
BACHELOR THESIS
Jannes Bahr

Entwicklung und Simulation
einer quadrupeden
Roboterplattform zur
Untersuchung von Gangarten

FAKULTÄT TECHNIK UND INFORMATIK
Department Informatik

Faculty of Engineering and Computer Science
Department Computer Science

HOCHSCHULE FÜR ANGEWANDTE
WISSENSCHAFTEN HAMBURG
Hamburg University of Applied Sciences

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung
im Studiengang Bachelor of Science Informatik Technischer Systeme
am Department Informatik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Tim Tiedemann
Zweitgutachter: Prof. Dr. Thomas Lehmann

Eingereicht am: 18.03.2025

Jannes Bahr

Entwicklung und Simulation einer quadrupeden
Roboterplattform zur Untersuchung von Gangarten

Jannes Bahr

Thema der Arbeit

Entwicklung und Simulation einer quadrupeden Roboterplattform zur Untersuchung von
Gangarten

Stichworte

Robotik, Simulation, Quadruped, ROS, Gazebo, Gangarten

Kurzzusammenfassung

Diese Arbeit widmet sich der Weiterentwicklung und Simulation einer quadrupeden Ro-
boterplattform. Hierbei werden von der Ansteuerung der Hardware und Simulation über
die Kinematik bis hin zur Entwicklung einfacher Gangarten viele Aspekte der Robotik
behandelt. Mehrere Reihen von Experimenten bewerten die Genauigkeit von Bewegun-
gen des Roboters und der Simulation. In der Simulation wird nachgewiesen, dass der
Roboter in der Lage ist, einfache Gangarten zu nutzen. Zudem wird anhand der Gangar-
ten Schritt und Trott gezeigt, dass eine Bewertung der Qualität von Gangarten anhand
von drei beispielhaften Metriken möglich ist.

Jannes Bahr

Title of Thesis

Development and simulation of a quadruped robot platform for researching gaits

Keywords

Robotics, Simulation, Quadruped, ROS, Gazebo, Gaits

Abstract

This thesis is dedicated to the development and simulation of a quadruped robot platform.
It covers many aspects of robotics, from hardware control and simulation, to kinematics
and the development of simple gaits. Several series of experiments show the accuracy of
the robot and the simulation. Using the simulation, it is shown that the robot is able to
use simple gaits like walk and trot. An evaluation of the quality of gaits based on three
exemplary metrics is also shown.

iii

Inhaltsverzeichnis

Abbildungsverzeichnis viii

Tabellenverzeichnis xi

Abkürzungsverzeichnis xii

1 Einleitung 1
1.1 Motivation . 1
1.2 Zielsetzung . 1
1.3 Verwandte Arbeiten . 2
1.4 Übersicht . 4

2 Grundlagen 6
2.1 Gangarten . 6
2.2 ROS . 7
2.3 Gazebo . 9
2.4 Xacro . 9
2.5 Entwurfsmuster . 10
2.6 Denavit-Hartenberg-Konvention . 10
2.7 Stabilität und stabile Zyklen . 11

3 Hardware und Hardwareansteuerung 13
3.1 Übersicht über den Roboter . 13
3.2 Sicherheitsanmerkungen . 14
3.3 Bauteile und Komponenten . 14

3.3.1 Boardcomputer . 14
3.3.2 Tracking Kamera . 16
3.3.3 Encoder . 16
3.3.4 Umrichter . 16
3.3.5 Motoren . 17

iv

Inhaltsverzeichnis

3.3.6 Motor Hubs . 17
3.3.7 Energieversorgung . 19
3.3.8 Beine . 20
3.3.9 Nutzereingaben . 21

3.4 Motoransteuerung . 22
3.5 Motorparametrierung . 24

3.5.1 Retrospektive auf einen Fehler in der Parametrierung 25
3.6 Untersuchung des Motorverhaltens . 26

3.6.1 Versuchsaufbau . 26
3.6.2 Ergebnisse . 27

4 Simulation von Motoren 29
4.1 Simulierte Motoren in Gazebo . 29
4.2 Parametrierung simulierter Motoren . 30
4.3 Untersuchung simulierter Motoren . 30

4.3.1 Versuchsaufbau . 30
4.3.2 Ergebnisse . 31

5 Bewegungskoordination 32
5.1 Berechnung der Achspositionen . 32
5.2 Kalibrierung der Achspositionen . 34
5.3 Berechnung der Kinematik . 34
5.4 Begrenzung der möglichen Konfigurationen 36
5.5 Untersuchung der Linearität von Beinbewegungen 38

5.5.1 Versuchsaufbau . 38
5.5.2 Ergebnisse . 40

5.6 Untersuchung der Bewegungslinearität unter Last 40
5.6.1 Versuchsaufbau . 40
5.6.2 Ergebnisse . 41

5.7 Untersuchung der Bewegungslinearität bei ruckartigen Bewegungen 42
5.7.1 Versuchsaufbau . 42
5.7.2 Ergebnisse . 43

6 Simulation des Gesamtsystems 44
6.1 Beschreibung des Roboters . 44

6.1.1 Geometrie . 44
6.1.2 3D-Modelle . 45

v

Inhaltsverzeichnis

6.1.3 Trägheit und Gewicht . 46
6.2 Untersuchung der Abweichung von Beinbewegungen in der Simulation . . 47

6.2.1 Versuchsaufbau . 47
6.2.2 Ergebnisse . 48

6.3 Untersuchung der Abweichung von langsamen Körperbewegungen in der
Simulation . 49
6.3.1 Versuchsaufbau . 49
6.3.2 Ergebnisse . 49

6.4 Untersuchung der Abweichung von ruckartigen Körperbewegungen in der
Simulation . 51
6.4.1 Versuchsaufbau . 51
6.4.2 Ergebnisse . 51

6.5 Festgestellte Probleme in der Gazebo Simulation 52

7 Robotersteuerung 53
7.1 Klassen für Gangarten (Gait) . 53
7.2 Klassen für die Repositionierung (Reposition) 53
7.3 Klassen für Nutzereingaben (UserInput) 54
7.4 Klasse für die Beinansteuerung (LegControl) 55
7.5 Konzept für das Wechseln von Gangarten (GaitSelector) 55
7.6 Übersicht über die Klassen . 57

8 Gangarten und erste Schritte 59
8.1 Gangarten . 59

8.1.1 Gangart Schritt . 59
8.1.2 Gangart Trott . 60

8.2 Untersuchung der Geschwindigkeit und Stabilität 62
8.2.1 Testmethodik . 62
8.2.2 Ergebnisse . 63

8.3 Untersuchung der Bewegungsruhe . 64
8.3.1 Testmethodik . 64
8.3.2 Ergebnisse . 64

9 Fazit 66
9.1 Zusammenfassung der Evaluationen . 66

9.1.1 Motoren . 66
9.1.2 Beine . 66

vi

Inhaltsverzeichnis

9.1.3 Bewegung . 67
9.2 Diskussion . 67

9.2.1 Realer Roboter . 67
9.2.2 Simulierter Roboter . 68

9.3 Schluss . 68
9.4 Ausblick . 69

Literaturverzeichnis 71

A Anhang 74
A.1 Verwendete Hilfsmittel . 74

Selbstständigkeitserklärung 75

vii

Abbildungsverzeichnis

1.1 Fotos von MIT ”Mini Cheetah”, Boston Dynamics ”Spot”, ”Unitree A1”
und ETH Zürich ”ANYmal” aus den jeweiligen Veröffendlichungen 3

2.1 Beispielgangarten für Hunde (Schritt, Trott, Passgang, Galopp) 7
2.2 Beispiel einer Publish-Subscribe-Beziehung zweier Nodes aus der ROS Do-

kumentation [Open Robotics, 2025a]. 8
2.3 Darstellung und DH-Parameter für die Kinematik des Quadruped-Beines

aus ”Inverse Kinematic Analysis of a Quadruped Robot” [Sen u. a., 2017] . 11
2.4 Darstellung des Stützpolygons und Schwerpunktes eines sechsbeinigen Ro-

boters aus ”Handbook of Robotics” [Siciliano und Khatib, 2008, p.378] . . 11
2.5 Darstellung eines Grenzzyklus in einem Phasenraum aus ”Nichtlineare Re-

gelung” [Adamy, 2009, p.16] . 12

3.1 Foto des Roboters in einer Halterung mit der Plattform für Tests mit
Bodenkontakt . 13

3.2 Fotos unterschiedlicher im Roboter verbauter Komponenten 15
3.3 Querschnitt eines Motor Hubs mit Beschriftung der Komponenten 18
3.4 Fotos eines Motor Hub mit verbautem Teensy Mikrocontroller 19
3.5 Übersicht über die Versorgung des Roboters 20
3.6 Übersicht über den Aufbau des Beines FL mit besonderem Augenmerk auf

die Kraftübertragung von den Motoren zu den Gelenken 20
3.7 Foto eines Hub mit angebautem Bein . 21
3.8 Xbox One Controller und 3Dconnexion SpaceMouse 22
3.9 odrive_ros_bridge Target und Feedback Messages je Motor 23
3.10 Kaskadierende Reglerstruktur des ODrives aus der ODrive Dokumentation

[Odrive Robotics, 2021] . 25
3.11 Testaufbau für Motortests unter Last mit einem Gewicht von 5 kg 27
3.12 Sprungantwort des Reglers bei Sprungweiten von 30◦, 60◦, 90◦ und 120◦. . 27
3.13 Genauigkeit des Reglers beim Abfangen unter unterschiedlichen Lasten . . 28

viii

Abbildungsverzeichnis

4.1 Sprungantwort mit Toleranz des Reglers bei Sprungweiten von 30◦, 60◦,
90◦ und 120◦ . 31

5.1 Aufbau der Kinematik-Berechnung aus der Ansicht von hinten (links im
Bild) und seitlich (rechts im Bild) . 35

5.2 Seitenansicht der Hindernis-Geometrie (blau) und des durch die Hindernis-
Geometrie eingeschränkten Konfigurationsraums (grün) 37

5.3 Darstellung einer diagonalen Bewegung bei maximal 2000mm/s (links)
und 3000mm/s (rechts) mit einer Toleranz von 20mm 39

5.4 Ergebnisse der Linearitätstests für diagonale (links) und vertikale (rechts)
Bewegungen . 40

5.5 Darstellung einer vertikalen und horizontalen Sinusbewegung der Beine
unter der Last des Roboterchassis . 41

5.6 Darstellung einer ruckartigen vertikalen Bewegung des Roboters unter Last 43

6.1 Darstellung der Links des Roboters mit dem Koordinatenursprung und
der Orientierung der Achsen . 45

6.2 Ausschnitt aus dem TF-Tree des Roboters 45
6.3 3D-Modell des Roboters ohne Anbauteile in Autodesk Fusion 360 46
6.4 Visualisierungs- und Kollisionsmodell des Roboters in Gazebo 46
6.5 Darstellung unterschiedlicher Bewegungen in der Simulation und der Rea-

lität zur Veranschaulichung der Abweichung der Simulation 48
6.6 Darstellung zweier Sinus-Bewegungen des Roboters in der Simulation und

der Realität zur Veranschaulichung der Abweichung der Simulation 50
6.7 Darstellung einer ruckartigen Bewegung des Roboters in der Simulation

und der Realität zur Veranschaulichung der Abweichung der Simulation . 51
6.8 Visualisierung des Drifts bei problematischen Positionen in Gazebo an-

hand der gelben Pfadlinie . 52

7.1 Zustandsautomat für das Wechseln von Gangarten durch die Gangsteuerung 56
7.2 Vereinfachtes Klassendiagramm für das Wechseln von Gangarten durch

die Gangsteuerung . 57
7.3 Informelle Darstellung einer Beispielkonstruktion der in Abbildung 7.2 ge-

zeigten Klassen, sowie die Richtung der ausgetauschten Informationen . . 58

8.1 Gegenüberstellung der Vorwärtsbewegung eines Beines in den beiden Trott-
Versionen . 61

ix

Abbildungsverzeichnis

8.2 Der Roboter beim prädiktiven Trott unter der Einwirkung von 12.5 kN

(links) und 15 kN (rechts) . 62
8.3 Krafteinwirkung auf den Roboter bei verschiedenen Geschwindigkeiten für

die unterschiedlichen Gangarten . 63
8.4 Darstellung der Zyklen verschiedener Gangarten als Versatz zur Zielbewe-

gung (je Farbe wird ein gemessener Zyklus dargestellt) 65

x

Tabellenverzeichnis

3.1 Übersicht über wichtige ODrive Parameter 24

5.1 Mechanische Limits der Gelenke am Beispiel des Beines vorne rechts . . . 33

8.1 Parameter für die Gangart Schritt . 60
8.2 Parameter der Gangart Trott . 62
8.3 Maximaler Versatz zum Ursprung der verschiedenen Gangarten 65

A.1 Verwendete Hilfsmittel und Werkzeuge . 74

xi

Abkürzungsverzeichnis

BLDC Brushless Direct Current

CAD Computer Aided Design

CoM Center of Mass

DH Denavit-Hartenberg

DoF Degree of Freedom

IMU Inertial Measurement Unit

LED Light Emitting Diode

LiDAR Light Detection and Ranging

NUC Next Unit of Computing

P Proportional

PCB Printed Circuit Board

PI Proportional-Integral

PID Proportional-Integral-Differential

ROS Robot Operating System

RQT ROS-Qt

STAIR Stanford Artificial Intelligence Robot

TBD To Be Determined

TDP Thermal Design Power

TF Transformation

UART Universal Asynchronous Receiver-Transmitter

URDF Unified Robot Description Format

USB Universal Serial Bus

VESC Vedder Electronic Speed Controller

Xacro XML Macros

XML Extensible Markup Language

ZMP Zero Moment Point

xii

1 Einleitung

1.1 Motivation

Quadrupede Roboterplattformen haben in den letzten Jahren immer mehr an Bedeutung
gewonnen. Da laufende Roboter in der Lage sind, sich sowohl in für Menschen gemachten,
als auch in natürlichen Umgebungen zu bewegen, sind sie für viele Anwendungen inter-
essant. Von einfachen Inspektionen in Fabriken über Rettungseinsätze in gefährlichen
Umgebungen, bis hin zur potenziellen Erkundung von Planeten oder Monden.

Bei Inspektionsaufgaben haben quadrupede Roboter den Vorteil, dass sie im Gegensatz
zu fahrenden Plattformen auch höhere Hindernisse oder Treppen überwinden können.
Bei Einsätzen in Katastrophengebieten oder beispielsweise auf dem Mars haben sie mehr
Möglichkeiten, sich auf unebenem oder instabilem Gelände zu bewegen. Alle diese An-
wendungsfälle erfordern eine extrem hohe Zuverlässigkeit sowohl in der Hardware als
auch in der Software.

Die Steuerung quadrupeder Roboter ist eine große Herausforderung. Es existieren sehr
viele Freiheitsgrade und ein stabiler Stand des Roboters ist nicht garantiert. Dies macht
das Entwickeln von Gangarten und Verhaltensweisen für quadrupede Roboter sehr kom-
plex. Im Falle von Programmfehlern kann es zu Schäden an der Hardware kommen.
Reparaturen können aufgrund der meist sehr komplexen Mechanik sehr teuer und auf-
wendig sein.

1.2 Zielsetzung

Das Ziel dieser Arbeit ist die Weiterentwicklung der Hardware, sowie der Entwurf und
die Implementierung der grundlegenden Software und Simulation eines quadrupeden Ro-
boters, als Testplattform für Gangarten. Die Hardware ist dabei nicht das Hauptaugen-
merk der Arbeit. Es sollen jedoch einige Entscheidungen im Entwurf der Mechanik und

1

1 Einleitung

Elektronik beleuchtet werden, die für ein Verständnis der Funktionsweise des Roboters
notwendig sind.

Als Ergebnis der Arbeit soll die erstellte Plattform in der Lage sein, die Gangarten Schritt
und Trott zu nutzen und der Nachweis erbracht werden, dass der Vergleich der Gangarten
durch die erhobenen Daten aus der Steuerung möglich ist. Eine Einschränkung in dieser
Arbeit ist, dass als Untergrund nur ebene Flächen ohne Hindernisse betrachtet werden.
Auf diese Weise müssen keine zusätzlichen Sensoren für die Erkennung des Untergrundes
betrachtet werden.

Als Zielvorgabe für die Plattform soll bei voller Geschwindigkeit eine maximale Abwei-
chung von Körperbewegungen von 5% der Schulterhöhe des Roboters erreicht werden.
Dieser Wert scheint aufgrund des Gewichts des Roboters und der mechanischen Kon-
struktion der Beine als realistisch. Durch diese Toleranz ergibt sich eine maximale Ab-
weichung der Fußpositionen von 20mm. Weiterhin wird für die Simulation der Antriebe
eine Toleranz von 1% des durchschnittlichen Arbeitsbereichs der Antriebe, sowie 20ms

an zeitlichem Versatz angenommen. 1% des Arbeitsbereichs entspricht 2.5 ◦. Diese Werte
beziehen sich auf Abweichungen der Simulation zum realen Roboter.

Durch diese Ziele ergeben sich die folgenden Fragen, die in dieser Arbeit beantwortet
werden sollen:

• Lassen sich die vorgegebenen Anforderungen an die Genauigkeit des Roboters mit
den verbauten Hardware und der in dieser Arbeit entwickelten Software erfüllen?

• Ist Gazebo geeignet um einen quadrupeden Roboter innerhalb der gesetzten Tole-
ranzen abzubilden?

• Lassen sich Gangarten Schritt und Trott auf Basis der entwickelten Plattform ver-
gleichen und bewerten?

1.3 Verwandte Arbeiten

Der Bereich der quadrupeden Robotik ist, wie bereits erwähnt, ein sehr aktives For-
schungsfeld. In den letzten Jahren sind viele Arbeiten zu unterschiedlichen Aspekten von
vierbeinigen Robotern erschienen. So beschäftigt sich die Arbeit ”Mini Cheetah: A Plat-
form for Pushing the Limits of Dynamic Quadruped Control” [Katz u. a., 2019] mit dem
Design eines vierbeinigen Roboters, der auf Agilität ausgelegt ist.

2

1 Einleitung

Ein größerer Roboter mit mehr Tragkraft wird in ”ANYmal: A Highly Mobile and Dy-
namic Quadrupedal Robot” [Hutter u. a., 2016] vorgestellt.

Auch in der Industrie werden Quadrupeds mittlerweile verwendet. ”Spot” von Boston
Dynamics wird in einigen Bereichen als Inspektionsroboter eingesetzt. Unitree Robo-
tics hat mit der A- und GO-Reihe eine für Forschungszwecke deutlich kostengünstigere
Alternative zu den oben genannten Robotern auf den Markt gebracht.

Abbildung 1.1: Fotos von MIT ”Mini Cheetah”, Boston Dynamics ”Spot”, ”Unitree A1”
und ETH Zürich ”ANYmal” aus den jeweiligen Veröffendlichungen

Neben der zum Beispiel beim MIT ”Mini Cheetah” oder ”ANYmal” verwendeten Anord-
nung von Achsen gibt es noch andere Geometrien, an denen geforscht wird. So nutzt der
Roboter aus ”System Design and Testing of the Hominid Robot Charlie” [Kuehn u. a.,
2016] neben einer beweglichen Wirbelsäule auch eine größere Anzahl an Achsen in den
Extremitäten.

3

1 Einleitung

Die ETH Zürich hat neben ”ANYmal” auch den Roboter ”SpaceBok” in der Arbeit ”Space-
Bok: A Dynamic Legged Robot for Space Exploration” [Arm u. a., 2019] entwickelt. Die-
ser ist auf Fortbewegung durch Sprünge ausgelegt und dient als Versuchsplattform für
potenzielle Anwendungen von ähnlichen Robotern auf anderen Planeten.

Eine komplett andere Herangehensweise an die verbauten Aktuatoren wird in ”A soft
quadruped robot enabled by continuum actuators” [Muralidharan u. a., 2021] verwendet.
Durch die Verwendung von elektrisch betriebenen biegsamen Aktuatoren sind die Beine
des Roboters nicht starr.

Neben den mechanischen Eigenschaften der Roboter gibt es auch viele Arbeiten, die
sich mit dem Laufen von vierbeinigen Robotern beschäftigen. ”Extreme Parkour with
Legged Robots” [Cheng u. a., 2023] nutzt zum Beispiel einen rein auf neuronalen Net-
zen basierenden Ansatz für die Steuerung von Bewegungen, um einen Unitree A1 über
unterschiedlichste Hindernisse laufen zu lassen.

Die Übergänge zwischen unterschiedlichen Gangarten werden in ”Gaits and gait transiti-
ons for legged robots” [Haynes und Rizzi, 2006] untersucht. Hierbei werden anhand einer
sechsbeinigen Roboterplattform Übergänge zwischen Gangarten gesucht, ohne dass der
Roboter stehenbleibt.

Die zusammenfassende Arbeit ”A survey of the development of quadruped robots: Joint
configuration, dynamic locomotion control method and mobile manipulation approach”
[Chai u. a., 2022] schafft einen Überblick über unterschiedliche aktuelle Ansätze in der
quadrupeden Robotik. Hierunter sind Themen wie die historische Entwicklung, Gelenk-
konfigurationen, Gangarten, Steuerungsmethoden und Manipulatoren auf quadrupeden
Robotern.

1.4 Übersicht

Für diese Arbeit wird ein kaskadierender Ansatz gewählt, um die Bearbeitung der ein-
zelnen Themen zu strukturieren und verständlicher zu machen. Entsprechend wird in
einigen Kapiteln eine Evaluation der Zwischenergebnisse der jeweils durchgeführten Ver-
suche vorgenommen. Am Ende der Arbeit werden die Zwischenergebnisse zusammenge-
fasst bewertet.

4

1 Einleitung

Um neben dem Inhaltsverzeichnis eine Übersicht über die Arbeit zu geben, folgt eine
kurze Zusammenfassung des Inhalts der einzelnen Kapitel:

• Grundlagen enthält eine Übersicht über das Basiswissen, das für das Verständnis
der Arbeit notwendig ist, sowie eine kurze Vorstellung einer alternativen Methode
zur Berechnung der Kinematik.

• Hardware und Hardwareansteuerung beschäftigt sich mit dem für diese Ar-
beit entwickelten Roboter. Es beinhaltet eine kurze Vorstellung der Mechanik und
der verbauten Teile, sowie die Programmierung der Hardwareabstraktion für die
Motoren. Zudem wird die Einstellung der Umrichter behandelt und experimentell
mit und ohne Last überprüft.

• Simulation von Motoren beinhaltet eine kurze Übersicht über die Simulation
von Motoren. Durch Vergleiche mit einem realen Motor wird die Genauigkeit der
Simulation sichergestellt.

• Bewegungskoordination behandelt die Berechnungen von Motorpositionen zu
Gelenkwinkeln, die Kalibrierung der Beine sowie die Kinematiken. Zudem werden
Begrenzungen im Konfigurationsraum des Roboters festgelegt. Über mehrere Ex-
perimente wird die Genauigkeit der Beinbewegungen mit und ohne Last, sowie die
maximale Geschwindigkeit der Beine überprüft.

• Simulation des Gesamtsystems beschäftigt sich mit der Simulation des gesam-
ten Roboters. Es werden die auftretenden Unterschiede zwischen der Simulation
und dem realen Roboter durch mehrere Versuche untersucht. So das sichergestellt
ist, dass die Simulation den Roboter innerhalb der gesetzten Toleranzen abbilden
kann.

• Robotersteuerung gibt eine grobe Übersicht über die Softwarearchitektur, die die
Ansteuerung des Roboters verwaltet. Hierfür werden die wichtigsten Komponenten
dieser Software beschrieben.

• Gangarten und erste Schritte beschreibt die für diese Arbeit implementierten
Gangarten. Zudem werden diese Gangarten auf ihre Maximalgeschwindigkeit, ihre
Stabilität sowie ihre Laufruhe untersucht.

• Fazit beinhaltet eine Zusammenfassung, sowie die Bewertung der Ergebnisse im
Hinblick auf die Zielsetzung der Arbeit. Zudem wird ein Ausblick auf mögliche
Weiterentwicklungen gegeben.

5

2 Grundlagen

In den nachfolgenden Abschnitten werden Grundlagen und Programme beschrieben, die
für das Verständnis der Arbeit notwendig sind. Diese Beschreibungen sollen zunächst nur
einen generellen kurzen Einblick in die Themen geben, genauere Informationen können
den Quellen entnommen werden.

2.1 Gangarten

Nach ”Gaits and gait transitions for legged robots” [Haynes und Rizzi, 2006] ist ein Gait
oder auf deutsch eine Gangart oder ein Gang, ein zyklisches Bewegungsmuster, das zu
einer Fortbewegung führt. Für verschiedene Anzahlen von Beinen und Geschwindigkeiten
ergeben sich naturgemäß unterschiedliche Gangarten. Abbildung 2.1 zeigt Gangarten, die
sich speziell auf Hunde beziehen. Die Analyse der Gangarten stammt aus ”Canine Gait
Analysis” [Carr und Dycus, 2016]. Die Art der Darstellung basiert auf dem Buch ”The
Exterior of the Horse” [Goubaux und Barrier, 1892], welches sich unter anderem mit dem
Laufverhalten von Pferden beschäftigt.

• Schritt: Zwei oder Drei Beine haben gleichzeitig Kontakt zum Boden.

• Trott: Je zwei diagonal zueinander liegende Beine haben Bodenkontakt, beim
Wechsel der Beinpaare gibt es eine Schwebephase. Trott ist die effizienteste der
Gangarten von Hunden.

• Passgang: Jeweils die beiden Beine einer Seite haben Bodenkontakt, beim Wechsel
gibt es eine Schwebephase. Passgang kommt nur selten bei Hunden vor.

• Galopp: Je zwei Beine hinten und danach vorne berühren leicht versetzt nachein-
ander den Boden, ein Teil der Zeit sind alle Beine in der Luft.

6

2 Grundlagen

Abbildung 2.1: Beispielgangarten für Hunde (Schritt, Trott, Passgang, Galopp)

In der Abbildung 2.1 kann der Kontakt der Füße mit dem Boden über die Zeit für
unterschiedliche Gangarten abgelesen werden. Die gezeigten Abläufe wiederholen sich
dabei zyklisch.

2.2 ROS

Das Robot Operating System (ROS) ist ein Framework für die Entwicklung von Robo-
tern. Es wurde ab 2007 im Rahmen des Stanford Artificial Intelligence Robot (STAIR)
Projektes der Universität Stanford entwickelt. Seit 2012 befindet es sich unter der Auf-
sicht der Open Source Robotics Foundation, welche das Projekt als Open-Source-Projekt
weiterführt. Das Ziel von ROS ist es, eine einheitliche Umgebung für die Entwicklung
von Software in der Robotik zu schaffen.

Unter anderem stellt ROS eine Kommunikationsschicht auf Publish-Subscribe-Basis zwi-
schen Prozessen bereit. Zudem existieren bereits große Mengen Open-Source-Pakete, die
unterschiedlichste Aufgaben wie unter anderem Navigation, Kartierung und Pfadplanung
beinhalten. Eine Übersicht der Pakete liefert die ROS Paketbibliothek [Open Robotics,
2025b]. Die zugänglichen Ressourcen für quadrupede Roboter sind jedoch begrenzt und
sehr spezialisiert. Aus diesem Grund wird für diese Arbeit von der Hardwareabstrak-
tion bis hin zum Laufen des Roboters nur bei allgemeineren Problemen auf öffentliche
Ressourcen zurückgegriffen.

7

2 Grundlagen

Um die grundlegenden Konzepte in ROS zu verstehen, werden an dieser Stelle einige
Grundbegriffe aus der ROS-Dokumentation [Open Robotics, 2025a] vorgestellt.

• Package: Software in ROS wird in Packages organisiert. Ein Package kann unter
anderem Nodes, Messages und Services enthalten.

• Node: Eine Node ist ein Prozess, der eine bestimmte Aufgabe erfüllt. Sie kommu-
niziert mittels Messages über Topics und kann Services und Parameter anbieten
und nutzen.

• Message: Eine Message ist ein definierbarer Datentyp, der unter einer Topic ver-
sendet wird.

• Topic: Eine Topic ist ein Name, über den Messages gesendet und empfangen wer-
den.

• Service: Ein Service ist ein Remote Procedure Call über Messages, bei dem nur
der Servicename, nicht aber der genaue Empfänger bekannt ist.

• Parameter: Der ROS Parameter Server erlaubt es, für Programme benötigte Pa-
rameter mit Namen in ROS zu hinterlegen und abzurufen.

• Namespace: In ROS werden Namespaces genutzt, um eine hierarchische Struktur
aus allen Ressourcen zu bilden.

Abbildung 2.2: Beispiel einer Publish-Subscribe-Beziehung zweier Nodes aus der ROS
Dokumentation [Open Robotics, 2025a].

Abbildung 2.2 stammt aus dem sogenannten Node Graph eines Kapitels der ROS Tuto-
rials. In der Darstellung sind die Nodes /teleop_turtle und /turtlesim zu sehen.
/teleop_turtle published eine Message auf der Topic command_velocity im Na-
mespace /turtle1. /turtlesim subscribed auf diese Topic und empfängt somit die
Nachrichten des Publishers.

8

2 Grundlagen

Die Inhalte der Messages können vielfältig sein, so können primitive Datentypen, aber
auch Arrays flexibler Größe versendet werden. Inhalte können wie im Beispiel Zielge-
schwindigkeiten, aber auch große Datenmengen wie zum Beispiel Bilder sein. Es sollte
für jedes Topic jedoch in den meisten Anwendungsfällen nur einen Publisher geben und
immer nur eine Art Message pro Topic übertragen werden.

2.3 Gazebo

Gazebo ist eine 3D-Simulationsumgebung, die bereits sehr gut in ROS integriert ist.
Hierdurch wird es ermöglicht, Roboter in einer definierbaren Umgebung zu simulieren.
Von ROS aus ist es möglich, Aktuatoren anzusteuern. Zudem können Sensordaten in der
Simulation erzeugt und an ROS weitergegeben werden. Es existiert bereits eine große
Menge an Plugins, die diese Sensoren und Aktuatoren simulieren. Eines dieser Plugins
wird in Kapitel 4.1 genutzt, um die Motoren des Roboters zu simulieren.

2.4 Xacro

Für die Simulation in Gazebo muss eine Beschreibung der Robotergeometrie als Uni-
fied Robot Description Format (URDF) vorliegen. URDF ist eine Beschreibungssprache,
die auf der Extensible Markup Language (XML) aufbaut. Sie unterstützt jedoch keine
Variablen, Berechnungen oder Wiederverwendbarkeit. Da die Beschreibung von großen
Robotern somit in URDF sehr umständlich ist, kann mittels XML Macros (Xacro) die Be-
schreibung vereinfacht werden. Die Xacro-Datei wird im Anschluss in eine URDF-Datei
umgewandelt.

In einer Xacro oder URDF Datei können unter anderem die Gelenke und Verbindungen
zwischen Gelenken definiert werden. Diese nennen sich Links und Joints des Roboters.
Für eine Simulation werden zusätzlich Kollisionen und Visualisierungen definiert. Zudem
werden die Gazebo-Plugins für Sensoren oder Aktuatoren direkt in die Beschreibung des
Roboters mit aufgenommen.

9

2 Grundlagen

2.5 Entwurfsmuster

Bei der Implementierung der einzelnen Komponenten werden einige Entwurfsmuster oder
auch Pattern verwendet. Diese Muster stammen aus dem Standardwerk ”Entwurfsmuster:
Elemente wiederverwendbarer objektorientierter Software” [Gamma u. a., 2002]. Die für
diese Arbeit wichtigsten Entwurfsmuster sind:

• Factory zum Erzeugen von Objektstrukturen

• Composition zum Zusammenfassen von Objekten in hierarchischen Strukturen

• Strategie zum Austauschen unterschiedlicher Implementationen zur Laufzeit

• Adapter zum Adaptieren von Interfaces, die nicht zueinander passen

2.6 Denavit-Hartenberg-Konvention

Ein wichtiges zu lösendes Problem für Roboter ist die Berechnung der Position des End-
effektors. Hierbei werden die Gelenkwinkel des Roboters genutzt, um nacheinander die
Positionen der Gelenke bis hin zum Endeffektor zu berechnen. Klassischerweise wird eine
Matrixtransformation genutzt, um die Positionen zu berechnen [Siciliano und Khatib,
2008, p.13]. Diese Berechnung nennt sich auch Forward Kinematik. Die Menge an Pa-
rametern, die benötigt werden, um die Transformationen für eine kinematische Kette
zu definieren, ist jedoch sehr groß. Aus diesem Grund wurde von Jacques Denavit und
Richard S. Hartenberg eine Methode entwickelt, für Lower-Pair-Gelenke [Siciliano und
Khatib, 2008, p.19]. die Transformationen zu vereinfachen. Zu den Lower-Pair-Gelenken
gehören auch Revolute (Rotation) und Prismatic (Translation). Die hierfür verwendeten
Parameter nennen sich Denavit-Hartenberg (DH)-Parameter [Siciliano und Khatib, 2008,
p.23].

In der Arbeit ”Inverse Kinematic Analysis of a Quadruped Robot” [Sen u. a., 2017] wur-
de eine Kinematik auf Basis der DH Konvention entwickelt. Der in der Veröffentlichung
verwendete Roboter ist vom Aufbau der Kinematik bis auf die Maße identisch mit dem
in dieser Arbeit entwickelten Roboter. Die DH-Parameter sind in Abbildung 2.3 darge-
stellt und können mit der im ”Handbook of Robotics” [Siciliano und Khatib, 2008, p.23]
beschriebenen Methode für die Berechnung der Transformationen genutzt werden.

10

2 Grundlagen

Link ai αi di θi

0-1 0 L1 0 θ1

1-2 −π/2 0 0 −π/2

2-3 0 L2 0 θ2

3-4 0 L3 0 θ3

Abbildung 2.3: Darstellung und DH-Parameter für die Kinematik des Quadruped-Beines
aus ”Inverse Kinematic Analysis of a Quadruped Robot” [Sen u. a., 2017]

2.7 Stabilität und stabile Zyklen

Eines der Grundprinzipien, auf denen das Stehen und Gehen eines Roboters basiert, ist
das Stützpolygon. Dieses ist die konvexe Hülle der Kontaktpunkte mit dem Boden. Bei
laufenden Robotern sind diese Kontaktpunkte die Füße. Eine Position des Roboters ist
statisch stabil, wenn die Projektion des Schwerpunktes (CoM) entlang der Erdanziehung
innerhalb des Stützpolygons liegt. Eine Erweiterung dieses Konzepts ist es, dass das
Stützpolygon den Zero Moment Point (ZMP) enthält. Der ZMP berücksichtigt neben der
Gravitation auch andere Kräfte, die auf den Roboter wirken. Er beschreibt den Punkt,
bei dem das resultierende Moment auf den Roboter null ist [Chai u. a., 2022, p.4].

Abbildung 2.4: Darstellung des Stützpolygons und Schwerpunktes eines sechsbeinigen
Roboters aus ”Handbook of Robotics” [Siciliano und Khatib, 2008, p.378]

11

2 Grundlagen

Bei einer Beschleunigung des Roboters muss darauf geachtet werden, dass der ZMP
innerhalb des Stützpolygons bleibt. Ist dies nicht der Fall, kann der Roboter umkippen.

Die Bewegung eines Roboters ohne statische Stabilität ist bedeutend komplexer. Es lassen
sich aber auch statisch nicht stabile Bewegungen finden, die ohne eine Feedbackschleife
in einem gewissen Rahmen selbst stabilisierend sind. Dieses Verhalten nennt sich stabiler
oder semistabiler Zyklus. Hierbei handelt es sich um Grenzzyklen. Ein Grenzzyklus ist
eine geschlossene Kurve, in einem Phasenraum, die periodisch durchlaufen wird [Adamy,
2009, p.15].

Abbildung 2.5: Darstellung eines Grenzzyklus in einem Phasenraum aus ”Nichtlineare
Regelung” [Adamy, 2009, p.16]

Die Abbildung 2.5 zeigt einen stabilen, semistabilen und instabilen Grenzzyklus in einem
zweidimensionalen Phasenraum. Hierbei bewegt sich das System entlang der Pfeilrich-
tungen. Zu sehen ist, dass das System bei einem stabilen Grenzzyklus immer zum Zyklus
zurückkehrt. Bei einem semistabilen Zyklus kehrt das System nur unter bestimmten Be-
dingungen zurück. Bei einem instabilen Grenzzyklus entfernt sich das System schon bei
kleinsten Abweichungen vom Zyklus.

Für die in dieser Arbeit durchgeführten Untersuchungen von Gangarten besteht der Pha-
senraum aus den Abweichungen der Position des Roboters von einer Referenzposition
[Siciliano und Khatib, 2016, p.1210].

12

3 Hardware und Hardwareansteuerung

3.1 Übersicht über den Roboter

Der für diese Arbeit weiterentwickelte vierbeinige Roboter besteht aus 12 Gelenken, 3
pro Bein. Die Beine tragen ein starres Chassis, auf dem unterschiedlichste Komponenten
angebracht werden können. Die gesamte Konstruktion ist teils aus PETG 3D-Gedruckt
und teils mittels einer Portalfräse aus Aluminium gefräst. Für die Versuche wird der Ro-
boter in einen Stahlrahmen eingehängt. Somit können Tests durchgeführt werden, ohne
dass der Boden berührt werden kann. Für Tests mit Bodenkontakt wird eine zusätz-
liche Plattform unter den Roboter gestellt. Somit kann der Roboter in der Halterung
eingehängt bleiben und gleichzeitig frei stehen.

Abbildung 3.1: Foto des Roboters in einer Halterung mit der Plattform für Tests mit
Bodenkontakt

13

3 Hardware und Hardwareansteuerung

3.2 Sicherheitsanmerkungen

Die gesamte Boardelektronik befindet sich mit 44,4V, 24V und 19V DC nach DIN EN
61140 noch in der Schutzklasse 3 (Schutzkleinspannung, <50V AC und <120V DC).
Dennoch geht von den Batterien bei fehlerhaftem Laden und Entladen, sowie durch me-
chanische Einwirkungen ein Brandrisiko aus. Die Mechanik der verwendeten Plattform ist
nicht fingersicher gebaut und nicht als kollaborativer Roboter gedacht. Demnach können
die Bewegungen der Motoren mit entsprechenden Übersetzungsverhältnissen zu Verlet-
zungen führen. Daher werden alle Experimente an der Hardware mit genügend Sicher-
heitsabstand zu Menschen und unter Brandschutzmaßnahmen durchgeführt. Zusätzlich
befindet sich ein Not-Aus-Schalter direkt über dem Roboter, der die Versorgungsspan-
nung der Motoren unterbricht.

3.3 Bauteile und Komponenten

Bei mobilen Robotern gibt es eine Vielzahl von Bauteilen mit unterschiedlichen Anfor-
derungen. Um eine Übersicht über die Komponenten und Entwurfsentscheidungen zu
geben, werden in diesem Abschnitt einige wichtige Komponenten sowie die Entscheidun-
gen für deren Verwendung beschrieben. Diese Liste ist nicht erschöpfend, sondern soll
nur einen Überblick über einige der Entscheidungen vermitteln.

3.3.1 Boardcomputer

Als Boardcomputer wird ein Intel NUC 10i5 verwendet (Abbildung 3.2a). Das auf dem
NUC laufende Betriebssystem ist Ubuntu 20.04 Focal Fossa, auf dem ROS in der Noetic
distribution installiert ist. Der verbaute Intel Core i5-10210U Prozessor ist mit 8 Threads
und maximal 4,2 GHz leistungsstark genug, um auch die Simulation des Roboters und
die eigentliche Steuerung laufen zu lassen. Zudem ist der NUC mit einem TDP von 25
Watt auch für akkubetriebene Anwendungen geeignet.

14

3 Hardware und Hardwareansteuerung

(a) Intel NUC 10i5 Computer (b) Intel Realsense T265 Tracking Kamera

(c) AMS-AS5047P Encoder (d) ODrive 3.6 Umrichter

(e) Turnigy Multistar 9235-100kV Motor (f) Batterien mit Ladegerät

Abbildung 3.2: Fotos unterschiedlicher im Roboter verbauter Komponenten

15

3 Hardware und Hardwareansteuerung

3.3.2 Tracking Kamera

Um die Position des Roboters im Raum festzustellen, ist eine Intel RealSense T265
Tracking-Kamera in der Front des Roboters verbaut. Diese nutzt zwei Weitwinkelkameras
sowie eine Inertial Measurement Unit (IMU) zur Feststellung der Position (Abbildung
3.2b).

3.3.3 Encoder

Die verwendeten Encoder sind Halleffekt ABI Encoder mit dem Namen AMS-AS5047P
(Abbildung 3.2c). Diese geben bei Drehungen Impulse auf zwei Kanälen (A und B) aus,
welche um 90 Grad phasenverschoben sind. Dies ermöglicht die Bestimmung der Dreh-
richtung anhand der Reihenfolge der Pulse. Zudem kann der Winkel der Drehung durch
die Anzahl der Pulse bestimmt werden. In einer Umdrehung des Motors werden 4096
Pulse ausgegeben. Zudem wird einmal pro Umdrehung ein Index (I) Signal ausgegeben,
das die Feststellung der absoluten Position an dieser Stelle ermöglicht. Die Entscheidung
für diese Encoder ist ein Kompromiss zwischen Kosten und Anforderungen.

Optimal für diese Anwendungen wären Absolute-Multiturn-Encoder, welche die Position
über mehrere Umdrehungen auch im ausgeschalteten Zustand erfassen können. Aufgrund
der hohen Kosten und großen Bauformen wurden diese jedoch nicht verwendet. Die dar-
aus resultierende Notwendigkeit von Kalibrierungen werden in Abschnitt 5.2 genauer
beschrieben.

Alternativ könnten kostengünstige optische ABI Encoder verwendet werden, die in ihrer
Bauform jedoch ebenfalls sehr groß und damit nicht geeignet sind.

3.3.4 Umrichter

ODrive ist ein Open-Source-Projekt von ODrive Robotics. Es handelt sich um eine kos-
tengünstige und kompakte Lösung, um BLDC Motoren anzusteuern. Im Roboter sind
6 ODrive 3.6 Umrichter verbaut (Abbildung 3.2d). Im Gegensatz zu klassischen BLDC-
Controllern ist ODrive auf einen Closed-Loop-Betrieb ausgelegt. Damit können die Mo-
toren auch im Stillstand ein hohes Drehmoment erzeugen. Hierfür wird ein Encoder
benötigt, welcher die Position des Motors erfasst.

16

3 Hardware und Hardwareansteuerung

Ein alternativer Umrichter für BLDC-Motoren ist beispielsweise ein VESC, der in der
Arbeit ”Development of Open-Source Motor Controller Framework for Robotic Applica-
tions” [Choi, 2020] mit weiteren Umrichtern verglichen wird. Da diese jedoch nicht auf
Closed-Loop-Betrieb ausgelegt sind, sind sie für diese Anwendung nicht ohne weiteres
geeignet. Zudem gibt es industrielle Umrichter von Herstellern wie Siemens, ABB oder
SEW, welche in der Regel sehr teuer und groß sind. Damit sind sie meistens für die
mobile Robotik ungeeignet.

3.3.5 Motoren

Die verwendeten Motoren sind Turnigy Multistar 9235-100kV BLDC-Motoren (Abbil-
dung 3.2e). Diese zeichnen sich durch einen niedrigen kV-Wert (rpm/V) aus, sodass sich
bei 44, 4V Versorgungsspannung maximale Drehzahl von 44400 rpm ergibt. Zudem kann
laut Tests von ODrive Robotics aus dem Stand ein Drehmoment von 4.71Nm erzeugt
werden [Odrive Robotics, 2021]. Aufgrund der beschränkten Auswahl von Motoren, die
ein hohes Drehmoment bei niedrigen Drehzahlen erzeugen können, gab es zur Zeit der
Konstruktion der Hardware keine Alternativen zu den verwendeten Motoren, die nicht
bedeutend teurer sind. Mittlerweile gibt es Nachbauten der im Mini Cheetah verwende-
ten Motoren [Katz, 2018]. Diese könnten eine Alternative zu den Turnigy Motoren sein
und würden ebenfalls die Umrichter und Encoder ersetzten.

3.3.6 Motor Hubs

Ein Grundkonzept des Roboters sind die sogenannten ”Motor Hubs” (Abbildung 3.3 und
3.4). In diesen werden die für den Betrieb zweier Motoren notwendigen Bauteile in einer
Einheit zusammengefasst. Das Hauptziel der Hubs ist es, den Entwicklungsaufwand der
Hardware zu reduzieren. Es werden 6 Hubs verbaut, die mechanisch, elektronisch und
auch in der Software gleich aufgebaut sind. Sie unterscheiden sie sich nur durch die
Seriennummern der Umrichter und die Einbauweise im Roboter.

17

3 Hardware und Hardwareansteuerung

Abbildung 3.3: Querschnitt eines Motor Hubs mit Beschriftung der Komponenten

Jeder Motor Hub besteht aus einem ODrive 3.6, welcher als Umrichter je zwei Turnigy
Multistar 9235-100kV BLDC-Motoren versorgt. Mittels der AMS-AS5047P Encoder bil-
den diese drei Komponenten ein Closed-Loop-System. Dieses ermöglicht eine genaue Po-
sitionierung des Motors auch unter Last. Zudem besitzen die Hubs die Möglichkeit, die
Motoren aktiv zu kühlen. Zur Vereinfachung der Verkabelung ist ein PCB verbaut, das
sich im hinteren Bereich des Hubs befindet. Die Motoren haben eine maximale Drehzahl
von 44.400 rpm. Da für diese Anwendung nur eine geringere Drehzahl benötigt wird, ist
in den Hubs ein Planetengetriebe mit einer Untersetzung von 5/1 integriert. Dies redu-
ziert die maximale Drehzahl auf 8880 rpm oder auch 148 Umdrehungen pro Sekunde,
welche wiederum in der Software auf 40 Umdrehungen pro Sekunde limitiert sind. Eine
weitere Reduktion der Drehzahl findet außerhalb der Hubs statt.

Nach außen haben die Hubs einen USB-B Anschluss für die Kommunikation mit dem
Boardcomputer und einen XT60 Anschluss für die Versorgungsspannung.

Für die Hubs werden zwei unterschiedliche Konfigurationen in Erwägung gezogen. Bei der
ersten wird der ODrive über UART mit einem Teensy 4.0 Mikrocontroller verbunden,
der im Motor Hub eingebaut ist. Dieser Teensy übernimmt die Kommunikation mit
ROS über eine rosserial [ROS device drivers, 2025] Node, die es erlaubt, die normalen
ROS-Messages und Services über Serial einem Mikrocontroller zur Verfügung zu stellen.
Außerdem ermöglicht der Mikrocontroller eine Statusmitteilung der Motoren über LEDs,
die an der Ober- und Unterseite des Hubs angebracht sind.

18

3 Hardware und Hardwareansteuerung

In der zweiten Konfiguration werden die Teensys aus der Kette eliminiert. ODrive-
Umrichter bieten ein sogenanntes Native Protocol, für das es eine durch den Python
Package Manager erhältliche Python-Library gibt, die die ODrive-Steuerung über ein
Python-Dictionary ermöglicht. Diese Konfiguration ist jedoch nicht so flexibel wie die
erste, da der Teensy aus der Kommunikation mit dem Boardcomputer ausgeschlossen
wird. Zudem funktionieren die LEDs und die Lüfter nicht mehr.

Der ausschlaggebende Punkt für die Wahl des Ansatzes ist, dass mit dem Teensy die
Boardspannung nur bei maximal 24V liegen darf. In der zweiten Konfiguration kann die
Spannung auf 44.4V angehoben werden, da die Komponenten die diese Spannung nicht
vertragen, nicht mehr verbaut sind. Somit wird das maximale Drehmoment der Motoren
erhöht. Eine weitere Revision des PCBs im Hub kann auch die anderen Komponenten
wieder nutzbar machen.

Abbildung 3.4: Fotos eines Motor Hub mit verbautem Teensy Mikrocontroller

3.3.7 Energieversorgung

Die Versorgung der Boardelektronik wird durch zwei 6S Lithium-Polymer-Akkus bereit-
gestellt (Abbildung 3.2f). Durch die Akkus entsteht eine Nennspannung von 44, 4V , diese
wird direkt zur Versorgung der Umrichter verwendet. Der verbaute Boardcomputer wird
mittels eines Step-Down-Converters auf 24V und 19V versorgt. Zum Schutz der Akkus
sind diese mit einer 120A und die Umrichter je mit einer 20A Sicherung abgesichert.
Eine Übersicht über die Versorgung gibt Abbildung 3.5.

19

3 Hardware und Hardwareansteuerung

Abbildung 3.5: Übersicht über die Versorgung des Roboters

3.3.8 Beine

Die Beine sind nach ihrer Position benannt: Front (F) oder Rear (R) gefolgt von Left (L)
oder Right (R). Die Achsen sind nach ihrem Bein und der Position in ihrer kinematischen
Kette benannt. Zum Beispiel ist FL3 somit am Bein vorne links das unterste Gelenk.

Abbildung 3.6: Übersicht über den Aufbau des Beines FL mit besonderem Augenmerk
auf die Kraftübertragung von den Motoren zu den Gelenken

20

3 Hardware und Hardwareansteuerung

Das Design der Beine muss sich an die Motor Hubs anpassen. Da jeder Hub zwei di-
rekt nebeneinander liegende Motoren antreibt, ist es nicht möglich, dass die Motoren
ihre Gelenke, wie beispielsweise bei ANYmal von der ETH Zürich, direkt antreiben. Aus
diesem Grund wird das Gelenk 3 über eine Achse angetrieben, welche es abhängig von
der Position des Gelenk 2 macht. In Abbildung 3.6 sind die Gelenke mit den benötigten
Komponenten zur Kraftübertragung von den Motoren dargestellt. Auf die Folgen dieser
Abhängigkeit zwischen den Gelenken wird im Rahmen der Berechnung der Achsposi-
tionen eingegangen (Abschnitt 5.1). Der Vorteil dieses Ansatzes ist, dass die schweren
Motoren nah am Chassis angebaut werden können. Somit müssen sie bei einer Bewegung
der Beine nicht mit beschleunigt werden.

Abbildung 3.7: Foto eines Hub mit angebautem Bein

3.3.9 Nutzereingaben

Zur Steuerung des Roboters wird je nach Anwendung eine 3Dconnexion SpaceMouse
oder ein Xbox One Controller verwendet (Abbildung 3.8). Die SpaceMouse ermöglicht
eine erleichterte Steuerung des Roboters in 6 Freiheitsgraden (DoF). Der Xbox One
Controller ist intuitiver für Richtungsvorgaben beim Laufen. Die unterstützten Controller
lassen sich jedoch auch im Nachhinein durch die in Kapitel 7 vorgestellte Architektur
leicht erweitern.

21

3 Hardware und Hardwareansteuerung

Abbildung 3.8: Xbox One Controller und 3Dconnexion SpaceMouse

3.4 Motoransteuerung

Eine der grundlegendsten Vorgehensweisen bei der Entwicklung der Software für techni-
sche Systeme ist das Erschaffen von Abstraktionen. Diese erlauben es, teilweise komplexe
Probleme auf eine einfachere Schnittstelle zu reduzieren. In diesem Kapitel wird die Ab-
straktion der Motoransteuerung beschrieben.

Die Ansteuerung der Motoren erfolgt gemäß der gewählten Konfiguration für die Motor
Hubs über die Kommunikation mit dem ODrive native Protocol. Als Abstraktionsebe-
ne wird eine ROS Node mit dem Namen odrive_ros_bridge geschrieben, die die
Kommunikation mit den ODrives übernimmt.

An die Node gibt es grundlegende Anforderungen, die für die Anwendbarkeit und die
Wiederverwendbarkeit wichtig sind.

1. Die Node muss mit mindestens 6 ODrives kompatibel sein.

2. Die ODrives sollen in ROS transparent sein, die Ansteuerung soll ausschließlich an
die Motoren gerichtet sein.

3. Einzelne Motoren müssen sich über die Konfiguration ein- und ausschalten lassen.

4. Parameter müssen über Dynamic Reconfigure [ROS core stacks, 2025] einstellbar
sein.

5. Alle Funktionalitäten, die für die Motorpositionierung relevant sind, sollen in ROS
zugänglich sein.

22

3 Hardware und Hardwareansteuerung

Anzumerken ist, dass die Bridge speziell für Positionierungsanwendungen entworfen ist.
Daher ist es nicht Teil der Anforderungen, alle Funktionalitäten des ODrive in ROS
wiederzugeben. Es werden bereits einige Vereinfachungen und Komfortfunktionen von
der Bridge übernommen.

1 # MotorTarget . msg
2

3 uint8 MOTOR_STATE_IDLE=0
4 uint8 MOTOR_STATE_ACTIVE=1
5 uint8 MOTOR_STATE_MOTOR_CAL=2
6 uint8 MOTOR_STATE_ENCODER_CAL=3
7

8 std_msgs/Header header
9 uint8 motor_state

10 f l o a t 3 2 po s i t i o n
11 f l o a t 3 2 v e l o c i t y_ l im i t
12 f l o a t 3 2 torque_l imit
13

1 # MotorFeedback . msg
2

3 uint8 MOTOR_STATE_UNDEFINED=0
4 uint8 MOTOR_STATE_IDLE=1
5 uint8 MOTOR_STATE_ACTIVE=2
6 uint8 MOTOR_STATE_MOTOR_CAL=3
7 uint8 MOTOR_STATE_ENCODER_CAL=4
8 uint8 MOTOR_STATE_ERROR=5
9

10 std_msgs/Header header
11 uint8 motor_state
12 s t r i n g status_message
13 f l o a t 3 2 po s i t i o n
14 f l o a t 3 2 v e l o c i t y
15 f l o a t 3 2 torque
16 bool motor_cal ibrated
17 bool encoder_ca l ibrated
18

Abbildung 3.9: odrive_ros_bridge Target und Feedback Messages je Motor

Um die Kommunikation zwischen der Bridge und anderen Nodes zu ermöglichen, wer-
den zwei Messages benötigt (Abbildung 3.9). Die Bridge published je Motor eine Mo-

torFeedback-Message und subscribed zu der dazugehörigen MotorTarget-Message.
Namen der zu verwendenden Topics können über den Parameterserver an die Bridge
mitgegeben werden. Die Identifikation der ODrives wird durch die Seriennummer vor-
genommen, die ebenfalls auf dem Parameterserver abgelegt wird. Durch eine Namens-
konvention der Parameter können unterschiedlich viele Seriennummern und Achsnamen
angegeben werden.

Dynamic Reconfigure [ROS core stacks, 2025] erlaubt es, Parameter die zur Laufzeit
geändert werden sollen, über ROS verwalten zu lassen. Mittels Kommandozeilenbefehlen
oder über ein Plugin der ROS-Qt (RQT) Nutzeroberfläche lassen sich diese Parameter
ändern. Um Dynamic Reconfigure zu nutzen, müssen alle Parameter in eine .cfg Datei
eingetragen werden, die mit übersetzt wird. Dies erzeugt jedoch einen Widerspruch zu
der Anforderung, dass die Bridge unterschiedliche Anzahlen an Motoren unterstützen

23

3 Hardware und Hardwareansteuerung

soll. Das DDynamic Reconfigure (Dynamic Dynamic Reconfigure) Paket [PAL Robotics
S.L., 2020] erlaubt es, zur Laufzeit eine beliebige Menge an konfigurierbaren Parametern
zu erzeugen. Hierbei wird keine .cfg-Datei benötigt.

Eine weitere Aufgabe der Bridge ist es, die Achswerte in ROS zu publishen. Auf die-
se Weise kann die aktuelle Position der Achsen auch aus dem ROS TF-Tree ausgelesen
werden. Der TF-Tree ist eine in ROS standardisierte Methode, um Transformationen zwi-
schen Koordinatensystemen zu verwalten. Nodes können benannte Koordinatensysteme
relativ zu anderen Koordinatensystemen veröffentlichen. Eine jede Node kann dann die
Transformationen zwischen den Koordinatensystemen abfragen. Genauere Informationen
zum TF-Tree sind in der ROS Dokumentation zu finden [Open Robotics, 2025a].

3.5 Motorparametrierung

Die ODrives müssen parametriert werden. Hierzu gehören Einstellungen wie die Spezi-
fikation der Umrichter und Motoren, aber auch die Einstellung der integrierten Regler.
Eine Übersicht der Parameter findet sich in Tabelle 3.1. Das Ziel der Parametrierung
ist der Schutz der Hardware und das möglichst schnelle Erreichen eines neuen Sollwerts,
ohne dabei zu überschwingen. Außerdem soll bei Krafteinwirkungen auf den Motor die
eingestellte Position schnell wieder erreicht werden.

Parameter Beschreibung Wert
current_lim Strombegrenzung in A 30
vel_limit Geschwindigkeitsbegrenzung in turns/s 40
vel_gain Geschwindigkeitsregler Proportionalanteil in

Nm/(turn/s)

TBD

vel_int_gain Geschwindigkeitsregler Integralanteil in
Nm/((turn/s) · s)

TBD

pos_gain Positionsreglerverstärkung in (turn/s)/turn TBD

Tabelle 3.1: Übersicht über wichtige ODrive Parameter

Die Strom- und Geschwindigkeitslimits werden durch die Hardware vorgegeben. Für die
Einstellung der Regler bietet ODrive ein Konsolentool an, mit dem man die Werte setzen
und die Motoren bewegen kann, um die Resultate zu sehen. Da die odrive_ros_-

bridge dieselbe Funktion bietet, wird das Konsolentool allerdings nicht verwendet.

24

3 Hardware und Hardwareansteuerung

ODrive besitzt für die Positionsregelung drei kaskadierende Regler. Der erste ist der Mo-
torstromregler, dieser wird vom Geschwindigkeitsregler angesteuert, welcher wiederum
vom Positionsregler angesteuert wird (Abbildung 3.10). Ein großer Vorteil von kaska-
dierenden Reglern in der Antriebstechnik ist, dass die Ausgänge der Reglerstufen auf
vorgegebene Limits begrenzt werden können. Auf diese Weise kann die Mechanik vor
Schäden geschützt werden. Für genauere Informationen zu kaskadierenden Reglern und
deren Parametrierung sei auf das ”Taschenbuch der Regelungstechnik” [Lutz und Wendt,
2019] verwiesen.

Abbildung 3.10: Kaskadierende Reglerstruktur des ODrives aus der ODrive Dokumenta-
tion [Odrive Robotics, 2021]

Der Positionsregler ist ein P-Regler. Der Geschwindigkeitsregler und der Stromregler sind
PI-Regler. Parameter des Stromreglers werden für den normalen Betrieb vom ODrive
selbst bestimmt. Die verbleibenden Parameter sind in Tabelle 3.1 aufgelistet.

Die Werte der Regler werden anhand eines Verfahrens bestimmt, welches in der ODrive-
Dokumentation zur Einstellung von Reglern [Odrive Robotics, 2021] beschrieben ist.
Dieses Verfahren ist an die Einstellung von P und PI Reglern nach Ziegler und Nichols
[Lutz und Wendt, 2019, p. 494] angelehnt.

3.5.1 Retrospektive auf einen Fehler in der Parametrierung

An dieser Stelle der Arbeit ist ein Fehler aufgetreten, der zu einem späteren Zeitpunkt
einen der Umrichter zerstört zu haben scheint.

Neben dem Maximalstrom der Motoren über den Parameter current_lim, gibt es den
Parameter current_lim_margin. Ist current_lim erreicht, baut der Motor kein

25

3 Hardware und Hardwareansteuerung

weiteres Drehmoment mehr auf. Werden beispielsweise durch Rekuperation current_-

lim + current_lim_margin überschritten, wird der Motor aus Sicherheitsgründen
abgeschaltet. Die Summe der beiden Werte nennt sich requested_current_ran-

ge. Um den Strom durch die Motoren messen zu können, werden die in die Umrichter
eingebauten Verstärker der Shunts so eingestellt, das sie den gesamten requested_-

current_range Bereich abdecken.

Aus einem unbekannten Grund wurde requested_current_range bei einem Experi-
ment auf einem der Umrichter überschritten. Dies hat wie erwartet den Fehler ERROR_-
CURRENT_SENSE_SATURATION ausgegeben, der besagt, dass der maximale messbare
Bereich der Strommessung überschritten wurde. Nach einem Neustart des Umrichters
erwies sich dieser als defekt und es ließ sich keine Kommunikation mehr herstellen.

Um einen solchen Fehler zu vermeiden, sollte der Wert von current_lim_margin

ebenfalls bei der Parametrierung mit beachtet werden. Hierbei muss die Marge so gewählt
werden, dass sie nicht überschritten werden sollte. Ist sie zu hoch gewählt, hat dies jedoch
negative Auswirkungen auf die Stromregelung, da die Strommessung durch die Shunts
ungenauer wird.

3.6 Untersuchung des Motorverhaltens

3.6.1 Versuchsaufbau

Zur Untersuchung der nun parametrierten Motoren werden zwei Tests durchgeführt. Als
Erstes wird die Sprungantwort des Reglers aufgezeichnet. Hierfür werden Sprünge von
30◦, 60◦, 90◦ und 120◦ durchgeführt. Es soll untersucht werden, ob der Regler den An-
forderungen gemäß nicht überschwingt und wie lang die Einschwingzeit ist. Die Winkel-
angaben beziehen sich hierbei auf die Drehung des Hub, der Motor bewegt sich demnach
um einen Faktor von 5 weiter.

Danach wird der Regler unter Last getestet. Da die Übersetzung der Antriebe mit 1:5 sehr
niedrig ist, ist es möglich, durch das Drehen des Ausgangsflansches den Motor zu drehen.
Dies kann beispielsweise durch Lastwechsel beim Laufen geschehen. Aus diesem Grund
werden die Regler auf das Abfangen von Lasten getestet. Dazu werden am Motor über ein
Rad mit 20 cm Durchmesser, nacheinander Gewichte von 2 kg und 5 kg angehängt, um die
Ergebnisse vergleichen zu können (Abbildung 3.11). Diese Gewichte werden mit 250 deg/s

26

3 Hardware und Hardwareansteuerung

abgelassen, was einer Geschwindigkeit von 0.22m/s entspricht. Daraufhin werden die
Gewichte auf 0m/s abgebremst.

Abbildung 3.11: Testaufbau für Motortests unter Last mit einem Gewicht von 5 kg

3.6.2 Ergebnisse

In Abbildung 3.12 sind direkte Sprünge bis zu 120° ohne Last auf den Motor dargestellt.
Nach dem Einstellen der Reglerparameter reagiert der Motor in allen getesteten Fällen
mit einer Einschwingzeit von ∼ 120ms ohne Überschwingen.

Abbildung 3.12: Sprungantwort des Reglers bei Sprungweiten von 30◦, 60◦, 90◦ und 120◦.

27

3 Hardware und Hardwareansteuerung

Bei den Versuchen unter Last fällt auf, dass das Überschwingen und auch die Einschwing-
zeit bei größeren Lasten zunimmt (Abbildung 3.13). Da der Motor eine maximale Kraft
hat, mit der er das Gewicht abbremsen kann, ist dies zu erwarten. Unter einer Last von
5 kg beträgt die Einschwingzeit nach dem Abbremsen der Last ∼ 200ms. Die maximale
Kraft wird durch die Strombegrenzung des Motors in den Parametern des Umrichters
festgelegt (Tabelle 3.1 und Abbildung 3.10).

Abbildung 3.13: Genauigkeit des Reglers beim Abfangen unter unterschiedlichen Lasten

Die Motor Hubs sind somit in der Lage, die Motoren schnell und genau zu positionieren,
ohne die Belastbarkeit der Motoren oder Umrichter zu überschreiten.

28

4 Simulation von Motoren

Um den Roboter später simulieren zu können, ist es wichtig, dass als Grundlage die tat-
sächlichen Bewegungen der Motoren korrekt abgebildet werden können. Die Simulation
findet in Gazebo (Abschnitt 2.3) statt. Eine genauere Beschreibung der Simulation und
der dafür benötigten Informationen über den Roboter folgt in Kapitel 6. An dieser Stelle
soll als Grundlage für die weiteren Versuche ausschließlich sichergestellt werden, dass sich
die Motoren der Simulation korrekt verhalten.

4.1 Simulierte Motoren in Gazebo

Die Motoren in Gazebo werden durch das Plugin libgazebo_ros_control gesteu-
ert. Dieses Plugin verwendet ros_control, um die Steuerung in ROS zu ermöglichen.
Hierfür wird ein ”Joint State Interface” von Gazebo gepublished, das den aktuellen Zu-
stand des Motors beinhaltet. Zudem wird auf ein ”Joint Command Interface” subscribed,
das die Zielwerte für das Drehmoment des Motors enthält. Diese beiden Interfaces für
ros_control der Hardware Interface Layer, ab dem entschieden werden kann, ob ei-
ne Simulation oder echte Hardware angesteuert werden soll. Da der Hardware Interface
Layer für diesen Roboter bereits gemäß Abbildung 3.9 definiert ist, existiert ein Adapter,
der zwischen den beiden übersetzt. Somit können die erweiterten Funktionen wie zum
Beispiel die Kalibrierung der Motoren und Encoder, die für die Ansteuerung der ODrives
benötigt werden, auf gleiche Weise in der Simulation genutzt werden. Die zusätzlichen
Funktionalitäten, die in der Simulation nicht existieren, werden vom Adapter ignoriert
oder durch Dummywerte ersetzt.

29

4 Simulation von Motoren

4.2 Parametrierung simulierter Motoren

Das libgazebo_ros_control Plugin enthält einen PID-Regler, um die Position der
Motoren zu steuern. Mittels Dynamic Reconfigure lässt sich dieser Regler einstellen. Das
Ziel des Reglers ist nicht, ein möglichst schnelles Einschwingen ohne Überschwingen zu
erreichen, sondern durch seine Positionsregelung möglichst nah das reale Verhalten des
Motors abzubilden. Hierfür wird die im Rahmen der Zielsetzung (Abschnitt 1.2) definier-
te Toleranz von ±2, 5◦ oder ±20ms zum Verhalten des realen Motors angenommen. Es
ist sowohl eine Zeit- als auch eine Winkeltoleranz notwendig. Existierte nur eine zeitliche
Toleranz, so wäre das Toleranzfeld im Stillstand des Motors nahezu null. Dies ist unrea-
listisch, da die Position der Hardware selbst immer um einen gewissen Winkel rauscht.
Existierte nur eine Winkeltoleranz, so wäre das Toleranzfeld bei schnellen Bewegungen
sehr klein. Entsprechend sind die in Abbildung 4.1 dargestellten Toleranzfelder eine Kom-
bination der beiden Toleranzen.

Da der Regler nicht auf Einschwingzeit oder Stabilität eingestellt werden soll, kann das
Verfahren von Ziegler und Nichols nicht angewendet werden. Stattdessen wird der Regler
über einfache Annäherung bei unterschiedlichen Bewegungen auf das Verhalten des realen
Motors eingestellt.

4.3 Untersuchung simulierter Motoren

4.3.1 Versuchsaufbau

Als Versuchsaufbau wird ein einzelner im Raum fixierter Motor in die Simulation ein-
gefügt. An der Achse des simulierten Motors befindet sich ein kleines Gewicht, das die
Trägheit des Motors selbst nachstellen soll.

Um zu testen, ob der Regler die Anforderungen aus Abschnitt 4.2 erfüllt, werden analog
zu Abschnitt 3.6 Sprünge von 30◦, 60◦, 90◦ und 120◦ durchgeführt.

Die Untersuchung der simulierten Motoren unter größeren Lasten findet zusammen mit
der Untersuchung des Körpers des Roboters in Kapitel 6.3 statt.

30

4 Simulation von Motoren

4.3.2 Ergebnisse

Wie in Abbildung 4.1 dargestellt, erreicht der simulierte Regler leicht schneller die neue
Sollposition als der reale Motor, bleibt jedoch bei allen Tests innerhalb der vorgegebenen
Toleranzen.

Abbildung 4.1: Sprungantwort mit Toleranz des Reglers bei Sprungweiten von 30◦, 60◦,
90◦ und 120◦

Durch weitere Annäherungsschritte könnte dieses Verhalten noch verbessert werden. Da
sich das System bereits innerhalb der Toleranzgrenzen befindet, wird in dieser Arbeit auf
weitere Schritte zur Verbesserung verzichtet.

31

5 Bewegungskoordination

Dieses Kapitel behandelt die Konzepte, die für die Ansteuerung der Beine in kartesischen
Koordinaten benötigt werden. Das Ziel ist es, die Motoren der Beine so anzusteuern,
dass diese sich in einer linearen Bewegung von ihrer Startposition zu einer Zielposition
bewegen. Hierbei sollen möglichst hohe Geschwindigkeiten erreicht werden, ohne dass die
definierten Toleranzen überschritten werden.

Die Betrachtung beschränkt sich auf das Bein vorne rechts, das Verfahren der anderen
Beine ist analog.

Für die Verständlichkeit der folgenden Ausführungen werden drei Begriffe voneinander
abgegrenzt:

• Achse: Die Achsen des Roboters sind die Ausgangsflansche der Motor Hubs. Sie
werden als Winkel zur Startposition des Hub angegeben. Die Achsen werden A1, A2

und A3 genannt. Die Nummerierung erfolgt nach der Position in der kinematischen
Kette.

• Gelenk: Die Gelenke des Roboters werden als Winkel zu ihrem jeweiligen Null-
punkt angegeben. Die Gelenke werden θ1, θ2 und θ3 genannt. Die Nummerierung
erfolgt nach der Position in der kinematischen Kette.

• Position: Die Position des Fußes ist in kartesische Koordinaten relativ zum Null-
punkt des Beines angegeben. Die Positionen werden x, y und z genannt.

5.1 Berechnung der Achspositionen

Als Eingangswert stellt die odrive_ros_bridge die Achswerte A1, A2 und A3. Aus
diesen Werten werden die Gelenke θ1, θ2 und θ3 berechnet.

32

5 Bewegungskoordination

Durch die Mechanik des Roboters ergeben sich die folgenden Übersetzungsverhältnisse:

i1 = 21/40 (5.1)

i2 = 20/36 (5.2)

i3 = 17/30 (5.3)

Da θ3 mechanisch sowohl von A3 als auch von A2 abhängt (Abschnitt 3.3.8), ist hier
nicht nur die einfache Übersetzung anzuwenden. Stattdessen muss θ2 in die Berechnung
von θ3 mit einbezogen werden.

θ1 = A1 · i1 (5.4)

θ2 = A2 · i2 (5.5)

θ3 = (A3 + θ2) · i3 (5.6)

Somit ergeben sich für die Berechnung der Achsen die folgenden Gleichungen:

A1 =
θ1
i1

(5.7)

A2 =
θ2
i2

(5.8)

A3 =
θ3
i3

− θ2 (5.9)

Die Gelenke sind mechanisch auf bestimmte Winkel beschränkt. Diese sind der Tabelle
5.1 zu entnehmen. Um die Motoren und Umrichter nicht zu beschädigen, sind die Gelenke
in der Software auf diese Werte begrenzt.

Achse Min Max
θ1 −30.0◦ 30.0◦

θ2 −1.5◦ 180.0◦

θ3 13.5◦ 180.0◦

Tabelle 5.1: Mechanische Limits der Gelenke am Beispiel des Beines vorne rechts

33

5 Bewegungskoordination

5.2 Kalibrierung der Achspositionen

Einer der Hauptnachteile des verwendeten ABI Encoders ist, dass sie keine Möglichkeit
bieten, die absolute Position der Achsen zu bestimmen. Dies führt dazu, dass der Roboter
nach jedem Neustart neu kalibriert werden muss. Zudem ist es nicht möglich, mit der
aktuellen Hardware zu kontrollieren, ob die Kalibrierung erfolgreich war. Die Lösung
für dieses Problem ist, dass nach dem Start des Roboters die Achsen einmal in ihre
Endlagen bewegt werden. Zu den Achswerten wird ein Wert addiert, der den Versatz
der Startposition des Gelenks zum Roboter-Nullpunkt darstellt. Der Offset wird auf
dem ROS-Parameterserver abgelegt, sodass die Kalibrierung nur einmal gemacht werden
muss, bis die ODrives oder ROS neu gestartet werden.

5.3 Berechnung der Kinematik

Um die Position des Fußes zu berechnen, wird eine Forward Kinematik und Inverse
Kinematik benötigt. Die Forward Kinematik berechnet aus den Gelenkwinkeln und der
Geometrie des Roboters die Position eines Endeffektors, in diesem Fall des Fußes. Die
Inverse Kinematik berechnet aus der Position des Endeffektors und der Geometrie des
Roboters die Gelenkwinkel.

Für die Implementation der Kinematik wird nicht der klassische Ansatz mittels DH-
Parameter (Abschnitt 2.6) gewählt. Stattdessen wird die Position durch eine Menge tri-
gonometrischer Gleichungen berechnet, die aus der Robotergeometrie hervorgehen. Dies
ist zwar keine universelle Lösung, sie hat aber den Vorteil, dass sich Forward und Inverse
Kinematik jeweils sehr einfach voneinander herleiten lassen. Hierbei ist der Winkel, in
dem sich der Fuß befindet, nicht relevant, denn es wird ausschließlich die Position des
Fußes für das Laufen benötigt.

Für diese Lösung wird mit der Inversen Kinematik begonnen. Die Berechnung wird in
zwei Teile aufgeteilt. Hierbei ist die erste Ansicht von hinten auf das Bein und die zweite
Ansicht auf die Seite des Beines.

Für die Inverse Kinematik ist die Zielposition x, y, z sowie die Längenkonstanten des
Beines L1, L2, L3 gegeben. Gesucht sind die Winkel θ1, θ2, θ3.

34

5 Bewegungskoordination

Abbildung 5.1: Aufbau der Kinematik-Berechnung aus der Ansicht von hinten (links im
Bild) und seitlich (rechts im Bild)

La =
√
x2 + y2 (5.10)

α = atan

(
x

y

)
(5.11)

β = acos

(
L1

La

)
(5.12)

θ1 =
π

2
− α− β (5.13)

Lb =
√

L2
a − L2

1 (5.14)

Lc =
√

L2
b + z2 (5.15)

γ = acos

(
L2
c + L2

2 − L2
3

2 · Lc · L2

)
(5.16)

δ = atan

(
z

Lb

)
(5.17)

θ2 = π + δ − γ (5.18)

θ3 = acos

(
L2
2 + L2

3 − L2
c

2 · L2 · L3

)
(5.19)

35

5 Bewegungskoordination

Für die Forward Kinematik werden die Gleichungen umgestellt. In diesem Fall sind die
Winkel θ1, θ2, θ3 sowie die Längen-Konstanten L1, L2, L3 gegeben. Gesucht ist die Posi-
tion des Fußes x, y, z.

Lc =
√
− (2 · L2 · L3 · cos(θ3)) + L2

2 + L2
3 (5.20)

γ = acos

(
L2
c + L2

2 − L2
3

2 · Lc · L2

)
(5.21)

δ = θ2 + γ − π (5.22)

Lb = cos(δ) · Lc (5.23)

z = tan(δ) · Lb (5.24)

La =
√

L2
b + L2

1 (5.25)

β = acos(L1/La) (5.26)

α = π/2− θ1 − β (5.27)

x = sin(α) · La (5.28)

y = cos(α) · La (5.29)

5.4 Begrenzung der möglichen Konfigurationen

Die Beschreibung und Notation des Konfigurationsraums basiert auf ”Handbook of Ro-
botics” [Siciliano und Khatib, 2008, p. 110].

Durch die drei Gelenke pro Bein entsteht ein Konfigurationsraum C mit drei Dimensio-
nen für jedes Bein. Dieser beinhaltet jede mögliche Konfiguration q, die sich innerhalb
der mechanischen Grenzen der Beine (Tabelle 5.1) befindet. Die Menge aller möglichen
Positionen, die ein Bein der Geometrie A einnehmen kann, nennt sich Workspace W und
besteht aus drei räumlichen Dimensionen. A(q) ist die Position des Beins in W, die durch
die Konfiguration q mit der Geometrie A beschrieben wird.

Um Kollisionen der Füße mit dem Körper des Roboters, sowie mit anderen Beinen zu
vermeiden, wird eine Hindernis-Geometrie O definiert, die W einschränkt. Der Raum aller
erlaubten Konfigurationen Cfree ist definiert durch Cfree = {q ∈ C|A(q) ∈ W∧A(q) /∈ O}.
Alle nicht erlaubten Konfigurationen nennen sich Cobs und sind definiert durch Cobs =

{q ∈ C|q /∈ Cfree}

36

5 Bewegungskoordination

Abbildung 5.2: Seitenansicht der Hindernis-Geometrie (blau) und des durch die
Hindernis-Geometrie eingeschränkten Konfigurationsraums (grün)

Kollisionen mit der Umgebung werden im Rahmen dieser Arbeit nicht als Hindernisse
angesehen, da Kollisionen mit dem Boden Teil des Laufens sind. Hindernisse, mit denen
Kollisionen auftreten können, sind nicht Teil dieser Arbeit. Soll eine Bewegung von einer
Konfiguration q1 ∈ Cfree zu einer Konfiguration qg ∈ Cfree durchgeführt werden, so muss
die gesamte Bewegung in Cfree liegen. Es wird also ein Pfad τ : [0, 1] → Cfree gesucht,
sodass τ(0) = q1 und τ(1) = qg gilt.

Soll eine neue Konfiguration angefahren werden, wird eine lineare Bewegung von der
Startposition A(q1) ∈ W \ O zu der Zielposition A(qg) ∈ W \ O durchgeführt. Ist der
Raum Cfree im kartesischen Raum konvex, so ist für den linearen Pfad τ sichergestellt,
dass ∀t ∈ [0, 1] : τ(t) ∈ Cfree. Dies liegt in der Definition von konvexen Räumen begrün-
det, die besagt, dass die Verbindung zweier Punkte in einem konvexen Raum ebenfalls
in diesem Raum liegt.

Ist der Raum nicht konvex, so besteht die Möglichkeit, dass ∃t ∈ [0, 1] : τ(t) ∈ Cobs. In
diesem Fall gibt es grundsätzlich zwei Optionen:

• Der lineare Pfad wird verlassen und ein neuer Pfad wird gesucht, der Cobs umgeht.

• Die Bewegung wird nicht durchgeführt.

37

5 Bewegungskoordination

Da die Bewegungen der Beine beim Laufen abhängig voneinander sind, kann nicht von
dem erwarteten linearen Pfad abgewichen werden. Dieser Fehler kann also nicht über die
Pfadplanung im Konfigurationsraum, sondern nur über die Bewegungsplanung behoben
werden und die Bewegung kann somit nicht durchgeführt werden.

5.5 Untersuchung der Linearität von Beinbewegungen

Um den berechneten Pfad umzusetzen, gibt es eine wichtige Einschränkung der Hardwa-
re, die beachtet werden muss. Die maximale Anzahl an Zielpositionen, die an das Bein
übergeben werden können, ist durch die Kommunikationsgeschwindigkeit begrenzt. Eine
lineare Bewegung im kartesischen Raum resultiert jedoch nicht in einer konstanten Bewe-
gung der Motoren. Stattdessen resultiert eine Bewegung eines Motors in einer Kreisbahn
im kartesischen Raum.

Um die Bewegung der Beine zu linearisieren werden Zwischenziele eingefügt. Zusätzlich
besitzen die Umrichter einen Eingangsfilter, der einen weicheren Übergang zwischen den
Positionen ermöglicht. Da die Kommunikation zum Umrichter auf 100 Zielpositionen pro
Sekunde begrenzt ist, wird die Bandbreite dieses Filters auf 100Hz gesetzt.

Die theoretisch maximale Geschwindigkeit der Beine kann auf Basis der Robotergeome-
trie und der Maximalgeschwindigkeiten der Motoren berechnet werden. Da hierbei die
mechanischen Eigenschaften des Roboters, sowie das Verhalten der Regler bei Änderun-
gen der Zielposition nicht mit einbezogen werden, ist eine solche Berechnung nicht ziel-
führend. Stattdessen wird die Maximalgeschwindigkeit experimentell bestimmt. Hierfür
wird die Geschwindigkeit iterativ verringert, bis der Fehler die Toleranzgrenze unter-
schreitet.

5.5.1 Versuchsaufbau

Zur Überprüfung der Linearität und Feststellung der Maximalgeschwindigkeit werden
Bewegungen in unterschiedlichen Geschwindigkeiten durchgeführt. Hierbei muss es eine
Toleranz vom linearen zum tatsächlichen Pfad geben. Je kleiner der erlaubte Fehler ist,
desto genauer ist die Umsetzung der Bewegung. Die Maximalgeschwindigkeit sinkt je-
doch, da für eine gegebene Bewegung mehr Zwischenziele benötigt werden. Die tolerierte
Abweichung zum Pfad beträgt gemäß Abschnitt 1.2 20mm.

38

5 Bewegungskoordination

Für diesen Versuch werden Bewegungen verwendet, die sowohl die Grenzen des Workspaces,
als auch die erwarteten Bewegungen des Roboters abdecken. Es wird eine vertikale Bewe-
gung durchgeführt, die die obere und untere Grenze des zu erwartenden Arbeitsbereiches
erreicht. Zudem wird eine diagonale Bewegung in einer konstanten Höhe durchgeführt.
Während der Bewegung wird die Position des Fußes aufgezeichnet, die durch die vom
Umrichter gemessenen Motorpositionen berechnet wird.

Zur Evaluierung der Bewegung wird die kürzeste Distanz zwischen der Position des Fußes
und dem Zielpfad berechnet. Die maximal erlaubte Abweichung ergibt somit einen Zy-
linder entlang des Zielpfades. In Abbildung 5.3 sind zur Veranschaulichung des Versuchs
zwei diagonale Bewegungen im kartesischen Raum dargestellt, wobei eine innerhalb der
Toleranzgrenze liegt und die andere nicht.

Abbildung 5.3: Darstellung einer diagonalen Bewegung bei maximal 2000mm/s (links)
und 3000mm/s (rechts) mit einer Toleranz von 20mm

Der für die Feststellung der Maximalgeschwindigkeit durchgeführte Versuch besteht aus
zwei Bewegungen, die mit je fünf Geschwindigkeiten durchgeführt werden. Jeder Durch-
lauf wird fünfmal wiederholt und die maximale, minimale und durchschnittliche Abwei-
chung berechnet.

39

5 Bewegungskoordination

5.5.2 Ergebnisse

Abbildung 5.4: Ergebnisse der Linearitätstests für diagonale (links) und vertikale (rechts)
Bewegungen

Das Ergebnis zeigt, dass bei einer Geschwindigkeit bis 2000mm/s die Abweichung sowohl
bei der vertikalen als auch bei der diagonalen Bewegung unter 20mm liegt.

Die Geschwindigkeit von 2000mm/s wird somit als maximale Geschwindigkeit für die
Bewegung des Roboters festgelegt.

5.6 Untersuchung der Bewegungslinearität unter Last

Neben unbelasteten Bewegungen ist ebenso relevant, wie sich die durchgeführten Bewe-
gungen unter Last verhalten, das heißt, wenn die Beine das Körpergewicht des Roboters
tragen müssen.

5.6.1 Versuchsaufbau

Für diesen Versuch wird der Roboter das erste Mal aus eigener Kraft auf die Füße gestellt
und eine vertikale und eine horizontale Bewegung durchgeführt. Das Ziel dieses Tests ist
es, zu ermitteln, ob die Bewegung trotz der zusätzlichen Last innerhalb der Toleranzen
ausgeführt wird.

40

5 Bewegungskoordination

Da die Position des Roboters abhängig von allen Beinen ist, wird die Bewegung nicht über
die Position der Füße, sondern mittels der am Körper verbauten Intel RealSense Tracking
Kamera gemessen. Laut dem Datenblatt der Kamera [Intel Corporation, 2019] kann eine
Abweichung von bis zu 1% der zurückgelegten Strecke auftreten. Um potenziellen Feh-
lern entgegenzuwirken, wird der Roboter nach dem Test in die Ausgangsposition zurück-
gefahren und die Abweichung der Position geprüft. Dabei werden keine Abweichungen
festgestellt, die die Ergebnisse beeinflussen könnten. Genauere Angaben zu den Toleran-
zen der Kamera lassen sich der Dokumentation nicht entnehmen. Gemessen wird eine
Messfrequenz der Kamera von 200Hz. Im Stillstand rauschen die Messwerte mit einer
Standardabweichung von 0.15mm ohne nennenswerten Drift über 10 Minuten. Zudem
können ebenfalls keine nennenswerten Abweichungen bei einer wiederholten Vorwärts-
und Rückwärtsbewegung von 1m festgestellt werden. Die Position der Kamera wird auf
den Mittelpunkt des Roboters zurückgerechnet (”trunk” in Abbildung 6.1)

5.6.2 Ergebnisse

Abbildung 5.5: Darstellung einer vertikalen und horizontalen Sinusbewegung der Beine
unter der Last des Roboterchassis

41

5 Bewegungskoordination

Die Messergebnisse gemäß Abbildung 5.5 zeigen, dass bei Bewegung unter Last jeweils
Abweichung der stillstehenden Richtungen auftreten (rechts in der Abbildung). Bei der
horizontalen Bewegung beträgt diese Abweichung maximal 7.9mm und durchschnittlich
3.7mm. Bei der vertikalen Bewegung beträgt die maximale Abweichung 8.9mm und
die durchschnittliche Abweichung 6.1mm. Damit liegen die Abweichungen innerhalb der
Toleranzen. Anzumerken ist jedoch, dass die Bewegungsgeschwindigkeit dieses Tests be-
deutend langsamer ist, als die der Tests ohne Last (Abbildung 5.4).

5.7 Untersuchung der Bewegungslinearität bei ruckartigen
Bewegungen

Für quadrupede Roboter ist es relevant, dass die Beine auch beim ruckartigen Anhe-
ben oder Absenken des Roboters innerhalb der Toleranzen bleiben. Entsprechend wird,
zusätzlich zu den Sinusbewegungen, die Abweichung beim ruckartigen Abfangen und
Anheben des Roboters getestet.

5.7.1 Versuchsaufbau

Für diesen Versuch wird als Zielposition ein Rechtecksignal für die z-Bewegung verwen-
det. Da es sich um eine Bewegung des ganzen Roboters handelt, wird die getestete Be-
wegungsgeschwindigkeit aus Sicherheitsgründen auf 500mm/s begrenzt. Die Aufnahme
der Positionen erfolgt wie in Abschnitt 5.6 beschrieben.

42

5 Bewegungskoordination

5.7.2 Ergebnisse

Abbildung 5.6: Darstellung einer ruckartigen vertikalen Bewegung des Roboters unter
Last

Die Ergebnisse in Abbildung 5.6 zeigen, das die Bewegung des Roboters in x- und y-
Richtung innerhalb der Toleranzen bleibt. Die maximale Abweichung liegt bei 10.4mm

und die durchschnittliche Abweichung bei 5.0mm. Es tritt jedoch wie bei den belasteten
Motorbewegungen aus Abbildung 3.13 ein Überschwingen in z sowohl beim Anheben als
auch beim Absenken auf. Dieses Überschwingen ist zwar noch innerhalb der Toleranzen,
jedoch sollte es bei zukünftigen Weiterentwicklungen genauer untersucht werden.

43

6 Simulation des Gesamtsystems

6.1 Beschreibung des Roboters

Die Beschreibung für die Simulation, des in dieser Arbeit verwendeten Roboters basiert
auf dem Git Repository von Unitree Robotics [2025], welches unter der BSD 3-Clause
License verwendbar ist. Die grundlegende Geometrie des Roboters Unitree A1 entspricht
der für diese Arbeit verwendeten Plattform. Maße, 3D-Modelle, Kollisionen und Achsen
sind auf die in dieser Arbeit verwendeten Plattform angepasst. Die Ansteuerung der
Motoren erfolgt über das in Abschnitt 4.1 beschriebene Gazebo-Plugin.

6.1.1 Geometrie

Die Definition der Geometrie des Roboters beinhaltet die Beschreibung der Links und
Joints. Die Beschreibung der Links beinhaltet die Position, an der der Link endet, sowie
die Ausrichtung des neuen Koordinatensystems, das am Ende des Links entsteht. Die
Joint-Beschreibung beinhaltet die Art des Joints, in diesem Fall ausschließlich Revolute,
sowie die dafür benötigten Eigenschaften wie Drehrichtung und die Limits der Drehung.
Die Geometrie des somit beschriebenen Roboters ist in Abbildung 6.1 dargestellt. Aus
dieser Beschreibung kann ein TF-Tree generiert werden (Abbildung 6.2).

44

6 Simulation des Gesamtsystems

Abbildung 6.1: Darstellung der Links des Roboters mit dem Koordinatenursprung und
der Orientierung der Achsen

Abbildung 6.2: Ausschnitt aus dem TF-Tree des Roboters

6.1.2 3D-Modelle

Für die Darstellung des Roboters in Gazebo werden 3D-Modelle benötigt. Diese sind eine
vereinfachte Version der 3D-CAD Modelle des Roboters. Die Modelle werden in Gazebo
nur für die Visualisierung verwendet und haben keinen Einfluss auf die Simulation. Um
Rechenleistung zu sparen, sind die Modelle nicht so hoch aufgelöst wie die 3D-CAD
Modelle.

45

6 Simulation des Gesamtsystems

Abbildung 6.3: 3D-Modell des Roboters ohne Anbauteile in Autodesk Fusion 360

Für die Kollisionsberechnung werden zusätzlich zu den Visualisierungsmodellen Kollisi-
onsmodelle benötigt. Diese sind so einfach wie möglich gehalten, um die Berechnung zu
beschleunigen. So sind die gebogenen Beine des Roboters durch eine Box angenähert, da
die genaue Form für die Simulation im Anwendungsfall dieser Arbeit nicht relevant ist.

Abbildung 6.4: Visualisierungs- und Kollisionsmodell des Roboters in Gazebo

6.1.3 Trägheit und Gewicht

Damit Gazebo das Verhalten des Roboters korrekt simulieren kann, wird für jeden Kör-
per der Trägheitstensor [Siciliano und Khatib, 2016, p.36] benötigt. Dieser ist eine 3x3-
Matrix, die die Trägheit bei Änderungen des Drehimpulses beschreibt. Die Berechnung
der Trägheitstensoren wird in diesem Fall durch Autodesk Fusion 360 durchgeführt. Zu-
dem wird das Gewicht der Komponenten benötigt. Die Werte werden in der Xacro-Datei
des Roboters hinterlegt.

46

6 Simulation des Gesamtsystems

6.2 Untersuchung der Abweichung von Beinbewegungen in
der Simulation

Um die Abweichung zwischen den realen Beinen und der Simulation zu messen, werden
wie bei der Motorsimulation aus Kapitel 4.3 Toleranzfelder definiert, die die maximale
Abweichung zwischen den realen Beinen und der Simulation darstellen. Hierfür wird die
zeitliche Toleranz von ±20ms der Motorsimulation aus Kapitel 4.2 beibehalten. Die To-
leranz wird auf Basis der Abweichung der Motorsimulation und die dadurch resultierende
maximale Abweichung im kartesischen Raum abgeschätzt.

Die Benennung der verwendeten Variablen ist in Abbildung 5.1 zu sehen. Der Konfigura-
tionsraum der Beine in kartesischen Koordinaten beschränkt Lb auf LbMAX = 400mm.
Durch eine Abweichung von θ2 um die in Abschnitt 1.2 festgelegte Toleranz von ∆θ2 =

2, 5◦ lässt sich durch den Kosinussatz die maximale Abweichung am Fuß berechnen.

√
L2
bMAX + L2

bMAX − 2 · LbMAX · LbMAX · cos(∆θ2) ≈ 16.614mm (6.1)

Auf Basis dieser Abschätzung wird die Toleranz im kartesischen Raum auf 15mm in x,
y und z abgerundet. Wie auch schon in Abschnitt 4.3 bezieht sich diese Toleranz nicht
auf die Abweichung der Simulation zur Zielvorgabe, sondern auf die Abweichung der
Simulation zur Realität.

6.2.1 Versuchsaufbau

Für den Versuch werden dieselben Bewegungen wie in Abschnitt 5.5 verwendet, die am
Roboter mit der ermittelten Maximalgeschwindigkeit von 2m/s simuliert werden.

47

6 Simulation des Gesamtsystems

6.2.2 Ergebnisse

Abbildung 6.5: Darstellung unterschiedlicher Bewegungen in der Simulation und der Rea-
lität zur Veranschaulichung der Abweichung der Simulation

Die Ergebnisse des Tests sind in Abbildung 6.5 dargestellt. Die Simulation befindet sich
noch knapp innerhalb der gegebenen Toleranzen. Das gezeigte Verhalten ähnelt in allen
Achsen dem des realen Roboters.

48

6 Simulation des Gesamtsystems

6.3 Untersuchung der Abweichung von langsamen
Körperbewegungen in der Simulation

Um die Simulationsgenauigkeit der Beine unter der Last des Körpers und die Simulation
des gesamten Körpers allgemein zu testen, werden wie bei den Versuchen der Beine,
Testbewegungen durchgeführt. Als Toleranzen für die Bewegungen werden wie bei den
Beinen (Abschnitt 6.2) ±15mm in x, y und z und ±20ms in der Zeit angenommen.
In diesem Versuch soll die Simulation zeigen, dass sie einfache Bewegungen des Körpers
unter Last abbilden kann.

6.3.1 Versuchsaufbau

Die Messung der Position erfolgt in der Mitte des Körpers (”trunk” in Abbildung 6.1). Bei
dem realen Roboter wird die Position des Körpers erneut durch die verbaute Tracking-
Kamera aufgenommen. Diese ist in Abschnitt 3.3.2 beschrieben. Die Messunsicherheiten
der Kamera sind dieselben wie in Abschnitt 5.6.

In der Simulation wird die Bewegung ermittelt, indem die Position des Körpers aus der
model_states Message ausgelesen wird, welche von Gazebo bereitgestellt wird. Die
auf diese Weise ausgelesenen Positionsdaten haben keine Messabweichung, da sie den
exakten Wert aus der Simulation darstellen.

Als Zielwert für die Bewegungen wird ein Sinus in z- und x-Richtung genutzt. Die Ver-
suchsbewegungen gleichen den belasteten Tests der Beine aus Abschnitt 5.6.

6.3.2 Ergebnisse

Die für die Beine festgelegten Toleranzen werden, wie in Abbildung 6.6 zu sehen, eingehal-
ten. Der reale Roboter oszilliert insbesondere bei der vertikalen Bewegung in z-Richtung
bedeutend mehr als in der Simulation. Da sich die Oszillation jedoch innerhalb der To-
leranzen befindet, wird sie als akzeptabel angesehen.

49

6 Simulation des Gesamtsystems

Abbildung 6.6: Darstellung zweier Sinus-Bewegungen des Roboters in der Simulation und
der Realität zur Veranschaulichung der Abweichung der Simulation

50

6 Simulation des Gesamtsystems

6.4 Untersuchung der Abweichung von ruckartigen
Körperbewegungen in der Simulation

Um Sicherzustellen, dass die Beine und die Simulation sich auch bei ruckartigen Bewe-
gungen ähnlich verhalten, wird ebenfalls der Versuch aus Abschnitt 5.7 in der Simulation
wiederholt.

6.4.1 Versuchsaufbau

Der Versuchsaufbau ist identisch zu dem in Abschnitt 6.3. Hierbei werden die Beine
mit einer Geschwindigkeit von 500mm/s über eine Distanz von 50mm eingezogen und
ausgefahren. Daraufhin wird der Körper bis zum Stillstand abgebremst. Das Ziel ist es
festzustellen, ob das resultierende Überschwingen des Körpers ebenfalls in der Simulation
abgebildet wird.

6.4.2 Ergebnisse

Abbildung 6.7: Darstellung einer ruckartigen Bewegung des Roboters in der Simulation
und der Realität zur Veranschaulichung der Abweichung der Simulation

51

6 Simulation des Gesamtsystems

Wie in Abbildung 6.7 zu sehen, existiert das Überschwingen auch in der Simulation, auch
wenn die Reaktion auf das Rechtecksignal in der Simulation schneller ist. Die getesteten
Bewegungen liegen innerhalb der gesetzten Toleranzen.

6.5 Festgestellte Probleme in der Gazebo Simulation

Bei der Simulation des Roboters in Gazebo sind zwei Probleme aufgefallen, die an dieser
Stelle kurz beschrieben werden sollen. Sie treten auf, wenn es zu viele Kontaktpunkte des
Roboters mit dem Boden gibt oder wenn die Beine komplett gestreckt sind. In beiden
Fällen fängt der Roboter an, in eine zufällige Richtung zu driften. Dieses Verhalten
ist in Abbildung 6.8 anhand der gelben Linie dargestellt, die den zurückgelegten Pfad
anzeigt.

Abbildung 6.8: Visualisierung des Drifts bei problematischen Positionen in Gazebo an-
hand der gelben Pfadlinie

Liegend wurde der Drift mit 44mm/s gemessen. Stehend liegt der Drift bei 152mm/s. Da
diese beiden Positionen jedoch bei Versuchen zum Laufen des Roboters nicht auftreten,
ist dieses Problem im Rahmen dieser Arbeit nicht relevant. Der Drift außerhalb dieser
beiden Fälle liegt bei 0.00092mm/s. Dieser Wert ist so gering, dass er vernachlässigt
werden kann.

Durch die durchgeführten Tests wird ab jetzt davon ausgegangen, dass die Simulation
in Gazebo die Bewegungen des Roboters innerhalb der gesetzten Toleranzen erfolgreich
abbilden kann.

52

7 Robotersteuerung

Zum Testen von unterschiedlichen Gangarten wird eine Robotersteuerung entworfen, die
die Ansteuerung der Beine übernimmt. Hierbei liegt das Hauptaugenmerk auf der Re-
duktion von Komplexität für die Gangarten. Auf diese Weise ist die Softwareentwicklung
der Gangarten einfacher, auch wenn der Aufwand für den Rest der Steuerung steigt.

7.1 Klassen für Gangarten (Gait)

Um den Klassen für die Gangarten möglichst viel Komplexität abzunehmen, werden nur
zwei Anforderungen an die Klassen gestellt, die diese erfüllen müssen.

• Gangarten müssen eine nach Abschnitt 2.7 im Stillstand statisch stabile Ausgangs-
position haben, aus der sie die Bewegungen beginnen können.

• Gangarten müssen bei Aufforderung in eine im Stillstand statisch stabile Position
zurückkehren.

Diese Anforderungen werden über ein Interface dargestellt, das die Gangarten imple-
mentieren müssen. Zusätzlich gibt es noch ein Interface für die Ansteuerung durch den
Nutzer, dessen Standardfunktionen überschrieben werden können, wenn die Ansteuerung
genutzt werden soll.

7.2 Klassen für die Repositionierung (Reposition)

Um die Gangarten zu wechseln, muss eine Möglichkeit geschaffen werden, dass der Ro-
boter von einer im Stillstand statisch stabilen Position zu einer anderen wechselt. Diese
Aufgabe übernimmt die Repositionierung.

53

7 Robotersteuerung

Das Ziel der Repositionierung ist es, dass der Roboter von einer statisch stabilen Konfi-
guration der vier Beine in eine andere statisch stabile Konfiguration wechseln kann.

Die folgende Notation basiert erneut auf der im ”Handbook of Robotics” [Siciliano und
Khatib, 2008, p. 110] verwendeten Notation. Im Gegensatz zu Abschnitt 5.4, werden
hier als Konfigurationsraum alle Achsen des Roboters betrachtet und nicht nur die eines
Beines.

q ist eine mögliche Konfiguration des Roboters, die alle vier Beine beinhaltet und C
ist die Menge aller möglichen Konfigurationen des Roboters. Cfree ist die Menge der
Roboterkonfigurationen bei denen die Beine eine gültige Position haben. q1 und qg sind
die Start- und Zielkonfigurationen der Repositionierung. Diese Definitionen sind demnach
analog zu Abschnitt 5.4.

Cstable sei definiert durch die Menge aller erlaubten Konfigurationen, die statisch stabil
sind. Demnach ist Cstable = {q ∈ Cfree|q ist statisch stabil}.

Analog zu den Beinbewegungen sucht die Repositionierung einen Pfad τ : [0, 1] → Cfree,
sodass τ(0) = q1 und τ(1) = qg gilt. Zusätzlich muss ∀t ∈ [0, 1] : τ(t) ∈ Cstable gelten.
Auf diese Weise ist sichergestellt, dass der Roboter während der Bewegung statisch stabil
bleibt.

Die Umsetzung der vollständigen Logik der Repositionierung ist sehr umfangreich und
wird in dieser Arbeit aus Zeitgründen nicht durchgeführt. Stattdessen wird eine einfache
Version implementiert, die den Roboter in eine neue Position bringt, ohne dabei die
Stabilität zu gewährleisten. Diese ist nur für Testzwecke gedacht und sollte aufgrund von
Risiken für die Hardware nicht auf einem echten, stehenden Roboter verwendet werden.

7.3 Klassen für Nutzereingaben (UserInput)

Um Eingaben vom Nutzer zu ermöglichen, gibt es zwei Optionen.

• Die Eingabe erfolgt über das an die Gangarten bereitgestellte Interface zur Steue-
rung durch den Nutzer.

• Die Gangarten definieren eine eigene Ansteuerung beispielsweise über ROS Topics.

54

7 Robotersteuerung

Um das bereitgestellte Interface zu nutzen, können Adapterklassen implementiert werden,
die es erlauben, unterschiedliche Eingabegeräte zu verwenden. Für die Kommunikation
mit ROS Joy und 3DConnexion SpaceMouse ist ein solcher Adapter implementiert. Der
große Vorteil beim Nutzen des Interfaces ist, dass die Gangarten nicht mehr abhängig
von der spezifischen Art der Steuerung sind. Zudem erlaubt dies dem GaitSelector, die
Nutzereingaben nur an die verwendete Gangart weiterzuleiten.

7.4 Klasse für die Beinansteuerung (LegControl)

Die Beinansteuerung ist in unterschiedliche Komponenten aufgeteilt, die bestimmte Auf-
gaben übernehmen.

• Ansteuerung der Motoren über die in Abbildung 3.9 dargestellten Messages

• Berechnung von Achswinkeln und Kalibrierung (Abschnitt 5.1)

• Berechnung der Forward Kinematik und Inversen Kinematik (Abschnitt 5.3)

• Begrenzung des Konfigurationsraumes (Abschnitt 5.4)

Die einzelnen Komponenten sind austauschbar und werden nach außen von einer Klasse
repräsentiert.

7.5 Konzept für das Wechseln von Gangarten (GaitSelector)

Um das Wechseln von Gangarten zu ermöglichen, wird eine Stellvertreter-Gangart mit
dem Namen Gangsteuerung geschaffen. Die Gangsteuerung verhält sich wie eine nor-
male Gangart, beinhaltet im Hintergrund jedoch beliebige weitere Gangarten, zwischen
denen sie wechseln kann. Hierfür kontrolliert sie den Informationsfluss zwischen der Nut-
zersteuerung und den Gangarten und schaltet die Gangarten je nach Anforderung ein
oder aus. Auf diese Weise erlaubt sie immer nur einer Gangart zur Zeit den Zugriff auf
die Beinansteuerung. Die Aufgabe der Stellvertreter-Gangart ist es, die Übergänge von
und zu den Gangarten zu steuern. Hierfür wird die Repositionierung genutzt, um den
Roboter in die von der neuen Gangart benötigte Position zu bringen. Zur Steuerung des

55

7 Robotersteuerung

Wechsels zwischen den Gangarten wird ein einfacher Zustandsautomat verwendet. Die-
ser ist in Kombination mit einer kurzen Beschreibung der Benennungen in Abbildung 7.1
dargestellt.

Abbildung 7.1: Zustandsautomat für das Wechseln von Gangarten durch die Gangsteue-
rung

• currentGait ist eine Variable, die die aktuelle Gangart speichert.

• selectedGait ist eine Variable, die die ausgewählte Gangart speichert.

• gaitSelected ist ein Event, das ausgelöst wird, wenn eine Gangart über die Nutzer-
steuerung ausgewählt wird. Der Name der Gangart ist in ”gait” gespeichert.

• startReposition(gait) ist eine Action, die die Repositionierung zur Startposition von
”gait” startet.

• repositionDone ist ein Event, das ausgelöst wird, wenn die Repositionierung abge-
schlossen ist.

• startGait(gait) ist eine Action, die die Gangart ”gait” zum Starten auffordert.

• relayUserInputToGait(gait) ist eine Action, die die Nutzereingaben an die Gangart
”gait” weiterleitet.

• stopGait(gait) ist eine Action, die die Gangart ”gait” auffordert, in einen stabilen
Zustand zu wechseln und sich zu beenden.

• gaitStopped ist ein Event, das ausgelöst wird, wenn die Gangart den stabilen Zu-
stand erreicht hat und beendet ist.

56

7 Robotersteuerung

7.6 Übersicht über die Klassen

Um das Austauschen der aktuellen Gangart zu ermöglichen, bestimmt die Gangsteue-
rung, welche Gangart die Beinansteuerung nutzen darf. Um dies zu verdeutlichen, zeigt
Abbildung 7.2 ein vereinfachtes Klassendiagramm für die Gangsteuerung. Hierbei ist zu
sehen, dass die Gangsteuerung dieselbe Schnittstelle implementiert wie die Gangarten.
Der Unterschied besteht darin, dass die Gangsteuerung die Instanzen von Gangarten und
Repositionierung aggregiert und als deren Stellvertreter fungiert.

Abbildung 7.2: Vereinfachtes Klassendiagramm für das Wechseln von Gangarten durch
die Gangsteuerung

Die Stellvertreter-Beziehung ist in Abbildung 7.3 noch einmal dargestellt, indem eine
Konstruktion mit der Möglichkeit mehrerer Gangarten und eine mit einer festen Gangart
gezeigt wird.

57

7 Robotersteuerung

Abbildung 7.3: Informelle Darstellung einer Beispielkonstruktion der in Abbildung 7.2
gezeigten Klassen, sowie die Richtung der ausgetauschten Informationen

58

8 Gangarten und erste Schritte

Im folgenden Kapitel werden Gangarten vorgestellt und für die Softwarearchitektur des
Roboters implementiert. Diese Gangarten werden daraufhin in der Simulation anhand
von drei beispielhaften Metriken bewertet. Diese Metriken sind die Maximalgeschwindig-
keit, die Toleranz gegen äußere Kräfte und die Bewegungsruhe beim Laufen.

Da wie in Abschnitt 3.5.1 beschrieben, einer der Umrichter durch einen Versuch nicht
mehr nutzbar ist, ist es im Rahmen dieser Arbeit nicht mehr möglich, die simulierten
Resultate anhand des realen Roboters zu verifizieren.

8.1 Gangarten

Um Gangarten miteinander vergleichen zu können, werden die Gangarten Schritt und
Trott implementiert und in je zwei Variationen getestet.

Alle Implementierungen für diese Arbeit sind Open-Loop. Sie basieren somit nicht auf
Sensoren, durch die der Roboter in Balance gehalten wird.

8.1.1 Gangart Schritt

Die für diese Arbeit geschriebene Version des Schritts hat wie in Abschnitt 2.1 beschrie-
ben, maximal ein Bein in der Luft. Damit die Gangart statisch stabil ist, wird beim
Anheben eines Beines der Schwerpunkt des Roboters in Richtung der anderen Beine
verlagert. Somit bleibt der Schwerpunkt über dem Stützpolygon. Dies wird durch eine
Kreisbewegung des Chassis erreicht. Neben der Laufgeschwindigkeit, die durch Nutzerein-
gaben gesteuert wird, besitzt diese Gangart außerdem eine Menge an Parametern, die
das Verhalten beeinflussen. Diese Parameter sind in Tabelle 8.1 beschrieben.

59

8 Gangarten und erste Schritte

Parameter Beschreibung
height Die Höhe des Körpers
step_height Die Höhe des angehobenen Beines
step_speed Die maximale Geschwindigkeit
step_overlap Der Anteil der Schrittlänge, bei der alle Beine auf dem

Boden sind
lean_distance Der Radius der Kreisbewegung des Schwerpunktes
lean_phase Die Phasenverschiebung der Schwerpunktverlagerung

zum angehobenen Bein

Tabelle 8.1: Parameter für die Gangart Schritt

Die Gangart Schritt ist bei niedrigen Geschwindigkeiten statisch stabil. Da bei höheren
Geschwindigkeiten die Schritte schneller werden, wird auch das Verlagern des Schwer-
punktes schneller. Dies führt letztlich zum Umkippen des Roboters. Wird bei schnelleren
Geschwindigkeiten die Verlagerung des Schwerpunktes entfernt, so lassen sich stabile Zy-
klen finden. Die Geschwindigkeit, ab der die Verlagerung des Schwerpunktes nicht mehr
sinnvoll ist, wird in Kapitel 8.2 genauer beschrieben.

Aus diesem Grund wird Schritt in zwei Versionen aufgeteilt, die sich nur durch ihre Pa-
rameter unterscheiden. Der langsame Schritt ist statisch stabil, da sich der Schwerpunkt
immer über dem Stützpolygon befindet. Das schnelle Schritt basiert auf stabilen Zyklen
(Abschnitt 2.7).

8.1.2 Gangart Trott

Die beiden für diese Arbeit implementierte Trott Gangarten haben wie in Abschnitt 2.1
beschrieben zwei diagonale Beine in der Luft jedoch keine Schwebephase beim Wechseln
der Beinpaare. Die erste für diese Arbeit geschriebene Version des Trott ist rein reaktiv.
Dies bedeutet, dass sich bei einer durch den Nutzer vorgegebenen Zielbewegung, die
beiden auf dem Boden befindlichen Beine in die entgegengesetzte Richtung bewegen, um
einen Vorschub zu erzeugen. In regelmäßigen Abständen werden diese Beine angehoben,
um sie neu zu positionieren. Bei der Neupositionierung der Beine werden sie in ihre
Ausgangsstellung zurückbewegt.

60

8 Gangarten und erste Schritte

Die Ausgangsstellung der Beine ist so gewählt, dass in dieser Position der Schwerpunkt
des Roboters genau in der Mitte des Stützpolygons liegt. Zudem wird die Last gleichmäßig
auf alle Beine verteilt. Je weiter sich die Füße im Rahmen des Bewegungsablaufs von
dieser Position entfernen, desto ungleichmäßiger wird das Gewicht verteilt.

Die zweite Version der Gangart Trott ist prädiktiv. Bei einer Eingabe reagieren die Beine
auf die Zielrichtung, bei der Neupositionierung des Beines wird jedoch das Bein über die
Ausgangsposition hinaus bewegt. Hierbei wird die Abschätzung in die Zukunft gemacht,
dass sich die Bewegungsrichtung des Roboters nicht ändert. Dies führt dazu, das die
Beine nach Beendigung der Vorschubphase noch nicht so weit von der Ausgangspositi-
on entfernt sind. Zudem besteht der Vorteil, dass die maximale Distanz, die ein Bein
vor der Neupositionierung zurücklegen kann, im optimalen Fall doppelt so groß ist wie
bei der reaktiven Version. Dies erhöht die Maximalgeschwindigkeit bei gleicher Schrittfre-
quenz. Der Unterschied der beiden Versionen ist in Abbildung 8.1 dargestellt. Bei starken
Richtungsänderungen kann es jedoch dazu kommen, dass das Bein sich weiter von der
Ausgangsposition entfernt, als beim reaktiven Trott. In diesem Fall wird die Stabilität
der Gangart stark beeinträchtigt.

Abbildung 8.1: Gegenüberstellung der Vorwärtsbewegung eines Beines in den beiden
Trott-Versionen

Wie auch Schritt, besitzen die beiden Trott Implementierungen mehrere Parameter, mit
denen das Verhalten so angepasst werden kann, dass ein stabiler Zyklus entsteht.

61

8 Gangarten und erste Schritte

Parameter Beschreibung
height Die Höhe des Körpers
step_height Die Höhe des angehobenen Beines
step_speed Die maximale Geschwindigkeit
step_overlap Der Anteil der Schrittlänge, bei der alle Beine auf dem

Boden sind

Tabelle 8.2: Parameter der Gangart Trott

8.2 Untersuchung der Geschwindigkeit und Stabilität

Eine der wichtigsten Eigenschaften einer Gangart sind die Geschwindigkeiten, bei de-
nen sie funktioniert. Zudem muss eine Gangart resistent gegen äußere Einwirkung sein.
Im nachfolgenden Versuch werden die vier in Abschnitt 8.1 vorgestellten Versionen von
Gangarten in der Simulation auf Geschwindigkeit und Stabilität getestet.

8.2.1 Testmethodik

Für den Test wird der Roboter bei unterschiedlichen Geschwindigkeiten unterschiedlich
starken Stößen ausgesetzt. Gazebo bietet hier die Möglichkeit, Kräfte auf den Roboter
auszuüben. Während der Roboter läuft, werden in zufälligen Abständen bis zu 20 kN über
einen Zeitraum von 1ms seitlich auf den Roboter ausgeübt. Dies wird mindestens 20-mal
für jede getestete Stoßkraft wiederholt, um ein aussagekräftiges Ergebnis zu bekommen.
Die Vorgehensweise ist in Abbildung 8.2 dargestellt.

Abbildung 8.2: Der Roboter beim prädiktiven Trott unter der Einwirkung von 12.5 kN
(links) und 15 kN (rechts)

62

8 Gangarten und erste Schritte

Die Kraft der Stöße wird so lange erhöht, bis der Roboter zu kippen beginnt. Ist die
Geschwindigkeit bei den Gangarten zu hoch, so beginnt der Roboter zu kippen, ohne dass
eine Kraft auf den Roboter ausgeübt wird. Aufgrund dieser Tests werden die Parameter
der Gangarten so angepasst, dass sie bei einer möglichst hohen Geschwindigkeit stabil
bleiben.

8.2.2 Ergebnisse

Abbildung 8.3: Krafteinwirkung auf den Roboter bei verschiedenen Geschwindigkeiten
für die unterschiedlichen Gangarten

Die Ergebnisse der optimierten Gangarten sind in Abbildung 8.3 dargestellt. Aus diesen
Ergebnissen lassen sich einige Eigenschaften entnehmen. Der langsame Schritt ist mit
100mm/s die langsamste der getesteten Gangarten, gefolgt vom reaktiven Trott mit
350mm/s. Der schnelle Schritt ist mit 400mm/s die zweitschnellste Gangart und der
prädiktive Trott ist mit 550mm/s die schnellste. Zudem fällt auf, dass der schnelle Schritt
unter 200mm/s nicht mehr stabil ist.

Was die Stabilität gegen äußere Kräfte angeht, so existiert ein signifikanter Unterschied
zwischen dem statisch stabilen langsamen Schritt und den Gangarten die auf stabilen

63

8 Gangarten und erste Schritte

Zyklen basieren. Die, die auf stabilen Zyklen basieren, vertragen den Tests nach eine
seitliche Krafteinwirkung von ungefähr 17.5 kN über 1ms. Der langsame Schritt wurde
bereits über 14 kN instabil.

8.3 Untersuchung der Bewegungsruhe

Für jede der nicht stabilen Gangarten lassen sich eine Vielzahl an Konfigurationen fin-
den, die beim Laufen in stabile Zyklen resultieren. Die Formen dieser Zyklen sind je nach
Gangart unterschiedlich, sollten sich aber nach einer vollständigen Schrittfolge wiederho-
len. Anhand der Abweichung lassen sich Aussagen über die Bewegungsruhe des Körpers
treffen, je kleiner die Abweichung, desto weniger schwankt der Körper beim Laufen. Dies
ist zwar nicht direkt für den Roboter relevant, kann jedoch die Messung einiger Sensoren
wie potenziell später verbaute LiDAR-Sensoren beeinflussen.

8.3.1 Testmethodik

Für die Darstellung dieser Zyklen wird in der Simulation die Position des Roboters über
drei Schrittzyklen der jeweiligen Gangart aufgenommen und die berechnete Zielbewegung
des Roboters von der Position des Körpers abgezogen. Somit ergibt sich die Abweichung
des Körpers zur Zielbewegung. Je geringer die Abweichung der Zyklen vom Ursprung,
desto ruhiger bewegt sich der Roboter.

8.3.2 Ergebnisse

Wie in Abbildung 8.4 und Tabelle 8.3 zu sehen, ist der prädiktive Trott, die ruhigste der
hier getesteten Gangarten. Langsames Schritt ist mit Abstand die unruhigste Gangart, da
sie durch das absichtliche fortlaufende Verlagern des Schwerpunktes einen großen Versatz
hat.

64

8 Gangarten und erste Schritte

Abbildung 8.4: Darstellung der Zyklen verschiedener Gangarten als Versatz zur Zielbe-
wegung (je Farbe wird ein gemessener Zyklus dargestellt)

Gangart Max. Versatz x Max. Versatz y Abs. Max. Versatz
Prädiktiver Trott 5.3mm 10.7mm 10.7mm

Reaktiver Trott 10.7mm 16.7mm 18.3mm

Schneller Schritt 18.1mm 12.1mm 18.4mm

Langsamer Schritt 73.9mm 72.8mm 83.8mm

Tabelle 8.3: Maximaler Versatz zum Ursprung der verschiedenen Gangarten

65

9 Fazit

9.1 Zusammenfassung der Evaluationen

Da diese Arbeit gestaffelt aufgebaut ist, folgt der Übersicht halber eine Zusammenfassung
der Ergebnisse der unterschiedlichen Versuche.

9.1.1 Motoren

Bei den Motoren wird unbelastet eine Einschwingzeit von 120ms ohne Überschwingen
erreicht. Belastet mit einem Gewicht von 5 kg wird wie erwartet, ein deutliches Über-
schwingen mit einer Einschwingzeit von 200ms gemessen (Abschnitt 3.6.2). Die Simula-
tion hat ohne zusätzliche Last die Toleranz von ±2◦ oder ±20ms eingehalten (Abschnitt
4.3.2).

9.1.2 Beine

Die maximale Abweichung bei Bewegungen liegen unter der Maximalgeschwindigkeit
von 2000mm/s innerhalb der Toleranzen von 20mm (Abschnitt 5.5.2). Bei gleichmäßi-
gen Bewegungen unter der Last des Körpers wird eine durchschnittliche Abweichung von
3.7mm zum Zielpfad gemessen (Abschnitt 5.6.2). Bei ruckartigen Bewegungen wird wie
auch bei den Motoren ein deutliches Überschwingen gemessen, das sich ebenfalls inner-
halb der Toleranzen bewegt (Abschnitt 5.7.2). Die Abweichung des simulierten Körpers
bei unterschiedlichen Bewegungen sowohl belastet, als auch unbelastet, liegt innerhalb
der Toleranz von 15mm (Abschnitt 6.2.2, 6.3.2 und 6.4.2).

66

9 Fazit

9.1.3 Bewegung

Die Analyse der implementierten Gangarten durch drei unterschiedliche Metriken hat
gezeigt, dass die Gangarten anhand der Simulation verglichen werden können. Hierbei
hat sich unter anderem herausgestellt, dass der prädiktive Trott die schnellste und die
ruhigste Gangart ist. Zudem wird festgestellt, dass der statisch stabile langsame Schritt
weniger seitliche Kräfte aushält, als die anderen Gangarten (Abschnitt 8.2.2 und 8.3.2).

9.2 Diskussion

9.2.1 Realer Roboter

Die Hardware des Roboters hat sich im Laufe der Arbeit in dem verwendeten Testumfeld
bis auf den fehlerhaft parametrierten Umrichter (Abschnitt 3.5.1) als zuverlässig heraus-
gestellt, könnte aber dennoch verbessert werden. Der verbaute Rechner ist leistungsfähig
genug, um die Simulation und die Steuerung des Roboters zu bewältigen. Die verbauten
Motoren und Umrichter sind ausreichend stark und genau für diesen Anwendungsfall.
Die Übersetzungsverhältnisse der Motor Hubs könnten noch erhöht werden, sodass der
Roboter mehr Kraft hat. Sollte die Plattform außerhalb des Testumfeldes genutzt wer-
den, müssten einige Teile der Mechanik noch überarbeitet werden. Die Beine sind nicht
stabil genug, um beim Umfallen des Roboters einen Schaden zu vermeiden. Zudem würde
ein Überrollkäfig für den Schutz der Elektronik und der Batterien benötigt werden.

Die Kalibrierungen der Beine des Roboters sind zeitaufwändig. Das Sichern der Kalibrie-
rungsinformationen auf dem ROS Parameterserver ermöglicht es jedoch zuverlässig, dass
die Kalibrierung nur ein mal beim Starten des Roboters durchgeführt werden muss.

Problematisch ist, dass die Motoren unter Last überschwingen. Dieses Verhalten ist be-
reits bei den Motortests aufgetreten (Abbildung 3.13), wurde jedoch in Kauf genommen,
um die schnelle Einschwingzeit der Motoren beizubehalten. In der Retrospektive wäre es
besser gewesen die Einschwingzeit zu verlangsamen, um das Überschwingen zu verringern
oder zu vermeiden. Dadurch könnte vermutlich auch das Überschwingen bei ruckartigen
Bewegungen des gesamten Roboters verringert werden (Abschnitt 5.7.2).

Bei der gemessenen Maximalgeschwindigkeit der Beine von 2000mm/s wird die Tole-
ranz von 20mm zur Zielbewegung eingehalten. Wie erwartet, ist die Abweichung bei

67

9 Fazit

langsameren Bewegungen, auch unter Last bedeutend geringer. Die Abweichung des Ro-
boterkörpers unter Last, von durchschnittlich 3.7mm (Abschnitt 5.6.2), war erstaunlich
genau. Vor dem Fortschritt der in dieser Arbeit erreicht wurde, wurde zur Verifikation der
mechanischen Komponenten in den Beinen, eine ähnliche Bewegung durchgeführt. Diese
Bewegung erzeugte Schwingungen des Roboterkörpers von mehreren Zentimetern. Dem-
nach hat die Überarbeitung der Regler sowie der Steuerung der Beine die Genauigkeit
Bewegungen des Roboterkörpers deutlich verbessert.

Aufgrund des Fehlers in der Parametrierung der Umrichter, konnten die implementierten
Gangarten nicht auf der Hardware getestet werden (Abschnitt 3.5.1). Da die Simulati-
on jedoch in anderen Tests immer recht konsistent die Hardware abgebildet hat, liegt
nahe, dass die implementierten Gangarten auch auf der Hardware funktionieren. Eine
Bestätigung dieser Annahme steht jedoch noch aus.

9.2.2 Simulierter Roboter

Die Simulation des Roboters war größtenteils konsistent mit dem realen Roboter. Auch
wenn die Regler der Motoren zu von Beginn an etwas schneller reagiert haben, ließen sich
Phänomene wie das Überschwingen unter Last, welches beim realen Roboter aufgetreten
ist, auch in der Simulation wiederfinden (Abbildung 6.4.2). Zudem war die Übertragbar-
keit zwischen den unterschiedlichen Tests der Simulation stets gegeben. Die Probleme,
die bei unterschiedlichen Positionen des Roboters in Gazebo aufgetreten sind, waren wie
erwartet für die in dieser Arbeit durchgeführten Tests nicht relevant und sind beim Testen
auch nie negativ aufgefallen (Abschnitt 6.5).

9.3 Schluss

Lassen sich die vorgegebenen Anforderungen an die Genauigkeit des Roboters
mit den verbauten Hardware und der in dieser Arbeit entwickelten Software
erfüllen?
Bei der Genauigkeit der Bewegungen ließ sich durch die angepassten Regler, sowie die
Steuerung der Beine, die geforderte Genauigkeit von 5% der Schulterhöhe bei Geschwin-
digkeiten bis zu 2000mm/s erreichen. Bei langsameren Bewegungen war die Abweichung
trotz des Körpergewichtes bedeutend geringer.

68

9 Fazit

Ist Gazebo geeignet um einen Quadrupeden Roboter innerhalb der gesetzten
Toleranzen abzubilden?
Die Ergebnisse der Simulation in Gazebo von einem zum nächsten Test haben keine
unerwarteten Abweichungen gezeigt und waren sehr konsistent. Die Darstellung von Be-
wegungen neben denen der angesteuerten Gelenke, ist wechselhaft. So werden bei Be-
wegungen in eine Richtung immer auch Abweichungen in andere Richtungen gemessen
(Abbildung 6.6). Diese Abweichungen sind teilweise sehr genau nachgestellt, teilweise
werden sie jedoch im geringen Rahmen nicht nachvollziehbar in andere Richtungen ab-
gebildet. Alles in allem ist Gazebo jedoch soweit es in dieser Arbeit festgestellt werden
konnte, geeignet um Gangarten eines Quadrupeden Roboters zu simulieren.

Lassen sich Gangarten Schritt und Trott auf Basis der entwickelten Plattform
vergleichen und bewerten?
Die entwickelte Softwarearchitektur hat sich als gute Grundlage für die Analyse unter-
schiedlicher Gangarten erwiesen. Auch wenn die Repositionierung der Beine nur proviso-
risch implementiert wurde, erlaubt die Steuerung einen Zugriff auf viele relevante Daten
die für die Bewertung von Gangarten wichtig sind. Zudem ist die Software leicht mit
weiteren Gangarten erweiterbar.

9.4 Ausblick

Für die zukünftige Weiterführung der Arbeit gibt es noch einige offene Punkte.

Die Hardware des Roboters bedarf noch einer Revision. Die Beine müssen stabiler kon-
struiert werden, die Übersetzungsverhältnisse der Motoren sollten noch ein mal angepasst
werden. Damit die Lüfter der Motoren bei einer Versorgungsspannung von 48V funktio-
nieren, müssen die verbauten Platinen überarbeitet werden.

Zudem kann die Parametrierung der Motoren noch verbessert werden, um das Über-
schwingen unter Last zu vermindern.

Softwareseitig fehlt noch die Implementierung der Repositionierung der Beine zum Wech-
seln zwischen Gangarten.

Als Ausblick für aufbauende Arbeiten steht das gesamte Feld der quadrupeden Robotik
offen. Die Plattform erlaubt es durch die Simulation, mittels Reinforcement Learning

69

9 Fazit

Gangarten zu erlernen und diese auf der Hardware zu testen. Hierfür könnte die Arbeit
”Extreme Parkour with Legged Robots” [Cheng u. a., 2023] als Grundlage dienen.

Ein weiteres interessantes Feld könnte ”DeepPhase: periodic autoencoders for learning
motion phase manifolds” [Starke u. a., 2022] sein. Hierbei könnte die Nutzbarkeit der
DeepPhase Methode für das Wechseln zwischen Gangarten beim Laufen auf realen Ro-
botern getestet werden. Die Softwarearchitektur ist bereits so ausgelegt, dass mit einigen
Erweiterungen auch das Wechseln zwischen Gangarten während des Laufens möglich sein
könnte.

70

Literaturverzeichnis

[Adamy 2009] Adamy, Jürgen: Nichtlineare Regelung. Springer, 2009

[Arm u. a. 2019] Arm, Philip ; Zenkl, Radek ; Barton, Patrick ; Beglinger, Lars ;
Dietsche, Alex ; Ferrazzini, Luca ; Hampp, Elias ; Hinder, Jan ; Huber, Ca-
mille ; Schaufelberger, David ; Schmitt, Felix ; Sun, Benjamin ; Stolz, Boris ;
Kolvenbach, Hendrik ; Hutter, Marco: SpaceBok: A Dynamic Legged Robot for
Space Exploration. In: 2019 International Conference on Robotics and Automation
(ICRA), 2019, S. 6288–6294

[Carr und Dycus 2016] Carr, Brittany J. ; Dycus, David: Canine Gait Analysis.
Today’s Veterinary Practice, 2016. – URL https://todaysveterinarypracti

ce.com/wp-content/uploads/sites/4/2016/05/2016-0304_Rehab-Gai

t-Analysis.pdf

[Chai u. a. 2022] Chai, Hui ; Li, Yibin ; Song, Rui ; Zhang, Guoteng ; Zhang,
Qin ; Liu, Song ; Hou, Jinmian ; Xin, Yaxian ; Yuan, Ming ; Zhang, Guoxuan ;
Yang, Zhiyuan: A survey of the development of quadruped robots: Joint configu-
ration, dynamic locomotion control method and mobile manipulation approach. In:
Biomimetic Intelligence and Robotics 2 (2022), Nr. 1, S. 100029. – URL https:

//www.sciencedirect.com/science/article/pii/S2667379721000292.
– ISSN 2667-3797

[Cheng u. a. 2023] Cheng, Xuxin ; Shi, Kexin ; Agarwal, Ananye ; Pathak, Deepak:
Extreme Parkour with Legged Robots. 2023. – URL https://arxiv.org/abs/23

09.14341

[Choi 2020] Choi, Dongil: Development of Open-Source Motor Controller Framework
for Robotic Applications. In: IEEE Access 8 (2020), S. 14134–14145

[Gamma u. a. 2002] Gamma, Erich ; Helm, Richard ; Johnson, Ralph ; Vlissi-

des, John: Entwurfsmuster: Elemente wiederverwendbarer objektorientierter Software.
Addison-Wesley, 2002

71

Literaturverzeichnis

[Goubaux und Barrier 1892] Goubaux, Armand ; Barrier, Gustave: The Exterior
of the Horse. J. B. LIPPINCOTT COMPANY., 1892

[Haynes und Rizzi 2006] Haynes, G.C. ; Rizzi, A.A.: Gaits and gait transitions for
legged robots. In: Proceedings 2006 IEEE International Conference on Robotics and
Automation, 2006. ICRA 2006., 2006, S. 1117–1122

[Hutter u. a. 2016] Hutter, Marco ; Gehring, Christian ; Jud, Dominic ; Lauber,
Andreas ; Bellicoso, C. D. ; Tsounis, Vassilios ; Hwangbo, Jemin ; Bodie, Karen ;
Fankhauser, Peter ; Bloesch, Michael ; Diethelm, Remo ; Bachmann, Samuel ;
Melzer, Amir ; Hoepflinger, Mark: ANYmal - a highly mobile and dynamic qua-
drupedal robot. In: 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2016, S. 38–44

[Intel Corporation 2019] Intel Corporation: Intel Realsense T265 Dokumentation.
https://dev.intelrealsense.com/docs/tracking-camera-t265. 2019

[Katz 2018] Katz, Benjamin: A low cost modular actuator for dynamic robots, Disser-
tation, 01 2018

[Katz u. a. 2019] Katz, Benjamin ; Carlo, Jared D. ; Kim, Sangbae: Mini Chee-
tah: A Platform for Pushing the Limits of Dynamic Quadruped Control. In: 2019
International Conference on Robotics and Automation (ICRA), 2019, S. 6295–6301

[Kuehn u. a. 2016] Kuehn, Daniel ; Schilling, Moritz ; Stark, Tobias ; Zenzes,
Martin ; Kirchner, Frank: System Design and Testing of the Hominid Robot Charlie.
In: Journal of Field Robotics 34 (2016), 07

[Lutz und Wendt 2019] Lutz, Holger ; Wendt, Wolfgang: Taschenbuch der Rege-
lungstechnik. Europa-Lehrmittel, 2019

[Muralidharan u. a. 2021] Muralidharan, Seshagopalan T. ; Zhu, Ruihao ; Ji,
Qinglei ; Feng, Lei ; Wang, Xi V. ; Wang, Lihui: A soft quadruped robot enabled
by continuum actuators. In: 2021 IEEE 17th International Conference on Automation
Science and Engineering (CASE), 2021, S. 834–840

[Odrive Robotics 2021] Odrive Robotics: ODrive Dokumentation. https://docs
.odriverobotics.com/. 2021

[Open Robotics 2025a] Open Robotics: ROS Dokumentation. http://wiki.ros
.org/Documentation. 2025

72

Literaturverzeichnis

[Open Robotics 2025b] Open Robotics: ROS Packages. https://index.ros.

org/packages/. 2025

[PAL Robotics S.L. 2020] PAL Robotics S.L.: DDynamic-Reconfigure. https:

//github.com/pal-robotics/ddynamic_reconfigure. 2020

[ROS core stacks 2025] ROS core stacks: Dynamic-Reconfigure. https://gith
ub.com/ros/dynamic_reconfigure. 2025

[ROS device drivers 2025] ROS device drivers: rosserial. https://github.com
/ros-drivers/rosserial. 2025

[Sen u. a. 2017] Sen, Muhammed ; Bakircioglu, Veli ; Kalyoncu, Mete: Inverse
Kinematic Analysis of a Quadruped Robot. In: International Journal of Scientific &
Technology Research 6 (2017), 01, S. 285–289

[Siciliano und Khatib 2008] Siciliano, Bruno ; Khatib, Oussama: Springer Handbook
of Robotics. Springer, 2008

[Siciliano und Khatib 2016] Siciliano, Bruno ; Khatib, Oussama: Springer Handbook
of Robotics 2nd Edition. Springer, 2016

[Starke u. a. 2022] Starke, Sebastian ; Mason, Ian ; Komura, Taku: DeepPhase:
periodic autoencoders for learning motion phase manifolds. In: ACM Trans. Graph.
41 (2022), Nr. 4. – URL https://doi.org/10.1145/3528223.3530178. –
ISSN 0730-0301

[Unitree Robotics 2025] Unitree Robotics: unitree_ros. https://github.com
/unitreerobotics/unitree_ros. 2025

73

A Anhang

A.1 Verwendete Hilfsmittel

In der Tabelle A.1 sind die im Rahmen der Bearbeitung des Themas der Bachelorar-
beit verwendeten Werkzeuge und Hilfsmittel aufgelistet.

Tool Verwendung
LATEX Textsatz- und Layout-Werkzeug verwendet zur Erstellung dieses

Dokuments
Fusion 360 CAD- und CAM-Software, zur Erstellung von 3D-Modellen und

Fräspfaden
UCCNC CNC-Steuerungssoftware, verwendet zur Steuerung der Fräsma-

schine
PrusaSlicer Slicer-Software, verwendet zur Erstellung von Druckpfaden für den

3D-Drucker
EasyEDA Schaltplan- und Layout-Software, verwendet zur Erstellung von

Platinen
OdriveTool Software zur Konfiguration der Umrichter
ROS Roboter-Betriebssystem, verwendet zur Steuerung des Roboters
Gazebo Simulationssoftware, verwendet zur Simulation des Roboters
VSCode IDE zur Programmierung und Erstellung dieses Dokuments
draw.io Software zum Erstellen von Diagrammen und Zeichnungen

Tabelle A.1: Verwendete Hilfsmittel und Werkzeuge

74

Erklärung zur selbständigen Bearbeitung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig
verfasst und nur die angegebenen Hilfsmittel benutzt habe. Wörtlich oder dem Sinn
nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich
gemacht.

Ort Datum Unterschrift im Original

75

