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Ferdinand Emanuel Trendelenburg

Thema der Arbeit
Verbesserung der Klassifizierung bei geringer Datenmenge unter Beriicksichtigung des Wort-

kontexts

Stichworte

NLP, Text Klassifizierung, Transformer, BERT, Logistsische Regression

Kurzzusammenfassung

Diese Arbeit beschiftigt sich mit einigen Text-Klassifizierungsalgorithmen und derer Perfor-
mance auf Datensédtzen mit geringer Test- und Validierungsdatenmenge. Auflerdem werden
zwei neuartige Ansitze vorgestellt, die mittels einer bestimmten Kontextsuche eine héhere
Zuverlassigkeit erbringen konnten. Dafiir wurde ein bestehender, etablierter Algorithmus
modifiziert und ein zweiter neuer Algortihmus konzipiert und implementiert. Die Performance
dieser neuen Algortihmen wurden anschliefend mit der Performance einer Auswahl von
etablierten Algorithmen verglichen. In diesem Vergleich konnte keine zufriedenstellende Ver-
besserung der Klassifizierung durch das Hinzufiigen einer Kontextvariable erzielt werden.
Allerdings konnte ein Trend bei der Ergenzung um die Kontextvariable zu dem etablierten
Algorithmus beobachtet werden, der sich allerdings nur auf 0.4% belduft. Diese Verbesserung
ist nur marginal, jedoch gibt diese einen Hinweis darauf, dass eine starkere Verbesserung

erreicht werden konnte, wenn an der Stelle weiter geforscht werden wiirde.

Title of the paper

Improved classification with a small amount of data, taking into account the word context

Keywords
NLP, Text classifyer, Transformer, BERT, Logistical regression

Abstract

This paper deals with some text classification algorithms and their performance on datasets
with few test and validation data. In addition, two novel approaches are presented that could
yield a higher performance by using context search. For this purpose, an existing, established
algorithm was modified and a second new algorithm was designed and implemented. The
performance of these new algorithms was then compared against the performance of a selection
of established algorithms. In this comparison, no satisfactory improvement in classification
could be achieved by adding a context variable. However, a trend can be observed in the

addition of the context variable to the established algorithm, although this only amounts to



0.4%. This improvement is only marginal, but it gives an indication that a greater improvement

could be achieved if further research was carried out in this area.
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1 Einleitung

1.1 Problemstellung und Motivation

In der Fakultat fiir Geisteswissenschaften unter der Leitung von Herrn Prof. Dr. Philippe De-
preux an der Universitat Hamburg ist es iiblich, lateinische Schenkungsurkunden (Abb. 1.1, 1.2)
handisch in ihre Urkundenbestandteile zu unterteilen und zu klassifizieren (WillkommenWerk-
statt). Dies bedeutet allerdings einen erheblichen Zeitaufwand und setzt Fachwissen voraus. Ein
Algorithmus, der eine verlissliche Unterteilung und Klassifizierung erméglicht, wiirde daher
eine erhebliche Arbeitserleichterung und Einsparung von Ressourcen bedeuten. Im Zuge einer
Werkstudenten-Anstellung bestand die Aufgabenstellung darin, ein NLP- (Natural Language
Processing) Modell zu entwickeln, welches diese Urkunden in Urkundenbestandteile (wie z.B.
Anrede, Gegenstand der Schenkung, etc.) unterteilt und klassifiziert. Problematisch dabei ist,
dass einige Klassen nur selten vorkommen und dadurch unterreprasentiert im Training der
kinstlich intelligenten Algorithmen sind. Wenn konventionelle Algorithmen (SVM, RF, NN, LR)
mit den vorhandenen Daten (lateinische, unterteilte und kategorisierte Schenkungsurkunden)
getestet werden, erreichten diese keine zufriedenstellenden Ergebnisse. Tests wurden im Zuge
der Vorbereitung auf das Projekt durchgefithrt und Algorithmen ermittelt, die gute, jedoch
nicht zufriedenstellende Ergebnisse ermitteln konnten. Von Anwenderseite wird eine accuracy

von iiber 0.95 angestrebt.
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Abbildung 1.2: Detailansicht Urkunde (UrkundePraefatio (2023))



1 Einleitung

1.2 Zielsetzung

Das Ziel besteht darin, Algorithmen zu entwickelt oder bestehende zu modifizieren, die trotz
einer Trainingsphase mit Daten von geringer Menge, eine moglichst gute Klassifizierung der

Texte erreichen konnen.

1.3 Abgrenzung des Themas

Diese Arbeit wird sich vorwiegend mit dem oben beschriebenen ersten Schritt (Klassifizierung),
aber nur eingeschrankt mit dem zweiten Teilproblem (Unterteilung der Urkunden in ihre
Urkundenbestandteile) befassen. Die Losung des zweiten Teilproblems wird konzeptionell

erldutert und die Ergebnisse werden komprimiert diskutiert.

1.4 Uberblick iiber den Aufbau der Arbeit

Zuerst werden die Datensétze beschrieben und anschlielend einige Arten der Feature Ex-
traction erldutert. Im zweiten Schritt wird unter anderem eine Arbeit vorgestellt, die viele
Klassifizierungsalgorithmen miteinander vergleicht. Im dritten Schritt wird eine Auswahl
etablierter Algorithmen vorgestellt und begriindet, warum diese fiir einen Vergleich mit dem
neuen und mit den modifizierten Algorithmus ausgewahlt wurden. Des Weiteren wird eine
Betrachtung der neuen Losung sowie der modifizierten Losung erst auf konzeptioneller, dann
auf detaillierter ebene erfolgen. Als Nachstes werden die ausgewahlten Metriken und Methoden
festgelegt, um im darauf folgenden Kapitel die Ergebnisse eines modifizierten Algorithmus
sowie die eines neuen Algorithmus mit den Ergebnissen etablierter Algorithmen vergleichen
zu konnen. Anschlieflend wird das Konzept des Algorithmus erldutert, um das Problem zu
l6sen, Urkundenbestandteile automatisiert in Urkunden ermitteln zu kénnen, gefolgt von
den Ergebnissen und deren Diskussion. Abschlieflend wird ein Fazit und ein Ausblick auf

Verbesserungen oder Modifikationen erwogen.



2 Auswahl von Datensatzen und

Preprocessing der Texte

Der bisherige Arbeitsablauf verlauft folgendermafien: Lateinischen Urkunden wurden ein-
gescannt, mittels Optical Character Recognition (OCR) in Text umgewandelt und auf Fehler
iberpriift. Anschliefend hat eine Doktorandin diese Urkunden in Urkundenbestandteile unter-
teilt und klassifiziert (WieHamburg). Der Gegenstand meiner Arbeit bestand darin, ein System
zu etablieren, das diesen letzten Arbeitsschritt ubernimmt und Urkunden in Urkundenbestand-
teile unterteilt und klassifiziert. Dies soll anhand der von der Doktorandin vorgenommenen

Unterteilung erlernt und getestet werden.



2 Auswahl von Datensdtzen und Preprocessing der Texte

Abbildung 2.1: Anzahl der Texte je Urkundenklasse. Orange Linie zeigt die durchschnittliche
Anzahl von Texten je Klasse. (UrkundePraefatio (2023))

Der verwendete lateinische Datensatz, der von der Doktorandin zur Verfiigung gestellt
wurde, umfasst 4900 Urkunden, die in 22.471 Texte unterteilt und 14 méglichen Urkundenbe-
standteilen zugeordnet wurden. Die Aufteilung der unterteilten Urkunden tiber die méglichen
Urkundenbestandteile ist keineswegs gleichmafig. So umfasst beispielsweise der Urkunden-
bestandteil "Intitulatio’ 4.208 Texte, ’Narratives-Element’ aber nur 177 Texte. In orange ist
der Wert gekennzeichnet, den jede Klasse haben miisste, um eine gleichméafliige Verteilung zu
erreichen (Abb. 2.1).



2 Auswahl von Datensdtzen und Preprocessing der Texte

Abbildung 2.2: Anzahl der Texte je Newsgroup. Orange Linie zeigt die durchschnittliche Anzahl

von Texten je Klasse. (HomeSet)

Als weiterer Datensatz wurde ’the 20 newsgroups dataset’ (HomeSet; Abb. 2.2) gew#hlt,
welcher iiber eine Anzahl von 11.314 Texten verfiigt, die relativ gleichmaf3ig auf 20 Klassen
verteilt sind. Der Datensatz besteht aus Texten verschiedener Nachrichtenressorts in englischer
Sprache. Dieser zweite Datensatz wurde gewahlt, um die Giite des neu entwickelten Algorith-
mus auf einem Datensatz zu testen, der iiber eine homogene Verteilung der Texte iiber dessen
Klassen verfiigt. In orange ist wieder der Wert eingezeichnet, den jede Klasse haben miisste,
um eine komplette Gleichverteilung der Texte zu erreichen. Auflerdem ist dieser Datensatz in
der Wissenschaft haufig verwendet worden und erhéht somit die Vergleichbarkeit der hier

vorgestellten Ergebnisse.

2.1 Wordprocessing

Damit die Worte aus einem Text von den Systemen verarbeitet werden kénnen, wird als erstes

"Wordprocessing’ (Datenaufbereitung) durchgefiihrt. Diese Verfahren besteht in diesem Fall
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aus dem Erarbeiten von Tokens aus Texten. Dabei wird ein Text in seine Worte und Satzzeichen
unterteilt (tokenizing). Als Nachstes werden die Wortstimme der Tokens gesucht. Dieses
Verfahren wird *Stemming’ oder auch 'Lemmatizing’ genannt. Zuletzt werden die *Stopwords’
entfernt. Dabei werden Worte wie Pronomen, Fill-Woérter etc., welche unwichtig fir die
Analyse sind, entfernt. Das Generieren der Tokens aus dem Text wird mit dem Python-Paket
‘nltk’ (NLTKPackage) durchgefiihrt. Die englischen und lateinischen *Stopwords’ werden
vom Paket ’stopwords’ (stopwords) bereitgestellt, und das ’stemming’ erfolgt iiber das Paket
’simplemma’ (simplemma), um einen Lemmatizer zu nutzen, der multilingual ist, und dadurch
sowohl fuir lateinische als auch fiir englische Texte anwendbar ist. Stopwords im Lateinischen
sind jedoch sehr beschriankt. In dieser Bibliothek existieren gerade einmal 49 ’Stopwords’

(StopwordsLatin), in der englischen Bibliothek sind es dagegen 174 Worter (StopwordsEnglish).

2.2 Feature-Extraction

Fiir einige der konventionellen Algorithmen reichen diese preprocessing Mafinahmen jedoch
nicht aus. Im ersten Schritt miissen in diesen Féllen die Texte in Vektoren oder Tokens unterteilt
werden. Dies wird anhand verschiedener Algorithmen (Term Frequency and Inverse Document
Frequency, Bag Of Words, Tokenizierung in Sequenzen) durchgefiihrt, welche als Algorithmen
der Feature-Extractionflusammengefasst werden konnen. Die ermittelten Vektoren oder Tokens

werden als Features bezeichnet.

2.2.1 TF-IDF

TF-IDF steht fiir Term Frequency (TF) and Inverse Document Frequency (IDF) und ist ein
Verfahren, Features aus Texten zu extrahieren. Dieser Algorithmus beriicksichtigt keinen
Wortkontext. TF-IDF legt dabei einen besonderen Wert darauf, zu ermitteln wie wichtig ein
bestimmtes Wort in einem Dokument fiir die richtige Klassifizierung ist. Fiir diese Feature-
Extraction werden die Menge der Dokumente D, das zu betrachtende Wort w und das aktuelle

Dokument d, welches aus der Menge der Dokumente D stammen muss, benétigt.

Wq :fw,d*log(|D|/fw,D) (2-1)

fuw,a beschreibt, wie haufig das Wort w im Dokument d vorkommt. f,, p beschreibt, in wie

vielen Dokumenten aus D das Wort w vorkommt (Form. 2.1) Ramos (2003).
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2.2.2 Bag Of Words & CountVectorizer

Das Bag Of Words Modell ist ein sehr simples und intuitives Verfahren, um aus Daten wie
Texten Merkmale fiir eine Klassifizierung zu extrahieren. Das Verfahren betrachtet dabei die
Haufigkeit eines Wortes in einer bestimmten Klasse (Term Frequency (TF)).

Dafiir wird ein Worterbuch anhand der Trainingsdaten aufgebaut, in dem alle Worter
enthalten ist. Anschlief3end wird anhand dieses Worterbuchs eine Liste erstellt, die dieselbe
Lange wie das Worterbuch hat und in der fiir jedes Wort die TF gespeichert wird. (George und
Joseph (2014)).

2.2.3 Tokenizieren in Sequenzen

Das Tokenizieren in Sequenzen ist das einzige der vorgestellten Verfahren, bei dem der Kontext
der Worter nicht verloren geht. Bei diesem Verfahren werden Woérter der Texte in ein Worter-
buch geschrieben und Listen erstellt. Die Worter in Texten werden durch ihre Indices ersetzt.
Die Merkmale, die daraus entstehen, beinhalten Zusammenhange von Wortern in Texten. Ein
Tokenizer, der diese Art von Tokenizieren in Sequenzen bereitstellt, ist der Tokenizer aus dem

Paket Tfkeras.preprocessing.text.Tokenizer.



3 Grundlagen und Auswahl Algorithmen

3.1 Verwandte, wissenschaftliche Arbeiten

Wie oben beschrieben, wurden zu Beginn des Projektes auf etablierten Algorithmen Tests
mit den Datensétzen angefertigt. Diese Algorithmen wurden aufgrund ihrer Verbreitung im

Anwendungsgebiet Textklassifizierung ausgew#hlt.

A Survey Report on Text Classification with Different Term Weighing Methods and
Comparison between Classification Algorithms - Singh und Patra (2013): Diese Ar-
beit untersucht die Abhingigkeit zwischen Performance und Modell. Die Performance wird
in dieser Arbeit in ’precision’ und ’'recall’ gemessen. Ein besonderer Fokus der Arbeit ist die
Untersuchung der Kombinationen aus "Termgewichtungsmethoden’ und der Klassifizierungsal-
gorithmen. Untersucht wurden: ’K-nearest neighbor’, "Naive bayes’, ’SVM’, NN’ und ‘DT’ mit
sowohl iberwachten als auch nicht-tiberwachten Termgewichtungsmethoden. Zu den nicht-
uiberwachten Termgewichtungsmethoden zéhlen die auch in dieser Arbeit haufig angewandten
TF und IDF (siehe dazu Abschnitt 2.2.1). Die Autoren dieser Arbeit kommen zu dem Ergebnis,
dass keine Datenreprisentierungsmethode und kein Algorithmus als generelles Modell fiir
alle Anwendungsfille verwendet werden kann, sondern die Auswahl dieser Bausteine immer

anhand des zu l6senden Problems und der zugrunde liegenden Daten getroffen werden muss.

Using logistic regression method to classify tweets into the selected topics - St u. a.
(2016): In der Arbeit *Using logistic regression method to classify tweets into the selected
topics’ wird mittels logistsischer Regression eine Klassifizierung von Tweets auf dem Sozialen
Netzwerk Twitter (heute "X’) durchgefiihrt. Als Metrik wird die ’accuracy’ gewahlt, welche bei
einer Menge von 9000 Tweets 1800 Tweets mit einer ’accuracy’ von 93% korrekt zuordnete.
Diese Arbeit begriindet die Auswahl der Logistischen Regression als Basis-Algorithmus fiir die

Erweiterung eines kontextlosen Algorithmus um eine Kontextvariable.
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Text Classification Algorithms: A Survey - Kowsari u.a. (2019): In der Arbeit "Text
Classification Algorithms: A Survey’ wurden verschiedene Klassifizierungsalgorithmen mitein-
ander vergleichen. Um eine moglichst prazise Vorhersagen zu erreichen, wurde in dieser Arbeit
ein starker Fokus auf das Preprocessing der Daten gelegt. Dieses Preprocessing beinhaltetet
unter anderem das Bereinigen der Daten, wie zum Beispiel das Loschen von Stopwortern, das
Ersetzten von Grofibuchstaben durch kleine Buchstaben und das Suchen des Wortstamms
(Lemmatisierung). Die Ergebnisse dieser Arbeit sind in einem 6ffentlichen GitHub Repository

einzusehen. (Kowsari K (Tab. 3.1))

Algorithmus accuracy | support
Convolutional Neural Networks (CNN) 0.76 7532
Neural Networks (NN) 0.82 7532
Support Vector Machine (SVM) 0.85 7532
Decision Tree (DT) 0.55 7532
Random Forest (RF) 0.77 7532

Tabelle 3.1: Auszug der Ergebnisse des GitHub Repositorys Kowsari K

Bei diesen Ergebnissen handelt es sich um Tests auf dem Datensatz *20 Newsgroups’, bei
denen der gesamte Datensatz mit allen méglichen Klassen ausgew#hlt wurden. Die besten
Ergebnisse erreichten in dieser Arbeit die SVM und die neuronalen Netzwerke. Diese SVM
benutzt als Vektorisierer ausschlief3lich den CountVectorizer aus dem Paket ’scikit-learn’,
welcher keinen Wortkontext betrachtet (SklearnCountVectorizer). Algorithmen, die den Wort-
kontext beriicksichtigen, erreichten in dieser Arbeit schlechtere Ergebnisse als kontextlose
Algorithmen. So kann bei den Ergebnissen des NN eine bessere Prazision erreicht werden, als

bei dem CNN, welches eine Modifikation um eine Kontextbetrachtung des NN ist.

A Survey on Text Classification Algorithms: From Text to Predictions - Gasparetto
u.a. (2022): Eine der aktuellsten und umfangreichsten Arbeiten ist die Arbeit ’A Survey on
Text Classification Algorithms: From Text to Predictions’. Sie beschéftigt sich mit allen relevan-
ten Text Klassifizierungs-Algorithmen. Diese Arbeit bildet ein sehr viel breiteres und detaillier-
teres Bild der Klassifizierungslandschaft ab und untersucht die Modelle auf viele verschiedene
Aufgabenbereiche wie Stimmungsanalyse, Themenbeschriftung, Named Entity Recognition,
News Klassifikation, uvm. Hierfiir wurden viele konventionelle Algorithmen verwendet, wie
SVM, DT, LR, RF, K-NNN und Naive Bayes, zusitzlich State-Of-The-Art Transformer Model-

10
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le wie BERT. Auch mit vielen verschiedenen Datensitze wurde gearbeitet: exemplarisch zu
erwahnen waren die 20 News, IMDb und AG News.

Tabelle 3.2: Macro-F1 und Accuracy Scores beim Ermitteln von Themenbeschriftung auf den
Datensets 'EnWiki-100" und RCV1-57 (Gasparetto u. a. (2022))

In Tabelle 3.2 werden die Ergebnisse der Themenbeschriftung gezeigt. Das BERT Modell
zeigt, gemessen am F1-Score, eine deutliche bessere Performance sowohl fiir EnWiki-100 (85,52)
als auch fiir den RCV1-57 (78,07) Datensatz.

Anschlieflend wurde noch ein zweiter Test der verschiedenen Transformer und nicht Tranfor-
mer Modelle mit News Klassifizierungsaufgaben durchgefiihrt. Hierfiir wurde unter anderem
das Dataset der 20 News verwendet.

Auch in Tabelle 3.3 dominierten Transformer Modelle die Tests.
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Die betrachteten wissenschaftlichen Arbeiten trugen zur Auswahl der im nachsten Abschnitt

betrachteten Algorithmen bei.

3.2 Ausgewaihlte Algorithmen und ihre Methodik

Es gibt viele Algorithmen, die Klassifizierungen durchfithren konnen. In dieser Arbeit werden
Besonderheiten einiger dieser Algorithmen erkldrt und begriindet, weshalb diese sowohl fiir
einen Vergleich mit dem modifizierten (Logistische Regression mit Kontexterweiterung LRC)
als auch dem neu entwickelten Algorithmus (Context-Classifyer CC) ausgewihlt wurden.
Einige dieser Algorithmen sind besonders zuverléssig und haufig genutzt auf dem Gebiet der
Textklassifizierung (Transformer, SVM), andere haben in vorangegangenen Tests besonders
gute Ergebnisse erreicht (LR, SVM, Transformer). Wieder andere haben einen starken Fokus
auf Kontext/Aufmerksamkeiten und sind daher interessant um mit den neuen Algorithmen
verglichen zu werden (CNN, Transfomer). Einige sind besonders schnell (SVM, DT, RF) oder
die Grundlagen anderen Algorithmen (DT, NN) (Tab. 3.4).

Algorithmus Auswahlkriterium
LR Starker Klassifizierungsalgorithmus in vorangegangenen Tests
SVM Bensonders gut fiir geringe Datenmenge (Sivakami (2018))
CNN Starker Fokus auf Kontext durch Conv. Layers
RF wenig rechenintesiv
Transformer Fir sequenzielle Daten geeignet &
spezieller Fokus auf Kontext durch Aufmerksamkeiten

Tabelle 3.4: Ubersicht iiber gewihlte Klassifizierungsalgorithmen und deren Begriindungen
- LR Logistische Regression, SVM Support Vektor Mashine, CNN Conolutional

Neuronal Network, RF Random Forest

13
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3.2.1 Logistische Regression

Logistische Regression ist ein Verfahren, Texte anhand von Merkmalen Klassen zuzuordnen.
Multinomiale logistische Regression wird fiir diesen Fall genutzt, da es sich um eine nicht
binire Klassifikation handelt (Kwak und Clayton-Matthews (2002)). Eine Regression (Form.
3.1) ist das Verrechnen von ermittelten Intensitéiten (3,) von Features (f,) mit einem Faktor,
der die Wichtigkeit () von diesem bestimmten Feature reprasentiert. Diese (/3;) Werte werden

auch Regressionskoeffizienten genannt (Rawlings u. a. (1998)).

reg(o, B, f) =a+Brx fi+Bax fo+ -+ Br* fr (3.1)

Diese Wichtigkeit von einem Feature wird anhand des Maximum-Likelyhood Verfahrens in
der Trainingsphase ermittelt. Eine logistische Regression entsteht, wenn diese Regression mit

einer logistischen Funktion (Form. 3.2) verbunden wird.

1 e’

o9(2) = 1= T Tr e

(3.2)

Eine logistische Regression (Form. 3.3) beschreibt die Wahrscheinlichkeit, mit der bestimmte
Merkmalskombinationen in einer Klasse liegen, da sich durch die logistische Funktion Werte

in den Extremen 1 und 0 annihern.

~exp(Box fo+ Brx fr 4o+ B+ fr)
log(B, 1) = 1+ exp(Bo * fo+ B * fr + -+ Br * fi) &9

Fiir eine multinomiale logistische Regression, die in diesem Beispiel benétigt wird, wird die
Regression der zu ermittelnden Klasse r exponenziert (exp) und durch 1 + die Summe aller
exponenzierten Regressionen aller Klassen geteilt (EI-Habil (2012)) (Form. 3.4).

exp(Bor * fo+ irx f1+ -+ Brr * fr)

lOg(Z) = 1+Zg:1 6.’Bp(603*f0+613*f1 ++Bks*fk) (34)

So wird fiir jede Klasse die Wahrscheinlichkeit errechnet, dass das betrachtete Element

dieser spezifischen Klasse angehort. Alle Wahrscheinlichkeiten der Klassen ergeben addiert 1.

3.2.2 SVM

Support Vector Machines (SVM) sind ein Algorithmus zum Klassifizieren von Daten, die haufig
zur Textklassifizierung verwendet werden (Tong und Koller (2001), Uchenna Oghenekaro und
Benson (2022), Sivakami (2018)). Diese eignen sich besonders gut fiir Daten geringer Menge

(Sivakami (2018)). Eine SVM funktioniert, indem Daten erst mittels 'Feature Extraktion’ vektori-

14



3 Grundlagen und Auswahl Algorithmen

siert werden und dann in eine mehrdimensionale Matrix geladen werden, in der die Anzahl der
Dimensionen der Anzahl der extrahierten Features entspricht. Diese Vektorisierung kann auf
mehrere Arten durchgefiithrt werden. Es existieren Algorithmen wie der Bag Of Words Algorith-
mus, die diese Daten losgelost von ithrem Kontext vektorisieren (Nitsche und Tropmann-Frick
(2020)). Auflerdem gibt es auch Modelle wie ’Continuous Bag-Of-Words’ (CBOW) (Nitsche und
Tropmann-Frick (2020)), welche diese Vektorisierung vornehmem und den Kontext der Worter
beriicksichtigen. Anschlieflend errechnet der Algorithmus Hyperplanes in den Raum, welche
die Klassen voneinander trennen sollen. Als Supportvektoren werden die néchsten Datenpunk-
te an der Hyperplane bezeichnet (Abb. 3.1). Von diesen Datenpunkten ist die Position und die
Ausrichtung der Hyperplane abhédngig. Eine Idee ist, den Abstand zwischen den Datenpunkten
und der Hyperplane zu maximieren. Der Abstand der Suportvektoren zu der Hyperplane wird
als ’Margin’ bezeichnet (Tong und Koller (2001)). Beispielsweise erhélt man fiir eine binére
Klassifikation durch eine SVM einen Wert zwischen —1 und +1.

Multi-Klassen-Klassifikation: Gibt es mehrere Klassen, die vorhergesagt werden kénnen,
gibt es Verfahren, welche Multi-Klassen-Klassifikationen angehen. Diese Verfahren sind in

folgende Konzepte unterteilbar (Galar u. a. (2011)):
1. One-vs-One
2. One-vs-Many/One-vs-All

Bei der One-vs-One Klassifizierung wird fiir jede Klassenpaarkombination eine SVM erlernt,
die zwischen diesen beiden unterscheiden kann. AnschlieBend werden diese Ergebnisse kom-
biniert und als resultierende Klasse zuriickgegeben.

Das One-vs-Many/One-vs-All Modell erlernt fiir jede mogliche Klasse eine ’Klasse X gegen
alle andere Klassen’ SVM. Diese Ergebnisse werden wieder kombiniert und als resultierende
Klasse zurtickgegeben (Galar u. a. (2011)).

SVM'’s gibt es in linearer und in nicht linearer Form.
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Abbildung 3.1: Support Vectors (Meyer (2012))

Lineare SVM: Bei einer linearen SVM werden lineare Funktionen zur Definition der Hyper-
planes genutzt. Eine Klassifizierung mit einer solchen Funktion kann nicht so flexibel wie die
nicht lineare SVM an die Trainingsdaten angepasst werden, da die Klassifizierung durch die
Linearitit der Funktion eingeschrankt wird (Mammone u. a. (2009)). Die Darstellung einer zwei
dimensionalen, linearen SVM ist in Abbildung 3.1 zu erkennen. Linare SVM kénnen besonders
gut verwendet werden, wenn eine lineare Abhangigkeit zwischen Features angenommen wird.
Somit beeinflussen Ausreiflerwerte nur geringfiigig die Ausrichtung der Hyperplane und ein

Overfitting dieser Werte kann vermieden werden.

Nicht lineare SVM: Eine nicht lineare SVM bedient sich nicht linearer Funktionen zur
Bestimmung der Hyperplanes (Abb. 3.2), und damit auch zum Separieren der Klassen. Durch
eine nicht lineare Funktion ist eine deutlich flexiblere Anpassung der Hyperplanes an die

Daten moglich (Mammone u. a. (2009)).
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Abbildung 3.2: Nicht lineare SVM (Mammone u. a. (2009))

17
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3.2.3 CNN

Ein Convolutional Neural Network (CNN) ist ein kiinstliches neuronales Netzwerk, das tiber
zusatzliche, vorgeschaltete Schichten (Layer) verfiigt. Diese Schichten sind abwechselnd Con-
volutional Layer und Pooling Layer. Im Preprocessing der Daten ist es wichtig, dass nicht nur
eine Vektorisierung auf TF-IDF oder nach dem BOW Model erfolgt, sondern der Wortkontext
erhalten bleibt. Dies wird anhand der Tokenizierung in Sequenzen realisiert. AnschlieBend
erfolgt eine Schicht, die fiir das ’flatten’ zusténdig ist. Dieser Vorgang passt die Ergebnisse
der vorherigen Schicht auf die Anzahl und Form der Eingabeneuronen der néchsten Schicht
an. Die letzte Schicht ist ein vollstindig verbundenes neuronales Netz, welches die moglichen

Klassen als Ausgabe-Neuronen hat (Abb. 3.3) (Kowsari u. a. (2019)).

Abbildung 3.3: CNN fiir Text Klassifizierung (Kowsari u. a. (2019))

Convolutional Layer: Als Convolutional Layer bezeichnet man eine bestimmte Art von
Schicht in einem kiinstlichen neuronalen Netz, welche sich auf das Zusammenfassen benach-
barter Eingangsneuronen konzentriert (falten). Dafiir wird von bestimmten Filtern Gebrauch
gemacht, die in der Trainingsphase trainiert werden. Diese Filter laufen beispielsweise bei
zweidimensionalen Eingabematrizen wie einfache Schwarzweifibilder als N x N Matrix tiber
die Eingangsneuronen und finden Muster. Diese Filtermatrizen weisen eine ungerade Lange
und Breite auf.

Die Idee ist, dass die Filter Pixel fiir Pixel tiber die Eingabeneuronen gelegt werden und

die Werte aus der Filtermatrix mit den darunterliegenden Eingabeneuronen multipliziert
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werden (Form. 3.6). Die errechneten Produkte werden anschliefend aufsummiert und in einer

‘featuremap’ festgehalten (Form. 3.5).

filter = Filtermatrix

input = Eingabenneuronen-Matrix
output = featuremap

[(X) = Lange einer Matrix X

b(X) = Breite einer Matrix X

o = sigmoid-Funktion

[ = bias
l(input) b(input)
Z Z outputy , = auspraegung(x,y) (3.5)
=0 y=0
I(filter) b( filter)
auspraegung(z,y) = o | B+ Z Z INPUL (1 filter)/2)+iy—(b( filter) /2)+j * Jilter;;
i=0  j=0
(3.6)

In der Abbildung 3.4 wird die Berechnung eines Featurewerts dargestellt. Hierfiir wird ein
Auszug einer Inputmatrix (links) mit einem Filter (mitte) betrachtet, der eine vertikale Linie
in einem zweidimensionalen Bild erkennen kann. Rechts steht der berechnete Wert fiir die
Auspragung dieses Features.

Dieses Verfahren kann beliebig oft fiir jeden erlernten Filter wiederholt werden. Daraus
resultieren mehrere featuremaps, die auch in unserem Beispiel als M x M x F' Matrix betrachtet
werden konnen, in der die F'-Dimension die Anzahl der featuremaps der Mafie M x M sind. Die
Lange und Breite der errechneten featuremap kann von der Eingabelange der Matrix abweichen.
Dies geschieht allerdings nur, wenn keine Paddingmethode verwendet wird. Mit dem ’padding’
soll erreicht werden, dass die Lange und Breite der Matrix gleich bleibt. Das bedeutet, dass eine
64 x 64 Neuronenmatrix als Eingabe auch eine 64 x 64 Matrix als featuremap ausgibt. Dies
wird erreicht, indem weitere imaginare Eingabeneuronen um die Inputmatrix erzeugt wird.
Dieses padding hat eine Breite von der Halfte der Lange und Breite der Filtermatrix. Dies hat
zum Zweck, dass die gesamte Berechnung durchgefithrt werden kann, wenn die Filtermatrix
iiber die Eingabeneuronen gelegt wird. Beim Zeropadding werden die padding Werte auf 0

gesetzt. Das Samepadding spiegelt die &uBeren Werte in der Eingabematrix.
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Abbildung 3.4: Der Faltprozess

Pooling: Pooling beschreibt den Prozess, Eingabe-
neuronen nach dem Falten zusammenzufassen, mit
dem Ziel, so viele Informationen wie moglich zu er-
halten. Dies kann auf verschiedene Arten erfolgen. So
gibt es beispielsweise das ’Average-Pooling’ oder auch
das ’Max-Pooling’. Pooling definiert die Dimensionen
der Eingabeneuronen N der nichsten Schicht im CNN.
Wenn ein N x N Pooling durchgefithrt wird, wird
aus den Outputneuronen der Convolutional Layer ein
N X N Feld ausgewahlt und zusammengefasst. Bei ei-
nem ’Average-Pooling’” wird der Durchschnitt aus allen
Werten gebildet und zuriickgegeben (Abb. 3.6), beim
"Max-Pooling’ wird der grofite Wert zuriickgegeben
(Abb. 3.5). Der giangigste und meistverbreitete Algo-
rithmus zum Pooling ist das "Max-Pooling’ (Kowsari

u. a. (2019)).
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3.2.4 Random Forest

Um den Random Forest (RF) Algorithmus zu verstehen, muss erst das zugrundeliegende

Konzept des Decision Tree Models (DT) verstanden werden.

Grundlagen des Decision Tree Model: Dieser Algorithmus 16st eine Klassifizierung an-
hand eines biniren Entscheidungsbaumes. Der Baum wird mittels seiner Trainingsdaten gebil-
det und orientiert sich dabei daran, Unterteilungen in jedem Knoten zu machen. Damit soll eine
Minimierung der Entropie erreicht werden. Entropie ist der Zustand, wenn ein Datensatz eine
stark heterogene Menge ist, also eine Menge, die viele Daten verschiedener Klassen beinhaltet.

Die Entropie kann folgendermafien errechnet werden:

= pixlog(p:) (3.7)
1=1

p zeigt die Wahrscheinlichkeit der Klasse ¢ im aktuell betrachteten Datensatz und m ist die An-
zahl der Klassen (Form. 3.7) (Kingsford und Salzberg (2008)). Dieser Lernprozess ist ein ’greedy’
Algorithmus und sucht sich immer das aktuell beste Ergebnis. Das bedeutet Entscheidungen,
die im Wurzelknoten oder in der 1. Ebene gemacht wurden, konnen nicht mittels backtracking
in der 3. oder 4. Ebene des Baumes gedndert werden, da dies einen komplett neuen DT ergeben
wiirde. Aulerdem wiirde der Algorithmus in seiner Form diese Entscheidung niemals treffen,

da sie zu einer temporar hoheren Entropie fiihren wiirde.

Random Forest: Der Random Forest Algorithmus beschreibt eine Modifikation des DT. Die
Besonderheit ist, dass der Algorithmus mehrere DTs generiert. Dafiir erstellt der Algorithmus
mehrere Teilmengen aus dem eigentlichen Trainingsdatenset, welche ‘Bootstrap-Datensets’
genannt werden und trainiert damit eigenstandige DT. Der Grund hierfiir liegt darin, dass DT
oft dazu neigen nicht generalisiert zu sein. Das bedeutet, dass sie nicht gut anwendbar auf
neue Datensitze sind und ausschlief8lich einige wenige Merkmale lernt. AuBerdem lernen jede
DTs im Random Forrest auch ein zufillig selektiertes *featureset’.

Jeder DT errechnet anhand des neuen Datensatzes eine eigenstindige Vorhersage und anschlie-
Bend wird mittels gleich gewichtetem Voting die Klasse ausgew#hlt, welche am haufigsten

bestimmt wurde. Diesen Vorgang nennt man Aggregation (Cutler u. a. (2012)).
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Abbildung 3.7: Random Forest Model (Kowsari u. a. (2019))

3.2.5 Transformer

Das Transformer Modell (Abb. 3.8) ist das modernste der betrachteten NLP-Modelle, das fiir
das Klassifizieren von Texten genutzt werden kann. Dieses Modell legt einen groflen Wert auf
den Kontext, da es eine ’attention layer’ aufweist, in dem Aufmerksamkeiten trainiert und

beriicksichtigt werden.
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Abbildung 3.8: Transformer Model (Vaswani u. a. (2017))

Das Modell besteht aus einem Decoder und einem Encoder. Die linke Halfte der Abbildung
3.8 zeigt den Encoder, die rechte Hélfte den Decoder. Der Encoder ist zusammengesetzt aus
einer ‘'multihead attention layer’ und einem voll verbundenen ’feed foreward’ Netzwerk. Eine
Aufmerksamkeitsschicht (attention layer) erfillt den Zweck, die Worter der Eingabesequenz
unterschiedlich zu gewichten. Worter mit einem hohen Aufmerksamkeit-Wert werden beson-
ders stark gewichtet und Worter mit einem niedrigen Wert eher schwach. In Abbildung 3.9
wurde eine Aufmerksamkeit erlernt, die den korrekten Zusammenhang zwischen ’the’ und

’animal’ erkennen kann.
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Abbildung 3.9: Attention (Tensor2TensorColaboratory)

Jeder Encoder kann dabei auf alle Positionen (Reprasentation von Wortern in Vektoren) des
vorherigen Encoders zugreifen, sodass ein Kontext erkannt werden kann. ’Multihead atten-
tion layer’ betrachten dabei mehrere Aufmerksamkeiten und kombinieren diese Ergebnisse
anschliefend miteinander. Nachdem die Eingabe durch diesen Prozess verarbeitet wurde, wird
ein Vektor errechnet, der die Eingabesequenz reprisentiert. Dieser Vektor ist zusammen mit
dem vorherigen Output des Decoders die Eingabe des Decoder-Blocks. Dieser errechnet mit
dem komprimierten Vektor des Encoders (Verstindnis iiber den Satz) und den vorherigen
Ausgaben (Kontext des Ausgabewertes bezeihungsweise des Satzes) die Ergebnisse (Vaswani
u.a. (2017)). Sobald in den Analysen der Transformer eingesetzt wird, wurde der "Bidirectional

Encoder Representations from Transformers’, kurz BERT, verwendet.

3.2.6 BERT

Der ’Bidirectional Encoder Representations from Transformers, kurz BERT, ist ein Encoder-
Only Transformermodell und eignet sich daher besonders fiir Klassifikationsprobleme (Devlin
u.a. (2018)). Aus diesem Grund wurde es auch fiir diesen Vergleich ausgewéhlt.

Fir den Prozess, die Algorithmen zu vergleichen, wurden zwei vortrainierte BERT Modelle
verwendet. Einmal der ’distilbert-base-uncased’ (Distilbert-base-uncased) fiir Texte in der
englischen Sprache (20 Newsgroups) und der ’simple-latin-bert-uncased’ (Simple-latin-bert-

uncased) fir lateinische Texte (mittelalterliche Urkunden).
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Pre-Training: Das Ziel vom Pretraining ist, ein generalisiertes Modell zu erlernen, das
anschlieflend mittels finetuning auf bestimmte Daten angepasst werden kann. Dies spart Zeit
und Ressourcen. Dieses Ziel wird in BERT-Modell durch zwei Methoden erreicht, welche im

Folgenden beschrieben werden:

Masked Language Model: Beide dieser Modelle (’distilbert-base-uncased’, ’simple-latin-
bert-uncased’) sind *uncased’ BERT Algorithmen. 'Uncased’ bedeutet, dass keinen Unterschied
zwischen kleinen und grof3en Buchstaben gemacht wird. BERT ist ein von Google entwickeltes
Transformermodell, das ein Modell des "Masked Language Modeling’ (MLM) ist. Dieses Modell
wurde mit maskierten Trainingsdaten erlernt. Das bedeutet, dass in jedem Trainingsdatensatz
15% der Wérter durch das [MASK]-Token ersetzt werden. Fiir diese Masken werden vom BERT
Modell anschlieSend Wérter errechnet, die diese Liicken fiillen sollen. Anhand des richtigen
oder fehlerhaften Ersetzen der Masken, trainiert das Modell seine Prazision. Auf3erdem wird
durch dieses ‘'masked lerarning model’ eine bidirektionale Aufmerksambkeit erlernt. Durch das
Maskieren eines Wortes in der Mitte des Textes, kann der Algorithmus auch nachfolgende
Worte in seinen Entscheidungsprozess einflieflen lassen und erlernt damit diese bidirektionale

Aufmerksamkeit (Devlin u. a. (2018)).

Input: The man went to the [MASK], . He bought a [MASK], of milk
Labels: [Ma5E] store; [MASK] gallan

Abbildung 3.10: Beispiel: ermittelte Worte fiir [MASK]-Tokens (OpenBlog)

Ein nicht bidirektionales Modell kann den ersten Satz sehr gut ergénzen, wird jedoch
Probleme im zweiten Satz haben, da fiir die Ermittlung der zweiten Maske der Kontext der
nachfolgenden Worte wichtig ist. Ein nicht bidirektionales Modell kénnte nach "He bought a’
beispielsweise "house’ oder andere Worter einfiigen. Erst mit der bidirektionalen Aufmerk-
samkeit kann das Modell treffende Aussagen iiber die Maske machen, da das Modell nun eine
Aufmerksamkeit auf 'milk’ erlernen kann (Abb. 3.10) (Devlin u. a. (2018)).

Next Sentence Prediction: Das BERT Modell verfiigt weiterhin iiber erlernte Beziehungen
zwischen Satzen. So kann ein nachfolgender Satz als solcher erkannt und auch als solcher
gebildet werden. Um diese Beziehung zu erlernen, wird das Modell mit vielen Satzpaaren
trainiert. Dabei besteht die Halfte aus tatsachlichen Satzpaaren und die andere Hailfte aus

zufallig zusammengesetzten Satzpaaren. Das Training hat anschlieflend das Ziel, den zweiten
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Sétzen der richtigen Satzpaare das Label ’IsNext’ zu geben, und den zufilligen das Label

NotNext’ (Abb. 3.11). (Devlin u. a. (2018))

t to the store.

Sentence A = The man went to
Sentence B = He bought a gallon of milk.
Label = IsNextSentence

Sentence A = The man wen
Sentence B = Fengui
Lab9| = NothMextSentencse

Abbildung 3.11: Beispiel: Next Sentence Prediction (OpenBlog)

Finetuning: Um das Modell anschlieBend auf bestimmte Daten anwendbar zu machen, ist
es notwendig, die Berechnungen dieses Modells auf diese Daten zu optimieren. Dafiir ist ein

Trainings- und Validierungsdatensatz notwendig. Dort wird der Output mit den gelabelten

Daten verglichen und die Parameter der Models angepasst.

26



4 Losungskonzeption

Um sich dem Problem der Klassifizierung von Texten geringer Trainingsdatenmenge zu widmen,
wurden zwei Losungsansétze verfolgt. Im ersten Ansatz wurde ein starker Algorithmus um
eine Kontextvariable erweitert (LCR) und im zweiten Ansatz ein komplett neuer Algorithmus
entworfen (CC).

4.1 LRC

Der erste Ansatz zur Optimierung einer Klassifikation besteht darin, einen bestehenden Al-
gorithmus, der keinen Kontext beriicksichtigt, um eine Kontextvariable zu erweitern. Der
Algorithmus, der fiir die Erweiterung ausgesucht wurde, ist die logistische Regression, da
sie in den vorhergehenden Tests bessere Ergebnisse als die meisten anderen kontextfreien

Klassifizierungsalgorithmen erreichen konnten.

4.1.1 LRC im Detail

Die logistische Regression ermittelt fiir den zu analysierenden Text eine Wahrscheinlichkeit
fur jede mogliche Klasse. Das Ziel der Erweiterung ist es, diesen errechneten Wert mit einer
‘streak’ zu multiplizieren. Diese ’streak’ errechnet sich, indem der Text aus der Perspektive
jeder einzelnen Klasse betrachtet wird. Im ersten Schritt wird der Text nach den Verfahren
aus Kapitel 2 (tokenizierung, stopwords, stemming) aufgearbeitet. Als Néchstes wird fiir jedes
Wort die Wortwahrscheinlichkeit und der Wortkontext errechnet. Im Prozess der Ermittlung
des Wortkontextes wird iiberpriift, ob das Wort in der Klasse vorkommt, die aktuell betrachtet
wird. AnschlieSend wird Giberpriift, ob das darauf folgende Wort als *successor’ des aktuellen
Wortes abgespeichert wurde. Wenn dies der Fall ist, wird die temporare ’streak’ um eins
erhoht. Sollte der Nachfolger des aktuellen Wortes nicht als ’successor’ des aktuellen Wortes
auftauchen, wird die temporire ’streak’ auf 1 gesetzt. Der Wert der temporaren ’streak’ wird
in jeder Iteration mit dem aktuellen ’streak’ verglichen und der groflere der beiden bildet
den neuen ’streak’-Wert. So wird die maximale Wortkette ermittelt, die das System mit der

Klasse verbindet. Dieser Wert ist eine Ganzzahl gré3er gleich 1 und wird mit dem Ergebnis
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der logistischen Regression der Klasse multipliziert. Anschlieffend wird die Klasse mit dem

hochsten Wert als vorhergesagte Klasse zuriickgegeben.

4.2 Context-Classifyer

Die ersten Ergebnisse der Erweiterung der logistischen Regression erschienen vielversprechend,
da eine Verbesserung der accuracy festzustellen war. Daher war der néachste Schritt, einen
Algorithmus zu entwerfen, der einen noch stirkeren Fokus auf die Wortkontextsuche legt und
aulerdem eine "Wort fiir Wort Klassifikation” der Texte ermoéglicht, um diese als Grundlage
einer spateren Unterteilung der Urkunden in Urkundenbestandteile zu nutzen. Der neuartige
Klassifizierungsalgorithmus baut auf einer Datenbank auf, die an ein "Bag Of Words’ Model
erinnert.

Uber solch einen 'Bag Of Words” Algorithmus wird eine Wahrscheinlichkeit errechnet, dass
ein bestimmtes Wort in einer Klasse (Urkundenbestandteil) vorkommt. Die erweiterte Idee
besteht darin, diese Wahrscheinlichkeit mit einem berechneten Kontextwert zu multiplizieren
und somit einen konzeptionellen Kompromiss aus einem convolutional neural network (CNN)

und einem 'Bag Of Words” Modell zu kreieren.

4.2.1 Context-Classifyer im Detail

Datenorganisation: Alle Worter der Trainingsdaten werden in eine 'In-Memory-Datenbank’,
reprasentiert durch ein Python Dictionary, aufgenommen. Die Daten werden auf der ersten
Ebene nach Wortern organisiert. Uber das Wort - im folgenden ‘Index-Wort’ - ist ein weiteres
Dictonary adressierbar, in dem die Frequenz gespeichert ist, wie oft das Index-Wort in den
Trainingsdaten auftaucht, sowie ein Dictonary, indem die Urkundenbestandteile, in dem das
Index-Wort vorkommen kann, als weiteres Dictonary organisiert ist. In dem Dictonary steht
die Frequenz, in der das Wort in dem Urkundenbestandteil vorgekommen ist und eine Liste
an Wortern, die vor (pre’) und nach (’succ’) dem Index-Wort in dem Urkundenbestandteil
vorkam. Sollte das Index-Wort am Ende eines Urkundenbestandteils stehen, steht als ’succ’
Wert ein ’endOfFile’ und sollte es am Anfang eines Urkundenbestandteils stehen, steht als "pre’

ein ’startOfFile’. Das Dictonary ist als JSON serialisiert folgendermaflen strukturiert 4.1:
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4 Lésungskonzeption

"<wort>": {
"frequency": 2095,
"list": {
"<Urkundenbestandteil>": {
"frequency": 2095,
"pre": {
"<wortl>": 200,
"startOfFile": 1895
¥
"succ": {
"<wort200>": 95,
"endOfFile": 2000

Abbildung 4.1: Beispielhafte Datenreprésentation eines Wortes
Diese Organisation der Daten hat den Effekt, dass unter anderem Filgendes abgefragt werden
kann:
« Wie haufig kommt in einem bestimmten Urkundenbestandteil das Indexwort vor?

« Welches sind die nachfolgenden und vorausgehenden Worter dieses Indexwortes in

diesem Urkundenbestandteil?

« Wie haufig kommt ein Wort in dem gesamten Trainingssatz vor?

Mathematischer Hintergrund: Um zu bestimmen, fiir welchen Urkundenbestandteil ein

bestimmtes Index-Wort charakteristisch ist, werden zwei Faktoren beriicksichtigt: Die Wort-
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4 Lésungskonzeption

wahrscheinlichkeit und der Wortkontext, in dem das Index-Wort in dem jeweiligen Urkun-

denbestandteil auftaucht.

Wortwahrscheinlichkeit: Aus den Daten lasst sich nun eine Wahrscheinlichkeit errechnen,
die besagt, wie hiufig das Index-Wort in einem bestimmten Urkundenbestandteil vorkommt.
So sind Worter, die in jedem Urkundenbestandteil vorkommen (beispielsweise Fillworter, etc.)
ein schlechter Indikator fiir eine Kategorie. Die Wahrscheinlichkeit wird wie folgt berechnet

(Form. 4.1):

WW (w,u) = hy(w,u)/h(w) (4.1)

w = Index-Wort

u = zu untersuchende Klasse (Urkundenbestandteil)

hy() = Haufigkeit des Index-Wortes in der Klasse (Urkundenbestandteil)
h() = Haufigkeit des Index-Wortes

Fur Wérter, die in vielen Urkundenbestandteilen gleichmaflig verteilt vorkommen, ergibt
sich eine geringe Wortwahrscheinlichkeit. Fiir Index-Worter, die besonders hiufig in einem
Urkundenbestandteil vorkommen, errechnet sich eine hohe Wortwahrscheinlichkeit. Diese
Wortwahrscheinlichkeiten werden Wort fiir Wort zu einer akkumulierten Wortwahrschein-

lichkeit aufsummiert, die wir im Folgenden Wortwarscheinlichkeit nennen werden (Form. 4.2).
w

Wortwahrscheinlichkeit(u) = Z WW(w,u) (4.2)
w=1

Wortkontext: Auflerdem soll der Kontext des Index-Wortes beriicksichtigt werden, also mit
welchen Wortern das Index-Wort in welchem Urkundenbestandteil haufig in Zusammenhang
steht. Darin besteht die Innovation dieses Algorithmus. Dafiir werden die Worter in den
Texten betrachtet, die nach dem Index-Wort in dem zu klassifizierenden Text stehen. Sollte das
Wort im Datensatz als nachfolgendes Wort in dem zu untersuchenden Urkundenbestandteil
vorkommen (’succ’), wird die temporére ’streak’ erhoht. Sollte es nicht vorkommen, wird die
temporéire ’streak’ auf den Wert 1 gesetzt. Zusétzlich zu dem temporéren ’streak’ wird eine
weitere Variable ’streak’ gefiihrt. Die temporére ’streak’ wird in jedem Iterationsschritt mit der
“streak’ verglichen. Sollte die temporéire ’streak’ grofler sein als die ’streak’, wird der Wert der

“streak’ auf den Wert der temporiren ’streak’ gesetzt. Nun wird das Index-Wort der Nachfolger
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4 Lésungskonzeption

des Index-Wortes und der Prozess wird wiederholt. Dieser Prozess ermoglicht das Ermitteln
der maximalen Wortkette aus dem Text, die der Algorithmus mit der Klasse in Verbindung

bringen kann (Form. 4.3).

s i >= len(Wy)
streak(i, W, k, ts,s) = ¢ streak(i + 1, W, k,1,s) Wiit1 & Wil succ] ¢ (4.3)

streak(i + 1, W, k,ts + 1, maz(st,s)) sonst
1 = aktueller Index

W = Worter

k = zu untersuchender Urkundenbestandteil
ts = temporare streak

s = streak

max(a,b) = maximaler Wert von a und b

len(x) = Lange vom Element x

Die Einstiegsfunktion lautet (Form. 4.4):
Wortkontext(woe, k) = streak(0, W, k,0,0) (4.4)

Hierbei sind W die Worter in einem Text und k eine zu untersuchende Klasse.
Auf diese Art wird in einem Text fiir jeden moglichen Urkundenbestandteil ein Kontext

ermittelt.

Berechnung: Nachdem jede Wortwahrscheinlichkeit der Woérter im Text und der Wort-
Kontext fiir jeden moglichen Urkundenbestandteil ermittelt worden sind, werden beide Werte
miteinander multipliziert. Somit wird fiir jeden méglichen Urkundenbestandteil eine Wahr-
scheinlichkeit errechnet, dass der Text in diesem Urkundenbestandteil vorkommt. Diese Multi-
plikation stellt einen ersten Ansatz einer Berechnung dar und kann spater optimiert werden,

um eine Prazisionssteigerung zu erreichen.

31



4 Lésungskonzeption

Diese Berechnung der Wahrscheinlichkeit fiir jedes Urkundenbestandteils sieht wie folgt

aus (Form. 4.5):

10)
p(t, k) = Z Wortwarscheinlichkeit(W (t);, k) | « Wortkontext(W(t),k)  (4.5)
i=0

t = zu untersuchender Text

k = zu untersuchender Urkundenbestandteil

p(t, k) = Wahrscheinlichkeit fur Text t in Urkundenbestandteil k
[(t) = Lange von t

W (t) = Worter in t
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5 Metriken zum Vergleich

Um Ergebnisse zu analysieren, miissen zuerst Metriken festgelegt werden, nach denen ein

Algorithmus als ’gut’ und als ’schlecht’ eingeschitzt werden kann. Diese Metriken sind:
1. Korrektheit (accuracy, precision and recall)
2. Zeit

Die Korrektheit ist die weitaus wichtigere Metrik, da es sich in diesem Fall um eine An-
wendung handelt, bei der nicht haufige Analysen gemacht werden miissen und diese auch
nicht schnell sein missen, wie beispielsweise bei einer Objekterkennung in Bildern fiir ein
selbstfahrendes System. Die Analyse eines Corpus (hier eine Sammlung von Texten) kann hier
Stunden, Tage oder Wochen dauern. Wichtiger ist die Prézision, die einen sehr hohen Wert
erreichen soll, damit die fehlerhaften Klassifizierungen so gering wie moéglich ausfallen. Ein
Algorithmus, der beispielsweise 90% Genauigkeit hat, ist ein gutes Ergebnis, aber fiir diesen
Anwendungsfall nicht geniigend, da jeder zehnte Text falsch eingeschatzt wiirde und damit

jeder Text noch einmal kontrolliert werden miisste.

5.1 Korrektheit

Die gangigsten Metriken fiir Korrektheit sind: accuracy (Form: 5.1), precission (Form: 5.2),
recall (Form: 5.5) und der f1 (Form: 5.6) Wert. Diesen Metriken liegen ’true positives’ (T'P =
korrekt als der Klasse zugehorig klassifiziert), 'false positives’ (F'P = falschlich als der Klasse
zugehorig klassifiziert) und *false negatives’ (F'N = filschlich als der Klasse nicht zugehorig

klassifiziert) zugrunde. Die Werte lassen sich durch eine Error-Matrix’ (Abb. 5.1) visualisieren.

TP

accuracy() = (5.1)
>
TPC ass
precission(class) = TP, —i—l TP (5.2)
TPC ass
recall(class) = l (5.3)

- TPclass + FNclass
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Abbildung 5.1: Error Matrix

Der f1-Wert (Form: 5.6) kombiniert sowohl recall und precission in einem Harmonischen
Mittel miteinander. Ein Harmonisches Mittel zeichnet sich dadurch aus, dass abweichende
recall- und precissions-Werte sich negativ auf den f1 Wert ausiiben. Dadurch werden sowohl
recall als auch precission gleich gewichtet in die Metrik einbezogen (Takahashi u. a. (2022)). Im
"Micro-Average’ Verfahren, das in dieser Arbeit fiir die Ermittlung der Ergebnisse verwendet
wird, werden die Ergebnisse der Klassen vor den Divisionen addiert. Dadurch kann eine

mogliche Disbalance der Klassen ausgeglichen werden.

TP
PrecisSsionmic = 2 (5.4)
> TP+ > FP
TP
recallic = 5 TPZ—i— SFN (5.5)
Fionie = 2 PrecisSsioNmic * recally;e (5.6)

PrecisSsionmic + recall .

5.2 Zeit

Die Zeit ist wie oben beschrieben kein wichtiger Faktor in diesem Anwendungsfall, jedoch

einer, der nicht zu vernachléssigen ist, wenn es um andere Anwendungsfille geht. Sollte sich
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der Algorithmus als prazise genug erweisen, ist es denkbar, diesen Algorithmus auf andere
Probleme anzuwenden. Es wird sowohl die Zeit fiir das Trainieren als auch fiir die Vorhersage
gemessen. Da ein Training nur einmalig gemacht werden muss. Eine Vorhersage muss immer
wieder ausgefiithrt werden, sodass eine lange Trainingszeit verzeihbarer ist, als eine lange

Dauer fiir eine Vorhersage.
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6 Vergleich der Ergebnisse

6.1 Der Prozess des Testens

Um Ergebnisse zu ermitteln, welche aussagekraftig sind, wurden alle Algorithmen auf den
gleichen Datensétzen trainiert und validiert. Hierfiir wurden beide Datensatze nach Trainings-
daten (70%) und Validierungsdaten (30%) aufgeteilt. Diese Tests wurden alle auf einem System
mit einem AMD Ryzen 9 5900X 12x 3.70GHz Prozessor, 32GB (2x 16GB) RAM und einer
GeForce RTX 3060 12GB Grafikkarte ausgefiihrt. Der Vorgang wurde bis auf eine Ausnahme
zehnmal durchgefiihrt, der Mittelwert der accuracy, precision, recall und f1 iiber die zehn
Durchliufe ermittelt und die verstrichene Zeit aufsummiert. Das Modell, welches nicht zehnmal
durchlaufen wurde, ist das Transformer Model, da ein einfacher Durchlauf dieses Algorithmus
uber 400 Stunden auf beiden Datensitzen dauert. Die Zeit des Transformers wurde, um eine
Vergleichbarkeit der Laufzeiten zu gewahrleisten, verzehnfacht. In jedem Durchlauf werden
die Daten, die schon durch den Datenaufbereitungs-Schritt (Pre-Processing) bereinigt wurden,
in ihre Worter zerteilt. Daraufhin wurde anhand der Trainingsdaten das Modell trainiert und
anschlieffend die Vorhersage der Validierungsdaten durchgefiihrt. Als letzter Schritt wurden
die vorhergesagten Ergebnisse mit den tatsidchlichen Ergebnissen verglichen. Sowohl fiir das
Trainieren des Modells, als auch fiir das Errechnen der Vorhersage, wurde die Zeit gestoppt. In
diese Zeit flieBen weder das Aufbereiten der Daten (Pre-Processing) noch das Errechnen der
Metriken ein. Bei Algorithmen mit neuronalen Netzen wurden iiber zehn Epochen trainiert.
Auch hier ist das Transformer Modell eine Ausnahme mit nur drei Epochen, da ein Training

tiber zehn Epochen hochgerechnet iiber 100 Stunden dauern wiirde.

6.2 Die Ergebnisse:

Um eine aussagekriftige Einschatzung der Gute der Algorithmen zu ermitteln, werden die
errechneten Werte der Metriken (Zeit, accuracy, f1) sowohl des LRC als auch des CC mit
herkémmlichen, State-Of-The-Art Algorithmen verglichen.
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Algorithmus | acc | preci | recall | flcr0 Zeit ) Zeit Training | Zeit Vorhersage
NN 0.81 0.80 0.80 0.80 49.8m 48.6m 1.1m
CNN 0.70 0.70 0.70 0.69 15.5h 15.3h 13.3m
DT 0.55 0.55 0.55 0.54 3.1m 2.9m 9s

RF 0.77 0.77 0.77 0.75 10.3m 10m 13.2s
LR 0.849 | 0.85 0.85 0.84 6m 5.8m 9.5s
LRC 0.853 | 0.85 0.85 0.85 12m 7.6m 4.4m
CC 0.72 0.72 0.72 0.73 8.2m 2.1m 6m
SVM 0.854 | 0.854 | 0.854 0.85 35s 26s 9.3s
Transformer | 0.84 | 0.84 | 0.84 | 083 | 45t(10.9h) | 101.1(10)h 7,5h(45m)

Tabelle 6.1: Ergebnisse nach zehn Durchgéngen (Transformer nur 1 Durchlauf); Datensatz: 20
Newsgroups; rot: besonders lange Laufzeiten; fett gedruckt: neue Algorithmen;
Transformer in Klammern Zeit fiir 1 Durchlauf - ohne Klammern Hochrechnung

Algorithmus | acc | preci | recall | flcr0 Zeit y Zeit Training | Zeit Vorhersage
NN 0.89 0.89 0.89 0.84 25.2m 24.8m 26.5s
CNN 0.87 0.87 0.87 0.80 12.2h 12.1h 7.2m
DT 0.83 0.83 0.83 0.78 23.5s 22.8s 0.7s
RF 0.88 0.88 0.88 0.83 9m 8.9m 3.3s
LR 0.891 | 0.891 | 0.891 0.84 2.8m 2.8m 0.7s
LRC 0.893 | 0.893 | 0.893 0.84 4.9m 4.7m 10.3s
CC 0.79 0.79 0.79 0.61 2.2m 1.9m 15s
SVM 0.897 | 0.897 | 0.897 0.85 5s 4.6s 0.68s
Transformer | 0.90 | 0.90 | 0.90 0.87 13.4t(32h) 310(31)h 12(1.2)h

Tabelle 6.2: Ergebnisse nach 10 Durchgingen (Transformer nur 1 Durchlauf); Datensatz: mit-
telalterliche Urkunden; rot: besonders lange Laufzeiten; fett gedruckt: neue Al-
gorithmen; Transformer in Klammern Zeit fir 1 Durchlauf - ohne Klammern
Hochrechnung
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6.2.1 Zeit

Der Algorithmus mit der lingsten Laufzeit ist das Transformer Modell, mit akkumuliert tiber
456 Stunden Laufzeit fiir hochgerechnet zehn Trainings- und Testdurchldufen auf beiden
Datensatzen. Dieser Algorithmus ist der einzige, der getesteten Algorithmen, der nur iiber eine
Iteration trainiert und anschlieSend hochgerechnet wurde, da sich dieser eine Durchlauf schon
auf 45.6 Stunden belief. Dieser erhebliche Zeitaufwand ist primir dem Training geschuldet,
welches 41 Stunden ausmachte. Die Testphase dauerte hingegen auch lange, aber mit addierten
19.9 Stunden ist diese mehr als doppelt so schnell wie die Trainingsphase. Die Laufzeit auf den
Daten der 20 Newsgroups fiel dabei geringer aus als bei den lateinischen, mittelalterlichen Ur-
kunden. Dies kann mit der unterschiedlichen Corpusgrofe, als auch mit den unterschiedlichen
Modellen, die gewahlt wurden, in Zusammenhang stehen. Denn der Korpus der Newsgroups
enthélt 11314 Trainingsdaten, wobei der mittelalterliche Korpus 19278 Trainingsdatensétze
besitzt.

Der Algorithmus mit der zweitlangsten Laufzeit ist das CNN, welches aufsummiert 24.4 Stun-
den fiir dieselbe Anzahl an Trainings und Testdaten in Anspruch genommen hatte. Beide
Algorithmen trainieren tiber Epochen ihre Trainingsdaten. Der Transformer benétigt fiir die
gesamte Berechnung von drei Epochen tiber 17-mal langer als der CNN fiir zehn Epochen
benotigt. Beim CNN kann eine hohere Laufzeit bei den 20 Newsgroups beobachtet werden.
Dies kann an der héheren Menge an Klassen dieses Datensatzes liegen. Das neuronale Netz
benotigt fiir diese Aufgabe nur 1.3 Stunden. Er trainiert ebenfalls zehn Epochen, spart sich
allerdings das Trainieren der ’Convolutional Layer’, was zu erheblich geringerem Zeitaufwand
fithrt. Auch hier werden nahezu die gesamten 1.2 Stunden fiir das Training verwendet. Nur ein
Bruchteil der Zeit wird fiir das Testen benétigt. Die logistische Regression benoétigt fiir alle zehn
Iterationen nur 8.7 Minuten. Auch hier wird der grofite Teil fiir das Trainieren benétigt (8.6
Minuten). Wird der Kontext zur Regression hinzugerechnet, benétigt der Algorithmus das Dop-
pelte an Zeit und kommt auf 16.9 Minuten, wovon 12.3 Minuten das Trainieren bendtigen und
4.6 Minuten das Testen benoétigt. Der CC liegt mit 10.4 Minuten in einem &hnlichen Bereich,
ist jedoch der einzige Algorithmus, der mehr Zeit in der Testphase als in der Trainingsphase
benotigt. Dies ist erklarbar durch die simple Struktur der Daten, die der Algorithmus aufbaut
und die aufwendige Suche, die der Algorithmus durchfithren muss. Der schnellste Algorithmus
ist die SVM mit 40 Sekunden fiir beide Datenséatze (Tab. 6.1, 6.2).

38



6 Vergleich der Ergebnisse

6.2.2 Genauigkeit

Im Vergleich zu dem Zeitaufwand ist fiir den Anwender die Genauigkeit von erheblich grofierer
Bedeutung. Wir analysieren accuracy, precision, recall und f1. Im Folgenden werden vor
allem die Metriken accuracy und f1 betrachtet, da die accuracy ein gutes Gesamtbild der
Zuverlassigkeit des Algorithmus widerspiegelt und der f1-Score ein Harmonisches Mittel der
precission und des recalls darstellt. Die Datensitze miissen unabhingig voneinander betrachtet

werden, da sie verschiedene Ergebnisse ergaben.

20 Newsgroups: Der stiarkste Algorithmus in Bezug auf die accuracy ist die SVM und die
logistische Regression mit und ohne Kontexterweiterung, mit einer Genauigkeit von 85%.
Die logistische Regression ist dabei von den ersten drei Algorithmen die schlechteste, mit
einem Abstand von 0.4% zum zweitbesten Algorithmus - der logistischen Regression mit
Kontexterweiterung. Diese erreicht einen exakten Wert von 85.3%. Nur die SVM konnte mit
85,4% einen um 0, 1% besseren Wert erzielen. Das Transformer Modell erreicht mit 84% den
viertbesten accuray-Wert. Dieses Ergebnis ist jedoch mit den anderen Ergebnissen schwer
vergleichbar, da es sich um ein Training mit nur drei Epochen handelt und kein Mittelwert
iiber zehn Iterationen gebildet wurde. Der CC konnte eine Genauigkeit von 72% erreichen und
ist damit vor dem CNN (70%) und dem DT (55%) auf dem drittletzten Platz. Das NN konnte
mit 81% einen besseren Wert erreichen als seine Kontext-erweiterte Version CNN mit 70%
(Tab. 6.1).

Mittelalterliche Urkunden: In der Verarbeitung der Urkunden ist der Transformer der
starkste Algorithmus. Er erreicht eine accuracy von 90%. Die iibrige Reihenfolge der besten
Algorithmen verandern sich dabei jedoch kaum: den zweiten bis vierten Platz teilen sich SVM
(89.7%), LRC (89.3%) und LR (89, 1%). Darauf folgt das neuronale Netz (89%), dicht gefolgt
von dem RF Algorithmus (88%). Der CNN erreicht den drittletzten Platz mit 87%, gefolgt vom
DT (83%). Den letzten Platz nimmt der CC ein mit einer Genauigkeit von 79%. Auffallend ist,
dass der Abstand zwischen dem CNN und der NN deutlich geringer ausfillt (2%). Der Abstand
betrug bei den Newsgroups 10% (Tab. 6.2).

Genauigkeit bei Klassen mit geringer Menge: Besonders anfillig sind bei Klassifizie-
rungsalgorithmen Datenséitzen mit einer geringen Menge, da diese oft nicht die nétige Menge
an Trainingsdaten aufweisen kénnen, um ausreichend diese Klasse zu erlernen. In dem Da-
tensatz der Urkunden ist ein Beispiel fiir eine solche unterreprisentierte Klasse die Klasse

‘Narratives-Element’. Um eine Aussagekraft dariiber zu erlangen, wie zuverlassig die Klassifi-
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kation bei Daten geringer Menge ist, wird diese Klasse gesondert betrachtet. Sie besitzt 177

Datensatze, aus denen 124 Trainingsdatensitze und 53 Testdatenséatze generiert wurden.

Algorithmus | f1,,icr0 | prec | recall
NN 0.335 | 0.38 | 0.34
CNN 0.095 | 0.31 | 0.06
DT 0.18 0.27 | 0.13
RF 0.2 0.78 | 0.11
LR 0.35 0.74 | 0.23
LRC 0.32 0.61 | 0.21
CcC 0.08 | 0.185 | 0.05
SVM 0.36 0.68 | 0.25

Transformer 0.61 0.75 | 0.52

Tabelle 6.3: Mittelalterliche Urkunden - Kategorie 'Narratives-Element’

Fir diesen Anwendungsfall eignet sich besonders gut die f1 Metrik, da sie am besten
ausdriickt, wie akkurat Daten der Klasse zugeteilt werden und Bezieht aufierdem ein, wie
héaufig ein Text dieser Klasse zugeordnet wurde, obwohl er dieser nicht angehort. Es wird also
ein sehr detailliertes Bild iiber eine spezifische Klasse erzeugt. Auch fiir diese Ergebnisse wurden
- ausgenommen des Transformer-Modells - zehn Iterationen ausgefithrt und der Durchschnitt
der Ergebnisse ermittelt. Es war festzustellen, dass einige Ergebnisse tiber die zehn Laufe sehr
konstant waren (DT, RF, LR, LRC, CC, SVM) wihrend andere stark fluktuierten (DNN, CNN).
Die Klassifikation der SVM wird in der Literatur als gute Klassifikation angesehen, wenn es
sich um Daten mit geringer Menge handelt (Sivakami (2018)). Die SVM erreicht auf den Daten
des ’Narratives-Elements’ einen f1-Wert von 0.36. Dieser Wert wird von dem Transformer
Modell deutlich tibertroffen (0.61). Dies kann an den Aufmerksamkeiten liegen, die das Modell
erlernt. Ein starker Konkurrent der SVM ist die LR mit 0.35. Die Kontextvariable kann leider die
Werte nicht verbessern, und hat sogar einen negativen Einfluss auf die f1 Metrik (0.32). Auch
in diesem Fall setzt sich das Bild durch, dass das NN (0.335) nicht durch die Modifikation der
CNN (0.095) um Conv. Layer verbessert werden konnte. Der CC schnitt mit durchschnittlichen
0.08 am schlechtesten ab (Tab. 6.3).
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Erkennen von Urkundenbestandteilen

Um Texte mit dem neuartigen Algorithmus unterteilen und klassifizieren zu kénnen, sind

folgende Schritte notwendig:

7.1 Windowing

Der zu zerteilende und zu klassifizierende Text wird in kleinere Teiltexte der Linge *windowsize’
unterteilt. Die "'windowsize’ ist ein Parameter, der einen geraden Wert haben muss, der vom
Nutzer bestimmt werden kann. Er hat Einfluss auf die Laufzeit, aber auch auf die Prazision
des Algorithmus. Diese Unterteilung erfolgt, indem iiber den zu analysierenden Text iteriert
wird und "windowsize/2 Worter vor’ und "windowsize/2 Worter nach’ dem Index-Wort zu
einem Teiltext zusammengebunden werden. So werden bei einem zu analysierenden Text der
Worterlange N, N viele Teilsatze der maximalen Wortlange "windowsize’ und der minimalen

Wortlidnge (windowsize/2) + 1 generiert.

Beispiel: Die fett gedruckten Worter in den Teiltexten sind die Index-Woérter und es wird

eine ‘windowsize’ von vier gewahlt.

Text: "Hallo ich schreibe meine Bachelorarbeit iiber Kiinstliche Intelligenz’
Teiltexte: ['Hallo ich schreibe’, "Hallo ich schreibe meine’, "Hallo ich schreibe meine Bache-

lorarbeit’, ’ich schreibe meine Bachelorarbeit iiber’, ..., iiber Kiinstliche Intelligenz’]

Abbildung 7.1: Windowing
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7.2 Klassifikation

Im Schritt der Klassifikation werden auf jeden der im Schritt "Windowing’ generierten Teiltexte
die in den vorherigen Kapiteln beschriebene Klassifikation mit dem CC durchgefiihrt. Die

Klassen in den eckigen Klammern sind fiktiv.

Beispiel:

Teiltexte: ['Hallo ich schreibe’, "Hallo ich schreibe meine’, "Hallo ich schreibe meine Bache-
lorarbeit’, ’ich schreibe meine Bachelorarbeit iiber’, ..., *iiber Kiinstliche Intelligenz’]
Ergebnis: [1,1,4, 1,1, 2, 2, 2]

Abbildung 7.2: Klassifikation

7.3 Collapsing

Beim Collapsing werden alle aufeinander folgenden Urkundenbestandteil der selben Klasse
zusammengefasst, sodass ein Tupel generiert wird, das an erster Stelle den Urkundenbestandteil
enthélt und an zweiter Stelle die Anzahl, wie haufig dieser Urkundenbestandteil hintereinander

in dem Dokument an dieser Stelle vorkommt.

Beispiel:

Klassifikation: [1, 1,4, 1, 1, 2, 2, 2]
Ergebnis: [(1, 2), (4, 1), (1, 2), (2, 3)]

Abbildung 7.3: Collapsing

7.4 Tilt Remove

Im ’tilt remove’ Schritt werden alle Elemente aus der im vorherigen Schritt generierten Liste
entfernt, deren Anzahl geringer als der Parameter ’tilt’ ist. Das Wort, das keinem Urkunden-
bestandteil mehr zugeordnet ist und daher als Waise bezeichnet wird, bekommt eine neue
Zuordnung in den darauf folgenden Urkundenbestandteil. Dieser Schritt bewirkt, dass kleine
Fehleinschatzungen kompensiert werden, da es sehr wenig Klassen gibt, die ausschliefilich
aus einem Wort bestehen, und diese kleinen vermuteten Fehleinschatzungen durch den ’tilt’

eliminiert werden. Der ’tilt’ wurde fiir dieses Beispiel auf den Wert eins gesetzt.
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7 Algorithmus zum Zerteilen und Erkennen von Urkundenbestandteilen

Beispiel:

Collapsing: [(1, 2), (4, 1), (1, 2), (2, 3)]
Ergebnis: [(1, 2), (1, 3), (2, 3)]

Abbildung 7.4: Tilt Remove

7.5 Collapsing:

Nun erfolgt ein weiterer ’Collapsing’ Schritt, der dasselbe bewirkt wie der erste ’Collapsing’
Schritt.

Beispiel:

Trigger Remove: [(1, 2), (1, 3), (2, 3)]
Ergebnis: [(1, 5), (2, 3)]

Abbildung 7.5: Collapsing

7.6 Ergebnis

Somit haben wir unseren Text nun in zwei Teile unterteilt und den Teiltexten zuséatzlich eine
Klasse zugewiesen.
Beispiel:

Text: "Hallo ich schreibe meine Bachelorarbeit’ & ’iiber Kiinstliche Intelligenz’

Kategorien: 1, 2

Abbildung 7.6: Ergebnis
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8 Ergebnisse des Algorithmus zum
Zerteilen und Erkennen von

Urkundenbestandteilen

Im Gegensatz zu den Klassifizierungsalgorithmen ist die Ermittlung der richtigen Teilung der
Urkunden in Urkundenbestandteile eine kompliziertere Aufgabe. Hierzu wurden nach der
Datenaufbereitung (pre-processing) die Testdaten der Urkundenbestandteile gleichmifig in
zufallig kombinierten Texten zusammengefasst. Diese willkiirlich kombinierten Urkunden wer-
den anschliefend mit dem Algorithmus zerteilt und der Indexwert der Mitte jedes ermittelten
Urkundenbestandteils wird mit dem Indexwert der Mitte des urspriinglichen Urkundenbestand-
teils im Text abgeglichen. Sollten diese Werte weniger als X Stellen voneinander abweichen,
wird der Urkundenbestandteil als gefunden angesehen. In den folgenden Tests wurde fiir X
der Wert elf festgelegt.

Dieses Verfahren wirft Probleme auf, wie zum Beispiel, dass vorherige falsche Einschatzun-
gen des Algorithmus die spateren korrekten Zuweisungen beeintrachtigen, da sich Urkunden-

bestandteile hintereinander in Texten befinden.
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8 Ergebnisse des Algorithmus zum Zerteilen und Erkennen von Urkundenbestandteilen

Run Accuracy
6.88
6.65
6.97
7.08
6.77
7.18
7.58
7.31
7.46
10 7.55
Gesammt 7.14

O 00 NI N TR W =

Tabelle 8.1: Korrektheit iiber zehn Durchlaufen

Dieses Testverfahren erreicht tiber zehn Durchlaufen eine durchschnittliche Wahrscheinlich-
keit der korrekten Ermittlung der Mitten der Urkundenbestandteile in zufillig kombinierten
Urkunden von 7.1%.
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9 Fazit

9.1 Zusammenfassung

Im Zuge meiner Anstellung als Werkstudent an der Universitdt Hamburg in der geschichtlichen
Fakultit bestand meine Aufgabe darin, mittelalterliche Urkunden in lateinischer Sprache zu
unterteilen und zu klassifizieren. Eine besondere Herausforderung liegt darin, auch bei Klassen
mit geringer Datenmenge zuverléssige Ergebnisse zu erreichen. Fiir eine moglichst effektive
Klassifizierung wurde in einem ersten Schritt mehrere bereits vorhandene Klassifizierungsalgo-
rithmen getestet. Die Ergebnisse waren allerdings nicht zufriedenstellend. Daraufhin wurden

zwei Konzepte fiir eine Verbesserung der Ergebnisse verfolgt:

Das erste Konzept (LRC): Bestand darin, die logistische Regression um eine Kontextvaria-
ble zu erweitern. Ausschlaggebend fiir die Auswahl der logistischen Regression waren gute

Ergebnisse von Tests, die im Vorfeld angefertigt wurden.

Das zweite Konzept (CC): Orientiert sich nicht an einem bereits existierenden Algorith-
mus, sondern verfolgt die Idee, mittels Multiplikation der Wortwahrscheinlichkeit mit dem

Wortkontext eine Klassifizierung erreichen zu kénnen.

Als Metriken wurden fiir die Algorithmen die Zeit, der f1-score und die accuracy gewahlt.
Um die Klassifikation eines Algorithmus zu beurteilen, wurde die accuracy verwendet bei der
Betrachtung der Klassen mit geringer Datenmenge wurde der f1-Score genutzt. Aulerdem
wurde die benétigte Zeit, die ein Algorithmus fiir eine Klassifikation benétigt, analysiert,
da bei den unterschiedlichen Algorithmen hierbei erhebliche Unterschiede zu verzeichnen
waren. Diese Algorithmen wurden auf zwei verschiedenen Datenséitze angewandt. Der erste
Datensatz besteht aus mittelalterliche Urkunden auf lateinischer Sprache, die eine stark hete-
rogene Aufteilung der Datensitze iber die Klassen aufweist. Der zweite Datensatz ist der 20
Newsgroups Datensatz. Dieser Datensatz hat eine sehr homogene Aufteilung der Datensatze
iiber die Klassen und ist ein stark verbreiteter Datensatz.

Die Ergebnisse aller getesteten Algorithmen erreichten auf dem Datensatz der mittelalterlichen
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9 Fazit

Urkunden ein deutlich hoheres Niveau als auf den Datensitzen der 20 Newsgroups. Dies
lasst nicht ausschliefilich auf ein Merkmalsunterscheid der Daten riickzuschliefien, sondern
wird eine Wechselwirkung verschiedener Faktoren sein. Beispiele fiir einen solchen Faktor
kénnte der Unterschied der Anzahl der Worte der englischen Sprache im Vergleich zu derer
der klassischen lateinischen Sprache sein oder der Unterschied der Anzahl der Klassen der
einzelnen Datensétze (20 NG: 20, Urkunden 14). Auch eine bessere Unterscheidung der Klassen
und ihrer Merkmale kann ein grofier Faktor sein. Des Weiteren ist zu erwédhnen, dass die ermit-
telten Ergebnisse der Tests auf den Datensatz der 20 Newsgroups mit denen der in Kapitel 3.1
betrachteten wissenschaftlichen Arbeit iibereinstimmen und daher eine korrekte Anwendung
der Algorithmen sichergestellt ist. Ein Grund dafiir ist, dass viele der in der wissenschaftlichen
Arbeit verwendeten Algorithmen in ihrer Implementierung tibernommen und, wenn nétig,
angepasst wurden. Die LRC errechnete auf den Daten der mittelalterlichen Urkunden eine viel-
versprechende accuracy. Er erreichte, im Gegensatz zu dem zugrundeliegenden Algorithmus
(LR) tiber zehn Iterationen leicht bessere Ergebnisse, sodass ein Trend zu erkennen ist. Die ac-
curacy des CC liegt um zehn Prozent unter denen der bereits etablierten Algorithmen. Bedenkt
man jedoch, dass es sich bei dem CC um einen sehr simplen und bisher nicht optimierten
Algorithmus handelt, ist dessen Abschneiden von besonderem Interesse. Es ist moglich, dass
eine Verbesserung des CC (zum Beispiel durch eine Modifikation des mathematischen Modells)
erreicht werden kénnte. Die besten Ergebnisse erreichte das Transformer Model auf dem
Datensatz der mittelalterlichen Urkunden mit 90% aber auch NN, SVM, die LR und die LRC
erreichen knapp diese accuracy-Werte. Uberraschend ist, dass der um eine Kontexterweiterung
modifizierte CNN im Vergleich zu dem Algorithmus ohne Kontexterweiterung (NN) eine ge-

ringe Verschlechterung der accuracy aufweist. Allerdings macht dies lediglich zwei Prozent aus.

Auflerdem wurde der benétigte Zeitaufwand analysiert, den die unterschiedlichen Algorithmen
benétigen. Hierbei muss die Zeit der Trainingsphase unterschieden werden von der Zeit, die
ein bereits trainierter Algorithmus fiir eine Klassifizierung eines Textes benétigt. Die Trai-
ningszeit fallt dabei immer deutlich hoher aus, ist allerdings auch nur einmalig notwendig.
Daher kann hier auch ein grofierer Zeitaufwand akzeptiert werden. Die meisten Algorithmen
benétigen nur sehr wenig Zeit, allerdings erscheint die benétigte Zeit des CNN grenzwertig.
Die des Transformers ist allerdings fiir den meisten Anwendungen inakzeptabel hoch. Da
die Klassifikation der Urkunden von vielen Algorithmen mit einer dhnlich guten accuracy
durchgefiithrt werden kann, ist nur in Ausnahmeféllen der erheblich hohere Zeitaufwand,
der bei dem Einsatz des Transformers entsteht, gerechtfertigt. Eine solche Ausnahme besteht

immer dann, wenn ein besonderer Wert auf die korrekte Zuordnung von Klassen mit geringer
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Datenmenge gelegt wird. Hier erreicht der Transformer nahezu doppelt so gute f1 Werte wie
alle tibrigen Algorithmen mit einem f1-Score von 0.61. Die SVM erreichte den zweithdchsten
Wert von 0.36. Eine erhoffte Verbesserung der Ergebnisse der LR(0.35) um eine Kontextvariable
in LCR(0.32) konnte leider nicht beobachtet werden. Bei einer Klassifikation von Texten, in
denen ein grofler Wert auf die korrekte Zuweisung von Klassen mit geringer Datenmenge
gelegt wird, wird eine starke Empfehlung fiir das Transformer Modell ausgesprochen. Bei der
Auswahl dieses Modells besteht jedoch der Kompromiss darin, dass die Laufzeit enorm hoch
ist.

Eine zuverlédssige Unterteilung von Urkunden in ihre Urkundenbestandteile konnte nicht
erreicht werden. Jedoch besteht bei dieser Aufgabe die Schwierigkeit darin, eine gute Metrik
zu finden, um Giite zu messen. Mit der Methodik, mit der die Ergebnisse gemessen wurden,

wurden mit 7% keine zufriedenstellenden Ergebnisse ermittelt.

Limitation der Arbeit: Die Unterteilung der Urkunden in Urkundenbestandteile wurde
ausschliefllich auf Grundlage des CC durchgefiihrt. Da dieser sich spéter als der Algorithmus
mit den schlechtesten Ergebnissen auf den mittelalterlichen Urkunden herausstellte, ist dies
eine erhebliche Limitation. Auflerdem wurden nicht alle Textklassifizierungsalgorithmen be-
riicksichtigt, da dies den Rahmen dieser Arbeit gesprengt hitte. Ein weiterer Nachteil ist der,
dass die Vergleichbarkeit des Transformer Modells mit allen anderen Modellen mit Vorsicht
zu betrachten ist, da dieser im Gegensatz zu allen anderen Algorithmen ausschliellich iiber
eine Iteration getestet und nur tiber drei Epochen trainiert wurde. Alle anderen Algorithmen,
in denen neuronale Netze verwendet werden (CNN, NN), wurden tiber zehn Epochen trai-
niert. Diese Verringerung in den Iterationen und den Epochen sind der langen Laufzeit des

Algorithmus geschuldet.

Vorteile der Arbeit: Durch diese Arbeit wurde das Verstandnis der erwahnten, etablierten
Klassifizierungsalgorithmen vertieft und anschlieBend ausfiihrliche Tests mit diesen Algorith-
men durchsgefiihrt. Es wurden zwei neue Konzepte von Algorithmen zur Klassifikation von
sequenziellen Daten vorgestellt, getestet und anschliefend mit den Ergebnissen der etablierten
Klassifizierungsalgorithmen verglichen. Diese Tests wurden auf mehreren Datensitzen auf
zwei unterschiedlichen Sprachen und mit sowohl stark homogener, als auch heterogener Auftei-
lung der Datensétze iiber die Klassen, durchgefithrt. AnschlieSend wurden die Ergebnisse der
Klassen mit geringer Menge aus dem Datensatz der heterogenen Aufteilung genauer betrachtet

und somit eine zuverlassige Klassifizierung dieser Klassen diskutiert.
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9.2 Ausblick

Diese Arbeit kann als Grundlage weiterer Forschungen auf diesem Gebiet gesehen werden,
jedoch sind weitere Forschungen und Optimierungen der Algorithmen notwendig. So ist es
in der Kontextsuche denkbar, nicht den besten streak zu errechnen, sondern einen akkumu-
lierten streak. Diese konnte fiir den gesamten Text alle streaks erreichen und anschliefSend
akkumuliert werden. Dies konnte einen hoherer streak-Wert, und damit ein starkerer Fokus
auf den Kontext, bewirken. Gegenstand weiterer Forschungen ist eine Analyse, ob durch eine
Anpassung der Parametrisierung von Variablen des CC eine Verbesserung erreicht werden
kann. Auch das zugrundeliegende mathematische Verfahren ist mit einer Multiplikation der
Wortwahrscheinlichkeit mit dem Wortkontext sehr simples Verfahren. Hier kénnen Tests
durchgefiihrt werden, welche beispielsweise das Exponieren der Wortwahrscheinlichkeit iber
den Wortkontext untersuchen. Bei der Unterteilung der Urkunden in Urkundenbestandteile
kann an einigen Parametern experimentiert werden. So kann beispielsweise die *windowsi-
ze’, oder der ’tilt’ verandert werden. Auch ist bei dem Algorithmus die Ermittlung der Giite
modifizierbar. Eine Anderung des Wertes der Toleranz, welche beschriebt, wie weit die Mitte
eines tatsachlichen Urkundenbestandteils von seiner vorhergesagten Mitte entfernt sein darf,
kann angepasst werden und zu Verbesserungen der Analyse fithren. Die vielversprechendste
Verdnderung des Algorithmus wire allerdings das Ersetzen des CC durch einen besseren

Algorithmus wie beispielsweise die SVM, LR, LRC oder bestenfalls ein Transformer Model.

9.3 Fazit

Eine Verbesserung der Textklassifizierung von Daten mit geringer Menge durch das Hinzufi-
gen des Kontexts konnte in dieser Arbeit nicht erreicht werden. Jedoch konnte eine leichte
Verbesserung der allgemeinen accuracy der logistischen Regression durch das Multiplizieren
mit einer Kontextvariable beobachtet werden. Diese Verbesserung ist marginal, jedoch als
Trend zu bewerten. Der CC erreicht mit seinem simplen und nicht optimierten Verfahren nicht
das Niveau von Modellen wie dem Transformer, jedoch trotz seiner simplen Natur Ergebnisse,
die sich erstaunlich nahe an denen der etablierten Algorithmen befinden. Diese Ergebnisse

machen Hoffnung auf weitere Verbesserungen, es sind jedoch weitere Forschungen notwendig,.
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10 Glossar

Begriff

Erklarung

Window-Size

Tilt

mittelalterliche Urkunde

Urkundenbestandteile

Support Vector Mashine (SVM)

Random Forest (RF)

Convolutional Neural Network (CNN)

Regression

Logistsiche Regression (LR)

Parameter, der die Grofie der Teiltexte bestimmt,
die zum Unterteilen und Klassifizieren von Texten
benétigt wird

Parameter, der festlegt ab welcher ’Anzahl’ im
"Trigger Remove’-Schritt ein Urkundenbestandteil
als Waisen behandelt werden soll

lateinischen Urkunden oft Schenkungsurkunden,
welche in Urkundenbestandteile unterteilt werden
soll

Klassen in einer Urkunde, darunter Zihlen z.B. 'In-
titulatio’ oder 'Narratives Element’

intelligenter Algorithmus mit dem Ziel, das
Klassifikationsproblem mit Hyperplanes in n-
dimensionalen Rdumen zu 16sen

intelligenter Algorithmus mit dem Ziel, das Klassi-
fikationsproblem mit Suchbaumen zu 16sen

Ein intelligenter Algorithmus, der auf kiinstlichen
neuronalen Netzen aufbaut, jedoch weitere zusétz-
liche Layers besitzt, die einen Fokus auf Kontext
bzw. Nachbarn der Inputparametern legt
Verfahren in dem Regressionskoeffizienten (Ge-
wicht von Features) mit Feature-Werten verrech-
net werden, um Abhingigkeiten zwischen Feature
und Klasse herstellen zu kénnen
Klassifizierungsalgorithmus, der mittels Regressi-
on und einer logistischen Funktion Ergebnisse vor-

hersagt
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Begriff

Erklarung

Treansformer Model

Intitulatio

Narratives-Element

intelligenter Algorithmus, der besonders gut fiir
sequenzielle Daten als Input geeignet ist

Anrede in mittelalterlichen Urkunden

Erzahlung des Tatbestandes der Rechtsgrundlage

fir die beurkundeten Vorgiange
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