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Ferdinand Emanuel Trendelenburg

Thema der Arbeit
Verbesserung der Klassi�zierung bei geringer Datenmenge unter Berücksichtigung des Wort-

kontexts

Stichworte
NLP, Text Klassi�zierung, Transformer, BERT, Logistsische Regression

Kurzzusammenfassung
Diese Arbeit beschäftigt sich mit einigen Text-Klassi�zierungsalgorithmen und derer Perfor-

mance auf Datensätzen mit geringer Test- und Validierungsdatenmenge. Außerdem werden

zwei neuartige Ansätze vorgestellt, die mittels einer bestimmten Kontextsuche eine höhere

Zuverlässigkeit erbringen könnten. Dafür wurde ein bestehender, etablierter Algorithmus

modi�ziert und ein zweiter neuer Algortihmus konzipiert und implementiert. Die Performance

dieser neuen Algortihmen wurden anschließend mit der Performance einer Auswahl von

etablierten Algorithmen verglichen. In diesem Vergleich konnte keine zufriedenstellende Ver-

besserung der Klassi�zierung durch das Hinzufügen einer Kontextvariable erzielt werden.

Allerdings konnte ein Trend bei der Ergenzung um die Kontextvariable zu dem etablierten

Algorithmus beobachtet werden, der sich allerdings nur auf 0.4% beläuft. Diese Verbesserung

ist nur marginal, jedoch gibt diese einen Hinweis darauf, dass eine stärkere Verbesserung

erreicht werden könnte, wenn an der Stelle weiter geforscht werden würde.

Title of the paper
Improved classi�cation with a small amount of data, taking into account the word context

Keywords
NLP, Text classifyer, Transformer, BERT, Logistical regression

Abstract
This paper deals with some text classi�cation algorithms and their performance on datasets

with few test and validation data. In addition, two novel approaches are presented that could

yield a higher performance by using context search. For this purpose, an existing, established

algorithm was modi�ed and a second new algorithm was designed and implemented. The

performance of these new algorithms was then compared against the performance of a selection

of established algorithms. In this comparison, no satisfactory improvement in classi�cation

could be achieved by adding a context variable. However, a trend can be observed in the

addition of the context variable to the established algorithm, although this only amounts to



0.4%. This improvement is only marginal, but it gives an indication that a greater improvement

could be achieved if further research was carried out in this area.
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1 Einleitung

1.1 Problemstellung und Motivation

In der Fakultät für Geisteswissenschaften unter der Leitung von Herrn Prof. Dr. Philippe De-

preux an der Universität Hamburg ist es üblich, lateinische Schenkungsurkunden (Abb. 1.1, 1.2)

händisch in ihre Urkundenbestandteile zu unterteilen und zu klassi�zieren (WillkommenWerk-

statt). Dies bedeutet allerdings einen erheblichen Zeitaufwand und setzt Fachwissen voraus. Ein

Algorithmus, der eine verlässliche Unterteilung und Klassi�zierung ermöglicht, würde daher

eine erhebliche Arbeitserleichterung und Einsparung von Ressourcen bedeuten. Im Zuge einer

Werkstudenten-Anstellung bestand die Aufgabenstellung darin, ein NLP- (Natural Language

Processing) Modell zu entwickeln, welches diese Urkunden in Urkundenbestandteile (wie z.B.

Anrede, Gegenstand der Schenkung, etc.) unterteilt und klassi�ziert. Problematisch dabei ist,

dass einige Klassen nur selten vorkommen und dadurch unterrepräsentiert im Training der

künstlich intelligenten Algorithmen sind. Wenn konventionelle Algorithmen (SVM, RF, NN, LR)

mit den vorhandenen Daten (lateinische, unterteilte und kategorisierte Schenkungsurkunden)

getestet werden, erreichten diese keine zufriedenstellenden Ergebnisse. Tests wurden im Zuge

der Vorbereitung auf das Projekt durchgeführt und Algorithmen ermittelt, die gute, jedoch

nicht zufriedenstellende Ergebnisse ermitteln konnten. Von Anwenderseite wird eine accuracy

von über 0.95 angestrebt.
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1 Einleitung

Abbildung 1.1: Urkunde: Praefatio Paris BnF Lat. 2123 (P3) (UrkundePraefatio (2023))

Abbildung 1.2: Detailansicht Urkunde (UrkundePraefatio (2023))
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1 Einleitung

1.2 Zielsetzung

Das Ziel besteht darin, Algorithmen zu entwickelt oder bestehende zu modi�zieren, die trotz

einer Trainingsphase mit Daten von geringer Menge, eine möglichst gute Klassi�zierung der

Texte erreichen können.

1.3 Abgrenzung des Themas

Diese Arbeit wird sich vorwiegend mit dem oben beschriebenen ersten Schritt (Klassi�zierung),

aber nur eingeschränkt mit dem zweiten Teilproblem (Unterteilung der Urkunden in ihre

Urkundenbestandteile) befassen. Die Lösung des zweiten Teilproblems wird konzeptionell

erläutert und die Ergebnisse werden komprimiert diskutiert.

1.4 Überblick über den Aufbau der Arbeit

Zuerst werden die Datensätze beschrieben und anschließend einige Arten der Feature Ex-

traction erläutert. Im zweiten Schritt wird unter anderem eine Arbeit vorgestellt, die viele

Klassi�zierungsalgorithmen miteinander vergleicht. Im dritten Schritt wird eine Auswahl

etablierter Algorithmen vorgestellt und begründet, warum diese für einen Vergleich mit dem

neuen und mit den modi�zierten Algorithmus ausgewählt wurden. Des Weiteren wird eine

Betrachtung der neuen Lösung sowie der modi�zierten Lösung erst auf konzeptioneller, dann

auf detaillierter ebene erfolgen. Als Nächstes werden die ausgewählten Metriken und Methoden

festgelegt, um im darauf folgenden Kapitel die Ergebnisse eines modi�zierten Algorithmus

sowie die eines neuen Algorithmus mit den Ergebnissen etablierter Algorithmen vergleichen

zu können. Anschließend wird das Konzept des Algorithmus erläutert, um das Problem zu

lösen, Urkundenbestandteile automatisiert in Urkunden ermitteln zu können, gefolgt von

den Ergebnissen und deren Diskussion. Abschließend wird ein Fazit und ein Ausblick auf

Verbesserungen oder Modi�kationen erwogen.
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2 Auswahl von Datensätzen und
Preprocessing der Texte

Der bisherige Arbeitsablauf verläuft folgendermaßen: Lateinischen Urkunden wurden ein-

gescannt, mittels Optical Character Recognition (OCR) in Text umgewandelt und auf Fehler

überprüft. Anschließend hat eine Doktorandin diese Urkunden in Urkundenbestandteile unter-

teilt und klassi�ziert (WieHamburg). Der Gegenstand meiner Arbeit bestand darin, ein System

zu etablieren, das diesen letzten Arbeitsschritt übernimmt und Urkunden in Urkundenbestand-

teile unterteilt und klassi�ziert. Dies soll anhand der von der Doktorandin vorgenommenen

Unterteilung erlernt und getestet werden.
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2 Auswahl von Datensätzen und Preprocessing der Texte

Abbildung 2.1: Anzahl der Texte je Urkundenklasse. Orange Linie zeigt die durchschnittliche

Anzahl von Texten je Klasse. (UrkundePraefatio (2023))

Der verwendete lateinische Datensatz, der von der Doktorandin zur Verfügung gestellt

wurde, umfasst 4900 Urkunden, die in 22.471 Texte unterteilt und 14 möglichen Urkundenbe-

standteilen zugeordnet wurden. Die Aufteilung der unterteilten Urkunden über die möglichen

Urkundenbestandteile ist keineswegs gleichmäßig. So umfasst beispielsweise der Urkunden-

bestandteil ’Intitulatio’ 4.208 Texte, ’Narratives-Element’ aber nur 177 Texte. In orange ist

der Wert gekennzeichnet, den jede Klasse haben müsste, um eine gleichmäßige Verteilung zu

erreichen (Abb. 2.1).
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2 Auswahl von Datensätzen und Preprocessing der Texte

Abbildung 2.2: Anzahl der Texte je Newsgroup. Orange Linie zeigt die durchschnittliche Anzahl

von Texten je Klasse. (HomeSet)

Als weiterer Datensatz wurde ’the 20 newsgroups dataset’ (HomeSet; Abb. 2.2) gewählt,

welcher über eine Anzahl von 11.314 Texten verfügt, die relativ gleichmäßig auf 20 Klassen

verteilt sind. Der Datensatz besteht aus Texten verschiedener Nachrichtenressorts in englischer

Sprache. Dieser zweite Datensatz wurde gewählt, um die Güte des neu entwickelten Algorith-

mus auf einem Datensatz zu testen, der über eine homogene Verteilung der Texte über dessen

Klassen verfügt. In orange ist wieder der Wert eingezeichnet, den jede Klasse haben müsste,

um eine komplette Gleichverteilung der Texte zu erreichen. Außerdem ist dieser Datensatz in

der Wissenschaft häu�g verwendet worden und erhöht somit die Vergleichbarkeit der hier

vorgestellten Ergebnisse.

2.1 Wordprocessing

Damit die Worte aus einem Text von den Systemen verarbeitet werden können, wird als erstes

’Wordprocessing’ (Datenaufbereitung) durchgeführt. Diese Verfahren besteht in diesem Fall

6



2 Auswahl von Datensätzen und Preprocessing der Texte

aus dem Erarbeiten von Tokens aus Texten. Dabei wird ein Text in seine Worte und Satzzeichen

unterteilt (tokenizing). Als Nächstes werden die Wortstämme der Tokens gesucht. Dieses

Verfahren wird ’Stemming’ oder auch ’Lemmatizing’ genannt. Zuletzt werden die ’Stopwords’

entfernt. Dabei werden Worte wie Pronomen, Füll-Wörter etc., welche unwichtig für die

Analyse sind, entfernt. Das Generieren der Tokens aus dem Text wird mit dem Python-Paket

’nltk’ (NLTKPackage) durchgeführt. Die englischen und lateinischen ’Stopwords’ werden

vom Paket ’stopwords’ (stopwords) bereitgestellt, und das ’stemming’ erfolgt über das Paket

’simplemma’ (simplemma), um einen Lemmatizer zu nutzen, der multilingual ist, und dadurch

sowohl für lateinische als auch für englische Texte anwendbar ist. Stopwords im Lateinischen

sind jedoch sehr beschränkt. In dieser Bibliothek existieren gerade einmal 49 ’Stopwords’

(StopwordsLatin), in der englischen Bibliothek sind es dagegen 174 Wörter (StopwordsEnglish).

2.2 Feature-Extraction

Für einige der konventionellen Algorithmen reichen diese preprocessing Maßnahmen jedoch

nicht aus. Im ersten Schritt müssen in diesen Fällen die Texte in Vektoren oder Tokens unterteilt

werden. Dies wird anhand verschiedener Algorithmen (Term Frequency and Inverse Document

Frequency, Bag Of Words, Tokenizierung in Sequenzen) durchgeführt, welche als Älgorithmen

der Feature-Extractionßusammengefasst werden können. Die ermittelten Vektoren oder Tokens

werden als Features bezeichnet.

2.2.1 TF-IDF

TF-IDF steht für Term Frequency (TF) and Inverse Document Frequency (IDF) und ist ein

Verfahren, Features aus Texten zu extrahieren. Dieser Algorithmus berücksichtigt keinen

Wortkontext. TF-IDF legt dabei einen besonderen Wert darauf, zu ermitteln wie wichtig ein

bestimmtes Wort in einem Dokument für die richtige Klassi�zierung ist. Für diese Feature-

Extraction werden die Menge der Dokumente D, das zu betrachtende Wort w und das aktuelle

Dokument d, welches aus der Menge der Dokumente D stammen muss, benötigt.

wd = fw,d ∗ log(|D|/fw,D) (2.1)

fw,d beschreibt, wie häu�g das Wort w im Dokument d vorkommt. fw,D beschreibt, in wie

vielen Dokumenten aus D das Wort w vorkommt (Form. 2.1) Ramos (2003).
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2 Auswahl von Datensätzen und Preprocessing der Texte

2.2.2 Bag Of Words & CountVectorizer

Das Bag Of Words Modell ist ein sehr simples und intuitives Verfahren, um aus Daten wie

Texten Merkmale für eine Klassi�zierung zu extrahieren. Das Verfahren betrachtet dabei die

Häu�gkeit eines Wortes in einer bestimmten Klasse (Term Frequency (TF)).

Dafür wird ein Wörterbuch anhand der Trainingsdaten aufgebaut, in dem alle Wörter

enthalten ist. Anschließend wird anhand dieses Wörterbuchs eine Liste erstellt, die dieselbe

Länge wie das Wörterbuch hat und in der für jedes Wort die TF gespeichert wird. (George und

Joseph (2014)).

2.2.3 Tokenizieren in Sequenzen

Das Tokenizieren in Sequenzen ist das einzige der vorgestellten Verfahren, bei dem der Kontext

der Wörter nicht verloren geht. Bei diesem Verfahren werden Wörter der Texte in ein Wörter-

buch geschrieben und Listen erstellt. Die Wörter in Texten werden durch ihre Indices ersetzt.

Die Merkmale, die daraus entstehen, beinhalten Zusammenhänge von Wörtern in Texten. Ein

Tokenizer, der diese Art von Tokenizieren in Sequenzen bereitstellt, ist der Tokenizer aus dem

Paket Tf.keras.preprocessing.text.Tokenizer.
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3 Grundlagen und Auswahl Algorithmen

3.1 Verwandte, wissenscha�liche Arbeiten

Wie oben beschrieben, wurden zu Beginn des Projektes auf etablierten Algorithmen Tests

mit den Datensätzen angefertigt. Diese Algorithmen wurden aufgrund ihrer Verbreitung im

Anwendungsgebiet Textklassi�zierung ausgewählt.

A Survey Report on Text Classification with Di�erent Term Weighing Methods and
Comparison between Classification Algorithms - Singh und Patra (2013): Diese Ar-

beit untersucht die Abhängigkeit zwischen Performance und Modell. Die Performance wird

in dieser Arbeit in ’precision’ und ’recall’ gemessen. Ein besonderer Fokus der Arbeit ist die

Untersuchung der Kombinationen aus ’Termgewichtungsmethoden’ und der Klassi�zierungsal-

gorithmen. Untersucht wurden: ’K-nearest neighbor’, ’Naïve bayes’, ’SVM’, ’NN’ und ’DT’ mit

sowohl überwachten als auch nicht-überwachten Termgewichtungsmethoden. Zu den nicht-

überwachten Termgewichtungsmethoden zählen die auch in dieser Arbeit häu�g angewandten

TF und IDF (siehe dazu Abschnitt 2.2.1). Die Autoren dieser Arbeit kommen zu dem Ergebnis,

dass keine Datenrepräsentierungsmethode und kein Algorithmus als generelles Modell für

alle Anwendungsfälle verwendet werden kann, sondern die Auswahl dieser Bausteine immer

anhand des zu lösenden Problems und der zugrunde liegenden Daten getro�en werden muss.

Using logistic regression method to classify tweets into the selected topics - St u. a.
(2016): In der Arbeit ’Using logistic regression method to classify tweets into the selected

topics’ wird mittels logistsischer Regression eine Klassi�zierung von Tweets auf dem Sozialen

Netzwerk Twitter (heute ’X’) durchgeführt. Als Metrik wird die ’accuracy’ gewählt, welche bei

einer Menge von 9000 Tweets 1800 Tweets mit einer ’accuracy’ von 93% korrekt zuordnete.

Diese Arbeit begründet die Auswahl der Logistischen Regression als Basis-Algorithmus für die

Erweiterung eines kontextlosen Algorithmus um eine Kontextvariable.
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3 Grundlagen und Auswahl Algorithmen

Text Classification Algorithms: A Survey - Kowsari u. a. (2019): In der Arbeit ’Text

Classi�cation Algorithms: A Survey’ wurden verschiedene Klassi�zierungsalgorithmen mitein-

ander vergleichen. Um eine möglichst präzise Vorhersagen zu erreichen, wurde in dieser Arbeit

ein starker Fokus auf das Preprocessing der Daten gelegt. Dieses Preprocessing beinhaltetet

unter anderem das Bereinigen der Daten, wie zum Beispiel das Löschen von Stopwörtern, das

Ersetzten von Großbuchstaben durch kleine Buchstaben und das Suchen des Wortstamms

(Lemmatisierung). Die Ergebnisse dieser Arbeit sind in einem ö�entlichen GitHub Repository

einzusehen. (Kowsari K (Tab. 3.1))

Algorithmus accuracy support

Convolutional Neural Networks (CNN) 0.76 7532

Neural Networks (NN) 0.82 7532

Support Vector Machine (SVM) 0.85 7532

Decision Tree (DT) 0.55 7532

Random Forest (RF) 0.77 7532

Tabelle 3.1: Auszug der Ergebnisse des GitHub Repositorys Kowsari K

Bei diesen Ergebnissen handelt es sich um Tests auf dem Datensatz ’20 Newsgroups’, bei

denen der gesamte Datensatz mit allen möglichen Klassen ausgewählt wurden. Die besten

Ergebnisse erreichten in dieser Arbeit die SVM und die neuronalen Netzwerke. Diese SVM

benutzt als Vektorisierer ausschließlich den CountVectorizer aus dem Paket ’scikit-learn’,

welcher keinen Wortkontext betrachtet (SklearnCountVectorizer). Algorithmen, die den Wort-

kontext berücksichtigen, erreichten in dieser Arbeit schlechtere Ergebnisse als kontextlose

Algorithmen. So kann bei den Ergebnissen des NN eine bessere Präzision erreicht werden, als

bei dem CNN, welches eine Modi�kation um eine Kontextbetrachtung des NN ist.

A Survey on Text Classification Algorithms: From Text to Predictions - Gaspare�o
u. a. (2022): Eine der aktuellsten und umfangreichsten Arbeiten ist die Arbeit ’A Survey on

Text Classi�cation Algorithms: From Text to Predictions’. Sie beschäftigt sich mit allen relevan-

ten Text Klassi�zierungs-Algorithmen. Diese Arbeit bildet ein sehr viel breiteres und detaillier-

teres Bild der Klassi�zierungslandschaft ab und untersucht die Modelle auf viele verschiedene

Aufgabenbereiche wie Stimmungsanalyse, Themenbeschriftung, Named Entity Recognition,

News Klassi�kation, uvm. Hierfür wurden viele konventionelle Algorithmen verwendet, wie

SVM, DT, LR, RF, K-NNN und Naïve Bayes, zusätzlich State-Of-The-Art Transformer Model-
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le wie BERT. Auch mit vielen verschiedenen Datensätze wurde gearbeitet: exemplarisch zu

erwähnen wären die 20 News, IMDb und AG News.

Tabelle 3.2: Macro-F1 und Accuracy Scores beim Ermitteln von Themenbeschriftung auf den

Datensets ’EnWiki-100’ und RCV1-57 (Gasparetto u. a. (2022))

In Tabelle 3.2 werden die Ergebnisse der Themenbeschriftung gezeigt. Das BERT Modell

zeigt, gemessen am F1-Score, eine deutliche bessere Performance sowohl für EnWiki-100 (85,52)

als auch für den RCV1-57 (78,07) Datensatz.

Anschließend wurde noch ein zweiter Test der verschiedenen Transformer und nicht Tranfor-

mer Modelle mit News Klassi�zierungsaufgaben durchgeführt. Hierfür wurde unter anderem

das Dataset der 20 News verwendet.

Auch in Tabelle 3.3 dominierten Transformer Modelle die Tests.
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Die betrachteten wissenschaftlichen Arbeiten trugen zur Auswahl der im nächsten Abschnitt

betrachteten Algorithmen bei.

3.2 Ausgewählte Algorithmen und ihre Methodik

Es gibt viele Algorithmen, die Klassi�zierungen durchführen können. In dieser Arbeit werden

Besonderheiten einiger dieser Algorithmen erklärt und begründet, weshalb diese sowohl für

einen Vergleich mit dem modi�zierten (Logistische Regression mit Kontexterweiterung LRC)

als auch dem neu entwickelten Algorithmus (Context-Classifyer CC) ausgewählt wurden.

Einige dieser Algorithmen sind besonders zuverlässig und häu�g genutzt auf dem Gebiet der

Textklassi�zierung (Transformer, SVM), andere haben in vorangegangenen Tests besonders

gute Ergebnisse erreicht (LR, SVM, Transformer). Wieder andere haben einen starken Fokus

auf Kontext/Aufmerksamkeiten und sind daher interessant um mit den neuen Algorithmen

verglichen zu werden (CNN, Transfomer). Einige sind besonders schnell (SVM, DT, RF) oder

die Grundlagen anderen Algorithmen (DT, NN) (Tab. 3.4).

Algorithmus Auswahlkriterium

LR Starker Klassi�zierungsalgorithmus in vorangegangenen Tests

SVM Bensonders gut für geringe Datenmenge (Sivakami (2018))

CNN Starker Fokus auf Kontext durch Conv. Layers

RF wenig rechenintesiv

Transformer Für sequenzielle Daten geeignet &

spezieller Fokus auf Kontext durch Aufmerksamkeiten

Tabelle 3.4: Übersicht über gewählte Klassi�zierungsalgorithmen und deren Begründungen

- LR Logistische Regression, SVM Support Vektor Mashine, CNN Conolutional

Neuronal Network, RF Random Forest
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3.2.1 Logistische Regression

Logistische Regression ist ein Verfahren, Texte anhand von Merkmalen Klassen zuzuordnen.

Multinomiale logistische Regression wird für diesen Fall genutzt, da es sich um eine nicht

binäre Klassi�kation handelt (Kwak und Clayton-Matthews (2002)). Eine Regression (Form.

3.1) ist das Verrechnen von ermittelten Intensitäten (βx) von Features (fx) mit einem Faktor,

der die Wichtigkeit (α) von diesem bestimmten Feature repräsentiert. Diese (βx) Werte werden

auch Regressionskoe�zienten genannt (Rawlings u. a. (1998)).

reg(α, β, f) = α+ β1 ∗ f1 + β2 ∗ f2 + · · ·+ βk ∗ fk (3.1)

Diese Wichtigkeit von einem Feature wird anhand des Maximum-Likelyhood Verfahrens in

der Trainingsphase ermittelt. Eine logistische Regression entsteht, wenn diese Regression mit

einer logistischen Funktion (Form. 3.2) verbunden wird.

log(z) =
1

1 + e−x
=

ex

1 + ex
(3.2)

Eine logistische Regression (Form. 3.3) beschreibt die Wahrscheinlichkeit, mit der bestimmte

Merkmalskombinationen in einer Klasse liegen, da sich durch die logistische Funktion Werte

in den Extremen 1 und 0 annähern.

log(β, f) =
exp(β0 ∗ f0 + β1 ∗ f1 + · · ·+ βk ∗ fk)

1 + exp(β0 ∗ f0 + β1 ∗ f1 + · · ·+ βk ∗ fk)
(3.3)

Für eine multinomiale logistische Regression, die in diesem Beispiel benötigt wird, wird die

Regression der zu ermittelnden Klasse r exponenziert (exp) und durch 1 + die Summe aller

exponenzierten Regressionen aller Klassen geteilt (El-Habil (2012)) (Form. 3.4).

log(z) =
exp(β0r ∗ f0 + β1r ∗ f1 + · · ·+ βkr ∗ fk)

1 +
∑c

s=1 exp(β0s ∗ f0 + β1s ∗ f1 + · · ·+ βks ∗ fk)
(3.4)

So wird für jede Klasse die Wahrscheinlichkeit errechnet, dass das betrachtete Element

dieser spezi�schen Klasse angehört. Alle Wahrscheinlichkeiten der Klassen ergeben addiert 1.

3.2.2 SVM

Support Vector Machines (SVM) sind ein Algorithmus zum Klassi�zieren von Daten, die häu�g

zur Textklassi�zierung verwendet werden (Tong und Koller (2001), Uchenna Oghenekaro und

Benson (2022), Sivakami (2018)). Diese eignen sich besonders gut für Daten geringer Menge

(Sivakami (2018)). Eine SVM funktioniert, indem Daten erst mittels ’Feature Extraktion’ vektori-
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siert werden und dann in eine mehrdimensionale Matrix geladen werden, in der die Anzahl der

Dimensionen der Anzahl der extrahierten Features entspricht. Diese Vektorisierung kann auf

mehrere Arten durchgeführt werden. Es existieren Algorithmen wie der Bag Of Words Algorith-

mus, die diese Daten losgelöst von ihrem Kontext vektorisieren (Nitsche und Tropmann-Frick

(2020)). Außerdem gibt es auch Modelle wie ’Continuous Bag-Of-Words’ (CBOW) (Nitsche und

Tropmann-Frick (2020)), welche diese Vektorisierung vornehmem und den Kontext der Wörter

berücksichtigen. Anschließend errechnet der Algorithmus Hyperplanes in den Raum, welche

die Klassen voneinander trennen sollen. Als Supportvektoren werden die nächsten Datenpunk-

te an der Hyperplane bezeichnet (Abb. 3.1). Von diesen Datenpunkten ist die Position und die

Ausrichtung der Hyperplane abhängig. Eine Idee ist, den Abstand zwischen den Datenpunkten

und der Hyperplane zu maximieren. Der Abstand der Suportvektoren zu der Hyperplane wird

als ’Margin’ bezeichnet (Tong und Koller (2001)). Beispielsweise erhält man für eine binäre

Klassi�kation durch eine SVM einen Wert zwischen −1 und +1.

Multi-Klassen-Klassifikation: Gibt es mehrere Klassen, die vorhergesagt werden können,

gibt es Verfahren, welche Multi-Klassen-Klassi�kationen angehen. Diese Verfahren sind in

folgende Konzepte unterteilbar (Galar u. a. (2011)):

1. One-vs-One

2. One-vs-Many/One-vs-All

Bei der One-vs-One Klassi�zierung wird für jede Klassenpaarkombination eine SVM erlernt,

die zwischen diesen beiden unterscheiden kann. Anschließend werden diese Ergebnisse kom-

biniert und als resultierende Klasse zurückgegeben.

Das One-vs-Many/One-vs-All Modell erlernt für jede mögliche Klasse eine ’Klasse X gegen

alle andere Klassen’ SVM. Diese Ergebnisse werden wieder kombiniert und als resultierende

Klasse zurückgegeben (Galar u. a. (2011)).

SVM’s gibt es in linearer und in nicht linearer Form.
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Abbildung 3.1: Support Vectors (Meyer (2012))

Lineare SVM: Bei einer linearen SVM werden lineare Funktionen zur De�nition der Hyper-

planes genutzt. Eine Klassi�zierung mit einer solchen Funktion kann nicht so �exibel wie die

nicht lineare SVM an die Trainingsdaten angepasst werden, da die Klassi�zierung durch die

Linearität der Funktion eingeschränkt wird (Mammone u. a. (2009)). Die Darstellung einer zwei

dimensionalen, linearen SVM ist in Abbildung 3.1 zu erkennen. Linare SVM können besonders

gut verwendet werden, wenn eine lineare Abhängigkeit zwischen Features angenommen wird.

Somit beein�ussen Ausreißerwerte nur geringfügig die Ausrichtung der Hyperplane und ein

Over�tting dieser Werte kann vermieden werden.

Nicht lineare SVM: Eine nicht lineare SVM bedient sich nicht linearer Funktionen zur

Bestimmung der Hyperplanes (Abb. 3.2), und damit auch zum Separieren der Klassen. Durch

eine nicht lineare Funktion ist eine deutlich �exiblere Anpassung der Hyperplanes an die

Daten möglich (Mammone u. a. (2009)).
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Abbildung 3.2: Nicht lineare SVM (Mammone u. a. (2009))
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3.2.3 CNN

Ein Convolutional Neural Network (CNN) ist ein künstliches neuronales Netzwerk, das über

zusätzliche, vorgeschaltete Schichten (Layer) verfügt. Diese Schichten sind abwechselnd Con-

volutional Layer und Pooling Layer. Im Preprocessing der Daten ist es wichtig, dass nicht nur

eine Vektorisierung auf TF-IDF oder nach dem BOW Model erfolgt, sondern der Wortkontext

erhalten bleibt. Dies wird anhand der Tokenizierung in Sequenzen realisiert. Anschließend

erfolgt eine Schicht, die für das ’�atten’ zuständig ist. Dieser Vorgang passt die Ergebnisse

der vorherigen Schicht auf die Anzahl und Form der Eingabeneuronen der nächsten Schicht

an. Die letzte Schicht ist ein vollständig verbundenes neuronales Netz, welches die möglichen

Klassen als Ausgabe-Neuronen hat (Abb. 3.3) (Kowsari u. a. (2019)).

Abbildung 3.3: CNN für Text Klassi�zierung (Kowsari u. a. (2019))

Convolutional Layer: Als Convolutional Layer bezeichnet man eine bestimmte Art von

Schicht in einem künstlichen neuronalen Netz, welche sich auf das Zusammenfassen benach-

barter Eingangsneuronen konzentriert (falten). Dafür wird von bestimmten Filtern Gebrauch

gemacht, die in der Trainingsphase trainiert werden. Diese Filter laufen beispielsweise bei

zweidimensionalen Eingabematrizen wie einfache Schwarzweißbilder als N ×N Matrix über

die Eingangsneuronen und �nden Muster. Diese Filtermatrizen weisen eine ungerade Länge

und Breite auf.

Die Idee ist, dass die Filter Pixel für Pixel über die Eingabeneuronen gelegt werden und

die Werte aus der Filtermatrix mit den darunterliegenden Eingabeneuronen multipliziert
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werden (Form. 3.6). Die errechneten Produkte werden anschließend aufsummiert und in einer

’featuremap’ festgehalten (Form. 3.5).

filter = Filtermatrix

input = Eingabenneuronen-Matrix

output = featuremap

l(X) = Länge einer Matrix X

b(X) = Breite einer Matrix X

σ = sigmoid-Funktion

β = bias

l(input)∑
x=0

b(input)∑
y=0

outputx,y = auspraegung(x, y) (3.5)

auspraegung(x, y) = σ

β +

l(filter)∑
i=0

b(filter)∑
j=0

inputx−(l(filter)/2)+i,y−(b(filter)/2)+j ∗ filterj,j


(3.6)

In der Abbildung 3.4 wird die Berechnung eines Featurewerts dargestellt. Hierfür wird ein

Auszug einer Inputmatrix (links) mit einem Filter (mitte) betrachtet, der eine vertikale Linie

in einem zweidimensionalen Bild erkennen kann. Rechts steht der berechnete Wert für die

Ausprägung dieses Features.

Dieses Verfahren kann beliebig oft für jeden erlernten Filter wiederholt werden. Daraus

resultieren mehrere featuremaps, die auch in unserem Beispiel alsM×M×F Matrix betrachtet

werden können, in der dieF -Dimension die Anzahl der featuremaps der MaßeM×M sind. Die

Länge und Breite der errechneten featuremap kann von der Eingabelänge der Matrix abweichen.

Dies geschieht allerdings nur, wenn keine Paddingmethode verwendet wird. Mit dem ’padding’

soll erreicht werden, dass die Länge und Breite der Matrix gleich bleibt. Das bedeutet, dass eine

64× 64 Neuronenmatrix als Eingabe auch eine 64× 64 Matrix als featuremap ausgibt. Dies

wird erreicht, indem weitere imaginäre Eingabeneuronen um die Inputmatrix erzeugt wird.

Dieses padding hat eine Breite von der Hälfte der Länge und Breite der Filtermatrix. Dies hat

zum Zweck, dass die gesamte Berechnung durchgeführt werden kann, wenn die Filtermatrix

über die Eingabeneuronen gelegt wird. Beim Zeropadding werden die padding Werte auf 0

gesetzt. Das Samepadding spiegelt die äußeren Werte in der Eingabematrix.
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Abbildung 3.4: Der Faltprozess

Abbildung 3.5: Average-Pooling

Abbildung 3.6: Max-Pooling

Pooling: Pooling beschreibt den Prozess, Eingabe-

neuronen nach dem Falten zusammenzufassen, mit

dem Ziel, so viele Informationen wie möglich zu er-

halten. Dies kann auf verschiedene Arten erfolgen. So

gibt es beispielsweise das ’Average-Pooling’ oder auch

das ’Max-Pooling’. Pooling de�niert die Dimensionen

der EingabeneuronenN der nächsten Schicht im CNN.

Wenn ein N × N Pooling durchgeführt wird, wird

aus den Outputneuronen der Convolutional Layer ein

N ×N Feld ausgewählt und zusammengefasst. Bei ei-

nem ’Average-Pooling’ wird der Durchschnitt aus allen

Werten gebildet und zurückgegeben (Abb. 3.6), beim

’Max-Pooling’ wird der größte Wert zurückgegeben

(Abb. 3.5). Der gängigste und meistverbreitete Algo-

rithmus zum Pooling ist das ’Max-Pooling’ (Kowsari

u. a. (2019)).
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3.2.4 Random Forest

Um den Random Forest (RF) Algorithmus zu verstehen, muss erst das zugrundeliegende

Konzept des Decision Tree Models (DT) verstanden werden.

Grundlagen des Decision Tree Model: Dieser Algorithmus löst eine Klassi�zierung an-

hand eines binären Entscheidungsbaumes. Der Baum wird mittels seiner Trainingsdaten gebil-

det und orientiert sich dabei daran, Unterteilungen in jedem Knoten zu machen. Damit soll eine

Minimierung der Entropie erreicht werden. Entropie ist der Zustand, wenn ein Datensatz eine

stark heterogene Menge ist, also eine Menge, die viele Daten verschiedener Klassen beinhaltet.

Die Entropie kann folgendermaßen errechnet werden:

−
m∑
i=1

pi ∗ log(pi) (3.7)

p zeigt die Wahrscheinlichkeit der Klasse i im aktuell betrachteten Datensatz und m ist die An-

zahl der Klassen (Form. 3.7) (Kingsford und Salzberg (2008)). Dieser Lernprozess ist ein ’greedy’

Algorithmus und sucht sich immer das aktuell beste Ergebnis. Das bedeutet Entscheidungen,

die im Wurzelknoten oder in der 1. Ebene gemacht wurden, können nicht mittels backtracking

in der 3. oder 4. Ebene des Baumes geändert werden, da dies einen komplett neuen DT ergeben

würde. Außerdem würde der Algorithmus in seiner Form diese Entscheidung niemals tre�en,

da sie zu einer temporär höheren Entropie führen würde.

Random Forest: Der Random Forest Algorithmus beschreibt eine Modi�kation des DT. Die

Besonderheit ist, dass der Algorithmus mehrere DTs generiert. Dafür erstellt der Algorithmus

mehrere Teilmengen aus dem eigentlichen Trainingsdatenset, welche ’Bootstrap-Datensets’

genannt werden und trainiert damit eigenständige DT. Der Grund hierfür liegt darin, dass DT

oft dazu neigen nicht generalisiert zu sein. Das bedeutet, dass sie nicht gut anwendbar auf

neue Datensätze sind und ausschließlich einige wenige Merkmale lernt. Außerdem lernen jede

DTs im Random Forrest auch ein zufällig selektiertes ’featureset’.

Jeder DT errechnet anhand des neuen Datensatzes eine eigenständige Vorhersage und anschlie-

ßend wird mittels gleich gewichtetem Voting die Klasse ausgewählt, welche am häu�gsten

bestimmt wurde. Diesen Vorgang nennt man Aggregation (Cutler u. a. (2012)).
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Abbildung 3.7: Random Forest Model (Kowsari u. a. (2019))

3.2.5 Transformer

Das Transformer Modell (Abb. 3.8) ist das modernste der betrachteten NLP-Modelle, das für

das Klassi�zieren von Texten genutzt werden kann. Dieses Modell legt einen großen Wert auf

den Kontext, da es eine ’attention layer’ aufweist, in dem Aufmerksamkeiten trainiert und

berücksichtigt werden.
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Abbildung 3.8: Transformer Model (Vaswani u. a. (2017))

Das Modell besteht aus einem Decoder und einem Encoder. Die linke Hälfte der Abbildung

3.8 zeigt den Encoder, die rechte Hälfte den Decoder. Der Encoder ist zusammengesetzt aus

einer ’multihead attention layer’ und einem voll verbundenen ’feed foreward’ Netzwerk. Eine

Aufmerksamkeitsschicht (attention layer) erfüllt den Zweck, die Wörter der Eingabesequenz

unterschiedlich zu gewichten. Wörter mit einem hohen Aufmerksamkeit-Wert werden beson-

ders stark gewichtet und Wörter mit einem niedrigen Wert eher schwach. In Abbildung 3.9

wurde eine Aufmerksamkeit erlernt, die den korrekten Zusammenhang zwischen ’the’ und

’animal’ erkennen kann.
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Abbildung 3.9: Attention (Tensor2TensorColaboratory)

Jeder Encoder kann dabei auf alle Positionen (Repräsentation von Wörtern in Vektoren) des

vorherigen Encoders zugreifen, sodass ein Kontext erkannt werden kann. ’Multihead atten-

tion layer’ betrachten dabei mehrere Aufmerksamkeiten und kombinieren diese Ergebnisse

anschließend miteinander. Nachdem die Eingabe durch diesen Prozess verarbeitet wurde, wird

ein Vektor errechnet, der die Eingabesequenz repräsentiert. Dieser Vektor ist zusammen mit

dem vorherigen Output des Decoders die Eingabe des Decoder-Blocks. Dieser errechnet mit

dem komprimierten Vektor des Encoders (Verständnis über den Satz) und den vorherigen

Ausgaben (Kontext des Ausgabewertes bezeihungsweise des Satzes) die Ergebnisse (Vaswani

u. a. (2017)). Sobald in den Analysen der Transformer eingesetzt wird, wurde der ’Bidirectional

Encoder Representations from Transformers’, kurz BERT, verwendet.

3.2.6 BERT

Der ’Bidirectional Encoder Representations from Transformers, kurz BERT, ist ein Encoder-

Only Transformermodell und eignet sich daher besonders für Klassi�kationsprobleme (Devlin

u. a. (2018)). Aus diesem Grund wurde es auch für diesen Vergleich ausgewählt.

Für den Prozess, die Algorithmen zu vergleichen, wurden zwei vortrainierte BERT Modelle

verwendet. Einmal der ’distilbert-base-uncased’ (Distilbert-base-uncased) für Texte in der

englischen Sprache (20 Newsgroups) und der ’simple-latin-bert-uncased’ (Simple-latin-bert-

uncased) für lateinische Texte (mittelalterliche Urkunden).
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Pre-Training: Das Ziel vom Pretraining ist, ein generalisiertes Modell zu erlernen, das

anschließend mittels �netuning auf bestimmte Daten angepasst werden kann. Dies spart Zeit

und Ressourcen. Dieses Ziel wird in BERT-Modell durch zwei Methoden erreicht, welche im

Folgenden beschrieben werden:

Masked Language Model: Beide dieser Modelle (’distilbert-base-uncased’, ’simple-latin-

bert-uncased’) sind ’uncased’ BERT Algorithmen. ’Uncased’ bedeutet, dass keinen Unterschied

zwischen kleinen und großen Buchstaben gemacht wird. BERT ist ein von Google entwickeltes

Transformermodell, das ein Modell des ’Masked Language Modeling’ (MLM) ist. Dieses Modell

wurde mit maskierten Trainingsdaten erlernt. Das bedeutet, dass in jedem Trainingsdatensatz

15% der Wörter durch das [MASK]-Token ersetzt werden. Für diese Masken werden vom BERT

Modell anschließend Wörter errechnet, die diese Lücken füllen sollen. Anhand des richtigen

oder fehlerhaften Ersetzen der Masken, trainiert das Modell seine Präzision. Außerdem wird

durch dieses ’masked lerarning model’ eine bidirektionale Aufmerksamkeit erlernt. Durch das

Maskieren eines Wortes in der Mitte des Textes, kann der Algorithmus auch nachfolgende

Worte in seinen Entscheidungsprozess ein�ießen lassen und erlernt damit diese bidirektionale

Aufmerksamkeit (Devlin u. a. (2018)).

Abbildung 3.10: Beispiel: ermittelte Worte für [MASK]-Tokens (OpenBlog)

Ein nicht bidirektionales Modell kann den ersten Satz sehr gut ergänzen, wird jedoch

Probleme im zweiten Satz haben, da für die Ermittlung der zweiten Maske der Kontext der

nachfolgenden Worte wichtig ist. Ein nicht bidirektionales Modell könnte nach ’He bought a’

beispielsweise ’house’ oder andere Wörter einfügen. Erst mit der bidirektionalen Aufmerk-

samkeit kann das Modell tre�ende Aussagen über die Maske machen, da das Modell nun eine

Aufmerksamkeit auf ’milk’ erlernen kann (Abb. 3.10) (Devlin u. a. (2018)).

Next Sentence Prediction: Das BERT Modell verfügt weiterhin über erlernte Beziehungen

zwischen Sätzen. So kann ein nachfolgender Satz als solcher erkannt und auch als solcher

gebildet werden. Um diese Beziehung zu erlernen, wird das Modell mit vielen Satzpaaren

trainiert. Dabei besteht die Hälfte aus tatsächlichen Satzpaaren und die andere Hälfte aus

zufällig zusammengesetzten Satzpaaren. Das Training hat anschließend das Ziel, den zweiten
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3 Grundlagen und Auswahl Algorithmen

Sätzen der richtigen Satzpaare das Label ’IsNext’ zu geben, und den zufälligen das Label

’NotNext’ (Abb. 3.11). (Devlin u. a. (2018))

Abbildung 3.11: Beispiel: Next Sentence Prediction (OpenBlog)

Finetuning: Um das Modell anschließend auf bestimmte Daten anwendbar zu machen, ist

es notwendig, die Berechnungen dieses Modells auf diese Daten zu optimieren. Dafür ist ein

Trainings- und Validierungsdatensatz notwendig. Dort wird der Output mit den gelabelten

Daten verglichen und die Parameter der Models angepasst.
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4 Lösungskonzeption

Um sich dem Problem der Klassi�zierung von Texten geringer Trainingsdatenmenge zu widmen,

wurden zwei Lösungsansätze verfolgt. Im ersten Ansatz wurde ein starker Algorithmus um

eine Kontextvariable erweitert (LCR) und im zweiten Ansatz ein komplett neuer Algorithmus

entworfen (CC).

4.1 LRC

Der erste Ansatz zur Optimierung einer Klassi�kation besteht darin, einen bestehenden Al-

gorithmus, der keinen Kontext berücksichtigt, um eine Kontextvariable zu erweitern. Der

Algorithmus, der für die Erweiterung ausgesucht wurde, ist die logistische Regression, da

sie in den vorhergehenden Tests bessere Ergebnisse als die meisten anderen kontextfreien

Klassi�zierungsalgorithmen erreichen konnten.

4.1.1 LRC im Detail

Die logistische Regression ermittelt für den zu analysierenden Text eine Wahrscheinlichkeit

für jede mögliche Klasse. Das Ziel der Erweiterung ist es, diesen errechneten Wert mit einer

’streak’ zu multiplizieren. Diese ’streak’ errechnet sich, indem der Text aus der Perspektive

jeder einzelnen Klasse betrachtet wird. Im ersten Schritt wird der Text nach den Verfahren

aus Kapitel 2 (tokenizierung, stopwords, stemming) aufgearbeitet. Als Nächstes wird für jedes

Wort die Wortwahrscheinlichkeit und der Wortkontext errechnet. Im Prozess der Ermittlung

des Wortkontextes wird überprüft, ob das Wort in der Klasse vorkommt, die aktuell betrachtet

wird. Anschließend wird überprüft, ob das darauf folgende Wort als ’successor’ des aktuellen

Wortes abgespeichert wurde. Wenn dies der Fall ist, wird die temporäre ’streak’ um eins

erhöht. Sollte der Nachfolger des aktuellen Wortes nicht als ’successor’ des aktuellen Wortes

auftauchen, wird die temporäre ’streak’ auf 1 gesetzt. Der Wert der temporären ’streak’ wird

in jeder Iteration mit dem aktuellen ’streak’ verglichen und der größere der beiden bildet

den neuen ’streak’-Wert. So wird die maximale Wortkette ermittelt, die das System mit der

Klasse verbindet. Dieser Wert ist eine Ganzzahl größer gleich 1 und wird mit dem Ergebnis
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4 Lösungskonzeption

der logistischen Regression der Klasse multipliziert. Anschließend wird die Klasse mit dem

höchsten Wert als vorhergesagte Klasse zurückgegeben.

4.2 Context-Classifyer

Die ersten Ergebnisse der Erweiterung der logistischen Regression erschienen vielversprechend,

da eine Verbesserung der accuracy festzustellen war. Daher war der nächste Schritt, einen

Algorithmus zu entwerfen, der einen noch stärkeren Fokus auf die Wortkontextsuche legt und

außerdem eine ’Wort für Wort Klassi�kation’ der Texte ermöglicht, um diese als Grundlage

einer späteren Unterteilung der Urkunden in Urkundenbestandteile zu nutzen. Der neuartige

Klassi�zierungsalgorithmus baut auf einer Datenbank auf, die an ein ’Bag Of Words’ Model

erinnert.

Über solch einen ’Bag Of Words’ Algorithmus wird eine Wahrscheinlichkeit errechnet, dass

ein bestimmtes Wort in einer Klasse (Urkundenbestandteil) vorkommt. Die erweiterte Idee

besteht darin, diese Wahrscheinlichkeit mit einem berechneten Kontextwert zu multiplizieren

und somit einen konzeptionellen Kompromiss aus einem convolutional neural network (CNN)

und einem ’Bag Of Words’ Modell zu kreieren.

4.2.1 Context-Classifyer im Detail

Datenorganisation: Alle Wörter der Trainingsdaten werden in eine ’In-Memory-Datenbank’,

repräsentiert durch ein Python Dictionary, aufgenommen. Die Daten werden auf der ersten

Ebene nach Wörtern organisiert. Über das Wort - im folgenden ’Index-Wort’ - ist ein weiteres

Dictonary adressierbar, in dem die Frequenz gespeichert ist, wie oft das Index-Wort in den

Trainingsdaten auftaucht, sowie ein Dictonary, indem die Urkundenbestandteile, in dem das

Index-Wort vorkommen kann, als weiteres Dictonary organisiert ist. In dem Dictonary steht

die Frequenz, in der das Wort in dem Urkundenbestandteil vorgekommen ist und eine Liste

an Wörtern, die vor (’pre’) und nach (’succ’) dem Index-Wort in dem Urkundenbestandteil

vorkam. Sollte das Index-Wort am Ende eines Urkundenbestandteils stehen, steht als ’succ’

Wert ein ’endOfFile’ und sollte es am Anfang eines Urkundenbestandteils stehen, steht als ’pre’

ein ’startOfFile’. Das Dictonary ist als JSON serialisiert folgendermaßen strukturiert 4.1:
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4 Lösungskonzeption

{
"<wort>": {

"frequency": 2095,
"list": {

"<Urkundenbestandteil>": {
"frequency": 2095,
"pre": {

"<wort1>": 200,
"startOfFile": 1895

},
"succ": {

"<wort200>": 95,
"endOfFile": 2000

}
}

}
},

...
}

Abbildung 4.1: Beispielhafte Datenrepräsentation eines Wortes

Diese Organisation der Daten hat den E�ekt, dass unter anderem Filgendes abgefragt werden

kann:

• Wie häu�g kommt in einem bestimmten Urkundenbestandteil das Indexwort vor?

• Welches sind die nachfolgenden und vorausgehenden Wörter dieses Indexwortes in

diesem Urkundenbestandteil?

• Wie häu�g kommt ein Wort in dem gesamten Trainingssatz vor?

Mathematischer Hintergrund: Um zu bestimmen, für welchen Urkundenbestandteil ein

bestimmtes Index-Wort charakteristisch ist, werden zwei Faktoren berücksichtigt: Die Wort-
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4 Lösungskonzeption

wahrscheinlichkeit und der Wortkontext, in dem das Index-Wort in dem jeweiligen Urkun-

denbestandteil auftaucht.

Wortwahrscheinlichkeit: Aus den Daten lässt sich nun eine Wahrscheinlichkeit errechnen,

die besagt, wie häu�g das Index-Wort in einem bestimmten Urkundenbestandteil vorkommt.

So sind Wörter, die in jedem Urkundenbestandteil vorkommen (beispielsweise Füllwörter, etc.)

ein schlechter Indikator für eine Kategorie. Die Wahrscheinlichkeit wird wie folgt berechnet

(Form. 4.1):

WW (w, u) = hu(w, u)/h(w) (4.1)

w = Index-Wort

u = zu untersuchende Klasse (Urkundenbestandteil)

hu() = Häu�gkeit des Index-Wortes in der Klasse (Urkundenbestandteil)

h() = Häu�gkeit des Index-Wortes

Für Wörter, die in vielen Urkundenbestandteilen gleichmäßig verteilt vorkommen, ergibt

sich eine geringe Wortwahrscheinlichkeit. Für Index-Wörter, die besonders häu�g in einem

Urkundenbestandteil vorkommen, errechnet sich eine hohe Wortwahrscheinlichkeit. Diese

Wortwahrscheinlichkeiten werden Wort für Wort zu einer akkumulierten Wortwahrschein-

lichkeit aufsummiert, die wir im Folgenden Wortwarscheinlichkeit nennen werden (Form. 4.2).

Wortwahrscheinlichkeit(u) =
W∑
w=1

WW (w, u) (4.2)

Wortkontext: Außerdem soll der Kontext des Index-Wortes berücksichtigt werden, also mit

welchen Wörtern das Index-Wort in welchem Urkundenbestandteil häu�g in Zusammenhang

steht. Darin besteht die Innovation dieses Algorithmus. Dafür werden die Wörter in den

Texten betrachtet, die nach dem Index-Wort in dem zu klassi�zierenden Text stehen. Sollte das

Wort im Datensatz als nachfolgendes Wort in dem zu untersuchenden Urkundenbestandteil

vorkommen (’succ’), wird die temporäre ’streak’ erhöht. Sollte es nicht vorkommen, wird die

temporäre ’streak’ auf den Wert 1 gesetzt. Zusätzlich zu dem temporären ’streak’ wird eine

weitere Variable ’streak’ geführt. Die temporäre ’streak’ wird in jedem Iterationsschritt mit der

’streak’ verglichen. Sollte die temporäre ’streak’ größer sein als die ’streak’, wird der Wert der

’streak’ auf den Wert der temporären ’streak’ gesetzt. Nun wird das Index-Wort der Nachfolger
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4 Lösungskonzeption

des Index-Wortes und der Prozess wird wiederholt. Dieser Prozess ermöglicht das Ermitteln

der maximalen Wortkette aus dem Text, die der Algorithmus mit der Klasse in Verbindung

bringen kann (Form. 4.3).

streak(i, W, k, ts, s) =


s i >= len(Wk)

streak(i+ 1,W, k, 1, s) Wk,i+1 /∈Wk,i[
′succ′]

streak(i+ 1,W, k, ts+ 1,max(st, s)) sonst

 (4.3)

i = aktueller Index

W = Wörter

k = zu untersuchender Urkundenbestandteil

ts = temporäre streak

s = streak

max(a, b) = maximaler Wert von a und b

len(x) = Länge vom Element x

Die Einstiegsfunktion lautet (Form. 4.4):

Wortkontext(woe, k) = streak(0,W, k, 0, 0) (4.4)

Hierbei sind W die Wörter in einem Text und k eine zu untersuchende Klasse.

Auf diese Art wird in einem Text für jeden möglichen Urkundenbestandteil ein Kontext

ermittelt.

Berechnung: Nachdem jede Wortwahrscheinlichkeit der Wörter im Text und der Wort-

Kontext für jeden möglichen Urkundenbestandteil ermittelt worden sind, werden beide Werte

miteinander multipliziert. Somit wird für jeden möglichen Urkundenbestandteil eine Wahr-

scheinlichkeit errechnet, dass der Text in diesem Urkundenbestandteil vorkommt. Diese Multi-

plikation stellt einen ersten Ansatz einer Berechnung dar und kann später optimiert werden,

um eine Präzisionssteigerung zu erreichen.
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4 Lösungskonzeption

Diese Berechnung der Wahrscheinlichkeit für jedes Urkundenbestandteils sieht wie folgt

aus (Form. 4.5):

p(t, k) =

 l(t)∑
i=0

Wortwarscheinlichkeit(W (t)i, k)

 ∗Wortkontext(W (t), k) (4.5)

t = zu untersuchender Text

k = zu untersuchender Urkundenbestandteil

p(t, k) = Wahrscheinlichkeit für Text t in Urkundenbestandteil k

l(t) = Länge von t

W (t) = Wörter in t
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Um Ergebnisse zu analysieren, müssen zuerst Metriken festgelegt werden, nach denen ein

Algorithmus als ’gut’ und als ’schlecht’ eingeschätzt werden kann. Diese Metriken sind:

1. Korrektheit (accuracy, precision and recall)

2. Zeit

Die Korrektheit ist die weitaus wichtigere Metrik, da es sich in diesem Fall um eine An-

wendung handelt, bei der nicht häu�ge Analysen gemacht werden müssen und diese auch

nicht schnell sein müssen, wie beispielsweise bei einer Objekterkennung in Bildern für ein

selbstfahrendes System. Die Analyse eines Corpus (hier eine Sammlung von Texten) kann hier

Stunden, Tage oder Wochen dauern. Wichtiger ist die Präzision, die einen sehr hohen Wert

erreichen soll, damit die fehlerhaften Klassi�zierungen so gering wie möglich ausfallen. Ein

Algorithmus, der beispielsweise 90% Genauigkeit hat, ist ein gutes Ergebnis, aber für diesen

Anwendungsfall nicht genügend, da jeder zehnte Text falsch eingeschätzt würde und damit

jeder Text noch einmal kontrolliert werden müsste.

5.1 Korrektheit

Die gängigsten Metriken für Korrektheit sind: accuracy (Form: 5.1), precission (Form: 5.2),

recall (Form: 5.5) und der f1 (Form: 5.6) Wert. Diesen Metriken liegen ’true positives’ (TP =

korrekt als der Klasse zugehörig klassi�ziert), ’false positives’ (FP = fälschlich als der Klasse

zugehörig klassi�ziert) und ’false negatives’ (FN = fälschlich als der Klasse nicht zugehörig

klassi�ziert) zugrunde. Die Werte lassen sich durch eine ’Error-Matrix’ (Abb. 5.1) visualisieren.

accuracy() =

∑
TP∑ (5.1)

precission(class) =
TPclass

TPclass + FPclass
(5.2)

recall(class) =
TPclass

TPclass + FNclass
(5.3)
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Abbildung 5.1: Error Matrix

Der f1-Wert (Form: 5.6) kombiniert sowohl recall und precission in einem Harmonischen

Mittel miteinander. Ein Harmonisches Mittel zeichnet sich dadurch aus, dass abweichende

recall- und precissions-Werte sich negativ auf den f1 Wert ausüben. Dadurch werden sowohl

recall als auch precission gleich gewichtet in die Metrik einbezogen (Takahashi u. a. (2022)). Im

’Micro-Average’ Verfahren, das in dieser Arbeit für die Ermittlung der Ergebnisse verwendet

wird, werden die Ergebnisse der Klassen vor den Divisionen addiert. Dadurch kann eine

mögliche Disbalance der Klassen ausgeglichen werden.

precissionmic =

∑
TP∑

TP +
∑
FP

(5.4)

recallmic =

∑
TP∑

TP +
∑
FN

(5.5)

f1mic = 2 ∗ precissionmic ∗ recallmic

precissionmic + recallmic
(5.6)

5.2 Zeit

Die Zeit ist wie oben beschrieben kein wichtiger Faktor in diesem Anwendungsfall, jedoch

einer, der nicht zu vernachlässigen ist, wenn es um andere Anwendungsfälle geht. Sollte sich
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der Algorithmus als präzise genug erweisen, ist es denkbar, diesen Algorithmus auf andere

Probleme anzuwenden. Es wird sowohl die Zeit für das Trainieren als auch für die Vorhersage

gemessen. Da ein Training nur einmalig gemacht werden muss. Eine Vorhersage muss immer

wieder ausgeführt werden, sodass eine lange Trainingszeit verzeihbarer ist, als eine lange

Dauer für eine Vorhersage.
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6.1 Der Prozess des Testens

Um Ergebnisse zu ermitteln, welche aussagekräftig sind, wurden alle Algorithmen auf den

gleichen Datensätzen trainiert und validiert. Hierfür wurden beide Datensätze nach Trainings-

daten (70%) und Validierungsdaten (30%) aufgeteilt. Diese Tests wurden alle auf einem System

mit einem AMD Ryzen 9 5900X 12x 3.70GHz Prozessor, 32GB (2x 16GB) RAM und einer

GeForce RTX 3060 12GB Gra�kkarte ausgeführt. Der Vorgang wurde bis auf eine Ausnahme

zehnmal durchgeführt, der Mittelwert der accuracy, precision, recall und f1 über die zehn

Durchläufe ermittelt und die verstrichene Zeit aufsummiert. Das Modell, welches nicht zehnmal

durchlaufen wurde, ist das Transformer Model, da ein einfacher Durchlauf dieses Algorithmus

über 400 Stunden auf beiden Datensätzen dauert. Die Zeit des Transformers wurde, um eine

Vergleichbarkeit der Laufzeiten zu gewährleisten, verzehnfacht. In jedem Durchlauf werden

die Daten, die schon durch den Datenaufbereitungs-Schritt (Pre-Processing) bereinigt wurden,

in ihre Wörter zerteilt. Daraufhin wurde anhand der Trainingsdaten das Modell trainiert und

anschließend die Vorhersage der Validierungsdaten durchgeführt. Als letzter Schritt wurden

die vorhergesagten Ergebnisse mit den tatsächlichen Ergebnissen verglichen. Sowohl für das

Trainieren des Modells, als auch für das Errechnen der Vorhersage, wurde die Zeit gestoppt. In

diese Zeit �ießen weder das Aufbereiten der Daten (Pre-Processing) noch das Errechnen der

Metriken ein. Bei Algorithmen mit neuronalen Netzen wurden über zehn Epochen trainiert.

Auch hier ist das Transformer Modell eine Ausnahme mit nur drei Epochen, da ein Training

über zehn Epochen hochgerechnet über 100 Stunden dauern würde.

6.2 Die Ergebnisse:

Um eine aussagekräftige Einschätzung der Güte der Algorithmen zu ermitteln, werden die

errechneten Werte der Metriken (Zeit, accuracy, f1) sowohl des LRC als auch des CC mit

herkömmlichen, State-Of-The-Art Algorithmen verglichen.
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Algorithmus acc preci recall f1micro Zeit

∑
Zeit Training Zeit Vorhersage

NN 0.81 0.80 0.80 0.80 49.8m 48.6m 1.1m

CNN 0.70 0.70 0.70 0.69 15.5h 15.3h 13.3m

DT 0.55 0.55 0.55 0.54 3.1m 2.9m 9s

RF 0.77 0.77 0.77 0.75 10.3m 10m 13.2s

LR 0.849 0.85 0.85 0.84 6m 5.8m 9.5s

LRC 0.853 0.85 0.85 0.85 12m 7.6m 4.4m

CC 0.72 0.72 0.72 0.73 8.2m 2.1m 6m

SVM 0.854 0.854 0.854 0.85 35s 26s 9.3s

Transformer 0.84 0.84 0.84 0.83 4.5t(10.9h) 101.1(10)h 7,5h(45m)

Tabelle 6.1: Ergebnisse nach zehn Durchgängen (Transformer nur 1 Durchlauf); Datensatz: 20

Newsgroups; rot: besonders lange Laufzeiten; fett gedruckt: neue Algorithmen;

Transformer in Klammern Zeit für 1 Durchlauf - ohne Klammern Hochrechnung

Algorithmus acc preci recall f1micro Zeit

∑
Zeit Training Zeit Vorhersage

NN 0.89 0.89 0.89 0.84 25.2m 24.8m 26.5s

CNN 0.87 0.87 0.87 0.80 12.2h 12.1h 7.2m

DT 0.83 0.83 0.83 0.78 23.5s 22.8s 0.7s

RF 0.88 0.88 0.88 0.83 9m 8.9m 3.3s

LR 0.891 0.891 0.891 0.84 2.8m 2.8m 0.7s

LRC 0.893 0.893 0.893 0.84 4.9m 4.7m 10.3s

CC 0.79 0.79 0.79 0.61 2.2m 1.9m 15s

SVM 0.897 0.897 0.897 0.85 5s 4.6s 0.68s

Transformer 0.90 0.90 0.90 0.87 13.4t(32h) 310(31)h 12(1.2)h

Tabelle 6.2: Ergebnisse nach 10 Durchgängen (Transformer nur 1 Durchlauf); Datensatz: mit-

telalterliche Urkunden; rot: besonders lange Laufzeiten; fett gedruckt: neue Al-

gorithmen; Transformer in Klammern Zeit für 1 Durchlauf - ohne Klammern

Hochrechnung
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6.2.1 Zeit

Der Algorithmus mit der längsten Laufzeit ist das Transformer Modell, mit akkumuliert über

456 Stunden Laufzeit für hochgerechnet zehn Trainings- und Testdurchläufen auf beiden

Datensätzen. Dieser Algorithmus ist der einzige, der getesteten Algorithmen, der nur über eine

Iteration trainiert und anschließend hochgerechnet wurde, da sich dieser eine Durchlauf schon

auf 45.6 Stunden belief. Dieser erhebliche Zeitaufwand ist primär dem Training geschuldet,

welches 41 Stunden ausmachte. Die Testphase dauerte hingegen auch lange, aber mit addierten

19.9 Stunden ist diese mehr als doppelt so schnell wie die Trainingsphase. Die Laufzeit auf den

Daten der 20 Newsgroups �el dabei geringer aus als bei den lateinischen, mittelalterlichen Ur-

kunden. Dies kann mit der unterschiedlichen Corpusgröße, als auch mit den unterschiedlichen

Modellen, die gewählt wurden, in Zusammenhang stehen. Denn der Korpus der Newsgroups

enthält 11314 Trainingsdaten, wobei der mittelalterliche Korpus 19278 Trainingsdatensätze

besitzt.

Der Algorithmus mit der zweitlängsten Laufzeit ist das CNN, welches aufsummiert 24.4 Stun-

den für dieselbe Anzahl an Trainings und Testdaten in Anspruch genommen hatte. Beide

Algorithmen trainieren über Epochen ihre Trainingsdaten. Der Transformer benötigt für die

gesamte Berechnung von drei Epochen über 17-mal länger als der CNN für zehn Epochen

benötigt. Beim CNN kann eine höhere Laufzeit bei den 20 Newsgroups beobachtet werden.

Dies kann an der höheren Menge an Klassen dieses Datensatzes liegen. Das neuronale Netz

benötigt für diese Aufgabe nur 1.3 Stunden. Er trainiert ebenfalls zehn Epochen, spart sich

allerdings das Trainieren der ’Convolutional Layer’, was zu erheblich geringerem Zeitaufwand

führt. Auch hier werden nahezu die gesamten 1.2 Stunden für das Training verwendet. Nur ein

Bruchteil der Zeit wird für das Testen benötigt. Die logistische Regression benötigt für alle zehn

Iterationen nur 8.7 Minuten. Auch hier wird der größte Teil für das Trainieren benötigt (8.6

Minuten). Wird der Kontext zur Regression hinzugerechnet, benötigt der Algorithmus das Dop-

pelte an Zeit und kommt auf 16.9 Minuten, wovon 12.3 Minuten das Trainieren benötigen und

4.6 Minuten das Testen benötigt. Der CC liegt mit 10.4 Minuten in einem ähnlichen Bereich,

ist jedoch der einzige Algorithmus, der mehr Zeit in der Testphase als in der Trainingsphase

benötigt. Dies ist erklärbar durch die simple Struktur der Daten, die der Algorithmus aufbaut

und die aufwendige Suche, die der Algorithmus durchführen muss. Der schnellste Algorithmus

ist die SVM mit 40 Sekunden für beide Datensätze (Tab. 6.1, 6.2).
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6.2.2 Genauigkeit

Im Vergleich zu dem Zeitaufwand ist für den Anwender die Genauigkeit von erheblich größerer

Bedeutung. Wir analysieren accuracy, precision, recall und f1. Im Folgenden werden vor

allem die Metriken accuracy und f1 betrachtet, da die accuracy ein gutes Gesamtbild der

Zuverlässigkeit des Algorithmus widerspiegelt und der f1-Score ein Harmonisches Mittel der

precission und des recalls darstellt. Die Datensätze müssen unabhängig voneinander betrachtet

werden, da sie verschiedene Ergebnisse ergaben.

20 Newsgroups: Der stärkste Algorithmus in Bezug auf die accuracy ist die SVM und die

logistische Regression mit und ohne Kontexterweiterung, mit einer Genauigkeit von 85%.

Die logistische Regression ist dabei von den ersten drei Algorithmen die schlechteste, mit

einem Abstand von 0.4% zum zweitbesten Algorithmus - der logistischen Regression mit

Kontexterweiterung. Diese erreicht einen exakten Wert von 85.3%. Nur die SVM konnte mit

85, 4% einen um 0, 1% besseren Wert erzielen. Das Transformer Modell erreicht mit 84% den

viertbesten accuray-Wert. Dieses Ergebnis ist jedoch mit den anderen Ergebnissen schwer

vergleichbar, da es sich um ein Training mit nur drei Epochen handelt und kein Mittelwert

über zehn Iterationen gebildet wurde. Der CC konnte eine Genauigkeit von 72% erreichen und

ist damit vor dem CNN (70%) und dem DT (55%) auf dem drittletzten Platz. Das NN konnte

mit 81% einen besseren Wert erreichen als seine Kontext-erweiterte Version CNN mit 70%

(Tab. 6.1).

Mi�elalterliche Urkunden: In der Verarbeitung der Urkunden ist der Transformer der

stärkste Algorithmus. Er erreicht eine accuracy von 90%. Die übrige Reihenfolge der besten

Algorithmen verändern sich dabei jedoch kaum: den zweiten bis vierten Platz teilen sich SVM

(89.7%), LRC (89.3%) und LR (89, 1%). Darauf folgt das neuronale Netz (89%), dicht gefolgt

von dem RF Algorithmus (88%). Der CNN erreicht den drittletzten Platz mit 87%, gefolgt vom

DT (83%). Den letzten Platz nimmt der CC ein mit einer Genauigkeit von 79%. Au�allend ist,

dass der Abstand zwischen dem CNN und der NN deutlich geringer ausfällt (2%). Der Abstand

betrug bei den Newsgroups 10% (Tab. 6.2).

Genauigkeit bei Klassen mit geringer Menge: Besonders anfällig sind bei Klassi�zie-

rungsalgorithmen Datensätzen mit einer geringen Menge, da diese oft nicht die nötige Menge

an Trainingsdaten aufweisen können, um ausreichend diese Klasse zu erlernen. In dem Da-

tensatz der Urkunden ist ein Beispiel für eine solche unterrepräsentierte Klasse die Klasse

’Narratives-Element’. Um eine Aussagekraft darüber zu erlangen, wie zuverlässig die Klassi�-
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6 Vergleich der Ergebnisse

kation bei Daten geringer Menge ist, wird diese Klasse gesondert betrachtet. Sie besitzt 177

Datensätze, aus denen 124 Trainingsdatensätze und 53 Testdatensätze generiert wurden.

Algorithmus f1micro prec recall

NN 0.335 0.38 0.34

CNN 0.095 0.31 0.06

DT 0.18 0.27 0.13

RF 0.2 0.78 0.11

LR 0.35 0.74 0.23

LRC 0.32 0.61 0.21

CC 0.08 0.185 0.05

SVM 0.36 0.68 0.25

Transformer 0.61 0.75 0.52

Tabelle 6.3: Mittelalterliche Urkunden - Kategorie ’Narratives-Element’

Für diesen Anwendungsfall eignet sich besonders gut die f1 Metrik, da sie am besten

ausdrückt, wie akkurat Daten der Klasse zugeteilt werden und Bezieht außerdem ein, wie

häu�g ein Text dieser Klasse zugeordnet wurde, obwohl er dieser nicht angehört. Es wird also

ein sehr detailliertes Bild über eine spezi�sche Klasse erzeugt. Auch für diese Ergebnisse wurden

- ausgenommen des Transformer-Modells - zehn Iterationen ausgeführt und der Durchschnitt

der Ergebnisse ermittelt. Es war festzustellen, dass einige Ergebnisse über die zehn Läufe sehr

konstant waren (DT, RF, LR, LRC, CC, SVM) während andere stark �uktuierten (DNN, CNN).

Die Klassi�kation der SVM wird in der Literatur als gute Klassi�kation angesehen, wenn es

sich um Daten mit geringer Menge handelt (Sivakami (2018)). Die SVM erreicht auf den Daten

des ’Narratives-Elements’ einen f1-Wert von 0.36. Dieser Wert wird von dem Transformer

Modell deutlich übertro�en (0.61). Dies kann an den Aufmerksamkeiten liegen, die das Modell

erlernt. Ein starker Konkurrent der SVM ist die LR mit 0.35. Die Kontextvariable kann leider die

Werte nicht verbessern, und hat sogar einen negativen Ein�uss auf die f1 Metrik (0.32). Auch

in diesem Fall setzt sich das Bild durch, dass das NN (0.335) nicht durch die Modi�kation der

CNN (0.095) um Conv. Layer verbessert werden konnte. Der CC schnitt mit durchschnittlichen

0.08 am schlechtesten ab (Tab. 6.3).

40



7 Algorithmus zum Zerteilen und
Erkennen von Urkundenbestandteilen

Um Texte mit dem neuartigen Algorithmus unterteilen und klassi�zieren zu können, sind

folgende Schritte notwendig:

7.1 Windowing

Der zu zerteilende und zu klassi�zierende Text wird in kleinere Teiltexte der Länge ’windowsize’

unterteilt. Die ’windowsize’ ist ein Parameter, der einen geraden Wert haben muss, der vom

Nutzer bestimmt werden kann. Er hat Ein�uss auf die Laufzeit, aber auch auf die Präzision

des Algorithmus. Diese Unterteilung erfolgt, indem über den zu analysierenden Text iteriert

wird und ’windowsize/2 Wörter vor’ und ’windowsize/2 Wörter nach’ dem Index-Wort zu

einem Teiltext zusammengebunden werden. So werden bei einem zu analysierenden Text der

Wörterlänge N , N viele Teilsätze der maximalen Wortlänge ’windowsize’ und der minimalen

Wortlänge (windowsize/2) + 1 generiert.

Beispiel: Die fett gedruckten Wörter in den Teiltexten sind die Index-Wörter und es wird

eine ’windowsize’ von vier gewählt.

Text: ’Hallo ich schreibe meine Bachelorarbeit über Künstliche Intelligenz’

Teiltexte: [’Hallo ich schreibe’, ’Hallo ich schreibe meine’, ’Hallo ich schreibe meine Bache-

lorarbeit’, ’ich schreibe meine Bachelorarbeit über’, . . . , ’über Künstliche Intelligenz’]

Abbildung 7.1: Windowing
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7 Algorithmus zum Zerteilen und Erkennen von Urkundenbestandteilen

7.2 Klassifikation

Im Schritt der Klassi�kation werden auf jeden der im Schritt ’Windowing’ generierten Teiltexte

die in den vorherigen Kapiteln beschriebene Klassi�kation mit dem CC durchgeführt. Die

Klassen in den eckigen Klammern sind �ktiv.

Beispiel:

Teiltexte: [’Hallo ich schreibe’, ’Hallo ich schreibe meine’, ’Hallo ich schreibe meine Bache-

lorarbeit’, ’ich schreibe meine Bachelorarbeit über’, ..., ’über Künstliche Intelligenz’]

Ergebnis: [1, 1, 4, 1, 1, 2, 2, 2]

Abbildung 7.2: Klassi�kation

7.3 Collapsing

Beim Collapsing werden alle aufeinander folgenden Urkundenbestandteil der selben Klasse

zusammengefasst, sodass ein Tupel generiert wird, das an erster Stelle den Urkundenbestandteil

enthält und an zweiter Stelle die Anzahl, wie häu�g dieser Urkundenbestandteil hintereinander

in dem Dokument an dieser Stelle vorkommt.

Beispiel:

Klassi�kation: [1, 1, 4, 1, 1, 2, 2, 2]

Ergebnis: [(1, 2), (4, 1), (1, 2), (2, 3)]

Abbildung 7.3: Collapsing

7.4 Tilt Remove

Im ’tilt remove’ Schritt werden alle Elemente aus der im vorherigen Schritt generierten Liste

entfernt, deren Anzahl geringer als der Parameter ’tilt’ ist. Das Wort, das keinem Urkunden-

bestandteil mehr zugeordnet ist und daher als Waise bezeichnet wird, bekommt eine neue

Zuordnung in den darauf folgenden Urkundenbestandteil. Dieser Schritt bewirkt, dass kleine

Fehleinschätzungen kompensiert werden, da es sehr wenig Klassen gibt, die ausschließlich

aus einem Wort bestehen, und diese kleinen vermuteten Fehleinschätzungen durch den ’tilt’

eliminiert werden. Der ’tilt’ wurde für dieses Beispiel auf den Wert eins gesetzt.
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7 Algorithmus zum Zerteilen und Erkennen von Urkundenbestandteilen

Beispiel:

Collapsing: [(1, 2), (4, 1), (1, 2), (2, 3)]

Ergebnis: [(1, 2), (1, 3), (2, 3)]

Abbildung 7.4: Tilt Remove

7.5 Collapsing:

Nun erfolgt ein weiterer ’Collapsing’ Schritt, der dasselbe bewirkt wie der erste ’Collapsing’

Schritt.

Beispiel:

Trigger Remove: [(1, 2), (1, 3), (2, 3)]

Ergebnis: [(1, 5), (2, 3)]

Abbildung 7.5: Collapsing

7.6 Ergebnis

Somit haben wir unseren Text nun in zwei Teile unterteilt und den Teiltexten zusätzlich eine

Klasse zugewiesen.

Beispiel:

Text: ’Hallo ich schreibe meine Bachelorarbeit’ & ’über Künstliche Intelligenz’

Kategorien: 1, 2

Abbildung 7.6: Ergebnis
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8 Ergebnisse des Algorithmus zum
Zerteilen und Erkennen von
Urkundenbestandteilen

Im Gegensatz zu den Klassi�zierungsalgorithmen ist die Ermittlung der richtigen Teilung der

Urkunden in Urkundenbestandteile eine kompliziertere Aufgabe. Hierzu wurden nach der

Datenaufbereitung (pre-processing) die Testdaten der Urkundenbestandteile gleichmäßig in

zufällig kombinierten Texten zusammengefasst. Diese willkürlich kombinierten Urkunden wer-

den anschließend mit dem Algorithmus zerteilt und der Indexwert der Mitte jedes ermittelten

Urkundenbestandteils wird mit dem Indexwert der Mitte des ursprünglichen Urkundenbestand-

teils im Text abgeglichen. Sollten diese Werte weniger als X Stellen voneinander abweichen,

wird der Urkundenbestandteil als gefunden angesehen. In den folgenden Tests wurde für X

der Wert elf festgelegt.

Dieses Verfahren wirft Probleme auf, wie zum Beispiel, dass vorherige falsche Einschätzun-

gen des Algorithmus die späteren korrekten Zuweisungen beeinträchtigen, da sich Urkunden-

bestandteile hintereinander in Texten be�nden.
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8 Ergebnisse des Algorithmus zum Zerteilen und Erkennen von Urkundenbestandteilen

Run Accuracy

1 6.88

2 6.65

3 6.97

4 7.08

5 6.77

6 7.18

7 7.58

8 7.31

9 7.46

10 7.55

Gesammt 7.14

Tabelle 8.1: Korrektheit über zehn Durchläufen

Dieses Testverfahren erreicht über zehn Durchläufen eine durchschnittliche Wahrscheinlich-

keit der korrekten Ermittlung der Mitten der Urkundenbestandteile in zufällig kombinierten

Urkunden von 7.1%.
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9 Fazit

9.1 Zusammenfassung

Im Zuge meiner Anstellung als Werkstudent an der Universität Hamburg in der geschichtlichen

Fakultät bestand meine Aufgabe darin, mittelalterliche Urkunden in lateinischer Sprache zu

unterteilen und zu klassi�zieren. Eine besondere Herausforderung liegt darin, auch bei Klassen

mit geringer Datenmenge zuverlässige Ergebnisse zu erreichen. Für eine möglichst e�ektive

Klassi�zierung wurde in einem ersten Schritt mehrere bereits vorhandene Klassi�zierungsalgo-

rithmen getestet. Die Ergebnisse waren allerdings nicht zufriedenstellend. Daraufhin wurden

zwei Konzepte für eine Verbesserung der Ergebnisse verfolgt:

Das erste Konzept (LRC): Bestand darin, die logistische Regression um eine Kontextvaria-

ble zu erweitern. Ausschlaggebend für die Auswahl der logistischen Regression waren gute

Ergebnisse von Tests, die im Vorfeld angefertigt wurden.

Das zweite Konzept (CC): Orientiert sich nicht an einem bereits existierenden Algorith-

mus, sondern verfolgt die Idee, mittels Multiplikation der Wortwahrscheinlichkeit mit dem

Wortkontext eine Klassi�zierung erreichen zu können.

Als Metriken wurden für die Algorithmen die Zeit, der f1-score und die accuracy gewählt.

Um die Klassi�kation eines Algorithmus zu beurteilen, wurde die accuracy verwendet bei der

Betrachtung der Klassen mit geringer Datenmenge wurde der f1-Score genutzt. Außerdem

wurde die benötigte Zeit, die ein Algorithmus für eine Klassi�kation benötigt, analysiert,

da bei den unterschiedlichen Algorithmen hierbei erhebliche Unterschiede zu verzeichnen

waren. Diese Algorithmen wurden auf zwei verschiedenen Datensätze angewandt. Der erste

Datensatz besteht aus mittelalterliche Urkunden auf lateinischer Sprache, die eine stark hete-

rogene Aufteilung der Datensätze über die Klassen aufweist. Der zweite Datensatz ist der 20

Newsgroups Datensatz. Dieser Datensatz hat eine sehr homogene Aufteilung der Datensätze

über die Klassen und ist ein stark verbreiteter Datensatz.

Die Ergebnisse aller getesteten Algorithmen erreichten auf dem Datensatz der mittelalterlichen
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9 Fazit

Urkunden ein deutlich höheres Niveau als auf den Datensätzen der 20 Newsgroups. Dies

lässt nicht ausschließlich auf ein Merkmalsunterscheid der Daten rückzuschließen, sondern

wird eine Wechselwirkung verschiedener Faktoren sein. Beispiele für einen solchen Faktor

könnte der Unterschied der Anzahl der Worte der englischen Sprache im Vergleich zu derer

der klassischen lateinischen Sprache sein oder der Unterschied der Anzahl der Klassen der

einzelnen Datensätze (20 NG: 20, Urkunden 14). Auch eine bessere Unterscheidung der Klassen

und ihrer Merkmale kann ein großer Faktor sein. Des Weiteren ist zu erwähnen, dass die ermit-

telten Ergebnisse der Tests auf den Datensatz der 20 Newsgroups mit denen der in Kapitel 3.1

betrachteten wissenschaftlichen Arbeit übereinstimmen und daher eine korrekte Anwendung

der Algorithmen sichergestellt ist. Ein Grund dafür ist, dass viele der in der wissenschaftlichen

Arbeit verwendeten Algorithmen in ihrer Implementierung übernommen und, wenn nötig,

angepasst wurden. Die LRC errechnete auf den Daten der mittelalterlichen Urkunden eine viel-

versprechende accuracy. Er erreichte, im Gegensatz zu dem zugrundeliegenden Algorithmus

(LR) über zehn Iterationen leicht bessere Ergebnisse, sodass ein Trend zu erkennen ist. Die ac-

curacy des CC liegt um zehn Prozent unter denen der bereits etablierten Algorithmen. Bedenkt

man jedoch, dass es sich bei dem CC um einen sehr simplen und bisher nicht optimierten

Algorithmus handelt, ist dessen Abschneiden von besonderem Interesse. Es ist möglich, dass

eine Verbesserung des CC (zum Beispiel durch eine Modi�kation des mathematischen Modells)

erreicht werden könnte. Die besten Ergebnisse erreichte das Transformer Model auf dem

Datensatz der mittelalterlichen Urkunden mit 90% aber auch NN, SVM, die LR und die LRC

erreichen knapp diese accuracy-Werte. Überraschend ist, dass der um eine Kontexterweiterung

modi�zierte CNN im Vergleich zu dem Algorithmus ohne Kontexterweiterung (NN) eine ge-

ringe Verschlechterung der accuracy aufweist. Allerdings macht dies lediglich zwei Prozent aus.

Außerdem wurde der benötigte Zeitaufwand analysiert, den die unterschiedlichen Algorithmen

benötigen. Hierbei muss die Zeit der Trainingsphase unterschieden werden von der Zeit, die

ein bereits trainierter Algorithmus für eine Klassi�zierung eines Textes benötigt. Die Trai-

ningszeit fällt dabei immer deutlich höher aus, ist allerdings auch nur einmalig notwendig.

Daher kann hier auch ein größerer Zeitaufwand akzeptiert werden. Die meisten Algorithmen

benötigen nur sehr wenig Zeit, allerdings erscheint die benötigte Zeit des CNN grenzwertig.

Die des Transformers ist allerdings für den meisten Anwendungen inakzeptabel hoch. Da

die Klassi�kation der Urkunden von vielen Algorithmen mit einer ähnlich guten accuracy

durchgeführt werden kann, ist nur in Ausnahmefällen der erheblich höhere Zeitaufwand,

der bei dem Einsatz des Transformers entsteht, gerechtfertigt. Eine solche Ausnahme besteht

immer dann, wenn ein besonderer Wert auf die korrekte Zuordnung von Klassen mit geringer
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Datenmenge gelegt wird. Hier erreicht der Transformer nahezu doppelt so gute f1 Werte wie

alle übrigen Algorithmen mit einem f1-Score von 0.61. Die SVM erreichte den zweithöchsten

Wert von 0.36. Eine erho�te Verbesserung der Ergebnisse der LR(0.35) um eine Kontextvariable

in LCR(0.32) konnte leider nicht beobachtet werden. Bei einer Klassi�kation von Texten, in

denen ein großer Wert auf die korrekte Zuweisung von Klassen mit geringer Datenmenge

gelegt wird, wird eine starke Empfehlung für das Transformer Modell ausgesprochen. Bei der

Auswahl dieses Modells besteht jedoch der Kompromiss darin, dass die Laufzeit enorm hoch

ist.

Eine zuverlässige Unterteilung von Urkunden in ihre Urkundenbestandteile konnte nicht

erreicht werden. Jedoch besteht bei dieser Aufgabe die Schwierigkeit darin, eine gute Metrik

zu �nden, um Güte zu messen. Mit der Methodik, mit der die Ergebnisse gemessen wurden,

wurden mit 7% keine zufriedenstellenden Ergebnisse ermittelt.

Limitation der Arbeit: Die Unterteilung der Urkunden in Urkundenbestandteile wurde

ausschließlich auf Grundlage des CC durchgeführt. Da dieser sich später als der Algorithmus

mit den schlechtesten Ergebnissen auf den mittelalterlichen Urkunden herausstellte, ist dies

eine erhebliche Limitation. Außerdem wurden nicht alle Textklassi�zierungsalgorithmen be-

rücksichtigt, da dies den Rahmen dieser Arbeit gesprengt hätte. Ein weiterer Nachteil ist der,

dass die Vergleichbarkeit des Transformer Modells mit allen anderen Modellen mit Vorsicht

zu betrachten ist, da dieser im Gegensatz zu allen anderen Algorithmen ausschließlich über

eine Iteration getestet und nur über drei Epochen trainiert wurde. Alle anderen Algorithmen,

in denen neuronale Netze verwendet werden (CNN, NN), wurden über zehn Epochen trai-

niert. Diese Verringerung in den Iterationen und den Epochen sind der langen Laufzeit des

Algorithmus geschuldet.

Vorteile der Arbeit: Durch diese Arbeit wurde das Verständnis der erwähnten, etablierten

Klassi�zierungsalgorithmen vertieft und anschließend ausführliche Tests mit diesen Algorith-

men durchsgeführt. Es wurden zwei neue Konzepte von Algorithmen zur Klassi�kation von

sequenziellen Daten vorgestellt, getestet und anschließend mit den Ergebnissen der etablierten

Klassi�zierungsalgorithmen verglichen. Diese Tests wurden auf mehreren Datensätzen auf

zwei unterschiedlichen Sprachen und mit sowohl stark homogener, als auch heterogener Auftei-

lung der Datensätze über die Klassen, durchgeführt. Anschließend wurden die Ergebnisse der

Klassen mit geringer Menge aus dem Datensatz der heterogenen Aufteilung genauer betrachtet

und somit eine zuverlässige Klassi�zierung dieser Klassen diskutiert.
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9.2 Ausblick

Diese Arbeit kann als Grundlage weiterer Forschungen auf diesem Gebiet gesehen werden,

jedoch sind weitere Forschungen und Optimierungen der Algorithmen notwendig. So ist es

in der Kontextsuche denkbar, nicht den besten streak zu errechnen, sondern einen akkumu-

lierten streak. Diese könnte für den gesamten Text alle streaks erreichen und anschließend

akkumuliert werden. Dies könnte einen höherer streak-Wert, und damit ein stärkerer Fokus

auf den Kontext, bewirken. Gegenstand weiterer Forschungen ist eine Analyse, ob durch eine

Anpassung der Parametrisierung von Variablen des CC eine Verbesserung erreicht werden

kann. Auch das zugrundeliegende mathematische Verfahren ist mit einer Multiplikation der

Wortwahrscheinlichkeit mit dem Wortkontext sehr simples Verfahren. Hier können Tests

durchgeführt werden, welche beispielsweise das Exponieren der Wortwahrscheinlichkeit über

den Wortkontext untersuchen. Bei der Unterteilung der Urkunden in Urkundenbestandteile

kann an einigen Parametern experimentiert werden. So kann beispielsweise die ’windowsi-

ze’, oder der ’tilt’ verändert werden. Auch ist bei dem Algorithmus die Ermittlung der Güte

modi�zierbar. Eine Änderung des Wertes der Toleranz, welche beschriebt, wie weit die Mitte

eines tatsächlichen Urkundenbestandteils von seiner vorhergesagten Mitte entfernt sein darf,

kann angepasst werden und zu Verbesserungen der Analyse führen. Die vielversprechendste

Veränderung des Algorithmus wäre allerdings das Ersetzen des CC durch einen besseren

Algorithmus wie beispielsweise die SVM, LR, LRC oder bestenfalls ein Transformer Model.

9.3 Fazit

Eine Verbesserung der Textklassi�zierung von Daten mit geringer Menge durch das Hinzufü-

gen des Kontexts konnte in dieser Arbeit nicht erreicht werden. Jedoch konnte eine leichte

Verbesserung der allgemeinen accuracy der logistischen Regression durch das Multiplizieren

mit einer Kontextvariable beobachtet werden. Diese Verbesserung ist marginal, jedoch als

Trend zu bewerten. Der CC erreicht mit seinem simplen und nicht optimierten Verfahren nicht

das Niveau von Modellen wie dem Transformer, jedoch trotz seiner simplen Natur Ergebnisse,

die sich erstaunlich nahe an denen der etablierten Algorithmen be�nden. Diese Ergebnisse

machen Ho�nung auf weitere Verbesserungen, es sind jedoch weitere Forschungen notwendig.
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Begri� Erklärung

Window-Size Parameter, der die Größe der Teiltexte bestimmt,

die zum Unterteilen und Klassi�zieren von Texten

benötigt wird

Tilt Parameter, der festlegt ab welcher ’Anzahl’ im

’Trigger Remove’-Schritt ein Urkundenbestandteil

als Waisen behandelt werden soll

mittelalterliche Urkunde lateinischen Urkunden oft Schenkungsurkunden,

welche in Urkundenbestandteile unterteilt werden

soll

Urkundenbestandteile Klassen in einer Urkunde, darunter Zählen z.B. ’In-

titulatio’ oder ’Narratives Element’

Support Vector Mashine (SVM) intelligenter Algorithmus mit dem Ziel, das

Klassi�kationsproblem mit Hyperplanes in n-

dimensionalen Räumen zu lösen

Random Forest (RF) intelligenter Algorithmus mit dem Ziel, das Klassi-

�kationsproblem mit Suchbäumen zu lösen

Convolutional Neural Network (CNN) Ein intelligenter Algorithmus, der auf künstlichen

neuronalen Netzen aufbaut, jedoch weitere zusätz-

liche Layers besitzt, die einen Fokus auf Kontext

bzw. Nachbarn der Inputparametern legt

Regression Verfahren in dem Regressionskoe�zienten (Ge-

wicht von Features) mit Feature-Werten verrech-

net werden, um Abhängigkeiten zwischen Feature

und Klasse herstellen zu können

Logistsiche Regression (LR) Klassi�zierungsalgorithmus, der mittels Regressi-

on und einer logistischen Funktion Ergebnisse vor-

hersagt
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Begri� Erklärung

Treansformer Model intelligenter Algorithmus, der besonders gut für

sequenzielle Daten als Input geeignet ist

Intitulatio Anrede in mittelalterlichen Urkunden

Narratives-Element Erzählung des Tatbestandes der Rechtsgrundlage

für die beurkundeten Vorgänge
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