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Entwicklung und Simulation einer quadrupeden Roboterplattform zur Untersuchung von
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Kurzzusammenfassung

Diese Arbeit widmet sich der Weiterentwicklung und Simulation einer quadrupeden Ro-
boterplattform. Hierbei werden von der Ansteuerung der Hardware und Simulation iiber
die Kinematik bis hin zur Entwicklung einfacher Gangarten viele Aspekte der Robotik
behandelt. Mehrere Reihen von Experimenten bewerten die Genauigkeit von Bewegun-
gen des Roboters und der Simulation. In der Simulation wird nachgewiesen, dass der
Roboter in der Lage ist, einfache Gangarten zu nutzen. Zudem wird anhand der Gangar-
ten Schritt und Trott gezeigt, dass eine Bewertung der Qualitdt von Gangarten anhand

von drei beispielhaften Metriken moglich ist.
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Keywords

Robotics, Simulation, Quadruped, ROS, Gazebo, Gaits

Abstract

This thesis is dedicated to the development and simulation of a quadruped robot platform.
It covers many aspects of robotics, from hardware control and simulation, to kinematics
and the development of simple gaits. Several series of experiments show the accuracy of
the robot and the simulation. Using the simulation, it is shown that the robot is able to
use simple gaits like walk and trot. An evaluation of the quality of gaits based on three

exemplary metrics is also shown.
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1 Einleitung

1.1 Motivation

Quadrupede Roboterplattformen haben in den letzten Jahren immer mehr an Bedeutung
gewonnen. Da laufende Roboter in der Lage sind, sich sowohl in fiir Menschen gemachten,
als auch in natiirlichen Umgebungen zu bewegen, sind sie fiir viele Anwendungen inter-
essant. Von einfachen Inspektionen in Fabriken iiber Rettungseinsdtze in gefdhrlichen

Umgebungen, bis hin zur potenziellen Erkundung von Planeten oder Monden.

Bei Inspektionsaufgaben haben quadrupede Roboter den Vorteil, dass sie im Gegensatz
zu fahrenden Plattformen auch hohere Hindernisse oder Treppen iiberwinden koénnen.
Bei Einsétzen in Katastrophengebieten oder beispielsweise auf dem Mars haben sie mehr
Méglichkeiten, sich auf unebenem oder instabilem Gelénde zu bewegen. Alle diese An-
wendungsfille erfordern eine extrem hohe Zuverléssigkeit sowohl in der Hardware als

auch in der Software.

Die Steuerung quadrupeder Roboter ist eine grofle Herausforderung. Es existieren sehr
viele Freiheitsgrade und ein stabiler Stand des Roboters ist nicht garantiert. Dies macht
das Entwickeln von Gangarten und Verhaltensweisen fiir quadrupede Roboter sehr kom-
plex. Im Falle von Programmfehlern kann es zu Schidden an der Hardware kommen.
Reparaturen kénnen aufgrund der meist sehr komplexen Mechanik sehr teuer und auf-

wendig sein.

1.2 Zielsetzung

Das Ziel dieser Arbeit ist die Weiterentwicklung der Hardware, sowie der Entwurf und
die Implementierung der grundlegenden Software und Simulation eines quadrupeden Ro-
boters, als Testplattform fiir Gangarten. Die Hardware ist dabei nicht das Hauptaugen-

merk der Arbeit. Es sollen jedoch einige Entscheidungen im Entwurf der Mechanik und
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Elektronik beleuchtet werden, die fiir ein Versténdnis der Funktionsweise des Roboters

notwendig sind.

Als Ergebnis der Arbeit soll die erstellte Plattform in der Lage sein, die Gangarten Schritt
und Trott zu nutzen und der Nachweis erbracht werden, dass der Vergleich der Gangarten
durch die erhobenen Daten aus der Steuerung moglich ist. Eine Einschrankung in dieser
Arbeit ist, dass als Untergrund nur ebene Flidchen ohne Hindernisse betrachtet werden.
Auf diese Weise miissen keine zusétzlichen Sensoren fiir die Erkennung des Untergrundes

betrachtet werden.

Als Zielvorgabe fiir die Plattform soll bei voller Geschwindigkeit eine maximale Abwei-
chung von Korperbewegungen von 5% der Schulterhohe des Roboters erreicht werden.
Dieser Wert scheint aufgrund des Gewichts des Roboters und der mechanischen Kon-
struktion der Beine als realistisch. Durch diese Toleranz ergibt sich eine maximale Ab-
weichung der Fufipositionen von 20 mm. Weiterhin wird fiir die Simulation der Antriebe
eine Toleranz von 1% des durchschnittlichen Arbeitsbereichs der Antriebe, sowie 20 ms
an zeitlichem Versatz angenommen. 1% des Arbeitsbereichs entspricht 2.5 °. Diese Werte

beziehen sich auf Abweichungen der Simulation zum realen Roboter.

Durch diese Ziele ergeben sich die folgenden Fragen, die in dieser Arbeit beantwortet

werden sollen:

e Lassen sich die vorgegebenen Anforderungen an die Genauigkeit des Roboters mit

den verbauten Hardware und der in dieser Arbeit entwickelten Software erfiillen?

e Ist Gazebo geeignet um einen quadrupeden Roboter innerhalb der gesetzten Tole-

ranzen abzubilden?

e Lassen sich Gangarten Schritt und Trott auf Basis der entwickelten Plattform ver-

gleichen und bewerten?

1.3 Verwandte Arbeiten

Der Bereich der quadrupeden Robotik ist, wie bereits erwahnt, ein sehr aktives For-
schungsfeld. In den letzten Jahren sind viele Arbeiten zu unterschiedlichen Aspekten von
vierbeinigen Robotern erschienen. So beschéftigt sich die Arbeit "Mini Cheetah: A Plat-
form for Pushing the Limits of Dynamic Quadruped Control” [Katz u. a., 2019] mit dem

Design eines vierbeinigen Roboters, der auf Agilitiat ausgelegt ist.
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Ein groferer Roboter mit mehr Tragkraft wird in JANYmal: A Highly Mobile and Dy-
namic Quadrupedal Robot” [Hutter u. a., 2016] vorgestellt.

Auch in der Industrie werden Quadrupeds mittlerweile verwendet. "Spot” von Boston
Dynamics wird in einigen Bereichen als Inspektionsroboter eingesetzt. Unitree Robo-
tics hat mit der A- und GO-Reihe eine fiir Forschungszwecke deutlich kostengiinstigere

Alternative zu den oben genannten Robotern auf den Markt gebracht.

Abbildung 1.1: Fotos von MIT "Mini Cheetah”, Boston Dynamics "Spot”, "Unitree A1”
und ETH Ziirich "ANYmal” aus den jeweiligen Veréffendlichungen

Neben der zum Beispiel beim MIT ”"Mini Cheetah” oder ”ANYmal” verwendeten Anord-
nung von Achsen gibt es noch andere Geometrien, an denen geforscht wird. So nutzt der
Roboter aus ”System Design and Testing of the Hominid Robot Charlie” [Kuehn u. a.,
2016] neben einer beweglichen Wirbelsdule auch eine grofere Anzahl an Achsen in den

Extremitaten.
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Die ETH Ziirich hat neben "ANYmal” auch den Roboter "SpaceBok” in der Arbeit "Space-
Bok: A Dynamic Legged Robot for Space Exploration” [Arm u. a., 2019] entwickelt. Die-
ser ist auf Fortbewegung durch Spriinge ausgelegt und dient als Versuchsplattform fiir

potenzielle Anwendungen von dhnlichen Robotern auf anderen Planeten.

Eine komplett andere Herangehensweise an die verbauten Aktuatoren wird in ”A soft
quadruped robot enabled by continuum actuators” [Muralidharan u. a., 2021] verwendet.
Durch die Verwendung von elektrisch betriebenen biegsamen Aktuatoren sind die Beine

des Roboters nicht starr.

Neben den mechanischen Eigenschaften der Roboter gibt es auch viele Arbeiten, die
sich mit dem Laufen von vierbeinigen Robotern beschéftigen. "Extreme Parkour with
Legged Robots” [Cheng u.a., 2023] nutzt zum Beispiel einen rein auf neuronalen Net-
zen basierenden Ansatz fiir die Steuerung von Bewegungen, um einen Unitree Al iiber

unterschiedlichste Hindernisse laufen zu lassen.

Die Uberginge zwischen unterschiedlichen Gangarten werden in "Gaits and gait transiti-
ons for legged robots” [Haynes und Rizzi, 2006] untersucht. Hierbei werden anhand einer
sechsbeinigen Roboterplattform Uberginge zwischen Gangarten gesucht, ohne dass der
Roboter stehenbleibt.

Die zusammenfassende Arbeit A survey of the development of quadruped robots: Joint
configuration, dynamic locomotion control method and mobile manipulation approach”
[Chai u. a., 2022] schafft einen Uberblick iiber unterschiedliche aktuelle Ansitze in der
quadrupeden Robotik. Hierunter sind Themen wie die historische Entwicklung, Gelenk-
konfigurationen, Gangarten, Steuerungsmethoden und Manipulatoren auf quadrupeden
Robotern.

1.4 Ubersicht

Fiir diese Arbeit wird ein kaskadierender Ansatz gewahlt, um die Bearbeitung der ein-
zelnen Themen zu strukturieren und verstédndlicher zu machen. Entsprechend wird in
einigen Kapiteln eine Evaluation der Zwischenergebnisse der jeweils durchgefiihrten Ver-
suche vorgenommen. Am Ende der Arbeit werden die Zwischenergebnisse zusammenge-

fasst bewertet.
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Um neben dem Inhaltsverzeichnis eine Ubersicht iiber die Arbeit zu geben, folgt eine

kurze Zusammenfassung des Inhalts der einzelnen Kapitel:

Grundlagen enthilt eine Ubersicht iiber das Basiswissen, das fiir das Versténdnis
der Arbeit notwendig ist, sowie eine kurze Vorstellung einer alternativen Methode

zur Berechnung der Kinematik.

Hardware und Hardwareansteuerung beschéftigt sich mit dem fiir diese Ar-
beit entwickelten Roboter. Es beinhaltet eine kurze Vorstellung der Mechanik und
der verbauten Teile, sowie die Programmierung der Hardwareabstraktion fiir die
Motoren. Zudem wird die Einstellung der Umrichter behandelt und experimentell

mit und ohne Last tiberpriift.

Simulation von Motoren beinhaltet eine kurze Ubersicht iiber die Simulation
von Motoren. Durch Vergleiche mit einem realen Motor wird die Genauigkeit der

Simulation sichergestellt.

Bewegungskoordination behandelt die Berechnungen von Motorpositionen zu
Gelenkwinkeln, die Kalibrierung der Beine sowie die Kinematiken. Zudem werden
Begrenzungen im Konfigurationsraum des Roboters festgelegt. Uber mehrere Ex-
perimente wird die Genauigkeit der Beinbewegungen mit und ohne Last, sowie die

maximale Geschwindigkeit der Beine iiberpriift.

Simulation des Gesamtsystems beschéftigt sich mit der Simulation des gesam-
ten Roboters. Es werden die auftretenden Unterschiede zwischen der Simulation
und dem realen Roboter durch mehrere Versuche untersucht. So das sichergestellt
ist, dass die Simulation den Roboter innerhalb der gesetzten Toleranzen abbilden

kann.

Robotersteuerung gibt eine grobe Ubersicht iiber die Softwarearchitektur, die die
Ansteuerung des Roboters verwaltet. Hierfiir werden die wichtigsten Komponenten

dieser Software beschrieben.

Gangarten und erste Schritte beschreibt die fiir diese Arbeit implementierten
Gangarten. Zudem werden diese Gangarten auf ihre Maximalgeschwindigkeit, ihre

Stabilitdt sowie ihre Laufruhe untersucht.

Fazit beinhaltet eine Zusammenfassung, sowie die Bewertung der Ergebnisse im
Hinblick auf die Zielsetzung der Arbeit. Zudem wird ein Ausblick auf mogliche

Weiterentwicklungen gegeben.



2 Grundlagen

In den nachfolgenden Abschnitten werden Grundlagen und Programme beschrieben, die
flir das Verstdndnis der Arbeit notwendig sind. Diese Beschreibungen sollen zunéchst nur
einen generellen kurzen Einblick in die Themen geben, genauere Informationen kénnen

den Quellen entnommen werden.

2.1 Gangarten

Nach "Gaits and gait transitions for legged robots” [Haynes und Rizzi, 2006] ist ein Gait
oder auf deutsch eine Gangart oder ein Gang, ein zyklisches Bewegungsmuster, das zu
einer Fortbewegung fiihrt. Fiir verschiedene Anzahlen von Beinen und Geschwindigkeiten
ergeben sich naturgeméf unterschiedliche Gangarten. Abbildung 2.1 zeigt Gangarten, die
sich speziell auf Hunde beziehen. Die Analyse der Gangarten stammt aus “"Canine Gait
Analysis” [Carr und Dycus, 2016]. Die Art der Darstellung basiert auf dem Buch "The
Exterior of the Horse” [Goubaux und Barrier, 1892|, welches sich unter anderem mit dem

Laufverhalten von Pferden beschéaftigt.

e Schritt: Zwei oder Drei Beine haben gleichzeitig Kontakt zum Boden.

e Trott: Je zwei diagonal zueinander liegende Beine haben Bodenkontakt, beim
Wechsel der Beinpaare gibt es eine Schwebephase. Trott ist die effizienteste der

Gangarten von Hunden.

e Passgang: Jeweils die beiden Beine einer Seite haben Bodenkontakt, beim Wechsel

gibt es eine Schwebephase. Passgang kommt nur selten bei Hunden vor.

e Galopp: Je zwei Beine hinten und danach vorne beriihren leicht versetzt nachein-

ander den Boden, ein Teil der Zeit sind alle Beine in der Luft.
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Abbildung 2.1: Beispielgangarten fiir Hunde (Schritt, Trott, Passgang, Galopp)

In der Abbildung 2.1 kann der Kontakt der Fiike mit dem Boden iiber die Zeit fiir
unterschiedliche Gangarten abgelesen werden. Die gezeigten Abléufe wiederholen sich
dabei zyklisch.

2.2 ROS

Das Robot Operating System (ROS) ist ein Framework fiir die Entwicklung von Robo-
tern. Es wurde ab 2007 im Rahmen des Stanford Artificial Intelligence Robot (STAIR)
Projektes der Universitdt Stanford entwickelt. Seit 2012 befindet es sich unter der Auf-
sicht der Open Source Robotics Foundation, welche das Projekt als Open-Source-Projekt
weiterfiihrt. Das Ziel von ROS ist es, eine einheitliche Umgebung fiir die Entwicklung

von Software in der Robotik zu schaffen.

Unter anderem stellt ROS eine Kommunikationsschicht auf Publish-Subscribe-Basis zwi-
schen Prozessen bereit. Zudem existieren bereits grofse Mengen Open-Source-Pakete, die
unterschiedlichste Aufgaben wie unter anderem Navigation, Kartierung und Pfadplanung
beinhalten. Eine Ubersicht der Pakete liefert die ROS Paketbibliothek [Open Robotics,
2025b]. Die zugénglichen Ressourcen fiir quadrupede Roboter sind jedoch begrenzt und
sehr spezialisiert. Aus diesem Grund wird fiir diese Arbeit von der Hardwareabstrak-
tion bis hin zum Laufen des Roboters nur bei allgemeineren Problemen auf 6ffentliche

Ressourcen zuriickgegriffen.
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Um die grundlegenden Konzepte in ROS zu verstehen, werden an dieser Stelle einige
Grundbegriffe aus der ROS-Dokumentation [Open Robotics, 2025a| vorgestellt.

Package: Software in ROS wird in Packages organisiert. Ein Package kann unter

anderem Nodes, Messages und Services enthalten.

Node: Eine Node ist ein Prozess, der eine bestimmte Aufgabe erfiillt. Sie kommu-
niziert mittels Messages tiber Topics und kann Services und Parameter anbieten

und nutzen.

Message: Eine Message ist ein definierbarer Datentyp, der unter einer Topic ver-

sendet wird.

Topic: Eine Topic ist ein Name, tiber den Messages gesendet und empfangen wer-

den.

Service: Ein Service ist ein Remote Procedure Call iiber Messages, bei dem nur

der Servicename, nicht aber der genaue Empfinger bekannt ist.

Parameter: Der ROS Parameter Server erlaubt es, fiir Programme benétigte Pa-

rameter mit Namen in ROS zu hinterlegen und abzurufen.

Namespace: In ROS werden Namespaces genutzt, um eine hierarchische Struktur

aus allen Ressourcen zu bilden.

Abbildung 2.2: Beispiel einer Publish-Subscribe-Beziehung zweier Nodes aus der ROS

Dokumentation [Open Robotics, 2025a).

Abbildung 2.2 stammt aus dem sogenannten Node Graph eines Kapitels der ROS Tuto-

rials. In der Darstellung sind die Nodes /teleop_turtle und /turtlesim zu sehen.

/teleop_turtle published eine Message auf der Topic command_velocity im Na-

mespace /turtlel. /turtlesim subscribed auf diese Topic und empfangt somit die
Nachrichten des Publishers.
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Die Inhalte der Messages konnen vielfiltig sein, so kdnnen primitive Datentypen, aber
auch Arrays flexibler Grofse versendet werden. Inhalte konnen wie im Beispiel Zielge-
schwindigkeiten, aber auch groffe Datenmengen wie zum Beispiel Bilder sein. Es sollte
fiir jedes Topic jedoch in den meisten Anwendungsfillen nur einen Publisher geben und

immer nur eine Art Message pro Topic iibertragen werden.

2.3 Gazebo

Gazebo ist eine 3D-Simulationsumgebung, die bereits sehr gut in ROS integriert ist.
Hierdurch wird es ermdoglicht, Roboter in einer definierbaren Umgebung zu simulieren.
Von ROS aus ist es moglich, Aktuatoren anzusteuern. Zudem kénnen Sensordaten in der
Simulation erzeugt und an ROS weitergegeben werden. Es existiert bereits eine grofie
Menge an Plugins, die diese Sensoren und Aktuatoren simulieren. Eines dieser Plugins

wird in Kapitel 4.1 genutzt, um die Motoren des Roboters zu simulieren.

2.4 Xacro

Fiir die Simulation in Gazebo muss eine Beschreibung der Robotergeometrie als Uni-
fied Robot Description Format (URDF) vorliegen. URDF ist eine Beschreibungssprache,
die auf der Extensible Markup Language (XML) aufbaut. Sie unterstiitzt jedoch keine
Variablen, Berechnungen oder Wiederverwendbarkeit. Da die Beschreibung von grofsen
Robotern somit in URDF sehr umsténdlich ist, kann mittels XML Macros (Xacro) die Be-
schreibung vereinfacht werden. Die Xacro-Datei wird im Anschluss in eine URDF-Datei

umgewandelt.

In einer Xacro oder URDF Datei konnen unter anderem die Gelenke und Verbindungen
zwischen Gelenken definiert werden. Diese nennen sich Links und Joints des Roboters.
Fiir eine Simulation werden zuséatzlich Kollisionen und Visualisierungen definiert. Zudem
werden die Gazebo-Plugins fiir Sensoren oder Aktuatoren direkt in die Beschreibung des

Roboters mit aufgenommen.



2 Grundlagen

2.5 Entwurfsmuster

Bei der Implementierung der einzelnen Komponenten werden einige Entwurfsmuster oder
auch Pattern verwendet. Diese Muster stammen aus dem Standardwerk "Entwurfsmuster:
Elemente wiederverwendbarer objektorientierter Software” [Gamma u. a., 2002|. Die fiir

diese Arbeit wichtigsten Entwurfsmuster sind:

e Factory zum Erzeugen von Objektstrukturen
e Composition zum Zusammenfassen von Objekten in hierarchischen Strukturen
e Strategie zum Austauschen unterschiedlicher Implementationen zur Laufzeit

e Adapter zum Adaptieren von Interfaces, die nicht zueinander passen

2.6 Denavit-Hartenberg-Konvention

Ein wichtiges zu 16sendes Problem fiir Roboter ist die Berechnung der Position des End-
effektors. Hierbei werden die Gelenkwinkel des Roboters genutzt, um nacheinander die
Positionen der Gelenke bis hin zum Endeffektor zu berechnen. Klassischerweise wird eine
Matrixtransformation genutzt, um die Positionen zu berechnen [Siciliano und Khatib,
2008, p.13]. Diese Berechnung nennt sich auch Forward Kinematik. Die Menge an Pa-
rametern, die bendtigt werden, um die Transformationen fiir eine kinematische Kette
zu definieren, ist jedoch sehr grofs. Aus diesem Grund wurde von Jacques Denavit und
Richard S. Hartenberg eine Methode entwickelt, fiir Lower-Pair-Gelenke [Siciliano und
Khatib, 2008, p.19]. die Transformationen zu vereinfachen. Zu den Lower-Pair-Gelenken
gehoren auch Revolute (Rotation) und Prismatic (Translation). Die hierfiir verwendeten
Parameter nennen sich Denavit-Hartenberg (DH)-Parameter [Siciliano und Khatib, 2008,
p.23|.

In der Arbeit "Inverse Kinematic Analysis of a Quadruped Robot” [Sen u. a., 2017] wur-
de eine Kinematik auf Basis der DH Konvention entwickelt. Der in der Veroffentlichung
verwendete Roboter ist vom Aufbau der Kinematik bis auf die Mafe identisch mit dem
in dieser Arbeit entwickelten Roboter. Die DH-Parameter sind in Abbildung 2.3 darge-
stellt und kénnen mit der im "Handbook of Robotics” [Siciliano und Khatib, 2008, p.23|

beschriebenen Methode fiir die Berechnung der Transformationen genutzt werden.
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Link a; a; | d; 0;
0-1 0 Ly |0 01
-2 | —7/2| 0 | O | —7/2
2-3 0 Ly | O D)
3-4 0 | Lz| 0| 05

Abbildung 2.3: Darstellung und DH-Parameter fiir die Kinematik des Quadruped-Beines
aus "Inverse Kinematic Analysis of a Quadruped Robot” [Sen u. a., 2017|

2.7 Stabilitat und stabile Zyklen

Eines der Grundprinzipien, auf denen das Stehen und Gehen eines Roboters basiert, ist
das Stiitzpolygon. Dieses ist die konvexe Hiille der Kontaktpunkte mit dem Boden. Bei
laufenden Robotern sind diese Kontaktpunkte die Fiiffe. Eine Position des Roboters ist
statisch stabil, wenn die Projektion des Schwerpunktes (CoM) entlang der Erdanziehung
innerhalb des Stiitzpolygons liegt. Eine Erweiterung dieses Konzepts ist es, dass das
Stiitzpolygon den Zero Moment Point (ZMP) enthélt. Der ZMP beriicksichtigt neben der
Gravitation auch andere Kréfte, die auf den Roboter wirken. Er beschreibt den Punkt,

bei dem das resultierende Moment auf den Roboter null ist [Chai u. a., 2022, p.4].

Abbildung 2.4: Darstellung des Stiitzpolygons und Schwerpunktes eines sechsbeinigen
Roboters aus "Handbook of Robotics” [Siciliano und Khatib, 2008, p.378§|

11
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Bei einer Beschleunigung des Roboters muss darauf geachtet werden, dass der ZMP

innerhalb des Stiitzpolygons bleibt. Ist dies nicht der Fall, kann der Roboter umkippen.

Die Bewegung eines Roboters ohne statische Stabilitét ist bedeutend komplexer. Es lassen
sich aber auch statisch nicht stabile Bewegungen finden, die ohne eine Feedbackschleife
in einem gewissen Rahmen selbst stabilisierend sind. Dieses Verhalten nennt sich stabiler
oder semistabiler Zyklus. Hierbei handelt es sich um Grenzzyklen. Ein Grenzzyklus ist
eine geschlossene Kurve, in einem Phasenraum, die periodisch durchlaufen wird [Adamy,
2009, p.15].

Abbildung 2.5: Darstellung eines Grenzzyklus in einem Phasenraum aus "Nichtlineare
Regelung” [Adamy, 2009, p.16|

Die Abbildung 2.5 zeigt einen stabilen, semistabilen und instabilen Grenzzyklus in einem
zweidimensionalen Phasenraum. Hierbei bewegt sich das System entlang der Pfeilrich-
tungen. Zu sehen ist, dass das System bei einem stabilen Grenzzyklus immer zum Zyklus
zuriickkehrt. Bei einem semistabilen Zyklus kehrt das System nur unter bestimmten Be-
dingungen zuriick. Bei einem instabilen Grenzzyklus entfernt sich das System schon bei

kleinsten Abweichungen vom Zyklus.

Fiir die in dieser Arbeit durchgefithrten Untersuchungen von Gangarten besteht der Pha-
senraum aus den Abweichungen der Position des Roboters von einer Referenzposition
[Siciliano und Khatib, 2016, p.1210].
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3.1 Ubersicht iiber den Roboter

Der fiir diese Arbeit weiterentwickelte vierbeinige Roboter besteht aus 12 Gelenken, 3
pro Bein. Die Beine tragen ein starres Chassis, auf dem unterschiedlichste Komponenten
angebracht werden kénnen. Die gesamte Konstruktion ist teils aus PETG 3D-Gedruckt
und teils mittels einer Portalfrdse aus Aluminium gefrést. Fiir die Versuche wird der Ro-
boter in einen Stahlrahmen eingehdngt. Somit kénnen Tests durchgefiihrt werden, ohne
dass der Boden beriihrt werden kann. Fiir Tests mit Bodenkontakt wird eine zuséatz-
liche Plattform unter den Roboter gestellt. Somit kann der Roboter in der Halterung

eingehéingt bleiben und gleichzeitig frei stehen.

Abbildung 3.1: Foto des Roboters in einer Halterung mit der Plattform fiir Tests mit
Bodenkontakt
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3.2 Sicherheitsanmerkungen

Die gesamte Boardelektronik befindet sich mit 44,4V, 24V und 19V DC nach DIN EN
61140 noch in der Schutzklasse 3 (Schutzkleinspannung, <50V AC und <120V DC).
Dennoch geht von den Batterien bei fehlerhaftem Laden und Entladen, sowie durch me-
chanische Einwirkungen ein Brandrisiko aus. Die Mechanik der verwendeten Plattform ist
nicht fingersicher gebaut und nicht als kollaborativer Roboter gedacht. Demnach kénnen
die Bewegungen der Motoren mit entsprechenden Ubersetzungsverhéltnissen zu Verlet-
zungen fithren. Daher werden alle Experimente an der Hardware mit geniigend Sicher-
heitsabstand zu Menschen und unter Brandschutzmafnahmen durchgefiihrt. Zusétzlich
befindet sich ein Not-Aus-Schalter direkt iiber dem Roboter, der die Versorgungsspan-

nung der Motoren unterbricht.

3.3 Bauteile und Komponenten

Bei mobilen Robotern gibt es eine Vielzahl von Bauteilen mit unterschiedlichen Anfor-
derungen. Um eine Ubersicht iiber die Komponenten und Entwurfsentscheidungen zu
geben, werden in diesem Abschnitt einige wichtige Komponenten sowie die Entscheidun-
gen fiir deren Verwendung beschrieben. Diese Liste ist nicht erschépfend, sondern soll

nur einen Uberblick {iber einige der Entscheidungen vermitteln.

3.3.1 Boardcomputer

Als Boardcomputer wird ein Intel NUC 10i5 verwendet (Abbildung 3.2a). Das auf dem
NUC laufende Betriebssystem ist Ubuntu 20.04 Focal Fossa, auf dem ROS in der Noetic
distribution installiert ist. Der verbaute Intel Core i5-10210U Prozessor ist mit 8 Threads
und maximal 4,2 GHz leistungsstark genug, um auch die Simulation des Roboters und
die eigentliche Steuerung laufen zu lassen. Zudem ist der NUC mit einem TDP von 25

Watt auch fiir akkubetriebene Anwendungen geeignet.
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(e) Turnigy Multistar 9235-100kV Motor (f) Batterien mit Ladegerét

Abbildung 3.2: Fotos unterschiedlicher im Roboter verbauter Komponenten
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3.3.2 Tracking Kamera

Um die Position des Roboters im Raum festzustellen, ist eine Intel RealSense T265
Tracking-Kamera in der Front des Roboters verbaut. Diese nutzt zwei Weitwinkelkameras
sowie eine Inertial Measurement Unit (IMU) zur Feststellung der Position (Abbildung
3.2b).

3.3.3 Encoder

Die verwendeten Encoder sind Halleffekt ABI Encoder mit dem Namen AMS-AS5047P
(Abbildung 3.2c). Diese geben bei Drehungen Impulse auf zwei Kanélen (A und B) aus,
welche um 90 Grad phasenverschoben sind. Dies ermdglicht die Bestimmung der Dreh-
richtung anhand der Reihenfolge der Pulse. Zudem kann der Winkel der Drehung durch
die Anzahl der Pulse bestimmt werden. In einer Umdrehung des Motors werden 4096
Pulse ausgegeben. Zudem wird einmal pro Umdrehung ein Index (I) Signal ausgegeben,
das die Feststellung der absoluten Position an dieser Stelle ermoglicht. Die Entscheidung

fiir diese Encoder ist ein Kompromiss zwischen Kosten und Anforderungen.

Optimal fiir diese Anwendungen wéren Absolute-Multiturn-Encoder, welche die Position
iiber mehrere Umdrehungen auch im ausgeschalteten Zustand erfassen kénnen. Aufgrund
der hohen Kosten und groften Bauformen wurden diese jedoch nicht verwendet. Die dar-
aus resultierende Notwendigkeit von Kalibrierungen werden in Abschnitt 5.2 genauer

beschrieben.

Alternativ konnten kostengiinstige optische ABI Encoder verwendet werden, die in ihrer

Bauform jedoch ebenfalls sehr grofs und damit nicht geeignet sind.

3.3.4 Umrichter

ODrive ist ein Open-Source-Projekt von ODrive Robotics. Es handelt sich um eine kos-
tengiinstige und kompakte Losung, um BLDC Motoren anzusteuern. Im Roboter sind
6 ODrive 3.6 Umrichter verbaut (Abbildung 3.2d). Im Gegensatz zu klassischen BLDC-
Controllern ist ODrive auf einen Closed-Loop-Betrieb ausgelegt. Damit kénnen die Mo-
toren auch im Stillstand ein hohes Drehmoment erzeugen. Hierfiir wird ein Encoder

benétigt, welcher die Position des Motors erfasst.
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Ein alternativer Umrichter fiir BLDC-Motoren ist beispielsweise ein VESC, der in der
Arbeit "Development of Open-Source Motor Controller Framework for Robotic Applica-
tions” [Choi, 2020] mit weiteren Umrichtern verglichen wird. Da diese jedoch nicht auf
Closed-Loop-Betrieb ausgelegt sind, sind sie fiir diese Anwendung nicht ohne weiteres
geeignet. Zudem gibt es industrielle Umrichter von Herstellern wie Siemens, ABB oder
SEW, welche in der Regel sehr teuer und grofs sind. Damit sind sie meistens fiir die

mobile Robotik ungeeignet.

3.3.5 Motoren

Die verwendeten Motoren sind Turnigy Multistar 9235-100kV BLDC-Motoren (Abbil-
dung 3.2e). Diese zeichnen sich durch einen niedrigen kV-Wert (rpm/V') aus, sodass sich
bei 44,4V Versorgungsspannung maximale Drehzahl von 44400 rpm ergibt. Zudem kann
laut Tests von ODrive Robotics aus dem Stand ein Drehmoment von 4.71 Nm erzeugt
werden [Odrive Robotics, 2021]. Aufgrund der beschrankten Auswahl von Motoren, die
ein hohes Drehmoment bei niedrigen Drehzahlen erzeugen kénnen, gab es zur Zeit der
Konstruktion der Hardware keine Alternativen zu den verwendeten Motoren, die nicht
bedeutend teurer sind. Mittlerweile gibt es Nachbauten der im Mini Cheetah verwende-
ten Motoren |Katz, 2018|. Diese konnten eine Alternative zu den Turnigy Motoren sein

und wiirden ebenfalls die Umrichter und Encoder ersetzten.

3.3.6 Motor Hubs

Ein Grundkonzept des Roboters sind die sogenannten "Motor Hubs” (Abbildung 3.3 und
3.4). In diesen werden die fiir den Betrieb zweier Motoren notwendigen Bauteile in einer
Einheit zusammengefasst. Das Hauptziel der Hubs ist es, den Entwicklungsaufwand der
Hardware zu reduzieren. Es werden 6 Hubs verbaut, die mechanisch, elektronisch und
auch in der Software gleich aufgebaut sind. Sie unterscheiden sie sich nur durch die

Seriennummern der Umrichter und die Einbauweise im Roboter.
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Abbildung 3.3: Querschnitt eines Motor Hubs mit Beschriftung der Komponenten

Jeder Motor Hub besteht aus einem ODrive 3.6, welcher als Umrichter je zwei Turnigy
Multistar 9235-100kV BLDC-Motoren versorgt. Mittels der AMS-AS5047P Encoder bil-
den diese drei Komponenten ein Closed-Loop-System. Dieses ermoglicht eine genaue Po-
sitionierung des Motors auch unter Last. Zudem besitzen die Hubs die Moglichkeit, die
Motoren aktiv zu kiihlen. Zur Vereinfachung der Verkabelung ist ein PCB verbaut, das
sich im hinteren Bereich des Hubs befindet. Die Motoren haben eine maximale Drehzahl
von 44.400 rpm. Da fiir diese Anwendung nur eine geringere Drehzahl bendtigt wird, ist
in den Hubs ein Planetengetriebe mit einer Untersetzung von 5/1 integriert. Dies redu-
ziert die maximale Drehzahl auf 8880 rpm oder auch 148 Umdrehungen pro Sekunde,
welche wiederum in der Software auf 40 Umdrehungen pro Sekunde limitiert sind. Eine
weitere Reduktion der Drehzahl findet auflerhalb der Hubs statt.

Nach auflen haben die Hubs einen USB-B Anschluss fiir die Kommunikation mit dem

Boardcomputer und einen XT60 Anschluss fiir die Versorgungsspannung.

Fiir die Hubs werden zwei unterschiedliche Konfigurationen in Erwégung gezogen. Bei der
ersten wird der ODrive iiber UART mit einem Teensy 4.0 Mikrocontroller verbunden,
der im Motor Hub eingebaut ist. Dieser Teensy iibernimmt die Kommunikation mit
ROS iiber eine rosserial [ROS device drivers, 2025] Node, die es erlaubt, die normalen
ROS-Messages und Services iiber Serial einem Mikrocontroller zur Verfiigung zu stellen.
Aufserdem ermdglicht der Mikrocontroller eine Statusmitteilung der Motoren {iber LEDs,

die an der Ober- und Unterseite des Hubs angebracht sind.
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In der zweiten Konfiguration werden die Teensys aus der Kette eliminiert. ODrive-
Umrichter bieten ein sogenanntes Native Protocol, fiir das es eine durch den Python
Package Manager erhiltliche Python-Library gibt, die die ODrive-Steuerung iiber ein
Python-Dictionary ermoglicht. Diese Konfiguration ist jedoch nicht so flexibel wie die
erste, da der Teensy aus der Kommunikation mit dem Boardcomputer ausgeschlossen

wird. Zudem funktionieren die LEDs und die Liifter nicht mehr.

Der ausschlaggebende Punkt fiir die Wahl des Ansatzes ist, dass mit dem Teensy die
Boardspannung nur bei maximal 24V liegen darf. In der zweiten Konfiguration kann die
Spannung auf 44.4V angehoben werden, da die Komponenten die diese Spannung nicht
vertragen, nicht mehr verbaut sind. Somit wird das maximale Drehmoment der Motoren
erhoht. Fine weitere Revision des PCBs im Hub kann auch die anderen Komponenten

wieder nutzbar machen.

Abbildung 3.4: Fotos eines Motor Hub mit verbautem Teensy Mikrocontroller

3.3.7 Energieversorgung

Die Versorgung der Boardelektronik wird durch zwei 6S Lithium-Polymer-Akkus bereit-
gestellt (Abbildung 3.2f). Durch die Akkus entsteht eine Nennspannung von 44,4 V', diese
wird direkt zur Versorgung der Umrichter verwendet. Der verbaute Boardcomputer wird
mittels eines Step-Down-Converters auf 24V und 19V versorgt. Zum Schutz der Akkus
sind diese mit einer 120 A und die Umrichter je mit einer 20 A Sicherung abgesichert.
Eine Ubersicht iiber die Versorgung gibt Abbildung 3.5.
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Abbildung 3.5: Ubersicht iiber die Versorgung des Roboters

3.3.8 Beine
Die Beine sind nach ihrer Position benannt: Front (F) oder Rear (R) gefolgt von Left (L)

oder Right (R). Die Achsen sind nach ihrem Bein und der Position in ihrer kinematischen

Kette benannt. Zum Beispiel ist FL3 somit am Bein vorne links das unterste Gelenk.

Abbildung 3.6: Ubersicht iiber den Aufbau des Beines FL mit besonderem Augenmerk
auf die Kraftiibertragung von den Motoren zu den Gelenken
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Das Design der Beine muss sich an die Motor Hubs anpassen. Da jeder Hub zwei di-
rekt nebeneinander liegende Motoren antreibt, ist es nicht moglich, dass die Motoren
ihre Gelenke, wie beispielsweise bei ANYmal von der ETH Ziirich, direkt antreiben. Aus
diesem Grund wird das Gelenk 3 iiber eine Achse angetrieben, welche es abhéngig von
der Position des Gelenk 2 macht. In Abbildung 3.6 sind die Gelenke mit den bendtigten
Komponenten zur Kraftiibertragung von den Motoren dargestellt. Auf die Folgen dieser
Abhéngigkeit zwischen den Gelenken wird im Rahmen der Berechnung der Achsposi-
tionen eingegangen (Abschnitt 5.1). Der Vorteil dieses Ansatzes ist, dass die schweren
Motoren nah am Chassis angebaut werden kénnen. Somit miissen sie bei einer Bewegung

der Beine nicht mit beschleunigt werden.

Abbildung 3.7: Foto eines Hub mit angebautem Bein

3.3.9 Nutzereingaben

Zur Steuerung des Roboters wird je nach Anwendung eine 3Dconnexion SpaceMouse
oder ein Xbox One Controller verwendet (Abbildung 3.8). Die SpaceMouse ermoglicht
eine erleichterte Steuerung des Roboters in 6 Freiheitsgraden (DoF). Der Xbox One
Controller ist intuitiver fiir Richtungsvorgaben beim Laufen. Die unterstiitzten Controller
lassen sich jedoch auch im Nachhinein durch die in Kapitel 7 vorgestellte Architektur

leicht erweitern.
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Abbildung 3.8: Xbox One Controller und 3Dconnexion SpaceMouse

3.4 Motoransteuerung

Eine der grundlegendsten Vorgehensweisen bei der Entwicklung der Software fiir techni-

sche Systeme ist das Erschaffen von Abstraktionen. Diese erlauben es, teilweise komplexe

Probleme auf eine einfachere Schnittstelle zu reduzieren. In diesem Kapitel wird die Ab-

straktion der Motoransteuerung beschrieben.

Die Ansteuerung der Motoren erfolgt geméfs der gewdhlten Konfiguration fiir die Motor

Hubs iiber die Kommunikation mit dem ODrive native Protocol. Als Abstraktionsebe-

ne wird eine ROS Node mit dem Namen odrive_ros_bridge geschrieben, die die

Kommunikation mit den ODrives tibernimmt.

An die Node gibt es grundlegende Anforderungen, die fiir die Anwendbarkeit und die

Wiederverwendbarkeit wichtig sind.

1.

2.

Die Node muss mit mindestens 6 ODrives kompatibel sein.

Die ODrives sollen in ROS transparent sein, die Ansteuerung soll ausschliefslich an

die Motoren gerichtet sein.

. Einzelne Motoren miissen sich iiber die Konfiguration ein- und ausschalten lassen.

. Parameter miissen iiber Dynamic Reconfigure [ROS core stacks, 2025| einstellbar

sein.

. Alle Funktionalitéten, die fiir die Motorpositionierung relevant sind, sollen in ROS

zuganglich sein.
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I # MotorTarget . msg

2

3

!

5

3 Hardware und Hardwareansteuerung

Anzumerken ist, dass die Bridge speziell fiir Positionierungsanwendungen entworfen ist.
Daher ist es nicht Teil der Anforderungen, alle Funktionalititen des ODrive in ROS
wiederzugeben. Es werden bereits einige Vereinfachungen und Komfortfunktionen von

der Bridge iibernommen.

1 # MotorFeedback . msg

N

3 uint8 MOTOR_STATE UNDEFINED-=0

. uint8 MOTOR_STATE IDLE-1

5 uint8 MOTOR_STATE ACTIVE=2

6 uint8 MOTOR STATE MOTOR_CAL=3

7 uint8 MOTOR_STATE ENCODER_CAL=4
¢ uint8 MOTOR_STATE FRROR=5

uint8 MOTOR_STATE IDLE-0

uint8 MOTOR_STATE ACTIVE=1
uint8 MOTOR_STATE MOTOR CAL=2
uint8 MOTOR_STATE FENCODER CAL~3

10 std msgs/Header header
std msgs/Header header . T
= 11 uint8 motor state
uint8 motor state . -
. 12 string status message

float32 position T
X L 13 float32 position

float32 velocity limit .
- . 14 float32 wvelocity

float32 torque limit
- 15 float32 torque

16 bool motor calibrated

17 bool encoder calibrated

Abbildung 3.9: odrive_ros_bridge Target und Feedback Messages je Motor

Um die Kommunikation zwischen der Bridge und anderen Nodes zu ermoglichen, wer-
den zwei Messages benotigt (Abbildung 3.9). Die Bridge published je Motor eine Mo-
torFeedback-Message und subscribed zu der dazugehoérigen MotorTarget-Message.
Namen der zu verwendenden Topics konnen iiber den Parameterserver an die Bridge
mitgegeben werden. Die Identifikation der ODrives wird durch die Seriennummer vor-
genommen, die ebenfalls auf dem Parameterserver abgelegt wird. Durch eine Namens-
konvention der Parameter konnen unterschiedlich viele Seriennummern und Achsnamen

angegeben werden.

Dynamic Reconfigure [ROS core stacks, 2025 erlaubt es, Parameter die zur Laufzeit
gedndert werden sollen, iiber ROS verwalten zu lassen. Mittels Kommandozeilenbefehlen
oder iiber ein Plugin der ROS-Qt (RQT) Nutzeroberflache lassen sich diese Parameter
andern. Um Dynamic Reconfigure zu nutzen, miissen alle Parameter in eine . cfg Datei
eingetragen werden, die mit iibersetzt wird. Dies erzeugt jedoch einen Widerspruch zu

der Anforderung, dass die Bridge unterschiedliche Anzahlen an Motoren unterstiitzen
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3 Hardware und Hardwareansteuerung

soll. Das DDynamic Reconfigure (Dynamic Dynamic Reconfigure) Paket [PAL Robotics
S.L., 2020] erlaubt es, zur Laufzeit eine beliebige Menge an konfigurierbaren Parametern

zu erzeugen. Hierbei wird keine .cfg-Datei bendtigt.

Eine weitere Aufgabe der Bridge ist es, die Achswerte in ROS zu publishen. Auf die-
se Weise kann die aktuelle Position der Achsen auch aus dem ROS TF-Tree ausgelesen
werden. Der TF-Tree ist eine in ROS standardisierte Methode, um Transformationen zwi-
schen Koordinatensystemen zu verwalten. Nodes kénnen benannte Koordinatensysteme
relativ zu anderen Koordinatensystemen veréffentlichen. Fine jede Node kann dann die
Transformationen zwischen den Koordinatensystemen abfragen. Genauere Informationen
zum TF-Tree sind in der ROS Dokumentation zu finden [Open Robotics, 2025a].

3.5 Motorparametrierung

Die ODrives miissen parametriert werden. Hierzu gehéren Einstellungen wie die Spezi-
fikation der Umrichter und Motoren, aber auch die Einstellung der integrierten Regler.
Eine Ubersicht der Parameter findet sich in Tabelle 3.1. Das Ziel der Parametrierung
ist der Schutz der Hardware und das méoglichst schnelle Erreichen eines neuen Sollwerts,
ohne dabei zu iiberschwingen. Aufterdem soll bei Krafteinwirkungen auf den Motor die

eingestellte Position schnell wieder erreicht werden.

Parameter Beschreibung Wert

current_lim Strombegrenzung in A 30

vel_limit Geschwindigkeitsbegrenzung in turns/s 40

vel_gain Geschwindigkeitsregler  Proportionalanteil in | TBD
Nm/(turn/s)

vel_int_gain Geschwindigkeitsregler Integralanteil in | TBD
Nm/((turn/s) - s)

pos_gain Positionsreglerverstarkung in (turn/s)/turn TBD

Tabelle 3.1: Ubersicht iiber wichtige ODrive Parameter

Die Strom- und Geschwindigkeitslimits werden durch die Hardware vorgegeben. Fiir die
Einstellung der Regler bietet ODrive ein Konsolentool an, mit dem man die Werte setzen
und die Motoren bewegen kann, um die Resultate zu sehen. Da die odrive_ros_-

bridge dieselbe Funktion bietet, wird das Konsolentool allerdings nicht verwendet.
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3 Hardware und Hardwareansteuerung

ODrive besitzt fiir die Positionsregelung drei kaskadierende Regler. Der erste ist der Mo-
torstromregler, dieser wird vom Geschwindigkeitsregler angesteuert, welcher wiederum
vom Positionsregler angesteuert wird (Abbildung 3.10). Ein grofer Vorteil von kaska-
dierenden Reglern in der Antriebstechnik ist, dass die Ausgédnge der Reglerstufen auf
vorgegebene Limits begrenzt werden konnen. Auf diese Weise kann die Mechanik vor
Schiden geschiitzt werden. Fiir genauere Informationen zu kaskadierenden Reglern und
deren Parametrierung sei auf das "Taschenbuch der Regelungstechnik” [Lutz und Wendst,

2019] verwiesen.

Abbildung 3.10: Kaskadierende Reglerstruktur des ODrives aus der ODrive Dokumenta-
tion |Odrive Robotics, 2021]

Der Positionsregler ist ein P-Regler. Der Geschwindigkeitsregler und der Stromregler sind
PI-Regler. Parameter des Stromreglers werden fiir den normalen Betrieb vom ODrive

selbst bestimmt. Die verbleibenden Parameter sind in Tabelle 3.1 aufgelistet.

Die Werte der Regler werden anhand eines Verfahrens bestimmt, welches in der ODrive-
Dokumentation zur Einstellung von Reglern [Odrive Robotics, 2021] beschrieben ist.
Dieses Verfahren ist an die Einstellung von P und PI Reglern nach Ziegler und Nichols
[Lutz und Wendt, 2019, p. 494] angelehnt.

3.5.1 Retrospektive auf einen Fehler in der Parametrierung

An dieser Stelle der Arbeit ist ein Fehler aufgetreten, der zu einem spéteren Zeitpunkt

einen der Umrichter zerstort zu haben scheint.

Neben dem Maximalstrom der Motoren iiber den Parameter current_1im, gibt es den

Parameter current_lim _margin. Ist current_1im erreicht, baut der Motor kein
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3 Hardware und Hardwareansteuerung

weiteres Drehmoment mehr auf. Werden beispielsweise durch Rekuperation current_ -
lim 4+ current_lim_margin iiberschritten, wird der Motor aus Sicherheitsgriinden
abgeschaltet. Die Summe der beiden Werte nennt sich requested_current_ran-
ge. Um den Strom durch die Motoren messen zu kénnen, werden die in die Umrichter
eingebauten Verstédrker der Shunts so eingestellt, das sie den gesamten requested_-

current_range Bereich abdecken.

Aus einem unbekannten Grund wurde requested_current_range bei einem Experi-
ment auf einem der Umrichter iiberschritten. Dies hat wie erwartet den Fehler ERROR_ —
CURRENT_SENSE_SATURATION ausgegeben, der besagt, dass der maximale messbare
Bereich der Strommessung {iberschritten wurde. Nach einem Neustart des Umrichters

erwies sich dieser als defekt und es lief sich keine Kommunikation mehr herstellen.

Um einen solchen Fehler zu vermeiden, sollte der Wert von current_lim _margin
ebenfalls bei der Parametrierung mit beachtet werden. Hierbei muss die Marge so gewéhlt
werden, dass sie nicht {iberschritten werden sollte. Ist sie zu hoch gewéhlt, hat dies jedoch
negative Auswirkungen auf die Stromregelung, da die Strommessung durch die Shunts

ungenauer wird.

3.6 Untersuchung des Motorverhaltens

3.6.1 Versuchsaufbau

Zur Untersuchung der nun parametrierten Motoren werden zwei Tests durchgefiihrt. Als
Erstes wird die Sprungantwort des Reglers aufgezeichnet. Hierfiir werden Spriinge von
30°, 60°, 90° und 120° durchgefiihrt. Es soll untersucht werden, ob der Regler den An-
forderungen geméf nicht {iberschwingt und wie lang die Einschwingzeit ist. Die Winkel-
angaben beziehen sich hierbei auf die Drehung des Hub, der Motor bewegt sich demnach

um einen Faktor von 5 weiter.

Danach wird der Regler unter Last getestet. Da die Ubersetzung der Antriebe mit 1:5 sehr
niedrig ist, ist es moglich, durch das Drehen des Ausgangsflansches den Motor zu drehen.
Dies kann beispielsweise durch Lastwechsel beim Laufen geschehen. Aus diesem Grund
werden die Regler auf das Abfangen von Lasten getestet. Dazu werden am Motor iiber ein
Rad mit 20 em Durchmesser, nacheinander Gewichte von 2 kg und 5 kg angehéngt, um die

Ergebnisse vergleichen zu kénnen (Abbildung 3.11). Diese Gewichte werden mit 250 deg/s
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3 Hardware und Hardwareansteuerung

abgelassen, was einer Geschwindigkeit von 0.22m/s entspricht. Daraufthin werden die

Gewichte auf 0m/s abgebremst.

Abbildung 3.11: Testaufbau fiir Motortests unter Last mit einem Gewicht von 5 kg

3.6.2 Ergebnisse

In Abbildung 3.12 sind direkte Spriinge bis zu 120° ohne Last auf den Motor dargestellt.
Nach dem Einstellen der Reglerparameter reagiert der Motor in allen getesteten Féllen

mit einer Einschwingzeit von ~ 120 ms ohne Uberschwingen.

Abbildung 3.12: Sprungantwort des Reglers bei Sprungweiten von 30°, 60°, 90° und 120°.
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3 Hardware und Hardwareansteuerung

Bei den Versuchen unter Last fillt auf, dass das Uberschwingen und auch die Einschwing-
zeit bei groferen Lasten zunimmt (Abbildung 3.13). Da der Motor eine maximale Kraft
hat, mit der er das Gewicht abbremsen kann, ist dies zu erwarten. Unter einer Last von
5 kg betragt die Einschwingzeit nach dem Abbremsen der Last ~ 200 ms. Die maximale
Kraft wird durch die Strombegrenzung des Motors in den Parametern des Umrichters
festgelegt (Tabelle 3.1 und Abbildung 3.10).

Abbildung 3.13: Genauigkeit des Reglers beim Abfangen unter unterschiedlichen Lasten

Die Motor Hubs sind somit in der Lage, die Motoren schnell und genau zu positionieren,

ohne die Belastbarkeit der Motoren oder Umrichter zu iberschreiten.
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4 Simulation von Motoren

Um den Roboter spéter simulieren zu konnen, ist es wichtig, dass als Grundlage die tat-
séchlichen Bewegungen der Motoren korrekt abgebildet werden kénnen. Die Simulation
findet in Gazebo (Abschnitt 2.3) statt. Eine genauere Beschreibung der Simulation und
der dafiir benotigten Informationen iiber den Roboter folgt in Kapitel 6. An dieser Stelle
soll als Grundlage fiir die weiteren Versuche ausschlieflich sichergestellt werden, dass sich

die Motoren der Simulation korrekt verhalten.

4.1 Simulierte Motoren in Gazebo

Die Motoren in Gazebo werden durch das Plugin 1ibgazebo_ros_control gesteu-
ert. Dieses Plugin verwendet ros_control, um die Steuerung in ROS zu erméglichen.
Hierfiir wird ein ”Joint State Interface” von Gazebo gepublished, das den aktuellen Zu-
stand des Motors beinhaltet. Zudem wird auf ein ”"Joint Command Interface” subscribed,
das die Zielwerte fiir das Drehmoment des Motors enthélt. Diese beiden Interfaces fiir
ros_control der Hardware Interface Layer, ab dem entschieden werden kann, ob ei-
ne Simulation oder echte Hardware angesteuert werden soll. Da der Hardware Interface
Layer fiir diesen Roboter bereits geméf Abbildung 3.9 definiert ist, existiert ein Adapter,
der zwischen den beiden iibersetzt. Somit kénnen die erweiterten Funktionen wie zum
Beispiel die Kalibrierung der Motoren und Encoder, die fiir die Ansteuerung der ODrives
benétigt werden, auf gleiche Weise in der Simulation genutzt werden. Die zusétzlichen
Funktionalitdten, die in der Simulation nicht existieren, werden vom Adapter ignoriert

oder durch Dummywerte ersetzt.
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4 Simulation von Motoren

4.2 Parametrierung simulierter Motoren

Das libgazebo_ros_control Plugin enthélt einen PID-Regler, um die Position der
Motoren zu steuern. Mittels Dynamic Reconfigure ldsst sich dieser Regler einstellen. Das
Ziel des Reglers ist nicht, ein moglichst schnelles Einschwingen ohne Uberschwingen zu
erreichen, sondern durch seine Positionsregelung moglichst nah das reale Verhalten des
Motors abzubilden. Hierfiir wird die im Rahmen der Zielsetzung (Abschnitt 1.2) definier-
te Toleranz von +2,5° oder £20ms zum Verhalten des realen Motors angenommen. Es
ist sowohl eine Zeit- als auch eine Winkeltoleranz notwendig. Existierte nur eine zeitliche
Toleranz, so ware das Toleranzfeld im Stillstand des Motors nahezu null. Dies ist unrea-
listisch, da die Position der Hardware selbst immer um einen gewissen Winkel rauscht.
Existierte nur eine Winkeltoleranz, so ware das Toleranzfeld bei schnellen Bewegungen
sehr klein. Entsprechend sind die in Abbildung 4.1 dargestellten Toleranzfelder eine Kom-

bination der beiden Toleranzen.

Da der Regler nicht auf Einschwingzeit oder Stabilitéit eingestellt werden soll, kann das
Verfahren von Ziegler und Nichols nicht angewendet werden. Stattdessen wird der Regler
iiber einfache Anné&herung bei unterschiedlichen Bewegungen auf das Verhalten des realen

Motors eingestellt.

4.3 Untersuchung simulierter Motoren

4.3.1 Versuchsaufbau

Als Versuchsaufbau wird ein einzelner im Raum fixierter Motor in die Simulation ein-
gefiigt. An der Achse des simulierten Motors befindet sich ein kleines Gewicht, das die

Tragheit des Motors selbst nachstellen soll.

Um zu testen, ob der Regler die Anforderungen aus Abschnitt 4.2 erfiillt, werden analog
zu Abschnitt 3.6 Spriinge von 30°, 60°, 90° und 120° durchgefiihrt.

Die Untersuchung der simulierten Motoren unter groferen Lasten findet zusammen mit

der Untersuchung des Korpers des Roboters in Kapitel 6.3 statt.
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4 Simulation von Motoren

4.3.2 Ergebnisse

Wie in Abbildung 4.1 dargestellt, erreicht der simulierte Regler leicht schneller die neue
Sollposition als der reale Motor, bleibt jedoch bei allen Tests innerhalb der vorgegebenen

Toleranzen.

Abbildung 4.1: Sprungantwort mit Toleranz des Reglers bei Sprungweiten von 30°, 60°,
90° und 120°

Durch weitere Annadherungsschritte konnte dieses Verhalten noch verbessert werden. Da
sich das System bereits innerhalb der Toleranzgrenzen befindet, wird in dieser Arbeit auf

weitere Schritte zur Verbesserung verzichtet.
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Dieses Kapitel behandelt die Konzepte, die fiir die Ansteuerung der Beine in kartesischen
Koordinaten bendétigt werden. Das Ziel ist es, die Motoren der Beine so anzusteuern,
dass diese sich in einer linearen Bewegung von ihrer Startposition zu einer Zielposition
bewegen. Hierbei sollen moglichst hohe Geschwindigkeiten erreicht werden, ohne dass die

definierten Toleranzen tiberschritten werden.

Die Betrachtung beschrankt sich auf das Bein vorne rechts, das Verfahren der anderen

Beine ist analog.

Fiir die Verstéandlichkeit der folgenden Ausfithrungen werden drei Begriffe voneinander

abgegrenzt:

e Achse: Die Achsen des Roboters sind die Ausgangsflansche der Motor Hubs. Sie
werden als Winkel zur Startposition des Hub angegeben. Die Achsen werden Ay, Ao
und As genannt. Die Nummerierung erfolgt nach der Position in der kinematischen
Kette.

e Gelenk: Die Gelenke des Roboters werden als Winkel zu ihrem jeweiligen Null-
punkt angegeben. Die Gelenke werden 61, > und 63 genannt. Die Nummerierung

erfolgt nach der Position in der kinematischen Kette.

e Position: Die Position des Fufes ist in kartesische Koordinaten relativ zum Null-

punkt des Beines angegeben. Die Positionen werden z, y und z genannt.

5.1 Berechnung der Achspositionen

Als Eingangswert stellt die odrive_ros_bridge die Achswerte Ay, Ao und As. Aus
diesen Werten werden die Gelenke 67, 65 und 63 berechnet.
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Durch die Mechanik des Roboters ergeben sich die folgenden Ubersetzungsverhaltnisse:

iy = 21/40
io = 20/36
is = 17/30

Da 63 mechanisch sowohl von Ajs als auch von Ay abhéngt (Abschnitt 3.3.8), ist hier

nicht nur die einfache Ubersetzung anzuwenden. Stattdessen muss fy in die Berechnung

von #3 mit einbezogen werden.

Oy = Ag -9
03 = (A3 + 02) - i3

Somit ergeben sich fiir die Berechnung der Achsen die folgenden Gleichungen:

4=

11
A=

12
A3=i3—92

i3

Die Gelenke sind mechanisch auf bestimmte Winkel beschrankt. Diese sind der Tabelle

5.1 zu entnehmen. Um die Motoren und Umrichter nicht zu beschédigen, sind die Gelenke

in der Software auf diese Werte begrenzt.

Achse Min Max
01 —30.0° | 30.0°
0 —1.5° | 180.0°
03 13.5° | 180.0°

Tabelle 5.1: Mechanische Limits der Gelenke am Beispiel des Beines vorne rechts
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5.2 Kalibrierung der Achspositionen

Einer der Hauptnachteile des verwendeten ABI Encoders ist, dass sie keine Mdoglichkeit
bieten, die absolute Position der Achsen zu bestimmen. Dies fiihrt dazu, dass der Roboter
nach jedem Neustart neu kalibriert werden muss. Zudem ist es nicht moglich, mit der
aktuellen Hardware zu kontrollieren, ob die Kalibrierung erfolgreich war. Die Losung
fiir dieses Problem ist, dass nach dem Start des Roboters die Achsen einmal in ihre
Endlagen bewegt werden. Zu den Achswerten wird ein Wert addiert, der den Versatz
der Startposition des Gelenks zum Roboter-Nullpunkt darstellt. Der Offset wird auf
dem ROS-Parameterserver abgelegt, sodass die Kalibrierung nur einmal gemacht werden

muss, bis die ODrives oder ROS neu gestartet werden.

5.3 Berechnung der Kinematik

Um die Position des Fufes zu berechnen, wird eine Forward Kinematik und Inverse
Kinematik benétigt. Die Forward Kinematik berechnet aus den Gelenkwinkeln und der
Geometrie des Roboters die Position eines Endeffektors, in diesem Fall des Fuftes. Die
Inverse Kinematik berechnet aus der Position des Endeffektors und der Geometrie des
Roboters die Gelenkwinkel.

Fiir die Implementation der Kinematik wird nicht der klassische Ansatz mittels DH-
Parameter (Abschnitt 2.6) gewahlt. Stattdessen wird die Position durch eine Menge tri-
gonometrischer Gleichungen berechnet, die aus der Robotergeometrie hervorgehen. Dies
ist zwar keine universelle Losung, sie hat aber den Vorteil, dass sich Forward und Inverse
Kinematik jeweils sehr einfach voneinander herleiten lassen. Hierbei ist der Winkel, in
dem sich der Fuft befindet, nicht relevant, denn es wird ausschlieklich die Position des

Fufes fiir das Laufen benétigt.

Fiir diese Losung wird mit der Inversen Kinematik begonnen. Die Berechnung wird in
zwei Teile aufgeteilt. Hierbei ist die erste Ansicht von hinten auf das Bein und die zweite

Ansicht auf die Seite des Beines.

Fiir die Inverse Kinematik ist die Zielposition z,y, z sowie die Langenkonstanten des
Beines L1, Lo, L3 gegeben. Gesucht sind die Winkel 61, 65, 65.
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5 Bewegungskoordination

Abbildung 5.1: Aufbau der Kinematik-Berechnung aus der Ansicht von hinten (links im
Bild) und seitlich (rechts im Bild)
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Fiir die Forward Kinematik werden die Gleichungen umgestellt. In diesem Fall sind die
Winkel 61, 09, 03 sowie die Langen-Konstanten L1, Lo, L3 gegeben. Gesucht ist die Posi-

tion des Fufes z,y, z.

Le=1/~ (2 Ly-Ly-cos(0s)) + L} + L3 (5.20)
v = acos (W) (5.21)
d=0+~v—7 (5.22)

Ly, = cos(8) - Le (5.23)
2 = tan(6) - L (5.24)

L,=/L}+L? (5.25)
8 = acos(L1/Le) (5.26)
a=nr/2—0, -8 (5.27)
x = sin(a) - Lq (5.28)
y = cos(a) - L (5.29)

5.4 Begrenzung der moglichen Konfigurationen

Die Beschreibung und Notation des Konfigurationsraums basiert auf "Handbook of Ro-
botics” [Siciliano und Khatib, 2008, p. 110].

Durch die drei Gelenke pro Bein entsteht ein Konfigurationsraum C mit drei Dimensio-
nen fiir jedes Bein. Dieser beinhaltet jede mogliche Konfiguration ¢, die sich innerhalb
der mechanischen Grenzen der Beine (Tabelle 5.1) befindet. Die Menge aller moglichen
Positionen, die ein Bein der Geometrie A einnehmen kann, nennt sich Workspace VW und
besteht aus drei rdumlichen Dimensionen. A(q) ist die Position des Beins in W, die durch

die Konfiguration ¢ mit der Geometrie A beschrieben wird.

Um Kollisionen der Fiifse mit dem Korper des Roboters, sowie mit anderen Beinen zu
vermeiden, wird eine Hindernis-Geometrie O definiert, die VV einschréankt. Der Raum aller
erlaubten Konfigurationen C e ist definiert durch Cf,e. = {q € C|A(q) € WAA(q) ¢ O}.

Alle nicht erlaubten Konfigurationen nennen sich C,,s und sind definiert durch Cups =
{q € C|q §é Cfree}
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5 Bewegungskoordination

Abbildung 5.2: Seitenansicht der Hindernis-Geometrie (blau) und des durch die
Hindernis-Geometrie eingeschriankten Konfigurationsraums (griin)

Kollisionen mit der Umgebung werden im Rahmen dieser Arbeit nicht als Hindernisse
angesehen, da Kollisionen mit dem Boden Teil des Laufens sind. Hindernisse, mit denen
Kollisionen auftreten konnen, sind nicht Teil dieser Arbeit. Soll eine Bewegung von einer
Konfiguration ¢ € Cyyee zu einer Konfiguration g, € Cfpee durchgefiihrt werden, so muss
die gesamte Bewegung in Cyre. liegen. Es wird also ein Pfad 7 : [0,1] — Cypee gesucht,
sodass 7(0) = ¢1 und 7(1) = ¢, gilt.

Soll eine neue Konfiguration angefahren werden, wird eine lineare Bewegung von der
Startposition A(g1) € W\ O zu der Zielposition A(gy) € W \ O durchgefiihrt. Ist der
Raum Cjfre. im kartesischen Raum konvex, so ist fiir den linearen Pfad 7 sichergestellt,
dass Vt € [0,1] : 7(t) € Cfyee. Dies liegt in der Definition von konvexen Réumen begriin-
det, die besagt, dass die Verbindung zweier Punkte in einem konvexen Raum ebenfalls

in diesem Raum liegt.

Ist der Raum nicht konvex, so besteht die Moglichkeit, dass 3t € [0,1] : 7(¢) € Cops. In

diesem Fall gibt es grundsétzlich zwei Optionen:
e Der lineare Pfad wird verlassen und ein neuer Pfad wird gesucht, der C,,s umgeht.

e Die Bewegung wird nicht durchgefiihrt.
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Da die Bewegungen der Beine beim Laufen abhéngig voneinander sind, kann nicht von
dem erwarteten linearen Pfad abgewichen werden. Dieser Fehler kann also nicht iiber die
Pfadplanung im Konfigurationsraum, sondern nur iiber die Bewegungsplanung behoben

werden und die Bewegung kann somit nicht durchgefithrt werden.

5.5 Untersuchung der Linearitat von Beinbewegungen

Um den berechneten Pfad umzusetzen, gibt es eine wichtige Einschrénkung der Hardwa-
re, die beachtet werden muss. Die maximale Anzahl an Zielpositionen, die an das Bein
iibergeben werden konnen, ist durch die Kommunikationsgeschwindigkeit begrenzt. Eine
lineare Bewegung im kartesischen Raum resultiert jedoch nicht in einer konstanten Bewe-
gung der Motoren. Stattdessen resultiert eine Bewegung eines Motors in einer Kreisbahn

im kartesischen Raum.

Um die Bewegung der Beine zu linearisieren werden Zwischenziele eingefiigt. Zusétzlich
besitzen die Umrichter einen Eingangsfilter, der einen weicheren Ubergang zwischen den
Positionen ermoglicht. Da die Kommunikation zum Umrichter auf 100 Zielpositionen pro

Sekunde begrenzt ist, wird die Bandbreite dieses Filters auf 100 H z gesetzt.

Die theoretisch maximale Geschwindigkeit der Beine kann auf Basis der Robotergeome-
trie und der Maximalgeschwindigkeiten der Motoren berechnet werden. Da hierbei die
mechanischen Eigenschaften des Roboters, sowie das Verhalten der Regler bei Anderun-
gen der Zielposition nicht mit einbezogen werden, ist eine solche Berechnung nicht ziel-
flihrend. Stattdessen wird die Maximalgeschwindigkeit experimentell bestimmt. Hierfiir
wird die Geschwindigkeit iterativ verringert, bis der Fehler die Toleranzgrenze unter-

schreitet.

5.5.1 Versuchsaufbau

Zur Uberpriifung der Linearitit und Feststellung der Maximalgeschwindigkeit werden
Bewegungen in unterschiedlichen Geschwindigkeiten durchgefiihrt. Hierbei muss es eine
Toleranz vom linearen zum tatsédchlichen Pfad geben. Je kleiner der erlaubte Fehler ist,
desto genauer ist die Umsetzung der Bewegung. Die Maximalgeschwindigkeit sinkt je-
doch, da fiir eine gegebene Bewegung mehr Zwischenziele benétigt werden. Die tolerierte
Abweichung zum Pfad betrdgt geméfs Abschnitt 1.2 20 mm.
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5 Bewegungskoordination

Fiir diesen Versuch werden Bewegungen verwendet, die sowohl die Grenzen des Workspaces,
als auch die erwarteten Bewegungen des Roboters abdecken. Es wird eine vertikale Bewe-
gung durchgefiihrt, die die obere und untere Grenze des zu erwartenden Arbeitsbereiches
erreicht. Zudem wird eine diagonale Bewegung in einer konstanten Hohe durchgefiihrt.
Wihrend der Bewegung wird die Position des Fufies aufgezeichnet, die durch die vom

Umrichter gemessenen Motorpositionen berechnet wird.

Zur Evaluierung der Bewegung wird die kiirzeste Distanz zwischen der Position des Fufses
und dem Zielpfad berechnet. Die maximal erlaubte Abweichung ergibt somit einen Zy-
linder entlang des Zielpfades. In Abbildung 5.3 sind zur Veranschaulichung des Versuchs
zwei diagonale Bewegungen im kartesischen Raum dargestellt, wobei eine innerhalb der

Toleranzgrenze liegt und die andere nicht.

Abbildung 5.3: Darstellung einer diagonalen Bewegung bei maximal 2000 mm/s (links)
und 3000 mm/s (rechts) mit einer Toleranz von 20 mm

Der fiir die Feststellung der Maximalgeschwindigkeit durchgefiihrte Versuch besteht aus
zwei Bewegungen, die mit je fiinf Geschwindigkeiten durchgefiihrt werden. Jeder Durch-
lauf wird fiinfmal wiederholt und die maximale, minimale und durchschnittliche Abwei-

chung berechnet.

39



5 Bewegungskoordination

5.5.2 Ergebnisse

Abbildung 5.4: Ergebnisse der Linearitétstests fiir diagonale (links) und vertikale (rechts)
Bewegungen

Das Ergebnis zeigt, dass bei einer Geschwindigkeit bis 2000 mm /s die Abweichung sowohl

bei der vertikalen als auch bei der diagonalen Bewegung unter 20 mm liegt.

Die Geschwindigkeit von 2000 mm/s wird somit als maximale Geschwindigkeit fiir die

Bewegung des Roboters festgelegt.

5.6 Untersuchung der Bewegungslinearitat unter Last

Neben unbelasteten Bewegungen ist ebenso relevant, wie sich die durchgefithrten Bewe-
gungen unter Last verhalten, das heifft, wenn die Beine das Korpergewicht des Roboters

tragen miissen.

5.6.1 Versuchsaufbau

Fiir diesen Versuch wird der Roboter das erste Mal aus eigener Kraft auf die Fiifse gestellt
und eine vertikale und eine horizontale Bewegung durchgefiihrt. Das Ziel dieses Tests ist
es, zu ermitteln, ob die Bewegung trotz der zusétzlichen Last innerhalb der Toleranzen

ausgefiihrt wird.
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5 Bewegungskoordination

Da die Position des Roboters abhéngig von allen Beinen ist, wird die Bewegung nicht tiber
die Position der Fiifse, sondern mittels der am Korper verbauten Intel RealSense Tracking
Kamera gemessen. Laut dem Datenblatt der Kamera [Intel Corporation, 2019] kann eine
Abweichung von bis zu 1% der zuriickgelegten Strecke auftreten. Um potenziellen Feh-
lern entgegenzuwirken, wird der Roboter nach dem Test in die Ausgangsposition zuriick-
gefahren und die Abweichung der Position gepriift. Dabei werden keine Abweichungen
festgestellt, die die Ergebnisse beeinflussen kénnten. Genauere Angaben zu den Toleran-
zen der Kamera lassen sich der Dokumentation nicht entnehmen. Gemessen wird eine
Messfrequenz der Kamera von 200 Hz. Im Stillstand rauschen die Messwerte mit einer
Standardabweichung von 0.15 mm ohne nennenswerten Drift iiber 10 Minuten. Zudem
kénnen ebenfalls keine nennenswerten Abweichungen bei einer wiederholten Vorwérts-
und Riickwartsbewegung von 1m festgestellt werden. Die Position der Kamera wird auf
den Mittelpunkt des Roboters zuriickgerechnet (“trunk” in Abbildung 6.1)

5.6.2 Ergebnisse

Abbildung 5.5: Darstellung einer vertikalen und horizontalen Sinusbewegung der Beine
unter der Last des Roboterchassis
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5 Bewegungskoordination

Die Messergebnisse geméfs Abbildung 5.5 zeigen, dass bei Bewegung unter Last jeweils
Abweichung der stillstehenden Richtungen auftreten (rechts in der Abbildung). Bei der
horizontalen Bewegung betrigt diese Abweichung maximal 7.9 mm und durchschnittlich
3.7mm. Bei der vertikalen Bewegung betrigt die maximale Abweichung 8.9 mm und
die durchschnittliche Abweichung 6.1 mm. Damit liegen die Abweichungen innerhalb der
Toleranzen. Anzumerken ist jedoch, dass die Bewegungsgeschwindigkeit dieses Tests be-
deutend langsamer ist, als die der Tests ohne Last (Abbildung 5.4).

5.7 Untersuchung der Bewegungslinearitat bei ruckartigen

Bewegungen

Fiir quadrupede Roboter ist es relevant, dass die Beine auch beim ruckartigen Anhe-
ben oder Absenken des Roboters innerhalb der Toleranzen bleiben. Entsprechend wird,
zusétzlich zu den Sinusbewegungen, die Abweichung beim ruckartigen Abfangen und
Anheben des Roboters getestet.

5.7.1 Versuchsaufbau

Fiir diesen Versuch wird als Zielposition ein Rechtecksignal fiir die z-Bewegung verwen-
det. Da es sich um eine Bewegung des ganzen Roboters handelt, wird die getestete Be-
wegungsgeschwindigkeit aus Sicherheitsgriinden auf 500 mm/s begrenzt. Die Aufnahme

der Positionen erfolgt wie in Abschnitt 5.6 beschrieben.
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5 Bewegungskoordination

5.7.2 Ergebnisse

Abbildung 5.6: Darstellung einer ruckartigen vertikalen Bewegung des Roboters unter
Last

Die Ergebnisse in Abbildung 5.6 zeigen, das die Bewegung des Roboters in x- und y-
Richtung innerhalb der Toleranzen bleibt. Die maximale Abweichung liegt bei 10.4 mm
und die durchschnittliche Abweichung bei 5.0 mm. Es tritt jedoch wie bei den belasteten
Motorbewegungen aus Abbildung 3.13 ein Uberschwingen in z sowohl beim Anheben als
auch beim Absenken auf. Dieses Uberschwingen ist zwar noch innerhalb der Toleranzen,

jedoch sollte es bei zukiinftigen Weiterentwicklungen genauer untersucht werden.
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6 Simulation des Gesamtsystems

6.1 Beschreibung des Roboters

Die Beschreibung fiir die Simulation, des in dieser Arbeit verwendeten Roboters basiert
auf dem Git Repository von Unitree Robotics [2025], welches unter der BSD 3-Clause
License verwendbar ist. Die grundlegende Geometrie des Roboters Unitree A1 entspricht
der fiir diese Arbeit verwendeten Plattform. Mafe, 3D-Modelle, Kollisionen und Achsen
sind auf die in dieser Arbeit verwendeten Plattform angepasst. Die Ansteuerung der

Motoren erfolgt iiber das in Abschnitt 4.1 beschriebene Gazebo-Plugin.

6.1.1 Geometrie

Die Definition der Geometrie des Roboters beinhaltet die Beschreibung der Links und
Joints. Die Beschreibung der Links beinhaltet die Position, an der der Link endet, sowie
die Ausrichtung des neuen Koordinatensystems, das am Ende des Links entsteht. Die
Joint-Beschreibung beinhaltet die Art des Joints, in diesem Fall ausschlieflich Revolute,
sowie die dafiir bendtigten Eigenschaften wie Drehrichtung und die Limits der Drehung.
Die Geometrie des somit beschriebenen Roboters ist in Abbildung 6.1 dargestellt. Aus
dieser Beschreibung kann ein TF-Tree generiert werden (Abbildung 6.2).
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6 Simulation des Gesamtsystems

Abbildung 6.1: Darstellung der Links des Roboters mit dem Koordinatenursprung und
der Orientierung der Achsen

Abbildung 6.2: Ausschnitt aus dem TF-Tree des Roboters

6.1.2 3D-Modelle

Fiir die Darstellung des Roboters in Gazebo werden 3D-Modelle benétigt. Diese sind eine
vereinfachte Version der 3D-CAD Modelle des Roboters. Die Modelle werden in Gazebo
nur fiir die Visualisierung verwendet und haben keinen Einfluss auf die Simulation. Um
Rechenleistung zu sparen, sind die Modelle nicht so hoch aufgelést wie die 3D-CAD
Modelle.
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6 Simulation des Gesamtsystems

Abbildung 6.3: 3D-Modell des Roboters ohne Anbauteile in Autodesk Fusion 360

Fiir die Kollisionsberechnung werden zusétzlich zu den Visualisierungsmodellen Kollisi-
onsmodelle bendtigt. Diese sind so einfach wie moglich gehalten, um die Berechnung zu
beschleunigen. So sind die gebogenen Beine des Roboters durch eine Box angenéhert, da

die genaue Form fiir die Simulation im Anwendungsfall dieser Arbeit nicht relevant ist.

Abbildung 6.4: Visualisierungs- und Kollisionsmodell des Roboters in Gazebo

6.1.3 Triagheit und Gewicht

Damit Gazebo das Verhalten des Roboters korrekt simulieren kann, wird fiir jeden Kor-
per der Triagheitstensor [Siciliano und Khatib, 2016, p.36] benotigt. Dieser ist eine 3x3-
Matrix, die die Tréigheit bei Anderungen des Drehimpulses beschreibt. Die Berechnung
der Tragheitstensoren wird in diesem Fall durch Autodesk Fusion 360 durchgefiihrt. Zu-
dem wird das Gewicht der Komponenten benétigt. Die Werte werden in der Xacro-Datei

des Roboters hinterlegt.
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6 Simulation des Gesamtsystems

6.2 Untersuchung der Abweichung von Beinbewegungen in

der Simulation

Um die Abweichung zwischen den realen Beinen und der Simulation zu messen, werden
wie bei der Motorsimulation aus Kapitel 4.3 Toleranzfelder definiert, die die maximale
Abweichung zwischen den realen Beinen und der Simulation darstellen. Hierfiir wird die
zeitliche Toleranz von 20 ms der Motorsimulation aus Kapitel 4.2 beibehalten. Die To-
leranz wird auf Basis der Abweichung der Motorsimulation und die dadurch resultierende

maximale Abweichung im kartesischen Raum abgeschétzt.

Die Benennung der verwendeten Variablen ist in Abbildung 5.1 zu sehen. Der Konfigura-
tionsraum der Beine in kartesischen Koordinaten beschrankt L auf Lpy;ax = 400 mm.
Durch eine Abweichung von 63 um die in Abschnitt 1.2 festgelegte Toleranz von Afy =

2,5° lasst sich durch den Kosinussatz die maximale Abweichung am Fufs berechnen.

\/LgMAX + L2 0 — 2 Loarax - Lonsax - cos(Abo) ~ 16.614mm (6.1)

Auf Basis dieser Abschétzung wird die Toleranz im kartesischen Raum auf 15 mm in x,
y und z abgerundet. Wie auch schon in Abschnitt 4.3 bezieht sich diese Toleranz nicht
auf die Abweichung der Simulation zur Zielvorgabe, sondern auf die Abweichung der

Simulation zur Realitat.

6.2.1 Versuchsaufbau

Fiir den Versuch werden dieselben Bewegungen wie in Abschnitt 5.5 verwendet, die am

Roboter mit der ermittelten Maximalgeschwindigkeit von 2m/s simuliert werden.
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6 Simulation des Gesamtsystems

6.2.2 Ergebnisse

Abbildung 6.5: Darstellung unterschiedlicher Bewegungen in der Simulation und der Rea-
litdt zur Veranschaulichung der Abweichung der Simulation

Die Ergebnisse des Tests sind in Abbildung 6.5 dargestellt. Die Simulation befindet sich
noch knapp innerhalb der gegebenen Toleranzen. Das gezeigte Verhalten dhnelt in allen

Achsen dem des realen Roboters.
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6 Simulation des Gesamtsystems

6.3 Untersuchung der Abweichung von langsamen

Korperbewegungen in der Simulation

Um die Simulationsgenauigkeit der Beine unter der Last des Kérpers und die Simulation
des gesamten Korpers allgemein zu testen, werden wie bei den Versuchen der Beine,
Testbewegungen durchgefiihrt. Als Toleranzen fiir die Bewegungen werden wie bei den
Beinen (Abschnitt 6.2) £15mm in x, y und z und £20ms in der Zeit angenommen.
In diesem Versuch soll die Simulation zeigen, dass sie einfache Bewegungen des Korpers

unter Last abbilden kann.

6.3.1 Versuchsaufbau

Die Messung der Position erfolgt in der Mitte des Koérpers (“trunk” in Abbildung 6.1). Bei
dem realen Roboter wird die Position des Korpers erneut durch die verbaute Tracking-
Kamera aufgenommen. Diese ist in Abschnitt 3.3.2 beschrieben. Die Messunsicherheiten

der Kamera sind dieselben wie in Abschnitt 5.6.

In der Simulation wird die Bewegung ermittelt, indem die Position des Korpers aus der
model_states Message ausgelesen wird, welche von Gazebo bereitgestellt wird. Die
auf diese Weise ausgelesenen Positionsdaten haben keine Messabweichung, da sie den

exakten Wert aus der Simulation darstellen.

Als Zielwert fiir die Bewegungen wird ein Sinus in z- und x-Richtung genutzt. Die Ver-

suchsbewegungen gleichen den belasteten Tests der Beine aus Abschnitt 5.6.

6.3.2 Ergebnisse

Die fiir die Beine festgelegten Toleranzen werden, wie in Abbildung 6.6 zu sehen, eingehal-
ten. Der reale Roboter oszilliert insbesondere bei der vertikalen Bewegung in z-Richtung
bedeutend mehr als in der Simulation. Da sich die Ostzillation jedoch innerhalb der To-

leranzen befindet, wird sie als akzeptabel angesehen.
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6 Simulation des Gesamtsystems

Abbildung 6.6: Darstellung zweier Sinus-Bewegungen des Roboters in der Simulation und
der Realitét zur Veranschaulichung der Abweichung der Simulation
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6 Simulation des Gesamtsystems

6.4 Untersuchung der Abweichung von ruckartigen

Korperbewegungen in der Simulation

Um Sicherzustellen, dass die Beine und die Simulation sich auch bei ruckartigen Bewe-
gungen dhnlich verhalten, wird ebenfalls der Versuch aus Abschnitt 5.7 in der Simulation

wiederholt.

6.4.1 Versuchsaufbau

Der Versuchsaufbau ist identisch zu dem in Abschnitt 6.3. Hierbei werden die Beine
mit einer Geschwindigkeit von 500mm/s tiber eine Distanz von 50 mm eingezogen und
ausgefahren. Daraufhin wird der Korper bis zum Stillstand abgebremst. Das Ziel ist es
festzustellen, ob das resultierende Uberschwingen des Korpers ebenfalls in der Simulation
abgebildet wird.

6.4.2 Ergebnisse

Abbildung 6.7: Darstellung einer ruckartigen Bewegung des Roboters in der Simulation
und der Realitéit zur Veranschaulichung der Abweichung der Simulation
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6 Simulation des Gesamtsystems

Wie in Abbildung 6.7 zu sehen, existiert das Uberschwingen auch in der Simulation, auch
wenn die Reaktion auf das Rechtecksignal in der Simulation schneller ist. Die getesteten

Bewegungen liegen innerhalb der gesetzten Toleranzen.

6.5 Festgestellte Probleme in der Gazebo Simulation

Bei der Simulation des Roboters in Gazebo sind zwei Probleme aufgefallen, die an dieser
Stelle kurz beschrieben werden sollen. Sie treten auf, wenn es zu viele Kontaktpunkte des
Roboters mit dem Boden gibt oder wenn die Beine komplett gestreckt sind. In beiden
Fillen fingt der Roboter an, in eine zuféllige Richtung zu driften. Dieses Verhalten
ist in Abbildung 6.8 anhand der gelben Linie dargestellt, die den zuriickgelegten Pfad

anzeigt.

Abbildung 6.8: Visualisierung des Drifts bei problematischen Positionen in Gazebo an-
hand der gelben Pfadlinie

Liegend wurde der Drift mit 44 mm/s gemessen. Stehend liegt der Drift bei 152 mm/s. Da
diese beiden Positionen jedoch bei Versuchen zum Laufen des Roboters nicht auftreten,
ist dieses Problem im Rahmen dieser Arbeit nicht relevant. Der Drift auferhalb dieser
beiden Félle liegt bei 0.00092mm/s. Dieser Wert ist so gering, dass er vernachléssigt

werden kann.

Durch die durchgefiihrten Tests wird ab jetzt davon ausgegangen, dass die Simulation
in Gazebo die Bewegungen des Roboters innerhalb der gesetzten Toleranzen erfolgreich
abbilden kann.
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7 Robotersteuerung

Zum Testen von unterschiedlichen Gangarten wird eine Robotersteuerung entworfen, die
die Ansteuerung der Beine iibernimmt. Hierbei liegt das Hauptaugenmerk auf der Re-
duktion von Komplexitét fiir die Gangarten. Auf diese Weise ist die Softwareentwicklung

der Gangarten einfacher, auch wenn der Aufwand fiir den Rest der Steuerung steigt.

7.1 Klassen fiir Gangarten (Gait)

Um den Klassen fiir die Gangarten moglichst viel Komplexitédt abzunehmen, werden nur

zwei Anforderungen an die Klassen gestellt, die diese erfiillen miissen.

e Gangarten miissen eine nach Abschnitt 2.7 im Stillstand statisch stabile Ausgangs-

position haben, aus der sie die Bewegungen beginnen kénnen.

e Gangarten miissen bei Aufforderung in eine im Stillstand statisch stabile Position

zurickkehren.

Diese Anforderungen werden iiber ein Interface dargestellt, das die Gangarten imple-
mentieren miissen. Zuséatzlich gibt es noch ein Interface fiir die Ansteuerung durch den
Nutzer, dessen Standardfunktionen iiberschrieben werden kénnen, wenn die Ansteuerung

genutzt werden soll.

7.2 Klassen fiir die Repositionierung (Reposition)

Um die Gangarten zu wechseln, muss eine Mdoglichkeit geschaffen werden, dass der Ro-
boter von einer im Stillstand statisch stabilen Position zu einer anderen wechselt. Diese

Aufgabe iibernimmt die Repositionierung.
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Das Ziel der Repositionierung ist es, dass der Roboter von einer statisch stabilen Konfi-

guration der vier Beine in eine andere statisch stabile Konfiguration wechseln kann.

Die folgende Notation basiert erneut auf der im "Handbook of Robotics” [Siciliano und
Khatib, 2008, p. 110] verwendeten Notation. Im Gegensatz zu Abschnitt 5.4, werden
hier als Konfigurationsraum alle Achsen des Roboters betrachtet und nicht nur die eines

Beines.

q ist eine mogliche Konfiguration des Roboters, die alle vier Beine beinhaltet und C
ist die Menge aller moglichen Konfigurationen des Roboters. Cee ist die Menge der
Roboterkonfigurationen bei denen die Beine eine giiltige Position haben. ¢; und ¢y sind
die Start- und Zielkonfigurationen der Repositionierung. Diese Definitionen sind demnach
analog zu Abschnitt 5.4.

Cistable sei definiert durch die Menge aller erlaubten Konfigurationen, die statisch stabil

sind. Demnach ist Csaple = {q € Crree|q ist statisch stabil}.

Analog zu den Beinbewegungen sucht die Repositionierung einen Pfad 7 : [0, 1] = Ceree,
sodass 7(0) = ¢ und 7(1) = ¢y gilt. Zusétzlich muss V¢ € [0,1] : 7(t) € Csable gelten.
Auf diese Weise ist sichergestellt, dass der Roboter wihrend der Bewegung statisch stabil
bleibt.

Die Umsetzung der vollstindigen Logik der Repositionierung ist sehr umfangreich und
wird in dieser Arbeit aus Zeitgriinden nicht durchgefiihrt. Stattdessen wird eine einfache
Version implementiert, die den Roboter in eine neue Position bringt, ohne dabei die
Stabilitéat zu gewadhrleisten. Diese ist nur fiir Testzwecke gedacht und sollte aufgrund von

Risiken fiir die Hardware nicht auf einem echten, stehenden Roboter verwendet werden.

7.3 Klassen fiir Nutzereingaben (UserInput)

Um Eingaben vom Nutzer zu ermdglichen, gibt es zwei Optionen.

e Die Eingabe erfolgt {iber das an die Gangarten bereitgestellte Interface zur Steue-

rung durch den Nutzer.

e Die Gangarten definieren eine eigene Ansteuerung beispielsweise iiber ROS Topics.
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7 Robotersteuerung

Um das bereitgestellte Interface zu nutzen, konnen Adapterklassen implementiert werden,
die es erlauben, unterschiedliche Eingabegerite zu verwenden. Fiir die Kommunikation
mit ROS Joy und 3DConnexion SpaceMouse ist ein solcher Adapter implementiert. Der
grofte Vorteil beim Nutzen des Interfaces ist, dass die Gangarten nicht mehr abhingig
von der spezifischen Art der Steuerung sind. Zudem erlaubt dies dem GaitSelector, die

Nutzereingaben nur an die verwendete Gangart weiterzuleiten.

7.4 Klasse fiir die Beinansteuerung (LegControl)

Die Beinansteuerung ist in unterschiedliche Komponenten aufgeteilt, die bestimmte Auf-

gaben {ibernehmen.
e Ansteuerung der Motoren iiber die in Abbildung 3.9 dargestellten Messages
e Berechnung von Achswinkeln und Kalibrierung (Abschnitt 5.1)
e Berechnung der Forward Kinematik und Inversen Kinematik (Abschnitt 5.3)
e Begrenzung des Konfigurationsraumes (Abschnitt 5.4)

Die einzelnen Komponenten sind austauschbar und werden nach aufsen von einer Klasse

reprasentiert.

7.5 Konzept fiir das Wechseln von Gangarten (GaitSelector)

Um das Wechseln von Gangarten zu erméglichen, wird eine Stellvertreter-Gangart mit
dem Namen Gangsteuerung geschaffen. Die Gangsteuerung verhélt sich wie eine nor-
male Gangart, beinhaltet im Hintergrund jedoch beliebige weitere Gangarten, zwischen
denen sie wechseln kann. Hierfiir kontrolliert sie den Informationsfluss zwischen der Nut-
zersteuerung und den Gangarten und schaltet die Gangarten je nach Anforderung ein
oder aus. Auf diese Weise erlaubt sie immer nur einer Gangart zur Zeit den Zugriff auf
die Beinansteuerung. Die Aufgabe der Stellvertreter-Gangart ist es, die Uberginge von
und zu den Gangarten zu steuern. Hierflir wird die Repositionierung genutzt, um den

Roboter in die von der neuen Gangart benotigte Position zu bringen. Zur Steuerung des
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7 Robotersteuerung

Wechsels zwischen den Gangarten wird ein einfacher Zustandsautomat verwendet. Die-
ser ist in Kombination mit einer kurzen Beschreibung der Benennungen in Abbildung 7.1

dargestellt.

Abbildung 7.1: Zustandsautomat fiir das Wechseln von Gangarten durch die Gangsteue-
rung

e currentGait ist eine Variable, die die aktuelle Gangart speichert.
e selectedGait ist eine Variable, die die ausgewéhlte Gangart speichert.

e gaitSelected ist ein Event, das ausgel6st wird, wenn eine Gangart iiber die Nutzer-

steuerung ausgewéhlt wird. Der Name der Gangart ist in “gait” gespeichert.

e startReposition(gait) ist eine Action, die die Repositionierung zur Startposition von

“gait” startet.

e repositionDone ist ein Event, das ausgelost wird, wenn die Repositionierung abge-

schlossen ist.
e startGait(gait) ist eine Action, die die Gangart "gait” zum Starten auffordert.

e relayUserInputToGait(gait) ist eine Action, die die Nutzereingaben an die Gangart

“gait” weiterleitet.

e stopGait(gait) ist eine Action, die die Gangart “gait” auffordert, in einen stabilen

Zustand zu wechseln und sich zu beenden.

e gaitStopped ist ein Event, das ausgeltst wird, wenn die Gangart den stabilen Zu-

stand erreicht hat und beendet ist.
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7 Robotersteuerung

7.6 Ubersicht iiber die Klassen

Um das Austauschen der aktuellen Gangart zu ermoglichen, bestimmt die Gangsteue-
rung, welche Gangart die Beinansteuerung nutzen darf. Um dies zu verdeutlichen, zeigt
Abbildung 7.2 ein vereinfachtes Klassendiagramm fir die Gangsteuerung. Hierbei ist zu
sehen, dass die Gangsteuerung dieselbe Schnittstelle implementiert wie die Gangarten.
Der Unterschied besteht darin, dass die Gangsteuerung die Instanzen von Gangarten und

Repositionierung aggregiert und als deren Stellvertreter fungiert.

Abbildung 7.2: Vereinfachtes Klassendiagramm fiir das Wechseln von Gangarten durch
die Gangsteuerung

Die Stellvertreter-Beziehung ist in Abbildung 7.3 noch einmal dargestellt, indem eine
Konstruktion mit der Moglichkeit mehrerer Gangarten und eine mit einer festen Gangart

gezeigt wird.
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7 Robotersteuerung

Abbildung 7.3: Informelle Darstellung einer Beispielkonstruktion der in Abbildung 7.2
gezeigten Klassen, sowie die Richtung der ausgetauschten Informationen
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8 Gangarten und erste Schritte

Im folgenden Kapitel werden Gangarten vorgestellt und fiir die Softwarearchitektur des
Roboters implementiert. Diese Gangarten werden darauthin in der Simulation anhand
von drei beispielhaften Metriken bewertet. Diese Metriken sind die Maximalgeschwindig-

keit, die Toleranz gegen dufsere Kréfte und die Bewegungsruhe beim Laufen.

Da wie in Abschnitt 3.5.1 beschrieben, einer der Umrichter durch einen Versuch nicht
mehr nutzbar ist, ist es im Rahmen dieser Arbeit nicht mehr moglich, die simulierten

Resultate anhand des realen Roboters zu verifizieren.

8.1 Gangarten

Um Gangarten miteinander vergleichen zu kénnen, werden die Gangarten Schritt und

Trott implementiert und in je zwei Variationen getestet.

Alle Implementierungen fiir diese Arbeit sind Open-Loop. Sie basieren somit nicht auf

Sensoren, durch die der Roboter in Balance gehalten wird.

8.1.1 Gangart Schritt

Die fiir diese Arbeit geschriebene Version des Schritts hat wie in Abschnitt 2.1 beschrie-
ben, maximal ein Bein in der Luft. Damit die Gangart statisch stabil ist, wird beim
Anheben eines Beines der Schwerpunkt des Roboters in Richtung der anderen Beine
verlagert. Somit bleibt der Schwerpunkt iiber dem Stiitzpolygon. Dies wird durch eine
Kreisbewegung des Chassis erreicht. Neben der Laufgeschwindigkeit, die durch Nutzerein-
gaben gesteuert wird, besitzt diese Gangart aufserdem eine Menge an Parametern, die

das Verhalten beeinflussen. Diese Parameter sind in Tabelle 8.1 beschrieben.
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Parameter Beschreibung

height Die Hohe des Korpers

step_height Die Hohe des angehobenen Beines

step_speed Die maximale Geschwindigkeit

step_overlap Der Anteil der Schrittlange, bei der alle Beine auf dem
Boden sind

lean_distance Der Radius der Kreisbewegung des Schwerpunktes

lean_phase Die Phasenverschiebung der Schwerpunktverlagerung
zum angehobenen Bein

Tabelle 8.1: Parameter fiir die Gangart Schritt

Die Gangart Schritt ist bei niedrigen Geschwindigkeiten statisch stabil. Da bei hoheren
Geschwindigkeiten die Schritte schneller werden, wird auch das Verlagern des Schwer-
punktes schneller. Dies fiihrt letztlich zum Umkippen des Roboters. Wird bei schnelleren
Geschwindigkeiten die Verlagerung des Schwerpunktes entfernt, so lassen sich stabile Zy-
klen finden. Die Geschwindigkeit, ab der die Verlagerung des Schwerpunktes nicht mehr

sinnvoll ist, wird in Kapitel 8.2 genauer beschrieben.

Aus diesem Grund wird Schritt in zwei Versionen aufgeteilt, die sich nur durch ihre Pa-
rameter unterscheiden. Der langsame Schritt ist statisch stabil, da sich der Schwerpunkt
immer {iber dem Stiitzpolygon befindet. Das schnelle Schritt basiert auf stabilen Zyklen
(Abschnitt 2.7).

8.1.2 Gangart Trott

Die beiden fiir diese Arbeit implementierte Trott Gangarten haben wie in Abschnitt 2.1
beschrieben zwei diagonale Beine in der Luft jedoch keine Schwebephase beim Wechseln
der Beinpaare. Die erste fiir diese Arbeit geschriebene Version des Trott ist rein reaktiv.
Dies bedeutet, dass sich bei einer durch den Nutzer vorgegebenen Zielbewegung, die
beiden auf dem Boden befindlichen Beine in die entgegengesetzte Richtung bewegen, um
einen Vorschub zu erzeugen. In regelméfigen Abstédnden werden diese Beine angehoben,
um sie neu zu positionieren. Bei der Neupositionierung der Beine werden sie in ihre

Ausgangsstellung zuriickbewegt.
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8 Gangarten und erste Schritte

Die Ausgangsstellung der Beine ist so gewéhlt, dass in dieser Position der Schwerpunkt
des Roboters genau in der Mitte des Stiitzpolygons liegt. Zudem wird die Last gleichméfig
auf alle Beine verteilt. Je weiter sich die Fiiffe im Rahmen des Bewegungsablaufs von

dieser Position entfernen, desto ungleichméfiger wird das Gewicht verteilt.

Die zweite Version der Gangart Trott ist pradiktiv. Bei einer Eingabe reagieren die Beine
auf die Zielrichtung, bei der Neupositionierung des Beines wird jedoch das Bein iiber die
Ausgangsposition hinaus bewegt. Hierbei wird die Abschétzung in die Zukunft gemacht,
dass sich die Bewegungsrichtung des Roboters nicht &ndert. Dies fiihrt dazu, das die
Beine nach Beendigung der Vorschubphase noch nicht so weit von der Ausgangspositi-
on entfernt sind. Zudem besteht der Vorteil, dass die maximale Distanz, die ein Bein
vor der Neupositionierung zuriicklegen kann, im optimalen Fall doppelt so grofs ist wie
bei der reaktiven Version. Dies erhoht die Maximalgeschwindigkeit bei gleicher Schrittfre-
quenz. Der Unterschied der beiden Versionen ist in Abbildung 8.1 dargestellt. Bei starken
Richtungséinderungen kann es jedoch dazu kommen, dass das Bein sich weiter von der
Ausgangsposition entfernt, als beim reaktiven Trott. In diesem Fall wird die Stabilitét

der Gangart stark beeintréachtigt.

Abbildung 8.1: Gegeniiberstellung der Vorwértsbewegung eines Beines in den beiden
Trott-Versionen

Wie auch Schritt, besitzen die beiden Trott Implementierungen mehrere Parameter, mit

denen das Verhalten so angepasst werden kann, dass ein stabiler Zyklus entsteht.
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Parameter Beschreibung

height Die Hohe des Korpers

step_height Die Hohe des angehobenen Beines

step_speed Die maximale Geschwindigkeit

step_overlap Der Anteil der Schrittlange, bei der alle Beine auf dem
Boden sind

Tabelle 8.2: Parameter der Gangart Trott

8.2 Untersuchung der Geschwindigkeit und Stabilitat

Eine der wichtigsten Eigenschaften einer Gangart sind die Geschwindigkeiten, bei de-
nen sie funktioniert. Zudem muss eine Gangart resistent gegen dufiere Einwirkung sein.
Im nachfolgenden Versuch werden die vier in Abschnitt 8.1 vorgestellten Versionen von

Gangarten in der Simulation auf Geschwindigkeit und Stabilitdt getestet.

8.2.1 Testmethodik

Fiir den Test wird der Roboter bei unterschiedlichen Geschwindigkeiten unterschiedlich
starken Stofen ausgesetzt. Gazebo bietet hier die Moglichkeit, Kréifte auf den Roboter
auszuiiben. Wahrend der Roboter lauft, werden in zufélligen Abstédnden bis zu 20 kN {iber
einen Zeitraum von 1 ms seitlich auf den Roboter ausgeiibt. Dies wird mindestens 20-mal
fiir jede getestete Stofkraft wiederholt, um ein aussagekraftiges Ergebnis zu bekommen.

Die Vorgehensweise ist in Abbildung 8.2 dargestellt.

Abbildung 8.2: Der Roboter beim préadiktiven Trott unter der Einwirkung von 12.5 kN
(links) und 15 kN (rechts)
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Die Kraft der Stofe wird so lange erhoht, bis der Roboter zu kippen beginnt. Ist die
Geschwindigkeit bei den Gangarten zu hoch, so beginnt der Roboter zu kippen, ohne dass
eine Kraft auf den Roboter ausgeiibt wird. Aufgrund dieser Tests werden die Parameter
der Gangarten so angepasst, dass sie bei einer moglichst hohen Geschwindigkeit stabil
bleiben.

8.2.2 Ergebnisse

Abbildung 8.3: Krafteinwirkung auf den Roboter bei verschiedenen Geschwindigkeiten
fiir die unterschiedlichen Gangarten

Die Ergebnisse der optimierten Gangarten sind in Abbildung 8.3 dargestellt. Aus diesen
Ergebnissen lassen sich einige Eigenschaften entnehmen. Der langsame Schritt ist mit
100mm/s die langsamste der getesteten Gangarten, gefolgt vom reaktiven Trott mit
350mm/s. Der schnelle Schritt ist mit 400 mm/s die zweitschnellste Gangart und der
pradiktive Trott ist mit 550 mm/s die schnellste. Zudem féllt auf, dass der schnelle Schritt

unter 200 mm/s nicht mehr stabil ist.

Was die Stabilitdat gegen dufiere Krifte angeht, so existiert ein signifikanter Unterschied

zwischen dem statisch stabilen langsamen Schritt und den Gangarten die auf stabilen
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8 Gangarten und erste Schritte

Zyklen basieren. Die, die auf stabilen Zyklen basieren, vertragen den Tests nach eine
seitliche Krafteinwirkung von ungefihr 17.5 kN {iber 1 ms. Der langsame Schritt wurde
bereits tiber 14 kN instabil.

8.3 Untersuchung der Bewegungsruhe

Fiir jede der nicht stabilen Gangarten lassen sich eine Vielzahl an Konfigurationen fin-
den, die beim Laufen in stabile Zyklen resultieren. Die Formen dieser Zyklen sind je nach
Gangart unterschiedlich, sollten sich aber nach einer vollstdndigen Schrittfolge wiederho-
len. Anhand der Abweichung lassen sich Aussagen iiber die Bewegungsruhe des Korpers
treffen, je kleiner die Abweichung, desto weniger schwankt der Korper beim Laufen. Dies
ist zwar nicht direkt fiir den Roboter relevant, kann jedoch die Messung einiger Sensoren

wie potenziell spéter verbaute LIDAR-Sensoren beeinflussen.

8.3.1 Testmethodik

Fiir die Darstellung dieser Zyklen wird in der Simulation die Position des Roboters iiber
drei Schrittzyklen der jeweiligen Gangart aufgenommen und die berechnete Zielbewegung
des Roboters von der Position des Korpers abgezogen. Somit ergibt sich die Abweichung
des Korpers zur Zielbewegung. Je geringer die Abweichung der Zyklen vom Ursprung,

desto ruhiger bewegt sich der Roboter.

8.3.2 Ergebnisse

Wie in Abbildung 8.4 und Tabelle 8.3 zu sehen, ist der pradiktive Trott, die ruhigste der
hier getesteten Gangarten. Langsames Schritt ist mit Abstand die unruhigste Gangart, da
sie durch das absichtliche fortlaufende Verlagern des Schwerpunktes einen grofsen Versatz
hat.
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8 Gangarten und erste Schritte

Abbildung 8.4: Darstellung der Zyklen verschiedener Gangarten als Versatz zur Zielbe-
wegung (je Farbe wird ein gemessener Zyklus dargestellt)

Gangart Max. Versatz x | Max. Versatz y | Abs. Max. Versatz
Pradiktiver Trott 5.3mm 10.7mm 10.7mm
Reaktiver Trott 10.7mm 16.7mm 18.3mm
Schneller Schritt 18.1mm 12.1mm 18.4mm
Langsamer Schritt 73.9mm 72.8mm 83.8mm

Tabelle 8.3: Maximaler Versatz zum Ursprung der verschiedenen Gangarten
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9 Fazit

9.1 Zusammenfassung der Evaluationen

Da diese Arbeit gestaffelt aufgebaut ist, folgt der Ubersicht halber eine Zusammenfassung

der Ergebnisse der unterschiedlichen Versuche.

9.1.1 Motoren

Bei den Motoren wird unbelastet eine Einschwingzeit von 120ms ohne Uberschwingen
erreicht. Belastet mit einem Gewicht von 5 kg wird wie erwartet, ein deutliches Uber-
schwingen mit einer Einschwingzeit von 200 ms gemessen (Abschnitt 3.6.2). Die Simula-
tion hat ohne zusétzliche Last die Toleranz von +2° oder +20 ms eingehalten (Abschnitt
4.3.2).

9.1.2 Beine

Die maximale Abweichung bei Bewegungen liegen unter der Maximalgeschwindigkeit
von 2000 mm/s innerhalb der Toleranzen von 20 mm (Abschnitt 5.5.2). Bei gleichméfi-
gen Bewegungen unter der Last des Korpers wird eine durchschnittliche Abweichung von
3.7mm zum Zielpfad gemessen (Abschnitt 5.6.2). Bei ruckartigen Bewegungen wird wie
auch bei den Motoren ein deutliches Uberschwingen gemessen, das sich ebenfalls inner-
halb der Toleranzen bewegt (Abschnitt 5.7.2). Die Abweichung des simulierten Korpers
bei unterschiedlichen Bewegungen sowohl belastet, als auch unbelastet, liegt innerhalb
der Toleranz von 15mm (Abschnitt 6.2.2, 6.3.2 und 6.4.2).
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9.1.3 Bewegung

Die Analyse der implementierten Gangarten durch drei unterschiedliche Metriken hat
gezeigt, dass die Gangarten anhand der Simulation verglichen werden kénnen. Hierbei
hat sich unter anderem herausgestellt, dass der pradiktive Trott die schnellste und die
ruhigste Gangart ist. Zudem wird festgestellt, dass der statisch stabile langsame Schritt
weniger seitliche Kréfte aushélt, als die anderen Gangarten (Abschnitt 8.2.2 und 8.3.2).

9.2 Diskussion

9.2.1 Realer Roboter

Die Hardware des Roboters hat sich im Laufe der Arbeit in dem verwendeten Testumfeld
bis auf den fehlerhaft parametrierten Umrichter (Abschnitt 3.5.1) als zuverlassig heraus-
gestellt, konnte aber dennoch verbessert werden. Der verbaute Rechner ist leistungsfahig
genug, um die Simulation und die Steuerung des Roboters zu bewiltigen. Die verbauten
Motoren und Umrichter sind ausreichend stark und genau fiir diesen Anwendungsfall.
Die Ubersetzungsverhéltnisse der Motor Hubs konnten noch erhéht werden, sodass der
Roboter mehr Kraft hat. Sollte die Plattform auferhalb des Testumfeldes genutzt wer-
den, miissten einige Teile der Mechanik noch {iberarbeitet werden. Die Beine sind nicht
stabil genug, um beim Umfallen des Roboters einen Schaden zu vermeiden. Zudem wiirde

ein Uberrollkiifig fiir den Schutz der Elektronik und der Batterien benétigt werden.

Die Kalibrierungen der Beine des Roboters sind zeitaufwéndig. Das Sichern der Kalibrie-
rungsinformationen auf dem ROS Parameterserver ermdglicht es jedoch zuverléssig, dass

die Kalibrierung nur ein mal beim Starten des Roboters durchgefiihrt werden muss.

Problematisch ist, dass die Motoren unter Last {iberschwingen. Dieses Verhalten ist be-
reits bei den Motortests aufgetreten (Abbildung 3.13), wurde jedoch in Kauf genommen,
um die schnelle Einschwingzeit der Motoren beizubehalten. In der Retrospektive wére es
besser gewesen die Einschwingzeit zu verlangsamen, um das Uberschwingen zu verringern
oder zu vermeiden. Dadurch kénnte vermutlich auch das Uberschwingen bei ruckartigen

Bewegungen des gesamten Roboters verringert werden (Abschnitt 5.7.2).

Bei der gemessenen Maximalgeschwindigkeit der Beine von 2000 mm/s wird die Tole-

ranz von 20mm zur Zielbewegung eingehalten. Wie erwartet, ist die Abweichung bei
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langsameren Bewegungen, auch unter Last bedeutend geringer. Die Abweichung des Ro-
boterkorpers unter Last, von durchschnittlich 3.7 mm (Abschnitt 5.6.2), war erstaunlich
genau. Vor dem Fortschritt der in dieser Arbeit erreicht wurde, wurde zur Verifikation der
mechanischen Komponenten in den Beinen, eine dhnliche Bewegung durchgefiihrt. Diese
Bewegung erzeugte Schwingungen des Roboterkérpers von mehreren Zentimetern. Dem-
nach hat die Uberarbeitung der Regler sowie der Steuerung der Beine die Genauigkeit

Bewegungen des Roboterkorpers deutlich verbessert.

Aufgrund des Fehlers in der Parametrierung der Umrichter, konnten die implementierten
Gangarten nicht auf der Hardware getestet werden (Abschnitt 3.5.1). Da die Simulati-
on jedoch in anderen Tests immer recht konsistent die Hardware abgebildet hat, liegt
nahe, dass die implementierten Gangarten auch auf der Hardware funktionieren. Eine

Bestatigung dieser Annahme steht jedoch noch aus.

9.2.2 Simulierter Roboter

Die Simulation des Roboters war grofitenteils konsistent mit dem realen Roboter. Auch
wenn die Regler der Motoren zu von Beginn an etwas schneller reagiert haben, liefsen sich
Phénomene wie das Uberschwingen unter Last, welches beim realen Roboter aufgetreten
ist, auch in der Simulation wiederfinden (Abbildung 6.4.2). Zudem war die Ubertraghar-
keit zwischen den unterschiedlichen Tests der Simulation stets gegeben. Die Probleme,
die bei unterschiedlichen Positionen des Roboters in Gazebo aufgetreten sind, waren wie
erwartet flir die in dieser Arbeit durchgefiihrten Tests nicht relevant und sind beim Testen

auch nie negativ aufgefallen (Abschnitt 6.5).

9.3 Schluss

Lassen sich die vorgegebenen Anforderungen an die Genauigkeit des Roboters
mit den verbauten Hardware und der in dieser Arbeit entwickelten Software
erfiillen?

Bei der Genauigkeit der Bewegungen lief sich durch die angepassten Regler, sowie die
Steuerung der Beine, die geforderte Genauigkeit von 5% der Schulterhohe bei Geschwin-
digkeiten bis zu 2000 mm /s erreichen. Bei langsameren Bewegungen war die Abweichung

trotz des Korpergewichtes bedeutend geringer.
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Ist Gazebo geeignet um einen Quadrupeden Roboter innerhalb der gesetzten
Toleranzen abzubilden?

Die Ergebnisse der Simulation in Gazebo von einem zum néchsten Test haben keine
unerwarteten Abweichungen gezeigt und waren sehr konsistent. Die Darstellung von Be-
wegungen neben denen der angesteuerten Gelenke, ist wechselhaft. So werden bei Be-
wegungen in eine Richtung immer auch Abweichungen in andere Richtungen gemessen
(Abbildung 6.6). Diese Abweichungen sind teilweise sehr genau nachgestellt, teilweise
werden sie jedoch im geringen Rahmen nicht nachvollziehbar in andere Richtungen ab-
gebildet. Alles in allem ist Gazebo jedoch soweit es in dieser Arbeit festgestellt werden

konnte, geeignet um Gangarten eines Quadrupeden Roboters zu simulieren.

Lassen sich Gangarten Schritt und Trott auf Basis der entwickelten Plattform
vergleichen und bewerten?

Die entwickelte Softwarearchitektur hat sich als gute Grundlage fiir die Analyse unter-
schiedlicher Gangarten erwiesen. Auch wenn die Repositionierung der Beine nur proviso-
risch implementiert wurde, erlaubt die Steuerung einen Zugriff auf viele relevante Daten
die fiir die Bewertung von Gangarten wichtig sind. Zudem ist die Software leicht mit

weiteren Gangarten erweiterbar.

9.4 Ausblick

Fiir die zukiinftige Weiterfithrung der Arbeit gibt es noch einige offene Punkte.

Die Hardware des Roboters bedarf noch einer Revision. Die Beine miissen stabiler kon-
struiert werden, die Ubersetzungsverhaltnisse der Motoren sollten noch ein mal angepasst
werden. Damit die Liifter der Motoren bei einer Versorgungsspannung von 48V funktio-

nieren, miissen die verbauten Platinen iiberarbeitet werden.

Zudem kann die Parametrierung der Motoren noch verbessert werden, um das Uber-

schwingen unter Last zu vermindern.

Softwareseitig fehlt noch die Implementierung der Repositionierung der Beine zum Wech-

seln zwischen Gangarten.

Als Ausblick fiir aufbauende Arbeiten steht das gesamte Feld der quadrupeden Robotik

offen. Die Plattform erlaubt es durch die Simulation, mittels Reinforcement Learning
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Gangarten zu erlernen und diese auf der Hardware zu testen. Hierfiir konnte die Arbeit

"Extreme Parkour with Legged Robots” [Cheng u. a., 2023| als Grundlage dienen.

Ein weiteres interessantes Feld konnte "DeepPhase: periodic autoencoders for learning
motion phase manifolds” [Starke u.a., 2022] sein. Hierbei konnte die Nutzbarkeit der
DeepPhase Methode fiir das Wechseln zwischen Gangarten beim Laufen auf realen Ro-
botern getestet werden. Die Softwarearchitektur ist bereits so ausgelegt, dass mit einigen
Erweiterungen auch das Wechseln zwischen Gangarten wéahrend des Laufens moglich sein

konnte.
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A Anhang

A.1 Verwendete Hilfsmittel

In der Tabelle A.1 sind die im Rahmen der Bearbeitung des Themas der Bachelorar-

beit verwendeten Werkzeuge und Hilfsmittel aufgelistet.

Tool Verwendung

BTEX Textsatz- und Layout-Werkzeug verwendet zur Erstellung dieses
Dokuments

Fusion 360 CAD- und CAM-Software, zur Erstellung von 3D-Modellen und
Fraspfaden

UCCNC CNC-Steuerungssoftware, verwendet zur Steuerung der Frdsma-
schine

PrusaSlicer Slicer-Software, verwendet zur Erstellung von Druckpfaden fiir den
3D-Drucker

EasyEDA Schaltplan- und Layout-Software, verwendet zur Erstellung von
Platinen

OdriveTool Software zur Konfiguration der Umrichter

ROS Roboter-Betriebssystem, verwendet zur Steuerung des Roboters

Gazebo Simulationssoftware, verwendet zur Simulation des Roboters

VSCode IDE zur Programmierung und Erstellung dieses Dokuments

draw.io Software zum Erstellen von Diagrammen und Zeichnungen

Tabelle A.1: Verwendete Hilfsmittel und Werkzeuge
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Erklarung zur selbstiandigen Bearbeitung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbsténdig
verfasst und nur die angegebenen Hilfsmittel benutzt habe. Wortlich oder dem Sinn

nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich

gemacht.

Ort Datum Unterschrift im Original
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