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Kurzzusammenfassung 

Dieses Dokument behandelt die Anforderungsanalyse, das Design, die 

Implementierung, Entwicklung und Validierung der Steuerungssoftware für ein Chip-

Validierungssystem. Die Software ist ein RTOS, das PID-Regelung zur Steuerung der 

Einpresskraft und Erwärmung des IC verwendet. 
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5 Introduction 

5.1 Background 

Under the leadership of my manager, Holger Mahnke, the Validation Department of the 

Business Line Radio Frequency Power (BL RFP) validates company-designed radar 

integrated circuits (ICs) to ensure compliance with their datasheet specifications. We then 

communicate the results of these validation tests to the design engineers. When necessary, 

adjustments are made to the IC design to ensure that the specified parameters are achieved. 

The validation engineer manually subjects multiple ICs from various wafer areas to the 

validation test benches by selecting the IC, inserting it into the socket, and tightening the 

socket screw on the lid. An automated test script runs on a setup test bench with measurement 

and other heating and cold equipment for a tray of several dozen IC samples for a selected 

test case, requiring an engineer to be present on-site to swap the ICs. 

The need for a lab handler to automate the IC swap procedure became evident when the lab 

had to manually test and configure 100 samples. Automating this process was crucial. This 

initial lab handler was supposed to fulfil the following requirements in Table 1 below. 

 

Requirement  Description 

Repeatability 0.1 mm repeatability of XY-axis placement (parallel to the setup board). 

Maintenance Maximum service and inspection of once per month. 

Plug and play Easy installation and immediate use require no complex setup or configuration, 

allowing it to function right out of the box with minimal technical expertise. 

Accuracy Precise placement and alignment of ICs on tray and socket is possible. 

Scalability The ability to handle varying quantities of ICs. 

Compatibility Support for various types and sizes of ICs is available. 

Safety The implementation of safety measures is necessary to prevent damage to ICs and 

equipment (ESD). 

Speed Efficient operation to minimize downtime between tests 

User 

Interface 

The intuitive controls and monitoring systems facilitate easy operation and 

troubleshooting. 

Table 1: Previous Lab Handler Requirements 
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Figure 1 : CNC type Lab Handler “Bonita” 

 

The initial two CNC-style lab handlers were developed and implemented by repurposing 

control units originally designed for 3D printers. After running various test setups, the 

validation team found the two new machines were contributing tremendously to their work 

by being able to run test scripts overnight, relieving engineers from manually handling 

samples. It was also discovered that the IC needs to be pushed with around 65N to 70N for an 

ideal contact with the test socket pogo pins. 

While these units proved to be efficient and successful, the limited functions originally 

intended for 3D printers posed restrictions due to their complexity when attempting to set up 

new custom functions. Furthermore, their CNC-style design made them heavy and large, 

requiring substantial space, as can be observed in Figure 1 above. Due to their considerable 

size and weight, these machines lacked mobility, thereby restricting engineers to always 

setting up their test benches at fixed locations where the lab handlers were stationary. The 

need for a newer lab handler was immense, with the additional requirements stated in Table 2 

below.  
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Requirement  Description 

Mobile It can effortlessly move from one test bench to another. 

Customizable Firmware The firmware could integrate additional features with the essential tasks. 

Small Scale Enabling it to be used in complicated test setups with limited clearing. 

Scalable  It can easily be modified to be used with different IC housing sizes. 

Table 2: Extended Lab Handler Requirements for the new iteration 

 

The new iteration’s concept involved purchasing a commercial Cobot and integrating it with 

an in-house solution to fulfil the basic functional requirements of the lab handler. To achieve 

this, we purchased a Cobot, the “UFACTORY xArm 5 Lite”, which has 5 axis/joints and a 

maximum press and lift force of approximately 30 N [1]. This Cobot was then mounted also 

on an in-house designed table with the ability to be mobile and, when needed, stationary and 

stable by its heavy-duty wheels that are height adjustable, as shown in Figure 2 below. 

 

 

Figure 2 : Leveling Castor 

 

The in-house solution must also be able to account for the controlled insertion force required 

for the project, as the Cobot's press/push force of 30N is insufficient for an ideal contact 

between the socket and the IC. The control system software of the in-house designed and 

built adapter, known as “Eva”, is the primary focus and core subject of this thesis. 
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Figure 3 : Eva, connected with the Cobot and mounted on mobile table. 

 

In Figure 3, Eva in combination with the Cobot and mounted on the mobile table setup is 

illustrated. 
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5.2 Objective  

The primary objective of this thesis is to design and implement a software solution for the 

Lab Handler project. This involves conducting both theoretical and practical research studies 

to ensure the solution fulfils all the necessary requirements established during the 

requirements engineering phase, as outlined in the Requirements Chapter.  
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6 Requirements  

6.1 Purpose of System 

Despite the complexity and extensiveness of the system requirements, the fundamental 

functionality of the system can be simplified into the following basic functions, as shown in 

Table 3. They are the most important and basic system functional requirements. 

 

Identifier  Function 

REQ - 1 The system can pick up the IC from IC trays and sockets. 

REQ – 2 The system can place the IC from IC trays and sockets. 

REQ – 3 The system can press the IC into the socket for a maximum of up to 80N and maintain it. 

REQ - 4 The system can heat up the IC and maintain it at a maximum temperature of 150 °C. 

Table 3: Simplified System Functionality 

 

This document consists of the design, implementation, optimization, and validation of the 

software solution for the required system. The software will be executed on a PCB designed 

in-house by Celestine Machucha and manufactured in China. The design of the physical 

infrastructure, including the selection of sensors, drivers, MCU, and other hardware 

components, was conducted in collaboration with Celestine Machucha through numerous 

iterations and prototyping. These aspects are not included within the scope of this document. 

In summary, the hardware with the smallest footprint and optimal specifications, tailored to 

the project requirements, was selected from the available list of devices provided by JLPCB 

[2]. Hardware available from JLPCB was chosen because they could ship the printed PCB 

boards with the components already soldered. This streamlined the manufacturing process, as 

the PCB was manufactured, and the hardware components were soldered by JLPCB. 

The MCU ESP32-S3-MINI-1U was selected based on its compact size, affordable price, 

comprehensive documentation, strong community support, and well-implemented libraries 

from both the community and Espressif, along with its inclusion of a 240MHz dual-core 

processor. 
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6.2 Functional Requirements 

6.2.1 Introduction to Functional Requirements 

Functional requirements describe the specific functionalities that the system should be 

capable of performing [3]. They outline the essential tasks and processes that the system must 

execute to meet the needs of its users and stakeholders. They serve as the foundation for 

system design and development, ensuring that the final product aligns with the intended 

purpose of the system. 

6.2.2 Functional Requirements of the System 

The functional requirements of the system are stated and described in Table 4 below. It 

extends the simple requirements that were developed at the beginning of the project by 

modifying and extending the requirements of the previous Lab Handler CNC project. 

 

Identifier  Requirement Description 

REQ – 5 Latency • User interactive tasks are at least 120 Hz. 

REQ – 6 Precise insertion force • Minimum precision of 10N. 

REQ – 7 Precise insertion force reading • Minimum precision of 0.1N. 

REQ – 8 Accurate insertion force reading • Minimum accuracy of 1%. 

REQ – 9 Precision in temperature reading • 0.1 K (range 223.15 K –423.15 K). 

REQ – 10 Precision in temperature step apply • ±2 K. 

REQ – 11 DUT pick & place confirmation • Feedback of the air pressure change in the 

vacuum pump. 

REQ – 12 Safety for the Engineer and the 

Validation board  

• Thread / Deadlock safe. 

• Process infinite loop fault safety. 

• Emergency Stop. 

• PID safety. 

Table 4 : Functional requirements of the control system for Eva. 
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6.3 Non-Functional Requirements  

6.3.1 Introduction to Non-Functional Requirements 

Non-functional requirements are criteria that can be used to evaluate the operation of a 

system, rather than specific functions and tasks. They define system attributes such as 

performance, security, usability, reliability, and scalability and are crucial to ensure that the 

system meets quality standards and performs efficiently under various conditions. 

6.3.2 Non-Functional Requirements of the System 

The Non-functional requirements of the system are stated and described in Table 5 below. 

The requirements were developed at the beginning of the project by modifying and extending 

the requirements of the previous Lab Handler CNC project. 

 

Identifier  Requirement Description 

REQ – 13 Cost-efficient • The cost should be as low as possible while being 

as high as necessary. 

REQ – 14 Software portability  • SW can be used without major modifications across 

different MCUs. 

REQ – 15 Optimized Power. • Power usage for the whole system operation should 

be as low as possible while having the highest 

efficiency. 

REQ - 16 System code 

comprehensibility  

• The system code should be simple and easily 

readable even for an entry SW developer. 

Table 5 :Non-Functional requirements of the control system for Eva.  
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7 Theory  

This chapter dives deeply into the two primary areas of focus, RTOS and feedback-control 

systems, during the system’s development. The system consists of several sensors that it 

needs to communicate with and drivers that need to be repeatedly called at a fixed frequency 

for smooth and efficient operation. It also consists of several control loops that are essential 

for correct and precise operation. The approaches taken to meet these requirements are 

discussed further in the RTOS and Feedback Control System chapters. 

7.1 Embedded Systems 

An embedded system is a combination of electronic components and software that is 

specifically designed to perform a specific function. An advanced embedded system typically 

includes a microcontroller that can be programmed to execute diverse functions, such as 

temperature sensing, battery level sensing, and retrieving acceleration data from an 

accelerometer. This system is applied in various applications including air-conditioning, 

remote-control devices, car entertainment systems, flight navigation systems, robotic 

automation in factories, MP3 players, smartphones, and smartwatches. Personal computers 

(PCs) running general-purpose operating systems like Windows, Linux, and Mac OS have the 

capability to perform a wide range of tasks and require significant resources in terms of 

processing power, graphics processing, and memory usage. On the other hand, embedded 

software is purposefully created for a particular application. An embedded operating system 

is specifically developed for microcontrollers with limited resources, particularly in terms of 

memory capacity, such as read-only memory (ROM) and random-access memory (RAM). A 

standard personal computer typically includes several gigabytes of random-access memory 

(RAM) and multiple terabytes of hard disk space. In contrast, the memory capacity of a 

microcontroller is significantly smaller in comparison to a PC [4]. 

For this purpose, an embedded OS is designed and developed resource sensitive and efficient. 

There are three main types of embedded OS solutions that are commonly used in industry, 

which is listed in Table 6 [4]. 
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Embedded OS Solution 

1. Super loop 

2. Cooperative 

3. Real time operating system (RTOS). 

Table 6 : Most common embedded OS solutions. 

 

7.1.1 Super Loop  

Small embedded systems commonly employ a foreground and background pattern for their 

operating system design [5], [6]. As shown in Figure 4, the background area contains the 

tasks that are to be executed indefinitely. When an interrupt triggers the background tasks are 

interrupted and the software will switch to the interrupt service routine (ISR), which is 

conceptually part of the foreground area. The term for this process is pre-emption. Once the 

ISR is handled, it will resume execution from the exact point where it had previously paused 

in the background area. This is the basic operation of a super loop embedded operating 

system. The tasks in the background region are executed in a sequential manner. The 

subsequent task will be carried out only upon completion of the preceding task. Once the 

final task in the sequence is completed, it will cycle back to the initial task and begin again in 

a sequential manner [4]. 

 

 

Figure 4 : Concept diagram of super-loop workflow [4].  
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7.1.2 Cooperative OS 

The cooperative scheduler is commonly used in embedded systems. The basic concept is 

similar to the operation of the super loop scheduler, involving both foreground and 

background regions. In contrast to the sequential and cyclical execution of tasks in a super 

loop, the tasks in this case are organised into groups based on time slots. Their activity will be 

limited to the specific time slot when it is active. During the active time slot, the tasks within 

it will be executed in a sequential manner and will only be served once. Subsequently, they 

will remain inactive until their designated time slice becomes active once more. The 

cooperative scheduler is generally considered to be more structured and predictable compared 

to a super loop [7], [8]. As shown in Figure 5, the timer is programmed to accurately measure 

the passage of time. When the timer interrupt triggers, the background tasks will be 

interrupted, and the timer ISR routine in the foreground will be executed to record the time 

[9]. For example, one second had elapsed, two seconds had elapsed, and so forth. Based on 

the definition of the requirements, a flag can be activated within the ISR when the designated 

time is reached. As an example, the Timer 1 flag is activated when 1 second elapses, while 

the Timer 2 flag is activated when 2 seconds elapse. Subsequently, the program will resume 

execution from the precise location where it had previously been paused within the 

background region. Using this mechanism, the scheduler could selectively execute tasks that 

are assigned to a specific time region. Task 1 will only be executed when the Timer 1 flag is 

active, and Task 2 will only be executed when the Timer 2 flag is active. Contiki and TinyOS 

are operating systems that have implemented the cooperative mechanism [4]. 
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Figure 5 : Concept diagram of cooperative-loop workflow [4]. 

 

7.1.3 Real-time operating system (RTOS) 

A real-time operating system (RTOS) is significantly more complex than a super loop and 

cooperative scheduler, and it has a unique deterministic capability in contrast to other 

operating systems. 

The two categories of RTOS are hard RTOS and soft RTOS [10]. The hard real-time 

operating system (RTOS) consistently meets the specified deadline, whereas the soft real-

time operating system (RTOS) is able to meet the deadline on the majority of occasions. 

For time-sensitive real-time applications, especially in industries such as automotive and 

military, the use of a hard RTOS (Real-Time Operating System) is required. Failing to meet a 

deadline in these situations could result in fatal consequences. For example, the 

implementation of a car airbag: if the system needs to activate the airbag within 50 

milliseconds after detecting a collision, the real-time operating system (RTOS) must 

guarantee that this time limit is consistently met. 
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Unlike simpler scheduling methods like super loops or cooperative schedulers, which can be 

developed internally relatively easily and quickly, the industry often relies on third-party real-

time operating system (RTOS) solutions for more complex requirements. The kernel, or 

scheduler, is the core element of a real-time operating system (RTOS), with the primary 

responsibility of managing and supervising the execution of tasks within the system. 

A commonly employed scheduling technique in real-time operating systems (RTOS) is 

round-robin with time slicing, which involves assigning time slots to tasks of equal priority, 

allowing them to run for a specified duration before being pre-empted to give way to other 

tasks. With the time slots being small and optimized enough to mimic parallel processing, 

especially for the human eye, and many real-world tasks, even though only one task is run on 

a single-core processor. 

In Figure 6 an implementation of round-robin scheduling can be observed. All three tasks A, 

B, and C have the same priority and have an equal amount of time allocated (T1 = T2 = T3). 

In this case, task A starts first, then B, and finally C, and they require, respectively, three, two, 

and one time slots for complete execution. It is observed that task C is executed three times 

while task A completes the execution cycle in Figure 6. 

 

 

Figure 6 : Scheduled tasks in round robin pattern [4]. 

 

RTOS schedulers used in the industry are more complex than just having sliced time slots for 

tasks. Figure 7 shows the entire system of a commercial RTOS-μC/OS-III [11].In layman’s 

terms, it is contained within a background and foreground design pattern. The ISR is situated 

in the foreground region, while the tasks are situated in the background. The round-robin time 
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slicing pattern is used to schedule the low-priority tasks, and as soon as an interrupt is 

triggered, the program will transition into the ISR, and the running task will be pre-empted. 

In the ISR, a higher priority task is made active, and this will be immediately detected by the 

scheduler at the completion of the ISR. It will serve this new higher priority task before 

reverting to the low priority task that was halted when the interrupt was triggered. 

 

 

Figure 7 : RTOS workflow overview [4]. 

 

The aforementioned OS types cannot efficiently manage and operate the system due to its 

complexity, making RTOS the optimal choice. The following section will further discuss 

several possible RTOS solutions that best suit the system under implementation. 

 

7.1.4 RTOS for ESP-32 S3 

The PCB for the system consists of an ESP32-S3-MINI-1U microcontroller, which consists 

of two 32-bit Xtensa LX7 microprocessors. In Table 7, the system specifications of the MCU 

that were relevant when selecting the compatible MCU for this system are listed. 
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Category  Details 

CPU and On-Chip 

Memory 

• ESP32-S3 embedded, Xtensa® dual-core 32-bit LX7 microprocessor  

  (with single precision FPU), up to 240 MHz 

• 384 KB ROM 

• 512 KB SRAM 

• 16 KB of SRAM in RTC 

• Up to 8 MB of quad SPI flash 

• 2 MB of PSRAM (ESP32-S3FH4R2 only) 

Peripherals • GPIO, SPI, LCD interface, camera interface, UART, I2C, I2S, remote control, 

pulse counter, LED PWM, full-speed USB 2.0 OTG, USB Serial/JTAG 

controller, MCPWM, SDIO host, 

GDMA, TWAI® controller (compatible with ISO 11898-1, i.e., CAN 

Specification 2.0), ADC, touch sensor, temperature sensor, timers, and watchdogs 

Operating 

Conditions 

• Operating voltage/power supply: 3.0 ~ 3.6 V 

• Operating ambient temperature: -40 ~ 85 °C 

Tests • HTOL/HTSL/uHAST/TCT/ESD 

Table 7 : ESP32-S3-MINI-1U MCU Specifications [12]. 

 

For the selected MCU, the best possible RTOSs are Free-RTOS, Zephyr, and NuttX. These 

three systems are compared with each other in Table 8 based on the details obtained from 

their documentation [12], [13], [14]. 

 

Feature/RTOS Free-RTOS Zephyr NuttX 

Ease of Use  Easy to learn and 

implement  

Moderate complexity, 

steep learning curve  

Relatively simple, some 

learning needed 

Community 

Support  

Large, active community, 

extensive resources 

Strong industry and 

community support 

Smaller community, 

fewer resources 

Modularity Moderate customization, 

basic modularity 

Moderate customization, 

basic modularity 

Balanced modularity, 

moderate customization 

POSIX 

Compliance  

Minimal POSIX support

  

Partial POSIX support, 

some compatibility 

Full POSIX compliance, 

easy porting 

Memory 

Footprint  

Lightweight, minimal 

resource usage 

Moderate, depends on 

configuration 

Low, designed for 

constrained devices 

Advanced Basic, sufficient for most Rich feature set, Moderate, suitable for 
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Features  applications advanced networking many use cases 

Learning Curve

  

Low, straightforward  High, requires more effort

  

Medium, manageable 

moderate effort 

Table 8 : Comparison of most used RTOS for ESP32-S3 

 

Based on the comparison between the top possible RTOS’s for the selected MCU, Free-RTOS 

was chosen to design and implement the system for the project mainly because of its ease of 

implementation and large community support. In the next section the basic structure of Free-

RTOS and its features are discussed. 

 

7.1.5 Free-RTOS 

Free-RTOS is an open-source, lightweight Real-Time Operating System (RTOS) primarily 

written in the C programming language [7] which is specially designed for embedded 

systems and low-end IoT applications. Its performance in simplicity, scalability, and 

portability makes it an ideal choice for a wide range of applications [15] and has been ported 

over 27 different architectures, making it highly versatile and adaptable across various 

hardware platforms [16]. 

The architecture of Free RTOS is similar to other RTOSs, and tasks communicate through the 

kernel and drivers with hardware, as shown in Figure 8. Inter-task communication is done 

through the use of queues, where the task with the highest priority is granted access to the 

queue before others [7]. In Table 9, key features of Free-RTOS are summarized for an easy 

overview of the system [17]. 
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Figure 8 : Architecture Overview for VxWorks and FreeRTOS [18].  

 

Feature Description 

Programming 

Model and API 

User-friendly API that supports multiple threads, mutexes, semaphores, and 

timers. Lacks a hardware abstraction layer (HAL), which can increase 

debugging efforts in certain environments, like STM32Cube MCU firmware. 

Scheduling Configurable scheduler with options for fixed-priority pre-emptive or 

cooperative strategies. Utilizes Round-Robin (RR) scheduling for tasks with 

the same priority. 

Memory 

Management 

Supports dynamic memory allocation with a small memory footprint, making it 

suitable for resource-constrained environments. 

Networking 

Protocols 

Supports 6LoWPAN, CoAP, and Free-RTOS+TCP, a thread-safe TCP/IP stack 

for robust networking in embedded applications. 

Simulation and 

Testing 

Simulatable on Windows (Win32 simulator using Visual Studio 2015) and 

Linux (POSIX/Linux simulator using GCC and Eclipse), facilitating testing and 

debugging before hardware deployment. 

Security Uses WolfSSL, a lightweight TLS/SSL library for security, offering features 

like authentication, integrity, and confidentiality. Ideal for embedded systems 

due to its small footprint, 20 times smaller than OpenSSL. 

Power 

Consumption 

Includes features to reduce power consumption, such as an idle task hook and 

tickless idle mode, which stops periodic tick interrupts during idle periods, 

beneficial for battery-powered applications. 

Table 9 : Free-RTOS features summarized 

 

The use of Free-RTOS for the design of the system is more extensively discussed in the 

implementation chapter.  
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7.2 Control Systems 

7.2.1 Introduction to Control Systems 

Control systems are a key component in engineering fields that command, regulate, or 

manage the behaviour of devices or systems involved in some task or application by using a 

control loop. In Table 10, the main components of a control system are listed. 

 

Component Description 

Sensor Measures the output or state of the system and converts it into a signal that can be 

interpreted by the controller. 

Controller Processes the sensor’s signal, compares it to the desired setpoint, and calculates the 

necessary control action to minimize the difference (error) between the desired and 

actual outputs. 

Actuator Executes the control action by adjusting the input to the system, such as opening a 

valve, increasing a motor speed, or altering the electrical current. 

Plant  

(or Process) 

The part of the system being controlled, which could be a mechanical device, an 

industrial process, or any system that requires regulation. 

Table 10 : Components of a control system 

 

7.2.2 Open-loop and Close-loop control systems 

Based on their approach to controlling and utilising feedback, control systems can be 

categorised into two main types: open-loop control systems and closed-loop (feedback) 

control systems. 

i. Open-Loop Control Systems 

An open-loop control system is a control system that operates without using feedback from 

the output to influence or adjust the control inputs. In other words, the system's action is 

determined entirely by the initial input or a set of predefined instructions, without 

consideration of the outputs. An electric kettle that boils water for a set time is an example of 

an open-loop control system where it operates based on time, regardless of whether the water 

has reached the boiling point. 

 



19 

 

ii. Closed-Loop (Feedback) Control Systems 

A closed-loop control system is a control system that continuously monitors the system 

output and uses this feedback to influence or adjust the control inputs. In other words, the 

system compares the measured output with the required setpoint and generates a corrective 

action that will bring the error between the system output and the desired setpoint to a 

minimum. 

The thermostat-controlled heating system in a house act as a common example of a closed-

loop system where it continuously monitors the ambient temperature of the room and 

compares it to the set and desired setpoint. If the ambient temperature of the room differs 

from the set point, the thermostat automatically controls the heating system in order to restore 

the temperature to the desired level. The mentioned feedback loop serves to maintain a 

consistent and appropriate temperature within the room, even in the face of changes in 

external circumstances. In Table 11 a comparison between open-loop and close-loop control 

is listed. 

 

Aspect Open-Loop Control Systems Closed-Loop (Feedback) Control 

Systems 

Control Action Independent of system output; based 

on preset commands. 

Dependent on system output; adjusted 

based on feedback. 

Accuracy Lower accuracy; cannot correct for 

disturbances. 

Higher accuracy; can correct deviations 

and disturbances. 

Complexity Simpler and easier to design and 

implement. 

More complex; requires sensors, 

feedback mechanisms, and advanced 

controllers. 

Cost Generally lower cost due to fewer 

components. 

Higher cost due to the need for additional 

components like sensors. 

Adaptability Inflexible; cannot adapt to changes in 

system dynamics. 

Highly adaptable; can adjust to changes 

and disturbances. 

Applications Suitable for systems where precision 

and adaptability are not critical. 

Essential for systems requiring high 

precision and stability. 

Table 11 : Comparison between open vs close loop control systems. 
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Since the system requires precise and stable output for controlling the force applied and 

heater temperature, closed-loop feedback is needed, and therefore, in the next section, more 

details about feedback control systems are listed. 

 

7.2.3 Feedback Control Systems 

The main objective of a feedback control system is to ensure that the output of a process or 

system follows a predetermined path, even when the system or process is influenced by 

disturbances. Control systems play a prominent role in today’s technology, spanning a wide 

range of applications, from basic household appliances to complex industrial processes. 

Several reasons as to why feedback control systems are essential are listed in Table 12 [19] 

 

Aspect Description 

Counteracting 

disturbances 

External disturbances can significantly impact the output of a system. 

Feedback allows the system to automatically adjust its input to counteract 

these disturbances, ensuring stable operation. 

Improving 

performance amid 

uncertainty 

In cases where the system model is uncertain or imperfect, feedback helps 

correct discrepancies between the desired and actual outputs. 

Stabilizing unstable 

systems: 

Many industrial processes are inherently unstable in an open-loop 

configuration. Feedback is necessary to stabilize such systems, making 

their operation safe and reliable. 

Table 12 : Importance of feedback control systems 

 

There are two main types of feedback control systems: negative-feedback and positive-

feedback systems. In a negative feedback control system, the output is subtracted from the 

setpoint, and the resulting error signal is used to adjust the input. Since this control type tends 

to be the best at stabilising the system for disruptions, it is the most common control type 

used in industries. 

In a positive feedback control system, the addition of the output and the setpoint is considered 

when controlling, which often causes deviations and leads to system instability. Hence, this 

control type is less commonly used in industries. In Table 13, commonly used feedback 

controllers are compared with each other. In the next section, the PID controller will be 
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discussed because of its suitability to the project requirements, among other types of 

controllers. 

 

Controller  Description Advantages Disadvantages Typical 

Applications 

On-Off  

(Bang-Bang) 

Controller 

A simple controller 

that switches the 

output fully on or 

off based on 

whether the process 

variable is above or 

below the setpoint. 

Simple, low-cost, 

and easy to 

implement. 

Can cause 

oscillations and 

wear due to rapid 

switching; no fine 

control. 

Thermostats, 

simple motor 

control, level 

control in tanks. 

Proportional 

(P) Controller 

Produces an output 

that is proportional 

to the current error. 

The control action 

is stronger when the 

error is larger. 

Simple design, 

reduces steady-

state error more 

effectively than 

on-off control. 

Cannot eliminate 

steady-state error, 

may require 

manual tuning. 

Flow control, 

pressure control, 

basic temperature 

regulation. 

Proportional-

Integral (PI) 

Controller 

Combines 

proportional control 

with an integral 

component that 

accounts for the 

accumulation of 

past errors. 

Eliminates 

steady-state error, 

relatively simple 

to design and 

implement. 

Slower response 

to sudden changes 

compared to PD 

controllers, 

potential for 

overshoot. 

Temperature 

control, speed 

control in motors, 

liquid level 

control. 

Proportional-

Derivative 

(PD) 

Controller 

Combines 

proportional control 

with derivative 

action, which 

anticipates future 

errors by 

considering the rate 

of error change. 

Improves system 

stability and 

response time, 

reduces 

overshoot. 

Does not 

eliminate steady-

state error, 

sensitive to noise 

in the system. 

Motion control, 

robotics, systems 

requiring quick 

response. 

Proportional-

Integral-

Derivative 

(PID) 

Controller 

The most used 

controller that 

combines 

proportional, 

integral, and 

derivative actions 

to balance accuracy, 

stability, and 

response time. 

Highly versatile, 

can be tuned to 

optimize 

performance for a 

wide range of 

applications. 

Complexity in 

tuning the three 

parameters (P, I, 

D), potential for 

instability if not 

tuned correctly. 

Industrial process 

control, motor 

drives, 

temperature 

regulation, flow 

control. 
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Fuzzy Logic 

Controller 

A non-linear 

controller based on 

fuzzy set theory 

that handles 

imprecision and 

uncertainty by 

using a set of rules 

to determine 

control actions 

based on the error. 

Robust to 

uncertainty and 

non-linearities, 

can be designed 

without a precise 

mathematical 

model. 

Complex to 

design and tune, 

performance can 

be difficult to 

predict. 

Consumer 

electronics (e.g., 

washing 

machines), 

automotive 

systems, complex 

process control. 

Neural 

Network 

Control 

Utilizes artificial 

neural networks to 

model and control 

systems, 

particularly useful 

for non-linear and 

complex systems 

where traditional 

methods fall short. 

Capable of 

handling highly 

non-linear 

systems, can learn 

from data to 

improve 

performance. 

Requires large 

datasets for 

training, 

computationally 

intensive, 

complex to 

design. 

Robotics, 

autonomous 

systems, advanced 

manufacturing, 

complex non-

linear processes. 

Table 13 : Comparison of commonly used feedback control systems 

 

7.2.4 PID Controller  

The proportional-integral-Derivative (PID) controller is the most widely used control 

algorithm in feedback control systems, where the controller adjusts the control input based on 

three terms: the proportional term (P), the integral term (I), and the derivative term (D). In 

Table 14, these three terms, along with their descriptions, are listed. 

 

Term Description 

Proportional Control (P) The proportional term generates a control signal that is directly 

proportional to the error signal. It helps to reduce the error by applying a 

corrective action that is scaled according to the magnitude of the error. 

Integral Control (I) The integral term addresses the accumulation of past errors by integrating 

the error over time. This helps eliminate steady-state errors that may 

persist even after the proportional control has been applied. 

Derivative Control (D) The derivative term anticipates future errors by considering the rate of 

change of the error signal. It provides a damping effect, reducing the 

likelihood of overshoot and improving system stability. 

Table 14 : Three main parts of a PID controller. 
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𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)
𝑡

0
 𝑑τ + 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
  (1) 

 

The equation for a PID controller is given by equation (1), and its components are introduced 

in Table 15. These proportional, integral, and derivative gains should be tuned manually or 

using other optimisation algorithms depending on the specific application to make sure the 

PID controller will be efficient and effective for the application system. In Figure 9, the basic 

block diagram of a PID controller is shown. 

 

Term Description 

u(t) The control signal sent to the system (such as the voltage applied to a motor). 

e(t) e(t) is the error at time 𝑡 which is the difference between the desired setpoint and the 

actual process variable. 

𝑲𝒑 The proportional gain, it Determines how aggressively the controller responds to the 

current error. Higher values can reduce the error faster but may cause instability. 

𝑲𝒊 The integral gain addresses accumulated errors over time, eliminating steady-state 

errors. Higher values improve long-term accuracy but can slow down the response. 

𝑲𝒅 The derivative gain predicts future errors and helps stabilise the system by 

counteracting rapid changes in the error. Higher values reduce overshoot but can 

make the system sensitive to noise. 

Table 15 : Components of the PID control equation. 

 

 

Figure 9 : Block diagram of a basic PID controller. 
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In the next section, two methods for tuning the PID parameters are introduced and discussed, 

which have been used to tune the PID controllers implemented in this project system. 

 

7.2.5 PID Tuning 

PID tuning is an important aspect when it comes to feedback control systems. Without proper 

tuning, the system would perform worse than a simple on-off controller and would be 

unstable. Proper tuning involves adjusting either manually or using algorithms, the 

proportional (𝐾𝑝), derivative (𝐾𝑑), and integral (𝐾𝑖), gains to achieve the desired system 

response, which typically includes minimizing overshoot, settling time, and steady-state error 

while ensuring system stability. The terms overshoot, settling time, and steady state error are 

listed along with a description in Table 16 and is also illustrated in Figure 10. 

 

Metric Description Significance 

Overshoot The extent to which the system’s output 

exceeds the desired setpoint or final value 

after a disturbance. 

High overshoot can indicate instability or 

excessive oscillation. Reducing 

overshoot leads to smoother response. 

Settling 

Time 

The time required for the system’s output 

to settle within a specified percentage 

(e.g., 2% or 5%) of the final value. 

Shorter settling times are preferred as 

they indicate a quicker return to stability 

after a disturbance. 

Steady-State 

Error 

The difference between the desired 

setpoint and the actual output after the 

system has stabilized. 

Minimizing steady-state error ensures the 

output closely matches the desired value, 

indicating accurate control. 

Table 16 : Overview of the terms overshoot, settling time and steady state error 
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Figure 10 : Response of a typical PID closed loop system [20]. 

 

Depending on the control application, suitable tuning methods should be applied; otherwise, 

the control would end up making the system unstable or oscillate excessively. PID tuning 

could be divided into two main types of tuning, namely closed-loop and open-loop tuning. 

In close-loop tuning, the PID controller parameters are adjusted while the control loop is 

closed, where the controller is actively controlling the process. Here, the feedback from the 

process output is used to adjust the control action continuously. Whereas in open-loop tuning, 

the parameters of the PID controller are adjusted while the control loop is open, the controller 

has no influence on the process during the tuning. Here, the process is manually driven, and 

the controller is tuned based on the open-loop response of the system. In summary, the 

system uses its frequency response in close-loop to tune the parameters, and its step response 

in open-loop [21]. 

In the next section, two methods, namely the Ziegler-Nichols Tuning Method and the Tyreus-

Luyben Tuning Method, which are closed-loop tuning methods, are examined. These 

methods are more commonly used when detailed system dynamics, such as the system 

transfer function or time domain response, are not known or hard to achieve, which is the 

case in this project system. 

I. Ziegler-Nichols Tuning Method 

Ziegler–Nichols is a widely used approach for setting the parameters of P, PI, and PID 

controllers. Starting with the integral and differential gains being zeroed, this approach 

gradually increases the proportional gain until the system becomes unstable. The frequency 
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of oscillation is 𝑓0(ultimate oscillation frequency), and the value of 𝐾𝑝 at the point of 

instability is defined as 𝐾𝑚𝑎𝑥 (ultimate gain). The method then reduces the proportional gain 

by a predetermined amount and sets the integral and differential gains as a function of 𝑓0. The 

gains for P, I, and D are determined in accordance with Table 17 [22].In Figure 11, these 

tuning steps are illustrated in a flowchart for easier follow-through. 

 

Controller Type KP KI KD 

P controller 0.5 KMAX 0 0 

PI controller 0.45 KMAX 1.2 f0 0 

PID controller 0.6 KMAX 2.0 f0 0.125/f0 

Table 17 : Gain calculation for P, PI & PID controllers according to Ziegler - Nichol’s method. 

 

 

Figure 11 : Steps of tuning a controller according to Ziegler Nichols method [22]. 

 

II. Tyreus-Luyben Tuning Method 

The Tyreus-Luyben tuning method, which was introduced in 1997 [23], [24], is based on 

ultimate gain and ultimate period, as in the Ziegler-Nichols method. However, the formulas 

for the controller parameters were modified to achieve more stability in the control loop 

compared to the Ziegler-Nichols method. This method also follows the same steps as 

Ziegler–Nichol’s method to obtain the ultimate gain, 𝐾𝑚𝑎𝑥 and the ultimate oscillation 
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frequency, 𝑓0 but uses less aggressive pre-determined multiplicands for calculating the gains 

𝐾𝑝 𝐾𝑖 and 𝐾𝑑 as listed in Table 18. 

 

Controller Type KP KI KD 

P controller 0.33 KMAX 0 0 

PI controller 0.31 KMAX 𝐾𝑝

2.2 × 𝑓0
 

0 

PID controller 0.45 KMAX 𝐾𝑝

2.2 × 𝑓0
 

𝐾𝑝 × 𝑓0

6.3
 

Table 18 : Gain calculation for P, PI & PID controllers according to Tyreus-Luyben method 

 

The objective of using these methods is to obtain PID parameters that result in the shortest 

possible settling time while minimising overshoot and ensuring system stability. By carefully 

tuning the PID controller, these methods aim to achieve an optimal balance between response 

speed and robustness, leading to enhanced overall system performance. In practice, these 

methods need to be further adjusted and fine-tuned manually by human operators according 

to the specific demands of the application. 

In the implementation chapter the implementation, drawbacks and further improvements of 

using these methods are discussed. 

 

7.2.6 PID Integral Windup  

Integral windup happens in PID controllers when the integral term builds up too much 

because of error signals that last too long. This causes the controller output to reach its 

saturation points (100% or 0%). This occurs because the integral action continues to increase 

even when the system cannot respond, resulting in a stagnation of the output despite 

increasing input. This condition can cause significant control issues, as the system may 

continue to operate with a sustained error, unable to correct itself. Various methods have been 

developed to prevent integral windup and ensure the PID controller functions effectively 

without reaching these limits [25]. 
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To mitigate the windup effect, some anti-windup techniques have been developed, including 

the clamping algorithm anti-windup technique and the back-calculation anti-windup 

technique. 

 

I. Integral Anti-Windup Technique  

Integral clamping is a technique used in PID controllers to prevent integral windup by 

restricting the accumulation of the integral term to predefined limits. When the controller’s 

output reaches its saturation points (either maximum or minimum), the integral term is 

clamped to prevent further increase, avoiding excessive overshoot or long response times. 

Clamping ensures that the controller remains responsive and stable even in the face of long-

term errors or system constraints by limiting the integral action. This technique aids in the 

maintenance of effective control while also avoiding the negative effects of integral windup. 

 

II. Back-Calculation Anti-Windup Technique 

The Back Calculation The anti-windup technique is a method for preventing integral windup 

in PID controllers that adjusts the integral term based on the difference between the 

controller’s output and the actual actuator position when the output becomes saturated. When 

the controller output exceeds its maximum or minimum limits, the integrator receives the 

difference between the desired and saturated outputs. This feedback effectively reduces the 

accumulated integral value, preventing it from increasing or decreasing too much. This 

allows the controller to quickly recover from saturation and resume normal operation, 

ensuring stable and responsive control even in the presence of prolonged error signals. This 

technique is especially useful in systems where the actuator has physical limitations, as it 

helps maintain control performance while avoiding the negative effects of windup. 
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8 Implementation 

In this chapter, the design and implementation of the software for this system are examined 

and listed. During the design stage, several prototypes have been tried to adhere to meet the 

most requirements that are specified in the requirements chapter, and different theories that 

are discussed in the theory chapter were also prototyped and improved with many iterations, 

resulting in a system that is efficient and meets most of the requirements specified. The 

generated Doxygen document for the system implementation can be found at “https://pierre-

thishan.github.io/BachelorThesis_Warnakulasooriya/”. 

The embedded system that is designed for this project is fully developed and designed using 

the programming language C. It consists of six parallel processes with equal priority running 

on two cores, allocated with a low but sufficient task stack size to ensure safety. Parallel 

processing has been achieved by utilising the Free-RTOS library from the esp32 SDK. 

The mechanical setup, known as Eva, primarily consists of two main operations: moving and 

heating. An eight-state finite state machine (FSM) manages the moving operations, 

maintaining the system’s state in one of the defined states at all times. Similarly, a two-state 

FSM controls the heating operations. In addition, there are several other processes 

responsible for monitoring the system, reading data from sensors, controlling motor drivers, 

and performing other essential functions. In the next section, the overall system will be 

examined. Table 19 below has listed the names of these parallel processes and their 

operations, along with which core on the MCU it is running on. The MCU has two cores 

named “0” and “1”. 

 

Parallel 

Process Name 

Operations Running 

Core 

Task1Code • Executes PID motor velocity calculations. 

• Setting the motor speed. 

• Motor moving 

• Enabling and disabling the motor. 

0 

Task2Code • Process and parsing of input commands from serial. 

• Execute the state machine. 

1 

Task3Code • Reporting system status and other sensor data to the server 

API through serial. 

1 
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Task4Code • Responsible for regulating insertion force throughout the set 

time period by setting the state to keep pressing when the 

maintain force function is toggled. 

• Checking the MCU internal temperature. 

1 

Task5Code • Setting up the inner and outer traverse bounds with the 

magnetic encoder. 

• Temperature sensor reading. 

• Heating PID loop execution. 

• Heat state machine execution. 

0 

Task6Code • Set a zero position when setting the inner traverse bound. 

• Read the magnetic encoder angle. 

• Control motor speed and direction when a traverse position is 

given to move to. 

• Read the pressure sensor value. 

0 

Table 19 : Parallel processes and their tasks in the system. 

 

8.1 Overall System Architecture 

In this chapter, the overall system architecture is introduced, followed by an exploration of 

the configurations within the system boundary. 

Figure 12 provides a high-level overview of the overall system architecture, showing the 

interaction between the various components involved in the system. A detailed list of the 

primary components and their respective functions within the system is listed in Table 20. 
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Figure 12 : High-level overview of system architecture.  
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Component Description 

System Boundary The red dashed line marks the system boundary, containing all hardware and 

software components that are directly part of the embedded system. Inside 

this boundary, the PCB with the MCU (Microcontroller Unit) acts as the 

central processing unit for the system, coordinating the operations of 

connected sensors and drivers. 

PCB with MCU The PCB with MCU is the core component within the system boundary, 

managing communication with various sensors and drivers through different 

communication channels such as I2C, SPI, PWM, and GPIO. These channels 

facilitate the exchange of sensor data and the transmission of control signals 

to drivers, ensuring the embedded system operates correctly. 

Sensors & Drivers Connected to the PCB are multiple sensors and drivers, which are responsible 

for gathering data from the environment and executing actions based on 

commands received from the MCU. The system continuously processes data 

from these sensors, which is critical for maintaining control over the system’s 

operations. 

Control Signals & 

Serial 

Communication 

The system exchanges Control Signals with an external Control PC. This 

communication is handled through a Serial Communication Channel, where 

data is transmitted in the form of a JSON document containing the status of 

the system and other relevant data. 

Control PC Outside the system boundary, we have the control PC housed within a blue 

dashed box. The control PC runs an API server that acts as an intermediary, 

receiving system status updates and sending back control commands. The 

API Server communicates with the embedded system using the serial 

communication channel and forwards the data to a web app via WebSockets. 

Web App The Web App, situated on the control PC, serves as the user interface where 

parsed system data and status information are presented to the user. It also 

allows the user to send control commands back to the system. The 

communication between the Web app and the API server is managed through 

a WebSocket channel, which enables real-time data exchange. 

Client Finally, the client interacts with the system through the web app. The client, 

who is typically a lab engineer, sends commands and receives system status 

updates, which allows for remote management and control of the embedded 

system. 

Table 20 : Components of the system architecture and their interactions. 
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8.2 Mechanical Assembly of the System 

This section describes the mechanical assembly of the system, with a focus on the setup 

known as “Eva”. This mechanical framework is the physical structure in which the control 

software system interacts, carrying out precise movements and operations. 

The system’s carefully designed control algorithms and the integration of hardware and 

software within this assembly enable the smooth execution of tasks ranging from movement 

to temperature control. Figure 13 and Figure 14 illustrate the mechanical assembly of Eva 

and name the relevant components. 

 

Figure 13 : Eva flipped front side view. 
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Figure 14 : Eva flipped back side view. 

 

The ESP32-S3 MCU, which is on the PCB in Eva’s mechanical assembly (Figure 13 and 

Figure 14), is at the centre of the system architecture shown in Figure 15. This MCU is the 

main processing unit and communicates with different sensors, actuators, and outside 

systems. Table 21 provides a detailed description of each component and its interaction with 

the entire system. 
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Figure 15 System block diagram. 

 

Component Description 

ESP32-S3 MCU The central processing unit is responsible for managing and coordinating all 

operations within the system, interfacing with various peripherals using GPIO, 

I2C, SPI, PWM, and serial communication protocols. 

Control PC Interacts with the ESP32-S3 MCU via serial connection, sending and receiving 

data such as commands and status updates. 

Vacuum Pump Controlled by the ESP32-S3 MCU through GPIO 8, it can be activated or 

deactivated based on operational requirements. Used to create suction to pick 

up ICs through the plunger. 

Servo Motor Controlled using a PWM signal from the ESP32-S3 MCU, used for the 

operation of the locking mechanism to lock Eva into the docking adapter with 

the test socket. 

BLDC Motor 

Driver 

Receives control signals via three-phase connections (Ua, Ub, and Uc) from 

the ESP32-S3 MCU, driving a brushless DC motor for high-efficiency 

applications.  

BLDC Motor The signals from the motor driver are controlled to generate the insertion force 

and traverse the plunger within the movement range. 
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HX71708 ADC and 

Load Cell 

The ADC interfaces with the load cell, which is rated to measure weights up to 

20 kg. The load cell measures the force applied to the socket for insertion force 

control, utilising MEMS strain gauge technology to measure the force 

accurately, and the ADC converts the analogue signals from the load cell into 

digital data for processing by the MCU. 

Magnetic Encoder Connected to the ESP32-S3 MCU via the I2C interface, providing precise 

position feedback and traversing the plunger to a set position. 

Air Pressure 

Sensor 

It measures the pressure from the outlet of the vacuum pump, is connected via 

I2C, sends data to the MCU for processing, and is used for IC pick-up 

confirmation. 

PT100 Resistance 

Temperature 

Detector (RTD) 

It measures temperature using a 2-wire connection interfaced with the MCU 

through SPI, providing accurate thermal data for process control. 

Temperature 

Sensor 

Connected to the PT100 RTD via a 2-wire method, assisting in monitoring 

temperature changes, especially in conjunction with the heater. 

Heater Controlled by the ESP32-S3 MCU through PWM, adjusting output based on 

temperature readings to maintain stable thermal conditions. 

End Stops Connected via GPIO 11 & 38, used to detect mechanical limits of movement, 

ensuring safety and precision in system operations. The optical endstop is a 

sensor that detects the presence or position of an object by using light, 

typically emitting a beam that is interrupted or reflected, signalling the object’s 

position or limit of movement. 

Table 21 : Components of Eva and their description. 
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8.3 State Diagrams  

The movement of the plunger at any given time is managed by an eight-state finite state 

machine (FSM). In Table 22 and Table 23, the states are listed and described briefly, along 

with the corresponding state diagram figure. The system state transitions are executed within 

a parallel task called ‘Task2code’. The task first processes input commands received through 

the serial interface, parsing them to determine if a new state is specified, and if a new state is 

not set by the command, the system will determine the next state based on the current state 

and predefined conditions, allowing the appropriate state transition to occur. 

State  Description Figure 

Number 

TRAVERSE The plunger moves to a specified position, ensuring it is within 

tolerance. The system checks for any overload conditions or 

endstop triggers during this state. 

Figure 22 

HOMING The plunger returns to a predefined home position, which is 

where the inner endstop is triggered by the extruded marker of 

the load cell holder. 

Figure 18 

STOP The system halts all movement, disabling the motor and awaiting 

further commands. 

Figure 17 

IDLE The system remains in a standby state, with no active 

movements, awaiting the next command or transition based on 

external inputs. 

Figure 16 

PRESS The plunger applies a force to the target, continuing until a 

specified force or position is reached, while monitoring for 

overload and endstop conditions. 

Figure 19 

KEEP_PRESSING The plunger maintains a continuous pressing force, often used to 

ensure sustained contact or pressure, until specific conditions are 

met. 

Figure 23 

PICKING The plunger moves downward with the vacuum pump activated, 

enabling it to suction an IC. The operation is considered 

complete when feedback from the pressure sensor connected to 

the vacuum pump’s outlet confirms that the IC has been 

successfully grasped. 

Figure 21 

PLACING The plunger moves to place an IC in a designated location 

(socket or tray), releasing it by turning off the vacuum pump 

with controlled placing force and returning to a safe position 

after the task is complete. 

Figure 20 

Table 22 : State descriptions of the FSM. 
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Below are the ASMD diagrams of the eight states mentioned above in Table 22 above. 

 

 

Figure 16 : ASMD of state IDLE 

 

 

Figure 17 : ASMD of state STOP 
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Figure 18 : ASMD of state HOMING 
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Figure 19 : ASMD of state PRESS 
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Figure 20 : ASMD of state PLACING 

 



42 

 

 

Figure 21 : ASMD of state PICKING 
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Figure 22 : ASMD of state TRAVERSE 
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Figure 23 : ASMD of state KEEP_PRESSING 
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In Figure 24 a simplified version of the FSM is illustrated for convenience and for a quick 

general overview. As mentioned earlier, parsing and setting the next state based on an input 

command is not covered in Figure 24. The state will only transition to a state other than IDLE 

or STOP if the next state is explicitly set via an input command. For example, if the user 

enters the ‘press’ command, the input command parser will set the next state to PRESS, and 

the FSM will transition into the PRESS state. 

 

 

Figure 24 : Simplified FSM for overview. 
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8.4 PID Design  

Utilising the theories and methods explored in the theory section, the PID control loops 

necessary for the system were developed and implemented to meet the specific requirements. 

This section will focus on the design and implementation of these control loops, detailing 

how each component contributes to achieving the desired system performance. 

8.4.1 Motor Control PID  

Here, the PID control loop created for the motor control, which controls the movement of the 

plunger, and the insertion force of the IC into the socket are examined.  

In this system, when it comes to controlling the motor, the objective is to use motor motion to 

control the insertion force, which is read by a load cell. For the control of BLDC Motors, 

there exists an already well-implemented and reviewed library for controlling the motor 

driver called simpleton, which was utilised for the control of the motor in this system. The 

library offers two types of control modes, namely “closed-loop control” and “open-loop 

control”. Often, open-loop control is used for simple tasks where precision is not required, 

whereas closed-loop control is used for precise, sensitive operations. 

Due to the system’s complexity and the required operation, the available closed-loop options, 

which are “torque control”, “velocity control” and “position control” would not be effective 

and would not be able to perform the required task. Therefore, the very well-implemented 

close control loops could not be used in this system, even though they consist of already well-

tuned PID controllers. This restricts the system to the use of open-loop control for motor 

movement control. In this system, of the two available open-loop control methods, namely 

“velocity control’’ and “position control, the “velocity control’’ loop is utilised.  

 

Figure 25 : Velocity open loop control block diagram [26]. 
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In Figure 25, the block view of the velocity open-loop control system by simpleFOC library 

is illustrated. Using only the velocity control loop, the system would not be able to effectively 

control the insertion force. To address this challenge, a custom PID controller was 

implemented, utilising feedback from the load cell sensor to regulate the motor’s velocity, 

which results in a closed-loop control system that adheres to the required precision and 

accuracy. 

The block diagram in Figure 26 illustrates the components and flow of the PID controller, 

and in Table 23, a detailed description of each component’s role is listed. In Figure 26, the 

dashed red line box shows the border of the open-loop control used by the simpleFOC library 

within the closed-loop control loop of the motor. 

 

Figure 26 : Custom motor PID controller block diagram 

. 
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Component Description 

Set Point Force The target force value that the system aims to achieve serves as the 

reference input for the PID control loop. 

Error Calculation The difference between the set point force and the actual force measured by 

the load cell is used to determine the necessary adjustments. 

Proportional Gain  The proportional term of the PID controller produces a correction 

proportional to the current error. This helps reduce the error quickly. 

Integral Gain  The integral term accumulates the error over time, addressing any steady-

state error to ensure the system reaches and maintains the desired force. 

Derivative Gain  The derivative term predicts future error based on its rate of change, 

helping to dampen the response and reduce overshoot. 

Integral Clamping A mechanism that limits the integral term to prevent excessive buildup, 

which could lead to instability or overshoot in the system. 

Output Clamping A mechanism that restricts the total output of the PID controller, ensuring 

the motor operates within safe and effective limits. 

Pre-Processed 

Velocity 

The velocity output calculated by the PID controller before clamping 

represents the motor’s required speed to achieve the set point force. 

Processed Velocity The final velocity command is sent to the motor after applying clamping, 

ensuring the velocity remains within operational limits. 

BLDC Motor Driver  The function that applies the processed velocity to the Brushless DC 

(BLDC) motor controls its 3-phase voltage to achieve precise force 

application. 

BLDC Motor The Brushless DC (BLDC) motor applies the force as directed by the PID 

controller, using 3-phase voltage signals to control speed and torque. 

Force read from load 

cell 

The actual force is measured by the load cell, providing feedback to the 

PID controller for continuous adjustment of the motor’s output. 

Median Filter for 

Noise Filtering 

A filter is applied to the load cell’s output to remove noise or spikes, 

ensuring accurate and stable force measurement. 

Values with smoothed 

ADC spikes 

The filtered and smoothed force values used for error calculation prevent 

transient noise from destabilising the control loop. 

Table 23 : Components of motor PID controller. 
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8.4.2 Temperature Control PID 

The PID control loop for the temperature control, which controls the heating of the plunger to 

heat up ICs, is explored here. Figure 27 shows the block diagram of the PID controller’s 

components and flow, and Table 24 contains a detailed description of each component’s roles. 

 

Figure 27 : Custom temperature PID controller block diagram. 

 

Component Description 

Set Point Temperature The desired temperature value that the system aims to maintain serves as 

the reference input for the PID control loop. 

Error Calculation The difference between the set point temperature and the actual 

temperature measured by the sensor. This error value is used to determine 

the necessary adjustments. 

Proportional Gain  

(Kp * Error) 

The proportional term of the PID controller, which adjusts the heater’s 

power output in proportion to the current error, this helps quickly reduce 

the overall error. 

Integral Gain  

(Ki * Integral of Error) 

The integral term accumulates the error over time to eliminate steady-

state error, ensuring the system reaches and maintains the desired 

temperature. 

Derivative Gain (Kd * 

Derivative of Error) 

The derivative term predicts future errors by evaluating the rate of 

change, helping to prevent overshoot and improve system stability. 

Integral Clamping A mechanism that limits the integral term to prevent excessive 

accumulation of error, which could otherwise lead to instability or 

overshoot. 

Output Clamping A mechanism that restricts the total output of the PID controller, ensuring 

the heater operates within safe and effective limits. 
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Pre-Processed Duty 

Cycle 

The duty cycle output is calculated by the PID controller before 

clamping, representing the required power to achieve the set point 

temperature. 

Processed Duty Cycle The final duty cycle command sent to the PWM block after applying 

clamping, ensuring it remains within operational limits. 

PWM Block  The function responsible for applying the processed duty cycle to the 

heater is modulating its power to maintain the desired temperature. 

Heater The device that generates heat based on the power delivered by the PWM 

signal, working to achieve the temperature set point specified by the PID 

controller. 

Temperature Read from 

Sensor 

The actual temperature measured by the sensor, providing feedback to the 

PID controller to continuously adjust the heater’s output. 

Feedback Temperature 

from Sensor 

The filtered and accurate temperature feedback used for error calculation, 

ensuring the control loop responds correctly to changes in temperature. 

Table 24 : Components of temperature PID controller. 
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8.5 System Flow  

For a clearer understanding of the system’s operation, this section includes the flow of events 

for an example test user case. The flow chart presented in Figure 28 shows the interactions 

between the various components and highlights the sequence of actions that occur within the 

system during this specific scenario. The example test case involves a lab engineer using the 

web app to send a command to insert the IC into the socket with approximately 68 N of force. 

This command is received by the control system as ‘press 7000’ after being parsed by the 

server API. 

For easier comprehension, some additional information about Figure 28 is listed in Table 25. 

Additional Details 

1. The force value, such as 7000, is measured in grams. 

2. The unit of motor speed is rad/s, which is angular velocity. 

3. The SW engineer can alter the value of LOADMAX, which is 8000 grams, if necessary. 

4. EXITSPEED is set for 0.3 rad/s, which is used to exit the state when the PID calculated 

velocity is less than this, resulting in an insertion force that is very close to the target. 

5. Motor speed is set to IDLESPEED, which is 0.6 rad/s, two times higher than the state exit 

condition speed, for proper functionality of the states and system to avoid exiting the state 

upon entering when in the KEEP_PRESSING state. 

Table 25 : Additional information for the test case illustrated in the flowchart in Figure 28. 
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Figure 28: Flow chart of test case “press 7000”. 
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8.6 Analysis of Challenges in Implementation 

During the implementation of the system, several challenges were identified, and a few of 

them are listed and examined in this section. 

8.6.1 ADC Spikes Analysis 

During the implementation and testing phases of the system, sudden high spikes were 

occasionally sampled from the ADC, leading to system halts due to incorrect high force value 

readouts. In the lab environment, which consists of various tests and equipment for radar IC 

validation, ADC spikes could occur due to several factors. These potential causes are listed in 

Table 26 below. 

Possible Cause Description 

Electromagnetic 

Interference (EMI) 

High-frequency radar signals and other equipment generate EMI, 

introducing noise into the ADC input. 

Power Supply Fluctuations Variations in power supply voltage cause instability, leading to 

irregular spikes in ADC readings. 

Ground Loops Improper grounding or multiple grounding points introduce noise, 

causing inaccurate ADC spikes. 

Crosstalk Between Signals Interference from adjacent signal lines, particularly high-speed 

signals, results in ADC spikes. 

Impedance Mismatch Mismatch between source and ADC input impedance causes 

reflections, leading to signal distortions. 

Temperature Variations Rapid temperature changes affect ADC performance, causing 

temporary spikes. 

Improper Shielding Lack of proper shielding allows external noise to couple into the 

ADC input, causing high spikes. 

High-Speed Switching Rapid switching of radar signals or digital circuits induces noise into 

the analog signal path. 

Sampling Rate Issues Unsynchronized sampling rate with the signal of interest causes 

aliasing or under-sampling spikes. 

PCB Layout Issues Poor PCB layout practices lead to noise coupling into the ADC input, 

resulting in high spikes. 

Table 26 : Possible causes for ADC spikes. 

To examine this anomaly several tests were done under different environmental conditions to 

develop a solution. 
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I. Test in a Faraday Cage 

A Faraday cage is an enclosure made of conductive material that blocks external electric 

fields and electromagnetic radiation, creating an isolated environment free from 

electromagnetic interference (EMI).  

This allowed for a more accurate assessment of the system’s performance by ensuring that 

any anomalies, such as ADC spikes, are not influenced by external electromagnetic noise but 

are instead inherent to the system itself. In the Faraday Cage available on NXP premises, the 

unfiltered, load cell reading values from the ADC were recorded for around 12 minutes and 

then compared with the values for the same time period in the radar validation lab 

environment.  

 

Figure 29 : ADC unfiltered values comparison between Lab and Faraday Cage 

In Figure 29, it is observed that the readings taken in the Faraday cage have almost no 

significant relative spikes compared to the readings taken in the lab environment. Also, the 

average absolute deviation from the mean of the readings in the Faraday cage and lab is 

calculated to be respectively 0.0039 N and 0.0045 N, which is almost the same value. 
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II. High ADC Spike Readings 

During another test of load cell data readouts, very high spikes were captured, which are 

denoted in Figure 30 below. These random spikes are significantly higher in amplitude and 

would cause the control system to malfunction. 

 

Figure 30: Very high ADC spike readings 

 

III. 5G Influence from Mobile Phone 

Even though mobile phone usage within the lab area is restricted, a test was conducted to 

observe the influence of the 5G signal on the raw ADC values by downloading a large file on 

a mobile with 5G connectivity and having it in close proximity to the PCB. Figure 31 

displays relatively high spikes and heightened noise levels. 
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Figure 31 : Comparison of RAW ADC readouts between Faraday cage, lab, and 5G influence. 

 

IV. Median Filtering of ADC Load Cell Values 

To minimise the effect of this influence from the SW side, a median filter with a suitable 

window size of seven was implemented, which was able to overcome this sudden spike and 

also minimise the noise amplitude around a stable value. This could be observed in Figure 32 

below. 



57 

 

 

Figure 32 : Load cell readings comparison with Median filtering. 

 

8.6.2 Motor PID Tuning Analysis 

Although following the Ziegler-Nichols method for the tuning of parameters for the 

temperature-controlled motor worked smoothly, this was not the case when it came to tuning 

the PID parameters of the motor.  

For the tests done on the insertion force of the plunger, Eva was disconnected from the Cobot 

and was kept on the socket test board lock in adapter, where when the plunger is pressing on 

the socket board, the assembly (Eva) travels up a bit until the locking mechanism between the 

test board adaptor and the locking pins is engaged. The first flat area in Figure 33, between 

0.2 and 0.4 minutes, illustrates this. This could be observed in the other figures, where the 

insertion force is plotted. 

In an insertion force operation involving the plunger and an IC, the plunger undergoes two 

distinct phases. The first phase occurs when the plunger, which holds the IC, descends before 

making contact with the socket board. During this time, the error signal between the set point 
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and the actual force remains constant, leading to a significant accumulation of error in the 

integral term. This accumulation can cause the controller output to saturate as the integral 

action continues to increase despite the lack of actual force feedback. In Figure 33 and Figure 

34, it is observed that at around 26 N, the plot starts to stay relatively constant for some time 

and then again increases. This is because the plug lifts itself until the locking mechanism is 

tightly fitted with the board mounting plate, which is basically the exact force or weight of 

the Eva mechanical assembly. 

As shown in Figure 33, when using the Ziegler-Nichols method for parameter tuning, it 

resulted in a too aggressive system that took too much time to settle and oscillate around the 

target force, which led to utilising a less aggressive tuning method. 

 

Figure 33: Unstable system with Ziegler-Nichol’s method. 

 

The Tyreus-Luyben tuning method, which resulted in a less aggressive system, was utilised, 

and for further fine-tuning, the parameters were manually adjusted for another operation. In 

Figure 34, the comparison between the Ziegler-Nichols method and the combination of 
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Tyrus-Luyben with manual tuning methods is illustrated. It is observed that the system settled 

relatively faster and did not oscillate for a longer period. 

 

Figure 34 : Comparison between Ziegler-Nichol’s method and the manually tuned Tyreus-Luyben method for system stability. 

 

8.6.3 Sensor Libraries 

While there were well-implemented and community-supported libraries available for most 

sensors and drivers, the two i2c sensors (magnetic encoder and pressure sensor) lacked such 

libraries, necessitating the creation of a custom, suitable library, which is called 

“i2cSensorLib”. Here methods such as “exponential backoff” were utilised to overcome some 

transmission bugs that occurred. 
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9 Validation 

9. 1 Requirement Completion Overview. 

The functional and non-functional requirements that were developed in the requirements 

engineering phase and classified in the requirements chapter of this document are revisited 

again in this section to evaluate the requirement completion of the implemented system. The 

evaluation of the requirements and its deviations are listed in Table 27 below.  

Requirement 

Identifier 

Description Satisfied 

(Yes/No) 

Deviation  

If No 

REQ – 1 Pick ICs Yes  

REQ – 2 Place ICs Yes  

REQ – 3 Press ICs (80N Max) Yes  

REQ – 4 Heat ICs (150°C) Yes  

REQ – 5 Low Latency Yes  

REQ – 6 Precise Insertion Force Yes  

REQ – 7 Precise Force Reading No 0.0413N 

REQ – 8 Accurate Force Reading No 0.413% 

REQ – 9 Precise Temperature Reading Yes  

REQ – 10 Precise Temperature Steps No 0.75°C 

REQ – 11 Pick & Place Confirmation Yes  

REQ – 12 Engineer & Board Safety Yes  

REQ – 13 Cost-Efficient Yes  

REQ – 14 Software Portability Yes  

REQ – 15 Robust Communication Yes  

REQ – 16 Code Comprehensibility Yes  

Table 27 : Functional and non-functional requirements evaluation. 

 

Several tests were carried out to benchmark and analyse whether the system met the specified 

requirements. While some requirements were validated using detailed technical 
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measurements, others did not require extensive testing because their fulfilment was more 

straightforward. In this section, these tests and their results are listed, and some of the 

approaches taken to meet the requirements are also listed. 

I. Low Latency 

The system consists of six parallel processes. While some of these processes do not directly 

interact with the user interface, others do. Operations such as sending commands, executing 

them, and motor controlling must operate smoothly and with minimal latency to ensure 

optimal performance. In Table 28, each process and its average execution loop frequency are 

listed. 

Process Name Average Frequency Stack Size (bytes) 

Task1Code 1 kHz 4000 

Task2Code 6.5 kHz 4000 

Task3Code 34 Hz 4000 

Task4Code 900 Hz 4000 

Task5Code 14 Hz 4000 

Task6Code 150 Hz 4000 

Table 28 : Average execution loop frequency. 

 

Task1Code and Task2Code, which are responsible for processing user commands, managing 

state machines, and controlling the motor, operate at sufficiently high frequencies, resulting 

in very low latency. However, it is observed that the processes responsible for reporting status 

and sensor data to the serial interface, as well as heat control, are significantly slower 

compared to the other processes. This is due to the blocking and slowness of the temperature 

sensor readings in Task5Code, as well as the fact that data is reported in JSON format. 

 

II. Precision in Insertion Force, Force Reading and Accuracy 

After reviewing specifications such as non-linearity, hysteresis, repeatability, and creep for 

the selected load cell, we calculated the Root Sum Square (RSS) error to be approximately 

0.1413 N. Given that the system’s required minimum applicable step size is 10 N, this results 

in a measurement accuracy of 1.413%. Although the control software theoretically allows for 

minimum step sizes around 1 N, this would lead to reduced accuracy, and such small 
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insertion force steps are not necessary for the application in this project. Therefore, the 

requirements are evaluated as “NO” due to the deviation of 0.4 from the required value. 

 

III. Precision in Temperature Reading and Application Step 

Even though the prediction in temperature reading is met with the selected HW, the required 

prediction in temperature is calculated to be around 2.75 °C, as shown in Figure 35, where 

the plunger was set to a target heat of 120 °C and its temperature is monitored. 

 

Figure 35 : Temperature of the plunger for a target heat value of 120°C. 

 

IV. Engineer & Board Safety 

The lab engineer and the test socket board could be at risk of damage if the plunger 

malfunctions during socket insertion, heating, or in scenarios where the engineer’s hand or 

another body part is in a compromising position relative to the plunger. 
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To address these scenarios, several measures have been implemented and are listed in Table 

29 below. Although many safety measures have been taken regarding the system software, no 

software can be guaranteed to be perfectly stable and safe. 

 

Solutions 

1. Use of semaphores to avoid race conditions, inconsistent data states, and deadlocks in parallel 

processing. 

2. Use “configASSERT(xReturned == pdPASS);” to ensure the successful creation of parallel 

tasks and semaphores, and halt the system if not. 

3. Watchdog timers are used for important tasks where a fire hazard could be a problem, such as 

controlling the heater. If this task is not responding for a selected time interval, the system 

will enter panic mode and reboot. 

4. An emergency stop button that cuts all power and a stop command that puts the system into a 

stop state were implemented. 

5. Max force checking and retracting the plunger, so the socket is salvaged in case of a sudden 

increase in force crossing 80N (configurable) force. 

6. To prevent the plunger from being pushed or retracted out of bounds, the system actively polls 

the state of the optical end stops during plunger movement. 

7. Input command filtering and error checking. e.g., only insertion forces under 120N or 

temperatures under 180°C are passed on as valid commands to the system after serial 

command processing. 

8. For PID controller stability measures such as, 

a. Proper parameter tuning method usage. 

b. Integral clamping, output clamping, and resetting of the PID parameters are done to 

achieve a more stable controller. 

c. Use of a median filter to minimise the effect of random ADC spikes influencing the 

controller. 

d. Limiting the motor PIDs operation for the linear range, where the PID starts to 

calculate after around 20N of force is read.  

e. When PID control is active, the system is designed to call this function for calculating 

the values with the same frequency (if not, it would cause malfunctions in the 

controller due to the integral and derivative parts). 

Table 29 : Measures to for improved safety of the system. 
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V. SW Portability, Power, Code Clarity and Communication 

The rest of the requirements are listed below in Table 30 along with the measures taken for 

successful implementation of them. 

Requirement Measures Taken 

Software Portability • Use of Free-RTOS for portability [27]. 

Optimized Power • Task sleeping instead of busy waiting, 

• Motor is turned on only when needed and in most of the time 

remains off. 

Code Comprehensibility • Commenting when required, and Doxygen documentation of the 

source code. 

• State diagrams of the FSM and flowchart to understand the flow 

of events in the system. 

Cost-Efficient • Not accounting NRE costs and in house printed 3D structures, 

the costs come to under 350€ for one Eva Lab Handler excluding 

the mounting robotic arm. 

Table 30 : Requirements and measures taken to meet them. 

 

9.2 System performance and validation through lab test cases 

Along with meeting functional and non-functional requirements to validate the system, this 

system should match or exceed the efficiency and precision of the process where the 

validation engineer manually swaps samples and uses a lid to securely place the IC in the 

socket. 

The measurements listed below in the next section are conducted on the NXP’s Automotive 

Radar chip called SAF85XX, illustrated in Figure 36, which is yet in preproduction and being 

actively validated in my department. The Integrated Circuit (IC) is utilised in a variety of 

advanced automotive applications, including adaptive cruise control (ACC), autonomous 

emergency braking (AEB), blind spot detection (BSD), door open warning (DoW), front 

collision warning (FCW), front cross traffic alert (FCTA), lane change assistance (LCA), park 

assist (PA), rear cross traffic alert (RCTA), and reverse autonomous emergency braking (R-

AEB) [28]. 
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Figure 36 : High Performance 77GHz RFCMOS Automotive Radar One-Chip SoC [28]. 

 

9.2.1 IC Transmitter Power Test Case 

The IC was pressed into the socket with around 70N of force, and then the transmitter power 

of the IC was measured over time with regulated force by activating the KEEP_PRESSING 

function, which maintains the set insertion force over time and unregulated force. This was 

compared with the case where the engineer swaps the IC manually and uses the specified lid 

to push the IC into the socket. This was done in three temperature test cases, namely ambient 

(25°C), hot (150°C), and cold (-40°C), which are the three temperature measurements done in 

the validation lab. 

For confidential reasons, no absolute values of any of the measures are plotted, and only the 

ratio with respect to the reference case is plotted using the formula (2) below. The reference 

case is 0 dB in this case due to the difference between itself as a test case being zero. 

 

Power Ratio (dB) = 10 ⋅ log10 (
Test Case Power (mW)

Ref Case Lid Power (mW)
) (2) 

 

During a test, the IC heats up when transmitting, and this, as well as heating up the device for 

hot measurements and cooling it down for cold measurements, expands or shrinks the metal 

plunger. This will influence the insertion force of the IC on the socket and could cause 

deviations in power due to the change in impedance of the pogo pins of the socket. 
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I. Test at Ambient Temperature (25 °C) 

As shown in Figure 37, it is clearly observed that when the force is regulated, the TX power 

is relatively constant compared to the unregulated test case, where the power has a slightly 

increasing line. 

 

 

Figure 37: TX power comparison at ambient. 

 

II. Test at Cold Temperature (-40 °C) 

As illustrated in Figure 38, the temperature readout from the IC was cooled down to around -

40 °C, and the TX power was recorded. In this case, the regulated force performed better in 

power around +3.5 dBs compared to the unregulated force test case. 
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Figure 38 : TX power comparison at -40°C. 

 

III. Test at Hot Temperature (150 °C) 

As illustrated in Figure 39, the temperature readout from the IC was heated up to around 150 

°C, and the TX power was recorded. In this case, the regulated force performed only slightly 

better, with almost no difference in power compared to the unregulated force test case. 
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Figure 39 : TX power comparison at 150°C. 
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10 Summary & Outlook   

10.1 Summary and Key Findings of Analysis 

Based on the analysis presented in 8.6 Analysis of Challenges in Implementation, as well as 

insights gained from various interactions and findings encountered during the system’s 

implementation and testing phases, the table below outlines the lessons learnt and 

recommended steps for avoiding anomalies and deviations in future iterations. 

 

Anomaly / Deviation   Possible Solutions 

ADC Spikes • Shielding of the traces in PCB. 

• Twisted pair traces in PCB.  

• Short and direct traces on the PCB between the ADC and the load 

cell. 

• EMI shielded enclosure for the PCB. 

• Shielded wires from load cell to PCB connector. 

Accuracy • Load cells with narrower but more accurate full-scale ranges. 

Slow Temperature 

Reads 

• Although for the current Temperature PID and the heater the 

temperature sensors reading frequency is good enough, a faster 

reading sensor would be better and would be able to get the required 

temperature steps. 

Table 31 : Suggested solutions for the next iteration of the project. 

 

To avoid the anomalies and deviations encountered in this iteration, which were difficult to 

counteract with SW solutions, Table 31 above lists potential solutions for consideration in the 

next iteration. 
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10.2 Conclusion 

This thesis successfully designed, developed, implemented, and validated an RTOS system 

that uses PID control for socket insertion force and heater temperature control, meeting 

nearly all functional and non-functional requirements of the lab handler project with minimal 

deviations. The system is now suitable for use in IC chip validation in conjunction with a 

Cobot. 

This conclusion was reached after thoroughly reviewing the validation section where the 

system is tested and analysed to check for functional and non-functional requirements, and 

also the overall system with its current state has been compared with the reference test case 

where the engineer swaps the samples manually. 

 

10.3 Future Work and Recommendation 

Although the system has successfully met most of the project requirements, there is still room 

for improvement and optimization. This section lists some potential improvements that could 

have a positive impact on the system in addition to the listing included in the Summary and 

Key findings section. 

1. For further safety of the temperature PID control, where a possible thermal runaway 

scenario could happen due to faulty connection or malfunction of the temperature 

sensor, a SW solution with a redundant temperature sensor could be implemented for 

a safer system with higher MTBF. 

2. Redundant load cell sensors for safety and higher MTBF of the system in socket 

insertion force control.  
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