
BACHELOR THESIS
Arseny Yaremenko

Realisierung einer
Microservice-Architektur am
Beispiel einer
E-Commerce-Anwendung für
Musikproduktionstemplates

FAKULTÄT TECHNIK UND INFORMATIK
Department Informatik

Faculty of Engineering and Computer Science
Department Computer Science

HOCHSCHULE FÜR ANGEWANDTE
WISSENSCHAFTEN HAMBURG
Hamburg University of Applied Sciences

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung
im Studiengang Bachelor of Science Angewandte Informatik
am Department Informatik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Stefan Sarstedt
Zweitgutachter: Prof. Dr. Olaf Zukunft

Eingereicht am: 19. August 2024

Arseny Yaremenko

Realisierung einer Microservice-Architektur am
Beispiel einer E-Commerce-Anwendung für

Musikproduktionstemplates

Arseny Yaremenko

Thema der Arbeit

Realisierung einer Microservice-Architektur am Beispiel einer E-Commerce-Anwendung
für Musikproduktionstemplates

Stichworte

Microservices, E-Commerce, Software Engineering, Containerization

Kurzzusammenfassung

Die vorliegende Arbeit stellt eine Microservice-Architektur für eine E-Commerce-
Anwendung vor, die speziell für Musikproduktionstemplates entwickelt wurde. Sie durch-
läuft dabei sämtliche Schritte des Software-Engineering-Prozesses: von der Anforderungs-
ermittlung über die Konzeption der Anwendung bis hin zur Realisierung mit dem Ziel
eines funktionsfähigen Prototyps. Im Rahmen einer Evaluierung werden, neben der Er-
füllung der Anforderungen, die Vor- und Nachteile dieser Architektur für das gegebene
Problem untersucht und alternative Ansätze besprochen. Zum Abschluss werden mögli-
che Verbesserungen des Prototyps vorgeschlagen.

Arseny Yaremenko

Title of Thesis

Implementation of a microservice architecture using the example of an e-commerce app-
lication for music production templates

Keywords

Microservices, E-Commerce, Software Engineering, Containerization

Abstract

This work introduces a microservice architecture for an e-commerce application spe-
cifically designed for music production templates. It follows all steps of the software

iii

engineering process: from gathering requirements to designing and implementing the ap-
plication, with the goal of creating a functional prototype. In addition to evaluating how
well the requirements are met, this work examines the advantages and disadvantages
of this architecture for the given problem and discusses alternative approaches. Finally,
potential improvements to the prototype are suggested.

iv

Inhaltsverzeichnis

Abbildungsverzeichnis viii

Tabellenverzeichnis ix

Abkürzungen x

1 Einleitung 1
1.1 Problemstellung . 1
1.2 Motivation . 1
1.3 Zielsetzung . 2
1.4 Struktur der Arbeit . 2

2 Anforderungsanalyse 3
2.1 Funktionsweise . 3
2.2 Stakeholder . 4
2.3 Systemkontext . 5
2.4 Anforderungen . 6

2.4.1 Funktionale Anforderungen . 6
2.4.2 Nicht-funktionale Anforderungen 8

2.5 Problem-Domäne . 9

3 Systemdesign 11
3.1 Verwandte Arbeit . 11
3.2 Architekturstil . 12

3.2.1 Monolithische Architektur . 13
3.2.2 Microservice-Architektur . 13
3.2.3 Weitere Architekturansätze . 14
3.2.4 Wahl des Architekturstils . 14

3.3 Bausteinsicht . 15
3.4 Monitoring . 18

v

Inhaltsverzeichnis

3.5 Kommunikation . 20
3.5.1 Synchrone Kommunikation . 20
3.5.2 Asynchrone Kommunikation . 22
3.5.3 Wahl der Kommunikationsform . 23

3.6 Verteilte Transaktionen und Sagas . 24
3.7 Datenmodell . 25
3.8 Warenkorb . 25
3.9 Sicherheit . 26
3.10 Laufzeitsicht . 27
3.11 Deployment . 32

3.11.1 Bereitstellungsoptionen . 32
3.11.2 Docker . 34
3.11.3 Kubernetes . 35
3.11.4 Bereitstellung in der Cloud . 39
3.11.5 Verteilungssicht . 41

4 Realisierung 45
4.1 Backend-Framework . 45

4.1.1 Services . 46
4.2 Sicherheit . 47
4.3 Tests . 48

4.3.1 Konfiguration . 49
4.3.2 Komponententests . 49
4.3.3 Komponententests in Integration 50
4.3.4 End-To-End Tests . 50

4.4 Frontend-Framework . 50
4.4.1 Datenpersistenz . 52
4.4.2 Routing . 52
4.4.3 Design . 53
4.4.4 Audiospur . 53
4.4.5 Kommentar-Icons . 53
4.4.6 Kommentare . 54
4.4.7 Upload . 54
4.4.8 Weitere Frontend-Komponenten . 55

4.5 Betrieb . 55

vi

Inhaltsverzeichnis

4.6 Hürden der Realisierung . 56
4.6.1 Spring Session-Tests . 56
4.6.2 Elasticsearch . 56
4.6.3 Minikube . 56
4.6.4 Filebeat auf GKE . 57
4.6.5 Verbindung von GKE zu Public Cloud SQL 57
4.6.6 Verbindung von Ingress zum API-Gateway 57
4.6.7 Interaktion der Session-Cookies mit dem Browser 58

5 Evaluation 59
5.1 Funktionale und nicht-funktionale Anforderungen 59
5.2 Kritik an der Microservice-Architektur . 61
5.3 Fazit . 63

6 Ausblick 64
6.1 Validierung und Simulationsbehebung . 64
6.2 Sicherheit . 65
6.3 Resilienz . 66
6.4 Monitoring und Health-Checks . 66

Literatur 67

A Anhang 72
A.1 Spezifikation der Use Cases . 72

Glossar 85

Selbstständigkeitserklärung 89

vii

Abbildungsverzeichnis

2.1 UML Systemkontextdiagramm des Template Shops 5
2.2 UML Use-Case Diagramm für den Template Shop 7
2.3 Domänenklassendiagramm für den Template Shop 10

3.1 Bausteinsicht für das Template Shop-Backend 1 16
3.2 Bausteinsicht für das Template Shop-Backend 2 17
3.3 Bausteinsicht für den Template Shop . 17
3.4 UML Sequenzdiagramm für das Löschen eines Templates (uc/15) 28
3.5 UML Sequenzdiagramm für das Hinzufügen eines Templates zum Shop

(uc/17) . 29
3.6 UML Sequenzdiagramm für das Bearbeiten eines Templates (uc/16) . . . 30
3.7 UML Sequenzdiagramm für das Kaufen eines Templates (uc/9) 31
3.8 Kubernetes Architektur [Wel24, S. 47] . 36
3.9 Verteilungssicht für den Template Shop 42
3.10 Verteilungssicht für das Template Shop-Backend 1 43
3.11 Verteilungssicht für das Template Shop-Backend 2 44

viii

Tabellenverzeichnis

A.1 Registrieren (uc/1) . 72
A.2 Anmelden (uc/2) . 73
A.3 Template-Produktseite besuchen (uc/3) 73
A.4 Tracks eines Templates abspielen und stoppen (uc/4) 74
A.5 Kommentare zu einem Track anzeigen (uc/5) 75
A.6 Template zum Warenkorb hinzufügen (uc/6) 76
A.7 Warenkorb anzeigen (uc/7) . 76
A.8 Template aus dem Warenkorb löschen (uc/8) 77
A.9 Template kaufen (uc/9) . 78
A.10 Kommentieren von Tracks eines Templates (uc/10) 79
A.11 Eigene Kommentare zu einem Track löschen (uc/11) 79
A.12 Eigene Kommentare zu einem Track bearbeiten (uc/12) 80
A.13 Abmelden (uc/13) . 80
A.14 Eigenen Account löschen (uc/14) . 81
A.15 Template aus dem Shop löschen (uc/15) 81
A.16 Produktinformationen eines Templates bearbeiten (uc/16) 82
A.17 Template zum Shop hinzufügen (uc/17) 83
A.18 Alle getätigten Bestellungen anzeigen (uc/18) 84

ix

Abkürzungen

DSGVO Datenschutz-Grundverordnung.

JPA Java Persistence API.

JVM Java Virtual Machine.

MVC Model-View-Controller.

MVVM Model-View-ViewModel.

VM Virtuelle Maschine.

VPC Virtual Private Cloud.

x

1 Einleitung

1.1 Problemstellung

SaaS-Onlineshops wie Shopify bieten wenig Möglichkeit der Konfigurierung, wenn es um
den Verkauf von Templates für Musikproduktionen geht. Templates beschreiben Projekt-
Dateien von Musikproduktionen, welche Kunden die Möglichkeit bietet, in die Spuren
und Effekte einer Musikproduktion zu blicken. Will man sich von der Konkurrenz ab-
heben, benötigt man hier eine maßgefertigte Lösung mit speziellen Features, wie z. B.
einer Kommentarfunktion auf allen Einzelspuren der Templates. Somit können Kunden
sich schnell vom Produkt überzeugen, da sie anhand aller Einzelspuren genau sehen kön-
nen, was sie bekommen. Dennoch muss die Anwendung selbst hochverfügbar und schnell
anpassungsfähig sein, um gegen spezialisierte Anbieter anzukommen.

1.2 Motivation

Da ich mich hobbymäßig selbst mit Musikproduktion beschäftige und solch einen On-
lineshop erstellen möchte, habe ich mir schon einige Konkurrenten angeschaut sowie
zahlreiche Templates zu Lernzwecken erworben.

Oft ist ein Problem, dass der Inhalt solcher Templates nicht transparent dargestellt wird.
Dabei ist schon mal vorgekommen, dass der Syntheseweg bestimmter wichtiger Sounds
gar nicht gezeigt wird, sondern nur als Audiospur vorliegt. Würde man sich als Kunde
vorher alle Spuren anhören und kommentieren können, würde es die Kaufentscheidung des
Kunden und das Produkt selbst positiv beeinflussen. Viele negative Kommentare einer
Spur könnten beispielsweise den Verkäufer dazu bewegen, Anpassungen vorzunehmen
oder sich mit den Kunden bezüglich seiner Mixing-Entscheidungen auszutauschen.

1

1 Einleitung

1.3 Zielsetzung

Ziel ist die Realisierung eines lauffähigen Online-Shop-Prototyps für Musikproduktion-
stemplates auf Grundlage einer Microservice-Architektur in der Cloud. Dabei werden
sämtliche Techniken sowie Vor- und Nachteile, die mit einer Microservice-Architektur
einhergehen, evaluiert und der Weg zur Umsetzung des Prototyps erläutert.

1.4 Struktur der Arbeit

Die Arbeit ist in sechs Kapiteln gegliedert. Zunächst behandelt Kapitel 1 die Problem-
stellung sowie die Zielsetzung der Arbeit. Darauf aufbauend folgt in Kapitel 2 eine um-
fassende Anforderungsanalyse, in der die grundlegenden Anforderungen und Randbedin-
gungen des Systems untersucht werden. Hierbei werden auch erste Diagramme wie das
Systemkontext- und das Domänenklassendiagramm erstellt.

Kapitel 3 widmet sich dem Systemdesign und beleuchtet die Architektur sowie die techni-
schen Details des Systems. Anhand des arc42-Templates werden hier verschiedene Sicht-
weisen des Systems betrachtet und alle Entscheidungen vom Architekturstil bis zur Be-
reitstellung spezifiziert und begründet.

In Kapitel 4 wird die konkrete Umsetzung des Systems vorgestellt. Dies umfasst die
Auswahl der Backend- und Frontend-Technologien sowie die Implementierung der Mi-
croservices. Die Herausforderungen und Lösungsansätze, die während der Entwicklung
auftraten, werden ebenfalls erläutert.

Das fünfte Kapitel konzentriert sich auf die Evaluation des Systems. Hier wird der Proto-
typ hinsichtlich der Erfüllung der definierten Anforderungen geprüft und die umgesetzten
Lösungen kritisch bewertet.

Abschließend gibt das letzte Kapitel einen Ausblick auf zukünftige Entwicklungen und
mögliche Verbesserungen, die für den Produktionsbetrieb relevant sein könnten.

2

2 Anforderungsanalyse

Die erste Phase des Softwareentwicklungsprozesses ist die Anforderungsanalyse. In Zu-
sammenarbeit mit den Stakeholdern werden Anforderungen an das System gesammelt
und eine Systemspezifikation ausgearbeitet. [Som18, S.5] Diese Spezifikation, oder auch
Pflichtenheft genannt, definiert alle funktionalen und nicht-funktionalen Anforderungen,
welche das System leisten soll, sowie die Randbedingungen, unter denen das System ope-
riert. Damit wird eine klare und rechtlich wirksame Vereinbarung zwischen Entwicklern
und Kunden getroffen, die am Ende durch einen Validierungsprozess auch überprüfbar
sein soll. Im folgenden Kapitel wird genau solch eine Spezifikation ausgearbeitet, um die
Grundlage für den weiteren Entwicklungsprozess zu schaffen.

2.1 Funktionsweise

Die Webanwendung ermöglicht es dem Kunden, seine Musikproduktionstemplates hoch-
zuladen und Käufern online zur Verfügung zu stellen. Die jeweilige Produktseite eines
Templates enthält Metadaten zum Template, ein Bild, eine Gesamtspur der Musikpro-
duktion sowie alle Einzelspuren. Das heißt, dass all diese Informationen vorher in einem
Uploadformular angegeben und die jeweiligen Spuren hochgeladen werden müssen. Auf
der Homepage werden dann alle Templates als Bilder angezeigt, welche durch einen Klick
auf die jeweilige Verkaufsseite des Templates führen.

Jede Spur der Produktseite kann vom Nutzer oder Kunden kommentiert werden. Die
Darstellung der Kommentare erfolgt ähnlich wie bei SoundCloud: Jeder Kommentar eines
Nutzers wird zuerst durch ein Nutzerbild auf der Audiospur angezeigt, wobei die Position
des Bildes durch die vergangene Zeit der Audiospur bestimmt wird. Fährt man mit der
Maus über das Bild, öffnet sich ein Fenster, welches den Kommentar anzeigt. Die Bilder
selbst werden ähnlich wie bei MS-Teams als Initialen der Nutzer wiedergegeben.

3

2 Anforderungsanalyse

Jede Produktseite enthält einen Add to Cart-Button, welcher das Produkt in den virtu-
ellen Warenkorb des Nutzers hinzufügt. Auf der Seite des Warenkorbs kann der Nutzer
alle seine Produkte bearbeiten und auf die Checkout-Seite gelangen, wo ein Kauf mit
den dafür notwendigen Kundeninformationen durchgeführt werden kann. Zusammenge-
fasst wird eine klassische E-Commerce-Anwendung entwickelt, welche aber hinsichtlich
der Produktseite den Nutzern und Kunden zusätzliche Features bereitstellt.

2.2 Stakeholder

Stakeholder sind die Personen oder Organisationen, die direkten oder indirekten Einfluss
auf die Anforderungen des Systems haben. [PR15, S.4] Um also möglichst alle notwen-
digen Anforderungen abzudecken, müssen zuerst die wichtigsten Stakeholder ermittelt
werden:

Die beiden wichtigsten Stakeholder sind der Kunde der Anwendung und die Käufer der
Templates. Beide Rollen sind Musikproduzenten und werden unter anderem maßgebli-
chen Einfluss auf zukünftige Versionen der Anwendung haben. Da der Prototyp erst mal
nur für einen Kunden und nicht als Massenprodukt für viele Kunden gedacht ist, wird
hier ein Produktmanager nicht berücksichtigt. Ein weiterer wichtiger Stakeholder sind
die Entwickler. Diese setzen die funktionalen und nicht-funktionalen Anforderungen um
und beeinflussen die Gesamtqualität des Produkts. Der Begriff des Entwicklers ist weit
gefasst, weshalb man diesen Stakeholder je nach Aufgabentyp wie beispielweise Tester
und Operator in Unterrollen aufteilen könnte. Da dieses Projekt aber erst mal nur von
einer Person entwickelt wird, werden auf Untergruppen verzichtet. Die letzten nennens-
werten Stakeholder sind die IT-Recht-Spezialisten. Sie stellen als Berater sicher, dass die
Anwendung rechtskonform in Betrieb genommen wird. Dies ist nötig, da der Rechteka-
talog für eine E-Commerce-Anwendung komplex ist und sich stets wandelt. Außerdem
könnten die hohen Bußen bei Verstößen für kleinere Unternehmen existenzbedrohend
sein.

Zusammengefasst erhalten wir folgende Stakeholder, welche die Anforderungen mitbe-
stimmen:

• Kunde der Anwendung

• Nutzer der Anwendung bzw. Käufer der Produkte des Kunden

4

2 Anforderungsanalyse

• Entwickler

• IT-Recht-Spezialisten

2.3 Systemkontext

Im Rahmen des Requirements Engineering wird der Systemkontext bestimmt. Der Sys-
temkontext zeigt, welche Aspekte mit dem eigenen System interagieren und legt somit
eine Kontextgrenze fest, die für die Definition der Anforderungen relevant ist. Aspek-
te wären beispielsweise Stakeholder oder Fremdsysteme, mit denen das eigene System
agiert. [PR15, S.13-16]

Abbildung 2.1: UML Systemkontextdiagramm des Template Shops

Abbildung 2.1 zeigt das Systemkontextdiagramm unseres Systems, welches wir als Tem-
plate Shop bezeichnen. Dieses System interagiert mit drei Akteuren: dem Guest, dem
User und dem Admin. Ein Guest ist ein Nutzer, der die Anwendung aufruft, aber noch
kein eigenes Konto besitzt und ohne Kundenkonto Käufe tätigen kann. Der User ist ein
registrierter Guest, der zusätzlich die Audiospuren der Templates kommentieren kann.
Der Admin ist der Kunde des Systems, der seine Produkte für den Template Shop anlegt
und den Guests sowie Usern zum Verkauf anbietet. Fremdsysteme wie ein Payment- oder

5

2 Anforderungsanalyse

E-Mail-Service-Provider werden nicht dargestellt, da sie in der aktuellen Version dieses
Prototyps nicht verwendet werden.

2.4 Anforderungen

In Zusammenarbeit mit den Stakeholdern wurden die nötigen Anforderungen an das Sys-
tem ausgearbeitet. Dabei wurden funktionale Anforderungen und nicht-funktionale An-
forderungen definiert: Während funktionale Anforderungen eine dem Benutzer zur Ver-
fügung gestellte Funktionalität des Systems beschreiben, beziehen sich nicht-funktionale
Anforderungen auf Eigenschaften des Systems, die nicht von funktionalen Anforderungen
abgedeckt werden. [PR15, S.8-9]

2.4.1 Funktionale Anforderungen

Um die funktionalen Anforderungen übersichtlich und verständlich darzustellen, wurde
ein Use-Case-Diagramm erstellt. Das Use-Case-Diagramm baut auf dem Systemkontext-
Diagramm auf und stellt alle Funktionalitäten des Systems mit den Interaktionspartnern
bzw. Aspekten in Beziehung. [PR15, S.38]

6

2 Anforderungsanalyse

Abbildung 2.2: UML Use-Case Diagramm für den Template Shop
7

2 Anforderungsanalyse

Abbildung 2.2 stellt das Use-Case-Diagramm für den Template Shop dar. Daraus werden
die einzelnen Use Cases und deren Beziehung zu den Akteuren im System ersichtlich. Da
ein Use Case selbst jedoch wenig Details zu einer Funktionalität bietet, ist es nötig, diese
zu spezifizieren. Beispielsweise wäre es sinnvoll, Haupt- und Alternativabläufe sowie Vor-
und Nachbedingung der Funktionalität detailliert zu beschreiben, um Klarheit im Ent-
wicklungsprozess zu schaffen. [PR15, S.72-73] Die Spezifikation der 18 Use Cases findet
sich aufgrund der Größe im Anhang wieder und orientiert sich an einer vereinfachten
Version der Referenzschablone aus [PR15, S.74].

2.4.2 Nicht-funktionale Anforderungen

Eine vollständige Beachtung der nicht-funktionalen bzw. Qualitätsanforderungen ist wich-
tig, da diese maßgeblichen Einfluss auf Kosten und Architektur des Systems haben.
[Ebe22, S.83] Des Weiteren ist es nötig, die Randbedingungen für das System zu de-
finieren. Randbedingungen sind Bedingungen, die unseren Lösungsraum die vorgegebe-
nen Anforderungen umzusetzen einschränken. [PR15, S.9] Ein Beispiel wären Richtlinien
wie die DSGVO, die regelt, wie wir mit personenbezogenen Daten im System umgehen
müssen. Im Folgenden wird ein Überblick über die Qualitätsanforderungen und Randbe-
dingungen des Systems gegeben.

Qualitätsanforderungen

QA/1 Das System soll hochverfügbar sein.

QA/2 Das System soll einfach horizontal skalierbar sein.

QA/3 Das System ermöglicht einen schnellen Release von neuen Versionen ohne Aus-
fallzeit.

QA/4 Das System soll einfach zu warten sein.

QA/5 Das System soll beobachtbar sein.

Randbedingungen

8

2 Anforderungsanalyse

RB/1 Ein Fremdsystem für den Payment- und E-Mail-Service-Provider wird nicht ver-
wendet, sondern durch Konsolenausgaben im eigenen System selbst simuliert.

RB/2 Das eigentliche Produkt (ZIP-Datei des Templates) wird nicht hochgeladen, da
der Verkauf nur simuliert wird.

RB/3 Benutzerkommentare werden als Initialen des Benutzernamens entlang der Spur
angezeigt. Wenn der Benutzer mit der Maus über die Initialen fährt, wird eine
Box eingeblendet, die den Kommentar anzeigt.

RB/4 Die Initialen und die Benutzerkommentare verhalten sich nicht responsiv zum
Browserfenster, die richtige Darstellung ist also nur bei voller Fenstergröße zu
gewährleisten.

RB/5 Die Authentifizierung erfolgt durch eine einfache Eingabe von Benutzername
und Passwort.

2.5 Problem-Domäne

Nachdem wir den Systemkontext und die Anforderungen des Systems definiert haben, ist
es wichtig, strukturelle Softwaremodelle zu erstellen. Sie geben uns einen Überblick über
die Komponenten des Systems und deren Beziehung zueinander. [Som18, S.173] Ein Mo-
dell, welches uns einen guten Überblick über das Problemfeld der Anforderungen schafft,
ist das Domänenklassendiagramm. Dieses UML-Klassendiagramm stellt die wesentlichen
Entitäten der Problemdomäne dar, einschließlich ihrer Attribute und Beziehungen zuein-
ander, ohne dabei Methoden oder Verhalten der Klassen zu beschreiben.

9

2 Anforderungsanalyse

Abbildung 2.3: Domänenklassendiagramm für den Template Shop

Nach Abbildung 2.3 enthält ein Template demnach genau ein Bild (Image) und eine oder
mehrere Spuren (Track). Die Spuren selbst enthalten keine oder beliebig viele Kommen-
tare (Comment). Diese Assoziationen sind als Komposition modelliert, da das Löschen
eines Templates auch das zugehörige Bild, die Spuren und die Kommentare entfernt.

Im Frontend hat der Nutzer (User) die Möglichkeit, Kommentare und Bestellungen (Or-
der) zu erstellen. Die Modellierung zeigt jedoch nur die Assoziationen des Kommentars
und der Bestellung zu einem Nutzer, da der aktuelle Prototyp keine Funktionen zur
Anzeige aller Kommentare und Bestellungen eines Nutzers bietet.

Die Bestellung enthält ein oder mehrere Produkte (OrderItems) und verweist auf eine
Zahlungstransaktion (paymentTransaction). Diese Assoziation wird nicht als Kompositi-
on dargestellt, da die Zahlungstransaktion auch nach dem Entfernen der Bestellung im
System verbleiben soll. Das Löschen einer Bestellung führt jedoch zum Entfernen der
zugehörigen Produkte.

10

3 Systemdesign

Im folgenden Kapitel wird das System entworfen, welches die zuvor ermittelnden An-
forderungen erfüllen soll. Die Dokumentation orientiert sich am arc42-Template, wel-
che eine Vorlage zur Beschreibung und Entwicklung von Software-Architekturen bietet.
[SH11, S.47-48] Dabei wird das System aus verschiedenen Sichten betrachtet, welche
unterschiedliche Aspekte des Systems sichtbar machen. Die Sichten basieren auf dem
„4+1“-Sichtenmodell von Krutchen, welche Grundlage einer vollständigen Entwurfsdoku-
mentation sind. [Som18, S.198-199]

3.1 Verwandte Arbeit

Bevor wir uns auf den spezifischen Systementwurf konzentrieren, sollten wir uns einen
Überblick über verwandte wissenschaftliche Arbeiten verschaffen, die ähnliche Probleme
behandeln. Auf diese Weise können wir mögliche Architekturansätze für unser System
besser evaluieren.

Obwohl es viele wissenschaftliche Arbeiten zu Microservices gibt, sind solche Arbeiten in
Bezug auf E-Commerce seltener vorzufinden. Ein geeignetes verwandtes Paper ist den-
noch „Microservice Architectures for Scalability, Agility and Reliability in E-Commerce“
von OTTO. [HS17] In diesem Paper wird die Umstellung der monolithischen Architek-
tur auf eine Microservice-Architektur für die E-Commerce-Plattform OTTO behandelt.
Das Paper ist relevant, da es eine Lösung für ähnliche nicht-funktionale Anforderungen
bereitstellt, wie sie auch für unser System definiert wurden. Im Folgenden folgt eine
Zusammenfassung des Papers:

Im einleitenden Abschnitt wird die Microservice-Architektur mitsamt wichtigen Aspekten
beschrieben: Diese ist ein System aus vielen kollaborierenden Microservices, die jeweils
eine Implementierung für einen Geschäftsbereich bieten. Sie zeichnen sich durch lose
Kopplung und eventueller Datenkonsistenz aus, um so hohe Verfügbarkeit zu ermöglichen.

11

3 Systemdesign

Gleichzeitig fördert diese Architektur die Skalierungsmöglichkeiten und Fehlertoleranz
der Gesamt-Anwendung, da Fehler nicht auf das gesamte System propagiert werden. Es
wird unabhängiges Arbeiten durch cross-funktionale Teams gewährleistet, während die
Bereitstellung üblicherweise mithilfe von Containerisierung und Cluster-Management-
Infrastrukturen erfolgt.

Im nächsten Abschnitt des Papers wird detailliert auf OTTOs Übergang zur Microservice-
Architektur eingegangen:

Die Entscheidung, von einer monolithischen Architektur zu Microservices überzugehen,
wurde durch nicht-funktionale Anforderungen wie Skalierbarkeit, Performance und Aus-
fallsicherheit sowie die Notwendigkeit, Mitarbeiterkapazitäten effizienter zu nutzen, ange-
trieben. OTTO nutzte Conway’s Law, indem mehrere separate Teams an vertikalen Mi-
croservices arbeiteten, die jeweils eine Geschäftsdomäne abdeckten. Die Kommunikation
zwischen diesen Services erfolgt über einen Backend-Integration-Proxy, der REST APIs
verwendet, um hohe Verfügbarkeit sicherzustellen und die Ausbreitung von Fehlern zu
verhindern. Durch die Vermeidung gemeinsamer Zustände und Infrastruktur verbesser-
te sich die horizontale Skalierbarkeit und Ausfallsicherheit des Systems. Kontinuierliche
und sichere Deployments wurden durch eine Test- und Delivery-Pipeline gewährleistet.
Zudem verfügt jedes Team über ein Dashboard zur Überwachung wichtiger Metriken
ihrer Microservices. Abschließend ist eine dynamische Skalierung basierend auf CPU-
Auslastung und Arbeitslastschwankungen implementiert, welche optimale Leistung ohne
operationelle Eingriffe gewährleistet.

Im letzten Abschnitt wird das Paper dann noch einmal zusammengefasst. Dabei wird be-
tont, dass Microservice-Architekturen trotz ihrer Vorteile mit hohen Kosten verbunden
sind: Die Aufrechterhaltung von Konsistenz, Überwachung und Fehlertoleranz in einem
verteilten System erfordert eine hohe operationelle Komplexität, die von hoch qualifizier-
ten Entwicklerteams bewältigt werden muss.

Auf Basis der im Paper vorgestellten Lösungsansätze für unsere Anforderungen wird im
nächsten Abschnitt ein Architekturstil für unser System ausgewählt.

3.2 Architekturstil

Die Softwarearchitektur legt grundlegende Prinzipien und Strukturen fest, die langfristige
Auswirkungen auf die Systemqualität und Systementwicklung haben. [Tre21, S.2-3] Dies

12

3 Systemdesign

schließt auch die Erfüllung der Qualitätsanforderungen des Systems mit ein. Daher wird
zunächst ein Überblick über eine Auswahl an Architekturstilen gegeben und anschließend
eine Entscheidung getroffen.

3.2.1 Monolithische Architektur

Ein lang bewährter Ansatz ist die monolithische Architektur. Ein monolithisches Sys-
tem basiert auf einem einzeln entwickelbaren und bereitstellbaren Prozess, was bedeutet,
dass alle Komponenten aus denen die Anwendung besteht, als eine Einheit in Betrieb
genommen werden. [New21, Kapitel 1.3.1] Die Vorteile dieses Ansatzes sind unter an-
derem ein vereinfachter Test-, Debug- und Entwicklungsprozess, eine gewährleistete Da-
tenkonsistenz und Integrität innerhalb der Anwendung sowie ein vergleichbar einfaches
Deployment. [New21, Kapitel 1.3.5] Während dieser Stil für kleine Anwendungen und
Projekte mit den richtigen Anforderungen ausreichend war, brachte er bei größeren und
komplexeren Projekten Probleme mit sich: Es ist schwieriger, Abhängigkeiten im Code
abzugrenzen, was paralleles Arbeiten an der Codebasis erschwert. Zudem muss selbst bei
kleinen Änderungen das gesamte System einen Bereitstellungsprozess durchlaufen, was
schnelle Releasezyklen erschwert. Ein weiterer wichtiger Nachteil ist die Skalierung. Be-
nötigt eine bestimmte Funktion der Anwendung mehr Ressourcen, um beispielsweise die
Anfragelast abzuarbeiten, so muss dafür die gesamte Anwendung skaliert werden. [Ric18,
Kapitel 1.1.3] Dies ist einer der Hauptgründe, wieso beispielsweise Netflix im Laufe seiner
Lebenszeit auf eine Microservice-Architektur gewechselt ist. [Fri20a]

3.2.2 Microservice-Architektur

Die Microservice-Architektur wird als eine Applikation definiert, welche auf kleine, unab-
hängig von einander entwickelbare und bereitstellbare Prozesse basiert. Es handelt sich
also um ein verteiltes System, in der die Kommunikation über leichtgewichtige Mecha-
nismen stattfindet, wie z. B. Rest-APIs. [Mar14] Die vorher genannten Nachteile fallen
dadurch weg: Durch die starken Modul und Zuständigkeitsgrenzen sind Abhängigkei-
ten nachvollziehbar, wodurch das parallele Arbeiten in größeren Teams einfacher wird.
Schnellere Releasezyklen werden dadurch ermöglicht, dass Deployment-Prozesse sich nur
auf einzelne Services beziehen statt der gesamten Anwendung. Einzelne Services kön-
nen nun skaliert werden, wodurch insgesamt an Ressourcen gespart werden kann. [Ric18,
Kapitel 1.5.1] Die Nachteile dieses Stils spiegeln jedoch die Vorteile der monolithischen

13

3 Systemdesign

Architektur wieder: Als verteiltes System wird Datenintegrität zum Problem, da jeder
Service seine eigene Datenbank hat und Transaktionen über mehrere Services stattfin-
den können. Des Weiteren müssen komplexe Fehlerbehebungsmaßnahmen implementiert
werden, da das Netzwerk, über denen die Services miteinander kommunizieren, nicht
stabil ist. Die betriebliche Komplexität eines verteilten Systems ist insgesamt erhöht, da
nun Technologien eingesetzt müssen, die ein verteiltes System verwalten. [Ric18, Kapitel
1.5.2]

3.2.3 Weitere Architekturansätze

Will man das Beste aus beiden Welten, könnte man einen hybriden Ansatz wählen,
indem z. B. einzelne Microservices aus einem Monolithen ausgelagert werden, um so
einzelne bestimmte Funktionalitäten kostengünstig zu skalieren. Dieser hybride Ansatz
findet häufig dann statt, wenn schrittweise von einer monolithischen Architektur in eine
serviceorientierte Architektur migriert wird. [Ric18, Kapitel 13.1.2]

Erwähnenswert ist auch der Modulith, ein Monolith, welcher aber durch sehr gute Co-
depraktiken möglichst modular aufgebaut ist und anhand seiner Struktur interne Funk-
tionalitäten und Abhängigkeiten klar trennt. [Fri21c]

Zusammenfassend hat jeder Architekturstil seine Vor-und Nachteile, weshalb es wichtig
ist, diesen von seinen Anforderungen abhängig zu machen.

3.2.4 Wahl des Architekturstils

Weil wir als Qualitätsanforderungen Hochverfügbarkeit, Skalierbarkeit, Agilität sowie
Wartbarkeit definiert haben (siehe QA/1 - QA/4) und diese Anforderungen, wie im
verwandten Paper gezeigt, besonders gut durch eine Microservice-Architektur erfüllt wer-
den können, fiel die Wahl auf diesen Architekturstil. Wie vorhin erwähnt, ermöglicht die-
se Architektur die schnelle und kostengünstige Skalierung einzelner Services und bietet
durch die Nutzung von Orchestrierungssystemen wie Kubernetes eine hohe Verfügbarkeit.
Agilität wird durch die Möglichkeit schneller Releasezyklen einzelner Versionen gewähr-
leistet und vereinfachte Wartbarkeit durch die modulare Natur der einzelnen Services.
Die Wichtigkeit der Anforderungen wurde gegenüber der operationellen Komplexität ei-
ner Microservice-Architektur vorgezogen.

14

3 Systemdesign

3.3 Bausteinsicht

Die Bausteinsicht als wichtigste Architektursicht stellt alle zu implementierenden Sys-
tembestandteile dar und setzt diese zueinander in Beziehung. Beispiele für Bausteine
bzw. Systembestandteile sind Komponenten wie Services oder Datenbanken, aber auch
Artefakte und Schnittstellen. [SH11, S.56]

Die Bausteinsicht entscheidet darüber, wie die Services strukturiert werden. Diese Struk-
turierung kann entweder nach Subdomänen oder nach Unternehmensfunktionen erfol-
gen. Während sich Letzteres darauf richtet, welche Funktionalitäten das Unternehmen
bietet, wie z. B. die Bereitstellung eines Produktkataloges und somit einem Produktka-
talogservice, betrachtet man im Ersteren die Subdomänen des Unternehmens nach dem
Domain-Driven Design. Dementsprechend würde es eine Subdomäne für das Produkt-
katalogmanagement geben und somit auch einen Produktkatalogservice. [Ric18, Kapitel
2.2.2-2.2.3] Es wird deutlich, dass beide Ansätze zum gleichen Ergebnis kommen können.
Der Unterschied liegt hauptsächlich in der Perspektive, aus der die Services strukturiert
werden.

Unser Ansatz in der Bausteinsicht gliedert die Services nach den Unternehmensfunktio-
nen. Jede zentrale Funktionalität wird demnach durch einen eigenen Service abgedeckt,
dessen Name klar auf den entsprechenden Funktionsbereich hinweist.

Um die Übersichtlichkeit der Bausteinsicht zu verbessern, wurde sie in drei Teile aufge-
teilt.

15

3 Systemdesign

Abbildung 3.1: Bausteinsicht für das Template Shop-Backend 1

Abbildung 3.1 zeigt den ersten Teil des Backends, der die Benutzerverwaltung, Authen-
tifizierung, Kommentarfunktion, Template-Erstellung sowie die Warenkorbfunktionalität
abdeckt.

Der Einfachheit halber wurde der TrackService mit dem TemplateService sowie der Auth-
Service mit dem UserService fusioniert. Dies ist wichtig, da beide Services stark vonein-
ander abhängen und eine Aufteilung unnötig viele Netzwerkanfragen und Datenabhän-
gigkeiten mit sich bringen würde. Da jeder Service auch seine eigene Datenbank hat,
werden so autonome, weitgehend entkoppelte und gut skalierbare Services geschaffen.

16

3 Systemdesign

Abbildung 3.2: Bausteinsicht für das Template Shop-Backend 2

Abbildung 3.2 zeigt den zweiten Teil des Backends, der den Monitoring-Stack, den Check-
out, die Bezahl- und die E-Mail-Simulation abdeckt.

Abbildung 3.3: Bausteinsicht für den Template Shop

Abbildung 3.3 zeigt, wie unsere Frontend-Anwendung über ein API-Gateway mit den
genannten Backends bzw. Microservices verbunden ist.

17

3 Systemdesign

Das API-Gateway dient als zentraler Zugangspunkt für verschiedene Clients und leitet
deren Anfragen an die entsprechenden Services weiter. Dies bietet mehrere Vorteile:

Da das Backend für die Clients nur noch eine einzige Adresse bereitstellt, wird der Client-
Code von den Backend-Services entkoppelt und dadurch leichter wartbar. Änderungen
der Backend-Adressen haben keine Auswirkungen auf die Adresse des API-Gateways.
Ähnlich wie beim Facade-Muster leitet das API-Gateway Anfragen von verschiedenen
Clients an spezifische APIs weiter, um deren unterschiedlichen Anforderungen gerecht zu
werden. Beispielsweise benötigen mobile Clients aufgrund geringerer Netzwerkressour-
cen angepasste API-Aufrufe. Zuletzt können im API-Gateway weitere Funktionen wie
Request-Logging oder Rate-Limiting implementiert werden. [Ric18, Kapitel 8.1.2-8.2.2]
Für diese Entscheidung wurden Nachteile wie die erhöhte Komplexität und die leicht
verlängerte Anfragedauer durch den zusätzlichen Netzwerk-Hop in Kauf genommen.

3.4 Monitoring

Beim Monitoring geht es darum, den Zustand der laufenden Anwendung zu überwachen.
Hierzu gehören beispielsweise Dinge wie die Anzahl der Anfragen pro Sekunde, die Res-
sourcennutzung und den Zustand der Service-Instanzen. Außerdem ist es wichtig, bei
Problemen wie dem Ausfall einer Service-Instanz oder einem sich füllenden Datenträger
benachrichtigt zu werden. [Ric18, Kapitel 11.3] Zur Überwachung des Systems gibt es
verschiedene Möglichkeiten:

Tracing

Mittels Tracing kann jeder externen Anfrage eine eindeutige ID zugewiesen und ihr Ver-
lauf durch das System von einem Service zum nächsten auf einem zentralen Server auf-
gezeichnet werden. Ein Trace repräsentiert dabei eine externe Anfrage und besteht aus
einem oder mehreren Spans. Ein Span wiederum stellt die Ausführung eines einzelnen
Services dar und speichert wichtige Daten wie den Namen, den Startzeitpunkt und den
Endzeitpunkt der Operation. Dadurch können detaillierte Einblicke in die Leistung der
Services gewonnen werden und mögliche Fehler oder Performance-Engpässe besser nach-
vollzogen werden. [Ric18, Kapitel 11.3.3] Mögliche Tools zur Implementierung vom Tra-
cing wären Jaeger oder Zipkin.

18

3 Systemdesign

Metrik-Monitoring

Eine weitere Möglichkeit ist das Sammeln und Überwachen von Anwendungsmetriken.
Diese Metriken umfassen sowohl Infrastrukturmetriken wie CPU-, Speicher- und Fest-
plattennutzung als auch anwendungsspezifische Metriken wie die Anzahl der ausgeführ-
ten Anfragen. Eine Spring Boot-basierte Anwendung kann beispielsweise durch die In-
tegration der Micrometer Metrics-Bibliothek grundlegende JVM-Metriken sowie anwen-
dungsspezifische Metriken erfassen und an Prometheus übermitteln. Prometheus ist ein
Open-Source-Monitoring- und Alarmsystem, welches diese Daten periodisch abfragt und
sie zur Visualisierung in Grafana bereitstellt. Es ermöglicht das Einstellen von Benach-
richtigungen, wenn selbst definierte Schwellenwerte der Metriken überschritten werden
und ermöglicht so eine schnelle Reaktion bei Problemen. [Ric18, Kapitel 11.3.4]

Health-Checks

Bei Health-Checks implementiert ein Service einen Health-Check-Endpunkt, der den Ge-
sundheitszustand der Anwendung zurückgibt. Dies kann beispielsweise durch eine Testab-
frage gegen eine Datenbank erfolgen. Die Deployment-Infrastruktur ruft diesen Endpunkt
anschließend regelmäßig auf, um den Gesundheitszustand der Instanz zu überprüfen und
bei Bedarf entsprechend zu reagieren. [Ric18, Kapitel 11.3.1]

Log-Aggregation

Log-Aggregation ermöglicht die Sammlung und Indexierung aller Logs der Microservices
auf einem zentralen Server, der diese analysieren und abfragen lässt. [Ric18, Kapitel
11.3.2]

Wahl der Überwachungsmethode

Da die Überwachung viele Optionen bietet, wurde für den Prototyp zunächst nur die
Log-Aggregation verwendet, um die Anwendung einfach zu halten.

Dafür kommt ein EFK-Stack zum Einsatz, welcher aus Filebeat, Elasticsearch und Kiba-
na besteht. Filebeat sammelt hierfür die Logs der Microservices, die über Docker ausgege-
ben werden und sendet sie an Elasticsearch. Elasticsearch indexiert diese Logs und stellt

19

3 Systemdesign

eine Suchmaschine bereit, während Kibana sie visualisiert und bei Bedarf in Analyse-
Dashboards darstellt. Dadurch kann beispielsweise nach Error-Logs gefiltert werden, um
möglichen Problemen auf den Grund zu gehen. Mit der Implementation der Überwa-
chungsmethode erfüllen wir die Anforderung der Beobachtbarkeit. (siehe QA/5)

3.5 Kommunikation

Da Microservices sich nicht in einem Prozess befinden, findet Kommunikation üblicher-
weise über das Netzwerk statt. Hier lassen sich grundsätzlich zwei Kommunikationsarten
unterscheiden: die synchrone- und die asynchrone Kommunikation.

3.5.1 Synchrone Kommunikation

Die synchrone Kommunikation arbeitet nach dem Request-Response-Prinzip in der ein
Microservice einem anderen Service eine Anfrage stellt und auf die Antwort wartet.
[New21, Kapitel 4.3] Mögliche Implementierungen für diesen Kommunikationsstil sind
RPC, REST und GraphQL.

RPC

Ein Remote Procedure Call (RPC) ist eine Technik, in der ein lokaler Methodenauf-
ruf einer Anwendung auf einem entfernten Service ausgeführt wird. Dabei wird die
Komplexität der Netzwerkkommunikation so abstrahiert, dass sich der RPC wie ein lo-
kaler Methodenaufruf anfühlt. Hierbei werden separate Schema verwendet, welche die
Struktur der Nachrichten und Methodenaufrufe definieren, um so eine automatische
Generierung von Client- und Server-Stubs für verschiedene Technologien zu ermögli-
chen. Je nach RPC-Framework kommen verschiedene Serialisierungsmechanismen zur
Datenübertragung zum Einsatz, wobei einige Frameworks zusätzlich flexible Optionen
bei der Wahl des Netzwerkprotokolls bieten. Trotzdem sollte hier auf erhöhte Kosten,
die mit dem Marshaling und Schnittstellenänderungen einhergehen, durch bestimmte
RPC-Implementationen geachtet werden. [New21, Kapitel 5.2.1]

20

3 Systemdesign

REST

REST ist ein architektonischer Stil, der vom Web inspiriert ist und eine Reihe von Prin-
zipien und Einschränkungen für das Design von Service-Schnittstellen definiert. [New21,
Kapitel 5.2.2]

Ein zentrales Konzept von REST ist die Ressource, die typischerweise ein einzelnes Ge-
schäftsobjekt wie einen Kunden oder eine Sammlung solcher Objekte repräsentiert. Diese
Ressourcen werden über eine URL referenziert und mithilfe von HTTP-Methoden mani-
puliert. Beispielsweise können so über GET- und POST-Endpunkte Ressourcen gelesen
und erstellt werden, wobei diese häufig in Form von XML-Dokumenten oder JSON-
Objekte wiedergegeben werden. Außerdem können mit der Open API Specification Sche-
mata für REST-APIs erstellt werden, die bei Bedarf Client- und Server-Code in verschie-
denen Programmiersprachen generieren. Zu den Vorteilen von REST-APIs gehören ihre
Einfachheit und die leichte Testbarkeit. Im Gegensatz dazu stehen jedoch die Schwierig-
keiten, die sich beim Mapping komplexer Operationen auf einfache HTTP-Verben und
der Durchführung von Anfragen über mehrere Ressourcen hinweg ergeben. [Ric18, Ka-
pitel 3.2.1]

GraphQL

Mit GraphQL kann ein Client gezielt spezifische Informationen anfragen, die normaler-
weise mehrere Anfragen über verschiedene Services hinweg erfordern würden. Man kann
GraphQL also als eine Art Aggregations- und Filtermechanismus über Daten von meh-
reren Services betrachten. Dazu stellt ein Microservice einen GraphQL-Endpunkt bereit,
der ein Schema mit allen verfügbaren Datentypen definiert. Clients können dann auf die-
se mithilfe eines Abfrage-Konfigurators zugreifen. Diese Lösung ist sehr gut für externe
Clients wie mobile Geräte und externe APIs geeignet, die viele verschiedene Daten mit
einer einzigen Anfrage benötigen. Allerdings sollte GraphQL aufgrund seiner komplexen
Caching-Problematik, der ineffizienten Schreibvorgänge und der potenziell hohen Server-
last bei dynamischen Abfragen nicht als einziges Mittel für die Kommunikation zwischen
Microservices verwendet werden. [New21, Kapitel 5.2.3]

21

3 Systemdesign

3.5.2 Asynchrone Kommunikation

Die asynchrone Kommunikation bietet verschiedene Kommunikationsstile an und zeichnet
sich dadurch aus, dass der Client nach der Anfrage nicht auf eine sofortige Antwort
eines Services warten muss. Neben dem asynchronen Request-Response-Prinzip kann
die Kommunikation auch über ein Publish/Subscribe-Modell (im Folgenden pub/sub-
Modell) erfolgen, bei dem der Client eine Nachricht veröffentlicht, die von interessierten
Services konsumiert wird. [Ric18, Kapitel 3.1.1]

Brokerbasierte Architektur

Eine Möglichkeit asynchrone Kommunikation umzusetzen, ist die brokerbasierte Archi-
tektur. In der brokerbasierten Architektur senden alle Services ihre Nachrichten an einen
zentralen Nachrichtenbroker, welcher diese wiederum an die jeweiligen Empfänger ver-
teilt. Einerseits ermöglicht der Einsatz eines Brokers eine lose Kopplung zwischen Sender
und Empfänger, da der Sender keine spezifischen Informationen über die Empfänger
benötigt. Andererseits sorgt der Nachrichtenpuffer des Brokers für hohe Verfügbarkeit,
indem er es ermöglicht, dass ein Onlineshop Bestellungen auch dann annehmen kann,
wenn das Bestellsystem vorübergehend nicht erreichbar ist. Die Nachteile dieses Ansat-
zes betreffen potenzielle Performance-Engpässe und die Gefahr eines Single Points of
Failure durch den Broker. Moderne Broker-Lösungen sind jedoch auf Hochverfügbarkeit
und Skalierbarkeit optimiert, um diese Probleme zu umgehen. Trotzdem bleibt der er-
höhte operationale Aufwand für die Installation und Konfiguration des Brokers bestehen.
[Ric18, Kapitel 3.3.4]

Brokerlose Architektur

In einer brokerlosen Architektur kommunizieren Services direkt miteinander, ohne einen
Nachrichtenbroker zu nutzen. Ein bekanntes Beispiel hierfür ist ZeroMQ, das verschiede-
ne Übertragungsarten wie TCP und UNIX-Sockets anbietet. Der Vorteil dieser Architek-
tur liegt in der vereinfachten Systemstruktur mit verbesserter Latenz und reduziertem
Netzwerkverkehr. Dennoch können wichtige Funktionen wie Service-Discovery und eine
garantierte Nachrichtenzustellung schwieriger zu realisieren sein, weshalb viele Unterneh-
mensanwendungen auf eine brokerbasierte Architektur setzen. [Ric18, Kapitel 3.3.4]

22

3 Systemdesign

3.5.3 Wahl der Kommunikationsform

Im Gegensatz zur synchronen Kommunikation verbessert asynchrone Kommunikation die
Hochverfügbarkeit des Systems. [Ric18, Kapitel 3.4] Anhand unserer Anforderung der
Hochverfügbarkeit (siehe QA/1) wäre es naheliegend, jegliche Kommunikation unserer
Microservices als asynchrone Kommunikationsform zu implementieren.

Jedoch findet in den Backend-Microservices aufgrund ihres Schnitts nur minimale Kom-
munikation statt. Die meisten Anfragen bestehen darin, einen Schlüssel zur Verifizierung
der Signatur eines JSON-Web-Tokens zu erhalten. Da diese Anfragen einfache GET-
Operationen sind, die keinen langen Verifikationsprozess erfordern, wurde beschlossen,
hierfür doch eine synchrone REST-API zu verwenden. Alternativen wie GraphQL oder
RPC bieten für diesen einfachen Anwendungsfall keinen nennenswerten Mehrwert. Statt-
dessen wird die Einfachheit der Implementierung einer synchronen API der potenziellen
Komplexität und den minimalen Verfügbarkeitsgewinnen einer asynchronen Kommuni-
kationsform vorgezogen.

Die Kommunikation zwischen dem Template- und dem Comment-Service findet asyn-
chron über einen Nachrichtenbroker statt, da der Template-Service keine direkte Rück-
meldung vom Comment-Service benötigt. Dieser wird lediglich beim Löschen eines Tem-
plates beauftragt, alle zugehörigen Kommentare zu löschen. Zudem soll hier der Nach-
richtenbroker als neue Technologie erprobt werden, um diesen eventuell für zukünftige
Versionen zu nutzen, insbesondere wenn die Kommunikation zwischen den Microservices
komplexer wird. Die Entscheidung für den Nachrichtenbroker basiert auf den Vorteilen
der Hochverfügbarkeit, der garantierten Nachrichtenübermittlung und der damit verbun-
denen Verbesserung der Datenkonsistenz.

Für die Implementierung des Nachrichtenbrokers eignet sich Apache Kafka. Kafka ist ein
verteiltes System für Event-Streaming, das Nachrichtenvermittlung nach dem pub/sub-
Modell bereitstellt. Durch die Möglichkeit Topics zu partitionieren und replizieren, bietet
Kafka hohe Verfügbarkeit und Fehlertoleranz [Kaf]. Mit dem pub/sub-Modell können
so Nachrichten vom Template-Service an ein spezifisches Topic veröffentlicht werden,
welches der Comment-Service wiederum abonnieren kann. Die einfache Integration in das
später verwendete Framework Spring Boot durch die Unterstützung von Spring Kafka
war ein Hauptgrund für die Auswahl dieser Technologie.

23

3 Systemdesign

3.6 Verteilte Transaktionen und Sagas

In einer Microservice-Architektur sind verteilte Transaktionen entscheidend, um Daten-
konsistenz über mehrere Services hinweg sicherzustellen. Dies ist notwendig, wenn Ope-
rationen der Gesamtanwendung verschiedene Services beinhalten, die jeweils ihre eigenen
Datenbanken haben. Das liegt daran, dass jeder Service lokal mit ACID-Transaktionen
arbeitet und von allen anderen Services isoliert ist. Wenn jetzt eine Operation mehrere
Services betrifft und einer dieser Services ausfällt, würde dies ohne eine verteilte Trans-
aktion zu Dateninkonsistenzen führen. [Ric18, Kapitel 4.1]

Leider ist der traditionelle Ansatz von verteilten Transaktionen wie das Zwei-Phasen-
Commit-Protokoll (2PC) nicht für alle moderne Anwendungen geeignet, da Technolo-
gien wie NoSQL-Datenbanken oder Message-Broker hier keine Unterstützung anbieten.
Zudem führen verteilte Transaktionen zu einer Verringerung der Verfügbarkeit der Ge-
samtanwendung, da alle beteiligten Dienste gleichzeitig verfügbar sein müssen, um die
Transaktion abzuschließen. Um diese Problematik zu lösen, kommt das Saga-Muster zum
Einsatz: Sagas arbeiten mit einer Sequenz von lokalen Transaktionen, die durch asyn-
chrone Nachrichten koordiniert werden, um Datenkonsistenz zu gewährleisten. Jeder Ab-
schluss einer lokalen Transaktion im Service löst dabei die Ausführung der nächsten aus.
Ein wichtiger Vorteil der asynchronen Nachrichtenübermittlung ist hier, dass alle Schrit-
te einer Saga ausgeführt werden, selbst wenn einige Teilnehmer vorübergehend nicht
verfügbar sind. Sollte hierbei in einer Sequenz von lokalen Transaktionen ein Fehler auf-
treten, werden alle Änderungen der Transaktionen durch Kompensationstransaktionen
rückgängig gemacht. [Ric18, Kapitel 4.1.2-4.1.3]

Die Implementierung des Saga-Musters kann entweder durch Choreografie oder Orche-
strierung erfolgen. Bei der Choreografie tauschen die Teilnehmer der Transaktionssequenz
asynchron Nachrichten aus, um den Ablauf der Saga zu koordinieren. Im Gegensatz dazu
übernimmt bei der Orchestrierung ein zentraler Orchestrator die Koordination. Dieser
Orchestrator überwacht den Fortschritt der Saga und stellt sicher, dass alle notwendigen
Schritte ausgeführt werden. Der Orchestrierungsansatz ist verständlicher und eignet sich
besser für komplexere Sequenzen. Es ist jedoch wichtig, darauf zu achten, nicht zu viel
Logik in den Orchestrator zu integrieren. Der Choreografie-Ansatz sollte aufgrund seiner
schwer nachvollziehbaren Implementierung und möglichen Zyklusabhängigkeiten nur bei
sehr einfachen Sequenzen angewendet werden. Jedoch ist wichtig zu erwähnen, dass in
verteilten Systemen, die auf Sagas basieren, Anomalien auftreten können, die sich aus

24

3 Systemdesign

dem Fehlen der Isolationseigenschaft von ACID-Transaktionen ergeben. Isolation ver-
hindert nämlich, dass bei gleichzeitiger Ausführung mehrerer Transaktionen diese sich
gegenseitig beeinflussen und dadurch inkonsistente oder unvorhersehbare Ergebnisse ent-
stehen. Bei Sagas sind jedoch Aktualisierungen untereinander sofort verfügbar. Deshalb
müssen hier zusätzliche Gegenmaßnahmen implementiert werden, um Anomalien wie
Dirty Reads oder verlorene Updates zu verhindern, was zusätzlichen Aufwand erfordert.
[Ric18, Kapitel 4.2-4.3]

Wir sehen, dass verteilte Transaktionen und Sagas die Komplexität unserer Implemen-
tation stark erhöhen können. Deshalb wurden die Services so strukturiert, dass keine
Transaktionen über mehrere Services stattfinden. Lediglich ein Fehler beim Löschen eines
Templates könnte dafür sorgen, dass Kommentare für ein gelöschtes Template existieren.
Die Auswirkungen dieser Dateninkonsistenz wären minimal und würden nur bei einer
sehr großen Anzahl fehlgeschlagener Löschaktionen zu Speicher- und Performanceeinbu-
ßen in der Datenbank führen. In der Praxis kommen solche Löschaktionen jedoch nur
vereinzelt vor, da ein Verkäufer selten ein erstelltes und erfolgreich verkauftes Template
löscht.

3.7 Datenmodell

Jeder Service führt eine relationale Datenbank für seine Entitäten. Aufgrund der einfa-
chen, nicht verschachtelten Struktur der Daten und ausgereiften Implementierung dieses
Modells von verschiedensten Anbietern und Frameworks wurde das relationale Daten-
modell ausgewählt. Da die Wahl des Datenbankmanagementsystems keinen speziellen
Anforderungen unterliegt, fällt diese auf PostgresSQL. Unterstützt wird sie durch dessen
Modernität und Unterstützung im später erwähnten Google Cloud SQL.

3.8 Warenkorb

Um einen Warenkorb zu realisieren, ist es sinnvoll, dem Client eine Session mit Waren-
korbinformationen zuzuteilen. Dafür gibt es unter anderem zwei Lösungsansätze:

In der ersten Variante speichert man die Daten des Warenkorbs in einem Cookie im Client
und spart sich dadurch die Verwaltung einer Datenbank, langsame Datenbankzugriffe
auf den Warenkorb sowie eine erschwerte Skalierbarkeit der Warenkorbfunktion. Das

25

3 Systemdesign

Problem hier wäre der zusätzliche Overhead, der durch ein größeres Cookie entsteht
und womöglich die Anfragen verlangsamt. Auch wären bei schlechter Implementierung
erhöhte Sicherheitsbedenken wie das Risiko der Datenmanipulation oder das potenzielle
Offenlegen sensibler Informationen möglich.

In der zweiten Variante speichert man die benötigten Daten in einer Datenbank. Damit
können Warenkorb-Informationen über verschiedene Geräte des Clients gespeichert und
evtl. zusätzliche Funktionalitäten des Warenkorbs gestaltet werden. Die oben genannten
Nachteile wie langsame Datenbankzugriffe als auch erschwerte Skalierbarkeit gehen aber
auch einher. Üblicherweise ist eine längere Persistenz bei solch temporären Daten auch
nicht notwendig.

Ein gutes Mittelmaß ist die Implementierung einer Warenkorbfunktionalität mittels ei-
nes Key Value Store als Datenbank in Kombination mit einem Session-Cookie. Dabei
würden die Produkte im Warenkorb im Key Value Store gespeichert werden und auf eine
Session-ID im Cookie verwiesen werden. Key Value Stores im Hauptspeicher bieten eine
hohe Geschwindigkeit der Datenverarbeitung und durch ihre Natur eine hohe Skalierung
mittels Sharding. [KM23, S.254] Als Key Value Store Implementation würde auf Redis
gesetzt werden, da es solche sehr schnellen Lese- sowie Schreiboperationen bietet und
durch das unterstützte Clustering hochskalierbar ist. Ein weiterer Grund ist, dass Redis
in Verbindung mit Spring Session eine ausgereifte Implementierung in unserem geplanten
Backend-Framework vorfindet. Durch diese Kombination wäre eine performante und ska-
lierbare Lösung geboten, die bei Bedarf auch persistiert werden kann, umso die Vorteile
beider Lösungsansätze zu vereinen.

3.9 Sicherheit

Auch wenn Sicherheit in dieser Prototyp-Version keine zentrale Rolle spielt, wurden den-
noch einige Sicherheitsmaßnahmen implementiert. Für die Authentifizierung, also der
Frage, ob der Nutzer der ist, für den er sich ausgibt, wird eine simple Kombination aus
Passwort und Nutzernamen angelegt. (siehe RB/5) Beim Registrierungsprozess wählt
der Nutzer sein Passwort aus, welches dann in der Datenbank des UserService als Hash
gespeichert wird. Für die Autorisierung, also ob der Nutzer Zugriff auf geschützte Res-
sourcen hat, wurde Folgendes bestimmt:

26

3 Systemdesign

Bei der Registrierung eines Nutzers erstellt der UserService einen JSON-Web-Token
(JWT), der mit einem asymmetrischen Schlüssel signiert wird. Ein JWT ist ein Base64
codiertes und signiertes JSON, welches alle relevanten Informationen eines Benutzers,
die für eine Authentifizierung oder Autorisierung nötig sind, enthält. Wenn ein Service
nun überprüfen muss, ob ein Nutzer für die benötigte Ressource autorisiert ist, verifiziert
er die Signatur des mitgeschickten JWT vom Client anhand des öffentlichen Schlüssels
des UserService. Aufgrund der Wahl einer asymmetrischen Verschlüsselung müssen die
Microservices keinen Schlüssel untereinander aushandeln, was bei einem verteilten Sys-
tem mit vielen Services von Vorteil ist. Auch wird durch den Verzicht der Speicherung
von Zustand sowie die Eliminierung des Bedarfs an Datenbanken für Authentifizierungs-
und Autorisierungsinformationen die Skalierbarkeit der Microservice verbessert und die
Ressourcennutzung optimiert. Nachteile wie der erhöhte Overhead eines Tokens oder die
verringerte Sicherheit bei Komprimierung des Tokens wurden aufgrund der genannten
Vorteile in Kauf genommen.

Ähnliche Sicherheitsvorkehrungen wurden auch beim PaymentService getroffen: Dieser
generiert für eine Transaktion ebenfalls einen JWT, damit der CheckoutService überprü-
fen kann, ob die Transaktion tatsächlich stattgefunden hat und nicht gefälscht wurde.
Somit haben Guests Zugriff auf alle öffentlich zugänglichen APIs, jedoch ohne Kunden-
konto nicht auf geschützte.

3.10 Laufzeitsicht

Die Laufzeitsicht zeigt, wie die einzelnen Bausteine des Systems zur Laufzeit zusammen-
arbeiten. [SH11, S.66] So werden die verschiedenen Funktionen und Kommunikationsab-
läufe der Komponenten zu bestimmten Anwendungsfällen deutlich. Im Folgenden werden
die kommunikationsrelevantesten Use Cases mit UML-Sequenzdiagrammen dargestellt.

27

3 Systemdesign

Abbildung 3.4: UML Sequenzdiagramm für das Löschen eines Templates (uc/15)

Abbildung 3.4 zeigt den Ablauf des Löschens eines Templates zur Laufzeit. Vor dem Fort-
fahren des Löschvorgangs fordert der TemplateService den öffentlichen Schlüssel (public
key) vom UserService an, um die Autorisierung der Aktion zu überprüfen. Der Tem-
plateService sendet anschließend ein Event an den MessageBroker, um mit dem Com-
mentService zu kommunizieren und setzt seinen Ablauf fort. Der MessageBroker leitet
das Event an den CommentService weiter, wodurch alle Kommentare zu dem Template
gelöscht werden, ohne dass der TemplateService blockiert wird.

28

3 Systemdesign

Abbildung 3.5: UML Sequenzdiagramm für das Hinzufügen eines Templates zum Shop
(uc/17)

In Abbildung 3.5 wird der Prozess des Hinzufügens eines Templates zur Laufzeit darge-
stellt. Der Client überprüft zunächst alle Eingaben des Akteurs und stellt sicher, dass eine
Audiodatei bereitgestellt wurde. Falls kein Bild ausgewählt wurde, verwendet der Client
ein Standardbild. Anschließend sendet der Client jede Datei an den TemplateService, der
die Autorisierung über den UserService überprüft. Bei erfolgreicher Autorisierung wer-

29

3 Systemdesign

den die Dateien auf der Festplatte und in der Datenbank gespeichert. Der Client leitet
den Akteur zur Startseite weiter und aktualisiert die Template-Dateien.

Abbildung 3.6: UML Sequenzdiagramm für das Bearbeiten eines Templates (uc/16)

30

3 Systemdesign

Abbildung 3.6 veranschaulicht den Prozess des Bearbeitens eines Templates zur Laufzeit.
Der Ablauf ähnelt dabei dem Upload-Vorgang: Nachdem der Akteur ein Formular zum
Ändern der Template-Metadaten ausgefüllt hat, überprüft der Client die Eingaben auf
mögliche Fehler. Die aktualisierten Metadaten werden anschließend an den TemplateSer-
vice gesendet, der zur Autorisierung erneut den UserService anfragt. Nach erfolgreicher
Autorisierung werden die Änderungen in der Datenbank aufgenommen. Der Client lädt
die aktualisierten Template-Metadaten nach und zeigt dem Akteur eine Erfolgsmeldung
an.

Abbildung 3.7: UML Sequenzdiagramm für das Kaufen eines Templates (uc/9)

Abbildung 3.7 stellt den Prozess des Template-Kaufs zur Laufzeit dar. Nachdem der Ak-
teur das ausgefüllte Checkout-Formular einsendet, überprüft der Client die Daten auf
Fehler und stellt sicher, dass Produkte im Warenkorb vorhanden sind. Nach erfolgreicher

31

3 Systemdesign

Überprüfung leitet der Client eine Anfrage an den PaymentService weiter, der simula-
tiv die Deckung des Kontos überprüft. Der PaymentService speichert die Transaktion
und sendet einen Token mit den Transaktionsdaten an den Client zurück. Dieser leitet
die Daten an den CheckoutService weiter, der den öffentlichen Schlüssel (public key) des
PaymentService anfordert, um die Transaktion zu verifizieren. Nach der erfolgreichen Ve-
rifizierung speichert der CheckoutService die Bestellung und indexiert sie in Elasticsearch.
Der CheckoutService informiert den E-MailService, um die simulierten Downloadlinks zu
erstellen. Nach der Generierung der Links benachrichtigt der CheckoutService den Client
über den erfolgreichen Kauf, welcher wiederum eine Erfolgsmeldung anzeigt.

3.11 Deployment

Als Deployment wird die Inbetriebnahme und Wartung einer Software bezeichnet, wobei
früher Entwicklung und Betrieb strikt voneinander getrennt waren. Heute hingegen hat
sich zunehmend eine Kultur und ein Entwicklungsprozess etabliert, der beide Bereiche
miteinander verbindet. Diesen Wandel und die darausfolgende neue Methodik beschreibt
der Begriff Devops, welcher unter anderem Prinzipien und Entwicklungspraktiken defi-
niert, die das Deployment einer Anwendung beschleunigen und automatisierbar machen.
[IBM] Dazu zählen z. B. Continuous-Integration- und Continuous-Delivery-Pipelines, wel-
che bei Codeänderungen automatische Test-, Build- und Deployment-Prozesse starten,
die schnell eine sichere und neue Version der Software bereitstellen sollen. Dies bedeu-
tet aber auch, dass Entwickler sich mehr Wissen und Fähigkeiten aneignen müssen, um
Devops erfolgreich zu implementieren.

Im Folgenden werden die Grundlagen für das Deployment einer skalierbaren Microservice-
Architektur geschaffen und das System aus einer Deployment- bzw. Verteilungssicht be-
trachtet.

3.11.1 Bereitstellungsoptionen

Um eine Anwendung in Betrieb zu nehmen, kann sie als sprachspezifisches Paket, inner-
halb einer VM oder als Container bereitgestellt werden:

32

3 Systemdesign

Bereitstellung als sprachspezifisches Paket

Bei dieser Bereitstellungsoption wird die Anwendung in einem Format bereitgestellt, das
von der verwendeten Programmiersprache abhängt. Ein in Java geschriebener Service
wird beispielsweise als ausführbare JAR- oder WAR-Datei bereitgestellt. Ein Nachteil
dieser Herangehensweise ist, dass detaillierte Kenntnisse über die spezifische Program-
mierumgebung erforderlich sind, um alle Anforderungen für den Betrieb der Anwendung
korrekt zu installieren. Zudem kann die Ressourcennutzung nicht eingeschränkt werden,
was aufgrund der fehlenden Isolation der Prozesse dazu führen kann, dass ein ressourcen-
intensiver Prozess andere Prozesse negativ beeinträchtigt. Eine komplexe automatische
Verteilung der Instanzen auf Maschinen, wie sie von Orchestrierungsframeworks angebo-
ten wird, muss manuell konfiguriert werden. [Ric18, Kapitel 12.1]

Bereitstellung als virtuelle Maschine

Bei dieser Bereitstellungsmethode wird die Anwendung von einer Deployment-Pipeline
in ein virtuelles Maschinen-Image verpackt und in einer Produktionsumgebung bereit-
gestellt. Dies kann beispielsweise mit Amazon Machine Images (AMIs) auf AWS EC2
Instanzen oder ähnlichen Technologien in Cloud-Umgebungen umgesetzt werden. Vor-
teilhaft ist, dass das VM-Image alle Softwareabhängigkeiten zur Ausführung des Services
enthält, wodurch die Einrichtung einer separaten Umgebung wegfällt. Die Anwendung
kann dabei auf jedem System, das VM-Images unterstützt, bereitgestellt werden. Zudem
wird jede Service-Instanz in der VM isoliert ausgeführt, wodurch der Einfluss auf Res-
sourcen durch andere Service-Instanzen ausbleibt. Funktionen wie Lastenverteilung und
Skalierung werden hier durch moderne Cloud-Infrastrukturen anwendbar. Ein Nachteil
der virtuellen Maschinen ist der zusätzliche Overhead, den ein gesamtes Betriebssystem
mit sich bringt, welches zu einer weniger effizienten Ressourcennutzung und langsameren
Bereitstellungszeiten führt. Um diese Nachteile zu umgehen, bietet es sich an, Services
als Container bereitzustellen. [Ric18, Kapitel 12.2]

Bereitstellung als Container

Ein Container führt die Anwendung ähnlich wie eine virtuelle Maschine in einer isolier-
ten Umgebung aus. Da die Virtualisierung jedoch auf Betriebssystem-Ebene stattfindet,
werden alle Container trotzdem auf demselben Host-System ausgeführt. Um die Isolation

33

3 Systemdesign

zusätzlich zu verbessern und Portkonflikte zu vermeiden, wird jedem Container eine ei-
gene IP-Adresse und ein eigenes Dateisystem zugeteilt. Beim Bereitstellungsprozess wird
dann zuerst ein Container-Image erstellt und in einer Registry gespeichert. Ein Image
selbst ist ein Bauplan einer Anwendung, welcher alle Abhängigkeiten, die diese Anwen-
dung benötigt, enthält. Bei Ausführung wird dieses Image nun heruntergeladen und zur
Erstellung des Containers verwendet. Ein entscheidender Vorteil gegenüber der Bereit-
stellung mit VMs ist die geringe Größe der Container. Durch das fehlende Betriebssystem
können Container Images so viel schneller gebaut und bereitgestellt werden. Sofern keine
Cloud Lösung benutzt wird, die die zugrunde liegende Infrastruktur betreut, muss diese
jedoch selbst verwaltet werden. [Ric18, Kapitel 12.3]

Wahl der Bereitstellung

Die Anwendung wird mittels Containern in Betrieb genommen, weil sie aufgrund ihrer
Isolation, Kapselung und geringen Overhead die schnellsten und zuverlässigsten Deploy-
ments bieten. Wegen seiner Vertrautheit und Beliebtheit wurde Docker zur Containeri-
sierung verwendet.

3.11.2 Docker

Docker ist eine Plattform zur Containerisierung von Anwendungen. Mit Dockerfiles kön-
nen Images und deren Abhängigkeiten textuell definiert werden, wobei das selbstdefi-
nierte Image aus einer Reihe von vordefinierten Images wie Linux Distributionen auf-
gebaut werden kann. Ein oder mehrere Container, welche die Anwendung bilden, wer-
den mithilfe einer Container-Runtime ausgeführt. Wichtig anzumerken ist, dass Contai-
ner selbst keinen persistenten Datenspeicher anbieten. Dieser muss über beispielsweise
Docker-Volumes selbst eingerichtet werden.

Um nicht alle Container einzeln ausführen zu müssen, kann eine docker-compose Datei
definiert werden. In dieser YAML-Datei können jegliche Container und deren Konfigu-
ration spezifiziert werden. Beim Ausführen dieser Datei erstellt Docker ein Netzwerk,
in dem alle konfigurierten Container laufen und sich unter ihrem Containernamen fin-
den können. Zwar ist dieser Ansatz ausreichend, um eine Container-Anwendung lokal
zu testen, reicht jedoch alleine nicht aus, um einen sicheren Produktionsbetrieb zu ge-
währleisten. Hierfür wird ein Container-Orchestrierungs-Tool benötigt, das die Container

34

3 Systemdesign

dauerhaft überwacht, bei Bedarf schnell repliziert und automatisch skaliert. Ein Beispiel
für ein solches Tool ist Kubernetes:

3.11.3 Kubernetes

Ursprünglich von Google entwickelt und als Open Source freigegeben, bietet Kuberne-
tes eine Container-Orchestrierungsplattform, welche die Bereitstellung, Skalierung und
Verwaltung von Containern automatisiert. Dies geschieht durch Konfigurationsdateien,
welche Soll-Zustände der Container definieren.

Durch diese Automatisierung kann Hochverfügbarkeit in verteilten Systemen erreicht
werden, da durch Kubernetes eine Lastenverteilung auf verschiedene virtuelle Server
stattfindet, Container bei Bedarf automatisch repliziert werden und abgestürzte Con-
tainer neu hochgefahren werden können. [Ric18, Kapitel 12.4] Zum besseren Verständnis
von Kubernetes und der Verteilungssicht des Systems folgt eine Erklärung der Architek-
tur und schließlich der Komponenten dieser Orchestrierungsplattform:

Kubernetes unterscheidet zwischen zwei Servertypen, die Teil eines Kubernetes-Clusters
sind: Den Master und den Worker Node. Der Master Node steuert und verwaltet das
gesamte Cluster, indem er Konfigurations- und Zustandsdaten speichert, die API be-
reitstellt und für die Bereitstellung neuer Container sorgt. [Wel24, S. 46-47] Um dies zu
bewerkstelligen, laufen auf ihm verschiedene Prozesse:
Der kube-apiserver ist eine zentrale Komponente im Kubernetes-Cluster, die alle in-
ternen und externen API-Anfragen verarbeitet. Er ist verantwortlich für die Validierung
und Autorisierung von Anfragen, das Überwachen von Rate Limits und Quotas sowie die
Verbindung zur etcd-Datenbank. [Wel24, S. 48]

Die etcd-Datenbank speichert alle Konfigurationsdaten des Clusters in hochverfüg-
barer und konsistenter Weise. [Wel24, S. 49]

Der kube-controller-manager kontrolliert per Heartbeart die Gesundheit der Nodes,
die korrekte Anzahl laufender Container, die Erstellung von Serviceaccounts sowie API-
Tokens und stellt die Verbindung zwischen Containern und Services her. [Wel24, S. 49-51]

35

3 Systemdesign

Der kube-scheduler ist verantwortlich für die Zuweisung von Pods zu Nodes im Kubernetes-
Cluster, indem er die verfügbaren Ressourcen wie CPU und Speicher sowie die festgeleg-
ten Scheduling-Regeln berücksichtigt. [Wel24, S. 48]

Der cloud-controller-manager ist für die Kommunikation zwischen Kubernetes und
Cloud-Diensten zuständig und ermöglicht dabei die Verwaltung und Integration von
Cloud-Infrastruktur durch einen Plugin-Mechanismus. [Wel24, S. 49-50]

Die Worker Nodes hingegen verrichten die tatsächliche Arbeitslast, auf denen auch die
Applikationscontainer ausgeführt werden. Jede Worker Node beherbergt den Kubelet-
Prozess, der als Kanal zwischen den Pods und dem API Server des Master Nodes dient,
den Kube Proxy, der als Netzwerk-Proxy die Kommunikation zu den Pods ermöglicht
und die Container-Runtime, die das Ausführen von Containern welche das Kubernetes
Runtime Interface implementieren unterstützt. Außerdem liegt auf ihnen der Kubernetes
DNS-Server für die Kommunikation innerhalb des Clusters. [Kub24c]

Abbildung 3.8: Kubernetes Architektur [Wel24, S. 47]

36

3 Systemdesign

Nachdem die Architektur von Kubernetes verstanden wurde (siehe Abbildung 3.8), folgt
jetzt eine Übersicht über die verschiedenen Komponenten von Kubernetes die bei Bedarf
vom Entwickler konfiguriert werden müssen:

Pod

Die kleinste deploybare Einheit ist der Pod, der üblicherweise aus einem oder bei Bedarf
mehreren Containern besteht, welche eine gemeinsame IP-Adresse teilen. [Ric18, Kapitel
12.4.1]

Deployment

Das Deployment definiert den Zustand der Pods und ist verantwortlich für deren Bereit-
stellung und Upgrades. Die eigentliche Arbeit wird dabei vom ReplicaSet erledigt, das
den Soll-Zustand der Pods überwacht und bei Bedarf neue Container hoch- oder herun-
terfährt. [Kub24a] Beispielsweise werden hier die Anwendungs-Images und deren Anzahl
konfiguriert.

Service

Ein Service stellt einer Containergruppe eine beständige IP-Adresse zur Verfügung. Dies
ist wichtig, da Container jederzeit hoch und runtergefahren werden können und ei-
ne gleichbleibende Ansprech-IP für alle Container benötigt wird. Die IP-Adresse eines
Kubernetes-Services kann dabei so eingestellt werden, dass sie nur innerhalb des Clusters
erreichbar ist (ClusterIP) oder dass sie zusätzlich externen Zugriff ermöglicht, beispiels-
weise über NodePort oder einen LoadBalancer. [Kub24f]

In Kubernetes übernimmt der Service auch die Aufgabe der Service Discovery, indem er
die Netzwerkanfragen zu den richtigen Pods weiterleitet. Die DNS-Adresse des Services
kann innerhalb eines Namespaces mit seinem Namen oder innerhalb des Clusters über
[ServiceName].[Namespace].svc.cluster.local angesprochen werden. [Wel24, S. 186]

37

3 Systemdesign

Ingress

Das Ingress-Objekt in Kubernetes leitet eingehenden Traffic basierend auf definierten
Regeln an die entsprechenden Services weiter, etwa nach URL oder Pfad. Die eigentliche
Implementation von Ingress wird durch den Ingress Controller bestimmt, welcher typi-
scherweise einen Load Balancer bereitstellt. Je nach Implementation unterstützt Ingress
auch die Neuzuweisung von Pfaden und die Nutzung von TLS-Zertifikaten für HTTPS-
Verbindungen. [Wel24, S. 192-193]

Volume

Volumes sind im Wesentlichen Verzeichnisse, die von einem oder mehreren Containern
verwendet werden können und das Datenmanagement vereinfachen. Sie abstrahieren das
tatsächliche Management der Festplatten, sodass Entwickler sich nicht mit den Details
der Speicherverwaltung auseinandersetzen müssen. [Wel24, S. 284] Trotzdem ist wichtig
zu verstehen, dass Kubernetes den Speicher nicht selbst bereitstellt, sondern als Abstrak-
tion auf vorhandene Quellen wie z. B. eine Google Persistent Disk zurückgreift.

StatefulSet

Im Gegensatz zu Deployments, die Pods gleichzeitig und ohne spezifische Reihenfolge
starten, skaliert und stellt das StatefulSet Pods in geordneter und voraussehbarer Weise
bereit. Dies ist besonders wichtig für zustandsbehaftete Anwendungen, da jedem Pod
eine eindeutige und beständige Identität zugewiesen wird, die auch bei Neustarts oder
Updates erhalten bleibt. [Wel24, S. 285] Beispielsweise erhalten so Replikate eines Daten-
bankclusters eine konsistente Identität, um sich im Netzwerk zu finden und miteinander
kommunizieren zu können. Für zustandslose Anwendungen hingegen wird das Deploy-
ment empfohlen.

ConfigMap

ConfigMap wird eingesetzt, um Konfigurationen zu speichern, die von Containern ge-
nutzt werden. Diese Konfigurationen können als Umgebungsvariablen oder Dateien in
laufende Container gemappt werden. [Kub24d] Ein ähnlicher Mechanismus wird durch
Secrets bereitgestellt, die sensible Daten wie Anmeldeinformationen enthalten können.

38

3 Systemdesign

Beachtenswert ist jedoch, dass jeder mit vollständigem Lesezugriff auf den API-Server
auf die Werte von erstellten Secrets zugreifen kann, was ihre Sicherheit beeinträchtigt.
[Kub24e]

Fazit

Durch die automatische Replizierung von Applikationscontainern, den Failover-Mechanismen
und der Möglichkeit, neue Updates ohne Ausfallzeit einzuspielen, sorgt Kubernetes für
eine hohe Verfügbarkeit, kostengünstige Skalierungsmöglichkeit und Agilität. Zusätzlich
sparen wir uns die Implementation einer Service-Discovery-Komponente, da diese Funk-
tion von Kubernetes mitgeliefert wird. Aufgrund der Erfüllung dieser Anforderungsvor-
aussetzungen (siehe QA/1 - QA/3) und vorheriger Erfahrung wurde Kubernetes als
Orchestrierungsplattform gewählt.

3.11.4 Bereitstellung in der Cloud

Das Bereitstellen eines Kubernetes-Clusters benötigt Ressourcen. Um die maschinelle
Infrastruktur nicht selbst stellen und verwalten zu müssen wird auf Möglichkeiten des
Cloud Computing zurückgegriffen. Christian Baun, Marcel Kunze, Jens Nimis und Stefan
Tai definieren dabei Cloud Computing wie folgt:

„Unter Ausnutzung virtualisierter Rechen- und Speicherressourcen und moderner Web-
Technologien stellt Cloud Computing skalierbare, netzwerk-zentrierte, abstrahierte IT-
Infrastrukturen, Plattformen und Anwendungen als on-demand Dienste zur Verfügung.
Die Abrechnung dieser Dienste erfolgt nutzungsabhängig.“ [Bau+11, S.4]

Cloud Computing bietet enorme finanzielle Vorteile, da Unternehmen keine hohen Inves-
titionen in eigene Hardware und Software tätigen müssen und stattdessen nach einem
verbrauchsabhängigen Kostenmodell zahlen. Dies ermöglicht insbesondere kleineren Un-
ternehmen und Start-ups einen kostengünstigen Zugang zu früher exklusiven Technolo-
gien und flexibel skalierbaren IT-Ressourcen. [Rei18, S.15]

Aus diesem Grund wurde auf eine Bereitstellung in der Cloud durch die Google Cloud
Platform (im Folgenden GCP) gesetzt. GCP bietet die Infrastruktur für eine hochver-
fügbare und skalierbare Lösung, die sich für unsere nicht-funktionalen Anforderungen
eignen. Neben der guten Dokumentation und dem großzügigem Startguthaben wurden
durch frühere Projektarbeiten gute Erfahrungen mit dieser Plattform gemacht.

39

3 Systemdesign

Google Kubernetes Engine

Das Kubernetes-Cluster wird auf der Google Kubernetes Engine (im Folgenden GKE)
aufgesetzt. GKE ist ein vollständig verwalteter Kubernetes-Dienst von Google Cloud, der
eine schnelle Bereitstellung von Container-Anwendungen ermöglicht. Ein großer Vorteil
von GKE ist die automatische Skalierung der zugrunde liegenden Infrastruktur, die die
Konfiguration und Bereitstellung sämtlicher physischer Ressourcen übernimmt und die-
se an die Anforderungen des Systems anpasst. Die Entscheidung für GKE fiel aufgrund
seiner Fähigkeit, das System schnell und unkompliziert bereitzustellen und gleichzeitig
den gesamten Verwaltungsaufwand für die Infrastruktur zu minimieren. Allerdings müs-
sen die hohen Kosten, die mit der Nutzung von GKE verbunden sind, insbesondere im
Produktionsbetrieb berücksichtigt werden.

Datenbanken

Die Datenbanken für das System werden mit Cloud SQL bereitgestellt. Cloud SQL ist ein
vollständig verwalteter relationaler Datenbankdienst von Google Cloud, der die Konfigu-
ration und Verwaltung eines skalierbaren und hochverfügbaren PostgreSQL-Datenbankclusters
übernimmt. Gegen eine erhöhte Gebühr werden damit die nicht-funktionalen Anforde-
rungen an Hochverfügbarkeit und Skalierbarkeit abgedeckt. (siehe QA/1 - QA/2) Ein-
zig die Redis-Datenbank wird selbst verwaltet, da die Cloud-Lösung Memorystore von
Google für eine Redis-Instanz erhebliche Kosten verursacht. (Geschätzt mindestens 30
Dollar pro Monat für die niedrigste Stufe) Die Datenbank des Payment-Service wird
als H2-Datenbank im Arbeitsspeicher gehalten, da diese Komponente zunächst nur ein
Simulationsservice ist, der in späteren Versionen weiter ausgebaut oder ersetzt wird.

Speicher

Für die Speicherung der Bild- und Audiodateien wird der Cloud-Speicherdienst Google
Cloud Storage von Google verwendet. Dabei werden Dateien als Objekte in sogenannten
Buckets gespeichert, welche die grundlegenden Datencontainer des Dienstes darstellen.
In den Buckets selbst herrscht eine flache Namenshierarchie, wodurch es keine klassischen
Verzeichnisse gibt. Daher sollte für jedes Template ein eigener Bucket verwendet werden,
weil somit jegliche komplexe Anwendungslogik für das Handhaben von Pfaden innerhalb

40

3 Systemdesign

des Buckets wegfällt. Die Buckets können innerhalb derselben Region wie unser VPC-
Netzwerk erstellt werden, was zu einer geringeren Latenz und schnelleren Upload-Zeiten
unserer Daten führt.

Für den persistenten Speicher der Elasticsearch-Logs wird Google Cloud Persistent Disk
verwendet. Persistent Disks sind zuverlässige Blockspeicher von Google Cloud, die Da-
ten unabhängig von der Lebensdauer der virtuellen Server speichern. Sie lassen sich sehr
einfach in Kubernetes integrieren und erfordern je nach Bedarf nur minimalen Konfigu-
rationsaufwand.

Da nun die Grundlagen für das Deployment geschaffen wurde, folgt die Verteilungssicht
des Systems.

3.11.5 Verteilungssicht

Die Verteilungssicht zeigt alle laufenden Bausteine des Systems in deren Ausführungs-
umgebung. Fokussiert wird also die tatsächliche physische Hardware oder virtuelle Um-
gebung, die für den Betrieb des Systems benötigt wird. [SH11, S.70-73] Dabei wurde das
UML-Deployment-Diagramm um spezifische Kubernetes Elemente wie Ingress, Deploy-
ments, DaemonSet und StatefulSets erweitert, weil diese durch die Standard-Klassen wie
Deployment Targets oder Artefakte nicht angemessen dargestellt werden können und ein
insgesamt übersichtlicheres Diagramm entsteht. Außerdem wurden die Kommunikations-
pfade zwischen den Deployments und StatefulSets gezeichnet, da dies die Kommunikation
zwischen den Artefakten besser abstrahiert.

41

3 Systemdesign

Abbildung 3.9: Verteilungssicht für den Template Shop

Abbildung 3.9 zeigt das erweiterte UML-Deployment-Diagramm für unsere Templateshop-
Anwendung. In dieser Architektur stellt der Kubernetes Ingress-Controller einen Load
Balancer bereit, der es ermöglicht, dass Clients über ihren Browser auf die Frontend-
Anwendung zugreifen. Alle Anfragen vom Browser werden über den Ingress-Controller
an das API-Gateway weitergeleitet, welches die Anfragen anschließend an die entspre-
chenden Backend-Services verteilt. Die auszuführenden Artefakte sind als Docker-Images
in der Artifact-Registry der Google Cloud Platform gespeichert. Zur besseren Übersicht-
lichkeit wurden Details wie die Artifact-Registry, Pods, zusätzliche Konfigurationen wie

42

3 Systemdesign

ConfigMaps für Datenbankinformationen und Secrets in diesem Diagramm nicht darge-
stellt. Die Konfiguration des Frontends legt die externe URL für den Ingress-Controller
fest, während die API-Gateway-Konfiguration Cross-Origin Resource Sharing (CORS)
für den Ingress-Controller aktiviert. Die beiden TS-Backend-Komponenten werden in
separaten UML-Deployment-Diagrammen in Abbildung 3.10 und 3.11 detaillierter dar-
gestellt.

Abbildung 3.10: Verteilungssicht für das Template Shop-Backend 1

43

3 Systemdesign

Abbildung 3.11: Verteilungssicht für das Template Shop-Backend 2

In Abbildung 3.11 wird Filebeat als DaemonSet bereitgestellt. Ein Kubernetes Daemon-
Set stellt sicher, dass auf jeder Node im Kubernetes-Cluster ein Pod mit einer Instanz
von Filebeat ausgeführt wird. Dadurch können die Docker-Logs von allen Nodes gesam-
melt und an Elasticsearch weitergeleitet werden. Zur besseren Übersicht wurde in der
Abbildung nur ein DaemonSet dargestellt, das stellvertretend für alle Filebeat-Instanzen
auf den Nodes steht.

44

4 Realisierung

4.1 Backend-Framework

Das Backend bietet Services und Funktionen an, um Anfragen von Clients zu bearbeiten.
Hierzu gehört die Verarbeitung von Geschäftsfunktionen als auch die Bereitstellung von
Daten über APIs. Aufgrund seiner Vertrautheit und der Möglichkeit, sämtliche Techno-
logien, die in der Bausteinsicht definiert wurden, leicht ins System zu integrieren, wurde
Spring Boot zur Implementation des Backends verwendet.

Spring ist ein Java-Framework, das zur Entwicklung von Unternehmensanwendungen
genutzt wird und sich in vier Hauptmodule gliedert. Diese Module decken verschiedene
Funktionalitäten ab: von der Verwaltung und Konfiguration von Beans über den Zugriff
auf Datenbanken bis hin zu Web-Schnittstellen und Performance-Überwachung. [Gol20,
S.11-12] Spring Boot selbst ist dabei eine vorkonfigurierte Spring-Anwendung, die sofort
gestartet werden kann und die Entwicklung mit dem Framework vereinfacht. [Gol20,
S.29]

Zwei wichtige Komponenten in der Spring Architektur sind der Spring Container und
seine Beans: Der Spring Container sorgt für die korrekte Initialisierung und Ablauf der
Anwendung. Außerdem steuert er den Lebenszyklus und die Verknüpfung jeglicher Beans
innerhalb des Containers. Beans sind dabei im Grunde nur Java-Objekte, die per An-
notationen oder XML-Deklaration markiert werden, um so vom Container erkannt und
verwaltet zu werden. [Gol20, S.22]

Der Vorteil von Beans gegenüber Java Objekten besteht in den zusätzlichen Funktionen,
die der Spring Container ihnen bietet: Durch Dependency Injection werden automatisch
Abhängigkeiten zwischen Beans aufgelöst, ohne dass eine manuelle Initialisierung nötig
ist. Dieses Konzept der Inversion of Control, nämlich dass ein Objekt seine Abhängigkei-
ten nicht vom Entwickler, sondern von jemand anderem erhält (z. B. den Spring Con-

45

4 Realisierung

tainer), sorgt für eine lose Kopplung zwischen den Komponenten, da beispielsweise auch
beliebige Implementationen von Interfaces injiziert werden können. [Gol20, S.64-65]

Standardmäßig existiert zur Laufzeit nur eine Bean, die vom Spring-Container verwen-
det wird. Ist diese Bean zustandslos, kann die Performance des Systems durch Skalierung
und Caching verbessert werden, da mehrere Threads gleichzeitig auf das Objekt zugreifen
können, ohne sich gegenseitig zu behindern. Dies ist aber nur bei ausreichender Infra-
struktur gegeben. Möchte man zur Laufzeit mehrere Beans erstellen, kann dies durch
unterschiedliche Scopes in Spring Boot konfiguriert werden. [Gol20, S.82-86]

4.1.1 Services

Fast jeder Service wird durch einen Controller-Bean, einen Service-Bean und einen Repository-
Bean definiert. Im Controller wird mittels Spring MVC ein REST-Endpunkt erstellt,
der über das HTTP-Protokoll die CRUD-Funktionalitäten der Entitäten unserer Do-
mäne anbietet. Dabei erleichtert Spring MVC durch Annotationen die Erstellung eines
Servlet-Containers, welcher die HTTP-Anfragen eines Fremdsystems entgegennimmt und
beantwortet. [Gol20, S.12]

Ein Service enthält dabei die Logik für CRUD-Operationen und nutzt im Repository-
Bean Spring Data sowie Hibernate, um mit der Datenbank zu kommunizieren.

Spring Data vereinfacht die Implementierung der Datenzugriffsschicht, indem es eine ab-
strahierte Schnittstelle zur Verfügung stellt, die die Integration verschiedener Datenbank-
technologien ermöglicht. Hibernate hingegen, als weitverbreitete JPA-Implementierung,
sorgt für das objektrelationale Mapping, indem es Java-Objekte mit Datenbanktabellen
verbindet. [Gol20, S.94-95]

Diese Kombination stellt die Kommunikation zwischen der Anwendungs- und Persistenz-
schicht her und unterstützt die Nutzung verschiedener Datenbanklösungen, ohne dass
der übrige Code angepasst werden muss. Dies trägt zur Wartbarkeit des Systems bei,
welche wir als Qualitätsanforderung definiert haben. (siehe QA/4)

Im Folgenden werden einige Besonderheiten einzelner Services aufgezählt:

46

4 Realisierung

Cart-Service

Wie im vorherigen Kapitel erläutert, wurde für die Warenkorb-Implementierung ein Con-
troller unter Verwendung von Redis und Spring Session entwickelt. Alle Warenkorbin-
formationen werden als String in Redis gespeichert. Der Schlüssel für diesen String wird
durch die Konkatenation der im Cookie gespeicherten Session-ID und einer vordefinierten
Zeichenkette erstellt. In der aktuellen Version des Prototyps wird jedem Client-Browser
eine Session-ID zugewiesen, die so die Rolle eines Gastes repräsentiert. Während des
Anmelde- oder Abmeldevorgangs bleiben die Warenkorbinformationen somit unverän-
dert.

Template-Service

Neben der CRUD-Funktionalität für Templates und Tracks bietet der Template-Service
einen Upload-Endpunkt an, welcher Multipart-Anfragen annimmt um Dateien wie Bilder
und Audiospuren über die Google Cloud Storage API hochzuladen. Über einen Download-
Endpunkt können die hochgeladenen Tracks heruntergeladen und vom Frontend anschlie-
ßend für die visuelle Darstellung verwendet werden.

Checkout-Service

Neben der Verwaltung von Bestellungen und der Kommunikation mit dem Payment- und
E-Mail-Service nutzt der Checkout-Service einen Elasticsearch-Client, um Bestellungen
über eine REST-API in Elasticsearch zu indexieren. Diese Bestellungen können dann
in einem Dashboard mit Kibana visualisiert werden. Alternativ bietet der Service einen
Endpunkt zum Abfragen der Bestellungen an, damit das Frontend diese dem Admin auf
anderem Wege zur Verfügung stellen kann.

4.2 Sicherheit

Alle Autorisierungs- und Authentifizierungsmechanismen sowie Sicherheitseinstellungen
werden mit Spring Security konfiguriert und implementiert, da dies das etablierte Sicher-
heitsframework für Spring Anwendungen ist.

47

4 Realisierung

Jeder Zugriff auf geschützte Ressourcen unterliegt der Kontrolle eines selbst implemen-
tierten Filters. Ein Filter in Spring Security ist eine Komponente, die in den Anfragezy-
klus eingreift und benutzerdefinierte Logik zur Verarbeitung von Anfragen oder Antwor-
ten bereitstellt. Dieser Filter validiert das mitgesendete JSON Web Token (JWT) und
setzt den Principal bzw. die Authentication in den Security-Context, wobei die Informa-
tionen für den Principal aus dem JWT übernommen werden. Der Principal repräsentiert
dabei den authentifizierten Benutzer und ist Teil der Authentication, welche zusätzliche
Informationen über dessen Rollen und Berechtigungen trägt. Der Security-Context bein-
haltet Informationen über den Authentifizierungsstatus einer Anfrage und enthält Zugriff
auf die Authentication.

Durch den Security-Context-Holder, der den Security-Context für den aktuellen Thread
beinhaltet, kann nun der Authentifizierungs- und Autorisierungsstatus der aktuellen An-
frage ermittelt werden. [Gol20, S.161-162] Mittels Annotationen werden die Endpunkte
dann mit bestimmten Rollen versehen, um den Zugriff entsprechend einzuschränken. Zum
Beispiel ermöglicht die Zuweisung der Admin-Rolle, dass nur Benutzer mit dieser Rolle
die Berechtigung haben, Templates anzulegen oder zu löschen. Annotationen ermöglichen
auch die Festlegung von Regeln, die sicherstellen, dass ein Benutzer nur seinen eigenen
Account löschen kann und nicht von anderen.

Die Validierung des JWT erfolgt mithilfe der Java-JWT Library, welche die Implemen-
tierung aller JWT-Funktionalitäten bereitstellt. Um den JWT zu validieren, muss der
Service über eine REST-API den Public Key des User-Service anfragen.

Alle weiteren Sicherheitseinstellungen, die z. B. CORS und CRSF Sicherheit betreffen,
werden programmatisch konfiguriert.

4.3 Tests

In der Softwareentwicklung ist Testen der Vorgang, der sicherstellt, dass Anwendungen
wie erwartet funktionieren. [Ric18, Kapitel 9] Dabei gibt es verschiedene Testarten, die
unterschiedliche Aspekte einer Anwendung prüfen und größtenteils automatisiert ausge-
führt werden können:

Unit-Tests prüfen die Korrektheit von kleinen Teilen eines Services, wie z. B. einzelnen
Klassen. Integrationstests testen die Interaktion von Services mit Infrastrukturkompo-
nenten wie Datenbanken und anderen Applikationsdiensten. Komponententests prüfen

48

4 Realisierung

hingegen einen ganzen Service, während End-to-End-Tests die gesamte Applikation kon-
trollieren. [Ric18, Kapitel 9.1.1]

Aus zeitlichen Gründen wurde auf umfangreiche Integrationstests mit Datenbanken und
Applikationsdiensten verzichtet, weil die korrekte Funktionalität der Infrastrukturkom-
ponenten in den Komponententests und End-to-End-Tests ersichtlich wird.

4.3.1 Konfiguration

Um Produktionsdaten nicht zu beeinträchtigen, können für die Tests verschiedene Spring-
Profiles verwendet werden. Spring-Profiles bieten die Möglichkeit, spezifische Konfigura-
tionen für unterschiedliche Umgebungen bereitzustellen. Damit kann flexibel zwischen
Applikationsdiensten und Interface-Implementationen gewechselt werden, um eine Kom-
ponente in verschiedenen Umgebungen zu testen.

4.3.2 Komponententests

Für die isolierten Komponententests des Backends wird JUnit und Mockito verwendet.
Mockito ermöglicht das Erstellen von Mock-Objekten, welche externe Abhängigkeiten
simulieren und das Verhalten von Methoden überwachen können. Dies bedeutet, dass
wir ohne eine Implementation einer Abhängigkeit wie z. B. eines anderen Services, de-
ren Funktion wie bestimmte Rückgabewerte einer Methode bestimmen können.[Ric18,
Kapitel 9.2.4] Da unsere Services des Backends so geschnitten sind, dass sie kaum Ab-
hängikeiten zu anderen Services haben, dient Mockito eher dazu den asymmetrischen
Schlüssel für das Backend zu schreiben oder Exceptions zu simulieren. Beispielsweise
kann man mit der SpyBean-Annotation eine Komponente von Spring Boot in seiner nor-
malen Implementation im Spring Container benutzen, aber einzelne Methoden ändern.

Mit MockMvc lassen sich Controller-Anfragen und -Antworten testen, ohne dass die ge-
samte Spring Boot-Umgebung oder echte Netzwerkverbindungen erforderlich sind. [Ric18,
Kapitel 9.2.5] Mit dem in Spring Boot integrierten Jackson-Mapper können wir hierbei
Java-Objekte als JSON versenden und mithilfe der JSONPath Bibliothek die erwarteten
Ergebnisse prüfen.

49

4 Realisierung

4.3.3 Komponententests in Integration

Für die Durchführung von Tests mit mehreren Services oder Diensten kommt die Testcontainer-
Bibliothek zum Einsatz. Testcontainer ermöglicht das Initiieren und Beenden von Docker-
Containern direkt innerhalb der Testfälle. Beispielsweise kann so schnell ein Redis-Container
für die Unit-Tests und Integrationstests des Cart-Service hochgefahren werden. Mit-
tels der Bibliothek wurde dann die Kommunikation zwischen E-Mail-, Checkout- und
Payment-Service, Template- und Comment-Service und die jeweiligen Abhängigkeiten
zum User-Service getestet. Dabei wurde in komplexeren Netzwerken wie beispielsweise
Kafka mit docker-compose gearbeitet, damit die Container während des Tests problem-
los miteinander kommunizieren konnten. Wichtig ist hier, die zugeordneten Ports von
Testcontainer abzufragen, da die Ports der Docker-Container dynamisch zugewiesen wer-
den.

4.3.4 End-To-End Tests

Die End-To-End-Tests des Systems wurden für jeden Use Case manuell mit docker-
compose, später lokal in Kubernetes mit Minikube und schließlich auf der Google Cloud
Platform in der Produktionsumgebung ausgeführt. Aufgrund zeitlicher Gründe und des
Aufwands, Frontend mit Selenium oder Cypress zu automatisieren, wurde sich für den
manuellen Test-Ansatz entschieden.

4.4 Frontend-Framework

Das Frontend bildet die Weboberfläche einer Anwendung, über die der Benutzer mit den
Funktionen des Backends interagieren kann. Die Wahl hierfür fiel auf das Javascript-
Framework Vue.Js, welches als modernes, komponentenbasiertes Framework eine flexible
und einfache Frontend-Entwicklung bietet.

Vue.js wurde von Evan You entwickelt, der zuvor bei Google mit AngularJS an ver-
schiedenen Projekten gearbeitet hatte. Ziel war es, die besten Aspekte von AngularJS
zu extrahieren und in ein leichteres Framework zu integrieren. Seit den ersten Commits
2013 wird Vue.js von einer ständig wachsenden Community entwickelt. [Dei22, S.2]

50

4 Realisierung

In Vue.js (im Folgenden Vue) wird die Weboberfläche in unabhängige, wiederverwendbare
Komponenten unterteilt, wobei jede Komponente ihren eigenen Zustand hält. Durch die
Verwendung von Props und Events können dabei Daten von übergeordneten zu unterge-
ordneten Komponenten übertragen und verändert werden. Da sich die Verschachtelung
der Komponenten in der Anwendung in Grenzen hielt, wurde auf ein Zustandsmanage-
mentsystem verzichtet.

Zustandsmanagement beschreibt dabei die Verwaltung und zentrale Speicherung von Zu-
ständen einer Anwendung, um diese über Komponenten hinweg zu teilen. [Dei22, S.165-
166] Wer aber mit komplexeren Zustandsabhängigkeiten über Komponenten hinweg han-
tiert, sollte zu Lösungen wie Vuex oder Pinia zugreifen.

Aufbauend auf MVC verwendet Vue das MVVM-Muster. Dabei fungiert das ViewModel
als Bindeglied zwischen der View und Model, indem es Informationen austauscht und
Methoden des Models aufruft. Dies ermöglicht eine deklarative Datenbindung, bei der
keine separaten Controller-Instanzen erforderlich sind, wodurch der manuelle Zugriff auf
das DOM stark reduziert wird. Zusätzlich stellt das ViewModel der View öffentliche
Eigenschaften und Methoden zur Verfügung, die an Steuerelemente gebunden werden,
um Inhalte auszugeben und UI-Ereignisse weiterzuleiten. [Ste19, S.43]

Außerdem verwendet Vue einen virtuellen DOM, bei dem eventuelle Änderungen nicht
direkt am DOM vorgenommen werden, sondern zunächst in einer Kopie des DOM als
interne JavaScript-Datenstruktur vorliegen. Diese Änderungen werden dann mit dem
ursprünglichen DOM verglichen und erst danach zusammengefasst auf den realen DOM
übertragen. [Ste19, S.10-11]

Durch diese Eigenschaften eignet sich Vue sehr gut für die Entwicklung von reaktiven
Single Page Applications, also solchen, die aus einem einzigen HTML-Dokument bestehen
und deren Inhalte dynamisch durch JavaScript nachgeladen werden. [Ste19, S.70]

Der Hauptgrund für die Wahl von Vue war ähnlich wie bei Spring Boot die existieren-
de Vorerfahrung mit dem Framework. Aufgrund der Ähnlichkeiten beliebter Frontend-
Frameworks wäre auch jede andere Wahl ausreichend gewesen, um die Anforderungen
für das System zu implementieren.

51

4 Realisierung

4.4.1 Datenpersistenz

Die meistverwendeten Möglichkeiten, Informationen im Browser zu persistieren, sind
Cookies und der localStorage bzw. sessionStorage.

Cookies sind kleine Textdateien, die vom Server an den Browser gesendet und auf der
Festplatte des Benutzers gespeichert werden. Sie enthalten oft Informationen wie Benut-
zereinstellungen oder Sitzungsdaten und haben eine begrenzte Größe sowie festgelegte
Gültigkeitsdauer.

LocalStorage und sessionStorage sind Teile des Web Storage API und bieten uns eine
alternative Möglichkeit, Daten im Browser zu speichern. LocalStorage speichert Daten
dauerhaft, während Daten vom sessionStorage nur für die Dauer einer Browsersitzung
gültig sind. Im Gegensatz zu Cookies werden Informationen aus localStorage und sessi-
onStorage nicht bei jeder HTTP-Anfrage an den Server geschickt.

Für die Speicherung des JWTs im Frontend wurde das localStorage verwendet, da es da-
mit sehr einfach ist die benötigte Funktionalität für die Anwendung zu implementieren.
Weil es keine besonderen Sicherheitsanforderungen bezüglich des Frontends gibt, kön-
nen Sicherheitsbedenken wie potenzielle Anfälligkeiten für Cross-Site Scripting mit dem
Arbeiten des localStorage vorerst außer Acht gelassen werden. Wichtig wäre zu wissen,
dass Informationen im localStorage unverschlüsselt gespeichert werden, weshalb sensible
Daten verschlüsselt werden sollten.

Spring Session speichert seine Session-IDs standardmäßig in Cookies, weshalb auch diese
im System verwendet werden.

4.4.2 Routing

Für das Routing, also der Verknüpfung von URLs zu bestimmten Ansichten, wird Vue
Router verwendet. Vue Router ist der offizielle Router von Vue-Anwendungen und ar-
beitet mit deklarativen Routenkonfigurationen, die sich einfach mit Vue-Komponenten
verbinden lassen. Wir definieren dabei welche Komponenten auf einer bestimmten URL
anzeigt werden sollen und können diese dynamisch für jedes Template konfigurieren. Im
Ergebnis erhalten wir eine Seite mit einer einzigen router-view, welche reaktiv alle Kom-
ponenten einer bestimmten URL rendert, ohne dass ein Neuladen der Seite benötigt wird.

52

4 Realisierung

Außerdem kann mit NavigationGuards überprüft werden, ob der Benutzer autorisiert ist,
eine URL anzusteuern.

4.4.3 Design

Für das Design wurde das weitverbreitete CSS-Framework Bootstrap verwendet, welches
ursprünglich von Twitter entwickelt wurde. Es bietet vordefinierte Klassen und Kom-
ponenten wie buttons und Formulare, um schnell eine Benutzeroberfläche aufsetzen zu
können. Darüber hinaus bietet Bootstrap JavaScript-Komponenten wie modals und drop-
downs an, welche die Implementierung von dynamischen Funktionen beschleunigen.

4.4.4 Audiospur

Für die Darstellung der Audiospuren wurde die JavaScript-Bibliothek Wavesurfer.js ver-
wendet. Diese Bibliothek ermöglicht sowohl die Wiedergabe als auch die Visualisierung
von Audiodateien, indem sie diese in anpassbaren Wellenformen darstellt. Mithilfe der
bereitgestellten Methoden können wir verschiedene Informationen der Audiospur abfra-
gen und Event-Handler für spezifische Ereignisse konfigurieren. Beispielsweise kann so
durch das Tracking der Zeit einer Audiospur im Frontend immer der korrekte Zeitpunkt
für das Erstellen eines Kommentars angezeigt werden.

4.4.5 Kommentar-Icons

Mit tooltips von Bootstrap werden Kommentare dynamisch innerhalb einer Kommentar-
box angezeigt, sobald der Benutzer mit der Maus über die Icons eines Kommentars der
Audiospur fährt. Die Icons werden dabei aus den ersten beiden Buchstaben des Benutzer-
namens zusammengestellt. Die Hintergrundfarbe der Icons wird auf Basis des Alphabets
gleichmäßig auf sechs Farben verteilt und die Farbe entsprechend dem Anfangsbuchsta-
ben des Benutzernamens gewählt.

Für die richtige Positionierung der Icons auf der Audiospur wird die aktuelle Zeit der
Audiospur durch die Gesamtzeit geteilt und mit der Breite des Containers multipliziert.
Dadurch entsteht ein erster Wert auf der x-Achse, der proportional zur Dauer der Au-
diospur und zur Containergröße ist. Anschließend wird dieser Wert um den Offset des

53

4 Realisierung

Containers ergänzt, um den Platz links vom Container zu berücksichtigen. Für die ver-
tikale Position der Icons wird der vertikale Offset des Containers mit einem konstanten
Wert addiert und anschließend mit dem Scroll-Offset des Bildschirms berechnet. Der
Scroll-Offset ist wichtig, um sicherzustellen, dass die Icons korrekt positioniert werden,
falls der Benutzer die Webseite vor dem Laden der Icons scrollen sollte. Weil in der ersten
Version des Prototyps mit absoluten Werten gerechnet wird, verhält sich diese Lösung
nicht responsiv.

4.4.6 Kommentare

Zum Erstellen und Anzeigen von Kommentaren wurden modals von Bootstrap verwen-
det. Modals sind Dialogfenster, die über dem Hauptinhalt eingeblendet werden, ohne
die aktuelle Ansicht zu verlassen. Dies verbessert die Übersichtlichkeit der Anwendung,
da die Kommentarfunktionalitäten vom Benutzer flexibel geöffnet und geschlossen wer-
den können, ohne dass andere Elemente wie die Audiospuren verschoben werden. Die
Kommentare werden dabei jeweils durch die Track-ID im Backend gefiltert, um nur die
Kommentare einer zugehörigen Audiospur anzuzeigen. Die Icons werden auch hier ein-
gesetzt, indem sie neben den Benutzerkommentaren angezeigt werden.

4.4.7 Upload

Für den Upload wird ein Formular bereitgestellt, das die Metadaten sowie die Bild-
und Audiodateien des Templates enthält. Mithilfe der Datenbindung in Vue werden die
Eingaben durch reguläre Ausdrücke überprüft, um sicherzustellen, dass in den Metadaten
ausschließlich alphanumerische Zeichen verwendet werden. Beim Absenden des Formulars
wird jede Datei dann einzeln über eine Upload-Komponente an den Upload-Controller
des Backends übertragen. Während es möglich wäre, den gesamten Upload als Paket in
einer einzigen Anfrage zu senden, um so die Netzwerklast zu reduzieren, ist der Vorteil
der Einzeldatei-Übertragung eine Verfolgung des Upload-Fortschritts jeder individuellen
Datei. Dies verbessert die Fehlerbehandlung, da Probleme mit einzelnen Dateien sofort
erkannt werden können.

54

4 Realisierung

4.4.8 Weitere Frontend-Komponenten

Alle weiteren Frontend-Komponenten besitzen keine komplexere Logik, sondern dienen
entweder der Darstellung sämtlicher Informationen, die vom Backend geliefert werden,
oder der Aufnahme, Überprüfung und Übermittlung von Daten über Formulare an die
Services. Mit JSON Web Tokens (JWT), die im localStorage gespeichert sind und der
Axios-Bibliothek können HTTP-Anfragen an die entsprechenden REST-APIs gesendet
werden, um die Funktionalitäten des Frontends zu implementieren.

4.5 Betrieb

Für einen einfachen Betrieb wurde ein Cluster auf GKE im Autopilot-Modus erstellt. Ne-
ben der automatischen Skalierung und Konfiguration der Serverknoten übernimmt GKE
in diesem Modus die vollständige Verwaltung der Cluster-Infrastruktur. Zudem wurde
für eine verbesserte Sicherheit das Cluster in einem privaten VPC-Netzwerk in Frankfurt
bereitgestellt. Der Standort der Server hat dabei in diesem Prototypen keine Relevanz,
könnte jedoch in zukünftigen Versionen für gesetzliche Vorgaben wie der DSGVO wichtig
werden.

Weil es keine konkreten Vorgaben für die Anzahl paralleler Anfragen an die Cloud SQL-
Instanzen gibt, wurden diese auf die niedrigsten Ressourcen-Einstellungen konfiguriert,
um Kosten zu sparen.

Um die Hochverfügbarkeit zu verbessern, können die Services, die mit Cloud SQL verbun-
den sind, zusätzlich durch mehrere Replikate bereitgestellt werden. Eine automatische
dynamische Skalierung basierend auf CPU- und Ressourcennutzung wurde noch nicht
eingerichtet, weshalb der Prototyp zurzeit nur manuell skaliert werden kann.

Der Zugriff von Containern innerhalb der GKE-Umgebung auf Google Cloud Services
erfolgt über Workload Identities. Dabei wird jedem Kubernetes-Pod die Identität eines
Google Service Accounts zugewiesen, der über individuell festgelegte Rollen und Berechti-
gungen verfügt. Auf diese Weise können die Pods ohne die Notwendigkeit von expliziten
Schlüsseln auf Google Cloud Services zugreifen. Dies vereinfacht die Authentifizierung
und erhöht die Sicherheit, indem die Verwaltung und Konfiguration von langfristigen
Anmeldeinformationen entfällt.

55

4 Realisierung

4.6 Hürden der Realisierung

Während der Realisierung traten einige erwähnenswerte Probleme auf, deren Lösungen
für andere Entwickler in ähnlichen Situationen hilfreich sein könnten:

4.6.1 Spring Session-Tests

Obwohl Spring Session bei den lokalen Tests Cookies an das Frontend sendete, konnte
das Frontend diese nicht speichern. Der Grund dafür war, dass der CORS-Filter genau-
er eingestellt werden musste. Das Zulassen aller CORS-Anfragen mit einem Wildcard-
Operator funktioniert nicht, da für die Speicherung von Cookies der tatsächliche Host
genau spezifiziert werden muss.

4.6.2 Elasticsearch

Bei den manuellen Tests mit Elasticsearch kam es aufgrund unzureichenden Speicher-
platzes auf der Festplatte zu Problemen, weil Elasticsearch ab einem bestimmten Grenz-
wert automatisch alle Schreiboperationen blockiert hatte. Um das Problem zu beheben,
musste zunächst ausreichend Speicherplatz auf der Festplatte freigemacht werden und
anschließend die Schreibrechte in Elasticsearch entweder direkt im Terminal des Docker-
Containers oder über die ENTRYPOINT-Anweisungen in der Dockerfile wiederhergestellt
werden.

4.6.3 Minikube

Um Minikube (v1.23.2) lokal testen zu können, muss der Docker-Daemon von Minikube
zunächst auf den Docker-Daemon der lokalen Maschine zeigen. Auf einem Windows-
System lautet der Befehl dazu:

@FOR /f "tokens=*"%i IN (’minikube -p minikube docker-env’) DO @%i

Anschließend können die lokalen Images in Minikube geladen werden. Dabei ist es wichtig,
dass die Kubernetes-Deployment-Dateien mit der IfNotPresent Pull-Policy ausgestattet
werden. Andernfalls würde Minikube versuchen, die Images aus dem Docker Hub zu
ziehen.

56

4 Realisierung

Endpunktvariablen sollten nicht mit [name].endpoint definiert werden, da der Begriff
endpoint bereits von Minikube verwendet wird. Dies kann sonst zu Konflikten und Fehlern
bei der Service-Discovery führen.

4.6.4 Filebeat auf GKE

Während Filebeat lokal und in Minikube über den Pfad /var/lib/docker/containers auf
Docker-Logs zugreifen konnte, ist dieser Zugriff im GKE-Autopilot-Modus gesperrt. Da-
her wurde zur Log-Sammlung statt Filebeat, eine Kombination aus Logstash und Cloud
Logging benutzt. Cloud Logging ist ein von Google verwalteter Dienst welcher alle Logs
aus der GKE-Umgebung sammelt und diese in der Google Cloud Console zur Verfü-
gung stellt. Mithilfe eines definierten Log-Routers werden sämtliche Logs auf die relevan-
ten Services gefiltert und in einem Pub/Sub Topic hochgeladen. Anschließend wird ein
Logstash-Container bereitgestellt, welcher diesen Topic abonniert und sämtliche Logs an
Elasticsearch weiterleitet. Logstash ist ähnlich wie Filebeat eine mit Elasticsearch einfach
integrierbare Datenverarbeitungspipeline und wurde aufgrund seiner Plugins gewählt, die
das Abonnieren von Pub/Sub-Topics erleichtern. Auch wenn das native Cloud Logging
allein eine einfache Beobachtbarkeit ermöglicht hätte, lag die Motivation hinter dieser
Anpassung darin, die bestehende Elasticsearch-Architektur beizubehalten.

4.6.5 Verbindung von GKE zu Public Cloud SQL

Auch wenn eine Cloud SQL-Instanz mit öffentlicher IP-Adresse einfach lokal über Cre-
dentials oder Cloud SQL Auth-Proxy erreichbar ist, ist diese Verbindung mit einem pri-
vaten GKE-Cluster nicht ohne Konfigurationen möglich. Um die Kommunikation hier zu
vereinfachen, sollte der Instanz eine private IP-Adresse hinzugefügt werden, welche sich
im gleichen VPC-Netzwerk befindet. Anstatt für die Verbindung nun mit einer Client-
Bibliothek für Cloud SQL zu arbeiten, kann hier nun wie lokal üblich die private IP-
Adresse und der Port der Instanz benutzt werden.

4.6.6 Verbindung von Ingress zum API-Gateway

Die aktuelle Ingress-Implementierung GCE hatte Schwierigkeiten mit dem API-Gateway
zu kommunizieren, was zu der Fehlermeldung 502 Bad Gateway führte. Laut den Ingress-
Logs wurde das API-Gateway nicht als gesunder Service erkannt. Die Lösung bestand

57

4 Realisierung

darin, mithilfe von Spring Boot Actuator einen Health-Check-Endpunkt zu erstellen und
den Google Cloud Load Balancer über die Health-Check-Einstellungen in GCP auf die-
sen Endpunkt zu konfigurieren. Dadurch konnte Ingress das API-Gateway als gesunden
Service erkennen und die Anfragen korrekt weiterleiten.

4.6.7 Interaktion der Session-Cookies mit dem Browser

In der lokalen Entwicklungsumgebung traten keine Probleme mit den Session-Cookies von
Spring Session auf, während in der Produktionsumgebung Session-Cookies vom Browser
nicht gespeichert werden konnten. Das Problem war, dass der Browser Cookies nur über
HTTPS-Verbindungen akzeptiert, wenn sie über Cross-Origin-Anfragen gesendet werden.
In der lokalen Minikube-Umgebung gab es wahrscheinlich keine Schwierigkeiten, weil
Minikube in der Regel nur mit localhost arbeitet und keine Cross-Origin-Anfragen über
das Internet gemacht werden. Um das Problem zu beheben, musste Ingress mit einer
eigenen Domäne konfiguriert und ein Zertifikat von Google für diese Domäne ausgestellt
werden. Dadurch konnte zwischen Ingress und den verbundenen Services eine gesicherte
HTTPS-Verbindung aufgebaut werden.

Danach gab es jedoch zusätzliche Probleme: Obwohl Vue einen positiven HTTP-Statuscode
zurückgab, wurde ein Invalid Host Header angezeigt. Dies lag daran, dass der webpack-
dev-server von Vue standardmäßig nur auf localhost eingestellt ist. Daher mussten zuerst
die entsprechenden Domains für das Frontend freigeschaltet werden. Danach gab es wie-
der einen 502 Bad Gateway und einen ungesunden Zustand des Frontend-Services. Nach
einigen Anpassungen und Experimenten mit verschiedenen Health-Check-Einstellungen
löste sich das Problem nach langer Zeit schließlich von selbst, als auf Standardeinstellun-
gen zurückgesetzt wurde. Es ist schwierig zu sagen, was genau den Fehler behoben hat,
da es kein klares Feedback darüber gab, welche Änderungen etwas bewirkten und welche
nicht.

58

5 Evaluation

Nach der Realisierung des Systems wird untersucht, inwiefern dieses die funktionalen und
nicht-funktionalen Anforderungen erfüllt und ob man bestimmte Aspekte hätte besser
umsetzen können.

5.1 Funktionale und nicht-funktionale Anforderungen

Die Unit- und Komponententests sowie die manuellen End-to-End-Tests der Use Ca-
ses haben gezeigt, dass alle funktionalen Anforderungen des Prototyps erfüllt wurden.
Dennoch könnten zusätzliche Tests notwendig sein, um noch unentdeckte Szenarien ab-
zudecken und die Funktionalitäten des Systems beispielsweise in Grenzbereichen zu ge-
währleisten.

Bezüglich der nicht-funktionalen Anforderungen hat die Wahl von Kubernetes zu einem
leicht skalierbaren System geführt, das bisher jedoch nur manuell skaliert werden kann.
Für eine automatische dynamische Skalierung müssen wir Autoscaler von Kubernetes im-
plementieren, die die Anzahl der Replikate eines Deployments basierend auf der aktuellen
CPU- und Speicherauslastung automatisch anpassen.

Obwohl Lastenverteilung und rolling updates theoretisch eine hohe Verfügbarkeit ge-
währleisten, ist das System derzeit nicht resilient gegenüber Netzwerkfehlern, was die
Verfügbarkeit beeinträchtigt. Um dies zu verbessern, sollten in Kubernetes liveness und
readiness probes implementiert werden, um fehlerhafte Services zu identifizieren. Zusätz-
lich sollten Services wie das API-Gateway mit Circuit Breakers ausgestattet werden, um
schlecht reagierende Services zu ignorieren. Auch sind der ELK-Stack und der Redis-
Container derzeit die Engpässe des Systems, da für sie noch keine Cluster konfiguriert
wurden, was bei extrem vielen Anfragen zu Problemen führen kann. Zudem haben wir
noch keine Lasttests durchgeführt, weshalb wir derzeit nicht wissen, wie das System unter

59

5 Evaluation

Volllast reagiert. Ein weiteres Problem besteht darin, dass die Schlüsselpaare des User-
Service zurzeit im Arbeitsspeicher gespeichert werden. Bei mehreren Replikaten könnte
ein Service Schwierigkeiten haben einen JWT zu verifizieren, wenn eine Anfrage von ei-
nem Replikat bearbeitet wird, das einen anderen öffentlichen Schlüssel verwendet. Zudem
kann ein Service seinen JWT nicht mehr verifizieren, wenn eine User-Service-Instanz neu
gestartet wird, da beim Neustart ein neues Schlüsselpaar generiert wird. In der Praxis
können wir daher noch nicht von einem sicher hochverfügbaren System ausgehen.

Um auf den Punkt der Agilität zu kommen, können durch Kubernetes neue Versionen von
Services schnell ohne Ausfallzeit in Betrieb genommen werden. Wollen wir die Agilität
hier jedoch verbessern, sollten wir eine automatisierte Test- und Deployment-Pipeline
implementieren um neue Versionen mit nur einem Klick bereitzustellen.

Für die Wartbarkeit sorgt die Strukturierung in klein geschnittene Services für eine über-
sichtliche und gekapselte Codestruktur, die keine Auswirkungen auf andere Services hat.
Änderungen könnten jedoch Fehler in den Schnittstellen zu anderen Services verursa-
chen, die durch zusätzliche Contract-Tests abgedeckt werden könnten. Contract-Tests
sind Tests die prüfen, ob die Schnittstellen, beispielsweise zwischen Frontend und Ba-
ckend, bei Änderungen weiterhin kompatibel sind.

In Bezug auf die Beobachtbarkeit haben wir mithilfe unserer Monitoring-Lösung ein
minimal beobachtbares System. Das Problem hier ist, dass wir Fehler oder Performance-
probleme erst zu spät erkennen, da wir weder über einen Gesundheitsstatus des Systems
noch aktiv über auftretende Fehler benachrichtig werden. Hierfür müsste ein Metrik-
Dashboard des Systems mit einer Alarmbenachrichtigung eingerichtet werden, welche im
Ausblick weiter ausgeführt wird.

Ein weiterer wichtiger Aspekt, der bisher nicht angesprochen wurde, sind die Kosten
des Systems. Die umfangreiche Nutzung verwalteter Google Cloud-Komponenten kann
erheblich teurer sein als die Nutzung einer SaaS-Lösung. Möchte man wirtschaftlich mit
der Konkurrenz mithalten, sollten insbesondere kostenintensive Komponenten selbst be-
reitgestellt und verwaltet werden. Dies würde jedoch die Komplexität des Systems weiter
erhöhen und zusätzliche Zeit in Anspruch nehmen, um die Qualitätsanforderungen zu
erfüllen.

60

5 Evaluation

5.2 Kritik an der Microservice-Architektur

Auch wenn bislang nur die Vorteile der architektonischen Ausrichtung auf Microservices
betont wurden, ist es wichtig, sie kritisch zu hinterfragen, da sie in vielen Fällen möglicher-
weise nicht die optimale Lösung für Probleme innerhalb der IT-Landschaft darstellen.

Betrachten wir beispielsweise das Problem der Skalierbarkeit, so geht es im Grunde dar-
um eine hohe Last an gleichzeitigen Anfragen zu bearbeiten. Gemäß Uwe Friedrichsen
wäre dies schon mit einem LAMP-Stack-Server oder 10 LAMP-Stack-Serverknoten und
Load Balancer ohne Microservices möglich. Seiner Einschätzung nach könnten mit dieser
Konfiguration zwischen 300.000 und 3 Millionen parallele Anfragen bearbeitet werden.
[Fri20b]

Ein weiteres Problem betrifft die Simplizität und das modulare Design. Es ist wichtig
anzumerken, dass Microservices allein keine Garantie für ein einfacheres Codeverständ-
nis oder ein modulares Design bieten. Die Entscheidung für eine bestimmte Architektur
hat nämlich keinen unmittelbaren Einfluss auf den Quellcode einer Anwendung, was
bedeutet, dass das zugrunde liegende und zu lösende Problem einer Anwendung nicht
vereinfacht wird. Im Gegenteil wird durch die Einführung von Microservices die struk-
turelle Komplexität erhöht und potenzielle Fehlerquellen in der Anwendung verstärkt,
da eine verteilte Architektur aufgrund der unvorhersehbaren Natur eines Netzwerks ei-
ne nicht deterministische Ausführung mit sich bringt. Dies bedeutet konkret, dass alle
möglichen Aufrufe zwischen Services funktionieren können, aber nicht müssen. [Fri20c]

Nach Uwe Friedrichsen sind Microservices eher dann relevant, wenn extrem schnelle De-
ployments erforderlich sind und mehrere Teams innerhalb eines Unternehmens an ei-
nem Projekt arbeiten. Ein weiterer Grund für Microservices sind unterschiedliche nicht-
funktionale Anforderungen innerhalb verschiedener Funktionen einer Anwendung. Wenn
die genannten Voraussetzungen nicht erfüllt sind und kein exponentielles Wachstum des
Unternehmens vorliegt, sollten alternative Architekturstile in Betracht gezogen werden:
[Fri21b]

Ein Modulith ist, wie zuvor erwähnt, eine Form des Monolithen, der in modularer Weise
strukturiert ist und strikten Designprinzipien folgt. [Fri21c] Dies ermöglicht die Entwick-
lung eines gut organisierten und leicht wartbaren Codes, der auch langfristig Bestand
hat.

61

5 Evaluation

Ein Microlith ist ein Microservice, der bestimmte Einschränkungen hat: Er darf kei-
ne externen Abhängigkeiten für eingehende Anfragen haben und benötigt daher einen
Mechanismus, um die Konsistenz der Daten zwischen den verschiedenen Microservices
sicherzustellen. [Fri21a] Anders ausgedrückt bedeutet dies, dass selbst bei einem Fehl-
schlagen dieses Mechanismus die eingehenden Anfragen an den Service davon unberührt
bleiben.

Angesichts dieses neuen Wissens können wir nun unsere Lösung anhand der nicht-funktionalen
Anforderungen kritisch prüfen und zu den folgenden Schlussfolgerungen gelangen:

Für die Skalierbarkeit und Hochverfügbarkeit hätte die Bereitstellung der Anwendung
mit verschiedenen modulithischen Serverknoten und Load Balancern ausgereicht. Dies
hätte die Komplexität verringert, da wir uns das Definieren separater Dockerfiles und
Kubernetes-Deployments für jeden Service hätten sparen können. Ein Nachrichtenbroker
wie Kafka oder REST-API-Calls zwischen den Services wären somit überflüssig gewesen.
Die gesamte Komplexität der Bereitstellung, der Inter-Service-Kommunikation und des
Stub-Testens wäre weggefallen, was das Projekt erheblich vereinfacht hätte. Hinsichtlich
der Agilität hätte Kubernetes mit modulithischen Serverknoten und einer gut konfigu-
rierten Deployment-Pipeline schnelle Updates ohne Ausfallzeiten liefern können. Da das
Projekt von einer Person bearbeitet wurde gibt es keine Vorteile hinsichtlich einer paralle-
len Arbeit von Teams. Es ist auch wichtig anzumerken, dass kein besonderes Augenmerk
auf die Fehlerbehandlung zwischen den Microservices gelegt wurde. Wenn dies berück-
sichtigt worden wäre, wären komplexere Fehlerbehandlungen der Services nötig gewesen,
um nicht deterministisches Verhalten zu berücksichtigen. Im Fall eines Modulithen wür-
de diese zusätzliche Arbeit wegfallen. Was die Wartbarkeit angeht, sollte ein sehr gut
geschriebener Modulith diese Anforderung erfüllen. Bezüglich der Beobachtbarkeit, fun-
giert der Modulith auch wie ein Log-Aggregator, da alle Logs an einer Stelle vereint sind.
Dennoch könnte ein ELK-Stack hilfreich sein, um das Durchsuchen der Log-Einträge zu
ermöglichen und gegebenenfalls weitere Logs von Replikaten der Anwendung zu aggre-
gieren.

Insgesamt können wir also sagen, dass ein Modulith mit verschiedenen Replikationen
in Kubernetes nach unseren Qualitätsanforderungen eine genauso so gute und weniger
komplexe Lösung geboten hätte. Nach den Argumenten von Uwe Friedrichsen sind die
Voraussetzungen, welche eine Microservice-Architektur begünstigen, für uns sowieso nicht
erfüllt gewesen.

62

5 Evaluation

Trotzdem sollte überprüft werden, ob bestimmte Funktionen wie zum Beispiel die Wa-
renkorbfunktion erheblich stärker beansprucht werden als andere. In einem solchen Fall
wäre es sinnvoll, die Warenkorbfunktion in einen eigenen Service auszulagern und separat
zu skalieren, um Kosten zu sparen.

5.3 Fazit

In dieser Arbeit wurde ein Prototyp einer E-Commerce-Anwendung vorgestellt, der für
den Verkauf von Musikproduktionstemplates ausgelegt ist. Dieser Prototyp wurde in einer
Microservice-Architektur entworfen, die sehr gut für dynamische Skalierungen und Hoch-
verfügbarkeit geeignet ist. Jedoch konnten Vorteile wie unabhängiges paralleles Arbeiten
von Teams und in diesem Zusammenhang extrem schnelle Releasezyklen im Rahmen die-
ses Ein-Mann-Projekts nicht ausgenutzt werden. Zudem ist wichtig zu wissen, dass diese
Architektur mit einer hohen strukturellen Komplexität und hohen Fehleranfälligkeit ein-
hergeht. Beispielsweise erzeugen zahlreiche Deployment-Dateien, verteilte Transaktionen,
Kommunikations- und Überwachungskomponenten sowie Resilienzmechanismen eine zu-
sätzliche Komplexität, die behandelt werden muss. Wählt man diese Architekturform,
sollte das Team daher in der Lage sein, mit diesen Herausforderungen umzugehen.

Da die besonderen Vorteile der Microservice-Architektur in der Regel vor allem bei sehr
großen Unternehmen wie Netflix oder Amazon zur Geltung kommen, wäre es für klei-
nere oder mittlere Unternehmen ratsamer, eine Architektur wie den Modulithen oder
Microlithen zu wählen. Bei Microlithen ist zusätzlich zu beachten, dass ein nötiger Ab-
gleichmechanismus zusätzliche Komplexität bedeutet, die erarbeitet werden muss. Zum
Schluss kann man sagen, dass die Notwendigkeit von sehr gutem Design für egal welchen
Architekturstil man sich entscheidet, gleich bleibt.

63

6 Ausblick

Während der Prototyp funktionsfähig ist und die grundlegenden Anforderungen erfüllt,
fehlen ihm noch einige Aspekte und Funktionen, um im Produktionsbetrieb verwendet
zu werden. Im Folgenden werden diese Punkte erläutert und weitere Optimierungen vor-
geschlagen.

6.1 Validierung und Simulationsbehebung

Benutzerspezifische Fehlermeldungen sollten im Frontend angezeigt werden, um die Be-
nutzerfreundlichkeit der Anwendung zu erhöhen. Zudem sollten alle Daten die im Fron-
tend eingegeben werden einer gründlichen Input-Validierung unterzogen werden, um
XSS-Attacken und andere Sicherheitsrisiken zu minimieren. Der E-Mail-Service sollte
durch einen etablierten E-Mail-Anbieter wie MailJet oder SendGrid ersetzt werden. Eben-
so ist es nötig, den Payment-Service durch einen bewährten Payment-Provider wie PayPal
oder Stripe zu ersetzen. Um den Prozess noch weiter zu vereinfachen, kann ein Merchant
of Record wie Fastspring eingebunden werden. Dieser übernimmt zusätzlich die Rolle
des Verkäufers und kümmert sich um alle steuerrechtlichen Vorgänge, die beim Verkauf
anfallen. Dadurch entfiele auch die Notwendigkeit einen eigenen Checkout-Prozess zu
implementieren, da diese Aufgabe von Fastspring übernommen wird. Andernfalls müsste
der Checkout-Prozess entsprechend mit dem ausgewählten Payment-Provider konfigu-
riert werden.

Des Weiteren sollte eine Uploadfunktion für die eigentlichen Projektdateien implemen-
tiert werden. Diese Dateien können dann über einen Downloadlink durch den E-Mail-
Anbieter an den Kunden weitergeleitet werden.

64

6 Ausblick

6.2 Sicherheit

Statt einen eigenen Authentifizierungs- und Autorisierungsservice zu implementieren,
empfiehlt es sich, OAuth 2.0 für die Autorisierung zu verwenden. OAuth 2.0 ist ein In-
dustriestandard für die sichere Übertragung von Zugriffsrechten an Drittanbieteranwen-
dungen. Es wird von vielen Diensten unterstützt und folgt etablierten Sicherheitsstan-
dards. Zum Beispiel ermöglicht OAuth 2.0 die Verwendung kurzlebiger Access-Tokens zur
Autorisierung, die über einen Endpunkt widerrufen werden können, um zu verhindern,
dass kompromittierte Tokens im Umlauf bleiben. Zudem können durch Refresh-Tokens
die kurzlebigen Access-Tokens erneuert werden. Während man den Autorisierungsser-
ver so anpassen könnte, dass er Access-Tokens auch zur Authentifizierung nutzt, ist es
sicherer, ein Authentifizierungsprotokoll wie OpenID Connect zu verwenden. OpenID
Connect baut auf OAuth 2.0 auf und ermöglicht eine sichere Benutzerauthentifizierung
über ein ID-Token. Dieses Token enthält Informationen über die Authentifizierungsan-
frage und kann zusätzliche Benutzerinformationen bereitstellen, die über den OpenID-
Connect-Endpunkt abgerufen werden können. Zur Umsetzung dieser Standards könnte
eine Implementierung mit Keycloak erfolgen. Keycloak ist eine Open-Source-Plattform
für Identity- und Access-Management (IAM), die sowohl OAuth 2.0 als auch OpenID
Connect unterstützt. Sie bietet eine zentrale Verwaltung von Benutzern und Rollen so-
wie zusätzliche Sicherheitsfunktionen wie Multi-Faktor-Authentifizierung. Der selbst im-
plementierte User- und Auth-Service aus der ersten Version des Prototyps würde damit
überflüssig. Ein separater User-Service wäre nur dann erforderlich, wenn zusätzliche Be-
nutzerfunktionen benötigt werden, die Keycloak nicht bietet.

Zudem sollte ein vordefiniertes Konto mit Admin-Rechten erstellt werden. Zurzeit wird
das Admin-Konto einfach mit dem Benutzernamen admin erstellt.

Schließlich wurde die rechtliche Absicherung der E-Commerce-Anwendung bisher noch
nicht berücksichtigt. In Zusammenarbeit mit IT-Recht-Spezialisten sollten die rechtlichen
Anforderungen eines Online-Shops geprüft und die Anwendung entsprechend angepasst
werden. Dies betrifft für die Entwicklung beispielsweise den Umgang mit personenbezo-
genen Daten oder den Einsatz von Cookies.

Obwohl ein Produktionsbetrieb mit diesen Änderungen möglich wäre, gibt es noch ei-
nige Optimierungsmöglichkeiten, die insbesondere für eine Microservice-Architektur von
Bedeutung sind:

65

6 Ausblick

6.3 Resilienz

In verteilten Systemen besteht stets das Risiko von Teilausfällen, wenn Services synchron
miteinander kommunizieren. Ein Service könnte aufgrund von Ausfällen, Wartungsarbei-
ten oder Überlastung nicht rechtzeitig auf Anfragen reagieren, was dazu führen kann,
dass Clients blockiert werden und der Ausfall sich auf das gesamte System erstreckt.
Ein Beispiel hierfür wäre, wenn das API Gateway unseres Systems längere Zeit auf die
Antwort eines Services wartet und dadurch für andere Nutzer nicht verfügbar ist. [Ric18,
Kapitel 3.2.3] Um solche Szenarien zu vermeiden ist es notwendig zusätzliche Maßnahmen
in APIs zu implementieren, die von solchen Teilausfällen betroffen sein könnten.

Ein Vorschlag wäre das Circuit-Breaker-Muster, welches die Erfolgs-und Fehlerraten von
Anfragen überprüft und sich wie ein Schalter beim Überschreiten einer definierten Feh-
lerquote schließt und keine weiteren Anfragen mehr akzeptiert. Erst nach einer gewissen
Zeitspanne wird erneut überprüft, ob der Service verfügbar ist und bei Erfolg der Schal-
ter wieder umgelegt sowie Anfragen zugelassen. [Ric18, Kapitel 3.2.3] Implementieren
könnte man dies beispielsweise mit Resilience4j, das auch in Spring Cloud unterstützt
wird.

6.4 Monitoring und Health-Checks

Wie bereits in einem früheren Teil dieser Arbeit besprochen, könnten zusätzliche Überwa-
chungsmöglichkeiten wie Tracing und Metrik-Monitoring ergänzt werden. Für die Health-
Checks kann Kubernetes durch eine readiness probe konfiguriert werden, um zu ent-
scheiden, ob Anfragen bei schlechtem Gesundheitszustand an eine andere Instanz einer
Anwendung geroutet werden sollen. Eine liveness probe wiederum entscheidet, ob Ku-
bernetes die Instanz komplett neu starten soll. [Ric18, Kapitel 12.4.2] Ein bekanntes
Beispiel für eine Health-Check-Bibliothek ist der zuvor erwähnte Spring Boot Actuator,
der mithilfe seines Endpunkts eine Reihe von Gesundheitsprüfungen durchführt, die auf
der verwendeten Infrastruktur der Anwendung basieren.

66

Literatur

[bae23] Baeldung. Creating Kafka Topic With Docker Compose | Baeldung on Ops.
https://www.baeldung.com/ops/kafka-new-topic-docker-

compose. Version 11.2023. Zugriffsdatum: 16.08.2024.

[Bas24a] Nick Basile. Building A Comments System With Vue.js, Laravel, and Tail-
wind CSS Part I. https://nickjbasile.medium.com/building-a-
comments-system-with-vue-js-laravel-and-tailwind-css-

part-i-e24e8518ee3. Version 04.2018. Zugriffsdatum: 27.03.2024.

[Bau+11] Christian Baun u. a. Cloud Computing - Web-basierte dynamische IT-Services.
Springer Berlin, Heidelberg, 2011. doi: 10.1007/978-3-642-18436-9.

[Boo] Bootstrap. Checkout example for Bootstrap — getbootstrap.com. https://
getbootstrap.com/docs/4.0/examples/checkout/. Zugriffsda-
tum: 22.04.2024.

[cas19] cassiomolin. log-aggregation-spring-boot-elastic-stack/filebeat/filebeat.docker.yml
at master · cassiomolin/log-aggregation-spring-boot-elastic-stack. https://
github.com /cassiomolin/log- aggregation- spring- boot -

elastic-stack/blob/master/filebeat/filebeat.docker.yml.
Version 2019. Zugriffsdatum: 02.04.2024.

[cod] codeply. Bootstrap Checkout Example Code. https://www.codeply.
com/p?starter=Bootstrap&ex=Sh3KmpOVTc. Zugriffsdatum: 22.04.2024.

[Dei22] Fabian Deitelhoff. Vue.js - Von Grundlagen bis Best Practices. ger. dpunkt.verlag,
2022. isbn: 9783969107607. url: https://content-select.com/de/
portal/media/view/62145ecc-9dd0-4faf-acdb-0a29b0dd2d03.

[Ebe22] Christof Ebert. Systematisches Requirements Engineering. ger. 7. Aufl. dpunkt.verlag,
2022. isbn: 9783969107683. url: https://content-select.com/de/
portal/media/view/62145eca-c094-43a8-a875-0a29b0dd2d03.

67

Literatur

[Ela] Elastic. Running Filebeat on Kubernetes | Filebeat Reference [7.2] | Elastic.
https://www.elastic.co/guide/en/beats/filebeat/7.2/

running-on-kubernetes.html. Zugriffsdatum: 16.04.2024.

[Fri20a] Uwe Friedrichsen. The microservices fallacy - Part 1. https : / / www .
ufried.com/blog/microservices_fallacy_1/. Version 11.2020.
Zugriffsdatum: 15.06.2024.

[Fri20b] Uwe Friedrichsen. The microservices fallacy - Part 2. https : / / www .
ufried.com/blog/microservices_fallacy_2_scalability/.
Version 11.2020. Zugriffsdatum: 15.06.2024.

[Fri20c] Uwe Friedrichsen. The microservices fallacy - Part 3. https : / / www .
ufried.com/blog/microservices_fallacy_3_simplicity/. Ver-
sion 11.2020. Zugriffsdatum: 15.06.2024.

[Fri21a] Uwe Friedrichsen. The microservices fallacy - Part 10. https://www.
ufried.com/blog/microservices_fallacy_10_microliths/.
Version 01.2021. Zugriffsdatum: 15.06.2024.

[Fri21b] Uwe Friedrichsen. The microservices fallacy - Part 7. https : / / www .
ufried.com/blog/microservices_fallacy_7_actual_reasons/.
Version 01.2021. Zugriffsdatum: 15.06.2024.

[Fri21c] Uwe Friedrichsen. The microservices fallacy - Part 9. https : / / www .
ufried.com/blog/microservices_fallacy_9_moduliths/. Versi-
on 01.2021. Zugriffsdatum: 15.06.2024.

[Gol20] Wolfgang Golubski. Entwicklung verteilter Anwendungen - Mit Spring Boot
& Co. Springer Vieweg Wiesbaden, 2020. doi: 10.1007/978-3-658-
26814-5.

[HS17] Wilhelm Hasselbring und Guido Steinacker. “Microservice Architectures for
Scalability, Agility and Reliability in E-Commerce”. In: 2017 IEEE Inter-
national Conference on Software Architecture Workshops (ICSAW). 2017,
S. 243–246. doi: 10.1109/ICSAW.2017.11.

[IBM] IBM. Was ist DevOps? https://www.ibm.com/de- de/topics/

devops. Zugriffsdatum: 03.06.2024.

[Kaf] Kafka. Apache Kafka. https://kafka.apache.org/intro. Zugriffsda-
tum: 02.08.2024.

68

Literatur

[KM23] Michael Kaufmann und Andreas Meier. SQL- & NoSQL-Datenbanken. 9. er-
weiterte und aktualisierte Auflage. Springer Vieweg Berlin, Heidelberg, 2023.
doi: 10.1007/978-3-662-67092-7.

[Kub24a] Kubernetes. Deployments. https://kubernetes.io/docs/concepts/
workloads/controllers/deployment/. Version 03.2024. Zugriffsda-
tum: 10.06.2024.

[Kub24b] Kubernetes. Ingress. https://kubernetes.io/docs/concepts/
services-networking/ingress/. Version 04.2024. Zugriffsdatum: 10.06.2024.

[Kub24c] Kubernetes. Kubernetes Components. https://kubernetes.io/docs/
concepts / overview / components/. Version 05.2024. Zugriffsdatum:
10.06.2024.

[Kub24d] Kubernetes. ConfigMaps. https://kubernetes.io/docs/concepts/
configuration/configmap/. Version 03.2024. Zugriffsdatum: 10.06.2024.

[Kub24e] Kubernetes. Secrets. https : / / kubernetes . io / docs / concepts /
configuration/secret/. Version 07.2024. Zugriffsdatum: 26.07.2024.

[Kub24f] Kubernetes. Service. https://kubernetes.io/docs/concepts/
services-networking/service/. Version 06.2024. Zugriffsdatum: 26.06.2024.

[Lee23] C. Lee. How can I validate an email address in JavaScript? https://

stackoverflow.com/questions/46155/how-can-i-validate-

an- email- address- in- javascript. Version 2023. Zugriffsdatum:
12.03.2024.

[Mar14] James Lewis Martin Fowler. Microservices. https://martinfowler.
com/articles/microservices.html. Version 03.2014. Zugriffsdatum:
10.06.2024.

[MDB] MDB. Bootstrap Shopping Carts free examples, templates & tutorial. https:
//mdbootstrap.com/docs/standard/extended/shopping-carts/.
Zugriffsdatum: 20.04.2024.

[New21] Sam Newman. Building Microservices: Designing Fine-Grained Systems. 2nd
Edition. OReilly Media, Inc., 2021. isbn: 978-1-492-03397-4.

[Pan24] Abhinav Pandey. Spring Boot – Testing Redis With Testcontainers | Bael-
dung. https://www.baeldung.com/spring-boot-redis-testcontainers.
Version 01.2024. Zugriffsdatum: 15.04.2024.

69

Literatur

[PR15] Klaus Pohl und Chris Rupp. Basiswissen Requirements Engineering : Aus-
und Weiterbildung nach IREB-Standard zum Certified Professional for Requi-
rements Engineering Foundation Level. 4., überarbeitete Auflage. Heidelberg:
dpunkt.verlag, 2015.

[Rag21] Ragvah. Regex for checking if a string is strictly alphanumeric. https://
stackoverflow.com/questions/11241690/regex-for-checking-

if-a-string-is-strictly-alphanumeric. Version 2021. Zugriffsda-
tum: 12.03.2024.

[Rei18] Stefan Reinheimer. Cloud Computing - Die Infrastruktur der Digitalisierung.
Springer Vieweg Wiesbaden, 2018. doi: 10.1007/978-3-658-20967-4.

[Ric18] Chris Richardson. Microservices Patterns: With examples in Java. Manning,
2018. isbn: 9781617294549.

[sar19] sarulabs. Sending Docker Logs to ElasticSearch and Kibana with FileBeat -
Sarulabs. https://www.sarulabs.com/post/5/2019- 08- 12/
sending-docker-logs-to-elasticsearch-and-kibana-with-

filebeat.html. Version 08.2019. Zugriffsdatum: 28.03.2024.

[SH11] Gernot Starke und Peter Hruschka. Software-Architektur kompakt - angemes-
sen und zielorientiert. 2. Aufl. Spektrum Akademischer Verlag Heidelberg,
2011. doi: 10.1007/978-3-8274-2835-6.

[Som18] Ian Sommerville. Software Engineering. 10., aktualisierte Auflage. Pearson
Deutschland, 2018. isbn: 9783868943443. url: https://elibrary.pearson.
de/book/99.150005/9783863268350.

[Sta17] Stack Overflow. How to delete the directory through java? https://stackoverflow.

com/questions/42929971/how- to- delete- the- directory-

through-java. Version 2017. Zugriffsdatum: 28.02.2024.

[Ste19] Ralph Steyer. Webanwendungen erstellen mit Vue.js - MVVM-Muster für
konventionelle und Single-Page-Webseiten. Springer Vieweg Wiesbaden, 2019.
doi: 10.1007/978-3-658-27170-1.

[Tre21] Hansruedi Tremp. Architekturen Verteilter Softwaresysteme - SOA & Mi-
croservices - Mehrschichtenarchitekturen - Anwendungsintegration. Springer
Vieweg Wiesbaden, 2021. doi: 10.1007/978-3-658-33179-5.

70

Literatur

[Wel24] Kevin Welter. Kubernetes - Das Praxisbuch für Entwickler und DevOps-
Teams. Rheinwerk Publishing Inc., 2024. url: https://ebookcentral.
proquest.com/lib/hawhamburg-ebooks/detail.action?docID=

31318121.

71

A Anhang

A.1 Spezifikation der Use Cases

Anwendungsfall Registrieren (uc/1)

Akteure Gast

Vorbedingung • Der Gast ist nicht registriert.
• Der Gast befindet sich auf der Registrierungsseite.

Hauptszenario 1. Der Gast gibt die erforderlichen Informationen ein (z. B.
Benutzername, Passwort, Vor- und Nachname).
2. Der Gast sendet das Registrierungsformular ab.
3. Eine Erfolgsnachricht wird angezeigt.
4. Der Benutzer wird zur Login-Seite weitergeleitet.

Alternativ-
szenarien

2a. Der angegebene Benutzername existiert bereits.
2a1. Es wird eine Fehlermeldung angezeigt und der Be-

nutzer aufgefordert, einen anderen Benutzernamen zu wäh-
len.

Nachbedingung • Der Gast ist nun ein registrierter Benutzer und befindet
sich auf der Login-Seite.
• Der registrierte Benutzer wurde in der Datenbank angelegt.

Tabelle A.1: Registrieren (uc/1)

72

A Anhang

Anwendungsfall Anmelden (uc/2)

Akteure Gast

Vorbedingung • Der Gast ist ein registrierter Benutzer.
• Der Gast ist nicht eingeloggt.
• Der Gast befindet sich auf der Anmeldeseite.

Hauptszenario 1. Der Gast gibt Benutzernamen und Passwort ein.
2. Der Gast sendet das Anmeldeformular ab.
3. Eine Erfolgsnachricht wird angezeigt.
4. Der Benutzer wird zur Homepage weitergeleitet.

Alternativ-
szenarien

2a. Die angegebenen Anmeldeinformationen sind nicht kor-
rekt.

2a1. Es wird eine Fehlermeldung angezeigt, dass die an-
gegebenen Anmeldeinformationen nicht korrekt sind.

Nachbedingung • Der Gast ist im System angemeldet und wurde auf die
Homepage weitergeleitet.
• Der Benutzername des Benutzers wird neben dem User-
Icon angezeigt.
• Ein Json-Web-Token wurde für den angemeldeten Benutzer
erstellt.

Tabelle A.2: Anmelden (uc/2)

Anwendungsfall Template-Produktseite besuchen (uc/3)

Akteure Gast, User, Admin

Vorbedingung Keine

Hauptszenario 1. Der Akteur klickt auf ein Bild vom Template auf der Start-
seite.
2. Das System navigiert zur Template-Produktseite.

Alternativ-
szenarien

Keine

Nachbedingung • Der Akteur befindet sich auf der Produktseite für das aus-
gewählte Template.

Tabelle A.3: Template-Produktseite besuchen (uc/3)

73

A Anhang

Anwendungsfall Tracks eines Templates abspielen und stoppen (uc/4)

Akteure Gast, User, Admin

Vorbedingung • Der Akteur befindet sich auf der Template-Produktseite.

Hauptszenario 1. Der Akteur klickt auf eine bestimmte zeitliche Stelle des
Tracks.
2. Der Akteur klickt auf die Wiedergabetaste für einen Track.
3. Das System spielt den Track ab der bestimmten zeitlichen
Stelle ab, wobei der Fortschritt des Tracks ersichtlich wird.
4. Der Akteur klickt auf die Stopp-Taste.
5. Das System stoppt den Track.

Alternativ-
szenarien

4a. Der Akteur klickt nicht auf die Stopp-Taste.
4a1. Am Ende des Tracks stoppt das System den Track.

Alternativ-
szenarien

1a. Der Akteur klickt auf keine bestimmte zeitliche Stelle des
Tracks.

1a1. Weiter mit 2. (die zeitliche Stelle ist jetzt der Anfang
des Tracks)

Nachbedingung • Der ausgewählte Track spielt nicht mehr.
• Die neue zeitliche Stelle des Tracks ist ersichtlich.

Tabelle A.4: Tracks eines Templates abspielen und stoppen (uc/4)

74

A Anhang

Anwendungsfall Kommentare zu einem Track anzeigen (uc/5)

Akteure Gast, User, Admin

Vorbedingung • Der Akteur befindet sich auf der Template-Produktseite.

Hauptszenario 1. Der Akteur klickt auf das „alle Kommentare Anzeigen“-
Icon des Tracks.
2. Das System zeigt Kommentare zu den Template-Tracks
an. Das System errechnet dabei, wann der Kommentar er-
stellt wurde. (z. B. vor 6 Sekunden, vor einem Monat etc.)

Alternativ-
szenarien

1a. Der Akteur fährt über das Icon eines Akteurs auf dem
Track.

1a1. Das System zeigt per Tooltip den Kommentar eines
Akteurs an.

Alternativ-
szenarien

2a. Es gibt keine Kommentare für den Track.
2a1. Es wird eine Meldung ausgegeben, die darauf hin-

weist, dass es noch keine Kommentare gibt.

Nachbedingung • Der Akteur sieht nun eine Anzeige zu den Kommentaren
des Tracks.

Tabelle A.5: Kommentare zu einem Track anzeigen (uc/5)

75

A Anhang

Anwendungsfall Template zum Warenkorb hinzufügen (uc/6)

Akteure Gast, User, Admin

Vorbedingung • Der Akteur befindet sich auf der Template-Produktseite.

Hauptszenario 1. Der Akteur klickt auf den „Add to Cart"-Button für ein
Template.
2. Das System fügt das Template dem Warenkorb des Ak-
teurs hinzu.
3. Eine Erfolgsmeldung, dass das Produkt dem Warenkorb
hinzugefügt wurde, wird angezeigt.

Alternativ-
szenarien

2a. Das Produkt befindet sich schon im Warenkorb
2a1. Eine Meldung, dass sich das Produkt schon im Wa-

renkorb befindet, wird angezeigt.

Nachbedingung • Das ausgewählte Template wurde dem Warenkorb des Ak-
teurs hinzugefügt.
• Eine Session für den Warenkorb wurde vom System er-
stellt.
• Das ausgewählte Template wurde in der Datenbank des
Warenkorbs angelegt.

Tabelle A.6: Template zum Warenkorb hinzufügen (uc/6)

Anwendungsfall Warenkorb anzeigen (uc/7)

Akteure Gast, User, Admin

Vorbedingung • Im Warenkorb des Akteurs befinden sich Templates.

Hauptszenario 1. Der Akteur klickt auf das Warenkorb-Symbol.
2. Das System zeigt den Inhalt des Warenkorbs des Gastes
auf einer neuen Seite an.

Alternativ-
szenarien

2a. Der Warenkorb ist leer.
2a1. Eine Meldung, dass der Warenkorb leer ist, wird

angezeigt.

Nachbedingung • Der Akteur befindet sich auf der Seite des Warenkorbs.
• Der Inhalt des Warenkorbs wird angezeigt.

Tabelle A.7: Warenkorb anzeigen (uc/7)

76

A Anhang

Anwendungsfall Template aus dem Warenkorb löschen (uc/8)

Akteure Gast, User, Admin

Vorbedingung • Der Akteur sieht sich den Warenkorb auf der Cartpage an.
• Der Warenkorb ist nicht leer.

Hauptszenario 1. Der Akteur klickt auf das „Delete“-Icon neben einem Tem-
plate im Warenkorb.
2. Das System entfernt das ausgewählte Template aus dem
Warenkorb.

Alternativ-
szenarien

Keine

Nachbedingung • Das ausgewählte Template wurde aus dem Warenkorb des
Akteurs entfernt.
• Das ausgewählte Template wurde aus der Datenbank des
Warenkorbs entfernt.

Tabelle A.8: Template aus dem Warenkorb löschen (uc/8)

77

A Anhang

Anwendungsfall Template kaufen (uc/9)

Akteure Gast, User, Admin

Vorbedingung • Im Warenkorb des Akteurs befinden sich Templates.
• Der Akteur befindet sich auf der Seite des Warenkorbs.

Hauptszenario 1. Der Akteur klickt auf den „Checkout“-Button.
2. Das System leitet den Akteur auf die Checkoutpage weiter.
3. Der Akteur gibt Zahlungs- und Versanddetails ein.
4. Der Akteur klickt auf den „Buy Now“-Button.
5. Das System verarbeitet die Zahlung.
6. Nach Erfolgreicher Verarbeitung erstellt das System einen
Downloadlink.
7. Eine Erfolgsmeldung wird angezeigt.
8. Der Akteur wird zur Homepage weitergeleitet.
9. Der Warenkorb wird geleert.

Alternativ-
szenarien

4a. Die Zahlungs- oder Versanddetails weisen Fehler auf.
4a1. Eine Fehlermeldung und Aufforderung korrekte Da-

ten einzugeben wird angezeigt.
4a2. Weiter bei 3

Alternativ-
szenarien

4a. Das Konto ist nicht ausreichend für die Zahlung gefüllt.
4a1. Eine Fehlermeldung wird angezeigt. (In der Konsole)

Alternativ-
szenarien

4a. Der Warenkorb ist leer.
4a1. Eine Fehlermeldung wird angezeigt.
4a2. Der Akteur fügt ein Produkt zum Warenkorb hinzu.
4a3. Weiter bei 1.

Nachbedingung • Die ausgewählten Templates wurden erfolgreich vom Ak-
teur gekauft.
• Die Bestellung und die Transaktion wurden in der Daten-
bank gespeichert.
• Die Bestellung wurde in Elasticsearch indexiert.
• Die gekauften Produkte wurden aus der Datenbank des
Warenkorbs gelöscht.

Tabelle A.9: Template kaufen (uc/9)

78

A Anhang

Anwendungsfall Kommentieren von Tracks eines Templates (uc/10)

Akteure User, Admin

Vorbedingung • Der Gast ist angemeldet und hat die Rolle User oder Ad-
min.
• Der Akteur befindet sich auf der Template-Produktseite

Hauptszenario 1. Der Akteur klickt auf das „Kommentieren“-Icon eines
Tracks.
2. Der Akteur gibt einen Kommentar im Kommentarbereich
ein.
3. Der Akteur sendet den Kommentar mittels „Publish“-
Button ab.
4. Das System speichert den Kommentar ab und zeigt die
Initialen des Akteurs als Icon relativ zum Timestamp des
erstellten Kommentars an.

Tabelle A.10: Kommentieren von Tracks eines Templates (uc/10)

Anwendungsfall Eigene Kommentare zu einem Track löschen (uc/11)

Akteure User, Admin

Vorbedingung • Ein Kommentar des Akteurs ist am Track vorhanden.
• Der Akteur ist angemeldet.
• Der Akteur befindet sich auf der Produktseite des Templa-
tes

Hauptszenario 1. Der Akteur klickt auf das „Kommentare Anzeigen“-Icon
eines Tracks.
2. Der Akteur findet seinen eigenen Kommentar zu einem
Track.
3. Der Akteur klickt auf das Bearbeiten Icon neben seinem
Kommentar.
4. Der Akteur klickt auf den angezeigten „Delete“-Button.
5. Das System löscht den Kommentar des Akteurs.

Alternativ-
szenarien

Keine

Nachbedingung • Der Kommentar des Akteurs wurde aus der Datenbank
entfernt.

Tabelle A.11: Eigene Kommentare zu einem Track löschen (uc/11)

79

A Anhang

Anwendungsfall Eigene Kommentare zu einem Track bearbeiten (uc/12)

Akteure User, Admin

Vorbedingung • Ein Kommentar des Akteurs ist am Track vorhanden.
• Der Akteur ist angemeldet.
• Der Akteur befindet sich auf der Produktseite des Templa-
tes

Hauptszenario 1. Der Akteur klickt auf das „Kommentare Anzeigen“-Icon
eines Tracks.
2. Der Akteur findet seinen eigenen Kommentar zu einem
Track.
3. Der Akteur klickt auf das „Bearbeiten“-Icon neben seinem
Kommentar.
4. System zeigt den Kommentar in einer bearbeitbaren Form
an.
5. Der Akteur modifiziert den Kommentar.
6. Der Akteur klickt den „Update“-Button des Kommentars.
7. Das System speichert den neuen Kommentar.

Alternativ-
szenarien

4a. Der Akteur klickt auf den „Cancel“-Button.
4a1. Der originale Kommentar bleibt unverändert und

wird nicht mehr in bearbeitbarer Form angezeigt.

Nachbedingung • Der bearbeitete Kommentar wurde in der Datenbank ge-
speichert.
• Der bearbeitete Kommentar wird in der normalen Kom-
mentaransicht angezeigt.

Tabelle A.12: Eigene Kommentare zu einem Track bearbeiten (uc/12)

Anwendungsfall Abmelden (uc/13)

Akteure User, Admin

Vorbedingung • Der Akteur ist angemeldet.

Hauptszenario 1. Der Akteur klickt auf den „Logout“-Button.
2. Das System meldet den Benutzer ab.

Alternativ-
szenarien

Keine

Nachbedingung • Der Akteur ist im System abgemeldet.
• Der JSON-Web-Token wurde vom System gelöscht.

Tabelle A.13: Abmelden (uc/13)

80

A Anhang

Anwendungsfall Eigenen Account löschen (uc/14)

Akteure User, Admin

Vorbedingung • Der Akteur ist angemeldet.

Hauptszenario 1. Der Akteur navigiert zum „Delete Account“-Button des
Profils.
2. Der Akteur klickt auf „Delete Account“.
3. Das System löscht den Account des Akteurs.
4. Eine Erfolgsmeldung wird angezeigt.

Alternativ-
szenarien

Keine

Nachbedingung • Der Akteur ist im System abgemeldet.
• Der JSON-Web-Token wurde vom System gelöscht.
• Der Akteur wurde aus der Datenbank gelöscht.

Tabelle A.14: Eigenen Account löschen (uc/14)

Anwendungsfall Template aus dem Shop löschen (uc/15)

Akteure Admin

Vorbedingung • Der Admin ist angemeldet.
• Das Template existiert im Shop.
• Der Admin befindet sich auf der Homepage.

Hauptszenario 1. Der Admin findet das zu löschende Template.
2. Der Admin klickt auf das „Delete“-Icon des Templates.
3. Das System löscht das Template und alle zugehörigen
Kommentare der Tracks.
4. Das System zeigt eine Erfolgsmeldung an.

Alternativ-
szenarien

Keine

Nachbedingung • Das ausgewählte Template wurde aus der Datenbank ge-
löscht.
• Alle zugehörigen Tracks des Templates wurden aus der Da-
tenbank gelöscht.
• Alle Kommentare der Tracks des Templates wurden aus
der Datenbank gelöscht.

Tabelle A.15: Template aus dem Shop löschen (uc/15)

81

A Anhang

Anwendungsfall Produktinformationen eines Templates bearbeiten (uc/16)

Akteure Admin

Vorbedingung • Der Admin ist angemeldet.
• Das Template existiert im Shop.
• Der Admin befindet sich auf der Produktseite.

Hauptszenario 1. Der Admin navigiert zum Admin-Dashboard.
2. Der Admin findet das zu bearbeitende Template.
3. Der Admin klickt das „Bearbeiten“-Icon auf der Produkt-
seite an.
4. Das System zeigt die aktuellen Informationen in einer be-
arbeitbaren Form an.
5. Der Admin modifiziert die Produktinformationen.
6. Der Admin sendet die bearbeiteten Informationen ab.
7. Das System zeigt eine Erfolgsmeldung an.

Alternativ-
szenarien

5a. Die Produktinformationen enthalten Fehler im Zeichen-
satz.

5a1. Eine Fehlermeldung wird angezeigt und der Admin
gebeten die Fehler zu beheben.

5a2. Weiter bei 5.

Alternativ-
szenarien

5a. Der Admin klickt auf den „Cancel“-Button und bricht die
Bearbeitung ab.

5a1. Die Form wird geschlossen und die originalen Infor-
mationen bleiben unverändert.

Nachbedingung • Die Produktinformationen für das ausgewählte Template
wurden in der Datenbank gespeichert.

Tabelle A.16: Produktinformationen eines Templates bearbeiten (uc/16)

82

A Anhang

Anwendungsfall Template zum Shop hinzufügen (uc/17)

Akteure Admin

Vorbedingung • Der Admin ist angemeldet.

Hauptszenario 1. Der Admin klickt auf den „Add Product“-Button.
2. Das System fragt nach den erforderlichen Produktinfor-
mationen.
3. Der Admin gibt die erforderlichen Informationen ein.
4. Der Admin schickt die Informationen über den „Submit“-
Button an das System.
5. Das System legt mithilfe der Informationen und Dateien
ein neues Template an.
6. Eine Erfolgsmeldung für jede einzelne Datei wird ange-
zeigt.
7. Die Form der Produktinformationen wird wieder zurück-
gesetzt.

Alternativ-
szenarien

3a. Der Admin gibt fehlerhafte Informationen an. (bspw. Zei-
chensatz)

3a1. Der Admin wird gebeten die Informationen zu kor-
rigieren.

3a2. Weiter bei 3.

Alternativ-
szenarien

3a. Der Admin gibt nicht alle benötigten Metadaten an.
3a1. Der Admin versucht über den „Submit“-Button die

Template hochzuladen.
3a2. Eine entsprechende Fehlermeldung wird angezeigt

und der Submit-Prozess blockiert.
3a3. Weiter bei 3

Alternativ-
szenarien

3a. Der Admin lädt keine Haupt-Audiospur hoch.
3a1. Der Admin versucht über den „Submit“-Button die

Template hochzuladen.
3a2. Eine entsprechende Fehlermeldung wird angezeigt

und der Submit-Prozess blockiert.
3a3. Weiter bei 3

Alternativ-
szenarien

4a. Beim Anlegen wurde vom Admin kein Bild hinzugefügt.
4a1. Das System benutzt ein Standardbild für das Tem-

plate.
4a2. Weiter zu 4.

Nachbedingung • Das neue Template wurde erfolgreich dem Shop hinzuge-
fügt.
• Das Template und alle erforderlichen Daten wurden in der
Datenbank angelegt.

Tabelle A.17: Template zum Shop hinzufügen (uc/17)
83

A Anhang

Anwendungsfall Alle getätigten Bestellungen anzeigen (uc/18)

Akteure Admin

Vorbedingung • Der Admin ist angemeldet.

Hauptszenario 1. Der Admin navigiert zum „Orders“-Button und klickt die-
sen.
2. Das System zeigt eine Liste aller von Käufern getätigten
Bestellungen an.

Alternativ-
szenarien

3a. Es sind keine Bestellungen vorhanden.
3a1. Eine Meldung wird angezeigt, die darauf hinweist,

dass es noch keine Bestellungen gibt.

Alternativ-
szenarien

1a. Der Admin navigiert zur Adresse von Kibana.
1a1. Der Admin schaut sich das Kibana-Dashboard zu

den Bestellungen an.

Nachbedingung • Eine Liste aller von Käufern getätigten Bestellungen wurde
dargestellt.

Tabelle A.18: Alle getätigten Bestellungen anzeigen (uc/18)

84

Glossar

2PC (Two-Phase Commit) Ein Transaktionsprotokoll, welches die Datenkonsistenz in
einem verteilten System sicherstellt. Dabei müssen alle beteiligten Akteure einer
Transaktion zugestimmt haben, um sie durchzuführen.

Base64 Ein Codierungsverfahren, welches Binärdaten in Textdaten umwandelt.

Cluster Bezeichnet den Verbund mehrerer Server zu einer Einheit.

Continuous Deployment (CD) Ein Entwicklungsprozess, der auf Continuous Integrati-
on aufbaut und die Software automatisiert in die Produktionsumgebung bereitstellt.

Continuous Integration (CI) Ein Entwicklungsprozess, bei dem Codeänderungen in ein
gemeinsames Repository zusammengeführt und automatisiert getestet werden.

CORS CORS (Cross-Origin Resource Sharing) ist ein Sicherheitsmechanismus, der auf
HTTP-Headern basiert und es Webbrowsern ermöglicht, Ressourcen von einer an-
deren Ursprungsdomäne zu laden, als der, von der die Webanwendung stammt.

CSRF CSRF (Cross-Site Request Forgery) ist ein Angriff, bei dem ein bösartiger Akteur
im Namen eines authentifizierten Benutzers unbemerkte Anfragen an eine Weban-
wendung sendet, um unerwünschte Aktionen durchzuführen.

Dependency Injection Entwurfsmuster zur Bereitstellung von Abhängigkeiten an eine
Klasse von außen und zur Laufzeit.

Deployment Als Deployment wird der Prozess der Installation, Konfiguration, Bereit-
stellung und Wartung einer Software in der Produktionsumgebung bezeichnet.

Deployment-Pipeline Automatisierte Abfolge von Prozessen zur Bereitstellung von Soft-
ware. Grundlage für Continuous Deployment.

85

Glossar

Dirty Read Lesezugriff einer Transaktion von Daten, die von einer anderen Transaktion
geändert, aber noch nicht abgeschlossen wurden.

DNS Steht für Domain Name System und definiert ein System, welches Domainnamen
in IP-Adressen übersetzt.

Docker Docker ist eine Plattform zur Containerisierung von Anwendungen. Diese können
in einer isolierten Umgebung erstellt und ausgeführt werden.

Docker-Image Ein Docker-Image ist ein Paket für eine Anwendung, welches alle Abhän-
gigkeiten enthält, die diese Anwendung benötigt, um ausgeführt zu werden. Auf
Basis dieses Images kann Docker die Anwendung in einem Container ausführen.

Endpunkt Ein Zugangspunkt in einem System, über den Daten gesendet und empfangen
werden können.

Healthcheck Eine Methode zur Überprüfung der Gesundheit und Verfügbarkeit der An-
wendung, beispielsweise über Endpunkte.

HTTP HTTP (Hypertext Transfer Protocol) ist ein Netzwerkprotokoll, das die Kom-
munikation und Datenübertragung zwischen Clients und Servern definiert.

HTTP-Header HTTP-Header liefern zusätzliche Informationen zu einer HTTP-Anfrage
oder Antwort.

Java Eine beliebte objektorientierte Programmiersprache für verschiedenste Anwendun-
gen.

JavaScript Eine Skriptsprache, die für die Entwicklung von Webanwendungen verwendet
wird.

JSON-Web-Token (JWT) Ein standardisiertes Tokenformat auf Basis von JSON, das
zur sicheren Übertragung von Authentifizierungs- und Autorisierungsinformationen
zwischen Clients und Servern dient und durch eine digitale Signatur geschützt ist.

JUnit Ein Framework für das Testen von Java-Anwendungen.

Key Value Store Eine Datenbank, die Daten in Form von einzigartigen Schlüssel-Wert-
Paaren speichert.

86

Glossar

Kubernetes Kubernetes ist eine Orchestrierungsplattform für Container-Anwendungen,
die Aspekte wie Betrieb und Skalierung automatisiert.

LAMP-Stack Kombination aus Linux, Apache, MySQL und PHP zur Entwicklung von
Webanwendungen.

Mixing Prozess des Abmischens aller Spuren einer Musikproduktion um ein angenehmes
Klangbild zu erzeugen.

Monitoring Kontinuierliche Überwachung und Analyse eines Systems.

Nachrichtenbroker Software, welche Nachrichten zwischen verschiedenen Anwendungen
oder Systemen übermittelt und so asynchrone Kommunikation ermöglicht.

Public Key Ein öffentlicher Schlüssel, der in der asymmetrischen Kryptografie verwendet
wird, um Daten zu verschlüsseln oder digitale Signaturen zu überprüfen.

Registry Eine Registry oder Container-Registry ist ein Speicherort für Container-Images.
Docker verwendet die Registry, um die Images abzurufen und sie in Containern
auszuführen.

REST REST (Representational State Transfer) ist ein Architekturstil für die Kommu-
nikation zwischen Systemen, der auf dem HTTP-Protokoll basiert und sich auf das
Ressourcenmanagement konzentriert.

SaaS Bei Saas (Software as a Service) wird eine fertige Softwareanwendung als Dienst
über das Internet bereitgestellt.

Saga Ein Entwurfsmuster, welches die Datenkonsistenz in einem verteilten System si-
cherstellt. Dabei wird eine Operation über mehrere Anwendungen in eine Serie von
kleineren reversiblen Transaktionen unterteilt.

Service Discovery Ist der Prozess, bei dem ein System automatisch alle verfügbaren
Services eines Netzwerks findet.

Stack Kombination von Software-Komponenten, die zusammen eine Anwendung oder
Lösung bilden.

87

Glossar

Vue.js Ein progressives JavaScript-Framework zur Erstellung von Benutzeroberflächen
und Single Page Applications.

XSS Cross-Site Scripting (XSS) ist ein Angriff bei dem schadhafter Code (meist JavaS-
cript) beispielsweise über Formulare in Webanwendungen eingeschleust und ausge-
führt wird.

88

Erklärung zur selbständigen Bearbeitung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig
verfasst und nur die angegebenen Hilfsmittel benutzt habe. Wörtlich oder dem Sinn
nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich
gemacht.

Ort Datum Unterschrift im Original

89

