
BACHELORTHESIS

Thishan Warnakulasooriya

RTOS-Based Implementation
of a Chip Validation System Featuring
PID-Controlled Socket Insertion
and Temperature

FACULTY OF ENGINEERING AND COMPUTER SCIENCE

Department of Information and Electrical Engineering

Fakultät Technik und Informatik

Department Informations- und Elektrotechnik

i

Thishan Warnakulasooriya

RTOS-Based Implementation of a Chip
Validation System Featuring PID-Controlled

Socket Insertion and Temperature

Bachelor Thesis based on the examination and study regulations

for the Bachelor of Engineering degree programme

Information Engineering

at the Department of Information and Electrical Engineering

of the Faculty of Engineering and Computer Science

of the University of Applied Sciences Hamburg

Supervising examiner: Prof. Dr. Ing Pawel Buczek

Second examiner: Mr. Holger Mahnke

Day of delivery: 10 September 2024

ii

Thishan Warnakulasooriya

Title of the paper

RTOS-based implementation of a chip validation system featuring PID-controlled

socket insertion and temperature

Keywords

RTOS, Control Systems, PID Control & Tuning, Parelle Processing, FSM,

Automation, Integral Windup, ADC Spikes

Abstract

This document covers the requirement classification, design, implementation,

development, and validation of control software for a chip validation system. The

software is an RTOS that utilises PID control for the regulation of insertion force and

heating of the IC.

Thishan Warnakulasooriya

Thema der Bachelorthesis

RTOS-basierte implementierung eines chip-validierungssystems mit PID-gesteuerter

sockelinstallation und temperaturregelung

Stichworte

RTOS, Regelungssysteme, PID-Regelung & Abstimmung, Parallelverarbeitung,

Endlicher Zustandsautomat, Automatisierung, Integralsättigung, ADC-Spitzen

iii

Kurzzusammenfassung

Dieses Dokument behandelt die Anforderungsanalyse, das Design, die

Implementierung, Entwicklung und Validierung der Steuerungssoftware für ein Chip-

Validierungssystem. Die Software ist ein RTOS, das PID-Regelung zur Steuerung der

Einpresskraft und Erwärmung des IC verwendet.

iv

Table of Contents
1 Abbreviations ... vi

2 List of Figures ... vii

3 List of Tables .. ix

4 Acknowledgement... x

5 Introduction ... 1

5.1 Background .. 1

5.2 Objective .. 5

6 Requirements .. 6

6.1 Purpose of System.. 6

6.2 Functional Requirements ... 7

6.2.1 Introduction to Functional Requirements ... 7

6.2.2 Functional Requirements of the System ... 7

6.3 Non-Functional Requirements ... 8

6.3.1 Introduction to Non-Functional Requirements ... 8

6.3.2 Non-Functional Requirements of the System ... 8

7 Theory ... 9

7.1 Embedded Systems .. 9

7.1.1 Super Loop .. 10

7.1.2 Cooperative OS ... 11

7.1.3 Real-time operating system (RTOS) ... 12

7.1.4 RTOS for ESP-32 S3 .. 14

7.1.5 Free-RTOS .. 16

7.2 Control Systems ... 18

7.2.1 Introduction to Control Systems ... 18

7.2.2 Open-loop and Close-loop control systems .. 18

7.2.3 Feedback Control Systems .. 20

v

7.2.4 PID Controller ... 22

7.2.5 PID Tuning .. 24

7.2.6 PID Integral Windup ... 27

8 Implementation ... 29

8.1 Overall System Architecture .. 30

8.2 Mechanical Assembly of the System ... 33

8.3 State Diagrams ... 37

8.4 PID Design ... 46

8.4.1 Motor Control PID .. 46

8.4.2 Temperature Control PID .. 49

8.5 System Flow... 51

8.6 Analysis of Challenges in Implementation .. 53

8.6.1 ADC Spikes Analysis .. 53

8.6.2 Motor PID Tuning Analysis .. 57

8.6.3 Sensor Libraries .. 59

9 Validation .. 60

9. 1 Requirement Completion Overview. .. 60

9.2 System performance and validation through lab test cases ... 64

9.2.1 IC Transmitter Power Test Case .. 65

10 Summary & Outlook ... 69

10.1 Summary and Key Findings of Analysis ... 69

10.2 Conclusion ... 70

10.3 Future Work and Recommendation ... 70

Bibliography .. 71

Declaration ... 74

vi

1 Abbreviations

Abbreviation Full Term

ADC Analog to Digital Converter

ASMD Algorithmic State Machine with Datapath

BL RFP Business Line Radio Frequency Processing

FSM Finite State Machine

IC Integrated Circuit

ISR Interrupt Service Routine

MCU Micro Controller Unit

OS Operating System

PCB Printed Circuit Board

TX Transmitter

vii

2 List of Figures

Figure 1 : CNC type Lab Handler “Bonita”... 2

Figure 2 : Leveling Castor ... 3

Figure 3 : Eva, connected with the Cobot and mounted on mobile table. 4

Figure 4 : Concept diagram of super-loop workflow [4]. .. 10

Figure 5 : Concept diagram of cooperative-loop workflow [4]. .. 12

Figure 6 : Scheduled tasks in round robin pattern [4]. ... 13

Figure 7 : RTOS workflow overview [4]. .. 14

Figure 8 : Architecture Overview for VxWorks and FreeRTOS [18]. 17

Figure 9 : Block diagram of a basic PID controller. .. 23

Figure 10 : Response of a typical PID closed loop system [20]. ... 25

Figure 11 : Steps of tuning a controller according to Ziegler Nichols method [22]. 26

Figure 12 : High-level overview of system architecture. ... 31

Figure 13 : Eva flipped front side view. ... 33

Figure 14 : Eva flipped back side view. ... 34

Figure 15 System block diagram. .. 35

Figure 16 : ASMD of state IDLE ... 38

Figure 17 : ASMD of state STOP .. 38

Figure 18 : ASMD of state HOMING ... 39

Figure 19 : ASMD of state PRESS .. 40

Figure 20 : ASMD of state PLACING ... 41

Figure 21 : ASMD of state PICKING .. 42

Figure 22 : ASMD of state TRAVERSE .. 43

Figure 23 : ASMD of state KEEP_PRESSING ... 44

Figure 24 : Simplified FSM for overview. ... 45

Figure 25 : Velocity open loop control block diagram [26]. .. 46

Figure 26 : Custom motor PID controller block diagram .. 47

Figure 27 : Custom temperature PID controller block diagram. ... 49

Figure 28: Flow chart of test case “press 7000”. ... 52

Figure 29 : ADC unfiltered values comparison between Lab and Faraday Cage 54

Figure 30: Very high ADC spike readings ... 55

Figure 31 : Comparison of RAW ADC readouts between Faraday cage, lab, and 5G influence.

.. 56

viii

Figure 32 : Load cell readings comparison with Median filtering... 57

Figure 33: Unstable system with Ziegler-Nichol’s method. .. 58

Figure 34 : Comparison between Ziegler-Nichol’s method and the manually tuned Tyreus-

Luyben method for system stability. .. 59

Figure 35 : Temperature of the plunger for a target heat value of 120°C. 62

Figure 36 : High Performance 77GHz RFCMOS Automotive Radar One-Chip SoC [28]. 65

Figure 37: TX power comparison at ambient. ... 66

Figure 38 : TX power comparison at -40°C. .. 67

Figure 39 : TX power comparison at 150°C. ... 68

ix

3 List of Tables

Table 1: Previous Lab Handler Requirements ... 1

Table 2: Extended Lab Handler Requirements for the new iteration ... 3

Table 3: Simplified System Functionality .. 6

Table 4 : Functional requirements of the control system for Eva. ... 7

Table 5 :Non-Functional requirements of the control system for Eva. 8

Table 6 : Most common embedded OS solutions. ... 10

Table 7 : ESP32-S3-MINI-1U MCU Specifications [12]. ... 15

Table 8 : Comparison of most used RTOS for ESP32-S3.. 16

Table 9 : Free-RTOS features summarized .. 17

Table 10 : Components of a control system ... 18

Table 11 : Comparison between open vs close loop control systems. 19

Table 12 : Importance of feedback control systems ... 20

Table 13 : Comparison of commonly used feedback control systems 22

Table 14 : Three main parts of a PID controller. .. 22

Table 15 : Components of the PID control equation. ... 23

Table 16 : Overview of the terms overshoot, settling time and steady state error 24

Table 17 : Gain calculation for P, PI & PID controllers according to Ziegler - Nichol’s

method.. 26

Table 18 : Gain calculation for P, PI & PID controllers according to Tyreus-Luyben method 27

Table 19 : Parallel processes and their tasks in the system. ... 30

Table 20 : Components of the system architecture and their interactions. 32

Table 21 : Components of Eva and their description. .. 36

Table 22 : State descriptions of the FSM. .. 37

Table 23 : Components of motor PID controller. ... 48

Table 24 : Components of temperature PID controller. ... 50

Table 25 : Additional information for the test case illustrated in the flowchart in Figure 28. . 51

Table 26 : Possible causes for ADC spikes. ... 53

Table 27 : Functional and non-functional requirements evaluation. .. 60

Table 28 : Average execution loop frequency. ... 61

Table 29 : Measures to for improved safety of the system. ... 63

Table 30 : Requirements and measures taken to meet them. ... 64

Table 31 : Suggested solutions for the next iteration of the project. .. 69

x

4 Acknowledgement

I would like to express my sincere gratitude to my manager, Holger Mahnke, at NXP for his

invaluable support and guidance throughout my project. His expertise and encouragement

were crucial to the completion of this thesis.

I would also like to extend my heartfelt thanks to my supervisor, Professor Pawel Buczek, for

his insightful advice and continuous support. His mentorship has been instrumental in

shaping my research and achieving this milestone.

Additionally, I am deeply grateful to my colleague, Celestine Machuca, for her unwavering

assistance and collaboration. Her contributions and support were invaluable.

Thank you all for your unwavering support and belief in my capabilities.

1

5 Introduction

5.1 Background

Under the leadership of my manager, Holger Mahnke, the Validation Department of the

Business Line Radio Frequency Power (BL RFP) validates company-designed radar

integrated circuits (ICs) to ensure compliance with their datasheet specifications. We then

communicate the results of these validation tests to the design engineers. When necessary,

adjustments are made to the IC design to ensure that the specified parameters are achieved.

The validation engineer manually subjects multiple ICs from various wafer areas to the

validation test benches by selecting the IC, inserting it into the socket, and tightening the

socket screw on the lid. An automated test script runs on a setup test bench with measurement

and other heating and cold equipment for a tray of several dozen IC samples for a selected

test case, requiring an engineer to be present on-site to swap the ICs.

The need for a lab handler to automate the IC swap procedure became evident when the lab

had to manually test and configure 100 samples. Automating this process was crucial. This

initial lab handler was supposed to fulfil the following requirements in Table 1 below.

Requirement Description

Repeatability 0.1 mm repeatability of XY-axis placement (parallel to the setup board).

Maintenance Maximum service and inspection of once per month.

Plug and play Easy installation and immediate use require no complex setup or configuration,

allowing it to function right out of the box with minimal technical expertise.

Accuracy Precise placement and alignment of ICs on tray and socket is possible.

Scalability The ability to handle varying quantities of ICs.

Compatibility Support for various types and sizes of ICs is available.

Safety The implementation of safety measures is necessary to prevent damage to ICs and

equipment (ESD).

Speed Efficient operation to minimize downtime between tests

User

Interface

The intuitive controls and monitoring systems facilitate easy operation and

troubleshooting.

Table 1: Previous Lab Handler Requirements

2

Figure 1 : CNC type Lab Handler “Bonita”

The initial two CNC-style lab handlers were developed and implemented by repurposing

control units originally designed for 3D printers. After running various test setups, the

validation team found the two new machines were contributing tremendously to their work

by being able to run test scripts overnight, relieving engineers from manually handling

samples. It was also discovered that the IC needs to be pushed with around 65N to 70N for an

ideal contact with the test socket pogo pins.

While these units proved to be efficient and successful, the limited functions originally

intended for 3D printers posed restrictions due to their complexity when attempting to set up

new custom functions. Furthermore, their CNC-style design made them heavy and large,

requiring substantial space, as can be observed in Figure 1 above. Due to their considerable

size and weight, these machines lacked mobility, thereby restricting engineers to always

setting up their test benches at fixed locations where the lab handlers were stationary. The

need for a newer lab handler was immense, with the additional requirements stated in Table 2

below.

3

Requirement Description

Mobile It can effortlessly move from one test bench to another.

Customizable Firmware The firmware could integrate additional features with the essential tasks.

Small Scale Enabling it to be used in complicated test setups with limited clearing.

Scalable It can easily be modified to be used with different IC housing sizes.

Table 2: Extended Lab Handler Requirements for the new iteration

The new iteration’s concept involved purchasing a commercial Cobot and integrating it with

an in-house solution to fulfil the basic functional requirements of the lab handler. To achieve

this, we purchased a Cobot, the “UFACTORY xArm 5 Lite”, which has 5 axis/joints and a

maximum press and lift force of approximately 30 N [1]. This Cobot was then mounted also

on an in-house designed table with the ability to be mobile and, when needed, stationary and

stable by its heavy-duty wheels that are height adjustable, as shown in Figure 2 below.

Figure 2 : Leveling Castor

The in-house solution must also be able to account for the controlled insertion force required

for the project, as the Cobot's press/push force of 30N is insufficient for an ideal contact

between the socket and the IC. The control system software of the in-house designed and

built adapter, known as “Eva”, is the primary focus and core subject of this thesis.

4

Figure 3 : Eva, connected with the Cobot and mounted on mobile table.

In Figure 3, Eva in combination with the Cobot and mounted on the mobile table setup is

illustrated.

5

5.2 Objective

The primary objective of this thesis is to design and implement a software solution for the

Lab Handler project. This involves conducting both theoretical and practical research studies

to ensure the solution fulfils all the necessary requirements established during the

requirements engineering phase, as outlined in the Requirements Chapter.

6

6 Requirements

6.1 Purpose of System

Despite the complexity and extensiveness of the system requirements, the fundamental

functionality of the system can be simplified into the following basic functions, as shown in

Table 3. They are the most important and basic system functional requirements.

Identifier Function

REQ - 1 The system can pick up the IC from IC trays and sockets.

REQ – 2 The system can place the IC from IC trays and sockets.

REQ – 3 The system can press the IC into the socket for a maximum of up to 80N and maintain it.

REQ - 4 The system can heat up the IC and maintain it at a maximum temperature of 150 °C.

Table 3: Simplified System Functionality

This document consists of the design, implementation, optimization, and validation of the

software solution for the required system. The software will be executed on a PCB designed

in-house by Celestine Machucha and manufactured in China. The design of the physical

infrastructure, including the selection of sensors, drivers, MCU, and other hardware

components, was conducted in collaboration with Celestine Machucha through numerous

iterations and prototyping. These aspects are not included within the scope of this document.

In summary, the hardware with the smallest footprint and optimal specifications, tailored to

the project requirements, was selected from the available list of devices provided by JLPCB

[2]. Hardware available from JLPCB was chosen because they could ship the printed PCB

boards with the components already soldered. This streamlined the manufacturing process, as

the PCB was manufactured, and the hardware components were soldered by JLPCB.

The MCU ESP32-S3-MINI-1U was selected based on its compact size, affordable price,

comprehensive documentation, strong community support, and well-implemented libraries

from both the community and Espressif, along with its inclusion of a 240MHz dual-core

processor.

7

6.2 Functional Requirements

6.2.1 Introduction to Functional Requirements

Functional requirements describe the specific functionalities that the system should be

capable of performing [3]. They outline the essential tasks and processes that the system must

execute to meet the needs of its users and stakeholders. They serve as the foundation for

system design and development, ensuring that the final product aligns with the intended

purpose of the system.

6.2.2 Functional Requirements of the System

The functional requirements of the system are stated and described in Table 4 below. It

extends the simple requirements that were developed at the beginning of the project by

modifying and extending the requirements of the previous Lab Handler CNC project.

Identifier Requirement Description

REQ – 5 Latency • User interactive tasks are at least 120 Hz.

REQ – 6 Precise insertion force • Minimum precision of 10N.

REQ – 7 Precise insertion force reading • Minimum precision of 0.1N.

REQ – 8 Accurate insertion force reading • Minimum accuracy of 1%.

REQ – 9 Precision in temperature reading • 0.1 K (range 223.15 K –423.15 K).

REQ – 10 Precision in temperature step apply • ±2 K.

REQ – 11 DUT pick & place confirmation • Feedback of the air pressure change in the

vacuum pump.

REQ – 12 Safety for the Engineer and the

Validation board

• Thread / Deadlock safe.

• Process infinite loop fault safety.

• Emergency Stop.

• PID safety.

Table 4 : Functional requirements of the control system for Eva.

8

6.3 Non-Functional Requirements

6.3.1 Introduction to Non-Functional Requirements

Non-functional requirements are criteria that can be used to evaluate the operation of a

system, rather than specific functions and tasks. They define system attributes such as

performance, security, usability, reliability, and scalability and are crucial to ensure that the

system meets quality standards and performs efficiently under various conditions.

6.3.2 Non-Functional Requirements of the System

The Non-functional requirements of the system are stated and described in Table 5 below.

The requirements were developed at the beginning of the project by modifying and extending

the requirements of the previous Lab Handler CNC project.

Identifier Requirement Description

REQ – 13 Cost-efficient • The cost should be as low as possible while being

as high as necessary.

REQ – 14 Software portability • SW can be used without major modifications across

different MCUs.

REQ – 15 Optimized Power. • Power usage for the whole system operation should

be as low as possible while having the highest

efficiency.

REQ - 16 System code

comprehensibility

• The system code should be simple and easily

readable even for an entry SW developer.

Table 5 :Non-Functional requirements of the control system for Eva.

9

7 Theory

This chapter dives deeply into the two primary areas of focus, RTOS and feedback-control

systems, during the system’s development. The system consists of several sensors that it

needs to communicate with and drivers that need to be repeatedly called at a fixed frequency

for smooth and efficient operation. It also consists of several control loops that are essential

for correct and precise operation. The approaches taken to meet these requirements are

discussed further in the RTOS and Feedback Control System chapters.

7.1 Embedded Systems

An embedded system is a combination of electronic components and software that is

specifically designed to perform a specific function. An advanced embedded system typically

includes a microcontroller that can be programmed to execute diverse functions, such as

temperature sensing, battery level sensing, and retrieving acceleration data from an

accelerometer. This system is applied in various applications including air-conditioning,

remote-control devices, car entertainment systems, flight navigation systems, robotic

automation in factories, MP3 players, smartphones, and smartwatches. Personal computers

(PCs) running general-purpose operating systems like Windows, Linux, and Mac OS have the

capability to perform a wide range of tasks and require significant resources in terms of

processing power, graphics processing, and memory usage. On the other hand, embedded

software is purposefully created for a particular application. An embedded operating system

is specifically developed for microcontrollers with limited resources, particularly in terms of

memory capacity, such as read-only memory (ROM) and random-access memory (RAM). A

standard personal computer typically includes several gigabytes of random-access memory

(RAM) and multiple terabytes of hard disk space. In contrast, the memory capacity of a

microcontroller is significantly smaller in comparison to a PC [4].

For this purpose, an embedded OS is designed and developed resource sensitive and efficient.

There are three main types of embedded OS solutions that are commonly used in industry,

which is listed in Table 6 [4].

10

Embedded OS Solution

1. Super loop

2. Cooperative

3. Real time operating system (RTOS).

Table 6 : Most common embedded OS solutions.

7.1.1 Super Loop

Small embedded systems commonly employ a foreground and background pattern for their

operating system design [5], [6]. As shown in Figure 4, the background area contains the

tasks that are to be executed indefinitely. When an interrupt triggers the background tasks are

interrupted and the software will switch to the interrupt service routine (ISR), which is

conceptually part of the foreground area. The term for this process is pre-emption. Once the

ISR is handled, it will resume execution from the exact point where it had previously paused

in the background area. This is the basic operation of a super loop embedded operating

system. The tasks in the background region are executed in a sequential manner. The

subsequent task will be carried out only upon completion of the preceding task. Once the

final task in the sequence is completed, it will cycle back to the initial task and begin again in

a sequential manner [4].

Figure 4 : Concept diagram of super-loop workflow [4].

11

7.1.2 Cooperative OS

The cooperative scheduler is commonly used in embedded systems. The basic concept is

similar to the operation of the super loop scheduler, involving both foreground and

background regions. In contrast to the sequential and cyclical execution of tasks in a super

loop, the tasks in this case are organised into groups based on time slots. Their activity will be

limited to the specific time slot when it is active. During the active time slot, the tasks within

it will be executed in a sequential manner and will only be served once. Subsequently, they

will remain inactive until their designated time slice becomes active once more. The

cooperative scheduler is generally considered to be more structured and predictable compared

to a super loop [7], [8]. As shown in Figure 5, the timer is programmed to accurately measure

the passage of time. When the timer interrupt triggers, the background tasks will be

interrupted, and the timer ISR routine in the foreground will be executed to record the time

[9]. For example, one second had elapsed, two seconds had elapsed, and so forth. Based on

the definition of the requirements, a flag can be activated within the ISR when the designated

time is reached. As an example, the Timer 1 flag is activated when 1 second elapses, while

the Timer 2 flag is activated when 2 seconds elapse. Subsequently, the program will resume

execution from the precise location where it had previously been paused within the

background region. Using this mechanism, the scheduler could selectively execute tasks that

are assigned to a specific time region. Task 1 will only be executed when the Timer 1 flag is

active, and Task 2 will only be executed when the Timer 2 flag is active. Contiki and TinyOS

are operating systems that have implemented the cooperative mechanism [4].

12

Figure 5 : Concept diagram of cooperative-loop workflow [4].

7.1.3 Real-time operating system (RTOS)

A real-time operating system (RTOS) is significantly more complex than a super loop and

cooperative scheduler, and it has a unique deterministic capability in contrast to other

operating systems.

The two categories of RTOS are hard RTOS and soft RTOS [10]. The hard real-time

operating system (RTOS) consistently meets the specified deadline, whereas the soft real-

time operating system (RTOS) is able to meet the deadline on the majority of occasions.

For time-sensitive real-time applications, especially in industries such as automotive and

military, the use of a hard RTOS (Real-Time Operating System) is required. Failing to meet a

deadline in these situations could result in fatal consequences. For example, the

implementation of a car airbag: if the system needs to activate the airbag within 50

milliseconds after detecting a collision, the real-time operating system (RTOS) must

guarantee that this time limit is consistently met.

13

Unlike simpler scheduling methods like super loops or cooperative schedulers, which can be

developed internally relatively easily and quickly, the industry often relies on third-party real-

time operating system (RTOS) solutions for more complex requirements. The kernel, or

scheduler, is the core element of a real-time operating system (RTOS), with the primary

responsibility of managing and supervising the execution of tasks within the system.

A commonly employed scheduling technique in real-time operating systems (RTOS) is

round-robin with time slicing, which involves assigning time slots to tasks of equal priority,

allowing them to run for a specified duration before being pre-empted to give way to other

tasks. With the time slots being small and optimized enough to mimic parallel processing,

especially for the human eye, and many real-world tasks, even though only one task is run on

a single-core processor.

In Figure 6 an implementation of round-robin scheduling can be observed. All three tasks A,

B, and C have the same priority and have an equal amount of time allocated (T1 = T2 = T3).

In this case, task A starts first, then B, and finally C, and they require, respectively, three, two,

and one time slots for complete execution. It is observed that task C is executed three times

while task A completes the execution cycle in Figure 6.

Figure 6 : Scheduled tasks in round robin pattern [4].

RTOS schedulers used in the industry are more complex than just having sliced time slots for

tasks. Figure 7 shows the entire system of a commercial RTOS-μC/OS-III [11].In layman’s

terms, it is contained within a background and foreground design pattern. The ISR is situated

in the foreground region, while the tasks are situated in the background. The round-robin time

14

slicing pattern is used to schedule the low-priority tasks, and as soon as an interrupt is

triggered, the program will transition into the ISR, and the running task will be pre-empted.

In the ISR, a higher priority task is made active, and this will be immediately detected by the

scheduler at the completion of the ISR. It will serve this new higher priority task before

reverting to the low priority task that was halted when the interrupt was triggered.

Figure 7 : RTOS workflow overview [4].

The aforementioned OS types cannot efficiently manage and operate the system due to its

complexity, making RTOS the optimal choice. The following section will further discuss

several possible RTOS solutions that best suit the system under implementation.

7.1.4 RTOS for ESP-32 S3

The PCB for the system consists of an ESP32-S3-MINI-1U microcontroller, which consists

of two 32-bit Xtensa LX7 microprocessors. In Table 7, the system specifications of the MCU

that were relevant when selecting the compatible MCU for this system are listed.

15

Category Details

CPU and On-Chip

Memory

• ESP32-S3 embedded, Xtensa® dual-core 32-bit LX7 microprocessor

 (with single precision FPU), up to 240 MHz

• 384 KB ROM

• 512 KB SRAM

• 16 KB of SRAM in RTC

• Up to 8 MB of quad SPI flash

• 2 MB of PSRAM (ESP32-S3FH4R2 only)

Peripherals • GPIO, SPI, LCD interface, camera interface, UART, I2C, I2S, remote control,

pulse counter, LED PWM, full-speed USB 2.0 OTG, USB Serial/JTAG

controller, MCPWM, SDIO host,

GDMA, TWAI® controller (compatible with ISO 11898-1, i.e., CAN

Specification 2.0), ADC, touch sensor, temperature sensor, timers, and watchdogs

Operating

Conditions

• Operating voltage/power supply: 3.0 ~ 3.6 V

• Operating ambient temperature: -40 ~ 85 °C

Tests • HTOL/HTSL/uHAST/TCT/ESD

Table 7 : ESP32-S3-MINI-1U MCU Specifications [12].

For the selected MCU, the best possible RTOSs are Free-RTOS, Zephyr, and NuttX. These

three systems are compared with each other in Table 8 based on the details obtained from

their documentation [12], [13], [14].

Feature/RTOS Free-RTOS Zephyr NuttX

Ease of Use Easy to learn and

implement

Moderate complexity,

steep learning curve

Relatively simple, some

learning needed

Community

Support

Large, active community,

extensive resources

Strong industry and

community support

Smaller community,

fewer resources

Modularity Moderate customization,

basic modularity

Moderate customization,

basic modularity

Balanced modularity,

moderate customization

POSIX

Compliance

Minimal POSIX support

Partial POSIX support,

some compatibility

Full POSIX compliance,

easy porting

Memory

Footprint

Lightweight, minimal

resource usage

Moderate, depends on

configuration

Low, designed for

constrained devices

Advanced Basic, sufficient for most Rich feature set, Moderate, suitable for

16

Features applications advanced networking many use cases

Learning Curve

Low, straightforward High, requires more effort

Medium, manageable

moderate effort

Table 8 : Comparison of most used RTOS for ESP32-S3

Based on the comparison between the top possible RTOS’s for the selected MCU, Free-RTOS

was chosen to design and implement the system for the project mainly because of its ease of

implementation and large community support. In the next section the basic structure of Free-

RTOS and its features are discussed.

7.1.5 Free-RTOS

Free-RTOS is an open-source, lightweight Real-Time Operating System (RTOS) primarily

written in the C programming language [7] which is specially designed for embedded

systems and low-end IoT applications. Its performance in simplicity, scalability, and

portability makes it an ideal choice for a wide range of applications [15] and has been ported

over 27 different architectures, making it highly versatile and adaptable across various

hardware platforms [16].

The architecture of Free RTOS is similar to other RTOSs, and tasks communicate through the

kernel and drivers with hardware, as shown in Figure 8. Inter-task communication is done

through the use of queues, where the task with the highest priority is granted access to the

queue before others [7]. In Table 9, key features of Free-RTOS are summarized for an easy

overview of the system [17].

17

Figure 8 : Architecture Overview for VxWorks and FreeRTOS [18].

Feature Description

Programming

Model and API

User-friendly API that supports multiple threads, mutexes, semaphores, and

timers. Lacks a hardware abstraction layer (HAL), which can increase

debugging efforts in certain environments, like STM32Cube MCU firmware.

Scheduling Configurable scheduler with options for fixed-priority pre-emptive or

cooperative strategies. Utilizes Round-Robin (RR) scheduling for tasks with

the same priority.

Memory

Management

Supports dynamic memory allocation with a small memory footprint, making it

suitable for resource-constrained environments.

Networking

Protocols

Supports 6LoWPAN, CoAP, and Free-RTOS+TCP, a thread-safe TCP/IP stack

for robust networking in embedded applications.

Simulation and

Testing

Simulatable on Windows (Win32 simulator using Visual Studio 2015) and

Linux (POSIX/Linux simulator using GCC and Eclipse), facilitating testing and

debugging before hardware deployment.

Security Uses WolfSSL, a lightweight TLS/SSL library for security, offering features

like authentication, integrity, and confidentiality. Ideal for embedded systems

due to its small footprint, 20 times smaller than OpenSSL.

Power

Consumption

Includes features to reduce power consumption, such as an idle task hook and

tickless idle mode, which stops periodic tick interrupts during idle periods,

beneficial for battery-powered applications.

Table 9 : Free-RTOS features summarized

The use of Free-RTOS for the design of the system is more extensively discussed in the

implementation chapter.

18

7.2 Control Systems

7.2.1 Introduction to Control Systems

Control systems are a key component in engineering fields that command, regulate, or

manage the behaviour of devices or systems involved in some task or application by using a

control loop. In Table 10, the main components of a control system are listed.

Component Description

Sensor Measures the output or state of the system and converts it into a signal that can be

interpreted by the controller.

Controller Processes the sensor’s signal, compares it to the desired setpoint, and calculates the

necessary control action to minimize the difference (error) between the desired and

actual outputs.

Actuator Executes the control action by adjusting the input to the system, such as opening a

valve, increasing a motor speed, or altering the electrical current.

Plant

(or Process)

The part of the system being controlled, which could be a mechanical device, an

industrial process, or any system that requires regulation.

Table 10 : Components of a control system

7.2.2 Open-loop and Close-loop control systems

Based on their approach to controlling and utilising feedback, control systems can be

categorised into two main types: open-loop control systems and closed-loop (feedback)

control systems.

i. Open-Loop Control Systems

An open-loop control system is a control system that operates without using feedback from

the output to influence or adjust the control inputs. In other words, the system's action is

determined entirely by the initial input or a set of predefined instructions, without

consideration of the outputs. An electric kettle that boils water for a set time is an example of

an open-loop control system where it operates based on time, regardless of whether the water

has reached the boiling point.

19

ii. Closed-Loop (Feedback) Control Systems

A closed-loop control system is a control system that continuously monitors the system

output and uses this feedback to influence or adjust the control inputs. In other words, the

system compares the measured output with the required setpoint and generates a corrective

action that will bring the error between the system output and the desired setpoint to a

minimum.

The thermostat-controlled heating system in a house act as a common example of a closed-

loop system where it continuously monitors the ambient temperature of the room and

compares it to the set and desired setpoint. If the ambient temperature of the room differs

from the set point, the thermostat automatically controls the heating system in order to restore

the temperature to the desired level. The mentioned feedback loop serves to maintain a

consistent and appropriate temperature within the room, even in the face of changes in

external circumstances. In Table 11 a comparison between open-loop and close-loop control

is listed.

Aspect Open-Loop Control Systems Closed-Loop (Feedback) Control

Systems

Control Action Independent of system output; based

on preset commands.

Dependent on system output; adjusted

based on feedback.

Accuracy Lower accuracy; cannot correct for

disturbances.

Higher accuracy; can correct deviations

and disturbances.

Complexity Simpler and easier to design and

implement.

More complex; requires sensors,

feedback mechanisms, and advanced

controllers.

Cost Generally lower cost due to fewer

components.

Higher cost due to the need for additional

components like sensors.

Adaptability Inflexible; cannot adapt to changes in

system dynamics.

Highly adaptable; can adjust to changes

and disturbances.

Applications Suitable for systems where precision

and adaptability are not critical.

Essential for systems requiring high

precision and stability.

Table 11 : Comparison between open vs close loop control systems.

20

Since the system requires precise and stable output for controlling the force applied and

heater temperature, closed-loop feedback is needed, and therefore, in the next section, more

details about feedback control systems are listed.

7.2.3 Feedback Control Systems

The main objective of a feedback control system is to ensure that the output of a process or

system follows a predetermined path, even when the system or process is influenced by

disturbances. Control systems play a prominent role in today’s technology, spanning a wide

range of applications, from basic household appliances to complex industrial processes.

Several reasons as to why feedback control systems are essential are listed in Table 12 [19]

Aspect Description

Counteracting

disturbances

External disturbances can significantly impact the output of a system.

Feedback allows the system to automatically adjust its input to counteract

these disturbances, ensuring stable operation.

Improving

performance amid

uncertainty

In cases where the system model is uncertain or imperfect, feedback helps

correct discrepancies between the desired and actual outputs.

Stabilizing unstable

systems:

Many industrial processes are inherently unstable in an open-loop

configuration. Feedback is necessary to stabilize such systems, making

their operation safe and reliable.

Table 12 : Importance of feedback control systems

There are two main types of feedback control systems: negative-feedback and positive-

feedback systems. In a negative feedback control system, the output is subtracted from the

setpoint, and the resulting error signal is used to adjust the input. Since this control type tends

to be the best at stabilising the system for disruptions, it is the most common control type

used in industries.

In a positive feedback control system, the addition of the output and the setpoint is considered

when controlling, which often causes deviations and leads to system instability. Hence, this

control type is less commonly used in industries. In Table 13, commonly used feedback

controllers are compared with each other. In the next section, the PID controller will be

21

discussed because of its suitability to the project requirements, among other types of

controllers.

Controller Description Advantages Disadvantages Typical

Applications

On-Off

(Bang-Bang)

Controller

A simple controller

that switches the

output fully on or

off based on

whether the process

variable is above or

below the setpoint.

Simple, low-cost,

and easy to

implement.

Can cause

oscillations and

wear due to rapid

switching; no fine

control.

Thermostats,

simple motor

control, level

control in tanks.

Proportional

(P) Controller

Produces an output

that is proportional

to the current error.

The control action

is stronger when the

error is larger.

Simple design,

reduces steady-

state error more

effectively than

on-off control.

Cannot eliminate

steady-state error,

may require

manual tuning.

Flow control,

pressure control,

basic temperature

regulation.

Proportional-

Integral (PI)

Controller

Combines

proportional control

with an integral

component that

accounts for the

accumulation of

past errors.

Eliminates

steady-state error,

relatively simple

to design and

implement.

Slower response

to sudden changes

compared to PD

controllers,

potential for

overshoot.

Temperature

control, speed

control in motors,

liquid level

control.

Proportional-

Derivative

(PD)

Controller

Combines

proportional control

with derivative

action, which

anticipates future

errors by

considering the rate

of error change.

Improves system

stability and

response time,

reduces

overshoot.

Does not

eliminate steady-

state error,

sensitive to noise

in the system.

Motion control,

robotics, systems

requiring quick

response.

Proportional-

Integral-

Derivative

(PID)

Controller

The most used

controller that

combines

proportional,

integral, and

derivative actions

to balance accuracy,

stability, and

response time.

Highly versatile,

can be tuned to

optimize

performance for a

wide range of

applications.

Complexity in

tuning the three

parameters (P, I,

D), potential for

instability if not

tuned correctly.

Industrial process

control, motor

drives,

temperature

regulation, flow

control.

22

Fuzzy Logic

Controller

A non-linear

controller based on

fuzzy set theory

that handles

imprecision and

uncertainty by

using a set of rules

to determine

control actions

based on the error.

Robust to

uncertainty and

non-linearities,

can be designed

without a precise

mathematical

model.

Complex to

design and tune,

performance can

be difficult to

predict.

Consumer

electronics (e.g.,

washing

machines),

automotive

systems, complex

process control.

Neural

Network

Control

Utilizes artificial

neural networks to

model and control

systems,

particularly useful

for non-linear and

complex systems

where traditional

methods fall short.

Capable of

handling highly

non-linear

systems, can learn

from data to

improve

performance.

Requires large

datasets for

training,

computationally

intensive,

complex to

design.

Robotics,

autonomous

systems, advanced

manufacturing,

complex non-

linear processes.

Table 13 : Comparison of commonly used feedback control systems

7.2.4 PID Controller

The proportional-integral-Derivative (PID) controller is the most widely used control

algorithm in feedback control systems, where the controller adjusts the control input based on

three terms: the proportional term (P), the integral term (I), and the derivative term (D). In

Table 14, these three terms, along with their descriptions, are listed.

Term Description

Proportional Control (P) The proportional term generates a control signal that is directly

proportional to the error signal. It helps to reduce the error by applying a

corrective action that is scaled according to the magnitude of the error.

Integral Control (I) The integral term addresses the accumulation of past errors by integrating

the error over time. This helps eliminate steady-state errors that may

persist even after the proportional control has been applied.

Derivative Control (D) The derivative term anticipates future errors by considering the rate of

change of the error signal. It provides a damping effect, reducing the

likelihood of overshoot and improving system stability.

Table 14 : Three main parts of a PID controller.

23

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)
𝑡

0
 𝑑τ + 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
 (1)

The equation for a PID controller is given by equation (1), and its components are introduced

in Table 15. These proportional, integral, and derivative gains should be tuned manually or

using other optimisation algorithms depending on the specific application to make sure the

PID controller will be efficient and effective for the application system. In Figure 9, the basic

block diagram of a PID controller is shown.

Term Description

u(t) The control signal sent to the system (such as the voltage applied to a motor).

e(t) e(t) is the error at time 𝑡 which is the difference between the desired setpoint and the

actual process variable.

𝑲𝒑 The proportional gain, it Determines how aggressively the controller responds to the

current error. Higher values can reduce the error faster but may cause instability.

𝑲𝒊 The integral gain addresses accumulated errors over time, eliminating steady-state

errors. Higher values improve long-term accuracy but can slow down the response.

𝑲𝒅 The derivative gain predicts future errors and helps stabilise the system by

counteracting rapid changes in the error. Higher values reduce overshoot but can

make the system sensitive to noise.

Table 15 : Components of the PID control equation.

Figure 9 : Block diagram of a basic PID controller.

24

In the next section, two methods for tuning the PID parameters are introduced and discussed,

which have been used to tune the PID controllers implemented in this project system.

7.2.5 PID Tuning

PID tuning is an important aspect when it comes to feedback control systems. Without proper

tuning, the system would perform worse than a simple on-off controller and would be

unstable. Proper tuning involves adjusting either manually or using algorithms, the

proportional (𝐾𝑝), derivative (𝐾𝑑), and integral (𝐾𝑖), gains to achieve the desired system

response, which typically includes minimizing overshoot, settling time, and steady-state error

while ensuring system stability. The terms overshoot, settling time, and steady state error are

listed along with a description in Table 16 and is also illustrated in Figure 10.

Metric Description Significance

Overshoot The extent to which the system’s output

exceeds the desired setpoint or final value

after a disturbance.

High overshoot can indicate instability or

excessive oscillation. Reducing

overshoot leads to smoother response.

Settling

Time

The time required for the system’s output

to settle within a specified percentage

(e.g., 2% or 5%) of the final value.

Shorter settling times are preferred as

they indicate a quicker return to stability

after a disturbance.

Steady-State

Error

The difference between the desired

setpoint and the actual output after the

system has stabilized.

Minimizing steady-state error ensures the

output closely matches the desired value,

indicating accurate control.

Table 16 : Overview of the terms overshoot, settling time and steady state error

25

Figure 10 : Response of a typical PID closed loop system [20].

Depending on the control application, suitable tuning methods should be applied; otherwise,

the control would end up making the system unstable or oscillate excessively. PID tuning

could be divided into two main types of tuning, namely closed-loop and open-loop tuning.

In close-loop tuning, the PID controller parameters are adjusted while the control loop is

closed, where the controller is actively controlling the process. Here, the feedback from the

process output is used to adjust the control action continuously. Whereas in open-loop tuning,

the parameters of the PID controller are adjusted while the control loop is open, the controller

has no influence on the process during the tuning. Here, the process is manually driven, and

the controller is tuned based on the open-loop response of the system. In summary, the

system uses its frequency response in close-loop to tune the parameters, and its step response

in open-loop [21].

In the next section, two methods, namely the Ziegler-Nichols Tuning Method and the Tyreus-

Luyben Tuning Method, which are closed-loop tuning methods, are examined. These

methods are more commonly used when detailed system dynamics, such as the system

transfer function or time domain response, are not known or hard to achieve, which is the

case in this project system.

I. Ziegler-Nichols Tuning Method

Ziegler–Nichols is a widely used approach for setting the parameters of P, PI, and PID

controllers. Starting with the integral and differential gains being zeroed, this approach

gradually increases the proportional gain until the system becomes unstable. The frequency

26

of oscillation is 𝑓0(ultimate oscillation frequency), and the value of 𝐾𝑝 at the point of

instability is defined as 𝐾𝑚𝑎𝑥 (ultimate gain). The method then reduces the proportional gain

by a predetermined amount and sets the integral and differential gains as a function of 𝑓0. The

gains for P, I, and D are determined in accordance with Table 17 [22].In Figure 11, these

tuning steps are illustrated in a flowchart for easier follow-through.

Controller Type KP KI KD

P controller 0.5 KMAX 0 0

PI controller 0.45 KMAX 1.2 f0 0

PID controller 0.6 KMAX 2.0 f0 0.125/f0

Table 17 : Gain calculation for P, PI & PID controllers according to Ziegler - Nichol’s method.

Figure 11 : Steps of tuning a controller according to Ziegler Nichols method [22].

II. Tyreus-Luyben Tuning Method

The Tyreus-Luyben tuning method, which was introduced in 1997 [23], [24], is based on

ultimate gain and ultimate period, as in the Ziegler-Nichols method. However, the formulas

for the controller parameters were modified to achieve more stability in the control loop

compared to the Ziegler-Nichols method. This method also follows the same steps as

Ziegler–Nichol’s method to obtain the ultimate gain, 𝐾𝑚𝑎𝑥 and the ultimate oscillation

27

frequency, 𝑓0 but uses less aggressive pre-determined multiplicands for calculating the gains

𝐾𝑝 𝐾𝑖 and 𝐾𝑑 as listed in Table 18.

Controller Type KP KI KD

P controller 0.33 KMAX 0 0

PI controller 0.31 KMAX 𝐾𝑝

2.2 × 𝑓0

0

PID controller 0.45 KMAX 𝐾𝑝

2.2 × 𝑓0

𝐾𝑝 × 𝑓0

6.3

Table 18 : Gain calculation for P, PI & PID controllers according to Tyreus-Luyben method

The objective of using these methods is to obtain PID parameters that result in the shortest

possible settling time while minimising overshoot and ensuring system stability. By carefully

tuning the PID controller, these methods aim to achieve an optimal balance between response

speed and robustness, leading to enhanced overall system performance. In practice, these

methods need to be further adjusted and fine-tuned manually by human operators according

to the specific demands of the application.

In the implementation chapter the implementation, drawbacks and further improvements of

using these methods are discussed.

7.2.6 PID Integral Windup

Integral windup happens in PID controllers when the integral term builds up too much

because of error signals that last too long. This causes the controller output to reach its

saturation points (100% or 0%). This occurs because the integral action continues to increase

even when the system cannot respond, resulting in a stagnation of the output despite

increasing input. This condition can cause significant control issues, as the system may

continue to operate with a sustained error, unable to correct itself. Various methods have been

developed to prevent integral windup and ensure the PID controller functions effectively

without reaching these limits [25].

28

To mitigate the windup effect, some anti-windup techniques have been developed, including

the clamping algorithm anti-windup technique and the back-calculation anti-windup

technique.

I. Integral Anti-Windup Technique

Integral clamping is a technique used in PID controllers to prevent integral windup by

restricting the accumulation of the integral term to predefined limits. When the controller’s

output reaches its saturation points (either maximum or minimum), the integral term is

clamped to prevent further increase, avoiding excessive overshoot or long response times.

Clamping ensures that the controller remains responsive and stable even in the face of long-

term errors or system constraints by limiting the integral action. This technique aids in the

maintenance of effective control while also avoiding the negative effects of integral windup.

II. Back-Calculation Anti-Windup Technique

The Back Calculation The anti-windup technique is a method for preventing integral windup

in PID controllers that adjusts the integral term based on the difference between the

controller’s output and the actual actuator position when the output becomes saturated. When

the controller output exceeds its maximum or minimum limits, the integrator receives the

difference between the desired and saturated outputs. This feedback effectively reduces the

accumulated integral value, preventing it from increasing or decreasing too much. This

allows the controller to quickly recover from saturation and resume normal operation,

ensuring stable and responsive control even in the presence of prolonged error signals. This

technique is especially useful in systems where the actuator has physical limitations, as it

helps maintain control performance while avoiding the negative effects of windup.

29

8 Implementation

In this chapter, the design and implementation of the software for this system are examined

and listed. During the design stage, several prototypes have been tried to adhere to meet the

most requirements that are specified in the requirements chapter, and different theories that

are discussed in the theory chapter were also prototyped and improved with many iterations,

resulting in a system that is efficient and meets most of the requirements specified. The

generated Doxygen document for the system implementation can be found at “https://pierre-

thishan.github.io/BachelorThesis_Warnakulasooriya/”.

The embedded system that is designed for this project is fully developed and designed using

the programming language C. It consists of six parallel processes with equal priority running

on two cores, allocated with a low but sufficient task stack size to ensure safety. Parallel

processing has been achieved by utilising the Free-RTOS library from the esp32 SDK.

The mechanical setup, known as Eva, primarily consists of two main operations: moving and

heating. An eight-state finite state machine (FSM) manages the moving operations,

maintaining the system’s state in one of the defined states at all times. Similarly, a two-state

FSM controls the heating operations. In addition, there are several other processes

responsible for monitoring the system, reading data from sensors, controlling motor drivers,

and performing other essential functions. In the next section, the overall system will be

examined. Table 19 below has listed the names of these parallel processes and their

operations, along with which core on the MCU it is running on. The MCU has two cores

named “0” and “1”.

Parallel

Process Name

Operations Running

Core

Task1Code • Executes PID motor velocity calculations.

• Setting the motor speed.

• Motor moving

• Enabling and disabling the motor.

0

Task2Code • Process and parsing of input commands from serial.

• Execute the state machine.

1

Task3Code • Reporting system status and other sensor data to the server

API through serial.

1

30

Task4Code • Responsible for regulating insertion force throughout the set

time period by setting the state to keep pressing when the

maintain force function is toggled.

• Checking the MCU internal temperature.

1

Task5Code • Setting up the inner and outer traverse bounds with the

magnetic encoder.

• Temperature sensor reading.

• Heating PID loop execution.

• Heat state machine execution.

0

Task6Code • Set a zero position when setting the inner traverse bound.

• Read the magnetic encoder angle.

• Control motor speed and direction when a traverse position is

given to move to.

• Read the pressure sensor value.

0

Table 19 : Parallel processes and their tasks in the system.

8.1 Overall System Architecture

In this chapter, the overall system architecture is introduced, followed by an exploration of

the configurations within the system boundary.

Figure 12 provides a high-level overview of the overall system architecture, showing the

interaction between the various components involved in the system. A detailed list of the

primary components and their respective functions within the system is listed in Table 20.

31

Figure 12 : High-level overview of system architecture.

32

Component Description

System Boundary The red dashed line marks the system boundary, containing all hardware and

software components that are directly part of the embedded system. Inside

this boundary, the PCB with the MCU (Microcontroller Unit) acts as the

central processing unit for the system, coordinating the operations of

connected sensors and drivers.

PCB with MCU The PCB with MCU is the core component within the system boundary,

managing communication with various sensors and drivers through different

communication channels such as I2C, SPI, PWM, and GPIO. These channels

facilitate the exchange of sensor data and the transmission of control signals

to drivers, ensuring the embedded system operates correctly.

Sensors & Drivers Connected to the PCB are multiple sensors and drivers, which are responsible

for gathering data from the environment and executing actions based on

commands received from the MCU. The system continuously processes data

from these sensors, which is critical for maintaining control over the system’s

operations.

Control Signals &

Serial

Communication

The system exchanges Control Signals with an external Control PC. This

communication is handled through a Serial Communication Channel, where

data is transmitted in the form of a JSON document containing the status of

the system and other relevant data.

Control PC Outside the system boundary, we have the control PC housed within a blue

dashed box. The control PC runs an API server that acts as an intermediary,

receiving system status updates and sending back control commands. The

API Server communicates with the embedded system using the serial

communication channel and forwards the data to a web app via WebSockets.

Web App The Web App, situated on the control PC, serves as the user interface where

parsed system data and status information are presented to the user. It also

allows the user to send control commands back to the system. The

communication between the Web app and the API server is managed through

a WebSocket channel, which enables real-time data exchange.

Client Finally, the client interacts with the system through the web app. The client,

who is typically a lab engineer, sends commands and receives system status

updates, which allows for remote management and control of the embedded

system.

Table 20 : Components of the system architecture and their interactions.

33

8.2 Mechanical Assembly of the System

This section describes the mechanical assembly of the system, with a focus on the setup

known as “Eva”. This mechanical framework is the physical structure in which the control

software system interacts, carrying out precise movements and operations.

The system’s carefully designed control algorithms and the integration of hardware and

software within this assembly enable the smooth execution of tasks ranging from movement

to temperature control. Figure 13 and Figure 14 illustrate the mechanical assembly of Eva

and name the relevant components.

Figure 13 : Eva flipped front side view.

34

Figure 14 : Eva flipped back side view.

The ESP32-S3 MCU, which is on the PCB in Eva’s mechanical assembly (Figure 13 and

Figure 14), is at the centre of the system architecture shown in Figure 15. This MCU is the

main processing unit and communicates with different sensors, actuators, and outside

systems. Table 21 provides a detailed description of each component and its interaction with

the entire system.

35

Figure 15 System block diagram.

Component Description

ESP32-S3 MCU The central processing unit is responsible for managing and coordinating all

operations within the system, interfacing with various peripherals using GPIO,

I2C, SPI, PWM, and serial communication protocols.

Control PC Interacts with the ESP32-S3 MCU via serial connection, sending and receiving

data such as commands and status updates.

Vacuum Pump Controlled by the ESP32-S3 MCU through GPIO 8, it can be activated or

deactivated based on operational requirements. Used to create suction to pick

up ICs through the plunger.

Servo Motor Controlled using a PWM signal from the ESP32-S3 MCU, used for the

operation of the locking mechanism to lock Eva into the docking adapter with

the test socket.

BLDC Motor

Driver

Receives control signals via three-phase connections (Ua, Ub, and Uc) from

the ESP32-S3 MCU, driving a brushless DC motor for high-efficiency

applications.

BLDC Motor The signals from the motor driver are controlled to generate the insertion force

and traverse the plunger within the movement range.

36

HX71708 ADC and

Load Cell

The ADC interfaces with the load cell, which is rated to measure weights up to

20 kg. The load cell measures the force applied to the socket for insertion force

control, utilising MEMS strain gauge technology to measure the force

accurately, and the ADC converts the analogue signals from the load cell into

digital data for processing by the MCU.

Magnetic Encoder Connected to the ESP32-S3 MCU via the I2C interface, providing precise

position feedback and traversing the plunger to a set position.

Air Pressure

Sensor

It measures the pressure from the outlet of the vacuum pump, is connected via

I2C, sends data to the MCU for processing, and is used for IC pick-up

confirmation.

PT100 Resistance

Temperature

Detector (RTD)

It measures temperature using a 2-wire connection interfaced with the MCU

through SPI, providing accurate thermal data for process control.

Temperature

Sensor

Connected to the PT100 RTD via a 2-wire method, assisting in monitoring

temperature changes, especially in conjunction with the heater.

Heater Controlled by the ESP32-S3 MCU through PWM, adjusting output based on

temperature readings to maintain stable thermal conditions.

End Stops Connected via GPIO 11 & 38, used to detect mechanical limits of movement,

ensuring safety and precision in system operations. The optical endstop is a

sensor that detects the presence or position of an object by using light,

typically emitting a beam that is interrupted or reflected, signalling the object’s

position or limit of movement.

Table 21 : Components of Eva and their description.

37

8.3 State Diagrams

The movement of the plunger at any given time is managed by an eight-state finite state

machine (FSM). In Table 22 and Table 23, the states are listed and described briefly, along

with the corresponding state diagram figure. The system state transitions are executed within

a parallel task called ‘Task2code’. The task first processes input commands received through

the serial interface, parsing them to determine if a new state is specified, and if a new state is

not set by the command, the system will determine the next state based on the current state

and predefined conditions, allowing the appropriate state transition to occur.

State Description Figure

Number

TRAVERSE The plunger moves to a specified position, ensuring it is within

tolerance. The system checks for any overload conditions or

endstop triggers during this state.

Figure 22

HOMING The plunger returns to a predefined home position, which is

where the inner endstop is triggered by the extruded marker of

the load cell holder.

Figure 18

STOP The system halts all movement, disabling the motor and awaiting

further commands.

Figure 17

IDLE The system remains in a standby state, with no active

movements, awaiting the next command or transition based on

external inputs.

Figure 16

PRESS The plunger applies a force to the target, continuing until a

specified force or position is reached, while monitoring for

overload and endstop conditions.

Figure 19

KEEP_PRESSING The plunger maintains a continuous pressing force, often used to

ensure sustained contact or pressure, until specific conditions are

met.

Figure 23

PICKING The plunger moves downward with the vacuum pump activated,

enabling it to suction an IC. The operation is considered

complete when feedback from the pressure sensor connected to

the vacuum pump’s outlet confirms that the IC has been

successfully grasped.

Figure 21

PLACING The plunger moves to place an IC in a designated location

(socket or tray), releasing it by turning off the vacuum pump

with controlled placing force and returning to a safe position

after the task is complete.

Figure 20

Table 22 : State descriptions of the FSM.

38

Below are the ASMD diagrams of the eight states mentioned above in Table 22 above.

Figure 16 : ASMD of state IDLE

Figure 17 : ASMD of state STOP

39

Figure 18 : ASMD of state HOMING

40

Figure 19 : ASMD of state PRESS

41

Figure 20 : ASMD of state PLACING

42

Figure 21 : ASMD of state PICKING

43

Figure 22 : ASMD of state TRAVERSE

44

Figure 23 : ASMD of state KEEP_PRESSING

45

In Figure 24 a simplified version of the FSM is illustrated for convenience and for a quick

general overview. As mentioned earlier, parsing and setting the next state based on an input

command is not covered in Figure 24. The state will only transition to a state other than IDLE

or STOP if the next state is explicitly set via an input command. For example, if the user

enters the ‘press’ command, the input command parser will set the next state to PRESS, and

the FSM will transition into the PRESS state.

Figure 24 : Simplified FSM for overview.

46

8.4 PID Design

Utilising the theories and methods explored in the theory section, the PID control loops

necessary for the system were developed and implemented to meet the specific requirements.

This section will focus on the design and implementation of these control loops, detailing

how each component contributes to achieving the desired system performance.

8.4.1 Motor Control PID

Here, the PID control loop created for the motor control, which controls the movement of the

plunger, and the insertion force of the IC into the socket are examined.

In this system, when it comes to controlling the motor, the objective is to use motor motion to

control the insertion force, which is read by a load cell. For the control of BLDC Motors,

there exists an already well-implemented and reviewed library for controlling the motor

driver called simpleton, which was utilised for the control of the motor in this system. The

library offers two types of control modes, namely “closed-loop control” and “open-loop

control”. Often, open-loop control is used for simple tasks where precision is not required,

whereas closed-loop control is used for precise, sensitive operations.

Due to the system’s complexity and the required operation, the available closed-loop options,

which are “torque control”, “velocity control” and “position control” would not be effective

and would not be able to perform the required task. Therefore, the very well-implemented

close control loops could not be used in this system, even though they consist of already well-

tuned PID controllers. This restricts the system to the use of open-loop control for motor

movement control. In this system, of the two available open-loop control methods, namely

“velocity control’’ and “position control, the “velocity control’’ loop is utilised.

Figure 25 : Velocity open loop control block diagram [26].

47

In Figure 25, the block view of the velocity open-loop control system by simpleFOC library

is illustrated. Using only the velocity control loop, the system would not be able to effectively

control the insertion force. To address this challenge, a custom PID controller was

implemented, utilising feedback from the load cell sensor to regulate the motor’s velocity,

which results in a closed-loop control system that adheres to the required precision and

accuracy.

The block diagram in Figure 26 illustrates the components and flow of the PID controller,

and in Table 23, a detailed description of each component’s role is listed. In Figure 26, the

dashed red line box shows the border of the open-loop control used by the simpleFOC library

within the closed-loop control loop of the motor.

Figure 26 : Custom motor PID controller block diagram

.

48

Component Description

Set Point Force The target force value that the system aims to achieve serves as the

reference input for the PID control loop.

Error Calculation The difference between the set point force and the actual force measured by

the load cell is used to determine the necessary adjustments.

Proportional Gain The proportional term of the PID controller produces a correction

proportional to the current error. This helps reduce the error quickly.

Integral Gain The integral term accumulates the error over time, addressing any steady-

state error to ensure the system reaches and maintains the desired force.

Derivative Gain The derivative term predicts future error based on its rate of change,

helping to dampen the response and reduce overshoot.

Integral Clamping A mechanism that limits the integral term to prevent excessive buildup,

which could lead to instability or overshoot in the system.

Output Clamping A mechanism that restricts the total output of the PID controller, ensuring

the motor operates within safe and effective limits.

Pre-Processed

Velocity

The velocity output calculated by the PID controller before clamping

represents the motor’s required speed to achieve the set point force.

Processed Velocity The final velocity command is sent to the motor after applying clamping,

ensuring the velocity remains within operational limits.

BLDC Motor Driver The function that applies the processed velocity to the Brushless DC

(BLDC) motor controls its 3-phase voltage to achieve precise force

application.

BLDC Motor The Brushless DC (BLDC) motor applies the force as directed by the PID

controller, using 3-phase voltage signals to control speed and torque.

Force read from load

cell

The actual force is measured by the load cell, providing feedback to the

PID controller for continuous adjustment of the motor’s output.

Median Filter for

Noise Filtering

A filter is applied to the load cell’s output to remove noise or spikes,

ensuring accurate and stable force measurement.

Values with smoothed

ADC spikes

The filtered and smoothed force values used for error calculation prevent

transient noise from destabilising the control loop.

Table 23 : Components of motor PID controller.

49

8.4.2 Temperature Control PID

The PID control loop for the temperature control, which controls the heating of the plunger to

heat up ICs, is explored here. Figure 27 shows the block diagram of the PID controller’s

components and flow, and Table 24 contains a detailed description of each component’s roles.

Figure 27 : Custom temperature PID controller block diagram.

Component Description

Set Point Temperature The desired temperature value that the system aims to maintain serves as

the reference input for the PID control loop.

Error Calculation The difference between the set point temperature and the actual

temperature measured by the sensor. This error value is used to determine

the necessary adjustments.

Proportional Gain

(Kp * Error)

The proportional term of the PID controller, which adjusts the heater’s

power output in proportion to the current error, this helps quickly reduce

the overall error.

Integral Gain

(Ki * Integral of Error)

The integral term accumulates the error over time to eliminate steady-

state error, ensuring the system reaches and maintains the desired

temperature.

Derivative Gain (Kd *

Derivative of Error)

The derivative term predicts future errors by evaluating the rate of

change, helping to prevent overshoot and improve system stability.

Integral Clamping A mechanism that limits the integral term to prevent excessive

accumulation of error, which could otherwise lead to instability or

overshoot.

Output Clamping A mechanism that restricts the total output of the PID controller, ensuring

the heater operates within safe and effective limits.

50

Pre-Processed Duty

Cycle

The duty cycle output is calculated by the PID controller before

clamping, representing the required power to achieve the set point

temperature.

Processed Duty Cycle The final duty cycle command sent to the PWM block after applying

clamping, ensuring it remains within operational limits.

PWM Block The function responsible for applying the processed duty cycle to the

heater is modulating its power to maintain the desired temperature.

Heater The device that generates heat based on the power delivered by the PWM

signal, working to achieve the temperature set point specified by the PID

controller.

Temperature Read from

Sensor

The actual temperature measured by the sensor, providing feedback to the

PID controller to continuously adjust the heater’s output.

Feedback Temperature

from Sensor

The filtered and accurate temperature feedback used for error calculation,

ensuring the control loop responds correctly to changes in temperature.

Table 24 : Components of temperature PID controller.

51

8.5 System Flow

For a clearer understanding of the system’s operation, this section includes the flow of events

for an example test user case. The flow chart presented in Figure 28 shows the interactions

between the various components and highlights the sequence of actions that occur within the

system during this specific scenario. The example test case involves a lab engineer using the

web app to send a command to insert the IC into the socket with approximately 68 N of force.

This command is received by the control system as ‘press 7000’ after being parsed by the

server API.

For easier comprehension, some additional information about Figure 28 is listed in Table 25.

Additional Details

1. The force value, such as 7000, is measured in grams.

2. The unit of motor speed is rad/s, which is angular velocity.

3. The SW engineer can alter the value of LOADMAX, which is 8000 grams, if necessary.

4. EXITSPEED is set for 0.3 rad/s, which is used to exit the state when the PID calculated

velocity is less than this, resulting in an insertion force that is very close to the target.

5. Motor speed is set to IDLESPEED, which is 0.6 rad/s, two times higher than the state exit

condition speed, for proper functionality of the states and system to avoid exiting the state

upon entering when in the KEEP_PRESSING state.

Table 25 : Additional information for the test case illustrated in the flowchart in Figure 28.

52

Figure 28: Flow chart of test case “press 7000”.

53

8.6 Analysis of Challenges in Implementation

During the implementation of the system, several challenges were identified, and a few of

them are listed and examined in this section.

8.6.1 ADC Spikes Analysis

During the implementation and testing phases of the system, sudden high spikes were

occasionally sampled from the ADC, leading to system halts due to incorrect high force value

readouts. In the lab environment, which consists of various tests and equipment for radar IC

validation, ADC spikes could occur due to several factors. These potential causes are listed in

Table 26 below.

Possible Cause Description

Electromagnetic

Interference (EMI)

High-frequency radar signals and other equipment generate EMI,

introducing noise into the ADC input.

Power Supply Fluctuations Variations in power supply voltage cause instability, leading to

irregular spikes in ADC readings.

Ground Loops Improper grounding or multiple grounding points introduce noise,

causing inaccurate ADC spikes.

Crosstalk Between Signals Interference from adjacent signal lines, particularly high-speed

signals, results in ADC spikes.

Impedance Mismatch Mismatch between source and ADC input impedance causes

reflections, leading to signal distortions.

Temperature Variations Rapid temperature changes affect ADC performance, causing

temporary spikes.

Improper Shielding Lack of proper shielding allows external noise to couple into the

ADC input, causing high spikes.

High-Speed Switching Rapid switching of radar signals or digital circuits induces noise into

the analog signal path.

Sampling Rate Issues Unsynchronized sampling rate with the signal of interest causes

aliasing or under-sampling spikes.

PCB Layout Issues Poor PCB layout practices lead to noise coupling into the ADC input,

resulting in high spikes.

Table 26 : Possible causes for ADC spikes.

To examine this anomaly several tests were done under different environmental conditions to

develop a solution.

54

I. Test in a Faraday Cage

A Faraday cage is an enclosure made of conductive material that blocks external electric

fields and electromagnetic radiation, creating an isolated environment free from

electromagnetic interference (EMI).

This allowed for a more accurate assessment of the system’s performance by ensuring that

any anomalies, such as ADC spikes, are not influenced by external electromagnetic noise but

are instead inherent to the system itself. In the Faraday Cage available on NXP premises, the

unfiltered, load cell reading values from the ADC were recorded for around 12 minutes and

then compared with the values for the same time period in the radar validation lab

environment.

Figure 29 : ADC unfiltered values comparison between Lab and Faraday Cage

In Figure 29, it is observed that the readings taken in the Faraday cage have almost no

significant relative spikes compared to the readings taken in the lab environment. Also, the

average absolute deviation from the mean of the readings in the Faraday cage and lab is

calculated to be respectively 0.0039 N and 0.0045 N, which is almost the same value.

55

II. High ADC Spike Readings

During another test of load cell data readouts, very high spikes were captured, which are

denoted in Figure 30 below. These random spikes are significantly higher in amplitude and

would cause the control system to malfunction.

Figure 30: Very high ADC spike readings

III. 5G Influence from Mobile Phone

Even though mobile phone usage within the lab area is restricted, a test was conducted to

observe the influence of the 5G signal on the raw ADC values by downloading a large file on

a mobile with 5G connectivity and having it in close proximity to the PCB. Figure 31

displays relatively high spikes and heightened noise levels.

56

Figure 31 : Comparison of RAW ADC readouts between Faraday cage, lab, and 5G influence.

IV. Median Filtering of ADC Load Cell Values

To minimise the effect of this influence from the SW side, a median filter with a suitable

window size of seven was implemented, which was able to overcome this sudden spike and

also minimise the noise amplitude around a stable value. This could be observed in Figure 32

below.

57

Figure 32 : Load cell readings comparison with Median filtering.

8.6.2 Motor PID Tuning Analysis

Although following the Ziegler-Nichols method for the tuning of parameters for the

temperature-controlled motor worked smoothly, this was not the case when it came to tuning

the PID parameters of the motor.

For the tests done on the insertion force of the plunger, Eva was disconnected from the Cobot

and was kept on the socket test board lock in adapter, where when the plunger is pressing on

the socket board, the assembly (Eva) travels up a bit until the locking mechanism between the

test board adaptor and the locking pins is engaged. The first flat area in Figure 33, between

0.2 and 0.4 minutes, illustrates this. This could be observed in the other figures, where the

insertion force is plotted.

In an insertion force operation involving the plunger and an IC, the plunger undergoes two

distinct phases. The first phase occurs when the plunger, which holds the IC, descends before

making contact with the socket board. During this time, the error signal between the set point

58

and the actual force remains constant, leading to a significant accumulation of error in the

integral term. This accumulation can cause the controller output to saturate as the integral

action continues to increase despite the lack of actual force feedback. In Figure 33 and Figure

34, it is observed that at around 26 N, the plot starts to stay relatively constant for some time

and then again increases. This is because the plug lifts itself until the locking mechanism is

tightly fitted with the board mounting plate, which is basically the exact force or weight of

the Eva mechanical assembly.

As shown in Figure 33, when using the Ziegler-Nichols method for parameter tuning, it

resulted in a too aggressive system that took too much time to settle and oscillate around the

target force, which led to utilising a less aggressive tuning method.

Figure 33: Unstable system with Ziegler-Nichol’s method.

The Tyreus-Luyben tuning method, which resulted in a less aggressive system, was utilised,

and for further fine-tuning, the parameters were manually adjusted for another operation. In

Figure 34, the comparison between the Ziegler-Nichols method and the combination of

59

Tyrus-Luyben with manual tuning methods is illustrated. It is observed that the system settled

relatively faster and did not oscillate for a longer period.

Figure 34 : Comparison between Ziegler-Nichol’s method and the manually tuned Tyreus-Luyben method for system stability.

8.6.3 Sensor Libraries

While there were well-implemented and community-supported libraries available for most

sensors and drivers, the two i2c sensors (magnetic encoder and pressure sensor) lacked such

libraries, necessitating the creation of a custom, suitable library, which is called

“i2cSensorLib”. Here methods such as “exponential backoff” were utilised to overcome some

transmission bugs that occurred.

60

9 Validation

9. 1 Requirement Completion Overview.

The functional and non-functional requirements that were developed in the requirements

engineering phase and classified in the requirements chapter of this document are revisited

again in this section to evaluate the requirement completion of the implemented system. The

evaluation of the requirements and its deviations are listed in Table 27 below.

Requirement

Identifier

Description Satisfied

(Yes/No)

Deviation

If No

REQ – 1 Pick ICs Yes

REQ – 2 Place ICs Yes

REQ – 3 Press ICs (80N Max) Yes

REQ – 4 Heat ICs (150°C) Yes

REQ – 5 Low Latency Yes

REQ – 6 Precise Insertion Force Yes

REQ – 7 Precise Force Reading No 0.0413N

REQ – 8 Accurate Force Reading No 0.413%

REQ – 9 Precise Temperature Reading Yes

REQ – 10 Precise Temperature Steps No 0.75°C

REQ – 11 Pick & Place Confirmation Yes

REQ – 12 Engineer & Board Safety Yes

REQ – 13 Cost-Efficient Yes

REQ – 14 Software Portability Yes

REQ – 15 Robust Communication Yes

REQ – 16 Code Comprehensibility Yes

Table 27 : Functional and non-functional requirements evaluation.

Several tests were carried out to benchmark and analyse whether the system met the specified

requirements. While some requirements were validated using detailed technical

61

measurements, others did not require extensive testing because their fulfilment was more

straightforward. In this section, these tests and their results are listed, and some of the

approaches taken to meet the requirements are also listed.

I. Low Latency

The system consists of six parallel processes. While some of these processes do not directly

interact with the user interface, others do. Operations such as sending commands, executing

them, and motor controlling must operate smoothly and with minimal latency to ensure

optimal performance. In Table 28, each process and its average execution loop frequency are

listed.

Process Name Average Frequency Stack Size (bytes)

Task1Code 1 kHz 4000

Task2Code 6.5 kHz 4000

Task3Code 34 Hz 4000

Task4Code 900 Hz 4000

Task5Code 14 Hz 4000

Task6Code 150 Hz 4000

Table 28 : Average execution loop frequency.

Task1Code and Task2Code, which are responsible for processing user commands, managing

state machines, and controlling the motor, operate at sufficiently high frequencies, resulting

in very low latency. However, it is observed that the processes responsible for reporting status

and sensor data to the serial interface, as well as heat control, are significantly slower

compared to the other processes. This is due to the blocking and slowness of the temperature

sensor readings in Task5Code, as well as the fact that data is reported in JSON format.

II. Precision in Insertion Force, Force Reading and Accuracy

After reviewing specifications such as non-linearity, hysteresis, repeatability, and creep for

the selected load cell, we calculated the Root Sum Square (RSS) error to be approximately

0.1413 N. Given that the system’s required minimum applicable step size is 10 N, this results

in a measurement accuracy of 1.413%. Although the control software theoretically allows for

minimum step sizes around 1 N, this would lead to reduced accuracy, and such small

62

insertion force steps are not necessary for the application in this project. Therefore, the

requirements are evaluated as “NO” due to the deviation of 0.4 from the required value.

III. Precision in Temperature Reading and Application Step

Even though the prediction in temperature reading is met with the selected HW, the required

prediction in temperature is calculated to be around 2.75 °C, as shown in Figure 35, where

the plunger was set to a target heat of 120 °C and its temperature is monitored.

Figure 35 : Temperature of the plunger for a target heat value of 120°C.

IV. Engineer & Board Safety

The lab engineer and the test socket board could be at risk of damage if the plunger

malfunctions during socket insertion, heating, or in scenarios where the engineer’s hand or

another body part is in a compromising position relative to the plunger.

63

To address these scenarios, several measures have been implemented and are listed in Table

29 below. Although many safety measures have been taken regarding the system software, no

software can be guaranteed to be perfectly stable and safe.

Solutions

1. Use of semaphores to avoid race conditions, inconsistent data states, and deadlocks in parallel

processing.

2. Use “configASSERT(xReturned == pdPASS);” to ensure the successful creation of parallel

tasks and semaphores, and halt the system if not.

3. Watchdog timers are used for important tasks where a fire hazard could be a problem, such as

controlling the heater. If this task is not responding for a selected time interval, the system

will enter panic mode and reboot.

4. An emergency stop button that cuts all power and a stop command that puts the system into a

stop state were implemented.

5. Max force checking and retracting the plunger, so the socket is salvaged in case of a sudden

increase in force crossing 80N (configurable) force.

6. To prevent the plunger from being pushed or retracted out of bounds, the system actively polls

the state of the optical end stops during plunger movement.

7. Input command filtering and error checking. e.g., only insertion forces under 120N or

temperatures under 180°C are passed on as valid commands to the system after serial

command processing.

8. For PID controller stability measures such as,

a. Proper parameter tuning method usage.

b. Integral clamping, output clamping, and resetting of the PID parameters are done to

achieve a more stable controller.

c. Use of a median filter to minimise the effect of random ADC spikes influencing the

controller.

d. Limiting the motor PIDs operation for the linear range, where the PID starts to

calculate after around 20N of force is read.

e. When PID control is active, the system is designed to call this function for calculating

the values with the same frequency (if not, it would cause malfunctions in the

controller due to the integral and derivative parts).

Table 29 : Measures to for improved safety of the system.

64

V. SW Portability, Power, Code Clarity and Communication

The rest of the requirements are listed below in Table 30 along with the measures taken for

successful implementation of them.

Requirement Measures Taken

Software Portability • Use of Free-RTOS for portability [27].

Optimized Power • Task sleeping instead of busy waiting,

• Motor is turned on only when needed and in most of the time

remains off.

Code Comprehensibility • Commenting when required, and Doxygen documentation of the

source code.

• State diagrams of the FSM and flowchart to understand the flow

of events in the system.

Cost-Efficient • Not accounting NRE costs and in house printed 3D structures,

the costs come to under 350€ for one Eva Lab Handler excluding

the mounting robotic arm.

Table 30 : Requirements and measures taken to meet them.

9.2 System performance and validation through lab test cases

Along with meeting functional and non-functional requirements to validate the system, this

system should match or exceed the efficiency and precision of the process where the

validation engineer manually swaps samples and uses a lid to securely place the IC in the

socket.

The measurements listed below in the next section are conducted on the NXP’s Automotive

Radar chip called SAF85XX, illustrated in Figure 36, which is yet in preproduction and being

actively validated in my department. The Integrated Circuit (IC) is utilised in a variety of

advanced automotive applications, including adaptive cruise control (ACC), autonomous

emergency braking (AEB), blind spot detection (BSD), door open warning (DoW), front

collision warning (FCW), front cross traffic alert (FCTA), lane change assistance (LCA), park

assist (PA), rear cross traffic alert (RCTA), and reverse autonomous emergency braking (R-

AEB) [28].

65

Figure 36 : High Performance 77GHz RFCMOS Automotive Radar One-Chip SoC [28].

9.2.1 IC Transmitter Power Test Case

The IC was pressed into the socket with around 70N of force, and then the transmitter power

of the IC was measured over time with regulated force by activating the KEEP_PRESSING

function, which maintains the set insertion force over time and unregulated force. This was

compared with the case where the engineer swaps the IC manually and uses the specified lid

to push the IC into the socket. This was done in three temperature test cases, namely ambient

(25°C), hot (150°C), and cold (-40°C), which are the three temperature measurements done in

the validation lab.

For confidential reasons, no absolute values of any of the measures are plotted, and only the

ratio with respect to the reference case is plotted using the formula (2) below. The reference

case is 0 dB in this case due to the difference between itself as a test case being zero.

Power Ratio (dB) = 10 ⋅ log10 (
Test Case Power (mW)

Ref Case Lid Power (mW)
) (2)

During a test, the IC heats up when transmitting, and this, as well as heating up the device for

hot measurements and cooling it down for cold measurements, expands or shrinks the metal

plunger. This will influence the insertion force of the IC on the socket and could cause

deviations in power due to the change in impedance of the pogo pins of the socket.

66

I. Test at Ambient Temperature (25 °C)

As shown in Figure 37, it is clearly observed that when the force is regulated, the TX power

is relatively constant compared to the unregulated test case, where the power has a slightly

increasing line.

Figure 37: TX power comparison at ambient.

II. Test at Cold Temperature (-40 °C)

As illustrated in Figure 38, the temperature readout from the IC was cooled down to around -

40 °C, and the TX power was recorded. In this case, the regulated force performed better in

power around +3.5 dBs compared to the unregulated force test case.

67

Figure 38 : TX power comparison at -40°C.

III. Test at Hot Temperature (150 °C)

As illustrated in Figure 39, the temperature readout from the IC was heated up to around 150

°C, and the TX power was recorded. In this case, the regulated force performed only slightly

better, with almost no difference in power compared to the unregulated force test case.

68

Figure 39 : TX power comparison at 150°C.

69

10 Summary & Outlook

10.1 Summary and Key Findings of Analysis

Based on the analysis presented in 8.6 Analysis of Challenges in Implementation, as well as

insights gained from various interactions and findings encountered during the system’s

implementation and testing phases, the table below outlines the lessons learnt and

recommended steps for avoiding anomalies and deviations in future iterations.

Anomaly / Deviation Possible Solutions

ADC Spikes • Shielding of the traces in PCB.

• Twisted pair traces in PCB.

• Short and direct traces on the PCB between the ADC and the load

cell.

• EMI shielded enclosure for the PCB.

• Shielded wires from load cell to PCB connector.

Accuracy • Load cells with narrower but more accurate full-scale ranges.

Slow Temperature

Reads

• Although for the current Temperature PID and the heater the

temperature sensors reading frequency is good enough, a faster

reading sensor would be better and would be able to get the required

temperature steps.

Table 31 : Suggested solutions for the next iteration of the project.

To avoid the anomalies and deviations encountered in this iteration, which were difficult to

counteract with SW solutions, Table 31 above lists potential solutions for consideration in the

next iteration.

70

10.2 Conclusion

This thesis successfully designed, developed, implemented, and validated an RTOS system

that uses PID control for socket insertion force and heater temperature control, meeting

nearly all functional and non-functional requirements of the lab handler project with minimal

deviations. The system is now suitable for use in IC chip validation in conjunction with a

Cobot.

This conclusion was reached after thoroughly reviewing the validation section where the

system is tested and analysed to check for functional and non-functional requirements, and

also the overall system with its current state has been compared with the reference test case

where the engineer swaps the samples manually.

10.3 Future Work and Recommendation

Although the system has successfully met most of the project requirements, there is still room

for improvement and optimization. This section lists some potential improvements that could

have a positive impact on the system in addition to the listing included in the Summary and

Key findings section.

1. For further safety of the temperature PID control, where a possible thermal runaway

scenario could happen due to faulty connection or malfunction of the temperature

sensor, a SW solution with a redundant temperature sensor could be implemented for

a safer system with higher MTBF.

2. Redundant load cell sensors for safety and higher MTBF of the system in socket

insertion force control.

71

Bibliography

[01] reichelt elektronik G. I. Team (webmaster@reichelt.de), ‘UF XARM5 LITE -

UFactory xArm5 Lite’, Elektronik und Technik bei reichelt elektronik günstig

bestellen. Accessed: Sep. 09, 2024. [Online]. Available:

https://www.reichelt.de/ufactory-xarm5-lite-uf-xarm5-lite-p299080.html

[02] ‘PCB Prototype & PCB Fabrication Manufacturer - JLCPCB’. Accessed: Sep. 09,

2024. [Online]. Available: https://jlcpcb.com/

[03] R. Malan and D. Bredemeyer, ‘Functional Requirements and Use Cases’, Dec. 2001.

[04] Y. H. Hee, M. K. Ishak, M. S. M. Asaari, and M. T. A. Seman, ‘Embedded operating

system and industrial applications: a review’, Bull. Electr. Eng. Inform., vol. 10, no. 3,

Art. no. 3, Jun. 2021, doi: 10.11591/eei.v10i3.2526.

[05] S. Fischmeister and P. Lam, ‘Time-Aware Instrumentation of Embedded Software’,

IEEE Trans. Ind. Inform., vol. 6, no. 4, pp. 652–663, Nov. 2010, doi:

10.1109/TII.2010.2068304.

[06] K. W. Batcher and R. A. Walker, ‘Interrupt Triggered Software Prefetching for

Embedded CPU Instruction Cache’, in 12th IEEE Real-Time and Embedded

Technology and Applications Symposium (RTAS’06), Apr. 2006, pp. 91–102. doi:

10.1109/RTAS.2006.24.

[07] M. Nahas, ‘Implementation of highly-predictable time-triggered cooperative

scheduler using simple super loop’, Int. J. Comput. Sci. Eng., Jul. 2011.

[08] M. Pont, S. Kurian, H. Wang, and T. Phatrapornnant, Selecting an appropriate

scheduler for use with time-triggered embedded systems. 2007, p. 618.

[09] S. Kurian and M. J. Pont, ‘The maintenance and evolution of resource-constrained

embedded systems created using design patterns’, J. Syst. Softw., vol. 80, no. 1, pp.

32–41, Jan. 2007, doi: 10.1016/j.jss.2006.04.007.

[10] P. Hambarde, R. Varma, and S. Jha, ‘The Survey of Real Time Operating System:

RTOS’, in 2014 International Conference on Electronic Systems, Signal Processing

and Computing Technologies, Jan. 2014, pp. 34–39. doi: 10.1109/ICESC.2014.15.

72

[11] X. Guan, Q. Xing, and L. Feng, ‘Implementation of embedded system platform based

on μC/OS-II and S3C44B0X microprocessor’, in 2011 International Conference on

Mechatronic Science, Electric Engineering and Computer (MEC), Aug. 2011, pp.

2205–2208. doi: 10.1109/MEC.2011.6025929.

[12] ‘FreeRTOS documentation - FreeRTOSTM’. Accessed: Sep. 09, 2024. [Online].

Available: https://freertos.org/Documentation/00-Overview

[13] ‘Zephyr Project Documentation — Zephyr Project Documentation’. Accessed: Sep.

09, 2024. [Online]. Available: https://docs.zephyrproject.org/latest/index.html

[14] ‘NuttX Documentation — NuttX latest documentation’. Accessed: Sep. 09, 2024.

[Online]. Available: https://nuttx.apache.org/docs/latest/

[15] K. Andersson and R. Andersson, ‘A comparison between FreeRTOS and RTLinux in

embedded real-time systems’.

[16] Y. Neuhard, ‘A Comparison of Real-time Operating Systems for Embedded

Computing’, Technische Universität Kaiserslautern, Department of Computer

Science, Summer term 2022. [Online]. Available:

https://es.cs.rptu.de/publications/datarsg/Neuh22.pdf

[17] M. H. Qutqut, A. Al-Sakran, F. Almasalha, and H. S. Hassanein, ‘Comprehensive

survey of the IoT open-source OSs’, IET Wirel. Sens. Syst., vol. 8, no. 6, pp. 323–339,

2018, doi: 10.1049/iet-wss.2018.5033.

[18] A. Serino and L. Cheng, ‘A Survey of Real-Time Operating Systems’.

[19] B. Boulet, Introduction to Feedback Control Systems, REV 0. 2000.

[20] ‘The PID Controller & Theory Explained’. Accessed: Sep. 09, 2024. [Online].

Available: https://www.ni.com/en/shop/labview/pid-theory-explained.html

[21] B. M. Sarif, D. V. A. Kumar, and M. V. G. Rao, ‘Comparison Study of PID Controller

Tuning using Classical/Analytical Methods’, vol. 13, no. 8, 2018.

73

[22] G. Ellis, ‘Chapter 6 - Four Types of Controllers’, in Control System Design Guide

(Fourth Edition), G. Ellis, Ed., Boston: Butterworth-Heinemann, 2012, pp. 97–119.

doi: 10.1016/B978-0-12-385920-4.00006-0.

[23] M. L. Luyben, ‘Essentials of process control’, No Title, Accessed: Sep. 09, 2024.

[Online]. Available: https://cir.nii.ac.jp/crid/1130000794396931328

[24] S. Nikita and M. Chidambaram, ‘Tuning of PID Controllers for time Delay Unstable

Systems with Two Unstable Poles’, IFAC-Pap., vol. 49, no. 1, pp. 801–806, Jan. 2016,

doi: 10.1016/j.ifacol.2016.03.155.

[25] M. O. Okelola, D. O. Aborisade, and P. A. Adewuyi, ‘Performance and Configuration

Analysis of Tracking Time Anti-Windup PID Controllers’, J. Ilm. Tek. Elektro

Komput. Dan Inform., vol. 6, no. 2, p. 20, Jan. 2021, doi: 10.26555/jiteki.v6i2.18867.

[26] ‘Velocity Open-Loop’, Arduino-FOC. Accessed: Sep. 09, 2024. [Online]. Available:

https://docs.simplefoc.com/velocity_openloop

[27] R. M. Gomes and M. Baunach, ‘A Model-Based Concept for RTOS Portability’, in

2018 IEEE/ACS 15th International Conference on Computer Systems and

Applications (AICCSA), Oct. 2018, pp. 1–6. doi: 10.1109/AICCSA.2018.8612862.

[28] ‘Snapshot’. Accessed: Sep. 09, 2024. [Online]. Available:

https://www.nxp.com/products/radio-frequency/radar-transceivers-and-socs/high-

performance-77ghz-rfcmos-automotive-radar-one-chip-soc:SAF85XX

74

Declaration

I declare that this Bachelor Thesis has been completed by myself independently without

outside help and only the defined sources and study aids were used.

__________________________ __________________________ __

City Date Signature

