HAW
HAMBURG

BACHELORTHESIS
Thishan Warnakulasooriya

RTOS-Based Implementation

of a Chip Validation System Featuring
PID-Controlled Socket Insertion

and Temperature

FACULTY OF ENGINEERING AND COMPUTER SCIENCE
Department of Information and Electrical Engineering

Fakultat Technik und Informatik
Department Informations- und Elektrotechnik

HOCHSCHULE FUR ANGEWANDTE
WISSENSCHAFTEN HAMBURG
Hamburg University of Applied Sciences

Thishan Warnakulasooriya

RTOS-Based Implementation of a Chip
Validation System Featuring PID-Controlled
Socket Insertion and Temperature

Bachelor Thesis based on the examination and study regulations
for the Bachelor of Engineering degree programme

Information Engineering

at the Department of Information and Electrical Engineering

of the Faculty of Engineering and Computer Science

of the University of Applied Sciences Hamburg

Supervising examiner: Prof. Dr. Ing Pawel Buczek
Second examiner: Mr. Holger Mahnke

Day of delivery: 10 September 2024

Thishan Warnakulasooriya

Title of the paper

RTOS-based implementation of a chip validation system featuring PID-controlled

socket insertion and temperature

Keywords

RTOS, Control Systems, PID Control & Tuning, Parelle Processing, FSM,
Automation, Integral Windup, ADC Spikes

Abstract

This document covers the requirement classification, design, implementation,
development, and validation of control software for a chip validation system. The
software is an RTOS that utilises PID control for the regulation of insertion force and
heating of the IC.

Thishan Warnakulasooriya

Thema der Bachelorthesis

RTOS-basierte implementierung eines chip-validierungssystems mit PID-gesteuerter
sockelinstallation und temperaturregelung

Stichworte

RTOS, Regelungssysteme, PID-Regelung & Abstimmung, Parallelverarbeitung,

Endlicher Zustandsautomat, Automatisierung, Integralsattigung, ADC-Spitzen

Kurzzusammenfassung

Dieses Dokument behandelt die Anforderungsanalyse, das Design, die
Implementierung, Entwicklung und Validierung der Steuerungssoftware fiir ein Chip-
Validierungssystem. Die Software ist ein RTOS, das PID-Regelung zur Steuerung der

Einpresskraft und Erwarmung des IC verwendet.

Table of Contents

L ADDIEVIALIONS ...t Vi
A 1S o) o 0TSSR vii
B LISt OF TADIES ... s IX
Ao (Lo V1Y [=To o T=T 1 =T o | S X
5 INEMOTUCTION ...ttt bt r e nes 1
TR = 72 Tod (o {010 o OSSPSR 1
5.2 ODJECTIVE ...ttt bbbt bbbt 5

B REGUITEIMENTS ...ttt bbbt bbbkt b e et e bbbttt e e e nnes 6
6.1 PUIPOSE OF SYSTEM.....eiiiiiiiieiese et b bbbt 6
6.2 FUNCEIONAl REQUITEMENTS ...ttt 7
6.2.1 Introduction to Functional REQUIFEMENTScccoiiiiiiinieicee e 7
6.2.2 Functional Requirements of the SYStEMccociiiiiiiiiice e 7

6.3 Non-Functional REQUITEMENTSc.iiiiiiiiieieie s 8
6.3.1 Introduction to Non-Functional ReqUIreMentSccccveveieeveciiesie e 8
6.3.2 Non-Functional Requirements of the SyStemccccovveiiiiciiccc e 8

A 1 1010 VSO S PRSPPSO 9
7.1 EMDEAAEU SYSIEIMScveeiiiitieie ettt et et sre e ste s e s be e beannenreas 9
0 0 10 o]l oo o TSP SUPRRUPRPRS 10
7.1.2 COOPEIAtIVE OS ... oottt te e st e et e e e s aaesteenresreenre e 11
7.1.3 Real-time operating SYStem (RTOS)cccoiiiiiiiiierisieeeee e 12
T.1ARTOS FOr ESP-32 S3 ...ttt te e sna e e 14
T.LS FrEE-RTOS ..ottt ne e 16

7.2 CONIOI SYSTEIMS ...ttt bbbttt e bbbt bbbt 18
7.2.1 Introduction to COoNtrol SYSIEMScciiiiiiieie e 18
7.2.2 Open-loop and Close-100p coNtrol SYStEMScoovririeiiiieie e 18
7.2.3 Feedback COoNtrol SYSIEMS.coiiiiiiiiiee et 20

T 2.4 PID CONIOIIOT ..ottt e e e e e e e e eee s 22

7. 2.5 PID TUNING ..eoitieiiiie sttt te et e e are e beeneessaenteeneesnaenseens 24
7.2.6 PID Integral WINGUPc..oiieiieee ettt 27

SR L] 1 (=T 0T g v LA o] OSSR 29
8.1 Overall SyStem ATCNITECTUIEooiiiiiiieie e 30
8.2 Mechanical Assembly of the SyStEMccoiiiiii e, 33
8.3 SLALE DHAGIAMS ...ttt b bbbttt b e bbbt se e e e e 37
B4 PID DESION ...ttt bbbttt bbbt 46
8.4.1 MOtOr CONLIOI PID ...t 46
8.4.2 Temperature CoNtrol PIDcoooiiiiiiiieieie e 49

8.5 SYSIEM FIOW.....cviiiiceic ettt e e e e reeee s reenre e 51
8.6 Analysis of Challenges in Implementationccccccoveveiiere e, 53
8.6.1 ADC SPIKES ANAIYSISviiuiiiiieiiciie sttt be et te e e e 53
8.6.2 Motor PID TUNING ANAIYSISc.viiieiieeieiie ittt 57
8.6.3 SENSON LIDIAMIES ...ttt e 59

O VAHIALION ...ttt b et bbb 60
9. 1 Requirement Completion OVEIVIEW.c.ccvueiuiiieiieiiecie e 60
9.2 System performance and validation through lab test Casesccccvvvevvriierivereiiennnnn, 64
9.2.1 IC Transmitter POWET TESE CaSE.ccureeiiierierie sttt 65

10 SUMMANY & OULIOOK.cuiiiiiiiiiiiee e 69
10.1 Summary and Key FIndings of ANalYSISccooiiiiiiiiiiiiiceee e, 69
10.2 CONCIUSTON 1.t b bbbt b bbbt 70
10.3 Future Work and ReCOMMENTALIONccoiiiiieiiieiesie e 70
BIDHOGIAPNY ...ttt 71
DECIAIALION ...t 74

1 Abbreviations

Abbreviation

Full Term

ADC Analog to Digital Converter

ASMD Algorithmic State Machine with Datapath
BL RFP Business Line Radio Frequency Processing
FSM Finite State Machine

IC Integrated Circuit

ISR Interrupt Service Routine

MCU Micro Controller Unit

(OR] Operating System

PCB Printed Circuit Board

X Transmitter

Vi

2 List

Figure 1 :
Figure 2 :
Figure 3 :
Figure 4 :
Figure 5:
Figure 6 :
Figure 7 :
Figure 8 :
Figure 9:

Figure 10 :
Figure 11 :
Figure 12 :
Figure 13:
Figure 14 :

Figure 15
Figure 16
Figure 17

Figure 18 :
Figure 19 :
Figure 20 :

Figure 21
Figure 22

Figure 23 :
Figure 24 :
Figure 25 :
Figure 26 :
Figure 27 :

Figure 28
Figure 29
Figure 30
Figure 31

of Figures

CNC type Lab Handler “BOnita’..........ccooouiiieriieiiieiie et 2

LEVEIING CASTON ...ttt bbbt 3
Eva, connected with the Cobot and mounted on mobile table.ccccoovvviiennne 4
Concept diagram of super-loop WOrkflow [4].cocevveiviiiiiieiececee e 10
Concept diagram of cooperative-loop WOrkflow [4]. ..o, 12
Scheduled tasks in round robin pattern [4].........ccocoiiiiiiiiine e, 13
RTOS WOrKfIOW OVEIVIEW [4]. ..ceeeieiecieee et 14
Architecture Overview for VxWorks and FreeRTOS [18].cccccovvvievveveiiciieenenn, 17
Block diagram of a basic PID controller. ..., 23
Response of a typical PID closed loop system [20].ccccceveieieneneneninieee, 25
Steps of tuning a controller according to Ziegler Nichols method [22]................ 26
High-level overview of system architeCture............cccoovevvvieieeie e, 31
Eva flipped front SIAE VIEW.cciiiiiiiiieieee e 33
Eva flipped back Side VIEW. ..., 34
System BIOCK diagram.coueiiiiieie e 35
S ASMD Of State IDLEcoiieiiie e 38
T ASMD OF SEALE STOPeiieiecieee e sre e enes 38
ASMD 0f State HOMINGcoiiiiiiieiiece e 39
ASMD Of State PRESScoiiiiiiiiiee e 40
ASMD 0f state PLACING.........coviiiiieiieiece e 41
- ASMD Of State PICKING........cciiiiiiee e 42
: ASMD of state TRAVERSEcooiiiice e 43
ASMD of state KEEP_PRESSINGcccccoiiiiiiii e 44
Simplified FSM fOr OVEIVIEW.cc.ooviiieece et 45
Velocity open loop control block diagram [26]..........cccceevviiieeiieiiciie e 46
Custom motor PID controller block diagramccocoveiiiiiiiiiiiiceee, 47
Custom temperature PID controller block diagram.ccccceeveiiiiniininiicienn, 49
Flow chart of test case “press 70007,c.oiviiiiiiiieiiiieie e 52
: ADC unfiltered values comparison between Lab and Faraday Cage.................... 54
Very high ADC SPIKe FEAAINGSccveiverieieieieiie e 55

: Comparison of RAW ADC readouts between Faraday cage, lab, and 5G influence.

Figure 32 : Load cell readings comparison with Median filtering...........ccoccovvevivevviieineenene, 57

Figure 33: Unstable system with Ziegler-Nichol’s method.cccccevviiiiieiicce e 58
Figure 34 : Comparison between Ziegler-Nichol’s method and the manually tuned Tyreus-

Luyben method for SyStem StaDIILY.ccccviiiiiiii e 59
Figure 35 : Temperature of the plunger for a target heat value of 120°C.cccovevvennne. 62
Figure 36 : High Performance 77GHz RFCMOS Automotive Radar One-Chip SoC [28].....65
Figure 37: TX power comparison at ambIeNT.ccooeiiiiiiiiiieeeee e 66
Figure 38 : TX power compariSon at -40°C.........c.coueiiriereiereneieeeee e 67
Figure 39 : TX power comparison at 150°C.cciiiieiieieiie e 68

viii

3 List of Tables

Table 1: Previous Lab Handler REQUIFEMENTScooiiiieiiriiiiesieeieeeee e 1
Table 2: Extended Lab Handler Requirements for the new iteration.............ccoccevcvevvinivenenne 3
Table 3: Simplified System FUNCHIONAIILY.........c.covveiiieccr e 6
Table 4 : Functional requirements of the control system for Eva.c.cccccooevveveiicicieenee, 7
Table 5 :Non-Functional requirements of the control system for Eva...........ccccoecvvviininennnne. 8
Table 6 : Most common embedded OS SOIULIONS.ccoiviiiiiiiiiicee e, 10
Table 7 : ESP32-S3-MINI-1U MCU Specifications [12].cccccvvueiieieiiieie e seene e 15
Table 8 : Comparison of most used RTOS for ESP32-S3..........cccoiiiieii i 16
Table 9 : Free-RTOS features SUMMANIZEUcovviiiiiieieie e 17
Table 10 : Components of @ CONIOl SYSEMcviiiiiiieiese e, 18
Table 11 : Comparison between open vs close loop control systems.ccccccevvveveeieiiiennn, 19
Table 12 : Importance of feedback control SYStEMS...........cocveiveiiiiieiieie e 20
Table 13 : Comparison of commonly used feedback control Systems...........ccoccvvvveviverviiennnns 22
Table 14 : Three main parts of a PID CONroller. ..o, 22
Table 15 : Components of the PID control equation..............ccceeveiieiieie i 23
Table 16 : Overview of the terms overshoot, settling time and steady state error................... 24
Table 17 : Gain calculation for P, PI & PID controllers according to Ziegler - Nichol’s

41110 To o PSSR 26
Table 18 : Gain calculation for P, Pl & PID controllers according to Tyreus-Luyben method27
Table 19 : Parallel processes and their tasks in the SyStem.c.cccevveeveiiiie e, 30
Table 20 : Components of the system architecture and their interactions.cccccceeevvveenen. 32
Table 21 : Components of Eva and their desCription.cocvviiiriiierene e, 36
Table 22 : State descriptions 0f the FSIM.coiiiiii e, 37
Table 23 : Components of Motor PID CONtrOlEr.........cc.ooveiviiiicceeceee e 48
Table 24 : Components of temperature PID controller.c.ccoveiiiiiii i 50
Table 25 : Additional information for the test case illustrated in the flowchart in Figure 28..51
Table 26 : Possible causes for ADC SPIKES.coiiiiiiiiiesie e 53
Table 27 : Functional and non-functional requirements evaluation...............cccccoeevveiieeinnenne. 60
Table 28 : Average execution 100P frEQUENCY.c.eciiiiiiiiiieiie e 61
Table 29 : Measures to for improved safety of the SyStem.cccooeviiiiinie, 63
Table 30 : Requirements and measures taken to meet them.c.cccevvvievivere s, 64
Table 31 : Suggested solutions for the next iteration of the project.........ccccoovvvveiiiiiiciinene, 69

iX

4 Acknowledgement

I would like to express my sincere gratitude to my manager, Holger Mahnke, at NXP for his
invaluable support and guidance throughout my project. His expertise and encouragement
were crucial to the completion of this thesis.

I would also like to extend my heartfelt thanks to my supervisor, Professor Pawel Buczek, for
his insightful advice and continuous support. His mentorship has been instrumental in

shaping my research and achieving this milestone.

Additionally, I am deeply grateful to my colleague, Celestine Machuca, for her unwavering

assistance and collaboration. Her contributions and support were invaluable.

Thank you all for your unwavering support and belief in my capabilities.

5 Introduction

5.1 Background

Under the leadership of my manager, Holger Mahnke, the Validation Department of the

Business Line Radio Frequency Power (BL RFP) validates company-designed radar

integrated circuits (ICs) to ensure compliance with their datasheet specifications. We then

communicate the results of these validation tests to the design engineers. When necessary,

adjustments are made to the IC design to ensure that the specified parameters are achieved.

The validation engineer manually subjects multiple 1Cs from various wafer areas to the

validation test benches by selecting the IC, inserting it into the socket, and tightening the

socket screw on the lid. An automated test script runs on a setup test bench with measurement

and other heating and cold equipment for a tray of several dozen IC samples for a selected

test case, requiring an engineer to be present on-site to swap the ICs.

The need for a lab handler to automate the 1C swap procedure became evident when the lab

had to manually test and configure 100 samples. Automating this process was crucial. This

initial lab handler was supposed to fulfil the following requirements in Table 1 below.

Requirement

Description

Repeatability

0.1 mm repeatability of XY-axis placement (parallel to the setup board).

Maintenance

Maximum service and inspection of once per month.

Plug and play | Easy installation and immediate use require no complex setup or configuration,
allowing it to function right out of the box with minimal technical expertise.

Accuracy Precise placement and alignment of ICs on tray and socket is possible.

Scalability The ability to handle varying quantities of ICs.

Compatibility | Support for various types and sizes of ICs is available.

Safety The implementation of safety measures is necessary to prevent damage to ICs and
equipment (ESD).

Speed Efficient operation to minimize downtime between tests

User The intuitive controls and monitoring systems facilitate easy operation and

Interface troubleshooting.

Table 1: Previous Lab Handler Requirements

Figure 1 : CNC type Lab Handler “Bonita”

The initial two CNC-style lab handlers were developed and implemented by repurposing
control units originally designed for 3D printers. After running various test setups, the
validation team found the two new machines were contributing tremendously to their work
by being able to run test scripts overnight, relieving engineers from manually handling
samples. It was also discovered that the IC needs to be pushed with around 65N to 70N for an
ideal contact with the test socket pogo pins-

While these units proved to be efficient and successful, the limited functions originally
intended for 3D printers posed restrictions due to their complexity when attempting to set up
new custom functions. Furthermore, their CNC-style design made them heavy and large,
requiring substantial space, as can be observed in Figure 1 above. Due to their considerable
size and weight, these machines lacked mobility, thereby restricting engineers to always
setting up their test benches at fixed locations where the lab handlers were stationary. The
need for a newer lab handler was immense, with the additional requirements stated in Table 2

below.

Requirement Description

Mobile It can effortlessly move from one test bench to another.

Customizable Firmware | The firmware could integrate additional features with the essential tasks.

Small Scale Enabling it to be used in complicated test setups with limited clearing.

Scalable It can easily be modified to be used with different IC housing sizes.

Table 2: Extended Lab Handler Requirements for the new iteration

The new iteration’s concept involved purchasing a commercial Cobot and integrating it with
an in-house solution to fulfil the basic functional requirements of the lab handler. To achieve
this, we purchased a Cobot, the “UFACTORY xArm 5 Lite”, which has 5 axis/joints and a

maximum press and lift force of approximately 30 N [1]. This Cobot was then mounted also
on an in-house designed table with the ability to be mobile and, when needed, stationary and

stable by its heavy-duty wheels that are height adjustable, as shown in Figure 2 below.

Figure 2 : Leveling Castor

The in-house solution must also be able to account for the controlled insertion force required
for the project, as the Cobot's press/push force of 30N is insufficient for an ideal contact
between the socket and the IC. The control system software of the in-house designed and

built adapter, known as “Eva”, is the primary focus and core subject of this thesis.

h Mobile Table

Figure 3 : Eva, connected with the Cobot and mounted on mobile table.

In Figure 3, Eva in combination with the Cobot and mounted on the mobile table setup is
illustrated.

5.2 Objective

The primary objective of this thesis is to design and implement a software solution for the
Lab Handler project. This involves conducting both theoretical and practical research studies
to ensure the solution fulfils all the necessary requirements established during the

requirements engineering phase, as outlined in the Requirements Chapter.

6 Requirements

6.1 Purpose of System

Despite the complexity and extensiveness of the system requirements, the fundamental
functionality of the system can be simplified into the following basic functions, as shown in

Table 3. They are the most important and basic system functional requirements.

Identifier Function

REQ -1 | The system can pick up the IC from IC trays and sockets.

REQ -2 | The system can place the IC from IC trays and sockets.

REQ -3 | The system can press the IC into the socket for a maximum of up to 80N and maintain it.

REQ -4 | The system can heat up the IC and maintain it at a maximum temperature of 150 °C.

Table 3: Simplified System Functionality

This document consists of the design, implementation, optimization, and validation of the
software solution for the required system. The software will be executed on a PCB designed
in-house by Celestine Machucha and manufactured in China. The design of the physical
infrastructure, including the selection of sensors, drivers, MCU, and other hardware
components, was conducted in collaboration with Celestine Machucha through numerous
iterations and prototyping. These aspects are not included within the scope of this document.
In summary, the hardware with the smallest footprint and optimal specifications, tailored to
the project requirements, was selected from the available list of devices provided by JLPCB
[2]. Hardware available from JLPCB was chosen because they could ship the printed PCB
boards with the components already soldered. This streamlined the manufacturing process, as

the PCB was manufactured, and the hardware components were soldered by JLPCB.

The MCU ESP32-S3-MINI-1U was selected based on its compact size, affordable price,
comprehensive documentation, strong community support, and well-implemented libraries
from both the community and Espressif, along with its inclusion of a 240MHz dual-core

processor.

6.2 Functional Requirements

6.2.1 Introduction to Functional Requirements

Functional requirements describe the specific functionalities that the system should be
capable of performing [3]. They outline the essential tasks and processes that the system must
execute to meet the needs of its users and stakeholders. They serve as the foundation for
system design and development, ensuring that the final product aligns with the intended
purpose of the system.

6.2.2 Functional Requirements of the System

The functional requirements of the system are stated and described in Table 4 below. It
extends the simple requirements that were developed at the beginning of the project by

modifying and extending the requirements of the previous Lab Handler CNC project.

Identifier Requirement Description
REQ -5 Latency e User interactive tasks are at least 120 Hz.
REQ -6 Precise insertion force e Minimum precision of 10N.
REQ -7 Precise insertion force reading e Minimum precision of 0.1N.
REQ -8 Accurate insertion force reading e Minimum accuracy of 1%.
REQ-9 Precision in temperature reading e 0.1 K (range 223.15 K —423.15 K).
REQ - 10 Precision in temperature step apply e 2K
REQ-11 DUT pick & place confirmation e Feedback of the air pressure change in the
vacuum pump.
REQ - 12 Safety for the Engineer and the e Thread / Deadlock safe.
Validation board e Process infinite loop fault safety.
e Emergency Stop.
e PID safety.

Table 4 : Functional requirements of the control system for Eva.

6.3 Non-Functional Requirements

6.3.1 Introduction to Non-Functional Requirements

Non-functional requirements are criteria that can be used to evaluate the operation of a

system, rather than specific functions and tasks. They define system attributes such as

performance, security, usability, reliability, and scalability and are crucial to ensure that the

system meets quality standards and performs efficiently under various conditions.

6.3.2 Non-Functional Requirements of the System

The Non-functional requirements of the system are stated and described in Table 5 below.

The requirements were developed at the beginning of the project by modifying and extending

the requirements of the previous Lab Handler CNC project.

Identifier Requirement Description

REQ - 13 Cost-efficient The cost should be as low as possible while being
as high as necessary.

REQ - 14 Software portability SW can be used without major modifications across
different MCUs.

REQ - 15 Optimized Power. Power usage for the whole system operation should
be as low as possible while having the highest
efficiency.

REQ - 16 System code The system code should be simple and easily

comprehensibility

readable even for an entry SW developer.

Table 5 :Non-Functional requirements of the control system for Eva.

7 Theory

This chapter dives deeply into the two primary areas of focus, RTOS and feedback-control
systems, during the system’s development. The system consists of several sensors that it
needs to communicate with and drivers that need to be repeatedly called at a fixed frequency
for smooth and efficient operation. It also consists of several control loops that are essential
for correct and precise operation. The approaches taken to meet these requirements are
discussed further in the RTOS and Feedback Control System chapters.

7.1 Embedded Systems

An embedded system is a combination of electronic components and software that is
specifically designed to perform a specific function. An advanced embedded system typically
includes a microcontroller that can be programmed to execute diverse functions, such as
temperature sensing, battery level sensing, and retrieving acceleration data from an
accelerometer. This system is applied in various applications including air-conditioning,
remote-control devices, car entertainment systems, flight navigation systems, robotic
automation in factories, MP3 players, smartphones, and smartwatches. Personal computers
(PCs) running general-purpose operating systems like Windows, Linux, and Mac OS have the
capability to perform a wide range of tasks and require significant resources in terms of
processing power, graphics processing, and memory usage. On the other hand, embedded
software is purposefully created for a particular application. An embedded operating system
is specifically developed for microcontrollers with limited resources, particularly in terms of
memory capacity, such as read-only memory (ROM) and random-access memory (RAM). A
standard personal computer typically includes several gigabytes of random-access memory
(RAM) and multiple terabytes of hard disk space. In contrast, the memory capacity of a

microcontroller is significantly smaller in comparison to a PC [4].

For this purpose, an embedded OS is designed and developed resource sensitive and efficient.
There are three main types of embedded OS solutions that are commonly used in industry,
which is listed in Table 6 [4].

Embedded OS Solution

1. Super loop

2. Cooperative

3. Real time operating system (RTOS).

Table 6 : Most common embedded OS solutions.

7.1.1 Super Loop

Small embedded systems commonly employ a foreground and background pattern for their
operating system design [5], [6]. As shown in Figure 4, the background area contains the
tasks that are to be executed indefinitely. When an interrupt triggers the background tasks are
interrupted and the software will switch to the interrupt service routine (ISR), which is
conceptually part of the foreground area. The term for this process is pre-emption. Once the
ISR is handled, it will resume execution from the exact point where it had previously paused
in the background area. This is the basic operation of a super loop embedded operating
system. The tasks in the background region are executed in a sequential manner. The
subsequent task will be carried out only upon completion of the preceding task. Once the
final task in the sequence is completed, it will cycle back to the initial task and begin again in

a sequential manner [4].

Time
Background Foreground
Infinite Loop
[ISR_1
Infinite Loop
ISR_2
Infinite Loop
v

Figure 4 : Concept diagram of super-loop workflow [4].

10

7.1.2 Cooperative OS

The cooperative scheduler is commonly used in embedded systems. The basic concept is
similar to the operation of the super loop scheduler, involving both foreground and
background regions. In contrast to the sequential and cyclical execution of tasks in a super
loop, the tasks in this case are organised into groups based on time slots. Their activity will be
limited to the specific time slot when it is active. During the active time slot, the tasks within
it will be executed in a sequential manner and will only be served once. Subsequently, they
will remain inactive until their designated time slice becomes active once more. The
cooperative scheduler is generally considered to be more structured and predictable compared
to a super loop [7], [8]. As shown in Figure 5, the timer is programmed to accurately measure
the passage of time. When the timer interrupt triggers, the background tasks will be
interrupted, and the timer ISR routine in the foreground will be executed to record the time
[9]. For example, one second had elapsed, two seconds had elapsed, and so forth. Based on
the definition of the requirements, a flag can be activated within the ISR when the designated
time is reached. As an example, the Timer 1 flag is activated when 1 second elapses, while
the Timer 2 flag is activated when 2 seconds elapse. Subsequently, the program will resume
execution from the precise location where it had previously been paused within the
background region. Using this mechanism, the scheduler could selectively execute tasks that
are assigned to a specific time region. Task 1 will only be executed when the Timer 1 flag is
active, and Task 2 will only be executed when the Timer 2 flag is active. Contiki and TinyOS

are operating systems that have implemented the cooperative mechanism [4].

11

Time
Background Foreground

Cooperative
Scheduler

| =[Update System Time |

Cooperative
Scheduler

;_:] Update System Time |

Cooperative
Scheduler

1

Cooperative Scheduler (Background)
Read System Time
+
YES
Timer_1 activated? | Execute Task 1
lN()
YES [
Timer_2 activated? =% Execute Task 2
I

Figure 5 : Concept diagram of cooperative-loop workflow [4].

7.1.3 Real-time operating system (RTOS)

A real-time operating system (RTOS) is significantly more complex than a super loop and
cooperative scheduler, and it has a unique deterministic capability in contrast to other

operating systems.

The two categories of RTOS are hard RTOS and soft RTOS [10]. The hard real-time
operating system (RTOS) consistently meets the specified deadline, whereas the soft real-

time operating system (RTOS) is able to meet the deadline on the majority of occasions.

For time-sensitive real-time applications, especially in industries such as automotive and
military, the use of a hard RTOS (Real-Time Operating System) is required. Failing to meet a
deadline in these situations could result in fatal consequences. For example, the
implementation of a car airbag: if the system needs to activate the airbag within 50
milliseconds after detecting a collision, the real-time operating system (RTOS) must

guarantee that this time limit is consistently met.

12

Unlike simpler scheduling methods like super loops or cooperative schedulers, which can be
developed internally relatively easily and quickly, the industry often relies on third-party real-
time operating system (RTOS) solutions for more complex requirements. The kernel, or
scheduler, is the core element of a real-time operating system (RTOS), with the primary

responsibility of managing and supervising the execution of tasks within the system.

A commonly employed scheduling technique in real-time operating systems (RTOS) is
round-robin with time slicing, which involves assigning time slots to tasks of equal priority,
allowing them to run for a specified duration before being pre-empted to give way to other
tasks. With the time slots being small and optimized enough to mimic parallel processing,
especially for the human eye, and many real-world tasks, even though only one task is run on

a single-core processor.

In Figure 6 an implementation of round-robin scheduling can be observed. All three tasks A,
B, and C have the same priority and have an equal amount of time allocated (T1 =T2 =T3).
In this case, task A starts first, then B, and finally C, and they require, respectively, three, two,
and one time slots for complete execution. It is observed that task C is executed three times

while task A completes the execution cycle in Figure 6.

Time
v Task_A_1
Task_B_1
Task_C
Task_A 2
Task_B_2
Task_C
Task_A_3
Task B_1
Task_C

Figure 6 : Scheduled tasks in round robin pattern [4].

RTOS schedulers used in the industry are more complex than just having sliced time slots for
tasks. Figure 7 shows the entire system of a commercial RTOS-uC/OS-I11 [11].In layman’s
terms, it is contained within a background and foreground design pattern. The ISR is situated

in the foreground region, while the tasks are situated in the background. The round-robin time

13

slicing pattern is used to schedule the low-priority tasks, and as soon as an interrupt is
triggered, the program will transition into the ISR, and the running task will be pre-empted.
In the ISR, a higher priority task is made active, and this will be immediately detected by the
scheduler at the completion of the ISR. It will serve this new higher priority task before

reverting to the low priority task that was halted when the interrupt was triggered.

Time
Background Foreground

Low Priority Tasks

Time
Task A 1
Task 8.1
Task C
Task A 2
Task B 2
Task C
Task A 3
Task 8.1
Task C

""""""""""" [TTsr]

High Priority Task

Low Priority Tasks

Figure 7 : RTOS workflow overview [4].

The aforementioned OS types cannot efficiently manage and operate the system due to its
complexity, making RTOS the optimal choice. The following section will further discuss
several possible RTOS solutions that best suit the system under implementation.

7.1.4 RTOS for ESP-32 S3

The PCB for the system consists of an ESP32-S3-MINI-1U microcontroller, which consists
of two 32-bit Xtensa LX7 microprocessors. In Table 7, the system specifications of the MCU

that were relevant when selecting the compatible MCU for this system are listed.

14

Category

Details

CPU and On-Chip
Memory

* 384 KB ROM
* 512 KB SRAM

* 16 KB of SRAM in RTC
* Up to 8 MB of quad SPI flash
» 2 MB of PSRAM (ESP32-S3FH4R2 only)

» ESP32-S3 embedded, Xtensa® dual-core 32-bit LX7 microprocessor
(with single precision FPU), up to 240 MHz

Peripherals » GPIO, SPI, LCD interface, camera interface, UART, I2C, 128, remote control,
pulse counter, LED PWM, full-speed USB 2.0 OTG, USB Serial/lJTAG
controller, MCPWM, SDIO host,

GDMA, TWAI® controller (compatible with 1SO 11898-1, i.e., CAN
Specification 2.0), ADC, touch sensor, temperature sensor, timers, and watchdogs

Operating * Operating voltage/power supply: 3.0 ~3.6 V

Conditions * Operating ambient temperature: -40 ~ 85 °C

Tests * HTOL/HTSL/uHAST/TCT/ESD

Table 7 : ESP32-S3-MINI-1U MCU Specifications [12].

For the selected MCU, the best possible RTOSs are Free-RTOS, Zephyr, and NuttX. These
three systems are compared with each other in Table 8 based on the details obtained from
their documentation [12], [13], [14].

Feature/RTOS Free-RTOS Zephyr NuttX
Ease of Use Easy to learn and Moderate complexity, Relatively simple, some
implement steep learning curve learning needed
Community Large, active community, | Strong industry and Smaller community,
Support extensive resources community support fewer resources
Modularity Moderate customization, | Moderate customization, | Balanced modularity,
basic modularity basic modularity moderate customization
POSIX Minimal POSIX support | Partial POSIX support, Full POSIX compliance,
Compliance some compatibility easy porting
Memory Lightweight, minimal Moderate, depends on Low, designed for
Footprint resource usage configuration constrained devices
Advanced Basic, sufficient for most | Rich feature set, Moderate, suitable for

15

Features applications advanced networking many use cases

Learning Curve | Low, straightforward High, requires more effort | Medium, manageable
moderate effort

Table 8 : Comparison of most used RTOS for ESP32-S3

Based on the comparison between the top possible RTOS’s for the selected MCU, Free-RTOS
was chosen to design and implement the system for the project mainly because of its ease of
implementation and large community support. In the next section the basic structure of Free-

RTOS and its features are discussed.

7.1.5 Free-RTOS

Free-RTOS is an open-source, lightweight Real-Time Operating System (RTOS) primarily
written in the C programming language [7] which is specially designed for embedded
systems and low-end loT applications. Its performance in simplicity, scalability, and
portability makes it an ideal choice for a wide range of applications [15] and has been ported
over 27 different architectures, making it highly versatile and adaptable across various

hardware platforms [16].

The architecture of Free RTOS is similar to other RTOSs, and tasks communicate through the
kernel and drivers with hardware, as shown in Figure 8. Inter-task communication is done
through the use of queues, where the task with the highest priority is granted access to the
queue before others [7]. In Table 9, key features of Free-RTOS are summarized for an easy

overview of the system [17].

16

Task 1 Task 2 Task 3 Task 4

RTOS kernel

Drivers

Hardware

Figure 8 : Architecture Overview for VxWorks and FreeRTOS [18].

Feature

Description

Programming

User-friendly API that supports multiple threads, mutexes, semaphores, and

Model and API timers. Lacks a hardware abstraction layer (HAL), which can increase
debugging efforts in certain environments, like STM32Cube MCU firmware.

Scheduling Configurable scheduler with options for fixed-priority pre-emptive or
cooperative strategies. Utilizes Round-Robin (RR) scheduling for tasks with
the same priority.

Memory Supports dynamic memory allocation with a small memory footprint, making it

Management suitable for resource-constrained environments.

Networking Supports 6LoOWPAN, CoAP, and Free-RTOS+TCP, a thread-safe TCP/IP stack

Protocols for robust networking in embedded applications.

Simulation and
Testing

Simulatable on Windows (Win32 simulator using Visual Studio 2015) and
Linux (POSIX/Linux simulator using GCC and Eclipse), facilitating testing and
debugging before hardware deployment.

Security Uses WOoIfSSL, a lightweight TLS/SSL library for security, offering features
like authentication, integrity, and confidentiality. Ideal for embedded systems
due to its small footprint, 20 times smaller than OpenSSL.

Power Includes features to reduce power consumption, such as an idle task hook and

Consumption

tickless idle mode, which stops periodic tick interrupts during idle periods,
beneficial for battery-powered applications.

Table 9 : Free-RTOS features summarized

The use of Free-RTOS for the design of the system is more extensively discussed in the
implementation chapter.

17

7.2 Control Systems

7.2.1 Introduction to Control Systems

Control systems are a key component in engineering fields that command, regulate, or
manage the behaviour of devices or systems involved in some task or application by using a

control loop. In Table 10, the main components of a control system are listed.

Component Description

Sensor Measures the output or state of the system and converts it into a signal that can be
interpreted by the controller.

Controller Processes the sensor’s signal, compares it to the desired setpoint, and calculates the
necessary control action to minimize the difference (error) between the desired and
actual outputs.

Actuator Executes the control action by adjusting the input to the system, such as opening a
valve, increasing a motor speed, or altering the electrical current.

Plant The part of the system being controlled, which could be a mechanical device, an
(or Process) industrial process, or any system that requires regulation.

Table 10 : Components of a control system

7.2.2 Open-loop and Close-loop control systems

Based on their approach to controlling and utilising feedback, control systems can be
categorised into two main types: open-loop control systems and closed-loop (feedback)
control systems.

i. Open-Loop Control Systems
An open-loop control system is a control system that operates without using feedback from
the output to influence or adjust the control inputs. In other words, the system's action is
determined entirely by the initial input or a set of predefined instructions, without
consideration of the outputs. An electric kettle that boils water for a set time is an example of
an open-loop control system where it operates based on time, regardless of whether the water

has reached the boiling point.

18

ii. Closed-Loop (Feedback) Control Systems

A closed-loop control system is a control system that continuously monitors the system

output and uses this feedback to influence or adjust the control inputs. In other words, the

system compares the measured output with the required setpoint and generates a corrective

action that will bring the error between the system output and the desired setpoint to a

minimum.

The thermostat-controlled heating system in a house act as a common example of a closed-

loop system where it continuously monitors the ambient temperature of the room and

compares it to the set and desired setpoint. If the ambient temperature of the room differs

from the set point, the thermostat automatically controls the heating system in order to restore

the temperature to the desired level. The mentioned feedback loop serves to maintain a

consistent and appropriate temperature within the room, even in the face of changes in

external circumstances. In Table 11 a comparison between open-loop and close-loop control

is listed.

Aspect

Open-Loop Control Systems

Closed-Loop (Feedback) Control
Systems

Control Action

Independent of system output; based
on preset commands.

Dependent on system output; adjusted
based on feedback.

Accuracy Lower accuracy; cannot correct for Higher accuracy; can correct deviations
disturbances. and disturbances.

Complexity Simpler and easier to design and More complex; requires sensors,
implement. feedback mechanisms, and advanced

controllers.

Cost Generally lower cost due to fewer Higher cost due to the need for additional
components. components like sensors.

Adaptability Inflexible; cannot adapt to changes in | Highly adaptable; can adjust to changes
system dynamics. and disturbances.

Applications Suitable for systems where precision | Essential for systems requiring high

and adaptability are not critical.

precision and stability.

Table 11 : Comparison between open vs close loop control systems.

19

Since the system requires precise and stable output for controlling the force applied and
heater temperature, closed-loop feedback is needed, and therefore, in the next section, more

details about feedback control systems are listed.

7.2.3 Feedback Control Systems

The main objective of a feedback control system is to ensure that the output of a process or
system follows a predetermined path, even when the system or process is influenced by
disturbances. Control systems play a prominent role in today’s technology, spanning a wide
range of applications, from basic household appliances to complex industrial processes.
Several reasons as to why feedback control systems are essential are listed in Table 12 [19]

Aspect Description
Counteracting External disturbances can significantly impact the output of a system.
disturbances Feedback allows the system to automatically adjust its input to counteract

these disturbances, ensuring stable operation.

Improving In cases where the system model is uncertain or imperfect, feedback helps
performance amid correct discrepancies between the desired and actual outputs.
uncertainty

Stabilizing unstable Many industrial processes are inherently unstable in an open-loop
systems: configuration. Feedback is necessary to stabilize such systems, making
their operation safe and reliable.

Table 12 : Importance of feedback control systems

There are two main types of feedback control systems: negative-feedback and positive-
feedback systems. In a negative feedback control system, the output is subtracted from the
setpoint, and the resulting error signal is used to adjust the input. Since this control type tends
to be the best at stabilising the system for disruptions, it is the most common control type

used in industries.

In a positive feedback control system, the addition of the output and the setpoint is considered
when controlling, which often causes deviations and leads to system instability. Hence, this
control type is less commonly used in industries. In Table 13, commonly used feedback

controllers are compared with each other. In the next section, the PID controller will be

20

discussed because of its suitability to the project requirements, among other types of

controllers.
Controller Description Advantages Disadvantages Typical
Applications
On-Off Asimple controller | Simple, low-cost, | Can cause Thermostats,
(Bang-Bang) that switches the and easy to oscillations and simple motor
Controller output fully on or implement. wear due to rapid | control, level
off based on switching; no fine | control in tanks.
whether the process control.
variable is above or
below the setpoint.
Proportional Produces an output | Simple design, Cannot eliminate | Flow control,

(P) Controller

that is proportional
to the current error.

reduces steady-
state error more

steady-state error,
may require

pressure control,
basic temperature

The control action | effectively than manual tuning. regulation.
is stronger when the | on-off control.
error is larger.

Proportional- | Combines Eliminates Slower response Temperature

Integral (P1) proportional control | steady-state error, | to sudden changes | control, speed

Controller with an integral relatively simple | compared to PD control in motors,
component that to design and controllers, liquid level
accounts for the implement. potential for control.
accumulation of overshoot.
past errors.

Proportional- | Combines Improves system | Does not Motion control,

Derivative
(PD)
Controller

proportional control
with derivative
action, which
anticipates future
errors by
considering the rate
of error change.

stability and
response time,
reduces
overshoot.

eliminate steady-
state error,
sensitive to noise
in the system.

robotics, systems
requiring quick
response.

Proportional-
Integral-
Derivative
(PID)
Controller

The most used
controller that
combines
proportional,
integral, and
derivative actions
to balance accuracy,
stability, and
response time.

Highly versatile,
can be tuned to
optimize
performance for a
wide range of
applications.

Complexity in

tuning the three
parameters (P, I,
D), potential for
instability if not
tuned correctly.

Industrial process
control, motor
drives,
temperature
regulation, flow
control.

21

Fuzzy Logic Anon-linear Robust to Complex to Consumer
Controller controller based on | uncertainty and design and tune, electronics (e.g.,
fuzzy set theory non-linearities, performance can | washing
that handles can be designed be difficult to machines),
imprecision and without a precise | predict. automotive
uncertainty by mathematical systems, complex
using a set of rules | model. process control.
to determine
control actions
based on the error.
Neural Utilizes artificial Capable of Requires large Roboatics,
Network neural networks to | handling highly datasets for autonomous
Control model and control non-linear training, systems, advanced
systems, systems, can learn | computationally manufacturing,
particularly useful | from data to intensive, complex non-
for non-linear and improve complex to linear processes.
complex systems performance. design.

where traditional
methods fall short.

Table 13 : Comparison of commonly used feedback control systems

7.2.4 PID Controller

The proportional-integral-Derivative (PID) controller is the most widely used control

algorithm in feedback control systems, where the controller adjusts the control input based on

three terms: the proportional term (P), the integral term (1), and the derivative term (D). In

Table 14, these three terms, along with their descriptions, are listed.

Term

Description

Proportional Control (P)

The proportional term generates a control signal that is directly
proportional to the error signal. It helps to reduce the error by applying a
corrective action that is scaled according to the magnitude of the error.

Integral Control (I)

The integral term addresses the accumulation of past errors by integrating
the error over time. This helps eliminate steady-state errors that may
persist even after the proportional control has been applied.

Derivative Control (D)

The derivative term anticipates future errors by considering the rate of
change of the error signal. It provides a damping effect, reducing the
likelihood of overshoot and improving system stability.

Table 14 : Three main parts of a PID controller.

22

u(t) = Kpe(t) + K; [e(t) dr+ Ky 2>)

The equation for a PID controller is given by equation (1), and its components are introduced

in Table 15. These proportional, integral, and derivative gains should be tuned manually or

using other optimisation algorithms depending on the specific application to make sure the

PID controller will be efficient and effective for the application system. In Figure 9, the basic

block diagram of a PID controller is shown.

Term Description

u(t) The control signal sent to the system (such as the voltage applied to a motor).

e(t) e(t) is the error at time t which is the difference between the desired setpoint and the
actual process variable.

K, The proportional gain, it Determines how aggressively the controller responds to the
current error. Higher values can reduce the error faster but may cause instability.

K; The integral gain addresses accumulated errors over time, eliminating steady-state
errors. Higher values improve long-term accuracy but can slow down the response.

K, The derivative gain predicts future errors and helps stabilise the system by

counteracting rapid changes in the error. Higher values reduce overshoot but can
make the system sensitive to noise.

Table 15 : Components of the PID control equation.

K, # Error j

j \ I_." ‘\". T
B (e e o > oo — Y

©

. dError(t)
¢ dt

Figure 9 : Block diagram of a basic PID controller.

23

In the next section, two methods for tuning the PID parameters are introduced and discussed,

which have been used to tune the PID controllers implemented in this project system.

7.2.5 PID Tuning

PID tuning is an important aspect when it comes to feedback control systems. Without proper
tuning, the system would perform worse than a simple on-off controller and would be
unstable. Proper tuning involves adjusting either manually or using algorithms, the
proportional (K,), derivative (K;), and integral (K;), gains to achieve the desired system
response, which typically includes minimizing overshoot, settling time, and steady-state error
while ensuring system stability. The terms overshoot, settling time, and steady state error are

listed along with a description in Table 16 and is also illustrated in Figure 10.

Metric Description Significance
Overshoot The extent to which the system’s output High overshoot can indicate instability or
exceeds the desired setpoint or final value | excessive oscillation. Reducing
after a disturbance. overshoot leads to smoother response.
Settling The time required for the system’s output | Shorter settling times are preferred as
Time to settle within a specified percentage they indicate a quicker return to stability
(e.g., 2% or 5%) of the final value. after a disturbance.
Steady-State | The difference between the desired Minimizing steady-state error ensures the
Error setpoint and the actual output after the output closely matches the desired value,
system has stabilized. indicating accurate control.

Table 16 : Overview of the terms overshoot, settling time and steady state error

24

| !. I " Provess Yariable
Percent Overshoot | Sst Point Li

1
10 o ce————= ——— — T *
Far o | " Settling Time 4

se Time |

Ii’;tea dy-State EIFDI
|

0.5- } | } | |

0.0-.—IJI ' ' ' ' i i i i i i i i i '
00 02 04 06 08 10 12 14 16 18 20 22 24 26 2B 30
Time, senonds

Figure 10 : Response of a typical PID closed loop system [20].

Depending on the control application, suitable tuning methods should be applied; otherwise,
the control would end up making the system unstable or oscillate excessively. PID tuning

could be divided into two main types of tuning, namely closed-loop and open-loop tuning.

In close-loop tuning, the PID controller parameters are adjusted while the control loop is
closed, where the controller is actively controlling the process. Here, the feedback from the
process output is used to adjust the control action continuously. Whereas in open-loop tuning,
the parameters of the PID controller are adjusted while the control loop is open, the controller
has no influence on the process during the tuning. Here, the process is manually driven, and
the controller is tuned based on the open-loop response of the system. In summary, the
system uses its frequency response in close-loop to tune the parameters, and its step response

in open-loop [21].

In the next section, two methods, namely the Ziegler-Nichols Tuning Method and the Tyreus-
Luyben Tuning Method, which are closed-loop tuning methods, are examined. These
methods are more commonly used when detailed system dynamics, such as the system
transfer function or time domain response, are not known or hard to achieve, which is the

case in this project system.

I. Ziegler-Nichols Tuning Method

Ziegler—Nichols is a widely used approach for setting the parameters of P, PI, and PID
controllers. Starting with the integral and differential gains being zeroed, this approach

gradually increases the proportional gain until the system becomes unstable. The frequency

25

of oscillation is f(ultimate oscillation frequency), and the value of K, at the point of
instability is defined as K,,,,, (ultimate gain). The method then reduces the proportional gain
by a predetermined amount and sets the integral and differential gains as a function of f,. The
gains for P, I, and D are determined in accordance with Table 17 [22].In Figure 11, these

tuning steps are illustrated in a flowchart for easier follow-through.

Controller Type Ke Ki Kb
P controller 0.5 Kmax 0 0

PI controller 0.45 Kmax 1.2 1o 0

PID controller 0.6 Kmax 2.0fo 0.125/fo

Table 17 : Gain calculation for P, PI & PID controllers according to Ziegler - Nichol s method.

Zero K;and K;,. Set K low.

v

Set command to zero.

Raise K to Ky, . the minimum
value that causes sustained oscillation,

Note f;. the frequency of oscillation.

[Select control law,]

P control / i PI control \Pll) control
Kp=0.5 Kyax Kp =045 Ky ax Kp=0.6 Kyax
I\'!‘; 0 ""I= 3”.}‘;- I\'I= 20 fo
Kp,=0 K,=0 Kp,=0.125/f;

[Done |

Figure 11 : Steps of tuning a controller according to Ziegler Nichols method [22].

Il. Tyreus-Luyben Tuning Method
The Tyreus-Luyben tuning method, which was introduced in 1997 [23], [24], is based on

ultimate gain and ultimate period, as in the Ziegler-Nichols method. However, the formulas
for the controller parameters were modified to achieve more stability in the control loop
compared to the Ziegler-Nichols method. This method also follows the same steps as

Ziegler—Nichol’s method to obtain the ultimate gain, K,,,4, and the ultimate oscillation

26

frequency, f,, but uses less aggressive pre-determined multiplicands for calculating the gains
K, K; and K, as listed in Table 18.

Controller Type Kp Ki Kb

P controller 0.33 Kmax 0 0

P1 controller 0.31 Kmax K, 0
2.2 X f,

PID controller 0.45 Kvax Ky Ky X fo
22X fy 6.3

Table 18 : Gain calculation for P, PI & PID controllers according to Tyreus-Luyben method

The objective of using these methods is to obtain PID parameters that result in the shortest
possible settling time while minimising overshoot and ensuring system stability. By carefully
tuning the PID controller, these methods aim to achieve an optimal balance between response
speed and robustness, leading to enhanced overall system performance. In practice, these
methods need to be further adjusted and fine-tuned manually by human operators according

to the specific demands of the application.

In the implementation chapter the implementation, drawbacks and further improvements of

using these methods are discussed.

7.2.6 PID Integral Windup

Integral windup happens in PID controllers when the integral term builds up too much
because of error signals that last too long. This causes the controller output to reach its
saturation points (100% or 0%). This occurs because the integral action continues to increase
even when the system cannot respond, resulting in a stagnation of the output despite
increasing input. This condition can cause significant control issues, as the system may
continue to operate with a sustained error, unable to correct itself. Various methods have been
developed to prevent integral windup and ensure the PID controller functions effectively

without reaching these limits [25].

27

To mitigate the windup effect, some anti-windup techniques have been developed, including
the clamping algorithm anti-windup technique and the back-calculation anti-windup

technique.

I. Integral Anti-Windup Technique

Integral clamping is a technique used in PID controllers to prevent integral windup by
restricting the accumulation of the integral term to predefined limits. When the controller’s
output reaches its saturation points (either maximum or minimum), the integral term is
clamped to prevent further increase, avoiding excessive overshoot or long response times.
Clamping ensures that the controller remains responsive and stable even in the face of long-
term errors or system constraints by limiting the integral action. This technique aids in the
maintenance of effective control while also avoiding the negative effects of integral windup.

Il. Back-Calculation Anti-Windup Technique

The Back Calculation The anti-windup technique is a method for preventing integral windup
in PID controllers that adjusts the integral term based on the difference between the
controller’s output and the actual actuator position when the output becomes saturated. When
the controller output exceeds its maximum or minimum limits, the integrator receives the
difference between the desired and saturated outputs. This feedback effectively reduces the
accumulated integral value, preventing it from increasing or decreasing too much. This
allows the controller to quickly recover from saturation and resume normal operation,
ensuring stable and responsive control even in the presence of prolonged error signals. This
technique is especially useful in systems where the actuator has physical limitations, as it
helps maintain control performance while avoiding the negative effects of windup.

28

8 Implementation

In this chapter, the design and implementation of the software for this system are examined
and listed. During the design stage, several prototypes have been tried to adhere to meet the
most requirements that are specified in the requirements chapter, and different theories that
are discussed in the theory chapter were also prototyped and improved with many iterations,
resulting in a system that is efficient and meets most of the requirements specified. The
generated Doxygen document for the system implementation can be found at “https://pierre-

thishan.github.io/BachelorThesis_Warnakulasooriya/”.

The embedded system that is designed for this project is fully developed and designed using
the programming language C. It consists of six parallel processes with equal priority running
on two cores, allocated with a low but sufficient task stack size to ensure safety. Parallel

processing has been achieved by utilising the Free-RTOS library from the esp32 SDK.

The mechanical setup, known as Eva, primarily consists of two main operations: moving and
heating. An eight-state finite state machine (FSM) manages the moving operations,
maintaining the system’s state in one of the defined states at all times. Similarly, a two-state
FSM controls the heating operations. In addition, there are several other processes
responsible for monitoring the system, reading data from sensors, controlling motor drivers,
and performing other essential functions. In the next section, the overall system will be
examined. Table 19 below has listed the names of these parallel processes and their
operations, along with which core on the MCU it is running on. The MCU has two cores

named “0” and “1”.

Parallel Operations Running
Process Name Core
Task1Code e Executes PID motor velocity calculations. 0

e Setting the motor speed.
e Motor moving
e Enabling and disabling the motor.

Task2Code e Process and parsing of input commands from serial. 1
e Execute the state machine.

Task3Code ¢ Reporting system status and other sensor data to the server 1
API through serial.

29

Task4Code o Responsible for regulating insertion force throughout the set 1
time period by setting the state to keep pressing when the
maintain force function is toggled.

e Checking the MCU internal temperature.

Task5Code e Setting up the inner and outer traverse bounds with the 0
magnetic encoder.

e Temperature sensor reading.

e Heating PID loop execution.

e Heat state machine execution.

Task6Code e Set a zero position when setting the inner traverse bound. 0

¢ Read the magnetic encoder angle.

e Control motor speed and direction when a traverse position is
given to move to.

¢ Read the pressure sensor value.

Table 19 : Parallel processes and their tasks in the system.

8.1 Overall System Architecture

In this chapter, the overall system architecture is introduced, followed by an exploration of

the configurations within the system boundary.

Figure 12 provides a high-level overview of the overall system architecture, showing the
interaction between the various components involved in the system. A detailed list of the

primary components and their respective functions within the system is listed in Table 20.

30

Control PC

System Boundary

Control Signals
B —— —
Channel : Serial 1
Communication 1
1 i
JSON Document with

Status of the System & API Server

1

- 1
PCB with MCU other Relevant Data . A

1

1

1

Channels : 12C, SPI, PWM,
GPIO

Exchanges Sensor Data , and
Driver Control Signals

|

Sensors & Drivers

Channel

Control
Commands

Parsed System

WEBSdCKETS Data & Status

Nl et Ceai

Web App

Client

Figure 12 : High-level overview of system architecture.

31

Component

Description

System Boundary

The red dashed line marks the system boundary, containing all hardware and
software components that are directly part of the embedded system. Inside
this boundary, the PCB with the MCU (Microcontroller Unit) acts as the
central processing unit for the system, coordinating the operations of
connected sensors and drivers.

PCB with MCU

The PCB with MCU is the core component within the system boundary,
managing communication with various sensors and drivers through different
communication channels such as 12C, SPI, PWM, and GPIO. These channels
facilitate the exchange of sensor data and the transmission of control signals
to drivers, ensuring the embedded system operates correctly.

Sensors & Drivers

Connected to the PCB are multiple sensors and drivers, which are responsible
for gathering data from the environment and executing actions based on
commands received from the MCU. The system continuously processes data
from these sensors, which is critical for maintaining control over the system’s
operations.

Control Signals &
Serial
Communication

The system exchanges Control Signals with an external Control PC. This
communication is handled through a Serial Communication Channel, where
data is transmitted in the form of a JSON document containing the status of
the system and other relevant data.

Control PC

Outside the system boundary, we have the control PC housed within a blue
dashed box. The control PC runs an API server that acts as an intermediary,
receiving system status updates and sending back control commands. The
API Server communicates with the embedded system using the serial
communication channel and forwards the data to a web app via WebSockets.

Web App

The Web App, situated on the control PC, serves as the user interface where
parsed system data and status information are presented to the user. It also
allows the user to send control commands back to the system. The
communication between the Web app and the API server is managed through
a WebSocket channel, which enables real-time data exchange.

Client

Finally, the client interacts with the system through the web app. The client,
who is typically a lab engineer, sends commands and receives system status
updates, which allows for remote management and control of the embedded
system.

Table 20 : Components of the system architecture and their interactions.

32

8.2 Mechanical Assembly of the System

This section describes the mechanical assembly of the system, with a focus on the setup
known as “Eva”. This mechanical framework is the physical structure in which the control

software system interacts, carrying out precise movements and operations.

The system’s carefully designed control algorithms and the integration of hardware and
software within this assembly enable the smooth execution of tasks ranging from movement
to temperature control. Figure 13 and Figure 14 illustrate the mechanical assembly of Eva

and name the relevant components.

Servo Motor

Outer
Endstop

LoadCell
Inner
Endstop

Magnetic
Encoder

BLDC Motor

Figure 13 : Eva flipped front side view.

33

Temperature
) Sensor

Dowel Pins

Heater

Locking

il e
Mechanism ‘
| | Plunger
Shaft
| Vaccum

Pressure =z Pump
Sensor =

Figure 14 : Eva flipped back side view.

The ESP32-S3 MCU, which is on the PCB in Eva’s mechanical assembly (Figure 13 and
Figure 14), is at the centre of the system architecture shown in Figure 15. This MCU is the
main processing unit and communicates with different sensors, actuators, and outside
systems. Table 21 provides a detailed description of each component and its interaction with

the entire system.

34

Vacuum Pump <— GPIO 8 Sefial -
—‘ l PWM

PT 100
Resistance
Temperature
Detector

|

2 - Wire
1 1
Temperature

Sensor

Heater

EndStops

<« SPl >

- PWM

‘ Control PC ‘

‘|‘ Servo Motor

Ua

BLDC Motor

—
ESP32 - S3 |l
Driver
Uc [™
MCU —}

€——— Data Out

HX71708 ADC
Clock

>
A F ‘ ‘

+ Excitation - Excitation

L 12¢ J + Signal - Signal J

Load Cell

2C

Magnetic
Encoder

Air Pressure

GPIO 11 & 38 SenSO!’

Figure 15 System block diagram.

Component

Description

ESP32-S3 MCU

The central processing unit is responsible for managing and coordinating all
operations within the system, interfacing with various peripherals using GPIO,
12C, SPI, PWM, and serial communication protocols.

Control PC

Interacts with the ESP32-S3 MCU via serial connection, sending and receiving
data such as commands and status updates.

Vacuum Pump

Controlled by the ESP32-S3 MCU through GPIO 8, it can be activated or
deactivated based on operational requirements. Used to create suction to pick
up ICs through the plunger.

Servo Motor

Controlled using a PWM signal from the ESP32-S3 MCU, used for the
operation of the locking mechanism to lock Eva into the docking adapter with
the test socket.

BLDC Motor Receives control signals via three-phase connections (Ua, Ub, and Uc) from

Driver the ESP32-S3 MCU, driving a brushless DC motor for high-efficiency
applications.

BLDC Motor The signals from the motor driver are controlled to generate the insertion force

and traverse the plunger within the movement range.

35

HX71708 ADC and
Load Cell

The ADC interfaces with the load cell, which is rated to measure weights up to
20 kg. The load cell measures the force applied to the socket for insertion force
control, utilising MEMS strain gauge technology to measure the force
accurately, and the ADC converts the analogue signals from the load cell into
digital data for processing by the MCU.

Magnetic Encoder

Connected to the ESP32-S3 MCU via the 12C interface, providing precise
position feedback and traversing the plunger to a set position.

Air Pressure
Sensor

It measures the pressure from the outlet of the vacuum pump, is connected via
12C, sends data to the MCU for processing, and is used for IC pick-up
confirmation.

PT100 Resistance

It measures temperature using a 2-wire connection interfaced with the MCU

Temperature through SPI, providing accurate thermal data for process control.

Detector (RTD)

Temperature Connected to the PT100 RTD via a 2-wire method, assisting in monitoring

Sensor temperature changes, especially in conjunction with the heater.

Heater Controlled by the ESP32-S3 MCU through PWM, adjusting output based on
temperature readings to maintain stable thermal conditions.

End Stops Connected via GP10 11 & 38, used to detect mechanical limits of movement,

ensuring safety and precision in system operations. The optical endstop is a
sensor that detects the presence or position of an object by using light,
typically emitting a beam that is interrupted or reflected, signalling the object’s
position or limit of movement.

Table 21 : Components of Eva and their description.

36

8.3 State Diagrams

The movement of the plunger at any given time is managed by an eight-state finite state
machine (FSM). In Table 22 and Table 23, the states are listed and described briefly, along

with the corresponding state diagram figure. The system state transitions are executed within

a parallel task called ‘Task2code’. The task first processes input commands received through

the serial interface, parsing them to determine if a new state is specified, and if a new state is

not set by the command, the system will determine the next state based on the current state

and predefined conditions, allowing the appropriate state transition to occur.

State

Description

Figure
Number

TRAVERSE

The plunger moves to a specified position, ensuring it is within
tolerance. The system checks for any overload conditions or
endstop triggers during this state.

Figure 22

HOMING

The plunger returns to a predefined home position, which is
where the inner endstop is triggered by the extruded marker of
the load cell holder.

Figure 18

STOP

The system halts all movement, disabling the motor and awaiting
further commands.

Figure 17

IDLE

The system remains in a standby state, with no active
movements, awaiting the next command or transition based on
external inputs.

Figure 16

PRESS

The plunger applies a force to the target, continuing until a
specified force or position is reached, while monitoring for
overload and endstop conditions.

Figure 19

KEEP_PRESSING

The plunger maintains a continuous pressing force, often used to
ensure sustained contact or pressure, until specific conditions are
met.

Figure 23

PICKING

The plunger moves downward with the vacuum pump activated,
enabling it to suction an IC. The operation is considered
complete when feedback from the pressure sensor connected to
the vacuum pump’s outlet confirms that the I1C has been
successfully grasped.

Figure 21

PLACING

The plunger moves to place an IC in a designated location
(socket or tray), releasing it by turning off the vacuum pump
with controlled placing force and returning to a safe position
after the task is complete.

Figure 20

Table 22 : State descriptions of the FSM.

37

Below are the ASMD diagrams of the eight states mentioned above in Table 22 above.

Disable motor.

MNext State = IDLE

Figure 16 : ASMD of state IDLE

Figure 17 : ASMD of state STOP

38

Figure 18 : ASMD of state HOMING

39

e !

IT OverLoadFlag is

i . detected k
T If motor is enabled. F
h 4
Disable motor. l
Mext State = STOPR. v

If Outer EndStop is
triggered.

~

{ Enable Motor.

T F ﬁ
IT motor

speed is less than
EXITSPEED,

Disable motor.
Mext State = IDLE.

T F

l ,,

Disable motor.

Set pressingFlag fo flase.

Set motor speed to IDLESPEED. Next State = PRESS}
Mext State = IDLE.

! !

IDLE STATE

STOP STATE

h 4

Figure 19 : ASMD of state PRESS

40

'y

PLACING

|

If OwverLoadFlag is E

Disable motor.

Next State = STOP.

Disable motor.
Next State = IDLE.

detected

T If motor is enabled. F
It
Cuter EndStop is * Set motor enable.
triggered.

Motor speed is less
than
EXITSPEED.

h i v

placeFlag set to true.

Move the plunger up for & seconds.

\

Tum off vacuum pump. Next State = PLACING. J

Disable the motor.
placeFlag set fo false.
Next State = IDLE.

STOP STATE

Y

IDLE STATE

Figure 20 : ASMD of state PLACING

41

PICKING

If OverLoadFlag is

Disable motor.
MNext State = STOP.

Mext State = IDLE.

detected

If
Quter EndStop is

triggered.

If
pressure sensor
readout is near zero

than
EXITSPEED.

| T

T

Dizable motor.
Set motor speed to IDLESFEED.
Set pickingFlag to flase.
MNext State = IDLE.

If motor is enabled.

OR motor speed is less

Set motor enable.

Next State = PICKNG.J

STOP STATE

IDLE STATE

h 4

Figure 21 : ASMD of state PICKING

42

TRAVERSE I

Disable motor.

Next State = STOP.

— It OverLoadFlag is detected
OR
e — EndStops Triggered.

If traverse Flag is True.

If motor is enabled.

Enable Motor.

T F
Y Y
Disable motor. Mext state =]
Next State = IDLE. TRAVERSE J
Y Y
STOP STATE IDLE STATE

Figure 22 : ASMD of state TRAVERSE

43

KEEP_PRESSING

-/

Disable motor.
Mext State = STOP.

Disable motor.

Mext State = IDL

If OverLoadFlag is
detected

If Quter EndStop is
friggered.

E:

If motor is enabled.

h 4

Enable Motor.

F 3

If motor
speed iz less than
EXITSPEED.

i .,

Set motor speed to IDLESFPEED.

Mext State =

Dizable motor.

KEEFP_PRESSING.

Mext State = IDLE.

Y

STOP STATE

Figure 23 : ASMD of state KEEP_PRESSING

IDLE STATE

44

In Figure 24 a simplified version of the FSM is illustrated for convenience and for a quick
general overview. As mentioned earlier, parsing and setting the next state based on an input
command is not covered in Figure 24. The state will only transition to a state other than IDLE
or STOP if the next state is explicitly set via an input command. For example, if the user
enters the ‘press’ command, the input command parser will set the next state to PRESS, and

the FSM will transition into the PRESS state.

Until it is
completed.

Until it is
completed.

Until it is
completed.

: Upon
completion.

Stop Flag

il KEEP_PRESSING

Until it is
completed.

Until it is
completed.

Until it is
completed.

Figure 24 : Simplified FSM for overview.

45

8.4 PID Design

Utilising the theories and methods explored in the theory section, the PID control loops
necessary for the system were developed and implemented to meet the specific requirements.
This section will focus on the design and implementation of these control loops, detailing

how each component contributes to achieving the desired system performance.

8.4.1 Motor Control PID

Here, the PID control loop created for the motor control, which controls the movement of the

plunger, and the insertion force of the IC into the socket are examined.

In this system, when it comes to controlling the motor, the objective is to use motor motion to
control the insertion force, which is read by a load cell. For the control of BLDC Motors,
there exists an already well-implemented and reviewed library for controlling the motor
driver called simpleton, which was utilised for the control of the motor in this system. The
library offers two types of control modes, namely “closed-loop control” and “open-loop
control”. Often, open-loop control is used for simple tasks where precision is not required,

whereas closed-loop control is used for precise, sensitive operations.

Due to the system’s complexity and the required operation, the available closed-loop options,
which are “torque control”, “velocity control” and “position control” would not be effective
and would not be able to perform the required task. Therefore, the very well-implemented
close control loops could not be used in this system, even though they consist of already well-
tuned PID controllers. This restricts the system to the use of open-loop control for motor
movement control. In this system, of the two available open-loop control methods, namely

“velocity control” and “position control, the “velocity control” loop is utilised.

voltage U » »
limit Park+Clarke U, BLDC =
—_— or * ! e BLDC
Space Vector Yo » Driver » motor
velocity
next v} ks
_ motor '
desired angle
velocity (a)
(va) '
> At

Figure 25 : Velocity open loop control block diagram [26].

46

In Figure 25, the block view of the velocity open-loop control system by simpleFOC library

is illustrated. Using only the velocity control loop, the system would not be able to effectively

control the insertion force. To address this challenge, a custom PID controller was

implemented, utilising feedback from the load cell sensor to regulate the motor’s velocity,

which results in a closed-loop control system that adheres to the required precision and

accuracy.

The block diagram in Figure 26 illustrates the components and flow of the PID controller,

and in Table 23, a detailed description of each component’s role is listed. In Figure 26, the

dashed red line box shows the border of the open-loop control used by the simpleFOC library

within the closed-loop control loop of the motor.

r K, « Error

Pre processed

= ;
ety v ,/ N - ‘/.-. y velocity
I ! 1 1 it | Sy 1 r
> Ermor —» e /' Error(2) di Integral clamping 2 Qutput clamping
L - 0 -
A A
_______ ---
1 Processed velocity
I I
v
dBryor(t) I
Ky * I

dt BLDC block 1

1 motor.move()
I I
el :;?kl";he”e‘j G Feedback force from loadcell || 3Pnase Votage l l -
I I 4 :
I

Meidian filterior noise Force read from |

filtering * A <—|—I BLDC Motor I
I

Figure 26 : Custom motor PID controller block diagram

47

Component Description

Set Point Force The target force value that the system aims to achieve serves as the
reference input for the PID control loop.

Error Calculation The difference between the set point force and the actual force measured by
the load cell is used to determine the necessary adjustments.

Proportional Gain The proportional term of the PID controller produces a correction
proportional to the current error. This helps reduce the error quickly.

Integral Gain The integral term accumulates the error over time, addressing any steady-
state error to ensure the system reaches and maintains the desired force.

Derivative Gain The derivative term predicts future error based on its rate of change,
helping to dampen the response and reduce overshoot.

Integral Clamping A mechanism that limits the integral term to prevent excessive buildup,
which could lead to instability or overshoot in the system.

Output Clamping A mechanism that restricts the total output of the PID controller, ensuring
the motor operates within safe and effective limits.

Pre-Processed The velocity output calculated by the PID controller before clamping
Velocity represents the motor’s required speed to achieve the set point force.
Processed Velocity The final velocity command is sent to the motor after applying clamping,

ensuring the velocity remains within operational limits.

BLDC Motor Driver | The function that applies the processed velocity to the Brushless DC
(BLDC) motor controls its 3-phase voltage to achieve precise force
application.

BLDC Motor The Brushless DC (BLDC) motor applies the force as directed by the PID
controller, using 3-phase voltage signals to control speed and torque.

Force read from load | The actual force is measured by the load cell, providing feedback to the

cell PID controller for continuous adjustment of the motor’s output.
Median Filter for Afilter is applied to the load cell’s output to remove noise or spikes,
Noise Filtering ensuring accurate and stable force measurement.

Values with smoothed | The filtered and smoothed force values used for error calculation prevent
ADC spikes transient noise from destabilising the control loop.

Table 23 : Components of motor PID controller.

48

8.4.2 Temperature Control PID

The PID control loop for the temperature control, which controls the heating of the plunger to

heat up ICs, is explored here. Figure 27 shows the block diagram of the PID controller’s

components and flow, and Table 24 contains a detailed description of each component’s roles.

g 2

_ " e o

Set point [{ \ 5 - \
Bl (= ke [Cmmeow)
o (]

h

©

Ky + Error

|

Pre processed
duty cycle

Processed duty
cycle

LK‘:

Feedback temperature from sensor

dError(t)
dt

PWM Block
pwm.writeScaled(dutyCycle)

DC power \1 H

Heater

Temperature read

from temp <

Figure 27 : Custom temperature PID controller block diagram.

Component

Description

Set Point Temperature

The desired temperature value that the system aims to maintain serves as
the reference input for the PID control loop.

Error Calculation

The difference between the set point temperature and the actual
temperature measured by the sensor. This error value is used to determine
the necessary adjustments.

Proportional Gain
(Kp * Error)

The proportional term of the PID controller, which adjusts the heater’s
power output in proportion to the current error, this helps quickly reduce
the overall error.

Integral Gain
(Ki * Integral of Error)

The integral term accumulates the error over time to eliminate steady-
state error, ensuring the system reaches and maintains the desired
temperature.

Derivative Gain (Kd *
Derivative of Error)

The derivative term predicts future errors by evaluating the rate of
change, helping to prevent overshoot and improve system stability.

Integral Clamping

A mechanism that limits the integral term to prevent excessive
accumulation of error, which could otherwise lead to instability or
overshoot.

Output Clamping

A mechanism that restricts the total output of the PID controller, ensuring
the heater operates within safe and effective limits.

49

Pre-Processed Duty
Cycle

The duty cycle output is calculated by the PID controller before
clamping, representing the required power to achieve the set point
temperature.

Processed Duty Cycle

The final duty cycle command sent to the PWM block after applying
clamping, ensuring it remains within operational limits.

PWM Block The function responsible for applying the processed duty cycle to the
heater is modulating its power to maintain the desired temperature.
Heater The device that generates heat based on the power delivered by the PWM

signal, working to achieve the temperature set point specified by the PID
controller.

Temperature Read from
Sensor

The actual temperature measured by the sensor, providing feedback to the
PID controller to continuously adjust the heater’s output.

Feedback Temperature
from Sensor

The filtered and accurate temperature feedback used for error calculation,
ensuring the control loop responds correctly to changes in temperature.

Table 24 : Components of temperature PID controller.

50

8.5 System Flow

For a clearer understanding of the system’s operation, this section includes the flow of events
for an example test user case. The flow chart presented in Figure 28 shows the interactions
between the various components and highlights the sequence of actions that occur within the
system during this specific scenario. The example test case involves a lab engineer using the
web app to send a command to insert the IC into the socket with approximately 68 N of force.
This command is received by the control system as ‘press 7000’ after being parsed by the

server API.

For easier comprehension, some additional information about Figure 28 is listed in Table 25.

Additional Details

1. The force value, such as 7000, is measured in grams.

2. The unit of motor speed is rad/s, which is angular velocity.

3. The SW engineer can alter the value of LOADMAX, which is 8000 grams, if necessary.

4. EXITSPEED is set for 0.3 rad/s, which is used to exit the state when the PID calculated
velocity is less than this, resulting in an insertion force that is very close to the target.

5. Motor speed is set to IDLESPEED, which is 0.6 rad/s, two times higher than the state exit
condition speed, for proper functionality of the states and system to avoid exiting the state
upon entering when in the KEEP_PRESSING state.

Table 25 : Additional information for the test case illustrated in the flowchart in Figure 28.

51

Process Pool

task1Code

task2Code

Start of process.

Reset Motor PID params.

Loadcell value ready?

STATE is not HOMING

Set localSpeed to 30.

Reset Motor PID params.

bOverLoadFlg al

Check if STATE is either
PRESS,PICKING, PLACING or
KEEP_PRESSING

the difference between
rrentForce and targetForce < TOLERANC

currentForce >2000 OR STATE ==PLACING

localSpeed = calculated PID
values for motor speed

Check if STATE is not in
TRAVERSE_AND HOMING.
currentForce < LOADMA!

T

'

[Set Motor speed to localspeed.]

_¢

currentForce > LOADMAX

Disable Motor.
set motorSpeed to -30.
STATE = HOMING
bOverLoadFlg = true.

Take motorControl semaphore and enable or disable
motor depending on the set value in motorEnabled.

Call motor.move().

}

|

Loop back to start of the process.

J(i

Start of process.

Input at serial available 7

Receives input command
"press 7000" from serial
from the user web app

M T

Process and parse command.
Activate locking mechanism.
Set next STATE to PRESS

N T

Switch to next STATE.
default STATE = IDLE
(only if not set, at start)

Switched to state PRESS.

bOverLoadFlag ==true

Disable Mot
Next STATE = STOP.

Motor enable ==false

Enable Motor.

QOuter Endstop triggered?

Disable Mot
Next STATE

IDLE.

localSpeed < EXITSPEED

Disable Motor.
Set Motor Speed to IDLE Speed.
Next STATE = IDLE.

Next STATE = PRESS.

l

Loop back to start of the process

Figure 28: Flow chart of test case “press 7000 ”.

52

8.6 Analysis of Challenges in Implementation

During the implementation of the system, several challenges were identified, and a few of

them are listed and examined in this section.

8.6.1 ADC Spikes Analysis

During the implementation and testing phases of the system, sudden high spikes were
occasionally sampled from the ADC, leading to system halts due to incorrect high force value
readouts. In the lab environment, which consists of various tests and equipment for radar IC
validation, ADC spikes could occur due to several factors. These potential causes are listed in
Table 26 below.

Possible Cause Description
Electromagnetic High-frequency radar signals and other equipment generate EMI,
Interference (EMI) introducing noise into the ADC input.

Power Supply Fluctuations | Variations in power supply voltage cause instability, leading to
irregular spikes in ADC readings.

Ground Loops Improper grounding or multiple grounding points introduce noise,
causing inaccurate ADC spikes.

Crosstalk Between Signals Interference from adjacent signal lines, particularly high-speed
signals, results in ADC spikes.

Impedance Mismatch Mismatch between source and ADC input impedance causes
reflections, leading to signal distortions.

Temperature Variations Rapid temperature changes affect ADC performance, causing
temporary spikes.

Improper Shielding Lack of proper shielding allows external noise to couple into the
ADC input, causing high spikes.

High-Speed Switching Rapid switching of radar signals or digital circuits induces noise into
the analog signal path.

Sampling Rate Issues Unsynchronized sampling rate with the signal of interest causes
aliasing or under-sampling spikes.

PCB Layout Issues Poor PCB layout practices lead to noise coupling into the ADC input,
resulting in high spikes.

Table 26 : Possible causes for ADC spikes.

To examine this anomaly several tests were done under different environmental conditions to

develop a solution.

53

I. TestinaFaraday Cage

A Faraday cage is an enclosure made of conductive material that blocks external electric
fields and electromagnetic radiation, creating an isolated environment free from

electromagnetic interference (EMI).

This allowed for a more accurate assessment of the system’s performance by ensuring that
any anomalies, such as ADC spikes, are not influenced by external electromagnetic noise but
are instead inherent to the system itself. In the Faraday Cage available on NXP premises, the
unfiltered, load cell reading values from the ADC were recorded for around 12 minutes and
then compared with the values for the same time period in the radar validation lab

environment.

Load Cell Read Out Comparison of the ADC between Lab Environment and Faraday Cage

z
=
o]
o
@
o]
o
o
[&]
©
m
o
]

Elapsed Time (minutes)

Legend RAW loadcell ADC readings in Faraday Cage — RAW loadcell ADC readings at Radar Lab

Figure 29 : ADC unfiltered values comparison between Lab and Faraday Cage

In Figure 29, it is observed that the readings taken in the Faraday cage have almost no
significant relative spikes compared to the readings taken in the lab environment. Also, the
average absolute deviation from the mean of the readings in the Faraday cage and lab is

calculated to be respectively 0.0039 N and 0.0045 N, which is almost the same value.

54

Il. High ADC Spike Readings

During another test of load cell data readouts, very high spikes were captured, which are
denoted in Figure 30 below. These random spikes are significantly higher in amplitude and

would cause the control system to malfunction.

Load Cell Read Out Comparison of the ADC

3
&
=1
0]
i)
©
o}
o
@
(&)
ge]
©
o
|

Elapsed Time (minutes)

RAW readings-Faraday Cage — RAW readings-Lab 5G Influence — RAW readings-Lab
— RAW readings-Lab HighSpikes

Figure 30: Very high ADC spike readings

1. 5G Influence from Mobile Phone

Even though mobile phone usage within the lab area is restricted, a test was conducted to
observe the influence of the 5G signal on the raw ADC values by downloading a large file on
a mobile with 5G connectivity and having it in close proximity to the PCB. Figure 31

displays relatively high spikes and heightened noise levels.

55

Load Cell Read Out Comparison of the ADC

z
=
o]
e}
@©
@
'
©
o
=]
@
o
|

6
Elapsed Time (minutes)

Legend RAW readings-Faraday Cage — RAW readings-Lab 5G Influence — RAW readings-Lab

Figure 31 : Comparison of RAW ADC readouts between Faraday cage, lab, and 5G influence.

IV. Median Filtering of ADC Load Cell Values
To minimise the effect of this influence from the SW side, a median filter with a suitable
window size of seven was implemented, which was able to overcome this sudden spike and
also minimise the noise amplitude around a stable value. This could be observed in Figure 32

below.

56

Load Cell Read Out Comparison of the ADC

|
e
=]
‘E,

<
=
5
@]
o
@
Q
o
©
(]
e
&
o
3

Elapsed Time (minutes)

Legend RAW readings-Faraday Cage RAW readings-Lab 5G Influence — RAW readings-Lab
— Median Filtered readings-Lab

Figure 32 : Load cell readings comparison with Median filtering.

8.6.2 Motor PID Tuning Analysis

Although following the Ziegler-Nichols method for the tuning of parameters for the
temperature-controlled motor worked smoothly, this was not the case when it came to tuning

the PID parameters of the motor.

For the tests done on the insertion force of the plunger, Eva was disconnected from the Cobot
and was kept on the socket test board lock in adapter, where when the plunger is pressing on
the socket board, the assembly (Eva) travels up a bit until the locking mechanism between the
test board adaptor and the locking pins is engaged. The first flat area in Figure 33, between
0.2 and 0.4 minutes, illustrates this. This could be observed in the other figures, where the

insertion force is plotted.

In an insertion force operation involving the plunger and an IC, the plunger undergoes two
distinct phases. The first phase occurs when the plunger, which holds the 1C, descends before

making contact with the socket board. During this time, the error signal between the set point

57

and the actual force remains constant, leading to a significant accumulation of error in the
integral term. This accumulation can cause the controller output to saturate as the integral
action continues to increase despite the lack of actual force feedback. In Figure 33 and Figure
34, it is observed that at around 26 N, the plot starts to stay relatively constant for some time
and then again increases. This is because the plug lifts itself until the locking mechanism is
tightly fitted with the board mounting plate, which is basically the exact force or weight of

the Eva mechanical assembly.

As shown in Figure 33, when using the Ziegler-Nichols method for parameter tuning, it
resulted in a too aggressive system that took too much time to settle and oscillate around the
target force, which led to utilising a less aggressive tuning method.

Insertion force over time

o
z
-
9 30
g
(-]
[

0.2 0.3
Elapsed Time (minutes)

Legend — Force (N) — Target Force (N)

Figure 33: Unstable system with Ziegler-Nichol s method.

The Tyreus-Luyben tuning method, which resulted in a less aggressive system, was utilised,
and for further fine-tuning, the parameters were manually adjusted for another operation. In
Figure 34, the comparison between the Ziegler-Nichols method and the combination of

58

Tyrus-Luyben with manual tuning methods is illustrated. It is observed that the system settled

relatively faster and did not oscillate for a longer period.

Insertion force over time comparison

p—
z
S
2 30
9
-]
[

0.2 0.3
Elapsed Time (minutes)

Ziegler-Nichols Method Tuning
— Set Point
— Manual Tuning combined with Tyreus-Luyben Tuning

Figure 34 : Comparison between Ziegler-Nichols method and the manually tuned Tyreus-Luyben method for system stability.

8.6.3 Sensor Libraries

While there were well-implemented and community-supported libraries available for most
sensors and drivers, the two i2c sensors (magnetic encoder and pressure sensor) lacked such
libraries, necessitating the creation of a custom, suitable library, which is called
“i2cSensorLib”. Here methods such as “exponential backoft” were utilised to overcome some

transmission bugs that occurred.

59

9 Validation

9. 1 Requirement Completion Overview.

The functional and non-functional requirements that were developed in the requirements
engineering phase and classified in the requirements chapter of this document are revisited
again in this section to evaluate the requirement completion of the implemented system. The

evaluation of the requirements and its deviations are listed in Table 27 below.

Requirement Description Satisfied Deviation
Identifier (Yes/No) If No
REQ-1 Pick ICs Yes
REQ -2 Place ICs Yes
REQ -3 Press ICs (80N Max) Yes
REQ -4 Heat ICs (150°C) Yes
REQ -5 Low Latency Yes
REQ -6 Precise Insertion Force Yes
REQ -7 Precise Force Reading No 0.0413N
REQ -8 Accurate Force Reading No 0.413%
REQ -9 Precise Temperature Reading Yes
REQ -10 Precise Temperature Steps No 0.75°C
REQ - 11 Pick & Place Confirmation Yes
REQ - 12 Engineer & Board Safety Yes
REQ - 13 Cost-Efficient Yes
REQ - 14 Software Portability Yes
REQ - 15 Robust Communication Yes
REQ - 16 Code Comprehensibility Yes

Table 27 : Functional and non-functional requirements evaluation.

Several tests were carried out to benchmark and analyse whether the system met the specified

requirements. While some requirements were validated using detailed technical

60

measurements, others did not require extensive testing because their fulfilment was more
straightforward. In this section, these tests and their results are listed, and some of the

approaches taken to meet the requirements are also listed.

I. Low Latency

The system consists of six parallel processes. While some of these processes do not directly
interact with the user interface, others do. Operations such as sending commands, executing
them, and motor controlling must operate smoothly and with minimal latency to ensure
optimal performance. In Table 28, each process and its average execution loop frequency are
listed.

Process Name Average Frequency Stack Size (bytes)
Task1Code 1 kHz 4000
Task2Code 6.5 kHz 4000
Task3Code 34 Hz 4000
Task4Code 900 Hz 4000
Task5Code 14 Hz 4000
Task6Code 150 Hz 4000

Table 28 : Average execution loop frequency.

Task1Code and Task2Code, which are responsible for processing user commands, managing
state machines, and controlling the motor, operate at sufficiently high frequencies, resulting
in very low latency. However, it is observed that the processes responsible for reporting status
and sensor data to the serial interface, as well as heat control, are significantly slower
compared to the other processes. This is due to the blocking and slowness of the temperature

sensor readings in Task5Code, as well as the fact that data is reported in JSON format.

Il. Precision in Insertion Force, Force Reading and Accuracy

After reviewing specifications such as non-linearity, hysteresis, repeatability, and creep for
the selected load cell, we calculated the Root Sum Square (RSS) error to be approximately
0.1413 N. Given that the system’s required minimum applicable step size is 10 N, this results
in a measurement accuracy of 1.413%. Although the control software theoretically allows for

minimum step sizes around 1 N, this would lead to reduced accuracy, and such small

61

insertion force steps are not necessary for the application in this project. Therefore, the

requirements are evaluated as “NO” due to the deviation of 0.4 from the required value.

I1l. Precision in Temperature Reading and Application Step

Even though the prediction in temperature reading is met with the selected HW, the required
prediction in temperature is calculated to be around 2.75 °C, as shown in Figure 35, where

the plunger was set to a target heat of 120 °C and its temperature is monitored.
Temperature and Target Temperature Over Time

s, loalctoPoake 275 70

—~
o]
s
=
]
2
=
2
©
=
@
=%
5
=

Elapsed Time (minutes)

Legend — Temperature — Target Temperature

Figure 35 : Temperature of the plunger for a target heat value of 120°C.

IV. Engineer & Board Safety

The lab engineer and the test socket board could be at risk of damage if the plunger
malfunctions during socket insertion, heating, or in scenarios where the engineer’s hand or

another body part is in a compromising position relative to the plunger.

62

To address these scenarios, several measures have been implemented and are listed in Table
29 below. Although many safety measures have been taken regarding the system software, no

software can be guaranteed to be perfectly stable and safe.

Solutions

1. Use of semaphores to avoid race conditions, inconsistent data states, and deadlocks in parallel
processing.

2. Use “configASSERT (xReturned == pdPASS);” to ensure the successful creation of parallel
tasks and semaphores, and halt the system if not.

3. Watchdog timers are used for important tasks where a fire hazard could be a problem, such as
controlling the heater. If this task is not responding for a selected time interval, the system
will enter panic mode and reboot.

4. An emergency stop button that cuts all power and a stop command that puts the system into a
stop state were implemented.

5. Max force checking and retracting the plunger, so the socket is salvaged in case of a sudden
increase in force crossing 80N (configurable) force.

6. To prevent the plunger from being pushed or retracted out of bounds, the system actively polls
the state of the optical end stops during plunger movement.

7. Input command filtering and error checking. e.g., only insertion forces under 120N or
temperatures under 180°C are passed on as valid commands to the system after serial
command processing.

8. For PID controller stability measures such as,

a. Proper parameter tuning method usage.

b. Integral clamping, output clamping, and resetting of the PID parameters are done to
achieve a more stable controller.

c. Use of a median filter to minimise the effect of random ADC spikes influencing the
controller.

d. Limiting the motor PIDs operation for the linear range, where the PID starts to
calculate after around 20N of force is read.

e. When PID control is active, the system is designed to call this function for calculating
the values with the same frequency (if not, it would cause malfunctions in the
controller due to the integral and derivative parts).

Table 29 : Measures to for improved safety of the system.

63

V. SW Portability, Power, Code Clarity and Communication

The rest of the requirements are listed below in Table 30 along with the measures taken for

successful implementation of them.

Requirement Measures Taken
Software Portability e Use of Free-RTOS for portability [27].
Optimized Power o Task sleeping instead of busy waiting,
e Motor is turned on only when needed and in most of the time
remains off.
Code Comprehensibility e Commenting when required, and Doxygen documentation of the

source code.
e State diagrams of the FSM and flowchart to understand the flow
of events in the system.

Cost-Efficient e Not accounting NRE costs and in house printed 3D structures,
the costs come to under 350€ for one Eva Lab Handler excluding
the mounting robotic arm.

Table 30 : Requirements and measures taken to meet them.

9.2 System performance and validation through lab test cases

Along with meeting functional and non-functional requirements to validate the system, this
system should match or exceed the efficiency and precision of the process where the
validation engineer manually swaps samples and uses a lid to securely place the IC in the

socket.

The measurements listed below in the next section are conducted on the NXP’s Automotive
Radar chip called SAF85XX, illustrated in Figure 36, which is yet in preproduction and being
actively validated in my department. The Integrated Circuit (IC) is utilised in a variety of
advanced automotive applications, including adaptive cruise control (ACC), autonomous
emergency braking (AEB), blind spot detection (BSD), door open warning (DoW), front
collision warning (FCW), front cross traffic alert (FCTA), lane change assistance (LCA), park
assist (PA), rear cross traffic alert (RCTA), and reverse autonomous emergency braking (R-
AEB) [28].

64

NX@ coceccecccssssesces

SAF85xx

Figure 36 : High Performance 77GHz RFCMOS Automotive Radar One-Chip SoC [28].

9.2.1 IC Transmitter Power Test Case

The IC was pressed into the socket with around 70N of force, and then the transmitter power
of the IC was measured over time with regulated force by activating the KEEP_PRESSING
function, which maintains the set insertion force over time and unregulated force. This was
compared with the case where the engineer swaps the IC manually and uses the specified lid
to push the IC into the socket. This was done in three temperature test cases, namely ambient
(25°C), hot (150°C), and cold (-40°C), which are the three temperature measurements done in
the validation lab.

For confidential reasons, no absolute values of any of the measures are plotted, and only the
ratio with respect to the reference case is plotted using the formula (2) below. The reference

case is 0 dB in this case due to the difference between itself as a test case being zero.

)

Power Ratio (dB) = 10 - log; (Test Case Power (mW))

Ref Case Lid Power (mW)

During a test, the IC heats up when transmitting, and this, as well as heating up the device for
hot measurements and cooling it down for cold measurements, expands or shrinks the metal
plunger. This will influence the insertion force of the IC on the socket and could cause

deviations in power due to the change in impedance of the pogo pins of the socket.

65

I. Test at Ambient Temperature (25 °C)

As shown in Figure 37, it is clearly observed that when the force is regulated, the TX power
is relatively constant compared to the unregulated test case, where the power has a slightly

increasing line.

Power Ratio Comparison to Reference (Lid on Ambient)

)
=
o
=
T
o
=
[}
S
5
o

Time (s)

Power ratio of Unregulated Force to reference (Lid Case) - Power ratio of Regulated Force to reference (Lid Case)
Reference - (Lid Ambient) (0 dB)

Figure 37: TX power comparison at ambient.

Il. Test at Cold Temperature (-40 °C)

As illustrated in Figure 38, the temperature readout from the 1C was cooled down to around -
40 °C, and the TX power was recorded. In this case, the regulated force performed better in

power around +3.5 dBs compared to the unregulated force test case.

66

Power Ratio Comparison to Reference (Lid on Cold (-40°C))

150
Time (s)

Power ratio of Unregulated Force to reference (Lid Case) - Power ratio of Regulated Force to reference (Lid Case)
Reference - (Lid Cold) (0 dB)

Figure 38 : TX power comparison at -40°C.

I1l. Test at Hot Temperature (150 °C)

As illustrated in Figure 39, the temperature readout from the 1C was heated up to around 150
°C, and the TX power was recorded. In this case, the regulated force performed only slightly

better, with almost no difference in power compared to the unregulated force test case.

67

Power Ratio Comparison to Reference (Lid on Hot (+150°C))

1.8
1.6

1.4

om
=
=]
=
©
14
pul
]
2
[
o

300
Time (s)

Power ratio of Unregulated Force to reference (Lid Case)) - Power ratio of Regulated Force to reference (Lid Case)
Reference - (Lid at 150°C) (0 dB)

Figure 39 : TX power comparison at 150°C.

68

10 Summary & Outlook

10.1 Summary and Key Findings of Analysis

Based on the analysis presented in 8.6 Analysis of Challenges in Implementation, as well as

insights gained from various interactions and findings encountered during the system’s

implementation and testing phases, the table below outlines the lessons learnt and

recommended steps for avoiding anomalies and deviations in future iterations.

Anomaly / Deviation

Possible Solutions

ADC Spikes

Shielding of the traces in PCB.

Twisted pair traces in PCB.

Short and direct traces on the PCB between the ADC and the load
cell.

EMI shielded enclosure for the PCB.

Shielded wires from load cell to PCB connector.

Accuracy

Load cells with narrower but more accurate full-scale ranges.

Slow Temperature
Reads

Although for the current Temperature PI1D and the heater the
temperature sensors reading frequency is good enough, a faster
reading sensor would be better and would be able to get the required
temperature steps.

Table 31 : Suggested solutions for the next iteration of the project.

To avoid the anomalies and deviations encountered in this iteration, which were difficult to

counteract with SW solutions, Table 31 above lists potential solutions for consideration in the

next iteration.

69

10.2 Conclusion

This thesis successfully designed, developed, implemented, and validated an RTOS system
that uses PID control for socket insertion force and heater temperature control, meeting
nearly all functional and non-functional requirements of the lab handler project with minimal
deviations. The system is now suitable for use in IC chip validation in conjunction with a
Cobot.

This conclusion was reached after thoroughly reviewing the validation section where the
system is tested and analysed to check for functional and non-functional requirements, and
also the overall system with its current state has been compared with the reference test case

where the engineer swaps the samples manually.

10.3 Future Work and Recommendation

Although the system has successfully met most of the project requirements, there is still room
for improvement and optimization. This section lists some potential improvements that could
have a positive impact on the system in addition to the listing included in the Summary and

Key findings section.

1. For further safety of the temperature PID control, where a possible thermal runaway
scenario could happen due to faulty connection or malfunction of the temperature
sensor, a SW solution with a redundant temperature sensor could be implemented for
a safer system with higher MTBF.

2. Redundant load cell sensors for safety and higher MTBF of the system in socket

insertion force control.

70

Bibliography

[01]

[02]

[03]

[04]

[05]

[06]

[07]

[08]

[09]

[10]

reichelt elektronik G. I. Team (webmaster@reichelt.de), ‘UF XARMS LITE -
UFactory xArm5 Lite’, Elektronik und Technik bei reichelt elektronik giinstig
bestellen. Accessed: Sep. 09, 2024. [Online]. Available:
https://www.reichelt.de/ufactory-xarm>5-lite-uf-xarm>5-lite-p299080.html

‘PCB Prototype & PCB Fabrication Manufacturer - JLCPCB’. Accessed: Sep. 09,
2024. [Online]. Available: https://jlcpch.com/

R. Malan and D. Bredemeyer, ‘Functional Requirements and Use Cases’, Dec. 2001.

Y. H. Hee, M. K. Ishak, M. S. M. Asaari, and M. T. A. Seman, ‘Embedded operating
system and industrial applications: a review’, Bull. Electr. Eng. Inform., vol. 10, no. 3,
Art. no. 3, Jun. 2021, doi: 10.11591/eei.v10i3.2526.

S. Fischmeister and P. Lam, ‘Time-Aware Instrumentation of Embedded Software’,
IEEE Trans. Ind. Inform., vol. 6, no. 4, pp. 652-663, Nov. 2010, doi:
10.1109/T11.2010.2068304.

K. W. Batcher and R. A. Walker, ‘Interrupt Triggered Software Prefetching for
Embedded CPU Instruction Cache’, in 12th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS 06), Apr. 2006, pp. 91-102. doi:
10.1109/RTAS.2006.24.

M. Nahas, ‘Implementation of highly-predictable time-triggered cooperative
scheduler using simple super loop’, Int. J. Comput. Sci. Eng., Jul. 2011,

M. Pont, S. Kurian, H. Wang, and T. Phatrapornnant, Selecting an appropriate
scheduler for use with time-triggered embedded systems. 2007, p. 618.

S. Kurian and M. J. Pont, ‘The maintenance and evolution of resource-constrained
embedded systems created using design patterns’, J. Syst. Softw., vol. 80, no. 1, pp.
32-41, Jan. 2007, doi: 10.1016/j.jss.2006.04.007.

P. Hambarde, R. Varma, and S. Jha, ‘The Survey of Real Time Operating System:
RTOS’, in 2014 International Conference on Electronic Systems, Signal Processing
and Computing Technologies, Jan. 2014, pp. 34-39. doi: 10.1109/ICESC.2014.15.

71

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

X. Guan, Q. Xing, and L. Feng, ‘Implementation of embedded system platform based
on puC/OS-II and S3C44B0X microprocessor’, in 2011 International Conference on
Mechatronic Science, Electric Engineering and Computer (MEC), Aug. 2011, pp.
2205-2208. doi: 10.1109/MEC.2011.6025929.

‘FreeRTOS documentation - FreeRTOS™". Accessed: Sep. 09, 2024. [Online].
Available: https://freertos.org/Documentation/00-Overview

‘Zephyr Project Documentation — Zephyr Project Documentation’. Accessed: Sep.
09, 2024. [Online]. Available: https://docs.zephyrproject.org/latest/index.html

‘NuttX Documentation — NuttX latest documentation’. Accessed: Sep. 09, 2024.
[Online]. Available: https://nuttx.apache.org/docs/latest/

K. Andersson and R. Andersson, ‘A comparison between FreeRTOS and RTLinux in
embedded real-time systems’.

Y. Neuhard, ‘A Comparison of Real-time Operating Systems for Embedded
Computing’, Technische Universitdt Kaiserslautern, Department of Computer
Science, Summer term 2022. [Online]. Available:
https://es.cs.rptu.de/publications/datarsg/Neuh22.pdf

M. H. Qutqut, A. Al-Sakran, F. Almasalha, and H. S. Hassanein, ‘Comprehensive
survey of the 10T open-source OSs’, IET Wirel. Sens. Syst., vol. 8, no. 6, pp. 323-339,
2018, doi: 10.1049/iet-wss.2018.5033.

A. Serino and L. Cheng, ‘A Survey of Real-Time Operating Systems’.

B. Boulet, Introduction to Feedback Control Systems, REV 0. 2000.

‘The PID Controller & Theory Explained’. Accessed: Sep. 09, 2024. [Online].
Available: https://www.ni.com/en/shop/labview/pid-theory-explained.html

B. M. Sarif, D. V. A. Kumar, and M. V. G. Rao, ‘Comparison Study of PID Controller
Tuning using Classical/Analytical Methods’, vol. 13, no. 8§, 2018.

72

[22]

[23]

[24]

[25]

[26]

[27]

[28]

G. Ellis, ‘Chapter 6 - Four Types of Controllers’, in Control System Design Guide
(Fourth Edition), G. Ellis, Ed., Boston: Butterworth-Heinemann, 2012, pp. 97-119.
doi: 10.1016/B978-0-12-385920-4.00006-0.

M. L. Luyben, ‘Essentials of process control’, No Title, Accessed: Sep. 09, 2024.
[Online]. Available: https://cir.nii.ac.jp/crid/1130000794396931328

S. Nikita and M. Chidambaram, ‘Tuning of PID Controllers for time Delay Unstable
Systems with Two Unstable Poles’, IFAC-Pap., vol. 49, no. 1, pp. 801-806, Jan. 2016,
doi: 10.1016/j.ifacol.2016.03.155.

M. O. Okelola, D. O. Aborisade, and P. A. Adewuyi, ‘Performance and Configuration
Analysis of Tracking Time Anti-Windup PID Controllers’, J. Ilm. Tek. Elektro
Komput. Dan Inform., vol. 6, no. 2, p. 20, Jan. 2021, doi: 10.26555/jiteki.v6i2.18867.

“Velocity Open-Loop’, Arduino-FOC. Accessed: Sep. 09, 2024. [Online]. Available:
https://docs.simplefoc.com/velocity _openloop

R. M. Gomes and M. Baunach, ‘A Model-Based Concept for RTOS Portability’, in
2018 IEEE/ACS 15th International Conference on Computer Systems and
Applications (AICCSA), Oct. 2018, pp. 1-6. doi: 10.1109/AICCSA.2018.8612862.

‘Snapshot’. Accessed: Sep. 09, 2024. [Online]. Available:
https://www.nxp.com/products/radio-frequency/radar-transceivers-and-socs/high-
performance-77ghz-rfcmos-automotive-radar-one-chip-soc:SAF85XX

73

Declaration
| declare that this Bachelor Thesis has been completed by myself independently without

outside help and only the defined sources and study aids were used.

City Date Signature

74

