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Kurzzusammenfassung

Der demografische Wandel fithrt zu einer alternden Gesellschaft, wahrend der Pflege-
notstand zunehmend kritischer wird. Um die Autonomie &lterer Menschen zu férdern
und die Pflege zu entlasten, untersucht diese Arbeit die Entwicklung eines effizienten
und datenschutzfreundlichen Sturzerkennungssystems, das auf Skelettdaten aus RGB-
Kamerabildern basiert. Der Einsatz von Pose Estimation ermoglicht die Extraktion von
Bewegungsmustern, die durch neuronale Netze analysiert werden, um Stiirze zuverlassig
zu identifizieren. Verschiedene Modellarchitekturen, von kleineren ressourcenschonen-
den bis zu grofleren, komplexeren Modellen, wurden evaluiert, um die optimale Balance
zwischen Sensitivitat und Spezifitdt zu bestimmen. Die Ergebnisse zeigen, dass selbst
kleinere Modelle eine hohe Erkennungsrate erreichen und ohne Cloud-Anbindung einge-
setzt werden konnen, was sowohl die Privatsphare der Nutzer schiitzt als auch eine

Echtzeiterkennung in h&uslicher Umgebung ermoglicht.
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Abstract

Demographic change is leading to an ageing society, while the care crisis is becoming
increasingly critical. In order to promote the autonomy of elderly people and relieve
the burden of care, this thesis investigates the development of an efficient and privacy-
friendly fall detection system based on skeletal data from RGB camera images. The use
of pose estimation enables the extraction of movement patterns, which are analyzed by
neural networks to reliably identify falls. Different model architectures, from smaller
resource-efficient models to larger, more complex models, were evaluated to determine
the optimal balance between sensitivity and specificity. The results show that even
smaller models can achieve a high detection rate and can be used without cloud
connectivity, which both protects user privacy and enables real-time detection in a home

environment.
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Einleitung

1 Einleitung

1.1 Motivation
Im Zuge des demografischen Wandels wird das deutsche Pflegesystem in Zukunft mit

neuen Herausforderungen umgehen mussen. Prognosen zeigen, dass bis zum Jahr 2035
eine deutliche Diskrepanz zwischen der Anzahl der Pflegebedurftigen und der verfigbaren
Pflegekrafte bestehen wird[18, 26]. Eine isolierte Lebensweise kann bei dlteren Individuen
das Risiko von Sturzereignissen erhdhen, was sowohl zu physischen Verletzungen fihren
kann, als auch negative Auswirkungen auf das Selbstvertrauen und die Autonomie haben
kann[14, 38].

Wahrend Sturze eine der Hauptursachen fur Verletzungen bei alteren Menschen sind[38],
bleibt die rechtzeitige Erkennung eines Sturzes eine Herausforderung im hauslichen
Umfeld[11]. Herkdmmliche Ansatze zur Sturzerkennung, die auf kérpergebundenen Sen-
soren basieren, sind oft unzuverlassig oder werden aus Bequemlichkeitsgrinden nicht
verwendet. Ein Beispiel hierfur ist der Hausnotruf des Deutschen Roten Kreuzes, der
aus einem manuell zu betatigendem Knopf besteht, der an einem Armband oder einer
Kette getragen wird[19]. Im Falle eines Sturzes kann das nicht immer gewadhrleistet sein,
beispielsweise wenn die Person bewusstlos ist. Auch kann eingeschrankte Mobilitat das

Erreichen des Knopfes verhindern.

Aufgrund der durch den demografischen Wandel bedingten Alterung der Gesellschaft und
der durch den bereits herrschenden Personalmangel[26] angespannten Bedingungen im
Pflegebereich ist es denkbar, dass eine zuverlassige und automatisierte Sturzerkennung
von erheblicher Bedeutung sein kann. Das Entwickeln von innovativen Losungen wird
erforderlich sein, um altere Menschen vor den méglichen Folgen von Unfallen zu schitzen
bzw. bei Eintreten eines Unfalls eine schnelle Reaktion zur Mitigation von korperlichen
und psychischen Schaden zu gewahrleisten. Eine verlassliche, automatisierte Losung kann
aullerdem dazu beitragen, die psychologische Belastung alterer Menschen zu reduzieren,

die durch die Angst vor einem Sturz und den damit verbundenen Folgen entsteht.

1.2 Aufbau der Arbeit

Um diesen Herausforderungen zu begegnen, wird in dieser Arbeit ein automatisiertes
System zur Erkennung von Sturzen adlterer Menschen in hauslicher Umgebung entwickelt.
Der Losungsansatz basiert auf der Verwendung eines Systems, welches die Kérperhaltung
einer Person in einem Bild erkennen kann (Pose Estimation), sowie auf neuronalen Netzen,
um Sturze zuverlassig und effizient zu erkennen. Bewegungsdaten werden in Skelettvek-
toren umgewandelt, die dann in ein neuronales Netz eingespeist werden, das auf die

Erkennung von Bewegungsmustern von Sturzen trainiert wurde.



Analyse

Um die Relevanz und Wirksamkeit dieses Ansatzes zu demonstrieren, werden unter-
schiedlich trainierte Modelle und Kombinationen von Trainingsdaten evaluiert und deren
Leistung anhand ihrer Konfusionsmatrix bewertet.

Im Verlauf dieser Arbeit wird das Problem der Sturzerkennung analysiert, der Forschungs-
stand dazu erlautert und die technischen Details der Implementierung sowie die Ergeb-
nisse und deren Implikationen diskutiert. Es wird diskutiert, wie diese Technologie dazu
beitragen konnte, das Wohlbefinden alterer Menschen zu verbessern, und welche Heraus-

forderungen noch zu bewaltigen sind, um eine Anwendung in der Praxis zu ermaoglichen.

2 Analyse

In diesem Kapitel wird die Sturzerkennung mittels Pose Estimation und Deep Learning de-
tailliertanalysiert. Zunachst werden die grundlegenden Konzepte und Herausforderungen
der Sturzerkennung eingefthrt. Anschliel3end werden verschiedene Sensorarten und ihre
Vor- und Nachteile diskutiert. Der Abschnitt zur Pose Estimation beleuchtet die Erkennung
von Korperhaltungen und deren Umsetzung in Koordinatenpunkte. AbschlielRend wird die

Integration von neuronalen Netzen und deren Einsatz fur die Sturzerkennung erklart.

2.1 Sturzerkennung
Die Charakterisierung eines Sturzes kann nicht allein anhand des Vorliegens einer liegen-

den Position eines Individuums erfolgen. Eine Person kann beispielsweise im Bett liegen,
ohne dass ein Sturz stattgefunden hat, oder sich hinknien, um etwas aufzuheben, bezie-
hungsweise aus anderen Grunden hinsetzen. Diese Aktivitaten, die unter dem Begriff
JActivities of Daily Living” (ADLs) zusammengefasst werden, mussen von einer Software
zur Sturzerkennung zuverlassig von einem Sturz unterschieden werden kénnen. Daruber
hinaus variieren Sturze in ihren Bewegungsmustern erheblich, was zusatzliche Anforde-
rungen an die Automatisierung solcher Systeme stellt. Es ist daher erforderlich, ein System
zu entwickeln, das unterschiedliche Sturzereignisse prazise erkennt und gleichzeitig ADLs

korrekt als solche klassifiziert.

HierfUr hat Schiemers 2012 zwei grundsatzliche Kategorien von Sensoren vorgeschla-
gen: Kérpergebundene und somit ortsunabhangige Sensoren, ,die als ortsunabhangig
betrachtet werden kdnnen“[28], und ,beruhrungslose, ortsabhangige Methoden“[28], wie
Bodensensoren, Kameras oder an Einrichtungsgegenstanden wie WC oder Kuhlschrank

angebrachte Sensoren.

2011 wurden Bodensensoren zur Sturzerkennung vorgeschlagen und ausgiebig getes-
tet[22]. Diese wurden dann 2015 mit einem an der Hufte getragenen System, Vivid,
kombiniert und online ausgewertet, um die Erkennungsrate insgesamt zu verbessern[23].
In der Studie konnte nachgewiesen werden, dass das getestete System in Verbindung
mit den installierten Bodensensoren haufig in der Lage war, Sturze zu erkennen. Die

Installation von Bodensensoren stellt jedoch eine beachtliche Hurde zur Installation
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in vorhandenen Wohnungen oder Pflegeeinrichtungen dar. AuBerdem muss das Gerat
jederzeit an der Hufte getragen werden, was sowohl fur die pflegebedurftige Person als
auch fur eine etwaige Pflegekraft schwierig sein kann[28]. Eine pflegebedurftige Person
ohne Pflegekraft kann vergessen das Gerat anzulegen oder zu laden. Eine Pflegekraft
muss das Gerat warten und sicherstellen, dass das Gerat immer getragen wird. Personen
mit Demenz kdnnen sich auBerdem dagegen wehren, ein solches Gerat zu tragen. Diese
Umstande kdnnen zu niedriger Akzeptanz und somit zu einer geringen Verbreitung oder

Effektivitat des Systems fuhren.

Gegenwartig sind verschiedene tragbare Gerate zur Sturzerkennung verbreitet. Das sind
entweder Gerate, die klein genug sind sie in der Tasche zu tragen[31], oder Smartwatches
die entweder konkret fur diesen Zweck entwickelt wurden[20] oder allgemeine Smartwat-
ches die durch passende Software dazu befahigt werden, mit ihren vorhandenen Senso-
ren StUrze zu erkennen wie die Smartwatches von Apple[3], Samsung[27], Google[12] und
Huawei[17]. Diese Gerate besitzen den Vorteil, dass sie bereits von einigen Menschen
getragen werden und es deshalb denkbar ist, dass eine Nutzung von Smartwatches zur
Sturzerkennung an weniger Hurden geknupft ist, als der Einsatz von eigens konzipierten

tragbaren Geraten zur Sturzerkennung.

Korpergebundene Sensoren haben mehrere Nachteile. Zum einen mussen sie standig
getragen werden, was bedeutet, dass man leicht vergessen kann, sie anzulegen. Zum
anderen muss regelmalig sichergestellt werden, dass sie aufgeladen sind. Dies ist beson-
ders bei Smartwatches wie der Apple Watch oder Galaxy Watch problematisch, da sie
fur den Alltag entwickelt wurden und oft nur eine Akkulaufzeit von einem Tag haben.
BerUhrungslose Sensoren haben den Vorteil, dass sie nicht getragen werden mussen und
somit nicht vergessen werden kdnnen. Sie haben jedoch den Nachteil, dass sie in der
Regel eine Installation erfordern, die nichtimmer ohne Weiteres durchfuhrbar ist, wie zum
Beispiel bei den Bodensensoren. Ein Vorteil dieser festen Installation ist jedoch, dass sie
ublicherweise direkt an den Strom angeschlossen sind und somit nicht aufgeladen werden

mussen.

2012 haben Debard et al. mit Kameras durch Pose Estimation und Auswertung der Ge-
schwindigkeit und Winkeldnderung der Person Sturze erkannt[9]. Vadivelu et al. schlugen
2017 Sturzerkennung mit Warmebildkameras vor[33]. Der Einsatz von Warmebildkameras
gestaltet sich vorteilhaft, da sie auch im Dunkeln funktionieren und aufgrund der grund-

legenden Technik bereits anonymisierte Bilder liefern.

2.2 Pose Estimation
Die meisten kamerabasierten Ansatze zur Sturzerkennung beginnen mit einer Pose Esti-

mation. Dabei handelt es sich um die Identifikation von Kérperhaltungen in Bildern oder
Videos sowie deren Kodierung in eine Menge von Koordinatenpunkten, sogenannten

Landmarks, die bestimmte Korperteile wie Gelenke oder Augen reprasentieren. Diese

3
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Landmarks beschreiben die Position des erkannten Korpers und kédnnen sowohl in zwei-
als auch in dreidimensionaler Form errechnet werden. Frihe Losungen der Pose Estimati-
on, wie die von Debard et al., nutzten anstelle spezifischer Koordinatenpunkte des Skeletts
noch vereinfachte Modelle wie Ellipsen oder Silhouetten, um Kérperumrisse oder -formen
naherungsweise darzustellen. Diese Methode erwies sich als weniger prazise im Vergleich

zu den heutigen Verfahren [9].

Aktuelle Ansatze unterscheiden sich unter anderem in der Anzahl der erkannten Personen
und der Landmarks pro Person und basieren in der Regel auf einem von zwei Ansatzen:

dem Top-Down-Ansatz [24] oder dem Bottom-Up-Ansatz [8].

Im Top-Down-Ansatz wird zunachst ein auf Personen trainiertes Objekterkennungsmodell
(Object Detector) eingesetzt, um die Position aller Personen im Bild zu bestimmen.
Anschliel3end erfolgt innerhalb der jeweiligen Bounding Boxes eine detaillierte Erkennung,
um die Landmarks, also die Korperteile der Personen, zu bestimmen. Der Bottom-Up-
Ansatz hingegen erkennt im ersten Schritt alle Landmarks (z. B. Schultern, Ful3e, Kopfe,
Hande) im gesamten Bild unabhangig von ihrer Gruppierung. Diese Landmarks werden
anschliellend anhand spezifischer Muster, wie der relativen Position der Gelenke zuein-
ander, zu vollstandigen Personen gruppiert. Dabei entstehen beispielsweise Kérper mit

einem Rumpf, zwei Beinen und zwei Armen, die raumlich nahe beieinander liegen.

Beide Ansatze bieten spezifische Vor- und Nachteile, die sich je nach Anwendungsfall
unterscheiden. Beispiele fur Projekte, die den Top-Down-Ansatz verfolgen, sind MediaPipe
Pose, Pose Transformer und PoseNet. Bekannte Umsetzungen des Bottom-Up-Ansatzes

umfassen OpenPose[7], SimpleBaseline[39] und AlphaPose[10].

Eine Pose Estimation liefert eine Beschreibung eines Skeletts durch Landmarks, die
relativ zum Bild oder zueinander kodiert werden. Diese Landmarks ermaglichen viele wei-
terfUhrende Anwendungen, wie beispielsweise Gestenerkennung, Sturzerkennung, oder
die Analyse von Bewegungsmustern, ohne Identifizierung der betreffenden Person oder
eine Analyse des gesamten Ursprungsbild. Durch diese Abstraktion wird die Komplexitat
solcher Analysen von einem Bild auf ein oder mehrere Skelette deutlich reduziert und aus
darauf basierenden Anwendungen entfernt, wodurch sich diese Anwendungen auf die
speziell dafur relevanten Informationen konzentrieren kdnnen. Es resultiert im Zuge eine
Modularitat, die es ermdglicht, die Pose Estimation Losung durch eine andere zu ersetzen,
ohne die darauf aufbauenden Anwendungen komplett anpassen zu mussen, da lediglich

das Auslesen der Landmarks angepasst werden muss.

Aul3erdem gibt es hardwareunterstutzte Methoden. Stereo- oder andere Tiefenkameras
bieten aufgrund der inharenten Entfernungserkennung eine effektive Moglichkeit zur
praziseren Pose Estimation[5]. Diese Kameras kdnnen durch unterschiedliche Techniken

die Entfernung von Objekten zum Kamerastandort erkennen und ermdglichen somit
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eine genauere Bestimmung der Position von Landmarks im 3D-Raum. Im Vergleich zu
monokularen Ansatzen kann die Verwendung von Stereokameras die Genauigkeit der
Pose Estimation erheblich verbessern, da durch die verlasslich erkannte Entfernung jedes
Teils einer Person das gesamte Skelett praziser beschrieben werden kann. Stereobasierte
Methoden nutzen die Disparitat zwischen den Bildern der linken und rechten Kamera,
um die Entfernung jedes Pixels zur Kamera zu berechnen, was zu einer robusteren
Schatzung fuhrt, die weniger anfallig fur Mehrdeutigkeiten bei der ObjektgroR3e ist. Eine
weitere Technologie sind LiDAR- oder Time-of-Flight-Kameras, die aktuell auf einer von
zwei Techniken basieren. Entweder wird bei der Lichtlaufzeitmessung gemessen, wie lang
gepulste Laserstrahlen zum Ziel und zurtick unterwegs sind. Die andere Technik sendet
.einen durchgehenden Wellenimpuls”, misst die Phasendifferenz zum empfangenen, re-
flektierten Lichtimpuls und berechnet daraus die Entfernung[30]. Diese Kameras sind in
der Lage, die Entfernung zu Objekten mit hoher Genauigkeit zu bestimmen und kénnen
somit eine prazise 3D-Positionierung von Landmarks erméglichen, sind jedoch mit erheb-

lichen finanziellen Mehraufwand als andere Arten von Kameras verbunden.

Ein weiterer Ansatz sind KI-Modelle aus neuronalen Netzen, die Landmarks anhand von
gelernten Mustern erkennen. Solche KI-Modelle nutzen Daten, welche auf annotierten
Datensatzen von Bildern oder Videos beruhen. Fir deren Training wurden die Positionen
der Landmarks manuell oder auch teilweise automatisiert markiert. Beispiele dafur sind

OpenPose, EfficientPose oder MediaPipe[21].

Je nach Anwendungsfall, und gerade beim Einsatz von neuronalen Netzen, kann es sinnvoll
sein, keine vorhandene Pose Estimation Losung zu verwenden, sondern das Bild selbst
analysieren zu lassen. Sowohl Tiefenkameras als auch vorhandene Bibliotheken reduzie-
ren die Komplexitat der Aufgabe enorm, kénnen aber eben damit auch die Anpassung an

spezielle Anforderungen erschweren.

MediaPipe[21] ist eine Bibliothek von Google die ursprunglich 2019 vorgestellt wurde.
Sie besteht unter anderen aus einigen Modulen um ein Convolutional Neural Network
(CNN), das auf Pose Estimation trainiert ist. Es liegt zum Zeitpunkt des Schreibens dieser
Arbeit in Version 10 vor. Es wird auf einem Bild ausgefuhrt und generiert eine Liste
mit 33 Landmarks, die als Vektoren in einem 3D-Raum dargestellt werden kdnnen. Sie
werden in einem Koordinatensystem relativzum Standort der Kamera geliefert. Zusatzlich
werden die Landmarks aulBerdem als ,World Coordinates” geliefert, die relativ zur Hufte
der erkannten Person und somit unabhangig vom Standort der Kamera sind. Dies kann
fur einige Anwendungen nutzlich sein. Es ist jedoch fur die Sturzerkennung wie sie in
dieser Arbeit durchgefuhrt wurde potenziell weniger effektiv als die kamerabasierten
Koordinaten, da bei einem Sturz méglicherweise auch die Bewegung der Person durch den
Raum relevant ist, welche bei Nutzung der World Coordinates verloren gehen wurde. Da

der Nullpunkt des Koordinatensystems mit der Hufte der Person identisch ist, enthalt ein
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durch World Coordinates dargestellter Bewegungsablauf keine Informationen daruber,
wie sich die Person als Ganzes relativzum Raum bewegt, in dem sie sich befindet. Deshalb
werden in dieser Arbeit die kamerabasierten Koordinaten verwendet, um so viele originale
Informationen wie moéglich an das zu trainierende neuronale Netz weitergeben zu konnen.
Abbildung 1 demonstriert die von MediaPipe gelieferten Ausgabedaten Uberlagert auf
dem verarbeiteten Bild.

Abbildung 1: Beispiel fur Pose Estimation mit MediaPipe[13]. Eine Frau sitzt in meditativer
Position auf dem Boden. Die von MediaPipe erkannten Landmarks sind als miteinander
verbundene Punkte auf dem Bild dargestellt.

In dieser Arbeit wird eine von einem unabhangigen Programm ausgefuhrte Pose Estima-
tion verwendet, damit die Analyse der Bewegungsmuster von Sturzen getrennt von der
Analyse der Bilder selbst betrachtet werden kann.

2.3 Analyse der Bewegungsmuster
Die Analyse der Bewegungsmuster von Stlrzen ist eine Herausforderung, da Stlrze unter-

schiedlich ablaufen kdnnen und nichtimmer sofort eindeutig sind. Ein Sturz kann aus dem
Stehen oder aus dem Sitzen erfolgen und kann auch im Stehen aus unterschiedlichen
Positionen erfolgen, indem sich die Person z. B. mit einer Gehhilfe bewegt, an einem Tisch
lehnt oder dabei ist, sich hinzusetzen oder aufzustehen. Ein Beispiel fur einen Sturz aus
dem Sitzen ist in Abbildung 2 dargestellt.
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Abbildung 2: Beispiel fur einen Sturz aus dem Sitzen. Die Person sitzt auf einem Stuhl und

Kippt zur Seite.

Sturze konnen in unterschiedlichen Kérperhaltungen und Bewegungskontexten auftreten
und beschranken sich nicht ausschlief3lich auf den aufrechten Stand. Auch im Sitzen, wie
beispielsweise bei einer Person, die auf einem Stuhl einschlaft und zur Seite kippt, kann
es zu einem Sturzereignis kommen. Im Stehen existieren zudem vielfaltige Sturzmecha-
nismen, die je nach Situation und Bewegungsablauf variieren. Eine Person kann etwa
beim Abstellen einer Gehhilfe stolpern, durch Abrutschen von einer gestltzten Position
am Tisch das Gleichgewicht verlieren oder beim Hinsetzen den Stuhl verfehlen, falls die
Position des Sitzplatzes falsch eingeschatzt wird. Eine visuelle Darstellung eines derartigen
Szenarios ist in Abbildung Abbildung 3 in Abschnitt 3.2.1 zu finden.

MediaPipe bzw. generell Pose Estimation liefert wie oben erwahnt die Daten fur das
gesamte Skelett flr jeden Frame mit dem man es speist in Form von Koordinaten fur
die Landmarks[21]. Es gab auch Ansatze, bei denen Methoden des maschinellen Lernens
verwendet wurden, die nicht auf neuronalen Netzen basieren: Vadivelu et al. haben 2017
anhand dieser Daten Bewegungen der Person mit einer Support Vector Machine (SVM)
analysiert und als Sturz oder nicht-Sturz eingeordnet[33]. Pires et al. haben 2021 per SVM
und K-Nearest-Neighbour (K-NN) jeweils aus einer Pose Estimation unterschiedliche Fea-
tures extrahiert um so einen Sturz zu erkennen[25]. Schmidpeter hat 2022 durch Analyse
der Anderung der Winkel zwischen den Gliedern der Person Bewegungsmuster als Stiirze
erkannt[29].
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Hier mit einem eigenen Algorithmus bzw. mit symbolischer Kl zu entscheiden, welche
Informationen relevant sind, ist aufgrund der Masse an Informationen schwierig und
aufwandig, da beliebig viele unterschiedliche Algorithmen verglichen werden kénnen.
Gerade aufgrund der Masse an Daten bietet sich die Anwendung neuronaler Netze an, die
aufgrund grol3er Datenmengen lernen kdnnen, bestimmte Gegebenheiten zu erkennen
und eine passende Funktion approximieren. Hier genugt es, die gesamten Daten als Input
zu geben und diesen mit Labels zu versehen, wodurch das Netz selbststandig relevante
Informationen extrahieren kann und lernt, welche Teile des Inputs fur die Klassifizierung
relevant sind und welche nicht. Ein neuronales Netz kann aus mehreren Schichten
bestehen, die jeweils fur untschiedliche Aspekte, Dimensionen oder auch Formate der

Daten zustandig sind.

Einfache neuronale Netze (Dense) konnen viele Features verarbeiten, sind aber aufgrund
der Verknupfung aller Neuronen mit allen anderen sehr allgemein und mussten somit
sehr grol3 ausgelegt werden, um temporale oder Raumliche Zusammenhange zu lernen.
Sie setzen jede Information gleichwertig mit allen anderen Informationen in Zusammen-
hang und extrahieren daraus Muster, haben also kein inharentes Verstandnis davon, dass
ein Frame in einem Sturz direkt auf einen anderen folgt, sondern musste diesen Zusam-
menhang auch erst lernen[32]. Dies wtrde zu einer sehr groRen Anzahl an Neuronen
und Schichten fuhren, die das Netz komplex und somit langsamer machen wurden, als es

andere Architekturen ermaéglichen.

Ein Recurrent Neural Network (RNN) kann konkret Informationen aus dem vorherigen
Verarbeitungsschritt miteinbeziehen und ist somit darauf ausgelegt, explizit temporale
Abhangigkeiten erkennen[37]. Sturze geschehen Uber mehrere Sekunden und somit Uber
eine Vielzahl an Bildern hinweg, was ein RNN besser analysieren kann als ein einfaches
neuronales Netz. Allerdings mussen hier aufgrund der vielen Bilder viele Schichten genutzt
und auf eine Weise verknupft werden, auf die sie Informationen Uber mehrere Inputs
hinweg verarbeiten kénnen, was die Komplexitat des Netzes enorm erhdht. Es musste
genauer untersucht werden, wie genau ein RNN grundsatzlich konstruiert werden muss,

um Stlrze zu erkennen.

Eine spezialisierte Variante eines RNN ist das Long Short-Term Memory-Netzwerk (LSTM)
[16]. Dieses wurde explizit entwickelt, um temporale Abhangigkeiten tUber eine gréRere
Anzahl von Zeitschritten hinweg zu erkennen. LSTMs verwenden sogenannte Zellen,
die Informationen aus vorherigen Schritten speichern und an die folgenden Schritte
weitergeben. Zentral ist dabei der Hidden State, der als Langzeitgedachtnis fungiert und
Informationen aus samtlichen vorherigen Zeitschritten zusammenfasst. Dies ermdglicht
es dem Netzwerk, auch nach vielen Verarbeitungsschritten noch auf frihere Zusammen-

hange zuzugreifen und diese zu berucksichtigen[36].
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Aufgrund dieser Eigenschaften sind LSTMs besonders geeignet, wenn es darum geht,
zeitliche Muster Uber mehrere Zeitschritte hinweg zu erkennen und zu analysieren. Ihr
Einsatz bietet sich daher an, um die zeitlichen Abhangigkeiten in Bewegungsablaufen einer

Person zu modellieren und darauf basierend Stlrze prazise zu identifizieren.

Da jede einzelne Pose zunachst als eine Menge von Koordinaten reprasentiert wird, ist
es sinnvoll, vor der Verarbeitung durch ein Long Short-Term Memory-Netzwerk (LSTM)
eine oder mehrere Schichten eines Convolutional Neural Network (CNN) einzusetzen.
CNNSs sind speziell dafur ausgelegt, raumliche Abhangigkeiten in Bildern zu analysieren
und zu erkennen[15]. Sie kdnnen daher genutzt werden, um die raumlichen Beziehungen
innerhalb der Pose einer Person zu identifizieren und relevante Merkmale extrahiert an

das LSTM weiterzuleiten.

Um die Fahigkeiten dieser unterschiedlichen Arten von Netzen zu kombinieren, wurden
sie fur diese Arbeit in einem Netz kombiniert, sodass eine Schicht die Informationen
der jeweils vorherigen Schicht auswertet, aulBer der Eingabeschicht, die die Rohdaten
direkt verarbeitet. Ein Beispiel fur den Aufbau eines solchen Netzes ist in Abbildung 8 in
Abschnitt 3.3 visualisiert. Dies ergibt eine Architektur ahnlich dem ConvLSTM, das bereits

in anderen Anwendungsfallen erfolgreich getestet wurde[35].

2.4 Datenquellen
Die Videos, die in dieser Arbeit verwendet werden, mussen spezifische Anforderungen

erfullen, um fur die Sturzerkennung geeignet zu sein. Zunachst mussen die Videos auf
RGB-Kameras basieren, auf die diese Arbeit ausgerichtet ist. Die Videos sollten sowohl
StUrze als auch Alltagsaktivitaten (ADLs) als Negativbeispiele enthalten, um die Modelle auf
beide Szenarien zu trainieren und ihre Unterscheidungskraft zu verbessern. Insbesondere
sind Videos von Sturzen &lterer Menschen in hauslicher Umgebung von Interesse, da
diese die Zielgruppe der Sturzerkennungssysteme darstellen. Die Aufnahmen sollten aus
der Perspektive von schrag oben, ahnlich einer Deckenkamera, stammen und eine ausrei-
chende Bildqualitat fur die Pose Estimation aufweisen, die bei zu schlechter Bildqualitat
ungenau werden konnte. Idealerweise sollten die Videos aus mehreren Kameraperspek-
tiven aufgenommen werden, um die Robustheit der resultierenden Modelle zu erhéhen.
Wenn maoglich, sollten die Videos zudem nicht nur die Zustande wie Stehen, Sitzen oder
Liegen, sondern auch explizit die Sturze selbst labeln, um dies nicht vorher durch eine

Person manuell tun zu mussen.

Obwohl eine Vielzahl von Sturzaufnahmen online verfugbar ist, erfullen die meisten dieser
Videos nicht die spezifischen Anforderungen fur wissenschaftliche Zwecke. Viele dieser
Aufnahmen unterscheiden sich erheblich in ihrer Qualitat, sind oft nicht annotiert und
zeigen selten Sturze von dlteren oder gebrechlichen Personen in einer hauslichen Umge-

bung. Diese Kriterien sind jedoch entscheidend, da die Modelle gezielt auf realitatsnahe
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Szenarien trainiert werden sollen, um eine zuverlassige Erkennung in praktischen Anwen-

dungen zu gewahrleisten.

Da das Problem der Sturzerkennung schon langer als solches bekannt ist und daran
gefoscht wird, gibt es jedoch auch professionelle Datasets, die explizit fur die Sturzerken-
nung erstellt wurden. Das Multiple Camera Dataset[4] enthalt 22 Stlrze und 2 ADL-Videos,
aufgenommen von je 8 Kameras. Adhikari et al. haben aul3erdem ein Dataset vorgestellt,
das Videos aus 5 Raumen aus je 8 Perspektiven enthalt[1]. Beide Datasets haben jedoch
keine expliziten Labels fur die Sturze, sondern nur fur den jeweils aktuellen Zustand der
Person wie ,stehend”, ,sitzend” oder ,liegend”. Dies kann eine zusatzliche Herausforde-
rung bei der Datenverarbeitung darstellen, da die Labels fur Stirze manuell hinzugefugt

werden mussen, was zeitaufwendig und fehleranfallig sein kann.

Das KUL Dataset[6] enthalt 55 von professionellen Schauspielern in einem praparierten
Raum nachgestellte Stlrze aus je 5 Kameraperspektiven. Die Videos enthalten mit
Zeitstempel annotierte StUrze aus stehenden und sitzenden Positionen und beinhalten
Gehilfen und Rollstuhle, weshalb es im Vergleich mit [4] und [1] besser in den Kontext
dieser Arbeit passt. Es enthalt auBerdem 17 Videos zwischen 11 und 35 Minuten Lange,
die nur ADLs enthalten, welche als Negativbeispiele genutzt werden konnen. Diese detail-
lierten Annotationen und die Vielfalt der Szenarien machen das KUL Dataset besonders

wertvoll fur die Entwicklung und das Training von Sturzerkennungssystemen.

2.5 Zielsetzung
Das primare Ziel dieser Arbeit ist es, ein System zu ermdglichen, das die Zeit vom Eintritt

eines Sturzes bis zu dessen Erkennung minimieren kann, um somit eine schnelle Benach-
richtigung von Angehdorigen, Pflegekraften oder Rettungsdiensten zu ermaglichen. Durch
die Verwendung von RGB-Kameradaten soll das System Sturze alterer Menschen in haus-
licher Umgebung zuverlassig erkennen kdnnen, um unterstitzende Mal3nahmen zeitnah
einzuleiten. Damit soll nicht nur eine schnelle Hilfe gewahrleistet, sondern auch das
Sicherheitsgefuihl und die Unabhangigkeit alterer Menschen in ihrem eigenen Zuhause
gestarkt werden. Ein weiteres Ziel ist es, durch das System die psychologische Belastung,
insbesondere die Angst vor dem Alleinsein aufgrund des Sturzrisikos, zu lindern und so

ein sichereres und selbstbewussteres Leben zu ermdglichen.

Neben der technischen Leistungsfahigkeit wird auch dem Schutz der Privatsphare der
Nutzer besondere Aufmerksamkeit gewidmet. Es soll sichergestellt werden, dass keine
unnotigen personenbezogenen Daten gespeichert oder weitergegeben werden. Als se-
kundares Ziel wird die 6kologische Nachhaltigkeit bertcksichtigt, indem die Effizienz der
Ressourcen maximiert und der Energieverbrauch reduziert wird. Dies soll insbesondere
durch die Optimierung rechenintensiver neuronaler Netze erreicht werden, um den Ener-

giebedarf zu senken, ohne die Leistungsfahigkeit des Systems zu beeintrachtigen.
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Durch die Berucksichtigung dieser Anforderungen wird sichergestellt, dass das entwi-
ckelte System nicht nur eine hohe technische Leistungsfahigkeit besitzt, sondern auch
ethischen und 6kologischen Standards genugt, um eine breite Akzeptanz und praktische

Anwendbarkeit zu fordern.

2.6 Losungsansatz
Es wird untersucht, ob durch den Einsatz von Deep Learning ohne spezialisierte Sensoren

oder Algorithmen Sturze zuverlassig erkannt werden kdnnen. Dabei sollen RGB-Kameras

und neuronale Netze zum Einsatz kommen.

Dazu sollen Kamerabilder durch MediaPipe in Skelettvektoren umgewandelt und diese
in ein neuronales Netz aus Convolutional und LSTM Schichten eingespeist werden, um
sowohl raumliche als auch zeitliche Abhangigkeiten in den Bewegungen zu erkennen.
Durch den Einsatz von MediaPipe Pose werden konkrete Bilddaten frihzeitig entfernt und
nur die Skelettvektoren weiterverarbeitet, was die bendtigte Komplexitat des neuronalen
Netzes reduziert. Dies entspricht dem Prinzip der Datenminimierung, da nur die notwen-
digen Daten weiter verarbeitet werden[34]. Neuronale Netze werden auf die Erkennung
von Bewegungsmustern von Sturzen aus den o6ffentlich verfugbaren Videos des KUL-
Datasets[6] trainiert. Die Modelle unterschiedlicher Gro3e werden anschlie3end evaluiert
und ihre Leistung anhand der Confusion Matrix und des Loss Plots bewertet, um das
am wenigsten rechenintensive Modell, das die in dieser Arbeit gesetzten Qualitatsanfor-
derungen fur die Sturzerkennung erfullt, zu identifizieren oder eine qualifizierte Aussage
daruber zu treffen, ob die Anforderungen Uberhaupt erfullt werden kénnen. Erreicht kein
neuronales Netz die qualitative Anforderung, soll stichprobenartig untersucht werden, ob
durch einfache Heuristiken die Erkennungsrate des Gesamtsystems verbessert werden
kann. Mdgliche Heuristiken sind, ob wahrend eines Sturzes mehrere Frames hintereinan-
der falsch erkannt werden, oder aulBerhalb eines Sturzes mehrere Frames hintereinander

ein Sturz gemeldet wurde.

3 Design

In diesem Kapitel wird das Design des Systems zur Sturzerkennung detailliert beschrieben.
Zunachst werden die genutzten Datenquellen und deren Verarbeitung erldutert. Anschlie-
Rend wird die Modellarchitektur vorgestellt, die aus einer Kombination von CNN und LSTM
Netzwerken besteht, um sowohl raumliche Abhangigkeiten in den Posen als auch zeitliche
Abhangigkeiten in den Bewegungen zu erkennen. Der gesamte Prozess der Datenvorver-
arbeitung, Modellierung und Implementierung wird im Folgenden schrittweise erklart. Der
Aufbau des Codes ist in Abbildung 7 dargestellt.

3.1 Datenquelle
Als Datenquelle wurde das KUL Dataset[6] verwendet. Daflir wurden Sturze in einem

Altersheim aufgenommen und hinterher von professionellen Schauspielern nachgestellt.

Das Dataset ist offentlich und frei verfigbar. Es enthalt sowohl Videos mit Sturzen, als
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auch Videos mit ADLs, die als Negativbeispiele genutzt wurden. Es enthalt insgesamt 55
Sturzvideos und 17 ADL-Videos. Die Sturze sind aus jeweils 5 Kameraperspektiven aufge-
nommen und enthalten sowohl Stlrze aus stehenden als auch aus sitzenden Positionen.
Die Personen nutzen aul3erdem Mobilitatshilfen wie Rollatoren oder Rollstihle, um realis-
tische Szenarien zu simulieren. Ein Beispiel ist in Abbildung 3 zu sehen. Fur jeden Sturz

gibt es 5 Videos, die jeweils mit dem Index der Kamera versehen sind, die das Video

aufgenommen hat.

A 4 AN A
Abbildung 3: Ausschnitte aus dem KUL-Dataset[6]. Links gehend mit Rollator, rechts
gesturzt.

Das Dataset enthalt eine Excelliste mit Metadaten, die beschreibt, welche Videos es gibt
und von wann bis wann der jeweilige Sturz im Video auftritt. ADL-Videos sind ebenfalls
beschrieben, jedoch ohne Zeitstempel, da sie keine Stirze enthalten. Um die Videos
zu verarbeiten, wurde ein Modul KUL data erstellt, das die Metadaten aus der Excel-
Datei in ein fUr das Programm nutzbares Format umwandelt. Die Klasse kombiniert die
Videonamen mit den Labels und Kameraindizes, sodass die Videos bei der Verarbeitung
sowohl eindeutig identifiziert als auch mit den entsprechenden Labels versehen werden
konnen. Als Resultat folgt eine Liste von Objekten, die jeweils das Szenario und die Labels
beinhalten und Methoden bereitstellen, um die Dateinamen aller Videos des Szenarios

zusammenzusetzen und einfach iterierbar zu machen.

Um den Code vom Ablageort der Videos zu trennen, wird der Pfad zu den Videos Uber
eine Umgebungsvariable gesetzt und von diesem Modul bei Ausfuhrung des Programms
gelesen. Um zumindest rudimentar sicherzustellen, dass ein Pfad Ubergeben wurde, wird
beim Start des Programms uberprift, ob die Umgebungsvariable gesetzt ist, der Pfad
existiert und im gegebenen Verzeichnis Dateien sind. Sollte dies nicht der Fall sein, wird
die Ausfuhrung sofort durch eine Exception unterbrochen.

Diese Daten sind lediglich fur das Training und die Evaluation der Modelle genutzt worden.

FUr eine spatere Anwendung in einem realen Szenario mussen Bilder in Echtzeit von einer
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Kameras uUbertragen werden, bei der konkreten Anwendung dient also nicht das KUL

Dataset als Datenquelle, sondern die in Echtzeit Ubertragenen Bilder einer Kamera.

3.2 Vorverarbeitung
Da die Bilder nicht direkt in das neuronale Netzwerk eingespeist werden sollen, sondern

nur die daraus extrahierten Skelettdaten, werden die Videos zunachst mit Hilfe eines
Moduls preprocessor vorverarbeitet, wodurch die Pose Estimation nicht mehr Aufgabe des
zu trainierenden neuronalen Netzes ist. Dazu werden die einzelnen Bilder zunachst durch
das bereits trainierte und erprobte CNN von MediaPipe Pose analysiert und anschlie3end

augmentiert.

3.2.1 Pose Estimation
Zunachst werden die Videos Bild fur Bild durch MediaPipe analysiert. Dazu wird das

Modul MediaPipePose genutzt, das die Pose Estimation durchfuhrt und die Ergebnisse in
Form von Koordinatenpunkten und zusatzlichen Metadaten wie der Information, welche
Landmarks als Kérper miteinander verbunden sind, liefert. Die Landmarks der jeweils 45
letzten Posen werden in einer Liste gespeichert, die fur jedes Bild die Koordinaten der
erkannten Landmarks enthalt. Die Metadaten werden nicht weiter genutzt, da sie fur die
Sturzerkennung nicht relevant sind. Wird in einem Bild keine Person erkannt, wird die
Liste geleert, um sicherzustellen, dass nur zusammenhangende Sequenzen von Posen
weiter verarbeitet werden. Um kurze Aussetzer in der Pose Estimation zu Uberbrucken,
wird jedoch nicht sofort die Liste geleert, sondern erst, wenn fur zwei aufeinanderfolgende
Bilder keine Person erkannt wurde. Dies soll etwaige Schwachstellen in MediaPipe Pose

ausgleichen, die moglichst nicht Teil der Auswertung sein sollten.

FUr das Training werden zu jedem Sturzvideo jeweils alle aus dem Sturz extrahierten
Sequenzen in einer Datei und die Sequenzen ohne Sturz in einer separaten Datei abge-
legt. Die Sequenzen aus den ADL-Videos werden ebenfalls in einer eigenen Datei pro
ADL-Video gespeichert. Diese wurden nach dem jeweiligen Video benannt aus dem sie
extrahiert wurden, um sie spater zuordnen zu kénnen. So konnte der Prozess bei Bedarf
neu gestartet werden, ohne bereits verarbeitete Videos erneut durchgehen zu mussen,
beispielsweise als aufgrund fehlender Optimierung der Speicher Uberlief. Durch die Tren-
nung der Daten in Sturze, ADLs aus Sturzvideos und ADLs aus ADL-Videos konnte dasselbe
Modell mit unterschiedlichen Kombinationen von Trainingsdaten trainiert und evaluiert

werden, um die Auswirkungen der Daten auf die Leistung der Modelle zu untersuchen.

Da beim Echtzeiteinsatz die empfangenen Bilder direkt verarbeitet und anschlieBend nicht
mehr benotigt werden, entfallt die Speicherung der Daten in Dateien. Beim Echtzeiteinsatz
des Systems mit einer Kamera werden also aus den empfangenen Bildern direkt durch
MediaPipe die Skelettdaten extrahiert und in Sequenzen gepuffert, um sie dann dem neu-
ronalen Netzwerk zur Klassifizierung zu Ubergeben. Ein Beispiel fur die Vorverarbeitung

der Bilder ist in Abbildung 4 zu sehen, wobei beispielhaft 3 von 45 Frames gezeigt werden.
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Abbildung 4: Vorverarbeitung der Bilder.

Oberste Reihe: Originalbilder aus den KUL Dataset[6].

Zweite Reihe: Bilder mit den erkannten Posen Uberlagert wie von MediaPipe geliefert.
Dritte Reihe: die Bilder mit den extrahierten Koordinaten Uberlagert.

Unterste Reihe: die extrahierten Landmarks ohne Bild.
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Zum Training des neuronalen Netzes sollten die Daten einigermal3en zwischen positiven
und negativen Beispielen ausbalanciert sein. Da es jedoch weit mehr ADLs als Sturze gibt,
mussten die vorhandenen Sturzdaten maglichst effizient genutzt werden. In Abbildung 5
ist dargestellt, wie aus dem vorhandenen Videomaterial zunachst fur jeden einzelnen
Frame eine entsprechende Sequenz erstellt, um so viele nicht-synthetische Eingangsdaten
wie moglich zu extrahieren. FUr jeden Frame, den ein Sturz dauert, wurde also eine kom-
plette Sequenz aufgezeichnet, welche jeweils 45 Posen aus den jeweils 45 letzten Frames
enthalt. Bei 30 FPS sind das also 30 Sequenzen pro Sekunde - fur jeden Frame eine eigene
Sequenz, extrahiert aus den 45 letzten Frames. Diese detaillierte Erfassung stellte sicher,
dass auch kleinste Variationen in den Sturzbewegungen berucksichtigt werden, was die
Robustheit der resultierenden Modelle erhoht.

Abbildung 5: Aus Sturzen wird eine Sequenz pro Frame extrahiert.

Beim Extrahieren von Sequenzen fur ADLs hingegen ist es nicht notwendig oder sinnvoll,
far jeden Frame eine eigene Sequenz zu erstellen, da es eine Vielzahl an ADLs gibt
und diese Ublicherweise langsamer ablaufen als ein Sturz. Aus den ADLs wurde also die
entsprechenden Sequenzen ohne Uberlappung extrahiert, um eine klare und eindeutige
Reprasentation jeder Aktivitat zu gewahrleisten und damit moglichst viele verschiedene
Aktivitaten, die keine Sturze sind, in die Trainingsdaten einflie3en. Der Extrahierugnspro-
zess der ADLs ist in Abbildung 6 demonstriert. Dieser Ansatz verhindert, dass Trainings-
daten redundante Informationen enthalten und sorgt dadurch fur prazisere Ergebnisse

bei der spateren Klassifizierung der Bewegungen.

Abbildung 6: Sequenzen von ADLs werden ohne Uberlappung extrahiert.

Als zentraler Bestandteil der Vorverarbeitung wurde eine eigene Klasse PoseProcessor
erstellt. Die Hauptaufgabe dieser Klasse besteht darin, die Skelettdaten aus jedem Frame
der Videoaufnahmen zu extrahieren und diese Daten fur die weitere Verarbeitung im

neuronalen Netzwerk vorzubereiten. Dazu wird in jedem Frame mithilfe von MediaPipe
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ein Skelett extrahiert, das aus 33 Landmarks besteht. Diese Skelettdaten werden in einem
Puffer gespeichert, der die jeweils letzten 45 Frames umfasst, um die dynamischen Bewe-
gungsmuster Uber die Zeit zu erfassen. Der Puffer fungiert wie ein Schiebefenster, das
sich mit jedem neuen Frame aus dem Video oder Kamerastream um ein Element nach
vorne bewegt. Die Grof3e des Puffers kann variiert werden, da Videos und Kamerastreams
in unterschiedlichen Bildraten vorliegen kénnen. Die Daten im Puffer kdnnen zu jedem
Zeitpunkt normalisiert ausgelesen werden, um sie als Eingabe fur das neuronale Netzwerk
zu verwenden. Diese Vorverarbeitung ermaoglicht es, die Skelettdaten in Sequenzen zu
organisieren und sie in einem einheitlichen Format flur das Training und die Inferenz

bereitzustellen.

3.2.2 Augmentierung der Trainingsdaten
Trotz der frameweise extrahierten Sturzdaten gibt es weit weniger Sturzsequenzen als

ADL-Sequenzen. Zunachst wurde also festgelegt, dass sowohl die Trainingsdaten, als
auch die Eingangsdaten wahrend der Inferenz normalisiert werden, um Vielfalt in den
Inferenzdaten zu reduzieren, wodurch die Modelle trotz weniger Trainingsdaten besser
generalisieren konnen. Dazu wurden die Sturzsequenzen zunachst normalisiert, um
sicherzustellen, dass diese moglichst zentral im Bild und in etwa gleich gro3 sind. Indem
dies mit den Echtzeitdaten bei der Inferenz auch gemacht wird, kann dafur gesorgt
werden, dass auch die Inferenzdaten mdglichst ahnlich zu den Trainingsdaten sind und
somit weniger Trainingsdaten bendtigt werden. Dabei fiel auf, dass nach dieser Norma-
lisierung die Sturzsequenzen relativ in der Mitte des Bildes zentriert waren, jedoch nur
etwa 50% der Bildflache einnahmen und nicht immer erwartungsgemald akkurat zentriert
waren. Dies wurde dazu fuhren, dass einerseits die normalisierten Trainingsdaten unter-
schiedlicher ausfallen als erwartet, was dem Modell beim Generalisieren helfen kdnnte.
Andererseits kdnnte es auch dazu fuhren, dass die Eingangsdaten wahrend der Inferenz
nicht so gut normalisiert werden wie zunachst angenommen, was wiederum die Generali-
sierungsfahigkeit des Modells einschranken konnte. Gleichzeitig ermdglicht es jedoch, die
Trainingsdaten nach der Normalisierung zu augmentieren, indem jede Sequenz horizontal
und vertikal leicht verschoben wird, um synthetische, aber plausible Trainingsdaten zu
generieren. Diese Augmentierung sorgt dafur, dass viel mehr plausible Trainingsdaten
zur Verflgung stehen, was die Robustheit und Genauigkeit der resultierenden Modelle

verbessert.

Es wurde darauf verzichtet, Kérperelemente wie Unterarme oder Oberschenkel kiinstlich
zu modifizieren (also zu verlangern oder verkulrzen), um zusatzliche Datenvariationen zu
erzeugen, da unterschiedlich groBe Koérperelemente potenziell den Ablauf des Sturzes
beeinflussen wirden und die so erzeugten kunstlichen Sequenzen nicht der Realitat

entsprechen wurden.
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Um das Training des Modells zeitlich und logisch von der Extraktion zu entkoppeln, wurde
zusatzlich ein Modul preprocessor erstellt. Dies iteriert Uber die Metadaten des Datasets
und fuhrt sie dem VideoProcessor zu, der die Videos einliest und aus den Frames jeweils
mit Hilfe des PoseProcessors die Skelettdaten extrahiert und in Sequenzen organisiert. Die
so generierten Sequenzen werden in Dateien gespeichert, die dann fur das Training des
neuronalen Netzwerks genutzt werden kdnnen. Der preprocessor und der VideoProcessor
sind idempotent gestaltet, sodass bereits verarbeitete Videos nicht nochmal verarbeitet
werden mussen. Dies ermaglicht es, den Vorverarbeitungsprozess bei Bedarf zu wieder-
holen, ohne dass bereits verarbeitete Daten erneut verarbeitet werden mussen, oder
bei unerwartet hoher Verarbeitungszeit den aktuellen Prozess zu unterbrechen und zu
einem spateren Zeitpunkt wiederaufzunehmen. Beim Aufrufen der Skelettdaten vom
preprocessor fUr das Training, werden sie vor der Ruckgabe an den Aufrufer mit einer
random_shift Funktion augmentiert, die die Sequenzen horizontal und vertikal randomi-
siert verschiebt. Dies sorgt fur zusatzliche Variationen in den Trainingsdaten, indem

unterschiedliche Kameraspositionen simuliert werden.

Training scripts

«module»
prg;:nr%a::ue’esl;or © training_config
o default_model_dir: str
o epochs_list: list[int]

o units_list_list: list[list{int]]
o filter_list_list: list{list[int]]
o model_format: str

o preprocess_adl_video(): str
e preprocess_fall_video(): str
o preprocess_scenario(): [fall_data, fall adl_data]

o get_all_data(): TrainingData
o fall_data: np.ndarray

o get_metadata(): list{ScenarioData] o adl_data: np.ndarray
e o fall_adl_data: np.ndarray

© VideoProcessor

: «modules (© TrainingData
o num_frames: int KUL_data

o capture_window: int

e process_fall(): str 1
o process_adls(): str e get_adl metadata(): list[str]

e process_adls_from_fall_video(): str

«module» \
model

o num_frames: int ‘
o capture_window: int
o num_features: int

o num_landmarks: int
o num_coordinates: int

© Fosgkrocessor ‘ © ScenarioData A

o frame_count: int
o skip_framges: int

- W
| KUL_metadata xlsx

o Scenario: str = S
o Start: datetime.time ‘ videos ‘ | |
o End: datetime.time '

e process(): None
e process_and_get_current_sequence(): Sequence | None

e validate_inputs(): None
e train_model(): Sequential

Abbildung 7: Organisation des Codes zur Verarbeitung der Daten aus dem KUL-Dataset

und dem Training des neuronalen Netzes.

3.3 Aufbau des neuronalen Netzes
Um alle Parameter und Hyperparameter bezlglich des neuronalen Netzes zu speichern

und zu verwalten, wurde ein Modul model erstellt. Es kapselt die Architektur fur die
Konstruktion des konkreten neuronalen Netzes und die Definition der Hyperparameter.
Dies soll Fehler wahrend Training und Inferenz vermeiden, indem die Dimensionen
der Eingabedaten und die Validierung der Eingabedaten zentral festgelegt werden. Es

soll auRerdem sicherstellen, dass die Modelle korrekt erstellt, gespeichert und geladen
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werden kénnen. Das Modul enthalt die Dimensionen der Eingabedaten und eine Funktion
zur Validierung der Eingabedaten die als Teil der Trainingsfunktion aufgerufen wird.
Die Trainingsfunktion reduziert bei Bedarf die Dimensionen der Eingabedaten, falls sie
wider Erwarten dreidimensional Ubergeben werden. Um anfangliches Prototyping zu
erleichtern, wurde das Erstellen des Modells in einer eigenen Funktion gekapselt, welche
die Anzahl und Dimensionierung von Convolutional und LSTM Schichten, sowie die Anzahl
der Neuronen im Dense Layer, als Parameter akzeptiert. Dies ermdglicht die Flexibilitat,
verschiedene Modelle mit unterschiedlichen Architekturen zu testen, ohne den Code fur
das Modell selbst andern zu mussen, was Leichtsinnsfehler des Autors beim Schreiben

der Traingsskripte vermeidet.

FUr das neuronale Netz wurde das Framework TensorFlow eingesetzt. Zur Implementie-
rung mehrerer aufeinanderfolgender Schichten wurde das Modell Sequential verwendet,
das als Basis diente. Dadurch kénnen die Convolutional- und LSTM-Schichten in einer
Reihenfolge definiert werden, die es ermdglicht, die raumlichen und zeitlichen Abhangig-
keiten der Skelettdaten zu analysieren. Diesem Sequential-Basismodell wurden als Erstes
eine oder mehrere Convolutional-Schichten hinzugefugt, die jeweils in einer TimeDistri-
buted-Schicht verschachtelt wurden. Deren Aufgabe ist es, die raumlichen Abhangigkeiten
in jeder einzelnen Pose der Eingabedaten zu analysieren. Durch das Verschachteln in eine
TimeDistributed-Schicht wird flr jeden Frame, also Zeitschritt, der Eingabedaten die Con-
volutional-Schicht mit denselben Gewichten angewendet und trainiert. Dies ermdglicht
der Convolutional-Schicht das Erlernen und Extrahieren der entscheidenden Features aus
der aktuellen Korperhaltung der Person, unabhangig davon, zu welchem Zeitpunkt inner-
halb eines Sturzes ein Frame ist. AnschlieRend wurden eine oder mehrere LSTM-Schichten
eingesetzt, um die zeitlichen Abhangigkeiten zwischen den Frames zu analysieren. Die
LSTM-Schichten sollen aus der Kombination der vorher extrahierten Features der jewei-
ligen Kdérperhaltung mehrerer Frames entsprechende Features des Bewegungsablaufs
erkennen. Abschlielend wurde eine Dense-Schicht mit einem einzelnen Ausgabe-Neuron
verwendet, um die Ausgabe des neuronalen Netzes als Sturz oder Nicht-Sturz zu klassi-
fizieren. Vor der ersten Convolutional-Schicht wurde eine Reshape-Schicht eingesetzt, die
drei Koordinaten pro Landmark auf zwei Koordinaten pro Landmark reduziert, um die
Dimensionen der Eingabedaten zu reduzieren, falls diese in 3D Ubergeben werden. Auf die
letzte Convolutional-Schicht folgt eine Reshape-Schicht, die die Dimensionen der Ausgabe
der Convolutional-Schicht dahingehend anpasst, dass sie von der Convolutional-Schicht
in die LSTM-Schicht Ubergeben werden kann. Ein Beispielnetzwerk mit drei Convolutional-
Schichten und zwei LSTM-Schichten ist in Abbildung 8 dargestelit.
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Abbildung 8: Modellarchitektur eines neuronalen Netzes mit 3 Convolutional-Schichten

und 2 LSTM-Schichten wie es in dieser Arbeit trainiert und evaluiert wurde.

Um die Modelle voneinander zu unterscheiden wurde eine Nomenklatur eingefuhrt, die
abhangig von der Art, Anzahl und Reihenfolge der Schichten ist. Die Basis sind Buchstaben,

die jeweils fur eine Schichtart stehen:

c fur Convolutional, 1 fir LSTM. FUr bense wurde kein Buchstabe gewahlt, da es in jedem
Model genau dieselbe, einzelne Dense-Schicht mit einzelnem Ausgabe-Neuron gibt. Eine

Zahl vor dem Buchstaben gibt an, wie viele Schichten dieser Art an dieser Stelle sind.

Auf eine Deklaration einer Art von Schicht folgen Deklarationen der Gréf3e der Schichten:
Ein f fur die Anzahl der Filter in einer Convolutional-Schicht, ein u flUr die Anzahl der
Einheiten (Units) in einer LSTM- oder Dense-Schicht.

Die Anzahl der Schichten und die Grél3e der Schichten sind durch Unterstriche getrennt.

Der Modellname 2c_16f 8f 21 100u_56u steht beispielsweise fur ein Modell mit 2 Convolu-
tional-Schichten, die erste mit 16 und die zweite mit 8 Filtern, dann 2 LSTM-Schichten mit
100 und 50 Einheiten.

Diese Konvention wird von einem Modul model verwendet, um anhand der Ubergebenen
Anzahl und GroRBe der Schichten das Modell zu benennen. Dies ermaoglicht es, die Modelle
eindeutig zu identifizieren und zu vergleichen, ohne dass die Architektur des Modells

selbst ausgelesen werden muss.
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3.4 Training

Um den zeitlichen Aufwand flr potenziell ineffektive Trainingslaufe groBer Modelle mit

umfangreichen Datensatzen zu minimieren, wurde das Training in zwei Phasen unterteilt.

Zunachst wurden kleinere Modelle mit den Daten eines einzelnen Sturzes trainiert, um

festzustellen, ob die Daten und das Design des Modells grundsatzlich so nutzbar sind und

um eine generelle Richtung fur die Dimensionierung des Modells zu finden. Diese kleinen

Modelle besitzen alle ca. 20 000 Parameter. Nachdem die kleinen Modelle bereits mit

wenig Training Anzeichen einer Unterscheidung zwischen Sturz und Nicht-Sturz zeigten,

wurden groRRere Modelle dieser Architektur mit ca. 180 000, 280 000 sowie 1 000 000

Parametern trainiert. Das grolite der Modelle, mit 3 groBen Convolutional-Schichten, 2

grolRen LSTM-Schichten und einer Dense-Schicht (3c_128f_64f_32f_2|_100u_50u), wurde

aullerdem mit unterschiedlichen Kombinationen der Trainingsdaten trainiert und liegt
somit in 4 Varianten vor. Alle Modelle wurden mit dem Adam-Optimizer und Binary

Crossentropy als Loss-Funktion trainiert. Die Modelle wurden fir 50 Epochen trainiert, um

sicherzustellen, dass sie hinreichend Zeit haben, die Bewegungsmuster zu lernen. Um sie

spater zu unterscheiden, wurde der Name der Varianten des grof3ten Modells jeweils um
ein Suffix erganzt. Dieses Modell wurde mit den folgenden Varianten trainiert:

+ Die erste Variante wurde mit allen verfiigbaren Trainingsdaten trainiert, sowohl aus den
Sturz- als auch aus den ADL-Videos (_all data).

* Die zweite Variante wurde nur mit den Sturzdaten aus den Sturzvideos und den ADLs aus
den ADL-Videos (explizite ADLs) trainiert, ohne die impliziten ADLs aus den Sturzvideos
(_without implicit adls).

+ Die dritte Variante wurde nur mit den Sturzdaten und den impliziten ADLs trainiert, also
Bewegungsablaufen aus den Sturzvideos, die zu keinem Sturz fuhren. Hier wurden die
expliziten ADLs aus den ADL-Videos nicht genutzt ( without explicit adls).

* Die vierte Variante wurde nur mit den impliziten und expliziten ADLs aber ohne Sturz-
daten trainiert, um zu sehen, ob das Modell auch ohne Sturzdaten Sturze erkennen
kann, was es ermoglichen wirde, das Modell fur reale Szenarien trainieren zu kdnnen,
ohne Sturzdaten zu bendtigen. Dies wurde einer Anomaly Detection entsprechen, bei

der das Modell Sturze erkennt, ohne jemals einen Sturz gesehen zu haben (_only adls).

Eine schematische Darstellung des Trainingsablaufs ist in Abbildung 9 dargestellt. Die
Auswahl der Modelle und die Kombinationen der Trainingsdaten wurden jeweils im Trai-
ningsskript festgelegt.
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Abbildung 9: Ablauf des Trainings

3.5 Inferenz

Zur Benutzung eines Modells fur diese Arbeit wurde eine Funktion geschrieben, die per
cv2 nach und nach Bilder aus einem gegebenen Stream eines aus einer Datei gelesenen
Videos liest. Somit mussen nicht, wie bei einem Produktiveinsatz, Livedaten von einer
Kamera empfangen werden. Diese Bilder werden dann jeweils in einen eigens erstellten
PoseProcessor gegeben, der die Skelettdaten mit Hilfe von MediaPipe Pose extrahiert und
in eine Sequenz aggregiert. Der PoseProcessor puffert intern die letzten 45 Posen und gibt
diese nach jedem Aufruf als Sequenz zurtck, wenn alle 45 Posen extrahiert wurden. Wird
in zwei aufeinander folgenden Frames keine Person erkannt, wird der Puffer geleert, um
sicherzustellen, dass nur zusammenhangende Sequenzen weiterverarbeitet werden. In
diesem Fall gibt der PoseProcessor erst wieder eine Sequenz zurlck, wenn wieder fur 45
Frames eine Person erkannt wurde. Die Sequenzen werden dann in das Modell eingespeist
und die Ausgabe des Modells als Sturz oder Nicht-Sturz klassifiziert. Die Ausgabe der
Inferenz der jeweils vorangegangenen 45 Posen wurde fur diese Arbeit als Text auf dem
nebenher gezeigten Video angezeigt, um die Inferenz zu visualisieren, wie in Abbildung 10

beispielhaft gezeigt.
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Abbildung 10: Beispiel fur die Visualisierung der Inferenz durch das Modell
3c 128f 64f 32f 21 100u 50u without implicit adls anhand eines Videos aus dem KUL-
Dataset[6]. Links ein Nicht-Sturz, rechts ein Sturz.

In Abbildung 11 ist der Generelle Ablauf zur Sturzerkennung dargestellt, deren Videoquelle
in diesem Fall ein Video aus dem KUL-Dataset[6] ist und deren Konsument die Anzeige des

Inferenzergebnisses auf dem Videobild ist.

Abbildung 11: Pipeline zur Sturzerkennung

3.6 Evaluierung
Fur die Auswertung wurden die bereits mithilfe von MediaPipe Pose extrahierten und

durch den PoseProcessor aggregierten Daten aus dem preprocessor genutzt. Dadurch
war es nicht notwendig, die Videos erneut mit MediaPipe Pose vorzuverarbeiten, da die
entsprechenden Daten bereits in zuvor generierten .npy-Dateien vorlagen, die als Numpy-
Arrays abgespeichert wurden. Die Evaluation basierte auf den vorhandenen Sequenzen
und den wahrend der Vorverarbeitung zum Training zugewiesenen Labels. Eine erneute

Wiedergabe der Videos war daher nicht erforderlich.

Eine Sequenz - bestehend aus 45 Posen, die einen Bewegungsablauf einer Person darstel-
len - wurde nur dann dem Modell zur Inferenz Gbergeben, wenn diese zuvor vollstandig
durch MediaPipe Pose im Video erkannt worden war. Partielle Sequenzen wurden, wie
bereits wahrend des Trainings, ausgeschlossen. Die Modellausgabe wurde mit dem Label
der Sequenz verglichen, wobei die korrekt und falsch klassifizierten Sequenzen gezahlt

wurden. Zur Visualisierung der Modellergebnisse wurde eine Konfusionsmatrix erstellt.

Die Messung der Inferenzzeit erfolgte, indem jeweils ein Modell geladen und auf die
ersten 1000 von MediaPipe Pose erkannten und anschlieBend aggregierten Sequenzen
eines Videos angewendet wurde. Fur jedes Modell kamen dieselben 1000 Sequenzen

aus demselben Video zum Einsatz. Die Zeit fur jede einzelne Inferenz wurde gemessen

22



Ergebnisse

und anschlielRend der Durchschnittswert berechnet. Die Tests wurden auf einem Laptop
mit einem integrierten Radeon 780M Grafikprozessor[2] durchgefihrt, wobei moglichst
wenige andere Programme ausgefuhrt wurden. Um die Ergebnisse nicht durch externe
Faktoren zu beeinflussen, wurde der Laptop wahrend der Messungen nicht anderweitig
genutzt. Im selben Testlauf wurde zudem die durchschnittliche Inferenzzeit von MediaPipe
Pose gemessen, um die Leistung mit anderen Geraten und Umgebungen vergleichen zu

kdnnen.

4 Ergebnisse
In diesem Kapitel wird zunachst die Leistung der ,kleinen” Modelle (unter 100 000

Parameter) beschrieben, die jeweils mit allen Daten trainert wurde. Danach wird auf die
Leistung der grélReren Modelle (Uber 100 000 Parameter) eingegangen, die auch jeweils
mit allen Daten trainiert wurden, und abschlieRend werden diese miteinander verglichen.
Anhand unterschiedlich trainierter Varianten eines grof3en Modells (1 000 000 Parameter)

wird aul3erdem die Leistung verschiedener Modellvarianten verglichen und bewertet.

4.1 Leistung der kleinen Modelle

Abbildung 12: Trainingsverlust (loss) der kleinen Modelle

In Abbildung 12 ist zu sehen, dass bereits nach 6 Epochen alle kleinen Modelle einen
Trainingsverlust von unter 0,02 erreicht haben. Nach 11-15 Epochen fiel der Verlust sogar
aufunter 0,01, was darauf hinweist, dass die Modelle trotz ihrer geringen Komplexitat die

Bewegungsmuster in den Skelettdaten schnell erlernen konnten.

Das Modell 1c_8f 11 10u, welches nur eine Convolutional- und eine LSTM-Schicht hat, zeigt

im Vergleich zu den anderen Modellen eine etwas langsamere Lernkurve. Die anderen
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kleinen Modelle, die alle mindestens eine zusatzliche Schicht besitzen, lernen etwas
schneller als das kleinste Modell, zeigen jedoch in den mittleren Epochen keine wesent-

lichen Unterschiede zueinander.

In spateren Epochen (ab Epoche 40) verbessern sich die meisten Modelle nur noch
minimal. Eine bemerkenswerte Ausnahme stellt das Modell 2c_16f 8f 11 16u dar, das in
Epoche 44 einen sprunghaften Anstieg des Traingsverlustes bis auf 0,018 in verzeichnet.
Bis Epoche 50 fallt es jedoch auch wieder auf 0,0046.

Die Verlustwerte in Epoche 50 sind in Tabelle 1 dargestellt.

Modell Parameteranzahl | Verlust in Epoche 50
1¢_8f_11_10u 21651 0,0049
1¢_8f_21_10u_5u 21966 0,0035
2c_16f_8f_11_10u 22891 0,0046
2c_16f_8f_2|_10u_5u 23206 0,0064

Tabelle 1: Trainingsverlust der kleinen Modelle in Epoche 50

Abbildung 13: Validierungsverlust (val loss) der kleinen Modelle

In Abbildung 13 Iasst sich erkennen, dass die Validierungsverluste zwar in den ersten
Epochen stark sinken, jedoch weniger gleichmaliig als die Trainingsverluste. Alle Modelle

haben bereits nach wenigen Epochen einen Validierungsverlust von unter 0,02 erreicht.

Bemerkenswert ist, dass sowohl das Modell 1c 8f 21 16u 5u als auch das Modell
2c_16f _8f 21 16u 5u bei Epoche 10 einen ausgesprochen niedrigen Validierungsverlust
von 0,009 erreicht haben. Genau diese beiden Modelle zeigen jedoch in Epoche 15, wo
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die Trainingsverluste bereits unter 0,01 sind, einen plétzlichen Validierungsverlust von je
etwas Uber 0,03 und 0,05. Dies deutet auf ein mogliches Overfitting hin, was bedeutet,
dass die Modelle moglicherweise die Daten ,auswendig” gelernt haben, ohne adaquat zu

generalisieren.

Danachist deren Verlauf wieder ahnlich der anderen Modelle und im Durchschnitt ahnlich
zum Trainingsverlauf, bleibt jedoch stark fluktuierend. Das Modell 2c_16f 8f 11 10u zeigt
aullerdem bei Epoche 27 und Epoche 45 jeweils einen markanten Anstieg des Validie-
rungsverlustes auf fast 0,02 bzw. 0,04, was ebenfalls auf potenzielles Overfitting in diesen

Epochen hindeutet.

Bemerkenswerterweise weist in Epoche 50 das kleinte Modell, 1c_8f 11 10u, den niedrigs-

ten Validierungsverlust von 0,0044 auf. Ein Vergleich ist in Tabelle 2 dargestellt.

Modell Parameteranzahl | Validierungsverlust in Epoche 50
1¢_8f_11_10u 21651 0,0044
1¢_8f_21_10u_5u 21966 0,0147
2c_16f_8f_11_10u 22891 0,0081
2c_16f_8f_2|_10u_5u 23206 0,0117

Tabelle 2: Validierungsverlust der kleinen Modelle in Epoche 50
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(a) Je eine Convolutional- und LSTM-Schicht (b) Eine Convolutional- und zwei LSTM-

Schichten
(c) Zwei Convolutional- und eine LSTM- (d) Zwei Convolutional- und zwei LSTM-
Schicht Schichten

Abbildung 14: Konfusionsmatrizen der kleinen Modelle nach Training tber 50 Epochen.

In Abbildung 14 sind die Konfusionsmatrizen der kleinen Modelle nach 50 Epochen Trai-
ning im direkten Vergleich zueinander dargestellt. Links sind jeweils die Konfusionsmatri-
zen der Modelle mit einer LSTM-Schicht, rechts die der Modelle mit zwei LSTM-Schichten.
Die obere Zeile zeigt die Konfusionsmatrizen der Modelle mit einer Convolutional-Schicht,

die untere Zeile die der Modelle mit zwei Convolutional-Schichten.

Besonders auffallig sind die Modelle mit nur einer LSTM-Schicht, die jeweils weniger
als 100 False Positives (also Sturz-Einordnungen obwohl eine Sequenz nicht zu einem
Sturz gehort) aufweisen. Das kleinste der Modelle, 1c_8f 11 10u (Abbildung 14a), hat die
wenigsten False Positives mit nur 54 und ebenfalls die wenigsten False Negatives (also
Sequenzen, die Teil eines Sturzes sind, die vom Modell jedoch nicht erkannt wurden) mit
etwa 210. Im Gegensatz dazu zeigt das Modell 1c_8f 21 10u_5u (Abbildung 14b), welches
eine zusatzliche LSTM-Schicht hat, die meisten False Negatives mit 660. Die Modelle mit
zwei Convolution-Schichten, 2c_16f 8f 11 16u (Abbildung 14c) und 2c_16f 8f 21 16u 5u
(Abbildung 14d), liegen dazwischen, mit etwa 460 bzw. 470 False Negatives.

Nach 50 Epochen Training liegen sowohl Prazision (Precision) als auch Sensitivitat (Recall)
bei allen kleinen Modellen tUber 99%. Bemerkenswert ist, dass das kleinste Modell,
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1c_8f 11 16u, mit 99,89% die hochste Sensitivitat hat. Die Ubersicht dazu ist in Tabelle 3
dargestellt.

Modell Parameteranzahl | Sensitivitat in %
1¢c_8f_11_10u 21651 99,89
1c_8f 21_10u_5u 21966 99,32
2c_16f 8f 11_10u 22891 99,52
2c_16f_8f 21_10u_5u 23206 99,52

Tabelle 3: Sensitivitaten der kleinen Modelle nach 50 Epochen

4.2 Leistung der grof3en Modelle

Abbildung 15: Trainingsverlust (loss) der gro3en Modelle.

Abbildung 15 zeigt den Verlauf des Trainingsverlustes der drei groRen Modelle im
Vergleich. Darin ist zu sehen, dass die beiden Modelle 2c_16f 8f 21 100u 56u (283 171
Parameter, zwei Convolution-Schichten und zwei etwas grol3ere LSTM-Schichten) und
3c_128f 64f 32f 21 10u 5u (178 782 Parameter, drei Convolution-Schichten und twei
etwas kleinere LSTM-Schichten) anfangs einen zlgigen Abfall des Trainingsverlustes
aufweisen. Das kleinste der grol3en Modelle, 3c_128f 64f 32f 21 10u 5u, erreicht bereits
nach 7 Epochen einen Trainingsverlust von unter 0,02, wahrend das mittlere Modell,
2c_16f 8f 21 100u 50u, diesen Wert bereits nach 3 Epochen unterschreitet.

In den mittleren Epochen zeigen beide Modelle eine gewisse Instabilitat. Das mittlere
Modell hat in Epoche 42 einen Anstieg des Trainingsverlustes auf 0,25, der sich bis Epoche

50 wieder auf 0,07 reduziert. Ahnlich weist das kleinste Modell in Epoche 35 einen leichten
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Anstieg auf 0,04 sowie in Epoche 46 auf 0,08 auf, bevor der Trainingsverlust zum Abschluss

auf 0,01 sinkt und damit den niedrigsten Wert unter den grof3en Modellen erreicht.

Das grofte Modell, 3c_128f 64f 32f 21 100u_50u (1 008 987 Parameter, drei Convolution-
Schichten und zwei gréRBere LSTM-Schichten), zeigt zwar zu Beginn ebenfalls eine Reduk-
tion des Trainingsverlustes und erreicht in Epoche 3 einen Wert von knapp unter 0,1,
jedoch steigt der Verlust danach deutlich an. Das Modell erreicht sein Maximum in Epoche
26 mit 0,38, bevor es bis Epoche 50 wieder auf 0,16 abfallt. Trotz dieses Ruckgangs erreicht
der Trainingsverlust des grofl3ten Modells zu keiner Zeit die anderen Modelle, das Modell

lernt also schlechter als die beiden kleineren Modelle.

Insgesamt zeigt sich, dass das kleinste Modell, 3c_128f 64f 32f 21 10u 5u, durch-
gangig den niedrigsten Trainingsverlust aufweist, wahrend das grofite Modell,
3c_128f 64f 32f 21 100u 56u, den hochsten Verlust verzeichnet. Ein Vergleich der Trai-
ningsverluste in Epoche 50 ist in Tabelle 4 dargestellt.

Modell Parameteranzahl | Trainingsverlust in Epoche 50
3c_128f_64f_32f _21_10u_5u 178782 0,01
2c_16f_8f_21_100u_50u 283171 0,07
3c_128f_64f_32f_2]_100u_50u 1008987 0,16

Tabelle 4: Trainingsverlust der gro3en Modelle in Epoche 50.

Abbildung 16: Validierungsverlust (val loss) der gro3en Modelle.

In Abbildung 16 ist der Verlauf des Validierungsverlustes der groBen Modelle darge-
stellt, der sich ahnlich zum Trainingsverlust verhalt. Das kleinste dieser Modelle,
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Ergebnisse Leistung der grofsen Modelle

3c_128f 64f 32f 21 10u 5u, erreicht bereits in Epoche 7 einen Validierungsverlust von un-
ter 0,02. Das mittlere Modell, 2c_16f 8f 21 100u_50u, erreicht diesen Wert bereits in Epoche
5 und unterschreitet in Epoche 6 sogar die 0,01. Das kleinste Modell erreicht die 0,01
erst in Epoche 17. Das grof3te Modell, 3c_128f 64f 32f 21 100u_50u, erreicht diese Werte
Uberhaupt nicht. Es erreicht nach wenigen Epochen seinen minimalen Validierungsverlust
von 0,1 und steigt dann unregelmalig immer weiter an, es scheint also Uberhaupt nicht

oder etwas falsches zu lernen. Es erreicht ein erstes Maximum von 0,4 in Epoche 15.

In den mittleren Epochen verhalten sich die beiden kleineren Modelle ahnlich, wobei das
kleinste Modell in Epoche 34 einen vorubergehenden Anstieg auf 0,04 aufweist, ahnlich
wie sein Trainingsverlust eine Epoche vorher. Zu diesem Zeitpunkt fangt auch der Validie-
rungsverlust des mittleren Modells an zu steigen, welches das Maximum von 0,23 jedoch
erst in Epoche 41 erreicht, also wieder eine Epoche vor dem Maximum des Trainingsver-
lustes dieses Modells. Das grofRe Modell bleibt weiterhin unregelmallig und erreicht in
Epoche 35 sein Maximum von 0,6.

Insgesamt zeigt der Verlauf des Validierungsverlustes bei den grollen Model-
len eine dahnliche Dynamik wie der Trainingsverlust, wobei das kleinste Modell
3c_128f 64f 32f 21 10u 5u konstant die besten Ergebnisse liefert, wahrend das grof3te
Modell 3¢_128f 64f 32f 21 100u 50u durchgangig schlechter abschneidet.

Modell Parameteranzahl | Validierungsverlust in Epoche 50
3c_128f_64f_32f_2|_10u_5u 178 782 0,01239
2c_16f_8f_2|_100u_50u 283171 0,06338
3c_128f_64f_32f_2|_100u_50u 1008 987 0,15861

Tabelle 5: Validierungsverlust der grofen Modelle bei 50 Epochen
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Ergebnisse Leistung der grofsen Modelle

(@) 3 Convolutional- und 2 LSTM-Schichten (b) Je 2 Convolutional- und LSTM-Schichten

(c) 3 Convolutional- und 2 sehr groRe LSTM-
Schichten
Abbildung 17: Konfusionsmatrizen der gro3en Modelle nach Training Uber 50 Epochen
In Abbildung 17 sind die Konfusionsmatrizen der grof3en Modelle im direkten Vergleich
dargestellt. Sie zeigen, wie gut die Modelle nach 50 Epochen zwischen den beiden Klassen,

Sturz (1) und nicht-Sturz (0) unterscheiden kénnen.

Das Modell 3c_128f 64f 32f 21 10u 5u (Abbildung 17a) erreicht eine hohe Klassifikations-
genauigkeit fur beide Klassen. Es klassifiziert die negative Klasse (0, nicht-Sturz) mit 72.000
korrekten Vorhersagen (True Negatives) fast fehlerfrei und hat nur 110 Fehlklassifikatio-
nen (False Positives). Fur die positive Klasse (1, Sturz) werden 97.000 Sequenzen korrekt
erkannt (True Positives), wahrend 1.000 Sequenzen falschlicherweise negativ klassifiziert
werden (False Negatives).

Das Modell 2c_16f 8f 21 100u 56u (Abbildung 17b) zeigt ebenfalls eine solide, jedoch
schwachere Performance als das kleinere Modell. Es klassifiziert die negativen Sequenzen
mit 71.000 korrekten Vorhersagen, macht aber mit 560 Fehlklassifikationen etwas mehr
Fehler. Bei der positiven Klasse werden 91.000 Sequenzen richtig erkannt, jedoch ist
die Anzahl der False Negatives mit 6.900 deutlich hdher als beim kleineren Modell. Die
Ergebnisse deuten darauf hin, dass dieses Modell etwas mehr Schwierigkeiten hat, Sturze

korrekt zu klassifizieren.
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Ergebnisse Leistung der grofsen Modelle

Das grof3te Modell, 3c_128f 64f 32f 21 100u 50u (Abbildung 17c), schneidet im Vergleich
zu den anderen beiden Modellen signifikant schlechter ab, wie durch die Verlustgraphen
zu erwarten. Es klassifiziert die negative Klasse zwar ahnlich gut, mit 71.000 korrekten
Vorhersagen, aber die Anzahl der False Positives steigt auf 730. Besonders problematisch
ist die Klassifikation der positiven Klasse, bei der nur 33.000 Sequenzen korrekt als Sturz
erkannt werden, wahrend 66.000 Sequenzen falschlicherweise als negativ klassifiziert
werden. Dieses Modell hat somit grol3e Schwierigkeiten, Sturze korrekt als solche zu

erkennen und zeigt die schlechteste Klassifikationsleistung unter den grof3en Modellen.

In der Ubersicht in Tabelle 6 sind die Sensitivitaten der groBen Modelle nach 50 Epochen
im direkten Vergleich dargestellt. Auch hier zeigt sich, wie die Konfusionsmatrizen bereits
andeuteten, dass das kleinste Modell 3c_128f 64f 32f 21 10u 5u die beste Sensitivitat
aufweist, wahrend das grolste Modell 3c_128f 64f 32f 21 100u_50u die schlechteste Sensi-
tivitat hat.

Modell Parameteranzahl | Sensitivitat in %
3c¢_128f_64f 32f_2|_10u_5u 178782 98,95
2c_16f_8f_21_100u_50u 283171 92,96
3c_128f_64f_32f 2|_100u_50u 1008987 85,86

Tabelle 6: Sensitivitat der grol3en Modelle nach 50 Epochen

4.3 Vergleich unterschiedlich groBer Modelle
Nachdem oben bereits die Verlaufe der Trainings- und Validierungsverluste der kleinen

und groRen Modelle einzeln betrachtet wurden, soll nun ein Gesamtbild der Unterschiede
zwischen kleinen und groRen Modellen gezeichnet werden. Dies bietet die Moglichkeit,
den Effekt der Modellgrol3e auf die Generalisierungsfahigkeit und Klassifikationsgenauig-
keit in der Sturzerkennung zu bewerten. Dies zeigt, ob sich der Mehraufwand fur groBere

Modelle lohnt und inwiefern diese besser geeignet sind, um Stlirze zu erkennen.
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Ergebnisse Vergleich unterschiedlich grofser Modelle

4.3.1 Trainings- und Validierungsverlust
Kleine Modelle Grol3e Modelle

Abbildung 18: Gegenuberstellung der Verluste. Links die kleinen Modelle, rechts die

grolRen Modelle. Oben die Trainingsverluste, unten die Validierungsverluste.

Abbildung 18 stellt die Trainings- und Validierungsverluste der kleinen (links) und grof3en
(rechts) Modelle im direkten Vergleich gegenuber. Die kleinen Modelle erreichen insge-
samt niedrigere Verluste als die grol3en Modelle. Die Trainingsverluste der kleinen Modelle
sinken schneller und stabilisieren sich auf niedrigeren Werten als die der gro3en Modelle.
Die Validierungsverluste der kleinen Modelle weisen hingegen deutliche Schwankungen
auf, die von einem kontinuierlichen Verlauf abweichen, wie er bei idealisierter Stabilitat
zu erwarten wére. Diese Abweichungen kénnten auf Uberanpassung an die Trainingsda-
ten oder eine suboptimale Lernrate hindeuten. Die groBen Modelle weisen hingegen
erst in spateren Epochen signifikante Abweichungen von einem glatten Verlauf auf.
Das grofRte Modell 3c_128f 64f 32f 21 100u_56u zeigt dabei mit Abstand die schlechteste
Performance, sowohl im Training als auch in der Validierung, was auf mehrere Probleme
hindeuten kann. Dieses Modell ist auch im Vergleich zu den anderen grol3en Modellen um
den Faktor 5-10 groRRer, so wie die anderen grof3en Modelle um den Faktor 5-10 grof3er
sind als die kleinen Modelle. Da es im Vergleich sowohl in Gréf3e als auch in Leistung
deutlich von den anderen Modellen abweicht, lasst sich dieses Modell fast als eigene

Kategorie einordnen.

Tabelle 7 zeigt die Verluste der Modelle nach 50 Epochen Training im direkten Vergleich.
Die Fehlerraten der kleinen Modelle liegen bei rund 1%, wahrend die Fehlerraten bei den

grolBen Modellen mit der Grol3e des Modells auf jeweils 2,3%, 7,5% und 16,5% ansteigen.
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Ergebnisse Trainings- und Validierungsverlust

Modell Parameteranzahl | Trainingsfehler % | Validierungsfehler

%
1¢_8f_11_10u 21651 0,478 0,442
1c_8f_21_10u_5u 21966 0,347 1,468
2c_16f_8f_11_10u 22891 0,464 0,813
2c_16f_8f_2|_10u_5u 23206 0,638 1,168
3c_128f_64f_32f_21_10u_5u 178782 2,280 1,239
2c_16f_8f_21_100u_50u 283171 7,456 6,338
3c_128f_64f_32f_21_10Qu_50u 1008987 16,452 15,861

Tabelle 7: Trainings- und Validierungsfehlerraten der Modelle nach 50 Epochen Training.

Die Trennlinie visualisiert die Unterscheidung zwischen kleinen und grofl3en Modellen.

4.3.2 Sensitivitat
Die Sensitivitat der Modelle zeigt ebenfalls deutliche Unterschiede zwischen den kleinen

und grolRen Modellen. Wahrend die kleineren Modelle durchweg eine Sensitivitat von
Uber 99% erreichen, sinkt dieser Wert bei den gro3en Modellen, insbesondere bei dem
grofRten Modell, auf unter 86%. Tabelle 6 zeigt die Sensitivitaten der grol3en Modelle nach
50 Epochen im direkten Vergleich.

Modell Parameteranzahl | Sensitivitat in %
1c_8f_11_10u 21651 99,90
1c_8f 21_10u_5u 21966 99,32
2c_16f_8f_11_10u 22891 99,53
2c_16f_8f_21_10u_5u 23206 99,52
3c_128f _64f _32f 2|_10u_5u 178782 98,95
2c_16f_8f_21_100u_50u 283171 92,96
3c_128f_64f 32f 2|_100u_50u 1008987 85,86

Tabelle 8: Sensitivitat der Modelle nach 50 Epochen

4.3.3 Ressourcen und Geschwindigkeit
Hier werden die Modelle anhand ihrer Inferenzzeiten und ihres Speicherbedarfs vergli-

chen. Die Inferenzzeiten wurden tUber 1000 Inferenzen gemittelt, um eine aussagekraftige
Vergleichsbasis zu schaffen. Der Speicherbedarf wurde als RAM-Arbeitsspeicher in Mega-

byte gemessen. Eine direkte Gegenuberstellung der Modelle ist in Tabelle 9 dargestellt.
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Ergebnisse Ressourcen und Geschwindigkeit

Modell Parameteranzahl | Speicher | Inferenzzeit
1¢_8f_11_10u 21651 | 0,08MB 5Tms
1c_8f 21 10u_5u 21966 | 0,08MB 51ms
2c_16f_8f_11_10u 22891 | 0,09MB 51ms
2c_16f_8f_2|_10u_5u 23206 | 0,09MB 53ms
3c_128f_64f_32f_2|_10u_5u 178782 | 0,68MB 45ms
2c_16f_8f_21_100u_50u 283171 | 1,08MB 52ms
3c_128f_64f_32f_2|_100u_50u 1008987 | 3,85MB 44ms

Tabelle 9: Inferenzzeiten und Speicherbedarf der Modelle

4.3.3.1 Speicherbedarf
Die kleinen Modelle sind durchweg ressourcenschonend und bendtigen alle unter

0,1 MB RAM Arbeitsspeicher. Im Vergleich steigt der Speicherbedarf bei den grofRen
Modellen erheblich an, mit einem Spitzenwert von 3,85 MB beim grof3ten Modell,
3c_128f 64f 32f 21 100u 56u. Diese Zunahme reflektiert die groRere Anzahl an Parame-

tern und die gestiegene Modellkomplexitat.

4.3.3.2 Inferenzzeiten
Die durchschnittlichen Inferenzzeiten der Modelle (gemittelt GUber 1000 Inferenzen)

liegen in einem engen Bereich zwischen 44 und 53 ms. Uberraschenderweise erzielen
die groBeren Modelle hier leicht kurzere Inferenzzeiten. Besonders das grof3te Modell,
3c_128f 64f 32f 21 100u 56u, bendtigt nur 44 ms pro Inferenz, was von allen getesteten
Modellen am schnellsten ist. Moglicherweise sind moderne Grafikkarten dazu in der Lage,
so effizient zu parallelisieren, dass die groReren Modelle trotz ihrer Komplexitat schneller
Inferenzen durchfthren kénnen. Eine andere Erklarung konnte sein, dass das genutzte
Framework abgesehen von der eigentlichen Inferenz am Modell einen gewissen Overhead
hat und die eigentliche Inferent zeitlich keinen signifikanten Unterschied macht.

4.3.3.3 Gesamtbewertung

Obwohl die groBen Modelle mehr Speicher verbrauchen, zeigen sie Uberraschenderweise
eine leicht verbesserte Effizienz bei der Inferenzzeit. Das kleine Modell 2c_16f 8f 21 10u 5u
fallt mit der héchsten Inferenzzeit von 53 ms auf, benétigt jedoch erheblich weniger Spei-
cher als die groBen Modelle. Dies deutet darauf hin, dass die grof3ere Modellkomplexitat
bei den grol3en Modellen die Rechenzeit pro Inferenz nicht zwingend negativ beeinflusst

und diese teilweise sogar effizienter sein kénnen.

Insgesamt brauchen alle Modelle im Verhaltnis zu heutigen Rechenkapazitaten wenig

Ressourcen und sind in der Lage, in Echtzeit Inferenzen durchzufuhren.
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4.4 Vergleich der Modelle mit unterschiedlichen Trainingsdaten

(a) Modell mit allen Trainingsdaten (b) Modell, das nur ADLs verwendet

(c) Modell ohne explizite ADLs (d) Modell ohne implizite ADLs
Abbildung 19: Vergleich der Konfusionsmatrizen fur Modelle, die mit verschiedenen Trai-

ningsdatenkombinationen trainiert wurden.

In Abbildung 19 sind die Konfusionsmatrizen der Modelle dargestellt, die mit verschiede-

nen Trainingsdatenkombinationen trainiert wurden.

Ein besonders auffalliges Ergebnis zeigt sich beim Modell, das nur ADLs als Trainingsdaten
verwendet, dessen Evaluationsergebnis in Abbildung 19b dagestellt ist. Dieses Modell hat
konsequent alle Eingabesequenzen als Nicht-Sturz klassifiziert, was eine Sensitivitat von
0% bedeutet. Da keinerlei Sturze erkannt wurden, ist dieses Modell in realen Anwendun-

gen fur die Sturzerkennung nicht geeignet.

Die anderen Modelle zeigen eine differenzierte Leistung. Beim Modell mit allen Daten,
dargestellt in Abbildung 19a, das Sturzsequenzen und sowohl ADL-Sequenzen aus expli-
ziten ADL-Videos als auch implizite ADL-Sequenzen aus den Sturzvideos umfasst, wurden
71.000 Nicht-Sturz-Sequenzen korrekt erkannt (True Negatives), wobei 730 ADL-Sequen-
zen falschlicherweise als Sturz klassifiziert wurden (False Positives). Im Vergleich dazu hat
das Modell ohne implizite ADLs, dargestellt in Abbildung 19d, ebenfalls eine starke Erken-
nung von Nicht-Sturz-Sequenzen gezeigt, mit 70.000 True Negatives. Allerdings sind hier
mit 1.600 False Positives etwas mehr ADLs falschlicherweise als Sturz erkannt worden. Das

Modell ohne explizite ADLs in Abbildung 19c¢, das nur Nicht-Sturz-Sequenzen aus Sturz-
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videos als Trainingsdaten fur ADLs verwendet, schneidet bei den Nicht-Sturz-Sequenzen
nochmal etwas schlechter ab: Es erkennt lediglich 68.000 ADLs korrekt, wahrend 3.400
ADLs als Sturze klassifiziert wurden.

Bei der Erkennung von Sturzsequenzen zeigt sich ebenfalls ein differenziertes Bild. Das
Modell mit allen Trainingsdaten klassifiziert lediglich 33.000 Sturzsequenzen korrekt, wah-
rend es 66.000 Sturzereignisse nicht erkennt. Im Gegensatz dazu zeigt das Modell ohne
implizite ADLs eine deutlich bessere Erkennungsrate mit 70.000 korrekt identifizierten
StUrzen und 28.000 nicht erkannten Sturzereignissen. Das Modell ohne explizite ADLs, das
neben den Sturzdaten ausschlieBlich auf implizite ADLs aus Sturzvideos trainiert wurde,
Ubertrifft beide anderen Modelle hinsichtlich der Sensitivitat: Es identifiziert 87.000 Sturz-
sequenzen korrekt und verfehlt dabei nur 12.000. Diese Ergebnisse verdeutlichen, dass
das Modell ohne explizite ADLs bei der Erkennung von Sturzen besonders leistungsfahig

ist, jedoch auf Kosten einer erhéhten Rate an False Positives.

Zusammenfassend zeigt sich, dass das Modell ohne explizite Berucksichtigung von ADLs
die hochste Sensitivitat erreicht und somit die meisten Sturze korrekt erkennt. Allerdings
geht diese Leistung mit einer erhdhten Rate an False Positives einher, wodurch ADLs
haufiger falschlicherweise als Sturze klassifiziert werden. Im Gegensatz dazu bietet das
Modell, das alle verfligbaren Daten einbezieht, eine ausgewogenere Balance: Es erzielt
weniger False Positives, jedoch auch eine geringere Anzahl an True Positives im Vergleich

zum Modell ohne explizite ADLs.

Das Modell ohne implizite ADLs positioniert sich leistungsmaliig zwischen diesen beiden
Ansatzen. Es erreicht mehr True Positives als das Modell, das alle Daten verwendet, jedoch
weniger als das Modell ohne explizite ADLs. Gleichzeitig reduziert es die Anzahl der False
Positives im Vergleich zum Modell ohne explizite ADLs, allerdings nicht so stark wie das

Modell mit allen Daten.

In Tabelle 10 sind die Sensitivitats- und Spezifitatswerte der verschiedenen Modellvarian-
ten nach 50 Epochen Training zusammengefasst.

Variante Sensitivitat | Spezifitat
Ohne explizite ADLs 87,88 90,96
Alle Daten 85,86 91,38
Ohne implizite ADLs 71,43 82,55
Nur ADLs 0,0 42,35

Tabelle 10: Sensitivitat der Varianten nach 50 Epochen

Das Modell ohne explizite ADLs weist mit 87,88% die hdchste Sensitivitat auf, bei einer
Spezifitat von 90,96%. Es erkennt also von allen Varianten die meisten Stirze korrekt und
klassifiziert gleichzeitig Uber 90% der ADLs korrekt als solche.
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Das Modell, das alle Trainingsdaten verwendet, zeigt eine leicht geringere Sensitivitat von
85,86%, jedoch eine etwas hohere Spezifitat von 91,38%. Dies bedeutet, dass es zwar nicht
ganz so viele Sturze wie das vorherige Modell erkennt, dafur jedoch etwas besser darin

ist, ADLs korrekt als solche zu klassifizieren.

Das Modell ohne implizite ADLs verzeichnet mit 71,43% eine deutlich geringere Sensiti-
vitat, was darauf hinweist, dass es eine groRere Anzahl von Stirzen nicht erkennt. Auch
die Spezifitat ist mit 82,55% deutlich niedriger, was bedeutet, dass dieses Modell auch

weniger zuverlassig ist, wenn es darum geht, ADLs korrekt zu klassifizieren.

Das Modell, das nur ADLs verwendet, zeigt erwartungsgemald die schlechtesten Ergeb-
nisse: Eine Sensitivitat von 0,0% bestatigt, dass es nicht in der Lage ist, Sturze als solche
zu erkennen. Die Spezifitat von 42,35% deutet darauf hin, dass es auch Schwierigkeiten
hat, ADLs korrekt zu identifizieren. Dies zeigt, dass dieses Modell nahezu alle Ereignisse

als ADLs interpretiert und somit vollig ungeeignet fur die Sturzerkennung ist.

Das Modell, das nur ADLs verwendet, zeigt erwartungsgemal? die schlechtesten Ergeb-
nisse: Die Sensitivitat von 0,0% bestatigt eindeutig, dass es Uberhaupt nicht in der Lage
ist, StUrze korrekt zu erkennen, da es jede Sequenz als ADL klassifiziert. Die Spezifitat
von 42,35% ergibt sich ausschliel3lich daraus, dass das Modell alle ADLs korrekt als solche
erkennt, jedoch keinerlei Differenzierung zwischen ADLs und Stldrzen vornimmt. Da die
Spezifitat nur von der Anzahl der korrekt erkannten ADLs abhangt, fuhrt der Anteil der
ADLs in den Testdaten zu einem scheinbar besseren Wert, der in diesem Fall lediglich

ausdruckt, dass 42,35% der zur Evaluierung verwendeten Sequenzen ADLSs sind.

4.5 Interpretation der Ergebnisse
In dieser Arbeit spielen Sensitivitat (die Fahigkeit, Stirze korrekt zu erkennen) und Spezi-

fitat (die Fahigkeit, alltagliche Aktivitaten nicht falschlicherweise als Sturze zu klassifizieren)
eine zentrale Rolle. Ein zuverlassiges Sturzerkennungssystem sollte eine hohe Sensitivitat
aufweisen, um Sturze so schnell wie moglich zu erkennen und gleichzeitig eine hohe Spezi-
fitat, um Fehlalarme zu minimieren. Das richtige Gleichgewicht zwischen diesen Metriken

ist entscheidend fur die praktische Einsatzfahigkeit des Systems.

4.5.1 Kleine Modelle
Die Ergebnisse zeigen, dass kleinere Modelle eine hohe Sensitivitat erreichen, was bedeu-

tet, dass sie StUrze zuverlassig erkennen kénnen. Dies ist eine positive Beobachtung, da
die Zielsetzung dieser Arbeit darin besteht, Stirze maoglichst fruhzeitig zu identifizieren,
um eine schnelle Benachrichtigung zu ermaéglichen. Kleinere Modelle scheinen in der Lage
zu sein, diese Anforderung zu erfullen, und bieten zudem den Vorteil eines geringeren
Rechenaufwands, was besonders bei der Echtzeitverarbeitung von Videodaten aus meh-

reren Kameras nutzlich ist.
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Ein mogliches Risiko bei kleineren Modellen besteht jedoch im Overfitting, insbesondere
wenn die Lernrate fur alle Modelle gleich gewahlt wurde. Moéglicherweise kdnnte eine
hohe Lernrate fur kleinere Modelle zu einer schnellen Anpassung an die Trainingsdaten
fuhren, wodurch diese Modelle zwar im Training hohe Sensitivitat erreichen, aber auf
Testdaten schlechter generalisieren. In dieser Arbeit wurden jedoch keine eindeutigen
Tests auf Overfitting durchgefuhrt, sodass weitere Analysen notwendig waren, um dies zu

bestatigen.

Der geringe Ressourcenbedarf kleinerer Modelle eroffnet das Potenzial, sie auf ressour-
censchwacher Hardware in hauslichen Umgebungen einzusetzen. Dies entspricht dem
Ziel der Arbeit, ein System zu entwickeln, das auch in Echtzeitszenarien effektiv funktio-

niert und dabei wenig Rechenleistung bendtigt.

4.5.2 GroRe Modelle
GroRRere Modelle zeigen eine etwas schlechtere Sensitivitat, was darauf hindeutet, dass

sie mehr Trainingsepochen oder eine hohere Anfangslernrate bendtigen kénnten, um
ihr volles Potenzial zu entfalten. lhre Starke liegt jedoch in der héheren Spezifitat, was
bedeutet, dass sie seltener ADLs falschlicherweise als Stlrze klassifizieren. Dies macht sie

zu einer moglichen Losung, wenn es darum geht, Fehlalarme zu minimieren.

Die Ergebnisse legen nahe, dass grofRere Modelle mdglicherweise besser darin sind, auf
mehr Trainingsdaten zu generalisieren, was sie in Szenarien nutzlich macht, in denen viele
verschiedene Aktivitaten erfasst werden mussen. Trotz ihrer hoheren Anzahl an Parame-
tern zeigten die groBeren Modelle keine signifikant langeren Inferenzzeiten, was auf die
Effizienz moderner Hardware hindeutet. Es scheint, dass Grafikkarten in der Lage sind,
die Berechnungen parallel zu verarbeiten, was die Inferenzzeiten niedrig halt. Alternativ
kdnnte es sein, dass der Overhead im verwendeten Framework so hoch ist, dass die

eigentliche Inferenzzeit nur einen kleinen Teil der gesamten Verarbeitungszeit ausmacht.

4.5.3 Unterschiedliche Trainingsdaten
Ein besonders interessantes Ergebnis zeigt die Leistung des Modells, das ohne explizite

ADLs trainiert wurde. Dieses Modell erzielte die hochste Sensitivitat und wies somit eine
starke Erkennungsleistung auf. Die Spezifitat war jedoch etwas geringer als die des Mo-
dells, das mit allen Daten (einschliel3lich expliziter ADLs) trainiert wurde. Dies verdeutlicht,
dass bereits wenige ADLs in den Trainingsdaten ausreichen kdnnen, um eine zuverlassige
Sturzerkennung zu ermdglichen, ohne dass viele ADLs falschlicherweise als Stirze erkannt
werden. Dies deutet darauf hin, dass die Trainingsdaten effizienter gestaltet werden
konnten, indem der Anteil an ADLs reduziert wird, was sowohl die Trainingszeit verkutrzen
als auch den Datenschutz verbessern kénnte.

Das Modell, das mit allen verfugbaren Daten trainiert wurde, erreichte hingegen eine
etwas hohere Spezifitat. Dies legt nahe, dass das Einbeziehen einer grolReren Anzahl von

ADLs in die Trainingsdaten dazu beitragen kann, die Fehlalarme weiter zu reduzieren.
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Zwar scheint es nicht zwingend erforderlich zu sein, eine grolle Menge expliziter ADLs
einzubeziehen, jedoch bringt dies keine signifikanten Nachteile mit sich und kann in
bestimmten Szenarien sogar vorteilhaft sein.

4.5.4 Bedeutung fiir das Gesamtsystem
Wahrend die Modelle eine gute Grundlage fur die Sturzerkennung bieten, konnte das

Gesamtsystem durch Heuristiken die noch vorhandenen Schwachen der Modelle ausglei-
chen. Ein potenzieller Ansatz ware, Sturze nur dann zu melden, wenn mehrere aufeinan-
derfolgende Frames (oder eine Mindestanzahl von Frames innerhalb einer Sekunde, z.B.
66%) als Sturz klassifiziert werden. Diese Heuristik konnte die Wahrscheinlichkeit von False
Positives verringern, ohne die Sensitivitat des Systems signifikant zu beeintrachtigen. So
wurde die Zuverlassigkeit des Systems gesteigert, was fur den praktischen Einsatz beson-
ders wichtig ist. Solange in einem Bild keine Person zu sehen ist, werden aul3erdem keine

Daten an das Modell gesendet, was die Rechenleistung weiter reduziert.

4.5.5 Limitationen
Trotz der vielversprechenden Ergebnisse zeigen sich einige Limitationen, die fir eine

vollstandige Bewertung eines Gesamtsystems berucksichtigt werden mussen. Eine der
zentralen Herausforderungen betrifft das Risiko des Overfittings, insbesondere bei den
kleineren Modellen. Da fur alle Modelle eine gleiche Lernrate verwendet wurde, besteht
die Moglichkeit, dass kleinere Modelle zu schnell auf die Trainingsdaten angepasst
werden. Dies kdnnte zu einer schlechteren Generalisierung auf neue, unbekannte Daten
fuhren. Overfitting wurde in dieser Arbeit jedoch nicht explizit getestet, sodass dies in
zukunftigen Studien genauer untersucht werden sollte.

Ein weiteres potenzielles Limit liegt in den begrenzten Datensatzen, die flir das Training
und die Validierung der Modelle verwendet wurden. Die derzeitigen Ergebnisse basieren
auf einem spezifischen Satz von Trainingsdaten, der méglicherweise nicht alle Variationen
und Szenarien der realen Welt abdeckt. Insbesondere kdnnte die Generalisierungsfahig-
keit der Modelle durch héhere oder niedrigere Kamerawinkel oder andere Arten von
Kameras beeintrachtigt werden. Um sicherzustellen, dass die Modelle robust genug sind,

mussen sie in Zukunft auf groBeren und vielfaltigeren Datensatzen getestet werden.

Obwohl im Verlauf der Arbeit Heuristiken als mogliche Losung zur Reduzierung von False
Positives genannt wurden, sind diese in der aktuellen Arbeit nicht explizit implementiert
oder getestet worden. Heuristiken, wie beispielsweise die Anforderung, dass mehrere
aufeinanderfolgende Frames als Sturz klassifiziert werden mussen, kdnnten in der prakti-
schen Implementierung jedoch eine entscheidende Rolle spielen, um die Zuverlassigkeit
des Gesamtsystems zu verbessern. Es bleibt offen, wie effektiv diese Methoden in Kombi-

nation mit den entwickelten Modellen arbeiten wirden.

Zusatzlich gibt es ethische und datenschutztechnische Uberlegungen, die bei der Entwick-

lung eines Sturzerkennungssystems berucksichtigt werden mussen. Insbesondere die
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Frage, wie viele und welche Arten von ADLs in den Trainingsdaten verwendet werden
sollten, um einerseits den Datenschutz zu wahren und andererseits eine hohe Spezifitat
zu gewahrleisten, bleibt eine wichtige Frage. Ein Kompromiss zwischen einem maglichst
geringen Datensammeln und der Optimierung der Modellerkennung kénnte erforderlich

sein.

4.5.6 Schlussbetrachtung
Obwohl die kleinen Modelle eine gute Sensitivitat aufweisen und in der Lage sind, Sturze in

Echtzeit zu erkennen, kdnnte sich bei zukunftigen Tests zeigen, dass groRere Modelle mit
besserer Spezifitat eine wichtigere Rolle spielen, falls sich in realen Anwendungen trotz

Heuristiken Fehlalarme als problematisch erweisen.

Die Effizienz der Modelle bietet gute Ansatze, um das System weiter zu optimieren, auch
im Hinblick auf die Ressourcenschonung und die Einsetzbarkeit auf Standardhardware in

privaten Haushalten, ohne groBere Rechenkapazitat der Cloud in Anspruch zu nehmen.

Kunftige Arbeiten kdnnten sich auch darauf konzentrieren, Overfitting und variable Lern-
raten genauer zu untersuchen. Die Integration von Heuristiken und die Berucksichtigung
ethischer und datenschutzrechtlicher Aspekte sind ebenfalls wichtige Schritte, um ein
Sturzerkennungssystem zu entwickeln, das nicht nur effektiv, sondern auch verantwor-

tungsbewusst und benutzerfreundlich ist.

5 Fazit

Diese Arbeit zeigt, dass ein effizientes und zuverlassiges Sturzerkennungssystem auf der
Basis von Skelettdaten maglich ist, die aus RGB-Kamerabildern extrahiert wurden. Die
durchgeflhrten Experimente belegen, dass sowohl kleine als auch grof3e Modelle in der
Lage sind, eine hohe Sensitivitat zu erreichen und StlUrze zuverlassig zu identifizieren.
Wahrend die kleineren Modelle mit einer Sensitivitat von iber 99% Uberzeugen und damit
eine Echtzeiterkennung in ressourcenschwachen Umgebungen ermaoglichen, bieten gro-
Rere Modelle eine hohere Spezifitat, jedoch keine signifikant verbesserte Sensitivitat. Die
Moglichkeit, kleinere Modelle lokal auszufihren, macht den Einsatz in privater Umgebung
besonders attraktiv, da sie aufgrund ihrer geringen Rechenlast eine lokale Verarbeitung
erlauben und somit den Schutz der Privatsphare erhéhen, indem eine Cloudanbindung

vermieden wird.

Diese Ergebnisse stellen eine wertvolle Grundlage fur zukunftige Arbeiten dar. Insbeson-
dere konnte die Generalisierungsfahigkeit der Modelle durch gréBere und vielfaltigere
Datensatze sowie durch eine gezielte Datenaugmentierung weiter verbessert werden.
Eine interessante Methode ware die synthetische Generierung von Sturzdaten, um
das Modell robuster gegen seltene und ungewdhnliche Sturzmechanismen zu machen.
Auch eine Untersuchung variabler Lernraten konnte zukunftig getestet werden, um die

Trainingsprozesse optimal an die jeweilige Modellarchitektur anzupassen. Erganzend
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ware die Erweiterung eines Modells durch zusatzliche Datenquellen, wie Tiefen- oder
LiDAR-Kameras, ein vielversprechender Ansatz, um die raumliche Prazision, Effizienz und
Zuverlassigkeit des Gesamtsystems weiter zu erhéhen.

Da die Verarbeitung der Sequenzen derzeit ausschlielich zweidimensional erfolgt, stellt
eine Datenaugmentierung durch Spiegelung der Sturzdaten eine Mdoglichkeit dar, die
Anzahl der Sturzdatensequenzen zu verdoppeln und somit das Training zu starken. Diese
Methode wurde in der vorliegenden Arbeit nicht umgesetzt, kdnnte jedoch einen sinnvol-

len nachsten Schritt zur weiteren Optimierung der Modelle darstellen.

Abschliel3end lasst sich festhalten, dass ein verlassliches Sturzerkennungssystem, basie-
rend auf Pose Estimation und Deep Learning, nicht nur die Sicherheit und das Wohlbe-
finden alterer Menschen inihrer hauslichen Umgebung signifikant erhéhen kann, sondern
auch eine wichtige Entlastung fur das Pflegepersonal darstellen kann. Damit tragt die
hier entwickelte Losung potenziell dazu bei, sowohl das Sicherheitsgefuhl als auch die
Unabhangigkeit der Anwender zu starken und kdnnte so einen wesentlichen Beitrag zur

Bewaltigung der Herausforderungen im Pflegebereich leisten.
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