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Kurzzusammenfassung

Der demografische Wandel führt zu einer alternden Gesellschaft, während der Pflege-
notstand zunehmend kritischer wird. Um die Autonomie älterer Menschen zu fördern
und die Pflege zu entlasten, untersucht diese Arbeit die Entwicklung eines effizienten
und datenschutzfreundlichen Sturzerkennungssystems, das auf Skelettdaten aus RGB-
Kamerabildern basiert. Der Einsatz von Pose Estimation ermöglicht die Extraktion von
Bewegungsmustern, die durch neuronale Netze analysiert werden, um Stürze zuverlässig
zu identifizieren. Verschiedene Modellarchitekturen, von kleineren ressourcenschonen-
den bis zu größeren, komplexeren Modellen, wurden evaluiert, um die optimale Balance
zwischen Sensitivität und Spezifität zu bestimmen. Die Ergebnisse zeigen, dass selbst
kleinere Modelle eine hohe Erkennungsrate erreichen und ohne Cloud-Anbindung einge-
setzt werden können, was sowohl die Privatsphäre der Nutzer schützt als auch eine
Echtzeiterkennung in häuslicher Umgebung ermöglicht.
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Abstract

Demographic change is leading to an ageing society, while the care crisis is becoming
increasingly critical. In order to promote the autonomy of elderly people and relieve
the burden of care, this thesis investigates the development of an efficient and privacy-
friendly fall detection system based on skeletal data from RGB camera images. The use
of pose estimation enables the extraction of movement patterns, which are analyzed by
neural networks to reliably identify falls. Different model architectures, from smaller
resource-efficient models to larger, more complex models, were evaluated to determine
the optimal balance between sensitivity and specificity. The results show that even
smaller models can achieve a high detection rate and can be used without cloud
connectivity, which both protects user privacy and enables real-time detection in a home
environment.
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Einleitung

1 Einleitung
1.1 Motivation
Im Zuge des demografischen Wandels wird das deutsche Pflegesystem in Zukunft mit

neuen Herausforderungen umgehen müssen. Prognosen zeigen, dass bis zum Jahr 2035

eine deutliche Diskrepanz zwischen der Anzahl der Pflegebedürftigen und der verfügbaren

Pflegekräfte bestehen wird[18, 26]. Eine isolierte Lebensweise kann bei älteren Individuen

das Risiko von Sturzereignissen erhöhen, was sowohl zu physischen Verletzungen führen

kann, als auch negative Auswirkungen auf das Selbstvertrauen und die Autonomie haben

kann[14, 38].

Während Stürze eine der Hauptursachen für Verletzungen bei älteren Menschen sind[38],

bleibt die rechtzeitige Erkennung eines Sturzes eine Herausforderung im häuslichen

Umfeld[11]. Herkömmliche Ansätze zur Sturzerkennung, die auf körpergebundenen Sen-

soren basieren, sind oft unzuverlässig oder werden aus Bequemlichkeitsgründen nicht

verwendet. Ein Beispiel hierfür ist der Hausnotruf des Deutschen Roten Kreuzes, der

aus einem manuell zu betätigendem Knopf besteht, der an einem Armband oder einer

Kette getragen wird[19]. Im Falle eines Sturzes kann das nicht immer gewährleistet sein,

beispielsweise wenn die Person bewusstlos ist. Auch kann eingeschränkte Mobilität das

Erreichen des Knopfes verhindern.

Aufgrund der durch den demografischen Wandel bedingten Alterung der Gesellschaft und

der durch den bereits herrschenden Personalmangel[26] angespannten Bedingungen im

Pflegebereich ist es denkbar, dass eine zuverlässige und automatisierte Sturzerkennung

von erheblicher Bedeutung sein kann. Das Entwickeln von innovativen Lösungen wird

erforderlich sein, um ältere Menschen vor den möglichen Folgen von Unfällen zu schützen

bzw. bei Eintreten eines Unfalls eine schnelle Reaktion zur Mitigation von körperlichen

und psychischen Schäden zu gewährleisten. Eine verlässliche, automatisierte Lösung kann

außerdem dazu beitragen, die psychologische Belastung älterer Menschen zu reduzieren,

die durch die Angst vor einem Sturz und den damit verbundenen Folgen entsteht.

1.2 Aufbau der Arbeit
Um diesen Herausforderungen zu begegnen, wird in dieser Arbeit ein automatisiertes

System zur Erkennung von Stürzen älterer Menschen in häuslicher Umgebung entwickelt.

Der Lösungsansatz basiert auf der Verwendung eines Systems, welches die Körperhaltung

einer Person in einem Bild erkennen kann (Pose Estimation), sowie auf neuronalen Netzen,

um Stürze zuverlässig und effizient zu erkennen. Bewegungsdaten werden in Skelettvek-

toren umgewandelt, die dann in ein neuronales Netz eingespeist werden, das auf die

Erkennung von Bewegungsmustern von Stürzen trainiert wurde.
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Um die Relevanz und Wirksamkeit dieses Ansatzes zu demonstrieren, werden unter-

schiedlich trainierte Modelle und Kombinationen von Trainingsdaten evaluiert und deren

Leistung anhand ihrer Konfusionsmatrix bewertet.

Im Verlauf dieser Arbeit wird das Problem der Sturzerkennung analysiert, der Forschungs-

stand dazu erläutert und die technischen Details der Implementierung sowie die Ergeb-

nisse und deren Implikationen diskutiert. Es wird diskutiert, wie diese Technologie dazu

beitragen könnte, das Wohlbefinden älterer Menschen zu verbessern, und welche Heraus-

forderungen noch zu bewältigen sind, um eine Anwendung in der Praxis zu ermöglichen.

2 Analyse
In diesem Kapitel wird die Sturzerkennung mittels Pose Estimation und Deep Learning de-

tailliert analysiert. Zunächst werden die grundlegenden Konzepte und Herausforderungen

der Sturzerkennung eingeführt. Anschließend werden verschiedene Sensorarten und ihre

Vor- und Nachteile diskutiert. Der Abschnitt zur Pose Estimation beleuchtet die Erkennung

von Körperhaltungen und deren Umsetzung in Koordinatenpunkte. Abschließend wird die

Integration von neuronalen Netzen und deren Einsatz für die Sturzerkennung erklärt.

2.1 Sturzerkennung
Die Charakterisierung eines Sturzes kann nicht allein anhand des Vorliegens einer liegen-

den Position eines Individuums erfolgen. Eine Person kann beispielsweise im Bett liegen,

ohne dass ein Sturz stattgefunden hat, oder sich hinknien, um etwas aufzuheben, bezie-

hungsweise aus anderen Gründen hinsetzen. Diese Aktivitäten, die unter dem Begriff

„Activities of Daily Living“ (ADLs) zusammengefasst werden, müssen von einer Software

zur Sturzerkennung zuverlässig von einem Sturz unterschieden werden können. Darüber

hinaus variieren Stürze in ihren Bewegungsmustern erheblich, was zusätzliche Anforde-

rungen an die Automatisierung solcher Systeme stellt. Es ist daher erforderlich, ein System

zu entwickeln, das unterschiedliche Sturzereignisse präzise erkennt und gleichzeitig ADLs

korrekt als solche klassifiziert.

Hierfür hat Schiemers 2012 zwei grundsätzliche Kategorien von Sensoren vorgeschla-

gen: Körpergebundene und somit ortsunabhängige Sensoren, „die als ortsunabhängig

betrachtet werden können“[28], und „berührungslose, ortsabhängige Methoden“[28], wie

Bodensensoren, Kameras oder an Einrichtungsgegenständen wie WC oder Kühlschrank

angebrachte Sensoren.

2011 wurden Bodensensoren zur Sturzerkennung vorgeschlagen und ausgiebig getes-

tet[22]. Diese wurden dann 2015 mit einem an der Hüfte getragenen System, Vivid,

kombiniert und online ausgewertet, um die Erkennungsrate insgesamt zu verbessern[23].

In der Studie konnte nachgewiesen werden, dass das getestete System in Verbindung

mit den installierten Bodensensoren häufig in der Lage war, Stürze zu erkennen. Die

Installation von Bodensensoren stellt jedoch eine beachtliche Hürde zur Installation
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in vorhandenen Wohnungen oder Pflegeeinrichtungen dar. Außerdem muss das Gerät

jederzeit an der Hüfte getragen werden, was sowohl für die pflegebedürftige Person als

auch für eine etwaige Pflegekraft schwierig sein kann[28]. Eine pflegebedürftige Person

ohne Pflegekraft kann vergessen das Gerät anzulegen oder zu laden. Eine Pflegekraft

muss das Gerät warten und sicherstellen, dass das Gerät immer getragen wird. Personen

mit Demenz können sich außerdem dagegen wehren, ein solches Gerät zu tragen. Diese

Umstände können zu niedriger Akzeptanz und somit zu einer geringen Verbreitung oder

Effektivität des Systems führen.

Gegenwärtig sind verschiedene tragbare Geräte zur Sturzerkennung verbreitet. Das sind

entweder Geräte, die klein genug sind sie in der Tasche zu tragen[31], oder Smartwatches

die entweder konkret für diesen Zweck entwickelt wurden[20] oder allgemeine Smartwat-

ches die durch passende Software dazu befähigt werden, mit ihren vorhandenen Senso-

ren Stürze zu erkennen wie die Smartwatches von Apple[3], Samsung[27], Google[12] und

Huawei[17]. Diese Geräte besitzen den Vorteil, dass sie bereits von einigen Menschen

getragen werden und es deshalb denkbar ist, dass eine Nutzung von Smartwatches zur

Sturzerkennung an weniger Hürden geknüpft ist, als der Einsatz von eigens konzipierten

tragbaren Geräten zur Sturzerkennung.

Körpergebundene Sensoren haben mehrere Nachteile. Zum einen müssen sie ständig

getragen werden, was bedeutet, dass man leicht vergessen kann, sie anzulegen. Zum

anderen muss regelmäßig sichergestellt werden, dass sie aufgeladen sind. Dies ist beson-

ders bei Smartwatches wie der Apple Watch oder Galaxy Watch problematisch, da sie

für den Alltag entwickelt wurden und oft nur eine Akkulaufzeit von einem Tag haben.

Berührungslose Sensoren haben den Vorteil, dass sie nicht getragen werden müssen und

somit nicht vergessen werden können. Sie haben jedoch den Nachteil, dass sie in der

Regel eine Installation erfordern, die nicht immer ohne Weiteres durchführbar ist, wie zum

Beispiel bei den Bodensensoren. Ein Vorteil dieser festen Installation ist jedoch, dass sie

üblicherweise direkt an den Strom angeschlossen sind und somit nicht aufgeladen werden

müssen.

2012 haben Debard et al. mit Kameras durch Pose Estimation und Auswertung der Ge-

schwindigkeit und Winkeländerung der Person Stürze erkannt[9]. Vadivelu et al. schlugen

2017 Sturzerkennung mit Wärmebildkameras vor[33]. Der Einsatz von Wärmebildkameras

gestaltet sich vorteilhaft, da sie auch im Dunkeln funktionieren und aufgrund der grund-

legenden Technik bereits anonymisierte Bilder liefern.

2.2 Pose Estimation
Die meisten kamerabasierten Ansätze zur Sturzerkennung beginnen mit einer Pose Esti-

mation. Dabei handelt es sich um die Identifikation von Körperhaltungen in Bildern oder

Videos sowie deren Kodierung in eine Menge von Koordinatenpunkten, sogenannten

Landmarks, die bestimmte Körperteile wie Gelenke oder Augen repräsentieren. Diese
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Landmarks beschreiben die Position des erkannten Körpers und können sowohl in zwei-

als auch in dreidimensionaler Form errechnet werden. Frühe Lösungen der Pose Estimati-

on, wie die von Debard et al., nutzten anstelle spezifischer Koordinatenpunkte des Skeletts

noch vereinfachte Modelle wie Ellipsen oder Silhouetten, um Körperumrisse oder -formen

näherungsweise darzustellen. Diese Methode erwies sich als weniger präzise im Vergleich

zu den heutigen Verfahren [9].

Aktuelle Ansätze unterscheiden sich unter anderem in der Anzahl der erkannten Personen

und der Landmarks pro Person und basieren in der Regel auf einem von zwei Ansätzen:

dem Top-Down-Ansatz [24] oder dem Bottom-Up-Ansatz [8].

Im Top-Down-Ansatz wird zunächst ein auf Personen trainiertes Objekterkennungsmodell

(Object Detector) eingesetzt, um die Position aller Personen im Bild zu bestimmen.

Anschließend erfolgt innerhalb der jeweiligen Bounding Boxes eine detaillierte Erkennung,

um die Landmarks, also die Körperteile der Personen, zu bestimmen. Der Bottom-Up-

Ansatz hingegen erkennt im ersten Schritt alle Landmarks (z. B. Schultern, Füße, Köpfe,

Hände) im gesamten Bild unabhängig von ihrer Gruppierung. Diese Landmarks werden

anschließend anhand spezifischer Muster, wie der relativen Position der Gelenke zuein-

ander, zu vollständigen Personen gruppiert. Dabei entstehen beispielsweise Körper mit

einem Rumpf, zwei Beinen und zwei Armen, die räumlich nahe beieinander liegen.

Beide Ansätze bieten spezifische Vor- und Nachteile, die sich je nach Anwendungsfall

unterscheiden. Beispiele für Projekte, die den Top-Down-Ansatz verfolgen, sind MediaPipe

Pose, Pose Transformer und PoseNet. Bekannte Umsetzungen des Bottom-Up-Ansatzes

umfassen OpenPose[7], SimpleBaseline[39] und AlphaPose[10].

Eine Pose Estimation liefert eine Beschreibung eines Skeletts durch Landmarks, die

relativ zum Bild oder zueinander kodiert werden. Diese Landmarks ermöglichen viele wei-

terführende Anwendungen, wie beispielsweise Gestenerkennung, Sturzerkennung, oder

die Analyse von Bewegungsmustern, ohne Identifizierung der betreffenden Person oder

eine Analyse des gesamten Ursprungsbild. Durch diese Abstraktion wird die Komplexität

solcher Analysen von einem Bild auf ein oder mehrere Skelette deutlich reduziert und aus

darauf basierenden Anwendungen entfernt, wodurch sich diese Anwendungen auf die

speziell dafür relevanten Informationen konzentrieren können. Es resultiert im Zuge eine

Modularität, die es ermöglicht, die Pose Estimation Lösung durch eine andere zu ersetzen,

ohne die darauf aufbauenden Anwendungen komplett anpassen zu müssen, da lediglich

das Auslesen der Landmarks angepasst werden muss.

Außerdem gibt es hardwareunterstützte Methoden. Stereo- oder andere Tiefenkameras

bieten aufgrund der inhärenten Entfernungserkennung eine effektive Möglichkeit zur

präziseren Pose Estimation[5]. Diese Kameras können durch unterschiedliche Techniken

die Entfernung von Objekten zum Kamerastandort erkennen und ermöglichen somit
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eine genauere Bestimmung der Position von Landmarks im 3D-Raum. Im Vergleich zu

monokularen Ansätzen kann die Verwendung von Stereokameras die Genauigkeit der

Pose Estimation erheblich verbessern, da durch die verlässlich erkannte Entfernung jedes

Teils einer Person das gesamte Skelett präziser beschrieben werden kann. Stereobasierte

Methoden nutzen die Disparität zwischen den Bildern der linken und rechten Kamera,

um die Entfernung jedes Pixels zur Kamera zu berechnen, was zu einer robusteren

Schätzung führt, die weniger anfällig für Mehrdeutigkeiten bei der Objektgröße ist. Eine

weitere Technologie sind LiDAR- oder Time-of-Flight-Kameras, die aktuell auf einer von

zwei Techniken basieren. Entweder wird bei der Lichtlaufzeitmessung gemessen, wie lang

gepulste Laserstrahlen zum Ziel und zurück unterwegs sind. Die andere Technik sendet

„einen durchgehenden Wellenimpuls“, misst die Phasendifferenz zum empfangenen, re-

flektierten Lichtimpuls und berechnet daraus die Entfernung[30]. Diese Kameras sind in

der Lage, die Entfernung zu Objekten mit hoher Genauigkeit zu bestimmen und können

somit eine präzise 3D-Positionierung von Landmarks ermöglichen, sind jedoch mit erheb-

lichen finanziellen Mehraufwand als andere Arten von Kameras verbunden.

Ein weiterer Ansatz sind KI-Modelle aus neuronalen Netzen, die Landmarks anhand von

gelernten Mustern erkennen. Solche KI-Modelle nutzen Daten, welche auf annotierten

Datensätzen von Bildern oder Videos beruhen. Für deren Training wurden die Positionen

der Landmarks manuell oder auch teilweise automatisiert markiert. Beispiele dafür sind

OpenPose, EfficientPose oder MediaPipe[21].

Je nach Anwendungsfall, und gerade beim Einsatz von neuronalen Netzen, kann es sinnvoll

sein, keine vorhandene Pose Estimation Lösung zu verwenden, sondern das Bild selbst

analysieren zu lassen. Sowohl Tiefenkameras als auch vorhandene Bibliotheken reduzie-

ren die Komplexität der Aufgabe enorm, können aber eben damit auch die Anpassung an

spezielle Anforderungen erschweren.

MediaPipe[21] ist eine Bibliothek von Google die ursprünglich 2019 vorgestellt wurde.

Sie besteht unter anderen aus einigen Modulen um ein Convolutional Neural Network

(CNN), das auf Pose Estimation trainiert ist. Es liegt zum Zeitpunkt des Schreibens dieser

Arbeit in Version 10 vor. Es wird auf einem Bild ausgeführt und generiert eine Liste

mit 33 Landmarks, die als Vektoren in einem 3D-Raum dargestellt werden können. Sie

werden in einem Koordinatensystem relativ zum Standort der Kamera geliefert. Zusätzlich

werden die Landmarks außerdem als „World Coordinates“ geliefert, die relativ zur Hüfte

der erkannten Person und somit unabhängig vom Standort der Kamera sind. Dies kann

für einige Anwendungen nützlich sein. Es ist jedoch für die Sturzerkennung wie sie in

dieser Arbeit durchgeführt wurde potenziell weniger effektiv als die kamerabasierten

Koordinaten, da bei einem Sturz möglicherweise auch die Bewegung der Person durch den

Raum relevant ist, welche bei Nutzung der World Coordinates verloren gehen würde. Da

der Nullpunkt des Koordinatensystems mit der Hüfte der Person identisch ist, enthält ein
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durch World Coordinates dargestellter Bewegungsablauf keine Informationen darüber,

wie sich die Person als Ganzes relativ zum Raum bewegt, in dem sie sich befindet. Deshalb

werden in dieser Arbeit die kamerabasierten Koordinaten verwendet, um so viele originale

Informationen wie möglich an das zu trainierende neuronale Netz weitergeben zu können.

Abbildung  1 demonstriert die von MediaPipe gelieferten Ausgabedaten überlagert auf

dem verarbeiteten Bild.

Abbildung 1: Beispiel für Pose Estimation mit MediaPipe[13]. Eine Frau sitzt in meditativer

Position auf dem Boden. Die von MediaPipe erkannten Landmarks sind als miteinander

verbundene Punkte auf dem Bild dargestellt.

In dieser Arbeit wird eine von einem unabhängigen Programm ausgeführte Pose Estima-

tion verwendet, damit die Analyse der Bewegungsmuster von Stürzen getrennt von der

Analyse der Bilder selbst betrachtet werden kann.

2.3 Analyse der Bewegungsmuster
Die Analyse der Bewegungsmuster von Stürzen ist eine Herausforderung, da Stürze unter-

schiedlich ablaufen können und nicht immer sofort eindeutig sind. Ein Sturz kann aus dem

Stehen oder aus dem Sitzen erfolgen und kann auch im Stehen aus unterschiedlichen

Positionen erfolgen, indem sich die Person z. B. mit einer Gehhilfe bewegt, an einem Tisch

lehnt oder dabei ist, sich hinzusetzen oder aufzustehen. Ein Beispiel für einen Sturz aus

dem Sitzen ist in Abbildung 2 dargestellt.
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Abbildung 2: Beispiel für einen Sturz aus dem Sitzen. Die Person sitzt auf einem Stuhl und

kippt zur Seite.

Stürze können in unterschiedlichen Körperhaltungen und Bewegungskontexten auftreten

und beschränken sich nicht ausschließlich auf den aufrechten Stand. Auch im Sitzen, wie

beispielsweise bei einer Person, die auf einem Stuhl einschläft und zur Seite kippt, kann

es zu einem Sturzereignis kommen. Im Stehen existieren zudem vielfältige Sturzmecha-

nismen, die je nach Situation und Bewegungsablauf variieren. Eine Person kann etwa

beim Abstellen einer Gehhilfe stolpern, durch Abrutschen von einer gestützten Position

am Tisch das Gleichgewicht verlieren oder beim Hinsetzen den Stuhl verfehlen, falls die

Position des Sitzplatzes falsch eingeschätzt wird. Eine visuelle Darstellung eines derartigen

Szenarios ist in Abbildung Abbildung 3 in Abschnitt 3.2.1 zu finden.

MediaPipe bzw. generell Pose Estimation liefert wie oben erwähnt die Daten für das

gesamte Skelett für jeden Frame mit dem man es speist in Form von Koordinaten für

die Landmarks[21]. Es gab auch Ansätze, bei denen Methoden des maschinellen Lernens

verwendet wurden, die nicht auf neuronalen Netzen basieren: Vadivelu et al. haben 2017

anhand dieser Daten Bewegungen der Person mit einer Support Vector Machine (SVM)

analysiert und als Sturz oder nicht-Sturz eingeordnet[33]. Pires et al. haben 2021 per SVM

und K-Nearest-Neighbour (K-NN) jeweils aus einer Pose Estimation unterschiedliche Fea-

tures extrahiert um so einen Sturz zu erkennen[25]. Schmidpeter hat 2022 durch Analyse

der Änderung der Winkel zwischen den Gliedern der Person Bewegungsmuster als Stürze

erkannt[29].
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Hier mit einem eigenen Algorithmus bzw. mit symbolischer KI zu entscheiden, welche

Informationen relevant sind, ist aufgrund der Masse an Informationen schwierig und

aufwändig, da beliebig viele unterschiedliche Algorithmen verglichen werden können.

Gerade aufgrund der Masse an Daten bietet sich die Anwendung neuronaler Netze an, die

aufgrund großer Datenmengen lernen können, bestimmte Gegebenheiten zu erkennen

und eine passende Funktion approximieren. Hier genügt es, die gesamten Daten als Input

zu geben und diesen mit Labels zu versehen, wodurch das Netz selbstständig relevante

Informationen extrahieren kann und lernt, welche Teile des Inputs für die Klassifizierung

relevant sind und welche nicht. Ein neuronales Netz kann aus mehreren Schichten

bestehen, die jeweils für untschiedliche Aspekte, Dimensionen oder auch Formate der

Daten zuständig sind.

Einfache neuronale Netze (Dense) können viele Features verarbeiten, sind aber aufgrund

der Verknüpfung aller Neuronen mit allen anderen sehr allgemein und müssten somit

sehr groß ausgelegt werden, um temporale oder Räumliche Zusammenhänge zu lernen.

Sie setzen jede Information gleichwertig mit allen anderen Informationen in Zusammen-

hang und extrahieren daraus Muster, haben also kein inhärentes Verständnis davon, dass

ein Frame in einem Sturz direkt auf einen anderen folgt, sondern müsste diesen Zusam-

menhang auch erst lernen[32]. Dies würde zu einer sehr großen Anzahl an Neuronen

und Schichten führen, die das Netz komplex und somit langsamer machen würden, als es

andere Architekturen ermöglichen.

Ein Recurrent Neural Network (RNN) kann konkret Informationen aus dem vorherigen

Verarbeitungsschritt miteinbeziehen und ist somit darauf ausgelegt, explizit temporale

Abhängigkeiten erkennen[37]. Stürze geschehen über mehrere Sekunden und somit über

eine Vielzahl an Bildern hinweg, was ein RNN besser analysieren kann als ein einfaches

neuronales Netz. Allerdings müssen hier aufgrund der vielen Bilder viele Schichten genutzt

und auf eine Weise verknüpft werden, auf die sie Informationen über mehrere Inputs

hinweg verarbeiten können, was die Komplexität des Netzes enorm erhöht. Es müsste

genauer untersucht werden, wie genau ein RNN grundsätzlich konstruiert werden muss,

um Stürze zu erkennen.

Eine spezialisierte Variante eines RNN ist das Long Short-Term Memory-Netzwerk (LSTM)

[16]. Dieses wurde explizit entwickelt, um temporale Abhängigkeiten über eine größere

Anzahl von Zeitschritten hinweg zu erkennen. LSTMs verwenden sogenannte Zellen,

die Informationen aus vorherigen Schritten speichern und an die folgenden Schritte

weitergeben. Zentral ist dabei der Hidden State, der als Langzeitgedächtnis fungiert und

Informationen aus sämtlichen vorherigen Zeitschritten zusammenfasst. Dies ermöglicht

es dem Netzwerk, auch nach vielen Verarbeitungsschritten noch auf frühere Zusammen-

hänge zuzugreifen und diese zu berücksichtigen[36].
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Aufgrund dieser Eigenschaften sind LSTMs besonders geeignet, wenn es darum geht,

zeitliche Muster über mehrere Zeitschritte hinweg zu erkennen und zu analysieren. Ihr

Einsatz bietet sich daher an, um die zeitlichen Abhängigkeiten in Bewegungsabläufen einer

Person zu modellieren und darauf basierend Stürze präzise zu identifizieren.

Da jede einzelne Pose zunächst als eine Menge von Koordinaten repräsentiert wird, ist

es sinnvoll, vor der Verarbeitung durch ein Long Short-Term Memory-Netzwerk (LSTM)

eine oder mehrere Schichten eines Convolutional Neural Network (CNN) einzusetzen.

CNNs sind speziell dafür ausgelegt, räumliche Abhängigkeiten in Bildern zu analysieren

und zu erkennen[15]. Sie können daher genutzt werden, um die räumlichen Beziehungen

innerhalb der Pose einer Person zu identifizieren und relevante Merkmale extrahiert an

das LSTM weiterzuleiten.

Um die Fähigkeiten dieser unterschiedlichen Arten von Netzen zu kombinieren, wurden

sie für diese Arbeit in einem Netz kombiniert, sodass eine Schicht die Informationen

der jeweils vorherigen Schicht auswertet, außer der Eingabeschicht, die die Rohdaten

direkt verarbeitet. Ein Beispiel für den Aufbau eines solchen Netzes ist in Abbildung 8 in

Abschnitt 3.3 visualisiert. Dies ergibt eine Architektur ähnlich dem ConvLSTM, das bereits

in anderen Anwendungsfällen erfolgreich getestet wurde[35].

2.4 Datenquellen
Die Videos, die in dieser Arbeit verwendet werden, müssen spezifische Anforderungen

erfüllen, um für die Sturzerkennung geeignet zu sein. Zunächst müssen die Videos auf

RGB-Kameras basieren, auf die diese Arbeit ausgerichtet ist. Die Videos sollten sowohl

Stürze als auch Alltagsaktivitäten (ADLs) als Negativbeispiele enthalten, um die Modelle auf

beide Szenarien zu trainieren und ihre Unterscheidungskraft zu verbessern. Insbesondere

sind Videos von Stürzen älterer Menschen in häuslicher Umgebung von Interesse, da

diese die Zielgruppe der Sturzerkennungssysteme darstellen. Die Aufnahmen sollten aus

der Perspektive von schräg oben, ähnlich einer Deckenkamera, stammen und eine ausrei-

chende Bildqualität für die Pose Estimation aufweisen, die bei zu schlechter Bildqualität

ungenau werden könnte. Idealerweise sollten die Videos aus mehreren Kameraperspek-

tiven aufgenommen werden, um die Robustheit der resultierenden Modelle zu erhöhen.

Wenn möglich, sollten die Videos zudem nicht nur die Zustände wie Stehen, Sitzen oder

Liegen, sondern auch explizit die Stürze selbst labeln, um dies nicht vorher durch eine

Person manuell tun zu müssen.

Obwohl eine Vielzahl von Sturzaufnahmen online verfügbar ist, erfüllen die meisten dieser

Videos nicht die spezifischen Anforderungen für wissenschaftliche Zwecke. Viele dieser

Aufnahmen unterscheiden sich erheblich in ihrer Qualität, sind oft nicht annotiert und

zeigen selten Stürze von älteren oder gebrechlichen Personen in einer häuslichen Umge-

bung. Diese Kriterien sind jedoch entscheidend, da die Modelle gezielt auf realitätsnahe
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Szenarien trainiert werden sollen, um eine zuverlässige Erkennung in praktischen Anwen-

dungen zu gewährleisten.

Da das Problem der Sturzerkennung schon länger als solches bekannt ist und daran

gefoscht wird, gibt es jedoch auch professionelle Datasets, die explizit für die Sturzerken-

nung erstellt wurden. Das Multiple Camera Dataset[4] enthält 22 Stürze und 2 ADL-Videos,

aufgenommen von je 8 Kameras. Adhikari et al. haben außerdem ein Dataset vorgestellt,

das Videos aus 5 Räumen aus je 8 Perspektiven enthält[1]. Beide Datasets haben jedoch

keine expliziten Labels für die Stürze, sondern nur für den jeweils aktuellen Zustand der

Person wie „stehend“, „sitzend“ oder „liegend“. Dies kann eine zusätzliche Herausforde-

rung bei der Datenverarbeitung darstellen, da die Labels für Stürze manuell hinzugefügt

werden müssen, was zeitaufwendig und fehleranfällig sein kann.

Das KUL Dataset[6] enthält 55 von professionellen Schauspielern in einem präparierten

Raum nachgestellte Stürze aus je 5 Kameraperspektiven. Die Videos enthalten mit

Zeitstempel annotierte Stürze aus stehenden und sitzenden Positionen und beinhalten

Gehilfen und Rollstühle, weshalb es im Vergleich mit [4] und [1] besser in den Kontext

dieser Arbeit passt. Es enthält außerdem 17 Videos zwischen 11 und 35 Minuten Länge,

die nur ADLs enthalten, welche als Negativbeispiele genutzt werden können. Diese detail-

lierten Annotationen und die Vielfalt der Szenarien machen das KUL Dataset besonders

wertvoll für die Entwicklung und das Training von Sturzerkennungssystemen.

2.5 Zielsetzung
Das primäre Ziel dieser Arbeit ist es, ein System zu ermöglichen, das die Zeit vom Eintritt

eines Sturzes bis zu dessen Erkennung minimieren kann, um somit eine schnelle Benach-

richtigung von Angehörigen, Pflegekräften oder Rettungsdiensten zu ermöglichen. Durch

die Verwendung von RGB-Kameradaten soll das System Stürze älterer Menschen in häus-

licher Umgebung zuverlässig erkennen können, um unterstützende Maßnahmen zeitnah

einzuleiten. Damit soll nicht nur eine schnelle Hilfe gewährleistet, sondern auch das

Sicherheitsgefühl und die Unabhängigkeit älterer Menschen in ihrem eigenen Zuhause

gestärkt werden. Ein weiteres Ziel ist es, durch das System die psychologische Belastung,

insbesondere die Angst vor dem Alleinsein aufgrund des Sturzrisikos, zu lindern und so

ein sichereres und selbstbewussteres Leben zu ermöglichen.

Neben der technischen Leistungsfähigkeit wird auch dem Schutz der Privatsphäre der

Nutzer besondere Aufmerksamkeit gewidmet. Es soll sichergestellt werden, dass keine

unnötigen personenbezogenen Daten gespeichert oder weitergegeben werden. Als se-

kundäres Ziel wird die ökologische Nachhaltigkeit berücksichtigt, indem die Effizienz der

Ressourcen maximiert und der Energieverbrauch reduziert wird. Dies soll insbesondere

durch die Optimierung rechenintensiver neuronaler Netze erreicht werden, um den Ener-

giebedarf zu senken, ohne die Leistungsfähigkeit des Systems zu beeinträchtigen.
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Durch die Berücksichtigung dieser Anforderungen wird sichergestellt, dass das entwi-

ckelte System nicht nur eine hohe technische Leistungsfähigkeit besitzt, sondern auch

ethischen und ökologischen Standards genügt, um eine breite Akzeptanz und praktische

Anwendbarkeit zu fördern.

2.6 Lösungsansatz
Es wird untersucht, ob durch den Einsatz von Deep Learning ohne spezialisierte Sensoren

oder Algorithmen Stürze zuverlässig erkannt werden können. Dabei sollen RGB-Kameras

und neuronale Netze zum Einsatz kommen.

Dazu sollen Kamerabilder durch MediaPipe in Skelettvektoren umgewandelt und diese

in ein neuronales Netz aus Convolutional und LSTM Schichten eingespeist werden, um

sowohl räumliche als auch zeitliche Abhängigkeiten in den Bewegungen zu erkennen.

Durch den Einsatz von MediaPipe Pose werden konkrete Bilddaten frühzeitig entfernt und

nur die Skelettvektoren weiterverarbeitet, was die benötigte Komplexität des neuronalen

Netzes reduziert. Dies entspricht dem Prinzip der Datenminimierung, da nur die notwen-

digen Daten weiter verarbeitet werden[34]. Neuronale Netze werden auf die Erkennung

von Bewegungsmustern von Stürzen aus den öffentlich verfügbaren Videos des KUL-

Datasets[6] trainiert. Die Modelle unterschiedlicher Größe werden anschließend evaluiert

und ihre Leistung anhand der Confusion Matrix und des Loss Plots bewertet, um das

am wenigsten rechenintensive Modell, das die in dieser Arbeit gesetzten Qualitätsanfor-

derungen für die Sturzerkennung erfüllt, zu identifizieren oder eine qualifizierte Aussage

darüber zu treffen, ob die Anforderungen überhaupt erfüllt werden können. Erreicht kein

neuronales Netz die qualitative Anforderung, soll stichprobenartig untersucht werden, ob

durch einfache Heuristiken die Erkennungsrate des Gesamtsystems verbessert werden

kann. Mögliche Heuristiken sind, ob während eines Sturzes mehrere Frames hintereinan-

der falsch erkannt werden, oder außerhalb eines Sturzes mehrere Frames hintereinander

ein Sturz gemeldet wurde.

3 Design
In diesem Kapitel wird das Design des Systems zur Sturzerkennung detailliert beschrieben.

Zunächst werden die genutzten Datenquellen und deren Verarbeitung erläutert. Anschlie-

ßend wird die Modellarchitektur vorgestellt, die aus einer Kombination von CNN und LSTM

Netzwerken besteht, um sowohl räumliche Abhängigkeiten in den Posen als auch zeitliche

Abhängigkeiten in den Bewegungen zu erkennen. Der gesamte Prozess der Datenvorver-

arbeitung, Modellierung und Implementierung wird im Folgenden schrittweise erklärt. Der

Aufbau des Codes ist in Abbildung 7 dargestellt.

3.1 Datenquelle
Als Datenquelle wurde das KUL Dataset[6] verwendet. Dafür wurden Stürze in einem

Altersheim aufgenommen und hinterher von professionellen Schauspielern nachgestellt.

Das Dataset ist öffentlich und frei verfügbar. Es enthält sowohl Videos mit Stürzen, als
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auch Videos mit ADLs, die als Negativbeispiele genutzt wurden. Es enthält insgesamt 55

Sturzvideos und 17 ADL-Videos. Die Stürze sind aus jeweils 5 Kameraperspektiven aufge-

nommen und enthalten sowohl Stürze aus stehenden als auch aus sitzenden Positionen.

Die Personen nutzen außerdem Mobilitätshilfen wie Rollatoren oder Rollstühle, um realis-

tische Szenarien zu simulieren. Ein Beispiel ist in Abbildung 3 zu sehen. Für jeden Sturz

gibt es 5 Videos, die jeweils mit dem Index der Kamera versehen sind, die das Video

aufgenommen hat.

Abbildung 3: Ausschnitte aus dem KUL-Dataset[6]. Links gehend mit Rollator, rechts

gestürzt.

Das Dataset enthält eine Excelliste mit Metadaten, die beschreibt, welche Videos es gibt

und von wann bis wann der jeweilige Sturz im Video auftritt. ADL-Videos sind ebenfalls

beschrieben, jedoch ohne Zeitstempel, da sie keine Stürze enthalten. Um die Videos

zu verarbeiten, wurde ein Modul KUL_data erstellt, das die Metadaten aus der Excel-

Datei in ein für das Programm nutzbares Format umwandelt. Die Klasse kombiniert die

Videonamen mit den Labels und Kameraindizes, sodass die Videos bei der Verarbeitung

sowohl eindeutig identifiziert als auch mit den entsprechenden Labels versehen werden

können. Als Resultat folgt eine Liste von Objekten, die jeweils das Szenario und die Labels

beinhalten und Methoden bereitstellen, um die Dateinamen aller Videos des Szenarios

zusammenzusetzen und einfach iterierbar zu machen.

Um den Code vom Ablageort der Videos zu trennen, wird der Pfad zu den Videos über

eine Umgebungsvariable gesetzt und von diesem Modul bei Ausführung des Programms

gelesen. Um zumindest rudimentär sicherzustellen, dass ein Pfad übergeben wurde, wird

beim Start des Programms überprüft, ob die Umgebungsvariable gesetzt ist, der Pfad

existiert und im gegebenen Verzeichnis Dateien sind. Sollte dies nicht der Fall sein, wird

die Ausführung sofort durch eine Exception unterbrochen.

Diese Daten sind lediglich für das Training und die Evaluation der Modelle genutzt worden.

Für eine spätere Anwendung in einem realen Szenario müssen Bilder in Echtzeit von einer
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Kameras übertragen werden, bei der konkreten Anwendung dient also nicht das KUL

Dataset als Datenquelle, sondern die in Echtzeit übertragenen Bilder einer Kamera.

3.2 Vorverarbeitung
Da die Bilder nicht direkt in das neuronale Netzwerk eingespeist werden sollen, sondern

nur die daraus extrahierten Skelettdaten, werden die Videos zunächst mit Hilfe eines

Moduls preprocessor vorverarbeitet, wodurch die Pose Estimation nicht mehr Aufgabe des

zu trainierenden neuronalen Netzes ist. Dazu werden die einzelnen Bilder zunächst durch

das bereits trainierte und erprobte CNN von MediaPipe Pose analysiert und anschließend

augmentiert.

3.2.1 Pose Estimation
Zunächst werden die Videos Bild für Bild durch MediaPipe analysiert. Dazu wird das

Modul MediaPipePose genutzt, das die Pose Estimation durchführt und die Ergebnisse in

Form von Koordinatenpunkten und zusätzlichen Metadaten wie der Information, welche

Landmarks als Körper miteinander verbunden sind, liefert. Die Landmarks der jeweils 45

letzten Posen werden in einer Liste gespeichert, die für jedes Bild die Koordinaten der

erkannten Landmarks enthält. Die Metadaten werden nicht weiter genutzt, da sie für die

Sturzerkennung nicht relevant sind. Wird in einem Bild keine Person erkannt, wird die

Liste geleert, um sicherzustellen, dass nur zusammenhängende Sequenzen von Posen

weiter verarbeitet werden. Um kurze Aussetzer in der Pose Estimation zu überbrücken,

wird jedoch nicht sofort die Liste geleert, sondern erst, wenn für zwei aufeinanderfolgende

Bilder keine Person erkannt wurde. Dies soll etwaige Schwachstellen in MediaPipe Pose

ausgleichen, die möglichst nicht Teil der Auswertung sein sollten.

Für das Training werden zu jedem Sturzvideo jeweils alle aus dem Sturz extrahierten

Sequenzen in einer Datei und die Sequenzen ohne Sturz in einer separaten Datei abge-

legt. Die Sequenzen aus den ADL-Videos werden ebenfalls in einer eigenen Datei pro

ADL-Video gespeichert. Diese wurden nach dem jeweiligen Video benannt aus dem sie

extrahiert wurden, um sie später zuordnen zu können. So konnte der Prozess bei Bedarf

neu gestartet werden, ohne bereits verarbeitete Videos erneut durchgehen zu müssen,

beispielsweise als aufgrund fehlender Optimierung der Speicher überlief. Durch die Tren-

nung der Daten in Stürze, ADLs aus Sturzvideos und ADLs aus ADL-Videos konnte dasselbe

Modell mit unterschiedlichen Kombinationen von Trainingsdaten trainiert und evaluiert

werden, um die Auswirkungen der Daten auf die Leistung der Modelle zu untersuchen.

Da beim Echtzeiteinsatz die empfangenen Bilder direkt verarbeitet und anschließend nicht

mehr benötigt werden, entfällt die Speicherung der Daten in Dateien. Beim Echtzeiteinsatz

des Systems mit einer Kamera werden also aus den empfangenen Bildern direkt durch

MediaPipe die Skelettdaten extrahiert und in Sequenzen gepuffert, um sie dann dem neu-

ronalen Netzwerk zur Klassifizierung zu übergeben. Ein Beispiel für die Vorverarbeitung

der Bilder ist in Abbildung 4 zu sehen, wobei beispielhaft 3 von 45 Frames gezeigt werden.
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Abbildung 4:  Vorverarbeitung der Bilder.

Oberste Reihe: Originalbilder aus den KUL Dataset[6].

Zweite Reihe: Bilder mit den erkannten Posen überlagert wie von MediaPipe geliefert.

Dritte Reihe: die Bilder mit den extrahierten Koordinaten überlagert.

Unterste Reihe: die extrahierten Landmarks ohne Bild.
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Zum Training des neuronalen Netzes sollten die Daten einigermaßen zwischen positiven

und negativen Beispielen ausbalanciert sein. Da es jedoch weit mehr ADLs als Stürze gibt,

mussten die vorhandenen Sturzdaten möglichst effizient genutzt werden. In Abbildung 5

ist dargestellt, wie aus dem vorhandenen Videomaterial zunächst für jeden einzelnen

Frame eine entsprechende Sequenz erstellt, um so viele nicht-synthetische Eingangsdaten

wie möglich zu extrahieren. Für jeden Frame, den ein Sturz dauert, wurde also eine kom-

plette Sequenz aufgezeichnet, welche jeweils 45 Posen aus den jeweils 45 letzten Frames

enthält. Bei 30 FPS sind das also 30 Sequenzen pro Sekunde - für jeden Frame eine eigene

Sequenz, extrahiert aus den 45 letzten Frames. Diese detaillierte Erfassung stellte sicher,

dass auch kleinste Variationen in den Sturzbewegungen berücksichtigt werden, was die

Robustheit der resultierenden Modelle erhöht.

Abbildung 5: Aus Stürzen wird eine Sequenz pro Frame extrahiert.

Beim Extrahieren von Sequenzen für ADLs hingegen ist es nicht notwendig oder sinnvoll,

für jeden Frame eine eigene Sequenz zu erstellen, da es eine Vielzahl an ADLs gibt

und diese üblicherweise langsamer ablaufen als ein Sturz. Aus den ADLs wurde also die

entsprechenden Sequenzen ohne Überlappung extrahiert, um eine klare und eindeutige

Repräsentation jeder Aktivität zu gewährleisten und damit möglichst viele verschiedene

Aktivitäten, die keine Stürze sind, in die Trainingsdaten einfließen. Der Extrahierugnspro-

zess der ADLs ist in Abbildung 6 demonstriert. Dieser Ansatz verhindert, dass Trainings-

daten redundante Informationen enthalten und sorgt dadurch für präzisere Ergebnisse

bei der späteren Klassifizierung der Bewegungen.

Abbildung 6: Sequenzen von ADLs werden ohne Überlappung extrahiert.

Als zentraler Bestandteil der Vorverarbeitung wurde eine eigene Klasse PoseProcessor

erstellt. Die Hauptaufgabe dieser Klasse besteht darin, die Skelettdaten aus jedem Frame

der Videoaufnahmen zu extrahieren und diese Daten für die weitere Verarbeitung im

neuronalen Netzwerk vorzubereiten. Dazu wird in jedem Frame mithilfe von MediaPipe
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ein Skelett extrahiert, das aus 33 Landmarks besteht. Diese Skelettdaten werden in einem

Puffer gespeichert, der die jeweils letzten 45 Frames umfasst, um die dynamischen Bewe-

gungsmuster über die Zeit zu erfassen. Der Puffer fungiert wie ein Schiebefenster, das

sich mit jedem neuen Frame aus dem Video oder Kamerastream um ein Element nach

vorne bewegt. Die Größe des Puffers kann variiert werden, da Videos und Kamerastreams

in unterschiedlichen Bildraten vorliegen können. Die Daten im Puffer können zu jedem

Zeitpunkt normalisiert ausgelesen werden, um sie als Eingabe für das neuronale Netzwerk

zu verwenden. Diese Vorverarbeitung ermöglicht es, die Skelettdaten in Sequenzen zu

organisieren und sie in einem einheitlichen Format für das Training und die Inferenz

bereitzustellen.

3.2.2 Augmentierung der Trainingsdaten
Trotz der frameweise extrahierten Sturzdaten gibt es weit weniger Sturzsequenzen als

ADL-Sequenzen. Zunächst wurde also festgelegt, dass sowohl die Trainingsdaten, als

auch die Eingangsdaten während der Inferenz normalisiert werden, um Vielfalt in den

Inferenzdaten zu reduzieren, wodurch die Modelle trotz weniger Trainingsdaten besser

generalisieren können. Dazu wurden die Sturzsequenzen zunächst normalisiert, um

sicherzustellen, dass diese möglichst zentral im Bild und in etwa gleich groß sind. Indem

dies mit den Echtzeitdaten bei der Inferenz auch gemacht wird, kann dafür gesorgt

werden, dass auch die Inferenzdaten möglichst ähnlich zu den Trainingsdaten sind und

somit weniger Trainingsdaten benötigt werden. Dabei fiel auf, dass nach dieser Norma-

lisierung die Sturzsequenzen relativ in der Mitte des Bildes zentriert waren, jedoch nur

etwa 50% der Bildfläche einnahmen und nicht immer erwartungsgemäß akkurat zentriert

waren. Dies würde dazu führen, dass einerseits die normalisierten Trainingsdaten unter-

schiedlicher ausfallen als erwartet, was dem Modell beim Generalisieren helfen könnte.

Andererseits könnte es auch dazu führen, dass die Eingangsdaten während der Inferenz

nicht so gut normalisiert werden wie zunächst angenommen, was wiederum die Generali-

sierungsfähigkeit des Modells einschränken könnte. Gleichzeitig ermöglicht es jedoch, die

Trainingsdaten nach der Normalisierung zu augmentieren, indem jede Sequenz horizontal

und vertikal leicht verschoben wird, um synthetische, aber plausible Trainingsdaten zu

generieren. Diese Augmentierung sorgt dafür, dass viel mehr plausible Trainingsdaten

zur Verfügung stehen, was die Robustheit und Genauigkeit der resultierenden Modelle

verbessert.

Es wurde darauf verzichtet, Körperelemente wie Unterarme oder Oberschenkel künstlich

zu modifizieren (also zu verlängern oder verkürzen), um zusätzliche Datenvariationen zu

erzeugen, da unterschiedlich große Körperelemente potenziell den Ablauf des Sturzes

beeinflussen würden und die so erzeugten künstlichen Sequenzen nicht der Realität

entsprechen würden.
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Um das Training des Modells zeitlich und logisch von der Extraktion zu entkoppeln, wurde

zusätzlich ein Modul preprocessor erstellt. Dies iteriert über die Metadaten des Datasets

und führt sie dem VideoProcessor zu, der die Videos einliest und aus den Frames jeweils

mit Hilfe des PoseProcessors die Skelettdaten extrahiert und in Sequenzen organisiert. Die

so generierten Sequenzen werden in Dateien gespeichert, die dann für das Training des

neuronalen Netzwerks genutzt werden können. Der preprocessor und der VideoProcessor

sind idempotent gestaltet, sodass bereits verarbeitete Videos nicht nochmal verarbeitet

werden müssen. Dies ermöglicht es, den Vorverarbeitungsprozess bei Bedarf zu wieder-

holen, ohne dass bereits verarbeitete Daten erneut verarbeitet werden müssen, oder

bei unerwartet hoher Verarbeitungszeit den aktuellen Prozess zu unterbrechen und zu

einem späteren Zeitpunkt wiederaufzunehmen. Beim Aufrufen der Skelettdaten vom

preprocessor für das Training, werden sie vor der Rückgabe an den Aufrufer mit einer

random_shift Funktion augmentiert, die die Sequenzen horizontal und vertikal randomi-

siert verschiebt. Dies sorgt für zusätzliche Variationen in den Trainingsdaten, indem

unterschiedliche Kameraspositionen simuliert werden.

Abbildung 7: Organisation des Codes zur Verarbeitung der Daten aus dem KUL-Dataset

und dem Training des neuronalen Netzes.

3.3 Aufbau des neuronalen Netzes
Um alle Parameter und Hyperparameter bezüglich des neuronalen Netzes zu speichern

und zu verwalten, wurde ein Modul model erstellt. Es kapselt die Architektur für die

Konstruktion des konkreten neuronalen Netzes und die Definition der Hyperparameter.

Dies soll Fehler während Training und Inferenz vermeiden, indem die Dimensionen

der Eingabedaten und die Validierung der Eingabedaten zentral festgelegt werden. Es

soll außerdem sicherstellen, dass die Modelle korrekt erstellt, gespeichert und geladen
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werden können. Das Modul enthält die Dimensionen der Eingabedaten und eine Funktion

zur Validierung der Eingabedaten die als Teil der Trainingsfunktion aufgerufen wird.

Die Trainingsfunktion reduziert bei Bedarf die Dimensionen der Eingabedaten, falls sie

wider Erwarten dreidimensional übergeben werden. Um anfängliches Prototyping zu

erleichtern, wurde das Erstellen des Modells in einer eigenen Funktion gekapselt, welche

die Anzahl und Dimensionierung von Convolutional und LSTM Schichten, sowie die Anzahl

der Neuronen im Dense Layer, als Parameter akzeptiert. Dies ermöglicht die Flexibilität,

verschiedene Modelle mit unterschiedlichen Architekturen zu testen, ohne den Code für

das Modell selbst ändern zu müssen, was Leichtsinnsfehler des Autors beim Schreiben

der Traingsskripte vermeidet.

Für das neuronale Netz wurde das Framework TensorFlow eingesetzt. Zur Implementie-

rung mehrerer aufeinanderfolgender Schichten wurde das Modell Sequential verwendet,

das als Basis diente. Dadurch können die Convolutional- und LSTM-Schichten in einer

Reihenfolge definiert werden, die es ermöglicht, die räumlichen und zeitlichen Abhängig-

keiten der Skelettdaten zu analysieren. Diesem Sequential-Basismodell wurden als Erstes

eine oder mehrere Convolutional-Schichten hinzugefügt, die jeweils in einer TimeDistri-

buted-Schicht verschachtelt wurden. Deren Aufgabe ist es, die räumlichen Abhängigkeiten

in jeder einzelnen Pose der Eingabedaten zu analysieren. Durch das Verschachteln in eine

TimeDistributed-Schicht wird für jeden Frame, also Zeitschritt, der Eingabedaten die Con-

volutional-Schicht mit denselben Gewichten angewendet und trainiert. Dies ermöglicht

der Convolutional-Schicht das Erlernen und Extrahieren der entscheidenden Features aus

der aktuellen Körperhaltung der Person, unabhängig davon, zu welchem Zeitpunkt inner-

halb eines Sturzes ein Frame ist. Anschließend wurden eine oder mehrere LSTM-Schichten

eingesetzt, um die zeitlichen Abhängigkeiten zwischen den Frames zu analysieren. Die

LSTM-Schichten sollen aus der Kombination der vorher extrahierten Features der jewei-

ligen Körperhaltung mehrerer Frames entsprechende Features des Bewegungsablaufs

erkennen. Abschließend wurde eine Dense-Schicht mit einem einzelnen Ausgabe-Neuron

verwendet, um die Ausgabe des neuronalen Netzes als Sturz oder Nicht-Sturz zu klassi-

fizieren. Vor der ersten Convolutional-Schicht wurde eine Reshape-Schicht eingesetzt, die

drei Koordinaten pro Landmark auf zwei Koordinaten pro Landmark reduziert, um die

Dimensionen der Eingabedaten zu reduzieren, falls diese in 3D übergeben werden. Auf die

letzte Convolutional-Schicht folgt eine Reshape-Schicht, die die Dimensionen der Ausgabe

der Convolutional-Schicht dahingehend anpasst, dass sie von der Convolutional-Schicht

in die LSTM-Schicht übergeben werden kann. Ein Beispielnetzwerk mit drei Convolutional-

Schichten und zwei LSTM-Schichten ist in Abbildung 8 dargestellt.
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Design Aufbau des neuronalen Netzes

Abbildung 8: Modellarchitektur eines neuronalen Netzes mit 3 Convolutional-Schichten

und 2 LSTM-Schichten wie es in dieser Arbeit trainiert und evaluiert wurde.

Um die Modelle voneinander zu unterscheiden wurde eine Nomenklatur eingeführt, die

abhängig von der Art, Anzahl und Reihenfolge der Schichten ist. Die Basis sind Buchstaben,

die jeweils für eine Schichtart stehen:

c für Convolutional, l für LSTM. Für Dense wurde kein Buchstabe gewählt, da es in jedem

Model genau dieselbe, einzelne Dense-Schicht mit einzelnem Ausgabe-Neuron gibt. Eine

Zahl vor dem Buchstaben gibt an, wie viele Schichten dieser Art an dieser Stelle sind.

Auf eine Deklaration einer Art von Schicht folgen Deklarationen der Größe der Schichten:

Ein f für die Anzahl der Filter in einer Convolutional-Schicht, ein u für die Anzahl der

Einheiten (Units) in einer LSTM- oder Dense-Schicht.

Die Anzahl der Schichten und die Größe der Schichten sind durch Unterstriche getrennt.

Der Modellname 2c_16f_8f_2l_100u_50u steht beispielsweise für ein Modell mit 2 Convolu-

tional-Schichten, die erste mit 16 und die zweite mit 8 Filtern, dann 2 LSTM-Schichten mit

100 und 50 Einheiten.

Diese Konvention wird von einem Modul model verwendet, um anhand der übergebenen

Anzahl und Größe der Schichten das Modell zu benennen. Dies ermöglicht es, die Modelle

eindeutig zu identifizieren und zu vergleichen, ohne dass die Architektur des Modells

selbst ausgelesen werden muss.
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3.4 Training
Um den zeitlichen Aufwand für potenziell ineffektive Trainingsläufe großer Modelle mit

umfangreichen Datensätzen zu minimieren, wurde das Training in zwei Phasen unterteilt.

Zunächst wurden kleinere Modelle mit den Daten eines einzelnen Sturzes trainiert, um

festzustellen, ob die Daten und das Design des Modells grundsätzlich so nutzbar sind und

um eine generelle Richtung für die Dimensionierung des Modells zu finden. Diese kleinen

Modelle besitzen alle ca. 20 000 Parameter. Nachdem die kleinen Modelle bereits mit

wenig Training Anzeichen einer Unterscheidung zwischen Sturz und Nicht-Sturz zeigten,

wurden größere Modelle dieser Architektur mit ca. 180 000, 280 000 sowie 1 000 000

Parametern trainiert. Das größte der Modelle, mit 3 großen Convolutional-Schichten, 2

großen LSTM-Schichten und einer Dense-Schicht (3c_128f_64f_32f_2l_100u_50u), wurde

außerdem mit unterschiedlichen Kombinationen der Trainingsdaten trainiert und liegt

somit in 4 Varianten vor. Alle Modelle wurden mit dem Adam-Optimizer und Binary

Crossentropy als Loss-Funktion trainiert. Die Modelle wurden für 50 Epochen trainiert, um

sicherzustellen, dass sie hinreichend Zeit haben, die Bewegungsmuster zu lernen. Um sie

später zu unterscheiden, wurde der Name der Varianten des größten Modells jeweils um

ein Suffix ergänzt. Dieses Modell wurde mit den folgenden Varianten trainiert:

• Die erste Variante wurde mit allen verfügbaren Trainingsdaten trainiert, sowohl aus den

Sturz- als auch aus den ADL-Videos (_all_data).

• Die zweite Variante wurde nur mit den Sturzdaten aus den Sturzvideos und den ADLs aus

den ADL-Videos (explizite ADLs) trainiert, ohne die impliziten ADLs aus den Sturzvideos

(_without_implicit_adls).

• Die dritte Variante wurde nur mit den Sturzdaten und den impliziten ADLs trainiert, also

Bewegungsabläufen aus den Sturzvideos, die zu keinem Sturz führen. Hier wurden die

expliziten ADLs aus den ADL-Videos nicht genutzt (_without_explicit_adls).

• Die vierte Variante wurde nur mit den impliziten und expliziten ADLs aber ohne Sturz-

daten trainiert, um zu sehen, ob das Modell auch ohne Sturzdaten Stürze erkennen

kann, was es ermöglichen würde, das Modell für reale Szenarien trainieren zu können,

ohne Sturzdaten zu benötigen. Dies würde einer Anomaly Detection entsprechen, bei

der das Modell Stürze erkennt, ohne jemals einen Sturz gesehen zu haben (_only_adls).

Eine schematische Darstellung des Trainingsablaufs ist in Abbildung  9 dargestellt. Die

Auswahl der Modelle und die Kombinationen der Trainingsdaten wurden jeweils im Trai-

ningsskript festgelegt.

20



Design Training

Abbildung 9: Ablauf des Trainings

3.5 Inferenz
Zur Benutzung eines Modells für diese Arbeit wurde eine Funktion geschrieben, die per

cv2 nach und nach Bilder aus einem gegebenen Stream eines aus einer Datei gelesenen

Videos liest. Somit müssen nicht, wie bei einem Produktiveinsatz, Livedaten von einer

Kamera empfangen werden. Diese Bilder werden dann jeweils in einen eigens erstellten

PoseProcessor gegeben, der die Skelettdaten mit Hilfe von MediaPipe Pose extrahiert und

in eine Sequenz aggregiert. Der PoseProcessor puffert intern die letzten 45 Posen und gibt

diese nach jedem Aufruf als Sequenz zurück, wenn alle 45 Posen extrahiert wurden. Wird

in zwei aufeinander folgenden Frames keine Person erkannt, wird der Puffer geleert, um

sicherzustellen, dass nur zusammenhängende Sequenzen weiterverarbeitet werden. In

diesem Fall gibt der PoseProcessor erst wieder eine Sequenz zurück, wenn wieder für 45

Frames eine Person erkannt wurde. Die Sequenzen werden dann in das Modell eingespeist

und die Ausgabe des Modells als Sturz oder Nicht-Sturz klassifiziert. Die Ausgabe der

Inferenz der jeweils vorangegangenen 45 Posen wurde für diese Arbeit als Text auf dem

nebenher gezeigten Video angezeigt, um die Inferenz zu visualisieren, wie in Abbildung 10

beispielhaft gezeigt.
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Abbildung  10: Beispiel für die Visualisierung der Inferenz durch das Modell

3c_128f_64f_32f_2l_100u_50u_without_implicit_adls anhand eines Videos aus dem KUL-

Dataset[6]. Links ein Nicht-Sturz, rechts ein Sturz.

In Abbildung 11 ist der Generelle Ablauf zur Sturzerkennung dargestellt, deren Videoquelle

in diesem Fall ein Video aus dem KUL-Dataset[6] ist und deren Konsument die Anzeige des

Inferenzergebnisses auf dem Videobild ist.

Abbildung 11: Pipeline zur Sturzerkennung

3.6 Evaluierung
Für die Auswertung wurden die bereits mithilfe von MediaPipe Pose extrahierten und

durch den PoseProcessor aggregierten Daten aus dem preprocessor genutzt. Dadurch

war es nicht notwendig, die Videos erneut mit MediaPipe Pose vorzuverarbeiten, da die

entsprechenden Daten bereits in zuvor generierten .npy-Dateien vorlagen, die als Numpy-

Arrays abgespeichert wurden. Die Evaluation basierte auf den vorhandenen Sequenzen

und den während der Vorverarbeitung zum Training zugewiesenen Labels. Eine erneute

Wiedergabe der Videos war daher nicht erforderlich.

Eine Sequenz – bestehend aus 45 Posen, die einen Bewegungsablauf einer Person darstel-

len – wurde nur dann dem Modell zur Inferenz übergeben, wenn diese zuvor vollständig

durch MediaPipe Pose im Video erkannt worden war. Partielle Sequenzen wurden, wie

bereits während des Trainings, ausgeschlossen. Die Modellausgabe wurde mit dem Label

der Sequenz verglichen, wobei die korrekt und falsch klassifizierten Sequenzen gezählt

wurden. Zur Visualisierung der Modellergebnisse wurde eine Konfusionsmatrix erstellt.

Die Messung der Inferenzzeit erfolgte, indem jeweils ein Modell geladen und auf die

ersten 1000 von MediaPipe Pose erkannten und anschließend aggregierten Sequenzen

eines Videos angewendet wurde. Für jedes Modell kamen dieselben 1000 Sequenzen

aus demselben Video zum Einsatz. Die Zeit für jede einzelne Inferenz wurde gemessen
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und anschließend der Durchschnittswert berechnet. Die Tests wurden auf einem Laptop

mit einem integrierten Radeon 780M Grafikprozessor[2] durchgeführt, wobei möglichst

wenige andere Programme ausgeführt wurden. Um die Ergebnisse nicht durch externe

Faktoren zu beeinflussen, wurde der Laptop während der Messungen nicht anderweitig

genutzt. Im selben Testlauf wurde zudem die durchschnittliche Inferenzzeit von MediaPipe

Pose gemessen, um die Leistung mit anderen Geräten und Umgebungen vergleichen zu

können.

4 Ergebnisse
In diesem Kapitel wird zunächst die Leistung der „kleinen“ Modelle (unter 100 000

Parameter) beschrieben, die jeweils mit allen Daten trainert wurde. Danach wird auf die

Leistung der größeren Modelle (über 100 000 Parameter) eingegangen, die auch jeweils

mit allen Daten trainiert wurden, und abschließend werden diese miteinander verglichen.

Anhand unterschiedlich trainierter Varianten eines großen Modells (1 000 000 Parameter)

wird außerdem die Leistung verschiedener Modellvarianten verglichen und bewertet.

4.1 Leistung der kleinen Modelle

Abbildung 12: Trainingsverlust (loss) der kleinen Modelle

In Abbildung  12 ist zu sehen, dass bereits nach 6 Epochen alle kleinen Modelle einen

Trainingsverlust von unter 0,02 erreicht haben. Nach 11-15 Epochen fiel der Verlust sogar

auf unter 0,01, was darauf hinweist, dass die Modelle trotz ihrer geringen Komplexität die

Bewegungsmuster in den Skelettdaten schnell erlernen konnten.

Das Modell 1c_8f_1l_10u, welches nur eine Convolutional- und eine LSTM-Schicht hat, zeigt

im Vergleich zu den anderen Modellen eine etwas langsamere Lernkurve. Die anderen
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kleinen Modelle, die alle mindestens eine zusätzliche Schicht besitzen, lernen etwas

schneller als das kleinste Modell, zeigen jedoch in den mittleren Epochen keine wesent-

lichen Unterschiede zueinander.

In späteren Epochen (ab Epoche 40) verbessern sich die meisten Modelle nur noch

minimal. Eine bemerkenswerte Ausnahme stellt das Modell 2c_16f_8f_1l_10u dar, das in

Epoche 44 einen sprunghaften Anstieg des Traingsverlustes bis auf 0,018 in verzeichnet.

Bis Epoche 50 fällt es jedoch auch wieder auf 0,0046.

Die Verlustwerte in Epoche 50 sind in Tabelle 1 dargestellt.

Modell Parameteranzahl Verlust in Epoche 50
1c_8f_1l_10u 21651 0,0049
1c_8f_2l_10u_5u 21966 0,0035
2c_16f_8f_1l_10u 22891 0,0046
2c_16f_8f_2l_10u_5u 23206 0,0064

Tabelle 1: Trainingsverlust der kleinen Modelle in Epoche 50

Abbildung 13: Validierungsverlust (val loss) der kleinen Modelle

In Abbildung  13 lässt sich erkennen, dass die Validierungsverluste zwar in den ersten

Epochen stark sinken, jedoch weniger gleichmäßig als die Trainingsverluste. Alle Modelle

haben bereits nach wenigen Epochen einen Validierungsverlust von unter 0,02 erreicht.

Bemerkenswert ist, dass sowohl das Modell 1c_8f_2l_10u_5u als auch das Modell

2c_16f_8f_2l_10u_5u bei Epoche 10 einen ausgesprochen niedrigen Validierungsverlust

von 0,009 erreicht haben. Genau diese beiden Modelle zeigen jedoch in Epoche 15, wo
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die Trainingsverluste bereits unter 0,01 sind, einen plötzlichen Validierungsverlust von je

etwas über 0,03 und 0,05. Dies deutet auf ein mögliches Overfitting hin, was bedeutet,

dass die Modelle möglicherweise die Daten „auswendig“ gelernt haben, ohne adäquat zu

generalisieren.

Danach ist deren Verlauf wieder ähnlich der anderen Modelle und im Durchschnitt ähnlich

zum Trainingsverlauf, bleibt jedoch stark fluktuierend. Das Modell 2c_16f_8f_1l_10u zeigt

außerdem bei Epoche 27 und Epoche 45 jeweils einen markanten Anstieg des Validie-

rungsverlustes auf fast 0,02 bzw. 0,04, was ebenfalls auf potenzielles Overfitting in diesen

Epochen hindeutet.

Bemerkenswerterweise weist in Epoche 50 das kleinte Modell, 1c_8f_1l_10u, den niedrigs-

ten Validierungsverlust von 0,0044 auf. Ein Vergleich ist in Tabelle 2 dargestellt.

Modell Parameteranzahl Validierungsverlust in Epoche 50
1c_8f_1l_10u 21651 0,0044
1c_8f_2l_10u_5u 21966 0,0147
2c_16f_8f_1l_10u 22891 0,0081
2c_16f_8f_2l_10u_5u 23206 0,0117

Tabelle 2: Validierungsverlust der kleinen Modelle in Epoche 50
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(a) Je eine Convolutional- und LSTM-Schicht (b) Eine Convolutional- und zwei LSTM-

Schichten

(c) Zwei Convolutional- und eine LSTM-

Schicht

(d) Zwei Convolutional- und zwei LSTM-

Schichten
Abbildung 14: Konfusionsmatrizen der kleinen Modelle nach Training über 50 Epochen.

In Abbildung 14 sind die Konfusionsmatrizen der kleinen Modelle nach 50 Epochen Trai-

ning im direkten Vergleich zueinander dargestellt. Links sind jeweils die Konfusionsmatri-

zen der Modelle mit einer LSTM-Schicht, rechts die der Modelle mit zwei LSTM-Schichten.

Die obere Zeile zeigt die Konfusionsmatrizen der Modelle mit einer Convolutional-Schicht,

die untere Zeile die der Modelle mit zwei Convolutional-Schichten.

Besonders auffällig sind die Modelle mit nur einer LSTM-Schicht, die jeweils weniger

als 100 False Positives (also Sturz-Einordnungen obwohl eine Sequenz nicht zu einem

Sturz gehört) aufweisen. Das kleinste der Modelle, 1c_8f_1l_10u (Abbildung 14a), hat die

wenigsten False Positives mit nur 54 und ebenfalls die wenigsten False Negatives (also

Sequenzen, die Teil eines Sturzes sind, die vom Modell jedoch nicht erkannt wurden) mit

etwa 210. Im Gegensatz dazu zeigt das Modell 1c_8f_2l_10u_5u (Abbildung 14b), welches

eine zusätzliche LSTM-Schicht hat, die meisten False Negatives mit 660. Die Modelle mit

zwei Convolution-Schichten, 2c_16f_8f_1l_10u (Abbildung  14c) und 2c_16f_8f_2l_10u_5u

(Abbildung 14d), liegen dazwischen, mit etwa 460 bzw. 470 False Negatives.

Nach 50 Epochen Training liegen sowohl Präzision (Precision) als auch Sensitivität (Recall)

bei allen kleinen Modellen über 99%. Bemerkenswert ist, dass das kleinste Modell,

26



Ergebnisse Leistung der kleinen Modelle

1c_8f_1l_10u, mit 99,89% die höchste Sensitivität hat. Die Übersicht dazu ist in Tabelle 3

dargestellt.

Modell Parameteranzahl Sensitivität in %
1c_8f_1l_10u 21651 99,89
1c_8f_2l_10u_5u 21966 99,32
2c_16f_8f_1l_10u 22891 99,52
2c_16f_8f_2l_10u_5u 23206 99,52

Tabelle 3: Sensitivitäten der kleinen Modelle nach 50 Epochen

4.2 Leistung der großen Modelle

Abbildung 15: Trainingsverlust (loss) der großen Modelle.

Abbildung  15 zeigt den Verlauf des Trainingsverlustes der drei großen Modelle im

Vergleich. Darin ist zu sehen, dass die beiden Modelle 2c_16f_8f_2l_100u_50u (283 171

Parameter, zwei Convolution-Schichten und zwei etwas größere LSTM-Schichten) und

3c_128f_64f_32f_2l_10u_5u (178 782 Parameter, drei Convolution-Schichten und twei

etwas kleinere LSTM-Schichten) anfangs einen zügigen Abfall des Trainingsverlustes

aufweisen. Das kleinste der großen Modelle, 3c_128f_64f_32f_2l_10u_5u, erreicht bereits

nach 7 Epochen einen Trainingsverlust von unter 0,02, während das mittlere Modell,

2c_16f_8f_2l_100u_50u, diesen Wert bereits nach 3 Epochen unterschreitet.

In den mittleren Epochen zeigen beide Modelle eine gewisse Instabilität. Das mittlere

Modell hat in Epoche 42 einen Anstieg des Trainingsverlustes auf 0,25, der sich bis Epoche

50 wieder auf 0,07 reduziert. Ähnlich weist das kleinste Modell in Epoche 35 einen leichten
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Anstieg auf 0,04 sowie in Epoche 46 auf 0,08 auf, bevor der Trainingsverlust zum Abschluss

auf 0,01 sinkt und damit den niedrigsten Wert unter den großen Modellen erreicht.

Das größte Modell, 3c_128f_64f_32f_2l_100u_50u (1 008 987 Parameter, drei Convolution-

Schichten und zwei größere LSTM-Schichten), zeigt zwar zu Beginn ebenfalls eine Reduk-

tion des Trainingsverlustes und erreicht in Epoche 3 einen Wert von knapp unter 0,1,

jedoch steigt der Verlust danach deutlich an. Das Modell erreicht sein Maximum in Epoche

26 mit 0,38, bevor es bis Epoche 50 wieder auf 0,16 abfällt. Trotz dieses Rückgangs erreicht

der Trainingsverlust des größten Modells zu keiner Zeit die anderen Modelle, das Modell

lernt also schlechter als die beiden kleineren Modelle.

Insgesamt zeigt sich, dass das kleinste Modell, 3c_128f_64f_32f_2l_10u_5u, durch-

gängig den niedrigsten Trainingsverlust aufweist, während das größte Modell,

3c_128f_64f_32f_2l_100u_50u, den höchsten Verlust verzeichnet. Ein Vergleich der Trai-

ningsverluste in Epoche 50 ist in Tabelle 4 dargestellt.

Modell Parameteranzahl Trainingsverlust in Epoche 50
3c_128f_64f_32f_2l_10u_5u 178782 0,01
2c_16f_8f_2l_100u_50u 283171 0,07
3c_128f_64f_32f_2l_100u_50u 1008987 0,16

Tabelle 4: Trainingsverlust der großen Modelle in Epoche 50.

Abbildung 16: Validierungsverlust (val loss) der großen Modelle.

In Abbildung  16 ist der Verlauf des Validierungsverlustes der großen Modelle darge-

stellt, der sich ähnlich zum Trainingsverlust verhält. Das kleinste dieser Modelle,
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Ergebnisse Leistung der großen Modelle

3c_128f_64f_32f_2l_10u_5u, erreicht bereits in Epoche 7 einen Validierungsverlust von un-

ter 0,02. Das mittlere Modell, 2c_16f_8f_2l_100u_50u, erreicht diesen Wert bereits in Epoche

5 und unterschreitet in Epoche 6 sogar die 0,01. Das kleinste Modell erreicht die 0,01

erst in Epoche 17. Das größte Modell, 3c_128f_64f_32f_2l_100u_50u, erreicht diese Werte

überhaupt nicht. Es erreicht nach wenigen Epochen seinen minimalen Validierungsverlust

von 0,1 und steigt dann unregelmäßig immer weiter an, es scheint also überhaupt nicht

oder etwas falsches zu lernen. Es erreicht ein erstes Maximum von 0,4 in Epoche 15.

In den mittleren Epochen verhalten sich die beiden kleineren Modelle ähnlich, wobei das

kleinste Modell in Epoche 34 einen vorübergehenden Anstieg auf 0,04 aufweist, ähnlich

wie sein Trainingsverlust eine Epoche vorher. Zu diesem Zeitpunkt fängt auch der Validie-

rungsverlust des mittleren Modells an zu steigen, welches das Maximum von 0,23 jedoch

erst in Epoche 41 erreicht, also wieder eine Epoche vor dem Maximum des Trainingsver-

lustes dieses Modells. Das große Modell bleibt weiterhin unregelmäßig und erreicht in

Epoche 35 sein Maximum von 0,6.

Insgesamt zeigt der Verlauf des Validierungsverlustes bei den großen Model-

len eine ähnliche Dynamik wie der Trainingsverlust, wobei das kleinste Modell

3c_128f_64f_32f_2l_10u_5u konstant die besten Ergebnisse liefert, während das größte

Modell 3c_128f_64f_32f_2l_100u_50u durchgängig schlechter abschneidet.

Modell Parameteranzahl Validierungsverlust in Epoche 50
3c_128f_64f_32f_2l_10u_5u 178 782 0,01239
2c_16f_8f_2l_100u_50u 283 171 0,06338
3c_128f_64f_32f_2l_100u_50u 1 008 987 0,15861

Tabelle 5: Validierungsverlust der großen Modelle bei 50 Epochen
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Ergebnisse Leistung der großen Modelle

(a) 3 Convolutional- und 2 LSTM-Schichten (b) Je 2 Convolutional- und LSTM-Schichten

(c) 3 Convolutional- und 2 sehr große LSTM-

Schichten
Abbildung 17: Konfusionsmatrizen der großen Modelle nach Training über 50 Epochen

In Abbildung 17 sind die Konfusionsmatrizen der großen Modelle im direkten Vergleich

dargestellt. Sie zeigen, wie gut die Modelle nach 50 Epochen zwischen den beiden Klassen,

Sturz (1) und nicht-Sturz (0) unterscheiden können.

Das Modell 3c_128f_64f_32f_2l_10u_5u (Abbildung 17a) erreicht eine hohe Klassifikations-

genauigkeit für beide Klassen. Es klassifiziert die negative Klasse (0, nicht-Sturz) mit 72.000

korrekten Vorhersagen (True Negatives) fast fehlerfrei und hat nur 110 Fehlklassifikatio-

nen (False Positives). Für die positive Klasse (1, Sturz) werden 97.000 Sequenzen korrekt

erkannt (True Positives), während 1.000 Sequenzen fälschlicherweise negativ klassifiziert

werden (False Negatives).

Das Modell 2c_16f_8f_2l_100u_50u (Abbildung  17b) zeigt ebenfalls eine solide, jedoch

schwächere Performance als das kleinere Modell. Es klassifiziert die negativen Sequenzen

mit 71.000 korrekten Vorhersagen, macht aber mit 560 Fehlklassifikationen etwas mehr

Fehler. Bei der positiven Klasse werden 91.000 Sequenzen richtig erkannt, jedoch ist

die Anzahl der False Negatives mit 6.900 deutlich höher als beim kleineren Modell. Die

Ergebnisse deuten darauf hin, dass dieses Modell etwas mehr Schwierigkeiten hat, Stürze

korrekt zu klassifizieren.

30



Ergebnisse Leistung der großen Modelle

Das größte Modell, 3c_128f_64f_32f_2l_100u_50u (Abbildung 17c), schneidet im Vergleich

zu den anderen beiden Modellen signifikant schlechter ab, wie durch die Verlustgraphen

zu erwarten. Es klassifiziert die negative Klasse zwar ähnlich gut, mit 71.000 korrekten

Vorhersagen, aber die Anzahl der False Positives steigt auf 730. Besonders problematisch

ist die Klassifikation der positiven Klasse, bei der nur 33.000 Sequenzen korrekt als Sturz

erkannt werden, während 66.000 Sequenzen fälschlicherweise als negativ klassifiziert

werden. Dieses Modell hat somit große Schwierigkeiten, Stürze korrekt als solche zu

erkennen und zeigt die schlechteste Klassifikationsleistung unter den großen Modellen.

In der Übersicht in Tabelle 6 sind die Sensitivitäten der großen Modelle nach 50 Epochen

im direkten Vergleich dargestellt. Auch hier zeigt sich, wie die Konfusionsmatrizen bereits

andeuteten, dass das kleinste Modell 3c_128f_64f_32f_2l_10u_5u die beste Sensitivität

aufweist, während das größte Modell 3c_128f_64f_32f_2l_100u_50u die schlechteste Sensi-

tivität hat.

Modell Parameteranzahl Sensitivität in %
3c_128f_64f_32f_2l_10u_5u 178782 98,95
2c_16f_8f_2l_100u_50u 283171 92,96
3c_128f_64f_32f_2l_100u_50u 1008987 85,86

Tabelle 6: Sensitivität der großen Modelle nach 50 Epochen

4.3 Vergleich unterschiedlich großer Modelle
Nachdem oben bereits die Verläufe der Trainings- und Validierungsverluste der kleinen

und großen Modelle einzeln betrachtet wurden, soll nun ein Gesamtbild der Unterschiede

zwischen kleinen und großen Modellen gezeichnet werden. Dies bietet die Möglichkeit,

den Effekt der Modellgröße auf die Generalisierungsfähigkeit und Klassifikationsgenauig-

keit in der Sturzerkennung zu bewerten. Dies zeigt, ob sich der Mehraufwand für größere

Modelle lohnt und inwiefern diese besser geeignet sind, um Stürze zu erkennen.
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Ergebnisse Vergleich unterschiedlich großer Modelle

4.3.1 Trainings- und Validierungsverlust
Kleine Modelle Große Modelle

Abbildung 18: Gegenüberstellung der Verluste. Links die kleinen Modelle, rechts die

großen Modelle. Oben die Trainingsverluste, unten die Validierungsverluste.

Abbildung 18 stellt die Trainings- und Validierungsverluste der kleinen (links) und großen

(rechts) Modelle im direkten Vergleich gegenüber. Die kleinen Modelle erreichen insge-

samt niedrigere Verluste als die großen Modelle. Die Trainingsverluste der kleinen Modelle

sinken schneller und stabilisieren sich auf niedrigeren Werten als die der großen Modelle.

Die Validierungsverluste der kleinen Modelle weisen hingegen deutliche Schwankungen

auf, die von einem kontinuierlichen Verlauf abweichen, wie er bei idealisierter Stabilität

zu erwarten wäre. Diese Abweichungen könnten auf Überanpassung an die Trainingsda-

ten oder eine suboptimale Lernrate hindeuten. Die großen Modelle weisen hingegen

erst in späteren Epochen signifikante Abweichungen von einem glatten Verlauf auf.

Das größte Modell 3c_128f_64f_32f_2l_100u_50u zeigt dabei mit Abstand die schlechteste

Performance, sowohl im Training als auch in der Validierung, was auf mehrere Probleme

hindeuten kann. Dieses Modell ist auch im Vergleich zu den anderen großen Modellen um

den Faktor 5-10 größer, so wie die anderen großen Modelle um den Faktor 5-10 größer

sind als die kleinen Modelle. Da es im Vergleich sowohl in Größe als auch in Leistung

deutlich von den anderen Modellen abweicht, lässt sich dieses Modell fast als eigene

Kategorie einordnen.

Tabelle 7 zeigt die Verluste der Modelle nach 50 Epochen Training im direkten Vergleich.

Die Fehlerraten der kleinen Modelle liegen bei rund 1%, während die Fehlerraten bei den

großen Modellen mit der Größe des Modells auf jeweils 2,3%, 7,5% und 16,5% ansteigen.
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Ergebnisse Trainings- und Validierungsverlust

Modell Parameteranzahl Trainingsfehler % Validierungsfehler

%
1c_8f_1l_10u 21651 0,478 0,442
1c_8f_2l_10u_5u 21966 0,347 1,468
2c_16f_8f_1l_10u 22891 0,464 0,813
2c_16f_8f_2l_10u_5u 23206 0,638 1,168
3c_128f_64f_32f_2l_10u_5u 178782 2,280 1,239
2c_16f_8f_2l_100u_50u 283171 7,456 6,338
3c_128f_64f_32f_2l_100u_50u 1008987 16,452 15,861

Tabelle 7: Trainings- und Validierungsfehlerraten der Modelle nach 50 Epochen Training.

Die Trennlinie visualisiert die Unterscheidung zwischen kleinen und großen Modellen.

4.3.2 Sensitivität
Die Sensitivität der Modelle zeigt ebenfalls deutliche Unterschiede zwischen den kleinen

und großen Modellen. Während die kleineren Modelle durchweg eine Sensitivität von

über 99% erreichen, sinkt dieser Wert bei den großen Modellen, insbesondere bei dem

größten Modell, auf unter 86%. Tabelle 6 zeigt die Sensitivitäten der großen Modelle nach

50 Epochen im direkten Vergleich.

Modell Parameteranzahl Sensitivität in %
1c_8f_1l_10u 21651 99,90
1c_8f_2l_10u_5u 21966 99,32
2c_16f_8f_1l_10u 22891 99,53
2c_16f_8f_2l_10u_5u 23206 99,52
3c_128f_64f_32f_2l_10u_5u 178782 98,95
2c_16f_8f_2l_100u_50u 283171 92,96
3c_128f_64f_32f_2l_100u_50u 1008987 85,86

Tabelle 8: Sensitivität der Modelle nach 50 Epochen

4.3.3 Ressourcen und Geschwindigkeit
Hier werden die Modelle anhand ihrer Inferenzzeiten und ihres Speicherbedarfs vergli-

chen. Die Inferenzzeiten wurden über 1000 Inferenzen gemittelt, um eine aussagekräftige

Vergleichsbasis zu schaffen. Der Speicherbedarf wurde als RAM-Arbeitsspeicher in Mega-

byte gemessen. Eine direkte Gegenüberstellung der Modelle ist in Tabelle 9 dargestellt.
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Ergebnisse Ressourcen und Geschwindigkeit

Modell Parameteranzahl Speicher Inferenzzeit
1c_8f_1l_10u 21651 0,08MB 51ms
1c_8f_2l_10u_5u 21966 0,08MB 51ms
2c_16f_8f_1l_10u 22891 0,09MB 51ms
2c_16f_8f_2l_10u_5u 23206 0,09MB 53ms
3c_128f_64f_32f_2l_10u_5u 178782 0,68MB 45ms
2c_16f_8f_2l_100u_50u 283171 1,08MB 52ms
3c_128f_64f_32f_2l_100u_50u 1008987 3,85MB 44ms

Tabelle 9: Inferenzzeiten und Speicherbedarf der Modelle

4.3.3.1 Speicherbedarf
Die kleinen Modelle sind durchweg ressourcenschonend und benötigen alle unter

0,1 MB RAM Arbeitsspeicher. Im Vergleich steigt der Speicherbedarf bei den großen

Modellen erheblich an, mit einem Spitzenwert von 3,85 MB beim größten Modell,

3c_128f_64f_32f_2l_100u_50u. Diese Zunahme reflektiert die größere Anzahl an Parame-

tern und die gestiegene Modellkomplexität.

4.3.3.2 Inferenzzeiten
Die durchschnittlichen Inferenzzeiten der Modelle (gemittelt über 1000 Inferenzen)

liegen in einem engen Bereich zwischen 44 und 53 ms. Überraschenderweise erzielen

die größeren Modelle hier leicht kürzere Inferenzzeiten. Besonders das größte Modell,

3c_128f_64f_32f_2l_100u_50u, benötigt nur 44 ms pro Inferenz, was von allen getesteten

Modellen am schnellsten ist. Möglicherweise sind moderne Grafikkarten dazu in der Lage,

so effizient zu parallelisieren, dass die größeren Modelle trotz ihrer Komplexität schneller

Inferenzen durchführen können. Eine andere Erklärung könnte sein, dass das genutzte

Framework abgesehen von der eigentlichen Inferenz am Modell einen gewissen Overhead

hat und die eigentliche Inferent zeitlich keinen signifikanten Unterschied macht.

4.3.3.3 Gesamtbewertung
Obwohl die großen Modelle mehr Speicher verbrauchen, zeigen sie Überraschenderweise

eine leicht verbesserte Effizienz bei der Inferenzzeit. Das kleine Modell 2c_16f_8f_2l_10u_5u

fällt mit der höchsten Inferenzzeit von 53 ms auf, benötigt jedoch erheblich weniger Spei-

cher als die großen Modelle. Dies deutet darauf hin, dass die größere Modellkomplexität

bei den großen Modellen die Rechenzeit pro Inferenz nicht zwingend negativ beeinflusst

und diese teilweise sogar effizienter sein können.

Insgesamt brauchen alle Modelle im Verhältnis zu heutigen Rechenkapazitäten wenig

Ressourcen und sind in der Lage, in Echtzeit Inferenzen durchzuführen.
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Ergebnisse Gesamtbewertung

4.4 Vergleich der Modelle mit unterschiedlichen Trainingsdaten

(a) Modell mit allen Trainingsdaten (b) Modell, das nur ADLs verwendet

(c) Modell ohne explizite ADLs (d) Modell ohne implizite ADLs
Abbildung 19:  Vergleich der Konfusionsmatrizen für Modelle, die mit verschiedenen Trai-

ningsdatenkombinationen trainiert wurden.

In Abbildung 19 sind die Konfusionsmatrizen der Modelle dargestellt, die mit verschiede-

nen Trainingsdatenkombinationen trainiert wurden.

Ein besonders auffälliges Ergebnis zeigt sich beim Modell, das nur ADLs als Trainingsdaten

verwendet, dessen Evaluationsergebnis in Abbildung 19b dagestellt ist. Dieses Modell hat

konsequent alle Eingabesequenzen als Nicht-Sturz klassifiziert, was eine Sensitivität von

0% bedeutet. Da keinerlei Stürze erkannt wurden, ist dieses Modell in realen Anwendun-

gen für die Sturzerkennung nicht geeignet.

Die anderen Modelle zeigen eine differenzierte Leistung. Beim Modell mit allen Daten,

dargestellt in Abbildung 19a, das Sturzsequenzen und sowohl ADL-Sequenzen aus expli-

ziten ADL-Videos als auch implizite ADL-Sequenzen aus den Sturzvideos umfasst, wurden

71.000 Nicht-Sturz-Sequenzen korrekt erkannt (True Negatives), wobei 730 ADL-Sequen-

zen fälschlicherweise als Sturz klassifiziert wurden (False Positives). Im Vergleich dazu hat

das Modell ohne implizite ADLs, dargestellt in Abbildung 19d, ebenfalls eine starke Erken-

nung von Nicht-Sturz-Sequenzen gezeigt, mit 70.000 True Negatives. Allerdings sind hier

mit 1.600 False Positives etwas mehr ADLs fälschlicherweise als Sturz erkannt worden. Das

Modell ohne explizite ADLs in Abbildung 19c, das nur Nicht-Sturz-Sequenzen aus Sturz-
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Ergebnisse Vergleich der Modelle mit unterschiedlichen Trainingsdaten

videos als Trainingsdaten für ADLs verwendet, schneidet bei den Nicht-Sturz-Sequenzen

nochmal etwas schlechter ab: Es erkennt lediglich 68.000 ADLs korrekt, während 3.400

ADLs als Stürze klassifiziert wurden.

Bei der Erkennung von Sturzsequenzen zeigt sich ebenfalls ein differenziertes Bild. Das

Modell mit allen Trainingsdaten klassifiziert lediglich 33.000 Sturzsequenzen korrekt, wäh-

rend es 66.000 Sturzereignisse nicht erkennt. Im Gegensatz dazu zeigt das Modell ohne

implizite ADLs eine deutlich bessere Erkennungsrate mit 70.000 korrekt identifizierten

Stürzen und 28.000 nicht erkannten Sturzereignissen. Das Modell ohne explizite ADLs, das

neben den Sturzdaten ausschließlich auf implizite ADLs aus Sturzvideos trainiert wurde,

übertrifft beide anderen Modelle hinsichtlich der Sensitivität: Es identifiziert 87.000 Sturz-

sequenzen korrekt und verfehlt dabei nur 12.000. Diese Ergebnisse verdeutlichen, dass

das Modell ohne explizite ADLs bei der Erkennung von Stürzen besonders leistungsfähig

ist, jedoch auf Kosten einer erhöhten Rate an False Positives.

Zusammenfassend zeigt sich, dass das Modell ohne explizite Berücksichtigung von ADLs

die höchste Sensitivität erreicht und somit die meisten Stürze korrekt erkennt. Allerdings

geht diese Leistung mit einer erhöhten Rate an False Positives einher, wodurch ADLs

häufiger fälschlicherweise als Stürze klassifiziert werden. Im Gegensatz dazu bietet das

Modell, das alle verfügbaren Daten einbezieht, eine ausgewogenere Balance: Es erzielt

weniger False Positives, jedoch auch eine geringere Anzahl an True Positives im Vergleich

zum Modell ohne explizite ADLs.

Das Modell ohne implizite ADLs positioniert sich leistungsmäßig zwischen diesen beiden

Ansätzen. Es erreicht mehr True Positives als das Modell, das alle Daten verwendet, jedoch

weniger als das Modell ohne explizite ADLs. Gleichzeitig reduziert es die Anzahl der False

Positives im Vergleich zum Modell ohne explizite ADLs, allerdings nicht so stark wie das

Modell mit allen Daten.

In Tabelle 10 sind die Sensitivitäts- und Spezifitätswerte der verschiedenen Modellvarian-

ten nach 50 Epochen Training zusammengefasst.

Variante Sensitivität Spezifität
Ohne explizite ADLs 87,88 90,96
Alle Daten 85,86 91,38
Ohne implizite ADLs 71,43 82,55
Nur ADLs 0,0 42,35

Tabelle 10: Sensitivität der Varianten nach 50 Epochen

Das Modell ohne explizite ADLs weist mit 87,88% die höchste Sensitivität auf, bei einer

Spezifität von 90,96%. Es erkennt also von allen Varianten die meisten Stürze korrekt und

klassifiziert gleichzeitig über 90% der ADLs korrekt als solche.
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Das Modell, das alle Trainingsdaten verwendet, zeigt eine leicht geringere Sensitivität von

85,86%, jedoch eine etwas höhere Spezifität von 91,38%. Dies bedeutet, dass es zwar nicht

ganz so viele Stürze wie das vorherige Modell erkennt, dafür jedoch etwas besser darin

ist, ADLs korrekt als solche zu klassifizieren.

Das Modell ohne implizite ADLs verzeichnet mit 71,43% eine deutlich geringere Sensiti-

vität, was darauf hinweist, dass es eine größere Anzahl von Stürzen nicht erkennt. Auch

die Spezifität ist mit 82,55% deutlich niedriger, was bedeutet, dass dieses Modell auch

weniger zuverlässig ist, wenn es darum geht, ADLs korrekt zu klassifizieren.

Das Modell, das nur ADLs verwendet, zeigt erwartungsgemäß die schlechtesten Ergeb-

nisse: Eine Sensitivität von 0,0% bestätigt, dass es nicht in der Lage ist, Stürze als solche

zu erkennen. Die Spezifität von 42,35% deutet darauf hin, dass es auch Schwierigkeiten

hat, ADLs korrekt zu identifizieren. Dies zeigt, dass dieses Modell nahezu alle Ereignisse

als ADLs interpretiert und somit völlig ungeeignet für die Sturzerkennung ist.

Das Modell, das nur ADLs verwendet, zeigt erwartungsgemäß die schlechtesten Ergeb-

nisse: Die Sensitivität von 0,0% bestätigt eindeutig, dass es überhaupt nicht in der Lage

ist, Stürze korrekt zu erkennen, da es jede Sequenz als ADL klassifiziert. Die Spezifität

von 42,35% ergibt sich ausschließlich daraus, dass das Modell alle ADLs korrekt als solche

erkennt, jedoch keinerlei Differenzierung zwischen ADLs und Stürzen vornimmt. Da die

Spezifität nur von der Anzahl der korrekt erkannten ADLs abhängt, führt der Anteil der

ADLs in den Testdaten zu einem scheinbar besseren Wert, der in diesem Fall lediglich

ausdrückt, dass 42,35% der zur Evaluierung verwendeten Sequenzen ADLs sind.

4.5 Interpretation der Ergebnisse
In dieser Arbeit spielen Sensitivität (die Fähigkeit, Stürze korrekt zu erkennen) und Spezi-

fität (die Fähigkeit, alltägliche Aktivitäten nicht fälschlicherweise als Stürze zu klassifizieren)

eine zentrale Rolle. Ein zuverlässiges Sturzerkennungssystem sollte eine hohe Sensitivität

aufweisen, um Stürze so schnell wie möglich zu erkennen und gleichzeitig eine hohe Spezi-

fität, um Fehlalarme zu minimieren. Das richtige Gleichgewicht zwischen diesen Metriken

ist entscheidend für die praktische Einsatzfähigkeit des Systems.

4.5.1 Kleine Modelle
Die Ergebnisse zeigen, dass kleinere Modelle eine hohe Sensitivität erreichen, was bedeu-

tet, dass sie Stürze zuverlässig erkennen können. Dies ist eine positive Beobachtung, da

die Zielsetzung dieser Arbeit darin besteht, Stürze möglichst frühzeitig zu identifizieren,

um eine schnelle Benachrichtigung zu ermöglichen. Kleinere Modelle scheinen in der Lage

zu sein, diese Anforderung zu erfüllen, und bieten zudem den Vorteil eines geringeren

Rechenaufwands, was besonders bei der Echtzeitverarbeitung von Videodaten aus meh-

reren Kameras nützlich ist.
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Ergebnisse Kleine Modelle

Ein mögliches Risiko bei kleineren Modellen besteht jedoch im Overfitting, insbesondere

wenn die Lernrate für alle Modelle gleich gewählt wurde. Möglicherweise könnte eine

hohe Lernrate für kleinere Modelle zu einer schnellen Anpassung an die Trainingsdaten

führen, wodurch diese Modelle zwar im Training hohe Sensitivität erreichen, aber auf

Testdaten schlechter generalisieren. In dieser Arbeit wurden jedoch keine eindeutigen

Tests auf Overfitting durchgeführt, sodass weitere Analysen notwendig wären, um dies zu

bestätigen.

Der geringe Ressourcenbedarf kleinerer Modelle eröffnet das Potenzial, sie auf ressour-

censchwacher Hardware in häuslichen Umgebungen einzusetzen. Dies entspricht dem

Ziel der Arbeit, ein System zu entwickeln, das auch in Echtzeitszenarien effektiv funktio-

niert und dabei wenig Rechenleistung benötigt.

4.5.2 Große Modelle
Größere Modelle zeigen eine etwas schlechtere Sensitivität, was darauf hindeutet, dass

sie mehr Trainingsepochen oder eine höhere Anfangslernrate benötigen könnten, um

ihr volles Potenzial zu entfalten. Ihre Stärke liegt jedoch in der höheren Spezifität, was

bedeutet, dass sie seltener ADLs fälschlicherweise als Stürze klassifizieren. Dies macht sie

zu einer möglichen Lösung, wenn es darum geht, Fehlalarme zu minimieren.

Die Ergebnisse legen nahe, dass größere Modelle möglicherweise besser darin sind, auf

mehr Trainingsdaten zu generalisieren, was sie in Szenarien nützlich macht, in denen viele

verschiedene Aktivitäten erfasst werden müssen. Trotz ihrer höheren Anzahl an Parame-

tern zeigten die größeren Modelle keine signifikant längeren Inferenzzeiten, was auf die

Effizienz moderner Hardware hindeutet. Es scheint, dass Grafikkarten in der Lage sind,

die Berechnungen parallel zu verarbeiten, was die Inferenzzeiten niedrig hält. Alternativ

könnte es sein, dass der Overhead im verwendeten Framework so hoch ist, dass die

eigentliche Inferenzzeit nur einen kleinen Teil der gesamten Verarbeitungszeit ausmacht.

4.5.3 Unterschiedliche Trainingsdaten
Ein besonders interessantes Ergebnis zeigt die Leistung des Modells, das ohne explizite

ADLs trainiert wurde. Dieses Modell erzielte die höchste Sensitivität und wies somit eine

starke Erkennungsleistung auf. Die Spezifität war jedoch etwas geringer als die des Mo-

dells, das mit allen Daten (einschließlich expliziter ADLs) trainiert wurde. Dies verdeutlicht,

dass bereits wenige ADLs in den Trainingsdaten ausreichen können, um eine zuverlässige

Sturzerkennung zu ermöglichen, ohne dass viele ADLs fälschlicherweise als Stürze erkannt

werden. Dies deutet darauf hin, dass die Trainingsdaten effizienter gestaltet werden

könnten, indem der Anteil an ADLs reduziert wird, was sowohl die Trainingszeit verkürzen

als auch den Datenschutz verbessern könnte.

Das Modell, das mit allen verfügbaren Daten trainiert wurde, erreichte hingegen eine

etwas höhere Spezifität. Dies legt nahe, dass das Einbeziehen einer größeren Anzahl von

ADLs in die Trainingsdaten dazu beitragen kann, die Fehlalarme weiter zu reduzieren.
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Zwar scheint es nicht zwingend erforderlich zu sein, eine große Menge expliziter ADLs

einzubeziehen, jedoch bringt dies keine signifikanten Nachteile mit sich und kann in

bestimmten Szenarien sogar vorteilhaft sein.

4.5.4 Bedeutung für das Gesamtsystem
Während die Modelle eine gute Grundlage für die Sturzerkennung bieten, könnte das

Gesamtsystem durch Heuristiken die noch vorhandenen Schwächen der Modelle ausglei-

chen. Ein potenzieller Ansatz wäre, Stürze nur dann zu melden, wenn mehrere aufeinan-

derfolgende Frames (oder eine Mindestanzahl von Frames innerhalb einer Sekunde, z.B.

66%) als Sturz klassifiziert werden. Diese Heuristik könnte die Wahrscheinlichkeit von False

Positives verringern, ohne die Sensitivität des Systems signifikant zu beeinträchtigen. So

würde die Zuverlässigkeit des Systems gesteigert, was für den praktischen Einsatz beson-

ders wichtig ist. Solange in einem Bild keine Person zu sehen ist, werden außerdem keine

Daten an das Modell gesendet, was die Rechenleistung weiter reduziert.

4.5.5 Limitationen
Trotz der vielversprechenden Ergebnisse zeigen sich einige Limitationen, die für eine

vollständige Bewertung eines Gesamtsystems berücksichtigt werden müssen. Eine der

zentralen Herausforderungen betrifft das Risiko des Overfittings, insbesondere bei den

kleineren Modellen. Da für alle Modelle eine gleiche Lernrate verwendet wurde, besteht

die Möglichkeit, dass kleinere Modelle zu schnell auf die Trainingsdaten angepasst

werden. Dies könnte zu einer schlechteren Generalisierung auf neue, unbekannte Daten

führen. Overfitting wurde in dieser Arbeit jedoch nicht explizit getestet, sodass dies in

zukünftigen Studien genauer untersucht werden sollte.

Ein weiteres potenzielles Limit liegt in den begrenzten Datensätzen, die für das Training

und die Validierung der Modelle verwendet wurden. Die derzeitigen Ergebnisse basieren

auf einem spezifischen Satz von Trainingsdaten, der möglicherweise nicht alle Variationen

und Szenarien der realen Welt abdeckt. Insbesondere könnte die Generalisierungsfähig-

keit der Modelle durch höhere oder niedrigere Kamerawinkel oder andere Arten von

Kameras beeinträchtigt werden. Um sicherzustellen, dass die Modelle robust genug sind,

müssen sie in Zukunft auf größeren und vielfältigeren Datensätzen getestet werden.

Obwohl im Verlauf der Arbeit Heuristiken als mögliche Lösung zur Reduzierung von False

Positives genannt wurden, sind diese in der aktuellen Arbeit nicht explizit implementiert

oder getestet worden. Heuristiken, wie beispielsweise die Anforderung, dass mehrere

aufeinanderfolgende Frames als Sturz klassifiziert werden müssen, könnten in der prakti-

schen Implementierung jedoch eine entscheidende Rolle spielen, um die Zuverlässigkeit

des Gesamtsystems zu verbessern. Es bleibt offen, wie effektiv diese Methoden in Kombi-

nation mit den entwickelten Modellen arbeiten würden.

Zusätzlich gibt es ethische und datenschutztechnische Überlegungen, die bei der Entwick-

lung eines Sturzerkennungssystems berücksichtigt werden müssen. Insbesondere die
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Frage, wie viele und welche Arten von ADLs in den Trainingsdaten verwendet werden

sollten, um einerseits den Datenschutz zu wahren und andererseits eine hohe Spezifität

zu gewährleisten, bleibt eine wichtige Frage. Ein Kompromiss zwischen einem möglichst

geringen Datensammeln und der Optimierung der Modellerkennung könnte erforderlich

sein.

4.5.6 Schlussbetrachtung
Obwohl die kleinen Modelle eine gute Sensitivität aufweisen und in der Lage sind, Stürze in

Echtzeit zu erkennen, könnte sich bei zukünftigen Tests zeigen, dass größere Modelle mit

besserer Spezifität eine wichtigere Rolle spielen, falls sich in realen Anwendungen trotz

Heuristiken Fehlalarme als problematisch erweisen.

Die Effizienz der Modelle bietet gute Ansätze, um das System weiter zu optimieren, auch

im Hinblick auf die Ressourcenschonung und die Einsetzbarkeit auf Standardhardware in

privaten Haushalten, ohne größere Rechenkapazität der Cloud in Anspruch zu nehmen.

Künftige Arbeiten könnten sich auch darauf konzentrieren, Overfitting und variable Lern-

raten genauer zu untersuchen. Die Integration von Heuristiken und die Berücksichtigung

ethischer und datenschutzrechtlicher Aspekte sind ebenfalls wichtige Schritte, um ein

Sturzerkennungssystem zu entwickeln, das nicht nur effektiv, sondern auch verantwor-

tungsbewusst und benutzerfreundlich ist.

5 Fazit
Diese Arbeit zeigt, dass ein effizientes und zuverlässiges Sturzerkennungssystem auf der

Basis von Skelettdaten möglich ist, die aus RGB-Kamerabildern extrahiert wurden. Die

durchgeführten Experimente belegen, dass sowohl kleine als auch große Modelle in der

Lage sind, eine hohe Sensitivität zu erreichen und Stürze zuverlässig zu identifizieren.

Während die kleineren Modelle mit einer Sensitivität von über 99% überzeugen und damit

eine Echtzeiterkennung in ressourcenschwachen Umgebungen ermöglichen, bieten grö-

ßere Modelle eine höhere Spezifität, jedoch keine signifikant verbesserte Sensitivität. Die

Möglichkeit, kleinere Modelle lokal auszuführen, macht den Einsatz in privater Umgebung

besonders attraktiv, da sie aufgrund ihrer geringen Rechenlast eine lokale Verarbeitung

erlauben und somit den Schutz der Privatsphäre erhöhen, indem eine Cloudanbindung

vermieden wird.

Diese Ergebnisse stellen eine wertvolle Grundlage für zukünftige Arbeiten dar. Insbeson-

dere könnte die Generalisierungsfähigkeit der Modelle durch größere und vielfältigere

Datensätze sowie durch eine gezielte Datenaugmentierung weiter verbessert werden.

Eine interessante Methode wäre die synthetische Generierung von Sturzdaten, um

das Modell robuster gegen seltene und ungewöhnliche Sturzmechanismen zu machen.

Auch eine Untersuchung variabler Lernraten könnte zukünftig getestet werden, um die

Trainingsprozesse optimal an die jeweilige Modellarchitektur anzupassen. Ergänzend
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wäre die Erweiterung eines Modells durch zusätzliche Datenquellen, wie Tiefen- oder

LiDAR-Kameras, ein vielversprechender Ansatz, um die räumliche Präzision, Effizienz und

Zuverlässigkeit des Gesamtsystems weiter zu erhöhen.

Da die Verarbeitung der Sequenzen derzeit ausschließlich zweidimensional erfolgt, stellt

eine Datenaugmentierung durch Spiegelung der Sturzdaten eine Möglichkeit dar, die

Anzahl der Sturzdatensequenzen zu verdoppeln und somit das Training zu stärken. Diese

Methode wurde in der vorliegenden Arbeit nicht umgesetzt, könnte jedoch einen sinnvol-

len nächsten Schritt zur weiteren Optimierung der Modelle darstellen.

Abschließend lässt sich festhalten, dass ein verlässliches Sturzerkennungssystem, basie-

rend auf Pose Estimation und Deep Learning, nicht nur die Sicherheit und das Wohlbe-

finden älterer Menschen in ihrer häuslichen Umgebung signifikant erhöhen kann, sondern

auch eine wichtige Entlastung für das Pflegepersonal darstellen kann. Damit trägt die

hier entwickelte Lösung potenziell dazu bei, sowohl das Sicherheitsgefühl als auch die

Unabhängigkeit der Anwender zu stärken und könnte so einen wesentlichen Beitrag zur

Bewältigung der Herausforderungen im Pflegebereich leisten.
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