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Kurzzusammenfassung

Die prozedurale Generierung ist heutzutage vielseitig verwendet, da die automatische

Generierung von Inhalten viel Zeit und Aufwand erspart. Sie ist ein stetig wachsender

Bereich. Darunter gibt es den neuen Markov Junior Algorithmus von Maxim Gumin. Die-

ser erzeugt Rastergra�ken, welche durch das Grundprinzip der visuellen Ersetzungsregeln

generiert werden. Eine Ersetzungsregel beinhaltet ein Eingabemuster, welches durch das

entsprechende Ausgabemuster der Regel im Raster ersetzt wird.

Diese Arbeit beschäftigt sich damit, den Markov Junior Algorithmus näher darzustellen

und zu analysieren. Dafür wird in dieser Arbeit ein neuer Ansatz zur Generierung von

perfekten Labyrinthen mit dem Markov Junior Algorithmus entwickelt. Ein perfektes La-

byrinth hat keine geschlossenen Kreise oder unerreichbaren Stellen. Der Ansatz legt den

Fokus auf die Kontrollierbarkeit gewisser Eigenschaften, wie den Verlauf des Lösungswe-

ges und der Anzahl an direkten Abzweigungen vom Lösungsweg. Dabei wird dies durch

einen modularen Ansatz gelöst, welcher zuerst den Lösungsweg, dann die Abzweigungs-

punkte vom Lösungsweg und zuletzt die restlichen Wege generiert.

Das Ergebnis zeigt, dass der Markov Junior Algorithmus perfekte Labyrinthe generieren

kann und zudem die Kontrolle über die genannten Eigenschaften erlaubt. Der Markov Ju-

nior Algorithmus beweist sich zudem als ein mächtiges Tool zur prozeduralen Generierung

von simplen bis mittel komplexen Gra�ken, bei dem durch wenig Code viel dargestellt

werden kann. Jedoch hat die Umsetzung des Ansatzes gezeigt, dass Markov Junior durch

Einschränkungen, wie z. B. das Fehlen von Variablen und die schnelle Unübersichtlichkeit

der Ersetzungsregeln, eine erhöhte Komplexität aufweist.
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Abstract

Procedural content generation is widely used today as the automatic generation of content

saves a lot of time and e�ort. It is a steadily growing �eld. Among its innovations is the

new Markov Junior algorithm by Maxim Gumin. This algorithm generates grid graphics,

which are produced based on the fundamental principle of visual rewrite rules. A rewrite

rule includes an input pattern, which is replaced in the grid by the corresponding output

pattern of the rule.

This work aims to present and analyze the Markov Junior algorithm in more detail.

To achieve this, a new approach to generating perfect mazes using the Markov Junior

algorithm is developed. A perfect maze has no loops or unreachable areas. The approach

focuses on the controllability of certain properties, such as the course of the solution path

and the number of direct branches from the solution path. This is achieved through a

modular approach that �rst generates the solution path, then the branching points from

the solution path, and �nally the remaining paths.

The results show that the Markov Junior algorithm can generate perfect mazes and also

allows control over the mentioned properties. Furthermore, the Markov Junior algorithm

proves to be a powerful tool for the procedural content generation of simple to moderately

complex graphics, where a lot can be depicted with little code. However, the implemen-

tation of the approach has shown that Markov Junior exhibits increased complexity due

to limitations such as the lack of variables and the rapid lack of clarity of the rewrite

rules.
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1 Einleitung

1.1 Motivation

Prozedurale Generierung ist heutzutage nicht mehr wegzudenken, da sie in vielen Berei-

chen genutzt wird. Vor allem in der Videospielindustrie hat sie einen groÿen Ein�uss. Bei

der prozeduralen Generierung geht es um die automatische Generierung von Inhalten,

welche meistens graphischer Natur sind. Daraus ergibt sich der Vorteil, dass die Erstel-

lung solcher Inhalte nicht manuell geschehen muss, was häu�g viel Zeit und Aufwand

kostet. [25, 26, 27]

Wie bei vielen weit verbreiteten Konzepten gibt es auch bei der prozeduralen Generie-

rung verschiedenste Verfahren. Eines der neueren Verfahren ist der Markov Junior (MJ)

Algorithmus von Maxim Gumin [12], welcher Rastergra�ken erzeugt. Dieser verfolgt das

Grundprinzip von Ersetzungsregeln. Eine Ersetzungsregel beschreibt ein Eingabemus-

ter, was in dem Raster gesucht wird und ein dazugehöriges Ausgabemuster, welches das

Aufkommen des Eingabemusters im Raster ersetzt. Diese werden in Knoten umhüllt.

Die Knoten bringen jeweils eine Eigenschaft mit sich, welche bestimmt, wie die Regeln

angewendet werden oder wie das Raster manipuliert wird. Dadurch ergibt sich die Mög-

lichkeit komplexere Programme zu erstellen. Eine Anordnung mehrerer Knoten stellt ein

MJ Programm dar. So wird von einem Startraster über die Knoten eine Gra�k erzeugt.

Vergleichbar ist das Grundprinzip mit herkömmlichen Grammatiken.

Aufgrund der Neuheit des Algorithmus ist dieser noch wenig erforscht. Da die prozedu-

rale Generierung ein immer wachsendes Feld ist, ist es von Interesse, neue Verfahren zu

präsentieren und zu verstehen, um diese dadurch besser etablieren zu können. Deswegen

setzt sich diese Arbeit den Fokus, den MJ Algorithmus darzustellen und zu analysieren.

Dafür wird jener in dieser Arbeit für die Generierung von Labyrinthen genutzt. Ein

Labyrinth ist heutzutage als ein Rätsel zu verstehen, in welchem es einen Start und ein

Ziel gibt, welche durch einen Weg verbunden sind. Dazu gibt es mehrere Abzweigungen

und Sackgassen, wodurch das Finden des Lösungsweges erschwert wird1.

1https://en.wikipedia.org/wiki/Maze - Zugri�sdatum: 20.07.2024
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1 Einleitung

In dieser Arbeit liegt der Fokus auf perfekten Labyrinthen. Diese haben keine geschlos-

senen Kreise und keine unerreichbaren Stellen [21]. Dessen manuelle Erstellung kann

schnell aufwendig werden, weshalb die prozedurale Generierung von Labyrinthen ein

schon erforschtes Feld ist. So gibt es auch schon einige Algorithmen zur Generierung von

Labyrinthen [9]. Daher versucht diese Arbeit mithilfe von MJ einen neuen Ansatz zur

Generierung von Labyrinthen zu erstellen.

Dabei wird die Generierung in zwei Teile geteilt: die Generierung des Lösungsweges und

die Generierung der Abzweigungen. Die Generierung der Abzweigungen kann auch in zwei

Teile unterteilt werden: die Generierung der Abzweigungspunkte von dem Lösungsweg

und die Generierung der restlichen Wege. Der self-avoiding walk (SAW) bildet hierbei

das Grundprinzip der Generierung der Wege. Ein SAW ist ein zufälliger Weg, der nicht

in sich selbst läuft.

Bereits Kim et al. [15] haben zuerst den Lösungsweg und danach die Abzweigungen ge-

neriert. Dieses Prinzip haben sie jedoch auÿerhalb des Kontextes von MJ verwendet. Der

SAW wurde von Maxim Gumin [12] beispielhaft schon in MJ umgesetzt. Die Generierung

der restlichen Wege baut auf einem Ansatz von Bellot et al. [2] auf, welcher aber ebenfalls

auÿerhalb des Kontextes von MJ implementiert wurde. Die Umsetzung der bestehenden

Konzepte (auÿer des SAWs) in MJ wird somit durch diese Arbeit neu eingeführt. Die

Idee und Umsetzung der Generierung des Lösungsweges und der Abzweigungspunkte

werden ebenfalls durch diese Arbeit neu eingeführt. Dazu ist der allgemeine Ansatz in

der Kombination der einzelnen Komponenten ein in dieser Arbeit entwickeltes Konzept.

1.2 Ziele der Arbeit

In dieser Arbeit soll der MJ Algorithmus vorgestellt werden. Im Mittelpunkt steht da-

bei die Erklärung des grundlegenden Konzeptes der visuellen Ersetzungsregeln und die

Beschreibung der einzelnen Knoten, welche charakteristisch für MJ sind. Dies hat das

übergeordnete Ziel, den MJ Algorithmus selbstständig anwenden zu können.

Dazu soll unter der Nutzung des MJ Algorithmus ein neuer Ansatz zur Generierung

von perfekten Labyrinthen erstellt werden. Im Fokus steht dabei die Kontrollierbarkeit

von einigen Eigenschaften des Labyrinthes, da diese in den herkömmlichen Algorithmen

vernachlässigt wird [9]. Das Ziel dabei ist, dass es der neue Ansatz ermöglichen soll, den

Verlauf des Lösungsweges des Labyrinthes und die Anzahl an direkten Abzweigungen

vom Lösungsweg steuern zu können.
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1 Einleitung

Ein weiteres Ziel ist es, auf der Grundlage der Erstellung des Ansatzes zeigen zu können,

was mit MJ möglich ist. Dazu wird der MJ Algorithmus kritisch hinterfragt und des-

sen Stärken und Schwächen analysiert. Zusätzlich soll das Potenzial von MJ dargestellt

werden.
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2 Stand der Technik

Markov Junior (MJ) wurde 2022 verö�entlicht [12] und ist somit relativ neu, weshalb es

bisher kaum Forschungsarbeiten mit konkretem Bezug dazu gibt. Cooper [3] hat direkte

Inspiration von den Ersetzungsregeln aus MJ geholt. Mit diesem Prinzip hat Cooper

Bedingungen erstellt, um mit den Regeln zu beschreiben, wie ein generiertes Spiellevel

gelöst oder gespielt werden kann.

Das allgemeine Konzept der Ersetzungsregeln ist ebenfalls in Grammatiken vorzu�nden

und im Grundprinzip ist MJ eng verbunden zu diesen. Grammatiken wurden schon häu�g

für prozedurale Generierung verwendet.

Van Rozen und Heijn [22] analysieren den Nutzen von Grammatiken in Bezug auf die

prozedurale Generierung. Dazu verwenden sie eine Generierung eines einfachen Verlieses

auf einem Raster als Beispiel. Die Grammatik zur Generierung benutzt die Kacheln des

Rasters für die Ersetzungsregeln, welche denen aus MJ sehr nahekommen.

Dormans und Bakkes [5] nutzen Grammatiken, um Spiellevel zu erzeugen. Sie teilen dafür

die Generierung in zwei Teile auf: Missionen und Raum. Für die Missionen (Aufgaben

im Spiel) wird eine Graph grammar verwendet, um einen Missionsgraphen zu erstellen.

Dieser stellt dar, was für Missionen es in welcher Kombination und Reihenfolge gibt.

Eine Graph grammar unterscheidet sich von einer normalen Grammatik insofern, als

dass statt Strings Graphen ersetzt und erzeugt werden. Für die Generierung des Raum-

es (die Spielkarte) wird nach Anpassungen des Missionsgraphens eine Shape grammar

verwendet. Eine Shape grammar ersetzt und erzeugt geometrische Figuren.

Dormans [4] erweitert dies um die Generierung von Spielmechaniken mithilfe einer Graph

grammar.

Merrell [19] präsentiert eine Methode, bei der die Graph grammar aus einem Beispiel

abgeleitet wird, um so lokal ähnliche Inhalte zu generieren.

Auch für die Generierung von Labyrinthen können Grammatiken verwendet werden. Et-

chebehere und Eliseo [6] nutzen L-Systeme, um Labyrinthe unterschiedlicher Komplexität

zu generieren. L-Systeme sind nah verwandt mit Grammatiken, wobei der Hauptunter-

schied eine parallele Ausführung der Regeln ist.
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2 Stand der Technik

Im Bereich der Labyrinthgenerierung beschäftigen sich einige Forschungsarbeiten mit den

graphbasierten Algorithmen.

Shah et al. [23] und Kozlova, Brown und Reading [16] geben jeweils einen Überblick über

einen Teil dieser Algorithmen.

Gabrovsek [9] geht dabei zusätzlich noch auf die Performance der einzelnen Algorithmen

ein und analysiert die Schwierigkeit der Labyrinthe. Unter diesen Aspekten werden die

einzelnen Algorithmen miteinander verglichen.

Weitere Forschungsarbeiten beschäftigen sich mit anderen Verfahren, die eine bessere

Kontrolle über die generierten Labyrinthe zulassen.

Ashlock, Lee und McGuinness [1] generieren unterschiedliche Typen von Labyrinthen

und experimentieren dazu mit einigen Eigenschaften der Labyrinthe, wie z. B. den Sack-

gassen. Sie nutzen dafür die such-basierte prozedurale Generierung, bei der man iterativ

den Inhalt generiert und nach dem am besten passenden Inhalt sucht. Dies wird meist

durch Evaluationsfunktionen unterstützt, welche auswerten, wie gut der generierte In-

halt ist, um so zukünftige Generierungen zu verbessern (vergleichbar mit evolutionären

Algorithmen) [27].

Kim et al. [15] nutzen ebenfalls die such-basierte prozedurale Generierung und legen

dabei den Fokus darauf, möglichst viel vom Labyrinth anpassen zu können. Dazu teilen

Kim et al. die Generierung in die Erzeugung des Lösungsweges und die Erzeugung des

restlichen Labyrinthes für eine bessere Kontrolle ein.

Peachey [20] nutzt ein mehrschrittiges Verfahren mit einem neuronalen Netz, um so

Labyrinthe einer gewissen Schwierigkeit zu generieren. Das neuronale Netz erzeugt hierbei

die Parameter für den eigentlichen Labyrinthgenerator unter Betrachtung der gewollten

Schwierigkeit. Die generierten Labyrinthe werden dann über ihre Schwierigkeit analysiert

und diese Ergebnisse werden zum Lernen des neuronalen Netzes genutzt.

Nelson und Smith [24] nutzen einen logischen Programmieransatz, um dadurch Labyrin-

the und spielbare Verliese zu generieren. Dazu kodieren sie die Logik der Domäne des

Labyrinthes/Verlieses als logisches Problem und fügen Constraints hinzu, welche vor-

schreiben, wie der Inhalt aussehen soll. Das logische Problem wird dann gelöst, sodass

man diese Mengen an Lösungen als Grundlage für den zu generierenden Inhalt nutzen

kann.

Die Kombination aus MJ und der Generierung von Labyrinthen wurde lediglich innerhalb

des Projektes von Maxim Gumin [12] kurz erwähnt. Dabei hat er drei der bekannteren
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2 Stand der Technik

graphbasierten Generierungsalgorithmen (Recursive Backtracker1, Aldous-Broder2 und

Wilson`s3) in MJ umgesetzt. Zusätzlich hat er zum Vergleich eine herkömmliche Imple-

mentierung des Wilsons's Algorithmus vorgezeigt.

1http://weblog.jamisbuck.org/2010/12/27/maze-generation-recursive-backtrack
ing - Zugri�sdatum: 20.07.2024

2http://weblog.jamisbuck.org/2011/1/17/maze-generation-aldous-broder-algorit
hm - Zugri�sdatum: 20.07.2024

3http://weblog.jamisbuck.org/2011/1/20/maze-generation-wilson-s-algorithm -
Zugri�sdatum: 20.07.2024
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3 Grundlagen

Dieses Kapitel gibt eine Einführung in die wichtigsten Themen, welche eine Vorausset-

zung für diese Arbeit sind. Dabei wird zuerst die prozedurale Generierung eingeführt.

Darau�olgend wird erklärt, wie der Markow-Algorithmus funktioniert und zuletzt wird

erläutert, was ein Labyrinth ist und was dieses ausmacht.

3.1 Prozedurale Generierung

Prozedurale Generierung ist das automatische Generieren von meist graphischen Inhalten

durch Algorithmen. Dabei können die generierten Inhalte aber auch nicht graphisch sein,

wie z. B. Musik oder Gedichte, wie bspw. Haikus. [25]

Zwei Aspekte stehen bei der prozeduralen Generierung im Fokus: Parametrisierung und

Zufälligkeit.

Durch die Parametrisierung erö�net sich die Möglichkeit, das Generierte zu kontrollieren

und nach seinem Belieben anzupassen, indem man gewisse Eigenschaften des generierten

Inhaltes vorgibt (z. B. Gröÿe/Länge des Inhaltes oder Anzahl der Fenster bei einem

Haus).

Die Zufälligkeit sorgt dafür, dass generierte Inhalte unterschiedlich aussehen, sodass man

durch einen Algorithmus unbegrenzte Variationen eines Inhaltes generieren kann. Hierbei

bedeutet zufällig aber nicht, dass ohne Wissen zufällig etwas gemacht wird. Dies würde

zu unlogischen Inhalten führen, welche normalerweise nicht das Ziel der prozeduralen

Generierung sind. Der Zufall in der prozeduralen Generierung wird daher meist unter

gewissen Bedingungen, die man erfüllen muss, verwendet. [26, 27]

Nennenswert ist dabei, dass es auch prozedurale Generierung ohne Zufälligkeit gibt, also

einen rein deterministischen Algorithmus. Der Nutzen eines solchen Algorithmus liegt

meist in der Speichermenge. Wenn man eine gesamte generierte Welt speichert, nimmt

dies viel Speicher ein. Ein Algorithmus jedoch, wird nicht so viel Speicher einnehmen.
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3 Grundlagen

Zusätzlich zu diesem Vorteil ergeben sich noch zwei weitere Vorteile durch die prozedurale

Generierung. Die Automatisierung erspart das manuelle Designen der Inhalte und spart

somit viel Zeit und Aufwand.

Dazu bietet die prozedurale Generierung Möglichkeiten, die manuell nicht umgesetzt

werden könnten: Bspw. kann durch automatische Echtzeitgenerierung den Spielenden

eines Videospiels eine potenziell unendliche Spielerfahrung gegeben werden. [26, 27]

Aufgrund dieser Aspekte ist ein groÿer Anwendungsbereich der prozeduralen Generierung

die Videospielindustrie. Dort wird von kleinen Gegenständen wie Wa�en, z. B. in Bor-

derlands (Gearbox Software 2009), bis hin zu Sternensystemen, z. B. in Elite (Acornsoft

1984), alles Mögliche automatisch generiert. [25, 26, 27]

3.2 Markow-Algorithmus

Der Markow-Algorithmus, benannt nach Andrei Markow, ist ein Stringersetzungssystem

und gilt als Turing-vollständig. Als Grundlage existieren ein Alphabet, auf dem der Algo-

rithmus fuÿt, und eine Menge an Substitutionsregeln von Symbolen aus dem Alphabet,

welche als Grammatik bezeichnet werden.1 [14]

3.2.1 Formale De�nition

Das Alphabet ist eine nicht leere, endliche Menge an Symbolen. Ein String ist dabei eine

endliche Sequenz aus Symbolen des Alphabets.

Seien p und q zwei Strings aus dem Alphabet und p soll durch q ersetzt werden, so ist

eine Substitutionsregel ein Ausdruck der Form

p → q oder p →. q.

Wobei → und . keine Symbole aus dem Alphabet sind. →. kennzeichnet hierbei eine

Terminationsregel, nach dessen Anwendung der Algorithmus beendet wird.

Der Ausdruck

p →(.) q

stellt p → q oder p →. q dar.

1https://en.wikipedia.org/wiki/Markov_algorithm - Zugri�sdatum: 20.07.2024
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3 Grundlagen

Die Grammatik ist eine endliche, geordnete Liste an Substitutionsregeln

pi →(.) qi, mit i = 1, 2, . . . , I.

Eine Regel i hat eine höhere Priorität als eine Regel j, wenn i < j ist.

Bei einem Eingabestring s aus dem Alphabet kann der Markow-Algorithmus wie folgt

beschrieben werden:

1. Setze i = 1.

2. Schaue die i-te Substitutionsregel der Grammatik an und suche nach dem am wei-

testen links auftretenden pi in s. Gibt es kein Vorkommen von pi, dann springe zu

Schritt 4.

3. Ersetze das gefundene Vorkommen von pi in s durch qi. Ist die i-te Regel eine

Terminationsregel, beende den Algorithmus. Ansonsten springe zu Schritt 1.

4. Setze i = i + 1. Wenn i > I ist, beende den Algorithmus. Ansonsten springe zu

Schritt 2. [14]

3.3 Labyrinth

Ein Labyrinth besteht aus einem Weg oder mehreren Wegen, wobei es normalerweise

einen Startpunkt und ein Ziel zwischen den Wegen gibt.2

Geschichtlich gesehen gibt es zwei Hauptarten, welche zu unterscheiden sind.

Anfänglich war die De�nition eines Labyrinthes ein einzelner Weg, welcher ohne Abzwei-

gungen mit Richtungswechseln von einem äuÿeren Startpunkt zum Ziel im Mittelpunkt

des Labyrinthes führt (Abbildung 3.1a).

Heutzutage jedoch wird ein Labyrinth als eine Sammlung von abgezweigten Wegen ver-

standen, welche einen Lösungsweg vom Start zum Ziel beinhalten. Das Ziel ist es, diesen

zu �nden, weshalb Labyrinthe gegenwärtig als Rätsel angesehen werden. Diese Art an

Labyrinth wird häu�g auch als Irrgarten bezeichnet (Abbildung 3.1b).3

In dieser Arbeit liegt der Fokus nur auf den Irrgärten, welche hier auch als Labyrinth

bezeichnet werden.

2https://en.wikipedia.org/wiki/Maze - Zugri�sdatum: 20.07.2024
3https://de.wikipedia.org/wiki/Labyrinth - Zugri�sdatum: 20.07.2024
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3 Grundlagen

(a) (b)

Abbildung 3.1: Gegenüberstellung eines klassischen Labyrinthes (a) und eines heutigen
Labyrinthes/Irrgartens (b)
(a): https://de.wikipedia.org/wiki/Labyrinth - Zugri�sdatum: 20.07.2024,

(b): https://en.wikipedia.org/wiki/Maze - Zugri�sdatum: 20.07.2024

3.3.1 Kategorisierung von Labyrinthen

Labyrinthe können unterschiedlichste Eigenschaften und Formen annehmen. Abhängig

von diesen Eigenschaften kann das Verständnis eines Labyrinthes komplett anders sein.

Daher ist es wichtig zu klären, was für Labyrinthe in dieser Arbeit behandelt werden.

Labyrinthe kann man in sieben Kategorien einteilen [21], welche die wichtigsten Eigen-

schaften zusammenfassen:

� Dimension: Diese beschreibt, wie viele Koordinaten benötigt werden, um einen

Punkt im Labyrinth beschreiben zu können. Ein Beispiel wäre ein klassisches Laby-

rinth auf Papier, bei dem jeder Punkt durch zwei Koordinaten beschrieben werden

kann. Dieses Labyrinth wäre zweidimensional. Würde man mehrere zweidimensio-

nale Labyrinthe übereinander schachteln und zusätzlich eine Bewegung zwischen

den Etagen zulassen, hätte man ein dreidimensionales Labyrinth. Es hat nun eine

Höhe und ein Punkt kann nur durch drei Koordinaten beschrieben werden.

� Hyperdimension: Hierbei geht es um das Objekt, welches sich durch das Labyrinth

bewegt. In einem zweidimensionalen Labyrinth bewegt man einen Punkt durch die-

ses und hinterlässt eine Linie. Wenn man nun aber eine Linie durch das Labyrinth

führt, welche eine Fläche hinterlässt, spricht man von einem Hyperlabyrinth. Vor-

stellen kann man sich dieses als einen Würfel, welcher mehrere Freiräume in einer

Labyrinth-Struktur in sich geschnitzt hat. So würde man eine Linie von einer zur

anderen Seite des Würfels laufen lassen, um das Labyrinth zu lösen. Dabei ist die

Linie theoretisch unendlich lang, sodass die Enden immer auÿerhalb des Würfels
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3 Grundlagen

bleiben. Es muss daher darauf geachtet werden, dass sich die Linie nicht in einer

Säule (fester Teil im Würfel, der kein Freiraum ist) verfängt.

� Topologie: Diese beschreibt, welche Geometrie der Raum hat, in dem sich das La-

byrinth be�ndet. Ein Beispiel wäre ein Labyrinth auf einem Würfel.

� Tessellation: Diese beschreibt, welche Geometrie die einzelnen Zellen eines Laby-

rinthes haben. Ein Beispiel wäre ein Labyrinth mit hexagonalen Zellen.

� Routenführung: Diese beschreibt, welche Arten an Wegen ein Labyrinth besitzt.

Ein Beispiel wären Sackgassen und ob ein Labyrinth diese besitzt.

� Textur: Diese beschreibt, wie das Design der einzelnen Wege im Labyrinth ist. Ein

Beispiel dafür wäre die Länge von geraden Strecken in einem Labyrinth.

� Fokus: Dieser beschreibt, welche Art von Generierungstyp für das Labyrinth ver-

wendet wurde. Ein Beispiel wäre ein Generierungsalgorithmus, welcher nur Wände

von dem Labyrinth generiert, um so die gesamte Struktur zu erstellen.

In dieser Arbeit werden zweidimensionale, perfekte Gamma-Labyrinthe auf einer Ebene

behandelt. Perfekt ist eine Unterkategorie der Routenführung. Ein perfektes Labyrinth

hat keine geschlossenen Kreise und keine unerreichbaren Stellen. Von jedem Punkt im La-

byrinth gibt es exakt einen Weg zu jedem anderen Punkt. Dadurch gibt es auch nur einen

Lösungsweg. Gamma ist eine Unterkategorie der Tessellation. Ein Gamma-Labyrinth hat

ein rechteckiges Feld, bei dem die Zellen Wege haben, die in rechten Winkeln abzweigen.

Die vier fehlenden Kategorien sind vorerst nicht relevant und werden zum Teil noch im

Verlauf dieser Arbeit angesprochen.

3.3.2 Generierung von Labyrinthen

Labyrinthe können schnell komplex werden und so auch deren manuelle Erstellung. Daher

ist eine prozedurale Generierung von Labyrinthen sehr praktisch. Dabei gibt es unter-

schiedlichste Punkte, die zu beachten sind und im Folgenden erklärt werden.

Generierungstypen

Im vorherigen Unterkapitel wurde der Fokus angesprochen, welcher den Generierungsty-

pen eines Labyrinthes beschreibt. Dabei werden zwei Arten voneinander unterschieden:

Wand hinzufügende und Weg schnitzende Algorithmen. Wand hinzufügende Algorith-

men arbeiten auf einem leeren Feld und fügen nacheinander alle Wände ein. Bezogen
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auf die Realität kann das mit Heckenlabyrinthen vergleicht werden. Weg schnitzende Al-

gorithmen hingegen arbeiten in einem schon gefüllten Feld und schnitzen die Wege des

Labyrinthes nacheinander in das Feld. Auf die Realität bezogen kann dies mit Minensys-

temen verglichen werden. [21]

In dieser Arbeit liegen Weg schnitzende Algorithmen/Ansätze im Fokus.

Labyrinthe als Graph

Ein Labyrinth mit den beschriebenen Eigenschaften aus dem vorherigen Unterkapitel

kann als ein Graph dargestellt werden. Dafür betrachtet man ein zweidimensionales Ras-

ter, welches als Darstellung für das Labyrinth genutzt wird. Jede Kachel des Rasters wäre

ein Knoten und sobald es einen Weg zwischen zwei Kacheln gibt, sind die Knoten über

eine Kante miteinander verbunden.

Ein perfektes Labyrinth ist daher wie ein Spannbaum. Für die Generierung eines solchen

Labyrinthes ist das Ziel daher einen Spannbaum zu generieren. Dabei ist bei dem Aus-

gangsgraphen für diesen Prozess jeder Knoten über eine Kante mit jedem seiner direkten

Nachbarn verbunden. Sobald bei der Generierung eine Kante als Teil des Labyrinthes aus-

gewählt wird, wird die entsprechende Wand, die die Zellen getrennt hat, aufgebrochen.4

[9]

4https://en.wikipedia.org/wiki/Maze_generation_algorithm - Zugri�sdatum: 20.07.2024
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(a)

(b)

(c)

Abbildung 3.2: Darstellung des Konzeptes der Generierung von Labyrinthen mithilfe von
Graphen

In Abbildung 3.2 ist dieses Konzept dargestellt. 3.2a zeigt ein Raster mit dessen dazuge-

hörigem Graphen (Knoten in Dunkelblau und Kanten in Cyan). In 3.2b ist der isolierte

Graph des Rasters zu sehen und ein Beispiel für einen Spannbaum auf diesem. In 3.2c

sieht man, wie dieser Spannbaum genutzt wird, um das Labyrinth zu erzeugen.

Generierungsalgorithmen

Graphbasierte Generierungsalgorithmen für Labyrinthe sind weit verbreitet. Zu den wohl

bekanntesten Algorithmen gehören der rekursive Backtracker, Prim, Kruskal, Aldous-

Broder und Wilson.4 [9]

In dieser Arbeit spielt der rekursive Backtracker Algorithmus eine wichtigere Rolle. Dieser

Algorithmus ist ein Weg schnitzender Algorithmus. Die Grundidee hinter dem Algorith-

mus ist eine zufällige Tiefensuche.
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4 Markov Junior

Markov Junior (MJ) ist eine probabilistische Programmiersprache, bei der Programme

aus einer Menge an Ersetzungsregeln und weiteren Konstrukten bestehen (siehe Kapitel

4.2), welche auf einem Raster (2D aber auch 3D) agieren. In dieser Arbeit liegt der Fokus

auf einem zweidimensionalen Raster. Im Ende�ekt erzeugt MJ zwei- und dreidimensio-

nale Rastergra�ken. MJ und spezi�sch dessen Ersetzungsregeln sind inspiriert von dem

Markow-Algorithmus, weshalb es auch seinen Namen trägt. [12]

Eine probabilistische Programmiersprache ist speziell ausgelegt, um probabilistisches

Programmieren zu ermöglichen. Probabilistisches Programmieren beschäftigt sich grob

zusammengefasst mit dem Heraus�nden von Eingabeparametern bei einer vorliegenden

Funktion und einer Menge ihrer Ausgabedaten. Dabei wird durch Inferenz aus den Aus-

gabedaten mit einer gewissen Wahrscheinlichkeit berechnet, welche Eingaben zu dem

gewünschten Ziel führen können. [18]

4.1 Vergleich zum Markow-Algorithmus

DaMJ direkt von demMarkow Algorithmus inspiriert ist, gibt es viele Überschneidungen.

Jedoch gibt es auch einige Unterschiede, welche im Folgenden erklärt werden.

4.1.1 Gemeinsamkeiten

Vor allem im grundlegenden Konzept sind sich MJ und der Markow-Algorithmus ähn-

lich. Statt der Ersetzung einfacher Zeichenketten werden in MJ Kacheln aus einem Raster

ersetzt. Die Kacheln werden durch ihre Farben dargestellt. Die Farben in MJ sind ver-

gleichbar mit dem Alphabet des Markow-Algorithmus. Das Raster in MJ ist vergleichbar

mit dem Eingabestring im Markow-Algorithmus und das MJ Programm mit allen Regeln

kann mit der Grammatik im Markow-Algorithmus verglichen werden.

14



4 Markov Junior

4.1.2 Unterschiede

Da die Ersetzungen auf einem mehrdimensionalen Raster angewendet werden, gibt es

zwei Eigenschaften des Markow-Algorithmus, welche in MJ keine Anwendung �nden und

demnach anders umgesetzt werden müssen. Zum einen gibt es keinen natürlichen Ansatz,

einen String in einen anderen String einzusetzen in höheren Dimensionen. Dafür gibt MJ

vor, dass alle Eingabe- und Ausgabemuster der Ersetzungsregeln gleich lang sind. Zum

anderen kann man nicht einfach wie bei dem Markow-Algorithmus das am weitesten

links auftretende Vorkommen ersetzen. Als Lösung führt MJ zwei Möglichkeiten ein: ein

zufälliges Vorkommen wählen oder alle möglichen Vorkommen wählen. Dadurch ist MJ

nicht-deterministisch und verliert somit seine Turing-Vollständigkeit. [12]

Auÿerdem unterscheidet sich die Grundlogik des Algorithmus von MJ zu dem Markow-

Algorithmus. In MJ gibt es im Allgemeinen keine Priorität von einzelnen Regeln und

eine Terminationsregel gibt es ebenfalls nicht. Zusätzlich gibt es weitere Konstrukte zu

den Ersetzungsregeln, welche mehr Möglichkeiten der Manipulation des Rasters erlauben.

Diese werden im folgenden Kapitel 4.2 näher erläutert.

4.2 Knoten

Wie schon genannt, ist die Grundlogik des Algorithmus von MJ anders als bei dem

Markow-Algorithmus. Grund hierfür sind Knoten, welche die Grundbausteine eines MJ

Programms sind. Ein Knoten hat jeweils eine Eigenschaft, die beschreibt, wie einzelne

Regeln angewendet werden oder wie das Raster manipuliert werden soll. Durch die Er-

weiterung der einfachen Ersetzungsregeln durch die Knoten ist es so möglich, komplexere

Programme zu de�nieren.

Jeder Knoten hat notwendige Parameter, welche diesen ausmachen. Ein Knoten kann

auch optionale Parameter haben, um so zusätzlich gewisse Eigenschaften des Knoten

steuern zu können.

Es gibt drei Kategorien an Knoten, die man unterscheiden kann: Rulenodes, Branchnodes

und spezielle Knoten.

4.2.1 Rulenodes

Rulenodes sind die grundlegenden Knoten von MJ. Sie sind Wrapper für Ersetzungsregeln

und sagen aus, wie diese genau angewendet werden sollen. Ein Rulenode muss mindestens

eine Ersetzungsregel beinhalten. Hat ein Rulenode mehr als eine Ersetzungsregel, werden

alle seiner Regeln betrachtet. Wie die Anwendung der Regeln passiert, hängt von dem
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jeweiligen Rulenode ab. Dabei besteht die Gemeinsamkeit darin, dass der Knoten im

Normalfall so lange ausgeführt wird, bis keine Regeln mehr anwendbar sind. Es gibt drei

verschiedene Rulenodes: Onenode, Allnode und Parallelnode.

Ersetzungsregeln

Die notwendigen Parameter eines Rulenodes sind die Ersetzungsregeln. Jede Regel besitzt

ein Eingabemuster und ein Ausgabemuster. Bei mehreren Ersetzungsregeln wird jede

innerhalb des Rulenodes einzeln de�niert.

Das Alphabet in MJ für die Ersetzungsregeln besteht aus den Farben der Kacheln. Sind

zwei Farben in einem Muster einer Regel nebeneinander, so bedeutet dies, dass sie im

Raster direkt benachbart sind. Man kann sich ein Muster einer Regel also als eine direkte

Abbildung eines Teils des Rasters vorstellen. Eine einfache abstrakte MJ Ersetzungsregel

kann dann wie folgt aussehen:

Eingabemuster: (Weiÿ, Schwarz) - Ausgabemuster: (Weiÿ, Weiÿ)

Das Eingabemuster beschreibt also eine weiÿe und eine schwarze Kachel, welche direkt

zueinander benachbart sind. Das Ausgabemuster beschreibt zwei weiÿe, benachbarte Ka-

cheln. Wie beim Markow-Algorithmus wird das Eingabemuster durch das Ausgabemuster

ersetzt. Diese Regel ersetzt also ein Vorkommen zweier Kacheln, welche weiÿ und schwarz

sind und benachbart sind, durch zwei weiÿe benachbarte Kacheln auf dem Raster.

Da das Raster, auf dem wir agieren, zweidimensional ist, bietet MJ auch die Möglichkeit,

Muster über zwei Dimensionen zu de�nieren.

Zusätzlich zu den Farben im Alphabet gibt es noch zwei weitere Konstrukte, die zum

Alphabet gehören: Wildcards und Unions.

Wildcards stehen für jede Farbe. In dem Eingabemuster wird an der Stelle der Wildcard

jede Farbe akzeptiert. In dem Ausgabemuster ist eine Wildcard dafür zuständig, dass die

Farbe an dieser Stelle unberührt bleibt.

Eine Union wird vor einer Regel de�niert und besteht aus einem Symbol und einer

Menge an Farben. Das Symbol kann dann in den Eingabemustern genutzt werden und

steht stellvertretend für die de�nierten Farben. Bei der Anwendung der Regeln wird eine

zufällige Farbe aus der Menge gewählt. Man kann mehrere Unions mit unterschiedlichen

Symbolen de�nieren.
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Eine abstrakte Regel, die eine Union und Wildcards verwendet, kann folgende Struktur

haben:

Union

Parameter Symbol: ?, Werte: (Schwarz, Weiÿ)

Rulenode

Regel Eingabemuster: (*, ?, *) - Ausgabemuster: (Weiÿ, Weiÿ, Weiÿ)

Zuerst wird eine Union erstellt, bei der das Fragezeichen für eine weiÿe oder eine schwarze

Kachel steht. Die Wildcard wird hier durch einen Stern (*) dargestellt. Die Ersetzungsre-

gel sagt somit aus, dass eine weiÿe oder schwarze Kachel und ihre Nachbarn (egal welche

Farbe diese haben), durch drei weiÿe Kacheln ersetzt werden.

Ein Rulenode bietet zusätzlich an, statt eines Eingabe- oder Ausgabemusters auch eine

Datei anzugeben, welche ein Kachelmuster enthält.

Jeder Rulenode hat einen optionalen Parameter, um die maximale Anzahl an Ausfüh-

rungsschritten des Rulenodes zu bestimmen.

Symmetrie

Standardmäÿig wird ein Eingabemuster einer Regel in jeglicher Rotation betrachtet. An-

genommen, man hat ein Eingabemuster (Weiÿ, Schwarz, Schwarz). Dies steht für eine

weiÿe Kachel mit zwei benachbarten schwarzen Kacheln. Auch das umgedrehte Mus-

ter (Schwarz, Schwarz, Weiÿ) oder dasselbe Muster vertikal ausgerichtet, würden somit

übereinstimmen, wenn diese in dem Raster gefunden werden.
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Abbildung 4.1: Symmetriegruppen für Eingabemuster der Ersetzungsregeln mit einem
Beispielmuster

Dies kann für jede Regel durch den Symmetrieparameter gesteuert werden. Dieser erlaubt

es, unter verschiedenen Symmetriegruppen zu wählen. Innerhalb einer Gruppe ist eine

spezi�sche Auswahl an Rotationen des ursprünglichen Musters enthalten. Dabei unter-

scheidet man zwischen sechs verschiedenen Symmetriegruppen. Diese sind in Abbildung

4.1 dargestellt.

Onenode

Der Onenode sucht alle Übereinstimmungen der Eingabemuster seiner Regeln auf dem

Raster und wählt zufällig eine dieser zum Ersetzen aus. Dies entspricht der ersten Mög-

lichkeit, welche zuvor angesprochen wurde, um in einer mehrdimensionalen Umgebung

Ersetzungsregeln auszuführen.

Allnode

Der Allnode hingegen setzt die zweite Möglichkeit zur Ersetzung von Mustern in mehr-

dimensionalen Räumen um, welche in Kapitel 4.1.2 angesprochen wurde. Er ersetzt alle

Übereinstimmungen der Eingabemuster mit dem dazugehörigen Ausgabemuster. Dabei

werden Überschneidungen von Ersetzungen verhindert. Wird ein Feld schon von einer

Regel angefasst, wird dieses nicht mehr von anderen Regeln berührt. Die Wahl der Rei-

henfolge der Ersetzungen geschieht zufällig.

Parallelnode

Der Parallelnode ist ähnlich zum Allnode. Er ersetzt ebenfalls alle Übereinstimmungen

der Eingabemuster, achtet aber nicht auf Überschneidungen. Eine später de�nierte Er-
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setzungsregel im Parallelnode würde daher eine frühere Regel überschreiben, wenn diese

gleiche Felder im Raster betre�en.

Er hat zusätzlich noch einen optionalen Parameter, um die Wahrscheinlichkeit festzule-

gen, dass eine Übereinstimmung eines Eingabemusters einer Regel ersetzt wird.

Beispielanwendung für Rulenodes

Angenommen, der Rulenode besteht aus folgender Ersetzungsregel:

Eingabemuster: (Weiÿ, Schwarz) - Ausgabemuster: (Weiÿ, Weiÿ)

Abbildung 4.2: Auschnitt eines Beispielrasters mit schwarzem Hintergrund und einer wei-
ÿen Kachel

Zusätzlich nehmen wir an, dass das Raster schwarz ist und auch mindestens eine weiÿe

Kachel enthält (siehe Abbildung 4.2). Dann würde die Regel über die Zeit das schwar-

ze Raster mit weiteren weiÿen Kacheln befüllen und zwar beginnend von den schon im

Raster vorhandenen weiÿen Kacheln. Abhängig vom Rulenode geschieht das jedoch un-

terschiedlich, was im Folgenden verdeutlicht wird.

Abbildung 4.3: Alle Übereinstimmungen des Eingabemusters (Weiÿ, Schwarz) im Ras-
terauschnitt aus Abbildung 4.2

Bei dem Zustand in Abbildung 4.2 würde es für jeden der drei Rulenodes vier Überein-

stimmungen des Eingabemusters geben (siehe Abbildung 4.3).
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(a) Onenode (b) Allnode (c) Parallelnode

Abbildung 4.4: Ausschnitte des Rasters nach erster beispielhafter Anwendung der Regel

Im ersten Schritt der Ausführung ist zu beobachten, dass auch der Allnode wie der

Onenode nur eine Übereinstimmung ersetzt, welche in dem Beispiel zufällig gleich sind

(siehe Abbildung 4.4). Dies liegt daran, dass die weiÿe Kachel in der Mitte durch die erste

Ausführung der Regel schon angefasst wird. Es wird nämlich Weiÿ durch Weiÿ ersetzt,

was der Allnode auch als Veränderung versteht. Da der Allnode Überschneidungen von

Regelanwendungen vermeidet, wendet er somit keine weitere Regel mehr an.

(a) Onenode (b) Allnode (c) Parallelnode

Abbildung 4.5: Ausschnitte des Rasters nach zweiter beispielhafter Anwendung der Regel

Nach der ersten Ausführung sind mehr weiÿe Kacheln vorhanden. Somit gibt es auch

mehr Übereinstimmungen des Eingabemusters als zuvor. Dadurch ist bei der zweiten

Ausführung nun auch der Unterschied zwischen einem One- und Allnode zu erkennen.

Der Onenode hat nur eine Übereinstimmung ersetzt, während der Allnode alle möglichen

(hier zwei) Übereinstimmungen ersetzt hat. Der Parallelnode ersetzt wie beschrieben alle

Übereinstimmungen unabhängig der Überschneidungen (siehe Abbildung 4.5).
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Erweiterung von Rulenodes

MJ bietet die Möglichkeit, dass Ersetzungen nicht nur zufällig ausgewählt werden, son-

dern auch abhängig von den Begebenheiten des Rasters ausgewählt werden können. Dafür

gibt es zwei Möglichkeiten: Fields und Observations.

Innerhalb eines Rulenodes können mehrere Fields de�niert werden. Ein Field kann eine

Regel lenken, in eine bestimmte Richtung ausgeführt zu werden. Dafür werden die betrof-

fene Farbe, für die das Field gilt, und die Zielfarbe für die betro�ene Farbe de�niert. Jede

Regel, die die betro�ene Farbe enthält, ist von dem Field betro�en. Die Zielfarbe wird

entweder angesteuert oder dient im Gegenteil als Farbe, von der sich die Regel versucht

zu entfernen.

Dies wird umgesetzt durch die Berechnung eines einfachen Distanzfeldes von der Zielfarbe

aus. Jede direkt benachbarte Kachel hätte somit den Wert 1 und die Nachbarn davon den

Wert 2 etc. Damit kann entschieden werden, welche Ersetzung das beste Potenzial hat,

sich der Zielfarbe zu nähern (oder zu entfernen). Ein Field muss daher auch de�nieren,

auf welcher Farbe das Distanzfeld berechnet werden soll.

Ein Field wird innerhalb eines Rulenodes de�niert. Die betro�ene Farbe, die Zielfarbe

und die Grundfarbe für das Distanzfeld sind die notwendigen Parameter. Angenommen,

das Raster ist schwarz, hat eine weiÿe und eine gelbe Kachel. Dann kann ein Field für

einen Rulenode wie folgt aussehen:

Rulenode
Regel Eingabemuster: (Weiÿ, Schwarz) - Ausgabemuster: (Weiÿ, Weiÿ)

Field betro�ene Farbe: Weiÿ, Zielfarbe: Gelb, Grundfarbe: Schwarz

Diese einfache Ersetzungsregel würde von der weiÿen Kachel aus Richtung gelber Kachel

auf schwarzem Untergrund eine weiÿe Linie ziehen.

Ein Field hat zudem zwei optionale Parameter: den Nachrechnungsparameter und den

Notwendigkeitsparameter. Der Nachrechnungsparameter sagt aus, ob nach jeder Anwen-

dung einer Regel das Distanzfeld neu berechnet werden soll. Der Notwendigkeitsparame-

ter sagt aus, ob die Regel nur ausgeführt werden soll, wenn die Grundfarbe für das Field

auch existiert.

Auch Observations werden in einem Rulenode de�niert und können dafür sorgen, Regeln

zu lenken. Dies geschieht jedoch strenger als bei den Fields. Eine Observation de�niert

für eine Farbe, welchen Endzustand (Farbe auf dem Raster) sie annehmen soll, nach
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Anwendung der betro�enen Regeln. So werden Regelanwendungen ausgewählt, welche

zu diesem Zielzustand führen werden.

Sowohl Fields als auch Observations bieten an, zu steuern, wie streng Regeln gewählt

werden, um das de�nierte Ziel zu erreichen. Dies kann über den Temperatur-Parameter

eingestellt werden. Der Parameter wird auf den zum Field oder zur Observation dazuge-

hörigen Rulenode gesetzt.

4.2.2 Branchnodes

Branchnodes können andere Knoten als ihre Kinder haben. Es gibt zwei Typen von

Branchnodes: Einfache Branchnodes und manipulierende Branchnodes.

Einfache Branchnodes haben eine Auswirkung auf den Ablauf der Ausführung der Kind-

knoten. Es gibt zwei einfache Branchnodes: Sequencenode und Markovnode.

Manipulierende Branchnodes veränderen zuerst das aktuelle Raster und lassen dann alle

Kindknoten nacheinander wie in einem Sequencenode auf dem veränderten Raster aus-

führen. Es gibt zwei manipulierende Branchnodes: Mapnode und WaveFunctionCollapse

Node.

Sequencenode

Ein Sequencenode sorgt dafür, dass alle Kindknoten sequenziell ausgeführt werden.

Markovnode

Ein Markovnode funktioniert wie der Markow-Algorithmus. Der erste Knoten wird prio-

risiert ausgeführt. Ist dieser nicht mehr anwendbar, werden die nächsten Knoten ange-

schaut. Sobald einer angewendet wurde, springt man wieder zum ersten Knoten zurück

und versucht diesen erneut anzuwenden.

Mapnode

Der Mapnode ersetzt das aktuelle Raster mit einem neuen Raster, welches sich in der

Gröÿe unterscheiden kann. Der Mapnode erlaubt es zu Beginn, Ersetzungsregeln zu de-

�nieren, bei denen die Eingabemuster im alten Raster gesucht werden und die Ausga-

bemuster im neuen Raster entsprechend angewendet werden. Daher ist es im Mapnode

möglich, dass sich Eingabemuster und Ausgabemuster in der Gröÿe unterscheiden.
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Für den Mapnode ist die Skalierung ein notwendiger Parameter. Die Skalierung sagt aus,

wie das neue Raster im Vergleich zum alten Raster skaliert werden soll. Dafür muss für

jede Richtung (x, y, z) eine Skalierung angegeben werden. Sollen die einzelnen Muster

im Ausgaberaster die gleiche Proportion wie im Eingaberaster haben, so müssen die

Ausgabemuster ebenfalls skaliert werden.

Angenommen, das alte Raster ist schwarz und hat gelbe Kacheln auf sich verteilt. Dann

kann ein abstrakter Mapnode wie folgt aussehen:

Mapnode

Parameter Skalierung: (2, 2, 1)

Regel Eingabemuster: (Gelb) - Ausgabemuster:
(
Weiÿ Weiÿ
Weiÿ Weiÿ

)
Kindknoten

...... ......

Kindknoten

...... ......

Das neue Raster ist in x- und y-Richtung doppelt so groÿ und hat jede gelbe Kachel

vom alten Raster durch weiÿe Kacheln auf dem neuen Raster ersetzt. Dabei sind die

Proportionen der gelben Kacheln im ursprünglichen Raster beibehalten, da auch das

Ausgabemuster skaliert wurde. Danach wird mit den inneren Knoten im Mapnode se-

quenziell auf dem neuen Raster standardmäÿig fortgefahren.

WaveFunctionCollapse Node

Ein WaveFunctionCollapse Node nutzt den WaveFunctionCollapse Algorithmus [11] von

Maxim Gumin. Dieser ermöglicht das Generieren von Bildern, welche lokal ähnlich zu

einem Eingabebild sind. Lokal ähnlich bedeutet, dass die generierten Bilder nur die N ×
N Muster enthalten, welche auch im Eingabebild zu �nden sind. Zusätzlich soll die

Verteilung der Muster ähnlich sein. [13]

Der WaveFunctionCollapse Node ersetzt das alte Raster mit einem gleichgroÿen neuen

Raster. Auf dem neuen Raster wird dann von einem Beispielbild oder einem selbst de-

�nierten Tileset mit dem WaveFunctionCollapse Algorithmus ein lokal ähnliches Bild

generiert. Das Tileset ist eine Menge aus kleinen Kachelgra�ken und Regeln, wie diese

nebeneinander angeordnet sein dürfen. Anhand dieser Regeln generiert der WaveFunc-

tionCollapse Algorithmus die lokal ähnlichen Bilder. Zusätzlich kann man das alte Raster
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nutzen, um anhand dessen Farben zu bestimmen, an welchen Stellen im neuen Raster

der WaveFunctionCollapse Algorithmus angewendet werden soll.

Besonderheit von Branchnodes

Ist ein Branchnode ein Kind von einem anderen Branchnode, so wird der innere Branchno-

de wiederholend ausgeführt, bis kein Knoten in dem inneren Branchnode mehr überein-

stimmt. Mapnodes und WaveFunctionCollapse Nodes sind davon ausgeschlossen.

4.2.3 Spezielle Knoten

Spezielle Knoten haben die Eigenschaft, wie Rulenodes das Raster verändern zu können,

tun dies aber nicht mit einfachen Ersetzungsregeln und sind keine Branchnodes. Es gibt

drei spezielle Knoten: Pathnode, Convolutionnode und Conv Chain Node.

Pathnode

Ein Pathnode erstellt zwischen zwei de�nierten Farben auf dem Raster einen Weg. Es

wird standardmäÿig der kürzeste Weg genommen. Bei mehreren Vorkommen der Farben

wird der kürzeste Weg gewählt. Dieser Knoten wird so lange ausgeführt, bis keine Wege

zwischen den de�nierten Farben mehr erstellt werden können.

Convolutionnode

Ein Convolutionnode besitzt wie ein Rulenode mindestens eine Ersetzungsregel. Die Re-

gel gilt aber lediglich für eine Kachel, denn Regeln im Convolutionnode werden abhängig

von den Nachbarn der Eingabekachel angewendet. Nur wenn die Nachbarn der Eingabe-

kachel bestimmte Farben haben, wird diese Kachel durch die Ausgabekachel ersetzt. Man

kann zwischen der Von-Neumann- und Moore-Nachbarschaft wählen. Die Nachbarfelder

und deren Farben werden einmal zu Beginn ermittelt. Dann wird jede Regel nacheinan-

der anhand dieser Nachbarschaften angewendet. Spätere Regeln können daher Vorherige

überschreiben.

ConvChain Node

Ein ConvChain Node nutzt den ConvChain Algorithmus [10] von Maxim Gumin. Dieser

ermöglicht anhand eines Beispielbildes, Bilder zu generieren, welche die gleiche Verteilung

an N ×N Mustern des Beispielbildes haben.
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Der ConvChain Node wendet den ConvChain Algorithmus dann auf einen de�nierten

Teil des Rasters an.

4.3 Programmaufbau

Ein MJ Programm besteht aus mindestens einem Knoten. Damit mehrere Knoten ausge-

führt werden können, muss ein Branchnode als Wurzelknoten benutzt werden. Standard-

mäÿig ist dies ein Sequencenode, damit man eine sequenzielle Ausführung ermöglichen

kann.

Auch das Raster selbst hat Parameter, die zu Beginn eines Programms (oder in einem

manipulierenden Branchnode) angegeben werden müssen. Notwendig sind dabei die Far-

ben, die das Raster annehmen kann. Dazu legt die erste genannte Farbe die Grundfarbe

des Rasters zum Programmstart fest. Zusätzlich gibt es die Option, zu bestimmen, ob

es einen Ursprung geben soll. Der Ursprung ist die Kachel in der Mitte des Rasters. Ist

diese Option gesetzt, so bestimmt die zweite gegebene Farbe die Farbe des Ursprungs.

Diese Parameter werden im Wurzelknoten des Programms gesetzt.

So kann der Beginn eines MJ Programms folgendermaÿen aussehen:

Sequencenode

Rasterparameter Farben: (Schwarz, Weiÿ, Gelb), Ursprung: ja

Kindknoten

...... ......

Kindknoten

...... ......

Das Raster kann somit die Farben Schwarz, Weiÿ und Gelb annehmen. Die Grundfarbe

des Rasters zu Beginn ist schwarz. Zusätzlich ist in der Mitte des Rasters eine Kachel

weiÿ gefärbt.

Auÿerdem gibt es allgemeinere Modellparameter für das Programm, welche auÿerhalb des

Programmcodes de�niert werden. Der notwendige Parameter in diesem Fall ist die Gröÿe

des Rasters oder die einzelnen Teilgröÿen des Rasters (Länge, Breite, Tiefe). Das Raster

kann somit ein frei wählbares Rechteck oder ein frei wählbarer Quader sein. Optionale

Parameter sind unter anderem die maximale Anzahl an Schritten für die Ausführung

oder auch die Dimension des Rasters.
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4.4 Beispielanwendung

Ein simples MJ Programm ist BasicSnake aus dem Originalprojekt von Maxim Gumin

[12]. Dieses Programm simuliert ein zufälliges, simples Snake-Spiel.

Im originalen Snake-Spiel bewegt sich eine Schlange gerade oder rechtwinklig auf einem

Raster. Das Ziel ist es währenddessen Futter auf dem Spielfeld aufzusammeln, wodurch

die Schlange wächst. Zusätzlich muss man Hindernissen und dem eigenen Schlangenkör-

per ausweichen.1

4.4.1 Programm

In abstrakter Darstellung und leicht abgewandelt sieht das MJ Programm wie folgt aus:

Allgemeine Parameter Gröÿe: 19, Dimension: 2

Sequencenode

Rasterparameter Farben: (Schwarz, Orange, Grau, Lila, Grün, Rot), Ursprung: ja

Allnode

Regel Eingabemuster: (Orange, Schwarz, Schwarz) - Ausgabemuster: (*, *, Grau)

Regel Eingabemuster: (Grau, Schwarz, Schwarz) - Ausgabemuster: (*, *, Grau)

Onenode

Regel Eingabemuster: (Orange, Schwarz, Grau) - Ausgabemuster: (Lila, Grün, Rot)

Onenode

Parameter Schritte: 2

Regel Eingabemuster: (Rot, Schwarz, Grau) - Ausgabemuster: (Grün, Grün, Rot)

Onenode

Parameter Schritte: 10

Regel Eingabemuster: (Grau) - Ausgabemuster: (Orange)

Markovnode

Onenode

Regel Eingabemuster: (Rot, Schwarz, Orange) - Ausgabemuster: (Grün, Grün, Rot)

Allnode

Regel Eingabemuster: (Rot, Schwarz, Grau) - Ausgabemuster: (Grün, Grün, Rot)

Regel Eingabemuster: (Lila, Grün, Grün) - Ausgabemuster: (Grau, Schwarz, Lila)

1https://de.wikipedia.org/wiki/Snake_(Computerspiel) - Zugri�sdatum: 20.07.2024
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4.4.2 Ausgangssituation

Das Raster hat eine Gröÿe von 19 × 19 zu Beginn der Ausführung, welche durch die

allgemeinen Parameter festgelegt wurde.

Abbildung 4.6: Grundraster für das Snake-Spiel

Dazu ist es schwarz und hat eine orangene Kachel in der Mitte vorliegen (siehe Abbildung

4.6). Dies wurde durch die Rasterparameter im Wurzelknoten festgelegt. Zudem kann das

Raster die Farben Grau, Lila, Grün und Rot annehmen.

4.4.3 Ablauf

Der Wurzelknoten des Programms ist ein Sequencenode. Daher werden alle weiteren

Knoten sequenziell ausgeführt.

Der erste Knoten, welcher ausgeführt wird, ist ein Allnode. Dieser beinhaltet zwei Erset-

zungsregeln. Das Raster wird nach allen Übereinstimmungen beider Eingabemuster der

Regeln durchsucht. Zu Beginn stimmt die erste Regel in der Mitte des Rasters an vier

Stellen überein. Da es sich um einen Allnode handelt, werden alle Übereinstimmungen,

solange diese sich nicht überschneiden, angewendet. Aufgrund der Wildcards (*) im Aus-

gabemuster wird lediglich eine schwarze durch eine graue Kachel ersetzt, während die

orangene und benachbarte schwarze Kachel unberührt bleiben.
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Abbildung 4.7: Raster nach Anwendung der ersten Regel des ersten Allnodes
Eingabemuster: (Orange, Schwarz, Schwarz) - Ausgabemuster: (*, *, Grau)

Eingabemuster: (Grau, Schwarz, Schwarz) - Ausgabemuster: (*, *, Grau)

Das Ersetzen der schwarzen Kachel durch die graue Kachel überschneidet sich nicht für

die vier Übereinstimmungen, weshalb alle vier wie in Abbildung 4.7 angewendet werden.

Abbildung 4.8: Raster nach voller Ausführung des ersten Allnodes

Im nächsten Schritt stimmt nur noch die zweite Regel überein, sodass diese im selben

Prinzip wie im ersten Schritt angewendet wird. Dies wiederholt sich in den nächsten

Schritten, bis auch die zweite Regel nicht mehr übereinstimmt (siehe Abbildung 4.8).

Damit wurde die Grundlage des Spielfeldes aufgebaut, bei dem die grauen Kacheln die

begehbaren Felder darstellen. Nun wird der nächste Knoten ausgeführt.

Dieser ist ein Onenode mit einer Ersetzungsregel. Es wird wieder nach allen Überein-

stimmungen des Eingabemusters der Regel gesucht. Wie zuvor stimmt diese Regel an

vier Stellen in der Mitte des Rasters überein.
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Abbildung 4.9: Raster nach voller Ausführung des ersten Onenodes
Eingabemuster: (Orange, Schwarz, Grau) - Ausgabemuster: (Lila, Grün, Rot)

Da es sich um einen Onenode handelt, wird wie in Abbildung 4.9 zufällig eine Überein-

stimmung angewendet. Es wurde die Grundlage für die Schlange erstellt, die einen roten

Kopf, einen grünen Körper und ein lilafarbenes Ende hat. Danach stimmt die Regel nicht

mehr überein und der nächste Knoten ist an der Reihe.

Dies ist wieder ein Onenode, welcher nun auf zwei Schritte beschränkt ist. Das Eingabe-

muster stimmt am Kopf der Schlange an drei Stellen überein.

(a) Erste
Ausführung

(b) Zweite
Ausführung

Abbildung 4.10: Raster nach schrittweiser Ausführung des zweiten Onenodes
Eingabemuster: (Rot, Schwarz, Grau) - Ausgabemuster: (Grün, Grün, Rot)

Zufällig wird eine davon ausgesucht. Aufgrund der Beschränkung der Schritte passiert

dies zweimal (siehe Abbildung 4.10). Dies gibt der Schlange eine Grundlänge für den

Anfang. Danach ist der nächste Knoten dran.

Auch dies ist wieder ein Ondenode, der auf zehn Schritte beschränkt ist. Das Eingabe-

muster stimmt bei jeder grauen Kachel überein.
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Abbildung 4.11: Raster nach voller Ausführung des dritten Onenodes
Eingabemuster: (Grau) - Ausgabemuster: (Orange)

Zehn von diesen Kacheln werden zufällig durch orangene Kacheln ersetzt (siehe Abbil-

dung 4.11). Diese stellen das Futter des Snake-Spieles dar. Nach der Ausführung der

bisherigen Knoten ist nun der Startzustand für das Snake-Spiel generiert worden. Damit

ist der nächste Knoten an der Reihe.

Dieser Knoten ist ein Branchnode, genauer gesagt ein Markovnode, welcher zwei Kind-

knoten beinhaltet. Der Onenode hat eine Regel. Das Eingabemuster dieser Regel be-

schreibt, ob der Schlangenkopf neben einem Futterfeld ist. Das Ausgabemuster sorgt da-

für, dass die Schlange das Futterfeld betritt. Da der Schlangenschwanz unberührt bleibt,

wächst die Schlange somit beim Betreten eines Futterfeldes. Der Allnode hat zwei Regeln.

Die beiden Regeln zusammen beschreiben die Vorwärtsbewegung der Schlange. Dabei ist

die erste Regel für den Kopf der Schlange zuständig. Das Eingabemuster stimmt immer

dann überein, wenn vor der Schlange noch ein freies Feld ist. Das Ausgabemuster bewegt

dann den Kopf entsprechend nach vorne. Die zweite Regel ist für das Ende der Schlange

zuständig. Das Eingabemuster stimmt mit dem schon gegangenen Weg der Schlange vom

Ende aus gesehen überein. Das Ausgabemuster verkürzt somit den Schlangenschwanz in

Richtung gegangener Strecke.

Innerhalb des Markovnodes wird der erste Knoten priorisiert ausgeführt. Dieser ist der

Onenode. Das Eingabemuster des Onenodes hat zu Beginn keine Übereinstimmungen.
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Abbildung 4.12: Raster nach der ersten Ausführung des Allnodes innerhalb des Markov-
nodes
Eingabemuster: (Rot, Schwarz, Grau) - Ausgabemuster: (Grün, Grün, Rot)

Eingabemuster: (Lila, Grün, Grün) - Ausgabemuster: (Grau, Schwarz, Lila)

Daher wird der nächste Knoten ausgeführt. Dies ist der Allnode. Beide Eingabemuster

stimmen überein und überschneiden sich nicht. Daher werden beide angewendet und die

Schlange bewegt sich somit in eine zufällige freie Richtung nach vorne (siehe Abbildung

4.12).

Abbildung 4.13: Raster nach der zweiten Ausführung des Allnodes innerhalb des Mar-
kovnodes

Nach dieser einen Ausführung des Allnodes wird wieder der erste Knoten im Markovnode

angeschaut, um zu prüfen, ob dieser nun ausgeführt werden kann. Dies ist weiterhin nicht

der Fall, weshalb wieder der Allnode einmal ausgeführt wird und die Schlange sich nach

vorne bewegt (siehe Abbildung 4.13).
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Abbildung 4.14: Raster nach der ersten Ausführung des Onenodes innerhalb des Mar-
kovnodes
Eingabemuster: (Rot, Schwarz, Orange) - Ausgabemuster: (Grün, Grün, Rot)

Nun wird der Onenode erneut geprüft und dieses Mal stimmt das Eingabemuster der

Regel überein, sodass die Regel angewendet wird. Die Schlange hat ein Futterfeld betreten

und ist gewachsen (siehe Abbildung 4.14).

(a) Zweite
Ausführung

(b) Dritte
Ausführung

Abbildung 4.15: Raster nach schrittweiser Ausführung des Onenodes im Markovnode

Der Onenode stimmt nach dieser Ausführung weiterhin überein und wird solange ausge-

führt, bis dieser nicht mehr übereinstimmt (siehe Abbildung 4.15).

Abbildung 4.16: Raster nach der dritten Ausführung des Allnodes innerhalb des Markov-
nodes
Eingabemuster: (Rot, Schwarz, Grau) - Ausgabemuster: (Grün, Grün, Rot)

Eingabemuster: (Lila, Grün, Grün) - Ausgabemuster: (Grau, Schwarz, Lila)

Nun wird wieder der Allnode ausgeführt und die Schlange bewegt sich, wie in Abbildung

4.16 zu sehen ist, nach vorne. Danach wird wieder der Onenode geprüft und dieser Ablauf
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wiederholt sich, bis keine Regeln mehr übereinstimmen oder die maximale Anzahl an

Schritten für das Programm erreicht ist.
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In diesem Kapitel werden die grundlegenden Ideen zur Umsetzung der Ziele erklärt.

Dafür wird vorerst ermittelt, was die Anforderungen an die generierten Labyrinthe sind.

Darau�olgend wird vorbereitend für den Ansatz Markov Junior (MJ) in die prozedurale

Generierung eingeordnet und ein Generierungstyp festgelegt.

Der Ansatz beginnt mit der Generierung des Lösungsweges. Aufbauend darauf werden

einzelne Abzweigungspunkte vom Lösungsweg generiert. Diese dienen als Grundlage, um

im nächsten Schritt alle restlichen Wege zu generieren. Zum Schluss wird das Labyrinth

im Design angepasst, um so den Anforderungen gerecht zu werden.

Im Folgenden werden diese Schritte näher erläutert.

5.1 Anforderungen

Für die spätere Evaluation, aber auch für eine erfolgreiche Umsetzung der Ziele ist eine

Sammlung von Anforderungen an das Endprodukt wichtig. Im Folgenden werden diese

aufgezählt.

5.1.1 Eigenschaften der Labyrinthe

Jedes Labyrinth hat Eigenschaften. Die angeforderten Grundeigenschaften der in dieser

Arbeit generierten Labyrinthe sind folgende:

Jedes generierte Labyrinth ist...

� ... ein Gamma Labyrinth.

� ... zweidimensional.

� ... perfekt.

� ... einheitlich. Das bedeutet, dass es keine Wege gibt, die breiter/gröÿer sind als

andere Wege. Dasselbe gilt für die Wände.
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� ... klar lösbar. Das bedeutet, dass es einen Startpunkt und ein Ziel im Labyrinth

gibt, welche durch einen Weg verbunden sind.

� Der Start und das Ziel sind gegenüber voneinander an der oberen und unteren

Seite des Labyrinthes. Es wird von unten gestartet.

5.1.2 Aussehen der Labyrinthe

Ein Labyrinth kann unterschiedlich gestaltet werden. Die Anforderungen an das Aussehen

der Labyrinthe lauten wie folgt:

� Die Wege sind weiÿ und breit, während die Wände schmal und schwarz sein sol-

len (siehe Abbildung 3.1b). Dies soll die Unterscheidung der Wege und Wände

vereinfachen.

� Der Start ist grün markiert und das Ziel ist rot markiert. So soll direkt klar sein,

wo der Start und das Ziel sind.

5.1.3 Kontrollierbarkeit

Die Generierung der Labyrinthe soll im Allgemeinen gut kontrollierbar sein. Sie soll

zulassen, dass gewisse Eigenschaften über Parameter gesteuert werden können. Dabei soll

der Fokus auf dem Lösungsweg und seinen Abzweigungen liegen, da diese eine wesentliche

Rolle in einem Labyrinth spielen.

Der Lösungsweg soll in seinem Verlauf zwischen Start und Ziel kontrollierbar sein. Dies

bedeutet, dass gesteuert werden kann, wie willkürlich der Lösungsweg zwischen Start und

Ziel verläuft. Bei höchster Einstellung sollte der Weg zufällig verlaufen. Bei niedrigster

Einstellung sollte der Weg in einer Gerade zwischen Start und Ziel verlaufen. Da dies auf

Zufälligkeit basieren wird, soll bei den generierten Labyrinthen im Durchschnitt gewähr-

leistet sein, dass unterschiedliche Einstellungen der Willkürlichkeit auch das jeweilige

erwartete Ergebnis erzeugen.

Dazu soll es möglich sein, festzulegen, wie viele direkte Abzweigungen von dem Lösungs-

weg abgehen. Jedes generierte Labyrinth soll die gegebene Anzahl an direkten Abzwei-

gungen aufweisen.

Auÿerdem soll die Gröÿe des Labyrinthes kontrollierbar sein.
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5.2 Markov Junior und prozedurale Generierung

MJ ist in der Lage, zwei- und dreidimensionale Rastergra�ken zu erzeugen. Durch den

Nichtdeterminismus von MJ erzeugt eine gleiche Eingabe (Grundraster) unterschiedliche

Ausgaben. Dabei unterliegen die Ausgaben immer den de�nierten Regeln. Die Zufälligkeit

ist direkt an die Regeln gebunden, weshalb sie immer gewissen Bedingungen genügt. Dies

zeigt, dass MJ für die prozedurale Generierung verwendet werden kann. In Kapitel 4.4 ist

bspw. zu sehen, wie MJ den Startzustand eines Snake-Spiels generiert (siehe Abbildung

4.11).

Abbildung 5.1: Drei typische Ansätze zur prozeduralen Generierung [27] um zu verdeut-
lichen, wo MJ einzuordnen ist

Im Bereich der prozeduralen Generierung gibt es unterschiedliche Vorgehensweisen. Ty-

pische Ansätze sind in Abbildung 5.1 zu sehen. MJ kann in den konstruktiven Ansatz

eingeordnet werden. Der konstruktive Ansatz de�niert ein Regelset und generiert den

Inhalt einmal. Anders als bei den anderen beiden Ansätzen ist der Inhalt nach der ersten

Generierung fertig und wird nicht mehr verändert. Es muss daher sichergestellt werden,

dass der Inhalt während der Generierung korrekt ist. Dies kann durch die Anwendung von

Operationen erzielt werden, welche garantieren können, dass kein falscher Inhalt erzeugt

wird [27].

36



5 Konzept

Für die Generierung der Labyrinthe mit MJ muss daher ein Regelset gefunden werden,

was eine direkte, korrekte Generierung ermöglicht.

5.3 Art der Labyrinthgenerierung

Die grundlegende Struktur eines Labyrinthes sind dessen Wege. Sie machen das Labyrinth

aus und im Ende�ekt geht es um den Lösungsweg, welchen man versucht herauszu�nden.

Um eine hohe Kontrollierbarkeit bei der Generierung eines Labyrinthes zu erreichen,

bietet es sich an, dabei die Wege zu generieren. Zusätzlich ist gefordert, Kontrolle über

den Lösungsweg zu haben, was dadurch ebenfalls gut umgesetzt werden kann. Daher

ist der Fokus (siehe Kapitel 3.3.1) des Labyrinthes ein Weg schnitzender Ansatz. Im

Vergleich müssten bei einem Wand hinzufügenden Ansatz immer zwei Wände generiert

werden, um einen Weg des Labyrinthes zu erzeugen. Daraus ergibt sich eine höhere

Komplexität, wenn es darum geht, die Wege kontrolliert zu generieren. Dabei ist zu

beachten, dass eine spezi�sche Art an Weg schnitzenden Ansätzen verwendet werden

muss. Diese sind diejenigen, welche auch wirklich vollständige Wege generieren. Denn es

gibt auch Weg schnitzende Ansätze, bei denen an zufälligen Stellen im Labyrinth Teile

von Wegen generiert werden, welche dann Stück für Stück zusammengeführt werden.

Dies würde wiederum eine hohe Kontrollierbarkeit der Weggenerierung erschweren.

5.4 Grundkonzept der Labyrinth Generierung

Im Mittelpunkt der Generierung steht die Kontrollierbarkeit der Labyrinthe. Dafür und

auch generell für eine möglichst gute Kontrollierbarkeit, aber auch für die Möglichkeit

der Erweiterung (für z. B. die Schwierigkeit) bietet es sich an, einen modularen An-

satz zu wählen. Bei diesem werden einzelne Komponenten des Labyrinthes unabhängig

voneinander generiert.

Ein Labyrinth kann dafür in zwei Hauptteile unterteilt werden: den Lösungsweg und des-

sen Abzweigungen. Die Abzweigungen gehören zum Lösungsweg und füllen das restliche

Labyrinth. Deswegen wird zuerst der Lösungsweg generiert und davon die Abzweigungen,

um das Labyrinth zu vervollständigen.

Als Grundlage dafür muss ein Ansatz für die Generierung der Wege (Lösungsweg und

Abzweigungen) entwickelt werden. Dabei muss beachtet werden, dass die Wege nicht in

sich selbst laufen, da das Labyrinth sonst nicht perfekt ist. Zusätzlich soll Zufälligkeit
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bei dem Ansatz gewährleistet sein. Für Inspirationen werden dafür schon existierende

Algorithmen angeschaut.

5.4.1 Weggenerierung

Unter den bekanntesten Algorithmen zur Generierung perfekter Labyrinthe (Kapitel

3.3.2) ist der rekursive Backtracker ein Weg schnitzender Algorithmus, welcher die We-

ge direkt generiert. Dieser kann entweder rekursiv umgesetzt werden oder mithilfe eines

Stacks. Der Algorithmus mit einem Stack [9] kann wie folgt beschrieben werden:

Angenommen, es existiert ein Graph über einem Raster, bei dem alle Knoten miteinander

über ihre direkten Nachbarn verbunden sind (vergleichbar zur Abbildung 3.2a). Dann

lautet der Algorithmus:

1. Wähle einen zufälligen Startknoten, markiere ihn als besucht und packe ihn auf

den Stack.

2. Hole den obersten Knoten v aus dem Stack heraus. Ist der Stack leer, beende den

Algorithmus.

3. Wähle einen unbesuchten Nachbarn u von v aus.

a) Wenn es u gibt, packe v auf den Stack.

b) Ansonsten springe zu Schritt 2.

4. Verbinde Knoten u mit v.

5. Markiere u als besucht und packe ihn auf den Stack.

6. Wiederhole Schritte 2-5.

Im Ende�ekt generiert dieser Algorithmus immer wieder zufällige, nicht in sich laufen-

de Wege. Diese werden auch self-avoiding walk (SAW)1 genannt. Ein perfektes Laby-

rinth und dessen Spannbaum ist also nichts anderes als eine Aneinanderreihung mehrerer

SAWs. Dies wird in dieser Arbeit genutzt, um daraus den Spannbaum für die Labyrinthe

in einem modularen Ansatz generieren zu können.

1https://en.wikipedia.org/wiki/Self-avoiding_walk - Zugri�sdatum: 20.07.2024
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Abbildung 5.2: Beispiel eines SAWs auf einem 2D-Raster (Rot stellt den aktuellen be-
suchten Punkt dar)

In Abbildung 5.2 ist ein SAW dargestellt. Dieser begeht alle ungeraden Punkte, damit so

zwischen dem Weg ein Freiraum ist. In Bezug auf Labyrinthe wären das die Wände. So

kann in einem zweidimensionalen Raster direkt eine Labyrinth-Struktur erzeugt werden.

Dieses Konzept bildet die Grundlage für die Generierung der Labyrinthe in dieser Arbeit.

5.5 Lösungsweg

Die Grundlage des Lösungsweges sind der Start und das Ziel. Nach den Anforderungen

sind diese immer an den gleichen Punkten. Es ist daher nur festzulegen, wo die Mitte

des Rasters ist, um an dieser Stelle oben und unten am Rand des Rasters zwei Punkte

zu generieren. Vor der Generierung des Lösungsweges werden Start und Ziel für das

Labyrinth ermittelt und generiert.

Für den Weg ist es nötig, dass dieser vom Start zum Ziel verläuft. Eine Idee ist es, einen

SAW zwischen den beiden Punkten zu generieren. Der SAW würde dafür beim Start

beginnen.

Notwendig dafür ist jedoch eine Methode, damit der SAW auch das Ziel erreicht. Dies

kann umgesetzt werden, indem der SAW immer denjenigen nächsten Punkt auswählt,

welcher dem Ziel näher ist. Würde der SAW immer den Punkt, der dem Ziel am nächsten

ist, nehmen, würde der generierte Weg lediglich eine gerade Linie zwischen den zwei

Punkten sein. Um dies zu vermeiden, wird eine Temperatur eingeführt, welche dafür

sorgt, dass nur zu einer gewissen Wahrscheinlichkeit der beste Knoten gewählt wird.

Dadurch lässt sich steuern, wie willkürlich der Lösungsweg verlaufen soll, wodurch man,

wie in den Anforderungen gegeben, Kontrolle über diesen hat.
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Nach diesem Vorgehen ergibt sich ein weiteres Problem. Bei einem SAW kann es passie-

ren, dass dieser in einen Zustand gerät, bei dem alle Nachbarn schon besucht sind. Im

rekursiven Backtracker Algorithmus wird dann der schon gegangene Weg zurückverfolgt,

um aus dieser Sackgasse herauszukommen. Dies kann auch für diese Weggenerierung

verwendet werden. Die Generierung des Lösungsweges ist somit wie ein rekursiver Back-

tracker Algorithmus mit einer bestimmten Richtung.

Da die zurückverfolgten Wege direkte Abzweigungen des Lösungsweges wären, werden

diese am Ende der Weggenerierung entfernt, um so nur den Lösungsweg zu haben.

Daraus ergibt sich folgender Algorithmus zur Generierung des Lösungsweges:

1. Generiere Start und Ziel gegenüber voneinander.

2. Führe einen rekursiven Backtracker Algorithmus mit bestimmter Richtung aus

(vom Start Richtung Ziel).

a) Führe einen SAW aus, welcher seinen nächsten Punkt abhängig von der Di-

stanz zum Ziel wählt. Eine Temperatur steuert, mit welcher Wahrscheinlich-

keit der zum Ziel nächste Punkt gewählt wird. Landet der SAW im Ziel, sprin-

ge zu Schritt 3. Landet der SAW in einer Sackgasse, fahre mit dem nächsten

Schritt fort.

b) Verfolge den gegangenen Weg zu einer freien Stelle zurück und wiederhole

Schritt 2a.

3. Entferne alle zurückverfolgten Wege.

5.6 Abzweigungen

Für die Abzweigungen ist der Lösungsweg die Grundlage. Von diesem werden zuerst

Punkte markiert, an denen es Abzweigungen geben wird. Die Anzahl entspricht der

gewollten Menge an direkten Abzweigungen. Dabei kann es aber zu Problemen kommen,

wenn der Lösungsweg einen bestimmten Verlauf hat.
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(a) Lösungsweg mit zwei
Teilbereichen

(b) Lösungsweg mit drei
Teilbereichen

Abbildung 5.3: Beispiel zweier Lösungswege, die das Raster in unterschiedliche Teilbe-
reiche aufteilen

Der Start und das Ziel sind gegenüber voneinander, weshalb der Lösungsweg das Raster

im einfachen Fall in zwei Teile aufteilt (siehe Abbildung 5.3a). Dabei ist der Lösungsweg

weiÿ und die farblich markierten Stellen sind die Teilbereiche. Die schwarzen Stellen sind

Zwischenräume des Weges, da dieser nur alle ungeraden Kacheln begeht. Diese würden die

Wände darstellen und gehören daher zu keinem Teilbereich. Da der Weg jedoch zufällig

verläuft, kann er dadurch Teilbereiche von dem Rest des Rasters abgrenzen, sodass mehr

als zwei abgegrenzte Bereiche im Labyrinth entstehen, wie es in Abbildung 5.3b der Fall

ist.

Wählt man nun zufällig eine feste Anzahl an Abzweigungspunkten vom Lösungsweg,

kann es passieren, dass ein Teilbereich keinen Abzweigungspunkt kriegt. Dadurch würde

am Ende der Generierung ein Bereich übrig bleiben, welcher keine Wege hat. Dies soll

vermieden werden. Dafür werden zuerst alle Teilbereiche identi�ziert. Für jeden dieser

Teilbereiche wird ein Abzweigungspunkt generiert. So ist sichergestellt, dass das Laby-

rinth am Ende gefüllt ist. Danach werden die restlichen Abzweigungspunkte generiert,

um so auf die gewollte Anzahl an Abzweigungen zu kommen.

Es kann somit geschehen, dass am Ende mehr direkte Abzweigungen vom Lösungsweg

existieren, als es gewollt ist (bei sehr vielen Teilbereichen). Dies ist aber nicht zu vermei-

den, da das Labyrinth vollständig sein soll. Dieser Ansatz gewährt somit, dass mindestens

die gewollte Anzahl an direkten Abzweigungen und maximal die notwendige Anzahl an

direkten Abzweigungen vom Lösungsweg existiert.

Nachdem die Abzweigungspunkte generiert wurden, können die Wege der Abzweigungen

generiert werden. Anders als bei dem Lösungsweg müssen die Abzweigungen nicht in eine

bestimmte Richtung generiert werden. Daher kann ein normaler SAW verwendet werden.
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Für jeden Abzweigungspunkt wird dieser ausgeführt. Dabei ist zu beachten, dass die

unterschiedlichen SAWs nicht ineinanderlaufen. Dafür zählen die schon besuchten Punkte

der jeweiligen SAWs für alle SAWs. Laufen die einzelnen SAW in eine Sackgasse, sind

alle Grundwege der direkten Abzweigungen generiert, sodass man zum nächsten Schritt

fortfahren kann.

Dieser ist die Generierung aller restlichen Wege, also die Abzweigungen der Abzweigun-

gen etc. Dazu werden nun wiederholend an zufälligen Stellen der schon existierenden

Abzweigungen neue Abzweigungen generiert. Dies geschieht nach dem gleichen Prinzip,

wie die ursprünglichen Abzweigungen generiert werden, bis das gesamte Labyrinth ge-

füllt ist. Dieses Vorgehen der Generierung eines Labyrinthes ist von Bellot et al. [2] als

Prim & Kill Algorithmus vorgestellt worden. Sie haben dafür den Prim Algorithmus

und den Hunt & Kill Algorithmus kombiniert. Diese sind zwei bekannte graphbasierte

Generierungsalgorithmen für Labyrinthe.

Daraus ergibt sich folgender Algorithmus zur Generierung der Abzweigungen:

1. Identi�ziere alle Teilbereiche des Labyrinthes.

2. Generiere einen zufälligen Abzweigungspunkt für jeden dieser Teilbereiche.

3. Generiere zufällig alle restlichen Abzweigungspunkte, um auf die gewollte Anzahl

zu kommen.

4. Führe für alle Abzweigungspunkte einen SAW aus.

5. Wähle einen zufälligen Punkt von den bestehenden Abzweigungen und führe von

dort einen SAW aus.

6. Wiederhole Schritt 5, bis das Labyrinth gefüllt ist.

5.7 Aussehen

Wie in Kapitel 5.4.1 vorgestellt wurde, kann mithilfe eines SAWs eine Labyrinth-Struktur

generiert werden, bei der die Wege und Wände jeweils eine Kachel breit sind. Das fertig

generierte Labyrinth würde dann jedoch nicht den Anforderungen für das Aussehen ent-

sprechen. Für den Prozess der Generierung bietet sich dieses Verfahren aber an und eine

Abwandlung dessen würde zu einer höheren Komplexität führen. Daher wird zuerst die

normale Generierung ausgeführt, bei der das Labyrinth gleich breite Wege und Wände

hat, und zum Schluss wird das Aussehen angepasst.
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In diesem Kapitel wird die konkrete Umsetzung des erstellten Konzeptes erklärt und

dargestellt.

6.1 Benutzte Technologie

Die Originalimplementierung zu Markov Junior (MJ) von Maxim Gumin [12] ist in C#

geschrieben. Diese Arbeit baut auf einer Java Implementierung von Niclas zum Felde

[7] der Originalimplementierung auf. Die Java Implementierung bietet alle Features der

Originalimplementierung an und unterscheidet sich nur leicht in der verwendeten Syntax.

6.2 Syntax von Markov Junior

Sowohl die Originalimplementierung als auch die Java Implementierung haben XML als

Umsetzung für die Syntax von MJ verwendet. Im Folgenden wird diese dargestellt. Im

Fokus liegt dabei die Syntax der Komponenten, welche für die Umsetzung in dieser Arbeit

benutzt worden sind.

6.2.1 Alphabet von Markov Junior

Das Alphabet ist aus den Farben der Kacheln, Unions und Wildcards aufgebaut, welche

alle eine spezi�sche Syntax haben.

Farben

Die Farben werden alle durch einen Buchstaben dargestellt. Die Zuordnung von Buch-

stabe zu Farbe wird in einer externen Datei kon�guriert. Somit würde ein Muster der

Form (Weiÿ, Schwarz, Gelb) zu �WBY� werden. Dabei steht das W für white (Weiÿ),

das B für black (Schwarz) und das Y für yellow (Gelb).
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Union

Unions werden als eigenes XML-Element dargestellt und müssen vor der Regel, welche

diese verwendet, erstellt werden:

<union symbol="?" values="BW"/>

Wildcard

Wildcards werden in MJ durch einen Stern (*) dargestellt.

Mehrdimensionale Regeln

Da MJ auf mehrdimensionalen Rastern arbeitet, können auch mehrdimensionale Regeln

erstellt werden. Im zweidimensionalen Raum wird dafür ein weiteres Zeichen eingeführt,

welches nicht zum Alphabet gehört. Dieses ist ein Slash (/) und kennzeichnet einen Um-

sprung in die nächste Zeile. Ein Muster der Form
(

Weiÿ Weiÿ
Schwarz Schwarz

)
würde zu �WW/BB�

werden.

6.2.2 Knoten

Alle Knoten werden als eigene XML-Elemente dargestellt und jeder Parameter ist ein

Attribut dieses Elementes.

Rulenodes

Alle Rulenodes haben bis auf den Namen des XML-Elementes dieselbe Syntax:

<rule-node-name in="WB" out="WW"/>

Ein Onenode heiÿt one, ein Allnode heiÿt all und ein Parallelnode heiÿt prl. Sollen

mehrere Regeln im Rulenode angegeben werden, werden diese als eigene XML-Elemente

innerhalb des Rulenodes angegeben. Als Beispiel mit einem Onenode würde dies folgen-

dermaÿen aussehen:

<one>

<rule in="WB" out="WW"/>

<rule in="WBB" out="WBW"/>

</one>
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Ein Field wird ebenfalls innerhalb des Rulenodes angegeben:

<one in="WB" out="WW">

<field for="W" to="Y" on="B"/>

</one>

Branchnodes

Ein Sequencenode sieht wie folgt aus:

<sequence>

....

</sequence>

Ein Markovnode sieht wie folgt aus:

<markov>

....

</markov>

Ein Mapnode kann folgendermaÿen aussehen:

<map scale="2 2 1" values="BW">

<rule in="Y" out="WW/WW"/>

....

</map>

6.2.3 Programmparameter

Auch die Programmparameter haben ihre eigene Syntax, welche im Folgenden dargestellt

wird.

Allgemeine Parameter

Die allgemeinen Modellparameter werden in einem eigenen XML-Element dargestellt, bei

dem jeder Parameter als XML-Attribut de�niert wird:

<model size="30" steps="1000" d="2">

</model>

Dies de�niert ein Raster mit einer Gröÿe von 30×30 und es werden maximal 1000 Schritte

ausgeführt.
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In diesem Fall unterscheidet sich die Syntax eines MJ Programms der Java-Implementierung

von der Originalimplementierung. In der Originalimplementierung werden die Modellpa-

rameter in einer externen Datei de�niert, während die Java-Implementierung diese als

Wurzelknoten de�niert, in dem dann der eigentliche Programmcode ist.

Rasterparameter

Die Rasterparameter werden in dem ersten Wurzelknoten des Programmcodes als Attri-

bute de�niert. So kann der Programmbeginn mit einem Sequencenode wie folgt aussehen:

<sequence values="BWY" origin="true">

....

....

</sequence>

6.3 Grundlage für die Umsetzung

Für die Generierung sind vorerst Grundlagen zu klären, wie zum Beispiel die Parameter

des Programms, aber auch die Farben, die verwendet werden.

6.3.1 Gröÿe des Rasters

Der einzig relevante Modellparameter, der hier zu beachten ist, ist die Gröÿe des Rasters.

Ein Labyrinth besitzt eine Auÿenwand, welche die äuÿersten Wege begrenzt. Bei dem in

Abbildung 5.2 dargestellten Konzept für die Labyrinthgenerierung bedeutet dies, dass es

einen Rahmen mit einer Breite von einer Kachel geben muss. Direkt angrenzend dazu

verlaufen die Wege, welche von einem Startpunkt aus immer zwei Schritte nach vorne

gehen, um so einen Freiraum für eine Wand dazulassen. Daher muss die Strecke innerhalb

des Rahmens ungerade sein. Zusätzlich sind der Start und das Ziel mittig positioniert.

Da dies der Startpunkt für den self-avoiding walk (SAW) ist, müssen beide Seiten neben

dem Start und Ziel gerade sein.

Die Gröÿe kann dann durch folgende Formel dargestellt werden:

Sei die Gröÿe des Rasters x, so gilt

x = 4k + 3

für k ∈ N.
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Dabei ist das k eine wählbare Variable, um eine Gröÿe für das Raster zu bestimmen.

Dazu steht die drei für die Start-/Zielkachel und die Auÿenwand auf beiden Seiten des

Rasters, welche nicht mit einberechnet werden bei der zweischrittigen Weggenerierung.

Die restlichen Kacheln müssen, nachdem sie durch zwei geteilt sind, gerade sein. Daraus

ergibt sich die Vervierfachung der Variable.

6.3.2 Farben

Folgende Farben werden für die Umsetzung benötigt:

Name Buchstabe Farbe

Emerald (Smaragdgrün) E

White (Weiÿ) W

Black (Schwarz) B

Yellow (Gelb) Y

Red (Rot) R

Green (Grün) G

Orange (Orange) O

Purple (Lila) P

Blue (Blau) U

Pink (Pink) K

Brown (Braun) N

6.3.3 Wurzelknoten

Der Wurzelknoten ist ein Sequencenode, damit alle Kindknoten sequenziell ausgeführt

werden können. Die Rasterparameter werden in diesem entsprechend gesetzt. Dazu zählen

alle Farben aus Kapitel 6.3.2. Diese werden in der Reihenfolge übernommen. Da auch der

Ursprung gesetzt wird, ist das Raster zu Beginn smaragdgrün und hat eine weiÿe Kachel

in der Mitte.
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Abbildung 6.1: Startzustand des Rasters

Für die Umsetzung wird ein Beispiel zur Verdeutlichung verwendet. Dabei hat das Raster

eine Gröÿe von 31 × 31 und die Anzahl an direkten Abzweigungen vom Lösungsweg ist

auf zehn gesetzt. Somit sieht das Raster zu Beginn aus wie in Abbildung 6.1.

6.4 Lösungsweg

Der Lösungsweg wird durch ein zweischrittiges Verfahren generiert, bei dem zuerst der

Auÿenrand mit Start und Ziel erzeugt wird. Darauf aufbauend wird der Lösungsweg

generiert.

In diesem aber auch den folgenden Kapiteln zur Umsetzung sind komplexere und aus-

schlaggebende Regeln im Fokus, sodass nicht alle Regeln gezeigt werden.

6.4.1 Generierung des Auÿenrandes mit Start und Ziel

Um einen Rand zu erstellen, kann das Raster mit der Farbe des Randes gefüllt werden

und dann eine Ersetzungsregel angewendet werden, die nicht am Rand übereinstimmt

und somit die Fläche mit einer anderen Farbe füllt. Der Rand soll smaragdgrün sein,

weshalb dies die Grundfarbe des Rasters ist. Die Fläche soll schwarz sein.

Dies kann dann durch einen Parallelnode mit folgender Ersetzungsregel umgesetzt wer-

den:

in="***/*E*/***" out="***/*B*/***"

Diese Regel ersetzt alle smaragdgrünen Kacheln, welche Nachbarkacheln haben (nach der

Moore-Nachbarschaft), durch eine schwarze Kachel. Da der Rand nicht alle Nachbarn aus

der Moore-Nachbarschaft aufweisen kann, bleibt dieser unberührt.
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Für den Start und das Ziel muss die Mitte des Randes sich vom Rest abheben, damit

dort ein Muster einer Regel übereinstimmen kann. Dafür wird die mittlere weiÿe Kachel

verwendet, indem diese bis hin zum Rand erweitert wird. So wird eine vertikale Linie

generiert.

Abbildung 6.2: Das Raster nach der Generierung des Start- und Zielpunktes

An der Stelle, wo sich die mittlere Linie mit dem Rand schneidet, werden jeweils Start

und Ziel (Start in Gelb und Ziel in Rot) wie in Abbildung 6.2 generiert. Zudem wird

dann die Linie entfernt.

6.4.2 Generierung des Lösungsweges

Für den Lösungsweg wird nun, wie im Konzept vorgestellt, ein SAW vom Start ausge-

führt. Dabei ist zu beachten, dass für zukünftige Schritte bekannt sein muss, an welchen

Punkten es Abzweigungen geben kann. Denn der SAW begeht nur jede zweite Kachel und

so kann auch nur von jeder zweiten Kachel eine Abzweigung entstehen. Dies kann direkt

bei der Erstellung des SAWs umgesetzt werden. Dafür wird ein Onenode mit folgender

Ersetzungsregel genutzt:

in="YBB" out="OWY"

Die gelbe Kachel steht für den aktuell besuchten Punkt und ist zu Beginn der Start. Der

schon besuchte Weg wird durch orangene und weiÿe Kacheln dargestellt. Die orangenen

Kacheln sind dabei an jeder zweiten Stelle, von denen es Abzweigungen geben kann.
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Abbildung 6.3: Generierung des Lösungsweges

Das Eingabemuster der Regel identi�ziert freie Stellen vor dem aktuellen Punkt. Das

Ausgabemuster sorgt dann dafür, dass diese freie Stelle durch den Weg ersetzt wird und

der aktuelle Punkt an die Spitze getan wird. So wird durch diese Ersetzungsregel ein

Wandern des Pfades dargestellt (siehe Abbildung 6.3).

Damit der SAW auch Richtung Ziel verläuft, wird auf dem Onenode ein Field erstellt. Das

Field wird für die Farbe Gelb, Richtung der Farbe Rot und auf schwarzem Untergrund

erstellt. Mit dem Temperaturparameter lässt sich dann steuern, wie streng der nächste

Punkt zum Ziel gewählt werden soll.

Ein Aspekt aus dem Konzept ist jedoch noch o�en: die Zurückverfolgung des Weges,

sobald der SAW in eine Sackgasse gerät. Da die Zurückverfolgung erst geschehen soll,

wenn der selbst meidende Pfad nicht mehr weitergehen kann, wird hierfür ein Markovnode

verwendet. Bei diesem ist der Onenode für den SAW der erste Kindknoten und der zweite

Kindknoten beschreibt die Zurückverfolgung. Dieses Konzept wurde schon von Maxim

Gumin in seinem Projekt [12] für die Umsetzung des rekursiven Backtrackers vorgestellt.

Die Zurückverfolgung kann ebenfalls durch einen Onenode mit folgender Ersetzungsregel

umgesetzt werden:

in="YWO" out="GGY"

Das Eingabemuster stimmt nur beim schon gegangenen Weg überein, betrachtet von dem

aktuellen Punkt.
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(a) Lösungsweg läuft in eine
Sackgasse

(b) Zurückverfolgung des
Weges

(c) Lösungsweg nach mehr-
facher Zurückverfolgung

Abbildung 6.4: Zurückverfolgung bei der Generierung des Lösungsweges

Der aktuelle Punkt wird dann zurückgeschoben und der zurückverfolgte Weg wird grün

markiert (siehe Abbildung 6.4). Durch den Markovnode wird garantiert, dass der erste

Knoten priorisiert ausgeführt wird und somit immer versucht wird, den SAW zu erstellen.

Jetzt läuft der SAW Richtung Ziel, jedoch würde er vor dem Ziel vorbeilaufen. Dafür wird

eine Regel eingeführt, welche darauf achtet, ob die gelbe Kachel vor der roten Kachel ist.

Ist dies der Fall, wird der Weg mit dem Ziel verbunden. Dies kann mit einem Onenode

umgesetzt werden, welcher an die erste Stelle in den Markovnode getan wird. So hat

dieser Knoten die höchste Priorität, sodass sich der Weg direkt mit dem Ziel verbindet,

wenn dieser davor ist. Bis dahin werden die anderen beiden Knoten ausgeführt.

Abbildung 6.5: Fertig generierter Lösungsweg

Zum Schluss werden dann noch alle zurückverfolgten Wege entfernt und der Lösungsweg

ist fertig generiert (siehe Abbildung 6.5).
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6.5 Abzweigungen

Die Generierung der Abzweigungen kann in zwei Hauptteile geteilt werden. Der erste Teil

ist die Generierung der Abzweigungspunkte. Der zweite Teil beinhaltet die Generierung

der Wege für die Abzweigungen.

6.5.1 Abzweigungspunkte

Für die Generierung der Abzweigungspunkte werden zuerst alle Abzweigungen für die

Teilbereiche generiert. Darau�olgend werden die restlichen Abzweigungen generiert.

Abzweigungspunkte in den Teilbereichen

Die Menge an Abzweigungen soll kontrollierbar sein und immer einer festen Zahl entspre-

chen. Dafür muss gezählt werden, wie viele Abzweigungen schon generiert worden sind,

damit die restliche Anzahl im nächsten Schritt generiert werden kann. Dies wird umge-

setzt durch einen in der Generierung eingebauten Zähler. Dabei ist das Grundprinzip,

dass eine Anzahl an Kacheln gefärbt wird, welche den Zähler darstellen. Ist eine Ab-

zweigung generiert, wird eine Kachel des Zählers weggenommen. Wenn noch Kacheln des

Zählers übrig sind, werden abhängig davon dann pro Kachel die letzten Abzweigungen

generiert.

Für den Zähler muss ein freier Bereich im Raster verwendet werden, sodass die rest-

liche Generierung davon nicht beein�usst wird. Zusätzlich muss der Zähler durch Er-

setzungsregeln gut von den Abzweigungspunkten erreicht werden. Dafür lässt sich der

Rand verwenden, da dieser nicht für die Generierung relevant ist und zudem über den

Lösungsweg von den Abzweigungen erreicht werden kann. Ein Onenode färbt mit dem

Schritteparameter eine feste Anzahl an Kacheln.
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Abbildung 6.6: Das Raster nach Generierung des Zählers

Dabei wird der Zähler zufällig auf beide Seiten des Randes aufgeteilt, um so die späteren

Schritte zu optimieren. Dafür wird die Überschneidung des Randes mit dem Lösungsweg

als Muster verwendet, um so die Stelle zu identi�zieren, an der der Zähler generiert wird.

Der Zähler ist grün und wird durch eine braune Kachel begrenzt (siehe Abbildung 6.6).

Danach werden alle Teilbereiche markiert. Dafür werden zwei Parallenodes verwendet.

Der erste ersetzt alle schwarzen 2 × 2 Felder mit roten 2 × 2 Feldern. Dadurch werden

alle Bereiche, welche groÿ genug sind, um Abzweigungen zu haben, markiert. Der zweite

Parallelnode hat folgende Ersetzungsregel:

in="**O/*R*/O**" out="***/*B*/***"

Abbildung 6.7: Das Raster nach der Markierung der Teilbereiche

Diese sorgt dafür, dass alle Ecken der Teilbereiche um den Lösungsweg herum entfernt

werden (siehe Abbildung 6.7). Dies ist wichtig, da es passieren kann, dass manche Teil-

bereiche direkt aneinander grenzen und so sonst nicht zu unterscheiden wären.

Nun kann der Prozess für die Generierung der Abzweigungspunkte starten. Dabei wird

eine Sequenz mehrfach wiederholt. Daher wird der Prozess in einem Sequencenode umge-
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setzt. Dadurch, dass dieser Sequencenode ein Kindknoten eines anderen Sequencenodes

ist, wird dieser auch immer wiederholend ausgeführt, bis keiner seiner Kindknoten mehr

anwendbar ist.

Zu Beginn wird der erste Abzweigungspunkt mithilfe eines Onenodes mit folgender Er-

setzungsregel markiert:

in="ORR" out="PYY"

Dabei werden die Abzweigungen nur für die rot markierten Teilbereiche generiert. Dies

wird durch den Schritteparameter auf eine Ausführung begrenzt.

Abbildung 6.8: Das Raster nach Generierung des ersten Abzweigungspunktes

Darau�olgend wird der Teilbereich wieder schwarz gefärbt, da dieser nun schon einen

Abzweigungspunkt hat (siehe Abbildung 6.8). Dafür wird ausgehend von der neuen Ab-

zweigung das rote Feld durch ein Blaues ersetzt, damit dieses dann wiederum durch ein

Schwarzes ersetzt werden kann. Lediglich Rot durch Schwarz zu ersetzen funktioniert

nicht, da sonst auch die anderen Teilbereiche schwarz gefärbt werden würden.

Im kommenden Schritt muss das Wegnehmen einer grünen Zähler-Kachel vorbereitet

werden. Dies wird immer über den Lösungsweg geschehen, da dieser direkt mit dem

Rand verbunden ist.

Die Einstiegspunkte für den Zähler müssen markiert werden, damit diese sich unterschei-

den. Dadurch können Regeln angewendet werden, ohne dass ein anderer Teil des Rasters

davon betro�en ist. Die Punkte sind dabei der Start und das Ziel des Lösungsweges. Da

dieser Prozess in einem Sequencenode ist, der sich immer wiederholt, muss sichergestellt

werden, dass jede Ersetzungsregel aufbauend auf den gerade erzeugten Abzweigungs-

punkten geschieht. Denn ansonsten würde der Sequencenode auch nach Erzeugung aller

Abzweigungen in den Teilbereichen, weiter ausgeführt werden.
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Abbildung 6.9: Flutung des Lösungsweges für den sechsten Abzweigungspunkt

Daher wird ausgehend von der gerade erzeugten Abzweigung in beide Richtungen der

Lösungsweg blau ge�utet (siehe Abbildung 6.9). Dies wird durch einen Parallelnode mit

zwei Ersetzungsregeln umgesetzt:

in="UW" out="UU"

in="UO" out="UU"

Als Grundlage dient dafür die lilafarbene Kachel des Abzweigungspunktes, welche zuvor

genutzt wird, um daneben die erste blaue Kachel zu generieren. Nun können so beide

Einstiegspunkte in Abhängigkeit der blauen Kachel im Rahmen markiert werden. Dafür

wird eine pinke Kachel verwendet. Danach wird der Lösungsweg ausgehend von den

pinken Kacheln wieder zurück gefärbt.

Da der Zähler später auf einer der Seiten leer sein kann, muss sichergestellt werden,

dass auch nur ein Einstiegspunkt markiert wird, wenn auf der Seite noch Zähler-Kacheln

existieren. Dafür soll ausgehend von dem Einstiegspunkt der Rahmen in Richtung grüner

Kacheln ge�utet werden. Falls jedoch noch alle grünen Kacheln auf einer Seite existieren,

ergibt eine Flutung keinen Sinn.
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Abbildung 6.10: Das Raster nach der Flutung des Rahmens in Richtung grüner Kacheln

Daher werden vorerst nur die Einstiegspunkte wieder weiÿ markiert und die pinke Ka-

chel verschoben, wenn keine grüne Kachel direkt angrenzt. Dies stellt den Startzustand

für die Flutung dar. Die Flutung wird wieder blau sein, hat aber zusätzlich eine pinke

Spitze (siehe Abbildung 6.10). Sie wird durch einen Onenode umgesetzt mit folgender

Ersetzungsregel:

in="KE" out="UK"

Dazu ist ein Field auf dem Onenode de�niert, sodass die Flutung auch nur in Richtung

einer grünen Kachel passiert:

for="K" to="G" on="E"

Dazu ist der Notwendigkeitsparameter für das Field gesetzt, um so nur die Flutung

auszuführen, wenn auch wirklich noch grüne Kacheln existieren.

Abbildung 6.11: Das Raster nach der Zurückverfolgung der Flutung

Tri�t die Flutung auf eine grüne Kachel, wird abhängig davon eine braune Kachel gene-

riert. Diese wird genutzt, um die Flutung zurückzuverfolgen (siehe Abbildung 6.11). So
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kann der Einstiegspunkt dann abhängig von der braunen Kachel wieder markiert werden

oder bleibt weiÿ, wenn keine braune Kachel dort ist.

Jetzt sind die Einstiegspunkte markiert, wenn noch Zähler-Kacheln übrig waren und

zuvor ein neuer Abzweigungspunkt generiert wurde. Auf Grundlage der Markierung wird

daher dann eine Kachel vom Zähler entfernt.

Abbildung 6.12: Das Raster nach der Flutung des Lösungsweges zum nächsten Einstiegs-
punkt

Dafür wird ausgehend vom Abzweigungspunkt der Lösungsweg in Richtung des nächsten

markierten Einstiegspunktes ge�utet. Dies wird durch einen Onenode und ein Field im

ähnlichen Prinzip wie für die Flutung Richtung grüner Kacheln umgesetzt (siehe Abbil-

dung 6.12). Erreicht die Flutung den Einstiegspunkt, wird dieser durch die Spitze der

Flutung ersetzt. Danach wird der Lösungsweg wieder zurück gefärbt.

Um eine grüne Kachel zu entfernen, wird wieder eine Flutung in Richtung grüner Kacheln

auf dem Rand ausgeführt. Diese wird abhängig von der lilafarbenen Spitze der vorherigen

Flutung durchgeführt. Tri�t die Flutung auf eine Zähler-Kachel, wird diese entfernt.
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Abbildung 6.13: Das Raster nach Verringerung des Zählers

Zuletzt werden alle Kacheln wieder auf ihre korrekte Ausgangsfarbe zurück gefärbt und

der Zähler wurde um eine Kachel verringert (siehe Abbildung 6.13).

In diesem Prozess soll der Sequencenode so lange wiederholt werden, bis keine o�enen

Teilbereiche mehr existieren. Dies wird dadurch gewährleistet, dass alle Regeln abhän-

gig von den generierten Abzweigungspunkten agieren. Diese werden pro Wiederholung

in Abhängigkeit eines o�enen Teilbereiches generiert. Dazu wird der Teilbereich schwarz

gefärbt und so reduziert sich die Anzahl an o�enen Teilbereichen. Daher hört der Se-

quencenode auf, sich zu wiederholen, sobald es keine o�enen Teilbereiche mehr gibt.

Abbildung 6.14: Das Raster nach der Generierung aller Abzweigungspunkte für die Teil-
bereiche

Nach dem Prozess hat jeder Teilbereich eine Abzweigung und der Zähler wurde dazu

entsprechend verringert (siehe Abbildung 6.14).

Restliche Abzweigungspunkte

Bevor für die restlichen Zählerkacheln Abzweigungspunkte generiert werden, wird zuerst

der braune Zählerrand entfernt. Für den folgenden Prozess muss erneut etwas wieder-
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holend ausgeführt werden. Daher wird wieder ein Sequencenode verwendet. In diesem

wird zuerst abhängig von einer grünen Kachel das gesamte Raster blau gefärbt. Dies

wird durch einen Onenode und einen Parallelnode umgesetzt. Der Onenode hat vier

Ersetzungsregeln:

in="GB" out="EU"

in="G*B" out="E*U"

in="G*/*B" out="E*/*U"

in="G*/**/*B" out="E*/**/*U"

Der Onenode sorgt dafür, dass abhängig von einer grünen Kachel am Rand die nächste

schwarze Kachel blau gefärbt wird. Dabei gibt es mehrere Fälle, da der Lösungsweg im

Weg sein kann. Zusätzlich wird damit die grüne Kachel entfernt und so der Zähler wieder

verringert. Der Schritteparameter limitiert die Ausführung auf einen Schritt. Aufbauend

darauf wird ein Parallelnode verwendet, welcher drei Ersetzungsregeln hat:

in="UB" out="UU"

in="UOB" out="UOU"

in="UWB" out="UWU"

Abbildung 6.15: Färbung des Rasters in Abhängigkeit einer Zähler-Kachel

Dieser sorgt dafür, dass durch die eine blaue Kachel das restliche Raster blau gefärbt wird

(siehe Abbildung 6.15). Auch hier kann der Lösungsweg im Weg sein, weshalb es mehrere

Regeln geben muss. Nun wird abhängig von der blauen Fläche ein Abzweigungspunkt

generiert. Danach wird die blaue Fläche wieder schwarz gefärbt.

In dem aktuell beschriebenen Prozess soll der Sequencenode so lange wiederholt werden,

bis es keine Zähler-Kacheln mehr gibt. Das wird dadurch gewährleistet, dass alle Regeln

abhängig von den grünen Kacheln sind. Da diese pro Wiederholung reduziert werden,

hört der Sequencenode auf, wenn alle Zähler-Kacheln entfernt wurden.
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Abbildung 6.16: Das Raster nach der Generierung aller Abzweigungspunkte

Nach der vollen Ausführung des Prozesses sind alle Abzweigungspunkte generiert (siehe

Abbildung 6.16).

6.5.2 Wege

Vorerst wird der Lösungsweg grün markiert, damit von ihm aus keine weiteren Wege

generiert werden.

Abbildung 6.17: Das Raster nach der Generierung aller Wege für die Abzweigungen

Danach werden von jeder Abzweigung mithilfe eines Allnodes parallel SAWs generiert

(siehe Abbildung 6.17). Dies geschieht im selben Prinzip wie die Generierung des Lösungs-

weges. Der Unterschied ist der, dass es keine Zurückverfolgung gibt und die Generierung

komplett zufällig geschieht. Nachdem für jeden Abzweigungspunkt die ersten Wege ge-

neriert wurden, werden nun die weiteren Wege generiert. Dies geschieht wiederholend in

einem Sequencenode.
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Abbildung 6.18: Das Raster nach der Generierung aller Wege (Lösungsweg in Grün)

Dabei werden immer wieder von einem zufälligen möglichen Abzweigungspunkt (orangene

Kacheln) SAWs generiert. Dies geschieht so lange, bis das Labyrinth gefüllt ist (siehe

Abbildung 6.18). Zum Schluss werden auch die restlichen Wege grün markiert, um darauf

aufbauend das Design anzupassen.

6.6 Aussehen

Das Labyrinth ist in seiner Struktur fertig generiert. Dabei sind die Wände und Wege

jeweils eine Kachel breit. Dies war für die Generierung von Vorteil. Nun sollen die Wände

jedoch schwarz und schmal sein und die Wege weiÿ und breit. Dafür wird ein Mapnode

verwendet. Dieser skaliert das generierte Labyrinth um das Vierfache. Damit ist es mög-

lich, das Originalraster zu nutzen, um dessen Strukturen auf das neue, gröÿere Raster zu

übertragen. Dabei werden die Wege und Wände anders skaliert und gefärbt, um so das

gewollte Design zu erreichen.

Folgende Regel ist ein Beispiel für das Übertragen einer Wandkreuzung vom alten in das

neue Raster:

in="GBG/BBB/GBG"

out="************/************/************/************/

*****BB*****/****BBBB****/****BBBB****/*****BB*****/

************/************/************/************"

Das Eingabemuster wird im alten Raster gesucht und stimmt bei jeder Wandkreuzung

überein. Das neue Raster ist zu Beginn weiÿ gefärbt, weshalb jede Wildcard im Ausga-

bemuster bedeutet, dass dort weiÿe Kacheln sind.
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(a) (b)

Abbildung 6.19: Beispielausschnitt der Skalierung durch einen Mapnode vom Original-
raster (a) zum neuen Raster (b)

Das Ausgabemuster ist um das Vierfache gröÿer als das Eingabemuster. Dabei sind die

Wände nicht im Vierfachen skaliert worden, was dazu führt, dass diese schmaler sind. In

Abbildung 6.19 ist zu sehen, wie diese Skalierung funktioniert. In 6.19b ist zur Verdeut-

lichung die Rasterung mit angegeben.

Dieses Verfahren muss dann für alle weiteren Wandstrukturen, wie zum Beispiel eine

einfache gerade Wand, ausgeführt werden.

Abbildung 6.20: Das Labyrinth nach vollendeter Generierung

Dazu werden dann noch der Start (Grün) und das Ziel (Rot) farblich markiert. Damit

ist das vollendete generierte Labyrinth in Abbildung 6.20 zu sehen.
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In diesem Kapitel wird hinterfragt, wie erfolgreich das Konzept umgesetzt werden konnte

und ob damit alle Anforderungen erfüllt wurden. Zusätzlich wird die eigene Arbeit an der

Generierung des Labyrinthes verwendet, um daraus Schlüsse über Markov Junior (MJ)

zu schlieÿen.

7.1 Auswertung des Konzeptes und dessen Umsetzung

Für die Auswertung wird betrachtet, wie gut die Anforderungen erfüllt worden sind

und analysiert, was für Probleme sich aus dem Konzept ergeben haben. Zusätzlich wird

geschaut, wie performant der Ansatz ist.

7.1.1 Anforderungserfüllung

Die Anforderungen bestanden aus drei Hauptteilen: grundlegende Eigenschaften des La-

byrinthes, das Aussehen des Labyrinthes und die Kontrollierbarkeit der Generierung.

Eigenschaften des Labyrinthes

Das Hauptkonzept der Generierung ist der self-avoiding walk (SAW) und eine mehrfa-

che Aneinanderreihung von diesem. Maxim Gumin hat dies in seinem Projekt [12] schon

vorgestellt und die eigene Implementierung hat zudem gezeigt, dass dieser in MJ um-

setzbar ist. In anderen schon existierenden Algorithmen (rekursiver Backtracker [9] oder

auch Prim & Kill [2]) wurde gezeigt, dass dadurch perfekte Labyrinthe generiert werden.

Auch die eigene Implementierung hat dies gewährleistet. Zudem konnte dadurch auch

die Einheitlichkeit aller generierten Labyrinthe erfüllt werden.

Die Kombination der Implementierung des SAWs und MJs Raster sorgen dafür, dass

auch die gamma-Eigenschaft des Labyrinthes immer erfüllt ist.

Auÿerdem stellt der Beginn der Generierung sicher, dass es einen Start und ein Ziel gibt.

So hat jedes generierte Labyrinth auch diese Eigenschaft aufweisen können.
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Aussehen des Labyrinthes

Das Konzept für das Aussehen konnte durch den Mapnode von MJ umgesetzt werden.

So hat jedes generierte Labyrinth weiÿe, breite Wege und schwarze, schmale Wände

aufweisen können. Auch der Start und das Ziel sind bei jedem generierten Labyrinth in

Grün und Rot markiert.

Kontrollierbarkeit der Generierung

Das Labyrinth sollte in zwei Hauptbestandteilen kontrollierbar sein: der Verlauf des Lö-

sungsweges und die Anzahl an Abzweigungen.

Das Konzept zur Kontrollierbarkeit des Lösungsweges konnte durch einen Onenode und

einem Field umgesetzt werden. Der Temperaturparameter steuert dabei wie streng der

Lösungsweg zum Ziel verläuft. Um zu schauen, ob dadurch auch der Verlauf des Lösungs-

weges wie zu erwarten gesteuert werden kann, wurden Messungen ausgeführt. Dabei wur-

de ein Raster der Gröÿe 71×71 verwendet und gezählt, wie viele Kacheln der Lösungsweg

ausmacht. Die niedrigste Anzahl wären 71 Kacheln, was eine gerade Linie zwischen Start

und Ziel wäre. Zu erwarten wäre, dass eine niedrige Temperatur im Durchschnitt kürzere

Wege generiert und eine hohe Temperatur willkürlichere Wege generiert.
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(a) niedrig - 2 (b) mittel - 8 (c) hoch - 14

Abbildung 7.1: Beispiele für Lösungswege unterschiedlicher Temperaturen

Temperatur Gerundete Durchschnittsanzahl
niedrig (2) 103
mittel (8) 301
hoch (14) 405

Tabelle 7.1: Ergebnisse zur Messung der Durchschnittsanzahl an Kacheln des Lösungs-
weges nach 30 Messungen bei einem Raster der Gröÿe 71× 71

Die Ergebnisse in 7.1 und Beispielwege in Abbildung 7.1 zeigen, dass dies der Fall ist und

eine Kontrolle des Verlaufes des Lösungsweges, wie in den Anforderungen (siehe Kapitel

5.1.3) spezi�ziert, möglich ist.

Das Konzept für die Abzweigungen konnte durch einen selbst erstellten Zähler in MJ

umgesetzt werden. Dabei musste zusätzlich auf die Teilbereiche des Labyrinthes geachtet

werden, damit alle Bereiche des Labyrinthes Wege besitzen und es somit perfekt und

einheitlich ist. Dadurch sind bei mehreren generierten Labyrinthen mehr direkte Abzwei-

gungen gezählt worden, als sie eingestellt wurden. Dies entspricht daher nicht den zuvor

gestellten Anforderungen (siehe Kapitel 5.1.3). Jedoch ist dies notwendig gewesen, um

die angeforderten Grundeigenschaften (siehe Kapitel 5.1.1) der generierten Labyrinthe

zu erfüllen, welche Priorität haben. Durch den Ansatz wurde aber sichergestellt, dass

mindestens die gewollte Anzahl und maximal die notwendige Anzahl an direkten Ab-

zweigungen existiert. Alle generierten Labyrinthe konnten dies nachweisen.

7.1.2 Probleme

Die Anforderung für das Aussehen besagt, dass der Start grün und das Ziel rot markiert

sein sollen, um diese unterscheiden zu können. Dies wurde umgesetzt, indem der Eingang
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und der Ausgang eine entsprechend farbliche Linie bekommen haben. Dabei wurde nicht

beachtet, dass dadurch unklar ist, was der Start und das Ziel sind. Denn erkennbar sind

diese, jedoch gibt es keine Legende, welche darstellt, welche Farbe zum Start oder Ziel

gehört.

Zusätzlich sieht der Ein- und Ausgang geschlossen aus, was auch zur Verwirrung füh-

ren kann (siehe Abbildung 6.20). Diese Punkte zeigen, dass ein einfaches Weglassen der

Markierung das Labyrinth intuitiver machen könnte.

Im Bereich der Kontrollierbarkeit der Labyrinthe haben sich die meisten Probleme erge-

ben.

Der Lösungsweg kann zwar, wie zuvor gezeigt, in seinem Verlauf kontrolliert werden,

jedoch ist dies nur über einen Parameter steuerbar, der eine Wahrscheinlichkeit reprä-

sentiert. Daher ist lediglich der Durchschnitt passend zur Temperatur und Ausreiÿer

sind nicht unwahrscheinlich. So kann eine hohe Temperatur auch mehrfach ein Labyrinth

generieren, bei dem der Lösungsweg wenige Kacheln einnimmt.

Ein weiteres Problem ergibt sich aus den Abzweigungen des Lösungsweges. Zwar ist

garantiert, dass immer die gewollte Anzahl an Abzweigungen vom Lösungsweg abgeht,

jedoch sagt dies nichts über die Länge dieser aus. Das bedeutet, dass es viele Abzweigun-

gen geben kann, die eine direkte Sackgasse sind. Dies wurde bei mehrfacher Generierung

für viele Labyrinthe beobachtet. Hauptsächlich sind dies die Abzweigungen, welche für

kleine Teilbereiche aufgebraucht werden. Auch wenn diese Abzweigungen sind, haben sie

keinen direkten Ein�uss auf das Lösen des Labyrinthes, da diese direkt ignoriert werden

können. Daraus ergibt sich die Frage, ob solche Abzweigungen auch mit in die Gesamtan-

zahl einberechnet werden sollen.

Zuletzt ergibt sich ein Problem aus der Umsetzung des Konzeptes für die Abzweigungs-

punkte. In MJ musste dafür ein eigener Ansatz entwickelt werden, welcher viele Schritte

beinhaltet und so die Komplexität des Programms erhöht hat.
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(a) Eigener Ansatz (b) Rekursive Backtracker

Abbildung 7.2: Laufzeitvergleich zweier Ansätze zur Generierung von Labyrinthen

In Abbildung 7.2a ist zu sehen, wie sich die Laufzeit für die Ausführung der Generierung

des eigenen Ansatzes bei unterschiedlichen Labyrinthgröÿen verändert. Im Vergleich dazu

sieht man in Abbildung 7.2b die Laufzeit für den rekursiven Backtracker Algorithmus in

MJ [12], welcher in die gleiche Umgebung des Ansatzes aus dieser Arbeit eingebunden

wurde (Start und Ziel mittig, Anpassung des Aussehens am Ende). Zu beachten ist, dass

sich die maximale Laufzeit in beiden Gra�ken unterscheidet.

In dem Ansatz aus dieser Arbeit ist ein exponentieller Verlauf zu erkennen, während der

rekursive Backtracker eher einen linearen Verlauf hat. Zudem ist die Laufzeit im eigenen

Ansatz im Allgemeinen deutlich höher. Eine erhöhte Laufzeit ist zu erwarten, da der

eigene Ansatz mehr Möglichkeiten für die Generierung bietet. Jedoch zeigt der Verlauf,

dass der Ansatz nicht e�zient ist.

7.2 Analyse von Markov Junior

Durch die Arbeit mit MJ für die Generierung der Labyrinthe ist Einiges über MJ klar

geworden. Diese Erkenntnisse werden im Folgenden näher erläutert.

7.2.1 Möglichkeiten

MJ ist eine probabilistische Programmiersprache, aufbauend auf demMarkow-Algorithmus,

welcher Turing-vollständig ist. Zwar ist MJ nicht mehr Turing-vollständig, besitzt aber

weiterhin eine Mächtigkeit, um verschiedenste Funktionen zu berechnen. Im Projekt von

Maxim Gumin wurde beispielsweise gezeigt, wie mithilfe von MJ Sokoban Level gelöst

werden. Furnas [8] stellt ein sehr ähnliches Programm vor, welches mit visuellen Erset-

zungsregeln wie MJ arbeitet. Dabei wird dies in einem Beispiel genutzt, um getrennte
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Komponenten zu zählen und die Anzahl durch römische Zahlen anzuzeigen. Das ist auch

in MJ umsetzbar und zeigt, dass MJ in der Lage ist, unterschiedlichste Funktionen aus-

zuführen.

Das Lösen des Sokoban Levels, aber auch das Circuit Modell von Maxim Gumin [12]

zeigen zudem, dass MJ auch für Animationen verwendet werden kann.

Wie schon in Kapitel 5.2 erklärt, ist MJ auch in der Lage dazu, Inhalte prozedural

zu generieren. Die Umsetzung in dieser Arbeit zur Generierung eines kontrollierbaren

Labyrinthes ist ein Beispiel dafür.

7.2.2 Stärken und Vorteile

MJ baut auf dem Markow-Algorithmus auf, welcher Turing-vollständig ist. Dies zeigt

also, wie mächtig dieses Grundkonzept der Ersetzungsregeln ist. Zwar ist MJ nicht mehr

Turing-vollständig, jedoch bietet das Konzept der Knoten eine Vielfalt an neuen Funktio-

nen. Daraus ergeben sich nicht nur neue Möglichkeiten, sondern auchWege, gewisse Dinge

einfacher umsetzen zu können. Dabei kann der Pathnode zum Beispiel direkt verwendet

werden, um einen Weg zwischen zwei Punkten zu erstellen, was sonst durch mehrere

Regeln umgesetzt werden müsste. Dazu gibt es auch Knoten, wie den WaveFunctionCol-

lapse Node, welche einen komplett eigenen Algorithmus zur prozeduralen Generierung in

MJ einbetten, was wiederum die Mächtigkeit von MJ erhöht.

Zudem erlaubt das Konzept der visuellen Ersetzungsregeln von MJ, durch wenig Code viel

erzeugen zu können. Die wiederholte Anwendung der Regeln mit ihren Knoten, welche

weitere Logik hinzufügen, ermöglicht dieses Verhalten. Ein Beispiel ist die Umsetzung

des rekursiven Backtrackers in MJ [12]:

<markov values="BRGW" origin="True">

<one in="RBB" out="GGR"/>

<one in="RGG" out="WWR"/>

</markov>

Dieser kann in nur vier Zeilen Code dargestellt werden, was in anderen Programmier-

sprachen nicht möglich sein wird.

MJs grundlegende Logik ist visueller Natur. Daher können gewisse Strukturen, welche

in dem zu erzeugenden Inhalt vorzu�nden sind, häu�g intuitiv in MJ abgebildet werden.

Ein Beispiel dafür ist der SAW. Einfach beschrieben darf der aktuelle Punkt dabei nur

nach vorn geschoben werden, wenn davor eine ausreichend freie Fläche ist. Und genau

68



7 Evaluation

diese Beschreibung kann so direkt auf MJ übertragen werden und eine entsprechende

Ersetzungsregel ist dazu intuitiv zu erstellen.

Auÿerdem bietet MJ eine Visualisierung an, was bei anderen Anwendungen zuerst erstellt

werden muss. Zusätzlich ist MJs Ausführung Schritte basiert, sodass auch jeder Schritt

visuell angezeigt werden kann. Dies ist hilfreich zur Veranschaulichung des Ablaufes eines

Programms.

7.2.3 Schwächen und Nachteile

Grammatiken sind im Allgemeinen sehr mächtig, jedoch ist die Erstellung einer Gramma-

tik und dessen Regeln meist komplex. Es besteht häu�g eine groÿe Unklarheit darüber,

was für eine Auswirkung die Regeln haben und wie Veränderungen der Regeln dazu ein-

�ieÿen. Daher ist ein Prozess von Trial and Error nicht untypisch beim Erstellen einer

Grammatik. [19] [22]

MJ baut auf demselben Prinzip auf, wodurch sich dieses Problem auch für MJ ergibt.

Das Erstellen eines Regelsets für die Generierung eines komplexeren Inhaltes wird daher

schnell aufwendig. Auch bei der eigenen Umsetzung war dies zu bemerken.

Zudem kann MJ in den konstruktiven Ansatz für prozedurale Generierung eingeordnet

werden. Daher muss durch das Regelset sichergestellt sein, dass alle Bedingungen für den

generierten Inhalt erfüllt sind. Das erhöht ebenfalls die Komplexität, um mithilfe von MJ

prozedural Inhalte zu generieren.

MJ limitiert sich auf das Notwendigste in Bezug auf die Möglichkeiten des Program-

mierens. Es gibt keine bedingten Anweisungen, Zählschleifen, Methoden oder Variablen.

Alles basiert auf den visuellen Ersetzungsregeln. Wird nun jedoch etwas wie eine Varia-

ble benötigt, in der sich ein Zustand gemerkt wird, muss dies durch Umwege umgesetzt

werden, wodurch MJ Programme schnell komplex werden. Die eigene Umsetzung ist ein

Beispiel dafür. In dieser war es notwendig, dass abhängig von den schon generierten

Abzweigungen die restlichen Abzweigungen generiert werden. Dafür musste gezählt wer-

den, wie viele schon generiert worden sind. Die Implementierung dieses Zählers hat einen

groÿen Teil des Codes ausgemacht und das Programm in seiner Komplexität erhöht.

In MJ ist es möglich, gewisse Programmparameter zu setzen. Diese werden direkt in

dem Code gesetzt. Es gibt aber keine Möglichkeit, dass von auÿen spezi�sche Parameter

übergeben werden. In Bezug auf die prozedurale Generierung stellt dies einen groÿen

Nachteil dar, da es häu�g erwünscht ist, die Generierung über eine Benutzerschnittstelle

steuern zu können.
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Möchte man zusätzlich spezielle Eigenschaften eines generierten Inhaltes steuern, welche

mehrere Komponenten der Generierung betre�en, wird man mit MJ nicht weit kommen.

Dies begründet sich mit dem Fehlen von Methoden, Variablen und bedingten Anweisun-

gen, wodurch ganze Bereiche gekapselt werden können und bedingt entschieden werden

kann, ob der eine oder andere Bereich für die Generierung verwendet werden soll.

Die abstrakte Darstellung der Programmlogik durch die Ersetzungsregeln führt schnell zu

unübersichtlichem Code. Eine Ersetzungsregel kann häu�g nur eine kleine Vorbereitung

sein für die eigentliche Logik hinter der Generierung. Dies kann zwar durch Kommentare

erklärt werden, aber ohne das gesamte Bild vor Augen zu haben, kann dies schwierig

sein, einzuordnen und nachzuvollziehen. Zusätzlich kann es bei längeren Ersetzungsregeln

kompliziert sein, sich deren Muster im Raster vorzustellen, um zu verstehen, was hinter

der Regel steckt.

7.2.4 Nutzen und Potenzial

Zur Generierung oder Lösung von simplen bis mittel komplexen Gra�ken oder Problemen

ist MJ gut geeignet. In vielfachen Beispielen aus dem Projekt von Maxim Gumin [12]

wurde dies gezeigt. Für hochau�ösende und sehr komplexe Inhalte ist MJ zur Generierung

nicht geeignet. Im Bereich der prozeduralen Generierung würden die von MJ generierten

Inhalte gut zu Retro-Videospielen passen, da diese ebenfalls auf simpleren Rastergra�ken

aufbauen.

Das Konzept der Knoten lässt eine einfache Schnittstelle o�en für Erweiterungen durch

weitere Knoten. Dadurch besteht das Potenzial für weitere Möglichkeiten und eventuell

einer übersichtlicheren Darstellung des Codes. Damit wäre MJ auch besser zugänglich

für komplexere Themen.

Zusätzlich kann eine Erweiterung von interaktiven Regeln, wie es auch Maxim Gumin

angesprochen hat [12], MJ Programme zu Videospielen machen.

7.2.5 Markov Junior für die Labyrinthgenerierung

Die Umsetzung des Konzeptes in dieser Arbeit hat zeigen können, dass MJ für die grund-

legende Struktur von Labyrinthen geeignet ist. Auch Beispiele aus dem Projekt von

Maxim Gumin [12] für schon existierende graphbasierte Generierungsalgorithmen für

Labyrinthe haben aufweisen können, dass MJ geeignet ist, um Labyrinthe zu generieren.

In Bezug auf die Kontrollierbarkeit der Labyrinthe hat sich MJ jedoch an einigen Stellen

als weniger geeignet erwiesen, da sich durch MJ eine erhöhte Komplexität ergeben hat.
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Dies ist mit den fehlenden Konstrukten wie Methoden oder Variablen zu begründen,

wodurch Umwege in MJ gesucht werden mussten.
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8.1 Zusammenfassung

Diese Arbeit hat den neuen Markov Junior (MJ) Algorithmus von Maxim Gumin näher

erklärt, indem alle wichtigen Bestandteile vorgestellt wurden und an einem umfangrei-

chen Beispiel erläutert wurden.

Dazu wurde in dieser Arbeit unter der Nutzung des MJ Algorithmus ein neuer An-

satz zur Generierung von perfekten Labyrinthen erstellt. Dieser Ansatz erlaubt es, den

Verlauf des Lösungsweges zu steuern und festzulegen, wie viele Abzweigungen von dem

Lösungsweg abgehen. Dafür wurde die Generierung in die Generierung des Lösungsweges

und die Generierung der Abzweigungen aufgeteilt, um eine bessere Kontrollierbarkeit zu

ermöglichen. Zusätzlich kann die Gröÿe des Labyrinthes eingestellt werden.

Es hat sich eine exponentielle Entwicklung der Laufzeit bei einer proportionalen Stei-

gerung der Rastergröÿe für den entwickelten Ansatz ergeben. Dies hat gezeigt, dass der

Ansatz nicht e�zient ist.

In der Arbeit wurde verdeutlicht, dass MJ für Vieles verwendet werden kann. Dazu

zählen das Lösen von Funktionen/Problemen, das Animieren von Situationen, aber auch

die prozedurale Generierung.

Zusätzlich wurde erläutert, dass MJ durch das Konzept der Ersetzungsregeln und Knoten

sehr mächtig ist und mit wenig Code viel erzeugen kann. Die direkte Visualisierung ist

ein weiterer Vorteil, wodurch sich MJ gut für prozedurale Generierung eignet. Dabei ist

aufgefallen, dass dies für simplere oder mittel komplexe Gra�ken gilt.

Zudem wurde in dieser Arbeit darauf eingegangen, dass das Grundkonzept der Erset-

zungsregeln zwar mächtig ist, aber dazu auch komplex und unübersichtlich sein kann.

Dies wurde damit begründet, dass es zum einen häu�g unklar ist, was für einen E�ekt

spezi�sche Regeln haben und dass zum anderen in dem Regelset garantiert sein muss,

dass alle Bedingungen für den generierten Inhalt erfüllt sind.

Es hat sich herausgestellt, dass MJ für die Generierung der grundlegenden Struktur

der Labyrinthe geeignet ist. In Bezug auf die Kontrollierbarkeit jedoch hat sich MJ als

weniger geeignet gezeigt. Durch dessen Limitierungen wie bspw. das Fehlen von Methoden

72



8 Fazit

oder Variablen mussten Umwege gefunden werden, um Teile des Konzeptes umgesetzt zu

kriegen. Diese haben die Komplexität des Ansatzes deutlich erhöht.

8.2 Mögliche Erweiterungen

8.2.1 Schwierigkeit des Labyrinthes

Diese Arbeit hat sich mit der Kontrollierbarkeit von Labyrinthen auseinandergesetzt.

Ein im Allgemeinen wichtiger Faktor des Labyrinthes ist dessen Schwierigkeit. Diese zu

kontrollieren, wäre daher ein interessanter Punkt zur Erweiterung.

Bei der Schwierigkeit ist zu beachten, dass die Perspektive des Lösenden eine zentrale

Rolle spielt. Wird das Labyrinth von der Vogelperspektive aus gelöst, hat man einen

gesamten Überblick über das Labyrinth. Jedoch kann ein Labyrinth auch für ein Video-

spiel verwendet werden, in dem man sich in dem Labyrinth be�ndet. In diesem Fall sieht

man lediglich den Teil des Labyrinthes, der direkt vor einem ist. Bevor man sich mit

der Schwierigkeit eines Labyrinthes beschäftigt, muss dies geklärt werden. Die folgenden

Erweiterungen und Gedanken bauen auf dem Lösen des Labyrinthes aus der Vogelper-

spektive auf.

Aufbauend auf dem entwickelten Ansatz steht die Annahme im Raum, dass eine höhere

Temperatur für den Lösungsweg, mit einer höheren Anzahl an Abzweigungen vom Lö-

sungsweg zu einem komplexeren Labyrinth führen sollte. Dazu sollten die Abzweigungen

möglichst gleichmäÿig verteilt sein und direkte Sackgassen sollten verringert werden. Hat

dies wirklich einen Ein�uss auf die Schwierigkeit, wäre es indirekt auch mit diesem An-

satz möglich, die Schwierigkeit einzustellen. Dies zu analysieren wäre daher ein passender

erster Schritt, um aufbauend auf dieser Arbeit den Begri� der Schwierigkeit einzuführen.

Dies ist jedoch lediglich eine theoretische Hypothese. Die Schwierigkeit eines Labyrinthes

lässt sich auch formal darstellen. So hat McClendon [17] eine formale Beschreibung der

Schwierigkeit eingeführt. Als Erweiterung gilt es dann daraus zu extrahieren, wie durch

ein Regelset in MJ diese formale De�nition für die Schwierigkeit erreicht werden kann.

Bellot et al. [2] haben aufbauend auf McClendon ein Konzept von nicht signi�kanten

Wänden eingeführt. Diese beschreiben, welche Wände irrelevant sind, wenn der Mensch

beim Lösen des Labyrinthes das Labyrinth durchsucht. Dadurch sollen Labyrinthe auf

ihren Spaÿfaktor analysiert werden können. Das kann ebenfalls verwendet werden, um

zu schauen, wie das in MJ umsetzbar ist.
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8.2.2 Verbesserung der E�zienz

Der in dieser Arbeit umgesetzte Ansatz hat sich als wenig e�zient herausgestellt. Der

Grund dafür ist die Komplexität, welche sich durch das Erstellen eines Zählers ergeben

hat. Als Erweiterung bietet es sich daher an, zu forschen, ob es entweder eine ganz andere

Umsetzung geben kann oder ob die aktuelle Umsetzung durch die Anpassung von Regeln

optimiert werden kann.

Eine Idee wäre dazu, den Zähler extern von der Generierung zu halten und einen Bereich

für Kontrollelemente im Raster zu erstellen. Dadurch muss der Zähler nicht im Rahmen

und somit auch nicht in das Labyrinth eingebaut werden. Dies würde die Übersichtlichkeit

verbessern, aber von den Schritten und Regeln her sollte dies weniger einen E�ekt haben.

8.2.3 Parametrisierung

Wie sich in der Analyse des MJ Algorithmus ergeben hat, ist es nicht möglich, spezi�sche

Parameter von auÿen an MJ weiterzugeben. Dies ist jedoch ein wichtiger Teil der proze-

duralen Generierung. Und auch in dieser Arbeit wäre es von Vorteil gewesen, wenn dies

über die Benutzerschnittstelle möglich gewesen wäre. Daher kann das als Erweiterung für

diese Arbeit genutzt werden, um MJ so anzupassen, dass für prozedurale Generierung

Parameter von auÿen angegeben werden können. Für diese Arbeit würde man die Anzahl

an Abzweigungen und die Temperatur für den Lösungsweg angeben wollen können.
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