
Bachelor thesis

Patrick Hochstrasser

A Markerless Multi-Camera Motion Capture System

Faculty of Engineering and Computer Science
Department Computer Science

Bachelor thesis submitted for examination in Bachelor´s degree
in the study course Bachelor of Science Angewandte Informatik
at the Department Computer Science
at the Faculty of Engineering and Computer Science
at University of Applied Science Hamburg

Supervisor: Prof. Dr. Thomas Lehmann
Supervisor: Prof. Dr. Christian Lins

Submitted on: 13. December 2024

Patrick Hochstrasser

A Markerless Multi-Camera Motion Capture System

Patrick Hochstrasser

Thema der Arbeit

A Markerless Multi-Camera Motion Capture System

Stichworte

Motion Capture, Computer Vision, Smart Home, Multi-Kamera System, Pose Estima-
tion

Kurzzusammenfassung

In dieser Bachelorarbeit wird ein Proof-of-Concept-System zur markerlosen Bewe-
gungserfassung für Smart-Home-Überwachungsanwendungen entwickelt. Das System
verarbeitet Videostreams von mehreren Kameras, um menschliche Bewegungen im 3D-
Raum zu rekonstruieren, ohne dass spezielle Marker oder Geräte benötigt werden. Die
Implementierung verwendet eine verteilte Service-Architektur, die Videostreamverar-
beitung, Posenerkennung und 3D-Rekonstruktionskomponenten kombiniert. Das Sys-
tem erreicht eine Kamerasynchronisation innerhalb von 33 ms und arbeitet mit 9–12
Bildern pro Sekunde. Während die Machbarkeit grundlegender Bewegungsverfolgung
mit Consumer-Hardware kombiniert mit Industriekameras demonstriert wird, zeigt die
Evaluierung Herausforderungen in Bezug auf Echtzeitleistung und Umgebungsrobustheit
auf, die für den praktischen Einsatz in Wohnumgebungen gelöst werden müssen.

Patrick Hochstrasser

Title of Thesis

A Markerless Multi-Camera Motion Capture System

Keywords

Motion Capture, Computer Vision, Smart Home, Multi-Camera System, Pose Estima-
tion

Abstract

iii

This bachelor thesis develops a proof-of-concept markerless motion capture system for
smart home monitoring applications. The system processes video streams from mul-
tiple cameras to reconstruct human movement in 3D space without requiring special
markers or equipment. The implementation uses a distributed service architecture com-
bining video stream processing, pose detection, and 3D reconstruction components. The
system achieves camera synchronization within 33 ms, operating at 9–12 frames per sec-
ond. While demonstrating the feasibility of basic motion tracking with consumer-grade
hardware combined with industrial cameras, the evaluation reveals challenges in real-
time performance and environmental robustness that need to be addressed for practical
deployment in residential settings.

iv

Contents

List of Figures viii

List of Tables xi

Abbreviations xii

Symbols xiv

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives of the Thesis . 2
1.3 Thesis Structure . 3

2 Theoretical Background and Related Work 5
2.1 Introduction to Motion Capture . 5

2.1.1 Definition and Relevance . 5
2.1.2 Motion Capture Technologies and Approaches 7
2.1.3 Markerless Motion Capture Workflows 9

2.2 Camera Models and Image Formation 10
2.2.1 Camera Models . 10
2.2.2 From 3D to 2D Image Space . 13

2.3 Camera Calibration Techniques . 17
2.4 Pose Estimation Techniques . 27

2.4.1 2D Pose Estimation . 27
2.4.2 3D Pose Estimation . 28

2.5 Animation Data Generation . 32
2.6 Summary . 32

v

Contents

3 Requirements, System Design and Architecture 33
3.1 System Requirements . 33

3.1.1 Functional Requirements . 34
3.1.2 Non-Functional Requirements . 36

3.2 System Overview . 37
3.2.1 Context View . 38
3.2.2 Container View . 39
3.2.3 Component View . 40
3.2.4 Architectural Patterns and Design Details 43
3.2.5 Architectural Decisions . 46
3.2.6 Deployment View . 47

3.3 Summary . 49

4 Implementation 50
4.1 Implementation Strategy and Technology Selection 50

4.1.1 Video Processing Framework . 50
4.1.2 Pose Estimation Technology . 51
4.1.3 Development Framework Selection 51

4.2 Code-Level Architecture . 52
4.2.1 Common Architectural Elements 52
4.2.2 Service Structure Implementation 56

4.3 Summary . 69

5 Evaluation and Discussion 70
5.1 Evaluation Methodology . 70

5.1.1 Test Environment Setup . 70
5.1.2 Data Collection Approach . 71
5.1.3 Evaluation Metrics . 71

5.2 System Performance Analysis . 71
5.2.1 Python Pose Estimation Component 72
5.2.2 Streaming and Reconstruction Pipeline 72
5.2.3 Latency Analysis . 74
5.2.4 Resource Utilization . 74
5.2.5 Multi-Camera Synchronization 74

5.3 Accuracy Assessment . 74
5.3.1 Calibration Accuracy . 75
5.3.2 Pose Detection Quality . 75

vi

Contents

5.3.3 3D Reconstruction Accuracy . 75
5.3.4 Environmental Impact Analysis 76

5.4 Requirements Fulfilment . 76
5.4.1 Functional Requirements Analysis 77
5.4.2 Non-Functional Requirements Analysis 77
5.4.3 System Limitations . 77

5.5 Discussion . 79
5.5.1 Architecture Considerations . 79
5.5.2 Performance vs Usability Balance 80
5.5.3 Technical Viability Assessment 80

6 Conclusion and Future Work 81
6.1 Summary of Contributions . 81
6.2 Limitations of the Current System . 81
6.3 Future Research Directions . 82
6.4 Potential Applications and Impact . 83

Bibliography 85

A Digital Attachment 96

B Profiling Data 97
B.1 Timing Statistics . 97
B.2 Performance Distributions . 97

B.2.1 FrameGrabber Threads . 99
B.2.2 FrameSynchronizer Thread . 99
B.2.3 MediaPipe Thread . 101
B.2.4 Triangulation Thread . 103
B.2.5 Data export . 106
B.2.6 Heatmap . 107

B.3 Used tools . 107

Glossary 108

Declaration of Authorship 115

vii

List of Figures

2.1 Optical motion capture (mocap)—actors wearing mocap suits with reflec-
tors Source: Achrekar, A. In [17, p. 12]. Courtesy of Centroid Motion
Capture. 7

2.2 Pinhole Camera Model (Source: OpenCV Documentation [64]). 11
2.3 Examples of radial distortion. 12
2.4 Examples of tangential distortion in camera systems. 12
2.5 Camera image before undistortion (left) and after (right). Source: Bradski

and Kaehler, Learning OpenCV [9, p. 678] 18
2.6 Typical calibration pattern used for single and multi-camera calibration.

(Source: MatLab Documentation [82]) 20
2.7 Key elements of epipolar geometry. Source (Förstner, Wolfgang [22, p.

563]) . 22
2.8 Synopsis of the P3P problem. Source (Kneip, Laurent [40]) 24

3.1 Context view of the mocap system. 38
3.2 Container view of the mocap system. 39
3.3 Component view of the camera service. 41
3.4 Component view of the console application. 42
3.5 Component view of the discovery service. 43
3.6 Communication infrastructure, showing the layered service design and

interfaces for health monitoring and registry management. 44
3.7 Service interaction structure, showing communication through health

monitoring and registry mechanisms. 45
3.8 Mocap pipeline, showing processing stages and data flow between compo-

nents, including the output interface for external systems. 45
3.9 Physical deployment of system components showing hardware nodes, net-

work connections, and service distribution. 48

viii

List of Figures

4.1 Core communication infrastructure, showing base gRPC templates and
stream interface hierarchy. Templates enforce consistent service behaviour
while allowing specialized implementations. 53

4.2 Observer pattern implementation, showing health monitoring and registry
change notifications. The pattern enables loose coupling between services
while maintaining system-wide state awareness. 55

4.3 Camera Service implementation structure showing the relationships be-
tween core components. The GrpcServer template provides the founda-
tion for the service implementation, while specialized components handle
device control and streaming. 56

4.4 GStreamer pipeline structure for video streaming, showing element con-
nections and data flow. The pipeline handles RTP video data transmis-
sion, RTCP control traffic and H.264 encoding 58

4.5 Discovery Service implementation, showing the integration of registry
management and health monitoring components. The observer pattern
enables consistent state propagation across the system. 58

4.6 Console Application structure showing command processing and service
management components. The ServiceManager maintains service connec-
tions, while specialized services handle specific system functionality. . . . 60

4.7 Class diagram of the synchronization component showing the relationships
between RtpReceiver, FrameSychronizer, and frame handling interfaces.
The diagram illustrates the core classes responsible for video stream man-
agement and temporal frame synchronization. 61

4.8 GStreamer pipeline structure for video reception, showing element con-
nections and data flow. The pipeline handles RTP video data reception,
RTCP control traffic, H.264 decoding, and frame conversion. 61

4.9 Class diagram showing CalibrationCoordinator interactions with pattern
detection, frame management, and parameter estimation components. . 63

4.10 Class diagram of the mocap pipeline, implementation showing the rela-
tionships between its components. 65

4.11 MediaPipe pose landmark configuration showing the 33 tracked anatomi-
cal points and their connections, with landmarks grouped by body region.
(Source: MediaPipe Documentation [25]) 66

4.12 Shared memory layout showing the hierarchical organization of header,
stream management, and data buffer sections. All sections are 64-byte
aligned to optimize cache utilization and prevent false sharing. 67

ix

List of Figures

5.1 Tracy timeline showing thread activity for frame grabbing, synchroniza-
tion, MediaPipe processing, and triangulation in the 3D reconstruction
pipeline. 73

5.2 Multi-view human pose estimation results: (left) 2D pose detection from
first camera view, (middle) 2D pose detection from second camera view,
and (right) the resulting triangulated 3D pose reconstruction. 76

5.3 Checkerboard pattern with visualized world coordinate system axes (left),
and (right) an example of MediaPipe’s pose detection failure case where
the algorithm incorrectly detected human pose keypoints on a drawer
instead of the actual person in the scene. 77

B.1 Timing distribution: ProcessAndQueueSample threads unified 99
B.2 Timing distribution: FoundSyncedFrames 99
B.3 Timing distribution: NotifyHandlers . 100
B.4 Timing distribution: HandleFrames . 100
B.5 Timing distribution: ProcessingLoop . 101
B.6 Timing distribution: FrameProcessing 101
B.7 Timing distribution: TryWriteFrame . 102
B.8 Timing distribution: TryReadPoseResult 102
B.9 Timing distribution: TriangulationLoop 103
B.10 Timing distribution: TryGetOrderedPair 103
B.11 Timing distribution: FindSyncedPoses 104
B.12 Timing distribution: ProcessingPosePair 104
B.13 Timing distribution: ExtractValidPoints 105
B.14 Timing distribution: TriangulatePoints 105
B.15 Timing distribution: Create3DPose . 106
B.16 Timing distribution: ProcessingPose . 106
B.17 Component activity timeline . 107

x

List of Tables

2.1 Comparison of Triangulation Methods 31

3.1 Functional Requirements Overview . 34
3.2 Non-Functional Requirements Overview 34

5.1 Timings of specific pipeline components 73
5.2 Functional Requirements Fulfilment Analysis 78
5.3 Non-Functional Requirements Fulfilment Analysis 79

B.1 C++ Component Timing Statistics . 98
B.2 Used aids and tools . 107

xi

Abbreviations

BHV Biovision Hierarchy.

CNN Convolutional Neural Network.

CPU Central Processing Unit.

CSV Comma-Separated Values.

DLT Direct Linear Transformation.

EPnP Efficient PnP.

FBX Filmbox.

FPS frames per second.

FR functional requirement.

GIL Global Interpreter Lock.

GPU Graphics Processing Unit.

HAW University of Applied Science.

IMU Inertial Measurement Unit.

mocap motion capture.

NFR non-functional requirement.

xii

Abbreviations

NTP Network Time Protocol.

P3P Perspective-3-Point.

PnP Perspective-n-Point.

RAII Resource acquisition is initialization.

RANSAC Random Sample Consensus.

RGB Red, Green, Blue.

RPC Remote Procedure Call.

RTCP Real-Time Transport Control Protocol.

RTP Real-time Transport Protocol.

SfM Structure from Motion.

SLAM Simultaneous Localization and Mapping.

UPnP Uncertainty-aware PnP.

VRAM Video Random Access Memory.

xiii

Symbols

𝛼 pixel aspect ratio.

𝐵 baseline between camera centers.

𝑐𝑥 x-coordinate of principal point.

𝑐𝑦 y-coordinate of principal point.

𝑑 distance function or reprojection error.

𝐸 essential matrix in epipolar geometry.

𝑒 epipole.

𝜖 epipolar plane.

𝐹 fundamental matrix in epipolar geometry.

𝑓 focal length of a camera.

FPS frames per second, measure of video frame rate.

𝐻 homography matrix.

𝐾 camera intrinsic matrix.

𝑘1 first radial distortion coefficient.

𝑘2 second radial distortion coefficient.

𝑘3 third radial distortion coefficient.

xiv

Symbols

𝑙 epipolar line.

𝜆 scale factor in projection equations.

𝑂 camera optical center.

𝑃 3D point in space or projection matrix (context dependent).

𝑝1 first tangential distortion coefficient.

𝑝2 second tangential distortion coefficient.

𝜋 projection function.

𝑅 rotation matrix in camera extrinsic parameters.

𝑟 radial distance from image center in distortion equations.

𝑠 skew coefficient in camera matrix.

𝑡 translation vector in camera extrinsic parameters.

𝜃 angle between image rays in P3P algorithm.

xv

1 Introduction

This chapter introduces the motivation and objectives of this bachelor thesis. The first
section establishes the context and need for smart home monitoring systems, particularly
in light of changing demographic trends and limitations of current solutions. The second
section outlines the specific objectives of developing and evaluating a markerless motion
capture (mocap) system for smart home environments. The chapter concludes with an
overview of the thesis structure.

1.1 Motivation

The increasing number of single-person households and changing social structures have
created new requirements for residential living environments. In Germany, single-person
households have become the most common type of households, accounting for approx-
imately 42% of all households in 2019. This proportion is projected to rise to about
44% by 2040 [19]. This trend emphasizes the growing need for technology-supported
living spaces that help individuals maintain their quality of life and independence. While
family members and healthcare providers traditionally fulfilled monitoring and support
roles, changing social structures and limited healthcare resources require complementary
technological approaches.

Smart homes have evolved beyond simple automation to become more complex envi-
ronments equipped with sensors and actuators that can enhance residents’ quality of
life. These systems can support various monitoring applications, from early detection of
health-related incidents and recognition of daily activity patterns to emergency response
and automated health monitoring. The global smart home market reflects the increas-
ing importance of these technologies, with projections indicating significant growth from
USD 84.5 billion in 2024 to USD 116.4 billion by 2029, at a compound annual growth
rate of 6.6% [49].

1

1 Introduction

Present monitoring approaches often rely on wearable devices, multiple specialized sen-
sors, or radar-based1 [37] systems, which often have practical limitations in daily use.
Wearable emergency systems, such as alert buttons, require active user participation;
individuals must remember to wear and maintain these devices. If the device is not worn
or is unaccessible during an emergency, it cannot provide assistance [52]. Similarly, fixed
sensor installations throughout the residential space can be complex to implement and
may offer limited information about the residents’ activities [8], while radar systems
often require expensive specialized hardware.

Markerless mocap systems offer a cost-effective solution to these challenges, leveraging
widely available camera technology. By capturing human movement without requiring
special equipment to be worn, these systems can provide continuous monitoring while
maintaining privacy through skeletal data2 processing rather than storing video footage.
Research environments such as the Living Place3 [35] laboratory at the University of
Applied Science (HAW) Hamburg provide realistic environments for investigating and
evaluating such monitoring technologies under real-world conditions.

1.2 Objectives of the Thesis

This bachelor thesis aims to develop and test a proof-of-concept markerless motion
capture system for smart home environments. The work focuses on implementing a
mocap solution that operates without requiring residents to wear markers or additional
devices, considering practicality and user acceptance in daily life scenarios. The system
processes skeletal data to monitor human movement within indoor environments, while
attempting to safeguard the residents’ privacy.

The thesis addresses several aspects: The implementation of the mocap system itself,
including the processing of camera data and the extraction of skeletal information, and
the technical evaluation of the system through basic performance metrics such as frame

1Radar-based systems typically use Frequency-Modulated Continuous Wave (FMCW) radar technology
operating in frequency ranges like 24GHz or 60GHz to detect human presence and movement.

2Skeletal data consists only of geometric coordinates representing joint positions and connections, sig-
nificantly reducing privacy concerns compared to raw video footage while retaining essential motion
information.

3The Living Place laboratory is a 140 𝑚2 loft-style apartment equipped for ubiquitous computing re-
search, featuring integrated systems for human-computer interaction studies. The lab provides a
realistic single-room environment with dedicated areas for cooking, dining, sleeping, and working,
along with monitoring capabilities through an adjoining control room.

2

1 Introduction

rates and processing latency. This includes the examination of the system’s behavior
in different scenarios, including the identification and documentation of potential edge
cases and limitations in the motion tracking process.

The thesis examines the suitability of the system as a basis for smart home monitoring
applications, such as fall detection, activity recognition, and assisted living scenarios.
The evaluation includes visual assessments of the triangulation stability and analysis of
the detection accuracy. Through these technical assessments, the work provides insights
into the practical aspects of implementing camera-based motion tracking in smart home
settings, considering requirements like reliability and integration capabilities.

1.3 Thesis Structure

This thesis is organized into six chapters that describe the development and evaluation
of the markerless mocap system.

The theoretical foundation begins with establishing background and related work for
(markerless) mocap systems. This includes fundamental mocap concepts and progresses
through technical aspects of camera models, calibration techniques, and pose estimation
methods. The final section covers animation data generation, which provides the basis
for the skeletal data processing.

System requirements, design, and architecture follow, starting with the definition of func-
tional and non-functional requirements, including privacy considerations and practical
constraints for daily use scenarios. The architecture is then described through multiple
views—from context to component level—along with documentation of the architectural
decisions that guided the implementation.

The implementation section focuses on the proof-of-concept system, outlining the selec-
tion of technologies and frameworks, presenting the code-level architecture, and describ-
ing the system components. This section demonstrates how the theoretical concepts are
implemented in practice.

The evaluation examines the processing pipeline performance through metrics like frame
rates and latency, pose detection results, and triangulation accuracy. It analyzes the
system behavior in different scenarios and documents edge cases, concluding with an

3

1 Introduction

analysis of how the implementation meets the defined requirements and its suitability
for smart home monitoring applications.

The thesis concludes with a summary of the work and results, addressing current system
limitations and presenting possibilities for future research and applications in motion
tracking and analysis

To begin with the development of such a system, the following chapter introduces the
theoretical foundations and current state of (markerless) mocap technology.

4

2 Theoretical Background and Related
Work

This chapter establishes the theoretical foundations necessary for developing a mocap
system. It begins with fundamental mocap concepts and technologies, followed by an
examination of camera models and calibration techniques essential for 3D reconstruction.
The chapter then explores current approaches in pose estimation and skeletal tracking,
concluding with methods for generating and processing animation data.

2.1 Introduction to Motion Capture

Mocap technology represents a bridge between physical movement and digital represen-
tation, encompassing various methods and approaches that have evolved over several
decades. From its early applications in biomechanics research to modern uses in enter-
tainment and healthcare monitoring, mocap continues to advance in both capability and
accessibility.

2.1.1 Definition and Relevance

Mocap refers to the process of recording the movement of objects or individuals to
translate real-world actions into digital models [17, pp. 10–13]. The technology captures
motion by tracking specific points in space over time, reconstructing movement through
spatial coordinates and temporal sequences. These points typically represent anatomical
landmarks or joints, forming a skeletal model of the captured subject [63].

Mocap technology emerged from photogrammetry and biomechanics research in the
1970s and 1980s [23]. Early systems relied on multiple cameras and manual digitization

5

2 Theoretical Background and Related Work

of points, evolving through several technological generations: from simple chronophotog-
raphy to contemporary computer vision and deep learning approaches [54], [57], [58].

The fundamental technical process of mocap consists of several stages. The initial
stage involves data acquisition through various sensing technologies—optical, inertial,
or depth-based systems [101]. This raw data undergoes processing to identify keypoints
or features of interest. In skeletal tracking, these points correspond to anatomical land-
marks such as joints (e.g., elbow, knee, shoulder) that form a biomechanical model [90,
p. 107–111]. The system then reconstructs these points in three-dimensional space, con-
sidering factors such as occlusions, noise, and temporal consistency [33, pp. 10–12], [80,
pp. 568–576].

For indoor monitoring applications, mocap systems face specific technical challenges.
These include varying lighting conditions, occlusions from furniture, multiple person
tracking, and real-time processing requirements [87]. The accuracy of such systems
depends on several factors: sensor resolution, processing algorithms, environmental con-
ditions, and the complexity of tracked movements [72].

Recent advances in computer vision and machine learning have significantly influenced
mocap technology. Deep learning approaches, particularly Convolutional Neural Net-
works (CNNs) [5], [14], [15], [48], [53], [62], [83] and transformer architectures [46], [91],
[92], [97], [98], have improved the robustness of pose estimation. These developments
have shifted the paradigm from traditional marker-based systems requiring multiple cal-
ibrated cameras to markerless solutions that can operate with standard Red, Green,
Blue (RGB) cameras. However, this reduced physical hardware complexity comes at
the cost of increased computational demands, as these deep learning models typically
require significant Graphics Processing Unit (GPU) resources for real-time inference1.

The technical requirements for mocap systems vary based on their application. While
some applications demand sub-millimeter accuracy and high sampling rates, monitoring
systems in smart homes prioritize reliability and continuous operation.

1For example, OpenPose [14], [15] requires a dedicated GPU for real-time inference on a single camera
feed, typically achieving 10–15 FPS on mid-range GPUs with 4–6 GB Video Random Access Memory
(VRAM). Similarly, transformer-based approaches like VIBE [42] demand even more substantial
computational resources for both training and inference. Performance generally scales with input
resolution and desired frame rate.

6

2 Theoretical Background and Related Work

2.1.2 Motion Capture Technologies and Approaches

Mocap systems can be categorized by their tracking methodology and sensor technol-
ogy. Understanding these different approaches helps in selecting appropriate systems for
specific applications.

Sensor Technologies

Various sensor technologies enable mocap, each with distinct characteristics:

Optical systems use cameras to track motion and can be further divided into passive
and active marker systems. Passive marker systems track reflective markers using in-
frared cameras, as shown in Figure 2.1, while active marker systems use LED or similar
self-illuminating markers [69]. These systems achieve high precision (sub-millimeter ac-
curacy) and sampling rates (100+ Hz) but require controlled environments and marker
attachment [29, pp. 419–423].

Figure 2.1: Optical motion capture (mocap)—actors wearing mocap suits with reflectors
Source: Achrekar, A. In [17, p. 12]. Courtesy of Centroid Motion Capture.

RGB camera-based systems use standard video cameras, processing color images to de-
tect human poses. While more accessible and cost-effective, they typically offer lower pre-
cision than marker-based systems and are more susceptible to lighting conditions [74].

7

2 Theoretical Background and Related Work

Depth sensors, such as structured light (e.g., first-generation Microsoft Kinect [56]) or
time-of-flight cameras (e.g., Azure Kinect [55]), provide additional depth information.
These systems operate effectively in indoor environments, but may have limitations in
range and precision [96].

Inertial Measurement Units (IMUs) track motion using accelerometers, gyroscopes, and
occasionally magnetometers. These body-worn sensors provide direct motion measure-
ments without occlusion issues, but may suffer from drift and require regular calibra-
tion [73].

Tracking Approaches

Mocap can target different aspects of human movement:

Full-body tracking, which this thesis primarily addresses, captures the movement of
major body joints and segments. Marker-based systems typically track 30–60 markers
for full-body capture (as illustrated in Figure 2.1), while markerless systems estimate
comparable joint positions through computer vision techniques [63].

Facial mocap requires higher resolution and more detailed tracking to capture subtle
expressions. Specialized systems use either dense marker sets, detailed texture analysis,
or high-resolution depth mapping [13], [88].

Hand mocap presents unique challenges due to the complexity of hand articulation and
frequent self-occlusions. Solutions range from data gloves to camera-based systems with
specific hand models [60], [75], [102].

Marker-based vs. Markerless Comparison

Marker-based systems achieve high precision through specialized hardware. Professional
optical systems can track markers with sub-millimeter accuracy at high frame rates,
making them the standard for applications requiring precise measurements [29, p. 429].
These systems demand careful marker placement on the subject and require a calibrated
capture volume. The operational complexity extends to regular system maintenance and
considerable setup time before each capture session. Additionally, the operation of such
systems requires specialized knowledge and training.

8

2 Theoretical Background and Related Work

Markerless systems represent a different approach to mocap, focusing on accessibility
and ease of use rather than maximum precision. By eliminating the need for physical
markers or specialized suits, these systems reduce setup complexity and enable more
natural movement capture. The reduced hardware requirements and automated tracking
capabilities make them particularly suitable for continuous operation scenarios.

However, markerless approaches face their own technical challenges. The tracking pre-
cision typically remains below that of marker-based systems [39], particularly when
capturing complex poses or rapid movements. Environmental factors such as occlusions
and varying lighting conditions can significantly impact tracking reliability. The techni-
cal trade-offs manifest most notably in scenarios requiring highly precise measurements,
where marker-based systems maintain their advantage.

For smart home monitoring applications, markerless systems present a more practical
solution despite these limitations. The ability to operate continuously without user in-
tervention aligns with the requirements of residential monitoring scenarios, where system
reliability and ease of use take precedence over maximum precision.

2.1.3 Markerless Motion Capture Workflows

Different markerless mocap systems employ varying approaches to achieve their goals.
While some systems, like the Microsoft Kinect, use depth sensors to directly capture
3D information [76], others rely on multiple RGB cameras and triangulation. De-
spite these technological differences, most markerless systems follow a general processing
pipeline [29, pp. 424–428].

Before the actual mocap can begin, the system requires camera calibration determin-
ing the parameters that relate 3D world coordinates to 2D image coordinates. Once
calibrated, the mocap workflow consists of several key stages:

1. Data Acquisition: Capturing images or videos using one or more cameras.

2. 2D Pose Estimation: Detecting and locating keypoints (e.g., joints) in the 2D
images.

3. 3D Reconstruction: Reconstructing 3D poses from the 2D keypoints using
triangulation methods.

4. Animation data generation: Arranging the reconstructed poses into a sequence.

9

2 Theoretical Background and Related Work

The following sections examine each of these components in detail, providing the theo-
retical foundation for implementing markerless mocap systems.

2.2 Camera Models and Image Formation

Camera geometry and modeling provide mathematical foundations for understanding
how three-dimensional scenes are projected onto two-dimensional image planes [33, p.
153], [80, pp. 41–63, 545–552]. While physical cameras perform this projection opti-
cally, mathematical models offer a formal framework for an algorithmic understanding
and manipulation of the image formation process in computer vision tasks. These the-
oretical foundations, combined with calibration, support various applications, including
3D reconstruction, by enabling the inference of spatial information from 2D images.
The accuracy of both the geometric models and their calibration directly impacts the
precision of 3D reconstruction.

2.2.1 Camera Models

The pinhole camera model serves as a foundational concept, upon which more complex
representations build. Real cameras introduce optical effects, like lens distortions, that
deviate from this basic model. Advanced models incorporate these effects and the ge-
ometrical relationships between multiple views of a scene. Accounting for these factors
contributes to more accurate image interpretation and 3D scene understanding. The
development and utilization of comprehensive models can enhance the accuracy and
reliability of computer vision systems across various practical applications.

Pinhole camera model

The pinhole camera model represents (see Figure 2.2) an ideal camera mathemati-
cally [33, pp. 153–156] [31, pp. 13–26] [80, pp. 44–51], [22, pp. 9–11, 253–257, 443–
448]. This model assumes that all light rays pass through a single point (the pinhole)
to form an image on the image plane. Key elements of this model include:

Focal Length 𝑓 The distance between the pinhole and the image plane.

Optical Axis The line perpendicular to the image plane passing through the pinhole.

10

2 Theoretical Background and Related Work

Principal Point The point where the optical axis intersects the image plane.

While simplistic, this model provides a basis for understanding more complex camera
behaviors and is widely used in computer vision and graphics applications.

Figure 2.2: Pinhole Camera Model (Source: OpenCV Documentation [64]).

Lens distortion models

While the pinhole camera model provides a useful approximation, it does not account
for the optical effects introduced by real camera lenses. Lens distortion models [36], [89]
extend the basic pinhole model to more accurately represent image formation in physical
cameras. The two primary types of lens distortion [80, pp. 51–53] are:

Radial distortion causes straight lines to appear curved in the image. It occurs due
to the spherical nature of camera lenses and is more pronounced at the edges of the
image.

Radial distortion can be modeled using polynomial functions [36], [89]:

𝑥𝑟𝑎𝑑 ≔ 𝑥(1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6)

𝑦𝑟𝑎𝑑 ≔ 𝑦(1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6)
(2.1)

11

2 Theoretical Background and Related Work

(a) Barrel distortion
positive radial displacement

(b) No distortion (c) Pincushion distortion
negative radial displacement

Figure 2.3: Examples of radial distortion.

where (𝑥, 𝑦) are the undistorted coordinates, (𝑥𝑟𝑎𝑑, 𝑦𝑟𝑎𝑑) are the distorted coordinates, 𝑟 is
the distance from the image center, and 𝑘1, 𝑘2, 𝑘3 are the radial distortion coefficients.

Tangential distortion occurs when the lens is not perfectly parallel to the image
plane. It causes some areas of the image to appear closer than expected.

Camera lens

Camera
sensor

V
er

ti
ca

lp
la

ne

Zero Tangential Distortion
Lens and sensor are parallel

Camera lens

Camera
sensor

V
er

ti
ca

lp
la

ne

Tangential Distortion
Lens and sensor are not parallel

Figure 2.4: Examples of tangential distortion in camera systems.

Tangential distortion can be modeled as [10], [94]:

𝑥𝑡𝑎𝑛𝑔 ≔ 𝑥 + [2𝑝1𝑥𝑦 + 𝑝2(𝑟2 + 2𝑥2)]

𝑦𝑡𝑎𝑛𝑔 ≔ 𝑦 + [𝑝1(𝑟2 + 2𝑦2) + 2𝑝2𝑥𝑦]
(2.2)

where 𝑝1 and 𝑝2 are the tangential distortion coefficients.

12

2 Theoretical Background and Related Work

Combined distortion model In practice, both radial and tangential distortions are
often combined into a single model [36], [64], [94]:

[
𝑥𝑑𝑖𝑠𝑡𝑜𝑟 𝑡𝑒𝑑
𝑦𝑑𝑖𝑠𝑡𝑜𝑟 𝑡𝑒𝑑

] ≔ (1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6) [
𝑥
𝑦
] + [

2𝑝1𝑥𝑦 + 𝑝2(𝑟2 + 2𝑥2)
𝑝1(𝑟2 + 2𝑦2) + 2𝑝2𝑥𝑦

] (2.3)

This model includes both radial (𝑘1, 𝑘2, 𝑘3) and tangential 𝑝1, 𝑝2 distortion parameters.

While lens distortion is crucial for accurate image formation modeling, the complete
mapping from 3D world points to 2D image points requires additional parameters.

2.2.2 From 3D to 2D Image Space

This section presents the parameters required for modeling the projection from 3D space
to a 2D space, such as a digital image. The discussion encompasses the various compo-
nents involved in this mapping, including coordinate systems, camera parameters, and
the projection process.

As mentioned earlier, a point 𝑃 in 3D space can be mapped (or projected) into a 2D
point 𝑃 ′ in the image plane. This mapping is referred to as a projective transformation.
This projection does not directly correspond to what appears in the actual image. First,
points in the images are usually, in a different reference system than those in the image
plane. Second, digital images are divided into pixels, whereas points in the image plane
are continuous. Finally, the physical sensors, can as discussed before introduce non-
linearity such as distortion to the mapping. To account for these differences, several
additional transformations must be introduced that allow the mapping of any point
from the 3D world to pixel coordinates [80, pp. 29–41].

Coordinate Systems

The understanding of different coordinate systems involved in the projection process is
necessary before examining the camera matrix model [43, pp. 5–6]:

World Coordinate System The 3D coordinate system in which the scene and objects are
defined.

13

2 Theoretical Background and Related Work

Camera Coordinate System The 3D coordinate system with its origin at the camera’s op-
tical center.

Image Coordinate System The 2D coordinate system on the image plane, typically with
the origin at the principal point.

Pixel Coordinate System The 2D discrete coordinate system of the digital image, with the
origin usually in the top-left corner.

These coordinate systems each play a role in the image formation process. The world
and camera coordinate systems enable representation of the 3D scene and the camera’s
position. The image coordinate system accounts for the projection of 3D points onto a
2D plane. Finally, the pixel coordinate system bridges the gap between the continuous
mathematical model and the discrete nature of digital images. Understanding the trans-
formations between these systems enables accurate modeling of how points in 3D space
become pixels in the final image.

Homogeneous Coordinates

The process of projecting 3D points onto a 2D image plane involves non-linear opera-
tions, particularly divisions. These operations can complicate the mathematical model
and make computations less efficient. Homogeneous coordinates offer a solution to this
challenge [33, pp. 29–32], [22, pp. 195–242].

Homogeneous coordinates are a system of coordinates used in projective geometry to
represent points and other geometric entities:

• A 3D point (𝑋 , 𝑌 , 𝑍)𝑇 is represented as (𝑋 , 𝑌 , 𝑍 , 1)𝑇.

• A 2D point (𝑋 , 𝑌)𝑇 is represented as (𝑋 , 𝑌 , 1)𝑇.

By adding this extra coordinate, homogeneous coordinates enable representation of pro-
jective transformations, including perspective projections, as linear matrix multiplica-
tions. This representation simplifies the mathematical model of the projection process
and enables the use of more efficient linear algebra techniques [22, pp. 195–201], [80,
pp. 728–741]. The actual projection from 3D to 2D is detailed in the projection process
section, which demonstrates the practical application of these coordinates.

14

2 Theoretical Background and Related Work

Camera Matrix Model

The camera matrix model [80, pp. 44–49], [33, pp. 178–193] describes a set of param-
eters that affect how a world point 𝑃 is mapped to image coordinates 𝑃 ′. As the name
suggests, these parameters will be represented in matrix form and are categorized into
intrinsic and extrinsic.

Intrinsic Parameters: Describe the camera’s internal characteristics affecting image for-
mation.

The main intrinsic parameters include:

• Focal length 𝑓: The distance between the camera’s lens and the image sensor

• Principal point coordinates (𝑐𝑥, 𝑐𝑦): The point where the optical axis in-
tersects the image plane. In an ideal camera, this would be at the center of
the image, but in practice, it can deviate due to manufacturing imperfections
or lens misalignment.

• Pixel aspect ratio 𝛼: The ratio of pixel width to height

• Skew coefficient 𝑠: Accounts for non-rectangular pixels (often assumed to
be 0)

These parameters are represented in the camera intrinsic matrix 𝐾 [86], [94]:

𝐾 ≔
⎡
⎢
⎢
⎣

𝑓𝑥 𝑠 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

⎤
⎥
⎥
⎦

(2.4)

where 𝑓𝑥 = 𝑓 𝛼 and 𝑓𝑦 = 𝑓.

The intrinsic matrix is used in camera calibration and 3D reconstruction tasks,
which are discussed in subsequent sections.

Extrinsic Parameters: Define the camera’s position and orientation relative to a world
coordinate system. These parameters consist of:

• Rotation matrix 𝑅 (3 × 3): Describes the camera’s orientation

• Translation vector 𝑡 (3 × 1): Represents the camera’s position

15

2 Theoretical Background and Related Work

These parameters facilitate the transformation between world and camera coordi-
nate systems.

The extrinsic parameters are typically combined into a single 3 × 4 matrix [𝑅|𝑡],
known as the extrinsic matrix.

With the intrinsic and extrinsic parameters defined, the following sections explore how
these components work together in the projection process.

Projection Process

The projection process describes how 3D world points are mapped onto the 2D image
plane using both intrinsic and extrinsic parameters. This process involves several steps:
The transformation of points from the world coordinate system to the camera coordinate
system using the extrinsic parameters; the projection of these camera coordinates onto
the image plane, resulting in normalized image coordinates; the application of any lens
distortion effects; and finally, the conversion to pixel coordinates in the final image using
the intrinsic parameters. Each step in this process can be represented mathematically,
modeling the entire projection as a series of transformations [33, pp. 153–156], [80, pp.
29–52].

Projection Equations The projection process can be described as follows:

1. World to Camera Coordinates: The transformation of a point from world
coordinates to camera coordinates using the extrinsic parameters: Pc = 𝑅Pw + 𝑡
where Pw = (𝑋𝑤, 𝑌𝑤, 𝑍𝑤)

𝑇 is the point in world coordinates, Pc = (𝑋𝑐, 𝑌𝑐, 𝑍𝑐)
𝑇 is

the point in camera coordinates, 𝑅 is the rotation matrix, and 𝑡 is the translation
vector.

2. Projection to Normalized Image Coordinates: The projection of the point
onto the normalized image plane: 𝑥𝑛 =

𝑋𝑐
𝑍𝑐
, 𝑦𝑛 =

𝑌𝑐
𝑍𝑐

where (𝑥𝑛, 𝑦𝑛)
𝑇 are the normal-

ized image coordinates.

3. Lens Distortion: If needed, the application of lens distortion to the normal-
ized coordinates: (𝑥𝑑, 𝑦𝑑)

𝑇 = distortion(𝑥𝑛, 𝑦𝑛) The distortion function includes both
radial and tangential components, as detailed in the final equation below.

16

2 Theoretical Background and Related Work

4. Conversion to Pixel Coordinates: Finally, the conversion of distorted coordi-
nates to pixel coordinates using the intrinsic parameters: (𝑢, 𝑣 , 1)

𝑇
= 𝐾 (𝑥𝑑, 𝑦𝑑, 1)

𝑇

where (𝑢, 𝑣)𝑇 are the final pixel coordinates and 𝐾 is the intrinsic matrix.

The complete projection process, combining all these steps, can be expressed in homo-
geneous coordinates as:

𝜆
⎡
⎢
⎢
⎣

𝑢
𝑣
1

⎤
⎥
⎥
⎦

= 𝐾
⎡
⎢
⎢
⎣

𝑥𝑛 + ((𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6)𝑥𝑛 + 2𝑝1𝑥𝑛𝑦𝑛 + 𝑝2(𝑟2 + 2𝑥2𝑛))
𝑦𝑛 + ((𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6)𝑦𝑛 + 𝑝1(𝑟2 + 2𝑦2𝑛) + 2𝑝2𝑥𝑛𝑦𝑛)

1

⎤
⎥
⎥
⎦

(2.5)

Where:

⎡
⎢
⎢
⎣

𝑥𝑛
𝑦𝑛
1

⎤
⎥
⎥
⎦

= 1
𝑍𝑐
[𝑅|𝑡]

⎡
⎢
⎢
⎢
⎢
⎣

𝑋𝑤
𝑌𝑤
𝑍𝑤
1

⎤
⎥
⎥
⎥
⎥
⎦

(2.6)

where 𝜆 = 𝑍𝑐 is the depth of the 3D point in camera coordinates and serves as the scale
factor, (𝑥𝑛, 𝑦𝑛) are the normalized image coordinates before distortion, 𝑟2 = 𝑥2𝑛 + 𝑦2𝑛 , and
𝑘1, 𝑘2, 𝑘3, 𝑝1, 𝑝2 are the distortion coefficients as defined in equation 2.3.

This set of equations encapsulates the entire projection process, incorporating extrinsic
parameters (camera position and orientation), intrinsic parameters (focal length, princi-
pal point), and lens distortion effects. It allows prediction of where any 3D world point
will appear in the final image, accounting for all aspects of the camera model.

In practice, using these equations requires accurate knowledge of all the parameters
involved. This is where camera calibration becomes crucial [85], [86], [94]. Calibration
determines the specific values of these parameters for each individual camera, enabling
precise mapping between 3D world coordinates and 2D image coordinates. Conversely,
in applications like 3D reconstruction or markerless mocap, these equations are applied
in reverse, inferring 3D information from 2D images using the calibrated parameters.

2.3 Camera Calibration Techniques

Camera calibration is a process in computer vision and image processing, aimed at
determining the internal and external parameters of a camera [31, p. 1].

17

2 Theoretical Background and Related Work

The discussion begins with an examination of traditional single camera calibration meth-
ods, including the widely used Zhang’s [94] method. This leads to an analysis of the
complexities of multi-camera calibration, which is particularly relevant for multi-camera
mocap systems. The section concludes with calibration techniques that enable accurate
pose estimation, providing the foundation for subsequent sections on 3D reconstruction
and motion tracking.

Purpose of calibration

The primary purpose of camera calibration is to accurately estimate the parameters de-
scribed in the camera model, compensating for the various imperfections in the imaging
process [31, pp. 27–39] (see Figure 2.5). Calibration allows for the precise determination
of a camera’s intrinsic parameters (such as focal length, principal point, and distortion
coefficients) and extrinsic parameters (such as the camera’s position and orientation in
space). By refining these parameters, calibration ensures that the camera’s model accu-
rately reflects the real-world imaging process, enabling precise measurements and reliable
image-based analysis. It typically involves several key steps. First, a calibration pattern

Figure 2.5: Camera image before undistortion (left) and after (right). Source: Bradski and
Kaehler, Learning OpenCV [9, p. 678]

with known geometry is captured in multiple images from various angles and distances.
Next, feature points (such as corners or centroids) are detected in these images. The
correspondence between these image points and their known 3D world coordinates is
then used to estimate the camera’s intrinsic and extrinsic parameters. This initial esti-
mation is often followed by an optimization step to refine the parameters and minimize
reprojection errors. Finally, the calibration results are validated to ensure their accuracy
and reliability.

18

2 Theoretical Background and Related Work

Calibration Methods

Early camera calibration techniques, such as Tsai’s method [86], relied on precise 3D
calibration objects. While effective, these methods were often cumbersome and required
specialized equipment, limiting their practicality in many applications.

Zhang’s Method [94], introduced in 2000, revolutionized camera calibration by
using a planar pattern viewed from multiple orientations. This approach offers several
advantages:

Flexibility: Uses a simple printed pattern instead of elaborate 3D objects.

Ease of use: Can be performed by non-experts.

Accuracy: Provides results comparable to traditional methods.

This method involves capturing multiple images of a planar checkerboard pattern, fol-
lowed by detecting corner points in each image. The homography between the pattern
and each image is then estimated, and these homographies are used to compute both
intrinsic and extrinsic camera parameters. A homography, in this context, is a trans-
formation that maps points from one plane (the checkerboard) to another (the image
plane). It’s represented by a 3 × 3 matrix and is required for relating the known ge-
ometry of the calibration pattern to its observed projections in the images. Finally, all
parameters are refined through nonlinear optimization [33, pp. 325–343].

Zhang’s method has become the de facto standard for camera calibration in computer
vision applications due to its balance of simplicity and accuracy.

Modern Calibration Techniques Recent years have seen the development of various
alternative calibration methods:

1D object-based calibration Uses a stick with markers, suitable for calibrating multiple
cameras simultaneously [95].

Self-calibration Estimates camera parameters without a known calibration object, useful
for unconstrained environments [84].

Active calibration Employs controlled motion or structured light for better precision [100].

19

2 Theoretical Background and Related Work

These methods offer solutions for specific scenarios where traditional approaches may
be impractical, such as in robotics or large-scale multi-camera setups.

Calibration patterns

Calibration patterns, such as checkerboards [94], dot grids, or circles [36], are essential
tools in the calibration process. These patterns provide known reference points that the
camera system can use to estimate its parameters. During the calibration process, the
camera captures multiple images of the pattern from different angles and distances. The
known geometry of the pattern allows for the precise calculation of both intrinsic and
extrinsic parameters by comparing the observed image points with their corresponding
known world points. The choice of calibration pattern can impact the accuracy and ease
of the calibration process, with checkerboards being the most commonly used due to
their simple and highly detectable corners.

(a) Checkerboard
black-white squares

(b) Circular grid
Evenly-spaced black circles

(c) Dot pattern
Uniform black dots

Figure 2.6: Typical calibration pattern used for single and multi-camera calibration. (Source:
MatLab Documentation [82])

Error Analysis and Evaluation

Understanding the accuracy and reliability of camera calibration is important for ensur-
ing the quality of subsequent computer vision tasks [31, pp. 27–39]. Calibration errors
can arise from various sources, including imperfections in the calibration pattern, inac-
curacies in feature detection, and limitations of the calibration algorithm itself [89].

20

2 Theoretical Background and Related Work

The primary metric for evaluating calibration quality is the reprojection error, which
measures the distance between the observed image points and the projected points us-
ing the estimated camera parameters [94]. A low average reprojection error typically
indicates a good calibration. However, it’s important to consider both the mean and
distribution of these errors across the image.

Validation techniques often involve using the calibrated camera to measure known dis-
tances or angles in a separate test scene. Cross-validation, where a subset of the cal-
ibration data is reserved for testing, can also provide insights into the calibration’s
generalization ability [36].

Robust calibration procedures should account for and minimize these errors to ensure
reliable results in practical applications.

Fundamental Concepts in Multi-View Geometry

Before discussing multi-camera calibration, it’s useful to understand two key concepts
in multi-view geometry:

Homography A homography is a projective transformation that maps points from
one plane to another. In the context of camera calibration, it describes the relationship
between a planar object (like a calibration pattern) and its image [33, pp. 325–343].

Mathematically, a homography 𝐻 is a 3 × 3 matrix that satisfies:

𝑥′ = 𝐻𝑥 (2.7)

where x and x′ are homogeneous coordinates of corresponding points in two images.
The homography matrix 𝐻 has 8 degrees of freedom (despite having 9 elements) due to
scale invariance—multiplying the entire matrix by a non-zero scalar results in the same
transformation. These 8 degrees correspond to the possible geometric transformations:
translation (2), rotation/shear (2), scaling (2), and perspective effects (2). This is why
at least 4 point correspondences (each providing 2 constraints) are needed to estimate
the homography.

21

2 Theoretical Background and Related Work

Epipolar Geometry is the intrinsic projective geometry between two views. It is
independent of scene structure and depends solely on the cameras’ internal parameters
and relative pose [33, pp. 239–244]. Figure 2.7 illustrates the key elements of epipolar
geometry.

Figure 2.7: Key elements of epipolar geometry. Source (Förstner, Wolfgang [22, p. 563])

The main components of epipolar geometry are:

Projection centers 𝑂′ and 𝑂″: The optical centers of two cameras.

Epipolar plane The plane 𝜖 containing a 3D point 𝑋 and the optical centers of both cam-
eras.

Epipolar lines The intersections 𝑙′(𝑃) and 𝑙″(𝑃) of the epipolar plane with the image
planes.

Epipoles The points 𝑒′ and 𝑒″ where the line joining the camera centers (baseline) inter-
sects the image planes.

Baseline The line 𝐵 connecting the two camera centers 𝑂′ and 𝑂″.

For any 3D point 𝑋, its projections 𝑢′ = 𝑃 ′(𝑥′) and 𝑢″ = 𝑃″(𝑥″) in the two images must
lie on the corresponding epipolar lines 𝑙′(𝑃) and 𝑙″(𝑃). This constraint is fundamental
in stereo vision and helps in reducing the search space for corresponding points.

22

2 Theoretical Background and Related Work

The fundamental matrix 𝐹 encapsulates this geometry [33, pp. 279–280]. For corre-
sponding points u′ in the first image and u″ in the second image:

𝑢″𝑇𝐹𝑢′ = 0 (2.8)

This equation represents the epipolar constraint.

The essential matrix 𝐸 is a special case of 𝐹 for calibrated cameras [33, pp. 257–262]:

𝐸 = 𝐾 ′𝑇𝐹𝐾 (2.9)

where 𝐾 and 𝐾 ′ are the intrinsic parameter matrices of the two cameras.

It’s important to note that while a point 𝑢′ in one image determines the epipolar line
𝑙″(𝑃) in the other image, it does not uniquely determine the position of 𝑋 along the
projecting line. This ambiguity is resolved through triangulation when corresponding
points are identified in both images. Understanding these concepts is important for tasks
like stereo matching, 3D reconstruction, and multi-camera calibration.

Multi-camera calibration

Multi-camera calibration extends the principles of single camera calibration to systems
involving multiple cameras. This process determines the relative positions and orien-
tations of the cameras in addition to their intrinsic parameters [31, pp. 91–106]. It
leverages the concepts of homography and epipolar geometry discussed previously to
establish relationships between multiple camera views [22, pp. 550–567].

The calibration process typically involves calibrating each camera independently, then
establishing correspondences between cameras to compute their relative poses. A global
optimization step often refines all parameters simultaneously [94]. The result is a unified
model that enables tasks like 3D reconstruction and depth estimation from multiple
viewpoints, essential for applications such as mocap and virtual reality.

Camera Pose Estimation

Camera pose estimation [80, pp. 552–558] is the process of determining the position and
orientation of a camera relative to a known coordinate system. Two important algorithms

23

2 Theoretical Background and Related Work

for camera pose estimation are P3P (Perspective-3-Point) [24] and PnP (Perspective-n-
Point) [21], [32].

Perspective-3-Point (P3P) The P3P problem2, involves estimating a calibrated
camera’s pose from three 3D-2D point correspondences, as classified comprehensively
by Gao et al. [24]. As the minimal case for pose estimation, it typically yields up to four
solutions, necessitating a fourth point for unique determination [22, pp. 513-518].

Figure 2.8: Synopsis of the P3P problem. Source (Kneip, Laurent [40])

2First formulated mathematically by Grunert in 1841 [28], though the practical implementation for
computer vision wasn’t realized until much later.

24

2 Theoretical Background and Related Work

The P3P algorithm can be summarized in the following steps:
Algorithm 1: P3P Algorithm

1: Input: 3D world points (𝑋1, 𝑋2, 𝑋3) and their 2D image projections (𝑥1, 𝑥2, 𝑥3)
2: Calculate distances between world points: 𝑑12, 𝑑23, 𝑑31
3: Form a system of equations:

𝑠21 + 𝑠22 − 2𝑠1𝑠2 cos(𝜃12) = 𝑑212
𝑠22 + 𝑠23 − 2𝑠2𝑠3 cos(𝜃23) = 𝑑223
𝑠23 + 𝑠21 − 2𝑠3𝑠1 cos(𝜃31) = 𝑑231

where 𝑠𝑖 are distances from camera to points, 𝜃𝑖𝑗 are angles between image rays
4: Solve the resulting fourth-degree polynomial equation
5: for each real root do
6: Compute rotation (𝑅) and translation (𝑡)
7: end
8: Verify solutions using a fourth point if available
9: Output: Camera pose [𝑅, 𝑡] that best fits the data

Recent advancements in solving the P3P problem have been proposed in works such
as [4], [61], [68], offering improved approaches to enhance its accuracy and efficiency.

Perspective-n-Point (PnP) is a generalization of P3P that uses 𝑛 ≥ 3 point corre-
spondences to estimate the camera pose. It’s more robust than P3P due to the use of
more points. It can also handle cases with 𝑛 > 3 points, improving accuracy and reliabil-
ity. While traditional PnP algorithms had computational complexity of 𝑂(𝑛2) or higher,
modern variants have achieved significant improvements. Notable examples include Ef-
ficient PnP (EPnP) [44] and Uncertainty-aware PnP (UPnP) [41], which both provide
a 𝑂(𝑛) solution to the PnP-Problem, making them much more practical for real-world
applications with large numbers of points.

The general PnP algorithm can be formulated as an optimization problem [22, pp. 513-
518]:

minimize
𝑛
∑
𝑖=1

‖𝑥𝑖 − 𝜋(𝐾[𝑅|𝑡]𝑋𝑖)‖2 (2.10)

where 𝜋 represents the non-linear parts of the projection function (including perspective
division and distortion effects, as detailed in Equation 2.5), 𝐾 is the intrinsic camera

25

2 Theoretical Background and Related Work

matrix, 𝑅 and 𝑡 are the rotation and translation to be estimated, and (𝑋𝑖, 𝑥𝑖) are the
3D-2D point correspondences.

Both P3P and PnP utilize the principles of perspective projection and epipolar geometry
discussed earlier (see Section 2.3). They extend these concepts to the practical problem
of determining camera pose from known 3D-2D correspondences. These algorithms are
fundamental in computer vision and are often used as building blocks in more complex
systems, such as Simultaneous Localization and Mapping (SLAM)3 [18] or Structure from
Motion (SfM)4 [65].

In practice, robust implementations of these algorithms often incorporate Random Sam-
ple Consensus (RANSAC)5 [21] to handle outliers and noise in the point correspon-
dences [80, pp. 408–410].

For this mocap system, PnP might be more suitable due to its ability to handle multiple
points, potentially leading to more accurate pose estimation of the camera relative to
the captured subject.

Practical Considerations and Future Directions

While the principles of camera calibration are well-established, practical implementations
often face challenges such as varying lighting conditions, lens distortions, and the need for
frequent recalibration in dynamic environments [70]. Recent advancements in calibration
techniques include the use of deep learning for more robust feature detection and the
development of self-calibrating systems for autonomous robots [47].

Camera calibration, as discussed, provides the mapping between 3D world coordinates
and 2D image coordinates. This mapping is necessary for the next step in mocap systems:
pose estimation. With a calibrated camera system, the next step is determining the
position and orientation of a subject’s body parts in 3D space from 2D image data.

3Simultaneous Localization and Mapping (SLAM) is a technique where a system builds a map of an
unknown environment while simultaneously keeping track of its location within it.

4Structure from Motion (SfM) refers to the process of estimating three-dimensional structures from
two-dimensional image sequences that may be coupled with local motion signals.

5Random Sample Consensus (RANSAC) is an iterative method to estimate parameters of a mathemat-
ical model from a set of observed data that contains outliers.

26

2 Theoretical Background and Related Work

2.4 Pose Estimation Techniques

Pose estimation in mocap systems relies heavily on the results of camera calibration. The
intrinsic and extrinsic parameters obtained through calibration allow pose estimation
algorithms to [80, pp. 552–558]:

1. Accurately project 3D body models onto 2D image planes

2. Triangulate 2D joint detections from multiple views into 3D space

3. Compensate for lens distortions when processing image data

These capabilities form the foundation for reconstructing 3D poses from 2D observations,
a core task in markerless mocap systems. The geometric relationships established during
calibration enable accurate and robust 3D pose reconstruction.

2.4.1 2D Pose Estimation

2D pose estimation is a basic technique in computer vision that aims to locate and
identify keypoints or joints of a human body within a two-dimensional image [2]. This
process forms the foundation for many advanced applications, including markerless mo-
cap systems.

The primary goal of 2D pose estimation is to create a skeletal representation of a person’s
pose by identifying the locations of key anatomical landmarks, such as shoulders, elbows,
hips, and knees. These landmarks are typically represented as a set of 2D coordinates
within the image space [83].

There are two main approaches to 2D pose estimation:

Top-down These start by detecting and localizing entire persons in an image, then esti-
mate the pose for each detected individual. This approach can be more accurate
for individual pose estimation but may become computationally expensive as the
number of people in the scene increases [93].

Bottom-up These first detect all potential body parts in an image, then associate them to
form complete poses. This approach can be more efficient in scenes with many peo-
ple, as its computational complexity scales better with the number of individuals
in the scene [15].

27

2 Theoretical Background and Related Work

Both typically involve two steps: Identifying the locations of individual body joints and
connecting the detected joints to form a coherent skeleton structure.

Recent advancements in deep learning, particularly CNNs, have improved the accuracy
and efficiency of 2D pose estimation [62]. These methods can learn to identify complex
patterns and features in images, making them robust to variations in lighting, clothing,
and body shapes.

However, 2D pose estimation still faces several challenges:

• Occlusions, where parts of the body are hidden from view

• Varying lighting conditions and complex backgrounds

• Real-time performance requirements for applications like mocap

• Accurate handling of unusual poses or activities

Despite these challenges, 2D pose estimation serves as a stepping stone towards 3D pose
reconstruction in markerless mocap systems. By providing accurate 2D joint locations
from multiple camera views, this enables the subsequent 3D reconstruction process, de-
tailed in the following sections. Recent work has focused on improving the accuracy and
efficiency of multi-person pose estimation in complex scenes [16].

2.4.2 3D Pose Estimation

While 2D pose estimation provides valuable information about human poses in images,
markerless mocap systems require full three-dimensional representations of human move-
ment. This is where 3D pose estimation comes into play, serving as a bridge between
2D image analysis and the creation of 3D motion data [74].

3D pose estimation aims to reconstruct the three-dimensional positions of body joints in
real-world space, typically using input from multiple 2D views [66]. This process is cen-
tral to markerless mocap, as it allows for the accurate representation of human movement
in three dimensions without the need for physical markers or special suits [53].

28

2 Theoretical Background and Related Work

From 2D to 3D: Bridging the Dimensional Gap

The transition from 2D to 3D pose estimation is not as simple as adding an extra
coordinate to each joint position. It involves geometric reasoning and often requires
input from multiple camera views to resolve ambiguities inherent in single-view 2D
representations [1].

In 2D pose estimation, the locations of body joints are identified within the image
plane. However, this representation lacks depth information—while a joint’s location in
the image is known, its distance from the camera remains undetermined. This limitation
can lead to ambiguities, as different 3D poses can produce similar 2D projections when
viewed from a single angle [51].

To overcome this, 3D pose estimation typically relies on multiple camera views. By
observing the same pose from different angles simultaneously, the 3D positions of body
joints can be triangulated [71]. This is where the importance of multiple camera views
becomes evident.

Resolving Ambiguities Multiple views help resolve depth ambiguities that are inherent in
single-view 2D representations [66].

Occlusion Handling When a body part is occluded in one view, it may be visible in another,
allowing for more complete pose reconstruction [12].

Increased Accuracy The combination of information from multiple views enables more
accurate 3D position estimates [79].

Triangulation is an important concept in this transition from 2D to 3D. In the context
of 3D pose estimation, triangulation refers to the process of determining a point’s 3D
coordinates using its projections in two or more 2D images [33, pp. 310–324], [22, pp.
596–606]. The basic principle is as follows:

1. Identify corresponding points (body joints) in multiple 2D images.

2. Use the known camera parameters (obtained through camera calibration) to project
rays from each camera through these points.

3. Calculate the 3D coordinates of the point where these rays intersect or come closest
to intersecting.

29

2 Theoretical Background and Related Work

This process, when applied to all identified body joints, enables reconstruction of the
full 3D pose from multiple 2D observations.

The following sections examine the methods and challenges involved in 3D pose estima-
tion, and their application in markerless mocap systems.

Multi-View 3D Reconstruction Methods

Multi-view 3D reconstruction is a technique in computer vision that aims to recover the
three-dimensional structure of a scene or object from multiple two-dimensional images.

Role of Epipolar Geometry Epipolar geometry (see Section 2.3) provides the geo-
metric constraints that relate corresponding points in different views. These constraints
are elemental for efficient and accurate reconstruction of body joint positions across
multiple camera feeds.

Triangulation Methods form the core of 3D reconstruction in mocap systems. They
determine the 3D coordinates of a point using its projections in two or more 2D images.
Common triangulation methods include [80, pp. 558–560]:

• Direct Linear Transformation (DLT): Solves a system of linear equations
formed from the projection equations of multiple views [33, pp. 88–91], [80, p.
552]. The DLT algorithm formulates the problem as 𝐴𝑋 = 0, where 𝐴 is a matrix
constructed from the camera matrices and image points, and 𝑋 is the homogeneous
3D point to be determined. While computationally efficient, it can be sensitive to
noise. Recent applications have refined this method for specific use cases [99].

• Midpoint Method: Computes the midpoint of the shortest line segment con-
necting the two projection rays. This method is based on the principle that the
3D point lies on the line that passes through the camera center and the image
point. The 3D point is estimated as 𝑃3𝐷 = 1

2 (𝑃1 + 𝑃2), where 𝑃1 and 𝑃2 are the
closest points on the two projection rays. It’s simple but also not optimal in the
presence of noise.

30

2 Theoretical Background and Related Work

• Optimal Triangulation: Aims to minimize the reprojection error (see Sec-
tion 2.3). This method provides more accurate results at the cost of increased
computational complexity [34, p. 318]. It seeks to find the 3D point that, when
projected back onto the image planes, minimizes the distance to the observed 2D
points.

Method Accuracy Computational Cost Robustness to Noise

DLT Medium Low Low
Midpoint Low Low Medium
Optimal High High High

Table 2.1: Comparison of Triangulation Methods

The choice of reconstruction method significantly impacts real-time performance. While
optimal triangulation provides the highest accuracy, its computational cost may be pro-
hibitive for real-time applications. In contrast, the DLT or midpoint methods offer faster
processing at the expense of some accuracy, making them more suitable for real-time
mocap systems.

Optimization Techniques To improve accuracy, especially in the presence of noise,
optimization techniques are often employed [22, pp. 643–715]:

Bundle Adjustment This technique simultaneously refines the 3D structure and camera
parameters by minimizing reprojection errors [85]. While computationally inten-
sive, it can significantly improve the accuracy of joint position estimates. The
optimization problem in bundle adjustment can be formulated as:

min
𝑋,𝑃

∑
𝑖,𝑗

𝑑(𝑥𝑖𝑗, 𝑃𝑖𝑋𝑗)
2

where 𝑋𝑗 are the 3D points, 𝑃𝑖 are the camera parameters, 𝑥𝑖𝑗 are the observed 2D
points, and 𝑑(⋅, ⋅) is the reprojection error.

Levenberg-Marquardt Algorithm Often used in bundle adjustment, this algorithm is par-
ticularly effective for solving non-linear least squares problems in 3D reconstruc-
tion [45], [50], [59].

The choice of reconstruction method in a markerless mocap system depends on factors
such as required accuracy and computational efficiency. Triangulation methods, often

31

2 Theoretical Background and Related Work

combined with optimization techniques, are frequently employed due to their suitability
for reconstructing sparse point sets (body joints) in real-time scenarios.

2.5 Animation Data Generation

Following Grünvogel [29, pp. 427–428], the process of generating animation data begins
with 3D reconstruction of keypoints. By applying 3D pose estimation techniques to
sequential frames, body joints can be tracked over time. This temporal data enables the
generation of animation curves that represent each joint’s position and rotation in 3D
space throughout the captured sequence.

The conversion of mocap data to character animation presents several challenges. A
fundamental issue is proportion mismatch between actor and virtual character—for ex-
ample, applying motion data from a tall performer to a shorter character can result
in unrealistic stride lengths. Another challenge lies in skeletal topology differences, as
virtual characters may have different joint configurations than human performers.

To address these problems, Grünvogel describes a two-step conversion process: first
converting the capture data to a standardized character format, followed by retargeting
to the final virtual character. This approach enables a single mocap sequence to be
adapted for multiple characters while preserving essential movement characteristics. The
process often requires additional refinement, such as cleaning up foot skating artifacts
and removing initial T-pose calibration data.

2.6 Summary

This chapter presented the core concepts and related work essential for understanding
markerless mocap systems. It explored camera models and calibration techniques, em-
phasising their role in mapping 3D world coordinates to 2D image coordinates. The
chapter then examined pose estimation methods, progressing from 2D to 3D techniques
and highlighting the importance of multiple camera views and triangulation. Finally, it
briefly touched on animation data generation, linking 3D pose estimation to movement
description. This comprehensive overview establishes the theoretical foundation for the
system design to be discussed in the following chapter.

32

3 Requirements, System Design and
Architecture

Building upon the theoretical foundations of markerless mocap, this chapter translates
these concepts into a practical system implementation. A requirements framework is
first established, followed by the development of a distributed system architecture that
addresses the challenges of real-time mocap. The chapter presents both the high-level
system design and detailed architectural considerations, culminating in a complete sys-
tem specification ready for implementation.

3.1 System Requirements

The requirements for the mocap system must be defined to establish a solid foundation.
This chapter introduces two types of requirements: functional requirements (FRs) and
non-functional requirements (NFRs). These requirements stem from both the framework
conditions set for this thesis and the specific objectives of the system to be developed [77,
pp. 82–117].

33

3 Requirements, System Design and Architecture

ID Requirement Description Verification Method

FR-1 Multi-Camera Setup System must operate with synchronized stereo
setup, extensible to N cameras

Experimental Testing

FR-2 Camera Calibration Automated calibration process completing
within 15 minutes, including intrinsic and
extrinsic parameters

Technical Validation

FR-3 2D Pose Estimation Real-time pose estimation for all major body
joints with confidence scores

Quantitative Analysis

FR-4 3D Reconstruction Accurate reconstruction of 3D joint positions
with handling of occlusions

Experimental Testing

FR-5 Data Export Support for common animation data formats
and raw data export

Technical Validation

FR-6 Real-time Processing Complete processing pipeline operating in real-
time

Performance Testing

Table 3.1: Functional Requirements Overview

ID Requirement Description Target Value

NFR-1 Processing Performance Complete pipeline frame rate ≥ 30 FPS
NFR-2 System Latency End-to-end processing delay ≤ 100 𝑚𝑠
NFR-3 Reconstruction Quality Mean reprojection error for triangulated points ≤ 1.0 pixel
NFR-4 Pose Confidence Minimum confidence score for keypoint accep-

tance
≥ 95%

NFR-5 Camera Calibration Mean reprojection error for calibration ≤ 1.0 pixel
NFR-6 Stream Sync Maximum allowed frame timing delta between

cameras
≤ 33 ms

Table 3.2: Non-Functional Requirements Overview

3.1.1 Functional Requirements

Functional requirements define the specific capabilities and services the system must
provide. Six core functional requirements (FR-1 to FR-6) have been identified for the
mocap system, which are detailed in Table 3.1.

FR-1: Multi-Camera Setup

The system requires a minimum of two synchronized cameras. This stereo configuration
serves as the basic setup, with the architecture supporting extension to N cameras
while maintaining synchronization across all video streams. This requirement forms the
foundation for accurate 3D reconstruction.

34

3 Requirements, System Design and Architecture

FR-2: Camera Calibration

The system implements an automated calibration process that must complete within
15 minutes. This process determines both intrinsic and extrinsic camera parameters [94].
The calibration data is stored persistently to enable quick system initialization in sub-
sequent uses.

FR-3: 2D Pose Estimation

The system performs real-time pose estimation on the video feeds from all cameras
simultaneously. Each frame processing yields the 2D coordinates of all major body joints
along with their corresponding confidence scores. The system processes and outputs
these results for all connected cameras in parallel.

FR-5: Data Export

The system provides functionality to export capture data in common animation formats.
While industry standards like Biovision Hierarchy (BHV) [6] and Filmbox (FBX) [3] are
commonly used in professional mocap pipelines, the current implementation focuses on
raw positional data export in Comma-Separated Values (CSV) format. This format
choice serves as a proof of concept while ensuring broad compatibility and easy data
access for further analysis. The CSV implementation provides all necessary positional and
temporal data, while the system’s architecture supports future extension to additional
animation formats like BVH and FBX as needed.

FR-6: Real-time Processing

The system must process and output mocap data continuously as it arrives, maintaining
temporal consistency between input frames and output poses. The processing pipeline
must operate synchronously from video input through to 3D pose output.

35

3 Requirements, System Design and Architecture

Implementation Scope

The system’s architecture allows for future expansion, while currently focusing on single-
person detection and tracking within the defined capture volume.

These functional requirements define the core capabilities needed for a real-time marker-
less mocap system. Table 3.1 summarizes the requirements and their verification meth-
ods.

3.1.2 Non-Functional Requirements

Non-functional requirements define system performance metrics and quality attributes.
Table 3.2 specifies the target values for these requirements.

NFR-1: Processing Performance

The system must achieve a consistent frame rate of at least 30 frames per second (FPS),
meaning each complete processing cycle must complete within approximately 33.30ms.
This performance requirement ensures smooth mocap and maintains the real-time ca-
pability defined in FR-6.

NFR-2: System Latency

The end-to-end processing delay between physical movement and digital representation
must not exceed 100 ms. This latency requirement is required for maintaining temporal
accuracy in the captured motion data.

NFR-3: Reconstruction Quality

The 3D reconstruction process must achieve a mean reprojection error of less than
1.0 pixel for triangulated points. This metric directly influences the accuracy of the final
mocap data.

36

3 Requirements, System Design and Architecture

NFR-4: Pose Confidence

The system requires a minimum confidence score of 95% for keypoint acceptance in the
2D pose estimation stage. This threshold helps ensure the reliability of the detected
joint positions.

NFR-5: Camera Calibration

The camera calibration process must achieve a mean reprojection error of less than
1.0 pixel. This accuracy in camera parameter estimation is required for precise 3D
reconstruction.

NFR-6: Stream Synchronization

The maximum allowed frame timing delta between camera streams must not exceed 33
milliseconds. This synchronization requirement ensures consistent temporal alignment
of the captured motion data.

3.2 System Overview

The mocap system uses a distributed, service-oriented architecture to implement the
established requirements. The architecture addresses three main challenges: processing
distribution across capture nodes, real-time performance constraints (NFR-1, NFR-2),
and support for variable camera configurations (FR-1).

While the system architecture supports deployment across multiple processing nodes,
this distributed design also enables flexible deployment configurations based on available
infrastructure. The modular service architecture allows components to be distributed
across separate nodes or consolidated as needed, while maintaining the logical separation
and scalability benefits of the design.

The system implements structural patterns for component interactions and data flow.
These patterns define approaches for inter-component communication and system state
management, with particular consideration for the stream synchronization requirements
specified in NFR-6.

37

3 Requirements, System Design and Architecture

The containers communicate through service interfaces that support the performance
requirements specified in NFR-1 and NFR-2. Each Camera Service operates on hardware
connected to its capture device, enabling parallel processing and reducing data transfer
bottlenecks.

The Discovery Service runs as a separate container to handle system configuration
state and service availability. This separation allows for dynamic service registration
without impacting the capture pipeline’s performance. The additional communication
overhead stays within the latency requirements defined in NFR-2 when operating in
local networks.

The system scales horizontally through Camera Service container addition. New cap-
ture nodes join through service registration, with the Discovery Service tracking the
dynamic system topology. This design allows processing capacity to scale linearly with
added capture nodes.

This distributed architecture requires specific state management and synchronization
mechanisms to maintain consistency across containers while meeting real-time processing
requirements (NFR-1, NFR-6). These requirements guide the component-level design
decisions detailed in the following section.

3.2.3 Component View

The component view examines the internal architecture of each container and describes
how components work together to fulfil the container responsibilities. Each container:
Camera Service, Console Application, and Discovery Service implements specific as-
pects of the system’s functionality.

Camera Service Architecture

The Camera Service architecture (Figure 3.3) consists of four main components, han-
dling video capture and streaming. The Communication Interface defines the con-
tainer’s external boundary, managing service registration and request processing. Device
Control operates the camera hardware and maintains device state. The Configuration

Manager handles system parameters and their persistence, while the Stream Manager co-
ordinates video data transmission. The components follow a layered architecture pattern.
The Communication Interface separates external protocols from internal processing.

40

3 Requirements, System Design and Architecture

3.2.5 Architectural Decisions

This section documents the main decisions that shaped the system architecture, explain-
ing how each addresses specific requirements and technical constraints.

Service Distribution

The system distributes camera processing across independent services, as outlined in the
container view. This decision reflects the physical setup where each camera connects to
its own processing hardware. While this distribution improves system scalability through
independent nodes, it requires additional coordination for synchronization (NFR-6) and
state management.

Communication Architecture

The system requires a communication architecture that supports both request-response
interactions and continuous data streaming. The chosen architecture must enable:

• Service discovery and registration

• Efficient video data transmission

• System state updates

These requirements influence the selection of specific protocols and implementations,
detailed in Chapter 4.

Pipeline Structure

The pipeline structure, introduced in the previous section, separates processing stages
based on data dependencies. This separation allows parallel execution where possible
and enables stage-specific optimizations while maintaining the interfaces between stages.
This approach directly supports the real-time processing requirement (FR-6) and per-
formance targets (NFR-1).

46

3 Requirements, System Design and Architecture

Synchronization Approach

The system uses timestamp-based synchronization instead of hardware triggers. This
decision prioritizes system flexibility and reduces hardware complexity, though it accepts
lower precision than hardware synchronization. The approach allows adding capture
nodes without hardware modifications, supporting the system’s scalability goals.

State Distribution

The architecture implements a hybrid approach to state management that distributes
state across services rather than employing centralized state management. For inter-
container communication, this distribution introduces eventual consistency in system-
wide configuration and health states, thereby eliminating single points of failure and
supporting the performance requirements (NFR-1, NFR-2) through reduced communi-
cation overhead. Within containers, the system maintains strong consistency through
callback-based mechanisms and synchronous operations, particularly important for real-
time processing pipelines and stream synchronization requirements specified in NFR-6.
This dual consistency model enables the system to balance reliability and performance
demands, applying eventual consistency for system management functions while ensur-
ing strict timing and synchronization requirements are met for the mocap processing
pipeline.

3.2.6 Deployment View

The deployment view describes the physical distribution of architectural components
across hardware infrastructure. While the container view established the logical service
distribution, this view addresses the specific hardware and network requirements.

Hardware Topology

The system operates on a distributed infrastructure consisting of processing nodes and
network components (Figure 3.9). Each camera requires a dedicated processing node
with direct device connectivity. A local area network connects all nodes, supporting
both control communication and video streaming.

47

3 Requirements, System Design and Architecture

3.3 Summary

This chapter defined the system requirements and architectural design of the mocap
system. The requirements analysis specified functional requirements including multi-
camera setup (FR-1), calibration processes (FR-2), and real-time processing capabilities
(FR-6). The non-functional requirements established concrete performance targets for
latency (NFR-2), processing rates (NFR-1), and reconstruction quality (NFR-3).

The architectural design implements these requirements through distributed services.
The documentation followed the C4 model, starting from system context and progress-
ing through containers to components. This systematic decomposition showed how each
architectural layer implements specific requirements. The distributed nature of the sys-
tem influenced several architectural decisions, particularly in state management and
service communication.

Additionally, the deployment view detailed the physical distribution of components
across hardware infrastructure, addressing the specific requirements of camera connectiv-
ity and network communication. The design establishes clear interfaces between compo-
nents and defines their interactions across the distributed system. With the architecture
and requirements defined, Chapter 4 presents their implementation, focusing on how the
system achieves its real-time processing targets and maintains reliable operation.

49

4 Implementation

This chapter presents the implementation of the mocap system based on the architec-
ture and requirements defined in Chapter 3. The implementation covers the complete
processing pipeline from video capture through pose estimation to 3D reconstruction.
The implementation approach and technology selections are presented first, followed by
detailed examinations of each system component.

The implementation realizes a complete mocap processing pipeline. Key capabilities
include multi-camera operation, calibration, real-time pose estimation, and 3D recon-
struction. The system targets 30 FPS processing performance with under 100 ms latency,
while maintaining calibration accuracy within 1.0 pixel reprojection error and 95% pose
confidence.

4.1 Implementation Strategy and Technology Selection

Implementing a distributed mocap system with specific performance requirements (NFR-
1, NFR-2) necessitates appropriate selection of frameworks and libraries. This section
examines the technical decisions made to support both the functional requirements and
performance targets established in Chapter 3.

4.1.1 Video Processing Framework

The implementation uses GStreamer [30] for video stream processing, selected after
evaluating several frameworks. FFmpeg [20] provides simpler APIs but lacks the needed
pipeline reconfiguration capabilities. OpenCV’s [64] VideoCapture component offers
direct integration with computer vision functions, but exhibits limitations in network
streaming capabilities.

50

4 Implementation

GStreamer’s pipeline architecture enables multi-camera operation through configurable
processing stages from network reception through decoding to frame delivery. The frame-
work’s native Real-time Transport Protocol (RTP)/Real-Time Transport Control Protocol
(RTCP) implementation provides stream synchronization with quality-of-service mon-
itoring. Additionally, GStreamer’s plugin architecture supports hardware-accelerated
video decoding, which helps meet the processing performance requirements (NFR-1)
when handling multiple video streams.

4.1.2 Pose Estimation Technology

For 2D pose estimation, the implementation uses MediaPipe’s BlazePose [5], [48], se-
lected after evaluating several approaches. OpenPose [14] offers deep integration possi-
bilities but requires higher computational resources. OpenCV’s Deep Neural Network

(DNN) module presents flexibility in model selection and potential integration with ex-
isting OpenCV functionality. However, this approach would necessitate extensive model
integration and validation work beyond the scope of this thesis.

MediaPipe’s BlazePose implementation provides real-time pose estimation with inte-
grated confidence scoring for pose validation. This established solution enabled focusing
development efforts on the core mocap functionality rather than pose estimation model
development.

4.1.3 Development Framework Selection

The implementation uses C++ 20, leveraging modern language features including con-

cepts1, coroutines2, and expanded constexpr3 support. These features provide compile-
time guarantees and abstractions for concurrent programming, supporting the system’s
real-time processing requirements.

Several established libraries form the implementation foundation. OpenCV 4.8 im-
plements the camera calibration (FR-2) and 3D reconstruction (FR-4) functionality

1Concepts provide a way to specify constraints on template parameters, enabling better error messages
and more explicit interface requirements for generic code.

2Coroutines provide language support for cooperative task execution and asynchronous programming,
allowing functions to suspend and resume execution while maintaining their state.

3Constexpr enables compile-time computation and validation, allowing the compiler to evaluate ex-
pressions and functions at compile time rather than runtime, improving both performance and type
safety.

51

4 Implementation

through computer vision operations, image processing, and geometric computations.
The Boost libraries [7] provide essential functionality across multiple system aspects.
Boost.Asio handles asynchronous I/O operations, while Boost.Interprocess manages
shared memory operations. Concurrent data structures utilize Boost.Lockfree, and addi-
tional components such as Boost.UUID and Boost.Process support service identification
and process management, respectively.

Service communication employs gRPC [27], implementing type-safe Remote Procedure
Calls (RPCs) between distributed system components. The use of protocol buffer defi-
nitions maintains clear interface boundaries while supporting the distributed processing
requirements (FR-1). Protocol buffer [26] (.proto) files define service interfaces and
message types, from which gRPC automatically generates type-safe client and server
code4.

This framework selection is designed to support target performance through a modular
architecture. The combination of libraries enables a pipeline focused on real-time pro-
cessing and accurate reconstruction while maintaining system maintainability through
well-defined interfaces.

4.2 Code-Level Architecture

Following the C4 model progression established in Section 3.2, this section examines the
code-level implementation of components through their classes, interfaces, and relation-
ships. This examination connects the architectural design to its concrete implementa-
tion.

4.2.1 Common Architectural Elements

The implementation realizes the service-oriented architecture from Section 3.2 through
several foundational elements supporting system operation.

4Generated code includes service interfaces, stub implementations, and serialization logic, ensuring type
safety and consistency across system components.

52

4 Implementation

Base Communication Infrastructure

The system implements distributed service communication through a template-based
gRPC infrastructure, as shown in Figure 4.1. The GrpcServer template class establishes
service endpoints through lifecycle management. Each server implementation provides
health monitoring, request processing, and shutdown operations through inheritance
hierarchies. The health monitoring system performs periodic status checks of service
availability.

A complementary GrpcClient template implements both synchronous and asynchronous
communication modes. The client infrastructure enables type-safe RPC method invoca-
tion with error handling and status propagation. Through template specialization5 and
concept requirements (DerivedFromGrpcService), the implementation ensures consistent
behaviour across services, supporting service discovery and monitoring functions.

Figure 4.1: Core communication infrastructure, showing base gRPC templates and stream inter-
face hierarchy. Templates enforce consistent service behaviour while allowing special-
ized implementations.

5Template specialization in C++ enables custom implementations of a template for specific types, while
keeping the generic version for others. It allows both full specialization (all template parameters
specified) and partial specialization (some parameters fixed), enabling optimized or type-specific
behavior while maintaining template flexibility. Example: std ::vector<bool> uses bit-level storage
instead of bytes.

53

4 Implementation

Stream Processing Infrastructure

Video stream handling uses a StreamInterface abstraction (Figure 4.1) that defines
stream management operations. This interface specifies three operations: stream initial-
ization with configuration parameters, stream termination, and event callback configu-
ration for status monitoring.

Two classes implement the streaming infrastructure: StreamSender and RtpReceiver.
The StreamSender class manages video streams using GStreamer [30] pipelines for video
capture and RTP transmission. This implementation includes frame buffering and times-
tamp management with configurable stream parameters.

The RtpReceiver class handles incoming video streams, implementing video capture and
RTP transmission with synchronized streams. The implementation includes monitoring
systems for stream health and network statistics to maintain performance targets.

Both implementations use GStreamer pipelines with buffer management and timestamp
synchronization to meet the real-time processing requirement. The implementation in-
cludes event callbacks for system-wide status monitoring.

Error Handling and Status Propagation

The error handling implementation uses a ReturnCode enumeration with categorized
ranges. General operations occupy the range from 0 to 999, while communication-
related errors use 2000 to 2999. Streaming operations utilize the range from 7000 to
7999, and hardware-specific errors are assigned values between 9000 and 9999. This
structured categorization integrates with a logging system supporting multiple verbosity
levels (error, warning, info, debug, and trace) and source location tracking. The imple-
mentation maintains consistent error propagation through ErrorCategory and Severity
classifications.

Observer Pattern Implementation

The implementation uses two observer interfaces, as depicted in Figure 4.2: HealthOb-

server for service health monitoring and RegistryChangeObserver for service discovery

54

4 Implementation

events. The HealthObserver interface monitors service health status through OnSer-

viceHealthy and OnServiceUnhealthy callbacks, while RegistryChangeObserver tracks
service registration changes.

Figure 4.2: Observer pattern implementation, showing health monitoring and registry change
notifications. The pattern enables loose coupling between services while maintaining
system-wide state awareness.

The HealthMonitor class implements thread-safe observer management using periodic
checking with configurable intervals. This implementation maintains stream synchro-
nization through consistent health status monitoring.

Resource Management

The implementation employs C++ 20 resource management through Resource acquisition
is initialization (RAII)6 principles and smart pointers7. Unique ownership semantics for
service implementations, channels, and monitors are enforced by std ::unique_ptr. The
implementation uses std ::shared_ptr where shared ownership is needed, particularly
for callbacks and shared resources.

6RAII (Resource Acquisition Is Initialization) is a C++ programming principle where resource manage-
ment is tied to object lifetime. Resources (like memory, files, or locks) are acquired during object
construction and automatically released in the destructor, ensuring proper cleanup even when excep-
tions occur.

7Smart pointers are C++ objects that act like regular pointers but automatically manage the memory
of the objects they point to. std ::unique_ptr enforces exclusive ownership and automatically deletes
its object when going out of scope, while std ::shared_ptr allows multiple owners and deletes the
object when the last owner is gone.

55

4 Implementation

This resource management extends to GStreamer pipeline elements and gRPC service
instances, ensuring proper clean-up during error conditions. The implementation pre-
vents resource leaks and maintains clear ownership semantics throughout the distributed
architecture.

4.2.2 Service Structure Implementation

The service architecture implementation follows the distributed design outlined in Sec-
tion 3.2, enabling multi-camera operation with 30 FPS processing performance. Each
service implements specific domain functionality while following consistent communica-
tion patterns.

Camera Service Implementation

The Camera Service implementation comprises four components as discussed in Sec-
tion 3.2.3: gRPC interface, device control, configuration management, and stream man-
agement. Figure 4.3 shows these components and their relationships.

Figure 4.3: Camera Service implementation structure showing the relationships between core
components. The GrpcServer template provides the foundation for the service im-
plementation, while specialized components handle device control and streaming.

56

4 Implementation

The CameraServiceServer inherits from the GrpcServer template to implement commu-
nication infrastructure, while CameraServiceServerImpl implements the generated ser-
vice interface. This separation maintains distinct boundaries between communication
and service-specific functionality.

A DeviceManager singleton implements device control, providing access to camera hard-
ware through an abstraction layer. This encapsulation enables runtime device detection
and management while isolating device-specific operations.

Video stream transmission uses GStreamer's pipeline architecture through the Stream-

Sender class. The implementation captures video from industrial cameras via the Video4-
Linux2 (V4L2) interface, configuring streams according to device parameters. Figure 4.4
shows the pipeline architecture designed for low-latency streaming.

The pipeline begins with a v4l2src element for raw frame capture, using a capsfilter for
format constraints. Format adaptation is handled by the videoconvert and videoscale

elements, while the videorate element maintains frame timing consistency. H.264 com-
pression8 occurs through the x264enc element with zero-latency configuration, followed
by rtph264pay for RTP packetization. The udpsink elements manage RTP video trans-
mission and RTCP session control. The implementation captures timestamps at the mo-
ment of frame acquisition and synchronizes them with the hardware clock to minimize
processing delays. A rtpbin element manages the RTP session, handling transmission
timing and RTCP feedback.

Configuration and stream management interact through the observer pattern, where
StreamSender monitors device states via DeviceManager callbacks. This supports both
stream management and camera parameter reconfiguration.

Discovery Service Implementation

The Discovery Service implementation described in Section 3.2.3 implements service
registration and health monitoring through a layered architecture, shown in Figure 4.5.

RegistryServerImpl implements both HealthObserver and RegistryChangeObserver in-
terfaces to handle service health and registration signals. This implementation provides
a single registration point while using observer interfaces for component decoupling.

8H.264/AVC (Advanced Video Coding) is a video compression standard that provides high-quality video
at substantially lower bitrates than previous standards, making it suitable for real-time streaming
applications.

57

4 Implementation

Console Application Implementation

The console application implements system control functionality, addressing require-
ments for service management, command processing, and operation coordination. Fol-
lowing Section 3.2.3, the implementation comprises four components.

Console Interface Implementation The console interface implements command-
line control through command processing and service management. Figure 4.6 shows
the implementation structure based on the CliRunner class, which implements system
control according to Section 3.1.2.

Command processing uses a three-phase parsing system. A regex-based parser extracts
service names, commands, and parameter flags from input. This implementation sup-
ports both single-service commands and system-wide operations through a flag mecha-
nism, allowing operation targeting at both instance and service type levels.

The ServiceManager class implements service management by extending the Registry-

ChangeObserver interface. A thread-safe registry tracks local and remote services using
UUID-based identification. The implementation uses RAII principles and smart pointers
for resource management.

The command execution process follows a three-stage validation approach. First, the
system validates service existence and availability. Second, it verifies command support
by the target service. Third, it checks parameter flag completeness and format. This
separation enables specific error handling for each validation step.

A structured error handling system distinguishes between command syntax, service avail-
ability, and execution errors, providing specific responses for each case. The output
system generates error-specific feedback for command correction, enabling quick error
recovery. This combination of validation and feedback structures maintains real-time
processing with synchronized streams.

Several control mechanisms ensure reliable system operation. All services use a consis-
tent command syntax, supporting both instance-specific and broadcast execution modes.
Continuous status monitoring works alongside service discovery to track system state,
while a context-based help system adapts documentation to current service availabil-
ity.

59

4 Implementation

Figure 4.6: Console Application structure showing command processing and service management
components. The ServiceManager maintains service connections, while specialized
services handle specific system functionality.

This combination of validation and feedback structures supports the real-time processing
requirement (FR-6) while maintaining the stream synchronization targets (NFR-6).

Synchronization Implementation Frame acquisition and temporal alignment across
multiple video streams are handled by the synchronization component, which targets
synchronization within 33 ms. Figure 4.7 shows the classes and relationships in this
component. The RtpReceiver handles network video stream reception, while the Frame-

Synchronizer performs temporal alignment of frames across cameras.

Video Stream Reception Video stream reception uses GStreamer’s pipeline archi-
tecture. The RtpReceiver class processes multiple video streams, each identified by RTP
and RTCP port configurations. Each stream uses a dedicated pipeline for video data
processing, as shown in Figure 4.8.

60

4 Implementation

construction uses GStreamer’s pad addition mechanism through the OnPadAdded callback
as streams become available.

Frame Synchronization The FrameSychronizer employs a multithreaded architec-
ture with dedicated grabber threads per video stream and a central synchronization
thread for frame matching. The synchronization process uses timestamps with a 33 ms
grace period, corresponding to the frame period at 30 FPS.

The synchronization process starts with the ProcessAndQueueSample method process-
ing frames from GStreamer's appsink elements. This method extracts video data and
timestamps, creating Frame objects containing raw image data in OpenCV’s matrix for-
mat. Stream-specific queues, protected by individual mutexes, store these frames. The
FindSyncedFrames method analyses timestamp values of frames at each queue’s front,
applying the 33 ms timing window for frame matching. Frames exceeding this temporal
threshold are discarded, triggering new synchronization attempts.

Frame distribution uses the FrameHandler interface implementing the observer pattern.
This allows calibration and pose estimation components to process synchronized frames
independently. The implementation limits queue sizes to 300 frames (10 seconds at
30 FPS) to manage memory usage, removing older frames when this limit is reached.

Camera Calibration Implementation The camera calibration implementation em-
ploys a multithreaded workflow operating on synchronized video streams. Figure 4.9
illustrates the class structure implementing pattern detection, frame acquisition, and
parameter estimation components.

Pattern Detection and Capture The implementation uses a 7×4 chessboard pattern
with 50 mm squares for camera calibration. Operating at capture distances from 2 m
to 4 m, the asymmetric pattern layout prevents rotational ambiguity during detection.
The ChessboardPatternDetector processes calibration frames through findChessboard-

Corners, applying adaptive thresholding and sub-pixel refinement to achieve reprojection
errors below 1.0 pixel.

62

4 Implementation

Figure 4.9: Class diagram showing CalibrationCoordinator interactions with pattern detection,
frame management, and parameter estimation components.

Frame Acquisition through a lock-free single-producer-single-consumer queue in the
CalibrationFrameHandler. Operating with a 300-frame capacity (1̃0 sec at 30 FPS),
the handler processes intrinsic calibration frames independently while maintaining syn-
chronized queues for extrinsic calibration.

The pattern detection implementation includes a frame selection mechanism that op-
erates on a newest-frame policy. This design choice prioritizes temporal relevance of
calibration data by processing the most recent frames and discarding older ones when
processing cannot keep up with the input frame rate.

The CalibrationCoordinator processes camera streams in parallel through the pattern
detection interface. The implementation defaults to 20 images per camera for intrinsic
calibration, configurable through the calibration parameters. This default value satisfies
NFR-5’s reprojection error constraint of 1.0 pixel. Extrinsic calibration establishes the
world coordinate system through synchronized pattern capture, following OpenCV's right-
handed coordinate convention.

63

4 Implementation

The implementation determines camera poses through solvePnP, computing rotation
and translation matrices (R|t) between world and camera coordinates, as discussed in
Section 2.3. Among cv ::ITERATIVE, cv ::P3P, and cv ::EPNP, the implementation utilizes
cv ::ITERATIVE with Levenberg-Marquardt optimization [45], [50], [59] for reprojection
error minimization.

cv ::P3P implements Gao’s algorithm [24] for four-point scenarios, while cv ::EPNP of-
fers computational efficiency [44]. These methods did not achieve satisfactory accuracy
in the given setup, potentially due to the planar nature of the chessboard pattern or
image noise. The NFR-5 compliance is achieved using cv ::ITERATIVE, which performs
initial pose estimation via DLT or homography decomposition, followed by iterative
refinement [9, p. 675].

Projection matrices (P = K[R|t]) combine intrinsic and extrinsic parameters for each
camera. These matrices transform world points to image coordinates, supporting the
triangulation process detailed in Section 2.4.2.

Parameter Estimation and Validation The CalibrationEngine estimates camera
parameters through OpenCV’s calibrateCamera function. The implementation applies
CALIB_FIX_ASPECT_RATIO and CALIB_ZERO_TANGENT_DIST flags [9, p. 674], reflecting fixed
sensor aspect ratios and negligible tangential distortion in modern cameras.

The implementation enforces a 1.0 pixel reprojection error threshold before proceeding to
subsequent stages. Camera parameters and validation metrics persist in YAML format,
enabling rapid parameter validation during initialization.

Recovery from calibration failures operates at two levels: immediate user feedback for
pattern detection errors and diagnostic logging for parameter estimation failures. The
implementation maintains calibration data per camera, allowing independent retries of
failed calibrations while preserving successful results.

Mocap Pipeline Implementation

The mocap pipeline operates through interprocess communication between C++ and
Python components. Figure 4.10 illustrates the class structure connecting pose esti-
mation with the synchronization infrastructure described previously.

64

4 Implementation

Figure 4.10: Class diagram of the mocap pipeline, implementation showing the relationships
between its components.

Pose Detection Model MediaPipe’s landmark detection model processes 33 anatom-
ical points shown in Figure 4.11. The implementation executes two sequential stages per
frame: person detection and landmark localization. Each landmark output combines
spatial coordinates with a confidence score, filtering results below the 95% confidence
threshold. Frame processing is distributed across multiple worker threads to target
30 FPS performance.

Process Architecture and Communication The implementation uses shared mem-
ory for efficient data exchange between the C++ pipeline and Python-based pose estima-
tion process. MediaPipe’s framework architecture dictated the Python implementation
decision. While MediaPipe’s Python bindings provide a high-level API for pose detection
integration, its C++ implementation requires managing the Bazel9 build system, model
dependencies, and custom API development. MediaPipe’s C++ version provides example
code rather than a framework, necessitating wrapper classes and interfaces for graph
initialization, model loading, and result parsing.

The Python implementation accesses MediaPipe’s pose detection models and configu-
rations through pip-installable packages with an API that manages these complexities
internally, allowing focus on mocap functionality implementation.

As illustrated in Figure 4.12, the shared memory structure implements a hierarchical or-
ganization with distinct sections for control, frame data, and pose results. The memory

9An open-source build and test tool similar to Make, Maven, and Gradle that uses a human-readable,
high-level build language.

65

4 Implementation

Face Landmarks
0 Nose
1 Left eye (inner) 4 Right eye (inner)
2 Left eye 5 Right eye
3 Left eye (outer) 6 Right eye (outer)
7 Left ear 8 Right ear
9 Mouth (left) 10 Mouth (right)

Upper Body Landmarks
11 Left shoulder 12 Right shoulder
13 Left elbow 14 Right elbow
15 Left wrist 16 Right wrist
17 Left pinky 18 Right pinky
19 Left index 20 Right index
21 Left thumb 22 Right thumb

Lower Body Landmarks
23 Left hip 24 Right hip
25 Left knee 26 Right knee
27 Left ankle 28 Right ankle
29 Left heel 30 Right heel
31 Left foot index 32 Right foot index

Figure 4.11: MediaPipe pose landmark configuration showing the 33 tracked anatomical points
and their connections, with landmarks grouped by body region. (Source: MediaPipe
Documentation [25])

layout begins with a header section containing control structures and synchronization
primitives. Each camera stream maintains independent frame and pose buffers, with
64-byte alignment to prevent false sharing in multithreaded access patterns. The im-
plementation sets a buffer capacity of 300 frames per camera, accommodating 1̃0 s of
video at 30 FPS.

Stream synchronization uses atomic sequence counters for frame reading and writing
operations. Each stream maintains separate counters for frame and pose data, enabling
independent tracking of frame processing and pose result generation. This design al-
lows the pose estimation process to work asynchronously while maintaining temporal
consistency through frame timestamps.

The shared memory implementation includes validation mechanisms that verify struc-
ture alignment, buffer sizing, and memory layout integrity during initialization. This
validation ensures consistent memory interpretation between C++ and Python processes,
preventing data corruption and misalignment issues.

66

4 Implementation

64B

64B

64B

64B

64B

SharedMemoryHeader 64-byte aligned

StreamLayout[2] 64-byte aligned

StreamSync[2] 64-byte aligned

Frame Buffers 64-byte aligned

Pose Buffers 64-byte aligned

T
o
ta
l
M
e
m
o
ry

R
a
n
g
e

Figure 4.12: Shared memory layout showing the hierarchical organization of header, stream man-
agement, and data buffer sections. All sections are 64-byte aligned to optimize cache
utilization and prevent false sharing.

Frame Processing Implementation The frame processing implementation centers
on the MediaPipeFrameHandler, managing the interface between the synchronization sys-
tem and pose estimation process. The handler implements a multithreaded architecture
with dedicated queues per camera stream, allowing independent frame processing while
maintaining temporal synchronization.

Frame handling occurs through a processing loop monitoring frame availability from RTP
receivers. When frames arrive, the handler implements a lock-free queue system with 600
frames capacity per camera. This queue size handles processing rate variations while
preventing unbounded memory growth. The implementation uses separate read and
write indices per camera stream, enabling efficient frame management without explicit
locking mechanisms.

The Python process initialization incorporates a validation phase verifying system capa-
bilities and configuring GPU acceleration when available. The implementation creates
separate worker threads per camera, each maintaining its own MediaPipe pose estima-
tion instance. This approach enables parallel processing of frames from different cameras
while avoiding resource contention.

Pose Estimation Pipeline The pose estimation process implements a worker pool
with defaulting to four threads per camera. Each worker thread maintains an indepen-
dent MediaPipe pose detector instance configured for real-time performance. Following
MediaPipe’s pose landmark model specifications [25], the detector uses model complexity
2 (offering 33 pose landmarks) and a detection confidence threshold of 0.7. These param-
eters balance detection accuracy with processing speed, while the confidence threshold
minimizes false positives [5], [48]. Frame processing follows a staged approach:

67

4 Implementation

1. Frame conversion for MediaPipe compatibility

2. Pose estimation through MediaPipe’s detection pipeline

3. Keypoint extraction and confidence calculation

4. Result synchronization back to the C++ process

The implementation monitors processing performance through timing metrics at each
stage. When processing delays exceed the frame interval, the system applies frame
skipping to maintain real-time operation while avoiding queue overflow.

3D Reconstruction Implementation The 3D reconstruction component imple-
ments triangulation of 2D pose detections into 3D coordinates through the OpenCV-

DLTTriangulator class. The implementation uses DLT for triangulation while managing
pose pair synchronization and result validation.

Pose Pair Management The implementation uses the PoseQueueImpl to manage
temporal synchronization of 2D poses from different cameras. The queue maintains
poses with a configurable age limit, defaulting to 100 ms to match latency requirements,
handling processing delays while preventing memory accumulation. When poses from
corresponding frames arrive, the queue forms OrderedPosePair structures for triangula-
tion.

Triangulation Process To ensure accurate 3D reconstruction, the triangulation im-
plementation processes pose pairs through several stages. The input keypoints from
MediaPipe, provided in normalized image coordinates [0, 1], first undergo coordinate
transformation. These points are converted to pixel coordinates using the image dimen-
sions, then transformed to camera coordinates using the inverse of the camera matrix
and undistortion parameters when applicable.

Point validation examines each keypoint pair through confidence thresholds and visibility
checks. The implementation requires detected points to exceed the 95% confidence
threshold (configurable, default matching NFR-4), while maintaining a minimum number
of valid corresponding points between views for triangulation (configurable, default 33
points10).

10Matching MediaPipe’s tracked landmarks

68

4 Implementation

The core triangulation computation employs OpenCV’s triangulatePoints function us-
ing the calibrated projection matrices and the transformed camera coordinates. This
DLT approach produces homogeneous coordinates in world space (in millimeters), which
the implementation then normalizes to obtain Euclidean 3D point representations.

Quality assessment concludes the triangulation process through reprojection error anal-
ysis. The implementation projects the computed 3D points back to each camera’s view
and measures the deviation from the original detections. Reconstructions exceeding the
configured maximum reprojection error threshold (default 1.0 pixel as per NFR-3) are
rejected, ensuring only valid 3D poses progress through the pipeline.

Data Export Implementation The implementation realizes FR-5 through the Pose-

OutputInterface callback interface. A concrete CSVPoseWriter implementation provides
buffered CSV output containing frame timestamps, 3D coordinates, confidence scores,
and reprojection errors for each detected landmark. The implementation maintains the
30 FPS processing requirement through configurable buffer sizes, reducing I/O opera-
tions while handling continuous data streams.

4.3 Summary

The implementation establishes a distributed mocap system through a modular service
architecture encompassing video capture, pose estimation, and 3D reconstruction. The
system integrates GStreamer for stream processing, MediaPipe for pose detection, and
OpenCV for computer vision operations. Key capabilities include multi-camera opera-
tion with automated calibration, real-time pose estimation, and 3D reconstruction. The
implementation employs both C++ and Python components, utilizing shared memory for
efficient inter-process communication.

The following chapter presents a systematic evaluation of this implementation, examining
performance metrics and accuracy measures under controlled laboratory conditions to
assess fulfilment of the specified requirements.

69

5 Evaluation and Discussion

This chapter presents the evaluation of the implemented mocap system in terms of
both functional capabilities and overall performance. Given the challenges of obtaining
ground truth data without specialized equipment, the evaluation focuses on quantifiable
performance metrics and acknowledges the inherent limitations in absolute accuracy
assessment. The tests were conducted under controlled laboratory conditions, using two
DMK 32BUR0521 [78] industrial cameras at 1080p and 30 FPS. While the system
was designed for distributed operation, the evaluation employed a single development
machine running multiple distributed components to validate core functionality and
performance.

5.1 Evaluation Methodology

The evaluation employed a systematic approach across three areas: environment configu-
ration, data collection, and performance metrics. The test setup utilized consumer-grade
hardware combined with industrial cameras to validate the system’s practicality in real-
world scenarios.

5.1.1 Test Environment Setup

The evaluation environment included an AMD Ryzen 7 3700X Central Processing Unit
(CPU) and an NVIDIA GeForce RTX 2080 GPU. Two DMK 32BUR0521 cameras
provided synchronized, high-resolution video input. This setup is representative of the
intended deployment scenario, allowing a realistic assessment of system performance and
accuracy.

70

5 Evaluation and Discussion

5.1.2 Data Collection Approach

Instrumentation combined direct timing measurements in Python-based components
with Tracy profiling [81] for the C++ modules. The Python pose estimation compo-
nent, identified as a potential bottleneck, was instrumented for frame-level timing. The
C++ pipeline, responsible for frame streaming, synchronization, and 3D reconstruction,
was profiled using Tracy to gain detailed insights into execution times and resource us-
age. Detailed profiling data is provided in Appendix B. This combined approach ensured
a comprehensive performance analysis.

5.1.3 Evaluation Metrics

The evaluation criteria include the following key metrics:

Processing Pipeline Performance: End-to-end frame processing time from capture to 3D
pose output. The target was 30 FPS, implying a maximum of 33 ms per frame.

Calibration Accuracy: Measured by reprojection error. A threshold of 1.0 pixel was set to
ensure sufficient calibration quality.

Pose Detection Quality: Confidence scores from MediaPipe’s pose estimation. A 95% key-
point confidence threshold was established for reliable detection.

Stream Synchronization: Verified by comparing timestamps to ensure frame alignment
within the 33 ms interval.

3D Reconstruction Accuracy: Evaluated through reprojection checks and qualitative com-
parisons against measured reference points. While no absolute ground truth was
available, the system’s reconstruction fidelity is gauged through consistency and
plausibility checks.

5.2 System Performance Analysis

Performance evaluation examined two distinct architectural components: the Python-
based pose estimation pipeline and the C++ streaming/reconstruction pipeline. The anal-
ysis focused on identifying processing characteristics, resource utilization, and potential
bottlenecks in each component.

71

5 Evaluation and Discussion

5.2.1 Python Pose Estimation Component

Tests were conducted with single-, dual-, and quad-worker configurations per camera
to assess parallelization effects. The single-worker setup achieved approximately 5FPS,
while the dual-worker configuration initially reached about 14 FPS before diminish-
ing over time. Surprisingly, the quad-worker configuration degraded performance to
4–5 FPS. None of these configurations met the 30 FPS target.

During testing, measured MediaPipe pose estimation times remained relatively stable
(approximately 19 ms for camera 0 and 24 ms for camera 1), irrespective of thread
configuration. This consistency indicates a fundamental processing limit dominated
by the MediaPipe component. Although MediaPipe offers GPU acceleration options in
certain configurations, the version integrated with the Python binding in this system was
CPU-bound. Consequently, increased threading did not significantly reduce processing
times, as CPU resources were already heavily utilized. This CPU-bound pose estimation
step emerged as the principal bottleneck in achieving the target frame rate.

Frame reading remained at 4–5 ms. Queue management, however, showed significant
Frame backlog1 growth, especially in the single- and quad-worker setups, leading to
substantial processing delays and reduced throughput.

In summary, the Python-based pose estimation component remained CPU-bound, with
MediaPipe processing times showing little sensitivity to threading configurations. The
absence of effective GPU acceleration and the constraints imposed by Python’s Global
Interpreter Lock (GIL)2 prevented any meaningful parallelization gains. As a result,
pose estimation performance stabilized at a level insufficient to meet the 30 FPS target,
ultimately limiting the overall throughput of the system’s processing pipeline.

5.2.2 Streaming and Reconstruction Pipeline

Profiling of the C++ modules showed efficient operation, with most tasks remaining well
below the 33 ms per frame budget. Frame synchronization averaged 11.07 ms, and

1A frame backlog occurs when incoming video frames arrive faster than they can be processed, causing
them to accumulate in a queue. This leads to increasing delays between when a frame is captured
and when its results are available, making real-time operation difficult or impossible.

2The Global Interpreter Lock (GIL) is a mutex that protects access to Python objects, preventing mul-
tiple native threads from executing Python bytecode simultaneously. While this simplifies Python’s
memory management, it can significantly limit performance in CPU-bound multithreaded applica-
tions by preventing true parallel execution.

72

5 Evaluation and Discussion

triangulation took about 1.54 ms per pose pair. Inter-process communication with the
Python component (writing frames and reading pose results) was efficient, with pose
result retrieval completing in microseconds.

To provide an overview, Table 5.1 summarizes key average processing times for ma-
jor pipeline components: Combining the processing times from the Python component

Component/Stage Avg. Processing Time

Python frame read / pose write 4–5 ms (read), 0.65 ms (write)
Python Pose Estimation (per frame) 43 ms
C++ Frame Synchronization 11.07 ms
C++ Frame Grabbing (critical path) 3̃.81 ms
C++ MediaPipe Handling (frame write/ pose read) 1.49 ms (write), 1̃ µs (read)
C++ Triangulation (incl. Extract/Process) 1.54 ms
C++ Pose Writing (batch every 100) 1.9 ms

Table 5.1: Timings of specific pipeline components

(53–79 ms) with the total average processing time for the C++ components (27.31 ms),
yields end-to-end times between 80.31 and 106.31 ms, corresponding to approximately
9–12 FPS. This does not meet the target of 30 FPS (NFR-1). The primary bottleneck
lies in the Python pose estimation step, which dominates total latency.

Key Takeaways for Performance:

• MediaPipe-driven pose estimation in Python is the main performance bottleneck.

• C++ components, including synchronization and triangulation, perform efficiently
and remain within acceptable time budgets.

• The end-to-end rate of 9–12 FPS is significantly below the 30 FPS target.

Figure 5.1: Tracy timeline showing thread activity for frame grabbing, synchronization, Medi-
aPipe processing, and triangulation in the 3D reconstruction pipeline.

73

5 Evaluation and Discussion

5.2.3 Latency Analysis

End-to-end latency exceeds the target 33 ms per frame due to the Python processing
stage. The faster acquisition rate (30 FPS input) compared to lower processing through-
put results in queue build-up. Over time, this leads to growing frame delays.

5.2.4 Resource Utilization

CPU utilization reached 100%, reflecting the high computational demands of the sys-
tem. Despite Python’s GIL limiting single-process thread parallelism, the multiprocess
architecture enabled full CPU utilization. GPU utilization remained moderate, high-
lighting potential untapped acceleration opportunities. Memory usage was stable, with
no significant leaks detected. Inter-process communication operated efficiently without
introducing major latency.

5.2.5 Multi-Camera Synchronization

Despite the performance constraints, multi-camera synchronization proved robust. Frame
timestamps remained aligned within the desired 33 ms interval. The synchronization
overhead of approximately 18–19 ms contributes to the total latency but was manage-
able. Differences in frame grabbing times between cameras (3.81 ms vs. 1.7 ms) did
not compromise synchronization quality. Temporal coherence was preserved, enabling
consistent 3D reconstruction despite the reduced overall frame rate.

5.3 Accuracy Assessment

The system’s accuracy was evaluated across four dimensions: calibration precision, pose
detection reliability, reconstruction accuracy, and environmental adaptability. Each di-
mension was assessed using quantitative metrics where possible, supplemented by qual-
itative analysis where necessary.

74

5 Evaluation and Discussion

5.3.1 Calibration Accuracy

Camera calibration consistently yielded reprojection errors below 0.3 pixels, surpassing
the 1.0 pixel target. This indicates good intrinsic and extrinsic parameter estimation,
supporting accurate 3D reconstruction.

5.3.2 Pose Detection Quality

MediaPipe pose estimation, tested under favourable lighting and minimal background
interference, yielded an average overall confidence of about 0.82. Core landmarks (e.g.,
hips and shoulders) consistently scored above 0.91, while extremities such as heels
(0.66–0.72) and elbows (0.67–0.70) were less reliable. Although these results were ob-
tained under controlled conditions, pose detection quality is known to degrade in more
complex environments. This variation in confidence, combined with environmental sen-
sitivities, prevented the system from meeting the 95% threshold defined by NFR-4. As
a result, the current level of pose detection reliability limits the system’s effectiveness in
diverse, real-world scenarios.

5.3.3 3D Reconstruction Accuracy

The accuracy of the 3D reconstruction pipeline, which uses OpenCV’s triangulate-

Points function, was evaluated by comparing computer-reconstructed coordinates against
physical measurements. The experimental setup consisted of two cameras positioned 4
meters from the subject, with a calibration checkerboard establishing the world coordi-
nate system at 2 meters distance. To assess reconstruction accuracy, keypoints in the
scene were selected and their triangulated coordinates were compared with direct phys-
ical measurements obtained using a measuring tape. For example, one reference point
was reconstructed at (-4.3 cm, 158.13 cm, -90.34 cm) through the vision system, while
physical measurements placed the same point at (-8.0 cm, 167.5 cm, -98.5 cm). The
discrepancies between these measurements—3.7 cm in X, 9.37 cm in Y, and 8.16 cm in
Z—suggest centimeter-level accuracy, though systematic biases may be present. How-
ever, the validation approach has notable limitations: the physical measurement process
introduces its own uncertainties, particularly for points that were difficult to access, and

75

5 Evaluation and Discussion

the sample size of measured points was limited. A more comprehensive accuracy as-
sessment would benefit from automated ground truth acquisition using precision motion
stages or optical tracking systems.

Figure 5.2: Multi-view human pose estimation results: (left) 2D pose detection from first camera
view, (middle) 2D pose detection from second camera view, and (right) the resulting
triangulated 3D pose reconstruction.

5.3.4 Environmental Impact Analysis

Testing under variable lighting (e.g., natural daylight in winter) showed that insufficient
illumination prevented effective operation. Pose detection also suffered in complex in-
door environments with common household objects, as illustrated in Figure 5.3. This
sensitivity to environmental conditions indicated that reliable operation depended heav-
ily on adequate lighting, a controlled background, and careful camera placement. Such
constraints limit the system’s robustness in typical indoor scenarios.

5.4 Requirements Fulfilment

This section analyses how well the implemented system met its defined functional and
non-functional requirements, followed by a discussion of key limitations identified during
testing.

76

5 Evaluation and Discussion

Figure 5.3: Checkerboard pattern with visualized world coordinate system axes (left), and (right)
an example of MediaPipe’s pose detection failure case where the algorithm incorrectly
detected human pose keypoints on a drawer instead of the actual person in the scene.

5.4.1 Functional Requirements Analysis

Table 5.2 presents the evaluation results for each functional requirement, indicating the
degree of fulfilment and providing supporting evidence from system testing.

5.4.2 Non-Functional Requirements Analysis

Table 5.3 summarizes the evaluation results for non-functional requirements, comparing
achieved performance against target specifications.

5.4.3 System Limitations

The evaluation revealed several limitations across performance, environmental, and tech-
nical domains. From a performance perspective, the Python-based pose estimation cre-
ates substantial processing overhead, with MediaPipe integration limiting achievable
frame rates. This is compounded by queue management complexities in multithreaded
configurations and inter-process communication overhead.

Environmental constraints impact system reliability. The implementation shows high
sensitivity to ambient lighting conditions and background complexity, requiring carefully
controlled capture environments. Camera placement requirements further restrict the
capture volume and system flexibility.

77

5 Evaluation and Discussion

Requirement Status Evaluation Results

FR-1
Multi-Camera Setup Fulfilled

3 Successful operation with stereo setup
m N-camera support implemented, but lim-

ited to two cameras due to pipeline perfor-
mance

3 Reliable synchronization within 33 ms in-
terval

FR-2
Camera Calibration Fulfilled

3 Automated process complete within
15 minutes

3 Reprojection errors < 0.3 pixels
3 Consistent performance across sessions

FR-3
2D Pose Estimation Partially

Fulfilled 5 Real-time pose estimation via MediaPipe
3 Confidence scores for all keypoints
5 Detection reliability varies significantly

with environmental conditions
5 Falls below 95% confidence threshold in

challenging conditions

FR-4
3D Reconstruction Partially

Fulfilled 3 Successful implementation of triangulation
m Limited occlusion handling
m Reasonable accuracy in controlled condi-

tions

FR-5
Data Export Fulfilled

3 CSV export successfully implemented
3 Raw coordinate data fully accessible
3 Architecture supports format extensibility

FR-6
Real-time Processing Partially

Fulfilled 5 Operates at 9.41–12.45 FPS
5 Below target 30 FPS performance
3 Maintains temporal coherence

Table 5.2: Functional Requirements Fulfilment Analysis

78

5 Evaluation and Discussion

Requirement Target Achieved Status

NFR-1: Processing Performance ≥ 30 FPS 9.41–12.45 FPS Not Fulfilled
NFR-2: System Latency ≤ 100 ms 80.31–106.31 ms Partially

Fulfilled
NFR-3: Reconstruction Quality ≤ 1.0 pixel < 0.3 pixels Fulfilled
NFR-4: Pose Confidence ≥ 95% ≤ 82% Not Fulfilled
NFR-5: Camera Calibration ≤ 1.0 pixel < 0.3 pixels Fulfilled
NFR-6: Stream Sync ≤ 33 ms ≤ 33 ms Fulfilled

Table 5.3: Non-Functional Requirements Fulfilment Analysis

Technical limitations include inadequate occlusion handling, restricting usage when sub-
ject visibility is partially blocked. While the system supports CSV data export, the
absence of industry-standard formats like BVH and FBX limits integration with profes-
sional mocap workflows. Limited validation capabilities for absolute accuracy complicate
quality assessment, and Python’s GIL prevents true parallel execution, leading to inef-
ficient resource utilization in multithreaded scenarios.

These limitations, particularly in processing performance and real-time capabilities, im-
pact the system’s practical applications and provide clear direction for future develop-
ment efforts in performance optimization, environmental robustness, and format sup-
port.

5.5 Discussion

The evaluation results highlight tradeoffs in system architecture, performance, and tech-
nical viability for markerless mocap, while suggesting clear paths for future develop-
ment.

5.5.1 Architecture Considerations

The distributed architecture offered modularity but added complexity in synchronization
and inter-process communication. Using Python for pose estimation accelerated initial
development but introduced performance bottlenecks through GIL restrictions, with the
multithreaded approach showing diminishing returns beyond two workers. Future itera-
tions would need to either implement everything in C++ , potentially replacing MediaPipe

79

5 Evaluation and Discussion

with a more efficient pose detection model, or at minimum use MediaPipe’s native APIs
and a more suitable threading model like a task system for the whole Pipeline.

5.5.2 Performance vs Usability Balance

The achieved 9–12 FPS and average pose confidence of 82% fall short of real-time mocap
requirements. While MediaPipe provided usable pose detection under ideal conditions,
its sensitivity to background objects and furniture limits practical indoor use. The
system architecture caused additional overhead through queue management and inter-
process communication. Improvements should focus on three areas: replacing Python
components with C++ implementations, evaluating alternative pose detection approaches
with better environmental robustness, and restructuring the processing pipeline to use a
task-based system instead of dedicated threads to reduce context switching and idle-wait
overhead.

5.5.3 Technical Viability Assessment

The system demonstrated basic markerless mocap functionality using industrial cameras
and standard computing hardware, achieving sub-centimeter calibration accuracy and
stable camera synchronization. While the current frame rate and environmental con-
straints limit practical applications, the implementation proves that the concept works:
accurate 3D pose reconstruction is possible using industrial cameras and open-source
components. The modular pipeline design provides a foundation for systematic im-
provements, particularly in pose detection and processing efficiency, to reach commercial
performance targets.

Beyond these technical considerations, several questions remain about broader appli-
cability and future directions. The following chapter examines these aspects in detail,
discussing the project’s key contributions, remaining challenges, and opportunities for
further development in both research and practical applications.

80

6 Conclusion and Future Work

6.1 Summary of Contributions

This thesis presented the development and implementation of a markerless mocap sys-
tem for smart home monitoring applications. The work focused on creating a distributed
system architecture that enables multi-camera operation using industrial cameras and
standard computing hardware The implementation separates video capture, pose esti-
mation, and 3D reconstruction into independent services, allowing flexible deployment
across processing nodes while maintaining temporal synchronization between camera
streams.

The system implementation achieved several technical objectives. The camera synchro-
nization remained within the 33 ms target interval, while the calibration process con-
sistently produced reprojection errors below 0.3 pixels, meeting the specified accuracy
requirements. Integration of MediaPipe’s pose detection with the custom 3D reconstruc-
tion pipeline enabled basic mocap functionality, though performance remained below the
targeted frame rate.

The evaluation process examined both technical performance and practical limitations
through systematic testing. Detailed timing analysis identified processing bottlenecks
and resource utilization patterns, providing quantitative data on system behaviour. This
analysis revealed specific constraints in the current implementation while highlighting
areas where future optimization could improve performance.

6.2 Limitations of the Current System

The implementation demonstrated several limitations during evaluation. In terms of
processing performance, the system operates at 9–12 frames per second, not meeting the
targeted 30 FPS requirement. This limitation stems primarily from the computational

81

6 Conclusion and Future Work

demands of the MediaPipe pose estimation component and the overhead introduced by
Python-based inter-process communication.

The system shows significant sensitivity to environmental conditions. Even under opti-
mal testing conditions—with clear backgrounds, no furniture, and consistent lighting—
the pose detection component achieved only 82% confidence, falling short of the specified
95% threshold. This performance was achieved in a controlled laboratory setting that
does not reflect typical residential environments. Preliminary testing in more realistic
conditions with furniture and variable lighting indicated substantially lower detection
reliability, particularly for tracking extremities like ankles and wrists.

Additional technical constraints affect system operation. The current implementation
provides only basic occlusion handling, which proves insufficient when furniture or room
layout obstruct camera views. The data export functionality supports only CSV format
output, lacking integration with established mocap formats like BVH or FBX.

While the distributed architecture enables system scalability, it introduces complexity
in deployment and operation. The inter-process communication and synchronization
mechanisms create overhead that, though acceptable in testing, could affect long-term
stability.

6.3 Future Research Directions

Based on the experiences throughout this thesis, several directions for future develop-
ment emerge. A fundamental enhancement would be implementing the pose estimation
directly in C++ . This architectural change would not only eliminate the current inter-
process communication overhead, but also enable full GPU acceleration and native Me-
diaPipe optimization that are currently limited by the Python bindings. By removing
these artificial constraints, the system could better utilize available processing resources
to approach the target frame rate of 30 FPS. Direct C++ implementation would also
allow for deeper integration with MediaPipe’s native features and more efficient memory
management, potentially improving both performance and accuracy.

The system’s environmental sensitivity, observed during both development and testing,
aligns with known challenges in vision-based pose estimation systems [74]. While tra-
ditional RGB-based approaches face inherent limitations in varying lighting conditions
and cluttered environments, the integration of depth sensors has been shown to improve

82

6 Conclusion and Future Work

robustness [76], [96]. Depth information can significantly enhance pose estimation accu-
racy by providing explicit 3D measurements [38], though this would need to be balanced
against the goal of using standard hardware.

The development process revealed particular challenges in occlusion handling that re-
quire attention for practical deployment. The current implementation would benefit from
tracking algorithms that can maintain pose estimates when body parts are temporarily
hidden from view [67]. As demonstrated in recent research [98], this could incorpo-
rate temporal movement prediction to bridge gaps in direct observation, leveraging the
inherent patterns in human motion

The distributed processing architecture, while proving effective for basic system opera-
tion, presents several opportunities for optimization. Stream synchronization and data
distribution methods could be refined to reduce overall system latency. Additionally,
the current GPU capabilities remain largely unused, suggesting potential performance
gains through hardware acceleration of specific processing steps.

6.4 Potential Applications and Impact

The system demonstrated both the potential and current limitations of markerless mocap
for smart home monitoring applications. The system successfully achieved core technical
objectives like sub-0.3 pixel calibration accuracy and reliable camera synchronization
within 33 ms intervals, establishing a foundation for movement tracking in residential
settings. The ability to process skeletal data without storing video footage proved the
feasibility of privacy-preserving monitoring, addressing a key requirement for smart home
applications.

However, the achieved performance metrics—9–12 FPS processing rate and 82% pose
confidence—fell short of the requirements for reliable real-time monitoring applications
like fall detection and activity recognition. The system’s sensitivity to furniture and
variable lighting conditions, typical challenges in residential environments, highlighted
the gap between laboratory testing and practical deployment scenarios.

The distributed architecture demonstrated that basic markerless mocap functionality
is achievable without specialized equipment. From an implementation perspective, this
thesis demonstrated the feasibility of integrating existing technologies like MediaPipe

83

6 Conclusion and Future Work

with industrial cameras into a basic motion tracking system for smart home environ-
ments.

From an implementation perspective, this thesis demonstrated the feasibility of inte-
grating existing technologies like MediaPipe with industrial cameras into a basic motion
tracking system for smart home environments. While performance and environmental
robustness need significant improvement, the distributed system architecture provides
useful insights for future development in this area.

This proof-of-concept achieved its primary goal of exploring the practical challenges of
markerless mocap in residential settings. The systematic evaluation of both technical
capabilities and limitations provides a clear foundation for understanding what improve-
ments would be needed for practical deployment, while demonstrating the complexity
and requirements of implementing mocap systems in smart home environments.

84

Bibliography

[1] S. Amin, M. Andriluka, M. Rohrbach, and B. Schiele, “Multi-view pictorial struc-
tures for 3d human pose estimation,” in British Machine Vision Conference,
BMVC 2013, Bristol, UK, September 9-13, 2013, T. Burghardt, D. Damen, W. W.
Mayol-Cuevas, and M. Mirmehdi, Eds., BMVA Press, 2013. DOI: 10.5244/C.27.
45. [Online]. Available: https://doi.org/10.5244/C.27.45.

[2] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele, “2d human pose esti-
mation: New benchmark and state of the art analysis,” in 2014 IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2014, pp. 3686–3693. DOI:
10.1109/CVPR.2014.471.

[3] Autodesk, Fbx overview, https://www.autodesk.com/products/fbx/overview,
Accessed: 2024-10-08, 2024.

[4] A. Banno, “A p3p problem solver representing all parameters as a linear combina-
tion,” Image and Vision Computing, vol. 70, pp. 55–62, 2018, ISSN: 0262-8856.
DOI: https://doi.org/10.1016/j.imavis.2018.01.001. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0262885618300027.

[5] V. Bazarevsky, I. Grishchenko, K. Raveendran, T. Zhu, F. Zhang, and M. Grund-
mann, “Blazepose: On-device real-time body pose tracking,” arXiv preprint arXiv:
2006.10204, 2020.

[6] Biovision, Biovision hierarchical (bvh) file format specification, Biovision Motion
Capture Company, Accessed via various online documentation, e.g., https://re
search.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html Accessed:
2024-10-08, 1992.

[7] Boost C++ libraries, Accessed: 2024-06-11, 2024. [Online]. Available: https :

//www.boost.org/.

85

Bibliography

[8] A. Bourke, K. O’Donovan, and A. M. Clifford, “Wearable and mobile technology
for fall prevention and balance improvement in older adults: A systematic review,”
Healthcare, vol. 9, no. 10, p. 1329, 2021. DOI: 10 . 3390 / healthcare9101329.
[Online]. Available: https://www.mdpi.com/2227-9032/9/10/1329.

[9] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with the OpenCV
Library. Sebastopol, CA: O’Reilly Media, Inc., 2008, ISBN: 9780596516130.

[10] D. C. Brown, “Close-range camera calibration,” Photogrammetric Engineering,
vol. 37, no. 8, pp. 855–866, 1971.

[11] S. Brown, The C4 model for visualising software architecture, Accessed: 2024-09-
28, 2024. [Online]. Available: https://c4model.com.

[12] M. Burenius, J. Sullivan, and S. Carlsson, “3d pictorial structures for multiple
view articulated pose estimation,” in Proceedings of the 2013 IEEE Conference on
Computer Vision and Pattern Recognition, ser. CVPR ’13, USA: IEEE Computer
Society, 2013, pp. 3618–3625, ISBN: 9780769549897. DOI: 10.1109/CVPR.2013.
464. [Online]. Available: https://doi.org/10.1109/CVPR.2013.464.

[13] C. Cao, Y. Weng, S. Zhou, Y. Tong, and K. Zhou, “Facewarehouse: A 3d facial
expression database for visual computing,” IEEE Transactions on Visualization
and Computer Graphics, vol. 20, no. 3, pp. 413–425, 2014. DOI: 10.1109/TVCG.
2013.249.

[14] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, “OpenPose: Realtime
multi-person 2D pose estimation using part affinity fields,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 43, no. 1, pp. 172–186, 2021.
DOI: 10.1109/TPAMI.2019.2929257.

[15] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d pose
estimation using part affinity fields,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017, pp. 1302–1310. DOI: 10.1109/
CVPR.2017.143.

[16] Y. Chen, Z. Wang, Y. Peng, Z. Zhang, G. Yu, and J. Sun, “Cascaded pyramid
network for multi-person pose estimation,” in 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2018, pp. 7103–7112. DOI: 10.1109/
CVPR.2018.00742.

[17] J. Dower and P. Langdale, Performing for Motion Capture: A Guide for Practi-
tioners. London: Bloomsbury Publishing, 2022, ISBN: 9781350211254.

86

Bibliography

[18] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: Part
i,” IEEE Robotics & Automation Magazine, vol. 13, no. 2, pp. 99–110, 2006. DOI:
10.1109/MRA.2006.1638022.

[19] Federal Institute for Research on Building, Urban Affairs and Spatial Develop-
ment, Household forecast 2020-2040, Accessed: 2024-11-10, 2021. [Online]. Avail-
able: https://www.bbsr.bund.de/BBSR/EN/home/topnews/houshold-forecast.
html.

[20] FFmpeg, Accessed: 2024-06-11, 2024. [Online]. Available: https://www.ffmpeg.
org/.

[21] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography,”
Communications of the ACM, vol. 24, no. 6, pp. 381–395, Jun. 1981, ISSN: 0001-
0782. DOI: 10.1145/358669.358692.

[22] W. Förstner and B. P. Wrobel, Photogrammetric Computer Vision, Statistics,
Geometry, Orientation and Reconstruction (Geometry and Computing), 1st ed.
Springer Cham, 2016, vol. 11, pp. XVII, 816, ISBN: 978-3-319-11550-4. DOI:
10.1007/978-3-319-11550-4. [Online]. Available: https://doi.org/10.1007/978-
3-319-11550-4.

[23] M. Furniss, “Motion capture: An overview,” Animation Journal, vol. 8, no. 2,
pp. 68–82, 2000.

[24] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng, “Complete solution classification
for the perspective-three-point problem,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 25, no. 8, pp. 930–943, 2003. DOI: 10.1109/

TPAMI.2003.1217599.

[25] Google, MediaPipe solutions: Pose landmarker, Accessed: 2024-06-11, 2024. [On-
line]. Available: https://ai.google.dev/edge/mediapipe/solutions/vision/

pose_landmarker/python.

[26] Google, Protocol buffers, Accessed: 2024-10-12, 2024. [Online]. Available: https:
//protobuf.dev/.

[27] gRPC Authors, Grpc, https://grpc.io, Accessed: 2024-09-29, Cloud Native
Computing Foundation, 2024.

[28] J. A. Grunert, “Das Pothenotische Problem in erweiterter Gestalt nebst über seine
Anwendungen in der Geodäsie,” Grunerts Archiv für Mathematik und Physik,
vol. 1, pp. 238–248, 1841.

87

Bibliography

[29] S. M. Grünvogel, Einführung in die Computeranimation: Methoden, Algorithmen,
Grundlagen, German. Wiesbaden: Springer Vieweg, 2024, p. 623, ISBN: 978-3-
658-41988-2.

[30] GStreamer, Gstreamer: Open source multimedia framework, https://gstreamer.
freedesktop.org/, Accessed: 2024-06-20, 2024.

[31] T. Hanning, High Precision Camera Calibration, 1st ed. Wiesbaden: Vieweg+Teub-
ner Verlag, 2011, p. 212, ISBN: 978-3-8348-1413-5. DOI: 10.1007/978-3-8348-
9830-2.

[32] R. Haralick, H. Joo, C. Lee, X. Zhuang, V. Vaidya, and M. Kim, “Pose estima-
tion from corresponding point data,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. 19, no. 6, pp. 1426–1446, 1989. DOI: 10.1109/21.44063.

[33] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision,
2nd ed. Cambridge: Cambridge University Press, 2004, ISBN: 9780511811685.
DOI: 10.1017/CBO9780511811685.

[34] R. I. Hartley and P. Sturm, “Triangulation,” Computer Vision and Image Under-
standing, vol. 68, no. 2, pp. 146–157, 1997, ISSN: 1077-3142. DOI: https://doi.
org/10.1006/cviu.1997.0547. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1077314297905476.

[35] HAW Hamburg, Living place laboratory - exploring human-technology interaction,
Accessed: 2024-11-10, 2024. [Online]. Available: https://livingplace.haw-hamb
urg.de/.

[36] J. Heikkila, “Geometric camera calibration using circular control points,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 10,
pp. 1066–1077, 2000. DOI: 10.1109/34.879788.

[37] S. Hu, S. Cao, N. Toosizadeh, J. Barton, M. G. Hector, and M. J. Fain, “Radar-
based fall detection: A survey [survey],” IEEE Robotics & Automation Magazine,
vol. 31, no. 3, pp. 170–185, Sep. 2024, ISSN: 1558-223X. DOI: 10.1109/mra.2024.
3352851. [Online]. Available: http://dx.doi.org/10.1109/MRA.2024.3352851.

[38] K. Iskakov, E. Burkov, V. Lempitsky, and Y. Malkov, “Learnable triangulation
of human pose,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2019.

88

Bibliography

[39] R. Kanko, E. Laende, E. Davis, W. Selbie, and K. Deluzio, “Concurrent assess-
ment of gait kinematics using marker-based and markerless motion capture,”
Journal of Biomechanics, vol. 127, p. 110 665, 2021. DOI: 10.1101/2020.12.10.
420075.

[40] L. Kneip, “Real-time scalable structure from motion: From fundamental geomet-
ric vision to collaborative mapping,” Ph.D. dissertation, ETH Zurich, 2013.

[41] L. Kneip, H. Li, and Y. Seo, “Upnp: An optimal o(n) solution to the absolute pose
problem with universal applicability,” in Computer Vision – ECCV 2014, D. Fleet,
T. Pajdla, B. Schiele, and T. Tuytelaars, Eds., Cham: Springer International
Publishing, 2014, pp. 127–142, ISBN: 978-3-319-10590-1.

[42] M. Kocabas, N. Athanasiou, and M. J. Black, “Vibe: Video inference for human
body pose and shape estimation,” in The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2020.

[43] E. Lengyel, Mathematics for 3D Game Programming and Computer Graphics,
3rd. Boston, MA: Cengage Learning, Inc, 2011, p. 545, ISBN: 978-1435458864.

[44] V. Lepetit, F. Moreno-Noguer, and P. Fua, “EPnP: An Accurate O(n) Solution
to the PnP Problem,” International Journal of Computer Vision, vol. 81, no. 2,
pp. 155–166, Feb. 2009. DOI: 10.1007/s11263-008-0152-6.

[45] K. Levenberg, “A method for the solution of certain non-linear problems in least
squares,” Quarterly of Applied Mathematics, vol. 2, no. 2, pp. 164–168, 1944.

[46] Y. Li et al., “Tokenpose: Learning keypoint tokens for human pose estimation,”
in IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

[47] M. Lopez, R. Mari, P. Gargallo, Y. Kuang, J. Gonzalez-Jimenez, and G. Haro,
“Deep single image camera calibration with radial distortion,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Jun. 2019.

[48] C. Lugaresi et al., “MediaPipe: A framework for building perception pipelines,”
arXiv preprint arXiv:1906.08172, 2019.

[49] Markets and Markets, Smart home market by product, software & services, sales
channel, and region - global forecast to 2029, Accessed: 2024-11-10, 2024. [Online].
Available: https://www.marketsandmarkets.com/Market-Reports/smart-homes-
and-assisted-living-advanced-technologie-and-global-market-121.html.

89

Bibliography

[50] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear pa-
rameters,” SIAM Journal on Applied Mathematics, vol. 11, no. 2, pp. 431–441,
1963.

[51] J. Martinez, R. Hossain, J. Romero, and J. J. Little, “A simple yet effective
baseline for 3d human pose estimation,” in 2017 IEEE International Conference
on Computer Vision (ICCV), 2017, pp. 2659–2668. DOI: 10.1109/ICCV.2017.
288.

[52] Medical Alert Advice, Risks and limitations of medical alert systems, Accessed:
2024-11-10, 2023. [Online]. Available: https://www.medicalalertadvice.com/

articles/risks-limitations-of-medical-alert-systems/.

[53] D. Mehta et al., “Vnect: Real-time 3d human pose estimation with a single rgb
camera,” ACM Trans. Graph., vol. 36, no. 4, Jul. 2017, ISSN: 0730-0301. DOI:
10.1145/3072959.3073596. [Online]. Available: https://doi.org/10.1145/

3072959.3073596.

[54] A. Menache, Understanding Motion Capture for Computer Animation (The Mor-
gan Kaufmann Series in Computer Graphics), Second. Elsevier: Morgan Kauf-
mann, 2011, Copyright © 2011 Elsevier Inc. All rights reserved, ISBN: 978-0-12-
381496-8. [Online]. Available: https://doi.org/10.1016/C2009-0-62989-5.

[55] Microsoft Corporation, Azure kinect developer kit, https://news.microsoft.com,
Accessed: 2024-11-10, 2019. [Online]. Available: https://news.microsoft.com/
wp-content/uploads/prod/2019/02/FACT-SHEET-_Azure-Kinect-DK.pdf.

[56] Microsoft Corporation, Kinect for xbox 360, https://www.microsoft.com/, Ac-
cessed: 2024-11-10, 2010. [Online]. Available: https://www.microsoft.com/.

[57] T. B. Moeslund and E. Granum, “A survey of computer vision-based human
motion capture,” Computer Vision and Image Understanding, vol. 81, no. 3,
pp. 231–268, 2001, ISSN: 1077-3142. DOI: https://doi.org/10.1006/cviu.2000.
0897. [Online]. Available: https://www.sciencedirect.com/science/article/

pii/S107731420090897X.

[58] T. B. Moeslund, A. Hilton, and V. Krüger, “A survey of advances in vision-
based human motion capture and analysis,” Computer Vision and Image Un-
derstanding, vol. 104, no. 2, pp. 90–126, 2006, ISSN: 1077-3142. DOI: https:

//doi.org/10.1016/j.cviu.2006.08.002. [Online]. Available: https://www.

sciencedirect.com/science/article/pii/S1077314206001263.

90

Bibliography

[59] J. J. Moré, “The levenberg-marquardt algorithm: Implementation and theory,”
in Numerical Analysis, G. A. Watson, Ed., Berlin, Heidelberg, 1978, pp. 105–116,
ISBN: 978-3-540-35972-2.

[60] F. Mueller, D. Mehta, O. Sotnychenko, S. Sridhar, D. Casas, and C. Theobalt,
“Real-time hand tracking under occlusion from an egocentric rgb-d sensor,” in
Proceedings of International Conference on Computer Vision (ICCV), 2017. [On-
line]. Available: https://handtracker.mpi-inf.mpg.de/projects/OccludedHands
/.

[61] G. Nakano, “A simple direct solution to the perspective-three-point problem,” in
Proceedings of the British Machine Vision Conference (BMVC), Sep. 2019.

[62] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for human pose
estimation,” in Computer Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and
M. Welling, Eds., Cham: Springer International Publishing, 2016, pp. 483–499,
ISBN: 978-3-319-46484-8. DOI: 10.1007/978-3-319-46484-8_29.

[63] J. O’Brien, R. Bodenheimer, G. Brostow, and J. Hodgins, “Automatic joint
parameter estimation from magnetic motion capture data.,” in Proceedings of
Graphics Interface 2000, Jan. 2000, pp. 53–60.

[64] OpenCV Contributors, Opencv: Open source computer vision library, Accessed:
2024-07-10, 2023. [Online]. Available: https://docs.opencv.org/4.x/index.

html.

[65] O. Ozyesil, V. Voroninski, R. Basri, and A. Singer, “A survey on structure from
motion,” Acta Numerica, vol. 26, Jan. 2017. DOI: 10.1017/S096249291700006X.

[66] G. Pavlakos, X. Zhou, K. G. Derpanis, and K. Daniilidis, “Coarse-to-fine volu-
metric prediction for single-image 3d human pose,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017, pp. 1263–1272. DOI:
10.1109/CVPR.2017.139.

[67] D. Pavllo, C. Feichtenhofer, D. Grangier, and M. Auli, “3d human pose estimation
in video with temporal convolutions and semi-supervised training,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 7753–7762.

[68] M. Persson and K. Nordberg, “Lambda twist: An accurate fast robust perspec-
tive three point (p3p) solver,” in Computer Vision - ECCV 2018: 15th Euro-
pean Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part

91

Bibliography

IV, Berlin, Heidelberg: Springer-Verlag, 2018, pp. 334–349, ISBN: 978-3-030-
01224-3. DOI: 10.1007/978-3-030-01225-0_20. [Online]. Available: https:

//doi.org/10.1007/978-3-030-01225-0_20.

[69] PhaseSpace Inc., Phasespace x2e motion capture system, https://www.phasespa
ce.com/x2e-motion-capture/, Accessed: 2024-11-10, 2024.

[70] F. Remondino and S. El-Hakim, “Image-based 3d modelling: A review,” The
Photogrammetric Record, vol. 21, no. 115, pp. 269–291, 2006. DOI: https://doi.
org/10.1111/j.1477-9730.2006.00383.x. eprint: https://onlinelibrary.wiley.
com/doi/pdf/10.1111/j.1477-9730.2006.00383.x. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/j.1477-9730.2006.00383.x.

[71] H. Rhodin et al., “Learning monocular 3d human pose estimation from multi-view
images,” Proceedings / CVPR, IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, vol. 2018, pp. 8437–8446, Jun. 2018. DOI:
10.1109/CVPR.2018.00880.

[72] J. G. Richards, “The measurement of human motion: A comparison of commer-
cially available systems,” Human Movement Science, vol. 18, no. 5, pp. 589–602,
1999, ISSN: 0167-9457. DOI: https://doi.org/10.1016/S0167-9457(99)00023-
8. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167945799000238.

[73] D. Roetenberg, H. Luinge, and P. Slycke, “Xsens mvn: Full 6dof human motion
tracking using miniature inertial sensors,” Xsens Motion Technol. BV Tech. Rep.,
vol. 3, Jan. 2009.

[74] N. Sarafianos, B. Boteanu, B. Ionescu, and I. A. Kakadiaris, “3d human pose
estimation: A review of the literature and analysis of covariates,” Computer Vi-
sion and Image Understanding, vol. 152, pp. 1–20, 2016, ISSN: 1077-3142. DOI:
https://doi.org/10.1016/j.cviu.2016.09.002. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S1077314216301369.

[75] T. Sharp et al., “Accurate, robust, and flexible real-time hand tracking,” in Pro-
ceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems, ser. CHI ’15, Seoul, Republic of Korea: Association for Computing Ma-
chinery, 2015, pp. 3633–3642, ISBN: 9781450331456. DOI: 10.1145/2702123.
2702179. [Online]. Available: https://doi.org/10.1145/2702123.2702179.

92

Bibliography

[76] J. Shotton et al., “Efficient human pose estimation from single depth images,”
IEEE transactions on pattern analysis and machine intelligence, vol. 35, pp. 2821–
40, Dec. 2013. DOI: 10.1109/TPAMI.2012.241.

[77] I. Sommerville, Software Engineering, Global Edition, 10th ed. Harlow, England:
Pearson, 2015, p. 816, ISBN: 978-1-292-09613-1.

[78] T. I. Source, Dmk 32bu-r0521, https://www.theimagingsource.com/de-de/

product/industrial/32u/dmk32bur0521/, Accessed: 2024-3-12, 2024.

[79] D. Sun, S. Wang, H. Xia, C. Zhang, J. Gao, and M. Mao, “Human pose estimation
based on cross-view feature fusion,” The Visual Computer, vol. 40, pp. 6581–
6597, Sep. 2024. DOI: 10.1007/s00371-023-03184-3. [Online]. Available: https:
//doi.org/10.1007/s00371-023-03184-3.

[80] R. Szeliski, Computer Vision: Algorithms and Applications (Texts in Computer
Science), 2nd ed. Cham: Springer, 2022, pp. XXII, 925, ISBN: 978-3-030-34371-
2. DOI: 10.1007/978-3-030-34372-9.

[81] B. Taudul, Tracy profiler, Accessed: 2024-2-12, 2024. [Online]. Available: https:
//github.com/wolfpld/tracy.

[82] The MathWorks, Inc., Matlab documentation, Accessed: 2024-07-10, 2023. [On-
line]. Available: https://de.mathworks.com/help/matlab/.

[83] A. Toshev and C. Szegedy, “Deeppose: Human pose estimation via deep neural
networks,” in 2014 IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2014, pp. 1653–1660. DOI: 10.1109/CVPR.2014.214.

[84] B. Triggs, “Autocalibration from planar scenes,” in Proceedings of the 5th Eu-
ropean Conference on Computer Vision-Volume I - Volume I, ser. ECCV ’98,
Berlin, Heidelberg: Springer-Verlag, 1998, pp. 89–105, ISBN: 3540645691.

[85] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle ad-
justment — a modern synthesis,” in Vision Algorithms: Theory and Practice, B.
Triggs, A. Zisserman, and R. Szeliski, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2000, pp. 298–372, ISBN: 978-3-540-44480-0.

[86] R. Tsai, “A versatile camera calibration technique for high-accuracy 3d machine
vision metrology using off-the-shelf tv cameras and lenses,” IEEE Journal on
Robotics and Automation, vol. 3, no. 4, pp. 323–344, 1987. DOI: 10.1109/JRA.
1987.1087109.

93

Bibliography

[87] Y. Wang and G. Mori, “Multiple tree models for occlusion and spatial constraints
in human pose estimation,” in Proceedings of the 10th European Conference on
Computer Vision: Part III, ser. ECCV ’08, Marseille, France: Springer-Verlag,
2008, pp. 710–724, ISBN: 9783540886891. DOI: 10.1007/978-3-540-88690-

7_53. [Online]. Available: https://doi.org/10.1007/978-3-540-88690-7_53.

[88] T. Weise, S. Bouaziz, H. Li, and M. Pauly, “Realtime performance-based facial
animation,” ACM Trans. Graph., vol. 30, no. 4, Jul. 2011, ISSN: 0730-0301.
DOI: 10.1145/2010324.1964972. [Online]. Available: https://doi.org/10.1145/
2010324.1964972.

[89] J. Weng, P. Cohen, and M. Herniou, “Camera calibration with distortion models
and accuracy evaluation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 14, no. 10, pp. 965–980, 1992. DOI: 10.1109/34.159901.

[90] D. A. Winter, Biomechanics and Motor Control of Human Movement. Wiley
Online Library: John Wiley & Sons, Inc., 2009, ISBN: 9780470398180. DOI:
10.1002/9780470549148.

[91] Y. Xu, J. Zhang, Q. Zhang, and D. Tao, “ViTPose: Simple vision transformer
baselines for human pose estimation,” in Advances in Neural Information Pro-
cessing Systems, 2022.

[92] Y. Yuan et al., Hrformer: High-resolution transformer for dense prediction, 2021.

[93] W. Zhang, J. Fang, X. Wang, and W. Liu, “Efficientpose: Efficient human pose
estimation with neural architecture search,” Computational Visual Media, vol. 7,
no. 3, pp. 335–347, Sep. 2021. DOI: 10.1007/s41095-021-0214-z. [Online].
Available: https://doi.org/10.1007/s41095-021-0214-z.

[94] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp. 1330–1334,
2000. DOI: 10.1109/34.888718.

[95] Z. Zhang, “Camera calibration with one-dimensional objects,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 26, no. 7, pp. 892–899, 2004.
DOI: 10.1109/TPAMI.2004.21.

[96] Z. Zhang, “Microsoft kinect sensor and its effect,” IEEE MultiMedia, vol. 19,
no. 2, pp. 4–10, 2012. DOI: 10.1109/MMUL.2012.24.

94

Bibliography

[97] Q. Zhao, C. Zheng, M. Liu, P. Wang, and C. Chen, “Poseformerv2: Exploring
frequency domain for efficient and robust 3d human pose estimation,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2023, pp. 8877–8886.

[98] C. Zheng, S. Zhu, M. Mendieta, T. Yang, C. Chen, and Z. Ding, “3d human pose
estimation with spatial and temporal transformers,” Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2021.

[99] Z. Zhenqing, D. Ye, X. Zhang, G. Chen, and B. Zhang, “Improved direct lin-
ear transformation for parameter decoupling in camera calibration,” Algorithms,
vol. 9, p. 31, Apr. 2016. DOI: 10.3390/a9020031.

[100] F. Zhou and G. Zhang, “Complete calibration of a structured light stripe vi-
sion sensor through planar target of unknown orientations,” Image and Vision
Computing, vol. 23, no. 1, pp. 59–67, 2005, ISSN: 0262-8856. DOI: https :

//doi.org/10.1016/j.imavis.2004.07.006. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S026288560400188X.

[101] H. Zhou and H. Hu, “Human motion tracking for rehabilitation–a survey,” Biomed-
ical Signal Processing and Control, vol. 3, pp. 1–18, Jan. 2008. DOI: 10.1016/j.
bspc.2007.09.001.

[102] Y. Zhou, M. Habermann, W. Xu, I. Habibie, C. Theobalt, and F. Xu, “Monocular
real-time hand shape and motion capture using multi-modal data,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Jun. 2020, pp. 5345–5354. DOI: 10.1109/CVPR42600.2020.00539.

95

A Digital Attachment

The following folder structure can be found on the data carrier:

• documentation: Contains this document as Latex files and PDF.

• data_analysis: Contains raw data and analysis files generated during develop-
ment and evaluation.

• images: Contains all self-created graphics/diagrams of this work.

• code: Contains the complete source code of the developed software.

96

B Profiling Data

This appendix presents the detailed profiling data collected using Tracy [81] for the
C++ components of the motion capture pipeline.

B.1 Timing Statistics

Table B.1 presents the raw timing statistics for all significant C++ pipeline components.

B.2 Performance Distributions

Figures B.1–B.16 show the timing distributions for each C++ pipeline component.

97

B Profiling Data

C
om

po
ne

nt
C

ou
nt

M
ea

n
(n

s)
M

ed
ia

n
(n

s)
M

in
(n

s)
M

ax
(n

s)

C
re

at
e3

D
Po

se
25
1

2.
14

e2
1.
51

e2
9.
00

e1
1.
11

e3
Ex

tr
ac

tV
al

id
Po

in
ts

25
1

1.
19

e6
6.
81

e5
2.
41

e5
1.
06

e7
Fi

nd
Sy

nc
ed

Po
se

s
28

74
3

3.
20

e3
1.
08

e3
9.
00

e1
4.
78

e6
Fo

un
d

sy
nc

ed
fr

am
es

89
1

3.
58

e6
1.
57

e3
3.
90

e2
3.
71

e7
H

an
dl

e
Fr

am
es

85
8

2.
50

e4
1.
21

e4
3.
63

e3
4.
03

e6
N

ot
ify

H
an

dl
er

s
89
1

7.
46

e6
6.
10

e6
1.
46

e6
3.
44

e7
Pr

oc
es

sA
nd

Q
ue

ue
Sa

m
pl

e
21
58

2.
81

e6
1.
32

e6
6.
47

e5
3.
33

e7
Pr

oc
es

sP
os

eP
ai

r
25
1

5.
31

e3
2.
31

e3
1.
19

e3
4.
51

e5
Pr

oc
es

sin
g

Po
se

25
1

2.
01

e5
1.
48

e5
1.
11

e5
2.
91

e6
Pr

oc
es

sin
gL

oo
p

32
69
2

1.
28

e6
1.
06

e6
1.
60

e2
1.
64

e7
Tr

ia
ng

ul
at

eP
oi

nt
s

25
1

3.
43

e5
2.
85

e5
2.
03

e5
3.
05

e6
Tr

ia
ng

ul
at

io
nL

oo
p

28
74
3

1.
28

e6
1.
06

e6
2.
17

e4
1.
60

e7
Tr

yG
et

O
rd

er
ed

Pa
ir

28
74
3

1.
83

e3
4.
21

e2
5.
00

e1
2.
77

e6
Tr

yR
ea

dP
os

eR
es

ul
t

32
69
2

1.
27

e3
2.
20

e2
9.
00

3.
16

e6
Tr

yW
rit

eF
ra

m
e

17
16

3.
89

e6
1.
96

e6
6.
72

e5
3.
30

e7
Fr

am
e

pr
oc

es
sin

g
65

24
5

4.
54

e3
3.
00

e1
1.
00

1.
20

e7

Ta
bl

e
B

.1:
C+

+
C

om
po

ne
nt

T
im

in
g

St
at

ist
ic

s

98

B Profiling Data

B.2.1 FrameGrabber Threads

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Duration (ns) ×107

0

1

2

3

4

5

6

7

De
ns

ity

1e 7

Count: 2,158
Std Dev: 3.27e+06 ns

Min: 6.47e+05 ns
Max: 3.33e+07 ns

Distribution for ProcessAndQueueSample

Mean: 2.81e+06 ns
Median: 1.32e+06 ns

Figure B.1: Timing distribution: ProcessAndQueueSample threads unified

B.2.2 FrameSynchronizer Thread

0 1 2 3 4
Duration (ns) ×107

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

De
ns

ity

1e 6

Count: 891
Std Dev: 7.46e+06 ns

Min: 3.90e+02 ns
Max: 3.71e+07 ns

Distribution for Found synced frames

Mean: 3.58e+06 ns
Median: 1.57e+03 ns

Figure B.2: Timing distribution: FoundSyncedFrames

99

B Profiling Data

B.2.3 MediaPipe Thread

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Duration (ns) ×107

0

1

2

3

4

De
ns

ity

1e 6

Count: 32,692
Std Dev: 8.14e+05 ns

Min: 1.60e+02 ns
Max: 1.64e+07 ns

Distribution for ProcessingLoop

Mean: 1.28e+06 ns
Median: 1.06e+06 ns

Figure B.5: Timing distribution: ProcessingLoop

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Duration (ns) ×107

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

1e 5

Count: 65,245
Std Dev: 1.32e+05 ns

Min: 1.00e+00 ns
Max: 1.20e+07 ns

Distribution for frame processing

Mean: 4.54e+03 ns
Median: 3.00e+01 ns

Figure B.6: Timing distribution: FrameProcessing

101

B Profiling Data

B.2.4 Triangulation Thread

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Duration (ns) ×107

0

1

2

3

4

5

De
ns

ity

1e 6

Count: 28,743
Std Dev: 7.37e+05 ns

Min: 2.17e+04 ns
Max: 1.60e+07 ns

Distribution for TriangulationLoop

Mean: 1.28e+06 ns
Median: 1.06e+06 ns

Figure B.9: Timing distribution: TriangulationLoop

0.0 0.5 1.0 1.5 2.0 2.5
Duration (ns) ×106

0

1

2

3

4

5

6

7

8

De
ns

ity

1e 5

Count: 28,743
Std Dev: 2.82e+04 ns

Min: 5.00e+01 ns
Max: 2.77e+06 ns

Distribution for TryGetOrderedPair

Mean: 1.83e+03 ns
Median: 4.21e+02 ns

Figure B.10: Timing distribution: TryGetOrderedPair

103

B Profiling Data

0 1 2 3 4 5
Duration (ns) ×106

0

1

2

3

4

5

De
ns

ity
1e 5

Count: 28,743
Std Dev: 5.61e+04 ns

Min: 9.00e+01 ns
Max: 4.78e+06 ns

Distribution for FindSyncedPoses

Mean: 3.20e+03 ns
Median: 1.08e+03 ns

Figure B.11: Timing distribution: FindSyncedPoses

0 1 2 3 4 5
Duration (ns) ×105

0.000000

0.000025

0.000050

0.000075

0.000100

0.000125

0.000150

0.000175

0.000200

De
ns

ity

Count: 251
Std Dev: 2.86e+04 ns

Min: 1.19e+03 ns
Max: 4.51e+05 ns

Distribution for ProcessPosePair

Mean: 5.31e+03 ns
Median: 2.31e+03 ns

Figure B.12: Timing distribution: ProcessingPosePair

104

Glossary

accelerometer A sensor that measures proper acceleration (g-force) and can detect mag-
nitude and direction of acceleration as a vector quantity, used to detect orientation
and movement.

activity recognition The automated identification and classification of human activities
from sensor data, typically using pattern recognition and machine learning tech-
niques.

Azure Kinect A developer kit with advanced AI sensors for sophisticated computer vision
and speech models, released as the successor to the original Microsoft Kinect.

buffer overflow A condition where a program attempts to write data beyond the bound-
aries of a pre-allocated memory buffer, potentially causing system crashes or secu-
rity vulnerabilities.

bundle adjustment A technique that simultaneously refines the 3D structure and camera
parameters by minimizing reprojection errors.

callback A function that is passed as an argument to another function and is executed
after its parent function has finished execution.

camera calibration The process of determining a camera’s internal parameters and its
position and orientation in the world.

camera coordinates A three-dimensional coordinate system with its origin at the camera’s
optical center, used to describe points in the camera’s frame of reference.

camera synchronization The process of coordinating multiple cameras to capture images
at precisely the same moment, enabling accurate multi-view analysis.

108

Glossary

computer vision A field of artificial intelligence that enables computers to understand and
process visual information from the digital world, such as images and videos.

confidence score A numerical value indicating the reliability or certainty of a detection
or estimation, typically used in computer vision and machine learning systems.

container A standalone, executable package that includes everything needed to run a
piece of software, including code, runtime, system tools, system libraries, and
settings.

context switching The process of storing and restoring the state of a process or thread so
that execution can be resumed from the same point at a later time.

deep learning A subset of machine learning that uses artificial neural networks with mul-
tiple layers (deep neural networks) to progressively learn hierarchical representa-
tions of data, where each layer transforms its input data into a more abstract and
composite representation, enabling the learning of complex patterns and features
without manual feature engineering.

deployment configuration The arrangement and distribution of software components
across hardware infrastructure in a distributed system.

depth sensor A device that measures the distance between the sensor and objects in a
scene, creating a three-dimensional representation of the environment.

epipolar geometry The intrinsic projective geometry between two views, independent of
scene structure.

eventual consistency A consistency model where distributed system replicas may tem-
porarily differ but will converge to the same state over time.

extrinsic parameters The parameters that define a camera’s position and orientation in
world coordinates, typically consisting of a rotation matrix and translation vector.

fall detection An automated system capability to identify when a person has fallen by
analyzing changes in their position, movement, or posture.

109

Glossary

false sharing A performance degradation that occurs in multi-threaded systems when
data structures from independent threads are placed in the same CPU cache line,
causing unnecessary cache invalidations and memory synchronization overhead de-
spite the threads not actually sharing data.

focal length The distance between a camera’s lens and its image sensor when focused on
infinity, determining the angle of view and magnification.

frame buffering The temporary storage of video frames in memory to manage timing
differences between capture, processing, and display operations.

frame skipping A technique in real-time video processing where frames are deliberately
omitted to maintain processing speed when the system cannot keep up with the
input rate.

gyroscope A sensor that measures angular velocity and maintains orientation, using the
principles of angular momentum to detect and measure rotational movement.

hardware acceleration The use of specialized hardware to perform certain computations
more efficiently than in software running on a general-purpose CPU.

homogeneous coordinates A coordinate system used in computer vision and graphics
where 3D points are represented with four components, enabling projective ge-
ometry operations and representing points at infinity.

homography A projective transformation that maps points from one plane to another.

horizontal scaling A method of increasing system capacity by adding more processing
nodes, rather than increasing the capacity of existing nodes.

image coordinates A two-dimensional coordinate system where points in a camera’s field
of view are projected onto the image sensor plane, typically measured in pixels
from the image origin (usually top-left corner) with the x-axis pointing right and
y-axis pointing down.

image plane The two-dimensional surface in a camera where the three-dimensional scene
is projected and recorded, typically the camera’s sensor or film.

interprocess communication Methods and mechanisms used by processes to share data
and communicate with each other in a computing system.

110

Glossary

intrinsic parameters The internal camera parameters that define how 3D points are pro-
jected onto the image plane, including focal length, principal point, and lens dis-
tortion coefficients.

layered architecture An architectural pattern that organizes components into horizontal
layers, where each layer provides services to the layer above and uses services of
the layer below.

lock-free A programming approach where thread synchronization is achieved without
using mutual exclusion locks, typically using atomic operations to ensure thread
safety.

magnetometer A sensor that measures the strength and direction of magnetic fields, often
used in conjunction with other sensors to determine absolute orientation relative
to the Earth’s magnetic field.

markerless motion capture A technique for recording movement of objects or individuals
without the use of physical markers, typically using computer vision algorithms.

MediaPipe An open-source framework for building multimodal machine learning
pipelines, particularly focused on computer vision tasks.

memory management The process of controlling and coordinating computer memory, al-
locating portions to various programs and processes while ensuring efficient uti-
lization.

Microsoft Kinect A line of motion sensing input devices developed by Microsoft for Xbox
gaming consoles and Windows PCs. The device features RGB camera, depth sensor
and multi-array microphone.

monitoring system A technological solution that continuously observes, records, and ana-
lyzes specific conditions or behaviors within an environment, capable of detecting
changes and potentially triggering responses to specific events.

multicast A network communication pattern where data is sent simultaneously to a group
of recipients, optimizing bandwidth usage for group communication.

node A discrete processing unit within a distributed system that performs specific tasks
and communicates with other nodes through defined network protocols.

111

Glossary

noise Random variations or disturbances in data that can affect measurement accuracy
and signal quality, occurring from various sources such as sensor limitations, envi-
ronmental factors, or processing artifacts.

normalized coordinates A coordinate system where values are scaled to a fixed range
(typically [0,1]) regardless of the original image dimensions, enabling resolution-
independent processing.

occlusion The blocking or hiding of one object or part by another in a visual scene,
affecting the ability to detect or track objects accurately.

optical axis The straight line that passes through the center of all optical elements in a
camera system, typically perpendicular to the image plane.

pinhole camera model A simple camera model where light rays pass through a single point
to form an image on the image plane.

pipeline A set of data processing elements connected in series, where the output of one
element is the input of the next one, enabling parallel processing of different stages.

pixel coordinates A two-dimensional coordinate system where points are measured in
pixel units relative to the image origin, typically the top-left corner.

pose estimation A computer vision technique that determines the position and orienta-
tion of a human body or object by identifying and tracking key points or joints.

principal point The point where the optical axis intersects the image plane in a camera
system.

radial distortion A type of lens distortion where straight lines appear curved in the image,
more pronounced at the edges.

real-time Processing and responding to input immediately, typically within a guaranteed
time constraint, making the computed results available virtually immediately.

reprojection error The distance between the observed image points and the projected
points using the estimated camera parameters.

112

Glossary

service-oriented architecture An architectural pattern where services communicate with
each other through defined protocols across a network to fulfill a software system’s
requirements.

shared memory A memory region that can be simultaneously accessed by multiple pro-
grams or processes, enabling efficient inter-process communication without data
copying.

skeletal data A representation of human body movement through a simplified skeleton
model, consisting of joint positions and their connections, without preserving visual
appearance or personal identifiable features.

smart home A residence equipped with technology that allows automated control of var-
ious home systems and devices, including lighting, climate, entertainment systems,
and security, often with capabilities for remote monitoring and control.

smart pointer A programming construct that automatically manages memory allocation
and deallocation of dynamically allocated objects, helping prevent memory leaks.

star configuration A network topology where all nodes connect to a central hub or switch,
providing direct communication paths between any two nodes through the central
point.

state management The handling of data that represents the condition of a system or its
components, including storage, updates, and synchronization.

stereo setup A configuration of two cameras positioned to capture the same scene from
different viewpoints, enabling depth perception and 3D reconstruction.

strong consistency A consistency model where all system replicas immediately reflect up-
dates, ensuring all readers see the same data at the same time, regardless of which
replica they access.

structural pattern A reusable solution to a commonly occurring problem in software ar-
chitecture, defining how components should be organized and interact.

system latency The time delay between an input to a system and its corresponding out-
put, encompassing all processing and communication delays.

task system A programming pattern that organizes work into discrete tasks that can be
scheduled and executed independently, often used for parallel processing.

113

Glossary

template specialization A C++ feature that allows providing a specific implementation of
a template for particular data types or values.

temporal consistency The property of maintaining coherent and smooth transitions be-
tween successive frames or time steps in a sequence of measurements or observa-
tions, ensuring that changes over time are physically plausible.

threading model A design pattern that defines how multiple threads are organized, man-
aged, and coordinated within a software system.

time-of-flight camera An imaging system that measures distance based on the time it
takes for light pulses to travel from the camera to an object and back to the
sensor, enabling three-dimensional scene capture.

tracking algorithm A computational method that follows and predicts the position and
movement of objects or features across a sequence of observations.

triangulation A process in computer vision that determines the three-dimensional loca-
tion of a point by using its projections in two or more two-dimensional images.

undistortion The process of correcting lens distortion in images by applying the inverse
of the estimated distortion model, producing images that follow the ideal pinhole
camera model.

Video4Linux2 (V4L2) A Linux kernel interface for video capture and output devices, pro-
viding a standardized API for accessing video hardware.

worker pool A software design pattern where a collection of threads process tasks from
a shared queue, enabling parallel execution of similar tasks.

zero-latency A system configuration or operational mode that minimizes processing and
response delays to achieve near-instantaneous data processing and output, typically
achieved through optimized algorithms, minimal buffering, and direct processing
paths.

114

Erklärung zur selbständigen Bearbeitung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig
verfasst und nur die angegebenen Hilfsmittel benutzt habe. Wörtlich oder dem Sinn
nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich
gemacht.

Ort Datum Unterschrift im Original

115

