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Kurzzusammenfassung

Verantwortungsvolle AI (RAI) ist ein Thema, das immer wichtiger wird. Um RAI zu

entwickeln, ist es notwendig, dass es eine allgemeine Maÿeinheit gibt, um den Grad der

Verantwortung zu bewerten. Diese Thesis erweitert das Bewertungs-Framework, das

in [16] eingeführt wurde. Es kombiniert verschiedene Metriken, die die Umsetzung der

verschiedenen Aspekte von RAI messen, um Klassi�kations-Modelle zu bewerten. Diese

Arbeit bearbeitet die Bewertung von Clusterings.

Dazu wird eine Literaturübersicht über die existierenden Metriken erstellt, die die Fair-

ness (beinhaltet Performance, Individuelle und Gruppen Fairness), den Datenschutz, die

Sicherheit und die Erklärbarkeit messen. Es werden auch neue Ansätze vorgestellt. Dann

werden einige Metriken ausgewählt, die jeweils genauer bearbeitet werden und zusammen

ein leistungsstarkes Tool zur Bewertung der Verantwortung bilden.

Die umfangreiche Bewertung durch diese Metriken wird anhand von fünf Modellen demon-

striert. Die Ergebnisse zeigen, dass die Metriken passende Bewertungen geben, besonders,

wenn sie in Kombination genutzt werden und somit ihre individuellen Schwachstellen aus-

gleichen.

Insgesamt bietet die erarbeitete Erweiterung des Bewertungs-Frameworks RAI Forsch-

ern und Entwicklern eine gemeinsame Lösung für die Beurteilung der Verantwortung von

Clustering-Modellen. Dies ermöglicht unter anderem das Nachvollziehen einer Verbesserung

eines Modells durch Anpassungen und das Vergleichen mehrerer Modelle. Das macht

diese Arbeit zu einem wichtigen Beitrag zur künftigen Entwicklung und Forschung von

RAI.
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Abstract

Responsible AI (RAI) is a topic of increasing importance. The ambition to create RAI

leads to the need for a common measurement of the level of responsibility. This thesis

extends the solution presented in [16], which combines metrics covering the aspects of RAI

in an evaluation framework to evaluate classi�cation tasks. In this thesis, the evaluation

of clustering tasks is researched and integrated into this framework.

To achieve this, the available literature for metrics for the evaluation of fairness (including

performance, individual fairness, and group fairness), privacy, security, and explainability

is analyzed and enhanced with new approaches. A set of these metrics is selected and

implemented, forming a powerful evaluation tool for responsibility.

The extensive assessment using this set is demonstrated on �ve di�erent clustering mod-

els. The calculated scores validate the e�ciency, especially through the combination of

metrics to compensate individual limitations.

Altogether, the developed extension of the evaluation framework provides RAI researchers

and developers with a common solution for the assessment of the responsibility of a clus-

tering tasks. It can be used for many purposes, such as verifying the enhancement of a

model after its manipulation or comparing multiple models. As such, it is an important

contribution to the further development and research of Responsible AI.
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1 Introduction

Evaluation of Responsible AI for Clustering

In the �eld of Arti�cial Intelligence (AI), there has recently been increased interest in a

special variation: Responsible AI (RAI). This kind of AI is still new and many topics are

yet to be explored. Known research concludes that RAI has many di�erent character-

istics, e.g. [14, p. 8] de�nes it as "Human-centered, Trustworthy, Ethical, Explainable,

Privacy(-preserving) and Secure AI".

To bring these characteristics together, [16] presents a framework capable of evaluating

the level of responsibility of an AI model. It focuses on classi�cation tasks only, though.

In this work, the framework is extended to supporting clustering algorithms. Clustering

is an important facet of AI. Its aim is "to organize data into groups or clusters based on

the inherent patterns and similarities within the data" as explained in [34, p. 1].

Since RAI has a wide spectrum, this work seeks to combine di�erent metrics to evaluate

a clustering model in the four important areas fairness, privacy, security, and explainabil-

ity. Fairness is further composed of performance, group fairness and individual fairness.

Combined, these aspects give a good impression of how responsible a model is.

Using this method shall enable developers to assess their clustering models and quantify

the level of responsibility. In this regard, the method will also make it possible to see the

improvements of a model after changes were made, which is especially helpful during the

development process.

During the implementation of these metrics, a special focus is on comparability. All

metrics are normalized so that the aspects of di�erent models can easily be compared.

Furthermore, the duration of the evaluation will be considered. If a metric with high

complexity takes long to calculate a score, heuristics are added to accelerate this process.

Thus, quick feedback after changes during the development of a model is possible.
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1 Introduction

Research Questions

This thesis aims to answer the following research questions:

RQ1: Which metrics are relevant to evaluate the aspects of RAI on clustering

models?

To answer this question, an overview of the available metrics and ideas for metrics for

clustering algorithms is given and brie�y explained. Then, their compatibility with dif-

ferent clustering algorithms is checked, and the most �tting metrics are selected.

RQ2: To what extent is it possible to compare di�erent models based on the

evaluations of the metrics?

To ensure comparability, the metrics are normalized. The aim is to �nd a way of nor-

malization that results in a score independent of the model's underlying data. Later, the

metrics are used on di�erent models.

RQ3: Which di�erent kinds of clustering algorithms can be evaluated with

these metrics?

This question is answered by using an experiment. Di�erent clustering algorithms are

applied to di�erent datasets to build models. These models are then evaluated using the

implemented metrics.

RQ4: Are these metrics able to point out highly responsible models?

A test model is created with specially designed data to form a clear clustering. This

question will be answered by evaluating this model using the metrics.

Outline

The following work is organized in �ve parts. Chapter 2 begins with an introduction to

the metrics, including their compatibility with di�erent clustering algorithms. Several

metrics are selected, and a weighting is created. Using the weighting, the metrics are

combined to calculate the aspects of RAI. The di�erent metrics are then presented in

detail, including their speci�c calculation, the normalization and implementation.

2



1 Introduction

In chapter 3, �ve di�erent test models are presented. Four of them focus on di�erent

types of clustering algorithms, one focuses on special data.

These models are then evaluated, and the results are presented in chapter 4. This includes

the di�erent metrics and the combined RAI aspects.

Chapter 5 summarizes the �ndings and answers the research questions.

Chapter 6 provides an overview of problems that remain unsolved, as well as suggestions

for future research.
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2 Metrics

2.1 Overview

2.1.1 Targets

Generally, there are rather few known metrics for clustering algorithms. This is due to

missing labels. Most metrics for other algorithms use labels and thus cannot be used on

clusterings.

Below, in section 2.1.2, the existing metrics are presented. They are supplemented by

ideas that are not yet speci�ed. These approaches are available in a slightly larger

quantity.

In section 2.1.3, it is analysed which of these metrics can be used for which speci�c

clustering algorithm. Most are usable for many algorithms but not all.

Finally, in section 2.1.4, the metrics used in this work are presented. A weighting is also

introduced to specify which metrics represent which RAI aspects. The selected metrics

will be concretized in chapter 2.

2.1.2 Metrics for Di�erent Categories

Performance

Evaluating the performance of a model without labels is a di�cult task. There are no

explicit metrics to accomplish it. However, several security metrics can help to approxi-

mate it. These are the Davies-Bouldin-Index (DBI), the Dunn-Index and the Silhouette

Coe�cient (SC), which are presented later in this chapter. All of them show compact,

well-de�ned and well-separated clusters. These values are essential for security, but they

also show a good performance.
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2 Metrics

One speci�c metric does exist though. Inertia is a common metric as shown in [32] that

measures the distance of all data points to their cluster centers. It is usually mentioned

in the context of k-means as it suits this algorithm perfectly.

Fairness

Group Fairness The fairness metrics can be divided into two categories: individual

fairness and group fairness. The group fairness metrics analyze the similar treatment of

di�erent groups. This aims to protect whole groups from being treated worse than other

groups.

Demographic Parity is described in [26] as a method to create fair classi�cation models. A

metric could be derived that compares whether certain attributes are equally distributed

between clusters.

A very similar metric could be based on Disparate Impact. As mentioned in [2, p. 5], "In

the context of clustering, fairness is often intended in terms of preventing disparate impact

over categories of data points." This could be quanti�ed by comparing the proportions

of certain attributes between clusters.

The di�erence between the two metrics is that at Disparate Impact, the focus is on the

ratio between individual clusters while Demographic Parity focuses on the ratio between

all clusters at the same time. However, both are not yet speci�c metrics and need to be

clearly de�ned.

Finally, Representation Disparity (RD) as proposed in [33] also is a similar idea. Here,

the attribute occurrences in the individual clusters are compared to the whole dataset

instead of other clusters.

Individual Fairness The individual fairness metrics are used to evaluate whether

individual data points similar to each other, are also assigned to the same cluster.

Fairness Through Awareness is a metric often used in classi�cation tasks as suggested in

[12]. It can also be used for clustering, though. In this case, it is checked whether the

similar data points are in the same cluster. A similar metric called Individual Consistency

(IC) can be derived. It uses the same principle in a basic form which makes it especially

suitable for clustering.
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2 Metrics

Another unnamed approach is introduced in [23], here referenced as Natural Fairness

(NF). It focuses on assuring that each data point is closer to the other data points in its

own cluster than those in other clusters.

Privacy

The most common privacy metric for clustering is Di�erential Privacy Loss (DPL). It

is the loss function of the Di�erential Privacy method introduced in [19] that can be

adapted and used as a metric. The idea is to add noise to the cluster centers and then

check if the data points are still assigned to the same clusters.

An adaptation is the Sensitivity Analysis (SA), which measures the changes in the clus-

tering after a new training with a data point missing. It can be derived from [18].

Some other metrics are k-Anonymity, l-Diversity and t-Closeness as in [10]. These can

be used to ensure privacy in a dataset, but can be adapted to clusterings. For example,

for k-Anonymity a simple check may be introduced to see if each cluster has multiple

data points in it to reduce the risk of re-identi�cation.

Security

For security, there are several metrics available. The Silhouette Coe�cient (SC) as

introduced in [30] calculates the relation between the distances a data point has to its

own cluster's other data points and its distances to the data points of its closest other

cluster.

The Dunn-Index introduced in [11] works in a similar way, but it compares the maximum

distance within a cluster to the minimum distance between two clusters.

Another metric is the Davies-Bouldin-Index (DBI) introduced in [9]. It also works in a

similar way. Here, the compared distances are the average distance of the data points of

a cluster to its cluster center and the distance between two cluster centers.

6



2 Metrics

Explainability

Metrics to evaluate a clustering's explainability are scarce. The simplest way is to use

the methods before mentioned again, such as the SC, the Dunn-Index or the DBI. These

indicate clearly separated clusters. Having clearly separated clusters, it is easy to explain

the assignment of a data point to a certain cluster, i.e. the explainability is good.

A more obvious method are Decision Tree (DT) based explanations. If a DT is trained

based on the data of a clustering with the assigned cluster as the label for each data

point, then the complexity of this DT can be used to show if it is easy or hard to explain

the clustering.

2.1.3 Compatibility

The mentioned metrics mostly work for clusterings in general. Some have restrictions

though. Table 2.1 shows which metrics work for which of the following algorithms:

Partition-Based Clustering (PBC), Hierarchical Clustering (HC), Density-Based Clus-

tering (DBC), and Model-Based Clustering (MBC).

Table 2.1: Compatibility of Metrics and Clustering Types
Metric PBC HC DBC MBC
Inertia ✓ Ö Ö Ö

Demographic Parity ✓ ✓ ✓ ✓
Disparate Impact ✓ ✓ ✓ ✓
Representation Disparity ✓ ✓ ✓ ✓
Fairness Through Awareness ✓ ✓ ✓ ✓
Individual Consistency ✓ ✓ ✓ ✓
Natural Fairness ✓ ✓ ✓ ✓
Di�erential Privacy Loss ✓ Ö Ö Ö

Sensitivity Analysis ✓ ✓ ✓ ✓
k-Anonymity ✓ ✓ ✓ ✓
l-Diversity ✓ ✓ ✓ ✓
t-Closeness ✓ ✓ ✓ ✓
Silhouette Coe�cient ✓ ✓ ✓ ✓
Dunn-Index ✓ ✓ ✓ ✓
Davies-Bouldin-Index ✓ ✓ ✓ ✓
Explainability by Decision Tree ✓ ✓ ✓ ✓
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2 Metrics

It can be observed that Inertia and DPL are only compatible with PBC. Inertia does

work for other algorithms, but it is not meaningful. It assumes that the data points are

closest to their cluster center. This is just given for the PBC methods though.

The DPL is even more extreme. It requires the algorithm to assign points to their closest

cluster center. Only in this way, the change can be measured that is brought by the

added noise to the cluster centers.

For some of the other metrics, it could be argued that they need to be adapted to suit

some clustering methods or that their scores are less meaningful in some places. However,

it is possible to use them all on the methods listed above and their score does give an

indication to the evaluation. Thus, they are always useful to a certain degree.

2.1.4 Chosen Metrics and Weighting

Only a limited amount of metrics can be addressed in this work. They need to be able

to evaluate all aspects of RAI for the di�erent kinds of clustering types.

Table 2.2 shows which metrics were selected and to what extent they are combined

to evaluate each aspect. The given numbers are factors. For example, to assess the

performance, the sum of twice the Inertia score, once the SC and once the DBI is divided

by four (2 + 1 + 1).

Table 2.2: Weighting of Selected Metrics for Di�erent Aspects
Metric Per-

for-
man-
ce

Group
Fair-
ness

Indi-
vidual
Fair-
ness

Pri-
vacy

Secu-
rity

Ex-
plain-
abil-
ity

Inertia 2x
Representation Disparity 1x
Individual Consistency 1x
Natural Fairness 1x
Di�erential Privacy Loss 2x 1x
Sensitivity Analysis 1x 1x
Silhouette Coe�cient 1x 2x 1x
Davies-Bouldin-Index 1x 2x 1x
Explainability by Decision Tree 4x

8



2 Metrics

In the table, it can also be seen that all aspects are covered by the selected metrics.

Even if Inertia and DPL are not available for most algorithms, the aspects are still fully

covered by the remaining metrics. The reason why these two metrics are still addressed

in this work is that they are especially well-suited to evaluate performance and privacy

respectively.

The additional metric for privacy evaluation is SA. Since it is similar to DPL, it is a

�tting alternative. The other metrics k-Anonymity, l-Diversity and t-Closeness are more

useful in order to create a model with higher privacy protection instead of assessing it.

Therefore they are not further considered here.

DPL and SA are also relevant for the security aspect. Both of them evaluate the change

of the model after a disruption. This shows their robustness against disturbances through

attacks.

Apart from that, the metrics SC and DBI are both selected for the security aspect. The

Dunn-Index works in a similar manner to both of them. Thus, it is redundant to a certain

degree to use all three algorithms. Hence, the Dunn-Index was not implemented here.

The two algorithms used focus more on security and are thus weighted higher than DPL

and SA.

They are also relevant to evaluate the performance. However, they weigh less than

Inertia, which has its focus on performance. If Inertia is not usable, they su�ce alone.

As mentioned above, they also give an impression of the explainability. However, the

DT approach is a lot more appropriate in this place and therefore implemented here and

weighted twice as much as the other two scores together.

For the group fairness aspect, the RD was selected. It is similar to Demographic Parity

and Disparate Impact, but transforming it into a metric is slightly more straightforward,

based on its concrete de�nition.

To assess individual fairness, the metrics IC and NF were both selected. They are both

well-suited for clustering. Fairness Through Awareness is redundant because it is very

similar to IC. Both selected metrics are relevant and are weighted equally.

Even though most metrics are used for multiple aspects, they are still all categorized into

just one in the following chapters. Chosen is the aspect in which the according metric

weighs the most.

9



2 Metrics

Eventually, after these aspects are calculated based on the metrics, performance, group

fairness and individual fairness still need to be combined to form the aspect fairness, as

in the base work [16]. To do so, their mean value is calculated.

Then, as a last step, the mean of these four aspects can be calculated as the complete

RAI score.

10



2 Metrics

2.2 Performance

2.2.1 Inertia

Explanation

The Inertia metric, as described in [32] among others, can be used to measure the per-

formance of a clustering model.

It is calculated as the sum of all squared Euclidean distances of the data points in a

cluster to their corresponding cluster centers. This makes the score highly dependend on

the underlying dataset. Thus, when not normalized, it is mostly helpful for comparing

clusters formed on the same dataset.

Calculation

The Inertia score I is calculated as shown in equation 2.1. K represents the amount

of clusters, S the data points, Sk data points in cluster k and d(yi, ck)
2 the squared

Euclidean distance where yi is the ith data point in Sk and ck is the cluster center of

cluster k.

I(K) =

K∑
k=1

∑
i∈Sk

d(yi, ck)
2 (2.1)

Normalization

Standard Approach Due to the way the Inertia score is calculated, it can grow end-

lessly with each additional data point. Thus, a speci�c score value is not very meaningful

because is unclear how much higher it could be.

Consequently, the score has to be normalized. This could be done by calculating the

minimum and maximum possible value for the present data points and then using the

equation 2.2.

normalized(x) =
x−min(x)

max(x)−min(x)
(2.2)

11



2 Metrics

When using Inertia, the minimum is always 0. This score can be reached when there is a

separate cluster for each data point. In this situation, the di�erence between each point

and its corresponding cluster center is always 0, so the sum is also 0. Knowing this, the

equation can be simpli�ed to equation 2.3.

normalized(x) =
x

max(x)
(2.3)

Likewise, the maximum can be calculated by assuming there is just one cluster for all

data points. This value then needs to be calculated for the current set of data points

and cannot be generally speci�ed.

Alternative Approach It can be observed that the Inertia score grows with each data

point. This should not be the case for a normalized score. Therefore, it seems logical

to divide the score by the amount of data points. This way, it does not grow with their

number.

Simply dividing the Inertia score by the amount of data points does not yield a normalized

score though. The distance between each data point and its corresponding cluster center

still depends on the nature of the data.

A solution here could be to normalize this distance instead of the total score as in the

Standard Approach. In order to apply equation 2.2 to each single distance before the

aggregation, the maximum and minimum have to be determined again.

Just as before, the minimum possible distance between a data point and its cluster center

is 0. This can be achieved when they are in the same position, e.g. when there is just

this one data point in a cluster. Consequently, equation 2.3 can be used again.

To �nd the maximum, the same approach as before cannot be used again. It is possible

for a data point to have a cluster center which is further away than it would be if all

points were in one cluster. An example would be a situation with two places with many

points and one point far away but included in one of those clusters as can be seen in

�gure 2.1.

Since this way does not work, the maximum distance between two data points can be

considered. The cluster centers are the center points between data points. Therefore,

they cannot be further outside than the furthest data points. Consequently, it is not

12
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Figure 2.1: Proof that a point can be further away from its k-means cluster center than
the maximal distance in one huge cluster

possible for a point to have a greater distance to its cluster center than the distance

between the two data points with the longest distance.

The question now is whether this distance can also be reached or if the maximum is

smaller. An easy example would be a collection of equal data points at one point and

one additional data point somewhere else. The maximum distance between two data

points here is the distance between any of the equal points and the other point. If there

is just one cluster in this example, its center would be close to the amassing of equal

data points, but slightly shifted in the direction of the outlier point. Thus the maximum

di�erence between data point and center is a little smaller than between data point and

data point. However, if there are more and more of those equal data points, then the

cluster center will get closer and closer to the amassing. Thus, the distances also converge

with unlimited additional data points.

As this approach can be used, the score Inormalized would be calculated as stated in

equation 2.5 with the maximum distance Dmax between a data point and its cluster

center as in equation 2.4.

Dmax = max
a,b∈S

d(a, b) (2.4)

Inormalized(K) =

∑K
k=1

∑
i∈Sk

d(yi,ck)
2

Dmax

|S|
(2.5)
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Discussion

During the implementation of the Alternative Approach, a big �aw became obvious.

Finding the longest distance between two data points takes a lot of time. As seen in [27]

this problem has a high complexity of O(n2) when using brute force or O(n log n) with

some other algorithms. This makes it impractical to use.

Another problem is the fact that the best score 0 can always be reached by simply using

one cluster per data point. In other words, this score can be improved by increasing

the amount of clusters. Thus, it cannot be used to evaluate the used amount of clusters

but only the performance of the distribution of cluster centers when using exactly this

amount of clusters.

Apart from that, Inertia is a straightforward approach that is easy to comprehend when

used on Partition-Based Clusterings with convex clusters. Using the Standard Approach,

the algorithm is fast, which makes is practical to use for quick feedback when developing

a model.

Implementation

Listing 2.1 shows the implementation of the presented Inertia metric.

1 kmeans = KMeans(n_clusters=1, **kmeans_kwargs)

2 kmeans.fit(data)

3 max_inertia = kmeans.inertia_

4

5 labels = clustering_model.predict(data, encoded=True)

6 cluster_centers = data.groupby(labels).mean()

7 inertia = 0.0

8 for i, row in data.iterrows():

9 row_label = labels[i]

10 cluster_center = cluster_centers.loc[row_label]

11 distance = sqeuclidean(row, cluster_center)

12 inertia += distance

13

14 normalized_inertia = 1.0 - (inertia / max_inertia)

Listing 2.1: Calculating Inertia Score

14
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First, a new k-means model is initialized with the same data points as the model being

evaluated. The new model is then �tted with just one cluster. This way, the maximum

possible Inertia value is determined, as required by the Standard Approach. The used

k-means algorithm is from the library scikit-learn [28] and already o�ers the Inertia score

as an attribute.

Next, the Inertia is calculated for the test model. Since the test model may not be a

k-means model, the Inertia score is not read from the model but manually calculated

as explained above. Then, the normalized score can be calculated by a simple division.

Finally, the score is subtracted from 1 to ensure that a higher score represents a better

model.
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2.3 Fairness

2.3.1 Representation Disparity

Explanation

The Representation Disparity (RD) metric as described in [33] is a metric to evaluate

the group fairness.

The score is determined by averaging the disparities for all clusters for all manifestations

of all attributes. A disparity represents the di�erence between how often a value relatively

appears in a cluster and in the entirety of data points.

Calculation

Calculating the score R involves aggregating the disparities d(a, v, k) of all values V of

the attributes A over all clusters K as shown in equation 2.6. Equation 2.7 shows how

the disparity d(a, v, k) is determined, based on the proportion of the attribute a value v

in the entirety pe(a, v) as in equation 2.8 and its proportion in the cluster k as pc(a, v, k)

as in equation 2.9. S represents the data points, Sk the data points in cluster k and ya

the value of attribute a of data point y.

R =

∑
a∈A

∑
v∈Va

∑
k∈K d(a,v,k)

|K|
|Va|

|A|
(2.6)

d(a, v, k) = |pc(a, v, k)
pe(a, v)

− 1| (2.7)

pe(a, v) =

∑
y∈S 1{ya=v}

|S|
(2.8)

pc(a, v, k) =

∑
y∈Sk

1{ya=v}

|Sk|
(2.9)
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The aggregation is achieved by getting the mean. This is done three times to make

sure that all attributes have the same weight in the �nal score. If just one aggregation

were used, the attributes with more manifestations would weigh more. The aggregation

over the clusters could be joined with the one over the values since there is always the

same number of clusters. Leaving it there keeps the equation more readable though and

reduces the required memory during computation.

Normalization

This metric usually results in a score between 0 and 1. However, it is possible to reach a

value greater than 1 if the data is distributed in extremely unfair ways. It is not necessary

to normalize, since the score 1 already describes a poor fairness. The easiest way is to

round down anything above 1 to 1. This way, the score still is the worst possible value.

After this, the score still needs to be inverted to ensure that 1 is the best score and 0 the

worst. This can be done as shown in equation 2.10.

Rnormalized = |min(R, 1)− 1| (2.10)

Discussion

One problem is the afore mentioned di�culty during the normalization. Though the

shown solution minimizes this problem, the comparability of very speci�c data layouts

is still limited. Concretely, this means that starting at a certain threshold of poor group

fairness, the metric always returns the same score.

Another problem is the computation time. The computation of the metric requires the

consideration of all possible values for all attributes in all clusters, which add up to a

high amount of single calculations, depending on the data. As the implementation and

execution has shown, this results in a fairly long time to calculate the score.

The �rst problem is rather small. Only very unfair scenarios are rounded to the value of 1

(before inverting). The high complexity is acceptable for the �nal evaluation of a model,

but makes it hard to improve a huge model based on regular quick feedback. Apart from

these points, the metric gives a good summary of the group fairness of a model.
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Implementation

Implementing the RD metric requires several nested loops to iterate all values of all

attributes for all clusters. During these loops, the individual disparities are aggregated.

Listing 2.2 shows these loops.

1 attribute_disparities = []

2 for attribute in data.columns:

3 value_counts = data[attribute].value_counts()

4 value_disparities = []

5 for value in data[attribute].unique():

6 entirety_portion = value_counts.get(value) / value_counts

.sum()

7 disparities = []

8 for cluster in data_per_cluster.keys():

9 cluster_portion = sum([1 if datapoint[attribute] ==

value else 0 for datapoint in data_per_cluster[

cluster]]) / len(data_per_cluster[cluster])

10 disparities.append(abs(cluster_portion /

entirety_portion - 1.0))

11 value_disparities.append(np.mean(disparities))

12 attribute_disparities.append(np.mean(value_disparities))

13 disparity = np.mean(attribute_disparities)

Listing 2.2: Calculating RD Score

The normalization is simple for this metric, as shown in listing 2.3.

1 if disparity > 1:

2 disparity = 1

3 disparity = abs(disparity - 1.0)

Listing 2.3: Normalizing RD Score
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2.3.2 Individual Consistency

Explanation

The Individual Consistency (IC) metric evaluates the individual fairness as explained in

[15, 21, 3]. The evaluation is the proportion of similar data points that are assigned to

the same cluster.

Calculation

The score is calculated in three steps. The �rst step is the most complex. The similarity

of the data points is calculated. To do so, the distances between all pairs of data points

need to be determined. Those pairs with a smaller distance are considered similar. The

distance used here is the Euclidean distance.

This threshold distance cannot be set to an absolute value, as di�erent kinds of data can

have very high di�erences in the distances between their data points. To �nd a �tting

value, di�erent approaches can be considered, but most are domain-speci�c and require a

deeper understanding of the underlying domain. Since the tool implemented here should

be universally applicable, this is hard to accomplish.

Thus, the best universal way is to take a certain percentage of pairs. A �xed number

can be used, for example 3%. This way data pairs can be ordered by their distance and

the 3% with the lowest distance are then considered similar and used for the following

two steps.

During the second step, the clusters of the data pairs are compared. It is counted

how many similar data pairs are assigned to the same cluster and then this number is

relativized in the last step.

I =

∑
p∈Psimilar

1(C(p1)=C(p2))

|Psimilar|
(2.11)

Equation 2.11 shows the exact formula. Psimilar is the set of similar data pairs. p is

a single pair of the two similar data points p1 and p2. The function C(x) returns the

cluster assigned by the model to the passed data point.
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Normalization

Since the score is the relative amount of similar pairs that are in the same cluster, it is

by de�nition a number between 0 and 1 and thus does not require normalization.

Discussion

As mentioned above, the complexity is rather high again. Finding the distances between

all data pairs is an O(n2) complex problem. Instead of exactly calculating everything,

the score could be approximated by randomly selecting several data pairs and running

the algorithm just on these. This way, a close approximation can quickly be reached

for testing the individual fairness during its development. Should a model be �nally

evaluated precisely, the whole data can be used again.

Another problem with the algorithm is the dependency on the number of clusters. If

there are many data points and a few clusters, the metric's score is comparatively high,

even if the data points were randomly assigned to clusters. In an extreme case, with just

one cluster, the score is always a perfect 1.

In case there are many clusters, even close data points might be correctly assigned to

di�erent clusters. Thus, it is possible to maliciously manipulate the score. However, it

generally gives a good impression of the individual fairness when considered with caution.

It is also easy to comprehend.

Implementation

Listing 2.4 shows how the 3% of all pairs of data points with the shortest distance are

selected. These are used in listing 2.5 to calculate the IC score.
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1 distances_with_pairs = []

2 for (point1, point2) in all_pairs

3 dist = np.linalg.norm(point1 - point2)

4 distances_with_pairs.append(((point1, point2), dist))

5 sorted_distances_with_pairs = sorted(distances_with_pairs, key=

lambda x: x[1])

6 similar_pairs = sorted_distances_with_pairs[:max(1, int(len(

sorted_distances_with_pairs) * 0.03))]

Listing 2.4: Finding similar pairs for IC Score

1 same_cluster = 0

2 for (pair, _) in similar_pairs:

3 if self.model.predict([pair[0]], encoded=True) == self.model.

predict([pair[1]], encoded=True):

4 same_cluster += 1

5 individual_consistency = same_cluster / len(similar_pairs)

Listing 2.5: Calculating for IC Score

Listing 2.6 further proposes a simple preselection of considered data points for bigger

datasets. Here, a �fth of all unique pairs is selected, but no more than 100,000 pairs in

total.

1 selected_indices = set()

2 max_indices = min(100000, (len(data) * (len(data) - 1)) // 10)

3 while len(selected_indices) < max_indices:

4 idx1 = random.randint(0, len(data) - 1)

5 idx2 = random.randint(0, len(data) - 1)

6 if idx1 == idx2:

7 continue

8 indices = tuple(sorted((idx1, idx2)))

9 selected_indices.add(indices)

Listing 2.6: Heuristic for Preselection for IC Score
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2.3.3 Natural Fairness

Explanation

The Natural Fairness (NF) metric was introduced in [23]. It shows the proportion of data

points that ful�ll the fairness condition. This condition is that the average distance to

the points in the same cluster is smaller than the average distance to all other points.

Calculation

To calculate the score, the fairness condition mentioned above needs to be checked for

every data point. To do so, two scores are required for each data point p ∈ P . The �rst

one is the average distance to all other data points in the same cluster din(p) as shown

in equation 2.12. The term C(p) references the cluster assigned to p and function d(p, x)

calculates the Euclidean distance between p and x.

din(p) =
1

|{x ∈ P \ {p} | C(x) = C(p)}|
·

∑
x∈P\{p}|C(x)=C(p)

d(p, x) (2.12)

The second score is the average distance to all data points in other clusters dout(p). This

is presented in equation 2.13.

dout(p) =
1

|{x ∈ P | C(x) ̸= C(p)}|
·

∑
x∈P |C(x)̸=C(p)

d(p, x) (2.13)

Next, these two scores need to be compared. The fairness condition f(p) is ful�lled

if din(p) is smaller than dout(p). This can be expressed as an indicator function as in

equation 2.14.

f(p) = 1{din(p)<dout(p)} (2.14)

Finally, these scores need to be aggregated to reach the �nal score N . Equation 2.15

shows this.

22



2 Metrics

N =
1

|P |
·
∑
p∈P

f(p) (2.15)

Normalization

The score is a percentage of the data points and as such already a value between 0 and

1, with 1 meaning that every data point ful�lls the fairness condition and thus being the

highest score. There is no further normalization required.

Discussion

This algorithm has the complexity O(n2), which makes its execution slow on big datasets.

This common problem might be reduced by �nding a small selection of data points to

consider during the computation.

Apart from this disadvantage, the NF score gives a very good measurement of the in-

dividual fairness. For each data point, it is separately checked whether it is closer to

its own cluster than to the rest. If not, this will directly decrease the score. This way,

it can directly be seen if there are data points which are not fairly assigned from their

respective perspective.

Furthermore, this metric does not have huge impairments based on the used clustering

algorithm. The form of the clusters does not matter because it is clearly checked for a

point if it best �ts its own cluster.

Implementation

Listing 2.7 shows the implementation for this algorithm. First, the distance matrix is

calculated. This saves time because all distances are needed anyway. Then, the score is

calculated for each data point and �nally aggregated.

1 distances = pdist(data.values.astype(float), metric=’euclidean’)

2 distance_matrix = squareform(distances)

3 labels = self.model.predict(data, encoded=True)

4

5 fair_count = 0

6 for i in range(len(data)):
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7 same_cluster_distances = []

8 other_cluster_distances = []

9 for j in range(len(data)):

10 if i == j:

11 continue

12 if labels[i] == labels[j]:

13 same_cluster_distances.append(distance_matrix[i][j])

14 else:

15 other_cluster_distances.append(distance_matrix[i][j])

16 din = np.mean(same_cluster_distances)

17 dout = np.mean(other_cluster_distances)

18 if din < dout:

19 fair_count += 1

20

21 natural_fairness = fair_count / len(data)

Listing 2.7: Implementation of NF Score
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2.4 Privacy

2.4.1 Di�erential Privacy Loss

Explanation

The Di�erential Privacy Loss (DPL) is primarily used to understand the loss brought by

the use of the Di�erential Privacy method to prevent privacy leaks in a clustering. In

this method, noise is added to the cluster centers. [19] shows this while also focusing on

the loss functions.

An example for a possible loss function is widely used as a metric to evaluate the privacy

of the clustering. The function used here is the portion of data points that are in the

same cluster before and after adding noise to the cluster centers.

Originally, this loss function shows how much the noise falsi�es the functionality of the

clustering, i.e. the clustering's performance loss when protecting the privacy. Here, it

serves a di�erent purpose, namely the evaluation how well the privacy is protected in the

clustering.

That this purpose can also be achieved by this metric, can be seen as a higher score

shows that the results of the clustering are stable even with added noise. This shows

that slightly adapting the underlying data such as removing individual data points does

not in�uence the result of the model much. Thus, the individual data points cannot

easily be inferred by knowing the cluster centers.

Calculation

Since the score is calculated by comparing the original model with a manipulated model,

the �rst step is to create this new model. This is achieved by adding noise to the cluster

centers. There are di�erent ways to randomize this noise. A commonly used one is the

Laplace distribution [1].

To scale the noise, the parameter ϵ is required. It is hard to set it to a �xed value

because the impact highly depends on the underlying data. Instead, it should be relative

to the attributes' value range. Attributes with large values should have more noise. For
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example, adding 0.5 noise to an attribute with values around 0.01 would be far too much

while the same noise added to an attribute with values around 1,000 seems insigni�cant.

In conclusion, equation 2.16 shows the calculation of the scalar Sa for the Laplace dis-

tribution for one attribute a for all cluster centers C. ca is the value for attribute a of

cluster center c. In this formula, the mean of the attributes' values is calculated from the

absolute values because it is searched for the average size of the attribute's values. This

way, positive and negative values do not cancel each other out. Finally, the parameter

ϵ is integrated to allow adjusting the metric's sensitivity. It can now be set to a �xed

value without disregarding the attributes' di�erences.

Sa =

∑
c∈C |ca|
|C|

ϵ
(2.16)

Based on these scalars, the attributes acnew of the new model's cluster centers cnew ∈ C

can be randomized as shown in equation 2.17. acold is the value of attribute a of cluster

c of the old model.

acnew = acold + Laplace(0, Sa) (2.17)

Finally, the loss L is calculated by comparing the two models resultsMold(p) andMnew(p)

for all data points p ∈ P as shown in equation 2.18.

L =

∑
p∈P 1Mold(p)=Mnew(p)

|P |
(2.18)

Normalization

This score is by de�nition a number between 1 and 0 and thus does not need to be

normalized.
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Discussion

As mentioned before, the amount of noise added depends highly on the nature of the

attributes' values. Even though a general solution was found, this metric would deliver

more meaningful information if the domain were manually examined for each attribute.

This is a good approximation though.

Another minor downside is the random part. This way, the computation is not determin-

istic and results in slightly di�erent results every time. To ensure that no unlucky results

are calculated due to very speci�c randomized values, the score should be calculated

several times. This way, the result range with the most occurrences can be considered

the most relevant.

Generally though, the added noise is a powerful tool to reduce the identi�ability of

individual data points. This allows this metric to give a solid impression of the privacy

protection level of a clustering.

Implementation

Listing 2.8 shows how the model is copied and noise is added to the new model. The

comparison of the two models is shown in listing 2.9.

1 pd_model = copy.deepcopy(self.model.model)

2 ccs = self.model.model.cluster_centers_

3 epsilon = 10

4 pd_model.cluster_centers_ = ccs + np.random.laplace(0, np.abs(ccs

).mean(axis=0) / epsilon, ccs.shape)

Listing 2.8: Adding noise for DPL Score

1 original_prediction = self.model.predict(data, encoded=True)

2 noise_prediction = pd_model.predict(data)

3

4 same_prediction_count = sum([1 if o == n else 0 for o, n in zip(

original_prediction, noise_prediction)])

5

6 differential_privacy_loss = same_prediction_count / len(self.data

)

Listing 2.9: Comparing models for DPL Score
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2.4.2 Sensitivity Analysis

Explanation

The Sensitivity Analysis (SA) can be used to evaluate the privacy protection o�ered by

a clustering. There are many ways to measure the sensitivity of a model. Although not

explicitly mentioned, one way can be derived from [18]. That is to compare how the

clustering is changed when a speci�c data point is omitted during its creation.

If the overall clustering changes drastically based on the existence of single data points,

then the sensitivity is high which means the privacy protection is not good. Instead, if its

existence does not in�uence the clustering considerably, then this also indicates that the

base data cannot easily be inferred from the model. Thus, the privacy is well-protected.

Calculation

Step Overview Since there is no research yet on how to speci�cally implement this

metric, some questions need to be considered. First, the points to be omitted need to be

chosen. Then, the model is re�tted for each new dataset. This new model needs to be

compared with the old model. Here, a speci�c formula is required to assign a score to

the di�erence. Finally, these scores need to be aggregated.

Choosing Points to be Omitted The simplest solution to the �rst question is to

omit every data point. This way, the most complete evaluation can be reached. For

a �nal evaluation of a model, this is useful. However, for feedback during the creation

process, this would take a long time. Here, it is more useful to get a quick approximation

by considering only a small selection of the data points.

This selection S ⊆ P should on the one hand be representative for the entire dataset P .

On the other hand, it must especially be ensured that small clusters are not neglected.

To ful�ll the second condition, a certain number a of data points should be chosen from

each cluster c ∈ C. Afterwards, to ful�ll the �rst condition, a certain number b of random

data points of the overall dataset, that were not chosen before, will be added. This way,

a total of l data points will be chosen.
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Having l = a · |C|+ b, the next problem is to �nd the right proportion. To get a proper

summary of the entire data structure, and to prevent very small clusters from being

overrepresented, it is suggested that b = 2 · a · |C|.

Setting a to a constant value is di�cult because the structure of the clustering is not

known. There could be very few or very many data points per cluster. Thus, they should

be relative to the number of data points |P | and the number of clusters |C|. A reasonable

solution is to set a �xed percentage f such that l = f ∗ |P |. Here, it is set to f = 0.05.

A third of the data points in S is chosen directly from the clusters. Thus, it must be

ensured that l >= 3 · |C|. This way, it is guaranteed that at least one data point can be

chosen from each cluster. If this number is larger than the total number of data points,

then this approach is not useful and instead, all data points can be omitted. This case

is not mentioned in the below formulas but implemented in the productive code.

Having this minimum, it can be helpful to introduce a maximum m as well for very

big datasets. Here, a constant value is su�cient. In this work, it is m = 10000. Since

the maximum is just to reduce computation time, it is of lower importance than the

minimum.

Combining these ideas results in equation 2.19 for the total number of data points to

omit and equation 2.20 for the data points selected per cluster.

l = max(3 · |C|,min(10000, 0.05 ∗ |P |)) (2.19)

a =
l

3 · |C|
(2.20)

One more problem would be, if in any cluster, there are fewer than a data points. In this

situation, all data points can be added in the �rst step. To ensure the correct balance

with the points randomly chosen from the full dataset, b should be lowered by 2 for each

missing data point in the set. This results in equation 2.21 with |c| standing for the

number of data points assigned to cluster c.

b =
∑
c∈C

min(|c|, a) · 2 (2.21)
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This way, the anticipated |S| = l might no longer be true. The exact number of selected

data points is shown in equation 2.22.

|S| =
∑
c∈C

min(|c|, a) · 3 (2.22)

Comparing Models In the next step, for each data point s ∈ S a score e(s) is

calculated. For that, the model is �rst re�tted on the original dataset without the current

point Os = P \ {s}. Then, every of these data points o ∈ Os has the cluster assigned in

the original model CP (o) and the cluster assigned in the modi�ed model COs(o).

These assigned clusters are essential for the score e(s), but it is not enough to check for

every data point if they are equal or not. Figure 2.2 shows a simple example with �ve

data points. Here, after omitting one point, all other data points change their assigned

cluster, but are still in the cluster with the same data points as before. This situation

would be rated with a bad score if just the change of the cluster is considered. Instead,

this example should reach a perfect score.

Figure 2.2: Example for clustering with absolute but not relative changes after omitting
one point

To reach this, another approach is needed in which it is evaluated to what extent the

data point is still with the same other data points in the same cluster as before. This

new approach must ful�ll three conditions: Every data point that was originally in the

same cluster, but is not anymore in the new model, must decrease the score; every data

point that originally was not in the same cluster, but is in the new model, also must

decrease the score; every data point that was originally in the same cluster, and still is

in the new model, must increase the score.
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This can be achieved by a simple division. The denominator us(o) is the total number of

unique data points that are in at least one of the same clusters as o in the original and

in the modi�ed model. Just the omitted data point s is ignored. This is calculated as

shown in equation 2.23.

us(o) = |{k ∈ Os | CP (k) = CP (o)} ∪ {k ∈ Os | COs(k) = COs(o)}| (2.23)

The numerator is(o) is the number of data points that are as well in the same dataset as

o in the old model as well as in the new model. Equation 2.24 shows the exact math.

is(o) = |{k ∈ Os | CP (k) = CP (o)} ∩ {k ∈ Os | COs(k) = COs(o)}| (2.24)

Dividing these two results in the score for the speci�c data point rs(o) as demonstrated

in equation 2.25.

rs(o) =
is(o)

us(o)
(2.25)

Aggregating Scores Finally, these scores have to be aggregated. This happens over

three stages. The �rst two stages are to �nd e(s). Although this could be done in one

step, it appears advantageous to �rst aggregate over the individual clusters. This way,

smaller clusters, which are more prone to privacy issues, are weighed the same as larger

ones. This increases the sensitivity of the algorithm.

The scores are aggregated over the clusters of the original model because these build

the structure that will eventually be evaluated. In case that the omitted point s alone

builds a whole cluster in this model, this cluster can be ignored. This case is no further

considered in the below formulas but implemented in the actual code. Equation 2.26

shows the aggregation for each cluster c ∈ C for the model omitting s as gs(c).

gs(c) =
1

|c|
·
∑
j∈c

rs(j) (2.26)

Next, these scores can be aggregated for all clusters as presented in equation 2.27.
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e(s) =
1

|C|
·
∑
c∈C

gs(c) (2.27)

The last stage and �nal step is the aggregation over all omitted data points to reach the

�nal score E. This can be seen in equation 2.28

E =
1

|S|
·
∑
s∈S

e(s) (2.28)

Normalization

Since the score already is between 0 and 1 with 1 being the best value, it does not need

to be normalized any further.

Discussion

The SA requires a re�tting of the model. In some cases, such as k-means, this might have

severer consequences than anticipated if local minima are found, which would possibly

result in a completely di�erent new clustering. The determined score would then give a

wrong impression. Such a case should be prevented, e.g. by training the model multiple

times with di�erent initializations. This would, in turn, increase the duration of the

computation.

The duration is already long as it is, because many models need to be trained. Addi-

tionally, for each new model, all data points are evaluated. For large datasets, this is a

lengthy process.

The preciseness of the score might also be partly dependent on the dataset. If a single

point is omitted on a large dataset, the consequences might be less signi�cant than on

a smaller dataset. A solution in future work might be that the metric is extended to

choose sets of data points. The data points in a set are omitted together. Their number

would be adequate for the dataset size.

Nonetheless, this score is relevant. If single missing data points have a bigger impact,

this would be a privacy problem that can be detected with this metric.
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Implementation

The implementation of the SA can happen in the same steps as explained above. First,

the data points that shall be omitted must be found. This can be seen in listing 2.10.

The next step in listing 2.11 is to calculate the score for each of those data points that

were found before.

Finally, listing 2.12 shows the last step. The aggregation is split into three parts. The

�rst two are in the same loop as in listing 2.11 and the last one is outside of this loop.

1 labels_original = self.model.predict(data, encoded=True)

2 clusters_original = {} # key = cluster id; value = list of data

point indices that are in the cluster

3 for index, cluster in enumerate(labels_original):

4 if cluster not in clusters_original:

5 clusters_original[cluster] = []

6 clusters_original[cluster].append(index)

7

8 l = max(3 * len(clusters_original), min(10000, int(0.05 * len(

self.data))))

9

10 datapoint_indices_to_omit = []

11 if l >= len(data):

12 datapoint_indices_to_omit = [i for i in range(len(data))]

13 else:

14 a = l // (3 * len(clusters_original))

15

16 b = sum(min(len(c_datapoints), a) * 2 for c, c_datapoints in

clusters_original.items())

17

18 # selecting data points to omit from clusters

19 for c_datapoints in clusters_original.values():

20 datapoint_indices_to_omit.extend(random.sample(

c_datapoints, a) if len(c_datapoints) > a else

c_datapoints)

21

22 # selecting data points from whole set

23 left_datapoints = [data_point_index for data_point_index in

range(len(labels_original)) if data_point_index not in

datapoint_indices_to_omit]
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24 datapoint_indices_to_omit.extend(random.sample(

left_datapoints, b))

Listing 2.10: Finding data points to omit for SA

1 estimations_for_missing_datapoints = []

2 for index_of_point_to_be_omitted, s in enumerate(

datapoint_indices_to_omit):

3 # training new model

4 os_data = data.drop(index=s) # no reset_index to make sure

the indices do not include s below

5 os_model = copy.deepcopy(self.model)

6 os_model.model.fit(os_data)

7

8 # creating comparable data structure with attention to the

indices of both models

9 labels_os = os_model.predict(os_data, encoded=True)

10 clusters_os = {} # key = cluster id; value = list of data

point indices that are in the cluster

11 for index, cluster in enumerate(labels_os):

12 if cluster not in clusters_os:

13 clusters_os[cluster] = []

14 clusters_os[cluster].append(index if index < s else index

+ 1)

15

16 # comparing models for each data point

17 o_ratings = {} # key = data point index; value = its

evaluation

18 for o in os_data.index:

19 o_cluster_original_indices = set(next(c_datapoints for

c_datapoints in clusters_original.values() if o in

c_datapoints))

20 o_cluster_original_indices.discard(s)

21 o_cluster_os_indices = set(next(c_datapoints for

c_datapoints in clusters_os.values() if o in

c_datapoints))

22 o_union = len(o_cluster_original_indices.union(

o_cluster_os_indices))

23 o_intersection = len(o_cluster_original_indices.

intersection(o_cluster_os_indices))

24 o_rating = o_intersection / o_union

34



2 Metrics

25 o_ratings[o] = o_rating

Listing 2.11: Calculating score for each data point for SA

1 # aggregating over clusters

2 scores_per_cluster = []

3 for c, c_datapoints_orig in clusters_original.items():

4 c_datapoints = [cdp for cdp in c_datapoints_orig if cdp

!= s]

5 if len(c_datapoints) == 0:

6 continue # The omitted point s alone builds a whole

cluster -> cluster can be ignored

7 scores_per_cluster.append((1.0 / len(c_datapoints)) * sum

(o_ratings[j] for j in c_datapoints))

8

9 # aggregating for whole dataset

10 estimation = (1.0 / len(scores_per_cluster)) * sum(

scores_per_cluster)

11 estimations_for_missing_datapoints.append(estimation)

12

13 # aggregating over all omitted data points

14 sensitivity_analysis_score = (1.0 / len(datapoint_indices_to_omit

)) * sum(estimations_for_missing_datapoints)

Listing 2.12: Aggregating scores for SA
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2.5 Security

2.5.1 Silhouette Coe�cient

Explanation

The Silhouette Coe�cient (SC), also known as the Silhouette Score, was introduced in

[30]. It combines the intracluster and intercluster distances into one metric to describe

whether the clusters have a high density and are well-separated.

The intracluster distance is the average distance between a data point and its own clus-

ter's other data points. In turn, the intercluster distance is the average distance between

a point and the data points of the closest adjacent cluster. If the relative di�erence

between these two distances is high, the SC will show a good result.

This metric was not originally designed to measure the security of a model. However, it

indirectly relates to security issues such as integrity. A high score shows a high consistency

of the clustering. Thus, if the score is low, this might indicate that the data has been

manipulated. As another example, outliers lower this score. Outliers might also hint at

security breaches.

Calculation

The score is calculated for each data point individually and then aggregated. For a

single data point p ∈ P , �rst the intracluster distance dintra(p) is calculated as shown in

equation 2.29. Cp refers to the data points in the cluster containing p, and d(i, j) is the

Euclidean distance between i and j.

dintra(p) =
1

|Cp| − 1
·

∑
j∈Cp,j ̸=p

d(i, j) (2.29)

Next, the intercluster distance dinter(p) is computed as shown in equation 2.30. Here,

Cnext refers to the data points in the closest cluster that does not contain p. The closeness

here refers to the distance between the cluster center and p.
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dinter(p) =
1

|Cnext|
·

∑
j∈Cnext

d(i, j) (2.30)

Having both results, the silhouette score s(p) can be determined as shown in equation

2.31.

s(p) =
dinter(p)− dintra(p)

max(dintra(p), dinter(p))
(2.31)

Finally, these scores are aggregated over all data points to �nd the �nal result S. Equation

2.32 demonstrates this.

S =
1

|P |
·
∑
p∈P

s(p) (2.32)

Normalization

The normalization of this metric may �rst seem simple. The result range of the metric

is -1 to 1. This can be scaled to 0 to 1 in a straightforward manner. However, this might

not be the best solution as can be seen when analyzing the meaning of the di�erent

values.

Negative results represent a clustering where the points are on average closer to a di�erent

cluster than their own. A score of 0 would mean that the points are equidistant between

their own cluster and the next one. These results all show that the clustering is rather

poor. Still, with a linear scaling, the original result 0 would be mapped to a 50% score.

This seems far too high for the actual underlying meaning.

Taking this into account, the score should be normalized in a di�erent manner. Since

the original score 0 is poor, a �xed point should be found to map it to, which can be

recognized by the user as a poor result.

In this work, 0 is mapped to 0.2. 20% should be low enough to suggest to most users that

their model's security is insu�cient. The value 0.2 does not have a deeper signi�cance

and should be analyzed further in future work to make sure that the score's proportion

�ts the other metrics'.
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Having established this point, the scaling can be applied in two parts. First, the original

scores -1 to 0 are linearly mapped to 0 to 0.2. Next, the scores 0 to 1 are also linearly

mapped to the normalized results 0.2 to 1. This way, the normalization seems to represent

the scores' deeper meaning su�ciently. The formula can be seen in equation 2.33.

Snormalized =

0.2 · (S + 1) if −1 ≤ S ≤ 0

0.8 · S + 0.2 if 0 < S ≤ 1
(2.33)

Discussion

Although this metric is commonly used, there are a few points that should be considered.

As mentioned above, it does not primarily focus on security. Even though the result does

indicate the model's security quality, it should be combined with other metrics. This way,

a better overall security evaluation can be reached.

Just like some other metrics such as 2.3.2, this metric's complexity is high because it

needs to consider the connections between many pairs of data points. However, the

implementation here, as shown below, uses an optimized library. This library uses code

in a machine-oriented language and thus, the calculation is still rather fast compared to

the other metrics.

Implementation

Using an algorithm from the library scikit-learn [28], the implementation can be com-

pleted concisely as listing 2.13 displays.

1 from sklearn.metrics import silhouette_score

2

3 sc = silhouette_score(data, self.model.predict(data, encoded=True

))

4 sc_normalized = 0.2 * (sc + 1) if sc <= 0 else 0.8 * sc + 0.2

Listing 2.13: Calculating the SC
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2.5.2 Davies-Bouldin-Index

Explanation

The Davies-Bouldin-Index (DBI) was introduced in [9]. Similar to the SC, an intracluster

score is compared to an intercluster score. These scores are not the same though. Here,

they are the variance within a cluster and the distance between two cluster centers.

Just like the SC, this metric's original intention is not for security evaluation. However,

it is heavily in�uenced by security risks such as anomalies. A good score also indicates

well-de�ned clusters which are essential for a secure model. Thus, this score gives a good

impression of a clustering's security.

Calculation

The DBI is computed for each cluster and �nally aggregated. First, for each cluster

c ∈ C, the intracluster variance S(c) is calculated as in equation 2.34. mc is the cluster

center of cluster c and d(p,mc) is the Euclidean distance between p and mc.

S(c) =
1

|c|
·
∑
p∈c

d(p,mc) (2.34)

Next, for each pair of clusters, the intercluster distance M(c1, c2) is calculated as shown

in equation 2.35.

M(c1, c2) = d(mc1 ,mc2) (2.35)

Now, these two scores are combined. For each cluster, the ratio between them is calcu-

lated for all other clusters. The relevant one is the combination with the highest score,

named R(c). Equation 2.36 shows this procedure.

R(c) = max
ci∈C\{c}

(
S(c) + S(ci)

M(c, ci)

)
(2.36)

In the �nal step, the �nal score D is found as a simple aggregation of these scores over

all clusters. This is shown in equation 2.37.
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D =
1

|C|
·
∑
c∈C

R(c) (2.37)

Normalization

The lowest and best possible score for this metric is 0. There is no upper limit though,

which makes the normalization di�cult. However, research such as [17] shows that the

score often ranges between 0.269 and 0.77. The models tested in this work additionally

show that higher scores of about 2.5 are not uncommon but less frequent.

Having this information, a sigmoid function is very suitable to solve the problem accord-

ingly. Equation 2.38 shows the basic form of the sigmoid function.

f(x) =
L

1 + e−k·(x−x0)
(2.38)

Since the best score after normalization should be 1, the originally best score 0 must be

mapped to 1. Since the score is often relatively low as explained above, it is good that

the normalized score �rst has a higher negative slope to emphasize di�erences in this

range. Afterwards, it can slowly �atten and approach 0.

With these considerations in mind, the in�ection point x0 can be set to 0 and consequently

the maximum L must be 2. The steepness k must be negative to ensure the correct

orientation of the function. Here, it is set to the value -0.5. This results in the curve

shown in �gure 2.3 and the �nal normalization function shown in equation 2.39.

f(x) =
2

1 + e0.5·x
(2.39)

The value -0.5, as requested, ensures a signi�cant di�erence between the most common

values while being still quite �at. This way, the original scores up to around 10 are

well-distinguishable after normalization. Only above 10, the curve gets close to 0, where

there are only slight di�erences.

This way, all possible values are considered with focus on the most important ones. How-

ever, in further research, the exact parameters might be improved after deeper inspection

of the scores on many di�erent datasets.
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Figure 2.3: Visualization of Sigmoid Function for Normalization of Davies-Bouldin-Index

Discussion

The DBI clearly shows to what extent the clusters are compact within themselves and

well-separated from other clusters. This generally gives a good impression of the security,

especially with regard to discerning anomalies such as outliers.

The algorithm is also relatively fast. Its complexity is only O(n2) with n being the

number of clusters instead of the number of data points. This makes the metric perfect

for quick feedback during the development process of a new clustering.

However, since the metric was not originally introduced with security in mind, it should

always be considered with caution and supplemented with another metric if possible.

Implementation

Listing 2.14 shows how the DBI can be implemented by using the available function from

the library scikit-learn [28].
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1 from sklearn.metrics import davies_bouldin_score

2

3 dbi = davies_bouldin_score(data, self.model.predict(data, encoded

=True))

4 dbi_normalized = 2.0 / (1.0 + np.exp(0.5 * dbi))

Listing 2.14: Calculating the DBI
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2.6 Explainability

2.6.1 Explainability by Decision Trees

Explanation

The explainability of a clustering model is complex to evaluate. In literature, there are

few approaches. Most publications concentrate on how to explain a clustering instead.

Thus, the idea here is also to �rst explain the clustering and then, in a next step, to

assess the quality or, more precisely, the simplicity of the explanation.

Most attempts to explain a clustering use a Decision Tree (DT) as support. [24] and [8]

are examples. After training the DT, its structure can be analyzed and if it is rather

simple, the clustering's explainability can be rated good.

Building the Decision Tree

Many di�erent works such as [24, 8] have complex ideas to transform a clustering into a

DT, which is easy to understand, and thus has a high explainability score. However, this

is not required here, since the intention is not to actually explain the model well, but to

�nd a comparable score indicating to what extent an explanation is possible.

Considering this, it is su�cient to create a DT in the simplest way. Since the form of

creating it is the same for all clusterings to be evaluated, the comparability is thus not

in�uenced.

The most straightforward way to create a DT is introduced in [7] as Classi�cation and

Regression Trees (CART). Using this kind of tree, a termination criterion is still required.

Usually, criteria such as maximum depth or minimum samples per leaf are prominent.

However, these directly in�uence the DT's structure. Since the structure shall later

directly describe the explainability, this would circumvent the intention and result in

similar results for any model.

Instead, it might be useful to add nodes to the tree until a certain accuracy is reached. In

this case, the condition would be ful�lled that a clustering that can easily be explained

is modeled into a simple DT while complex clusterings that are hard to explain would

end up as a deep DT.
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The exact required accuracy is not very signi�cant. It is important to set it to a �xed

value. This way, explainabilities of di�erent models can be compared. Here, the value

95% was chosen to ensure that most data points are classi�ed correctly, but the model

will not be extremely deep in most cases. In further study, this value could be considered

more detailed, especially to ensure that the �nal explainability score is comparable to

other metrics. For example, the result range 0.8 - 1.0 should mean good explainability

instead of 0.2 - 1.0.

Evaluating the Decision Tree

Once the DT is trained, the actual evaluation can be completed. Information such as the

tree depth, number of leaves, number of features used or average path length describe

the structure and can be combined into an explainability score.

For all these characteristics, it is a fact that the smaller their value, the better the

explainability. Considering this, a combination can be found as shown below.

Calculation

To train the DT, the data points are split into a training group and a test group. The

labels are the predictions of the clustering model. Using the training data, the tree is

built by adding one leaf after another. After each added leaf, the test data is used to

check if the required accuracy of 95% is reached.

Afterwards, the metrics can be calculated. The tree depth d can directly be read from

the tree. It is the number of nodes passed to get from the root to the furthest leaf node.

The number of leaves l can also be counted on the tree, just like the number of used

features f .

Only the average path length p needs some calculating. Every data point dp in the test

data set D is predicted using the Decision Tree and the number of nodes passed d(dp) is

counted. Then, they are aggregated as in equation 2.40.

p =
1

|D|
·
∑
dp∈D

d(dp) (2.40)
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After normalizing these scores as explained below, they are aggregated. Equation 2.41

demonstrates this. Achieved is the �nal explainability score E.

E =
1

4
· dnormalized + lnormalized + fnormalized + pnormalized (2.41)

Normalization

The normalization here needs to ensure that the di�erent scores can be combined well

into a �nal score. Thus, it is easiest to transform each of the four individual scores into a

number between 0 and 1. This way, the aggregation shown above can be used to combine

them.

The scores are all numbers that are at least 1 and to all, it applies that the smaller the

number, the better the explainability. In addition, the numbers can grow in�nitely. Only

the number of used features is limited by the form of the underlying data. Since there

is no limit for the number of features of the data though, this number can still grow

endlessly.

Considering this, the functions normalizing the scores can use the same structure. The

normal distribution as in equation 2.42 works well here. Since the highest point is always

1, the parameter a can be set to 1 for all scores. b and c need to be assigned individually.

norm(x) = a · exp
(
−(x− b)2

2c2

)
(2.42)

For the tree depth, the smallest possible result is 1 if the root node is directly connected to

the leaf nodes. Thus, b can be set to 1. The standard deviation c in�uences how quickly

the score falls. The value 4 was chosen. This way, very shallow trees are rated good

while trees as deep as 10 nodes are rated under 10%. This seems appropriate because

10 layers deep trees are not very easy to understand and thus the explainability score

should be low. Rearranging it accordingly leads to equation 2.43. The plotted curve can

be seen in �gure 2.4a.

dnormalized = exp

(
−(d− 1)2

2 · 42

)
= exp(−0.0315(d− 1)2) (2.43)
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The smallest result for the number of leaves should be the number of clusters. Only this

way, every possible cluster can be predicted using the DT. However, since the algorithm

used here does not require this, there could be fewer leaves in an unequal clustering.

Thus, the smallest possibility is 2 because the used library requires at least two leaf

nodes.

Having set b to 2, the standard deviation c needs more careful consideration. At �rst,

choosing a certain value seems to work here, as well. However, a clustering with more

clusters usually does indeed need more leave nodes. This would mean that c should

depend on the number of clusters. Implementing this, however, would have several

disadvantages. It would make it easy to in�uence the score by adding nearly empty

clusters to the base model. Moreover, this would result in a better score even though

the explanation is still not easier to understand. From this point of view, it would seem

more purposeful to ignore the base model structure. Then, a more complex clustering

with many clusters is harder to explain than an easy one with few clusters. In common

sense, this seems logical.

Due to this, a �xed value is chosen. This should be a lot higher than for the tree depth

though, because having more leaf nodes than layers is normal and does not in�uence the

explainability that much. The value 20 has been chosen. This way, there is still a good

score with several leaves. Only starting from 45 leaves will the score drop to under 10%.

This �ts the purpose well. Equation 2.44 is the adapted formula and �gure 2.4b shows

the curve.

lnormalized = exp

(
−(l − 2)2

2 · 202

)
= exp(−0.00125(l − 2)2) (2.44)

The minimum number of used features is 1 because at least one separation must exist in

the tree, therefore b = 1 again. As for the standard deviation c for this metric, the same

consideration as for the number of leaves can be made. Here, it also seems that it should

not depend on the number of clusters. The di�culty of understanding the explanation is

not lower because there are more clusters. Thus, a �xed value should be set again. The

number 3 was selected in this work. With this curve, using 8 or more features already

results in a score below 10%. This is as desired because 8 di�erent features are already

complex to understand in a tree. The formula is shown in equation 2.45 and the curve

in �gure 2.4c.
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fnormalized = exp

(
−(f − 1)2

2 · 32

)
≈ exp(−0.05556(f − 1)2) (2.45)

Finally, the average path length also has the minimum value of b = 1, just as for the

tree depth. This metric is similar to the tree depth. In a perfectly balanced tree with

all paths having the same depths, it would be the same value. But usually, it is smaller.

Thus, the standard deviation should also be similar, but a little bit smaller. The same

curve as was used for the number of used features with c = 3 ful�lls this condition and

is presented in equation 2.46 and �gure 2.4d.

pnormalized = exp

(
−(p− 1)2

2 · 32

)
≈ exp(−0.05556(p− 1)2) (2.46)

Discussion

This metric as described still has several disputed points with room for improvement.

Besides the ones mentioned above, it is still possible to have data which never reaches

an accuracy of 95% for the tree. This would result in an endless calculation. However,

there is a simple solution to this problem. A limited number of iterations can be used.

When reaching the limit, the worst score of 0 is returned.

Another idea would be to create a DT with a �xed number of leaves or similar. Then the

tree's accuracy could be used as the score. This was not implemented because it seems

more likely to answer the question of whether a simple explanation for the clustering

is su�cient instead of the question how understandable a complete explanation is. The

idea could still be considered in further research though.

A more concrete issue with the current approach is the argumentation used for the nor-

malization curves. The parameters of the functions were chosen based on the layout of

rather simple clusterings. Having very complex data with many clusters would automat-

ically end in a more complex explanation. It is questionable if it is fair to measure these

models with the same standards.

Ignoring these issues, the presented metric still seems to provide a close approximation

of the explainability though.
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(a) Normalization Function Plot for the
Tree Depth

(b) Normalization Function Plot for the
Number of Leaves

(c) Normalization Function Plot for the
Number of Features Used

(d) Normalization Function Plot for the Av-
erage Path Length

Figure 2.4: Normalization Function Plots for Explainability Score using Decision Trees

Implementation

When implementing this metric, the �rst step is to prepare the data. Listing 2.15 shows

this process. Next, listing 2.16 shows how the DT is trained step by step until the

required accuracy is reached. Finally, the metrics are calculated and normalized and

combined as shown in listing 2.17.

1 labels = clustering_model.predict(data, encoded=True)

2 x_train, x_test, y_train, y_test = train_test_split(data, labels,

test_size=0.2, random_state=0)

Listing 2.15: Preparing data for DT Explainability
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1 tree = DecisionTreeClassifier(max_leaf_nodes=1, random_state=0)

2 max_leaf_nodes = 1

3 max_leaf_nodes_limit = 1000

4 accuracy = 0

5

6 while accuracy <= 0.95 and max_leaf_nodes < max_leaf_nodes_limit:

7 max_leaf_nodes += 1

8 tree.max_leaf_nodes = max_leaf_nodes

9 tree.fit(x_train, y_train)

10 y_pred = tree.predict(x_test)

11 accuracy = accuracy_score(y_test, y_pred)

Listing 2.16: Training the tree for DT Explainability

1 if max_leaf_nodes >= max_leaf_nodes_limit:

2 explainability = 0.0

3 else:

4 tree_depth = tree.get_depth()

5 tree_depth_score = math.exp(-0.03125*(tree_depth - 1)**2)

6

7 number_of_leaves = tree.get_n_leaves()

8 number_of_leaves_score = math.exp(-0.00125*(number_of_leaves

- 2)**2)

9

10 used_features = np.unique(tree.tree_.feature)

11 used_features = used_features[used_features >= 0] # -2

represents leaves

12 number_of_features = len(used_features)

13 number_of_features_score = math.exp(-0.05555555555555555*(

number_of_features - 1)**2)

14

15 average_path_length = np.mean(tree.decision_path(x_train).sum

(axis=1))

16 average_path_length_score = math.exp(-0.05555555555555555*(

average_path_length - 1)**2)

17

18 explainability = (tree_depth_score + number_of_leaves_score +

number_of_features_score + average_path_length_score) / 4

Listing 2.17: Calculating metrics for DT Explainability

49



3 Test Models

3.1 Clustering Algorithm Types

As mentioned in chapter 2.1.3, there are di�erent kinds of clustering algorithm, as de-

scribed e.g. in [22, 34]. In this work, four of them are considered: Partition-Based

Clustering (PBC), Hierarchical Clustering (HC), Density-Based Clustering (DBC), and

Model-Based Clustering (MBC). In the following sections, these are presented and a

model is introduced for each type.

These models are later used to test the implemented metrics and show their functionality.

To do so, there are very few requirements for these models. The target here is not to

create models with perfect scores, but to show how the metrics work and highlight their

diversity when handling di�erent algorithms.

Consequently, the models were created using the basic clustering algorithms and no

additional focus on responsibility.

3.2 Partition-Based Clustering Model

Principle

At PBC, a �xed number of cluster centers is needed. The data points are assigned to

their closest cluster center. Then, these cluster centers are moved to the middle of their

assigned data points. These two steps are repeated until the assignment does no longer

change or another stop criterion is reached.
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Speci�c Algorithm

The most common speci�c algorithm is k-means, introduced in [25]. This algorithm is

chosen here for the test model. It follows the steps explained above, but is more speci�c.

Here, the cluster centers are the centroids of their cluster's data points based on the

Euclidean distance.

Data Set

The used dataset is the one published at [31]. It contains data for patients with diabetes,

including some personal data such as age and weight and many statistics regarding their

health such as blood values and information about their hospitalization.

The dataset has more than 100,000 rows. Although the metrics work with this amount

of data, the calculation for some takes a longer time. To increase the speed during the

development, only a part of the data was used, speci�cally 1,000 rows.

The values of this dataset are not all numeric. The according attributes were encoded

using ordinal encoding. Some other attributes such as IDs were removed because they

have no in�uence on the patient's medical condition.

No further preprocessing of the data was performed, again, because the targets do not

include building a good model. This way, the data can already be used to create a test

model.

Implementation

The complete implementation can be found in appendix A.2.1.

3.3 Hierarchical Clustering Model

Principle

HC uses a tree-like approach to cluster data. There are two general ways to achieve this.

Agglomerative Nesting initializes every data point as its own cluster and then joins close
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clusters step by step. Divisive Analysis starts with one cluster containing all data points.

The cluster is then split apart step by step.

Speci�c Algorithm

In this work, the Single Linkage Clustering algorithm is used, which was introduced in

[20]. It is a version of the Agglomerative Nesting and thus starts with each data point

representing an individual cluster.

Then, in each step, the pairwise distance between all clusters is calculated. It is de�ned as

the smallest distance between one point in the �rst cluster to one point in the second. The

two closest clusters are then combined. Here, the used distance metric is the Euclidean

distance.

This procedure is repeated until a stop criterion is reached. In our case, a simple criterion

is selected. When there are only ten clusters left, the algorithm �nishes.

Data Set

For this model, the dataset [4] was used. It contains health data of patients with heart

disease, as well as their age and gender. It contains about 300 patients' records, which

makes even high-complexity metrics �nish quickly on a model. Thus, all data was used

to train the model.

This dataset only contains numeric data and after removing the ID value, there is no

further preprocessing required and the model can be trained.

Implementation

The concrete implementation is in appendix A.2.2.
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3.4 Density-Based Clustering Model

Principle

DBC algorithms de�ne clusters as the areas with a high density of data points. Areas

with few data points separate these clusters. Clusters are created incrementally. They

are extended by adding close data points.

Speci�c Algorithm

The most well-known algorithm Density-Based Spatial Clustering of Applications with

Noise (DBSCAN), introduced in [13], is used here. It uses two parameters, a radius and a

minimum number. Every data point with at least this number of data points not further

away than the radius is considered a core point. Every data point with fewer data points

this close by, but in range of a core point is considered a border point. The remaining

data points are noise points.

The algorithm then begins with an initial data point and if it is a core point, it is

initialized as a cluster and the neighboring data points are added to it. Then this process

is repeated. For every core point, the surrounding, not yet to another cluster assigned

core and border points are added to its cluster.

Data Set

For this model, the dataset from [5] was used. It contains data for patients with panic

disorder. There is information about the personal situation, e.g. symptoms and if there

are more cases in the family. Personal information such as age and gender are also listed

and the living environment.

Many attributes in this dataset are non-numeric and are preprocessed the same way as

the other datasets for the other models using ordinal encoding. Here, the ID was removed

as well.

There are 120,000 records in this dataset. For easier testing, only 1,000 records are used

for the clustering.
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Implementation

In appendix A.2.3, there is the full code and an explanation of the implementation.

3.5 Model-Based Clustering Model

Principle

The concept of MBC is to use probabilistic models. Every cluster is represented by

a statistical model which shows the probability that a data point is included in this

cluster.

Speci�c Algorithm

Gaussian Mixture Models (GMM) is a common MBC algorithm using Gaussian distri-

butions. For this algorithm, every cluster is described as a normal distribution which

is iteratively approximated using the Expectation-Maximization Algorithm (EM), as ex-

plained in [6].

Data Set

The used data is the dataset on [29]. It contains records of breast cancer patients with

many statistic values describing the cancer. Apart from that, there is no personal data.

After removing the ID and ordinal encoding the only non-numeric attribute which de-

scribes if the cancer is benign or malignant, the data can be used. Since there are fewer

than 600 records, they are all used in this model.

Implementation

The implementation is in appendix A.2.4.
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3.6 Handmade Model

The afore mentioned models are able to demonstrate that the metrics are generally usable

on these kinds of clustering algorithms. However, it is hard to evaluate how accurate they

are because the quality of the models is not known and would require a deep analysis of

the data.

Instead, a new model is created with manually fabricated data. The data contains 100

records with x and y values. It builds four well-separated clusters consisting of 25 data

points each. The data points were randomly chosen around the cluster center using a

normal distribution. Figure 3.1 shows the exact arrangement. The red crosses here show

the cluster centers and the data points of the same cluster have the same color.

Figure 3.1: Visualization of Clustering of Manually Created Data Points for Test Model

As can be seen in the �gure, this model should have very good scores. This way, the

metrics' ability to recognize responsible models can be evaluated.
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Technically, this model is represented by a k-means model. Not only can k-means per-

fectly portray the model in its supposed way, but it can also be evaluated with all metrics,

including Inertia and DPL. The implementation is in appendix A.2.5.
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4.1 Introduction

The introduced metrics are all executed on the prepared test models. This chapter gives

an overview of the results. The scores of the metrics are separately analyzed. For the �rst

four models, it is shown how far the metrics generally work for the di�erent versions of

clustering algorithm. Using the last model, their pro�ciency in pointing out responsible

models is highlighted.

For each model, �rst the scores are all shown in a diagram. After a short analysis, they

are aggregated to show the assessment of the aspects of RAI as de�ned in chapter 2.1.4.

During this, the values are always rounded to three decimal places for the metrics or

two decimal places for the RAI aspects. The calculation is based on the original values

though, so some rounding errors might occur.

4.2 K-Means Results

The scores calculated by the metrics for the prepared k-means model are illustrated in

�gure 4.1. It can be seen that no values are very high or very low. This is in line with

expectations, considering that during the creation of the model no precautions were taken

to ensure good RAI scores.

� The Inertia score of 0.704 shows that the clusters are quite compact, but there is still

room for improvement. However, this score is also related to the underlying data

and the chosen number of clusters. It is best to use this score to compare models

on the same data with the same number of clusters. This way, improvements can

be highlighted. In absolute terms, it is possible that this rating is already very high

for this combination.
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Figure 4.1: Metrics Results for K-Means Test Model

� The RD score of 0.482 is mediocre. This metric does not evaluate any of the test

models as satisfactory. This might be due to its nature which is further discussed

below where the other test models score even worse.

� The average IC score is 0.874. Since the metric heuristically selects data pairs to

allow faster evaluation for larger models, the scores vary a little. This average is

based on three results: 0.874, 0.880 and 0.869. It can be seen that the �uctuation

is not high though, showing that the metric is quite stable. The score itself shows

that about 87% of data pairs that are close to each other are in the same cluster.

This is a high score, but the remaining 13% could still be improved if the clusters

were even better separated.

� The NF is at 100%, i.e. every data point is closer to the other data points in its own

cluster than the other data points. Hence, the clustering is fair for every individual

data point. The nature of k-means might be supportive of this high score though,

because every data point is by de�nition already in the cluster with the closest

center. Nevertheless, this is no guarantee for a high NF score.

� The DPL reaches 0.833. This is again a mean of multiple scores: 0.730, 0.875 and

0.895. The added noise is random and as can be seen, this has a huge in�uence on

the result. However, even though the result range is larger here, a conclusion can

still be drawn. After the added noise, about 83% of data points end up in the same

cluster. This means that every sixth data point is wrongly assigned. This shows
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that a manipulation of the model results in a noticeable change which might allow

the partial inference of data. Thus, the privacy protection should be improved for

this model.

� The SA scores at 0.629, again as an average of 0.625, 0.626 and 0.637, due to

the random selection of data points to be omitted. This shows that one missing

data point has a huge impact on the entire clustering, which shows a poor privacy,

consistent with the DPL score.

� The SC is 0.392. This means that the clusters are not well-separated with a high

density or there are many outliers. This is problematic regarding the security score

of the model. The reason might be that the chosen number of clusters does not �t

the data or the form of the clusters does not represent the data well.

� The DBI of 0.700 indicates a better separation of clusters. The score, signi�cantly

higher than the SC, suggests that the separation of the clusters is indeed acceptable

but several data points are not optimally assigned to the clusters.

� The DT Explainability score lies at 0.579, meaning the explanation of the model

is on a medium-level di�culty.

Altogether, it is clear that the metrics work as expected and successfully evaluate the

k-means model. To �nd the scores for the aspects of RAI, these results are combined ac-

cording to the weighting presented in chapter 2.1.4. Figure 4.2 illustrates these combined

results.

Figure 4.2: RAI Aspects Results for K-Means Test Model
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The values are all in a range from medium to satisfactory, but none are really acceptable.

In combination, the �nal responsibility score is their mean value 0.656. This means the

model is not responsible yet and still needs improvement.

4.3 Single Linkage Clustering Results

Figure 4.3 shows the metrics' scores for the Single Linkage Clustering (SLC) test model.

As explained in chapter 2.1.3, Inertia and DPL are only compatible with PBC and thus

not included here.

Figure 4.3: Metrics Results for Single Linkage Clustering Test Model

For this test model, the most scores are relatively high. There are two exceptions though,

which are very low. The following analysis explains this unexpected circumstance.

� The RD score is exactly 0.000. The normalization process described in chapter 2.3.1

explains that particularly low scores are cut at the minimum value of 0. This is

the case here. A reason for this is explained below in the analysis of the handmade

test model in chapter 4.6.

� The IC reaches the perfect score of 1.000, even after multiple executions. All pairs

of similar data points are assigned to the same cluster, indicating a great individual

fairness.
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� The NF is also very high with 0.964. This supports the �nding of the IC. However,

these scores are far higher than anticipated. To make sure this is no problem, a

deeper look into the clustering was made. In appendix A.3, the allocation of data

points to their clusters is shown. Here, it can be seen that almost all data points

are in one single big cluster. This way, it is logical that these two metrics have high

scores. This problem should be considered when evaluating a model.

� The SA score is after multiple executions stable at 0.998. A missing data point

does not impact the model which would usually be an indicator for a great privacy

evaluation. However, considering the unequal data point allocation, this is not

surprising. Here again, when using this score, it must be paid attention to this

problem.

� The SC is very low with 0.199. This is a clear warning and points out the problem

mentioned above. Apart from that, this also shows a problematic security because

of many outliers or an unclear separation of clusters. Since most clusters have just

one data point, these can be considered outliers, explaining this low score.

� The DBI is 0.881. This means that the clusters have a good separation. This

situation again highlights the need to combine di�erent scores to evaluate RAI

aspects. Neither SC nor DBI alone are enough to clearly assess the security here.

� The DT Explainability score values 0.986. Here again, this excellent explainability

is easy to understand. Since almost all data points are in one cluster, a direct

assignment to this cluster would directly result in a high accuracy for the explaining

DT model.

On the one hand, this test model exposes some of the downsides of the individual metrics.

However, it also shows the importance and e�ciency of multiple metrics used in combi-

nation. On the other hand, it also shows that the metrics have no di�culty evaluating a

HC.

The next step is anew to calculate the RAI aspects using the weighting in chapter 2.1.4.

The scores are shown in �gure 4.4.

The privacy and explainability here are quite high while the security and fairness are

far behind with medium values. Considering the mentioned unequality of this model, it

becomes obvious that it must be necessary for a model to reach high scores in all separate

aspects in order to be responsible. The mean of these aspects is 0.744, which appears too

61



4 Experiment Results

Figure 4.4: RAI Aspects Results for Single Linkage Clustering Test Model

high for such a problematic model. Thus, this overall score alone might not be su�cient

to evaluate the responsibility of a model.

4.4 DBSCAN Results

The DBSCAN test model's test results are in 4.5. Here again, Inertia and DPL are

missing, due to their compatibility.

Figure 4.5: Metrics Results for DBSCAN Test Model

62



4 Experiment Results

� The RD score is 0.372. This score is again rather low. The reason is explained

below at the handmade model in chapter 4.6. Considering that, this score can still

be considered quite acceptable.

� The IC is consistently at 1.000 again. Similar data points are always in the same

cluster. Facing the same situation as before, the cluster allocation is studied again.

Appendix A.3 shows that there are several clusters with few data points but also

multiple clusters with many data points. Since even the bigger clusters have no

very close members (as indicated by this score), the individual fairness is indeed

good.

� The NF con�rms this, although it is slightly lower at 0.797. When taking the

fact into consideration, that all outliers are treated as one cluster here, this can

be explained. Since they are spread widely, it is quite probable that an individual

outlier is closer to the other clusters than to the other outliers. The overview in

appendix A.3 shows that there are more than 30% of outliers. The missing 20% of

the NF score �t into this set. In conclusion, the model o�ers a very good individual

fairness.

� The SA scores 0.987 on average. The individual results of the calculation are very

close though: 0.986, 0.987 and 0.988. This proves that single missing data points

have very little in�uence on this model, pro�ting its privacy.

� The SC is again quite low with 0.145. This is as expected, considering the high

percentage of outliers. For this metric, it is bene�cial that they are considered as

one cluster. The high distance between data points in this cluster leads to the low

rating which suits the high number of outliers which indicate a low security.

� The DBI score is 0.487. It is less in�uenced by the outliers but still enough to be

unsatisfactorily low. However, the high di�erence to the SC is an indication that

the non-outlier clusters are relatively well-separated.

� The DT Explainability score here is 0.000, which exposes a signi�cant problem

with this metric. During the creation of the DT, the stop criterion of 95% accuracy

is not reached. Instead, over�tting leads to a stagnant accuracy on the data used

for testing. This problem is less prominent on models with more data points. For

example, using a similar model trained on 20,000 data records of the same dataset

results in a very high score of 0.986. However, the metric as de�ned here should be
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used with caution on models with less data. An idea to solve this problem is given

in chapter 6.

These results verify that the metrics can generally be used on DBC models. Yet, it is

also shown that the uniform handling of outliers as one cluster is not the optimal solution

for all metrics and there could be improvements. Furthermore, a serious issue in the DT

Explainability metric was unveiled.

Next, the RAI aspects are presented in �gure 4.6. The scores are still based on the

weighting introduced in chapter 2.1.4.

Figure 4.6: RAI Aspects Results for DBSCAN Test Model

The explainability of this model is heavily negatively in�uenced by the problematic DT

Explainability score, resulting in a very low value. The fairness and security are in the

medium range, which is primarily due to the high amount of outliers. Privacy has an

excellent score. In combination, a total score of 0.518 is reached.

This is still heavily in�uenced through the inadequate DT Explainability. If instead

the score mentioned above for the model with more data is used, the total score can

be improved to 0.682. Still having the outliers in mind, this score seems decent. It is

high enough to show the existing capacity of the model, while still showing outlier-based

shortcoming.
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4.5 GMM Results

Figure 4.7 visualizes the evaluations of the metrics on the GMM test model. Inertia and

DPL are not available here either.

Figure 4.7: Metrics Results for GMM Test Model

� The RD score is here 0.000 again. As before, this is because of the implemented

capping and might actually be rational, as explained in chapter 4.6.

� The IC score amounts to 0.832 which is the mean of three runs with the scores

0.840, 0.831 and 0.826. This means most similar data pairs are treated equally.

The remaining ones close to 17% are still signi�cant though and the model should

still be improved in this regard to ensure individual fairness.

� The NF score is almost perfect with 0.996. This means almost every data point is

closer to its own cluster than to the other clusters and underlines the high individual

fairness of this model. Checking the distribution of data points to clusters in

appendix A.3 further con�rms this, since the distribution is relatively balanced.

� The SA reaches 0.576. This is the mean of the scores 0.569, 0.606 and 0.553. The

model is very sensitive to small changes such as a single data point. This is a

problematic plight in regards to the privacy.
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� The SC of 0.489 is higher than at the previous models. This means that the

clusters are better separated and have a higher density here. The value is still not

satisfactory though, pointing to security problems here as well.

� The DBI score is 0.836. Just like at the k-means model, it is sigini�cantly higher

than the SC, indicating that some data points might not be assigned to the best

�tting cluster while the clusters are relatively dense after all.

� The DT Explainability score is 0.000 again, based on the over�tting problem men-

tioned above. The highest accuracy is 83.3%, reached after adding eight leaf nodes

to the DT. When adding more, the accuracy starts to decrease. The targeted 95% is

never reached. This distorts the model's actual explainability score and underlines

the need to �nd a solution for this predicament.

It can be seen that these metrics basically work for GMM clusterings as well. Further,

the previously mentioned DT vulnerability shows up again, emphasizing its gravity.

Finally, the scores can be combined using the weighting in chapter 2.1.4. The results are

shown in �gure 4.8.

Figure 4.8: RAI Aspects Results for GMM Test Model

The privacy, fairness and security scores are all medium, which is in the area of expecta-

tion for a model trained without any focus on these aspects. The explainability score is,

similar to the DBSCAN test model, far lower than it realistically should be. The �nal

responsibility score is consequently 0.492.
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4.6 Handmade Model Results

The �nal test model is the one based on specially shaped data. Since it is implemented

using k-means, Inertia and DPL are available. The results of the metrics are shown in

�gure 4.9. Because of the nature of the data, very high scores are expected for this model.

Most metrics ful�ll this condition.

Figure 4.9: Metrics Results for Handmade Test Model

� The Inertia of this model is 0.991, con�rming that the data points are all relatively

close to their cluster center.

� RD is the only metric giving a low score for the model. It is 0.000. For the previous

models, this score did mostly show low scores as well. This circumstance can be

explained well for this model. The metric's expectation for a good score is that the

data points with the same value for an attribute are equally distributed across the

clusters. This is useful for an attribute such as race or gender in a situation where

it is determined which people successfully get hired for a job.

However, in this test model, this might not be useful. For example, looking at

the attribute x, there are data points with the value 100. These data points are

all in the two clusters on the left, as can be seen in �gure 3.1 in chapter 3.6. All

other values for both attributes are respectively limited to two of four clusters.

Consequently, the distribution is always very poor, resulting is a low total score.
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Though this evaluation for the group fairness is not wrong, it might be more mean-

ingful to de�ne a clear context before calculating this score. In clustering, it is

usually expected to split the data based on certain values for attributes. Consid-

ering such a splitting as inadequate might go against the clustering's purpose.

If instead some sensitive attributes were selected for which a fair distribution is

expected, and the RD is calculated based on these, the result would be more mean-

ingful. The problem is that this procedure depends on the model. This con�icts

with this works' purpose of being independent of the context. In further research,

it is desirable to �nd a better solution to this problem.

In conclusion, this metric works as expected. However, it is important to be careful

with the result and understand its meaning and to what extent a good score should

be expected for the concrete model. For this handmade test model, a good RD

score of this kind is not actually desirable.

� The IC for this model is 1.000. All pairs of close data points are in the same

cluster. Since the data is designed with dense and distant clusters, this is logical

and correct.

� The NF is 1.000 as well. Considering the data structure, it is correct that every

data point is closer to the other data points in its own clusters than to those in

other clusters. Thus, this evaluation is logical as well.

� The DPL score is also 1.000. Since the clusters are extremely well-separated with

big distances in between, adding noise to the cluster centers is supposed to have

no impact. Thus, this score is as expected.

� The SA has a constant score of 1.000. As expected, there is no change in the

clustering after any single data point is removed from the dataset.

� The SC is 0.930, con�rming the high density and clear separation of clusters. This

score is not 100% though, since the data points are not all perfectly in the corre-

sponding cluster center.

� The DBI of 0.969 is high as well and also shows that the clusters are very well-

separated and dense.

� The DT Explainability score reaches 0.928. This means that it is easy to explain

the model.
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This model demonstrates how the di�erent metrics work excellently at pointing out a

very responsible clustering. It also helps to comprehend the RD score and its limits.

The RAI aspects, combined of the metric scores as explained in chapter 2.1.4, are shown

in �gure 4.10.

Figure 4.10: RAI Aspects Results for Handmade Test Model

Privacy, security and explainability all reach very high scores for this model. Just the fair-

ness score is mediocre because of the included, very low group fairness value. Altogether,

the responsibility score for this test model is 0.890.
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Summary of Findings

In this work, a set of metrics was de�ned to evaluate to what extent a clustering model

conforms to the aspects of RAI. These metrics were presented in detail and partially

adapted to make them usable in a general context. They were further normalized, if

necessary, and then implemented, adding to the framework presented in [16], available

in the GitLab repository.1

To demonstrate the metrics, �ve test clustering models were built. Four of them represent

the di�erent kinds of clustering methods PBC, HC, DBC, and MBC. One model focuses

on the underlying data, which is specially designed with the expectation of high scores.

During the test, the metrics' general functionality on di�erent kinds of clustering algo-

rithms is con�rmed. At the same time, some still existing challenges were found that

obstruct the full use of some of the metrics on all models. Further, the capability to

recognize high-quality clusterings was con�rmed.

Answering Research Questions

All four research questions are answered in this work.

RQ1: Which metrics are relevant to evaluate the aspects of RAI on clustering

models?

An overview of available metrics was given, extended with further ideas for metrics,

mostly based on algorithms aiming to improve the creation of a clustering. The metrics

Inertia, Representation Disparity (RD), Individual Consistency (IC), Natural Fairness

1https://gitlab.com/sabrinagoellner/verifai_test_lab
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(NF), Di�erential Privacy Loss (DPL), Sensitivity Analysis (SA), Silhouette Coe�cient

(SC), Davies-Bouldin-Index (DBI) and Explainability by Decision Tree were selected and

it was shown how they can work together to evaluate the di�erent aspects of RAI.

RQ2: To what extent is it possible to compare di�erent models based on the

evaluations of the metrics?

During the de�nition of the metrics and their application, a special focus was on the nor-

malization and independence of the underlying data. Nonetheless, the experiments show

that the data can still in�uence some of the metrics, making a universal comparability

di�cult. The improvement made through changes on the model based on the same data

can be clearly shown, though.

RQ3: Which di�erent kinds of clustering algorithms can be evaluated with

these metrics?

Models for PBC, HC, DBC, and MBC were tested. By de�nition, Inertia and Di�erential

Privacy Loss (DPL) are only meaningful for PBC models. The results show that the

remaining metrics support all models. The occured problems could all be traced back to

the data instead of the type of clustering algorithm.

RQ4: Are these metrics able to point out highly responsible models?

During a �nal test with a model based on data designed to form clear clusters, it was

con�rmed that the metrics reach high scores. The only exception is RD. Its score was

correct though and the cause of the problem could be identi�ed, although not resolved.

Limitations

While testing the metrics, some general �ndings were made. Since some metrics can be

manipulated, e.g. by special data, these metrics have a limited meaning when used alone.

Thus, it is always necessary to use multiple metrics in combination. Only in this way

can they o�set each other's shortcomings and give a reliable evaluation.

It was also found that the combined reliablity score can be heavily biased. It should not

be used without analyzing the individual scores of the aspects of RAI. If it is used alone,

the threshold for considering a model reliable should be chosen high enough to ensure

high scores for all of the single aspects.
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5 Conclusion

Further, heuristics were introduced for metrics with a high complexity. These allow quick

evaluations, but they are also less exact. Especially the DPL highly varies in its results,

even if the model is not changed. This makes a direct comparison di�cult.
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6 Further Research

There are still many possible improvements to be made in the future. In general, it is

useful to add more metrics to improve the quality of the evaluation. The last kind of clus-

tering algorithm, Grid-Based clustering, should also be considered and its compatibility

with the current metrics.

Additionally, the combination of the aspects of RAI should be further analyzed. A

di�erent method of aggregation might be more reliable in de�ning whether a model is

responsible. A proposal, for instance, could be to increase the weight of the aspect with

the lowest score.

Another suggestion is to change the handling of the outliers of a DBSCAN model. After

analyzing which metrics are more precise when considering each outlier as a di�erent

cluster, more signi�cant evaluations could be reached.

Furthermore, the problem of over�tting when training the DT to evaluate the explain-

ability needs to be solved. Apart from common methods to avoid over�tting, an idea

how to achieve this would be to record the accuracy of the DT during its creation. If

it does not reach the targeted 95%, the version with the highest accuracy could be used

for the evaluation instead. Depending on its accuracy, the �nal score could be reduced

accordingly.

A major general improvement could additionally be the manual de�nition of a distance

metric. If the used distance metric perfectly suits the data in a model, it can be evaluated

far more precisely. The Euclidean distance used throughout this work ignores di�erences

in the value ranges of di�erent attributes, which might be unfair. For example, the age

of a person (value range about 0-120) would have a far lower impact than the income

(value range about 0-100,000). With the implementation of this feature, the tested

models could also use all kinds of data, such as images, as long as the suitable distance

metric is given.
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A Appendix

A.1 Tools

Table A.1 lists the tools used in the development of this thesis.

Table A.1: Tools
Tool Usage
LATEX Creation of the document
Microsoft Copilot Language improvements and organizational assistance
PyPlot Creation of �gures
Microsoft Excel Creation of �gures

A.2 Implementations

A.2.1 K-Means Implementation

The listing A.1 shows the concrete implementation of the test model using k-means.

After reading the data from its �le, it is preprocessed. The form of preprocessing is

saved to a �le to allow additional data to be processed likewisely. Finally, the model is

created using the library scikit-learn [28] and saved as well.

1 data = pd.read_csv("resources/diabetic_data.csv", nrows=1001) #

title row + 1000 rows

2

3 ordinal_encoders = {}

4
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5 fields_to_transform = ["race", "gender", "age", "weight", "

payer_code", "medical_specialty", "diag_1", "diag_2", "diag_3"

, "max_glu_serum", "A1Cresult", "metformin", "repaglinide", "

nateglinide", "chlorpropamide", "glimepiride", "acetohexamide"

, "glipizide", "glyburide", "tolbutamide", "pioglitazone", "

rosiglitazone", "acarbose", "miglitol", "troglitazone", "

tolazamide", "examide", "citoglipton", "insulin", "glyburide-

metformin", "glipizide-metformin", "glimepiride-pioglitazone",

"metformin-rosiglitazone", "metformin-pioglitazone", "change"

, "diabetesMed", "readmitted"]

6 fields_to_omit = ["encounter_id", "patient_nbr"]

7 for field in fields_to_transform:

8 ordinal_encoder = OrdinalEncoder(handle_unknown="

use_encoded_value", unknown_value=-1,

encoded_missing_value=-1)

9 ordinal_encoder.fit(data.loc[:, [field]])

10 data.loc[:, [field]] = ordinal_encoder.transform(data.loc[:,

[field]])

11 ordinal_encoders[field] = ordinal_encoder

12 for field in fields_to_omit:

13 data = data.drop(columns=[field])

14

15 tokenizing = (fields_to_omit, ordinal_encoders)

16

17 with open(’model/kmeans_tokens.pkl’, ’wb’) as file:

18 pickle.dump(tokenizing, file)

19

20 # initialize kmeans parameters

21 kmeans_kwargs = {

22 "init": "random",

23 "n_init": 1,

24 "random_state": 1

25 }

26

27 kmeans = KMeans(n_clusters=10, **kmeans_kwargs)

28 kmeans.fit(data)

29

30 with open(’model/kmeans_model.pkl’, ’wb’) as file:

31 pickle.dump(kmeans, file)

Listing A.1: Implementation of K-Means Test Model
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A.2.2 Single Linkage Clustering Implementation

Listing A.2 shows the concrete implementation of the test model using SLC. The structure

is the same as for the k-means model in appendix A.2.1, although no data needs to be

encoded.

1 data = pd.read_csv("resources/heart_disease_patients.csv")

2

3 fields_to_omit = ["id"]

4 for field in fields_to_omit:

5 data = data.drop(columns=[field])

6

7 tokenizing = (fields_to_omit, {})

8

9 with open(’model/slc_tokens.pkl’, ’wb’) as file:

10 pickle.dump(tokenizing, file)

11

12 slc = AgglomerativeClustering(n_clusters=10, linkage=’single’)

13 slc.fit(data)

14

15 with open(’model/slc_model.pkl’, ’wb’) as file:

16 pickle.dump(slc, file)

Listing A.2: Implementation of SLC Test Model

A.2.3 DBSCAN Implementation

In listing A.3 is the code implementing the test model using DBSCAN. The structure is

the same as for the previous models, such as k-means in appendix A.2.1. It should be

considered that the implementation used here assigns all outliers to one special cluster

which is treated as a regular cluster by the metrics implemented in this thesis.

1 data = pd.read_csv("resources/panic_disorder_dataset_training.csv

", nrows=1001) # title row + 1000 rows

2

3 ordinal_encoders = {}

4

5 fields_to_transform = ["Gender", "Family History", "Personal

History", "Current Stressors", "Symptoms", "Severity", "Impact

on Life", "Demographics", "Medical History", "Psychiatric
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History", "Substance Use", "Coping Mechanisms", "Social

Support", "Lifestyle Factors"]

6 fields_to_omit = ["Participant ID"]

7 for field in fields_to_transform:

8 ordinal_encoder = OrdinalEncoder(handle_unknown="

use_encoded_value", unknown_value=-1,

encoded_missing_value=-1)

9 ordinal_encoder.fit(data.loc[:, [field]])

10 data.loc[:, [field]] = ordinal_encoder.transform(data.loc[:,

[field]])

11 ordinal_encoders[field] = ordinal_encoder

12 for field in fields_to_omit:

13 data = data.drop(columns=[field])

14

15 tokenizing = (fields_to_omit, ordinal_encoders)

16

17 with open(’model/dbscan_tokens.pkl’, ’wb’) as file:

18 pickle.dump(tokenizing, file)

19

20 dbscan = DBSCAN(eps=3.25, min_samples=5, metric=’euclidean’)

21 data["cluster"] = dbscan.fit_predict(data)

22

23 with open(’model/dbscan_model.pkl’, ’wb’) as file:

24 pickle.dump(dbscan, file)

Listing A.3: Implementation of DBSCAN Test Model

A.2.4 GMM Implementation

The test model using GMM is presented in the listing A.4. This model has the same

structure as the previous models, such as k-means in appendix A.2.1.

1 data = pd.read_csv("resources/breast cancer.csv")

2

3 ordinal_encoders = {}

4

5 fields_to_transform = ["diagnosis"]

6 fields_to_omit = ["id"]

7 for field in fields_to_transform:
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8 ordinal_encoder = OrdinalEncoder(handle_unknown="

use_encoded_value", unknown_value=-1,

encoded_missing_value=-1)

9 ordinal_encoder.fit(data.loc[:, [field]])

10 data.loc[:, [field]] = ordinal_encoder.transform(data.loc[:,

[field]])

11 ordinal_encoders[field] = ordinal_encoder

12 for field in fields_to_omit:

13 data = data.drop(columns=[field])

14

15 tokenizing = (fields_to_omit, ordinal_encoders)

16

17 with open(’model/gmm_tokens.pkl’, ’wb’) as file:

18 pickle.dump(tokenizing, file)

19

20 gmm = GaussianMixture(n_components=10, covariance_type=’full’).

fit(data)

21

22 with open(’model/gmm_model.pkl’, ’wb’) as file:

23 pickle.dump(gmm, file)

Listing A.4: Implementation of GMM Test Model

A.2.5 Handmade Test Model Implementation

The test model with the self-made data is created as in listing A.5. The creation of the

model has the same structure as the previous models, such as k-means in chapter A.2.1.

Because of the specially prepared data, no preprocessing is needed here.

1 data = pd.read_csv("resources/example_good_int.csv")

2

3 tokenizing = ([], {})

4

5 with open(’model/handmade_tokens.pkl’, ’wb’) as file:

6 pickle.dump(tokenizing, file)

7

8 # initialize kmeans parameters

9 kmeans_kwargs = {

10 "init": "random",

11 "n_init": 5,
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12 "random_state": 1

13 }

14

15 kmeans = KMeans(n_clusters=4, **kmeans_kwargs)

16 kmeans.fit(data)

17

18 with open(’model/handmade_model.pkl’, ’wb’) as file:

19 pickle.dump(kmeans, file)

Listing A.5: Implementation of the Manual Test Model

A.3 Test Model Cluster Sizes

Table A.2 shows the amount of data points per cluster for the �ve test models.

Table A.2: Test Model Cluster Sizes
Cluster ID K-Means

Model
SLC Model DBSCAN

Model
GMM
Model

Handmade
Model

0 110 289 199 198 25
1 160 3 252 26 25
2 87 1 123 47 25
3 112 4 4 4 25
4 51 1 4 99
5 80 1 39 7
6 69 1 5 12
7 140 1 5 44
8 139 1 4 40
9 53 1 12 92
10 4
11 5
12 2
13 7
14 4
15 4
16 3

Outliers 325
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