
MASTER THESIS
Ante Škorić

Towards Zero-Downtime
Distributed Systems:
Intelligent Error Detection
and Automated Recovery

Faculty of Engineering and Computer Science
Department Computer Science

HOCHSCHULE FÜR ANGEWANDTE
WISSENSCHAFTEN HAMBURG
Hamburg University of Applied Sciences

Master thesis submitted for examination in Master´s degree
in the study course Master of Science Informatik
at the Department Computer Science
at the Faculty of Engineering and Computer Science
at University of Applied Science Hamburg

Supervisor: Prof. Dr. Stefan Sarstedt
Supervisor: Prof. Dr. Marina Tropmann-Frick

Submitted on: 10.04.2025

Ante Škorić

Towards Zero-Downtime Distributed Systems:
Intelligent Error Detection and Automated Recovery

Ante Škorić

Thema der Arbeit

Towards Zero-Downtime Distributed Systems: Intelligent Error Detection and Auto-
mated Recovery

Stichworte

Microservice-Systeme, Verteilte Systeme, Chaos Engineering, Lasttests, MAPE-K-Modell,
Maschinelles Lernen, Resilienz, Kubernetes, Spring Boot, XGBoost, Self-Healing, Klas-
sifikation, Resilienzstrategien, Systemzuverlässigkeit

Kurzzusammenfassung

Microservice-Systeme sind aufgrund ihrer verteilten Natur und dynamischen Umgebun-
gen anfällig für Ausfälle. Diese Arbeit präsentiert den Entwurf, die Implementierung
und die Evaluierung eines Tools, das Chaos Engineering, Lasttests, das MAPE-K-Modell
und maschinelles Lernen integriert, um die Systemresilienz zu verbessern. Das Tool
wurde an zwei Microservice-Architekturen – dem Student Management System (SMS)
und dem E-Commerce Order Management System (EOMS) – über zwölf Fehlerszenarien
hinweg evaluiert, wobei die Fehlerraten mit und ohne sein Eingreifen verglichen wur-
den. Die experimentellen Ergebnisse zeigen eine allgemeine Fehlerreduktion von 57,96
%, mit einer signifikanten Verbesserung von 95 % bei der Abschwächung Kubernetes-
bezogener Fehler. Trotz seiner Effektivität wies das Tool aufgrund von Ungenauigkeiten
bei der Klassifizierung Einschränkungen bei der Behebung bestimmter Spring-bezogener
Fehler auf. Durch die Nutzung von XGBoost für die prädiktive Fehlerklassifizierung
sowie automatisierte Strategien zur Fehlerbegrenzung zeigt das Tool Potenzial für Self-
Healing-Microservices. Zukünftige Forschungsarbeiten sollten sich auf die Verbesserung
der Klassifizierungsgenauigkeit, die Erweiterung der Resilienzstrategien und die Opti-
mierung der Tool-Architektur für eine höhere Zuverlässigkeit konzentrieren. . .

iii

Ante Škorić

Title of Thesis

Towards Zero-Downtime Distributed Systems: Intelligent Error Detection and Auto-
mated Recovery

Keywords

Microservice systems, Distributed systems, Chaos engineering, Load testing, MAPE-K
model, Machine learning, Resilience, Kubernetes, Spring Boot, XGBoost, Self-healing,
Classification, Resilience strategies, System reliability

Abstract

Microservice systems are prone to failures due to their distributed nature and dynamic
environments. This thesis introduces the design, implementation, and evaluation of a tool
that integrates chaos engineering, load testing, the MAPE-K model, and machine learn-
ing to enhance system resilience. The tool was evaluated on two microservice architec-
tures—the Student Management System (SMS) and the E-commerce Order Management
System (EOMS)—across twelve failure scenarios, assessing error rates with and without
its intervention. Experimental results indicate an overall error reduction of 57.96%, with
a significant 95% improvement in mitigating Kubernetes-related failures. Despite its
effectiveness, the tool exhibited limitations in addressing certain Spring-related errors
due to classification inaccuracies. By leveraging XGBoost for predictive error classifica-
tion and automated failure mitigation strategies, the tool demonstrates the potential for
self-healing microservices. Future research should focus on refining classification accu-
racy, expanding resilience strategies, and optimizing the tool’s architecture for improved
reliability. . .

iv

Contents

List of Figures vii

List of Tables x

1 Introduction 1
1.1 Motivation, Objectives and Research Questions 1
1.2 Structure . 2

2 Fundamentals 3
2.1 MAPE-K . 3
2.2 Microservices . 5
2.3 Container Orchestration . 6
2.4 Performance Testing . 6
2.5 Chaos Engineering . 7
2.6 XGBoost . 8

3 Related Work 10

4 Concept 13
4.1 Problem Definition . 13
4.2 Requirements Analysis . 14

5 Implementation 20
5.1 Architecture . 20
5.2 Algorithms . 23

5.2.1 MAPE-K . 23
5.2.2 Log Classification . 26
5.2.3 Solution Classification . 29

v

Contents

6 Experimental Setup and Implementation 39
6.1 Evaluation Methodology . 39
6.2 Test Environment Setup . 40
6.3 Chaos Engineering Implementation . 45

7 Experimental Results and Analysis 53
7.1 Experimental Procedure . 53
7.2 Performance Analysis . 54

7.2.1 SMS without tool . 55
7.2.2 EOMS without tool . 63
7.2.3 SMS with tool . 70
7.2.4 EOMS with tool . 78

7.3 Discussion and Findings . 87

8 Conclusion 94
8.1 Outlook . 94

Bibliography 96

A Appendix 102
A.1 Tools Used . 102

Declaration of Authorship 130

vi

List of Figures

2.1 The MAPE-K self-adaptive cycle as proposed by IBM [25], figure taken
from paper ′′Achieving Cost-Effective Software Reliability Through Self-
Healing′′ [20] . 4

5.1 Deployment diagram showing the dependencies between the tool and sys-
tem that is monitored . 21

5.2 Component diagram of the tool . 23
5.3 Sequence diagram of the tool . 24
5.4 Processing of the dataset used for training the classification model 28
5.5 Kubernetes error part of the decision tree 30
5.6 Node and pod issues part of the decision tree 31
5.7 Spring DB and configuration part of the decision tree 32
5.8 Spring requests part of the decision tree 33
5.9 Spring third party and timeout part of the decision tree 34
5.10 Mapping of solutions to the tracking functions 36

6.1 Component diagram of the SMS system 41
6.2 Component diagram of the EOMS system 43
6.3 Deployment diagram of the chaos engineering setup 46

7.1 Heatmap of the Spring Timeout scenario 55
7.2 Heatmap of the Spring Third-Party Service scenario 56
7.3 Heatmap of the Spring Request scenario 57
7.4 Heatmap of the Spring Down scenario . 58
7.5 Heatmap of the Spring Database Connection scenario 59
7.6 Heatmap of the Kubernetes Node Problem scenario 61
7.7 Heatmap of the Kubernetes Low CPU Memory scenario 62
7.8 Heatmap of the Spring Timeout scenario 63
7.9 Heatmap of the Spring Third-Party Service scenario 64

vii

List of Figures

7.10 Heatmap of the Spring Request scenario 65
7.11 Heatmap of the Spring Down scenario . 66
7.12 Heatmap of the Spring Database Connection scenario 67
7.13 Heatmap of the Kubernetes Node Problem scenario 68
7.14 Heatmap of the Kubernetes Low CPU and Memory scenario 69
7.15 Heatmap of the Spring Timeout scenario with tool 70
7.16 Heatmap of the Spring Third-Party Service scenario with tool 71
7.17 Heatmap of the Spring Request scenario with tool deployed 72
7.18 Heatmap of the Spring Down scenario with tool deployed 73
7.19 Heatmap of the Spring Database Connection scenario with tool deployed . 74
7.20 Heatmap of the Kubernetes Pod Unhealthy scenario with tool deployed . 75
7.21 Heatmap of the Kubernetes Node Problem scenario with tool deployed . . 76
7.22 Heatmap of the Kubernetes Low CPU Memory scenario with tool deployed 77
7.23 Heatmap of the Spring Timeout scenario with tool deployed 78
7.24 Heatmap of the Spring Third-Party Service scenario with tool 79
7.25 Heatmap of the Spring Request scenario with tool deployed 80
7.26 Heatmap of the Spring Down scenario with tool deployed 81
7.27 Heatmap of the Spring Database Connection scenario with tool deployed . 82
7.28 Heatmap of the Kubernetes Pod Unhealthy scenario with tool deployed . 83
7.29 Heatmap of the Kubernetes Node Problem scenario with tool deployed . . 84
7.30 Heatmap of the Kubernetes Low CPU Memory scenario with tool deployed 85
7.31 Impact of the tool on error reduction . 92

A.1 Heatmap of the Spring Configuration scenario 104
A.2 Heatmap of the Kubernetes Pod Unhealthy scenario 105
A.3 Heatmap of the Service Down Kubernetes scenario 106
A.4 Heatmap of the Kubernetes Invalid Image scenario 107
A.5 Heatmap of the Kubernetes Configuration scenario 108
A.6 Heatmap of the Spring Configuration scenario 109
A.7 Heatmap of the Kubernetes Pod Unhealthy scenario 110
A.8 Heatmap of the Service Down Kubernetes scenario 111
A.9 Heatmap of the Kubernetes Invalid Image scenario 112
A.10 Heatmap of the Kubernetes Configuration scenario 113
A.11 Heatmap of the Spring Configuration scenario with tool deployed 114
A.12 Heatmap of the Service Down Kubernetes scenario with tool deployed . . 115
A.13 Heatmap of the Kubernetes Invalid Image scenario with tool deployed . . 116

viii

List of Figures

A.14 Heatmap of the Kubernetes Configuration scenario with tool deployed . . 117
A.15 Heatmap of the Spring Configuration scenario with tool deployed 118
A.16 Heatmap of the Service Down Kubernetes scenario with tool deployed . . 119
A.17 Heatmap of the Kubernetes Invalid Image scenario with tool deployed . . 120
A.18 Heatmap of the Kubernetes Configuration scenario with tool deployed . . 121

ix

List of Tables

7.2 Summary of all results with details of the system used, the tool, the sce-
nario, the total requests, the errors, the error rate, the error reduction,
and the solution used . 91

A.1 Tools and Resources Used . 102
A.2 Response time statistics (milliseconds) of the Spring Timeout scenario . . 103
A.3 Response time statistics (milliseconds) of the Spring Third-Party Service

scenario . 103
A.4 Response time statistics (milliseconds) of the Spring Request scenario . . . 103
A.5 Response time statistics (milliseconds) of the Spring Configuration scenario104
A.6 Response time statistics (milliseconds) of the Spring Configuration scenario104
A.7 Response time statistics (milliseconds) of the Spring Database Connection

scenario . 105
A.8 Response time statistics (milliseconds) of the Kubernetes Pod Unhealthy

scenario . 105
A.9 Response time statistics (milliseconds) of the Service Down Kubernetes

scenario . 106
A.10 Response time statistics (milliseconds) of the Kubernetes Node Problem

scenario . 106
A.11 Response time statistics (milliseconds) of the Kubernetes Low CPU Mem-

ory scenario . 107
A.12 Response time statistics (milliseconds) of the Kubernetes Invalid Image

scenario . 107
A.13 Response time statistics (milliseconds) of the Kubernetes Configuration

scenario . 108
A.14 Response time statistics (milliseconds) of the Spring Timeout scenario . . 109
A.15 Response time statistics (milliseconds) of the Spring Third-Party Service

scenario . 110

x

List of Tables

A.16 Response time statistics (milliseconds) of the Spring Request scenario . . . 111
A.17 Response time statistics (milliseconds) of the Spring Down scenario 112
A.18 Response time statistics (milliseconds) of the Spring Configuration scenario113
A.19 Response time statistics (milliseconds) of the Spring Database Connection

scenario . 114
A.20 Response time statistics (milliseconds) of the Kubernetes Pod Unhealthy

scenario . 115
A.21 Response time statistics (milliseconds) of the Service Down Kubernetes

scenario . 116
A.22 Response time statistics (milliseconds) of the Kubernetes Node Problem

scenario . 117
A.23 Response time statistics (milliseconds) of the Kubernetes Low CPU and

Memory scenario . 118
A.24 Response time statistics (milliseconds) of the Kubernetes Invalid Image

scenario . 119
A.25 Response time statistics (milliseconds) of the Kubernetes Configuration

scenario . 120
A.26 Response time statistics (milliseconds) of the Spring Timeout scenario

with tool deployed . 120
A.27 Response time statistics (milliseconds) of the Spring Third-Party Service

scenario with tool deployed . 121
A.28 Response time statistics (milliseconds) of the Spring Request Service sce-

nario with tool deployed . 121
A.29 Response time statistics (milliseconds) of the Spring Down scenario with

tool deployed . 122
A.30 Response time statistics (milliseconds) of the Spring Configuration sce-

nario with tool deployed . 122
A.31 Response time statistics (milliseconds) of the Spring Database Connection

scenario with tool deployed . 122
A.32 Response time statistics (milliseconds) of the Kubernetes Pod Unhealthy

scenario with tool deployed . 122
A.33 Response time statistics (milliseconds) of the Service Down Kubernetes

scenario with tool deployed . 123
A.34 Response time statistics (milliseconds) of the Kubernetes Node Problem

scenario with tool deployed . 123

xi

List of Tables

A.35 Response time statistics (milliseconds) of the Kubernetes Low CPU Mem-
ory scenario with tool deployed . 123

A.36 Response time statistics (milliseconds) of the Kubernetes Invalid Image
scenario with tool deployed . 123

A.37 Response time statistics (milliseconds) of the Kubernetes Configuration
scenario with tool deployed . 124

A.38 Response time statistics (milliseconds) of the Spring Timeout scenario
with tool deployed . 124

A.39 Response time statistics (milliseconds) of the Spring Third-Party Service
scenario with tool deployed . 124

A.40 Response time statistics (milliseconds) of the Spring Request Service sce-
nario with tool deployed . 125

A.41 Response time statistics (milliseconds) of the Spring Down scenario with
tool deployed . 125

A.42 Response time statistics (milliseconds) of the Spring Configuration sce-
nario with tool deployed . 126

A.43 Response time statistics (milliseconds) of the Spring Database Connection
scenario with tool deployed . 126

A.44 Response time statistics (milliseconds) of the Kubernetes Pod Unhealthy
scenario with tool deployed . 127

A.45 Response time statistics (milliseconds) of the Service Down Kubernetes
scenario with tool deployed . 127

A.46 Response time statistics (milliseconds) of the Kubernetes Node Problem
scenario with tool deployed . 128

A.47 Response time statistics (milliseconds) of the Kubernetes Low CPU Mem-
ory scenario with tool deployed . 128

A.48 Response time statistics (milliseconds) of the Kubernetes Invalid Image
scenario with tool deployed . 129

A.49 Response time statistics (milliseconds) of the Kubernetes Configuration
scenario with tool deployed . 129

xii

1 Introduction

1.1 Motivation, Objectives and Research Questions

Reliability, operational efficiency, and minimizing downtime are crucial for all distributed
systems, including those based on microservice architectures. The ability of microservices
to recover from failures and continue functioning is essential for cloud providers [46].
Various resilience patterns, such as retry, fail-fast, and circuit breaker can enhance mi-
croservice robustness. Research has also explored sophisticated techniques like model
checking for these patterns [32]. This research prompts the question of whether self-
healing mechanisms can automatically apply these patterns within systems.

Studies in self-healing systems highlight the importance of efficient debugging for main-
taining reliable, high-quality software. As software complexity grows, the likelihood of
failure increases [47].
The 2024 survey ′′A Survey on Self-healing Software System′′ indicates limited research
on self-healing systems that perform architectural-level repairs [47].

The objective of this thesis is to leverage self-healing and self-adaptive methodologies
to enhance microservice architecture stability and resilience, aiming for zero downtime.
The majority of self-adaptive system solutions employ the MAPE-K reference model for
implementation. Example of those implementations are ′′A Self Healing Microservices
Architecture: A Case Study in Docker Swarm Cluster′′ [29], ′′Self-adaptation in Microser-
vice Architectures: A Case Study′′ [11], ′′Self-adaptive, Requirements-driven Autoscaling
of Microservices′′ [24] and ′′A MAPE-K Approach to Autonomic Microservices′′ [12].
These studies demonstrate the MAPE-K model’s effectiveness in self-healing systems but
do not integrate XGBoost for error prediction or chaos engineering for testing.

This thesis seeks to bridge this gap by developing a tool that combines the MAPE-
K model with XGBoost for log classification and chaos engineering for testing. This

1

1 Introduction

approach enables the testing of systems in a more realistic manner, as detailed in the
paper titled ′′CHESS: A Framework for Evaluation of Self-adaptive Systems based on
Chaos Engineering′′, which evaluates system resilience and fault recovery capabilities.
Two systems will be utilized for testing: the Student Management System (SMS) and
the E-commerce Order Management System (EOMS).
The analytical component of the MAPE-K approach has already been implemented and
analyzed in a previous project for my computer science studies, titled ′′Classifier De-
velopment for Log Analysis in Spring Boot and Kubernetes′′ [40]. This component will
be further discussed in the Classification Algorithms section of the Fundamentals chapter.

The central research question of this thesis is as follows: ′′Can the combination of
the MAPE-K reference model, XGBoost-driven error prediction, and chaos engineer-
ing testing be utilized to implement a self-healing system that significantly improves the
reliability and resilience of microservice architectures?′′.

1.2 Structure

This thesis is structured into eight chapters.
Chapter one outlines the motivation, objectives, and research questions that form the
foundation of this work.
Chapter two provides the theoretical background necessary to understand the subsequent
chapters.
A review of related work in the field of self-healing systems and the MAPE-K framework
follows in chapter three. Chapter four introduces the conceptual framework, including
the problem definition and requirements analysis.
The implementation of the proposed tool is described in chapter five, beginning with
an overview of the system architecture and the rationale behind architectural decisions,
followed by an explanation of the integration of MAPE-K, XGBoost, and decision trees.
Experimental methodology, including setup and implementation, is covered in chapter
six.
Chapter seven presents and analyzes the experimental results, concluding with a discus-
sion of the findings.
Finally, chapter eight summarizes the key contributions of this thesis, provides a conclu-
sion, and offers an outlook on potential future research directions.

2

2 Fundamentals

2.1 MAPE-K

In 2003, IBM published a paper in the journal Computer (Volume: 36, Issue: 1) titled
′′The vision of autonomic computing′′ [25]. This publication introduced the MAPE-K
control loop.
In the fourth edition of their white paper ′′An architectural blueprint for autonomic
computing′′ IBM states:
′′This paper has presented a high-level architectural blueprint to assist in delivering au-
tonomic computing in phases. The architecture reinforces that self-management uses
intelligent control loop implementations to monitor, analyze, plan and execute, leverag-
ing knowledge of the environment. These control loops can be embedded in resource
run-time environments (in the form of self-managing resources) or delivered in manage-
ment tools. The control loops collaborate using an enterprise service bus (one of the five
architectural building blocks) that integrates the remaining four architectural building
blocks: autonomic managers, manual managers, manageability endpoints, and knowl-
edge sources.′′ [16]

3

2 Fundamentals

Figure 2.1: The MAPE-K self-adaptive cycle as proposed by IBM [25], figure taken
from paper ′′Achieving Cost-Effective Software Reliability Through Self-
Healing′′ [20]

The figure 2.1 illustrates the MAPE-K control loop model reference. This model is uti-
lized for self-adaptive systems and autonomic computing. IBM introduced it to aid in
the design and development of self-managing systems [16].
The K in MAPE-K represents Knowledge, serving as the central repository that stores
data, metrics, policies, and topology information. This knowledge base is shared among
all other components.
M stands for Monitor, which collects data from the managed system or environment,
gathering information such as system metrics, performance data, and configuration prop-
erties. It subsequently transmits relevant data to the Analyze component.
A denotes Analyze, which processes the monitored data to detect patterns and identify
potential issues. It evaluates whether modifications are necessary based on the system’s
current state and, if required, triggers the Plan component.
P represents Plan, which formulates an action strategy when adaptations are deemed
necessary. It also generates a sequence of actions to be executed.
Finally, E stands for Execute, which is responsible for carrying out the modifications
specified in the action plan [16].

4

2 Fundamentals

2.2 Microservices

Martin Fowler and James Lewis define the microservice architecture as follows:
′′In short, the microservice architectural style is an approach to developing a single ap-
plication as a suite of small services, each running in its own process and communicating
with lightweight mechanisms, often an HTTP resource API. These services are built
around business capabilities and independently deployable by fully automated deploy-
ment machinery. There is a bare minimum of centralized management of these services,
which may be written in different programming languages and use different data storage
technologies.′′ [28]
In a microservices architecture, services are developed within clearly delineated business
boundaries.
Each service is responsible for a distinct functionality, ensuring that the codebase remains
manageable and does not grow excessively large [35].
Microservices offer several advantages over traditional monolithic software architectures:

• Resilience – The architecture promotes fault isolation. If a service encounters an
issue or fails, the failure remains contained within that specific service, preventing
disruptions across the entire system [35].

• Independent Deployments - Each service can be deployed independently, allow-
ing for greater flexibility and reducing the risk associated with system-wide up-
dates [35].

• Technology Diversity - Since services are developed autonomously, different tech-
nologies and programming languages can be employed to best meet the specific
requirements of each service [35].

However, microservices also introduce several challenges:

• Testing Overhead - Testing microservices is inherently more complex than testing
a monolithic application due to the need to validate interactions between multiple
independent services [35].

• Monitoring Complexity - Given the distributed nature of microservices, compre-
hensive monitoring is essential to maintain system health and detect potential is-
sues [35].

5

2 Fundamentals

2.3 Container Orchestration

The container orchestration in the paper ′′Container Orchestration: A Survey′′ is de-
fined as: ′′Container orchestration allows cloud and application providers to define how
to select, to deploy, to monitor, and to dynamically control the configuration of multi-
container packaged applications in the cloud. Container orchestration is concerned with
the management at runtime to support the deploy, run, and maintain phases. Container
orchestrator usually offers the following main features: resource limit control, scheduling,
load balancing, health check, fault tolerance, and autoscaling.′′ [13]
In this thesis, the Kubernetes orchestration tool is utilized.
′′Kubernetes is a portable, extensible, open source platform for managing containerized
workloads and services, that facilitates both declarative configuration and automation.
It has a large, rapidly growing ecosystem. Kubernetes services, support, and tools are
widely available.′′ [26]
To operate Kubernetes, a cluster is deployed, consisting of worker machines referred to
as nodes. Nodes execute pods, which serve as hosts for containers. The Control Plane
oversees cluster management, providing an API for deploying and managing containers.
Kubernetes objects, defined in YAML, specify applications, resources, and policies to
ensure the cluster maintains its desired state [26].

2.4 Performance Testing

Performance testing is defined in the AWS documentation as follows: ′′Determines the
responsiveness and stability of a system as it performs under a particular workload. Per-
formance testing also is used to investigate, measure, validate, or verify other quality
attributes of the system, such as scalability, reliability, and resource usage. Types of
performance tests might include load tests, stress tests, and spike tests. Performance
tests are used for benchmarking against predefined criteria.′′ [8] Another critical type
of testing relevant to this work is load testing. According to the AWS documentation:
′′Load tests are done to gain reliable information on whether your application is deliver-
ing the expected qualities. Although the most common approach is to generate load on
your applications, there are different ways you can understand load testing.′′ [17]
Performance testing is a fundamental process during various stages of the software de-
velopment lifecycle, particularly before an application is deployed into production.
It serves the following purposes:

6

2 Fundamentals

• Ensuring Reliability and Stability – Regular performance testing verifies that the
application can consistently handle expected workloads without experiencing per-
formance degradation [6].

• Validating Scalability – Testing assesses whether the application can scale efficiently
while maintaining performance standards as user demand increases [7].

• Optimizing Resource Utilization – Performance testing evaluates the efficiency of
resource usage, including CPU, memory, and network bandwidth, ensuring cost-
effective and optimal system operations [5].

2.5 Chaos Engineering

Netflix defines the principles of Chaos Engineering on its website ′′Principles of Chaos
Engineering′′ as:
′′Chaos Engineering is the discipline of experimenting on a system in order to build con-
fidence in the system’s capability to withstand turbulent conditions in production.′′ [14]
Modern distributed systems enable flexible development and rapid deployment; however,
they also introduce complexity and uncertainty. Even if individual services function cor-
rectly, their interactions can lead to unpredictable failures, particularly during rare real-
world disruptions. Identifying potential weaknesses at an early stage is crucial, as issues
such as improper fallback mechanisms, retry storms, or cascading failures can significantly
impact system stability. To ensure resilience and maintain confidence in production envi-
ronments, it is essential to proactively uncover and mitigate these vulnerabilities. Chaos
Engineering addresses this challenge by conducting controlled experiments on systems
to analyze their behavior under stress, thereby enabling teams to develop more robust
and reliable distributed architectures [14]. These experiments generally follow four key
steps:

• Define the system’s steady state—a measurable indicator of normal operational
behavior [14].

• Formulate a hypothesis that the steady state will remain unchanged under both
normal and experimental conditions [14].

• Introduce real-world failure scenarios, such as server crashes, hardware malfunc-
tions, or network disruptions [14].

7

2 Fundamentals

• Observe deviations from the steady state to identify system weaknesses [14].

The greater the difficulty in disrupting the steady state, the higher the confidence in the
system’s resilience.
Identifying vulnerabilities through these experiments highlights areas for improvement,
allowing potential failures to be addressed before they escalate into critical production
issues [14].

2.6 XGBoost

In the paper ′′XGBoost: A Scalable Tree Boosting System′′, XGBoost was introduced
as an efficient and scalable gradient boosting framework [15]. ′′In this paper, we de-
scribed the lessons we learnt when building XGBoost, a scalable tree boosting system
that is widely used by data scientists and provides state-of-the-art results on many
problems.′′ [15]
XGBoost incorporates several key features that enhance its performance:

• Sparsity-aware learning – Efficiently handles sparse data, a common characteristic
of real-world datasets [15].

• Weighted quantile sketch – Facilitates approximate tree learning, improving com-
putational efficiency and scalability [15].

• Cache optimization – Enhances data access patterns, reducing latency and accel-
erating computations [15].

• Data compression and sharding – Reduces memory consumption and distributes
computational workloads, enabling the processing of large-scale datasets [15].

These features contribute to XGBoost’s widespread adoption among data scientists for
various machine learning tasks, including:

• Classification – Assigning categorical labels to data points [15].

• Regression – Predicting continuous numerical values [15].

• Ranking – Ordering items based on relevance or importance in a given context [15].

8

2 Fundamentals

The effectiveness of XGBoost has been demonstrated across diverse applications, in-
cluding web text classification, ad click-through rate prediction, and high-energy physics
event classification [15].

9

3 Related Work

The thesis addresses an intersection of topics, including self-healing and self-adaptive
systems, XGBoost, MAPE-K, and chaos engineering. This chapter reviews key contribu-
tions in those domains and papers in which the combination of the topics is discussed.

The paper ′′A Survey on Self-healing Software System′′ [47] provides a comprehensive
survey on self-healing software systems, emphasizing the challenges posed by increasing
software complexity and the necessity for systems capable of autonomous recovery from
failures. The study categorizes various self-healing methods and highlights the impor-
tance of self-diagnosis and automatic repair mechanisms to maintain system reliability
without human intervention.

In 2003 IBM released their paper called ′′The vision of autonomic computing′′ [25] which
introduces the MAPE-K control loop. Prior to this, in 2001, IBM published a man-
ifesto highlighting a looming software complexity crisis. This crisis was driven by the
increasing scale and complexity of software systems, often consisting of tens of millions of
lines of code, and the growing challenge of managing heterogeneous environments across
enterprise-wide and internet-based systems. The manifesto emphasized that the diffi-
culty of integrating and managing these systems posed a threat to continued progress in
computing. As a response, autonomic computing was proposed as a promising approach
to address this complexity. Autonomic systems aim to manage themselves based on high-
level objectives set by administrators, reducing the need for manual intervention. These
systems are envisioned to seamlessly integrate new components, much like a new cell in-
tegrating into a living organism. While ambitious, these concepts laid the foundation for
the development of self-managing computing systems, representing a significant research
challenge in the pursuit of reducing operational complexity [25].

Later, in 2006, IBM published a white paper titled ′′An Architectural Blueprint for Auto-
nomic Computing′′ [16]. This document outlines a comprehensive framework for creating
self-managing computing systems, drawing inspiration from the human body’s autonomic

10

3 Related Work

nervous system. The blueprint introduces key components such as the Autonomic Man-
ager, which employs a control loop to monitor and adjust system operations, and Man-
ageability Endpoints, which facilitate communication between resources and managers.
By advocating for systems capable of self-configuration, self-optimization, self-healing,
and self-protection, this work has significantly influenced subsequent research and devel-
opment in autonomic and self-adaptive systems.

The paper ′′Feedback Control as MAPE-K Loop in Autonomic Computing′′ [38] examines
the MAPE-K loop through the lens of control theory, exploring both continuous and
discrete (supervisory) control techniques and their application in the feedback control
of computing systems. It offers detailed interpretations of feedback control loops as
MAPE-K loops, supported by various case studies.

Microservices architecture offers benefits like flexibility and scalability, with auto scaling
being key to adjusting resources as needed. However, existing auto scaling solutions
often misallocate resources, leading to inefficiencies [24]. To address this, MS-RA, a
self-adaptive, requirements-driven auto scaling solution was proposed in the paper ′′Self-
adaptive, Requirements-driven Autoscaling of Microservices′′ [24], which utilizes service-
level objectives (SLOs) for real-time decision-making. Built on the MAPE-K self-adaptive
loop, MS-RA has been evaluated using an open-source microservice-based application.

In the context of microservices, the development of self-healing architectures has been
explored to enhance system robustness [29]. The paper ′′A Self Healing Microservices
Architecture: A Case Study in Docker Swarm Cluster′′ [29] has examined the implemen-
tation of self-healing mechanisms within Docker Swarm clusters, demonstrating how mi-
croservices can autonomously detect and recover from failures, thereby improving overall
system reliability.

In the following paper ′′Self-Adaptive Microservice-based Systems - Landscape and Re-
search Opportunities′′[18] a systematic mapping of 21 primary studies was made. The
idea was to understand the application of self-adaptation in microservice-based systems.
Findings indicate that most studies focus on the monitoring phase (28.57%) of the adapta-
tion control loop, emphasize self-healing properties (23.81%), employ reactive adaptation
strategies (80.95%) at the system infrastructure level (47.62%), and utilize centralized
approaches (38.10%).

Recent advancements have introduced frameworks that integrate machine learning tech-
niques to enhance self-configuration and self-healing capabilities. One such framework

11

3 Related Work

employs an extreme gradient boosting (XGBoost) classifier to predict and mitigate sys-
tem anomalies, thereby improving overall system resilience [19]. In the paper ′′Self-
Configuration and Self-Healing Framework Using Extreme Gradient Boosting (XGBoost)
Classifier for IoT-WSN′′ [19] IoT traffic is categorized into various classes using the XG-
Boost classifier. During the self-configuration phase, IoT devices are allocated transmis-
sion slots and contention access periods based on their priority levels. In the self-healing
phase, the system initiates localized route recovery when a node’s residual power drops
below a certain threshold or when a node moves beyond a predefined range. Simula-
tion results demonstrate that this framework achieves a higher packet delivery ratio and
reduced packet drops compared to existing methods, while also lowering computational
costs.

The CHESS framework was introduced in the paper ′′CHESS: A Framework for Evalu-
ation of Self-adaptive Systems based on Chaos Engineering′′[30]. The framework offers
a structured approach to evaluating self-adaptive systems. By employing chaos engi-
neering techniques, CHESS enables systematic fault injection and monitoring, providing
insights into system behavior under adverse conditions and facilitating the enhancement
of self-healing capabilities.

Collectively, these studies contribute to the advancement of self-healing and self-adaptive
systems, offering diverse methodologies and frameworks to enhance the resilience and
efficiency of modern software architectures.

12

4 Concept

This chapter outlines the scope of the master’s thesis and defines the problem to be ad-
dressed, implemented, and validated. Additionally, it presents the requirements analysis,
detailing the necessary criteria for the tool’s implementation.

4.1 Problem Definition

As outlined in the introduction, this thesis focuses on developing a tool based on the
MAPE-K reference model, enhanced with a classification algorithm, to analyze and re-
solve errors in Spring Boot services running on Kubernetes.
The MAPE-K reference model is chosen for its structured approach, dividing concerns
into distinct phases—Monitoring, Analysis, Planning, and Execution—which improves
the manageability and scalability of complex adaptive systems. This modularity makes
it well-suited for the intended use case [29].

The tool’s scope includes system monitoring at both the log level of Spring Boot ser-
vices and the Kubernetes cluster. For error analysis, it must classify errors to ensure
appropriate solutions can be applied. Solution execution will be determined based on
environmental monitoring and system metrics, with fixes applied at either the Kuber-
netes cluster level or the Spring Boot service level. Additionally, the tool should support
rollback functionality to revert any changes made to the system.
To validate its effectiveness, a chaos engineering approach will be employed, proactively
identifying and addressing vulnerabilities. This will enhance the system’s resilience and
reliability in dynamic and unpredictable environments [30].

13

4 Concept

4.2 Requirements Analysis

As outlined in the problem definition chapter, the proposed tool is designed to address
two distinct categories of errors: those occurring within a Spring Boot service and those
arising at the Kubernetes infrastructure level.
To systematically determine which errors the tool should resolve and which correspond-
ing solutions should be applied, a structured approach has been devised. This chapter
presents the methodology used to identify and classify these errors and their respective
solutions.

For errors related to Spring Boot services, an extensive review of the existing litera-
ture was conducted to identify the most prevalent issues and their potential resolutions.
The most commonly encountered errors in Spring Boot services are as follows:

• Database connection error - Occurs when an application fails to establish or main-
tain a connection to its database service, disrupting data access operations [48].

• Configuration errors - ′′are also one of the major causes of today’s system failures.
Many configuration issues manifest themselves in ways similar to software bugs
such as crashes, hangs, silent failures. It leaves users clueless and forced to report
to developers for technical support, wasting not only users’ but also developers’
precious time and effort. Unfortunately, unlike software bugs, many software de-
velopers take a much less active, responsible role in handling configuration errors
because ”they are users” faults.′′ [45]

• Service down - Represents the complete unavailability of a system component,
preventing it from processing requests or performing its designated functions [10].

• Request error - Occurs when a client sends a malformed, invalid, or incorrectly
structured request to a service, resulting in rejection or improper processing. These
errors typically manifest as client-side (4xx) HTTP status codes in web services [31].

• Third party service error - Occurs when an external service integrated into a sys-
tem fails to operate correctly. This can result from various issues, such as the
third-party service being unavailable, experiencing internal errors, or having com-
patibility issues with the primary system [34].

• Timeout error - Occurs when an operation fails to complete within its allocated
time window, potentially leaving system state uncertain [33].

14

4 Concept

Following the identification of these errors, further research was conducted to determine
effective mitigation strategies.
The following solutions were identified:

• Circuit Breaker pattern - ′′is used to detect and handle service failures gracefully.
It prevents a system from repeatedly attempting to invoke a failing service, which
can lead to cascading failures. By temporarily stopping the invocation of a failing
service, the Circuit Breaker pattern allows the system to recover and maintain sta-
bility. This pattern helps to mitigate the risk of system-wide outages by isolating
failures and providing mechanisms to recover from them. The Circuit Breaker pat-
tern often operates in three states: Closed, Open, and Half-Open.′′ [39]
This approach is employed to detect and manage service failures, effectively pre-
venting cascading failures and ensuring system stability. As a result, it enhances
overall system availability and reduces failure rates [39].

• Retry pattern - ′′automatically re-attempts a failed operation a specified number
of times before giving up. This pattern is particularly useful in transient failure
scenarios where a temporary issue might resolve itself after a short delay. When
implementing the Retry pattern, it is crucial to define the retry logic carefully,
including the number of retry attempts and the delay between retries. Implement-
ing exponential backoff, where the delay increases exponentially with each retry,
can help reduce the load on the failing service and avoid overwhelming it with
requests.′′ [39]
This mechanism automatically retries failed operations, increasing their likelihood
of success. Consequently, it enhances the overall success rate of operations while
reducing error occurrences [39].

• Fallback pattern - ′′provides an alternative response or action when a service fails.
This pattern ensures that the system can continue to function, albeit with reduced
capability, even when some services are unavailable. Fallback mechanisms can
vary from returning cached data or default responses to redirecting requests to
alternative services. The choice of fallback strategy depends on the criticality of
the service and the nature of the failure. For instance, in a shopping application,
a fallback might provide a static′′service unavailable′′ page, while in a financial
application, it might offer a default value or last known good data to maintain
functionality.′′ [39]
This mechanism offers alternative responses during failures, allowing the system to

15

4 Concept

maintain functionality, albeit with reduced capabilities. As a result, it enhances
overall system reliability and improves the user experience [39].

• Timeout pattern - ′′specifies a maximum duration for a service request. If the re-
quest exceeds this duration, it is aborted, preventing long-running operations from
consuming excessive resources and affecting system performance. Timeouts can
be configured at various levels, including the client-side, server-side, and network
level. Configuring appropriate timeout values is essential to balance between al-
lowing sufficient time for legitimate operations and preventing excessive resource
consumption or blocking.′′ [39]
This mechanism defines a maximum duration for service requests, preventing long-
running operations from degrading system performance. As a result, it enhances
response times and optimizes resource utilization [39].

• Graceful Degradation Strategy - ′′is the ability of a system to maintain basic func-
tionality even when some components or services are not fully operational. This
might involve prioritizing essential services during high-load or failure scenarios.′′ [9]

• Isolating the Service (Bulkhead pattern) - ′′demonstrated its value in isolating dif-
ferent components of the system to prevent single points of failure from affecting
unrelated services. By segmenting resources and managing them independently,
the Bulkhead pattern ensured that failures in one part of the system did not prop-
agate to other areas. This isolation not only improved system resilience but also
enhanced overall availability. Our metrics revealed a significant increase in system
availability, from 85% to 95%, indicating that the Bulkhead pattern was successful
in containing failures and preventing them from impacting the entire application.
This result underscores the importance of resource isolation in maintaining robust
system performance under varying load conditions.′′ [39]
This approach isolates system components to prevent single points of failure, thereby
enhancing system resilience and availability. Consequently, it improves overall fault
isolation and ensures greater system stability [39].

• Failover pattern - Is a fault-tolerance mechanism that automatically switches to
a redundant or standby system upon the failure of the primary system. This en-
sures continuous availability and reliability in distributed systems. In microservices
architectures, implementing failover mechanisms is crucial for maintaining service
continuity. Strategies such as active-passive and active-active configurations are
commonly employed to achieve this [1].

16

4 Concept

• Exponential backoff - Is a strategy where the time between retry attempts increases
exponentially after each failure. This approach helps manage retries for failed
operations, reducing network congestion and enhancing system reliability [41].

• Pod deletion - This is one of the strategies that was taken over from the Kubernetes
solutions, it will be described in more detail in the Kubernetes solutions part of
this section.

• Load balancing - ′′is the process of redistribution of workload in a distributed system
like cloud computing ensuring no computing machine is overloaded, under-loaded
or idle. Load balancing tries to speed up different constrained parameters like
response time, execution time,system stability etc. thereby improving performance
of cloud.′′ [2]

• YML formatting - One more strategy that was taken over from the Kubernetes
solutions, it will also be described in more detail in the Kubernetes solutions part
of this section.

• Rollback config - One more strategy that was taken over from the Kubernetes
solutions, it will also be described in more detail in the Kubernetes solutions part
of this section.

• Client-Side Throttling - ′′When a client detects that a significant portion of its
recent requests have been rejected due to ′′out of quota′′ errors, it starts self-
regulating and caps the amount of outgoing traffic it generates. Requests above
the cap fail locally without even reaching the network′′ [10]

• Request Queuing Mechanism - Allows a service to temporarily store incoming re-
quests when a downstream service is unavailable. These queued requests are pro-
cessed later when the downstream service is back online. This strategy ensures
reliability and resilience, preventing data loss during service interruptions [41].

The second category of errors pertains to issues within the Kubernetes cluster.
Given that this domain is less extensively researched compared to microservice resilience,
a different approach was employed to identify prevalent errors and their corresponding
solutions.
Specifically, monitoring data from the company xChange Solutions [43], collected via
Datadog, was analyzed to determine the most frequently occurring Kubernetes-related
errors.

17

4 Concept

The analysis revealed the following common Kubernetes errors:

• Pod Unhealthy - Occurs when the readiness probe fails, indicating that the pod is
not executing.

• Node problem - Happens when the node is not in a ready state.

• Network error - Occurs when the network is not ready or the CNI plugin is not
initialized.

• Mount fail – Happens when the pod is in a FailedMount state.

• Low CPU or memory - Occurs when there is insufficient CPU or memory for the
pod to run.

• Invalid image error – Happens when there is an invalid reference to the required
container image.

• Configuration error – Arises due to misconfigured Kubernetes settings.

• Kubernetes failed – Encompasses instances where Kubernetes generates failed events.

Unlike Spring Boot service errors, for which established solutions exist, Kubernetes-
related error resolution required a different methodology. Since limited research has
been conducted in this area, solutions were identified by manually analyzing GitLab
hotfixes, Kubernetes deployments and Datadog logs/events within the company.
For certain errors where no established solutions were found using this approach, small
proof-of-concept (PoC) implementations were developed to explore viable fixes.

Based on this research, the following solutions were identified:

• YML formatting – Fixed Kubernetes configuration errors by reformatting the
YAML file.

• Rollback configuration – Resolved issues by reverting to a previous version of the
configuration.

• Check registry – Addressed failures related to inaccessible container registries.

• Verify image – Resolved invalid image reference issues.

• Pod CPU and memory limitations – Increased CPU and memory limits to address
resource constraints.

18

4 Concept

• Node scaling – Allocated additional resources to nodes.

• Free disk space – Freed or expanded disk space to resolve storage-related failures.

• Pod deletion – Restarted pods to resolve transient failures.

• Enable CNI – Addressed network issues by enabling the CNI plugin.

• Fix storage class/access modes – Adjusted storage class and access modes to resolve
mount failures.

Due to certain technical limitations and the complexity of error handling mechanisms,
not all identified solutions were implemented in the final tool.
The rationale for selecting specific solutions, the implementation details, and the map-
ping between errors and their corresponding solutions will be discussed in the Solution
Classification section of the Implementation chapter.

19

5 Implementation

This chapter details the implementation of the tool, including its architectural framework,
the algorithms utilized, and the overall operational workflow.

5.1 Architecture

The architectural design was derived from a systematic analysis of core requirements,
established through evaluation:

• Scalability - The tool must exhibit robust scalability to accommodate the potential
expansion of the monitored system and efficiently process large volumes of data.

• Performance - Given the significant volume of logs requiring monitoring and clas-
sification, the tool must maintain high processing efficiency.

• Asynchronous - The tool must support asynchronous processing, as the monitored
system generates extensive log data. Parallel processing is essential to ensure that
logs do not queue, preventing delays in resolving errors during runtime.

• Decoupling - The tool must operate independently of the node in which the mon-
itored service is running. As nodes may become unavailable, reliance on them
would prevent the tool from addressing errors effectively. Furthermore, the sys-
tem’s services must not depend on the tool, although the tool may depend on the
services.

To ensure scalability, the tool was developed as a stateless service, utilizing MongoDB for
data storage. An event-driven approach was adopted for inter-service communication,
leveraging a message broker. This approach also facilitated asynchronous processing,
allowing multiple logs to be handled concurrently without interdependencies.

20

5 Implementation

Python was selected as the implementation language due to its efficiency and built-in
support for asynchronous programming [36]. To enhance processing speed, the XGBoost
library was integrated directly into the tool as a module. In the initial version, XGBoost
operated as a separate service, but performance constraints necessitated its direct inte-
gration. To achieve decoupling, the tool operates externally to the service’s execution
node, ensuring continued functionality even if a node becomes unavailable. Dependency
minimization was a critical objective, leading to the incorporation of Spring Boot’s dy-
namic configuration, which will be elaborated upon later.

Considering these requirements, the following architecture 5.1 was designed:

Figure 5.1: Deployment diagram showing the dependencies between the tool and system
that is monitored

21

5 Implementation

As depicted in the architecture, MongoDB serves as the primary data store, while Rab-
bitMQ facilitates inter-component communication. The subsequent sections will elab-
orate on the individual components, their interactions, and their alignment with the
MAPE-K reference model.

To communicate with the monitored system, a communication tunnel needs to be estab-
lished. For evaluation purposes, this was achieved through Kubernetes port forwarding
mechanism. The tool extracts data from the Kubernetes API, Prometheus, and Spring
Boot endpoints, utilizing this information for decision-making in the analysis phase.

SDKs were employed within Python to facilitate data retrieval from Kubernetes and
Prometheus, as well as for executing actions via the Kubernetes API. For Spring Boot-
related interactions, dynamic configuration was leveraged through a dedicated configura-
tion server managing application YAML files stored in a Git repository. When a service
is initiated, it requests its configuration file from the server. This approach allows run-
time configuration modifications without necessitating service restarts, as only a refresh
operation via an endpoint is required.

Additionally, a Spring Boot library was developed as an integral component of the tool.
This library employs aspect-oriented programming (AOP) to integrate resilience patterns
such as circuit breakers, fallbacks, queued requests, retries, and backoff mechanisms. It’s
implemented in Java using aspect-oriented programming in Spring Boot, which means
it can only be used in Spring Boot services. The configuration of these patterns remains
dynamic, determined at runtime via the Spring Boot configuration framework. This
abstraction layer ensures that services remain independent of the tool while benefiting
from its resilience features. Moreover, the library provides an endpoint to track ser-
vice latency, feeding data into the tool’s analysis phase. The resilience mechanisms are
integrated into Feign clients, ensuring that external service calls are handled with the
fault tolerance strategies. The reasons for selectively implementing resilience patterns,
as explained in the Requirements Analysis section, will be further explored in the Solu-
tion Classification section. When the library is integrated into the service, its resilience
patterns are not applied uniformly across all endpoints. Only those endpoints explicitly
annotated with @Resilience utilize the library’s functionality.

22

5 Implementation

5.2 Algorithms

This section provides an in-depth analysis of the tool’s core components, their function-
alities, and their alignment with the MAPE-K reference model.

5.2.1 MAPE-K

The MAPE-K reference model is a feedback control loop comprising four primary com-
ponents: Monitoring, Analysis, Planning, and Execution [25].

The following figure 5.2 illustrates the tool’s system architecture:

Figure 5.2: Component diagram of the tool

The flow of the tool is described in the sequence diagram 5.3:

23

5 Implementation

Figure 5.3: Sequence diagram of the tool 24

5 Implementation

The system consists of the following core components:

• Log Collector

• Log Classifier

• Solution Executor

• Solution Tracker

• Rollback Service

The names in the diagram have been modified to fit within the available space, resulting
in slight differences from those in the text.
The Log Collector component is responsible for aggregating logs from both the Kuber-
netes cluster and Spring Boot services. To achieve this, the tool employs the Kubernetes
API to retrieve logs. The component initially filters logs, ensuring that only those cat-
egorized as errors or warnings are subjected to further processing. Each retrieved log
is assigned a unique identifier and subsequently stored in MongoDB. Following this, an
event is generated and placed in the collected_logs queue.
The Log Classifier component retrieves events from the queue and attempts to classify
them. If a log is determined to be noise, it is discarded; otherwise, the classification
result is stored in MongoDB, and a new event is created in the classified_log queue.
The Solution Executor component fulfills two primary responsibilities: determining the
appropriate remediation strategy and executing the selected solution. It processes events
from the classified_log queue, utilizing data from MongoDB, Prometheus, the Kuber-
netes API, and Spring Boot endpoints to make informed decisions. The methodology
for selecting an optimal solution is detailed in the Solution Classification section of this
chapter. Once a solution has been identified, it is executed, and a corresponding event is
placed in the solution_executed queue. This event includes an attempt counter, which
tracks the number of times different solutions have been attempted to resolve the error.
A retry mechanism is integrated into the tool, ensuring that if an initial remediation at-
tempt is unsuccessful, subsequent attempts are made. Each retry iteration benefits from
additional diagnostic data, as the system continues to operate under error conditions.
However, if the number of attempts exceeds three, the Solution Executor ceases further
execution.
The Solution Tracker component monitors solution execution by reading events from
the solution_executed queue. The tracking methodology is solution-specific; for certain
solutions, error logs are compared against new logs using predefined analytical formulas,

25

5 Implementation

while alternative solutions may employ different tracking mechanisms. These method-
ologies are further elaborated in the Solution Classification section.
Tracking is conducted over a predefined time interval, configurable within the system set-
tings (e.g., 60 seconds). Upon expiration of this interval, the Solution Tracker determines
whether the solution has been successful. If the error has been resolved, the tool logs the
result and terminates the process. Conversely, if the solution is deemed unsuccessful, an
event is created in the rollback queue.
The Rollback Service is responsible for reverting changes implemented by the Solution
Executor. Upon reading an event from the rollback queue, the Rollback Service utilizes
the embedded information to restore the system to its previous state. If the rollback is
successful and the attempt counter remains below three, a new event is generated and
placed in the execute_solution queue. This queue is processed by the Solution Executor,
thereby enabling an iterative loop in which the tool continues retrying error resolution
until a predefined termination condition is met.

Each component aligns with MAPE-K as follows: the Log Collector corresponds to
the Monitoring phase, the Log Classifier represents the Analysis phase, and the Solu-
tion Executor serves as the Planning and Execution component, in conjunction with
the Rollback Service. Knowledge is encapsulated within MongoDB, which stores logs,
classifications, decisions, and executed solutions.

5.2.2 Log Classification

As previously mentioned in the Introduction chapter, the log classification mechanism
was initially developed and validated in an earlier project, ′′Classifier Development for
Log Analysis in Spring Boot and Kubernetes′′ [40]. This section provides a concise sum-
mary of data collection, preprocessing, model selection, implementation, training, and
evaluation. For a comprehensive discussion, refer to the cited project.

As already seen in the architecture, the log classification is a fundamental component
of the tool, determining whether logs warrant further processing. The goal of the log
classification in its core, is to be able to accurately categorize Java service logs and Ku-
bernetes events.
As already mentioned in the Requirements Analysis chapter, the tool should be able to
classify the logs into the following categories:

26

5 Implementation

• spring_timeout_error

• spring_third_party_service_error

• spring_down_error

• spring_configuration_error

• spring_request_error

• spring_db_connection_error

• kubernetes_pod_unhealthy

• service_down_kubernetes_error

• kubernetes_node_problem

• kubernetes_network_error

• kubernetes_mount_fail

• kubernetes_low_cpu_memory

• kubernetes_invalid_image_error

• kubernetes_failed

• kubernetes_configuration_error

The classification model outputs a probability distribution over these categories. If con-
fidence falls below a predefined threshold (currently 85%), the log is deemed noise and
disregarded.
The dataset used for training the model comprises 9,600 data points, with approximately
600 data points per category. The data collection process for this project was particu-
larly challenging due to the lack of publicly available datasets suited for this purpose.
Consequently, two primary methods were employed to gather the necessary data.
Following an extensive investigation into the most frequently occurring errors in Spring
Boot services that impact resilience, latency, and system stability, relevant errors were ex-
tracted using the BigQuery Stack Overflow dataset. A combination of post querying and
tag filtering was applied to compile a comprehensive dataset of Spring Boot errors [40].
For Kubernetes-related errors, as outlined in the Requirements Analysis chapter, data
was gathered with the assistance of xChange Solutions [43]. Datadog monitoring was

27

5 Implementation

leveraged, utilizing specific filters and the Datadog API to extract relevant error data. [40]
Given that both datasets were initially unprocessed and contained raw data, preprocess-
ing steps were undertaken to enhance their usability.

Figure 5.4: Processing of the dataset used for training the classification model

The figure 5.4 shows the processing of the dataset used for training. The Kubernetes
data was in JSON format, while the Spring Boot data was in CSV, containing Stack
Overflow questions. Preprocessing was handled by Python scripts [40]:

• Kubernetes Script: Converted JSON logs to CSV, cleaned messages, categorized
errors, analyzed label frequency, and balanced data by capping labels at 600 entries.

• Spring Boot Script: Processed CSV logs similarly, extracting and categorizing error
messages, splitting data, and adjusting label counts by reducing or duplicating
entries as needed.

Both scripts produced cleaned CSV files, which were merged into a single dataset. A
final manual inspection ensures data quality before training.

For the implementation, four different classification approaches were explored and vali-
dated: Those were semantic embeddings, LSTM, XGBoost and Fine-tuning using SetFit.
The semantic embeddings approach was primarily exploratory and served as a founda-
tion for the subsequent models.
The training results indicate that semantic embeddings, particularly those derived from
fine-tuning a pretrained Sentence Transformer model with SetFit, were not well-suited for
this classification task. While initially promising, the observed performance was signifi-
cantly lower than that of LSTM and XGBoost models. Moreover, the training time for
SetFit was considerably high, further diminishing its practicality for this application [40].

28

5 Implementation

Among the evaluated models, XGBoost demonstrated the highest accuracy (98.21%)
while also exhibiting the shortest training time. The LSTM model achieved an accuracy
of 95.04% on Kubernetes data, which is slightly lower than XGBoost but still satisfac-
tory. But it suffered a severe performance drop when incorporating Spring Boot data,
with accuracy declining to 6.01%, a level equivalent to random guessing. This suggests
that the LSTM model struggled with the heterogeneity of the dataset [40].
The superior performance of XGBoost can be attributed to its inherent characteristics,
as documented in prior research [23]. XGBoost has been shown to outperform LSTM in
certain applications due to its efficiency, stability, and scalability, particularly when han-
dling large structured/tabular datasets. Although system error logs exhibit sequential
properties, which typically favor LSTM-based approaches, the findings of this study sug-
gest that preprocessing techniques and architectural choices significantly impact model
performance [23].
The LSTM model in this study employed a simple architecture with a single LSTM layer
and a dense layer, which may have contributed to its suboptimal performance. Notably,
comparable results were achieved in a related master’s thesis on Ericsson system logs,
where a Bag-of-Words (BOW) representation combined with XGBoost yielded superior
classification performance [22]. This further supports the conclusion that, despite the
sequential nature of system logs, non-sequential models such as XGBoost can be more
effective in certain contexts.

5.2.3 Solution Classification

Solution classification is a critical component of the Solution Executor, determining the
appropriate resolution strategy for detected errors. As previously mentioned, the solu-
tion selection is based on information derived from classified logs, Prometheus metrics,
Kubernetes API data, and Spring Boot endpoints. A rule-based system was implemented
to facilitate decision-making regarding the appropriate solution. The choice of a decision
tree model was motivated by the constraints of this thesis, including time limitations and
the complexity of the overall implementation. Given these constraints, a decision tree
represented the most suitable approach for this initial version of the tool.

The decision tree used for solution classification is illustrated in the following five fig-
ures 5.5 to 5.9.

29

5 Implementation

CONFIG_ERROR

No Yes

No Yes

INVALID_IMAGE

Yes

No Yes

No

No Yes

LOW_RESOURCES

Yes

No

No

Yes

Start:
Kubernetes

Errors

Error
Class?

K8S_YML_FORMATTING
used?

K8S_YML_FORMATTING
K8S_ROLLBACK_CONFIG

used?

K8S_ROLLBACK_CONFIG not_found

Auth
in log?

CHECK_REGISTRY
used?

CHECK_REGISTRY
VERIFY_IMAGE

used?

VERIFY_IMAGE

Try
unused
solution

else
not_found

Memory/CPU
high or
service
down?

POD_CPU_MEMORY_LIMITS
used?

POD_CPU_MEMORY_LIMITS

Try
unused
solution

else
not_found

Figure 5.5: Kubernetes error part of the decision tree

30

5 Implementation

NODE_PROBLEM

Yes

No Yes

No

Yes

No Yes

No

POD_UNHEALTHY

Yes

No Yes

No

No Yes

SERVICE_DOWN

Yes

No Yes

No

No Yes

Start:
Node

&
Pod

Issues

Error
Class?

Node
CPU/Memory

too low?

SCALE_NODE
used?

SCALE_NODE
Disk
full?

FREE_DISK_SPACE
used?

FREE_DISK_SPACE

Try
unused
solution

else
not_found

Memory/CPU
high?

CPU_MEMORY_LIMITS_AND_HEALTHY
used?

CPU_MEMORY_LIMITS_AND_HEALTHY
POD_DELETION

used?

POD_DELETION

Try
unused
solution

else
not_found

Memory/CPU
high?

CPU_MEMORY_LIMITS_AND_HEALTHY
used?

CPU_MEMORY_LIMITS_AND_HEALTHY
POD_DELETION

used?

POD_DELETION

Try
unused
solution

else
not_found

Figure 5.6: Node and pod issues part of the decision tree

31

5 Implementation

DB_CONNECTION

Yes No

No Yes NoYes

CONFIG_ERROR

No Yes

No Yes

SPRING_DOWN

No Yes

Start:
Spring
DB &
Config

Error
Class?

DB
down/unhealthy?

POD_DB_DELETION
used?

DB_LOAD_BALANCING
used?

POD_DB_DELETION

Try
unused
solution

else
not_found

DB_LOAD_BALANCING

YML_FORMATTING
used?

YML_FORMATTING
ROLLBACK_CONFIG

used?

ROLLBACK_CONFIG not_found

POD_DELETION
used?

POD_DELETION not_found

Figure 5.7: Spring DB and configuration part of the decision tree

32

5 Implementation

SPRING_REQUEST

No

Yes

No

No

Yes

Yes

Yes

No

NoYes

No Yes

Yes

No Yes

No

No Yes

Start:
Spring

Requests

Error
Class?

Service
down?

Latency
high?

EXPONENTIAL_BACKOFF
used?

EXPONENTIAL_BACKOFF
FALLBACK_MECHANISM

used?

Latency
high?

CIRCUIT_BREAKER
used?

CIRCUIT_BREAKER

FALLBACK_MECHANISM

429 in
error &
latency

high?

CLIENT_THROTTLING
used?

CLIENT_THROTTLING
QUEUED_REQUEST

used?

QUEUED_REQUEST

Try
unused
solution

else
not_found

Figure 5.8: Spring requests part of the decision tree

33

5 Implementation

THIRD_PARTY

No

Yes

No Yes

No

Yes

Yes

No Yes

No

No Yes

No Yes

No Yes

TIMEOUT

No Yes

No Yes

No Yes

Start:
Third

Party &
Timeout

Error
Class?

Service
down?

Latency
high?

EXPONENTIAL_BACKOFF
used?

EXPONENTIAL_BACKOFF
FALLBACK_MECHANISM

used?

Latency
high?

CIRCUIT_BREAKER
used?

CIRCUIT_BREAKER

FALLBACK_MECHANISM
QUEUED_REQUEST

used?

QUEUED_REQUEST
LOAD_BALANCING

used?

LOAD_BALANCING

Try
unused
solution

else
not_found

FALLBACK_MECHANISM
used?

FALLBACK_MECHANISM
QUEUED_REQUEST

used?

QUEUED_REQUEST
LOAD_BALANCING

used?

LOAD_BALANCING

Try
unused
solution

else
not_found

Figure 5.9: Spring third party and timeout part of the decision tree

34

5 Implementation

In the implementation there is only one decision tree, but for the sake of clarity, it has
been divided into five figures, else it could not be displayed properly.
The terminology and the meaning of the decision tree is defined in the chapter Require-
ments Analysis.
For Kubernetes-related errors, the decision tree considers multiple failure scenarios. In
the case of a Kubernetes configuration error, the system verifies whether YAML format-
ting has already been applied before proceeding to rollback configuration if necessary.
If neither solution is available, the classification results in not found. For a Kubernetes
invalid image error, the tree assesses authentication logs, potentially applying check reg-
istry or verify image, with fallback ensuring that unused solutions are attempted before
concluding that no viable resolution exists.

Resource-related issues such as Kubernetes low resources (CPU and memory limitations)
and Kubernetes node problems follow a similar structured approach. The classification
process evaluates whether CPU or memory constraints contribute to the failure, applying
pod CPU and memory limits, scale node, or free disk space where applicable. If no solu-
tion proves effective, the system attempts alternative strategies before marking the issue
as unresolved. Similarly, when a Kubernetes pod unhealthy or service down Kubernetes
condition arises, the tree assesses CPU and memory usage, determining whether CPU
memory limits and healthy or pod deletion should be applied to restore functionality.

Errors related to Spring Boot services, such as a Spring database connection error, Spring
configuration error, and Spring service down, are handled in a similar way. For database-
related failures, database health check is performed, solutions such as load balancing and
DB pod deletion are considered. Configuration errors undergo a similar assessment,
applying YAML formatting or rollback configuration where appropriate. If a service is
detected as down, the system attempts pod deletion as a corrective measure.

Service degradation scenarios, including request error, third-party service error, and time-
out errors, are addressed by evaluating latency and availability. Solutions such as expo-
nential backoff, fallback mechanism, and circuit breaker are prioritized, followed by load
balancing and queued request where necessary.

For unclassified or invalid errors, the system defaults to not found, ensuring that un-
recognized failure patterns do not disrupt the classification process. This structured
decision-making approach enables an adaptive response to diverse failure conditions, op-
timizing solution selection based on predefined criteria.

35

5 Implementation

In addition to decision-making, tracking the applied solutions and their rollback mecha-
nisms is essential.

Figure 5.10: Mapping of solutions to the tracking functions

The tracking process ensures that solution execution is monitored effectively, provid-
ing insights into the impact and success of each corrective action. The tracking system
consists of multiple functions, each responsible for monitoring a specific aspect of the

36

5 Implementation

applied solutions. The track logs function is linked to connection-handling solutions
such as queued request, exponential backoff, fallback mechanism, load balancing, circuit
breaker, and client throttling, ensuring that latency-related issues are properly observed.
The track events function monitors registry-related solutions, specifically check registry,
to validate their application. For Kubernetes and Spring Boot configuration-related is-
sues, the track if pod running function is responsible for overseeing solutions like YAML
formatting, rollback configuration, pod deletion, CPU and memory limits, pod CPU and
memory limits, verify image, pod database deletion etc. This ensures that structural
modifications, including configuration corrections and resource allocation changes, are
tracked in real time. Resource management tracking is handled by specialized func-
tions. The track freeing disk space function monitors the nodes free disk space, ensuring
that disk-related interventions are properly executed and evaluated. Similarly, the track
check scale node cpu and memory function is responsible for tracking the application of
scale node, ensuring that scaling operations are performed based on observed resource
constraints. By systematically linking solutions to their corresponding tracking func-
tions, this approach provides a structured mechanism for assessing the effectiveness of
each corrective action. This enables better rollback strategies and facilitates continuous
improvement in failure resolution.

In this isolated setup, rollback is only applied to the YAML formatting solution, as other
solutions do not require rollback because the system is quite isolated. This selective roll-
back approach simplifies recovery while maintaining the integrity of applied solutions.

Not all errors and solutions have been implemented in the tool. This is due to the
complexity of certain issues and their corresponding solutions, which would require a
significant amount of time beyond the scope of this thesis. Additionally, technical con-
straints further limited the range of implementations.

While the decision tree approach was effective for this thesis, a more sophisticated algo-
rithm should be implemented in a production-ready version of the tool. The rule-based
system, though well-suited for well-defined problems, becomes increasingly complex as
new rules are added and lacks the flexibility to adapt to novel scenarios [27].
To address these limitations, further research was conducted to identify a more scal-
able solution for selecting the appropriate resolution strategy. The classification process
should incorporate both the error class and relevant metrics obtained from Prometheus,
Kubernetes API, and Spring Boot endpoints.
XGBoost was identified as a highly suitable alternative due to several key advantages:

37

5 Implementation

• Effective handling of both numerical and categorical data [44]

• Built-in regularization to mitigate overfitting [15]

• Fast training and inference times, enabling real-time responses [15]

• Feature importance insights, enhancing interpretability [15]

• Proven reliability in production environments [15]

A crucial requirement of the system is its ability to accommodate new errors and so-
lutions over time. To achieve this, the tool should support incremental classification
improvements without requiring complete model retraining. A plugin-based architecture
would further enhance its extensibility. XGBoost’s support for incremental learning and
transfer learning techniques allows for continuous expansion of the classification model
without the need for complete retraining [42]. This design establishes a solid foundation
for an automated incident response system that can adapt to evolving challenges while
maintaining robust and reliable performance.

38

6 Experimental Setup and Implementation

This chapter outlines the methodology used to evaluate the tool, including the test
environment setup and the implementation of chaos engineering setup.

6.1 Evaluation Methodology

For the evaluation of the tool, the CHESS framework, as described in the paper ′′CHESS:
A Framework for Evaluation of Self-adaptive Systems based on Chaos Engineering′′[30]
was utilized.
′′CHESS is a systematic approach for evaluating self-adaptive and self-healing systems
using chaos engineering principles. It perturbs systems to observe their responses and in-
cludes predefined fault injection scenarios, a self-monitoring service for logging behaviors,
and a managing system service that restores stability′′[30].

The original implementation of CHESS, as presented in the paper, was not directly used
due to its limitation of supporting only five chaos engineering injections/methods. The
requirements of this thesis require the execution of approximately 40 different chaos en-
gineering methods/injections.
As emphasized in the CHESS study and based on fundamental chaos engineering princi-
ples, a target system is required for executing chaos engineering experiments [30]. In this
work, two distinct systems were selected: the SMS and the EOMS systems. A detailed
description of these systems is provided in the subsequent section of this chapter.

In the CHESS framework, system state monitoring is performed using a system moni-
tor [30]. However, in this thesis, an alternative approach was adopted, leveraging perfor-
mance testing. Specifically, k6 performance tests were executed concurrently with chaos
engineering experiments, and the resulting performance data was analyzed to assess the
system state post-experimentation.

39

6 Experimental Setup and Implementation

The evaluation methodology is structured as follows: In the first experiment, the SMS
system was executed without the proposed tool, and chaos engineering was applied. The
chaos engineering process was divided into 12 distinct scenarios, with each scenario en-
compassing one to six chaos engineering injections/methods. Concurrently, performance
testing was conducted. In the second experiment, the EOMS system was tested under
similar conditions, without the tool, and with both chaos engineering and performance
testing applied. The third experiment involved executing the SMS system with the tool,
followed by chaos engineering and performance testing. Finally, in the fourth experiment,
the EOMS system was tested with the tool under the same conditions.
A total of 48 scenarios were executed, distributed across the four experiments, with each
scenario consisting of one to six chaos engineering injections/methods. Throughout each
test, approximately seven requests per second were sent to the system. The SMS system
included five endpoints targeted by these requests, whereas the EOMS system contained
11 endpoints. Each experiment was conducted over a duration of approximately 12
hours. All experiments and scenarios were executed in isolation within a local Minikube
environment. This approach was selected due to the constraints of time and resources
associated with this thesis. Deploying the entire setup on a cloud provider would have
been prohibitively time-consuming and financially impractical.

6.2 Test Environment Setup

As previously mentioned in this chapter, two systems were developed in which chaos
engineering, combined with performance testing, was employed to evaluate the tool. The
first system is the Student Management System (SMS), a web application designed for
managing schools and their students. The second system is the E-commerce Order Man-
agement System (EOMS), which facilitates order placement in an online shop. Both
systems were developed using the Spring Boot framework and are deployed in a Kuber-
netes cluster.
The source code for both projects was originally obtained from GitHub but was heav-
ily modified to meet the requirements [3, 4]. The following figure 6.1 illustrates the
architecture of the SMS system:

40

6 Experimental Setup and Implementation

Figure 6.1: Component diagram of the SMS system

The SMS system consists of four services: the gateway, school, student, and config-server
services. The gateway service serves as the system’s entry point, routing requests to the
appropriate services. The school service is responsible for managing schools within the
system and provides three endpoints.

• POST /api/v1/schools - Creates a school

• GET /api/v1/schools - Returns all schools

• GET /api/v1/schools/with-students/school-id - Returns the school with all the
students in it

41

6 Experimental Setup and Implementation

Similarly, the student service manages student records and also exposes three end-
points.

• POST /api/v1/students - Creates a student

• GET /api/v1/students - Returns all students

• GET /api/v1/students/school/school-id - Returns the students with the given
school id

A key characteristic of the system is that the school service communicates synchronously
with the student service. Specifically, the GET /api/v1/schools/with-students/school-id
endpoint invokes the GET /api/v1/students/school/school-id endpoint from the student
service. Both the school and student services utilize separate PostgreSQL databases.
Additionally, the system includes deployments for Zipkin, Prometheus, Loki, PgAdmin,
and Postgres-Exporter, which are used for system monitoring. These components are
omitted from the architectural figure due to visualization constraints.
The config service retrieves configuration settings from a Git repository and facilitates
dynamic configuration changes across all services at runtime. As discussed in the imple-
mentation chapter, this is achieved through Spring Cloud Config.

The library forming part of the tool, as described in the implementation chapter, was
incorporated into the school service during the SMS system experiments involving the
tool deployment. The subsequent section describes the chaos engineering script, which
leverages Spring Cloud Config to introduce chaos into the system via the student service.

The architecture of the EOMS system is shown in the following figure 6.2:

42

6 Experimental Setup and Implementation

Figure 6.2: Component diagram of the EOMS system

The EOMS system comprises six services: gateway, config-server, order, product, cus-
tomer, and payment services. The gateway and config-server function similarly to their
counterparts in the SMS system. The order service manages customer orders and exposes
four endpoints.

• GET /api/v1/orders - Returns all orders

• GET /api/v1/orders/id - Returns the order with the given id

• GET /api/v1/order-lines/order/id - Returns the order lines with the given order
id

43

6 Experimental Setup and Implementation

• POST /api/v1/orders - Creates an order

The product service, upon initialization, pre-populates its database with 25 different
products and offers four endpoints.

• POST /api/v1/products - Creates a product

• GET /api/v1/products - Gets all products

• GET /api/v1/products/id - Gets the product with the given id

• POST /api/v1/products/purchase - Creates a purchase

The customer service provides five endpoints for managing customer data.

• POST /api/v1/customers - Creates a customer

• PUT /api/v1/customers - Updates customer information

• GET /api/v1/customers - Returns all customers

• DELETE /api/v1/customers/id - Deletes the customer with the given id

• GET /api/v1/customers/id - Returns the customer with the given id

The payment service handles payment transactions and includes a single endpoint.

• POST /api/v1/payments - Creates a payment

The EOMS system is inherently more complex than the SMS system, not only due to
the greater number of services and endpoints but also due to the increased complexity
of inter-service communication. The POST /api/v1/orders endpoint in the order service
triggers the GET /api/v1/customers/id endpoint in the customer service, followed by the
POST /api/v1/products/purchase endpoint in the product service. After that the order
is saved and an order-line is created in the database. Once the order is processed, an
order-line is created in the database, after which the POST /api/v1/payments endpoint
in the payment service is invoked.
Although the inter-service communication remains synchronous, the complexity is sig-
nificantly higher than in the SMS system. Furthermore, the order service represents a
single point of failure in the architecture. The customer service employs MongoDB as
its database, while the product, order, and payment services each utilize separate Post-
greSQL databases.
For monitoring purposes, the same stack as in the SMS system—Zipkin, Prometheus,

44

6 Experimental Setup and Implementation

Loki, PgAdmin, and Postgres-Exporter—was deployed. However, these components,
along with MongoDB and MongoDB-Exporter, were omitted from the figure due to
visualization limitations. MongoDB-Exporter was specifically used for monitoring the
MongoDB database.
The tool’s library was also integrated into this system, specifically into the order service
during one of the experiments. In addition, the chaos engineering script needed to be
capable of injecting failures into the system. For this purpose, the product service was
selected as the target of chaos injections.

6.3 Chaos Engineering Implementation

For the validation of the tool, a chaos engineering script was developed in conjunction
with a performance testing script. This section provides a detailed description of both
the chaos engineering script and the performance testing script.
The following figure 6.3 illustrates the architecture of the chaos engineering setup:

45

6 Experimental Setup and Implementation

Figure 6.3: Deployment diagram of the chaos engineering setup

46

6 Experimental Setup and Implementation

Although the figure should ideally show the interaction between the chaos engineering
script and other Spring Boot services, these interactions could not be effectively repre-
sented and were therefore omitted from the figure.
The chaos engineering script is the core component of the testing system, defining all
experimental scenarios. These scenarios simulate real-world failure conditions, includ-
ing service timeouts, HTTP error responses, configuration inconsistencies, resource con-
straints, and infrastructure failures. The script interacts with the Kubernetes API to
manipulate deployments, pods, and other resources, thereby enabling infrastructure-level
chaos experiments. It can simulate various Kubernetes-specific failure modes, such as in-
correct image configurations, pod health issues, node failures, and resource limitations.
Additionally, the script injects application-level failures, including artificial latency, pre-
defined HTTP error codes, and dynamic configuration modifications. This is accom-
plished using the Spring Cloud Configuration Server and GitHub, which enable runtime
configuration changes to introduce controlled failure conditions.
The script also integrates k6 load testing, which operates continuously throughout the
experiment to simulate realistic user traffic. This ensures that system behavior under
failure conditions can be observed in a high-load environment.
As previously mentioned, the framework collects extensive telemetry data during the
experiments. This includes Kubernetes logs and events, distributed traces from Zipkin,
metrics from Prometheus, and logs from Loki, providing a comprehensive observability
framework for analyzing system behavior under failure conditions. Additional metrics
are gathered from both the k6 script and the chaos engineering script in the form of logs.
The script fully automates the experimental lifecycle, encompassing infrastructure provi-
sioning (Minikube cluster setup and microservices deployment), execution of experiments,
data collection, and cleanup. This ensures reproducibility and consistency across chaos
experiments.

For each failure type identified in the Requirements Analysis section of the Concept
chapter, a corresponding scenario was designed and executed. The implemented scenarios
are as follows:

Spring Timeout Scenario:
In this scenario, requests are continuously sent to the system via the Gateway for five
minutes before any fault injection occurs. Subsequently, an incremental wait time is
introduced in the Student/Product service at four different intervals, each lasting five
minutes, to simulate timeout conditions. Once the timeout phase is completed, the wait
time modification is removed, and the service resumes normal operation for five minutes.

47

6 Experimental Setup and Implementation

Following this, another wait time is introduced into the Student/Product service, induc-
ing a new timeout condition. After two minutes, the entire service is forcibly terminated,
enabling an evaluation of queued requests, fallback mechanisms, and load balancing
across multiple service instances. This phase continues for 15 minutes. Finally, a roll-
back is executed, restoring normal service operation for five minutes. A five-minute
waiting period is maintained between scenarios.

Spring Third-Party Service Scenario:
Requests are initiated through the Gateway five minutes before the experiment begins.
The Student/Product service is then configured to return HTTP 500 error responses for a
duration of 20 minutes. Following this phase, the service is restored to normal operation
for five minutes.
The HTTP 500 error responses are then reintroduced for two minutes to simulate a third-
party service failure. Subsequently, the entire service is forcibly stopped, allowing for an
evaluation of queued requests, fallback mechanisms, load balancing strategies, and the
circuit breaker pattern. This phase lasts 15 minutes. The rollback phase ensures that
error responses cease, and the service returns to normal operation for five minutes. A
five-minute waiting period is enforced between scenarios.

Spring Request Scenario:
Requests are continuously sent through the Gateway five minutes before the experiment
begins. The Student/Product service then starts responding with HTTP 400 error codes
to the School/Order service for 20 minutes. After this phase, the HTTP 400 error is
removed, and normal service operation resumes for five minutes.
Subsequently, the Student/Product service is reconfigured to return HTTP 400 responses
for an additional two minutes to simulate a request error. Following this, the entire ser-
vice is terminated to assess the impact on queued requests, fallback mechanisms, load
balancing, and the circuit breaker pattern. This phase lasts 15 minutes, after which
normal operation resumes for five minutes.
Next, the Student/Product service begins returning HTTP 429 responses for 20 minutes.
After another five-minute normal operation period, the School/Order service is miscon-
figured to call an incorrect URL for 20 minutes. A rollback is then performed to restore
the correct configuration, allowing the service to resume normal operation. A five-minute
waiting period is enforced between scenarios.

Spring Down Scenario:
Requests are continuously sent to the system via the Gateway for five minutes before

48

6 Experimental Setup and Implementation

any fault injection occurs. The Student/Product service is then deliberately stopped by
deleting the corresponding pod, ensuring that the service ceases operation entirely. This
phase lasts for 20 minutes.
Subsequently, the Student/Product service is restored, becoming accessible again, and
requests continue for an additional five minutes before the scenario concludes. A five-
minute waiting period is enforced before the next scenario.

Spring Configuration Scenario:
Requests are initiated through the Gateway five minutes before the fault is introduced.
An incorrect application.yaml configuration file is then deployed to the Student/Product
service, specifying an invalid port, thereby inducing a configuration-related failure. This
phase persists for 20 minutes.
Following this, a rollback is performed to restore the correct configuration, allowing the
service to resume normal operation. Requests continue for an additional five minutes
before the scenario concludes. A five-minute waiting period is enforced between scenar-
ios.

Spring Database Connection Scenario:
Requests are continuously sent to the system via the Gateway for five minutes before any
failure is induced. The database schools/order is then made inaccessible without being
terminated, simulating a database connection failure. This phase persists for 20 minutes.
Subsequently, the database is restored, resuming normal operation for five minutes be-
fore being completely shut down. This phase lasts an additional 20 minutes, enabling an
evaluation of fallback mechanisms and load balancing across multiple service endpoints.
The system then returns to normal operation for another five minutes. A five-minute
waiting period is observed between scenarios.
An additional failure condition was initially considered for this scenario, involving an
excessive number of database connections. However, due to technical challenges in im-
plementing this condition, it was ultimately omitted.

Kubernetes Pod Unhealthy Scenario:
Requests are continuously sent to the system via the Gateway, starting five minutes be-
fore any faults are introduced. The Student/Product pod is then artificially degraded by
significantly reducing CPU and memory limits, rendering it unhealthy. This phase lasts
for 20 minutes.
Afterward, the service resumes normal operation for five minutes before the pod is explic-
itly deleted to simulate a pod failure. This phase also persists for 20 minutes. Finally, a

49

6 Experimental Setup and Implementation

rollback is executed to restore the system to its normal state, which lasts for five minutes.
A five-minute waiting period is enforced before the next scenario.

Service Down Kubernetes Scenario:
This scenario mirrors the Kubernetes Pod Unhealthy Scenario. However, it is included
separately because, in some cases, the failure injected by the chaos engineering script is
classified as a service down kubernetes class by the XGBoost classifier depending on the
event/log.

Kubernetes Low CPU/Memory Scenario:
Requests are continuously sent to the system via the Gateway, beginning five minutes
prior to any fault injection. The allocated CPU and memory resources are then drasti-
cally reduced, allowing for an evaluation of the system’s resource allocation mechanisms.
This phase lasts for 20 minutes.
Following this, a rollback is performed to restore normal system operation, which contin-
ues for five minutes. A five-minute waiting period is enforced before the next scenario.

Kubernetes Invalid Image Scenario:
Requests are initiated through the Gateway five minutes before the fault is introduced.
The container image is then replaced with an invalid URL, leading to image verification
failures. This phase persists for 20 minutes.
Subsequently, a rollback is executed to restore the system to its normal state, which lasts
for five minutes. A five-minute waiting period is enforced before the next scenario.

Kubernetes Configuration Scenario:
Requests are continuously sent to the system via the Gateway, beginning five minutes
before any fault is introduced. The Kubernetes deployment is then deliberately miscon-
figured to attempt access to a non-existent secret, inducing a configuration failure. This
phase persists for 20 minutes.
Following this, a rollback is executed to restore the system to its normal state, which lasts
for five minutes. A five-minute waiting period is enforced before the next scenario.

The Kubernetes Network and Kubernetes Mount Failure scenarios were also planned
but were ultimately not implemented. The network failure scenario was deemed infeasi-
ble as it required disabling the CNI plugin, which would necessitate a Minikube cluster
restart. This restart would terminate all running services and erase all database data,
which was not an acceptable outcome. The mount failure scenario was also not imple-
mented, as persistent volumes in Kubernetes have static access modes. The intended

50

6 Experimental Setup and Implementation

approach—modifying the volume to read-only to trigger a mount failure—was not tech-
nically possible.

Before each scenario, a Minikube cluster is initialized, and all required services are de-
ployed. Additionally, the script deploys a Redis instance, which is utilized by the k6
scripts.
Each scenario begins with the execution of the k6 script, which runs throughout the sce-
nario’s duration. This ensures continuous monitoring of system behavior and provides
insights into which services remain operational under failure conditions. Concurrently,
the chaos engineering script executes and collects relevant data. Upon scenario comple-
tion, all collected data is stored, the Minikube cluster is stopped and deleted, and the
Redis instance is also shut down.
The data collection process leverages the Kubernetes API to retrieve Kubernetes events
and Spring Boot service logs. Additionally, logs, traces, and metrics are collected from
Loki, Zipkin, and Prometheus via their respective APIs. This setup ensures that each
experiment is executed in isolation, preventing interference between scenarios.

Two distinct k6 scripts were developed. One for the SMS system and another for the
EOMS system. Both scripts utilize Redis for storing response data, as this data is re-
quired in subsequent requests. Since k6 executes multiple virtual users (VUs) in parallel,
a shared storage mechanism such as Redis is necessary to maintain data consistency
across requests. Traditional in-script data structures are insufficient, as VUs cannot
share memory.
All requests are directed to the system’s primary entry point, the Gateway service. The
chaos engineering script itself is not deployed within the Minikube cluster; instead, it
operates externally, transmitting requests using Kubernetes port forwarding.

The k6 script for the SMS system sends the following requests:

• POST /api/v1/students, POST /api/v1/schools, and
GET /api/v1/schools/with-students/{school-id}— 1 request per sec-
ond.

• GET /api/v1/students and GET /api/v1/schools — 2 requests per sec-
ond.

The script includes a setup phase in which a school ID is first stored in Redis. This is es-
sential to ensure that the POST /api/v1/students and GET /api/v1/schools/with-

51

6 Experimental Setup and Implementation

students/{school-id} requests can be executed successfully, as they rely on a valid
school ID. Other request payloads are generated dynamically using the k6 Faker library.

The k6 script for the EOMS system has a similar structure, but is more complex due to
the complexity of the EOMS system. It sends requests at the following rates:

• PUT /api/v1/customers and DELETE /api/v1/customers/{id} — 1 re-
quest every 40 seconds.

• POST /api/v1/customers and POST /api/v1/products— 1 request every
10 seconds.

• GET /api/v1/customers, POST /api/v1/orders, GET /api/v1/orders,
GET /api/v1/orders/{id}, GET /api/v1/order-lines/order/{id}, GET
/api/v1/products, and GET /api/v1/products/{id} — 1 request every
2 seconds.

The setup phase of this script involves sending 10 initial requests to both the POST

/api/v1/customers and POST /api/v1/products endpoints. This ensures that
sufficient data is preloaded into both the database and Redis for subsequent requests.
Additionally, some endpoints introduce a slight delay before execution to guarantee that
the necessary data is available in Redis for constructing valid request payloads.

52

7 Experimental Results and Analysis

This chapter provides a detailed explanation of the experiment and presents the results
of four experiments conducted on the SMS and EOMS systems, both with and without
the tool. Finally, the chapter discusses the findings, draws conclusions, and addresses
the research question.

7.1 Experimental Procedure

The four experiments were conducted on a MacBook Pro 2021 with an Apple M1 Pro
chip, 8-core CPU (6 performance cores and 2 efficiency cores), 16 GB of memory, and
running macOS 15.3. Each experiment was executed approximately 10 times, as errors
encountered during the runs changes were necessary. The execution of all experiments
and scenarios required a total of approximately 480 hours. The final set of experiments
each required approximately 12 hours of execution time, resulting in a joint runtime of
approximately 48 hours. To prevent the system from entering sleep mode during exe-
cution, the caffeinate library was used. Caffeinate ensures that the Mac remains active,
thereby preventing interruptions due to system sleep, which is particularly beneficial for
long-running computational tasks [37].

Minikube was initialized using the following command:

minikube start –driver=docker –cpus=4 –memory=8192 –disk-size=40g –cni=calico

This command configures Minikube to utilize the Docker driver, allocating 4 CPU cores,
8192 MB of memory, and 40 GB of disk space.

As outlined in the previous chapter, data collection was performed using two distinct
methods. The first method involved gathering logs from both the k6 load testing tool
and the chaos engineering script. During k6 script execution, logs were recorded in three
formats: a plaintext file containing the raw execution logs, time-series data capturing key

53

7 Experimental Results and Analysis

metrics alongside timestamps, stored in JSON and CSV formats. The second data collec-
tion method involved extracting metrics and logs from Prometheus, Zipkin, Kubernetes
events, and system logs.

Following data acquisition, two Python scripts were developed for visualization and anal-
ysis. The first script processes k6 execution performance metrics, including response
times, error rates, and user activity over time, and generates a summary report. The
second script analyzes Prometheus metrics from the Kubernetes cluster, visualizing var-
ious system performance indicators such as JVM metrics, deployment statuses, HTTP
request metrics, and memory consumption. These visualizations provide insights into
system health and performance trends.

7.2 Performance Analysis

In the following sections, the results of the four experiments are presented. The figures
illustrate the experimental scenarios; however, the scenarios that are on the Y axis do
not correspond to those outlined in Chapter Experimental Setup and Implementation.
Instead, the scenarios showed in the figures Y axis represent k6 load-testing scenarios,
which are defined as follows: ′′Scenarios configure how VUs and iteration schedules in
granular detail. With scenarios, you can model diverse workloads, or traffic patterns in
load tests.′′ [21]

54

7 Experimental Results and Analysis

7.2.1 SMS without tool

Figure 7.1: Heatmap of the Spring Timeout scenario

The figure 7.1 presents the heat map for the Spring Timeout scenario. During the ini-
tial five minutes of the experiment, no errors were observed. This is because no chaos
engineering actions were applied during this period. Subsequently, both the getStudents
and postStudents endpoints operated as expected, with only minor errors. This be-
havior arises because the chaos engineering timeout error action affects only the GET
/api/v1/students/school/{school-id} endpoint, while the other endpoints do not depend
on it. In contrast, the getSchoolsWithStudents endpoint fails because it relies on the
response from GET /api/v1/students/school/{school-id}, which experiences excessive
delays due to the injected failure. As a result, the getSchools and postSchools endpoints
also fail, as the schools service experiences high resource consumption, primarily due
to getSchoolsWithStudents waiting indefinitely for responses from the delayed endpoint.
Following this period, the system resumed normal operation for five minutes, with no
errors, as the chaos engineering action was rolled back. Subsequently, a new chaos engi-
neering action was introduced, leading to minor errors in the postSchools and getSchools
endpoints. This behavior is attributed to the implementation of the k6 script, which
necessitates the deletion of outdated Redis entries (IDs) because they no longer exist in

55

7 Experimental Results and Analysis

the database. New entries must replace the outdated ones, but this process incurs a short
delay since new POST requests must be issued to retrieve fresh IDs from the endpoints
and overwrite the previous ones. During this transition, errors occur in the GET ser-
vices as they attempt to access outdated IDs that are no longer present in the database.
Subsequently, the students service becomes unavailable due to a chaos engineering action
that causes a system failure.
A total of 23,362 requests were executed, of which 8,603 resulted in errors, yielding a
failure rate of 36.82%.

The following table A.2 presents the response time statistics.

Figure 7.2: Heatmap of the Spring Third-Party Service scenario

The figure 7.2 shows the Spring Third-Party Service scenario. As in the previous scenario,
the system operated without errors for the first five minutes, as no chaos engineering ac-
tions were executed during this time. In this case, the getSchoolsWithStudents endpoint
failed because GET /api/v1/students/school/{school-id} returned an HTTP 500 error.
However, all other endpoints remained functional because there was no excessive load on
the service. Unlike the Spring Timeout scenario, where the getSchoolsWithStudents end-
point caused significant load by waiting indefinitely for responses, in this case, the failure
was immediate due to the HTTP 500 error response. Following this period, the system

56

7 Experimental Results and Analysis

returned to normal operation for five minutes after the chaos engineering action was
rolled back. In the subsequent chaos engineering action, the students service became un-
available. As a result, all students service endpoints, as well as getSchoolsWithStudents,
failed. This occurred because the students service was down, and getSchoolsWithStu-
dents depended on it.
A total of 21,899 requests were executed, with 4,857 errors, corresponding to a failure
rate of 22.18%.
The following table A.3 presents the response time statistics.

Figure 7.3: Heatmap of the Spring Request scenario

The figure 7.3 presents the heat map for the Spring Request scenario.
As observed in all scenarios, the first five minutes of execution proceed without errors.
The getSchoolsWithStudents endpoint fails because GET /api/v1/students/school/{school-
id} returns an HTTP 400 error. However, all other endpoints function correctly since the
service is not experiencing excessive load; the error is isolated to this specific endpoint,
which fails immediately.
Following this, the action is rolled back, and the system operates normally for the next
five minutes. When the students service becomes unavailable, all endpoints related to this
service, including getSchoolsWithStudents, fail. Since getSchoolsWithStudents depends
on the students service, its failure is a direct consequence of the service outage. Once

57

7 Experimental Results and Analysis

again, after rolling back the action, the system stabilizes for five minutes without errors.
A subsequent failure occurs when GET /api/v1/students/school/{school-id} returns an
HTTP 429 error. Similar to the previous failure, the getSchoolsWithStudents endpoint
is affected, while the other endpoints remain functional due to the absence of additional
service load. After rolling back the action, the system resumes normal operation for an-
other five minutes. During the final chaos engineering action, referred to as wrong_url,
the getSchoolsWithStudents endpoint fails as expected, since it cannot retrieve student
data from the students service.
Additionally, the getSchools and postSchools endpoints encounter errors due to outdated
IDs in Redis, which must be updated with new entries.
A total of 45,617 requests were sent to the system, of which 8,650 resulted in errors,
corresponding to a failure rate of 18.96%.

The following table A.4 presents the response time statistics.

Figure 7.4: Heatmap of the Spring Down scenario

The figure 7.4 illustrates the heat map for the Spring Down scenario.
Similar to previous scenarios, the first five minutes of execution do not exhibit any
errors. Since the students service is unavailable, all of its endpoints are non-functional.
Additionally, the getSchoolsWithStudents endpoint fails due to its dependency on the

58

7 Experimental Results and Analysis

students service.
A total of 12,947 requests were executed, of which 4,662 resulted in errors, yielding an
error rate of 36.01%.

The following table A.5 presents the response time statistics.

The figure A.1 presents the heat map for the Spring Configuration scenario.
The results of this scenario closely resemble those of the Spring Down scenario. The stu-
dents service remains unavailable due to a misconfigured system, leading to the failure of
all students service endpoints. As a consequence, the getSchoolsWithStudents endpoint
also fails due to its dependency on the students service.
A total of 15,891 requests were sent, of which 6,560 resulted in errors, corresponding to
a failure rate of 41.28%.

The table A.6 presents the response time statistics.

Figure 7.5: Heatmap of the Spring Database Connection scenario

The figure 7.5 illustrates the heat map for the Spring Database Connection scenario.
As in previous cases, the first five minutes exhibit no errors. However, as the schools
database becomes inaccessible, the schools service is unable to function, causing the
failure of all related endpoints.

59

7 Experimental Results and Analysis

A total of 22,483 requests were executed, with 9,006 errors, resulting in a failure rate of
40.06%.

The following table A.7 presents the response time statistics.

The figure A.2 shows the Kubernetes Pod Unhealthy scenario.
The initial five minutes are free of errors, consistent with prior scenarios. The results are
comparable to those observed in the Spring Database Connection scenario. The schools
service becomes unhealthy or down, leading to the failure of all its endpoints.
A total of 22,732 requests were sent, of which 9,386 resulted in errors, yielding an error
rate of 41.29%.

The table A.8 presents the response time statistics.

The figure A.3 presents the Service Down Kubernetes Error scenario.
The first five minutes of execution remain error-free, consistent with previous scenarios.
The results closely resemble those of the Spring Database Connection scenario. Due to
the unavailability or failure of the schools service, all associated endpoints become non-
functional.
A total of 22,691 requests were sent, with 9,340 errors, corresponding to a failure rate of
41.16%.

The table A.9 presents the response time statistics.

60

7 Experimental Results and Analysis

Figure 7.6: Heatmap of the Kubernetes Node Problem scenario

The figure 7.6 illustrates the Kubernetes Node Problem scenario.
As in previous scenarios, the first five minutes of execution proceed without errors. Dur-
ing both chaos engineering actions, all services become unavailable due to disruptions in
the Kubernetes node on Minikube.
A total of 27,718 requests were executed, of which 19,236 resulted in errors, yielding an
error rate of 69.40%.

The table A.10 presents the response time statistics.

Unfortunately, the Kubernetes Mount Fail Scenario could not be implemented. It is not
possible to modify the database mount at runtime. The intended goal was to make the
mount read-only; however, this approach is not possible. Once a Persistent Volume (PV)
is created, its access modes remain static. Additionally, the ReadOnlyMany mode does
not permit write operations, and an init container cannot modify a read-only filesystem.

Disabling the Container Network Interface (CNI) could not be implemented, that’s why
Kubernetes Network Error Scenario was not executed. If the CNI is disabled, kubectl
also becomes inoperable, requiring the termination of all pods and their subsequent
redeployment.

61

7 Experimental Results and Analysis

Figure 7.7: Heatmap of the Kubernetes Low CPU Memory scenario

The figure 7.7 presents the Kubernetes Low CPU Memory scenario.
Similar to previous scenarios, the first five minutes exhibit no errors. The schools service
experiences resource constraints, causing the service to become unavailable, thereby af-
fecting all its endpoints.
A total of 12,488 requests were processed, with 4,716 errors, resulting in a failure rate of
37.76%.

The following table A.11 presents the response time statistics.

The figure A.4 illustrates the Kubernetes Invalid Image scenario.
This scenario closely resembles the Kubernetes Low CPU Memory scenario. Since the
schools service is unavailable, all its endpoints fail.
A total of 12,352 requests were sent, of which 4,581 resulted in errors, corresponding to
a failure rate of 37.09%.

The table A.12 presents the response time statistics.

The figure A.5 presents the Kubernetes Configuration scenario.
The results of this scenario are similar to those observed in the Spring Configuration
scenario. The students service fails due to a misconfiguration, causing all its endpoints

62

7 Experimental Results and Analysis

to be non-functional. As a consequence, the getSchoolsWithStudents endpoint also fails,
as it depends on the students service.
A total of 12,575 requests were executed, with 4,659 errors, yielding a failure rate of
37.05%.

The table A.13 presents the response time statistics.

7.2.2 EOMS without tool

Figure 7.8: Heatmap of the Spring Timeout scenario

The figure 7.8 illustrates the heat map for the Spring Timeout scenario.
During the initial five minutes of execution, no errors are observed, as no chaos engi-
neering actions have been introduced. Subsequently, errors appear in the getProduct,
getProducts, and postProducts endpoints.
This is expected, as only POST /api/v1/products/purchase is directly affected by the
timeout error, while the aforementioned endpoints do not invoke it. The postOrders end-
point fails because it waits too long for a response from POST /api/v1/products/purchase.
As a result, excessive load accumulates on the products service, leading to failures in get-
Product, getProducts, and postProducts. A similar pattern is observed in the orders

63

7 Experimental Results and Analysis

service, as it experiences excessive load due to the failing postOrders service. Following
this phase, the chaos engineering action is rolled back, and the system resumes normal
operation for five minutes. A subsequent chaos engineering action leads to minor errors
in getOrders, getOrderLines, and getOrders, attributed to the previously discussed k6
script. Eventually, the products service fails completely due to the chaos engineering
action, rendering it non-functional.
A total of 20,153 requests were processed, with 4,778 errors, corresponding to a failure
rate of 23.71%.
The following table A.14 presents the response time statistics.

Figure 7.9: Heatmap of the Spring Third-Party Service scenario

The figure 7.9 illustrates the Spring Third-Party Service scenario.
As observed in other scenarios, the first five minutes proceed without errors, as no
chaos engineering actions are applied. The postOrders endpoint fails because POST
/api/v1/products/purchase returns an HTTP 500 error. Since the service is not under
significant load, all other endpoints continue to function normally. However, the pos-
tOrders request fails immediately upon receiving the HTTP 500 response. Following this
failure, the chaos engineering action is rolled back, and the system operates normally for
five minutes.
In the second chaos engineering scenario, we observe that the products service is down.

64

7 Experimental Results and Analysis

As a result, all product-related endpoints, as well as the postOrders endpoint, fail. This
occurs because postOrders depends on the products service, which is unavailable.
A total of 20,627 requests were sent, with approximately 2,488 errors, resulting in an
error rate of 12.06%.
The following table A.15 presents the response time statistics.

Figure 7.10: Heatmap of the Spring Request scenario

The figure 7.10 illustrates the Spring Request scenario.
As in every scenario, the first five minutes proceed without errors. The postOrders
endpoint fails because POST /api/v1/products/purchase returns an HTTP 400 error.
However, since the service is not under load, all other endpoints continue to function
normally.
Following this failure, the chaos engineering action is rolled back, and the system operates
normally for five minutes.
While the products service remains down, all product-related endpoints and postOrders
remain non-functional, as postOrders depends on the products service.
Once again, the action is rolled back, and the system runs without errors for five minutes.
Later in the experiment, the postOrders endpoint fails again, this time due to POST
/api/v1/products/purchase returning an HTTP 429 error. All other endpoints continue
to function normally as there is no significant load on the service. After another rollback,

65

7 Experimental Results and Analysis

the system operates error-free for five minutes.
During the wrong_url scenario, the postOrders endpoint fails as expected because it
cannot retrieve customer data from the customers service. Additionally, getOrderLines
and getOrders exhibit errors because outdated IDs in Redis must be replaced with new
ones.
The getOrder endpoint remains non-functional throughout the scenario. This is because
the orders service is restarted after the URL change. Restarting is necessary to apply the
configuration change, but doing so results in the loss of all database entities. Furthermore,
since postOrders continues to fail, no new orders are created, preventing old orders in
Redis from being overwritten. This behavior was deliberately left unchanged in the
experiment, as it represents a realistic scenario in real-world applications.
A total of 41,025 requests were sent, of which 5,451 resulted in errors, yielding an error
rate of 13.29%.
The following table A.16 presents the response time statistics.

Figure 7.11: Heatmap of the Spring Down scenario

The following figure 7.11 presents the heat map for the Spring Down scenario.
As in other scenarios, the first five minutes proceed without errors. During the chaos
engineering action, the products service is down, causing all its endpoints to fail. Con-
sequently, the postOrders endpoint is also non-functional, as it depends on the products

66

7 Experimental Results and Analysis

service.
A total of 11,949 requests were sent, with 2,491 errors, yielding an error rate of 20.85%.

The following table A.17 presents the response time statistics.

The figure A.6 illustrates the heat map for the Spring Configuration scenario.
The results of this scenario closely resemble those of the Spring Down scenario. The
products service fails due to a misconfiguration, rendering all product-related endpoints
non-functional. Since postOrders depends on the products service, it also fails.
In this scenario, 14,347 requests were sent, of which 3,319 resulted in errors, yielding an
error rate of 23.13%.

The table A.18 presents the response time statistics.

Figure 7.12: Heatmap of the Spring Database Connection scenario

The figure 7.12 illustrates the Spring Database Connection heat map.
As in other scenarios, the first five minutes proceed without errors. Since the orders
database is inaccessible and completely unavailable, the orders service cannot function,
causing all order-related endpoints to fail.
A total of 19,111 requests were sent, with 5,323 errors, resulting in an error rate of
27.85%.

67

7 Experimental Results and Analysis

The following table A.19 presents the response time statistics.

The figure A.7 illustrates the Kubernetes Pod Unhealthy scenario.
As in previous scenarios, the first five minutes proceed without errors. The results closely
resemble those of the Spring Database Connection scenario. The orders service becomes
unhealthy and stops functioning, causing all its endpoints to fail.
A total of 19,891 requests were sent, with 6,251 errors, resulting in an error rate of
31.43%.

The table A.20 presents the response time statistics.

The figure A.8 illustrates the Service Down Kubernetes scenario.
As in other cases, the first five minutes run without errors. The results closely mirror
those of the Spring Database Connection scenario. The orders service is either down or
unhealthy, rendering all its endpoints non-functional.
A total of 20,022 requests were sent, with 6,378 errors, yielding an error rate of 31.85%.

The table A.21 presents the response time statistics.

Figure 7.13: Heatmap of the Kubernetes Node Problem scenario

The figure 7.13 illustrates the Kubernetes Node Problem scenario.
The first five minutes are error-free, similar to other scenarios. During both chaos engi-

68

7 Experimental Results and Analysis

neering actions, all services go down due to disturbances affecting the Kubernetes node
in Minikube.
A total of 24,097 requests were sent, with 15,946 errors, leading to an error rate of
66.17%.

The following table A.22 presents the response time statistics.

As already mentioned the Kubernetes Mount Fail and Kubernetes Network Error Sce-
narios could not be implemented.

Figure 7.14: Heatmap of the Kubernetes Low CPU and Memory scenario

The figure 7.14 illustrates the Kubernetes Low CPU and Memory scenario.
As in previous cases, the first five minutes are error-free. Due to resource constraints,
the orders service becomes unresponsive, causing all its endpoints to fail.
A total of 10,926 requests were executed, with 3,061 errors, yielding an error rate of
28.02%.

The following table A.23 presents the response time statistics.

The figure A.9 illustrates the Kubernetes Invalid Image scenario.
This scenario behaves similarly to the Kubernetes Low CPU and Memory scenario. The

69

7 Experimental Results and Analysis

orders service fails due to an invalid image, causing all its endpoints to become non-
functional.
A total of 10,623 requests were executed, with 2,752 errors, leading to an error rate of
25.91%.

The table A.24 presents the response time statistics.

The figure A.10 illustrates the Kubernetes Configuration scenario.
The results are similar to those of the Spring Configuration scenario. A misconfiguration
in the products service causes it to fail, which in turn prevents the postOrders endpoint
from functioning, as it depends on the products service.
A total of 11,373 requests were executed, with 2,254 errors, resulting in an error rate of
19.82%.

The table A.25 presents the response time statistics.

7.2.3 SMS with tool

Figure 7.15: Heatmap of the Spring Timeout scenario with tool

70

7 Experimental Results and Analysis

The figure 7.15 illustrates the heat map for the Spring Timeout scenario with the tool
deployed.
Compared to the scenario without the tool, the getSchoolsWithStudents endpoint re-
mains affected by the timeout. This is because the tool could not apply any pattern
that would resolve the error. An analysis of the tool’s logs indicates that it attempted
to apply the fallback mechanism but was unsuccessful. Further investigation revealed a
small bug in the tool that caused this issue in both this scenario and the Spring Timeout
scenario in the EOMS system. Since these two scenarios were the last to be executed,
and minor modifications were made to the tool before execution, this bug was introduced
at that point. This explains why the issue did not occur in other experiments.
During the second chaos engineering action, the student service fails entirely, rendering
all student-related endpoints non-functional. At this point, the getSchoolsWithStudents
endpoint stops failing because the tool detects the error and successfully executes the
fallback mechanism.
A total of 24,019 requests were processed, with 7,596 errors, corresponding to a failure
rate of 31.62%. This indicates that the tool was able to reduce the error rate by 14.12%.
The response time statistics are presented in table A.26.

Figure 7.16: Heatmap of the Spring Third-Party Service scenario with tool

71

7 Experimental Results and Analysis

The figure 7.16 presents the Spring Third-Party Service scenario combined with the de-
ployed tool.
In comparison to figure 7.2, the results indicate that the getSchoolsWithStudents end-
point remains unaffected by the chaos engineering action. This behavior is attributed
to the tool’s execution of the fallback mechanism, which successfully handled the error
and returned a response to the client. Student, postStudents and getStudents endpoints
were non-functional due to the unavailability of the student service.
The tool was unable to redeploy the service, as the chaos engineering action was de-
liberately designed to render it undeployable. During the experiment, a total of 21,818
requests were issued, of which 2,602 resulted in errors, corresponding to an error rate of
11.93%. This demonstrates that the tool effectively leveraged the fallback mechanism to
mitigate 500 errors, thereby reducing the error rate by 46.21%.
The response time statistics are provided in table A.27.

Figure 7.17: Heatmap of the Spring Request scenario with tool deployed

Figure 7.17 depicts the Spring Request scenario in conjunction with the deployed tool.
Similar to the Spring Third-Party Service scenario, the getSchoolsWithStudents end-
point remains unaffected by the chaos engineering action. Again, this can be attributed
to the tool’s execution of the fallback mechanism, which successfully handled the error
and provided a response to the client. Notably, this mechanism was effective for both

72

7 Experimental Results and Analysis

400 and 429 errors.
The postStudents and getStudents endpoints experienced temporary outages due to the
complete unavailability of the student service. As previously mentioned, in this specific
context, the tool lacks the capability to recover unavailable services. During the execu-
tion of the wrong_url scenario, the getSchoolsWithStudents endpoint initially fails, as
expected, since it cannot retrieve data from the GET /api/v1/students/school/{school-
id} endpoint. However, after some time, the endpoint resumes functionality as the tool
deploys its fallback mechanism to handle the error and return a response to the client.
Once again, the tool employs its fallback mechanism.
A total of 38,849 requests were sent, of which 4,033 resulted in errors, yielding an error
rate of 10.38%. These results indicate that the tool effectively utilized the fallback mech-
anism to handle 400 and 429 errors, ultimately reducing the error rate by 45.25%.
The response time statistics are provided in table A.28.

Figure 7.18: Heatmap of the Spring Down scenario with tool deployed

Figure 7.18 illustrates the heatmap for the Spring Down scenario with the tool deployed.
A comparison with the corresponding scenario conducted without the tool reveals that
the results are nearly identical. In this case, the tool failed to categorize the error using
the classification algorithm and was consequently unable to execute a corrective solution.
In this scenario, a total of 12,831 requests were issued, with 4,683 resulting in errors,

73

7 Experimental Results and Analysis

corresponding to an error rate of 36.50%. Thus, the tool was ineffective in reducing the
error rate.
The response time statistics are presented in table A.29.

Figure A.11 depicts the heatmap for the Spring Configuration scenario with the tool
deployed.
As observed in the Spring Down scenario, the results closely resemble those obtained in
the absence of the tool. Once again, the tool was unable to categorize the error using
the classification algorithm and could not execute a corrective solution.
In this case, a total of 15,559 requests were sent, of which 6,232 resulted in errors, yielding
an error rate of 40.05%. Similar to the Spring Down scenario, the tool was ineffective in
reducing the error rate.
The response time statistics are summarized in table A.30.

Figure 7.19: Heatmap of the Spring Database Connection scenario with tool deployed

The figure 7.19 illustrates the heat map for the Spring Database Connection scenario
with the tool deployed.
Similar to the two previous scenarios, the results closely resemble those obtained without
the tool. This is because, in this scenario, the tool also failed to categorize the error using
the classification algorithm and was unable to execute a corrective solution.

74

7 Experimental Results and Analysis

A total of 22,459 requests were executed, with 8,992 errors, resulting in a failure rate of
40.04%. The tool was ineffective in reducing the error rate.
The response time statistics are presented in table A.31.

Figure 7.20: Heatmap of the Kubernetes Pod Unhealthy scenario with tool deployed

The figure 7.20 illustrates the Kubernetes Pod Unhealthy scenario, demonstrating that
all request errors were successfully resolved.
The tool detected high CPU and memory usage on the affected pod and applied the cpu
memory limits and health solution. This solution increased the available CPU and mem-
ory resources while restoring the health endpoint, thereby making the service operational
again. As a result, the schools pod was able to restart and respond to incoming requests
from the getSchoolsWithStudents endpoint.
During this scenario, a total of 23,226 requests were issued, with 228 resulting in errors,
yielding an error rate of 0.98%. In comparison to the scenario without the tool, the error
rate was reduced by 97.62%.
The response time statistics are provided in table A.32.

The figure A.12 presents the Service Down Kubernetes scenario with the deployed tool.
The tool detected excessive CPU and memory usage on the pod and applied the cpu
memory limits and health solution, to restore service availability. The results closely

75

7 Experimental Results and Analysis

resemble those observed in the Kubernetes Pod Unhealthy scenario.
During this scenario, a total of 23,223 requests were issued, with 229 resulting in errors,
corresponding to an error rate of 0.99%. Compared to the scenario without the tool, the
error rate was reduced by 97.59%.
The response time statistics are presented in table A.33.

Figure 7.21: Heatmap of the Kubernetes Node Problem scenario with tool deployed

The figure 7.21 illustrates the Kubernetes Node Problem scenario.
The results indicate that the tool successfully mitigated both chaos engineering actions.
The first action involved exhausting disk space. The tool detected the low disk availabil-
ity and executed a free disk space solution to free space. This process required a certain
amount of time, as deleting sufficient data to free disk space is not instantaneous. At
approximately the 28-minute mark, errors reappeared due to the rollback of the chaos
engineering action, which resulted in the termination of all pods, causing temporary fail-
ures. The second action involved artificially reducing the available CPU and memory
on the node. The tool detected the resource constraints and allocated additional CPU
and memory to restore normal operation. Similarly, at approximately 61 minutes, errors
reoccurred as the chaos engineering script initiated a system rollback, leading to tempo-
rary service disruptions.
A total of 29,755 requests were executed, of which 4,761 resulted in errors, yielding an

76

7 Experimental Results and Analysis

error rate of 16.00%. This demonstrates that the tool successfully reduced the error rate
by 76.94%.
The response time statistics are provided in table A.34.

Figure 7.22: Heatmap of the Kubernetes Low CPU Memory scenario with tool deployed

The figure 7.22 presents the Kubernetes Low CPU Memory scenario with the tool de-
ployed.
The results show that all errors were successfully mitigated by the tool. Upon detecting
the Kubernetes event, the tool executed the memory, cpu limits solution, increasing the
available resources for the affected pod. As a result, the pod was able to handle requests
not only from the getSchoolsWithStudents endpoint but also from the getSchools and
postSchools endpoints.
A total of 12,757 requests were processed, with 257 resulting in errors, corresponding to
a failure rate of 2.01%. This indicates that the tool effectively reduced the error rate by
94.67%.
The response time statistics are summarized in table A.35.

The figure A.13 illustrates the Kubernetes Invalid Image scenario with the tool deployed.
The results indicate that all errors were successfully resolved by the tool. Upon detecting
the Kubernetes event, the tool executed the verify image solution, which verifies the

77

7 Experimental Results and Analysis

image tag and updates it to latest if it is incorrectly specified. As a result, the pod was
successfully created and became responsive to all endpoints.
A total of 12,614 requests were processed, with 50 resulting in errors, yielding a failure
rate of 0.40%. This demonstrates that the tool effectively reduced the error rate by
98.92%.
The response time statistics are provided in table A.36.

The figure A.14 presents the Kubernetes Configuration scenario.
The results show that all errors were successfully mitigated by the tool. Upon detecting
the Kubernetes event, the tool executed the Kubernetes YAML formatting solution,
which corrected the YAML configuration format. Following this intervention, the pod
was successfully created and became fully responsive across all endpoints.
A total of 12,860 requests were executed, with 135 resulting in errors, corresponding to
a failure rate of 1.05%. This indicates that the tool reduced the error rate by 97.16%.
The response time statistics are presented in table A.37.

7.2.4 EOMS with tool

Figure 7.23: Heatmap of the Spring Timeout scenario with tool deployed

78

7 Experimental Results and Analysis

The figure 7.23 illustrates the heat map for the Spring Timeout scenario with the tool
deployed.
Compared to the scenario without the tool, the postOrders endpoint remains affected by
the timeout. This is because the tool had a bug that caused the fallback mechanism to not
be applied as already mentioned. However, the getOrder, getOrderLine, and getOrders
endpoints remain unaffected by the chaos engineering action. This is due to the tool de-
tecting prolonged request delays when postOrders calls POST /api/v1/products/purchase,
and subsequently terminating the request after 10 seconds. By identifying excessive wait
times, the tool prevents postOrders from consuming all available resources, thereby avoid-
ing an accumulated overload that could affect other endpoints.
At the 5-minute mark, an anomaly occurs in the getOrder endpoint. This anomaly is
likely caused by the k6 script, but the tool was unable to categorize it. During the second
chaos engineering action, the product service fails entirely, rendering all product-related
endpoints non-functional. At this point, the postOrders endpoint stops failing because
the tool detects the error and executes the fallback mechanism.
A total of 21,735 requests were processed, with 3,567 errors, corresponding to a failure
rate of 16.41%. This indicates that the tool was able to reduce the error rate by 30.78%.
The response time statistics are presented in table A.38.

Figure 7.24: Heatmap of the Spring Third-Party Service scenario with tool

79

7 Experimental Results and Analysis

The figure 7.24 illustrates the Spring Third-Party Service scenario in combination with
the deployed tool.
The results indicate that the postOrders endpoint remains unaffected by the chaos en-
gineering actions throughout the execution. As observed in the SMS case with the tool
deployed, the tool successfully detected the error in the Spring Boot service and re-
sponded by employing the fallback mechanism. However, the product-related endpoints
postProducts, getProduct, and getProducts, remained non-functional due to the unavail-
ability of the product service, which the tool is not designed to recover.
A total of 20,627 requests were sent, of which 1,460 resulted in errors, yielding an error
rate of 7.08%. This demonstrates that the tool effectively utilized the fallback mecha-
nism, reducing the error rate by 41.29%.
The response time statistics are presented in table A.39.

Figure 7.25: Heatmap of the Spring Request scenario with tool deployed

The figure 7.25 illustrates the Spring Request scenario with the deployed tool.
Similar to the Spring Third-Party Service scenario, the postOrders endpoint remains
unaffected by the chaos engineering action. This is due to the tool deploying a fallback
mechanism capable of handling the error and returning a response to the client. This
mechanism was applied for both 400 and 429 errors.
The endpoints postProducts, getProduct, and getProducts experienced downtime, as

80

7 Experimental Results and Analysis

the entire product service was unavailable. As previously mentioned, the tool is unable
to handle service unavailability in this context. During the execution of the wrong_-
url scenario, the postOrders endpoint fails as expected due to its inability to retrieve
data. However, after some time, it became operational again because the tool deployed
a fallback mechanism to handle the error and provide a response. Once again, the tool’s
solution in this case was the fallback mechanism.
A total of 43,221 requests were sent, of which 2,460 resulted in errors, yielding an error
rate of 5.69%. This demonstrates that the tool effectively mitigated 400 and 429 errors,
reducing the error rate by 57.18%.
The response time statistics are provided in table A.40.

Figure 7.26: Heatmap of the Spring Down scenario with tool deployed

The figure 7.26 presents the heat map for the Spring Down scenario with the tool de-
ployed.
A comparison with the results of the Spring Down scenario without the tool reveals that
the outcomes are nearly identical. The tool was unable to categorize the error using
its classification algorithm and, therefore, could not execute an appropriate solution to
resolve the issue.
In this scenario, 12,316 requests were sent, of which 2,710 resulted in errors, yielding an

81

7 Experimental Results and Analysis

error rate of 22.00%. Thus, the tool was not able to reduce the error rate in this case.
The response time statistics are detailed in table A.41.

The figure A.15 presents the heat map for the Spring Configuration scenario with the
tool deployed.
As in the previously described scenario, the results are nearly identical to those observed
in the absence of the tool. The tool was unable to categorize the error using its classifi-
cation algorithm or execute a corrective solution.
In this scenario, 16,981 requests were sent, of which 4,877 resulted in errors, yielding an
error rate of 28.72%. Once again, the tool was not able to reduce the error rate.
The response time statistics are presented in table A.42.

Figure 7.27: Heatmap of the Spring Database Connection scenario with tool deployed

The figure 7.27 illustrates the heat map for the Spring Database Connection scenario
with the tool deployed.
Similar to the Spring Database Connection scenarios in the SMS system, the tool was
unable to resolve the errors. Once again, the tool failed to categorize the error using the
classification algorithm and could not execute a corrective solution.
A total of 19,052 requests were executed, with 5,269 errors, resulting in a failure rate of

82

7 Experimental Results and Analysis

27.66%. The tool was ineffective in reducing the error rate.
The response time statistics are presented in table A.43.

Figure 7.28: Heatmap of the Kubernetes Pod Unhealthy scenario with tool deployed

The figure 7.28 illustrates that all request errors were successfully resolved.
As in the previous Kubernetes Pod Unhealthy scenario, the tool detected high CPU
and memory usage in the pod and applied the CPU and memory limits solution. This
approach increased the allocated CPU and memory while also restoring the health end-
point, thereby making the service available again. As a result, the order pod was able to
restart and respond to incoming requests.
During the scenario, 22,343 requests were sent, of which 341 resulted in errors, yielding
an error rate of 1.53%. Compared to the scenario without the tool, this corresponds to
a 95.13% reduction in the error rate.
The response time statistics are presented in table A.44.

The figure A.16 presents the Service Down Kubernetes Error scenario with the tool
deployed.
Similar to the Kubernetes Pod Unhealthy scenario, the tool detected excessive CPU and
memory usage and applied the cpu memory limits and health solution to resolve the
issue.

83

7 Experimental Results and Analysis

During the scenario, 22,353 requests were sent, of which 272 resulted in errors, yielding
an error rate of 1.22%. Compared to the scenario without the tool, the error rate was
reduced by 96.16%.
The response time statistics are presented in table A.45.

Figure 7.29: Heatmap of the Kubernetes Node Problem scenario with tool deployed

The figure 7.29 illustrates the Kubernetes Node Problem scenario with the tool deployed.
The results indicate that the tool was able to resolve both chaos engineering actions. The
outcome is identical to that observed in the Kubernetes Node Problem scenario within
the SMS use case. In the first phase, the tool detected low disk space and applied the free
disk space solution to reclaim storage. In the second phase, the tool identified insufficient
memory and CPU resources and allocated additional resources to the node.
A total of 27,371 requests were executed, of which 3,849 resulted in errors, yielding an
error rate of 14.06%. This demonstrates that the tool was able to reduce the error rate
by 78.75%.
The response time statistics are presented in table A.46.

84

7 Experimental Results and Analysis

Figure 7.30: Heatmap of the Kubernetes Low CPU Memory scenario with tool deployed

The figure 7.30 presents the Kubernetes Low CPU Memory scenario with the tool de-
ployed.
The results indicate that all errors were successfully resolved by the tool. The tool de-
tected the Kubernetes event and executed the memory, cpu limits solution, increasing
the available resources for the pod.
A total of 12,221 requests were processed, with 275 errors, resulting in a failure rate of
2.25%. This indicates that the tool reduced the error rate by 91.97%.
The response time statistics are presented in table A.47.

The figure A.17 illustrates the Kubernetes Invalid Image scenario with the tool deployed.
The tool detected the Kubernetes event and executed the verify image solution, which
checks the image tag and updates it to latest if necessary. This solution successfully
resolved all errors in the scenario.
A total of 12,175 requests were processed, with 77 errors, resulting in a failure rate of
0.63%. This corresponds to a 97.56% reduction in the error rate.
The response time statistics are presented in table A.48.

The figure A.18 presents the Kubernetes Configuration scenario with the tool deployed.
Similar to the SMS scenario, the tool detected the Kubernetes event and applied the

85

7 Experimental Results and Analysis

Kubernetes YAML formatting solution, which reformatted the YAML file to the correct
structure. After the execution of this solution, the pod was successfully created and able
to respond to all endpoints, including postOrders.
A total of 12,350 requests were executed, with 95 errors, yielding a failure rate of 0.77%.
This indicates that the tool was able to reduce the error rate by 96.11%.
The response time statistics are presented in table A.49.

86

7 Experimental Results and Analysis

7.3 Discussion and Findings

System Tool Scenario
Total
Requests

Request
Errors

Failure
Rate
(%)

Error
Reduction
(%)

Solution
Used

SMS No
Spring
Timeout

23,362 8,603 36.82 - -

SMS No
Spring
Third-Party
Service

21,899 4,857 22.18 - -

SMS No
Spring
Request

45,617 8,650 18.96 - -

SMS No
Spring
Down

12,947 4,662 36.01 - -

SMS No
Spring
Configuration

15,891 6,560 41.28 - -

SMS No
Spring
Database
Connection

22,483 9,006 40.06 - -

SMS No
Kubernetes
Pod
Unhealthy

22,732 9,386 41.29 - -

SMS No
Service Down
Kubernetes
Error

22,691 9,340 41.16 - -

SMS No
Kubernetes
Node
Problem

27,718 19,236 69.40 - -

SMS No
Kubernetes
Low CPU
Memory

12,488 4,716 37.76 - -

SMS No
Kubernetes
Invalid
Image

12,352 4,581 37.09 - -

87

7 Experimental Results and Analysis

System Tool Scenario
Total
Requests

Request
Errors

Failure
Rate
(%)

Error
Reduction
(%)

Solution
Used

SMS No
Kubernetes
Configuration

12,575 4,659 37.05 - -

SMS Yes
Spring
Timeout

24,019 7,596 31.62 14.12
Fallback
Mechanism

SMS Yes
Spring
Third-Party
Service

21,818 2,602 11.93 46.21
Fallback
Mechanism

SMS Yes
Spring
Request

38,849 4,033 10.38 45.25
Fallback
Mechanism

SMS Yes
Spring
Down

12,831 4,683 36.50 0.00 None

SMS Yes
Spring
Configuration

15,559 6,232 40.05 0.00 None

SMS Yes
Spring
Database
Connection

22,459 8,992 40.04 0.00 None

SMS Yes
Kubernetes
Pod
Unhealthy

23,226 228 0.98 97.62
CPU
Memory Limits
& Health

SMS Yes

Service
Down
Kubernetes
Error

23,223 229 0.99 97.59
CPU
Memory Limits
& Health

SMS Yes
Kubernetes
Node
Problem

29,755 4,761 16.00 76.94
Free Disk Space,
Scale Node CPU
& Memory

SMS Yes
Kubernetes
Low CPU
Memory

12,757 257 2.01 94.67
Memory,
CPU Limits

SMS Yes
Kubernetes
Invalid
Image

12,614 50 0.40 98.92 Verify Image

88

7 Experimental Results and Analysis

System Tool Scenario
Total
Requests

Request
Errors

Failure
Rate
(%)

Error
Reduction
(%)

Solution
Used

SMS Yes
Kubernetes
Configuration

12,860 135 1.05 97.16
Kubernetes
YAML
Formatting

EOMS No
Spring
Timeout

20,153 4,778 23.71 - -

EOMS No
Spring
Third-Party
Service

20,627 2,488 12.06 - -

EOMS No
Spring
Request

41,025 5,451 13.29 - -

EOMS No
Spring
Down

11,949 2,491 20.85 - -

EOMS No
Spring
Configuration

14,347 3,319 23.13 - -

EOMS No
Spring
Database
Connection

19,111 5,323 27.85 - -

EOMS No
Kubernetes
Pod
Unhealthy

19,891 6,251 31.43 - -

EOMS No
Service
Down
Kubernetes

20,022 6,378 31.85 - -

EOMS No
Kubernetes
Node
Problem

24,097 15,946 66.17 - -

EOMS No
Kubernetes
Low CPU
and Memory

10,926 3,061 28.02 - -

EOMS No
Kubernetes
Invalid Image

10,623 2,752 25.91 - -

89

7 Experimental Results and Analysis

System Tool Scenario
Total
Requests

Request
Errors

Failure
Rate
(%)

Error
Reduction
(%)

Solution
Used

EOMS No
Kubernetes
Configuration

11,373 2,254 19.82 - -

EOMS Yes
Spring
Timeout

21,735 3,567 16.41 30.78
Fallback
Mechanism

EOMS Yes
Spring
Third-Party
Service

20,627 1,460 7.08 41.29
Fallback
Mechanism

EOMS Yes
Spring
Request

43,221 2,460 5.69 57.18
Fallback
Mechanism

EOMS Yes
Spring
Down

12,316 2,710 22.00 0.00 None

EOMS Yes
Spring
Configuration

16,981 4,877 28.72 0.00 None

EOMS Yes
Spring
Database
Connection

19,052 5,269 27.66 0.00 None

EOMS Yes
Kubernetes
Pod
Unhealthy

22,343 341 1.53 95.13
CPU
Memory Limits
& Health

EOMS Yes
Service
Down
Kubernetes

22,353 272 1.22 96.16
CPU
Memory Limits
& Health

EOMS Yes
Kubernetes
Node Problem

27,371 3,849 14.06 78.75
Free Disk Space,
Scale Node
CPU & Memory

EOMS Yes
Kubernetes
Low CPU
and Memory

12,221 275 2.25 91.97
Memory,
CPU Limits

EOMS Yes
Kubernetes
Invalid Image

12,175 77 0.63 97.56 Verify Image

90

7 Experimental Results and Analysis

System Tool Scenario
Total
Requests

Request
Errors

Failure
Rate
(%)

Error
Reduction
(%)

Solution
Used

EOMS Yes
Kubernetes
Configuration

12,350 95 0.77 96.11
Kubernetes
YAML
Formatting

Table 7.2: Summary of all results with details of the system used, the tool, the scenario,
the total requests, the errors, the error rate, the error reduction, and the
solution used

The table 7.2 summarizes the results of the experiments conducted in the SMS and
EOMS systems, both with and without the tool deployed. Regarding Spring failures,
the tool had a limited impact. Specifically, the Spring Down, Spring Configuration, and
Spring Database Connection failure scenarios exhibited negligible changes in error rates,
indicating that these issues were beyond the tool’s current mitigation capabilities. As
previously discussed, the primary challenge was the classification algorithm’s inability to
correctly categorize these errors. However, the fallback mechanism demonstrated effec-
tiveness in mitigating failures in the Spring Timeout, Third-Party Service, and Request
scenarios, reducing error rates by 14% to 57%. Other mechanisms within the resilience
library were not triggered, as the fallback mechanism was sufficient to resolve the failures
in all cases. Furthermore, the additional mechanisms were not well-suited to addressing
failures in these scenarios, as they require a service to exhibit intermittent availability
rather than prolonged downtime or persistent error responses. This explains why the
fallback mechanism proved to be the most effective solution in these cases. The tool
exhibited significant effectiveness in mitigating Kubernetes-related failures, demonstrat-
ing an error rate reduction of over 95% in scenarios such as Pod Unhealthy, Service
Down, Low CPU/Memory, Invalid Image, and Configuration issues. The most impactful
solutions in these cases were CPU and memory limit adjustments, health check configu-
rations, and Kubernetes YAML corrections. The effectiveness of these solutions can be
attributed to Kubernetes’ built-in API, which provides robust functions for handling such
failures. The tool leveraged these existing capabilities to resolve the issues efficiently. In
contrast, Spring-related failures relied more on the resilience library deployed alongside
the service, which limited the tool’s effectiveness in those scenarios. For the Kubernetes
Node Problem scenario, the tool successfully reduced the error rate by approximately
77%. This result is particularly notable because the tool was not deployed on the same

91

7 Experimental Results and Analysis

node where the failure occurred. Instead, it was hosted on a separate node (in this case,
locally on the laptop), allowing it to execute the necessary recovery actions remotely.
Had the tool been deployed on the same failing node, it would have become inoperative
once the node failed, preventing it from executing the required mitigation steps.

During the execution of the SMS scenario, a total of 252,755 requests were processed
without the tool, compared to 249,970 requests with the tool deployed. For the EOMS
scenarios, 206,006 requests were executed without the tool, while 242,745 requests were
processed with the tool. Figure 7.31 illustrates the impact of the tool on error reduction
across these requests.

Figure 7.31: Impact of the tool on error reduction

For the SMS system, the tool achieved a total error rate reduction of 57.77% across all
scenarios. In the EOMS system, the error rate reduction was comparable at 58.25%.
Across all test cases, the tool achieved an overall error reduction of 57.96%, underscoring
its effectiveness in mitigating failures. While the SMS system consistently exhibited a
higher absolute number of errors, both systems experienced similar relative improvements
when the tool was applied. This supports the hypothesis that the tool’s effectiveness is
independent of the system itself and is primarily influenced by the nature of the failure
scenario. The higher error count in the SMS system can be attributed to the fact that the
EOMS system has a greater number of endpoints, only a subset of which were targeted
by the chaos engineering actions. Since both systems were subjected to identical request
rates, the load was distributed across a larger number of endpoints in the EOMS system,
many of which remained unaffected by the chaos engineering actions. The analysis high-
lights the tool’s strong performance in mitigating failures related to Kubernetes resource

92

7 Experimental Results and Analysis

allocation and configuration management. While the tool also demonstrated effectiveness
in addressing failures within the Spring framework, its success rate was lower in those
cases.

The experimental results provide key insights into how the integration of the MAPE-
K reference model, XGBoost-driven error prediction, and chaos engineering can facil-
itate the development of self-healing systems, ultimately enhancing the reliability and
resilience of microservice architectures. These findings directly answer the research ques-
tion of this thesis. The MAPE-K model forms the foundation of the tool’s self-healing
capabilities, enabling it to monitor failures, analyze patterns, and execute mitigation
strategies through Kubernetes’ recovery mechanisms and a resilience library. This ap-
proach proved highly effective, significantly reducing error rates and demonstrating the
impact of automated adaptation. Accurate error classification is a crucial component of
self-healing systems. The difficulty in mitigating Spring-related failures was primarily
due to misclassification, raising the question of whether XGBoost could be enhanced
by incorporating additional classification methods to improve accuracy. Nevertheless,
the classification mechanism was successful in approximately 75% of scenarios, yielding
strong overall results. Chaos engineering played a pivotal role in validating the tool’s
effectiveness by introducing controlled failure scenarios. The tool successfully mitigated
both Kubernetes and Spring-related failures, confirming chaos engineering as a valuable
framework for testing self-healing mechanisms. With an overall error reduction of 57.96%,
the integration of MAPE-K, XGBoost-driven error prediction, and chaos engineering with
load testing enhances microservice resilience. The tool’s consistent performance across
SMS and EOMS systems further demonstrates its adaptability. However, improving er-
ror classification and expanding the strategies within the Spring Boot resilience library
will be essential in evolving the tool into a fully autonomous self-healing system.

93

8 Conclusion

This thesis presented the development and evaluation of a tool that integrates chaos
engineering, the MAPE-K model, and machine learning to enhance the resilience of
microservice systems. The tool was tested on two systems, SMS and EOMS, using chaos
engineering and load testing to simulate failure scenarios. Its effectiveness was assessed by
measuring error rates across twelve scenarios, both with and without the tool deployed.

The experimental results demonstrate the tool’s strong impact on error reduction, par-
ticularly in Kubernetes-related failures, where it achieved an error rate reduction of over
95%. Effective mitigation strategies included fallback mechanisms and Kubernetes con-
figuration adjustments. However, the tool showed limitations in handling Spring-related
failures due to misclassification within the error classification model. While the fallback
mechanism was effective in certain cases, other resilience strategies were not triggered
or were less suited to persistent failures. Despite these limitations, the tool achieved an
overall error rate reduction of 57.96%, indicating its potential as a self-healing solution
for microservices.

By integrating the MAPE-K model for adaptive decision-making, XGBoost for predictive
error classification, and chaos engineering for resilience validation, the tool enhances the
reliability of microservice architectures. This combination enables automated failure
mitigation, reducing system downtime and improving overall service resilience. The
findings confirm the practicality of this approach and provide a foundation for future
research aimed at refining classification accuracy and expanding resilience strategies to
create a fully autonomous self-healing system.

8.1 Outlook

The findings of this thesis give rise to several questions for further investigation. While
the experimental results demonstrate promising outcomes, certain scenarios remain in

94

8 Conclusion

which the tool does not perform as expected. Moreover, the current architecture of the
tool is not yet optimized. As outlined in the Implementation chapter, the Executor com-
ponent is responsible for both planning and execution within the MAPE-K loop. To
more accurately adhere to the MAPE-K architecture, this component should be divided
into separate planning and execution components. Future research should explore alter-
native decision algorithms, assess their scalability, and determine how additional classes
can be seamlessly integrated into the tool. Additionally, there is potential to enhance
the accuracy of the classification algorithm. Further investigations should explore the
combination of the XGBoost classification algorithm with other techniques to improve
classification precision. The Spring Boot library used in this work should also be further
investigated to identify additional patterns and algorithms that could improve the func-
tion of the tool. The chaos engineering component of the tool should also be expanded
to encompass a broader range of scenarios, creating a more realistic testing environment.
More generally, this thesis represents an initial step in integrating chaos engineering,
MAPE-K, and machine learning to develop a tool aimed at improving the resilience of
microservices. While the implemented tool is currently in a prototypical stage, the re-
sults indicate its potential effectiveness. Therefore, further research is necessary to refine
the tool and enhance its accuracy.

95

Bibliography

[1] Ade, M., and Sheriffdeen, K. Redundancy and failover mechanisms in mi-
croservices. ResearchGate, Sept. 2019. Retrieved from ResearchGate.

[2] Afzal, S., and Kavitha, G. Load balancing in cloud computing – A hierarchical
taxonomical classification. Journal of Cloud Computing 8, 1 (Dec. 2019), 22.

[3] Ali, B. ali-bouali/microservices-full-code. https://github.com/ali-boual
i/microservices-full-code, 2023. Accessed: 2025-02-27.

[4] Ali, B. ali-bouali/springboot-3-micro-service-demo. https://github.com/ali
-bouali/springboot-3-micro-service-demo, 2023. Accessed: 2025-02-27.

[5] Amazon Web Services. Different ways to implement your test - AWS Graviton
Performance Testing: Tips for Independent Software Vendors. https://docs

.aws.amazon.com/whitepapers/latest/aws-graviton-performan

ce-testing/different-ways-to-implement-your-test.html, 2024.
Accessed: 2025-02-19.

[6] Amazon Web Services. PERF05-BP04 Load test your workload - Performance
Efficiency Pillar. https://docs.aws.amazon.com/wellarchitected/la

test/performance-efficiency-pillar/perf_process_culture_loa

d_test.html, 2024. Accessed: 2025-02-19.

[7] Amazon Web Services. REL12-BP03 Test scalability and performance require-
ments - Reliability Pillar. https://docs.aws.amazon.com/wellarchitec
ted/latest/reliability-pillar/rel_testing_resiliency_test_no

n_functional.html, 2024. Accessed: 2025-02-19.

[8] Amazon Web Services. Testing stages in continuous integration and continuous
delivery - Practicing Continuous Integration and Continuous Delivery on AWS. ht
tps://docs.aws.amazon.com/whitepapers/latest/practicing-c

ontinuous-integration-continuous-delivery/testing-stages-i

96

https://github.com/ali-bouali/microservices-full-code
https://github.com/ali-bouali/microservices-full-code
https://github.com/ali-bouali/springboot-3-micro-service-demo
https://github.com/ali-bouali/springboot-3-micro-service-demo
https://docs.aws.amazon.com/whitepapers/latest/aws-graviton-performance-testing/different-ways-to-implement-your-test.html
https://docs.aws.amazon.com/whitepapers/latest/aws-graviton-performance-testing/different-ways-to-implement-your-test.html
https://docs.aws.amazon.com/whitepapers/latest/aws-graviton-performance-testing/different-ways-to-implement-your-test.html
https://docs.aws.amazon.com/wellarchitected/latest/performance-efficiency-pillar/perf_process_culture_load_test.html
https://docs.aws.amazon.com/wellarchitected/latest/performance-efficiency-pillar/perf_process_culture_load_test.html
https://docs.aws.amazon.com/wellarchitected/latest/performance-efficiency-pillar/perf_process_culture_load_test.html
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/rel_testing_resiliency_test_non_functional.html
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/rel_testing_resiliency_test_non_functional.html
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/rel_testing_resiliency_test_non_functional.html
https://docs.aws.amazon.com/whitepapers/latest/practicing-continuous-integration-continuous-delivery/testing-stages-in-continuous-integration-and-continuous-delivery.html
https://docs.aws.amazon.com/whitepapers/latest/practicing-continuous-integration-continuous-delivery/testing-stages-in-continuous-integration-and-continuous-delivery.html
https://docs.aws.amazon.com/whitepapers/latest/practicing-continuous-integration-continuous-delivery/testing-stages-in-continuous-integration-and-continuous-delivery.html
https://docs.aws.amazon.com/whitepapers/latest/practicing-continuous-integration-continuous-delivery/testing-stages-in-continuous-integration-and-continuous-delivery.html
https://docs.aws.amazon.com/whitepapers/latest/practicing-continuous-integration-continuous-delivery/testing-stages-in-continuous-integration-and-continuous-delivery.html

Bibliography

n-continuous-integration-and-continuous-delivery.html, 2024.
Accessed: 2025-02-19.

[9] Bassam, I. Building Resilient Distributed Systems: 8 Strategies for Success. http
s://www.axelerant.com/blog/how-to-build-resilient-distribut

ed-systems, 2024. Accessed: 2025-02-09.

[10] Beyer, B., Jones, C., Petoff, J., and Murphy, N. R., Eds. Site reliability
engineering: how Google runs production systems, first edition ed. O’Reilly, Beijing
Boston Farnham Sebastopol Tokyo, 2016.

[11] Boyapati, S. R., and Szabo, C. Self-adaptation in Microservice Architectures:
A Case Study. In 2022 26th International Conference on Engineering of Complex
Computer Systems (ICECCS) (Hiroshima, Japan, Mar. 2022), IEEE, pp. 42–51.

[12] Bucchiarone, A., Guidi, C., Lanese, I., Bencomo, N., and Spillner, J. A
MAPE-K Approach to Autonomic Microservices. In 2022 IEEE 19th International
Conference on Software Architecture Companion (ICSA-C) (Honolulu, HI, USA,
Mar. 2022), IEEE, pp. 100–103.

[13] Casalicchio, E. Container Orchestration: A Survey. In Systems Modeling:
Methodologies and Tools, A. Puliafito and K. S. Trivedi, Eds. Springer International
Publishing, Cham, 2019, pp. 221–235. Series Title: EAI/Springer Innovations in
Communication and Computing.

[14] Chaos Community. PRINCIPLES OF CHAOS ENGINEERING - Principles of
chaos engineering. https://principlesofchaos.org/, 2019. Accessed:
2025-02-19.

[15] Chen, T., and Guestrin, C. XGBoost: A Scalable Tree Boosting System. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (Aug. 2016), pp. 785–794. arXiv:1603.02754 [cs].

[16] Computing, A., et al. An architectural blueprint for autonomic computing. IBM
White Paper 31, 2006 (2006), 1–6.

[17] D’Orazio, N., and Reiners, J. Load testing applications - AWS Prescriptive
Guidance. https://docs.aws.amazon.com/prescriptive-guidance/la
test/load-testing/welcome.html, 2024. Accessed: 2025-02-19.

97

https://docs.aws.amazon.com/whitepapers/latest/practicing-continuous-integration-continuous-delivery/testing-stages-in-continuous-integration-and-continuous-delivery.html
https://docs.aws.amazon.com/whitepapers/latest/practicing-continuous-integration-continuous-delivery/testing-stages-in-continuous-integration-and-continuous-delivery.html
https://docs.aws.amazon.com/whitepapers/latest/practicing-continuous-integration-continuous-delivery/testing-stages-in-continuous-integration-and-continuous-delivery.html
https://docs.aws.amazon.com/whitepapers/latest/practicing-continuous-integration-continuous-delivery/testing-stages-in-continuous-integration-and-continuous-delivery.html
https://docs.aws.amazon.com/whitepapers/latest/practicing-continuous-integration-continuous-delivery/testing-stages-in-continuous-integration-and-continuous-delivery.html
https://www.axelerant.com/blog/how-to-build-resilient-distributed-systems
https://www.axelerant.com/blog/how-to-build-resilient-distributed-systems
https://www.axelerant.com/blog/how-to-build-resilient-distributed-systems
https://principlesofchaos.org/
https://docs.aws.amazon.com/prescriptive-guidance/latest/load-testing/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/load-testing/welcome.html

Bibliography

[18] Filho, M., Pimentel, E., Pereira, W., Maia, P. H. M., and Cortes, M. I.

Self-Adaptive Microservice-based Systems - Landscape and Research Opportunities.
In 2021 International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS) (Madrid, Spain, May 2021), IEEE, pp. 167–178.

[19] Ganesh Raja, M., and Jeyalaksshmi, S. Self-Configuration and Self-Healing
Framework Using Extreme Gradient Boosting (XGBoost) Classifier for IoT-WSN.
Journal of Interconnection Networks 24, 03 (Sept. 2024), 2350022.

[20] Gorla, A., Pezze, M., Wuttke, J., Mariani, L., and Pastore, F. Achieving
cost-effective software reliability through self-healing. Computing and Informatics
29, 1 (2010), 93–115.

[21] Grafana Labs. Scenarios | Grafana k6 documentation. https://grafana.co
m/docs/k6/latest/using-k6/scenarios/, 2024. Accessed: February 27,
2025.

[22] Gustafsson, A. S., and Wirehed, A. Data-Driven Fault Categorization of
Multimodal Logs using Natural Language Processing Techniques. Master’s thesis,
Chalmers University of Technology, Gothenburg, Sweden, 2021.

[23] Kang, Y., Ozdogan, M., Zhu, X., Ye, Z., Hain, C., and Anderson, M.

Comparative assessment of environmental variables and machine learning algorithms
for maize yield prediction in the US Midwest. Environmental Research Letters 15,
6 (June 2020), 064005.

[24] Karol Santos Nunes, J. P., Nejati, S., Sabetzadeh, M., and Nakagawa,

E. Y. Self-adaptive, Requirements-driven Autoscaling of Microservices. In Proceed-
ings of the 19th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (Lisbon AA Portugal, Apr. 2024), ACM, pp. 168–174.

[25] Kephart, J., and Chess, D. The vision of autonomic computing. Computer 36,
1 (Jan. 2003), 41–50.

[26] Kubernetes Documentation Team. Kubernetes overview. https://kubern
etes.io/docs/concepts/overview/, 2024. Accessed: 2025-02-19.

[27] Kwasny, S. C., and Faisal, K. A. Overcoming Limitations of Rule-Based
Systems: An Example of a Hybrid Deterministic Parser. In Konnektionismus in
Artificial Intelligence und Kognitionsforschung, W. Brauer and G. Dorffner, Eds.,

98

https://grafana.com/docs/k6/latest/using-k6/scenarios/
https://grafana.com/docs/k6/latest/using-k6/scenarios/
https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/overview/

Bibliography

vol. 252. Springer Berlin Heidelberg, Berlin, Heidelberg, 1990, pp. 48–57. Series
Title: Informatik-Fachberichte.

[28] Lewis, J., and Fowler, M. Microservices. https://martinfowler.com/a
rticles/microservices.html, 2014. Accessed: 2025-02-09.

[29] Magableh, B., and Almiani, M. A Self Healing Microservices Architecture: A
Case Study in Docker Swarm Cluster. In Advanced Information Networking and
Applications, L. Barolli, M. Takizawa, F. Xhafa, and T. Enokido, Eds., vol. 926.
Springer International Publishing, Cham, 2020, pp. 846–858. Series Title: Advances
in Intelligent Systems and Computing.

[30] Malik, S., Naqvi, M. A., and Moonen, L. CHESS: A Framework for Evalu-
ation of Self-Adaptive Systems Based on Chaos Engineering. In 2023 IEEE/ACM
18th Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS) (Melbourne, Australia, May 2023), IEEE, pp. 195–201.

[31] Massé, M. H., and Massé, M. REST API design rulebook: designing consistent
RESTful Web Service Interfaces. O’Reilly, Beijing Köln, 2012.

[32] Mendonca, N. C., Aderaldo, C. M., Camara, J., and Garlan, D. Model-
Based Analysis of Microservice Resiliency Patterns. In 2020 IEEE International
Conference on Software Architecture (ICSA) (Salvador, Brazil, Mar. 2020), IEEE,
pp. 114–124.

[33] Mozilla Contributors. 504 Gateway Timeout - HTTP | MDN. https://deve
loper.mozilla.org/en-US/docs/Web/HTTP/Reference/Status/504,
2025. Accessed: 2025-02-09.

[34] Nassu, B. T., and Nanya, T. Interaction Faults Caused by Third-Party Exter-
nal Systems — A Case Study and Challenges. In Service Availability, D. Hutchison,
T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nier-
strasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y.
Vardi, G. Weikum, T. Nanya, F. Maruyama, A. Pataricza, and M. Malek, Eds.,
vol. 5017. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 59–74. Series
Title: Lecture Notes in Computer Science.

[35] Newman, S. Building microservices: designing fine-grained systems. " O’Reilly
Media, Inc.", 2021.

99

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Reference/Status/504
https://developer.mozilla.org/en-US/docs/Web/HTTP/Reference/Status/504

Bibliography

[36] Nguyen, Q. Mastering concurrency in python: create faster programs using con-
currency, asynchronous, multithreading, and parallel programming, 1st ed ed. Packt
Publishing, Birmingham, 2018.

[37] Rodemer, D. domzilla/Caffeine. https://github.com/domzilla/Caffei
ne, 2022. Accessed: February 27, 2025.

[38] Rutten, E., Marchand, N., and Simon, D. Feedback Control as MAPE-K
Loop in Autonomic Computing. In Software Engineering for Self-Adaptive Systems
III. Assurances, R. De Lemos, D. Garlan, C. Ghezzi, and H. Giese, Eds., vol. 9640.
Springer International Publishing, Cham, 2017, pp. 349–373. Series Title: Lecture
Notes in Computer Science.

[39] Shekhar, G. Microservices Design Patterns for Cloud Architecture. International
Journal of Computer Science and Engineering 11, 9 (Sept. 2024), 1–7.

[40] Skoric, A. Classifier Development for Log Analysis in Spring Boot and Kubernetes,
2024.

[41] Ve, P., Sai, M., Vuppalapati, V. S. M., Modi, S., and Ponnusamy, S. Ex-
ponential backoff: A comprehensive approach to handling failures in distributedar-
chitectures. ResearchGate, 2024. Retrieved from ResearchGate.

[42] Wong, T., and Barahona, M. Deep incremental learning models for financial
temporal tabular datasets with distribution shifts, Oct. 2023. arXiv:2303.07925 [cs].

[43] xChange Solutions. Container xChange | Containers on Demand in 2500+ Loca-
tions. https://www.container-xchange.com/, 2025. Accessed: 2025-02-24.

[44] XGBoost Developers. Categorical Data — xgboost 3.0.0 documentation. http
s://xgboost.readthedocs.io/en/stable/tutorials/categorical.h

tml, 2022. Accessed: 2025-02-27.

[45] Xu, T., Zhang, J., Huang, P., Zheng, J., Sheng, T., Yuan, D., Zhou, Y.,

and Pasupathy, S. Do not blame users for misconfigurations. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles (Farminton
Pennsylvania, Nov. 2013), ACM, pp. 244–259.

[46] Yang, T., Lee, C., Shen, J., Su, Y., Feng, C., Yang, Y., and Lyu, M. R.

MicroRes: Versatile Resilience Profiling in Microservices via Degradation Dissemina-
tion Indexing. In Proceedings of the 33rd ACM SIGSOFT International Symposium
on Software Testing and Analysis (Vienna Austria, Sept. 2024), ACM, pp. 325–337.

100

https://github.com/domzilla/Caffeine
https://github.com/domzilla/Caffeine
https://www.container-xchange.com/
https://xgboost.readthedocs.io/en/stable/tutorials/categorical.html
https://xgboost.readthedocs.io/en/stable/tutorials/categorical.html
https://xgboost.readthedocs.io/en/stable/tutorials/categorical.html

Bibliography

[47] Yazdanparast, Z. A Survey on Self-healing Software System, Mar. 2024.
arXiv:2403.00455 [cs].

[48] Özsu, M. T., and Valduriez, P. Principles of Distributed Database Systems.
Springer International Publishing, Cham, 2020.

101

A Appendix

A.1 Tools Used

Table A.1 presents the tools and resources utilized throughout the development of this
thesis. Not all tools are included in the list, as many have already been discussed in
relevant sections of the thesis. The table specifically highlights tools that were used in
the background and not explicitly mentioned elsewhere in the document.

Table A.1: Tools and Resources Used
Tool Usage
LATEX Typesetting system used for formatting and structuring this

document.
ChatGPT AI assistant used for idea generation, literature exploration,

and text refinement.
Claude AI model utilized for code debugging and issue resolution.
DeepL Translation tool employed for multilingual text conversion.
DeepL Write AI-powered writing assistant used for grammar and style en-

hancement.
IntelliJ IDEA Integrated development environment (IDE) used for software

development and code management.

102

A Appendix

Scenario Mean Min Max Std
getSchools 1834.40 0.29 5036.91 2345.20
getSchoolsWithStudents 2364.42 0.04 5043.13 2483.83
getStudents 957.55 3.23 5041.91 1936.38
postSchools 1719.97 0.10 5035.45 2327.60
postStudents 1239.04 2.87 5029.37 2131.29

Table A.2: Response time statistics (milliseconds) of the Spring Timeout scenario

Scenario Mean Min Max Std
getSchools 21.99 5.78 1394.66 26.05
getSchoolsWithStudents 22.68 4.00 1206.25 29.21
getStudents 1115.33 3.45 5030.45 2056.49
postSchools 20.98 4.20 1667.62 34.93
postStudents 853.43 3.91 5026.44 1851.68

Table A.3: Response time statistics (milliseconds) of the Spring Third-Party Service sce-
nario

Scenario Mean Min Max Std
getSchools 219.76 3.04 5025.24 960.27
getSchoolsWithStudents 298.65 2.91 5021.56 1141.75
getStudents 496.68 3.03 5047.98 1453.94
postSchools 250.53 3.32 5023.51 1047.54
postStudents 543.53 3.56 5047.02 1526.11

Table A.4: Response time statistics (milliseconds) of the Spring Request scenario

103

A Appendix

Scenario Mean Min Max Std
getSchools 19.84 5.65 286.54 9.92
getSchoolsWithStudents 21.19 5.44 130.85 9.99
getStudents 2418.84 3.78 5030.05 2446.75
postSchools 20.64 5.09 266.85 10.33
postStudents 1981.62 3.34 5011.64 2359.17

Table A.5: Response time statistics (milliseconds) of the Spring Configuration scenario

Figure A.1: Heatmap of the Spring Configuration scenario

Scenario Mean Min Max Std
getSchools 17.47 5.31 374.95 9.39
getSchoolsWithStudents 17.64 4.57 149.04 8.62
getStudents 2837.75 3.25 5019.27 2435.35
postSchools 17.52 4.72 374.30 10.59
postStudents 1871.28 2.97 5017.44 2352.32

Table A.6: Response time statistics (milliseconds) of the Spring Configuration scenario

104

A Appendix

Scenario Mean Min Max Std
getSchools 2824.11 3.17 5045.58 2453.52
getSchoolsWithStudents 3195.53 3.11 5041.15 2380.75
getStudents 21.06 5.26 334.72 11.10
postSchools 3037.16 3.66 5063.33 2422.13
postStudents 16.94 3.58 98.83 8.29

Table A.7: Response time statistics (milliseconds) of the Spring Database Connection
scenario

Figure A.2: Heatmap of the Kubernetes Pod Unhealthy scenario

Scenario Mean Min Max Std
getSchools 2306.50 2.60 5055.96 2445.42
getSchoolsWithStudents 2501.58 1.91 5031.68 2457.09
getStudents 19.53 5.87 357.94 9.75
postSchools 2146.76 2.81 5031.06 2433.23
postStudents 15.05 3.10 96.69 8.16

Table A.8: Response time statistics (milliseconds) of the Kubernetes Pod Unhealthy sce-
nario

105

A Appendix

Figure A.3: Heatmap of the Service Down Kubernetes scenario

Scenario Mean Min Max Std
getSchools 2260.34 2.24 5058.51 2440.63
getSchoolsWithStudents 2593.63 2.12 5056.01 2452.95
getStudents 19.95 6.18 352.22 10.38
postSchools 2343.41 2.74 5057.49 2453.38
postStudents 14.69 3.10 100.90 8.48

Table A.9: Response time statistics (milliseconds) of the Service Down Kubernetes sce-
nario

Scenario Mean Min Max Std
getSchools 3503.52 0.0 5015.23 2262.80
getSchoolsWithStudents 3610.16 0.0 5021.36 2211.29
getStudents 3504.59 0.0 5019.29 2262.75
postSchools 3422.78 0.0 5020.28 2294.56
postStudents 3427.67 0.0 5018.80 2292.16

Table A.10: Response time statistics (milliseconds) of the Kubernetes Node Problem sce-
nario

106

A Appendix

Scenario Mean Min Max Std
getSchools 2176.70 3.23 5036.84 2431.60
getSchoolsWithStudents 2535.82 3.06 5035.22 2462.87
getStudents 21.05 5.99 361.98 12.31
postSchools 2201.35 3.92 5037.53 2443.89
postStudents 17.48 3.84 201.26 11.68

Table A.11: Response time statistics (milliseconds) of the Kubernetes Low CPU Memory
scenario

Figure A.4: Heatmap of the Kubernetes Invalid Image scenario

Scenario Mean Min Max Std
getSchools 2615.83 3.48 5037.62 2443.34
getSchoolsWithStudents 3121.40 3.72 5023.90 2396.09
getStudents 20.42 5.34 295.06 9.53
postSchools 2918.08 3.97 5025.18 2438.53
postStudents 17.72 4.13 116.58 8.68

Table A.12: Response time statistics (milliseconds) of the Kubernetes Invalid Image sce-
nario

107

A Appendix

Figure A.5: Heatmap of the Kubernetes Configuration scenario

Scenario Mean Min Max Std
getSchools 18.17 5.49 361.01 10.69
getSchoolsWithStudents 17.65 5.21 149.85 9.74
getStudents 2523.63 3.81 5029.20 2468.97
postSchools 17.12 4.58 345.65 11.63
postStudents 2476.28 3.18 5024.81 2467.12

Table A.13: Response time statistics (milliseconds) of the Kubernetes Configuration sce-
nario

108

A Appendix

Scenario Mean Min Max Std
deleteCustomer 20.25 5.45 144.00 15.08
getCustomers 18.68 4.94 150.65 7.73
getOrder 820.78 3.47 5025.13 1834.32
getOrderLines 818.81 2.94 5024.31 1831.89
getOrders 824.07 5.52 5010.43 1831.90
getProduct 1559.39 2.94 5014.75 2258.28
getProducts 1033.68 3.21 5016.73 1956.84
postCustomers 19.87 4.91 66.26 7.96
postOrders 1891.08 5.87 5011.06 2404.76
postProducts 2461.16 8.76 5012.60 2442.67
putCustomers 19.82 6.22 48.24 7.45
setup 8.61 6.27 14.08 2.31

Table A.14: Response time statistics (milliseconds) of the Spring Timeout scenario

Figure A.6: Heatmap of the Spring Configuration scenario

109

A Appendix

Scenario Mean Min Max Std
deleteCustomer 17.55 5.50 45.68 8.95
getCustomers 14.43 3.88 108.12 6.82
getOrder 12.70 2.98 57.75 6.54
getOrderLines 13.06 2.98 57.65 6.68
getOrders 14.99 3.99 280.48 8.95
getProduct 770.61 3.21 5020.93 1730.92
getProducts 338.04 2.54 5006.17 1144.54
postCustomers 16.58 4.39 55.52 8.34
postOrders 26.36 5.84 559.23 19.96
postProducts 1271.73 6.15 5002.18 2099.03
putCustomers 16.30 6.95 32.12 5.76
setup 7.50 6.10 12.00 1.30

Table A.15: Response time statistics (milliseconds) of the Spring Third-Party Service
scenario

Figure A.7: Heatmap of the Kubernetes Pod Unhealthy scenario

110

A Appendix

Scenario Mean Min Max Std
deleteCustomer 19.42 6.55 72.28 8.76
getCustomers 17.54 4.57 253.07 9.20
getOrder 59.54 3.27 5002.71 469.11
getOrderLines 54.19 3.21 5002.51 434.09
getOrders 58.98 2.72 5002.78 452.56
getProduct 348.05 3.16 5028.78 1224.73
getProducts 121.97 2.96 5006.82 678.36
postCustomers 18.18 5.66 121.20 8.75
postOrders 77.00 4.39 5000.98 500.45
postProducts 706.85 8.37 5010.41 1692.35
putCustomers 11.71 5.10 40.56 6.10
setup 8.73 6.68 17.58 2.69

Table A.16: Response time statistics (milliseconds) of the Spring Request scenario

Figure A.8: Heatmap of the Service Down Kubernetes scenario

111

A Appendix

Scenario Mean Min Max Std
deleteCustomer 24.75 10.21 59.77 11.10
getCustomers 19.14 5.21 105.48 8.50
getOrder 16.48 3.85 217.91 9.12
getOrderLines 17.27 4.34 218.68 9.13
getOrders 18.31 4.42 288.70 11.23
getProduct 1043.34 3.55 5009.38 1952.45
getProducts 1503.65 3.86 5022.95 2210.65
postCustomers 22.07 7.87 70.75 8.82
postOrders 31.84 6.71 554.58 23.04
postProducts 2855.84 6.43 5004.58 2389.58
putCustomers 21.36 11.81 42.08 5.85
setup 8.89 6.22 19.03 3.37

Table A.17: Response time statistics (milliseconds) of the Spring Down scenario

Figure A.9: Heatmap of the Kubernetes Invalid Image scenario

112

A Appendix

Scenario Mean Min Max Std
deleteCustomer 13.77 4.81 52.50 8.17
getCustomers 17.22 5.13 117.41 7.35
getOrder 14.36 3.43 119.10 7.29
getOrderLines 14.80 3.57 119.50 7.31
getOrders 15.85 3.90 233.34 8.73
getProduct 2174.42 3.04 5011.38 2310.51
getProducts 1394.31 2.94 5004.64 2069.57
postCustomers 13.50 5.01 39.43 6.12
postOrders 25.83 5.75 497.18 19.14
postProducts 2909.68 3.52 5004.85 2284.11
putCustomers 15.84 7.37 28.99 5.24
setup 8.57 6.40 14.22 2.38

Table A.18: Response time statistics (milliseconds) of the Spring Configuration scenario

Figure A.10: Heatmap of the Kubernetes Configuration scenario

113

A Appendix

Scenario Mean Min Max Std
deleteCustomer 29.73 11.63 73.85 11.59
getCustomers 23.46 4.81 204.84 11.56
getOrder 2040.09 3.26 5030.81 2425.82
getOrderLines 2230.56 2.62 5028.11 2457.34
getOrders 1979.89 3.51 5030.91 2418.25
getProduct 16.57 3.50 162.88 9.50
getProducts 23.17 5.40 166.53 11.20
postCustomers 32.19 7.70 88.30 14.67
postOrders 2625.05 2.44 5027.52 2460.71
postProducts 34.67 10.76 87.42 14.36
putCustomers 27.76 8.99 70.37 10.24
setup 8.93 6.65 16.17 2.30

Table A.19: Response time statistics (milliseconds) of the Spring Database Connection
scenario

Figure A.11: Heatmap of the Spring Configuration scenario with tool deployed

114

A Appendix

Scenario Mean Min Max Std
deleteCustomer 29.18 6.51 71.62 14.38
getCustomers 21.10 5.89 153.43 10.82
getOrder 1615.45 2.87 5033.42 2288.67
getOrderLines 1688.11 2.85 5036.10 2311.16
getOrders 1313.50 2.98 5034.85 2150.47
getProduct 15.06 2.96 89.47 8.52
getProducts 20.25 4.76 123.19 10.33
postCustomers 27.14 5.08 92.30 13.81
postOrders 2138.00 2.29 5028.47 2403.93
postProducts 30.15 7.64 79.50 13.90
putCustomers 22.08 7.57 50.08 8.85
setup 11.97 7.18 20.26 3.68

Table A.20: Response time statistics (milliseconds) of the Kubernetes Pod Unhealthy
scenario

Figure A.12: Heatmap of the Service Down Kubernetes scenario with tool deployed

115

A Appendix

Scenario Mean Min Max Std
deleteCustomer 29.45 7.33 60.57 13.23
getCustomers 22.27 6.32 135.28 11.09
getOrder 1730.35 2.26 5048.36 2321.99
getOrderLines 1438.26 2.29 5032.90 2206.31
getOrders 1137.09 2.55 5050.30 2042.45
getProduct 16.00 3.41 95.34 9.18
getProducts 22.55 6.61 134.28 11.21
postCustomers 26.21 5.86 77.09 12.84
postOrders 2090.87 2.63 5044.09 2399.51
postProducts 30.11 8.28 80.39 13.37
putCustomers 26.82 8.01 58.75 10.52
setup 8.34 6.98 15.21 1.73

Table A.21: Response time statistics (milliseconds) of the Service Down Kubernetes sce-
nario

Figure A.13: Heatmap of the Kubernetes Invalid Image scenario with tool deployed

116

A Appendix

Scenario Mean Min Max Std
deleteCustomer 10884.46 0.00 60000.42 15724.97
getCustomers 1109.06 0.00 5008.80 2047.40
getOrder 1067.31 0.00 5016.92 2008.15
getOrderLines 1068.95 0.00 5016.70 2009.42
getOrders 1069.41 0.00 5017.42 2007.14
getProduct 1063.55 0.00 5017.07 2004.86
getProducts 1078.00 0.00 5007.29 2016.60
postCustomers 1753.48 0.00 5002.92 2349.25
postOrders 1380.22 0.00 5014.09 2194.89
postProducts 1710.27 0.00 5002.18 2341.73
putCustomers 1695.91 0.00 5002.22 2333.38
setup 8.55 6.63 12.34 1.51

Table A.22: Response time statistics (milliseconds) of the Kubernetes Node Problem sce-
nario

Figure A.14: Heatmap of the Kubernetes Configuration scenario with tool deployed

117

A Appendix

Scenario Mean Min Max Std
deleteCustomer 22.90 7.30 58.83 8.05
getCustomers 17.78 5.27 124.12 6.52
getOrder 1240.84 2.61 5002.60 2111.75
getOrderLines 1642.46 2.72 5023.50 2292.33
getOrders 1733.43 2.58 5005.21 2329.11
getProduct 15.15 3.62 119.95 6.51
getProducts 18.68 5.53 124.54 7.19
postCustomers 20.08 5.84 122.80 9.91
postOrders 2087.60 2.24 5021.39 2396.44
postProducts 23.04 8.18 124.23 9.60
putCustomers 21.06 7.45 34.93 5.64
setup 7.75 6.28 12.14 1.41

Table A.23: Response time statistics (milliseconds) of the Kubernetes Low CPU and
Memory scenario

Figure A.15: Heatmap of the Spring Configuration scenario with tool deployed

118

A Appendix

Scenario Mean Min Max Std
deleteCustomer 15.72 4.33 49.33 8.09
getCustomers 15.60 4.77 83.06 6.82
getOrder 2373.64 2.61 5011.89 2459.80
getOrderLines 2392.52 2.96 5008.27 2448.18
getOrders 970.35 3.26 5005.31 1914.44
getProduct 12.48 3.70 78.49 6.39
getProducts 16.61 5.32 109.41 7.50
postCustomers 21.66 6.11 41.79 6.48
postOrders 2482.25 3.08 5020.33 2420.22
postProducts 25.17 9.13 52.70 6.88
putCustomers 14.20 5.69 33.65 5.83
setup 7.95 6.16 13.42 1.67

Table A.24: Response time statistics (milliseconds) of the Kubernetes Invalid Image sce-
nario

Figure A.16: Heatmap of the Service Down Kubernetes scenario with tool deployed

119

A Appendix

Scenario Mean Min Max Std
deleteCustomer 27.04 7.79 73.86 15.53
getCustomers 23.83 5.86 610.40 23.56
getOrder 19.71 4.32 429.42 19.10
getOrderLines 20.68 4.64 498.40 20.05
getOrders 22.17 4.65 514.67 22.76
getProduct 2054.40 5.84 13278.26 2212.85
getProducts 2092.61 7.63 13279.54 2230.37
postCustomers 24.12 5.77 79.01 13.26
postOrders 39.45 8.38 727.27 48.05
postProducts 2800.86 14.74 5021.46 2283.88
putCustomers 33.24 13.01 65.94 13.66
setup 11.38 7.65 24.91 4.75

Table A.25: Response time statistics (milliseconds) of the Kubernetes Configuration sce-
nario

Scenario Mean Min Max Std
getSchools 1798.11 7.50 5070.44 2227.01
getSchoolsWithStudents 2395.61 4.58 5050.88 2447.63
getStudents 1124.27 5.71 5045.16 1982.55
postSchools 1693.64 5.88 5060.48 2201.94
postStudents 1213.80 4.42 5032.05 2061.62

Table A.26: Response time statistics (milliseconds) of the Spring Timeout scenario with
tool deployed

Figure A.17: Heatmap of the Kubernetes Invalid Image scenario with tool deployed

120

A Appendix

Scenario Mean Min Max Std
getSchools 28.34 5.42 5002.34 147.54
getSchoolsWithStudents 31.02 3.86 5000.80 164.32
getStudents 900.97 4.02 5034.50 1886.89
postSchools 23.65 4.88 5001.38 93.86
postStudents 1265.81 3.88 5012.58 2153.21

Table A.27: Response time statistics (milliseconds) of the Spring Third-Party Service
scenario with tool deployed

Scenario Mean Min Max Std
getSchools 1714.66 4.67 902634.48 35454.41
getSchoolsWithStudents 1748.14 4.15 902632.37 35307.40
getStudents 642.47 4.41 5020.19 1618.82
postSchools 1068.71 4.67 902596.63 26627.79
postStudents 572.41 3.95 5012.60 1543.37

Table A.28: Response time statistics (milliseconds) of the Spring Request Service scenario
with tool deployed

Figure A.18: Heatmap of the Kubernetes Configuration scenario with tool deployed

121

A Appendix

Scenario Mean Min Max Std
getSchools 19.87 6.12 415.37 11.41
getSchoolsWithStudents 20.97 4.52 1037.72 25.95
getStudents 2500.64 4.43 5014.78 2460.74
postSchools 19.48 5.00 392.99 12.72
postStudents 2641.41 4.07 5017.87 2476.23

Table A.29: Response time statistics (milliseconds) of the Spring Down scenario with tool
deployed

Scenario Mean Min Max Std
getSchools 18.32 5.87 394.11 10.04
getSchoolsWithStudents 16.41 3.17 356.56 11.68
getStudents 3020.81 3.37 5010.78 2383.52
postSchools 15.80 4.06 373.84 12.40
postStudents 3217.60 3.72 5012.03 2295.36

Table A.30: Response time statistics (milliseconds) of the Spring Configuration scenario
with tool deployed

Scenario Mean Min Max Std
getSchools 2959.32 3.99 5089.29 2410.86
getSchoolsWithStudents 3199.06 3.96 5058.52 2351.52
getStudents 39.37 7.86 1442.34 54.52
postSchools 2969.08 3.86 5059.01 2416.37
postStudents 35.24 4.91 1329.49 54.75

Table A.31: Response time statistics (milliseconds) of the Spring Database Connection
scenario with tool deployed

Scenario Mean Min Max Std
getSchools 19.90 4.06 1466.75 30.25
getSchoolsWithStudents 23.16 3.87 1367.80 31.14
getStudents 21.54 6.52 476.11 12.52
postSchools 20.03 4.02 1370.93 31.09
postStudents 15.81 4.01 465.85 11.75

Table A.32: Response time statistics (milliseconds) of the Kubernetes Pod Unhealthy
scenario with tool deployed

122

A Appendix

Scenario Mean Min Max Std
getSchools 39.91 4.48 4554.20 137.91
getSchoolsWithStudents 52.76 4.37 4556.33 164.35
getStudents 34.11 7.24 3298.76 82.66
postSchools 42.92 5.32 4557.18 145.65
postStudents 27.67 5.06 2727.90 76.55

Table A.33: Response time statistics (milliseconds) of the Service Down Kubernetes sce-
nario with tool deployed

Scenario Mean Min Max Std
getSchools 44.75 0.0 5021.78 250.47
getSchoolsWithStudents 56.93 0.0 5005.82 273.19
getStudents 45.36 0.0 5022.99 248.55
postSchools 47.10 0.0 5015.40 237.85
postStudents 46.10 0.0 5013.96 237.37

Table A.34: Response time statistics (milliseconds) of the Kubernetes Node Problem sce-
nario with tool deployed

Scenario Mean Min Max Std
getSchools 39.13 4.28 5005.43 272.70
getSchoolsWithStudents 61.53 4.83 5004.38 377.58
getStudents 20.01 6.12 625.54 18.23
postSchools 48.40 4.85 5002.80 318.39
postStudents 18.28 4.44 623.80 18.29

Table A.35: Response time statistics (milliseconds) of the Kubernetes Low CPU Memory
scenario with tool deployed

Scenario Mean Min Max Std
getSchools 22.70 5.80 4133.35 123.19
getSchoolsWithStudents 26.28 5.84 4133.31 133.18
getStudents 18.94 5.99 928.51 22.80
postSchools 20.51 5.36 2074.19 61.76
postStudents 16.98 4.21 384.23 13.67

Table A.36: Response time statistics (milliseconds) of the Kubernetes Invalid Image sce-
nario with tool deployed

123

A Appendix

Scenario Mean Min Max Std
getSchools 19.35 6.08 725.52 14.71
getSchoolsWithStudents 21.40 6.18 169.01 10.11
getStudents 45.72 4.93 5006.21 335.59
postSchools 18.22 4.23 692.49 17.81
postStudents 42.59 4.65 5001.15 332.72

Table A.37: Response time statistics (milliseconds) of the Kubernetes Configuration sce-
nario with tool deployed

Scenario Mean Min Max Std
deleteCustomer 84.91 10.15 641.14 104.32
getCustomers 67.30 7.56 1863.09 112.97
getOrder 58.07 4.99 4679.65 179.98
getOrderLines 61.92 5.01 4682.08 184.07
getOrders 73.06 7.22 4678.94 188.97
getProduct 1728.55 6.32 5066.18 2238.26
getProducts 1443.45 4.67 5057.85 2126.14
postCustomers 81.15 9.60 1001.22 109.01
postOrders 1981.03 5.85 5053.95 2329.19
postProducts 2435.83 6.25 5018.22 2345.09
putCustomers 102.17 10.76 902.64 143.01
setup 8.40 6.67 14.60 1.75

Table A.38: Response time statistics (milliseconds) of the Spring Timeout scenario with
tool deployed

Scenario Mean Min Max Std
deleteCustomer 35.36 12.65 165.96 22.29
getCustomers 27.15 7.34 375.57 16.74
getOrder 25.31 4.33 5000.30 153.64
getOrderLines 30.86 4.82 5001.27 193.83
getOrders 39.68 8.83 5002.99 202.69
getProduct 566.78 4.48 5014.02 1437.01
getProducts 686.80 5.64 5013.91 1582.36
postCustomers 36.27 10.34 167.44 17.61
postOrders 62.17 8.25 5000.25 153.65
postProducts 1160.78 15.80 5016.56 1973.60
putCustomers 28.05 11.25 60.71 11.40
setup 11.34 7.14 22.45 4.07

Table A.39: Response time statistics (milliseconds) of the Spring Third-Party Service
scenario with tool deployed

124

A Appendix

Scenario Mean Min Max Std
deleteCustomer 40.64 10.94 352.68 35.12
getCustomers 34.96 7.89 3621.75 64.50
getOrder 118.60 4.50 5014.49 666.61
getOrderLines 161.38 5.05 5013.87 798.98
getOrders 147.47 5.00 5011.00 723.70
getProduct 275.06 4.29 5014.54 1054.73
getProducts 308.02 5.19 5020.18 1108.56
postCustomers 43.43 7.98 472.46 33.41
postOrders 260.86 11.44 5009.72 946.12
postProducts 611.70 12.16 5011.67 1536.21
putCustomers 46.86 11.86 331.07 44.61
setup 11.28 7.51 23.55 4.19

Table A.40: Response time statistics (milliseconds) of the Spring Request Service scenario
with tool deployed

Scenario Mean Min Max Std
deleteCustomer 67.71 9.20 426.26 72.87
getCustomers 49.84 6.89 1043.69 85.10
getOrder 39.01 5.50 995.83 65.59
getOrderLines 41.34 6.39 1283.53 71.35
getOrders 43.38 5.92 1313.98 71.38
getProduct 1409.04 5.74 5040.97 1999.20
getProducts 1530.89 7.60 5027.44 2049.79
postCustomers 65.89 8.12 862.91 95.15
postOrders 89.26 10.05 4338.41 189.18
postProducts 1801.75 13.24 5016.25 2193.79
putCustomers 68.43 13.74 285.89 71.06
setup 9.30 6.84 18.44 2.54

Table A.41: Response time statistics (milliseconds) of the Spring Down scenario with tool
deployed

125

A Appendix

Scenario Mean Min Max Std
deleteCustomer 42.12 15.48 168.54 26.17
getCustomers 24.57 7.83 236.77 12.47
getOrder 19.44 5.56 163.32 10.93
getOrderLines 20.36 5.84 163.95 11.23
getOrders 20.95 4.86 382.90 13.65
getProduct 171.40 3.84 5008.73 854.00
getProducts 286.02 4.12 5007.27 1115.89
postCustomers 42.21 13.94 160.85 17.40
postOrders 38.13 8.18 802.80 32.38
postProducts 649.90 4.96 5002.35 1636.04
putCustomers 34.74 10.58 71.09 13.47
setup 10.93 7.08 20.84 3.26

Table A.42: Response time statistics (milliseconds) of the Spring Configuration scenario
with tool deployed

Scenario Mean Min Max Std
deleteCustomer 41.25 14.25 121.07 18.03
getCustomers 28.03 7.70 308.37 16.21
getOrder 2242.09 4.55 5015.30 2432.57
getOrderLines 2142.42 5.10 5013.09 2419.51
getOrders 2083.66 4.02 5014.99 2410.87
getProduct 19.84 3.77 301.14 13.94
getProducts 26.96 7.16 302.96 15.16
postCustomers 44.32 12.79 202.07 17.84
postOrders 2592.14 4.86 5012.79 2421.05
postProducts 47.87 12.89 201.09 18.97
putCustomers 31.69 12.40 102.44 14.77
setup 9.37 7.50 14.90 1.72

Table A.43: Response time statistics (milliseconds) of the Spring Database Connection
scenario with tool deployed

126

A Appendix

Scenario Mean Min Max Std
deleteCustomer 83.34 10.43 1406.49 204.26
getCustomers 43.31 8.43 1904.45 83.32
getOrder 51.73 5.14 2552.73 117.53
getOrderLines 57.02 5.17 2841.52 126.05
getOrders 61.82 5.20 2840.74 124.39
getProduct 33.04 4.68 1883.87 70.96
getProducts 41.40 7.91 1924.38 82.91
postCustomers 67.96 12.51 1645.66 123.80
postOrders 159.25 7.49 4552.37 246.60
postProducts 67.50 11.87 1656.96 130.78
putCustomers 47.63 11.49 267.40 42.53
setup 13.82 9.40 30.04 5.07

Table A.44: Response time statistics (milliseconds) of the Kubernetes Pod Unhealthy
scenario with tool deployed

Scenario Mean Min Max Std
deleteCustomer 38.83 14.06 127.80 20.28
getCustomers 26.19 6.40 351.75 15.79
getOrder 25.99 5.44 1878.62 47.81
getOrderLines 28.66 4.63 2063.34 53.34
getOrders 33.52 5.25 1976.55 53.63
getProduct 19.25 3.74 325.83 13.28
getProducts 25.38 6.79 343.66 14.48
postCustomers 39.60 11.90 144.69 17.94
postOrders 81.67 5.92 2473.51 90.69
postProducts 37.72 14.72 154.87 18.38
putCustomers 36.67 14.03 99.76 15.81
setup 12.68 8.71 20.96 3.51

Table A.45: Response time statistics (milliseconds) of the Service Down Kubernetes sce-
nario with tool deployed

127

A Appendix

Scenario Mean Min Max Std
deleteCustomer 3759.73 0.00 60000.50 12837.98
getCustomers 341.44 0.00 5021.39 1121.47
getOrder 317.12 0.00 5016.72 1110.35
getOrderLines 321.42 0.00 5031.26 1110.10
getOrders 323.35 0.00 5032.92 1105.88
getProduct 321.95 0.00 5049.63 1110.85
getProducts 332.43 0.00 5028.40 1111.67
postCustomers 591.61 0.00 5030.34 1490.25
postOrders 516.83 0.00 5019.36 1266.47
postProducts 559.20 0.00 5029.38 1461.86
putCustomers 575.45 0.00 5005.25 1451.54
setup 17.71 8.57 63.78 12.89

Table A.46: Response time statistics (milliseconds) of the Kubernetes Node Problem sce-
nario with tool deployed

Scenario Mean Min Max Std
deleteCustomer 125.24 19.24 3505.65 510.71
getCustomers 41.27 6.91 5029.98 163.14
getOrder 67.98 4.80 5000.96 285.60
getOrderLines 83.83 5.14 5000.57 373.29
getOrders 88.03 6.70 5003.19 385.86
getProduct 34.85 4.43 5003.21 188.17
getProducts 41.20 8.18 5028.74 191.68
postCustomers 68.15 13.83 3229.53 241.67
postOrders 185.61 6.82 5002.40 513.02
postProducts 64.87 10.95 3222.58 240.56
putCustomers 38.50 10.85 234.23 36.28
setup 10.38 7.45 18.62 2.60

Table A.47: Response time statistics (milliseconds) of the Kubernetes Low CPU Memory
scenario with tool deployed

128

A Appendix

Scenario Mean Min Max Std
deleteCustomer 48.43 12.14 176.31 25.02
getCustomers 30.35 8.20 859.46 25.22
getOrder 39.94 5.15 5010.94 256.47
getOrderLines 39.76 5.35 5009.75 238.74
getOrders 48.61 7.98 5007.75 267.69
getProduct 24.40 5.81 864.19 24.61
getProducts 30.40 9.01 867.95 25.53
postCustomers 53.00 12.94 290.15 29.85
postOrders 92.21 7.04 5005.96 308.23
postProducts 48.76 15.74 196.38 21.03
putCustomers 39.84 11.47 84.94 15.82
setup 13.23 8.39 21.92 4.04

Table A.48: Response time statistics (milliseconds) of the Kubernetes Invalid Image sce-
nario with tool deployed

Scenario Mean Min Max Std
deleteCustomer 42.49 16.03 78.15 13.89
getCustomers 28.15 7.28 280.59 18.91
getOrder 22.77 4.09 199.47 16.11
getOrderLines 24.58 5.69 208.46 17.64
getOrders 30.02 7.32 269.64 21.03
getProduct 41.14 4.58 5000.52 242.70
getProducts 48.51 6.71 5000.16 266.92
postCustomers 42.17 10.56 91.38 15.52
postOrders 68.38 13.19 654.68 50.29
postProducts 46.92 13.47 1022.51 74.53
putCustomers 40.71 19.53 121.93 17.78
setup 10.40 8.02 17.44 2.21

Table A.49: Response time statistics (milliseconds) of the Kubernetes Configuration sce-
nario with tool deployed

129

Erklärung zur selbständigen Bearbeitung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig
verfasst und nur die angegebenen Hilfsmittel benutzt habe. Wörtlich oder dem Sinn
nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich
gemacht.

Ort Datum Unterschrift im Original

130

	List of Figures
	List of Tables
	Introduction
	Motivation, Objectives and Research Questions
	Structure

	Fundamentals
	MAPE-K
	Microservices
	Container Orchestration
	Performance Testing
	Chaos Engineering
	XGBoost

	Related Work
	Concept
	Problem Definition
	Requirements Analysis

	Implementation
	Architecture
	Algorithms
	MAPE-K
	Log Classification
	Solution Classification

	Experimental Setup and Implementation
	Evaluation Methodology
	Test Environment Setup
	Chaos Engineering Implementation

	Experimental Results and Analysis
	Experimental Procedure
	Performance Analysis
	SMS without tool
	EOMS without tool
	SMS with tool
	EOMS with tool

	Discussion and Findings

	Conclusion
	Outlook

	Bibliography
	Appendix
	Tools Used

	Declaration of Authorship

