> >

MBURG

L I

BACHELOR THESIS
Arseny Yaremenko

Realisierung einer
Microservice-Architektur am
Beispiel einer
E-Commerce-Anwendung fur
Musikproduktionstemplates

FAKULTAT TECHNIK UND INFORMATIK
Department Informatik

Faculty of Engineering and Computer Science
Department Computer Science

HOCHSCHULE FUR ANGEWANDTE
WISSENSCHAFTEN HAMBURG

Hamburg University of Applied Sciences

Arseny Yaremenko

Realisierung einer Microservice-Architektur am
Beispiel einer E-Commerce-Anwendung fir
Musikproduktionstemplates

Bachelorarbeit eingereicht im Rahmen der Bachelorpriifung
im Studiengang Bachelor of Science Angewandte Informatik
am Department Informatik

der Fakultdt Technik und Informatik

der Hochschule fiir Angewandte Wissenschaften Hamburg

Betreuender Priifer: Prof. Dr. Stefan Sarstedt
Zweitgutachter: Prof. Dr. Olaf Zukunft

Eingereicht am: 19. August 2024

Arseny Yaremenko

Thema der Arbeit

Realisierung einer Microservice-Architektur am Beispiel einer E-Commerce-Anwendung
fiir Musikproduktionstemplates

Stichworte

Microservices, E-Commerce, Software Engineering, Containerization

Kurzzusammenfassung

Die vorliegende Arbeit stellt eine Microservice-Architektur fiir eine E-Commerce-
Anwendung vor, die speziell fiir Musikproduktionstemplates entwickelt wurde. Sie durch-
lauft dabei sdmtliche Schritte des Software-Engineering-Prozesses: von der Anforderungs-
ermittlung tiber die Konzeption der Anwendung bis hin zur Realisierung mit dem Ziel
eines funktionsfahigen Prototyps. Im Rahmen einer Evaluierung werden, neben der Er-
fiilllung der Anforderungen, die Vor- und Nachteile dieser Architektur fiir das gegebene
Problem untersucht und alternative Ansétze besprochen. Zum Abschluss werden mogli-

che Verbesserungen des Prototyps vorgeschlagen.

Arseny Yaremenko

Title of Thesis

Implementation of a microservice architecture using the example of an e-commerce app-

lication for music production templates

Keywords

Microservices, E-Commerce, Software Engineering, Containerization

Abstract

This work introduces a microservice architecture for an e-commerce application spe-

cifically designed for music production templates. It follows all steps of the software

iii

engineering process: from gathering requirements to designing and implementing the ap-
plication, with the goal of creating a functional prototype. In addition to evaluating how
well the requirements are met, this work examines the advantages and disadvantages
of this architecture for the given problem and discusses alternative approaches. Finally,

potential improvements to the prototype are suggested.

v

Inhaltsverzeichnis

Abbildungsverzeichnis viii
Tabellenverzeichnis ix
Abkiirzungen X
1 Einleitung 1
1.1 Problemstellung 1
1.2 Motivation 1
1.3 Zielsetzung 2
1.4 Struktur der Arbeit 2

2 Anforderungsanalyse 3
2.1 Funktionsweise 3

2.2 Stakeholder 4
2.3 Systemkontext 5
2.4 Anforderungen 6
2.4.1 Funktionale Anforderungen 6

2.4.2 Nicht-funktionale Anforderungen 8

2.5 Problem-Doméne 9

3 Systemdesign 11
3.1 Verwandte Arbeit 11
3.2 Architekturstil 12
3.2.1 Monolithische Architektur 13

3.2.2 Microservice-Architektur oL 13

3.2.3 Weitere Architekturanséitze 14

3.2.4 Wahl des Architekturstils 14

3.3 Bausteinsicht 15
3.4 Monitoring 18

Inhaltsverzeichnis

3.5 Kommunikation oo 20
3.5.1 Synchrone Kommunikation 20
3.5.2 Asynchrone Kommunikation 22
3.5.3 Wahl der Kommunikationsform 23

3.6 Verteilte Transaktionen und Sagas 24

3.7 Datenmodell 25

3.8 Warenkorb. 25

3.9 Sicherheit 26

3.10 Laufzeitsicht 27

3.11 Deployment 32
3.11.1 Bereitstellungsoptionen oL 32
3.11.2 Docker 34
3.11.3 Kubernetes 35
3.11.4 Bereitstellung in der Cloud 39
3.11.5 Verteilungssichto 0o 41

4 Realisierung 45

4.1 Backend-Framework o 45
411 Services 46

4.2 Sicherheit 47

4.3 Tests o e 48
4.3.1 Konfiguration 49
4.3.2 Komponententests oL 49
4.3.3 Komponententests in Integration 50
4.3.4 End-To-End Tests 50

4.4 Frontend-Framework L 50
4.4.1 Datenpersistenz L 52
442 Routing 52
443 Designo 53
4.4.4 Audiospur 53
4.4.5 Kommentar-Icons oo 53
4.4.6 Kommentare 54
4.4.7 Upload. 54
4.4.8 Weitere Frontend-Komponenten 55

4.5 Betrieb. 55

vi

Inhaltsverzeichnis

4.6 Hiirden der Realisierung oL

5 Evaluation

4.6.1
4.6.2
4.6.3
4.6.4
4.6.5
4.6.6
4.6.7

Spring Session-Tests
Elasticsearch o
Minikube
Filebeat auf GKE
Verbindung von GKE zu Public Cloud SQL
Verbindung von Ingress zum API-Gateway

Interaktion der Session-Cookies mit dem Browser

5.1 Funktionale und nicht-funktionale Anforderungen

5.2 Kritik an der Microservice-Architektur
5.3 Fazit
6 Ausblick
6.1 Validierung und Simulationsbehebung
6.2 Sicherheit
6.3 Resilienz
6.4 Monitoring und Health-Checks
Literatur
A Anhang

A.1 Spezifikation der Use Cases

Glossar

Selbststiandigkeitserklarung

59
59
61
63

64
64
65
66
66

67

72
72

85

89

vii

Abbildungsverzeichnis

2.1 UML Systemkontextdiagramm des Template Shops 5
2.2 UML Use-Case Diagramm fiir den Template Shop 7
2.3 Doménenklassendiagramm fiir den Template Shop 10
3.1 Bausteinsicht fiir das Template Shop-Backend 1 16
3.2 Bausteinsicht fiir das Template Shop-Backend 2 17
3.3 Bausteinsicht fiir den Template Shop 17
3.4 UML Sequenzdiagramm fiir das Loschen eines Templates (uc/15) 28
3.5 UML Sequenzdiagramm fiir das Hinzufiigen eines Templates zum Shop
(uc/17) 29
3.6 UML Sequenzdiagramm fiir das Bearbeiten eines Templates (uc/16) . . . 30
3.7 UML Sequenzdiagramm fiir das Kaufen eines Templates (uc/9) 31
3.8 Kubernetes Architektur [Wel24, S. 47 36
3.9 Verteilungssicht fiir den Template Shop 42
3.10 Verteilungssicht fiir das Template Shop-Backend 1 43
3.11 Verteilungssicht fiir das Template Shop-Backend 2 44

viii

Tabellenverzeichnis

A1 Registrieren (uc/1) L 72
A2 Anmelden (uc/2) 73
A.3 Template-Produktseite besuchen (uc/3) 73
A.4 Tracks eines Templates abspielen und stoppen (uc/4) 74
A.5 Kommentare zu einem Track anzeigen (uc/5) 75
A.6 Template zum Warenkorb hinzufiigen (uc/6) 76
A.7 Warenkorb anzeigen (uc/7) Lo o 76
A.8 Template aus dem Warenkorb 16schen (uc/8) 7
A.9 Template kaufen (uc/9) Lo 78
A.10 Kommentieren von Tracks eines Templates (uc/10) 79
A.11 Eigene Kommentare zu einem Track 16schen (uc/11) 79
A.12 Eigene Kommentare zu einem Track bearbeiten (uc/12) 80
A13 Abmelden (uc/13) 80
A.14 Eigenen Account 16schen (uc/14) 81
A.15 Template aus dem Shop loschen (uc/15) 81
A.16 Produktinformationen eines Templates bearbeiten (uc/16) 82
A.17 Template zum Shop hinzufiigen (uc/17) 83
A.18 Alle getitigten Bestellungen anzeigen (uc/18) 84

1X

Abkiirzungen

DSGVO Datenschutz-Grundverordnung.

JPA Java Persistence API.

JVM Java Virtual Machine.

MVC Model-View-Controller.

MVVM Model-View-ViewModel.

VM Virtuelle Maschine.

VPC Virtual Private Cloud.

1 Einleitung

1.1 Problemstellung

SaaS-Onlineshops wie Shopify bieten wenig Mdoglichkeit der Konfigurierung, wenn es um
den Verkauf von Templates fiir Musikproduktionen geht. Templates beschreiben Projekt-
Dateien von Musikproduktionen, welche Kunden die Mdglichkeit bietet, in die Spuren
und Effekte einer Musikproduktion zu blicken. Will man sich von der Konkurrenz ab-
heben, benétigt man hier eine mafgefertigte Losung mit speziellen Features, wie z. B.
einer Kommentarfunktion auf allen Einzelspuren der Templates. Somit kénnen Kunden
sich schnell vom Produkt iiberzeugen, da sie anhand aller Einzelspuren genau sehen kon-
nen, was sie bekommen. Dennoch muss die Anwendung selbst hochverfiighar und schnell

anpassungsfahig sein, um gegen spezialisierte Anbieter anzukommen.

1.2 Motivation

Da ich mich hobbyméfig selbst mit Musikproduktion beschéftige und solch einen On-
lineshop erstellen méchte, habe ich mir schon einige Konkurrenten angeschaut sowie

zahlreiche Templates zu Lernzwecken erworben.

Oft ist ein Problem, dass der Inhalt solcher Templates nicht transparent dargestellt wird.
Dabei ist schon mal vorgekommen, dass der Syntheseweg bestimmter wichtiger Sounds
gar nicht gezeigt wird, sondern nur als Audiospur vorliegt. Wiirde man sich als Kunde
vorher alle Spuren anhéren und kommentieren kénnen, wiirde es die Kaufentscheidung des
Kunden und das Produkt selbst positiv beeinflussen. Viele negative Kommentare einer
Spur kénnten beispielsweise den Verkédufer dazu bewegen, Anpassungen vorzunehmen

oder sich mit den Kunden beziiglich seiner Mixing-Entscheidungen auszutauschen.

1 FEinleitung

1.3 Zielsetzung

Ziel ist die Realisierung eines lauffahigen Online-Shop-Prototyps fiir Musikproduktion-
stemplates auf Grundlage einer Microservice-Architektur in der Cloud. Dabei werden
sdmtliche Techniken sowie Vor- und Nachteile, die mit einer Microservice-Architektur

einhergehen, evaluiert und der Weg zur Umsetzung des Prototyps erldutert.

1.4 Struktur der Arbeit

Die Arbeit ist in sechs Kapiteln gegliedert. Zunéchst behandelt Kapitel 1 die Problem-
stellung sowie die Zielsetzung der Arbeit. Darauf aufbauend folgt in Kapitel 2 eine um-
fassende Anforderungsanalyse, in der die grundlegenden Anforderungen und Randbedin-
gungen des Systems untersucht werden. Hierbei werden auch erste Diagramme wie das

Systemkontext- und das Doménenklassendiagramm erstellt.

Kapitel 3 widmet sich dem Systemdesign und beleuchtet die Architektur sowie die techni-
schen Details des Systems. Anhand des arc42-Templates werden hier verschiedene Sicht-
weisen des Systems betrachtet und alle Entscheidungen vom Architekturstil bis zur Be-

reitstellung spezifiziert und begriindet.

In Kapitel 4 wird die konkrete Umsetzung des Systems vorgestellt. Dies umfasst die
Auswahl der Backend- und Frontend-Technologien sowie die Implementierung der Mi-
croservices. Die Herausforderungen und Losungsanséitze, die wahrend der Entwicklung

auftraten, werden ebenfalls erldutert.

Das fiinfte Kapitel konzentriert sich auf die Evaluation des Systems. Hier wird der Proto-
typ hinsichtlich der Erfiillung der definierten Anforderungen gepriift und die umgesetzten

Losungen kritisch bewertet.

Abschliefend gibt das letzte Kapitel einen Ausblick auf zukiinftige Entwicklungen und

mogliche Verbesserungen, die fiir den Produktionsbetrieb relevant sein kénnten.

2 Anforderungsanalyse

Die erste Phase des Softwareentwicklungsprozesses ist die Anforderungsanalyse. In Zu-
sammenarbeit mit den Stakeholdern werden Anforderungen an das System gesammelt
und eine Systemspezifikation ausgearbeitet. [Som18, S.5] Diese Spezifikation, oder auch
Pflichtenheft genannt, definiert alle funktionalen und nicht-funktionalen Anforderungen,
welche das System leisten soll, sowie die Randbedingungen, unter denen das System ope-
riert. Damit wird eine klare und rechtlich wirksame Vereinbarung zwischen Entwicklern
und Kunden getroffen, die am Ende durch einen Validierungsprozess auch iiberpriifbar
sein soll. Im folgenden Kapitel wird genau solch eine Spezifikation ausgearbeitet, um die

Grundlage fiir den weiteren Entwicklungsprozess zu schaffen.

2.1 Funktionsweise

Die Webanwendung ermdoglicht es dem Kunden, seine Musikproduktionstemplates hoch-
zuladen und Ké&ufern online zur Verfiigung zu stellen. Die jeweilige Produktseite eines
Templates enthédlt Metadaten zum Template, ein Bild, eine Gesamtspur der Musikpro-
duktion sowie alle Einzelspuren. Das heifst, dass all diese Informationen vorher in einem
Uploadformular angegeben und die jeweiligen Spuren hochgeladen werden miissen. Auf
der Homepage werden dann alle Templates als Bilder angezeigt, welche durch einen Klick

auf die jeweilige Verkaufsseite des Templates fiihren.

Jede Spur der Produktseite kann vom Nutzer oder Kunden kommentiert werden. Die
Darstellung der Kommentare erfolgt ahnlich wie bei SoundCloud: Jeder Kommentar eines
Nutzers wird zuerst durch ein Nutzerbild auf der Audiospur angezeigt, wobei die Position
des Bildes durch die vergangene Zeit der Audiospur bestimmt wird. Fahrt man mit der
Maus iiber das Bild, 6ffnet sich ein Fenster, welches den Kommentar anzeigt. Die Bilder

selbst werden dhnlich wie bei MS-Teams als Initialen der Nutzer wiedergegeben.

2 Anforderungsanalyse

Jede Produktseite enthélt einen Add to Cart-Button, welcher das Produkt in den virtu-
ellen Warenkorb des Nutzers hinzufiigt. Auf der Seite des Warenkorbs kann der Nutzer
alle seine Produkte bearbeiten und auf die Checkout-Seite gelangen, wo ein Kauf mit
den dafiir notwendigen Kundeninformationen durchgefiihrt werden kann. Zusammenge-
fasst wird eine klassische E-Commerce-Anwendung entwickelt, welche aber hinsichtlich

der Produktseite den Nutzern und Kunden zusatzliche Features bereitstellt.

2.2 Stakeholder

Stakeholder sind die Personen oder Organisationen, die direkten oder indirekten Einfluss
auf die Anforderungen des Systems haben. [PR15, S.4] Um also moglichst alle notwen-
digen Anforderungen abzudecken, miissen zuerst die wichtigsten Stakeholder ermittelt

werden:

Die beiden wichtigsten Stakeholder sind der Kunde der Anwendung und die Kaufer der
Templates. Beide Rollen sind Musikproduzenten und werden unter anderem mafigebli-
chen Einfluss auf zukiinftige Versionen der Anwendung haben. Da der Prototyp erst mal
nur fiir einen Kunden und nicht als Massenprodukt fiir viele Kunden gedacht ist, wird
hier ein Produktmanager nicht berticksichtigt. Ein weiterer wichtiger Stakeholder sind
die Entwickler. Diese setzen die funktionalen und nicht-funktionalen Anforderungen um
und beeinflussen die Gesamtqualitit des Produkts. Der Begriff des Entwicklers ist weit
gefasst, weshalb man diesen Stakeholder je nach Aufgabentyp wie beispielweise Tester
und Operator in Unterrollen aufteilen konnte. Da dieses Projekt aber erst mal nur von
einer Person entwickelt wird, werden auf Untergruppen verzichtet. Die letzten nennens-
werten Stakeholder sind die IT-Recht-Spezialisten. Sie stellen als Berater sicher, dass die
Anwendung rechtskonform in Betrieb genommen wird. Dies ist notig, da der Rechteka-
talog fiir eine E-Commerce-Anwendung komplex ist und sich stets wandelt. Auerdem
konnten die hohen Bufsen bei Verstofen fiir kleinere Unternehmen existenzbedrohend

sein.

Zusammengefasst erhalten wir folgende Stakeholder, welche die Anforderungen mitbe-

stimmen:

e Kunde der Anwendung

e Nutzer der Anwendung bzw. Kéufer der Produkte des Kunden

2 Anforderungsanalyse

e Entwickler

e IT-Recht-Spezialisten

2.3 Systemkontext

Im Rahmen des Requirements Engineering wird der Systemkontext bestimmt. Der Sys-
temkontext zeigt, welche Aspekte mit dem eigenen System interagieren und legt somit
eine Kontextgrenze fest, die fiir die Definition der Anforderungen relevant ist. Aspek-
te waren beispielsweise Stakeholder oder Fremdsysteme, mit denen das eigene System
agiert. [PR15, S.13-16]

Abbildung 2.1: UML Systemkontextdiagramm des Template Shops

Abbildung 2.1 zeigt das Systemkontextdiagramm unseres Systems, welches wir als Tem-
plate Shop bezeichnen. Dieses System interagiert mit drei Akteuren: dem Guest, dem
User und dem Admin. Ein Guest ist ein Nutzer, der die Anwendung aufruft, aber noch
kein eigenes Konto besitzt und ohne Kundenkonto Kéufe tétigen kann. Der User ist ein
registrierter Guest, der zusétzlich die Audiospuren der Templates kommentieren kann.
Der Admin ist der Kunde des Systems, der seine Produkte fiir den Template Shop anlegt

und den Guests sowie Usern zum Verkauf anbietet. Fremdsysteme wie ein Payment- oder

2 Anforderungsanalyse

E-Mail-Service-Provider werden nicht dargestellt, da sie in der aktuellen Version dieses

Prototyps nicht verwendet werden.

2.4 Anforderungen

In Zusammenarbeit mit den Stakeholdern wurden die nétigen Anforderungen an das Sys-
tem ausgearbeitet. Dabei wurden funktionale Anforderungen und nicht-funktionale An-
forderungen definiert: Wahrend funktionale Anforderungen eine dem Benutzer zur Ver-
fligung gestellte Funktionalitét des Systems beschreiben, beziehen sich nicht-funktionale
Anforderungen auf Figenschaften des Systems, die nicht von funktionalen Anforderungen
abgedeckt werden. [PR15, S.8-9]

2.4.1 Funktionale Anforderungen

Um die funktionalen Anforderungen iibersichtlich und verstédndlich darzustellen, wurde
ein Use-Case-Diagramm erstellt. Das Use-Case-Diagramm baut auf dem Systemkontext-
Diagramm auf und stellt alle Funktionalitdten des Systems mit den Interaktionspartnern
bzw. Aspekten in Beziehung. [PR15, S.38|

2 Anforderungsanalyse

Abbildung 2.2: UML Use-Case Diagramm fiir den Template Shop

2 Anforderungsanalyse

Abbildung 2.2 stellt das Use-Case-Diagramm fiir den Template Shop dar. Daraus werden
die einzelnen Use Cases und deren Beziehung zu den Akteuren im System ersichtlich. Da
ein Use Case selbst jedoch wenig Details zu einer Funktionalitét bietet, ist es notig, diese
zu spezifizieren. Beispielsweise ware es sinnvoll, Haupt- und Alternativablaufe sowie Vor-
und Nachbedingung der Funktionalitdt detailliert zu beschreiben, um Klarheit im Ent-
wicklungsprozess zu schaffen. [PR15, S.72-73| Die Spezifikation der 18 Use Cases findet
sich aufgrund der Groéfse im Anhang wieder und orientiert sich an einer vereinfachten
Version der Referenzschablone aus [PR15, S.74].

2.4.2 Nicht-funktionale Anforderungen

Eine vollsténdige Beachtung der nicht-funktionalen bzw. Qualitdtsanforderungen ist wich-
tig, da diese mafgeblichen Einfluss auf Kosten und Architektur des Systems haben.
[Ebe22, S.83] Des Weiteren ist es notig, die Randbedingungen fiir das System zu de-
finieren. Randbedingungen sind Bedingungen, die unseren Losungsraum die vorgegebe-
nen Anforderungen umzusetzen einschranken. [PR15, S.9] Ein Beispiel wéren Richtlinien
wie die DSGVO, die regelt, wie wir mit personenbezogenen Daten im System umgehen
miissen. Im Folgenden wird ein Uberblick iiber die Qualititsanforderungen und Randbe-

dingungen des Systems gegeben.

Qualitatsanforderungen

QA /1 Das System soll hochverfiighar sein.
QA /2 Das System soll einfach horizontal skalierbar sein.

QA /3 Das System ermoglicht einen schnellen Release von neuen Versionen ohne Aus-
fallzeit.

QA /4 Das System soll einfach zu warten sein.

QA /5 Das System soll beobachtbar sein.

Randbedingungen

2 Anforderungsanalyse

RB/1

RB/2

RB/3

RB/4

RB/5

Ein Fremdsystem fiir den Payment- und E-Mail-Service-Provider wird nicht ver-

wendet, sondern durch Konsolenausgaben im eigenen System selbst simuliert.

Das eigentliche Produkt (ZIP-Datei des Templates) wird nicht hochgeladen, da

der Verkauf nur simuliert wird.

Benutzerkommentare werden als Initialen des Benutzernamens entlang der Spur
angezeigt. Wenn der Benutzer mit der Maus iiber die Initialen fahrt, wird eine

Box eingeblendet, die den Kommentar anzeigt.

Die Initialen und die Benutzerkommentare verhalten sich nicht responsiv zum
Browserfenster, die richtige Darstellung ist also nur bei voller Fenstergrofle zu

gewihrleisten.

Die Authentifizierung erfolgt durch eine einfache Eingabe von Benutzername

und Passwort.

2.5 Problem-Domane

Nachdem wir den Systemkontext und die Anforderungen des Systems definiert haben, ist

es wichtig, strukturelle Softwaremodelle zu erstellen. Sie geben uns einen Uberblick {iber

die Komponenten des Systems und deren Beziehung zueinander. [Som18, S.173| Ein Mo-

dell, welches uns einen guten Uberblick iiber das Problemfeld der Anforderungen schafft,

ist das Doménenklassendiagramm. Dieses UML-Klassendiagramm stellt die wesentlichen

Entitédten der Problemdoméne dar, einschliefslich ihrer Attribute und Beziehungen zuein-

ander, ohne dabei Methoden oder Verhalten der Klassen zu beschreiben.

2 Anforderungsanalyse

Abbildung 2.3: Doménenklassendiagramm fiir den Template Shop

Nach Abbildung 2.3 enthélt ein Template demnach genau ein Bild (Image) und eine oder
mehrere Spuren (Track). Die Spuren selbst enthalten keine oder beliebig viele Kommen-
tare (Comment). Diese Assoziationen sind als Komposition modelliert, da das Loschen

eines Templates auch das zugehorige Bild, die Spuren und die Kommentare entfernt.

Im Frontend hat der Nutzer (User) die Moglichkeit, Kommentare und Bestellungen (Or-
der) zu erstellen. Die Modellierung zeigt jedoch nur die Assoziationen des Kommentars
und der Bestellung zu einem Nutzer, da der aktuelle Prototyp keine Funktionen zur

Anzeige aller Kommentare und Bestellungen eines Nutzers bietet.

Die Bestellung enthélt ein oder mehrere Produkte (Orderltems) und verweist auf eine
Zahlungstransaktion (paymentTransaction). Diese Assoziation wird nicht als Kompositi-
on dargestellt, da die Zahlungstransaktion auch nach dem Entfernen der Bestellung im
System verbleiben soll. Das Loschen einer Bestellung fiihrt jedoch zum Entfernen der

zugehorigen Produkte.

10

3 Systemdesign

Im folgenden Kapitel wird das System entworfen, welches die zuvor ermittelnden An-
forderungen erfiillen soll. Die Dokumentation orientiert sich am arc42-Template, wel-
che eine Vorlage zur Beschreibung und Entwicklung von Software-Architekturen bietet.
[SH11, S.47-48] Dabei wird das System aus verschiedenen Sichten betrachtet, welche
unterschiedliche Aspekte des Systems sichtbar machen. Die Sichten basieren auf dem
,A+1“-Sichtenmodell von Krutchen, welche Grundlage einer vollstdndigen Entwurfsdoku-
mentation sind. [Som18, S.198-199|

3.1 Verwandte Arbeit

Bevor wir uns auf den spezifischen Systementwurf konzentrieren, sollten wir uns einen
Uberblick iiber verwandte wissenschaftliche Arbeiten verschaffen, die #hnliche Probleme
behandeln. Auf diese Weise kénnen wir mogliche Architekturansétze fiir unser System

besser evaluieren.

Obwohl es viele wissenschaftliche Arbeiten zu Microservices gibt, sind solche Arbeiten in
Bezug auf E-Commerce seltener vorzufinden. Ein geeignetes verwandtes Paper ist den-
noch ,Microservice Architectures for Scalability, Agility and Reliability in E-Commerce
von OTTO. [HS17] In diesem Paper wird die Umstellung der monolithischen Architek-
tur auf eine Microservice-Architektur fiir die E-Commerce-Plattform OTTO behandelt.
Das Paper ist relevant, da es eine Losung fiir &hnliche nicht-funktionale Anforderungen
bereitstellt, wie sie auch fiir unser System definiert wurden. Im Folgenden folgt eine

Zusammenfassung des Papers:

Im einleitenden Abschnitt wird die Microservice-Architektur mitsamt wichtigen Aspekten
beschrieben: Diese ist ein System aus vielen kollaborierenden Microservices, die jeweils
eine Implementierung fiir einen Geschéaftsbereich bieten. Sie zeichnen sich durch lose

Kopplung und eventueller Datenkonsistenz aus, um so hohe Verfiigbarkeit zu ermdoglichen.

11

3 Systemdesign

Gleichzeitig fordert diese Architektur die Skalierungsméglichkeiten und Fehlertoleranz
der Gesamt-Anwendung, da Fehler nicht auf das gesamte System propagiert werden. Es
wird unabhéngiges Arbeiten durch cross-funktionale Teams gewéhrleistet, wihrend die
Bereitstellung iiblicherweise mithilfe von Containerisierung und Cluster-Management-

Infrastrukturen erfolgt.

Im néchsten Abschnitt des Papers wird detailliert auf OTTOs Ubergang zur Microservice-

Architektur eingegangen:

Die Entscheidung, von einer monolithischen Architektur zu Microservices iiberzugehen,
wurde durch nicht-funktionale Anforderungen wie Skalierbarkeit, Performance und Aus-
fallsicherheit sowie die Notwendigkeit, Mitarbeiterkapazitéiten effizienter zu nutzen, ange-
trieben. OTTO nutzte Conway’s Law, indem mehrere separate Teams an vertikalen Mi-
croservices arbeiteten, die jeweils eine Geschéftsdoméne abdeckten. Die Kommunikation
zwischen diesen Services erfolgt {iber einen Backend-Integration-Proxy, der REST APIs
verwendet, um hohe Verfiigbarkeit sicherzustellen und die Ausbreitung von Fehlern zu
verhindern. Durch die Vermeidung gemeinsamer Zusténde und Infrastruktur verbesser-
te sich die horizontale Skalierbarkeit und Ausfallsicherheit des Systems. Kontinuierliche
und sichere Deployments wurden durch eine Test- und Delivery-Pipeline gewéhrleistet.
Zudem verfiigt jedes Team iiber ein Dashboard zur Uberwachung wichtiger Metriken
ihrer Microservices. Abschliefsend ist eine dynamische Skalierung basierend auf CPU-
Auslastung und Arbeitslastschwankungen implementiert, welche optimale Leistung ohne

operationelle Eingriffe gewahrleistet.

Im letzten Abschnitt wird das Paper dann noch einmal zusammengefasst. Dabei wird be-
tont, dass Microservice-Architekturen trotz ihrer Vorteile mit hohen Kosten verbunden
sind: Die Aufrechterhaltung von Konsistenz, Uberwachung und Fehlertoleranz in einem
verteilten System erfordert eine hohe operationelle Komplexitét, die von hoch qualifizier-

ten Entwicklerteams bewaltigt werden muss.

Auf Basis der im Paper vorgestellten Losungsansétze fiir unsere Anforderungen wird im

néchsten Abschnitt ein Architekturstil fiir unser System ausgewahlt.

3.2 Architekturstil

Die Softwarearchitektur legt grundlegende Prinzipien und Strukturen fest, die langfristige

Auswirkungen auf die Systemqualitit und Systementwicklung haben. [Tre21, S.2-3] Dies

12

3 Systemdesign

schliefst auch die Erfiillung der Qualitétsanforderungen des Systems mit ein. Daher wird
zunichst ein Uberblick iiber eine Auswahl an Architekturstilen gegeben und anschliefend

eine Entscheidung getroffen.

3.2.1 Monolithische Architektur

Ein lang bewéhrter Ansatz ist die monolithische Architektur. Ein monolithisches Sys-
tem basiert auf einem einzeln entwickelbaren und bereitstellbaren Prozess, was bedeutet,
dass alle Komponenten aus denen die Anwendung besteht, als eine Einheit in Betrieb
genommen werden. [New21, Kapitel 1.3.1] Die Vorteile dieses Ansatzes sind unter an-
derem ein vereinfachter Test-, Debug- und Entwicklungsprozess, eine gewéhrleistete Da-
tenkonsistenz und Integritéit innerhalb der Anwendung sowie ein vergleichbar einfaches
Deployment. |[New21, Kapitel 1.3.5] Wahrend dieser Stil fiir kleine Anwendungen und
Projekte mit den richtigen Anforderungen ausreichend war, brachte er bei groferen und
komplexeren Projekten Probleme mit sich: Es ist schwieriger, Abhéngigkeiten im Code
abzugrenzen, was paralleles Arbeiten an der Codebasis erschwert. Zudem muss selbst bei
kleinen Anderungen das gesamte System einen Bereitstellungsprozess durchlaufen, was
schnelle Releasezyklen erschwert. Ein weiterer wichtiger Nachteil ist die Skalierung. Be-
notigt eine bestimmte Funktion der Anwendung mehr Ressourcen, um beispielsweise die
Anfragelast abzuarbeiten, so muss dafiir die gesamte Anwendung skaliert werden. [Ricl8,
Kapitel 1.1.3] Dies ist einer der Hauptgriinde, wieso beispielsweise Netflix im Laufe seiner

Lebenszeit auf eine Microservice-Architektur gewechselt ist. [Fri20a)

3.2.2 Microservice-Architektur

Die Microservice-Architektur wird als eine Applikation definiert, welche auf kleine, unab-
héngig von einander entwickelbare und bereitstellbare Prozesse basiert. Es handelt sich
also um ein verteiltes System, in der die Kommunikation iiber leichtgewichtige Mecha-
nismen stattfindet, wie z. B. Rest-APIs. [Marl4| Die vorher genannten Nachteile fallen
dadurch weg: Durch die starken Modul und Zusténdigkeitsgrenzen sind Abhéngigkei-
ten nachvollziehbar, wodurch das parallele Arbeiten in grofseren Teams einfacher wird.
Schnellere Releasezyklen werden dadurch ermoglicht, dass Deployment-Prozesse sich nur
auf einzelne Services beziehen statt der gesamten Anwendung. Einzelne Services kon-
nen nun skaliert werden, wodurch insgesamt an Ressourcen gespart werden kann. [Ricl8,

Kapitel 1.5.1] Die Nachteile dieses Stils spiegeln jedoch die Vorteile der monolithischen

13

3 Systemdesign

Architektur wieder: Als verteiltes System wird Datenintegritdt zum Problem, da jeder
Service seine eigene Datenbank hat und Transaktionen iiber mehrere Services stattfin-
den kénnen. Des Weiteren miissen komplexe Fehlerbehebungsmafnahmen implementiert
werden, da das Netzwerk, tiber denen die Services miteinander kommunizieren, nicht
stabil ist. Die betriebliche Komplexitét eines verteilten Systems ist insgesamt erhéht, da
nun Technologien eingesetzt miissen, die ein verteiltes System verwalten. [Ricl8, Kapitel

1.5.2]

3.2.3 Weitere Architekturansatze

Will man das Beste aus beiden Welten, konnte man einen hybriden Ansatz wéhlen,
indem z. B. einzelne Microservices aus einem Monolithen ausgelagert werden, um so
einzelne bestimmte Funktionalititen kostengiinstig zu skalieren. Dieser hybride Ansatz
findet hiufig dann statt, wenn schrittweise von einer monolithischen Architektur in eine

serviceorientierte Architektur migriert wird. [Ricl8, Kapitel 13.1.2]

Erwéhnenswert ist auch der Modulith, ein Monolith, welcher aber durch sehr gute Co-
depraktiken moglichst modular aufgebaut ist und anhand seiner Struktur interne Funk-

tionalitdten und Abhéngigkeiten klar trennt. [Fri2lc|

Zusammenfassend hat jeder Architekturstil seine Vor-und Nachteile, weshalb es wichtig

ist, diesen von seinen Anforderungen abhéngig zu machen.

3.2.4 Wahl des Architekturstils

Weil wir als Qualitdtsanforderungen Hochverfiighbarkeit, Skalierbarkeit, Agilitdt sowie
Wartbarkeit definiert haben (siehe QA /1 - QA /4) und diese Anforderungen, wie im
verwandten Paper gezeigt, besonders gut durch eine Microservice-Architektur erfiillt wer-
den konnen, fiel die Wahl auf diesen Architekturstil. Wie vorhin erwéhnt, ermdglicht die-
se Architektur die schnelle und kostengiinstige Skalierung einzelner Services und bietet
durch die Nutzung von Orchestrierungssystemen wie Kubernetes eine hohe Verfiigharkeit.
Agilitat wird durch die Moglichkeit schneller Releasezyklen einzelner Versionen gewéhr-
leistet und vereinfachte Wartbarkeit durch die modulare Natur der einzelnen Services.
Die Wichtigkeit der Anforderungen wurde gegeniiber der operationellen Komplexitét ei-

ner Microservice-Architektur vorgezogen.

14

3 Systemdesign

3.3 Bausteinsicht

Die Bausteinsicht als wichtigste Architektursicht stellt alle zu implementierenden Sys-
tembestandteile dar und setzt diese zueinander in Beziehung. Beispiele fiir Bausteine
bzw. Systembestandteile sind Komponenten wie Services oder Datenbanken, aber auch
Artefakte und Schnittstellen. [SH11, S.56]

Die Bausteinsicht entscheidet dariiber, wie die Services strukturiert werden. Diese Struk-
turierung kann entweder nach Subdoménen oder nach Unternehmensfunktionen erfol-
gen. Wéhrend sich Letzteres darauf richtet, welche Funktionalititen das Unternehmen
bietet, wie z. B. die Bereitstellung eines Produktkataloges und somit einem Produktka-
talogservice, betrachtet man im Ersteren die Subdoménen des Unternehmens nach dem
Domain-Driven Design. Dementsprechend wiirde es eine Subdoméne fiir das Produkt-
katalogmanagement geben und somit auch einen Produktkatalogservice. [Ricl8, Kapitel
2.2.2-2.2.3| Es wird deutlich, dass beide Ansétze zum gleichen Ergebnis kommen koénnen.
Der Unterschied liegt hauptséchlich in der Perspektive, aus der die Services strukturiert

werden.

Unser Ansatz in der Bausteinsicht gliedert die Services nach den Unternehmensfunktio-
nen. Jede zentrale Funktionalitit wird demnach durch einen eigenen Service abgedeckt,

dessen Name klar auf den entsprechenden Funktionsbereich hinweist.

Um die Ubersichtlichkeit der Bausteinsicht zu verbessern, wurde sie in drei Teile aufge-
teilt.

15

3 Systemdesign

Abbildung 3.1: Bausteinsicht fiir das Template Shop-Backend 1

Abbildung 3.1 zeigt den ersten Teil des Backends, der die Benutzerverwaltung, Authen-
tifizierung, Kommentarfunktion, Template-Erstellung sowie die Warenkorbfunktionalitat
abdeckt.

Der Einfachheit halber wurde der TrackService mit dem TemplateService sowie der Auth-
Service mit dem UserService fusioniert. Dies ist wichtig, da beide Services stark vonein-
ander abhéngen und eine Aufteilung unnétig viele Netzwerkanfragen und Datenabhén-
gigkeiten mit sich bringen wiirde. Da jeder Service auch seine eigene Datenbank hat,

werden so autonome, weitgehend entkoppelte und gut skalierbare Services geschaffen.

16

3 Systemdesign

Abbildung 3.2: Bausteinsicht fiir das Template Shop-Backend 2

Abbildung 3.2 zeigt den zweiten Teil des Backends, der den Monitoring-Stack, den Check-
out, die Bezahl- und die E-Mail-Simulation abdeckt.

Abbildung 3.3: Bausteinsicht fiir den Template Shop

Abbildung 3.3 zeigt, wie unsere Frontend-Anwendung iiber ein API-Gateway mit den

genannten Backends bzw. Microservices verbunden ist.

17

3 Systemdesign

Das API-Gateway dient als zentraler Zugangspunkt fiir verschiedene Clients und leitet

deren Anfragen an die entsprechenden Services weiter. Dies bietet mehrere Vorteile:

Da das Backend fiir die Clients nur noch eine einzige Adresse bereitstellt, wird der Client-
Code von den Backend-Services entkoppelt und dadurch leichter wartbar. Anderungen
der Backend-Adressen haben keine Auswirkungen auf die Adresse des API-Gateways.
Ahnlich wie beim Facade-Muster leitet das API-Gateway Anfragen von verschiedenen
Clients an spezifische APIs weiter, um deren unterschiedlichen Anforderungen gerecht zu
werden. Beispielsweise benotigen mobile Clients aufgrund geringerer Netzwerkressour-
cen angepasste API-Aufrufe. Zuletzt konnen im API-Gateway weitere Funktionen wie
Request-Logging oder Rate-Limiting implementiert werden. [Ric18, Kapitel 8.1.2-8.2.2]
Fiir diese Entscheidung wurden Nachteile wie die erhohte Komplexitiat und die leicht

verlangerte Anfragedauer durch den zusétzlichen Netzwerk-Hop in Kauf genommen.

3.4 Monitoring

Beim Monitoring geht es darum, den Zustand der laufenden Anwendung zu iiberwachen.
Hierzu gehoren beispielsweise Dinge wie die Anzahl der Anfragen pro Sekunde, die Res-
sourcennutzung und den Zustand der Service-Instanzen. Auferdem ist es wichtig, bei
Problemen wie dem Ausfall einer Service-Instanz oder einem sich fiillenden Datentréger
benachrichtigt zu werden. [Ric18, Kapitel 11.3] Zur Uberwachung des Systems gibt es

verschiedene Moglichkeiten:

Tracing

Mittels Tracing kann jeder externen Anfrage eine eindeutige ID zugewiesen und ihr Ver-
lauf durch das System von einem Service zum néchsten auf einem zentralen Server auf-
gezeichnet werden. Ein Trace reprasentiert dabei eine externe Anfrage und besteht aus
einem oder mehreren Spans. Ein Span wiederum stellt die Ausfiihrung eines einzelnen
Services dar und speichert wichtige Daten wie den Namen, den Startzeitpunkt und den
Endzeitpunkt der Operation. Dadurch konnen detaillierte Einblicke in die Leistung der
Services gewonnen werden und mogliche Fehler oder Performance-Engpésse besser nach-
vollzogen werden. [Ricl8, Kapitel 11.3.3] Mogliche Tools zur Implementierung vom Tra-

cing waren Jaeger oder Zipkin.

18

3 Systemdesign

Metrik-Monitoring

Eine weitere Moglichkeit ist das Sammeln und Uberwachen von Anwendungsmetriken.
Diese Metriken umfassen sowohl Infrastrukturmetriken wie CPU-, Speicher- und Fest-
plattennutzung als auch anwendungsspezifische Metriken wie die Anzahl der ausgefiihr-
ten Anfragen. Eine Spring Boot-basierte Anwendung kann beispielsweise durch die In-
tegration der Micrometer Metrics-Bibliothek grundlegende JVM-Metriken sowie anwen-
dungsspezifische Metriken erfassen und an Prometheus iibermitteln. Prometheus ist ein
Open-Source-Monitoring- und Alarmsystem, welches diese Daten periodisch abfragt und
sie zur Visualisierung in Grafana bereitstellt. Es ermdglicht das Einstellen von Benach-
richtigungen, wenn selbst definierte Schwellenwerte der Metriken iiberschritten werden

und ermdglicht so eine schnelle Reaktion bei Problemen. [Ricl8, Kapitel 11.3.4]

Health-Checks

Bei Health-Checks implementiert ein Service einen Health-Check-Endpunkt, der den Ge-
sundheitszustand der Anwendung zuriickgibt. Dies kann beispielsweise durch eine Testab-
frage gegen eine Datenbank erfolgen. Die Deployment-Infrastruktur ruft diesen Endpunkt
anschlieftend regelméafig auf, um den Gesundheitszustand der Instanz zu iiberpriifen und

bei Bedarf entsprechend zu reagieren. [Ricl8, Kapitel 11.3.1]

Log-Aggregation

Log-Aggregation ermdglicht die Sammlung und Indexierung aller Logs der Microservices
auf einem zentralen Server, der diese analysieren und abfragen ldsst. [Ricl8, Kapitel
11.3.2

Wahl der Uberwachungsmethode
Da die Uberwachung viele Optionen bietet, wurde fiir den Prototyp zunichst nur die
Log-Aggregation verwendet, um die Anwendung einfach zu halten.

Dafiir kommt ein EFK-Stack zum Einsatz, welcher aus Filebeat, Elasticsearch und Kiba-
na besteht. Filebeat sammelt hierfiir die Logs der Microservices, die tiber Docker ausgege-

ben werden und sendet sie an Elasticsearch. Elasticsearch indexiert diese Logs und stellt

19

3 Systemdesign

eine Suchmaschine bereit, wihrend Kibana sie visualisiert und bei Bedarf in Analyse-
Dashboards darstellt. Dadurch kann beispielsweise nach Error-Logs gefiltert werden, um
moglichen Problemen auf den Grund zu gehen. Mit der Implementation der Uberwa-
chungsmethode erfiillen wir die Anforderung der Beobachtbarkeit. (sieche QA /5)

3.5 Kommunikation

Da Microservices sich nicht in einem Prozess befinden, findet Kommunikation tiblicher-
weise liber das Netzwerk statt. Hier lassen sich grundsétzlich zwei Kommunikationsarten

unterscheiden: die synchrone- und die asynchrone Kommunikation.

3.5.1 Synchrone Kommunikation

Die synchrone Kommunikation arbeitet nach dem Request-Response-Prinzip in der ein
Microservice einem anderen Service eine Anfrage stellt und auf die Antwort wartet.
[New21, Kapitel 4.3] Mogliche Implementierungen fiir diesen Kommunikationsstil sind
RPC, REST und GraphQL.

RPC

Ein Remote Procedure Call (RPC) ist eine Technik, in der ein lokaler Methodenauf-
ruf einer Anwendung auf einem entfernten Service ausgefiihrt wird. Dabei wird die
Komplexitat der Netzwerkkommunikation so abstrahiert, dass sich der RPC wie ein lo-
kaler Methodenaufruf anfiihlt. Hierbei werden separate Schema verwendet, welche die
Struktur der Nachrichten und Methodenaufrufe definieren, um so eine automatische
Generierung von Client- und Server-Stubs fiir verschiedene Technologien zu ermogli-
chen. Je nach RPC-Framework kommen verschiedene Serialisierungsmechanismen zur
Datentibertragung zum Einsatz, wobei einige Frameworks zuséatzlich flexible Optionen
bei der Wahl des Netzwerkprotokolls bieten. Trotzdem sollte hier auf erhohte Kosten,
die mit dem Marshaling und Schnittstellendnderungen einhergehen, durch bestimmte

RPC-Implementationen geachtet werden. [New21, Kapitel 5.2.1]

20

3 Systemdesign

REST

REST ist ein architektonischer Stil, der vom Web inspiriert ist und eine Reihe von Prin-
zipien und Einschrankungen fiir das Design von Service-Schnittstellen definiert. [New21,
Kapitel 5.2.2]

Ein zentrales Konzept von REST ist die Ressource, die typischerweise ein einzelnes Ge-
schéftsobjekt wie einen Kunden oder eine Sammlung solcher Objekte reprasentiert. Diese
Ressourcen werden iiber eine URL referenziert und mithilfe von HTTP-Methoden mani-
puliert. Beispielsweise konnen so iiber GET- und POST-Endpunkte Ressourcen gelesen
und erstellt werden, wobei diese hdufig in Form von XML-Dokumenten oder JSON-
Objekte wiedergegeben werden. Auferdem kénnen mit der Open API Specification Sche-
mata fiir REST-APIs erstellt werden, die bei Bedarf Client- und Server-Code in verschie-
denen Programmiersprachen generieren. Zu den Vorteilen von REST-APIs gehoren ihre
Einfachheit und die leichte Testbarkeit. Im Gegensatz dazu stehen jedoch die Schwierig-
keiten, die sich beim Mapping komplexer Operationen auf einfache HTTP-Verben und
der Durchfiihrung von Anfragen iiber mehrere Ressourcen hinweg ergeben. [Ricl8, Ka-
pitel 3.2.1]

GraphQL

Mit GraphQL kann ein Client gezielt spezifische Informationen anfragen, die normaler-
weise mehrere Anfragen {iber verschiedene Services hinweg erfordern wiirden. Man kann
GraphQL also als eine Art Aggregations- und Filtermechanismus iiber Daten von meh-
reren Services betrachten. Dazu stellt ein Microservice einen GraphQL-Endpunkt bereit,
der ein Schema mit allen verfiighbaren Datentypen definiert. Clients konnen dann auf die-
se mithilfe eines Abfrage-Konfigurators zugreifen. Diese Losung ist sehr gut fiir externe
Clients wie mobile Geréte und externe APIs geeignet, die viele verschiedene Daten mit
einer einzigen Anfrage bendtigen. Allerdings sollte GraphQL aufgrund seiner komplexen
Caching-Problematik, der ineffizienten Schreibvorgénge und der potenziell hohen Server-
last bei dynamischen Abfragen nicht als einziges Mittel fiir die Kommunikation zwischen

Microservices verwendet werden. [New21, Kapitel 5.2.3|

21

3 Systemdesign

3.5.2 Asynchrone Kommunikation

Die asynchrone Kommunikation bietet verschiedene Kommunikationsstile an und zeichnet
sich dadurch aus, dass der Client nach der Anfrage nicht auf eine sofortige Antwort
eines Services warten muss. Neben dem asynchronen Request-Response-Prinzip kann
die Kommunikation auch iiber ein Publish/Subscribe-Modell (im Folgenden pub/sub-
Modell) erfolgen, bei dem der Client eine Nachricht verdffentlicht, die von interessierten

Services konsumiert wird. |[Ricl8, Kapitel 3.1.1]

Brokerbasierte Architektur

Eine Moglichkeit asynchrone Kommunikation umzusetzen, ist die brokerbasierte Archi-
tektur. In der brokerbasierten Architektur senden alle Services ihre Nachrichten an einen
zentralen Nachrichtenbroker, welcher diese wiederum an die jeweiligen Empfénger ver-
teilt. Einerseits ermoglicht der Einsatz eines Brokers eine lose Kopplung zwischen Sender
und Empfénger, da der Sender keine spezifischen Informationen iiber die Empfinger
bendétigt. Andererseits sorgt der Nachrichtenpuffer des Brokers fiir hohe Verfiigbarkeit,
indem er es ermdoglicht, dass ein Onlineshop Bestellungen auch dann annehmen kann,
wenn das Bestellsystem voriibergehend nicht erreichbar ist. Die Nachteile dieses Ansat-
zes betreffen potenzielle Performance-Engpésse und die Gefahr eines Single Points of
Failure durch den Broker. Moderne Broker-Losungen sind jedoch auf Hochverfiighbarkeit
und Skalierbarkeit optimiert, um diese Probleme zu umgehen. Trotzdem bleibt der er-
hohte operationale Aufwand fiir die Installation und Konfiguration des Brokers bestehen.
[Ric18, Kapitel 3.3.4]

Brokerlose Architektur

In einer brokerlosen Architektur kommunizieren Services direkt miteinander, ohne einen
Nachrichtenbroker zu nutzen. Ein bekanntes Beispiel hierfiir ist ZeroMQ, das verschiede-
ne Ubertragungsarten wie TCP und UNIX-Sockets anbietet. Der Vorteil dieser Architek-
tur liegt in der vereinfachten Systemstruktur mit verbesserter Latenz und reduziertem
Netzwerkverkehr. Dennoch kénnen wichtige Funktionen wie Service-Discovery und eine
garantierte Nachrichtenzustellung schwieriger zu realisieren sein, weshalb viele Unterneh-

mensanwendungen auf eine brokerbasierte Architektur setzen. [Ric18, Kapitel 3.3.4]

22

3 Systemdesign

3.5.3 Wahl der Kommunikationsform

Im Gegensatz zur synchronen Kommunikation verbessert asynchrone Kommunikation die
Hochverfiigbarkeit des Systems. |[Ric18, Kapitel 3.4] Anhand unserer Anforderung der
Hochverfiigbarkeit (siehe QA /1) wére es naheliegend, jegliche Kommunikation unserer

Microservices als asynchrone Kommunikationsform zu implementieren.

Jedoch findet in den Backend-Microservices aufgrund ihres Schnitts nur minimale Kom-
munikation statt. Die meisten Anfragen bestehen darin, einen Schliissel zur Verifizierung
der Signatur eines JSON-Web-Tokens zu erhalten. Da diese Anfragen einfache GET-
Operationen sind, die keinen langen Verifikationsprozess erfordern, wurde beschlossen,
hierfiir doch eine synchrone REST-API zu verwenden. Alternativen wie GraphQL oder
RPC bieten fiir diesen einfachen Anwendungsfall keinen nennenswerten Mehrwert. Statt-
dessen wird die Einfachheit der Implementierung einer synchronen API der potenziellen
Komplexitdt und den minimalen Verfiigbarkeitsgewinnen einer asynchronen Kommuni-

kationsform vorgezogen.

Die Kommunikation zwischen dem Template- und dem Comment-Service findet asyn-
chron iiber einen Nachrichtenbroker statt, da der Template-Service keine direkte Riick-
meldung vom Comment-Service bendtigt. Dieser wird lediglich beim Loéschen eines Tem-
plates beauftragt, alle zugehorigen Kommentare zu 16schen. Zudem soll hier der Nach-
richtenbroker als neue Technologie erprobt werden, um diesen eventuell fir zukiinftige
Versionen zu nutzen, insbesondere wenn die Kommunikation zwischen den Microservices
komplexer wird. Die Entscheidung fiir den Nachrichtenbroker basiert auf den Vorteilen
der Hochverfiigbarkeit, der garantierten Nachrichteniibermittlung und der damit verbun-

denen Verbesserung der Datenkonsistenz.

Fiir die Implementierung des Nachrichtenbrokers eignet sich Apache Kafka. Kafka ist ein
verteiltes System fiir Event-Streaming, das Nachrichtenvermittlung nach dem pub/sub-
Modell bereitstellt. Durch die Moglichkeit Topics zu partitionieren und replizieren, bietet
Kafka hohe Verfiigharkeit und Fehlertoleranz [Kaf]. Mit dem pub/sub-Modell kénnen
so Nachrichten vom Template-Service an ein spezifisches Topic veroffentlicht werden,
welches der Comment-Service wiederum abonnieren kann. Die einfache Integration in das
spater verwendete Framework Spring Boot durch die Unterstiitzung von Spring Kafka

war ein Hauptgrund fiir die Auswahl dieser Technologie.

23

3 Systemdesign

3.6 Verteilte Transaktionen und Sagas

In einer Microservice-Architektur sind verteilte Transaktionen entscheidend, um Daten-
konsistenz iiber mehrere Services hinweg sicherzustellen. Dies ist notwendig, wenn Ope-
rationen der Gesamtanwendung verschiedene Services beinhalten, die jeweils ihre eigenen
Datenbanken haben. Das liegt daran, dass jeder Service lokal mit ACID-Transaktionen
arbeitet und von allen anderen Services isoliert ist. Wenn jetzt eine Operation mehrere
Services betrifft und einer dieser Services ausfallt, wiirde dies ohne eine verteilte Trans-

aktion zu Dateninkonsistenzen fithren. [Ricl8, Kapitel 4.1]

Leider ist der traditionelle Ansatz von verteilten Transaktionen wie das Zwei-Phasen-
Commit-Protokoll (2PC) nicht fiir alle moderne Anwendungen geeignet, da Technolo-
gien wie NoSQL-Datenbanken oder Message-Broker hier keine Unterstiitzung anbieten.
Zudem fiihren verteilte Transaktionen zu einer Verringerung der Verfligbarkeit der Ge-
samtanwendung, da alle beteiligten Dienste gleichzeitig verfiighar sein miissen, um die
Transaktion abzuschlieffen. Um diese Problematik zu 16sen, kommt das Saga-Muster zum
Einsatz: Sagas arbeiten mit einer Sequenz von lokalen Transaktionen, die durch asyn-
chrone Nachrichten koordiniert werden, um Datenkonsistenz zu gewahrleisten. Jeder Ab-
schluss einer lokalen Transaktion im Service 16st dabei die Ausfiihrung der néchsten aus.
Ein wichtiger Vorteil der asynchronen Nachrichteniibermittlung ist hier, dass alle Schrit-
te einer Saga ausgefiihrt werden, selbst wenn einige Teilnehmer voriibergehend nicht
verfiighar sind. Sollte hierbei in einer Sequenz von lokalen Transaktionen ein Fehler auf-
treten, werden alle Anderungen der Transaktionen durch Kompensationstransaktionen
riickgéngig gemacht. [Ricl8, Kapitel 4.1.2-4.1.3|

Die Implementierung des Saga-Musters kann entweder durch Choreografie oder Orche-
strierung erfolgen. Bei der Choreografie tauschen die Teilnehmer der Transaktionssequenz
asynchron Nachrichten aus, um den Ablauf der Saga zu koordinieren. Im Gegensatz dazu
iibernimmt bei der Orchestrierung ein zentraler Orchestrator die Koordination. Dieser
Orchestrator iiberwacht den Fortschritt der Saga und stellt sicher, dass alle notwendigen
Schritte ausgefiihrt werden. Der Orchestrierungsansatz ist verstdndlicher und eignet sich
besser fiir komplexere Sequenzen. Es ist jedoch wichtig, darauf zu achten, nicht zu viel
Logik in den Orchestrator zu integrieren. Der Choreografie-Ansatz sollte aufgrund seiner
schwer nachvollziehbaren Implementierung und méglichen Zyklusabhéangigkeiten nur bei
sehr einfachen Sequenzen angewendet werden. Jedoch ist wichtig zu erwéhnen, dass in

verteilten Systemen, die auf Sagas basieren, Anomalien auftreten kdnnen, die sich aus

24

3 Systemdesign

dem Fehlen der Isolationseigenschaft von ACID-Transaktionen ergeben. Isolation ver-
hindert nédmlich, dass bei gleichzeitiger Ausfiihrung mehrerer Transaktionen diese sich
gegenseitig beeinflussen und dadurch inkonsistente oder unvorhersehbare Ergebnisse ent-
stehen. Bei Sagas sind jedoch Aktualisierungen untereinander sofort verfiighar. Deshalb
miissen hier zusétzliche Gegenmafnahmen implementiert werden, um Anomalien wie
Dirty Reads oder verlorene Updates zu verhindern, was zusétzlichen Aufwand erfordert.

[Ric18, Kapitel 4.2-4.3]

Wir sehen, dass verteilte Transaktionen und Sagas die Komplexitdt unserer Implemen-
tation stark erhéhen konnen. Deshalb wurden die Services so strukturiert, dass keine
Transaktionen iiber mehrere Services stattfinden. Lediglich ein Fehler beim Léschen eines
Templates konnte dafiir sorgen, dass Kommentare fiir ein geloschtes Template existieren.
Die Auswirkungen dieser Dateninkonsistenz wéiren minimal und wiirden nur bei einer
sehr grofen Anzahl fehlgeschlagener Loschaktionen zu Speicher- und Performanceeinbu-
fen in der Datenbank fiihren. In der Praxis kommen solche Loschaktionen jedoch nur
vereinzelt vor, da ein Verkdufer selten ein erstelltes und erfolgreich verkauftes Template
16scht.

3.7 Datenmodell

Jeder Service fithrt eine relationale Datenbank fiir seine Entitédten. Aufgrund der einfa-
chen, nicht verschachtelten Struktur der Daten und ausgereiften Implementierung dieses
Modells von verschiedensten Anbietern und Frameworks wurde das relationale Daten-
modell ausgewahlt. Da die Wahl des Datenbankmanagementsystems keinen speziellen
Anforderungen unterliegt, fallt diese auf PostgresSQL. Unterstiitzt wird sie durch dessen
Modernitéit und Unterstiitzung im spéter erwdhnten Google Cloud SQL.

3.8 Warenkorb

Um einen Warenkorb zu realisieren, ist es sinnvoll, dem Client eine Session mit Waren-

korbinformationen zuzuteilen. Dafiir gibt es unter anderem zwei Losungsansétze:

In der ersten Variante speichert man die Daten des Warenkorbs in einem Cookie im Client
und spart sich dadurch die Verwaltung einer Datenbank, langsame Datenbankzugriffe

auf den Warenkorb sowie eine erschwerte Skalierbarkeit der Warenkorbfunktion. Das

25

3 Systemdesign

Problem hier wére der zusétzliche Overhead, der durch ein grofseres Cookie entsteht
und womoglich die Anfragen verlangsamt. Auch wéren bei schlechter Implementierung
erhohte Sicherheitsbedenken wie das Risiko der Datenmanipulation oder das potenzielle

Offenlegen sensibler Informationen méoglich.

In der zweiten Variante speichert man die benétigten Daten in einer Datenbank. Damit
kénnen Warenkorb-Informationen iiber verschiedene Geréte des Clients gespeichert und
evtl. zusédtzliche Funktionalitiaten des Warenkorbs gestaltet werden. Die oben genannten
Nachteile wie langsame Datenbankzugriffe als auch erschwerte Skalierbarkeit gehen aber
auch einher. Ublicherweise ist eine lingere Persistenz bei solch temporiren Daten auch

nicht notwendig.

Ein gutes Mittelmals ist die Implementierung einer Warenkorbfunktionalitdt mittels ei-
nes Key Value Store als Datenbank in Kombination mit einem Session-Cookie. Dabei
wiirden die Produkte im Warenkorb im Key Value Store gespeichert werden und auf eine
Session-ID im Cookie verwiesen werden. Key Value Stores im Hauptspeicher bieten eine
hohe Geschwindigkeit der Datenverarbeitung und durch ihre Natur eine hohe Skalierung
mittels Sharding. [KM23, S.254] Als Key Value Store Implementation wiirde auf Redis
gesetzt werden, da es solche sehr schnellen Lese- sowie Schreiboperationen bietet und
durch das unterstiitzte Clustering hochskalierbar ist. Ein weiterer Grund ist, dass Redis
in Verbindung mit Spring Session eine ausgereifte Implementierung in unserem geplanten
Backend-Framework vorfindet. Durch diese Kombination wére eine performante und ska-
lierbare Losung geboten, die bei Bedarf auch persistiert werden kann, umso die Vorteile

beider Losungsanséitze zu vereinen.

3.9 Sicherheit

Auch wenn Sicherheit in dieser Prototyp-Version keine zentrale Rolle spielt, wurden den-
noch einige Sicherheitsmafnahmen implementiert. Fiir die Authentifizierung, also der
Frage, ob der Nutzer der ist, fiir den er sich ausgibt, wird eine simple Kombination aus
Passwort und Nutzernamen angelegt. (sieche RB/5) Beim Registrierungsprozess wéhlt
der Nutzer sein Passwort aus, welches dann in der Datenbank des UserService als Hash
gespeichert wird. Fiir die Autorisierung, also ob der Nutzer Zugriff auf geschiitzte Res-

sourcen hat, wurde Folgendes bestimmt:

26

3 Systemdesign

Bei der Registrierung eines Nutzers erstellt der UserService einen JSON-Web-Token
(JWT), der mit einem asymmetrischen Schliissel signiert wird. Ein JWT ist ein Base64
codiertes und signiertes JSON, welches alle relevanten Informationen eines Benutzers,
die fiir eine Authentifizierung oder Autorisierung nétig sind, enthélt. Wenn ein Service
nun iiberpriifen muss, ob ein Nutzer fiir die bendtigte Ressource autorisiert ist, verifiziert
er die Signatur des mitgeschickten JWT vom Client anhand des 6ffentlichen Schliissels
des UserService. Aufgrund der Wahl einer asymmetrischen Verschliisselung miissen die
Microservices keinen Schliissel untereinander aushandeln, was bei einem verteilten Sys-
tem mit vielen Services von Vorteil ist. Auch wird durch den Verzicht der Speicherung
von Zustand sowie die Eliminierung des Bedarfs an Datenbanken fiir Authentifizierungs-
und Autorisierungsinformationen die Skalierbarkeit der Microservice verbessert und die
Ressourcennutzung optimiert. Nachteile wie der erhéhte Overhead eines Tokens oder die
verringerte Sicherheit bei Komprimierung des Tokens wurden aufgrund der genannten

Vorteile in Kauf genommen.

Ahnliche Sicherheitsvorkehrungen wurden auch beim PaymentService getroffen: Dieser
generiert fiir eine Transaktion ebenfalls einen JW'T, damit der CheckoutService iiberprii-
fen kann, ob die Transaktion tatséchlich stattgefunden hat und nicht gefélscht wurde.
Somit haben Guests Zugriff auf alle 6ffentlich zugénglichen APIs, jedoch ohne Kunden-

konto nicht auf geschiitzte.

3.10 Laufzeitsicht

Die Laufzeitsicht zeigt, wie die einzelnen Bausteine des Systems zur Laufzeit zusammen-
arbeiten. [SH11, S.66] So werden die verschiedenen Funktionen und Kommunikationsab-
laufe der Komponenten zu bestimmten Anwendungsféllen deutlich. Im Folgenden werden

die kommunikationsrelevantesten Use Cases mit UML-Sequenzdiagrammen dargestellt.

27

3 Systemdesign

Abbildung 3.4: UML Sequenzdiagramm fiir das Loschen eines Templates (uc/15)

Abbildung 3.4 zeigt den Ablauf des Loschens eines Templates zur Laufzeit. Vor dem Fort-
fahren des Loschvorgangs fordert der TemplateService den offentlichen Schliissel (public
key) vom UserService an, um die Autorisierung der Aktion zu tiberpriifen. Der Tem-
plateService sendet anschliekend ein Event an den MessageBroker, um mit dem Com-
mentService zu kommunizieren und setzt seinen Ablauf fort. Der MessageBroker leitet
das Event an den CommentService weiter, wodurch alle Kommentare zu dem Template

geloscht werden, ohne dass der TemplateService blockiert wird.

28

3 Systemdesign

Abbildung 3.5: UML Sequenzdiagramm fiir das Hinzufiigen eines Templates zum Shop
(uc/17)

In Abbildung 3.5 wird der Prozess des Hinzufiigens eines Templates zur Laufzeit darge-
stellt. Der Client iberpriift zunéchst alle Eingaben des Akteurs und stellt sicher, dass eine
Audiodatei bereitgestellt wurde. Falls kein Bild ausgew#hlt wurde, verwendet der Client
ein Standardbild. Anschliefsend sendet der Client jede Datei an den TemplateService, der

die Autorisierung iiber den UserService iiberpriift. Bei erfolgreicher Autorisierung wer-

29

3 Systemdesign

den die Dateien auf der Festplatte und in der Datenbank gespeichert. Der Client leitet

den Akteur zur Startseite weiter und aktualisiert die Template-Dateien.

Abbildung 3.6: UML Sequenzdiagramm fiir das Bearbeiten eines Templates (uc/16)

30

3 Systemdesign

Abbildung 3.6 veranschaulicht den Prozess des Bearbeitens eines Templates zur Laufzeit.
Der Ablauf dhnelt dabei dem Upload-Vorgang: Nachdem der Akteur ein Formular zum
Andern der Template-Metadaten ausgefiillt hat, iiberpriift der Client die Eingaben auf
mogliche Fehler. Die aktualisierten Metadaten werden anschlieffend an den TemplateSer-
vice gesendet, der zur Autorisierung erneut den UserService anfragt. Nach erfolgreicher
Autorisierung werden die Anderungen in der Datenbank aufgenommen. Der Client ladt
die aktualisierten Template-Metadaten nach und zeigt dem Akteur eine Erfolgsmeldung

al.

Abbildung 3.7: UML Sequenzdiagramm fiir das Kaufen eines Templates (uc/9)

Abbildung 3.7 stellt den Prozess des Template-Kaufs zur Laufzeit dar. Nachdem der Ak-
teur das ausgefiillte Checkout-Formular einsendet, iiberpriift der Client die Daten auf

Fehler und stellt sicher, dass Produkte im Warenkorb vorhanden sind. Nach erfolgreicher

31

3 Systemdesign

Uberpriifung leitet der Client eine Anfrage an den PaymentService weiter, der simula-
tiv die Deckung des Kontos tiberpriift. Der PaymentService speichert die Transaktion
und sendet einen Token mit den Transaktionsdaten an den Client zuriick. Dieser leitet
die Daten an den CheckoutService weiter, der den 6ffentlichen Schliissel (public key) des
PaymentService anfordert, um die Transaktion zu verifizieren. Nach der erfolgreichen Ve-
rifizierung speichert der CheckoutService die Bestellung und indexiert sie in Elasticsearch.
Der CheckoutService informiert den E-MailService, um die simulierten Downloadlinks zu
erstellen. Nach der Generierung der Links benachrichtigt der CheckoutService den Client

iiber den erfolgreichen Kauf, welcher wiederum eine Erfolgsmeldung anzeigt.

3.11 Deployment

Als Deployment wird die Inbetriebnahme und Wartung einer Software bezeichnet, wobei
friher Entwicklung und Betrieb strikt voneinander getrennt waren. Heute hingegen hat
sich zunehmend eine Kultur und ein Entwicklungsprozess etabliert, der beide Bereiche
miteinander verbindet. Diesen Wandel und die darausfolgende neue Methodik beschreibt
der Begriff Devops, welcher unter anderem Prinzipien und Entwicklungspraktiken defi-
niert, die das Deployment einer Anwendung beschleunigen und automatisierbar machen.
[IBM] Dazu zéhlen z. B. Continuous-Integration- und Continuous-Delivery-Pipelines, wel-
che bei Codednderungen automatische Test-, Build- und Deployment-Prozesse starten,
die schnell eine sichere und neue Version der Software bereitstellen sollen. Dies bedeu-
tet aber auch, dass Entwickler sich mehr Wissen und Fahigkeiten aneignen miissen, um

Devops erfolgreich zu implementieren.

Im Folgenden werden die Grundlagen fiir das Deployment einer skalierbaren Microservice-
Architektur geschaffen und das System aus einer Deployment- bzw. Verteilungssicht be-
trachtet.

3.11.1 Bereitstellungsoptionen

Um eine Anwendung in Betrieb zu nehmen, kann sie als sprachspezifisches Paket, inner-

halb einer VM oder als Container bereitgestellt werden:

32

3 Systemdesign

Bereitstellung als sprachspezifisches Paket

Bei dieser Bereitstellungsoption wird die Anwendung in einem Format bereitgestellt, das
von der verwendeten Programmiersprache abhéngt. Ein in Java geschriebener Service
wird beispielsweise als ausfithrbare JAR- oder WAR-Datei bereitgestellt. Ein Nachteil
dieser Herangehensweise ist, dass detaillierte Kenntnisse tiber die spezifische Program-
mierumgebung erforderlich sind, um alle Anforderungen fiir den Betrieb der Anwendung
korrekt zu installieren. Zudem kann die Ressourcennutzung nicht eingeschrankt werden,
was aufgrund der fehlenden Isolation der Prozesse dazu fithren kann, dass ein ressourcen-
intensiver Prozess andere Prozesse negativ beeintrachtigt. Eine komplexe automatische
Verteilung der Instanzen auf Maschinen, wie sie von Orchestrierungsframeworks angebo-

ten wird, muss manuell konfiguriert werden. [Ric18, Kapitel 12.1]

Bereitstellung als virtuelle Maschine

Bei dieser Bereitstellungsmethode wird die Anwendung von einer Deployment-Pipeline
in ein virtuelles Maschinen-Image verpackt und in einer Produktionsumgebung bereit-
gestellt. Dies kann beispielsweise mit Amazon Machine Images (AMIs) auf AWS EC2
Instanzen oder dhnlichen Technologien in Cloud-Umgebungen umgesetzt werden. Vor-
teilhaft ist, dass das VM-Image alle Softwareabhéngigkeiten zur Ausfithrung des Services
enthélt, wodurch die Einrichtung einer separaten Umgebung wegféllt. Die Anwendung
kann dabei auf jedem System, das VM-Images unterstiitzt, bereitgestellt werden. Zudem
wird jede Service-Instanz in der VM isoliert ausgefiihrt, wodurch der Einfluss auf Res-
sourcen durch andere Service-Instanzen ausbleibt. Funktionen wie Lastenverteilung und
Skalierung werden hier durch moderne Cloud-Infrastrukturen anwendbar. Ein Nachteil
der virtuellen Maschinen ist der zusétzliche Overhead, den ein gesamtes Betriebssystem
mit sich bringt, welches zu einer weniger effizienten Ressourcennutzung und langsameren
Bereitstellungszeiten fiihrt. Um diese Nachteile zu umgehen, bietet es sich an, Services
als Container bereitzustellen. [Ric18, Kapitel 12.2]

Bereitstellung als Container
Ein Container fithrt die Anwendung dhnlich wie eine virtuelle Maschine in einer isolier-

ten Umgebung aus. Da die Virtualisierung jedoch auf Betriebssystem-Ebene stattfindet,

werden alle Container trotzdem auf demselben Host-System ausgefithrt. Um die Isolation

33

3 Systemdesign

zusétzlich zu verbessern und Portkonflikte zu vermeiden, wird jedem Container eine ei-
gene IP-Adresse und ein eigenes Dateisystem zugeteilt. Beim Bereitstellungsprozess wird
dann zuerst ein Container-Image erstellt und in einer Registry gespeichert. Ein Image
selbst ist ein Bauplan einer Anwendung, welcher alle Abhéngigkeiten, die diese Anwen-
dung benoétigt, enthélt. Bei Ausfithrung wird dieses Image nun heruntergeladen und zur
Erstellung des Containers verwendet. Ein entscheidender Vorteil gegeniiber der Bereit-
stellung mit VMs ist die geringe Grofse der Container. Durch das fehlende Betriebssystem
kénnen Container Images so viel schneller gebaut und bereitgestellt werden. Sofern keine
Cloud Loésung benutzt wird, die die zugrunde liegende Infrastruktur betreut, muss diese
jedoch selbst verwaltet werden. [Ric18, Kapitel 12.3]

Wahl der Bereitstellung

Die Anwendung wird mittels Containern in Betrieb genommen, weil sie aufgrund ihrer
Isolation, Kapselung und geringen Overhead die schnellsten und zuverlassigsten Deploy-
ments bieten. Wegen seiner Vertrautheit und Beliebtheit wurde Docker zur Containeri-

sierung verwendet.

3.11.2 Docker

Docker ist eine Plattform zur Containerisierung von Anwendungen. Mit Dockerfiles kén-
nen Images und deren Abhéngigkeiten textuell definiert werden, wobei das selbstdefi-
nierte Image aus einer Reihe von vordefinierten Images wie Linux Distributionen auf-
gebaut werden kann. FEin oder mehrere Container, welche die Anwendung bilden, wer-
den mithilfe einer Container-Runtime ausgefiihrt. Wichtig anzumerken ist, dass Contai-
ner selbst keinen persistenten Datenspeicher anbieten. Dieser muss iiber beispielsweise

Docker-Volumes selbst eingerichtet werden.

Um nicht alle Container einzeln ausfiihren zu miissen, kann eine docker-compose Datei
definiert werden. In dieser YAML-Datei konnen jegliche Container und deren Konfigu-
ration spezifiziert werden. Beim Ausfiihren dieser Datei erstellt Docker ein Netzwerk,
in dem alle konfigurierten Container laufen und sich unter ihrem Containernamen fin-
den konnen. Zwar ist dieser Ansatz ausreichend, um eine Container-Anwendung lokal
zu testen, reicht jedoch alleine nicht aus, um einen sicheren Produktionsbetrieb zu ge-

wahrleisten. Hierfiir wird ein Container-Orchestrierungs-Tool benétigt, das die Container

34

3 Systemdesign

dauerhaft iiberwacht, bei Bedarf schnell repliziert und automatisch skaliert. Ein Beispiel

fiir ein solches Tool ist Kubernetes:

3.11.3 Kubernetes

Urspriinglich von Google entwickelt und als Open Source freigegeben, bietet Kuberne-
tes eine Container-Orchestrierungsplattform, welche die Bereitstellung, Skalierung und
Verwaltung von Containern automatisiert. Dies geschieht durch Konfigurationsdateien,

welche Soll-Zustande der Container definieren.

Durch diese Automatisierung kann Hochverfiigbarkeit in verteilten Systemen erreicht
werden, da durch Kubernetes eine Lastenverteilung auf verschiedene virtuelle Server
stattfindet, Container bei Bedarf automatisch repliziert werden und abgestiirzte Con-
tainer neu hochgefahren werden konnen. [Ric18, Kapitel 12.4] Zum besseren Verstandnis
von Kubernetes und der Verteilungssicht des Systems folgt eine Erklérung der Architek-

tur und schlieflich der Komponenten dieser Orchestrierungsplattform:

Kubernetes unterscheidet zwischen zwei Servertypen, die Teil eines Kubernetes-Clusters
sind: Den Master und den Worker Node. Der Master Node steuert und verwaltet das
gesamte Cluster, indem er Konfigurations- und Zustandsdaten speichert, die API be-
reitstellt und fiir die Bereitstellung neuer Container sorgt. [Wel24, S. 46-47] Um dies zu
bewerkstelligen, laufen auf ihm verschiedene Prozesse:

Der kube-apiserver ist eine zentrale Komponente im Kubernetes-Cluster, die alle in-
ternen und externen API-Anfragen verarbeitet. Er ist verantwortlich fiir die Validierung
und Autorisierung von Anfragen, das Uberwachen von Rate Limits und Quotas sowie die
Verbindung zur etcd-Datenbank. [Wel24, S. 48|

Die etcd-Datenbank speichert alle Konfigurationsdaten des Clusters in hochverfiig-
barer und konsistenter Weise. [Wel24, S. 49|

Der kube-controller-manager kontrolliert per Heartbeart die Gesundheit der Nodes,

die korrekte Anzahl laufender Container, die Erstellung von Serviceaccounts sowie API-
Tokens und stellt die Verbindung zwischen Containern und Services her. [Wel24, S. 49-51]

35

3 Systemdesign

Der kube-scheduler ist verantwortlich fiir die Zuweisung von Pods zu Nodes im Kubernetes-
Cluster, indem er die verfiigharen Ressourcen wie CPU und Speicher sowie die festgeleg-
ten Scheduling-Regeln beriicksichtigt. [Wel24, S. 48]

Der cloud-controller-manager ist fiir die Kommunikation zwischen Kubernetes und
Cloud-Diensten zusténdig und ermoglicht dabei die Verwaltung und Integration von
Cloud-Infrastruktur durch einen Plugin-Mechanismus. [Wel24, S. 49-50|

Die Worker Nodes hingegen verrichten die tatséchliche Arbeitslast, auf denen auch die
Applikationscontainer ausgefiihrt werden. Jede Worker Node beherbergt den Kubelet-
Prozess, der als Kanal zwischen den Pods und dem API Server des Master Nodes dient,
den Kube Proxy, der als Netzwerk-Proxy die Kommunikation zu den Pods ermoglicht
und die Container-Runtime, die das Ausfiithren von Containern welche das Kubernetes
Runtime Interface implementieren unterstiitzt. Aukerdem liegt auf ihnen der Kubernetes
DNS-Server fiir die Kommunikation innerhalb des Clusters. [Kub24c]

Master Node
Control Plane Worker Node

@ 2 0 Container i 1
s . Engine ! O .

kube-cantroller- kubalet i O :
manager ! O !
= i |
[] 1
i i

kube-scheduler - Q
kube-proxy
kubectl +
T"—_' X
Worker Node

Requests kube-apiserver
Container [o1 ke |
o) 9| O-=I- o
L] [}
kubelet kubelet | O :
L
[} I
i |

)
Olog oo

= kube-proxy
cloud-controller-
manager
}

'

Abbildung 3.8: Kubernetes Architektur [Wel24, S. 47]

kube-proxy

36

3 Systemdesign

Nachdem die Architektur von Kubernetes verstanden wurde (siehe Abbildung 3.8), folgt
jetzt eine Ubersicht iiber die verschiedenen Komponenten von Kubernetes die bei Bedarf

vom Entwickler konfiguriert werden miissen:

Pod

Die kleinste deploybare Einheit ist der Pod, der iiblicherweise aus einem oder bei Bedarf
mehreren Containern besteht, welche eine gemeinsame IP-Adresse teilen. [Ric18, Kapitel
12.4.1]

Deployment

Das Deployment definiert den Zustand der Pods und ist verantwortlich fiir deren Bereit-
stellung und Upgrades. Die eigentliche Arbeit wird dabei vom ReplicaSet erledigt, das
den Soll-Zustand der Pods iiberwacht und bei Bedarf neue Container hoch- oder herun-
terfahrt. [Kub24a| Beispielsweise werden hier die Anwendungs-Images und deren Anzahl

konfiguriert.

Service

Ein Service stellt einer Containergruppe eine besténdige IP-Adresse zur Verfiigung. Dies
ist wichtig, da Container jederzeit hoch und runtergefahren werden koénnen und ei-
ne gleichbleibende Ansprech-IP fiir alle Container benétigt wird. Die IP-Adresse eines
Kubernetes-Services kann dabei so eingestellt werden, dass sie nur innerhalb des Clusters
erreichbar ist (ClusterIP) oder dass sie zusétzlich externen Zugriff erméglicht, beispiels-
weise liber NodePort oder einen LoadBalancer. [Kub24f]

In Kubernetes {ibernimmt der Service auch die Aufgabe der Service Discovery, indem er
die Netzwerkanfragen zu den richtigen Pods weiterleitet. Die DNS-Adresse des Services
kann innerhalb eines Namespaces mit seinem Namen oder innerhalb des Clusters iiber

[ServiceName/. [Namespace].svc.cluster.local angesprochen werden. [Wel24, S. 186]

37

3 Systemdesign

Ingress

Das Ingress-Objekt in Kubernetes leitet eingehenden Traffic basierend auf definierten
Regeln an die entsprechenden Services weiter, etwa nach URL oder Pfad. Die eigentliche
Implementation von Ingress wird durch den Ingress Controller bestimmt, welcher typi-
scherweise einen Load Balancer bereitstellt. Je nach Implementation unterstiitzt Ingress
auch die Neuzuweisung von Pfaden und die Nutzung von TLS-Zertifikaten fiir HT'TPS-
Verbindungen. [Wel24, S. 192-193]

Volume

Volumes sind im Wesentlichen Verzeichnisse, die von einem oder mehreren Containern
verwendet werden kénnen und das Datenmanagement vereinfachen. Sie abstrahieren das
tatsdchliche Management der Festplatten, sodass Entwickler sich nicht mit den Details
der Speicherverwaltung auseinandersetzen miissen. [Wel24, S. 284] Trotzdem ist wichtig
zu verstehen, dass Kubernetes den Speicher nicht selbst bereitstellt, sondern als Abstrak-

tion auf vorhandene Quellen wie z. B. eine Google Persistent Disk zuriickgreift.

StatefulSet

Im Gegensatz zu Deployments, die Pods gleichzeitig und ohne spezifische Reihenfolge
starten, skaliert und stellt das StatefulSet Pods in geordneter und voraussehbarer Weise
bereit. Dies ist besonders wichtig fiir zustandsbehaftete Anwendungen, da jedem Pod
eine eindeutige und besténdige Identitdt zugewiesen wird, die auch bei Neustarts oder
Updates erhalten bleibt. [Wel24, S. 285] Beispielsweise erhalten so Replikate eines Daten-
bankclusters eine konsistente Identitat, um sich im Netzwerk zu finden und miteinander
kommunizieren zu konnen. Fiir zustandslose Anwendungen hingegen wird das Deploy-

ment empfohlen.

ConfigMap

ConfigMap wird eingesetzt, um Konfigurationen zu speichern, die von Containern ge-
nutzt werden. Diese Konfigurationen kénnen als Umgebungsvariablen oder Dateien in
laufende Container gemappt werden. [Kub24d| Ein &hnlicher Mechanismus wird durch

Secrets bereitgestellt, die sensible Daten wie Anmeldeinformationen enthalten koénnen.

38

3 Systemdesign

Beachtenswert ist jedoch, dass jeder mit vollstindigem Lesezugriff auf den API-Server
auf die Werte von erstellten Secrets zugreifen kann, was ihre Sicherheit beeintréchtigt.
[Kub24e]

Fazit

Durch die automatische Replizierung von Applikationscontainern, den Failover-Mechanismen
und der Moglichkeit, neue Updates ohne Ausfallzeit einzuspielen, sorgt Kubernetes fiir
eine hohe Verfiigbarkeit, kostengiinstige Skalierungsmoglichkeit und Agilitat. Zusétzlich
sparen wir uns die Implementation einer Service-Discovery-Komponente, da diese Funk-
tion von Kubernetes mitgeliefert wird. Aufgrund der Erfiillung dieser Anforderungsvor-
aussetzungen (siehe QA /1 - QA/3) und vorheriger Erfahrung wurde Kubernetes als
Orchestrierungsplattform gewahlt.

3.11.4 Bereitstellung in der Cloud

Das Bereitstellen eines Kubernetes-Clusters bendtigt Ressourcen. Um die maschinelle
Infrastruktur nicht selbst stellen und verwalten zu miissen wird auf Moglichkeiten des
Cloud Computing zuriickgegriffen. Christian Baun, Marcel Kunze, Jens Nimis und Stefan

Tai definieren dabei Cloud Computing wie folgt:

,Unter Ausnutzung virtualisierter Rechen- und Speicherressourcen und moderner Web-
Technologien stellt Cloud Computing skalierbare, netzwerk-zentrierte, abstrahierte IT-
Infrastrukturen, Plattformen und Anwendungen als on-demand Dienste zur Verfigung.

Die Abrechnung dieser Dienste erfolgt nutzungsabhéingig.“ [Bau+11, S.4]

Cloud Computing bietet enorme finanzielle Vorteile, da Unternehmen keine hohen Inves-
titionen in eigene Hardware und Software tétigen miissen und stattdessen nach einem
verbrauchsabhéngigen Kostenmodell zahlen. Dies ermdoglicht insbesondere kleineren Un-
ternehmen und Start-ups einen kostengiinstigen Zugang zu frither exklusiven Technolo-

gien und flexibel skalierbaren IT-Ressourcen. [Reil8, S.15]

Aus diesem Grund wurde auf eine Bereitstellung in der Cloud durch die Google Cloud
Platform (im Folgenden GCP) gesetzt. GCP bietet die Infrastruktur fiir eine hochver-
fligbare und skalierbare Losung, die sich fiir unsere nicht-funktionalen Anforderungen
eignen. Neben der guten Dokumentation und dem grofziigigem Startguthaben wurden

durch frithere Projektarbeiten gute Erfahrungen mit dieser Plattform gemacht.

39

3 Systemdesign

Google Kubernetes Engine

Das Kubernetes-Cluster wird auf der Google Kubernetes Engine (im Folgenden GKE)
aufgesetzt. GKE ist ein vollstandig verwalteter Kubernetes-Dienst von Google Cloud, der
eine schnelle Bereitstellung von Container-Anwendungen ermdoglicht. Ein grofier Vorteil
von GKE ist die automatische Skalierung der zugrunde liegenden Infrastruktur, die die
Konfiguration und Bereitstellung sdmtlicher physischer Ressourcen iibernimmt und die-
se an die Anforderungen des Systems anpasst. Die Entscheidung fiir GKE fiel aufgrund
seiner Fahigkeit, das System schnell und unkompliziert bereitzustellen und gleichzeitig
den gesamten Verwaltungsaufwand fiir die Infrastruktur zu minimieren. Allerdings miis-
sen die hohen Kosten, die mit der Nutzung von GKE verbunden sind, insbesondere im

Produktionsbetrieb berticksichtigt werden.

Datenbanken

Die Datenbanken fiir das System werden mit Cloud SQL bereitgestellt. Cloud SQL ist ein
vollstandig verwalteter relationaler Datenbankdienst von Google Cloud, der die Konfigu-
ration und Verwaltung eines skalierbaren und hochverfiigharen PostgreSQL-Datenbankclusters
iibernimmt. Gegen eine erhohte Gebiihr werden damit die nicht-funktionalen Anforde-
rungen an Hochverfiigbarkeit und Skalierbarkeit abgedeckt. (siehe QA /1 - QA /2) Ein-
zig die Redis-Datenbank wird selbst verwaltet, da die Cloud-Losung Memorystore von
Google fiir eine Redis-Instanz erhebliche Kosten verursacht. (Geschitzt mindestens 30
Dollar pro Monat fiir die niedrigste Stufe) Die Datenbank des Payment-Service wird
als H2-Datenbank im Arbeitsspeicher gehalten, da diese Komponente zunéchst nur ein

Simulationsservice ist, der in spéteren Versionen weiter ausgebaut oder ersetzt wird.

Speicher

Fiir die Speicherung der Bild- und Audiodateien wird der Cloud-Speicherdienst Google
Cloud Storage von Google verwendet. Dabei werden Dateien als Objekte in sogenannten
Buckets gespeichert, welche die grundlegenden Datencontainer des Dienstes darstellen.
In den Buckets selbst herrscht eine flache Namenshierarchie, wodurch es keine klassischen
Verzeichnisse gibt. Daher sollte fiir jedes Template ein eigener Bucket verwendet werden,

weil somit jegliche komplexe Anwendungslogik fiir das Handhaben von Pfaden innerhalb

40

3 Systemdesign

des Buckets wegfillt. Die Buckets konnen innerhalb derselben Region wie unser VPC-
Netzwerk erstellt werden, was zu einer geringeren Latenz und schnelleren Upload-Zeiten

unserer Daten fiihrt.

Fiir den persistenten Speicher der Elasticsearch-Logs wird Google Cloud Persistent Disk
verwendet. Persistent Disks sind zuverlassige Blockspeicher von Google Cloud, die Da-
ten unabhéngig von der Lebensdauer der virtuellen Server speichern. Sie lassen sich sehr
einfach in Kubernetes integrieren und erfordern je nach Bedarf nur minimalen Konfigu-

rationsaufwand.

Da nun die Grundlagen fiir das Deployment geschaffen wurde, folgt die Verteilungssicht
des Systems.

3.11.5 Verteilungssicht

Die Verteilungssicht zeigt alle laufenden Bausteine des Systems in deren Ausfiihrungs-
umgebung. Fokussiert wird also die tatsédchliche physische Hardware oder virtuelle Um-
gebung, die fiir den Betrieb des Systems benétigt wird. [SH11, S.70-73] Dabei wurde das
UML-Deployment-Diagramm um spezifische Kubernetes Elemente wie Ingress, Deploy-
ments, DaemonSet und StatefulSets erweitert, weil diese durch die Standard-Klassen wie
Deployment Targets oder Artefakte nicht angemessen dargestellt werden kénnen und ein
insgesamt iibersichtlicheres Diagramm entsteht. Aufferdem wurden die Kommunikations-
pfade zwischen den Deployments und StatefulSets gezeichnet, da dies die Kommunikation

zwischen den Artefakten besser abstrahiert.

41

3 Systemdesign

Abbildung 3.9: Verteilungssicht fiir den Template Shop

Abbildung 3.9 zeigt das erweiterte UML-Deployment-Diagramm fiir unsere Templateshop-
Anwendung. In dieser Architektur stellt der Kubernetes Ingress-Controller einen Load
Balancer bereit, der es ermoglicht, dass Clients iiber ihren Browser auf die Frontend-
Anwendung zugreifen. Alle Anfragen vom Browser werden iiber den Ingress-Controller
an das API-Gateway weitergeleitet, welches die Anfragen anschliefend an die entspre-
chenden Backend-Services verteilt. Die auszufiihrenden Artefakte sind als Docker-Images
in der Artifact-Registry der Google Cloud Platform gespeichert. Zur besseren Ubersicht-

lichkeit wurden Details wie die Artifact-Registry, Pods, zusétzliche Konfigurationen wie

42

3 Systemdesign

ConfigMaps fiir Datenbankinformationen und Secrets in diesem Diagramm nicht darge-
stellt. Die Konfiguration des Frontends legt die externe URL fiir den Ingress-Controller
fest, wihrend die API-Gateway-Konfiguration Cross-Origin Resource Sharing (CORS)
fiir den Ingress-Controller aktiviert. Die beiden TS-Backend-Komponenten werden in
separaten UML-Deployment-Diagrammen in Abbildung 3.10 und 3.11 detaillierter dar-
gestellt.

Abbildung 3.10: Verteilungssicht fiir das Template Shop-Backend 1

43

3 Systemdesign

Abbildung 3.11: Verteilungssicht fiir das Template Shop-Backend 2

In Abbildung 3.11 wird Filebeat als DaemonSet bereitgestellt. Ein Kubernetes Daemon-
Set stellt sicher, dass auf jeder Node im Kubernetes-Cluster ein Pod mit einer Instanz
von Filebeat ausgefiihrt wird. Dadurch kénnen die Docker-Logs von allen Nodes gesam-
melt und an Elasticsearch weitergeleitet werden. Zur besseren Ubersicht wurde in der
Abbildung nur ein DaemonSet dargestellt, das stellvertretend fiir alle Filebeat-Instanzen
auf den Nodes steht.

44

4 Realisierung

4.1 Backend-Framework

Das Backend bietet Services und Funktionen an, um Anfragen von Clients zu bearbeiten.
Hierzu gehort die Verarbeitung von Geschéaftsfunktionen als auch die Bereitstellung von
Daten tiber APIs. Aufgrund seiner Vertrautheit und der Moglichkeit, sdmtliche Techno-
logien, die in der Bausteinsicht definiert wurden, leicht ins System zu integrieren, wurde

Spring Boot zur Implementation des Backends verwendet.

Spring ist ein Java-Framework, das zur Entwicklung von Unternehmensanwendungen
genutzt wird und sich in vier Hauptmodule gliedert. Diese Module decken verschiedene
Funktionalitdten ab: von der Verwaltung und Konfiguration von Beans tiber den Zugriff
auf Datenbanken bis hin zu Web-Schnittstellen und Performance-Uberwachung. [Gol20,
S.11-12] Spring Boot selbst ist dabei eine vorkonfigurierte Spring-Anwendung, die sofort
gestartet werden kann und die Entwicklung mit dem Framework vereinfacht. [Gol20,

S.29)

Zwei wichtige Komponenten in der Spring Architektur sind der Spring Container und
seine Beans: Der Spring Container sorgt fiir die korrekte Initialisierung und Ablauf der
Anwendung. Aufserdem steuert er den Lebenszyklus und die Verkniipfung jeglicher Beans
innerhalb des Containers. Beans sind dabei im Grunde nur Java-Objekte, die per An-
notationen oder XML-Deklaration markiert werden, um so vom Container erkannt und
verwaltet zu werden. [Gol20, S.22]

Der Vorteil von Beans gegeniiber Java Objekten besteht in den zusétzlichen Funktionen,
die der Spring Container ihnen bietet: Durch Dependency Injection werden automatisch
Abhéngigkeiten zwischen Beans aufgelst, ohne dass eine manuelle Initialisierung nétig
ist. Dieses Konzept der Inversion of Control, ndmlich dass ein Objekt seine Abhéngigkei-

ten nicht vom Entwickler, sondern von jemand anderem erhélt (z. B. den Spring Con-

45

4 Realisierung

tainer), sorgt fiir eine lose Kopplung zwischen den Komponenten, da beispielsweise auch

beliebige Implementationen von Interfaces injiziert werden koénnen. [Gol20, S.64-65]

Standardmaéafig existiert zur Laufzeit nur eine Bean, die vom Spring-Container verwen-
det wird. Ist diese Bean zustandslos, kann die Performance des Systems durch Skalierung
und Caching verbessert werden, da mehrere Threads gleichzeitig auf das Objekt zugreifen
kénnen, ohne sich gegenseitig zu behindern. Dies ist aber nur bei ausreichender Infra-
struktur gegeben. Mo6chte man zur Laufzeit mehrere Beans erstellen, kann dies durch

unterschiedliche Scopes in Spring Boot konfiguriert werden. [Gol20, S.82-86|

4.1.1 Services

Fast jeder Service wird durch einen Controller-Bean, einen Service-Bean und einen Repository-
Bean definiert. Im Controller wird mittels Spring MVC ein REST-Endpunkt erstellt,

der iiber das HTTP-Protokoll die CRUD-Funktionalitdten der Entitdten unserer Do-
méne anbietet. Dabei erleichtert Spring MVC durch Annotationen die Erstellung eines
Servlet-Containers, welcher die HTTP-Anfragen eines Fremdsystems entgegennimmt und
beantwortet. [Gol20, S.12]

Ein Service enthilt dabei die Logik fiir CRUD-Operationen und nutzt im Repository-

Bean Spring Data sowie Hibernate, um mit der Datenbank zu kommunizieren.

Spring Data vereinfacht die Implementierung der Datenzugriffsschicht, indem es eine ab-
strahierte Schnittstelle zur Verfiigung stellt, die die Integration verschiedener Datenbank-
technologien ermoglicht. Hibernate hingegen, als weitverbreitete JPA-Implementierung,
sorgt fiir das objektrelationale Mapping, indem es Java-Objekte mit Datenbanktabellen
verbindet. [Gol20, S.94-95]

Diese Kombination stellt die Kommunikation zwischen der Anwendungs- und Persistenz-
schicht her und unterstiitzt die Nutzung verschiedener Datenbanklosungen, ohne dass
der ibrige Code angepasst werden muss. Dies tragt zur Wartbarkeit des Systems bei,
welche wir als Qualitatsanforderung definiert haben. (siehe QA /4)

Im Folgenden werden einige Besonderheiten einzelner Services aufgezahlt:

46

4 Realisierung

Cart-Service

Wie im vorherigen Kapitel erldutert, wurde fiir die Warenkorb-Implementierung ein Con-
troller unter Verwendung von Redis und Spring Session entwickelt. Alle Warenkorbin-
formationen werden als String in Redis gespeichert. Der Schliissel fiir diesen String wird
durch die Konkatenation der im Cookie gespeicherten Session-ID und einer vordefinierten
Zeichenkette erstellt. In der aktuellen Version des Prototyps wird jedem Client-Browser
eine Session-ID zugewiesen, die so die Rolle eines Gastes représentiert. Wahrend des
Anmelde- oder Abmeldevorgangs bleiben die Warenkorbinformationen somit unveran-
dert.

Template-Service

Neben der CRUD-Funktionalitat fiir Templates und Tracks bietet der Template-Service
einen Upload-Endpunkt an, welcher Multipart-Anfragen annimmt um Dateien wie Bilder
und Audiospuren iiber die Google Cloud Storage API hochzuladen. Uber einen Download-
Endpunkt kénnen die hochgeladenen Tracks heruntergeladen und vom Frontend anschlie-

$end fiir die visuelle Darstellung verwendet werden.

Checkout-Service

Neben der Verwaltung von Bestellungen und der Kommunikation mit dem Payment- und
E-Mail-Service nutzt der Checkout-Service einen Elasticsearch-Client, um Bestellungen
iiber eine REST-API in Elasticsearch zu indexieren. Diese Bestellungen kénnen dann
in einem Dashboard mit Kibana visualisiert werden. Alternativ bietet der Service einen
Endpunkt zum Abfragen der Bestellungen an, damit das Frontend diese dem Admin auf

anderem Wege zur Verfiigung stellen kann.

4.2 Sicherheit

Alle Autorisierungs- und Authentifizierungsmechanismen sowie Sicherheitseinstellungen
werden mit Spring Security konfiguriert und implementiert, da dies das etablierte Sicher-

heitsframework fiir Spring Anwendungen ist.

47

4 Realisierung

Jeder Zugriff auf geschiitzte Ressourcen unterliegt der Kontrolle eines selbst implemen-
tierten Filters. Ein Filter in Spring Security ist eine Komponente, die in den Anfragezy-
klus eingreift und benutzerdefinierte Logik zur Verarbeitung von Anfragen oder Antwor-
ten bereitstellt. Dieser Filter validiert das mitgesendete JSON Web Token (JWT) und
setzt den Principal bzw. die Authentication in den Security-Context, wobei die Informa-
tionen fiir den Principal aus dem JW'T tibernommen werden. Der Principal représentiert
dabei den authentifizierten Benutzer und ist Teil der Authentication, welche zuséitzliche
Informationen iiber dessen Rollen und Berechtigungen tragt. Der Security-Context bein-
haltet Informationen iiber den Authentifizierungsstatus einer Anfrage und enthélt Zugriff

auf die Authentication.

Durch den Security-Context-Holder, der den Security-Context fiir den aktuellen Thread
beinhaltet, kann nun der Authentifizierungs- und Autorisierungsstatus der aktuellen An-
frage ermittelt werden. [Gol20, S.161-162] Mittels Annotationen werden die Endpunkte
dann mit bestimmten Rollen versehen, um den Zugriff entsprechend einzuschranken. Zum
Beispiel ermoglicht die Zuweisung der Admin-Rolle, dass nur Benutzer mit dieser Rolle
die Berechtigung haben, Templates anzulegen oder zu l6schen. Annotationen erméglichen
auch die Festlegung von Regeln, die sicherstellen, dass ein Benutzer nur seinen eigenen

Account 10schen kann und nicht von anderen.

Die Validierung des JW'T erfolgt mithilfe der Java-JW'T Library, welche die Implemen-
tierung aller JWT-Funktionalitiaten bereitstellt. Um den JWT zu validieren, muss der

Service iiber eine REST-API den Public Key des User-Service anfragen.

Alle weiteren Sicherheitseinstellungen, die z. B. CORS und CRSF Sicherheit betreffen,

werden programmatisch konfiguriert.

4.3 Tests

In der Softwareentwicklung ist Testen der Vorgang, der sicherstellt, dass Anwendungen
wie erwartet funktionieren. [Ricl8, Kapitel 9] Dabei gibt es verschiedene Testarten, die
unterschiedliche Aspekte einer Anwendung priifen und grofitenteils automatisiert ausge-

fihrt werden konnen:

Unit-Tests priifen die Korrektheit von kleinen Teilen eines Services, wie z. B. einzelnen
Klassen. Integrationstests testen die Interaktion von Services mit Infrastrukturkompo-

nenten wie Datenbanken und anderen Applikationsdiensten. Komponententests priifen

48

4 Realisierung

hingegen einen ganzen Service, wihrend End-to-End-Tests die gesamte Applikation kon-
trollieren. |Ric18, Kapitel 9.1.1]

Aus zeitlichen Griinden wurde auf umfangreiche Integrationstests mit Datenbanken und
Applikationsdiensten verzichtet, weil die korrekte Funktionalitdt der Infrastrukturkom-

ponenten in den Komponententests und End-to-End-Tests ersichtlich wird.

4.3.1 Konfiguration

Um Produktionsdaten nicht zu beeintrachtigen, konnen fiir die Tests verschiedene Spring-
Profiles verwendet werden. Spring-Profiles bieten die M&glichkeit, spezifische Konfigura-
tionen fiir unterschiedliche Umgebungen bereitzustellen. Damit kann flexibel zwischen
Applikationsdiensten und Interface-Implementationen gewechselt werden, um eine Kom-

ponente in verschiedenen Umgebungen zu testen.

4.3.2 Komponententests

Fiir die isolierten Komponententests des Backends wird JUnit und Mockito verwendet.
Mockito ermoglicht das Erstellen von Mock-Objekten, welche externe Abhéngigkeiten
simulieren und das Verhalten von Methoden iiberwachen konnen. Dies bedeutet, dass
wir ohne eine Implementation einer Abhéngigkeit wie z. B. eines anderen Services, de-
ren Funktion wie bestimmte Riickgabewerte einer Methode bestimmen konnen.|Ricl8,
Kapitel 9.2.4] Da unsere Services des Backends so geschnitten sind, dass sie kaum Ab-
héngikeiten zu anderen Services haben, dient Mockito eher dazu den asymmetrischen
Schliissel fiir das Backend zu schreiben oder Exceptions zu simulieren. Beispielsweise
kann man mit der SpyBean-Annotation eine Komponente von Spring Boot in seiner nor-

malen Implementation im Spring Container benutzen, aber einzelne Methoden &ndern.

Mit MockMve lassen sich Controller-Anfragen und -Antworten testen, ohne dass die ge-
samte Spring Boot-Umgebung oder echte Netzwerkverbindungen erforderlich sind. [Ric18,
Kapitel 9.2.5] Mit dem in Spring Boot integrierten Jackson-Mapper konnen wir hierbei
Java-Objekte als JSON versenden und mithilfe der JSONPath Bibliothek die erwarteten

Ergebnisse priifen.

49

4 Realisierung

4.3.3 Komponententests in Integration

Fiir die Durchfiihrung von Tests mit mehreren Services oder Diensten kommt die Testcontainer-
Bibliothek zum Einsatz. Testcontainer ermoglicht das Initiieren und Beenden von Docker-
Containern direkt innerhalb der Testfélle. Beispielsweise kann so schnell ein Redis-Container
fiir die Unit-Tests und Integrationstests des Cart-Service hochgefahren werden. Mit-

tels der Bibliothek wurde dann die Kommunikation zwischen E-Mail-, Checkout- und
Payment-Service, Template- und Comment-Service und die jeweiligen Abhéngigkeiten
zum User-Service getestet. Dabei wurde in komplexeren Netzwerken wie beispielsweise
Kafka mit docker-compose gearbeitet, damit die Container wiahrend des Tests problem-

los miteinander kommunizieren konnten. Wichtig ist hier, die zugeordneten Ports von
Testcontainer abzufragen, da die Ports der Docker-Container dynamisch zugewiesen wer-

den.

4.3.4 End-To-End Tests

Die End-To-End-Tests des Systems wurden fiir jeden Use Case manuell mit docker-
compose, spater lokal in Kubernetes mit Minikube und schliefslich auf der Google Cloud
Platform in der Produktionsumgebung ausgefiithrt. Aufgrund zeitlicher Griinde und des
Aufwands, Frontend mit Selenium oder Cypress zu automatisieren, wurde sich fiir den

manuellen Test-Ansatz entschieden.

4.4 Frontend-Framework

Das Frontend bildet die Weboberfliche einer Anwendung, iiber die der Benutzer mit den
Funktionen des Backends interagieren kann. Die Wahl hierfiir fiel auf das Javascript-
Framework Vue.Js, welches als modernes, komponentenbasiertes Framework eine flexible

und einfache Frontend-Entwicklung bietet.

Vue.js wurde von Evan You entwickelt, der zuvor bei Google mit AngularJS an ver-
schiedenen Projekten gearbeitet hatte. Ziel war es, die besten Aspekte von AngularJS
zu extrahieren und in ein leichteres Framework zu integrieren. Seit den ersten Commits

2013 wird Vue.js von einer stédndig wachsenden Community entwickelt. [Dei22, S.2]

50

4 Realisierung

In Vue.js (im Folgenden Vue) wird die Weboberflidche in unabhéngige, wiederverwendbare
Komponenten unterteilt, wobei jede Komponente ihren eigenen Zustand hélt. Durch die
Verwendung von Props und Events konnen dabei Daten von iibergeordneten zu unterge-
ordneten Komponenten iibertragen und verdndert werden. Da sich die Verschachtelung
der Komponenten in der Anwendung in Grenzen hielt, wurde auf ein Zustandsmanage-

mentsystem verzichtet.

Zustandsmanagement beschreibt dabei die Verwaltung und zentrale Speicherung von Zu-
standen einer Anwendung, um diese iiber Komponenten hinweg zu teilen. [Dei22, S.165-
166] Wer aber mit komplexeren Zustandsabhéngigkeiten iiber Komponenten hinweg han-

tiert, sollte zu Losungen wie Vuex oder Pinia zugreifen.

Aufbauend auf MVC verwendet Vue das MVVM-Muster. Dabei fungiert das ViewModel
als Bindeglied zwischen der View und Model, indem es Informationen austauscht und
Methoden des Models aufruft. Dies ermdoglicht eine deklarative Datenbindung, bei der
keine separaten Controller-Instanzen erforderlich sind, wodurch der manuelle Zugriff auf
das DOM stark reduziert wird. Zusétzlich stellt das ViewModel der View o6ffentliche
Eigenschaften und Methoden zur Verfiigung, die an Steuerelemente gebunden werden,

um Inhalte auszugeben und Ul-Ereignisse weiterzuleiten. [Stel9, S.43]

AuRerdem verwendet Vue einen virtuellen DOM, bei dem eventuelle Anderungen nicht
direkt am DOM vorgenommen werden, sondern zunéchst in einer Kopie des DOM als
interne JavaScript-Datenstruktur vorliegen. Diese Anderungen werden dann mit dem
urspringlichen DOM verglichen und erst danach zusammengefasst auf den realen DOM
iibertragen. [Stel9, S.10-11]

Durch diese Eigenschaften eignet sich Vue sehr gut fiir die Entwicklung von reaktiven
Single Page Applications, also solchen, die aus einem einzigen HTML-Dokument bestehen

und deren Inhalte dynamisch durch JavaScript nachgeladen werden. [Stel9, S.70]

Der Hauptgrund fiir die Wahl von Vue war dhnlich wie bei Spring Boot die existieren-
de Vorerfahrung mit dem Framework. Aufgrund der Ahnlichkeiten beliebter Frontend-
Frameworks ware auch jede andere Wahl ausreichend gewesen, um die Anforderungen

flir das System zu implementieren.

51

4 Realisierung

4.4.1 Datenpersistenz

Die meistverwendeten Moglichkeiten, Informationen im Browser zu persistieren, sind

Cookies und der localStorage bzw. sessionStorage.

Cookies sind kleine Textdateien, die vom Server an den Browser gesendet und auf der
Festplatte des Benutzers gespeichert werden. Sie enthalten oft Informationen wie Benut-
zereinstellungen oder Sitzungsdaten und haben eine begrenzte Grofie sowie festgelegte

Giiltigkeitsdauer.

LocalStorage und sessionStorage sind Teile des Web Storage API und bieten uns eine
alternative Moglichkeit, Daten im Browser zu speichern. LocalStorage speichert Daten
dauerhaft, wahrend Daten vom sessionStorage nur fiir die Dauer einer Browsersitzung
giiltig sind. Im Gegensatz zu Cookies werden Informationen aus localStorage und sessi-

onStorage nicht bei jeder HTTP-Anfrage an den Server geschickt.

Fiir die Speicherung des JW'Ts im Frontend wurde das localStorage verwendet, da es da-
mit sehr einfach ist die bendtigte Funktionalitét fiir die Anwendung zu implementieren.
WEeil es keine besonderen Sicherheitsanforderungen beziiglich des Frontends gibt, kon-
nen Sicherheitsbedenken wie potenzielle Anfélligkeiten fiir Cross-Site Scripting mit dem
Arbeiten des localStorage vorerst aufser Acht gelassen werden. Wichtig wire zu wissen,
dass Informationen im localStorage unverschliisselt gespeichert werden, weshalb sensible

Daten verschliisselt werden sollten.

Spring Session speichert seine Session-1Ds standardméfig in Cookies, weshalb auch diese

im System verwendet werden.

4.4.2 Routing

Fiir das Routing, also der Verkniipfung von URLs zu bestimmten Ansichten, wird Vue
Router verwendet. Vue Router ist der offizielle Router von Vue-Anwendungen und ar-
beitet mit deklarativen Routenkonfigurationen, die sich einfach mit Vue-Komponenten
verbinden lassen. Wir definieren dabei welche Komponenten auf einer bestimmten URL
anzeigt werden sollen und kénnen diese dynamisch fiir jedes Template konfigurieren. Im
Ergebnis erhalten wir eine Seite mit einer einzigen router-view, welche reaktiv alle Kom-

ponenten einer bestimmten URL rendert, ohne dass ein Neuladen der Seite bendtigt wird.

52

4 Realisierung

Auferdem kann mit NavigationGuards iiberpriift werden, ob der Benutzer autorisiert ist,

eine URL anzusteuern.

4.4.3 Design

Fiir das Design wurde das weitverbreitete CSS-Framework Bootstrap verwendet, welches
urspriinglich von Twitter entwickelt wurde. Es bietet vordefinierte Klassen und Kom-
ponenten wie buttons und Formulare, um schnell eine Benutzeroberfliche aufsetzen zu
kénnen. Dariiber hinaus bietet Bootstrap JavaScript-Komponenten wie modals und drop-

downs an, welche die Implementierung von dynamischen Funktionen beschleunigen.

4.4.4 Audiospur

Fiir die Darstellung der Audiospuren wurde die JavaScript-Bibliothek Wavesurfer.js ver-
wendet. Diese Bibliothek ermdoglicht sowohl die Wiedergabe als auch die Visualisierung
von Audiodateien, indem sie diese in anpassbaren Wellenformen darstellt. Mithilfe der
bereitgestellten Methoden kénnen wir verschiedene Informationen der Audiospur abfra-
gen und Event-Handler fiir spezifische Ereignisse konfigurieren. Beispielsweise kann so
durch das Tracking der Zeit einer Audiospur im Frontend immer der korrekte Zeitpunkt

fiir das Erstellen eines Kommentars angezeigt werden.

4.4.5 Kommentar-Icons

Mit tooltips von Bootstrap werden Kommentare dynamisch innerhalb einer Kommentar-
box angezeigt, sobald der Benutzer mit der Maus iiber die Icons eines Kommentars der
Audiospur fahrt. Die Icons werden dabei aus den ersten beiden Buchstaben des Benutzer-
namens zusammengestellt. Die Hintergrundfarbe der Icons wird auf Basis des Alphabets
gleichméfig auf sechs Farben verteilt und die Farbe entsprechend dem Anfangsbuchsta-

ben des Benutzernamens gewéhlt.

Fir die richtige Positionierung der Icons auf der Audiospur wird die aktuelle Zeit der
Audiospur durch die Gesamtzeit geteilt und mit der Breite des Containers multipliziert.
Dadurch entsteht ein erster Wert auf der x-Achse, der proportional zur Dauer der Au-

diospur und zur Containergrofte ist. Anschlieffend wird dieser Wert um den Offset des

53

4 Realisierung

Containers erganzt, um den Platz links vom Container zu beriicksichtigen. Fiir die ver-
tikale Position der Icons wird der vertikale Offset des Containers mit einem konstanten
Wert addiert und anschlieftend mit dem Scroll-Offset des Bildschirms berechnet. Der
Scroll-Offset ist wichtig, um sicherzustellen, dass die Icons korrekt positioniert werden,
falls der Benutzer die Webseite vor dem Laden der Icons scrollen sollte. Weil in der ersten
Version des Prototyps mit absoluten Werten gerechnet wird, verhélt sich diese Losung

nicht responsiv.

4.4.6 Kommentare

Zum Erstellen und Anzeigen von Kommentaren wurden modals von Bootstrap verwen-
det. Modals sind Dialogfenster, die iiber dem Hauptinhalt eingeblendet werden, ohne
die aktuelle Ansicht zu verlassen. Dies verbessert die Ubersichtlichkeit der Anwendung,
da die Kommentarfunktionalitdten vom Benutzer flexibel gedffnet und geschlossen wer-
den konnen, ohne dass andere Elemente wie die Audiospuren verschoben werden. Die
Kommentare werden dabei jeweils durch die Track-ID im Backend gefiltert, um nur die
Kommentare einer zugehorigen Audiospur anzuzeigen. Die Icons werden auch hier ein-

gesetzt, indem sie neben den Benutzerkommentaren angezeigt werden.

4.4.7 Upload

Fiir den Upload wird ein Formular bereitgestellt, das die Metadaten sowie die Bild-
und Audiodateien des Templates enthélt. Mithilfe der Datenbindung in Vue werden die
Eingaben durch reguldre Ausdriicke {iberpriift, um sicherzustellen, dass in den Metadaten
ausschlieflich alphanumerische Zeichen verwendet werden. Beim Absenden des Formulars
wird jede Datei dann einzeln iiber eine Upload-Komponente an den Upload-Controller
des Backends iibertragen. Wahrend es moglich wére, den gesamten Upload als Paket in
einer einzigen Anfrage zu senden, um so die Netzwerklast zu reduzieren, ist der Vorteil
der Einzeldatei-Ubertragung eine Verfolgung des Upload-Fortschritts jeder individuellen
Datei. Dies verbessert die Fehlerbehandlung, da Probleme mit einzelnen Dateien sofort

erkannt werden konnen.

54

4 Realisierung

4.4.8 Weitere Frontend-Komponenten

Alle weiteren Frontend-Komponenten besitzen keine komplexere Logik, sondern dienen
entweder der Darstellung sdmtlicher Informationen, die vom Backend geliefert werden,
oder der Aufnahme, Uberpriifung und Ubermittlung von Daten iiber Formulare an die
Services. Mit JSON Web Tokens (JWT), die im localStorage gespeichert sind und der
Axios-Bibliothek kénnen HTTP-Anfragen an die entsprechenden REST-APIs gesendet

werden, um die Funktionalitdten des Frontends zu implementieren.

4.5 Betrieb

Fiir einen einfachen Betrieb wurde ein Cluster auf GKE im Autopilot-Modus erstellt. Ne-
ben der automatischen Skalierung und Konfiguration der Serverknoten iibernimmt GKE
in diesem Modus die vollstdndige Verwaltung der Cluster-Infrastruktur. Zudem wurde
fiir eine verbesserte Sicherheit das Cluster in einem privaten VPC-Netzwerk in Frankfurt
bereitgestellt. Der Standort der Server hat dabei in diesem Prototypen keine Relevanz,
konnte jedoch in zukiinftigen Versionen fiir gesetzliche Vorgaben wie der DSGVO wichtig

werden.

WEeil es keine konkreten Vorgaben fiir die Anzahl paralleler Anfragen an die Cloud SQL-
Instanzen gibt, wurden diese auf die niedrigsten Ressourcen-Einstellungen konfiguriert,

um Kosten zu sparen.

Um die Hochverfiigharkeit zu verbessern, konnen die Services, die mit Cloud SQL verbun-
den sind, zusétzlich durch mehrere Replikate bereitgestellt werden. Eine automatische
dynamische Skalierung basierend auf CPU- und Ressourcennutzung wurde noch nicht

eingerichtet, weshalb der Prototyp zurzeit nur manuell skaliert werden kann.

Der Zugriff von Containern innerhalb der GKE-Umgebung auf Google Cloud Services
erfolgt iiber Workload Identities. Dabei wird jedem Kubernetes-Pod die Identitét eines
Google Service Accounts zugewiesen, der iiber individuell festgelegte Rollen und Berechti-
gungen verfiigt. Auf diese Weise kénnen die Pods ohne die Notwendigkeit von expliziten
Schliisseln auf Google Cloud Services zugreifen. Dies vereinfacht die Authentifizierung
und erhoht die Sicherheit, indem die Verwaltung und Konfiguration von langfristigen

Anmeldeinformationen entfallt.

55

4 Realisierung

4.6 Hiirden der Realisierung

Wihrend der Realisierung traten einige erwdhnenswerte Probleme auf, deren Lésungen

fir andere Entwickler in dhnlichen Situationen hilfreich sein konnten:

4.6.1 Spring Session-Tests

Obwohl Spring Session bei den lokalen Tests Cookies an das Frontend sendete, konnte
das Frontend diese nicht speichern. Der Grund dafiir war, dass der CORS-Filter genau-
er eingestellt werden musste. Das Zulassen aller CORS-Anfragen mit einem Wildcard-
Operator funktioniert nicht, da fiir die Speicherung von Cookies der tatsédchliche Host

genau spezifiziert werden muss.

4.6.2 Elasticsearch

Bei den manuellen Tests mit Elasticsearch kam es aufgrund unzureichenden Speicher-
platzes auf der Festplatte zu Problemen, weil Elasticsearch ab einem bestimmten Grenz-
wert automatisch alle Schreiboperationen blockiert hatte. Um das Problem zu beheben,
musste zundchst ausreichend Speicherplatz auf der Festplatte freigemacht werden und
anschlieffend die Schreibrechte in Elasticsearch entweder direkt im Terminal des Docker-
Containers oder iiber die ENTRYPOINT-Anweisungen in der Dockerfile wiederhergestellt

werden.

4.6.3 Minikube

Um Minikube (v1.23.2) lokal testen zu konnen, muss der Docker-Daemon von Minikube
zunéchst auf den Docker-Daemon der lokalen Maschine zeigen. Auf einem Windows-
System lautet der Befehl dazu:

@FOR /f "tokens=+"%i IN (‘minikube —-p minikube docker—env’) DO @%i

Anschliefiend konnen die lokalen Images in Minikube geladen werden. Dabei ist es wichtig,
dass die Kubernetes-Deployment-Dateien mit der IfNotPresent Pull-Policy ausgestattet
werden. Andernfalls wiirde Minikube versuchen, die Images aus dem Docker Hub zu

ziehen.

56

4 Realisierung

Endpunktvariablen sollten nicht mit [name/.endpoint definiert werden, da der Begriff
endpoint bereits von Minikube verwendet wird. Dies kann sonst zu Konflikten und Fehlern

bei der Service-Discovery fithren.

4.6.4 Filebeat auf GKE

Wiéhrend Filebeat lokal und in Minikube iiber den Pfad /var/lib/docker/containers auf
Docker-Logs zugreifen konnte, ist dieser Zugriff im GKE-Autopilot-Modus gesperrt. Da-
her wurde zur Log-Sammlung statt Filebeat, eine Kombination aus Logstash und Cloud
Logging benutzt. Cloud Logging ist ein von Google verwalteter Dienst welcher alle Logs
aus der GKE-Umgebung sammelt und diese in der Google Cloud Console zur Verfii-
gung stellt. Mithilfe eines definierten Log-Routers werden sédmtliche Logs auf die relevan-
ten Services gefiltert und in einem Pub/Sub Topic hochgeladen. Anschlieffend wird ein
Logstash-Container bereitgestellt, welcher diesen Topic abonniert und sdmtliche Logs an
Elasticsearch weiterleitet. Logstash ist &hnlich wie Filebeat eine mit Elasticsearch einfach
integrierbare Datenverarbeitungspipeline und wurde aufgrund seiner Plugins gewahlt, die
das Abonnieren von Pub/Sub-Topics erleichtern. Auch wenn das native Cloud Logging
allein eine einfache Beobachtbarkeit ermoglicht hétte, lag die Motivation hinter dieser

Anpassung darin, die bestehende Elasticsearch-Architektur beizubehalten.

4.6.5 Verbindung von GKE zu Public Cloud SQL

Auch wenn eine Cloud SQL-Instanz mit 6ffentlicher IP-Adresse einfach lokal iiber Cre-
dentials oder Cloud SQL Auth-Proxy erreichbar ist, ist diese Verbindung mit einem pri-
vaten GKE-Cluster nicht ohne Konfigurationen méglich. Um die Kommunikation hier zu
vereinfachen, sollte der Instanz eine private IP-Adresse hinzugefiigt werden, welche sich
im gleichen VPC-Netzwerk befindet. Anstatt fiir die Verbindung nun mit einer Client-
Bibliothek fiir Cloud SQL zu arbeiten, kann hier nun wie lokal iiblich die private IP-

Adresse und der Port der Instanz benutzt werden.

4.6.6 Verbindung von Ingress zum API-Gateway
Die aktuelle Ingress-Implementierung GCE hatte Schwierigkeiten mit dem API-Gateway

zu kommunizieren, was zu der Fehlermeldung 502 Bad Gateway fithrte. Laut den Ingress-

Logs wurde das API-Gateway nicht als gesunder Service erkannt. Die Losung bestand

o7

4 Realisierung

darin, mithilfe von Spring Boot Actuator einen Health-Check-Endpunkt zu erstellen und
den Google Cloud Load Balancer iiber die Health-Check-Einstellungen in GCP auf die-
sen Endpunkt zu konfigurieren. Dadurch konnte Ingress das API-Gateway als gesunden

Service erkennen und die Anfragen korrekt weiterleiten.

4.6.7 Interaktion der Session-Cookies mit dem Browser

In der lokalen Entwicklungsumgebung traten keine Probleme mit den Session-Cookies von
Spring Session auf, wihrend in der Produktionsumgebung Session-Cookies vom Browser
nicht gespeichert werden konnten. Das Problem war, dass der Browser Cookies nur iiber
HTTPS-Verbindungen akzeptiert, wenn sie iiber Cross-Origin-Anfragen gesendet werden.
In der lokalen Minikube-Umgebung gab es wahrscheinlich keine Schwierigkeiten, weil
Minikube in der Regel nur mit localhost arbeitet und keine Cross-Origin-Anfragen {iber
das Internet gemacht werden. Um das Problem zu beheben, musste Ingress mit einer
eigenen Doméne konfiguriert und ein Zertifikat von Google fiir diese Doméne ausgestellt
werden. Dadurch konnte zwischen Ingress und den verbundenen Services eine gesicherte
HTTPS-Verbindung aufgebaut werden.

Danach gab es jedoch zusétzliche Probleme: Obwohl Vue einen positiven HTTP-Statuscode
zuriickgab, wurde ein Invalid Host Header angezeigt. Dies lag daran, dass der webpack-
dev-server von Vue standardméfig nur auf localhost eingestellt ist. Daher mussten zuerst
die entsprechenden Domains fiir das Frontend freigeschaltet werden. Danach gab es wie-
der einen 502 Bad Gateway und einen ungesunden Zustand des Frontend-Services. Nach
einigen Anpassungen und Experimenten mit verschiedenen Health-Check-Einstellungen
16ste sich das Problem nach langer Zeit schliefSlich von selbst, als auf Standardeinstellun-
gen zuriickgesetzt wurde. Es ist schwierig zu sagen, was genau den Fehler behoben hat,
da es kein klares Feedback dariiber gab, welche Anderungen etwas bewirkten und welche
nicht.

58

5 Evaluation

Nach der Realisierung des Systems wird untersucht, inwiefern dieses die funktionalen und
nicht-funktionalen Anforderungen erfiillt und ob man bestimmte Aspekte hétte besser

umsetzen konnen.

5.1 Funktionale und nicht-funktionale Anforderungen

Die Unit- und Komponententests sowie die manuellen End-to-End-Tests der Use Ca-
ses haben gezeigt, dass alle funktionalen Anforderungen des Prototyps erfiillt wurden.
Dennoch kénnten zusétzliche Tests notwendig sein, um noch unentdeckte Szenarien ab-
zudecken und die Funktionalitdten des Systems beispielsweise in Grenzbereichen zu ge-

wahrleisten.

Beziiglich der nicht-funktionalen Anforderungen hat die Wahl von Kubernetes zu einem
leicht skalierbaren System gefiihrt, das bisher jedoch nur manuell skaliert werden kann.
Fiir eine automatische dynamische Skalierung miissen wir Autoscaler von Kubernetes im-
plementieren, die die Anzahl der Replikate eines Deployments basierend auf der aktuellen

CPU- und Speicherauslastung automatisch anpassen.

Obwohl Lastenverteilung und rolling updates theoretisch eine hohe Verfligbarkeit ge-
wahrleisten, ist das System derzeit nicht resilient gegeniiber Netzwerkfehlern, was die
Verfiigbarkeit beeintréchtigt. Um dies zu verbessern, sollten in Kubernetes liveness und
readiness probes implementiert werden, um fehlerhafte Services zu identifizieren. Zusétz-
lich sollten Services wie das API-Gateway mit Circuit Breakers ausgestattet werden, um
schlecht reagierende Services zu ignorieren. Auch sind der ELK-Stack und der Redis-
Container derzeit die Engpésse des Systems, da fiir sie noch keine Cluster konfiguriert
wurden, was bei extrem vielen Anfragen zu Problemen fiihren kann. Zudem haben wir

noch keine Lasttests durchgefiihrt, weshalb wir derzeit nicht wissen, wie das System unter

59

5 FEvaluation

Volllast reagiert. Ein weiteres Problem besteht darin, dass die Schliisselpaare des User-
Service zurzeit im Arbeitsspeicher gespeichert werden. Bei mehreren Replikaten kénnte
ein Service Schwierigkeiten haben einen JWT zu verifizieren, wenn eine Anfrage von ei-
nem Replikat bearbeitet wird, das einen anderen 6ffentlichen Schliissel verwendet. Zudem
kann ein Service seinen JW'T nicht mehr verifizieren, wenn eine User-Service-Instanz neu
gestartet wird, da beim Neustart ein neues Schliisselpaar generiert wird. In der Praxis

kénnen wir daher noch nicht von einem sicher hochverfiigbaren System ausgehen.

Um auf den Punkt der Agilitdt zu kommen, kénnen durch Kubernetes neue Versionen von
Services schnell ohne Ausfallzeit in Betrieb genommen werden. Wollen wir die Agilitét
hier jedoch verbessern, sollten wir eine automatisierte Test- und Deployment-Pipeline

implementieren um neue Versionen mit nur einem Klick bereitzustellen.

Fiir die Wartbarkeit sorgt die Strukturierung in klein geschnittene Services fiir eine iiber-
sichtliche und gekapselte Codestruktur, die keine Auswirkungen auf andere Services hat.
Anderungen kénnten jedoch Fehler in den Schnittstellen zu anderen Services verursa-
chen, die durch zusétzliche Contract-Tests abgedeckt werden kénnten. Contract-Tests
sind Tests die priifen, ob die Schnittstellen, beispielsweise zwischen Frontend und Ba-

ckend, bei Anderungen weiterhin kompatibel sind.

In Bezug auf die Beobachtbarkeit haben wir mithilfe unserer Monitoring-Losung ein
minimal beobachtbares System. Das Problem hier ist, dass wir Fehler oder Performance-
probleme erst zu spét erkennen, da wir weder iiber einen Gesundheitsstatus des Systems
noch aktiv iber auftretende Fehler benachrichtig werden. Hierfiir miisste ein Metrik-
Dashboard des Systems mit einer Alarmbenachrichtigung eingerichtet werden, welche im

Ausblick weiter ausgefiithrt wird.

Ein weiterer wichtiger Aspekt, der bisher nicht angesprochen wurde, sind die Kosten
des Systems. Die umfangreiche Nutzung verwalteter Google Cloud-Komponenten kann
erheblich teurer sein als die Nutzung einer SaaS-Lésung. M6chte man wirtschaftlich mit
der Konkurrenz mithalten, sollten insbesondere kostenintensive Komponenten selbst be-
reitgestellt und verwaltet werden. Dies wiirde jedoch die Komplexitét des Systems weiter
erhohen und zuséatzliche Zeit in Anspruch nehmen, um die Qualitdtsanforderungen zu

erfiillen.

60

5 FEvaluation

5.2 Kritik an der Microservice-Architektur

Auch wenn bislang nur die Vorteile der architektonischen Ausrichtung auf Microservices
betont wurden, ist es wichtig, sie kritisch zu hinterfragen, da sie in vielen Fallen moglicher-

weise nicht die optimale Lésung fiir Probleme innerhalb der I'T-Landschaft darstellen.

Betrachten wir beispielsweise das Problem der Skalierbarkeit, so geht es im Grunde dar-
um eine hohe Last an gleichzeitigen Anfragen zu bearbeiten. Geméaf Uwe Friedrichsen
wiére dies schon mit einem LAMP-Stack-Server oder 10 LAMP-Stack-Serverknoten und
Load Balancer ohne Microservices moglich. Seiner Einschdtzung nach kénnten mit dieser
Konfiguration zwischen 300.000 und 3 Millionen parallele Anfragen bearbeitet werden.
[Fri20Db]

Ein weiteres Problem betrifft die Simplizitdt und das modulare Design. Es ist wichtig
anzumerken, dass Microservices allein keine Garantie fiir ein einfacheres Codeverstand-
nis oder ein modulares Design bieten. Die Entscheidung fiir eine bestimmte Architektur
hat nédmlich keinen unmittelbaren Einfluss auf den Quellcode einer Anwendung, was
bedeutet, dass das zugrunde liegende und zu l6sende Problem einer Anwendung nicht
vereinfacht wird. Im Gegenteil wird durch die Einfiihrung von Microservices die struk-
turelle Komplexitéit erhoht und potenzielle Fehlerquellen in der Anwendung verstérkt,
da eine verteilte Architektur aufgrund der unvorhersehbaren Natur eines Netzwerks ei-
ne nicht deterministische Ausfiihrung mit sich bringt. Dies bedeutet konkret, dass alle

moglichen Aufrufe zwischen Services funktionieren kénnen, aber nicht miissen. [Fri20c|

Nach Uwe Friedrichsen sind Microservices eher dann relevant, wenn extrem schnelle De-
ployments erforderlich sind und mehrere Teams innerhalb eines Unternehmens an ei-
nem Projekt arbeiten. Ein weiterer Grund fiir Microservices sind unterschiedliche nicht-
funktionale Anforderungen innerhalb verschiedener Funktionen einer Anwendung. Wenn
die genannten Voraussetzungen nicht erfiillt sind und kein exponentielles Wachstum des
Unternehmens vorliegt, sollten alternative Architekturstile in Betracht gezogen werden:
[Fri21b]

Ein Modulith ist, wie zuvor erwéahnt, eine Form des Monolithen, der in modularer Weise
strukturiert ist und strikten Designprinzipien folgt. [Fri21c| Dies ermdglicht die Entwick-
lung eines gut organisierten und leicht wartbaren Codes, der auch langfristig Bestand
hat.

61

5 FEvaluation

Ein Microlith ist ein Microservice, der bestimmte Einschrankungen hat: Er darf kei-
ne externen Abhéngigkeiten fiir eingehende Anfragen haben und benétigt daher einen
Mechanismus, um die Konsistenz der Daten zwischen den verschiedenen Microservices
sicherzustellen. [Fri2la|] Anders ausgedriickt bedeutet dies, dass selbst bei einem Fehl-
schlagen dieses Mechanismus die eingehenden Anfragen an den Service davon unberiihrt
bleiben.

Angesichts dieses neuen Wissens kénnen wir nun unsere Losung anhand der nicht-funktionalen

Anforderungen kritisch priifen und zu den folgenden Schlussfolgerungen gelangen:

Fiir die Skalierbarkeit und Hochverfiigharkeit hétte die Bereitstellung der Anwendung
mit verschiedenen modulithischen Serverknoten und Load Balancern ausgereicht. Dies
héatte die Komplexitat verringert, da wir uns das Definieren separater Dockerfiles und
Kubernetes-Deployments fiir jeden Service hétten sparen konnen. Ein Nachrichtenbroker
wie Kafka oder REST-API-Calls zwischen den Services wéren somit iiberfliissig gewesen.
Die gesamte Komplexitdt der Bereitstellung, der Inter-Service-Kommunikation und des
Stub-Testens wire weggefallen, was das Projekt erheblich vereinfacht hétte. Hinsichtlich
der Agilitdt hétte Kubernetes mit modulithischen Serverknoten und einer gut konfigu-
rierten Deployment-Pipeline schnelle Updates ohne Ausfallzeiten liefern kénnen. Da das
Projekt von einer Person bearbeitet wurde gibt es keine Vorteile hinsichtlich einer paralle-
len Arbeit von Teams. Es ist auch wichtig anzumerken, dass kein besonderes Augenmerk
auf die Fehlerbehandlung zwischen den Microservices gelegt wurde. Wenn dies bertick-
sichtigt worden ware, waren komplexere Fehlerbehandlungen der Services nétig gewesen,
um nicht deterministisches Verhalten zu beriicksichtigen. Im Fall eines Modulithen wiir-
de diese zusétzliche Arbeit wegfallen. Was die Wartbarkeit angeht, sollte ein sehr gut
geschriebener Modulith diese Anforderung erfiillen. Beziiglich der Beobachtbarkeit, fun-
giert der Modulith auch wie ein Log-Aggregator, da alle Logs an einer Stelle vereint sind.
Dennoch koénnte ein ELK-Stack hilfreich sein, um das Durchsuchen der Log-Eintrage zu
ermoglichen und gegebenenfalls weitere Logs von Replikaten der Anwendung zu aggre-

gieren.

Insgesamt konnen wir also sagen, dass ein Modulith mit verschiedenen Replikationen
in Kubernetes nach unseren Qualitdtsanforderungen eine genauso so gute und weniger
komplexe Losung geboten hitte. Nach den Argumenten von Uwe Friedrichsen sind die
Voraussetzungen, welche eine Microservice-Architektur begiinstigen, fiir uns sowieso nicht

erfiillt gewesen.

62

5 FEvaluation

Trotzdem sollte iiberpriift werden, ob bestimmte Funktionen wie zum Beispiel die Wa-
renkorbfunktion erheblich starker beansprucht werden als andere. In einem solchen Fall
wire es sinnvoll, die Warenkorbfunktion in einen eigenen Service auszulagern und separat

zu skalieren, um Kosten zu sparen.

5.3 Fazit

In dieser Arbeit wurde ein Prototyp einer E-Commerce-Anwendung vorgestellt, der fiir
den Verkauf von Musikproduktionstemplates ausgelegt ist. Dieser Prototyp wurde in einer
Microservice-Architektur entworfen, die sehr gut fiir dynamische Skalierungen und Hoch-
verfligbarkeit geeignet ist. Jedoch konnten Vorteile wie unabhéngiges paralleles Arbeiten
von Teams und in diesem Zusammenhang extrem schnelle Releasezyklen im Rahmen die-
ses Ein-Mann-Projekts nicht ausgenutzt werden. Zudem ist wichtig zu wissen, dass diese
Architektur mit einer hohen strukturellen Komplexitéat und hohen Fehleranfélligkeit ein-
hergeht. Beispielsweise erzeugen zahlreiche Deployment-Dateien, verteilte Transaktionen,
Kommunikations- und Uberwachungskomponenten sowie Resilienzmechanismen eine zu-
satzliche Komplexitit, die behandelt werden muss. Wahlt man diese Architekturform,

sollte das Team daher in der Lage sein, mit diesen Herausforderungen umzugehen.

Da die besonderen Vorteile der Microservice-Architektur in der Regel vor allem bei sehr
groflen Unternehmen wie Netflix oder Amazon zur Geltung kommen, wére es fiir klei-
nere oder mittlere Unternehmen ratsamer, eine Architektur wie den Modulithen oder
Microlithen zu wahlen. Bei Microlithen ist zusétzlich zu beachten, dass ein nétiger Ab-
gleichmechanismus zuséatzliche Komplexitat bedeutet, die erarbeitet werden muss. Zum
Schluss kann man sagen, dass die Notwendigkeit von sehr gutem Design fiir egal welchen

Architekturstil man sich entscheidet, gleich bleibt.

63

6 Ausblick

Wiéhrend der Prototyp funktionsfdhig ist und die grundlegenden Anforderungen erfiillt,
fehlen ihm noch einige Aspekte und Funktionen, um im Produktionsbetrieb verwendet
zu werden. Im Folgenden werden diese Punkte erlautert und weitere Optimierungen vor-

geschlagen.

6.1 Validierung und Simulationsbehebung

Benutzerspezifische Fehlermeldungen sollten im Frontend angezeigt werden, um die Be-
nutzerfreundlichkeit der Anwendung zu erh6hen. Zudem sollten alle Daten die im Fron-
tend eingegeben werden einer griindlichen Input-Validierung unterzogen werden, um
XSS-Attacken und andere Sicherheitsrisiken zu minimieren. Der E-Mail-Service sollte
durch einen etablierten E-Mail-Anbieter wie MailJet oder SendGrid ersetzt werden. Eben-
so ist es notig, den Payment-Service durch einen bewdhrten Payment-Provider wie PayPal
oder Stripe zu ersetzen. Um den Prozess noch weiter zu vereinfachen, kann ein Merchant
of Record wie Fastspring eingebunden werden. Dieser iibernimmt zusétzlich die Rolle
des Verkdufers und kiimmert sich um alle steuerrechtlichen Vorgénge, die beim Verkauf
anfallen. Dadurch entfiele auch die Notwendigkeit einen eigenen Checkout-Prozess zu
implementieren, da diese Aufgabe von Fastspring ibernommen wird. Andernfalls miisste
der Checkout-Prozess entsprechend mit dem ausgewihlten Payment-Provider konfigu-

riert werden.

Des Weiteren sollte eine Uploadfunktion fiir die eigentlichen Projektdateien implemen-
tiert werden. Diese Dateien konnen dann iiber einen Downloadlink durch den E-Mail-

Anbieter an den Kunden weitergeleitet werden.

64

6 Ausblick

6.2 Sicherheit

Statt einen eigenen Authentifizierungs- und Autorisierungsservice zu implementieren,
empfiehlt es sich, OAuth 2.0 fiir die Autorisierung zu verwenden. OAuth 2.0 ist ein In-
dustriestandard fiir die sichere Ubertragung von Zugriffsrechten an Drittanbieteranwen-
dungen. Es wird von vielen Diensten unterstiitzt und folgt etablierten Sicherheitsstan-
dards. Zum Beispiel erméglicht OAuth 2.0 die Verwendung kurzlebiger Access-Tokens zur
Autorisierung, die iiber einen Endpunkt widerrufen werden kénnen, um zu verhindern,
dass kompromittierte Tokens im Umlauf bleiben. Zudem kénnen durch Refresh-Tokens
die kurzlebigen Access-Tokens erneuert werden. Wahrend man den Autorisierungsser-
ver so anpassen konnte, dass er Access-Tokens auch zur Authentifizierung nutzt, ist es
sicherer, ein Authentifizierungsprotokoll wie OpenID Connect zu verwenden. OpenlD
Connect baut auf OAuth 2.0 auf und erméglicht eine sichere Benutzerauthentifizierung
iiber ein ID-Token. Dieses Token enthélt Informationen iiber die Authentifizierungsan-
frage und kann zusétzliche Benutzerinformationen bereitstellen, die iiber den OpenlD-
Connect-Endpunkt abgerufen werden kénnen. Zur Umsetzung dieser Standards kénnte
eine Implementierung mit Keycloak erfolgen. Keycloak ist eine Open-Source-Plattform
fiir Identity- und Access-Management (IAM), die sowohl OAuth 2.0 als auch OpenlD
Connect unterstiitzt. Sie bietet eine zentrale Verwaltung von Benutzern und Rollen so-
wie zusétzliche Sicherheitsfunktionen wie Multi-Faktor- Authentifizierung. Der selbst im-
plementierte User- und Auth-Service aus der ersten Version des Prototyps wiirde damit
iiberfliissig. Ein separater User-Service ware nur dann erforderlich, wenn zusétzliche Be-

nutzerfunktionen benétigt werden, die Keycloak nicht bietet.

Zudem sollte ein vordefiniertes Konto mit Admin-Rechten erstellt werden. Zurzeit wird

das Admin-Konto einfach mit dem Benutzernamen admin erstellt.

Schliefslich wurde die rechtliche Absicherung der E-Commerce-Anwendung bisher noch
nicht berticksichtigt. In Zusammenarbeit mit I'T-Recht-Spezialisten sollten die rechtlichen
Anforderungen eines Online-Shops gepriift und die Anwendung entsprechend angepasst
werden. Dies betrifft fiir die Entwicklung beispielsweise den Umgang mit personenbezo-

genen Daten oder den Einsatz von Cookies.

Obwohl ein Produktionsbetrieb mit diesen Anderungen moglich wiére, gibt es noch ei-
nige Optimierungsmoglichkeiten, die insbesondere fiir eine Microservice-Architektur von

Bedeutung sind:

65

6 Ausblick

6.3 Resilienz

In verteilten Systemen besteht stets das Risiko von Teilausféllen, wenn Services synchron
miteinander kommunizieren. Ein Service konnte aufgrund von Ausfillen, Wartungsarbei-
ten oder Uberlastung nicht rechtzeitig auf Anfragen reagieren, was dazu fithren kann,
dass Clients blockiert werden und der Ausfall sich auf das gesamte System erstreckt.
Ein Beispiel hierfiir wére, wenn das API Gateway unseres Systems langere Zeit auf die
Antwort eines Services wartet und dadurch fiir andere Nutzer nicht verfiighar ist. [Ric18,
Kapitel 3.2.3] Um solche Szenarien zu vermeiden ist es notwendig zusétzliche Mafnahmen

in APIs zu implementieren, die von solchen Teilausfillen betroffen sein konnten.

Ein Vorschlag wire das Circuit-Breaker-Muster, welches die Erfolgs-und Fehlerraten von
Anfragen iiberpriift und sich wie ein Schalter beim Uberschreiten einer definierten Feh-
lerquote schliefft und keine weiteren Anfragen mehr akzeptiert. Erst nach einer gewissen
Zeitspanne wird erneut liberpriift, ob der Service verfiigbar ist und bei Erfolg der Schal-
ter wieder umgelegt sowie Anfragen zugelassen. [Ric18, Kapitel 3.2.3] Implementieren
kénnte man dies beispielsweise mit Resilience4j, das auch in Spring Cloud unterstiitzt

wird.

6.4 Monitoring und Health-Checks

Wie bereits in einem fritheren Teil dieser Arbeit besprochen, kénnten zusitzliche Uberwa-
chungsmoglichkeiten wie Tracing und Metrik-Monitoring ergénzt werden. Fiir die Health-
Checks kann Kubernetes durch eine readiness probe konfiguriert werden, um zu ent-
scheiden, ob Anfragen bei schlechtem Gesundheitszustand an eine andere Instanz einer
Anwendung geroutet werden sollen. Eine liveness probe wiederum entscheidet, ob Ku-
bernetes die Instanz komplett neu starten soll. |[Ric18, Kapitel 12.4.2] Ein bekanntes
Beispiel fiir eine Health-Check-Bibliothek ist der zuvor erwdhnte Spring Boot Actuator,
der mithilfe seines Endpunkts eine Reihe von Gesundheitspriifungen durchfiihrt, die auf

der verwendeten Infrastruktur der Anwendung basieren.

66

Literatur

[bae23]

[Bas24a]

[Bau+11]

[Boo]

[cas19]

[cod]|

[Dei22]

[Ebe22]

Baeldung. Creating Kafka Topic With Docker Compose | Baeldung on Ops.
https://www.baeldung.com/ops/kafka—-new—-topic—-docker—
compose. Version 11.2023. Zugriffsdatum: 16.08.2024.

Nick Basile. Building A Comments System With Vue.js, Laravel, and Tail-
wind CSS Part I. https://nickjbasile.medium.com/building-a-
comments—system-with-vue-Jjs—-laravel-and-tailwind-css-—
part—i-e24e8518ee3. Version 04.2018. Zugriffsdatum: 27.03.2024.

Christian Baun u. a. Cloud Computing - Web-basierte dynamische I'T-Services.
Springer Berlin, Heidelberg, 2011. Do1: 10.1007/978-3-642-18436-9.

Bootstrap. Checkout example for Bootstrap — getbootstrap.com. https://
getbootstrap.com/docs/4.0/examples/checkout/. Zugriffsda-
tum: 22.04.2024.

cassiomolin. log-aggregation-spring-boot-elastic-stack/filebeat/filebeat. docker.yml
at master - cassiomolin/log-aggregation-spring-boot-elastic-stack. https://
github . com/ cassiomolin / log—aggregation - spring—boot -
elastic-stack/blob/master/filebeat/filebeat.docker.yml.
Version 2019. Zugriffsdatum: 02.04.2024.

codeply. Bootstrap Checkout Example Code. https : //www . codeply .
com/p?starter=Bootstrap&ex=Sh3KmpOVTc. Zugriffsdatum: 22.04.2024.

Fabian Deitelhoff. Vue.js - Von Grundlagen bis Best Practices. ger. dpunkt.verlag,
2022. 1SBN: 9783969107607. URL: https://content-select.com/de/
portal/media/view/62145ecc-9dd0-4faf-acdb-0a29b0dd2d03.

Christof Ebert. Systematisches Requirements Engineering. ger. 7. Aufl. dpunkt.verlag,
2022. 18BN: 9783969107683. URL: https://content—-select.com/de/
portal/media/view/62145eca-c094-43a8-a875-0a29b0dd2d03.

67

Literatur

[Ela]

[Fri20a]

[Fri20b]

[Fri20c|

[Fri21a]

[Fri21b)

[Fri21c|

[Gol20]

[HS17]

[IBM]

[Kaf]

Elastic. Running Filebeat on Kubernetes | Filebeat Reference [71.2] | Elastic.
https://www.elastic.co/guide/en/beats/filebeat/7.2/
running-on-kubernetes.html. Zugriffsdatum: 16.04.2024.

Uwe Friedrichsen. The microservices fallacy - Part 1. https : / / www .
ufried.com/blog/microservices_fallacy_1/. Version 11.2020.
Zugriffsdatum: 15.06.2024.

Uwe Friedrichsen. The microservices fallacy - Part 2. https : / / www .
ufried.com/blog/microservices_fallacy_2__scalability/.
Version 11.2020. Zugriffsdatum: 15.06.2024.

Uwe Friedrichsen. The microservices fallacy - Part 8. https : / / www .
ufried.com/blog/microservices_fallacy_3_simplicity/. Ver-
sion 11.2020. Zugriffsdatum: 15.06.2024.

Uwe Friedrichsen. The microservices fallacy - Part 10. https : / / www .
ufried.com/blog/microservices_fallacy_10_microliths/.
Version 01.2021. Zugriffsdatum: 15.06.2024.

Uwe Friedrichsen. The microservices fallacy - Part 7. https : / / www .
ufried.com/blog/microservices_fallacy_7_actual_reasons/.
Version 01.2021. Zugriffsdatum: 15.06.2024.

Uwe Friedrichsen. The microservices fallacy - Part 9. https : / / www .
ufried.com/blog/microservices_fallacy_9_moduliths/. Versi-
on 01.2021. Zugriffsdatum: 15.06.2024.

Wolfgang Golubski. Entwicklung verteilter Anwendungen - Mit Spring Boot
& Co. Springer Vieweg Wiesbaden, 2020. DOI: 10.1007/978-3-658-
26814-5.

Wilhelm Hasselbring und Guido Steinacker. “Microservice Architectures for
Scalability, Agility and Reliability in E-Commerce”. In: 2017 IEEE Inter-
national Conference on Software Architecture Workshops (ICSAW). 2017,
S. 243-246. por: 10.1109/ICSAW.2017.11.

IBM. Was ist DevOps? https://www.ibm.com/de—de/topics/
devops. Zugriffsdatum: 03.06.2024.

Kafka. Apache Kafka. https://kafka.apache.org/intro. Zugriffsda-
tum: 02.08.2024.

68

Literatur

[KM23] Michael Kaufmann und Andreas Meier. SQL- & NoSQL-Datenbanken. 9. er-
weiterte und aktualisierte Auflage. Springer Vieweg Berlin, Heidelberg, 2023.
DOI: 10.1007/978-3-662-67092-17.

[Kub24a| Kubernetes. Deployments. https://kubernetes.io/docs/concepts/
workloads/controllers/deployment/. Version 03.2024. Zugriffsda-
tum: 10.06.2024.

[Kub24b| Kubernetes. Ingress. https : / / kubernetes . io/docs / concepts /
services—-networking/ingress/. Version 04.2024. Zugriffsdatum: 10.06.2024.

[Kub24c|] Kubernetes. Kubernetes Components. https://kubernetes.io/docs/
concepts / overview / components/. Version 05.2024. Zugriffsdatum:
10.06.2024.

[Kub24d] Kubernetes. ConfigMaps. https://kubernetes.io/docs/concepts/
configuration/configmap/. Version 03.2024. Zugriffsdatum: 10.06.2024.

[Kub24e| Kubernetes. Secrets. https : / / kubernetes . io/ docs / concepts /
configuration/secret/. Version 07.2024. Zugriffsdatum: 26.07.2024.

[Kub24f] Kubernetes. Service. https : / / kubernetes . io/docs / concepts /
services—-networking/service/. Version 06.2024. Zugriffsdatum: 26.06.2024.

[Lee23| C. Lee. How can I wvalidate an email address in JavaScript? https: //
stackoverflow.com/questions/46155/how—-can—-i-validate-
an—-email - address— in- javascript. Version 2023. Zugriffsdatum:
12.03.2024.

[Marl4| James Lewis Martin Fowler. Microservices. https : / /martinfowler .
com/articles/microservices.html. Version 03.2014. Zugriffsdatum:
10.06.2024.

[MDB] MDB. Bootstrap Shopping Carts free examples, templates & tutorial. https:

//mdbootstrap.com/docs/standard/extended/shopping-carts/.
Zugriffsdatum: 20.04.2024.

[New21| Sam Newman. Building Microservices: Designing Fine-Grained Systems. 2nd
Edition. OReilly Media, Inc., 2021. 1SBN: 978-1-492-03397-4.

[Pan24] Abhinav Pandey. Spring Boot — Testing Redis With Testcontainers | Bael-
dung. https://www.baeldung.com/spring-boot-redis—testcontainers.
Version 01.2024. Zugriffsdatum: 15.04.2024.

69

Literatur

[PR15] Klaus Pohl und Chris Rupp. Basiswissen Requirements Engineering : Aus-
und Weiterbildung nach IREB-Standard zum Certified Professional for Requi-
rements Engineering Foundation Level. 4., iberarbeitete Auflage. Heidelberg:
dpunkt.verlag, 2015.

[Rag21] Ragvah. Regex for checking if a string is strictly alphanumeric. https://
stackoverflow.com/questions/11241690/regex—for—-checking-
if-a-string-is-strictly-alphanumeric. Version 2021. Zugriffsda-
tum: 12.03.2024.

[Reil§| Stefan Reinheimer. Cloud Computing - Die Infrastruktur der Digitalisierung.
Springer Vieweg Wiesbaden, 2018. DOI: 10.1007/978-3-658-20967-4.

[Ric18] Chris Richardson. Microservices Patterns: With examples in Java. Manning,
2018. 1SBN: 9781617294549.

[sar19] sarulabs. Sending Docker Logs to ElasticSearch and Kibana with FileBeat -
Sarulabs. https : / /www . sarulabs .com/post /5/2019-08-12/
sending—-docker—-logs—to—-elasticsearch—-and-kibana-with-
filebeat.html. Version 08.2019. Zugriffsdatum: 28.03.2024.

[SH11] Gernot Starke und Peter Hruschka. Software-Architektur kompakt - angemes-
sen und zielorientiert. 2. Aufl. Spektrum Akademischer Verlag Heidelberg,
2011. poI: 10.1007/978-3-8274-2835-6.

[Som18] Tan Sommerville. Software Engineering. 10., aktualisierte Auflage. Pearson
Deutschland, 2018. ISBN: 9783868943443. URL: https://elibrary.pearson.
de/book/99.150005/9783863268350.

[Stal7] Stack Overflow. How to delete the directory through java? https://stackoverflow.
com/questions /42929971 /how—-to—-delete—-the—-directory—
through-java. Version 2017. Zugriffsdatum: 28.02.2024.

[Stel9] Ralph Steyer. Webanwendungen erstellen mit Vue.js - MVVM-Muster fir
konventionelle und Single- Page- Webseiten. Springer Vieweg Wiesbaden, 2019.
DOI: 10.1007/978-3-658-27170-1.

[Tre21] Hansruedi Tremp. Architekturen Verteilter Softwaresysteme - SOA € Mi-
croservices - Mehrschichtenarchitekturen - Anwendungsintegration. Springer
Vieweg Wiesbaden, 2021. por: 10.1007/978-3-658-33179-5.

70

Literatur

[Wel24] Kevin Welter. Kubernetes - Das Prazisbuch fir Entwickler und DevOps-
Teams. Rheinwerk Publishing Inc., 2024. URL: https://ebookcentral.

proquest.com/lib/hawhamburg—ebooks/detail.action?docID=
31318121.

71

A Anhang

A.1 Spezifikation der Use Cases

Anwendungsfall Registrieren (uc/1)
Akteure Gast
Vorbedingung e Der Gast ist nicht registriert.
e Der Gast befindet sich auf der Registrierungsseite.
Hauptszenario 1. Der Gast gibt die erforderlichen Informationen ein (z. B.
Benutzername, Passwort, Vor- und Nachname).
2. Der Gast sendet das Registrierungsformular ab.
3. Eine Erfolgsnachricht wird angezeigt.
4. Der Benutzer wird zur Login-Seite weitergeleitet.
Alternativ- 2a. Der angegebene Benutzername existiert bereits.
szenarien 2al. Es wird eine Fehlermeldung angezeigt und der Be-
nutzer aufgefordert, einen anderen Benutzernamen zu wah-
len.
Nachbedingung e Der Gast ist nun ein registrierter Benutzer und befindet

sich auf der Login-Seite.
e Der registrierte Benutzer wurde in der Datenbank angelegt.

Tabelle A.1: Registrieren (uc/1)

72

A Anhang

Anwendungsfall Anmelden (uc/2)
Akteure Gast
Vorbedingung e Der Gast ist ein registrierter Benutzer.
e Der Gast ist nicht eingeloggt.
e Der Gast befindet sich auf der Anmeldeseite.
Hauptszenario 1. Der Gast gibt Benutzernamen und Passwort ein.
2. Der Gast sendet das Anmeldeformular ab.
3. Eine Erfolgsnachricht wird angezeigt.
4. Der Benutzer wird zur Homepage weitergeleitet.
Alternativ- 2a. Die angegebenen Anmeldeinformationen sind nicht kor-
szenarien rekt.
2al. Es wird eine Fehlermeldung angezeigt, dass die an-
gegebenen Anmeldeinformationen nicht korrekt sind.
Nachbedingung e Der Gast ist im System angemeldet und wurde auf die
Homepage weitergeleitet.
e Der Benutzername des Benutzers wird neben dem User-
Icon angezeigt.
e Ein Json-Web-Token wurde fiir den angemeldeten Benutzer
erstellt.
Tabelle A.2: Anmelden (uc/2)
Anwendungsfall Template-Produktseite besuchen (uc/3)
Akteure Gast, User, Admin
Vorbedingung Keine
Hauptszenario 1. Der Akteur klickt auf ein Bild vom Template auf der Start-
seite.
2. Das System navigiert zur Template-Produktseite.
Alternativ- Keine
szenarien
Nachbedingung e Der Akteur befindet sich auf der Produktseite fiir das aus-

gewahlte Template.

Tabelle A.3: Template-Produktseite besuchen (uc/3)

73

A Anhang

Anwendungsfall Tracks eines Templates abspielen und stoppen (uc/4)
Akteure Gast, User, Admin
Vorbedingung e Der Akteur befindet sich auf der Template-Produktseite.
Hauptszenario 1. Der Akteur klickt auf eine bestimmte zeitliche Stelle des
Tracks.
2. Der Akteur klickt auf die Wiedergabetaste fiir einen Track.
3. Das System spielt den Track ab der bestimmten zeitlichen
Stelle ab, wobei der Fortschritt des Tracks ersichtlich wird.
4. Der Akteur klickt auf die Stopp-Taste.
5. Das System stoppt den Track.
Alternativ- 4a. Der Akteur klickt nicht auf die Stopp-Taste.
szenarien 4al. Am Ende des Tracks stoppt das System den Track.
Alternativ- la. Der Akteur klickt auf keine bestimmte zeitliche Stelle des
szenarien Tracks.
lal. Weiter mit 2. (die zeitliche Stelle ist jetzt der Anfang
des Tracks)
Nachbedingung e Der ausgewahlte Track spielt nicht mehr.

e Die neue zeitliche Stelle des Tracks ist ersichtlich.

Tabelle A.4: Tracks eines Templates abspielen und stoppen (uc/4)

74

A Anhang

Anwendungsfall Kommentare zu einem Track anzeigen (uc/5)
Akteure Gast, User, Admin
Vorbedingung e Der Akteur befindet sich auf der Template-Produktseite.
Hauptszenario 1. Der Akteur klickt auf das ,alle Kommentare Anzeigen-
Icon des Tracks.
2. Das System zeigt Kommentare zu den Template-Tracks
an. Das System errechnet dabei, wann der Kommentar er-
stellt wurde. (z. B. vor 6 Sekunden, vor einem Monat etc.)
Alternativ- la. Der Akteur fahrt iiber das Icon eines Akteurs auf dem
szenarien Track.
lal. Das System zeigt per Tooltip den Kommentar eines
Akteurs an.
Alternativ- 2a. Es gibt keine Kommentare fiir den Track.
szenarien 2al. Es wird eine Meldung ausgegeben, die darauf hin-
weist, dass es noch keine Kommentare gibt.
Nachbedingung e Der Akteur sieht nun eine Anzeige zu den Kommentaren

des Tracks.

Tabelle A.5: Kommentare zu einem Track anzeigen (uc/5)

75

A Anhang

Anwendungsfall Template zum Warenkorb hinzufiigen (uc/6)

Akteure Gast, User, Admin

Vorbedingung e Der Akteur befindet sich auf der Template-Produktseite.

Hauptszenario 1. Der Akteur klickt auf den ,,Add to Cart"-Button fiir ein
Template.
2. Das System fiigt das Template dem Warenkorb des Ak-
teurs hinzu.
3. Eine Erfolgsmeldung, dass das Produkt dem Warenkorb
hinzugefiigt wurde, wird angezeigt.

Alternativ- 2a. Das Produkt befindet sich schon im Warenkorb

szenarien 2al. Eine Meldung, dass sich das Produkt schon im Wa-
renkorb befindet, wird angezeigt.

Nachbedingung e Das ausgewéhlte Template wurde dem Warenkorb des Ak-

teurs hinzugefiigt.

e Kine Session fiir den Warenkorb wurde vom System er-
stellt.

e Das ausgewihlte Template wurde in der Datenbank des
Warenkorbs angelegt.

Tabelle A.6: Template zum Warenkorb hinzufiigen (uc/6)

Anwendungsfall Warenkorb anzeigen (uc/7)

Akteure Gast, User, Admin

Vorbedingung e Im Warenkorb des Akteurs befinden sich Templates.

Hauptszenario 1. Der Akteur klickt auf das Warenkorb-Symbol.
2. Das System zeigt den Inhalt des Warenkorbs des Gastes
auf einer neuen Seite an.

Alternativ- 2a. Der Warenkorb ist leer.

szenarien 2al. Eine Meldung, dass der Warenkorb leer ist, wird
angezeigt.

Nachbedingung e Der Akteur befindet sich auf der Seite des Warenkorbs.

e Der Inhalt des Warenkorbs wird angezeigt.

Tabelle A.7: Warenkorb anzeigen (uc/7)

76

A Anhang

Anwendungsfall Template aus dem Warenkorb 16schen (uc/8)

Akteure Gast, User, Admin

Vorbedingung e Der Akteur sieht sich den Warenkorb auf der Cartpage an.
e Der Warenkorb ist nicht leer.

Hauptszenario 1. Der Akteur klickt auf das ,,Delete~Icon neben einem Tem-
plate im Warenkorb.
2. Das System entfernt das ausgewéhlte Template aus dem
Warenkorb.

Alternativ- Keine

szenarien

Nachbedingung e Das ausgewihlte Template wurde aus dem Warenkorb des

Akteurs entfernt.
e Das ausgewéhlte Template wurde aus der Datenbank des
Warenkorbs entfernt.

Tabelle A.8: Template aus dem Warenkorb 16schen (uc/8)

77

A Anhang

Anwendungsfall

Template kaufen (uc/9)

Akteure

Gast, User, Admin

Vorbedingung

e Im Warenkorb des Akteurs befinden sich Templates.
e Der Akteur befindet sich auf der Seite des Warenkorbs.

Hauptszenario

1. Der Akteur klickt auf den ,Checkout-Button.

2. Das System leitet den Akteur auf die Checkoutpage weiter.
3. Der Akteur gibt Zahlungs- und Versanddetails ein.

4. Der Akteur klickt auf den ,,Buy Now“-Button.

5. Das System verarbeitet die Zahlung.

6. Nach Erfolgreicher Verarbeitung erstellt das System einen
Downloadlink.

7. Eine Erfolgsmeldung wird angezeigt.

8. Der Akteur wird zur Homepage weitergeleitet.

9. Der Warenkorb wird geleert.

Alternativ-
szenarien

4a. Die Zahlungs- oder Versanddetails weisen Fehler auf.
4al. Eine Fehlermeldung und Aufforderung korrekte Da-
ten einzugeben wird angezeigt.
4a2. Weiter bei 3

Alternativ-
szenarien

4a. Das Konto ist nicht ausreichend fiir die Zahlung gefillt.
4al. Eine Fehlermeldung wird angezeigt. (In der Konsole)

Alternativ-
szenarien

4a. Der Warenkorb ist leer.
4al. Eine Fehlermeldung wird angezeigt.
4a2. Der Akteur fiigt ein Produkt zum Warenkorb hinzu.
4a3. Weiter bei 1.

Nachbedingung

e Die ausgewéhlten Templates wurden erfolgreich vom Ak-
teur gekauft.

e Die Bestellung und die Transaktion wurden in der Daten-
bank gespeichert.

e Die Bestellung wurde in Elasticsearch indexiert.

e Die gekauften Produkte wurden aus der Datenbank des
Warenkorbs gel6scht.

Tabelle A.9: Template kaufen (uc/9)

78

A Anhang

Anwendungsfall Kommentieren von Tracks eines Templates (uc/10)
Akteure User, Admin
Vorbedingung e Der Gast ist angemeldet und hat die Rolle User oder Ad-
min.
e Der Akteur befindet sich auf der Template-Produktseite
Hauptszenario 1. Der Akteur klickt auf das ,Kommentieren“-Icon eines

Tracks.

2. Der Akteur gibt einen Kommentar im Kommentarbereich
ein.

3. Der Akteur sendet den Kommentar mittels ,,Publish“-
Button ab.

4. Das System speichert den Kommentar ab und zeigt die
Initialen des Akteurs als Icon relativ zum Timestamp des
erstellten Kommentars an.

Tabelle A.10: Kommentieren von Tracks eines Templates (uc/10)

Anwendungsfall

Eigene Kommentare zu einem Track 16schen (uc/11)

Akteure

User, Admin

Vorbedingung

e Ein Kommentar des Akteurs ist am Track vorhanden.

e Der Akteur ist angemeldet.

e Der Akteur befindet sich auf der Produktseite des Templa-
tes

Hauptszenario

1. Der Akteur klickt auf das ,Kommentare Anzeigen“-Icon
eines Tracks.

2. Der Akteur findet seinen eigenen Kommentar zu einem
Track.

3. Der Akteur klickt auf das Bearbeiten Icon neben seinem
Kommentar.

4. Der Akteur klickt auf den angezeigten ,Delete“~-Button.
5. Das System loscht den Kommentar des Akteurs.

Alternativ-
szenarien

Keine

Nachbedingung

e Der Kommentar des Akteurs wurde aus der Datenbank
entfernt.

Tabelle A.11: Eigene Kommentare zu einem Track 16schen (uc/11)

79

A Anhang

Anwendungsfall

Eigene Kommentare zu einem Track bearbeiten (uc/12)

Akteure

User, Admin

Vorbedingung

e Ein Kommentar des Akteurs ist am Track vorhanden.

e Der Akteur ist angemeldet.

e Der Akteur befindet sich auf der Produktseite des Templa-
tes

Hauptszenario

1. Der Akteur klickt auf das ,Kommentare Anzeigen“-Icon
eines Tracks.

2. Der Akteur findet seinen eigenen Kommentar zu einem
Track.

3. Der Akteur klickt auf das ,,Bearbeiten‘-Icon neben seinem
Kommentar.

4. System zeigt den Kommentar in einer bearbeitbaren Form
an.

5. Der Akteur modifiziert den Kommentar.

6. Der Akteur klickt den ,,Update“-Button des Kommentars.
7. Das System speichert den neuen Kommentar.

Alternativ-
szenarien

4a. Der Akteur klickt auf den ,Cancel“-Button.
4al. Der originale Kommentar bleibt unverédndert und
wird nicht mehr in bearbeitbarer Form angezeigt.

Nachbedingung

e Der bearbeitete Kommentar wurde in der Datenbank ge-
speichert.

e Der bearbeitete Kommentar wird in der normalen Kom-
mentaransicht angezeigt.

Tabelle A.12: Eigene Kommentare zu einem Track bearbeiten (uc/12)

Anwendungsfall Abmelden (uc/13)

Akteure User, Admin

Vorbedingung e Der Akteur ist angemeldet.

Hauptszenario 1. Der Akteur klickt auf den ,Logout“-Button.
2. Das System meldet den Benutzer ab.

Alternativ- Keine

szenarien

Nachbedingung e Der Akteur ist im System abgemeldet.

e Der JSON-Web-Token wurde vom System gelscht.

Tabelle A.13: Abmelden (uc/13)

80

A Anhang

Anwendungsfall Eigenen Account 16schen (uc/14)

Akteure User, Admin

Vorbedingung e Der Akteur ist angemeldet.

Hauptszenario 1. Der Akteur navigiert zum ,Delete Account“-Button des
Profils.
2. Der Akteur klickt auf ,,Delete Account®.
3. Das System 16scht den Account des Akteurs.
4. Fine Erfolgsmeldung wird angezeigt.

Alternativ- Keine

szenarien

Nachbedingung e Der Akteur ist im System abgemeldet.

e Der JSON-Web-Token wurde vom System gelscht.
e Der Akteur wurde aus der Datenbank gel6scht.

Tabelle A.14: Eigenen Account 16schen (uc/14)

Anwendungsfall Template aus dem Shop léschen (uc/15)
Akteure Admin
Vorbedingung e Der Admin ist angemeldet.
e Das Template existiert im Shop.
e Der Admin befindet sich auf der Homepage.
Hauptszenario 1. Der Admin findet das zu léschende Template.
2. Der Admin klickt auf das ,Delete-Icon des Templates.
3. Das System 16scht das Template und alle zugehorigen
Kommentare der Tracks.
4. Das System zeigt eine Erfolgsmeldung an.
Alternativ- Keine
szenarien
Nachbedingung e Das ausgewahlte Template wurde aus der Datenbank ge-

16scht.

e Alle zugehorigen Tracks des Templates wurden aus der Da-
tenbank gelGscht.

e Alle Kommentare der Tracks des Templates wurden aus
der Datenbank gelGscht.

Tabelle A.15: Template aus dem Shop 16schen (uc/15)

81

A Anhang

Anwendungsfall

Produktinformationen eines Templates bearbeiten (uc/16)

Akteure

Admin

Vorbedingung

e Der Admin ist angemeldet.
e Das Template existiert im Shop.
e Der Admin befindet sich auf der Produktseite.

Hauptszenario

1. Der Admin navigiert zum Admin-Dashboard.

2. Der Admin findet das zu bearbeitende Template.

3. Der Admin klickt das ,Bearbeiten“-Icon auf der Produkt-
seite an.

4. Das System zeigt die aktuellen Informationen in einer be-
arbeitbaren Form an.

5. Der Admin modifiziert die Produktinformationen.

6. Der Admin sendet die bearbeiteten Informationen ab.

7. Das System zeigt eine Erfolgsmeldung an.

Alternativ-
szenarien

5a. Die Produktinformationen enthalten Fehler im Zeichen-
satz.

5al. Eine Fehlermeldung wird angezeigt und der Admin
gebeten die Fehler zu beheben.

5a2. Weiter bei 5.

Alternativ-
szenarien

5a. Der Admin klickt auf den ,,Cancel“-Button und bricht die
Bearbeitung ab.

5al. Die Form wird geschlossen und die originalen Infor-
mationen bleiben unveréndert.

Nachbedingung

e Die Produktinformationen fiir das ausgewéhlte Template
wurden in der Datenbank gespeichert.

Tabelle A.16: Produktinformationen eines Templates bearbeiten (uc/16)

82

A Anhang

Anwendungsfall

Template zum Shop hinzufiigen (uc/17)

Akteure

Admin

Vorbedingung

e Der Admin ist angemeldet.

Hauptszenario

1. Der Admin klickt auf den ,,Add Product‘~-Button.

2. Das System fragt nach den erforderlichen Produktinfor-
mationen.

3. Der Admin gibt die erforderlichen Informationen ein.

4. Der Admin schickt die Informationen iiber den ,Submit“-
Button an das System.

5. Das System legt mithilfe der Informationen und Dateien
ein neues Template an.

6. Eine Erfolgsmeldung fiir jede einzelne Datei wird ange-
zeigt.

7. Die Form der Produktinformationen wird wieder zuriick-
gesetzt.

Alternativ-
szenarien

3a. Der Admin gibt fehlerhafte Informationen an. (bspw. Zei-
chensatz)

3al. Der Admin wird gebeten die Informationen zu kor-
rigieren.

3a2. Weiter bei 3.

Alternativ-
szenarien

3a. Der Admin gibt nicht alle benétigten Metadaten an.

3al. Der Admin versucht iiber den ,Submit“-Button die
Template hochzuladen.

3a2. Eine entsprechende Fehlermeldung wird angezeigt
und der Submit-Prozess blockiert.

3a3. Weiter bei 3

Alternativ-
szenarien

3a. Der Admin ladt keine Haupt-Audiospur hoch.

3al. Der Admin versucht iiber den ,Submit“-Button die
Template hochzuladen.

3a2. Eine entsprechende Fehlermeldung wird angezeigt
und der Submit-Prozess blockiert.

3a3. Weiter bei 3

Alternativ-
szenarien

4a. Beim Anlegen wurde vom Admin kein Bild hinzugefiigt.
4al. Das System benutzt ein Standardbild fiir das Tem-
plate.
4a2. Weiter zu 4.

Nachbedingung

e Das neue Template wurde erfolgreich dem Shop hinzuge-
fligt.

e Das Template und alle erforderlichen Daten wurden in der
Datenbank angelegt.

Tabelle A.17: Template zum Shop hinzufiigen (uc/17)

83

A Anhang

Anwendungsfall Alle getatigten Bestellungen anzeigen (uc/18)

Akteure Admin

Vorbedingung e Der Admin ist angemeldet.

Hauptszenario 1. Der Admin navigiert zum ,Orders“-Button und klickt die-
sen.
2. Das System zeigt eine Liste aller von Kéaufern getétigten
Bestellungen an.

Alternativ- 3a. Es sind keine Bestellungen vorhanden.

szenarien 3al. Eine Meldung wird angezeigt, die darauf hinweist,
dass es noch keine Bestellungen gibt.

Alternativ- la. Der Admin navigiert zur Adresse von Kibana.

szenarien lal. Der Admin schaut sich das Kibana-Dashboard zu
den Bestellungen an.

Nachbedingung e Eine Liste aller von Kéufern getétigten Bestellungen wurde

dargestellt.

Tabelle A.18: Alle getétigten Bestellungen anzeigen (uc/18)

84

Glossar

2PC (Two-Phase Commit) Ein Transaktionsprotokoll, welches die Datenkonsistenz in
einem verteilten System sicherstellt. Dabei miissen alle beteiligten Akteure einer

Transaktion zugestimmt haben, um sie durchzufiihren.
Base64 Ein Codierungsverfahren, welches Bindrdaten in Textdaten umwandelt.

Cluster Bezeichnet den Verbund mehrerer Server zu einer Einheit.

Continuous Deployment (CD) Ein Entwicklungsprozess, der auf Continuous Integrati-

on aufbaut und die Software automatisiert in die Produktionsumgebung bereitstellt.

Continuous Integration (Cl) Ein Entwicklungsprozess, bei dem Codeénderungen in ein

gemeinsames Repository zusammengefiihrt und automatisiert getestet werden.

CORS CORS (Cross-Origin Resource Sharing) ist ein Sicherheitsmechanismus, der auf
HTTP-Headern basiert und es Webbrowsern ermdoglicht, Ressourcen von einer an-

deren Ursprungsdoméne zu laden, als der, von der die Webanwendung stammt.

CSRF CSRF (Cross-Site Request Forgery) ist ein Angriff, bei dem ein bosartiger Akteur
im Namen eines authentifizierten Benutzers unbemerkte Anfragen an eine Weban-

wendung sendet, um unerwiinschte Aktionen durchzufiihren.

Dependency Injection Entwurfsmuster zur Bereitstellung von Abhéngigkeiten an eine

Klasse von auften und zur Laufzeit.

Deployment Als Deployment wird der Prozess der Installation, Konfiguration, Bereit-

stellung und Wartung einer Software in der Produktionsumgebung bezeichnet.

Deployment-Pipeline Automatisierte Abfolge von Prozessen zur Bereitstellung von Soft-

ware. Grundlage fiir Continuous Deployment.

85

Glossar

Dirty Read Lesezugriff einer Transaktion von Daten, die von einer anderen Transaktion

gedndert, aber noch nicht abgeschlossen wurden.

DNS Steht fiir Domain Name System und definiert ein System, welches Domainnamen

in IP-Adressen iibersetzt.

Docker Docker ist eine Plattform zur Containerisierung von Anwendungen. Diese kbnnen

in einer isolierten Umgebung erstellt und ausgefiihrt werden.

Docker-Image Ein Docker-Image ist ein Paket fiir eine Anwendung, welches alle Abhén-
gigkeiten enthélt, die diese Anwendung bendtigt, um ausgefiihrt zu werden. Auf

Basis dieses Images kann Docker die Anwendung in einem Container ausfiihren.

Endpunkt Ein Zugangspunkt in einem System, {iber den Daten gesendet und empfangen

werden konnen.

Healthcheck Eine Methode zur Uberpriifung der Gesundheit und Verfiigbarkeit der An-

wendung, beispielsweise iiber Endpunkte.

HTTP HTTP (Hypertext Transfer Protocol) ist ein Netzwerkprotokoll, das die Kom-

munikation und Dateniibertragung zwischen Clients und Servern definiert.

HTTP-Header HTTP-Header liefern zusétzliche Informationen zu einer HTTP-Anfrage

oder Antwort.

Java Eine beliebte objektorientierte Programmiersprache fiir verschiedenste Anwendun-

gen.

JavaScript Eine Skriptsprache, die fiir die Entwicklung von Webanwendungen verwendet

wird.

JSON-Web-Token (JWT) Ein standardisiertes Tokenformat auf Basis von JSON, das
zur sicheren Ubertragung von Authentifizierungs- und Autorisierungsinformationen

zwischen Clients und Servern dient und durch eine digitale Signatur geschiitzt ist.

JUnit Ein Framework fiir das Testen von Java-Anwendungen.

Key Value Store Eine Datenbank, die Daten in Form von einzigartigen Schliissel-Wert-

Paaren speichert.

86

Glossar

Kubernetes Kubernetes ist eine Orchestrierungsplattform fiir Container-Anwendungen,

die Aspekte wie Betrieb und Skalierung automatisiert.

LAMP-Stack Kombination aus Linux, Apache, MySQL und PHP zur Entwicklung von

Webanwendungen.

Mixing Prozess des Abmischens aller Spuren einer Musikproduktion um ein angenehmes

Klangbild zu erzeugen.

Monitoring Kontinuierliche Uberwachung und Analyse eines Systems.

Nachrichtenbroker Software, welche Nachrichten zwischen verschiedenen Anwendungen

oder Systemen iibermittelt und so asynchrone Kommunikation ermdoglicht.

Public Key Ein 6ffentlicher Schliissel, der in der asymmetrischen Kryptografie verwendet

wird, um Daten zu verschliisseln oder digitale Signaturen zu iiberpriifen.

Registry Eine Registry oder Container-Registry ist ein Speicherort fiir Container-Images.
Docker verwendet die Registry, um die Images abzurufen und sie in Containern

auszufithren.

REST REST (Representational State Transfer) ist ein Architekturstil fiir die Kommu-
nikation zwischen Systemen, der auf dem HTTP-Protokoll basiert und sich auf das

Ressourcenmanagement konzentriert.

SaaS Bei Saas (Software as a Service) wird eine fertige Softwareanwendung als Dienst

iiber das Internet bereitgestellt.

Saga Ein Entwurfsmuster, welches die Datenkonsistenz in einem verteilten System si-
cherstellt. Dabei wird eine Operation iiber mehrere Anwendungen in eine Serie von

kleineren reversiblen Transaktionen unterteilt.

Service Discovery Ist der Prozess, bei dem ein System automatisch alle verfiighbaren

Services eines Netzwerks findet.

Stack Kombination von Software-Komponenten, die zusammen eine Anwendung oder

Losung bilden.

87

Glossar

Vue.js Ein progressives JavaScript-Framework zur Erstellung von Benutzeroberflichen

und Single Page Applications.
XSS Cross-Site Scripting (XSS) ist ein Angriff bei dem schadhafter Code (meist JavaS-

cript) beispielsweise tiber Formulare in Webanwendungen eingeschleust und ausge-
flihrt wird.

88

Erklarung zur selbstiandigen Bearbeitung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbsténdig
verfasst und nur die angegebenen Hilfsmittel benutzt habe. Wortlich oder dem Sinn

nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich

gemacht.

Ort Datum Unterschrift im Original

89

