nach voller Ausfiihrung des dritten Onenodes

Eingabemuster: (Grau) - Ausgabemuster: (Orange)

Zehn von diesen Kacheln werden zufillig durch orangene Kacheln ersetzt (siehe Abbil-
dung 4.11). Diese stellen das Futter des Snake-Spieles dar. Nach der Ausfiihrung der
bisherigen Knoten ist nun der Startzustand fiir das Snake-Spiel generiert worden. Damit

ist der nachste Knoten an der Reihe.

Dieser Knoten ist ein Branchnode, genauer gesagt ein Markovnode, welcher zwei Kind-
knoten beinhaltet. Der Onenode hat eine Regel. Das Eingabemuster dieser Regel be-
schreibt, ob der Schlangenkopf neben einem Futterfeld ist. Das Ausgabemuster sorgt da-
fiir, dass die Schlange das Futterfeld betritt. Da der Schlangenschwanz unberiihrt bleibt,
wichst die Schlange somit beim Betreten eines Futterfeldes. Der Allnode hat zwei Regeln.
Die beiden Regeln zusammen beschreiben die Vorwértsbewegung der Schlange. Dabei ist
die erste Regel fiir den Kopf der Schlange zustédndig. Das Eingabemuster stimmt immer
dann iiberein, wenn vor der Schlange noch ein freies Feld ist. Das Ausgabemuster bewegt
dann den Kopf entsprechend nach vorne. Die zweite Regel ist fiir das Ende der Schlange
zustandig. Das Eingabemuster stimmt mit dem schon gegangenen Weg der Schlange vom
Ende aus gesehen iiberein. Das Ausgabemuster verkiirzt somit den Schlangenschwanz in
Richtung gegangener Strecke.

Innerhalb des Markovnodes wird der erste Knoten priorisiert ausgefithrt. Dieser ist der

Onenode. Das Eingabemuster des Onenodes hat zu Beginn keine Ubereinstimmungen.
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Abbildung 4.12: Raster nach der ersten Ausfiihrung des Allnodes innerhalb des Markov-
nodes
Eingabemuster: (Rot, Schwarz, Grau) - Ausgabemuster: (Griin, Griin, Rot)

Eingabemuster: (Lila, Griin, Griin) - Ausgabemuster: (Grau, Schwarz, Lila)

Daher wird der ndchste Knoten ausgefiihrt. Dies ist der Allnode. Beide Eingabemuster
stimmen {iberein und iiberschneiden sich nicht. Daher werden beide angewendet und die
Schlange bewegt sich somit in eine zuféllige freie Richtung nach vorne (siehe Abbildung
4.12).

Abbildung 4.13: Raster nach der zweiten Ausfiihrung des Allnodes innerhalb des Mar-
kovnodes

Nach dieser einen Ausfithrung des Allnodes wird wieder der erste Knoten im Markovnode
angeschaut, um zu priifen, ob dieser nun ausgefiihrt werden kann. Dies ist weiterhin nicht
der Fall, weshalb wieder der Allnode einmal ausgefiihrt wird und die Schlange sich nach
vorne bewegt (siehe Abbildung 4.13).
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Abbildung 4.14: Raster nach der ersten Ausfithrung des Onenodes innerhalb des Mar-
kovnodes

Eingabemuster: (Rot, Schwarz, Orange) - Ausgabemuster: (Griin, Griin, Rot)

Nun wird der Onenode erneut gepriift und dieses Mal stimmt das Eingabemuster der
Regel iiberein, sodass die Regel angewendet wird. Die Schlange hat ein Futterfeld betreten
und ist gewachsen (siehe Abbildung 4.14).

(a) Zweite (b) Dritte
Ausfithrung Ausfiithrung

Abbildung 4.15: Raster nach schrittweiser Ausfithrung des Onenodes im Markovnode

Der Onenode stimmt nach dieser Ausfithrung weiterhin {iberein und wird solange ausge-
fithrt, bis dieser nicht mehr iibereinstimmt (siehe Abbildung 4.15).

Abbildung 4.16: Raster nach der dritten Ausfithrung des Allnodes innerhalb des Markov-
nodes
Eingabemuster: (Rot, Schwarz, Grau) - Ausgabemuster: (Griin, Griin, Rot)

Eingabemuster: (Lila, Griin, Griin) - Ausgabemuster: (Grau, Schwarz, Lila)

Nun wird wieder der Allnode ausgefiihrt und die Schlange bewegt sich, wie in Abbildung

4.16 zu sehen ist, nach vorne. Danach wird wieder der Onenode gepriift und dieser Ablauf
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wiederholt sich, bis keine Regeln mehr iibereinstimmen oder die maximale Anzahl an

Schritten fiir das Programm erreicht ist.
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In diesem Kapitel werden die grundlegenden Ideen zur Umsetzung der Ziele erklért.
Dafiir wird vorerst ermittelt, was die Anforderungen an die generierten Labyrinthe sind.
Darauffolgend wird vorbereitend fiir den Ansatz Markov Junior (MJ) in die prozedurale
Generierung eingeordnet und ein Generierungstyp festgelegt.

Der Ansatz beginnt mit der Generierung des Losungsweges. Aufbauend darauf werden
einzelne Abzweigungspunkte vom Losungsweg generiert. Diese dienen als Grundlage, um
im néchsten Schritt alle restlichen Wege zu generieren. Zum Schluss wird das Labyrinth
im Design angepasst, um so den Anforderungen gerecht zu werden.

Im Folgenden werden diese Schritte niher erldutert.

5.1 Anforderungen

Fiir die spétere Evaluation, aber auch fiir eine erfolgreiche Umsetzung der Ziele ist eine
Sammlung von Anforderungen an das Endprodukt wichtig. Im Folgenden werden diese

aufgezdhlt.

5.1.1 Eigenschaften der Labyrinthe

Jedes Labyrinth hat Eigenschaften. Die angeforderten Grundeigenschaften der in dieser
Arbeit generierten Labyrinthe sind folgende:

Jedes generierte Labyrinth ist...
e ... ein Gamma Labyrinth.
e ... zweidimensional.
e ... perfekt.

e ... einheitlich. Das bedeutet, dass es keine Wege gibt, die breiter/grofer sind als
andere Wege. Dasselbe gilt fiir die Wéande.
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e ... klar l6sbar. Das bedeutet, dass es einen Startpunkt und ein Ziel im Labyrinth

gibt, welche durch einen Weg verbunden sind.

— Der Start und das Ziel sind gegeniiber voneinander an der oberen und unteren

Seite des Labyrinthes. Es wird von unten gestartet.

5.1.2 Aussehen der Labyrinthe

Ein Labyrinth kann unterschiedlich gestaltet werden. Die Anforderungen an das Aussehen

der Labyrinthe lauten wie folgt:

e Die Wege sind weif und breit, wihrend die Wénde schmal und schwarz sein sol-
len (sieche Abbildung 3.1b). Dies soll die Unterscheidung der Wege und Wénde

vereinfachen.

e Der Start ist griin markiert und das Ziel ist rot markiert. So soll direkt klar sein,

wo der Start und das Ziel sind.

5.1.3 Kontrollierbarkeit

Die Generierung der Labyrinthe soll im Allgemeinen gut kontrollierbar sein. Sie soll
zulassen, dass gewisse Eigenschaften {iber Parameter gesteuert werden konnen. Dabei soll
der Fokus auf dem Lésungsweg und seinen Abzweigungen liegen, da diese eine wesentliche
Rolle in einem Labyrinth spielen.

Der Losungsweg soll in seinem Verlauf zwischen Start und Ziel kontrollierbar sein. Dies
bedeutet, dass gesteuert werden kann, wie willkiirlich der Losungsweg zwischen Start und
Ziel verlauft. Bei hochster Einstellung sollte der Weg zufillig verlaufen. Bei niedrigster
Einstellung sollte der Weg in einer Gerade zwischen Start und Ziel verlaufen. Da dies auf
Zufélligkeit basieren wird, soll bei den generierten Labyrinthen im Durchschnitt gewéhr-
leistet sein, dass unterschiedliche Einstellungen der Willkiirlichkeit auch das jeweilige
erwartete Ergebnis erzeugen.

Dazu soll es moglich sein, festzulegen, wie viele direkte Abzweigungen von dem Losungs-
weg abgehen. Jedes generierte Labyrinth soll die gegebene Anzahl an direkten Abzwei-
gungen aufweisen.

Aufierdem soll die Grofse des Labyrinthes kontrollierbar sein.
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5.2 Markov Junior und prozedurale Generierung

MJ ist in der Lage, zwei- und dreidimensionale Rastergrafiken zu erzeugen. Durch den
Nichtdeterminismus von MJ erzeugt eine gleiche Eingabe (Grundraster) unterschiedliche
Ausgaben. Dabei unterliegen die Ausgaben immer den definierten Regeln. Die Zufélligkeit
ist direkt an die Regeln gebunden, weshalb sie immer gewissen Bedingungen geniigt. Dies
zeigt, dass MJ fiir die prozedurale Generierung verwendet werden kann. In Kapitel 4.4 ist
bspw. zu sehen, wie M.J den Startzustand eines Snake-Spiels generiert (siehe Abbildung
4.11).

Abbildung 5.1: Drei typische Ansétze zur prozeduralen Generierung [27] um zu verdeut-
lichen, wo MJ einzuordnen ist

Im Bereich der prozeduralen Generierung gibt es unterschiedliche Vorgehensweisen. Ty-
pische Ansitze sind in Abbildung 5.1 zu sehen. MJ kann in den konstruktiven Ansatz
eingeordnet werden. Der konstruktive Ansatz definiert ein Regelset und generiert den
Inhalt einmal. Anders als bei den anderen beiden Ansétzen ist der Inhalt nach der ersten
Generierung fertig und wird nicht mehr verdndert. Es muss daher sichergestellt werden,
dass der Inhalt wihrend der Generierung korrekt ist. Dies kann durch die Anwendung von
Operationen erzielt werden, welche garantieren konnen, dass kein falscher Inhalt erzeugt
wird [27].
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Fiir die Generierung der Labyrinthe mit MJ muss daher ein Regelset gefunden werden,

was eine direkte, korrekte Generierung ermdglicht.

5.3 Art der Labyrinthgenerierung

Die grundlegende Struktur eines Labyrinthes sind dessen Wege. Sie machen das Labyrinth
aus und im Endeffekt geht es um den Losungsweg, welchen man versucht herauszufinden.
Um eine hohe Kontrollierbarkeit bei der Generierung eines Labyrinthes zu erreichen,
bietet es sich an, dabei die Wege zu generieren. Zuséatzlich ist gefordert, Kontrolle iiber
den Losungsweg zu haben, was dadurch ebenfalls gut umgesetzt werden kann. Daher
ist der Fokus (siehe Kapitel 3.3.1) des Labyrinthes ein Weg schnitzender Ansatz. Im
Vergleich miissten bei einem Wand hinzufiigenden Ansatz immer zwei Wiande generiert
werden, um einen Weg des Labyrinthes zu erzeugen. Daraus ergibt sich eine hohere
Komplexitit, wenn es darum geht, die Wege kontrolliert zu generieren. Dabei ist zu
beachten, dass eine spezifische Art an Weg schnitzenden Ansétzen verwendet werden
muss. Diese sind diejenigen, welche auch wirklich vollstdndige Wege generieren. Denn es
gibt auch Weg schnitzende Ansitze, bei denen an zufélligen Stellen im Labyrinth Teile
von Wegen generiert werden, welche dann Stiick fiir Stiick zusammengefithrt werden.

Dies wiirde wiederum eine hohe Kontrollierbarkeit der Weggenerierung erschweren.

5.4 Grundkonzept der Labyrinth Generierung

Im Mittelpunkt der Generierung steht die Kontrollierbarkeit der Labyrinthe. Dafiir und
auch generell fiir eine moglichst gute Kontrollierbarkeit, aber auch fiir die Mdoglichkeit
der Erweiterung (fiir z. B. die Schwierigkeit) bietet es sich an, einen modularen An-
satz zu wihlen. Bei diesem werden einzelne Komponenten des Labyrinthes unabhingig

voneinander generiert.

Ein Labyrinth kann dafiir in zwei Hauptteile unterteilt werden: den Lésungsweg und des-
sen Abzweigungen. Die Abzweigungen gehdren zum Losungsweg und fiillen das restliche
Labyrinth. Deswegen wird zuerst der Losungsweg generiert und davon die Abzweigungen,

um das Labyrinth zu vervollstidndigen.

Als Grundlage dafiir muss ein Ansatz fiir die Generierung der Wege (Losungsweg und
Abzweigungen) entwickelt werden. Dabei muss beachtet werden, dass die Wege nicht in

sich selbst laufen, da das Labyrinth sonst nicht perfekt ist. Zusédtzlich soll Zufélligkeit
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bei dem Ansatz gewdhrleistet sein. Fiir Inspirationen werden dafiir schon existierende

Algorithmen angeschaut.

5.4.1 Weggenerierung

Unter den bekanntesten Algorithmen zur Generierung perfekter Labyrinthe (Kapitel
3.3.2) ist der rekursive Backtracker ein Weg schnitzender Algorithmus, welcher die We-
ge direkt generiert. Dieser kann entweder rekursiv umgesetzt werden oder mithilfe eines
Stacks. Der Algorithmus mit einem Stack [9] kann wie folgt beschrieben werden:
Angenommen, es existiert ein Graph iiber einem Raster, bei dem alle Knoten miteinander
iiber ihre direkten Nachbarn verbunden sind (vergleichbar zur Abbildung 3.2a). Dann
lautet der Algorithmus:

1. Wihle einen zufilligen Startknoten, markiere ihn als besucht und packe ihn auf
den Stack.

2. Hole den obersten Knoten v aus dem Stack heraus. Ist der Stack leer, beende den
Algorithmus.
3. Wihle einen unbesuchten Nachbarn u von v aus.
a) Wenn es u gibt, packe v auf den Stack.

b) Ansonsten springe zu Schritt 2.
4. Verbinde Knoten u mit v.
5. Markiere u als besucht und packe ihn auf den Stack.

6. Wiederhole Schritte 2-5.

Im Endeffekt generiert dieser Algorithmus immer wieder zufillige, nicht in sich laufen-
de Wege. Diese werden auch self-avoiding walk (SAW)! genannt. Ein perfektes Laby-
rinth und dessen Spannbaum ist also nichts anderes als eine Aneinanderreihung mehrerer
SAWs. Dies wird in dieser Arbeit genutzt, um daraus den Spannbaum fiir die Labyrinthe

in einem modularen Ansatz generieren zu koénnen.

"https://en.wikipedia.org/wiki/Self-avoiding_walk - Zugriffsdatum: 20.07.2024
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Abbildung 5.2: Beispiel eines SAWs auf einem 2D-Raster (Rot stellt den aktuellen be-
suchten Punkt dar)

In Abbildung 5.2 ist ein SAW dargestellt. Dieser begeht alle ungeraden Punkte, damit so
zwischen dem Weg ein Freiraum ist. In Bezug auf Labyrinthe wiren das die Wande. So
kann in einem zweidimensionalen Raster direkt eine Labyrinth-Struktur erzeugt werden.

Dieses Konzept bildet die Grundlage fiir die Generierung der Labyrinthe in dieser Arbeit.

5.5 Losungsweg

Die Grundlage des Losungsweges sind der Start und das Ziel. Nach den Anforderungen
sind diese immer an den gleichen Punkten. Es ist daher nur festzulegen, wo die Mitte
des Rasters ist, um an dieser Stelle oben und unten am Rand des Rasters zwei Punkte
zu generieren. Vor der Generierung des Losungsweges werden Start und Ziel fiir das

Labyrinth ermittelt und generiert.

Fiir den Weg ist es notig, dass dieser vom Start zum Ziel verlduft. Eine Idee ist es, einen
SAW zwischen den beiden Punkten zu generieren. Der SAW wiirde dafiir beim Start

beginnen.

Notwendig dafiir ist jedoch eine Methode, damit der SAW auch das Ziel erreicht. Dies
kann umgesetzt werden, indem der SAW immer denjenigen néchsten Punkt auswéhlt,
welcher dem Ziel ndher ist. Wiirde der SAW immer den Punkt, der dem Ziel am néchsten
ist, nehmen, wiirde der generierte Weg lediglich eine gerade Linie zwischen den zwei
Punkten sein. Um dies zu vermeiden, wird eine Temperatur eingefiihrt, welche dafiir
sorgt, dass nur zu einer gewissen Wahrscheinlichkeit der beste Knoten gewdhlt wird.
Dadurch lasst sich steuern, wie willkiirlich der Losungsweg verlaufen soll, wodurch man,

wie in den Anforderungen gegeben, Kontrolle iiber diesen hat.

39
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Nach diesem Vorgehen ergibt sich ein weiteres Problem. Bei einem SAW kann es passie-
ren, dass dieser in einen Zustand gerét, bei dem alle Nachbarn schon besucht sind. Im
rekursiven Backtracker Algorithmus wird dann der schon gegangene Weg zuriickverfolgt,
um aus dieser Sackgasse herauszukommen. Dies kann auch fiir diese Weggenerierung
verwendet werden. Die Generierung des Losungsweges ist somit wie ein rekursiver Back-

tracker Algorithmus mit einer bestimmten Richtung.

Da die zuriickverfolgten Wege direkte Abzweigungen des Losungsweges wéren, werden

diese am Ende der Weggenerierung entfernt, um so nur den Lésungsweg zu haben.

Daraus ergibt sich folgender Algorithmus zur Generierung des Losungsweges:

1. Generiere Start und Ziel gegeniiber voneinander.

2. Fiihre einen rekursiven Backtracker Algorithmus mit bestimmter Richtung aus
(vom Start Richtung Ziel).

a) Fiihre einen SAW aus, welcher seinen néchsten Punkt abhéngig von der Di-
stanz zum Ziel wahlt. Eine Temperatur steuert, mit welcher Wahrscheinlich-
keit der zum Ziel ndchste Punkt gewéhlt wird. Landet der SAW im Ziel, sprin-
ge zu Schritt 3. Landet der SAW in einer Sackgasse, fahre mit dem néchsten
Schritt fort.

b) Verfolge den gegangenen Weg zu einer freien Stelle zuriick und wiederhole
Schritt 2a.

3. Entferne alle zuriickverfolgten Wege.

5.6 Abzweigungen

Fiir die Abzweigungen ist der Losungsweg die Grundlage. Von diesem werden zuerst
Punkte markiert, an denen es Abzweigungen geben wird. Die Anzahl entspricht der
gewollten Menge an direkten Abzweigungen. Dabei kann es aber zu Problemen kommen,

wenn der Losungsweg einen bestimmten Verlauf hat.
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(a) Losungsweg mit zwei (b) Losungsweg mit  drei
Teilbereichen Teilbereichen

Abbildung 5.3: Beispiel zweier Losungswege, die das Raster in unterschiedliche Teilbe-
reiche aufteilen

Der Start und das Ziel sind gegeniiber voneinander, weshalb der Lésungsweg das Raster
im einfachen Fall in zwei Teile aufteilt (siehe Abbildung 5.3a). Dabei ist der Losungsweg
weifs und die farblich markierten Stellen sind die Teilbereiche. Die schwarzen Stellen sind
Zwischenrdume des Weges, da dieser nur alle ungeraden Kacheln begeht. Diese wiirden die
Winde darstellen und gehoren daher zu keinem Teilbereich. Da der Weg jedoch zuféllig
verlduft, kann er dadurch Teilbereiche von dem Rest des Rasters abgrenzen, sodass mehr
als zwei abgegrenzte Bereiche im Labyrinth entstehen, wie es in Abbildung 5.3b der Fall
ist.

Wiéhlt man nun zufillig eine feste Anzahl an Abzweigungspunkten vom Lésungsweg,
kann es passieren, dass ein Teilbereich keinen Abzweigungspunkt kriegt. Dadurch wiirde
am Ende der Generierung ein Bereich iibrig bleiben, welcher keine Wege hat. Dies soll
vermieden werden. Dafiir werden zuerst alle Teilbereiche identifiziert. Fiir jeden dieser
Teilbereiche wird ein Abzweigungspunkt generiert. So ist sichergestellt, dass das Laby-
rinth am Ende gefiillt ist. Danach werden die restlichen Abzweigungspunkte generiert,
um so auf die gewollte Anzahl an Abzweigungen zu kommen.

Es kann somit geschehen, dass am Ende mehr direkte Abzweigungen vom Lésungsweg
existieren, als es gewollt ist (bei sehr vielen Teilbereichen). Dies ist aber nicht zu vermei-
den, da das Labyrinth vollstindig sein soll. Dieser Ansatz gewéhrt somit, dass mindestens
die gewollte Anzahl an direkten Abzweigungen und maximal die notwendige Anzahl an

direkten Abzweigungen vom Losungsweg existiert.

Nachdem die Abzweigungspunkte generiert wurden, kénnen die Wege der Abzweigungen
generiert werden. Anders als bei dem Lisungsweg miissen die Abzweigungen nicht in eine

bestimmte Richtung generiert werden. Daher kann ein normaler SAW verwendet werden.
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Fiir jeden Abzweigungspunkt wird dieser ausgefiihrt. Dabei ist zu beachten, dass die
unterschiedlichen SAWSs nicht ineinanderlaufen. Dafiir zdhlen die schon besuchten Punkte
der jeweiligen SAWs fiir alle SAWSs. Laufen die einzelnen SAW in eine Sackgasse, sind
alle Grundwege der direkten Abzweigungen generiert, sodass man zum néchsten Schritt
fortfahren kann.

Dieser ist die Generierung aller restlichen Wege, also die Abzweigungen der Abzweigun-
gen etc. Dazu werden nun wiederholend an zufilligen Stellen der schon existierenden
Abzweigungen neue Abzweigungen generiert. Dies geschieht nach dem gleichen Prinzip,
wie die urspriinglichen Abzweigungen generiert werden, bis das gesamte Labyrinth ge-
fiillt ist. Dieses Vorgehen der Generierung eines Labyrinthes ist von Bellot et al. [2] als
Prim & Kill Algorithmus vorgestellt worden. Sie haben dafiir den Prim Algorithmus
und den Hunt & Kill Algorithmus kombiniert. Diese sind zwei bekannte graphbasierte

Generierungsalgorithmen fiir Labyrinthe.

Daraus ergibt sich folgender Algorithmus zur Generierung der Abzweigungen:

1. Identifiziere alle Teilbereiche des Labyrinthes.
2. Generiere einen zufilligen Abzweigungspunkt fiir jeden dieser Teilbereiche.

3. Generiere zufillig alle restlichen Abzweigungspunkte, um auf die gewollte Anzahl

zu kommen.
4. Fiihre fiir alle Abzweigungspunkte einen SAW aus.

5. Wihle einen zufilligen Punkt von den bestehenden Abzweigungen und fithre von
dort einen SAW aus.

6. Wiederhole Schritt 5, bis das Labyrinth gefiillt ist.

5.7 Aussehen

Wie in Kapitel 5.4.1 vorgestellt wurde, kann mithilfe eines SAWs eine Labyrinth-Struktur
generiert werden, bei der die Wege und Winde jeweils eine Kachel breit sind. Das fertig
generierte Labyrinth wiirde dann jedoch nicht den Anforderungen fiir das Aussehen ent-
sprechen. Fiir den Prozess der Generierung bietet sich dieses Verfahren aber an und eine
Abwandlung dessen wiirde zu einer hoheren Komplexitét fithren. Daher wird zuerst die
normale Generierung ausgefiihrt, bei der das Labyrinth gleich breite Wege und Winde

hat, und zum Schluss wird das Aussehen angepasst.
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In diesem Kapitel wird die konkrete Umsetzung des erstellten Konzeptes erklart und

dargestellt.

6.1 Benutzte Technologie

Die Originalimplementierung zu Markov Junior (MJ) von Maxim Gumin [12] ist in C#
geschrieben. Diese Arbeit baut auf einer Java Implementierung von Niclas zum Felde
[7] der Originalimplementierung auf. Die Java Implementierung bietet alle Features der

Originalimplementierung an und unterscheidet sich nur leicht in der verwendeten Syntax.

6.2 Syntax von Markov Junior

Sowohl die Originalimplementierung als auch die Java Implementierung haben XML als
Umsetzung fiir die Syntax von MJ verwendet. Im Folgenden wird diese dargestellt. Im
Fokus liegt dabei die Syntax der Komponenten, welche fiir die Umsetzung in dieser Arbeit

benutzt worden sind.

6.2.1 Alphabet von Markov Junior

Das Alphabet ist aus den Farben der Kacheln, Unions und Wildcards aufgebaut, welche

alle eine spezifische Syntax haben.

Farben

Die Farben werden alle durch einen Buchstaben dargestellt. Die Zuordnung von Buch-
stabe zu Farbe wird in einer externen Datei konfiguriert. Somit wiirde ein Muster der
Form (Weif, Schwarz, Gelb) zu “WBY” werden. Dabei steht das W fiir white (Weif),
das B fiir black (Schwarz) und das Y fiir yellow (Gelb).
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Union

Unions werden als eigenes XML-Element dargestellt und miissen vor der Regel, welche

diese verwendet, erstellt werden:

<union symbol="?" values="BW"/>

Wildcard

Wildcards werden in MJ durch einen Stern (*) dargestellt.

Mehrdimensionale Regeln

Da MJ auf mehrdimensionalen Rastern arbeitet, kénnen auch mehrdimensionale Regeln
erstellt werden. Im zweidimensionalen Raum wird dafiir ein weiteres Zeichen eingefiihrt,
welches nicht zum Alphabet gehort. Dieses ist ein Slash (/) und kennzeichnet einen Um-
sprung in die néchste Zeile. Ein Muster der Form ( S(}’}‘fvevifrz S(}’}‘fvevifrz) wiirde zu “WW/BB”
werden.

6.2.2 Knoten

Alle Knoten werden als eigene XML-Elemente dargestellt und jeder Parameter ist ein
Attribut dieses Elementes.

Rulenodes

Alle Rulenodes haben bis auf den Namen des XML-Elementes dieselbe Syntax:

<rule-node—-name in="WB" out="WW"/>

Ein Onenode heifst one, ein Allnode heiftt all und ein Parallelnode heifst prl. Sollen
mehrere Regeln im Rulenode angegeben werden, werden diese als eigene XML-Elemente
innerhalb des Rulenodes angegeben. Als Beispiel mit einem Onenode wiirde dies folgen-

dermafien aussehen:

<one>
<rule in="WB" out="WW"/>
<rule in="WBB" out="WBW"/>

</one>
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Ein Field wird ebenfalls innerhalb des Rulenodes angegeben:

<one in="WB" out="WW">
<field for="W" to="Y" on="B"/>

</one>

Branchnodes

Ein Sequencenode sieht wie folgt aus:

<sequence>

</sequence>

Ein Markovnode sieht wie folgt aus:

<markov>

</markov>

Ein Mapnode kann folgendermafien aussehen:

<map scale="2 2 1" values="BW">
<rule in="Y" out="WW/WW"/>

</map>

6.2.3 Programmparameter

Auch die Programmparameter haben ihre eigene Syntax, welche im Folgenden dargestellt
wird.

Allgemeine Parameter

Die allgemeinen Modellparameter werden in einem eigenen XML-Element dargestellt, bei
dem jeder Parameter als XML-Attribut definiert wird:

<model size="30" steps="1000" d="2">
</model>

Dies definiert ein Raster mit einer Grofte von 30x 30 und es werden maximal 1000 Schritte

ausgefiihrt.
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In diesem Fall unterscheidet sich die Syntax eines MJ Programms der Java-Implementierung
von der Originalimplementierung. In der Originalimplementierung werden die Modellpa-
rameter in einer externen Datei definiert, wihrend die Java-Implementierung diese als

Waurzelknoten definiert, in dem dann der eigentliche Programmcode ist.

Rasterparameter

Die Rasterparameter werden in dem ersten Wurzelknoten des Programmcodes als Attri-

bute definiert. So kann der Programmbeginn mit einem Sequencenode wie folgt aussehen:

<sequence values="BWY" origin="true">

</sequence>

6.3 Grundlage fiir die Umsetzung

Fiir die Generierung sind vorerst Grundlagen zu kliren, wie zum Beispiel die Parameter

des Programms, aber auch die Farben, die verwendet werden.

6.3.1 Grofse des Rasters

Der einzig relevante Modellparameter, der hier zu beachten ist, ist die Grofse des Rasters.
Ein Labyrinth besitzt eine Aufenwand, welche die duftersten Wege begrenzt. Bei dem in
Abbildung 5.2 dargestellten Konzept fiir die Labyrinthgenerierung bedeutet dies, dass es
einen Rahmen mit einer Breite von einer Kachel geben muss. Direkt angrenzend dazu
verlaufen die Wege, welche von einem Startpunkt aus immer zwei Schritte nach vorne
gehen, um so einen Freiraum fiir eine Wand dazulassen. Daher muss die Strecke innerhalb
des Rahmens ungerade sein. Zusétzlich sind der Start und das Ziel mittig positioniert.
Da dies der Startpunkt fiir den self-avoiding walk (SAW) ist, miissen beide Seiten neben
dem Start und Ziel gerade sein.

Die Grofe kann dann durch folgende Formel dargestellt werden:

Sei die Grofe des Rasters x, so gilt
x=4k+3

fir k € N.
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Dabei ist das k eine wéhlbare Variable, um eine Grofe fiir das Raster zu bestimmen.
Dazu steht die drei fiir die Start-/Zielkachel und die Aufenwand auf beiden Seiten des
Rasters, welche nicht mit einberechnet werden bei der zweischrittigen Weggenerierung.
Die restlichen Kacheln miissen, nachdem sie durch zwei geteilt sind, gerade sein. Daraus

ergibt sich die Vervierfachung der Variable.

6.3.2 Farben
Folgende Farben werden fiir die Umsetzung bendtigt:

Name Buchstabe Farbe
Emerald (Smaragdgriin) B
White (Weif)
Black (Schwarz)
Yellow (Gelb)
Red (Rot)

Green (Griin)
Orange (Orange)
Purple (Lila)
Blue (Blau)
Pink (Pink)

Brown (Braun)

2N ITVOQH~N DS &
ENEETEE B

6.3.3 Wurzelknoten

Der Wurzelknoten ist ein Sequencenode, damit alle Kindknoten sequenziell ausgefiihrt
werden konnen. Die Rasterparameter werden in diesem entsprechend gesetzt. Dazu zidhlen
alle Farben aus Kapitel 6.3.2. Diese werden in der Reihenfolge tibernommen. Da auch der
Ursprung gesetzt wird, ist das Raster zu Beginn smaragdgriin und hat eine weifse Kachel
in der Mitte.
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Abbildung 6.1: Startzustand des Rasters

Fiir die Umsetzung wird ein Beispiel zur Verdeutlichung verwendet. Dabei hat das Raster
eine Grofe von 31 x 31 und die Anzahl an direkten Abzweigungen vom Losungsweg ist

auf zehn gesetzt. Somit sieht das Raster zu Beginn aus wie in Abbildung 6.1.

6.4 Losungsweg

Der Losungsweg wird durch ein zweischrittiges Verfahren generiert, bei dem zuerst der
Aufsenrand mit Start und Ziel erzeugt wird. Darauf aufbauend wird der Losungsweg
generiert.

In diesem aber auch den folgenden Kapiteln zur Umsetzung sind komplexere und aus-

schlaggebende Regeln im Fokus, sodass nicht alle Regeln gezeigt werden.

6.4.1 Generierung des Aufienrandes mit Start und Ziel

Um einen Rand zu erstellen, kann das Raster mit der Farbe des Randes gefiillt werden
und dann eine Ersetzungsregel angewendet werden, die nicht am Rand iibereinstimmt
und somit die Fliche mit einer anderen Farbe fiillt. Der Rand soll smaragdgriin sein,
weshalb dies die Grundfarbe des Rasters ist. Die Fléche soll schwarz sein.

Dies kann dann durch einen Parallelnode mit folgender Ersetzungsregel umgesetzt wer-

den:

In="sx%/*Ex/%%x*x" out="x%x/*Bx/x*x*"

Diese Regel ersetzt alle smaragdgriinen Kacheln, welche Nachbarkacheln haben (nach der
Moore-Nachbarschaft), durch eine schwarze Kachel. Da der Rand nicht alle Nachbarn aus

der Moore-Nachbarschaft aufweisen kann, bleibt dieser unberiihrt.
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Fiir den Start und das Ziel muss die Mitte des Randes sich vom Rest abheben, damit
dort ein Muster einer Regel iibereinstimmen kann. Dafiir wird die mittlere weiffe Kachel
verwendet, indem diese bis hin zum Rand erweitert wird. So wird eine vertikale Linie

generiert.

Abbildung 6.2: Das Raster nach der Generierung des Start- und Zielpunktes

An der Stelle, wo sich die mittlere Linie mit dem Rand schneidet, werden jeweils Start
und Ziel (Start in Gelb und Ziel in Rot) wie in Abbildung 6.2 generiert. Zudem wird

dann die Linie entfernt.

6.4.2 Generierung des Losungsweges

Fiir den Losungsweg wird nun, wie im Konzept vorgestellt, ein SAW vom Start ausge-
fiihrt. Dabei ist zu beachten, dass fiir zukiinftige Schritte bekannt sein muss, an welchen
Punkten es Abzweigungen geben kann. Denn der SAW begeht nur jede zweite Kachel und
so kann auch nur von jeder zweiten Kachel eine Abzweigung entstehen. Dies kann direkt
bei der Erstellung des SAWs umgesetzt werden. Dafiir wird ein Onenode mit folgender

Ersetzungsregel genutzt:

in="YBB" out="OWY"

Die gelbe Kachel steht fiir den aktuell besuchten Punkt und ist zu Beginn der Start. Der
schon besuchte Weg wird durch orangene und weifse Kacheln dargestellt. Die orangenen

Kacheln sind dabei an jeder zweiten Stelle, von denen es Abzweigungen geben kann.
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Abbildung 6.3: Generierung des Losungsweges

Das Eingabemuster der Regel identifiziert freie Stellen vor dem aktuellen Punkt. Das
Ausgabemuster sorgt dann dafiir, dass diese freie Stelle durch den Weg ersetzt wird und
der aktuelle Punkt an die Spitze getan wird. So wird durch diese Ersetzungsregel ein
Wandern des Pfades dargestellt (siehe Abbildung 6.3).

Damit der SAW auch Richtung Ziel verlduft, wird auf dem Onenode ein Field erstellt. Das
Field wird fiir die Farbe Gelb, Richtung der Farbe Rot und auf schwarzem Untergrund
erstellt. Mit dem Temperaturparameter ldsst sich dann steuern, wie streng der néchste

Punkt zum Ziel gewéhlt werden soll.

Ein Aspekt aus dem Konzept ist jedoch noch offen: die Zuriickverfolgung des Weges,
sobald der SAW in eine Sackgasse gerdt. Da die Zuriickverfolgung erst geschehen soll,
wenn der selbst meidende Pfad nicht mehr weitergehen kann, wird hierfiir ein Markovnode
verwendet. Bei diesem ist der Onenode fiir den SAW der erste Kindknoten und der zweite
Kindknoten beschreibt die Zuriickverfolgung. Dieses Konzept wurde schon von Maxim
Gumin in seinem Projekt [12] fiir die Umsetzung des rekursiven Backtrackers vorgestellt.
Die Zuriickverfolgung kann ebenfalls durch einen Onenode mit folgender Ersetzungsregel

umgesetzt werden:

in="YWO" out="GGY"

Das Eingabemuster stimmt nur beim schon gegangenen Weg iiberein, betrachtet von dem
aktuellen Punkt.
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a) Losungsweg lauft in eine b) Zuriickverfolgung (c) Losungsweg nach mehr-
Sackgasse Weges facher Zuriickverfolgung

Abbildung 6.4: Zuriickverfolgung bei der Generierung des Liosungsweges

Der aktuelle Punkt wird dann zuriickgeschoben und der zuriickverfolgte Weg wird griin
markiert (siehe Abbildung 6.4). Durch den Markovnode wird garantiert, dass der erste

Knoten priorisiert ausgefiihrt wird und somit immer versucht wird, den SAW zu erstellen.

Jetzt lauft der SAW Richtung Ziel, jedoch wiirde er vor dem Ziel vorbeilaufen. Dafiir wird
eine Regel eingefiihrt, welche darauf achtet, ob die gelbe Kachel vor der roten Kachel ist.
Ist dies der Fall, wird der Weg mit dem Ziel verbunden. Dies kann mit einem Onenode
umgesetzt werden, welcher an die erste Stelle in den Markovnode getan wird. So hat
dieser Knoten die hochste Prioritét, sodass sich der Weg direkt mit dem Ziel verbindet,

wenn dieser davor ist. Bis dahin werden die anderen beiden Knoten ausgefiihrt.

Abbildung 6.5: Fertig generierter Losungsweg

Zum Schluss werden dann noch alle zuriickverfolgten Wege entfernt und der Losungsweg

ist fertig generiert (sieche Abbildung 6.5).
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6 Umsetzung

6.5 Abzweigungen

Die Generierung der Abzweigungen kann in zwei Hauptteile geteilt werden. Der erste Teil
ist die Generierung der Abzweigungspunkte. Der zweite Teil beinhaltet die Generierung

der Wege fiir die Abzweigungen.

6.5.1 Abzweigungspunkte

Fiir die Generierung der Abzweigungspunkte werden zuerst alle Abzweigungen fiir die

Teilbereiche generiert. Darauffolgend werden die restlichen Abzweigungen generiert.

Abzweigungspunkte in den Teilbereichen

Die Menge an Abzweigungen soll kontrollierbar sein und immer einer festen Zahl entspre-
chen. Dafiir muss gezdhlt werden, wie viele Abzweigungen schon generiert worden sind,
damit die restliche Anzahl im n#chsten Schritt generiert werden kann. Dies wird umge-
setzt durch einen in der Generierung eingebauten Zéhler. Dabei ist das Grundprinzip,
dass eine Anzahl an Kacheln gefiarbt wird, welche den Z&hler darstellen. Ist eine Ab-
zweigung generiert, wird eine Kachel des Zahlers weggenommen. Wenn noch Kacheln des
Zghlers iibrig sind, werden abhingig davon dann pro Kachel die letzten Abzweigungen

generiert.

Fiir den Zahler muss ein freier Bereich im Raster verwendet werden, sodass die rest-
liche Generierung davon nicht beeinflusst wird. Zusétzlich muss der Zahler durch Er-
setzungsregeln gut von den Abzweigungspunkten erreicht werden. Dafiir l4sst sich der
Rand verwenden, da dieser nicht fiir die Generierung relevant ist und zudem iiber den
Losungsweg von den Abzweigungen erreicht werden kann. Ein Onenode farbt mit dem

Schritteparameter eine feste Anzahl an Kacheln.
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Abbildung 6.6: Das Raster nach Generierung des Zahlers

Dabei wird der Zéhler zufillig auf beide Seiten des Randes aufgeteilt, um so die spéteren
Schritte zu optimieren. Dafiir wird die Uberschneidung des Randes mit dem Lésungsweg
als Muster verwendet, um so die Stelle zu identifizieren, an der der Zéhler generiert wird.

Der Zahler ist griin und wird durch eine braune Kachel begrenzt (siche Abbildung 6.6).

Danach werden alle Teilbereiche markiert. Dafiir werden zwei Parallenodes verwendet.
Der erste ersetzt alle schwarzen 2 x 2 Felder mit roten 2 x 2 Feldern. Dadurch werden
alle Bereiche, welche grofs genug sind, um Abzweigungen zu haben, markiert. Der zweite

Parallelnode hat folgende Ersetzungsregel:

in="xx0/*Rx/0**" out="x%%/*B*/x*x"

Abbildung 6.7: Das Raster nach der Markierung der Teilbereiche

Diese sorgt dafiir, dass alle Ecken der Teilbereiche um den Losungsweg herum entfernt
werden (siehe Abbildung 6.7). Dies ist wichtig, da es passieren kann, dass manche Teil-

bereiche direkt aneinander grenzen und so sonst nicht zu unterscheiden wéren.

Nun kann der Prozess fiir die Generierung der Abzweigungspunkte starten. Dabei wird

eine Sequenz mehrfach wiederholt. Daher wird der Prozess in einem Sequencenode umge-
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6 Umsetzung

setzt. Dadurch, dass dieser Sequencenode ein Kindknoten eines anderen Sequencenodes
ist, wird dieser auch immer wiederholend ausgefiihrt, bis keiner seiner Kindknoten mehr
anwendbar ist.

Zu Beginn wird der erste Abzweigungspunkt mithilfe eines Onenodes mit folgender Er-

setzungsregel markiert:

in="ORR" out="PYY"

Dabei werden die Abzweigungen nur fiir die rot markierten Teilbereiche generiert. Dies

wird durch den Schritteparameter auf eine Ausfithrung begrenzt.

Abbildung 6.8: Das Raster nach Generierung des ersten Abzweigungspunktes

Darauffolgend wird der Teilbereich wieder schwarz gefirbt, da dieser nun schon einen
Abzweigungspunkt hat (siehe Abbildung 6.8). Dafiir wird ausgehend von der neuen Ab-
zweigung das rote Feld durch ein Blaues ersetzt, damit dieses dann wiederum durch ein
Schwarzes ersetzt werden kann. Lediglich Rot durch Schwarz zu ersetzen funktioniert

nicht, da sonst auch die anderen Teilbereiche schwarz gefirbt werden wiirden.

Im kommenden Schritt muss das Wegnehmen einer griinen Zahler-Kachel vorbereitet
werden. Dies wird immer iiber den Losungsweg geschehen, da dieser direkt mit dem
Rand verbunden ist.

Die Einstiegspunkte fiir den Zahler miissen markiert werden, damit diese sich unterschei-
den. Dadurch konnen Regeln angewendet werden, ohne dass ein anderer Teil des Rasters
davon betroffen ist. Die Punkte sind dabei der Start und das Ziel des Losungsweges. Da
dieser Prozess in einem Sequencenode ist, der sich immer wiederholt, muss sichergestellt
werden, dass jede Ersetzungsregel aufbauend auf den gerade erzeugten Abzweigungs-
punkten geschieht. Denn ansonsten wiirde der Sequencenode auch nach Erzeugung aller

Abzweigungen in den Teilbereichen, weiter ausgefiihrt werden.
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Abbildung 6.9: Flutung des Losungsweges fiir den sechsten Abzweigungspunkt

Daher wird ausgehend von der gerade erzeugten Abzweigung in beide Richtungen der
Losungsweg blau geflutet (siehe Abbildung 6.9). Dies wird durch einen Parallelnode mit

zweil Ersetzungsregeln umgesetzt:

in="UW" out="UU"
in="UO" out="UU"

Als Grundlage dient dafiir die lilafarbene Kachel des Abzweigungspunktes, welche zuvor
genutzt wird, um daneben die erste blaue Kachel zu generieren. Nun kénnen so beide
Einstiegspunkte in Abhéngigkeit der blauen Kachel im Rahmen markiert werden. Dafiir
wird eine pinke Kachel verwendet. Danach wird der Losungsweg ausgehend von den
pinken Kacheln wieder zuriick gefarbt.

Da der Zahler spéter auf einer der Seiten leer sein kann, muss sichergestellt werden,
dass auch nur ein Einstiegspunkt markiert wird, wenn auf der Seite noch Z&hler-Kacheln
existieren. Dafiir soll ausgehend von dem Einstiegspunkt der Rahmen in Richtung griiner
Kacheln geflutet werden. Falls jedoch noch alle griinen Kacheln auf einer Seite existieren,

ergibt eine Flutung keinen Sinn.
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Abbildung 6.10: Das Raster nach der Flutung des Rahmens in Richtung griiner Kacheln

Daher werden vorerst nur die Einstiegspunkte wieder weifs markiert und die pinke Ka-
chel verschoben, wenn keine griine Kachel direkt angrenzt. Dies stellt den Startzustand
fiir die Flutung dar. Die Flutung wird wieder blau sein, hat aber zusétzlich eine pinke
Spitze (siehe Abbildung 6.10). Sie wird durch einen Onenode umgesetzt mit folgender

Ersetzungsregel:

in="KE" out="UK"

Dazu ist ein Field auf dem Onenode definiert, sodass die Flutung auch nur in Richtung

einer griinen Kachel passiert:

for="K" to="G" on="E"

Dazu ist der Notwendigkeitsparameter fiir das Field gesetzt, um so nur die Flutung

auszufithren, wenn auch wirklich noch griine Kacheln existieren.

Abbildung 6.11: Das Raster nach der Zuriickverfolgung der Flutung

Trifft die Flutung auf eine griine Kachel, wird abhingig davon eine braune Kachel gene-

riert. Diese wird genutzt, um die Flutung zuriickzuverfolgen (sieche Abbildung 6.11). So
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6 Umsetzung

kann der Einstiegspunkt dann abhéngig von der braunen Kachel wieder markiert werden

oder bleibt weifs, wenn keine braune Kachel dort ist.

Jetzt sind die Einstiegspunkte markiert, wenn noch Zahler-Kacheln iibrig waren und
zuvor ein neuer Abzweigungspunkt generiert wurde. Auf Grundlage der Markierung wird

daher dann eine Kachel vom Zihler entfernt.

T

=T

Abbildung 6.12: Das Raster nach der Flutung des Losungsweges zum néchsten Einstiegs-
punkt

Dafiir wird ausgehend vom Abzweigungspunkt der Lésungsweg in Richtung des néchsten
markierten Einstiegspunktes geflutet. Dies wird durch einen Onenode und ein Field im
ahnlichen Prinzip wie fiir die Flutung Richtung griiner Kacheln umgesetzt (siehe Abbil-
dung 6.12). Erreicht die Flutung den Einstiegspunkt, wird dieser durch die Spitze der
Flutung ersetzt. Danach wird der Losungsweg wieder zuriick gefarbt.

Um eine griine Kachel zu entfernen, wird wieder eine Flutung in Richtung griiner Kacheln
auf dem Rand ausgefiihrt. Diese wird abhingig von der lilafarbenen Spitze der vorherigen

Flutung durchgefiihrt. Trifft die Flutung auf eine Zahler-Kachel, wird diese entfernt.
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Abbildung 6.13: Das Raster nach Verringerung des Zahlers

Zuletzt werden alle Kacheln wieder auf ihre korrekte Ausgangsfarbe zuriick gefarbt und

der Zéhler wurde um eine Kachel verringert (siche Abbildung 6.13).

In diesem Prozess soll der Sequencenode so lange wiederholt werden, bis keine offenen
Teilbereiche mehr existieren. Dies wird dadurch gewéhrleistet, dass alle Regeln abhén-
gig von den generierten Abzweigungspunkten agieren. Diese werden pro Wiederholung
in Abhéngigkeit eines offenen Teilbereiches generiert. Dazu wird der Teilbereich schwarz
gefdrbt und so reduziert sich die Anzahl an offenen Teilbereichen. Daher hort der Se-

quencenode auf, sich zu wiederholen, sobald es keine offenen Teilbereiche mehr gibt.

Abbildung 6.14: Das Raster nach der Generierung aller Abzweigungspunkte fiir die Teil-
bereiche

Nach dem Prozess hat jeder Teilbereich eine Abzweigung und der Zahler wurde dazu

entsprechend verringert (siehe Abbildung 6.14).

Restliche Abzweigungspunkte

Bevor fiir die restlichen Zdhlerkacheln Abzweigungspunkte generiert werden, wird zuerst

der braune Zihlerrand entfernt. Fiir den folgenden Prozess muss erneut etwas wieder-
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holend ausgefiihrt werden. Daher wird wieder ein Sequencenode verwendet. In diesem
wird zuerst abhingig von einer griinen Kachel das gesamte Raster blau gefarbt. Dies
wird durch einen Onenode und einen Parallelnode umgesetzt. Der Onenode hat vier

Ersetzungsregeln:

in="GB" out="EU"

in="GxB" out="ExU"
in="Gx/+B" out="Ex/xU"
in="Gx//*B" out="Ex/%*/+U"

Der Onenode sorgt dafiir, dass abhéngig von einer griinen Kachel am Rand die néchste
schwarze Kachel blau gefdrbt wird. Dabei gibt es mehrere Félle, da der Losungsweg im
Weg sein kann. Zusétzlich wird damit die griine Kachel entfernt und so der Zahler wieder
verringert. Der Schritteparameter limitiert die Ausfiihrung auf einen Schritt. Aufbauend

darauf wird ein Parallelnode verwendet, welcher drei Ersetzungsregeln hat:

in="UB" out="UU"
in="UOB" out="UOU"
in="UWB" out="UWU"

Abbildung 6.15: Farbung des Rasters in Abhéngigkeit einer Z&hler-Kachel

Dieser sorgt dafiir, dass durch die eine blaue Kachel das restliche Raster blau gefarbt wird
(siehe Abbildung 6.15). Auch hier kann der Losungsweg im Weg sein, weshalb es mehrere
Regeln geben muss. Nun wird abhéngig von der blauen Fliche ein Abzweigungspunkt

generiert. Danach wird die blaue Fliche wieder schwarz geférbt.

In dem aktuell beschriebenen Prozess soll der Sequencenode so lange wiederholt werden,
bis es keine Z&hler-Kacheln mehr gibt. Das wird dadurch gewéhrleistet, dass alle Regeln
abhéngig von den griinen Kacheln sind. Da diese pro Wiederholung reduziert werden,

hort der Sequencenode auf, wenn alle Zahler-Kacheln entfernt wurden.

99



6 Umsetzung

Abbildung 6.16: Das Raster nach der Generierung aller Abzweigungspunkte

Nach der vollen Ausfithrung des Prozesses sind alle Abzweigungspunkte generiert (siehe
Abbildung 6.16).

6.5.2 Wege

Vorerst wird der Losungsweg griin markiert, damit von ihm aus keine weiteren Wege

generiert werden.

Abbildung 6.17: Das Raster nach der Generierung aller Wege fiir die Abzweigungen

Danach werden von jeder Abzweigung mithilfe eines Allnodes parallel SAWs generiert
(siehe Abbildung 6.17). Dies geschieht im selben Prinzip wie die Generierung des Losungs-
weges. Der Unterschied ist der, dass es keine Zuriickverfolgung gibt und die Generierung
komplett zufillig geschieht. Nachdem fiir jeden Abzweigungspunkt die ersten Wege ge-
neriert wurden, werden nun die weiteren Wege generiert. Dies geschieht wiederholend in

einem Sequencenode.
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Abbildung 6.18: Das Raster nach der Generierung aller Wege (Losungsweg in Griin)

Dabei werden immer wieder von einem zufélligen moglichen Abzweigungspunkt (orangene
Kacheln) SAWs generiert. Dies geschieht so lange, bis das Labyrinth gefiillt ist (siehe
Abbildung 6.18). Zum Schluss werden auch die restlichen Wege griin markiert, um darauf

aufbauend das Design anzupassen.

6.6 Aussehen

Das Labyrinth ist in seiner Struktur fertig generiert. Dabei sind die Wande und Wege
jeweils eine Kachel breit. Dies war fiir die Generierung von Vorteil. Nun sollen die Wénde
jedoch schwarz und schmal sein und die Wege weifs und breit. Dafiir wird ein Mapnode
verwendet. Dieser skaliert das generierte Labyrinth um das Vierfache. Damit ist es mog-
lich, das Originalraster zu nutzen, um dessen Strukturen auf das neue, grofere Raster zu
iibertragen. Dabei werden die Wege und Wiande anders skaliert und gefarbt, um so das

gewollte Design zu erreichen.

Folgende Regel ist ein Beispiel fiir das Ubertragen einer Wandkreuzung vom alten in das

neue Raster:

in="GBG/BBB/GBG"
OUL ="k hkhkhkhkkhkrk [/ hxkhkkhkhkhkk/hkhkxhkxhkxhkhkhk/*khkkhkkkxkhkxkx/
*xkxkBBrkxkx/*x*k*BBBB* xkx/*x**x*BBBB**x %%/ xkxk xBBk* k%% /

Kk ok kkxkkkkhkk/hkhkhkkhkrkxkx/*khkkhkhkhkkhkx/xkxkxkxkrkkxx"

Das Eingabemuster wird im alten Raster gesucht und stimmt bei jeder Wandkreuzung
iiberein. Das neue Raster ist zu Beginn weifs gefirbt, weshalb jede Wildcard im Ausga-

bemuster bedeutet, dass dort weifse Kacheln sind.

61



6 Umsetzung

(a) (b)

Abbildung 6.19: Beispielausschnitt der Skalierung durch einen Mapnode vom Original-
raster (a) zum neuen Raster (b)

Das Ausgabemuster ist um das Vierfache grofer als das Fingabemuster. Dabei sind die
Wiénde nicht im Vierfachen skaliert worden, was dazu fiihrt, dass diese schmaler sind. In
Abbildung 6.19 ist zu sehen, wie diese Skalierung funktioniert. In 6.19b ist zur Verdeut-

lichung die Rasterung mit angegeben.

Dieses Verfahren muss dann fiir alle weiteren Wandstrukturen, wie zum Beispiel eine

einfache gerade Wand, ausgefiihrt werden.

N =
____-__I_
jL_-r'_rn_—:
| SIS

Abbildung 6.20: Das Labyrinth nach vollendeter Generierung

d

Dazu werden dann noch der Start (Griin) und das Ziel (Rot) farblich markiert. Damit
ist das vollendete generierte Labyrinth in Abbildung 6.20 zu sehen.
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7 Evaluation

In diesem Kapitel wird hinterfragt, wie erfolgreich das Konzept umgesetzt werden konnte
und ob damit alle Anforderungen erfiillt wurden. Zuséatzlich wird die eigene Arbeit an der
Generierung des Labyrinthes verwendet, um daraus Schliisse iiber Markov Junior (MJ)

zu schlieflen.

7.1 Auswertung des Konzeptes und dessen Umsetzung

Fiir die Auswertung wird betrachtet, wie gut die Anforderungen erfiillt worden sind
und analysiert, was fiir Probleme sich aus dem Konzept ergeben haben. Zusétzlich wird

geschaut, wie performant der Ansatz ist.

7.1.1 Anforderungserfiillung

Die Anforderungen bestanden aus drei Hauptteilen: grundlegende Eigenschaften des La-

byrinthes, das Aussehen des Labyrinthes und die Kontrollierbarkeit der Generierung.

Eigenschaften des Labyrinthes

Das Hauptkonzept der Generierung ist der self-avoiding walk (SAW) und eine mehrfa-
che Aneinanderreihung von diesem. Maxim Gumin hat dies in seinem Projekt [12] schon
vorgestellt und die eigene Implementierung hat zudem gezeigt, dass dieser in MJ um-
setzbar ist. In anderen schon existierenden Algorithmen (rekursiver Backtracker [9] oder
auch Prim & Kill |2]) wurde gezeigt, dass dadurch perfekte Labyrinthe generiert werden.
Auch die eigene Implementierung hat dies gewéhrleistet. Zudem konnte dadurch auch
die Einheitlichkeit aller generierten Labyrinthe erfiillt werden.

Die Kombination der Implementierung des SAWs und MJs Raster sorgen dafiir, dass
auch die gamma-Eigenschaft des Labyrinthes immer erfiillt ist.

Aufserdem stellt der Beginn der Generierung sicher, dass es einen Start und ein Ziel gibt.

So hat jedes generierte Labyrinth auch diese Eigenschaft aufweisen konnen.
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Aussehen des Labyrinthes

Das Konzept fiir das Aussehen konnte durch den Mapnode von MJ umgesetzt werden.
So hat jedes generierte Labyrinth weifie, breite Wege und schwarze, schmale Winde
aufweisen konnen. Auch der Start und das Ziel sind bei jedem generierten Labyrinth in

Griin und Rot markiert.

Kontrollierbarkeit der Generierung

Das Labyrinth sollte in zwei Hauptbestandteilen kontrollierbar sein: der Verlauf des Lo-
sungsweges und die Anzahl an Abzweigungen.

Das Konzept zur Kontrollierbarkeit des Losungsweges konnte durch einen Onenode und
einem Field umgesetzt werden. Der Temperaturparameter steuert dabei wie streng der
Losungsweg zum Ziel verlduft. Um zu schauen, ob dadurch auch der Verlauf des Losungs-
weges wie zu erwarten gesteuert werden kann, wurden Messungen ausgefiihrt. Dabei wur-
de ein Raster der Grofse 71 x 71 verwendet und gezdhlt, wie viele Kacheln der Losungsweg
ausmacht. Die niedrigste Anzahl wéren 71 Kacheln, was eine gerade Linie zwischen Start
und Ziel wére. Zu erwarten wire, dass eine niedrige Temperatur im Durchschnitt kiirzere

Wege generiert und eine hohe Temperatur willkiirlichere Wege generiert.
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(a) niedrig - 2 (b) mittel - 8 (c) hoch - 14

Abbildung 7.1: Beispiele fiir Losungswege unterschiedlicher Temperaturen

Temperatur | Gerundete Durchschnittsanzahl
niedrig (2) | 103
mittel (8) 301
hoch (14) 405

Tabelle 7.1: Ergebnisse zur Messung der Durchschnittsanzahl an Kacheln des Losungs-
weges nach 30 Messungen bei einem Raster der Grofe 71 x 71

Die Ergebnisse in 7.1 und Beispielwege in Abbildung 7.1 zeigen, dass dies der Fall ist und
eine Kontrolle des Verlaufes des Losungsweges, wie in den Anforderungen (siehe Kapitel
5.1.3) spezifiziert, moglich ist.

Das Konzept fiir die Abzweigungen konnte durch einen selbst erstellten Z&hler in MJ
umgesetzt werden. Dabei musste zusatzlich auf die Teilbereiche des Labyrinthes geachtet
werden, damit alle Bereiche des Labyrinthes Wege besitzen und es somit perfekt und
einheitlich ist. Dadurch sind bei mehreren generierten Labyrinthen mehr direkte Abzwei-
gungen gezdhlt worden, als sie eingestellt wurden. Dies entspricht daher nicht den zuvor
gestellten Anforderungen (siehe Kapitel 5.1.3). Jedoch ist dies notwendig gewesen, um
die angeforderten Grundeigenschaften (siehe Kapitel 5.1.1) der generierten Labyrinthe
zu erfiillen, welche Prioritdt haben. Durch den Ansatz wurde aber sichergestellt, dass
mindestens die gewollte Anzahl und maximal die notwendige Anzahl an direkten Ab-

zweigungen existiert. Alle generierten Labyrinthe konnten dies nachweisen.

7.1.2 Probleme

Die Anforderung fiir das Aussehen besagt, dass der Start griin und das Ziel rot markiert

sein sollen, um diese unterscheiden zu kénnen. Dies wurde umgesetzt, indem der Eingang
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und der Ausgang eine entsprechend farbliche Linie bekommen haben. Dabei wurde nicht
beachtet, dass dadurch unklar ist, was der Start und das Ziel sind. Denn erkennbar sind
diese, jedoch gibt es keine Legende, welche darstellt, welche Farbe zum Start oder Ziel
gehort.

Zusidtzlich sieht der Ein- und Ausgang geschlossen aus, was auch zur Verwirrung fiih-
ren kann (siehe Abbildung 6.20). Diese Punkte zeigen, dass ein einfaches Weglassen der

Markierung das Labyrinth intuitiver machen konnte.

Im Bereich der Kontrollierbarkeit der Labyrinthe haben sich die meisten Probleme erge-
ben.

Der Losungsweg kann zwar, wie zuvor gezeigt, in seinem Verlauf kontrolliert werden,
jedoch ist dies nur iiber einen Parameter steuerbar, der eine Wahrscheinlichkeit repra-
sentiert. Daher ist lediglich der Durchschnitt passend zur Temperatur und Ausreifter
sind nicht unwahrscheinlich. So kann eine hohe Temperatur auch mehrfach ein Labyrinth
generieren, bei dem der Losungsweg wenige Kacheln einnimmt.

Ein weiteres Problem ergibt sich aus den Abzweigungen des Losungsweges. Zwar ist
garantiert, dass immer die gewollte Anzahl an Abzweigungen vom Lésungsweg abgeht,
jedoch sagt dies nichts {iber die Lénge dieser aus. Das bedeutet, dass es viele Abzweigun-
gen geben kann, die eine direkte Sackgasse sind. Dies wurde bei mehrfacher Generierung
fiir viele Labyrinthe beobachtet. Hauptséchlich sind dies die Abzweigungen, welche fiir
kleine Teilbereiche aufgebraucht werden. Auch wenn diese Abzweigungen sind, haben sie
keinen direkten Einfluss auf das Losen des Labyrinthes, da diese direkt ignoriert werden
kénnen. Daraus ergibt sich die Frage, ob solche Abzweigungen auch mit in die Gesamtan-
zahl einberechnet werden sollen.

Zuletzt ergibt sich ein Problem aus der Umsetzung des Konzeptes fiir die Abzweigungs-
punkte. In MJ musste dafiir ein eigener Ansatz entwickelt werden, welcher viele Schritte

beinhaltet und so die Komplexitdt des Programms erhéht hat.

66



7 Evaluation

(a) Eigener Ansatz (b) Rekursive Backtracker

Abbildung 7.2: Laufzeitvergleich zweier Ansétze zur Generierung von Labyrinthen

In Abbildung 7.2a ist zu sehen, wie sich die Laufzeit fiir die Ausfiihrung der Generierung
des eigenen Ansatzes bei unterschiedlichen Labyrinthgrofen verdndert. Iin Vergleich dazu
sieht man in Abbildung 7.2b die Laufzeit fiir den rekursiven Backtracker Algorithmus in
MJ [12], welcher in die gleiche Umgebung des Ansatzes aus dieser Arbeit eingebunden
wurde (Start und Ziel mittig, Anpassung des Aussehens am Ende). Zu beachten ist, dass
sich die maximale Laufzeit in beiden Grafiken unterscheidet.

In dem Ansatz aus dieser Arbeit ist ein exponentieller Verlauf zu erkennen, wihrend der
rekursive Backtracker eher einen linearen Verlauf hat. Zudem ist die Laufzeit im eigenen
Ansatz im Allgemeinen deutlich héher. Eine erhohte Laufzeit ist zu erwarten, da der
eigene Ansatz mehr Moglichkeiten fiir die Generierung bietet. Jedoch zeigt der Verlauf,

dass der Ansatz nicht effizient ist.

7.2 Analyse von Markov Junior

Durch die Arbeit mit MJ fiir die Generierung der Labyrinthe ist Einiges iiber MJ klar

geworden. Diese Erkenntnisse werden im Folgenden néher erldutert.

7.2.1 Moglichkeiten

MJ ist eine probabilistische Programmiersprache, aufbauend auf dem Markow-Algorithmus,
welcher Turing-vollstandig ist. Zwar ist MJ nicht mehr Turing-vollsténdig, besitzt aber
weiterhin eine Machtigkeit, um verschiedenste Funktionen zu berechnen. Im Projekt von
Maxim Gumin wurde beispielsweise gezeigt, wie mithilfe von MJ Sokoban Level gelost
werden. Furnas [8] stellt ein sehr dhnliches Programm vor, welches mit visuellen Erset-

zungsregeln wie MJ arbeitet. Dabei wird dies in einem Beispiel genutzt, um getrennte
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Komponenten zu z&hlen und die Anzahl durch romische Zahlen anzuzeigen. Das ist auch
in MJ umsetzbar und zeigt, dass MJ in der Lage ist, unterschiedlichste Funktionen aus-
zufiihren.

Das Losen des Sokoban Levels, aber auch das Circuit Modell von Maxim Gumin [12]

zeigen zudem, dass MJ auch fiir Animationen verwendet werden kann.

Wie schon in Kapitel 5.2 erklart, ist MJ auch in der Lage dazu, Inhalte prozedural
zu generieren. Die Umsetzung in dieser Arbeit zur Generierung eines kontrollierbaren

Labyrinthes ist ein Beispiel dafiir.

7.2.2 Stiarken und Vorteile

MJ baut auf dem Markow-Algorithmus auf, welcher Turing-vollstindig ist. Dies zeigt
also, wie méchtig dieses Grundkonzept der Ersetzungsregeln ist. Zwar ist MJ nicht mehr
Turing-vollstindig, jedoch bietet das Konzept der Knoten eine Vielfalt an neuen Funktio-
nen. Daraus ergeben sich nicht nur neue Moglichkeiten, sondern auch Wege, gewisse Dinge
einfacher umsetzen zu konnen. Dabei kann der Pathnode zum Beispiel direkt verwendet
werden, um einen Weg zwischen zwei Punkten zu erstellen, was sonst durch mehrere
Regeln umgesetzt werden miisste. Dazu gibt es auch Knoten, wie den WaveFunctionCol-
lapse Node, welche einen komplett eigenen Algorithmus zur prozeduralen Generierung in
MJ einbetten, was wiederum die Méchtigkeit von MJ erhoht.

Zudem erlaubt das Konzept der visuellen Ersetzungsregeln von MJ, durch wenig Code viel
erzeugen zu konnen. Die wiederholte Anwendung der Regeln mit ihren Knoten, welche
weitere Logik hinzufiigen, ermoglicht dieses Verhalten. Ein Beispiel ist die Umsetzung
des rekursiven Backtrackers in MJ [12]:

<markov values="BRGW" origin="True">
<one in="RBB" out="GGR"/>
<one in="RGG" out="WWR"/>

</markov>

Dieser kann in nur vier Zeilen Code dargestellt werden, was in anderen Programmier-

sprachen nicht moglich sein wird.

MJs grundlegende Logik ist visueller Natur. Daher konnen gewisse Strukturen, welche
in dem zu erzeugenden Inhalt vorzufinden sind, haufig intuitiv in MJ abgebildet werden.
Ein Beispiel dafiir ist der SAW. Einfach beschrieben darf der aktuelle Punkt dabei nur

nach vorn geschoben werden, wenn davor eine ausreichend freie Fliche ist. Und genau
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diese Beschreibung kann so direkt auf MJ iibertragen werden und eine entsprechende

Ersetzungsregel ist dazu intuitiv zu erstellen.

Auferdem bietet MJ eine Visualisierung an, was bei anderen Anwendungen zuerst erstellt
werden muss. Zusédtzlich ist MJs Ausfiihrung Schritte basiert, sodass auch jeder Schritt
visuell angezeigt werden kann. Dies ist hilfreich zur Veranschaulichung des Ablaufes eines

Programms.

7.2.3 Schwichen und Nachteile

Grammatiken sind im Allgemeinen sehr méchtig, jedoch ist die Erstellung einer Gramma-
tik und dessen Regeln meist komplex. Es besteht héufig eine grofse Unklarheit dariiber,
was fiir eine Auswirkung die Regeln haben und wie Verédnderungen der Regeln dazu ein-
fliefen. Daher ist ein Prozess von Trial and Error nicht untypisch beim Erstellen einer
Grammatik. [19] [22]

MJ baut auf demselben Prinzip auf, wodurch sich dieses Problem auch fiir MJ ergibt.
Das Erstellen eines Regelsets fiir die Generierung eines komplexeren Inhaltes wird daher
schnell aufwendig. Auch bei der eigenen Umsetzung war dies zu bemerken.

Zudem kann MJ in den konstruktiven Ansatz fiir prozedurale Generierung eingeordnet
werden. Daher muss durch das Regelset sichergestellt sein, dass alle Bedingungen fiir den
generierten Inhalt erfiillt sind. Das erh6ht ebenfalls die Komplexitdt, um mithilfe von MJ

prozedural Inhalte zu generieren.

MJ limitiert sich auf das Notwendigste in Bezug auf die Moglichkeiten des Program-
mierens. Es gibt keine bedingten Anweisungen, Z&hlschleifen, Methoden oder Variablen.
Alles basiert auf den visuellen Ersetzungsregeln. Wird nun jedoch etwas wie eine Varia-
ble benotigt, in der sich ein Zustand gemerkt wird, muss dies durch Umwege umgesetzt
werden, wodurch M.J Programme schnell komplex werden. Die eigene Umsetzung ist ein
Beispiel dafiir. In dieser war es notwendig, dass abhéngig von den schon generierten
Abzweigungen die restlichen Abzweigungen generiert werden. Dafiir musste gezéhlt wer-
den, wie viele schon generiert worden sind. Die Implementierung dieses Zdhlers hat einen

groften Teil des Codes ausgemacht und das Programm in seiner Komplexitét erhéht.

In MJ ist es moglich, gewisse Programmparameter zu setzen. Diese werden direkt in
dem Code gesetzt. Es gibt aber keine Moglichkeit, dass von auflen spezifische Parameter
iibergeben werden. In Bezug auf die prozedurale Generierung stellt dies einen grofien
Nachteil dar, da es hiufig erwiinscht ist, die Generierung {iber eine Benutzerschnittstelle

steuern zu konnen.
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Moéchte man zusétzlich spezielle Eigenschaften eines generierten Inhaltes steuern, welche
mehrere Komponenten der Generierung betreffen, wird man mit MJ nicht weit kommen.
Dies begriindet sich mit dem Fehlen von Methoden, Variablen und bedingten Anweisun-
gen, wodurch ganze Bereiche gekapselt werden konnen und bedingt entschieden werden

kann, ob der eine oder andere Bereich fiir die Generierung verwendet werden soll.

Die abstrakte Darstellung der Programmlogik durch die Ersetzungsregeln fiithrt schnell zu
uniibersichtlichem Code. Eine Ersetzungsregel kann héufig nur eine kleine Vorbereitung
sein fiir die eigentliche Logik hinter der Generierung. Dies kann zwar durch Kommentare
erkldrt werden, aber ohne das gesamte Bild vor Augen zu haben, kann dies schwierig
sein, einzuordnen und nachzuvollziehen. Zuséatzlich kann es bei langeren Ersetzungsregeln
kompliziert sein, sich deren Muster im Raster vorzustellen, um zu verstehen, was hinter
der Regel steckt.

7.2.4 Nutzen und Potenzial

Zur Generierung oder Losung von simplen bis mittel komplexen Grafiken oder Problemen
ist MJ gut geeignet. In vielfachen Beispielen aus dem Projekt von Maxim Gumin [12]
wurde dies gezeigt. Fiir hochauflésende und sehr komplexe Inhalte ist MJ zur Generierung
nicht geeignet. Im Bereich der prozeduralen Generierung wiirden die von MJ generierten
Inhalte gut zu Retro-Videospielen passen, da diese ebenfalls auf simpleren Rastergrafiken
aufbauen.

Das Konzept der Knoten ldsst eine einfache Schnittstelle offen fiir Erweiterungen durch
weitere Knoten. Dadurch besteht das Potenzial fiir weitere Mdglichkeiten und eventuell
einer {ibersichtlicheren Darstellung des Codes. Damit wére MJ auch besser zuginglich
flir komplexere Themen.

Zusatzlich kann eine Erweiterung von interaktiven Regeln, wie es auch Maxim Gumin

angesprochen hat [12|, MJ Programme zu Videospielen machen.

7.2.5 Markov Junior fiir die Labyrinthgenerierung

Die Umsetzung des Konzeptes in dieser Arbeit hat zeigen konnen, dass MJ fiir die grund-
legende Struktur von Labyrinthen geeignet ist. Auch Beispiele aus dem Projekt von
Maxim Gumin [12] fiir schon existierende graphbasierte Generierungsalgorithmen fiir
Labyrinthe haben aufweisen kénnen, dass MJ geeignet ist, um Labyrinthe zu generieren.
In Bezug auf die Kontrollierbarkeit der Labyrinthe hat sich MJ jedoch an einigen Stellen

als weniger geeignet erwiesen, da sich durch MJ eine erhohte Komplexitéit ergeben hat.
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Dies ist mit den fehlenden Konstrukten wie Methoden oder Variablen zu begriinden,

wodurch Umwege in MJ gesucht werden mussten.
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8.1 Zusammenfassung

Diese Arbeit hat den neuen Markov Junior (MJ) Algorithmus von Maxim Gumin néher
erklart, indem alle wichtigen Bestandteile vorgestellt wurden und an einem umfangrei-
chen Beispiel erldutert wurden.

Dazu wurde in dieser Arbeit unter der Nutzung des MJ Algorithmus ein neuer An-
satz zur Generierung von perfekten Labyrinthen erstellt. Dieser Ansatz erlaubt es, den
Verlauf des Losungsweges zu steuern und festzulegen, wie viele Abzweigungen von dem
Losungsweg abgehen. Dafiir wurde die Generierung in die Generierung des Losungsweges
und die Generierung der Abzweigungen aufgeteilt, um eine bessere Kontrollierbarkeit zu
ermoglichen. Zusétzlich kann die Grofe des Labyrinthes eingestellt werden.

Es hat sich eine exponentielle Entwicklung der Laufzeit bei einer proportionalen Stei-
gerung der Rastergrofe fiir den entwickelten Ansatz ergeben. Dies hat gezeigt, dass der
Ansatz nicht effizient ist.

In der Arbeit wurde verdeutlicht, dass MJ fiir Vieles verwendet werden kann. Dazu
zéhlen das Losen von Funktionen/Problemen, das Animieren von Situationen, aber auch
die prozedurale Generierung.

Zusitzlich wurde erldutert, dass MJ durch das Konzept der Ersetzungsregeln und Knoten
sehr méchtig ist und mit wenig Code viel erzeugen kann. Die direkte Visualisierung ist
ein weiterer Vorteil, wodurch sich MJ gut fiir prozedurale Generierung eignet. Dabei ist
aufgefallen, dass dies fiir simplere oder mittel komplexe Grafiken gilt.

Zudem wurde in dieser Arbeit darauf eingegangen, dass das Grundkonzept der Erset-
zungsregeln zwar méchtig ist, aber dazu auch komplex und uniibersichtlich sein kann.
Dies wurde damit begriindet, dass es zum einen hiufig unklar ist, was fiir einen Effekt
spezifische Regeln haben und dass zum anderen in dem Regelset garantiert sein muss,
dass alle Bedingungen fiir den generierten Inhalt erfiillt sind.

Es hat sich herausgestellt, dass MJ fiir die Generierung der grundlegenden Struktur
der Labyrinthe geeignet ist. In Bezug auf die Kontrollierbarkeit jedoch hat sich MJ als

weniger geeignet gezeigt. Durch dessen Limitierungen wie bspw. das Fehlen von Methoden
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oder Variablen mussten Umwege gefunden werden, um Teile des Konzeptes umgesetzt zu

kriegen. Diese haben die Komplexitidt des Ansatzes deutlich erhdht.

8.2 Mogliche Erweiterungen

8.2.1 Schwierigkeit des Labyrinthes

Diese Arbeit hat sich mit der Kontrollierbarkeit von Labyrinthen auseinandergesetzt.
Ein im Allgemeinen wichtiger Faktor des Labyrinthes ist dessen Schwierigkeit. Diese zu
kontrollieren, wire daher ein interessanter Punkt zur Erweiterung.

Bei der Schwierigkeit ist zu beachten, dass die Perspektive des Ldsenden eine zentrale
Rolle spielt. Wird das Labyrinth von der Vogelperspektive aus gelost, hat man einen
gesamten Uberblick iiber das Labyrinth. Jedoch kann ein Labyrinth auch fiir ein Video-
spiel verwendet werden, in dem man sich in dem Labyrinth befindet. In diesem Fall sieht
man lediglich den Teil des Labyrinthes, der direkt vor einem ist. Bevor man sich mit
der Schwierigkeit eines Labyrinthes beschaftigt, muss dies gekldrt werden. Die folgenden
Erweiterungen und Gedanken bauen auf dem Losen des Labyrinthes aus der Vogelper-
spektive auf.

Aufbauend auf dem entwickelten Ansatz steht die Annahme im Raum, dass eine hohere
Temperatur fiir den Losungsweg, mit einer hoheren Anzahl an Abzweigungen vom L&-
sungsweg zu einem komplexeren Labyrinth fithren sollte. Dazu sollten die Abzweigungen
moglichst gleichméRig verteilt sein und direkte Sackgassen sollten verringert werden. Hat
dies wirklich einen Einfluss auf die Schwierigkeit, wire es indirekt auch mit diesem An-
satz moglich, die Schwierigkeit einzustellen. Dies zu analysieren wére daher ein passender
erster Schritt, um aufbauend auf dieser Arbeit den Begriff der Schwierigkeit einzufiihren.
Dies ist jedoch lediglich eine theoretische Hypothese. Die Schwierigkeit eines Labyrinthes
lasst sich auch formal darstellen. So hat McClendon [17] eine formale Beschreibung der
Schwierigkeit eingefiihrt. Als Erweiterung gilt es dann daraus zu extrahieren, wie durch
ein Regelset in MJ diese formale Definition fiir die Schwierigkeit erreicht werden kann.
Bellot et al. [2] haben aufbauend auf McClendon ein Konzept von nicht signifikanten
Winden eingefiihrt. Diese beschreiben, welche Wande irrelevant sind, wenn der Mensch
beim Losen des Labyrinthes das Labyrinth durchsucht. Dadurch sollen Labyrinthe auf
ihren Spaffaktor analysiert werden konnen. Das kann ebenfalls verwendet werden, um

zu schauen, wie das in MJ umsetzbar ist.
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8.2.2 Verbesserung der Effizienz

Der in dieser Arbeit umgesetzte Ansatz hat sich als wenig effizient herausgestellt. Der
Grund dafiir ist die Komplexitét, welche sich durch das Erstellen eines Zéhlers ergeben
hat. Als Erweiterung bietet es sich daher an, zu forschen, ob es entweder eine ganz andere
Umsetzung geben kann oder ob die aktuelle Umsetzung durch die Anpassung von Regeln
optimiert werden kann.

Eine Idee wire dazu, den Zihler extern von der Generierung zu halten und einen Bereich
fiir Kontrollelemente im Raster zu erstellen. Dadurch muss der Zahler nicht im Rahmen
und somit auch nicht in das Labyrinth eingebaut werden. Dies wiirde die Ubersichtlichkeit

verbessern, aber von den Schritten und Regeln her sollte dies weniger einen Effekt haben.

8.2.3 Parametrisierung

Wie sich in der Analyse des MJ Algorithmus ergeben hat, ist es nicht méglich, spezifische
Parameter von aufien an MJ weiterzugeben. Dies ist jedoch ein wichtiger Teil der proze-
duralen Generierung. Und auch in dieser Arbeit wére es von Vorteil gewesen, wenn dies
iiber die Benutzerschnittstelle moglich gewesen wire. Daher kann das als Erweiterung fiir
diese Arbeit genutzt werden, um MJ so anzupassen, dass fiir prozedurale Generierung
Parameter von aufsen angegeben werden kénnen. Fiir diese Arbeit wiirde man die Anzahl

an Abzweigungen und die Temperatur fiir den Losungsweg angeben wollen kénnen.
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