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Kurzzusammenfassung 

Diese Arbeit dient der Untersuchung von numerischen Modellen, welche den 
dynamischen Faserauszug darstellen. Zur Beschreibung dieses Prozesses wurden 
numerische Modelle erstellt, die Fasern und Matrizen abbilden. Darüber hinaus wurden 
Idealisierungsmöglichkeiten des Übergangsbereiches zwischen Faser und Matrix 
modelliert, wobei Haftung und Reibung eine wesentliche Rolle spielten. Daraus 
entstanden zwei numerische Modelle, die beide Mechanismen im Übergangsbereich 
darstellen. Diese Modelle wurden mit analytischen Modellen, sogenannten Shear-Lag-
Modellen, verglichen. Wichtige physikalische Größen waren dabei die Schubspannung 
in der Übergangsfläche zwischen Faser und Matrix sowie deren 
Partikelgeschwindigkeiten. Die Haftungsmodellierung konnte den 
Schubspannungsverlauf des Shear-Lag-Modells qualitativ wiedergeben. Des Weiteren 
konnte durch die Anwendung von rotationssymmetrischen Elementen eine Einsparung 
von Rechenzeit gegenüber Volumenelementen erreicht werden. Das 
rotationssymmetrische Modell zur Haftungssimulation wurde mit Parametern aus einem 
Faserauszugsversuch modifiziert und mit den experimentellen Ergebnissen verglichen. 
Eine charakteristische Kraft-Verschiebungskurve aus dem Versuch konnte nicht 
reproduziert werden, es zeigte sich, dass die Reaktionskräfte im Modell auf die 
Faserspitze beschränkt waren. Dies stellt neben einer präziseren Abbildung von Haftung 
und Reibung einen Ausgangspunkt für weitere Forschungen dar.  
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Abstract 

This work serves to investigate numerical models that represent the dynamic fiber pull-
out. In order to describe this process, numerical models that display fiber and matrix 
were created. Furthermore, idealization possibilities for the interface between fiber and 
matrix were modelled, where cohesion and friction played an important role. This 
resulted in two numerical models that depicted both mechanisms in the interface. These 
models were compared to analytical models, so-called shear-lag-models. Important 
physical quantities were the shear stress in the interface between fiber and matrix as 
well as their particle velocities. The cohesion model was able to qualitatively reproduce 
the shear stress distribution of the shear-lag-model. Furthermore, the use of 
axisymmetric elements cost less computing time compared to volume elements. The 
axisymmetric model for adhesion was modified with parameters of a fiber pull-out test 
and compared to the experimental results. A characteristic force-displacement curve 
from the experiment could not be reproduced since the reaction forces of the model were 
limited to the fiber tip. This represents further research possibilities, next to a more 
precise depiction of cohesion and friction. 
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1. Einleitung

Die vorliegende Arbeit beschäftigt sich mit der Untersuchung numerischer Modelle hin-
sichtlich ihrer Eignung zur Beschreibung des dynamischen Faserauszugs.

1.1. Motivation

Bewehrungen sind von hoher Bedeutung für Beton. Bei dynamischen Lasten können
Risse im Beton entstehen, welche durch die Bewehrungen überbrückt werden ([1]). Ei-
ne Untersuchung numerischer Modelle für den Fall, dass die Bewehrungsfasern infolge
dynamischen Lasten aus dem Beton gezogen werden, soll Gegenstand dieser Arbeit sein.

1.2. Stand der Forschung

Der dynamische Faserauszug wurde schon in Form von analytischen Modellen, Versuchen
und numerischen Modellen behandelt. Analytisch wurde der dynamische Faserauszug z.
B. erforscht durch ([2, 3, 4]). Dabei entwickelten ([3, 4]) Modelle, welche die Hafttrennung
beschreiben, während das Modell von ([2]) die Reibung während des Auszugs darstellt.
Experimentell wurde der dynamische Auszug einzelner Bewehrungsfasern z. B. durch ([5,
6, 7, 8]) untersucht. Dabei wurden z. T. auch Parameter ermittelt, welche die Haftung
und Reibung in der Übergangs�äche beschreiben ([5, 7]). Es gibt auch Versuche zum
Auszug von verschiedenen faserverstärkten Kunststo�-Lagen aus Beton ([9]). Modellie-
rungsvarianten für Bewehrungen sind z. B. zylindrische Modelle ([4]) oder zylindrische
Viertelmodelle ([10]), sowie ebene Modelle (Plane Stress Models) ([2]). Häu�g kommen
zur Beschreibung der Übergangs�äche Cohesive Elements zum Einsatz ([2, 4, 10]). Nu-
merische Modelle für den dynamischen Faserauszug sind z. B. in ([4, 2]) zu �nden. Dort
werden sie mit analytischen Modellen verglichen. In ([10]) wird ein numerisches Modell
mit einem quasistatischen Faserauszug verglichen. In dieser Arbeit sollen numerische
Modelle zunächst mit analytischen Modellen validiert und anschlieÿend mit einem dyna-
mischen Einzelfaserauszugsversuch verglichen werden.

1.3. Inhalt der Arbeit

Zunächst werden in dieser Arbeit in Kapitel 2 die theoretischen Grundlagen wie die Me-
chanismen des Faserauszugs sowie die Darstellung des Übergangsbereiches zwischen Faser
und Matrix beschrieben. Weiterhin werden analytische Modelle vorgestellt, welche den
Faserauszug beschreiben. In Kapitel 3 werden numerische Modellierungsmöglichkeiten
für die Übergangs�äche sowie für Faser und Matrix dargestellt, aus denen zwei Modelle
mit drei Übergangs�ächenmodellierungen hervorgehen. Diese werden in Kapitel 4 mit
den in Kapitel 2 vorgestellten analytischen Modellen verglichen. Kapitel 5 kombiniert
ein numerisches Modell mit Parametern aus einem Versuch. Die Ergebnisse dieser Arbeit
werden in Kapitel 6 zusammengefasst. Abschlieÿend werden in Kapitel 7 die vorherigen
Kapitel sowie die Erkenntnisse dieser Arbeit betrachtet und ein Ausblick gegeben.
Die im Zuge dieser Arbeit erstelltenMatlab®- und Python-Skripte sowie Abaqus-

Dateien sind auf beigefügten elektronischen Datenträgern (CD's) enthalten.
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2. Theoretische Grundlagen

In diesem Kapitel sollen die Grundlagen betrachtet werden, welche den Faserauszug und
insbesondere den dynamischen Faserauszug beschreiben. Dafür werden in Abschnitt 2.1
zunächst die Mechanismen des Faserauszugs erläutert. Anschlieÿend behandelt Abschnitt
2.2 Idealisierungen des Übergangsbereiches zwischen Faser und Matrix. Abschlieÿend
werden in Abschnitt 2.3 verschiedene Shear-Lag-Modelle, welche den dynamischen Fa-
serauszug analytisch beschreiben, betrachtet.

2.1. Mechanismen des Faserauszugs

Beim Faserauszug können vier Mechanismen auftreten ([11]):

1. Elastischer Faserauszug

2. Plastischer Faserauszug

3. Faser-Versagen beim Auszug

4. Matrix-Versagen beim Auszug.

Das Versagen von Faser oder Matrix wird in dieser Arbeit nicht betrachtet, stattdessen
wird das Versagen der Verbindung zwischen diesen untersucht.
Die Haftrennung der Übergangs�äche wird durch eine Rissausbreitung in dieser verur-

sacht. In den bereits abgelösten Regionen tritt Reibung auf. Abbildung 2.1 zeigt beispiel-
haft ein Kraft-Verschiebungs-Diagramm für einen Faserauszug. Erreicht die Auszugskraft
den Punkt A, entsteht ein Riss in der Verbindung zwischen Faser und Matrix. Zwischen
den Punkten A und B wird der Riss gröÿer. Der Faserauszugskraft wirken Haft- sowie
Reibkräfte entgegen, aufgrund letzterer nimmt die Auszugskraft weiter zu. Beim Punkt
B liegt die maximale Auszugskraft vor, die intakte Region der Verbindung erreicht einen
Wert, dessen Überschreiten eine Abnahme der Kraft zufolge hat. Ab Punkt C ist die Ver-
bindung zwischen Faser und Matrix vollständig aufgebrochen, die restliche Kraft, welche
zwischen den Punkten C und D auftritt, ist auf Reibung zurückzuführen. Beim Erreichen
des Punktes D ist die Faser vollständig herausgezogen ([5]).
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Abbildung 2.1: Schematisches Kraft-Weg-Diagramm des Faserauszugs ([5])

Der sich in der Verbindung ausbreitende Riss wird mit drei Moden unterschieden,
welche in Abbildung 2.2 dargestellt sind. Modus I beschreibt die Ö�nung des Risses in y-
Richtung, welche zur x, z-Ebene symmetrisch ist. Im Falle des Modus II bewegen sich die
Rissober�ächen relativ zueinander in x-Richtung, was zu einer asymmetrischen Trennung
führt. Bei Modus III entsteht die Trennung durch eine Relativbewegung in z-Richtung
([12], S. 69). Im Zuge dieser Arbeit sollen Modus II-Risse für Relativverschiebungen
zwischen Faser und Matrix entlang der Faserachse untersucht werden.

Abbildung 2.2: Riss-Moden ([12], S. 69)
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2.2. Darstellung des Übergangsbereiches zwischen Faser und Matrix

Beim Modellieren des Faserauszugs ist die Darstellung der Übergangs�äche von groÿer
Bedeutung. In Abschnitt 2.1 wurde gezeigt, dass beim Faserauszug sowohl eine (auftrenn-
bare) Haftung als auch Reibung auftreten. In diesem Abschnitt sollen Idealisierungsmög-
lichkeiten für beide Mechanismen dargestellt werden. Zunächst wird in Unterabschnitt
2.2.1 eine Modellierung der Verbindung von Faser und Matrix sowie deren Schädigung
in Form des Traction Separation Law behandelt. Anschlieÿend wird in Unterabschnitt
2.2.2 eine Modellierung der Reibung mit einem Friction Law nach dem Versagen der
Verbindung erläutert.

2.2.1. Haftung - Traction Separation Law

Das Traction Separation Law (TSL, deutsch: Spannungs-Trennungs-Gesetz), beschreibt
die Schädigung der Übergangs�äche zwischen Faser und Matrix, in Abhängigkeit der
Trennung zwischen diesen beiden. Abbildung 2.3 zeigt beispielhaft ein TSL in Anlehnung
an Abdulla et al. ([13]). Bis zur Schadensinitiierung bei smi und Ψm

i (der hochgestellte
Index m steht für maximal) wird der linear elastische Zusammenhang der Übergangs-
�äche beschrieben durch

Ψ =


ΨI

ΨII

ΨIII

 =

 K0
I 0 0
0 K0

II 0
0 0 K0

III


sI
sII
sIII

 = K0s. (2.1)

Dabei ist Ψ der Zugspannungs- und s der Trennungsvektor zwischen Faser und Matrix,
die Matrix K0 enthält die Stei�gkeiten ([13]). Die Indizes weisen auf die Zugehörigkeit
der Komponenten zu den in Abschnitt 2.1 beschriebenen Rissmodi hin. In Anlehnung an
Azzam ([4]) wird die Schadens-Evolution des TSL dargestellt. Sobald smi überschritten
ist, nimmt die Stei�gkeit Ktan

i ab mit

Ktan
i (si) = (1− δ(si))K

0
i . (2.2)

Die darin vorkommende Schadensvariable δ(si) wird durch das lineare Schadensevoluti-
onsgesetz

δ(si) =
(si − smi )sfi

(sfi − smi )si
(2.3)

beschrieben, wobei der Schaden δ(si) in einem Intervall von [0 1] liegt ([4]). Der Wert
sfi ist die Trennung, bei der Faser und Matrix vollständig voneinander separiert werden.
Dies wird durch den hochgestellten Index f (fail) beschrieben ([13]). Des Weiteren nimmt
die Zugspannung Ψi ab mit

Ψi(si) = (1− δ(si))K
0
i si (2.4)

([4]).
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Abbildung 2.3: Schematisches Traction Separation Law (in Anlehnung an [13])

2.2.2. Reibung - Friction Law

Sobald Faser und Matrix vollständig voneinander getrennt sind, ist der restliche Wi-
derstand gegen den Faserauszug auf Reibung zurückzuführen. In Abbildung 2.1 ist dies
zwischen den Punkten C und D der Fall ([5]). Gleichung (2.5) zeigt ein Friction Law (FL,
deutsch: Reibungsgesetz), bei dem eine konstante Reibungs-Schubspannung τr abhängig
ist von der Relativgeschwindigkeit zwischen Faser und Matrix,

τr =


τ0

τ̃

−τ0

(u̇f − u̇m < 0),

(u̇f − u̇m = 0),

(u̇f − u̇m > 0).

(2.5)

Darin ist u̇f die Geschwindigkeit der Faser und u̇m die Geschwindigkeit der Matrix.
Liegt eine Relativgeschwindigkeit zwischen Faser und Matrix vor, so ist die Reibungs-
Schubspannung einheitlich und konstant. Liegt diese nicht vor, so ist sie unbestimmt,
wobei |τ̃ | < τ0 ist. Die Annahme, dass die Reibung einheitlich, sowie des Weiteren zeit-
und ratenunabhängig ist, wird damit begründet, dass die vier E�ekte, welche die Rei-
bung beim Faserauszug beein�ussen, vernachlässigt werden können. Bei den E�ekten
handelt es sich um (1) den Poisson-E�ekt, durch den der Faserradius infolge der Faser-
dehnung sinkt und somit die Normalspannung auf die Übergangs�äche verringert; (2)
die Restdruckspannungen auf die Übergangs�äche aufgrund ungleichen Schrumpfens bei
der Abkühlung; (3) Rauheitse�ekte, welche die Normalspannungen auf die Übergangs�ä-
che beim Faserauszug vergröÿern; und (4) dynamische E�ekte. Dabei heben sich jedoch
Poisson- und Rauheitse�ekte gegenseitig auf. Des Weiteren haben Tests gezeigt, dass Rei-
bung nach einer Zustandsänderung für kurze Zeiten (∼ 1µs), welche für dieses Modell
angenommen werden, unverändert bleibt ([2]).
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2.3. Analytische Shear-Lag-Modelle

Der Begri� Shear-Lag-Model (SLM, deutsch Schubverzerrungs-Modell ([14], S. 28)), ist
ursprünglich zurückzuführen auf die Biegeanalyse von Trägern mit weiten Flanschen, für
die Schubspannungen und Dehnungen infolge dieser vernachlässigt werden. Die realen
Biegungen �hinken� (englisch: to lag) den analytisch berechneten hinterher, da in der
Realität Schubspannungen (englisch: shear stresses) in den Flanschen auftreten, wodurch
sich der Begri� Shear-Lag-Model ergibt ([15]).
Für Komposit-Materialien wurde der Begri� ursprünglich 1952 von Cox als Methode

der Analyse von Spannungsübertragungen eingeführt. Die Schubspannung im Übergangs-
bereich τ zwischen Faser und Matrix berechnet sich dabei aus der durchschnittlichen
Faser-Axialspannung <σf > mit

∂<σf >

∂z
= −2τ

r1
, (2.6)

wobei r1 der Faserradius ist ([15]). In den folgenden Unterabschnitten werden SLM vor-
gestellt, welche den dynamischen Faserauszug beschreiben. Im Zuge dieser Arbeit werden
sie auch als analytische Modelle bezeichnet. Für eine einheitliche Darstellung verschie-
dener analytischer und numerischer Modelle werden im Folgenden einige Indizes und
Zeichen aus den Literaturquellen abgeändert. Die im Rahmen dieser Arbeit verwende-
ten SLM wurden mit dem Programm Matlab® in den Versionen R2023b und R2024a
umgesetzt. Das Matlab®-Skript ist in Anhang A zu �nden.

2.3.1. Shear-Lag-Modell von Azzam

Azzam verö�entlichte 2016 eine Methode, den dynamischen Faserauszug analytisch zu
berechnen, wobei die Faserspitze harmonisch angeregt wird. Abbildung 2.4 (a) zeigt sche-
matisch das Modell des Faser-Matrix-Verbundes in Anlehnung an das Modell vonAzzam.
Darin sind für das Modell verwendete Material- und Geometrieeigenschaften sowie an
der Faser und in der Übergangs�äche wirkende Spannungen und Kräfte erkennbar. Für
dieses SLM gilt zunächst die Annahme, dass Faser und Matrix linear-elastisch und ho-
mogen sind. Im weiteren Verlauf dieses Unterabschnittes wird die Matrix als dehnstarr
angenommen werden, um die Ermittlung analytischer Ergebnisse zu vereinfachen. Ei-
ne Ratenabhängigkeit von Faser, Matrix und Übergangsbereich wird aus diesem Grund
ebenfalls vernachlässigt ([4]). Sowohl Faser als auch Matrix haben einen Elastizitätsmodul
Eq, eine Dichte ρq, als auch eine Fläche Aq, wobei die Faser mit dem Buchstaben f , die
Matrix mit dem Buchstaben m indiziert ist. Die Faser hat des Weiteren den Faserumfang
ā. Die Abbildung 2.4 (b) stellt den Freischnitt eines in�nitesimal kleinen Faserelementes
dar, dessen dynamisches Gleichgewicht in z-Richtung

Af
∂

∂z
σf (z, t)dz = ρfAfdzüf (z, t)− ādzτ(z, t) (2.7)

lautet. Die Verschiebungen von Faser und Matrix werden mit uf und um beschrieben,
die zeitliche Ableitungen ∂

∂t mit (·).
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(a) (b)

Abbildung 2.4: (a) Schematische Darstellung des Faser-Matrix-Verbundes, (b) In�nitesi-
mal kleines Faserelement (in Anlehnung an [4])

Mit dem Hookeschen Gesetz σf (z, t) = Efεf (z, t), bei dem die Dehnung mit εf (z, t) =
∂
∂zuf (z, t) beschrieben wird, kann (2.7) erweitert werden zu

∂2

∂z2
uf (z, t) =

1

c2f

∂2

∂t2
uf (z, t)−

ā

EfAf
τ(z, t), (2.8)

wobei cf =
√

Ef

ρf
die Wellengeschwindigkeit in der Faser beschreibt. Analog kann die

Bewegungsgleichung der Matrix beschrieben werden durch

∂2

∂z2
um(z, t) =

1

c2m

∂2

∂t2
um(z, t) +

ā

EmAm
τ(z, t) (2.9)

mit der Matrix-Wellengeschwindigkeit cm =
√

Em
ρm

([4]).

Um die Bewegungsgleichung der Übergangs�äche zwischen Faser und Matrix zu ermit-
teln, wird zunächst die Auszugskraft

P (t) = Nf (z, t) +Nm(z, t) +Afρf

� l

z
üf (z, t)dz +Amρm

� l

z
üm(z, t)dz (2.10)

berechnet, welche im Freikörperbild von Abbildung 2.5 (a) dargestellt ist. Dabei sind
Nf (z, t) und Nm(z, t) die Normalkräfte in Faser und Matrix. Abbildung 2.5 (b) zeigt
Faser und Matrix als in�nitesimal kleine Elemente. Das sich daraus ergebende dynamische
Gleichgewicht lautet

Nf (z, t) +Nm(z, t) = Nf (z, t) +
∂
∂zNf (z, t)dz +Nm(z, t) + ∂

∂zNm(z, t)dz
−Afρf üf (z, t)dz −Amρmüm(z, t)dz

(2.11)

bzw.

∂

∂z
Nf (z, t)dz +

∂

∂z
Nm(z, t)dz = Afρf üf (z, t)dz +Amρmüm(z, t)dz. (2.12)
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(a) (b)

Abbildung 2.5: (a) Freikörperbild des Faser-Matrix-Verbundes, (b) in�nitesimal kleines
Faser-Matrix-Element (in Anlehnung an [4])

Des Weiteren wird die Steigung der Normalkraft in Faser und Matrix beschrieben
durch

∂

∂z
Nf (z, t) = −aτ(z, t) +Afρf üf (z, t) (2.13)

und
∂

∂z
Nm(z, t) = aτ(z, t) +Amρmüm(z, t). (2.14)

Die Relativbewegung zwischen Faser und Matrix in der Übergangs�äche wird im Folgen-
den als Schlupf (englisch: slip) bezeichnet, dieser berechnet sich mit

s(z, t) = uf (z, t)− um(z, t). (2.15)

Die Ableitung nach z liefert

∂

∂z
s(z, t) =

∂

∂z
uf (z, t)−

∂

∂z
um(z, t) = εf (z, t)− εm(z, t), (2.16)

was eine Di�erenz der Dehnungen von Faser und Matrix darstellt. Eine weitere Ableitung
nach z führt zu

∂2

∂z2
s(z, t) =

∂

∂z
εf (z, t)−

∂

∂z
εm(z, t). (2.17)

Die Dehnungen von Faser und Matrix ergeben sich nach dem Hookeschen Gesetz zu

εf (z, t) =
Nf (z, t)

EfAf
(2.18)

und

εm(z, t) =
Nm(z, t)

EmAm
. (2.19)

Werden (2.18) und (2.19) in (2.17) eingesetzt, dann ergibt sich

∂2

∂z2
s(z, t) =

1

EfAf

∂

∂z
Nf (z, t)−

1

EmAm

∂

∂z
Nm(z, t). (2.20)
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Darin werden die Ableitungen der Normalkräfte nach der z-Koordinate wiederum ersetzt
durch (2.13) und (2.14), um die Di�erentialgleichung der Grenz�äche darzustellen als

∂2

∂z2
s(z, t) = −

(
1

EfAf
+

1

EmAm

)
āτ(z, t) +

1

c2f

∂2

∂t2
uf (z, t)−

1

c2m

∂2

∂t2
um(z, t). (2.21)

Die Gleichung (2.21) kann vereinfacht werden mit der Einführung einer Ersatznachgie-
bigkeit

1

(EA)∗
=

1

EfAf
+

1

EmAm
(2.22)

zu
∂2

∂z2
s(z, t) = − 1

(EA)∗
āτ(z, t) +

1

c2f

∂2

∂t2
uf (z, t)−

1

c2m

∂2

∂t2
um(z, t). (2.23)

Im Folgenden wird die Matrix als dehnstarr angenommen, um das Ermitteln analytischer
Lösungen praktikabler zu machen. Dadurch kann die Ersatznachgiebigkeit 1

(EA)∗ nähe-

rungsweise als 1
EfAf

beschrieben werden. Auÿerdem sind die Dehnung εm(z, t) und die

Verschiebung um(z, t) der Matrix null, wodurch sich (2.23) reduziert zu

∂2

∂z2
s(z, t) =

1

c2f

∂2

∂t2
s(z, t) +

1

EfAf
āτ(z, t). (2.24)

Da die Verschiebung und die Dehnung der Faser nun dem Schlupf entspricht, ist die
Normalkraft in der Faser, abhängig von der Dehnung des Schlupfes,

Nf (z, t) = EfAf
∂

∂z
s(z, t) (2.25)

([4]).
Um die Schädigung des Übergangsbereiches zwischen Faser und Matrix zu beschreiben,

wird das TSL aus Abbildung 2.6, welche an Azzam ([4]) angelehnt ist, verwendet. Der
Schaden basiert auf dem Schlupf in der Übergangs�äche und ist punktsymmetrisch zum
Ursprung. Gleichung (2.26) zeigt die Schubspannungs-Schlupf-Beziehung für verschiedene
Zustände der Übergangs�äche:

τ(s) =


K0s

(1− δ(s))K0s

τrsgn(ṡ)

|s| ≤ sf ,

sm < |s| ≤ sr,

|s| > sr.

(2.26)

Die Gleichung 2.26 verbindet das in Unterabschnitt 2.2.1 vorgestellte TSL mit Reibung.
Diese tritt zwischen Faser und Matrix bereits bei Überschreitung des Schlupfes sr auf.
Dadurch liegen nur noch Reibungs-Schubspannungen vor, diese sind abhängig vom Vor-
zeichen der Relativgeschwindigkeit ṡ ([4]).
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Abbildung 2.6: Traction Separation Law mit Reibung (in Anlehung an [4])

Die harmonische Anregung an der Faserspitze, d. h. an der Position z = l ist eine
Weganregung der Form

ŝ(t) = Cne
iλt, (2.27)

wobei Cn die Amplitude und λ die Erregerkreisfrequenz ist ([4]). Im Folgenden wird die
analytische Darstellung der Fälle der beschädigten und unbeschädigten Übergangs�äche
erläutert.

Fall I: Unbeschädigte Übergangs�äche Solange die Amplitude der Weganregung an
der Faserspitze den Schlupf-Wert sm nicht überschreitet, bleibt die Übergangs�äche un-
beschädigt. Die Schlupf-Antwort des Systems infolge harmonischer Anregung wird mit
ŝ(z, t) gekennzeichnet, wodurch (2.24) dargestellt werden kann als

∂2

∂z2
ŝ(z, t)− ke1

Ef
ŝ(z, t)− 1

c2f

∂2

∂t2
ŝ(z, t) = 0, (2.28)

wobei

ke1 =
K0

i ā

Af
(2.29)

ist. Diese Di�erentialgleichung zweiter Ordnung wird gelöst mit dem Ansatz

ŝ(z, t) = y(z)eiλt. (2.30)

Darin ist y(z) die Antwort-Amplitude an der Stelle z der Faser. Wird dieser Ansatz, nach
zweifacher Ableitung ∂2

∂t2
ŝ(z, t) = −λ2y(z)eiλt, in (2.28) eingesetzt, so wird diese, nach
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herauskürzen des Terms eiλt, zu

∂2y(z)

∂z2
− ω̄2y(z) = 0. (2.31)

ω̄2 berechnet sich mit

ω̄2 =
ke1
Ef

− 1

c2f
λ2. (2.32)

Die Lösung von (2.31) hängt von ω̄2 ab, dabei gibt es drei charakteristische Fälle: ω̄2 > 0,
ω̄2 < 0 und ω̄2 = 0. Diese hängen von der Erregerkreisfrequenz λ ab im Bezug auf die
Grenzfrequenz

λcut = cf

√
ke1
Ef

. (2.33)

Im Folgenden werden die Lösungen für die verschiedenen Fälle verkürzt dargestellt, eine
ausführliche Herleitung �ndet sich in ([4]).
Ist ω̄2 > 0, so gilt −λcut ≤ λ ≤ λcut. Die drei zeit- und ortsabhängigen Gröÿen Schlupf

ŝ(z, t), Übergangs�ächen-Schubspannung τ̂(z, t) und Normalkraft in der Faser N̂f (z, t)

sowie die zeitabhängige Gröÿe Auszugskraft an der Faserspitze P̂ (t) werden berechnet
mit

ŝ(z, t) =
cosh(ω̄z)

cosh(ω̄l)
Cne

iλt, (2.34)

τ̂(z, t) =
cosh(ω̄z)

cosh(ω̄l)
K0

i Cne
iλt, (2.35)

N̂f (z, t) = EfAf ω̄
sinh(ω̄z)

cosh(ω̄l)
Cne

iλt (2.36)

und
P̂ (t) = EfAf ω̄tanh(ω̄l)Cne

iλt. (2.37)

Liegt der charakteristische Fall ω̄2 < 0 vor, so ist λ > λcut. Die vier Gröÿen berechnen
sich mit

ŝ(z, t) =
Cn

2cos(ω̄l)
(ei(ω̄z+λt) + e−i(ω̄z−λt)), (2.38)

τ̂(z, t) =
K0Cn

2cos(ω̄l)
(ei(ω̄z+λt) + e−i(ω̄z−λt)), (2.39)

N̂f (z, t) =
EfAf iω̄Cn

2cos(ω̄l)
(ei(ω̄z+λt) − e−i(ω̄z−λt)) (2.40)

und
P̂ (t) = −EfAf ω̄tan(ω̄l)Cne

iλt. (2.41)

Für den dritten charakteristischen Fall ω̄2 = 0 und somit λ = λcut werden der Schlupf
ŝ(z, t), die Übergangs�ächen-Schubspannung τ̂(z, t) und die Normalkraft in der Faser
N̂f (z, t) berechnet mit

ŝ(z, t) = Cne
iλcutt, (2.42)
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τ̂(z, t) = K0
i Cne

iλcutt (2.43)

und
N̂f (z, t) = 0. (2.44)

Die fehlende Ortsabhängigkeit von ŝ(z, t) und τ̂(z, t) kann als Starrkörperbewegung in-
terpretiert werden ([4]).

Fall II: Beschädigte Übergangs�äche Ist die Amplitude Cn der Weganregung an der
Faserspitze gröÿer als der Schlupf-Wert sm, bei dessen Überschreiten eine Schädigung
initiiert wird, und kleiner als der Schlupf-Wert sr, so wird die Übergangs�äche teilwei-
se beschädigt. Der unbeschädigte Teil wird als unbeschädigte Zone der Übergangs�äche
bezeichnet. In dieser Arbeit wird jedoch die Abkürzung UDZ (englisch: undamaged zone
of the interface) verwendet. Diese hat die Länge zr0. Der beschädigte Teil der Über-
gangs�äche wird als beschädigte Zone der Übergangs�äche (DZ für damaged zone of the
interface) mit der Länge l−zr0 bezeichnet. Wie beim Fall der unbeschädigten Übergangs-
�äche werden hier nur die Lösungen dargestellt, die ausführlichen Herleitungen sind zu
�nden in ([4]).
Für die unbeschädigte Zone können die drei zeit- und ortsabhängigen Gröÿen Schlupf,

Übergangs�ächen-Schubspannung und Normalkraft in der Faser ermittelt werden mit

ŝ(z, t) = sm
cosh(ω̄z)

cosh(ω̄zr0)
eiλt, (2.45)

τ̂(z, t) = τm
cosh(ω̄z)

cosh(ω̄zr0)
eiλt (2.46)

und

N̂f (z, t) = EfAf ω̄s
m cosh(ω̄z)

cosh(ω̄zr0)
eiλt. (2.47)

Die Länge der UDZ zr0 kann durch Lösen der Gleichung(
sm − q02

Ef ¯̄ω2

)
cos ((¯̄ω(l − zr0)) +

( ω̄
¯̄ω

)
smtanh (ω̄zr0) sin (¯̄ω (l − zr0)) = Cn − q02

Ef ¯̄ω2

(2.48)
ermittelt werden, darin ist

q02 =
τ sā

Af
(2.49)

und
¯̄ω2 =

|ke2|
Ef

+
1

c2f
λ2. (2.50)

ke2 kann berechnet werden, indem

ke1
Ef

− q02
Efsm

=
ke2
Ef

(2.51)
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umgestellt wird zu

ke2 = ke1 −
q02
sm

. (2.52)

Die Schubspannung τ s kann Abbildung 2.6 entnommen werden.
Schlupf, Schubspannung und Normalkraft in der Faser in der DZ sowie die Auszugskraft

an der Faserspitze können wie folgt berechnet werden:

ŝ(z, t) =

[
q02

Ef ¯̄ω2
+

(
sm − q02

Ef ¯̄ω2

)
cos (¯̄ω (z − zr0)) +

(
N̄r0

EfAf ¯̄ω

)
sin (¯̄ω (z − zr0))

]
eiλt,

(2.53)

τ̂(z, t) =

[
Z2

q02
Ef ¯̄ω2

+ τ s + Z2

(
sm − q02

Ef ¯̄ω2

)
cos (¯̄ω (z − zr0)) + Z2

(
N̄r0

EfAf ¯̄ω

)
sin (¯̄ω (z − zr0))

]
eiλt,

(2.54)

N̂f (z, t) = EfAf ¯̄ω

[
−
(
sm − q02

Ef ¯̄ω2

)
sin (¯̄ω (z − zr0)) +

(
N̄r0

EfAf ¯̄ω

)
cos (¯̄ω (z − zr0))

]
eiλt

(2.55)
und

P̂ (t) = EfAf ¯̄ω

[
−
(
sm − q02

Ef ¯̄ω2

)
sin (¯̄ω (l − zr0)) +

(
N̄r0

EfAf ¯̄ω

)
cos (¯̄ω (l − zr0))

]
eiλt.

(2.56)
Z2 wird berechnet mit

Z2 =
ke2Af

ā
, (2.57)

¯̄ω2 ergibt sich aus

¯̄ω2 =
|ke2|
Ef

+
1

c2f
λ2, (2.58)

abschlieÿend kann N̄r0 ermittelt werden mit

N̄r0 = EfAf ω̄s
mtanh (ω̄zr0) (2.59)

([4]). Die Abbildung 2.7 (a) zeigt beispielhaft den Verlauf der Übergangs�ächen-Schubspannung
entlag der Übergangs�äche. In der UDZ steigt die Schubspannung bis z = zr0 an, wo sie
ihr Maximum τm erreicht. In der DZ sinkt die Schubspannung wieder ab. Abbildung 2.7
(b) zeigt den Verlauf des Schlupfes in der Übergangs�äche. Der Schlupf steigt unabhängig
von der Zone an und ist maximal am belasteten Faserende bei z = l.
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(a) (b)

Abbildung 2.7: (a) Repräsentativer Verlauf der Übergangs�ächen-Schubspannung, (b)
Repräsentativer Verlauf des Schlupfes (in Anlehnung an [4])

2.3.2. Shear-Lag-Modell von Sridhar et al.

Das SLM von Sridhar et al. aus dem Jahr 2003 ([2]) beschreibt den dynamischen
Faserauszug für zylindrische Fasern als achsensymmetrisches Modell. Die Hafttrennungs-
Energie ist null, Faser und Matrix sind bereits voneinander getrennt. Da in der Über-
gangs�äche nur eine Reibungs-Schubspannung wirkt, kann der dynamische Faserauszug
als Wellenausbreitungsmodell entlang der Faser betrachtet werden. Abbildung 2.8 zeigt
schematisch das Modell des Faser-Matrix-Verbundes in Anlehnung an Sridhar et al.
Bei z = 0 greift die Spannung σ0 an, die Matrix ist dort frei von Spannungen.

Abbildung 2.8: Schematische Darstellung des Faser-Matrix-Verbundes (in Anlehnung an
[2])
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Die in der Grenz�äche wirkende Reibungs-Schubspannung τr kann durch das in Unter-
abschnitt 2.2.2 eingeführte FL nach (2.5) beschrieben werden. Weitere Annahmen sind,
dass beide Materialien isotrop sind mit einem Elastizitätsmodul Eq, einer Querkontrakti-
onszahl νq und einer Dichte ρq, wobei die Faser mit f und die Matrix mit m indiziert ist.
Die Faser hat auÿerdem den Radius rf , die Matrix ist ebenfalls zylindrisch, wobei ihre
Dicke aus einem Faservolumenanteil f folgt. Die axialen Verschiebungen, Dehnungen und
Spannungen von Faser und Matrix werden, unter Berücksichtigung ihrer Indizes, mit uq,
εq und σq beschrieben ([2]).
Die Wellengleichung lautet

∂2uf
∂z2

= − 2τr

rf Êf

+
1

c2f

∂2uf
∂t2

(2.60)

für die Faser und
∂2um
∂z2

=
2f

1− f

τr

rf Êm

+
1

c2m

∂2um
∂t2

(2.61)

für die Matrix. Dabei ist die Wellengeschwindigkeit von Faser und Matrix

cq =

√
Êq

ρq
(2.62)

mit

Êq =
Ei(1− νq)

(1 + νq)(1− 2νq)
. (2.63)

An der Stelle z = 0 ist die Matrix spannungsfrei, die Faser unterliegt der Axialspannung

σf (0, t) = p(t), (2.64)

auÿerdem werden die z-Koordinate, Zeit und Verschiebung normiert mit Z = z
rf
, T =

cf t
rf

und U = u
rf
. Das Reibungs-Schubspannungsgesetz aus (2.5) wird in die Wellengleichun-

gen (2.60) und (2.61) von Faser und Matrix eingesetzt. Daraus ergibt sich

∂2Uf

∂Z2
=

∂2Uf

∂T 2
− τsgn(U̇m − U̇f ) (2.65)

für die Faser und
∂2Um

∂Z2
= C2∂

2Um

∂T 2
+ φτsgn(U̇m − U̇f ) (2.66)

für die Matrix. Darin sind die dimensionslosen Parameter des Wellengeschwindigkeits-
verhältnisses C, des Modulverhältnisses φ und der normierten Reibungs-Schubspannung
τ enthalten. Sie werden berechnet mit

C2 =
c2f
c2m

=
Êfρm

Êmρf
, (2.67)
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φ =
fEf

(1− f)Em
(2.68)

und

τ =
2τ0
Ef

. (2.69)

Für die Last wird eine lineare Last-Funktion

p(t) =
σ0t

t0
(2.70)

angenommen, des Weiteren wird die normierte inverse Lastrate

k =
τ0cf t0
σ0rf

(2.71)

eingeführt ([2]).
Bei linearen Lasten existieren zwei oder drei Bereiche auf der z-Koordinate, welche

von den Parametern C und φ abhängen. In diesen bewegen sich Faser und Matrix ent-
weder gleich schnell bewegen, sie �haften� aneinander (englisch: stick), oder es liegt eine
Relativgeschwindigkeit und somit ein Schlupf zwischen den beiden (englisch: slip). Die
dimensionsbehafteten Grenzen l1, l2 und l3 dieser Bereiche bewegen sich linear mit der
Zeit. Sie werden berechnet mit

lj = ηjcf t (2.72)

(j = 1, 2 oder 3). Dabei beschreibt ηj die normierte Frontgeschwindigkeit, welche von
den Geometrie-, sowie Materialeigenschaften abhängt. Die Gesamtheit dieser Bereiche
wird als Prozesszone bezeichnet. Die Verschiebungen sind abschnittsweise von der z-
Koordinate abhängige quadratische Funktionen, welche im Folgenden für drei Fälle (eng-
lisch: Regimes) dargestellt werden. Für die dimensionslose Z-Koordinate werden die Be-
reichsgrenzen berechnet aus

Lj = ηjT (2.73)

([2]).

Ermittlung der Grenzen CL und CU Um Festzulegen, welcher der drei Fälle vorliegt,
müssen sowohl das Wellengeschwindigkeitsverhältnis C mit (2.67) als auch die Grenzen
CL und CU ermittelt werden. Diese hängen ab von dem Wellengeschwindigkeitsverhältnis
C, dem Modulverhältnis φ aus (2.68) und der inversen Lastrate k aus (2.71). Zur Berech-
nung wird zunächst der Fall II (slip-stick) angenommen, für den mit (2.83) die normierte
Frontgeschwindigkeit η1 ermitteln lässt. Anschlieÿend wird die Grenze CU berechnet mit
Hilfe der Annahme, dass beim Wechsel von Fall II zu Fall I die Reibungs-Schubspannung
in dem �stick�-Bereich den Wert τ = τ0 erreicht. Gleichung (2.84) ändert sich somit zu

(η21 + 2kη1 − 1)(1− C2
U )

2k(η1(1− C2
U ) + (1− η21)

√
(C2

U + φ)(1 + φ)
= 1. (2.74)
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Aus (2.74) kann die Grenze CU ermittelt werden. Soll die Grenze CL ermittelt werden,
so wird davon ausgegangen, dass die Reibungs-Schubspannung in dem Stick-Bereich den
Wert τ = −τ0 erreicht, wodurch ein Wechsel zu einem Reverse Slip-Bereich statt�ndet.
Auch dafür wird zunächst die normierte Frontgeschwindigkeit η1 mit (2.83) ermittelt,
um anschlieÿend mit der aus (2.84) abgeleiteten Gleichung

(η21 + 2kη1 − 1)(1− C2
L)

2k(η1(1− C2
L) + (1− η21)

√
(C2

L + φ)(1 + φ)
= −1 (2.75)

die Grenze CL zu berechnen. Sind die Grenzen ermittelt, so können wiederum der Fall,
sowie weitere normierte Frontgeschwindigkeiten und Verschiebungen bestimmt werden
([2]).
Welcher der drei Fälle Pure Slip, Slip-Stick und Slip-Reverse Slip sich einstellt, hängt

neben dem Wellengeschwindigkeitsverhältnis C auch von dem Modulverhältnis φ und
der inversen Lastrate k ab. Ist C groÿ, d. h. die Faserwellengeschwindigkeit ist gröÿer
als die Matrixwellengeschwindigkeit, dann stellt sich der Fall Pure Slip ein. Für sehr
kleine Modulverhältnisse φ können sich, abhängig vom Wellengeschwindigkeitsverhältnis
C, nur die Fälle Pure Slip oder Slip-Stick einstellen. Der Fall Slip-Reverse Slip kann
erst vorliegen, sobald das Modulverhältnis φ eine gewisse Gröÿe erreicht. Mit steigender
inverser Lastrate k wird das Einstellen des Falles Slip-Stick wahrscheinlicher ([2]).

Abbildung 2.9: Abhängigkeit der Fälle Pure Slip, Slip-Stick und Slip-Reverse Slip von
demWellengeschwindigkeitsverhältnis C, dem Modulverhältnis φ und der
inversen Lastrate k ([2])

Fall I: Pure Slip (C > CU) Der Fall des Pure Slip, also der des reinen Rutschens,
liegt dann vor, wenn das Wellengeschwindigkeitsverhältnis C den kritischen Wert CU
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überschreitet. In diesem Fall liegen zwei Bereiche vor, die normierten Verschiebungen der
Matrix für diese Prozesszone werden berechnet mit

Um(Z, T ) =


Θm,I,1

2(1+η21C
2)(1−η22C

2)
(0 ≤ Z ≤ η1T ),

τφ
2(1−η22C

2)
(Z − η2T )

2 (η1T < Z ≤ η2T ),
(2.76)

wobei Θm,I,1 = τφ

(
Z2(1 + η21C

2 − 2η1η2C
2)

+T 2(η22 − 2η1η2 + η21η
2
2C

2)

)
ist. Für die Faser kann die normierte

Verschiebung berechnet werden durch

Uf (Z, T ) =
τ(−Z+Tη2)(Z(k+η2)−T (1−kη2))

2k(1+η22)
(0 ≤ Z ≤ η2T ). (2.77)

Die Konstanten η1 und η2 ergeben sich aus

η1 =
1

C
(2.78)

und
η2 =

√
1 + k2 − k. (2.79)

Die Abbildung 2.10 (a) zeigt die Partikelgeschwindigkeit, also die Ableitungen der nor-
mierten Verschiebungen von Faser und Matrix, für den Fall I. Die Faser hat bis auf die
Position Z = η2T die betragsmäÿig gröÿere Partikelgeschwindigkeit ([2]).

Fall II: Slip-Stick (CL ≤ C ≤ CU) Liegt der Fall II vor, so gibt es in einem Bereich eine
Relativgeschwindigkeit und dadurch slip zwischen Faser und Matrix. In einem zweiten
Bereich bewegen sich beide gleich schnell, sie �kleben� also aneinander (englisch: stick).
Dies ist der Fall, wenn das Wellengeschwindigkeitsverhältnis C innerhalb der Grenzen
von CL und CU liegt. In Abbildung 2.10 (b) ist zu erkennen, wie oberhalb der Grenze
η1T die Partikelgeschwindigkeiten von Faser und Matrix übereinstimmen. Die normierten
Verschiebungen der Matrix lassen sich ermitteln aus

Um(Z, T ) =


Θm,II,1

4k(1+η1η2)(1+η21C
2)

(0 ≤ Z ≤ η1T ),

τ(η21+2kη1−1)(Z−η2T )2

4k(1+η1η2)(η2−η1)
(η1T < Z ≤ η2T ),

(2.80)

mit Θm,II,1 = τ

(
Z2((η21 + 2kη1 − 1)(η2 − η1)C

2 + 2kφ(1 + η1η2))
+T 2((η21 + 2kη1 − 1)(η2 − η1)− 2kφη21(1 + η1η2))

)
. Die normierten

Verschiebungen der Faser werden berechnet mit

Uf (Z, T ) =

{ Θf,II,1

4k(1+η1η2)
(0 ≤ Z ≤ η1T ),

τ(η21+2kη1−1)(Z−η2T )2

4k(1+η1η2)(η2−η1)
(η1T < Z ≤ η2T ),

(2.81)

darin ist Θf,II,1 = τ

(
−Z2((2k + η1 + η2) + 2ZT (1 + η1η2))

+T 2((2kη1η2 − η1 − η2)

)
. Die normierte Frontge-

schwindigkeit η2 ergibt sich aus

η2 =

√
1 + φ

C2 + φ
(2.82)
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η1 aus der quadratischen Gleichung

(η21 + 2kη1 − 1)(1 + C2η1η2) + 2kφ(1 + η1η2)η1 = 0. (2.83)

η1 ist die positiv-reelle Lösung und liegt zwischen [0 1]. Die Reibungs-Schubspannung im
stick-Bereich, also im Bereich (η1T < Z ≤ η2T ), wird berechnet mit

τr = τ̃ = τ0
(η21 + 2kη1 − 1)(1− C2)

2k(η1(1− C2) + (1− η21)
√
(C2 + φ)(1 + φ)

, (2.84)

dabei ist |τ̃ | < τ0 ([2]).

Fall III: Slip-Reverse Slip (C ≤ CL) Im letzten Fall, in dem das Wellengeschwindig-
keitsverhältnis C ≤ CL ist, existieren drei Bereiche, zwischen denen sich die Geschwindig-
keiten von Faser und Matrix schneiden. In einem Bereich bewegt sich die Matrix schneller
als die Faser und in den anderen beiden Bereichen die Faser schneller als die Matrix (Re-
verse Slip, vgl. Abbildung 2.10 (c)). Die normierten Verschiebungen der Matrix können
in diesem Fall berechnet werden mit

Um(Z, T ) =


Θm,III,1

2(1−η21C
2)(1+η23C

2)
(0 ≤ Z ≤ η1T ),

Θm,III,2

2(η21C
2−1)(η23C

2+1)
(η1T < Z ≤ η3T ),

(2.85)

wobei Θm,III,1 = τφ

(
Z2(1 + η21C

2 − 4η1η3C
2 + 2η23C

2)
+T 2(η23 − 4η1η3 + 4η21η

2
3C

2 + 2η21)

)
und Θm,III,2 = τφ(Z −

η3T )

(
Z(1− η21C

2 + 4η1η3C
2)

+T (η3 − η21η3C
2 − 4η1)

)
sind. Die normierten Verschiebungen der Faser werden

ermittelt mit

Uf (Z, T ) =


Θf,III,1

4k(1+η1)(1+η3)
(0 ≤ Z ≤ η1T ),

Θf,III,2

4k(η21−1)(1+η3)
(η1T < Z ≤ η2T ),

τ(Z−η3T )2

2k(1−η23)
(η2T < Z ≤ η3T ),

(2.86)

dabei ist Θf,III,1 = τ

 Z2(2k(η1 − 2η3 − 1)− (1 + η1)(1 + η3))
−T 2(1 + η3 + 2kη3 + η1(1 + η3 − 2k(η3 + 2)))

+2ZT (1 + η1)(1 + η3)

 und Θf,III,2 =

τ

 Z2(1 + η3 − η21(1 + η3) + 2k(η21 − 1− 2η1(1 + η3)))
+T 2((η21 − 1)(1 + η3) + 4kη1 + 2kη3(η

2
1 + 2η1 − 1))

+2ZT (η21 + 4kη1 − 1)(1 + η3)

. Die normierten Frontgeschwin-

digkeiten η1 und η3 können durch das Lösen der quadratischen Gleichungen

η3 − η21η3C
2 + 2η1(η

2
3C

2 − 1) = 0 (2.87)

und
(η1 − 1)

(η1 + 1)
+

1

(η3 + 1)
− φ(η23 − 4η1η3 + η21η

2
3C

2 + 2η21)

(1− η21C
2)(1 + η23C

2)
=

(1− η1)

2k
(2.88)
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ermittelt werden ([2]).

Abbildung 2.10: Partikelgeschwindigkeiten von Faser (durchgezogene Linien) und Matrix
(gestrichelte Linien) für die Fälle I (a), II (b) und III (c) mit den Para-
metern φ = 2, 00, k = 0, 05, τ = 0, 005 und T = 10 ([2])
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3. Numerische Modelle

In dieser Arbeit werden die Ergebnisse der im vorherigen Kapitel vorgestellten analyti-
schen SLM mit numerischen Finite-Element-Modellen verglichen. Dafür wird das Pro-
gramm Abaqus in der Version 2024 von Dassault Systemes verwendet. Zunächst
werden in diesem Kapitel die Solver vorgestellt, die für die numerische Beschreibung
des dynamischen Faserauszuges im Rahmen dieser Arbeit in Betracht gezogen wurden.
Anschlieÿend werden Idealisierungen des Übergangsbereiches zwischen Faser und Matrix
erläutert und abschlieÿend verschiedene Modellierungsmöglichkeiten von beiden erörtert.
Bei der Finite-Elemente-Methode (FEM) wird ein Kontinuum in �nite Teilbereiche dis-
kretisiert, deren Verhalten durch Ansatzfunktionen abgebildet wird. ([16], S. 3).
Zunächst werden verschiedene Solver für dynamische Problemstellungen in Abaqus

erläutert, anschlieÿend wird die Darstellung des Übergangsbereiches als numerisches Mo-
dell behandelt, bevor abschlieÿend mögliche Modellierungen des Faser-Matrix-Verbundes
dargestellt werden. Für diese Arbeit wurden mit Hilfe des Programmes Python 3.12.6
Eingabedateien erstellt, an welchen Parameteränderungen für die numerischen Abaqus-
Modelle vorgenommen werden können. Die Grundstruktur dieser Skripte wurde aus
Abaqus-Journal-Dateien übernommen und anschlieÿend modi�ziert.

3.1. Untersuchung der Solver für dynamische Probleme in Abaqus

Nichtlineare zeitabhängige Probleme werden in der FEM beschrieben mit der Di�erenti-
algleichung

Mü(t) +R(u(t)) = F (t). (3.1)

Dabei ist M die Massenmatrix, ü(t) der Beschleunigungsvektor und R(u(t)) der Vektor
der inneren Reaktionskräfte. Diese stehen im Gleichgewicht mit dem Vektor der äuÿeren
Lasten F (t). Für eine Lösung von (3.1) wird eine direkte Zeitintegration verwendet. Die
Di�erentialgleichung wird zum diskreten Zeitpunkt tn und anschlieÿend zum Zeitpunkt
tk+1 = tk +∆t berechnet, ∆t ist der Zeitschritt. Dabei gibt es zwei Vorgehensweisen, die
Implizite und Explizite Zeitintegration, welche im Folgenden kurz beschrieben werden
([17], S. 211 und 224).

3.1.1. Implizite Zeitintegration

Bei der impliziten Zeitintegration wird die Di�erentialgleichung

Mü(tk+1) +R(u(tk+1)) = F (tk+1) (3.2)

zum zukünftigen Zeitpunkt tk+1 ausgewertet. Die Gleichung kann nicht direkt nach den
Zustandsgröÿen wie der Verschiebung u gelöst werden, es wird ein iteratives Verfahren
benötigt ([17], S. 224).
In Abaqus wird dieses Verfahren dynamisch implizit (englisch: Implicit dynamic ana-

lysis oder dynamic, implicit) genannt, die Zeitschrittintegration erfolgt mit dem Newmark-
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β-Verfahren ([18]). Für zwei Randbeschleunigungen wird einer konstanter Mittelwert ge-
bildet,

a(t) =
1

2
(ak+1 + ak) , (3.3)

zu sehen in Abbildung 3.1. Daraus wird die Geschwindigkeit v und Verschiebung u be-
rechnet mit

v = vk +

� t

tk

adt̂ = vk +
1

2
(ak+1 + ak) (t− tk) , (3.4)

und

u(t) = uk +

� t

tk

(
vk +

1

2
(ak+1 + ak)

(
t̂− tk

))
dt̂. (3.5)

Für die rechten Intervallränder werden vk+1 und uk+1 durch die Taylorreihenentwicklung
bis zur dritten Zeitableitung berechnet mit

vk+1 = vk + ak∆t+ γȧk∆t2 (3.6)

und

uk+1 = uk + vk∆t+ ak
∆t2

2
+ βȧk∆t3, (3.7)

darin ist
ȧk =

ak+1 − ak
∆t

. (3.8)

Durch Einsetzen von (3.8) und (3.6) und (3.7) ergeben sich

vk+1 = vk + [(1− γ) ak + γak+1] ∆t. (3.9)

sowie

uk+1 = uk + vk∆t+

[(
1

2
− β

)
ak + βak+1

]
∆t2. (3.10)

In (3.6) und (3.7) sowie (3.9) und (3.10) sind β und γ Kontrollkonstanten für den Fehler
des Abbruchs der Taylorreihenentwicklung. Da die Berechnung iterativ für jeden Zeit-
schritt erfolgt, ist die Rechendauer hoch. Vorteilhaft ist jedoch, dass das Verfahren un-
bedingt stabil ist und somit groÿe Zeitschritte erlaubt ([17], S. 227-229).
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Abbildung 3.1: Konstante Beschleunigung ([17], S. 227)

3.1.2. Explizite Zeitintegration

Mit der expliziten Zeitintegration wird die Di�erentialgleichung

Mü(tk) +R(u(tk)) = F (tk) (3.11)

zum aktuellen Zeitpunkt tk analysiert und die Zustandsgröÿen, welche am zukünftigen
Zeitpunkt tk+1 vorhanden sind, werden durch Extrapolieren ermittelt ([17], S. 224).
Die Zeitintegration erfolgt mit dem zentralen Di�erenzenverfahren, bei dem zu einem

Zeitpunkt tk die Geschwindigkeit als Steigung zwischen den Zeitpunkten tk−1, tk und
tk+1 als Vorwärts- bzw. Rückwärtsdi�erenzenquotient berechnet wird mit

vvorwk = vk+1/2 =
uk+1 − uk

∆t
(3.12)

und
vrückwk = vk−1/2 =

uk − uk−1

∆t
(3.13)

(vgl. Abbildung 3.2).
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Abbildung 3.2: Zentrales Di�erenzenverfahren ([17], S. 232)

Anschlieÿend wird mit dem Mittelwert aus 3.12 und 3.13 der zentrale Di�erenzenquo-
tient

vk =
1

2
(vvorwk + vrückwk ) =

uk+1 − uk−1

2∆t
(3.14)

berechnet. Um die Beschleunigung zu berechnen, wird der Geschwindigkeitsverlauf als
linear angenommen, sodass die Beschleunigung die Steigung zwischen den Vorwärts- und
Rückwärtskoe�zienten der Geschwindigkeit ist,

an =
vvorwk − vrückwk

∆t
=

vk+1/2 − vk−1/2

∆t
(3.15)

([17], S. 231-232).
Diese Methode ist nur bedingt stabil, weshalb der Zeitschritt ∆t einen kritischen Zeit-

schritt

∆tkrit = le,min
1

ce
(3.16)

nicht überschreiten darf. le,min ist die kleinste Elementkantenlänge und ce die Schallge-
schwindigkeit einer Longitudinalwelle im Element. Diese Berechnung des kritischen Zeit-
schrittes ist nur für lineare Systeme geeignet. Für nichtlineare Systeme wird häu�g ein
Stabilisierungsfaktor namens Courant-Zahl, welcher meist 0, 9 beträgt, verwendet. Die
Berechnung der Schallgeschwindigkeit ist abhängig von der Dimension des Elementes.
Für 1-D-Elemente wird sie berechnet mit

ce =

√
E

ρe
, (3.17)
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für 2-D-Elemente mit

ce =

√
E

ρe(1− ν2)
(3.18)

und für 3-D-Elemente mit

ce =

√
E(1− ν)

ρe(1 + ν)(1− 2ν)
. (3.19)

Wird die Courant-Zahl berücksichtigt, so beträgt der tatsächliche kritische Zeitschritt

∆t = 0, 9∆tkrit. (3.20)

([17], S. 238-240).
Abbildung 3.3 zeigt, dass bei der expliziten Zeitintegration Schwingungen auftreten

können, welche physikalisch nicht auftreten sollten. Das gezeigte Volumenmodell eines
Stabes wurde entlang der Faser harmonisch angeregt, jedoch bilden sich Auslenkungen
normal zur Längsachse aus. Dieses Phänomen wird als numerische Schwingung bezeich-
net, für das es Stabilisierungsverfahren gibt. In Abaqus wird dieses Verfahren dynamisch
explizit (englisch: Implicit dynamic analysis oder dynamic, explicit) genannt ([19]), es
bietet die Möglichkeit, den kritischen Zeitschritt ∆tkrit selbst zu berechnen.

Abbildung 3.3: Numerische Schwingung eines Stabes

3.1.3. Wahl des Zeitintegrationsverfahrens

Im Folgenden sind in Tabelle 3.1 einige Eigenschaften beider Zeitintegrationsverfahren
gegenübergestellt.

Alexander Jannsen 34 Masterarbeit WS2024/2025



Tabelle 3.1: Eigenschaften des impliziten und expliziten Zeitschrittintegrationsverfahrens
(nach [17], S. 244)

explizit implizit

Nur bedingte Stabilität des
Verfahrens gegeben

Zeitschrittverfahren ist unbedingt stabil,
eine Wahl groÿer Zeitschritte ist möglich.

Für nichtlineare Fragestellungen
gibt es keine Konvergenzprobleme

Bei unstetigen nichtlinearen Anwendungen
müssen kleine Zeitschritte zum Erhalt

der Konvergenz gewählt werden.
Zeitschritt sehr klein Sehr groÿe Rechenzeit für einen Zeitschritt

Benötigt hohe Zeitschrittanzahl Kommt abhängig von der Rechnung
mit wenigen Zeitschritten aus

Das implizite Zeitintegrationsverfahren wird häu�g auf lineare oder schwach nichtlinea-
re, langanhaltende transiente dynamische Probleme angewandt, das dynamisch explizite
Verfahren für stark nichlineare Vorgänge über kleine Zeiträume, wie sie bei der Kurz-
zeitdynamik auftreten ([17], S. 245). Aus diesem Grund wird in dieser Arbeit für die
Simulation des dynamischen Faserauszuges das dynamisch explizite Verfahren verwen-
det.

3.2. Darstellung des Übergangsbereiches zwischen Faser und Matrix in
Abaqus

Im Folgenden werden von Abaqus gebotene Möglichkeiten zur Modellierung der in Ab-
schnitt 2.2 vorgestellten Kontaktarten (TSL und FL) des Übergangsbereiches zwischen
Faser und Matrix dargestellt. In diesem Abschnitt sollen Idealisierungsmöglichkeiten für
beide Mechanismen dargestellt werden.

3.2.1. Modellierung der Haftung und Schädigung des Übergangsbereiches als
Surface-Based Cohesive Behavior

Eine Möglichkeit, die (auftrennbare) Haftung zwischen Faser und Matrix in Abaqus zu
modellieren, ist ihre De�nition in Form einer Interaction Property (deutsch: Interaktions-
Eigenschaft) im Interaction Module (deutsch: Interaktions-Modul). In diesem Unterab-
schnitt sollen die von Abaqus gebotenen Optionen dargestellt werden, welche in dieser
Arbeit Anwendung gefunden haben. Die (auftrennbare) Haftung wird zwischen zwei Flä-
chen de�niert, für den Solver Dynamic, Explicit, welcher in dieser Arbeit verwendet wird,
geschieht dies mit einem General Contact (deutsch: Allgemeiner Kontakt). Die Tren-
nungen s des TSL entspricht den Relativverschiebungen der Knoten der Slave Surface
(deutsch: untergeordnete Fläche) zu ihren Projektionen auf die Master Surface (deutsch:
übergeordnete Fläche) ([20]).
Um die mechanischen Eigenschaften des Übergangsbereiches zu de�nieren, verwendet

Abaqus das in Unterabschnitt 2.2.1 vorgestelle TSL. Diese Arbeit benutzt ein ungekop-
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peltes TSL, deren linear-elastischer Bereich durch

Ψ =


Ψn

Ψs

Ψt

 =

 K0
nn 0 0
0 K0

ss 0
0 0 K0

tt


sn
ss
st

 = K0s (3.21)

und deren Aussehen in Abbildung 2.3 dargestellt ist. Dabei stellt der Index n das TSL in
lokaler Normalenrichtung und die Indizes s und t das TSL in die beiden lokalen Tangenti-
alrichtungen dar. Bei dieser Einstellung beein�usst eine Trennung in eine der in Abschnitt
2.1 dargestellten Riss-Modenrichtungen die anderen Moden nicht. Soll ein gekoppeltes
Gesetz genutzt werden, so ist diese Option in Abaqus/CAE auszuwählen unter Create
Interaction Property > Contact > Mechanical > Cohesive Behaviour: Specify

sti�ness coe�cients: Coupled. Des Weiteren sind neben den Stei�gkeitstermen K0
nn,

K0
ss und K0

tt auch Kopplungsterme zu de�nieren. Andernfalls können die Stei�gkeitster-
me für den ungekoppelten Fall unter Create Interaction Property > Contact >

Mechanical > Cohesive Behaviour: Specify sti�ness coe�cients: Uncoupled

de�niert werden. Soll ein Riss-Modus nicht berücksichtigt werden, so kann der Stei�g-
keitsterm zu null gesetzt werden ([20]). Modellierungen in dieser Arbeit haben gezeigt,
dass die drei Rissmoden aus Abschnitt 2.1 nicht zwangsläu�g den Indizes n, t und s
zugeordnet sind. So kann ein Modus II-Riss beispielsweise mit tn = K0

nsn zu modellieren
sein
Für die Schadensinitiierung können vier Kriterien ausgewählt werden, welche entweder

von der Spannung tmi oder der Trennung smi abhängen. Beim Maximum Stress Criterion
(deutsch: Maximal-Spannungs-Kriterium) tritt Schaden auf, sobald

max

{
⟨tn⟩
tmn

,
ts
tms

,
tt
tmt

}
= 1. (3.22)

Die Macaulay-Klammer ⟨⟩ deutet an, dass bei einer Druckspannung kein Schaden auf-
tritt. In Abaqus/CAE kann dieses Kriterium eingestellt werden unter Create Interac-
tion Property > Contact > Mechanical > Damage: Initiation unter dem Tab
Criterion: Maximum nominal stress. Das Maximum Separation Criterion (deutsch:
Maximal-Trennungs-Kriterium) wiederum de�niert die Schadensinitiierung mit

max

{
⟨sn⟩
smn

,
ss
sms

,
st
smt

}
= 1. (3.23)

In diesem Fall bedeutet die Macaulay-Klammer ⟨⟩, dass bei reiner Kompression kein Scha-
den in der Übergangs�äche auftritt. Auswählbar ist dieses Kriterium in Abaqus/CAE
unter Create Interaction Property > Contact > Mechanical > Damage: In-

itiation unter dem Tab Criterion: Maximum separation. Weitere Kriterien sind das
Quadratic Stress Criterion und das Quadratic Separation Criterion. Für Surface-Based
Cohesive Behavior ist keine Dicke der Übergangs�äche de�nierbar ([20]).
Eine lineare Schadensevolution kann in Abaqus/CAE eingestellt werden unter Me-

chanical > Damage: Evolution unter dem Tab Type: Displacement: Softening:
Linear ([20]).
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3.2.2. Modellierung der Haftung im Übergangsbereich als Cohesive Element

Anders als bei der in Unterabschnitt 3.2.1 beschriebenen Modellierung der Haftung als
Kontaktbedingung kann das Cohesive Elements eine Dicke des Übergangsbereiches dar-
stellen, was jedoch nicht zwangsläu�g notwendig ist ([20]). Bei Cohesive Elements handelt
es sich um modellierte Elemente, denen als Material- und Netz-Eigenschaften kohäsives
Verhalten zugeordnet wird. Bei den Element-Typen handelt es sich um COH -Elemente,
welche für 2D-, 3D- oder achsensymmetrische Anwendungen erstellt werden können ([21]).
Die Stei�gkeitseigenschaften (vgl. K0

i ) des TSL, sowie die Schadensevolution können un-
ter den Materialeigenschaften eingestellt werden. Die Stei�gkeit des Cohesive Element
berechnet sich aus der Stärke der Übergangs�äche tcoh und ihren Elastizitäts- bzw. Schub-
moduln mit

K0
nn = Enn

tcoh
K0

ss =
Gsn
tcoh

K0
tt =

Gtn
tcoh

.

(3.24)

([22]). Für dynamische Analysen muss für die Cohesive Elements auch eine Dichte fest-
gelegt werden.
Da weder die SLM aus Abschnitt 2.3, noch der Versuch aus Abschnitt 5.1 eine Dicke,

Elastizitäts- oder Schubmoduln der Übergangs�äche angegeben, wird in dieser Arbeit die
Haftung mit dem Surface-Based Cohesive Behavior statt mit Cohesive Elements model-
liert. Des Weiteren müssen bei einer Modellierung als Kontaktbedingung keine Annahmen
zur Dichte der Übergangs�äche getro�en werden.

3.2.3. Modellierung der Reibung im Übergangsbereich

Um das in Unterabschnitt 2.2.2 vorgestellte FL (2.5) in Abaqus umzusetzen, werden in
dieser Arbeit zwei Modellierungsvarianten angewandt. Zum einen bietet Abaqus mit der
Funktion Shear stress versus elastic slip while sticking (SSVESWS, deutsch: Schubspan-
nung versus elastischer Schlupf während des Haftens) die Möglichkeit, das FL anzuwen-
den. Zum anderen verwenden ([2]) die in Unterabschnitt 3.2.2 beschriebenen Cohesive
Elements, um Reibung zwischen Faser und Matrix zu simulieren. In dieser Arbeit wird
jedoch ein Surface-Based Cohesive Behavior, wie in Unterabschnitt 3.2.1 dargestellt, ver-
wendet. Beide Varianten haben gemeinsam, dass sie, um numerische Probleme bei einer
Relativgeschwindigkeit von null zwischen Faser und Matrix zu vermeiden, einen linearen
Übergangsbereich zwischen den Zuständen eines nicht vorhandenen oder vorhandenen
Schlupfes herstellen. Somit werden, wie in Abbildung 3.4 dargestellt, Unstetigkeiten ver-
mieden ([2]). Im Folgenden werden die beiden Modellierungsarten kurz vorgestellt.

Alexander Jannsen 37 Masterarbeit WS2024/2025



Abbildung 3.4: Friction Law für numerische Analyse ([2])

Shear stress versus elastic slip while sticking Die Funktion SSVESWS, erlaubt eine
Modellierung eines Übergangsbereiches zwischen Haftung und Reibung, welcher nicht
sprunghaft ist, sobald es eine Relativbewegung zwischen Faser und Matrix gibt. Statt-
dessen wird eine Relativbewegung zwischen beiden Komponenten erlaubt, obwohl der
Zustand eigentlich �haftend� ist, bis eine kritische Schubspannung τ0 erreicht wird. Dafür
wird eine Stei�gkeit κ de�niert, welche für den �haftenden� Bereich bis zum Erreichen
von τ0 gilt. Abbildung 3.5 zeigt das SSVESWS-Modell für die Reibung ([23]). Die Pa-
rameter der SSVESWS-Funktion können eingestellt werden unter Create Interaction
Property > Contact > Tangential Behavior > Friction formulation: Penalty.
Die Interaction wird dann als Surface-to surface contact (Explicit) mit der Mechanical
constraint formulation: Penalty contact method und Finite sliding de�niert.

Abbildung 3.5: Shear stress versus elastic slip while sticking (nach [23])

Reibung durch Surface-Based Cohesive Behavior Für eine Abbildung des FL (2.5) mit
einem Surface-Based Cohesive Behavior wird für die Relativverschiebung sf , bei der die
Verbindung zwischen Faser und Matrix vollständig versagt, ein groÿer Wert angenommen,
sodass die Spannung in der Übergangs�äche nach (2.4) kaum abnimmt (vgl. Abbildung

Alexander Jannsen 38 Masterarbeit WS2024/2025



3.6). Die maximal ertragbare Schubspannung entspricht dabei dem Wert der Reibungs-
Schubspannung.

Abbildung 3.6: Reibung als Surface Based Cohesive Behavior (nach [20])

3.3. Untersuchung der Modellierungsmöglichkeiten des Faserverbundes

In diesem Abschnitt werden Modellierungsmöglichkeiten des Faserverbundes vorgestellt,
welche in dieser Arbeit betrachtet wurden. Tabelle 3.2 zeigt, welche Parameter der nu-
merischen Modelle im Python-Skript geändert werden können. Für alle Modelle gilt,
dass die Erdbeschleunigung vernachlässigt wird.
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Tabelle 3.2: Veränderbare Parameter für numerische Modelle im Python-Sript
Parameter Spezi�kation

Geometrie � Faser- und Matrixlänge

� Faser-Radius- und Matrix-Dicke

� Freie Länge

Randbedingung � Einspannung der Matrix

� Symmetrie der Faser

� Keine Randbedingung

� Einspannung der Matrix und Symmetrie der Faser

Übergangsbedingung Haftung:

� Surface-Based Cohesive Behavior

Reibung:

� Shear Stress versus elastic slip while sticking

� Surface-Based Cohesive Behavior

Belastung � Harmonische Weganregung

� lineare Zugspannung am Faserende

� Lineare Verschiebung am Faserende

Material � Mechanische Eigenschaften von Faser und Matrix

� Elastizitätsmodul

� Dichte

� Querkontraktionszahl

3.3.1. Rotationssymmetrisches Modell aus Axisymmetric Elements

Abaqus bietet die Möglichkeit, für rotationssymmetrische Körper sogenannte Axisym-
metric Elements zu nutzen, wobei die Belastung ebenfalls rotationssymmetrisch wir-
ken muss ([24]). Die Abbildung 3.7 zeigt beispielhaft, wie sich ein Axisymmetric Ele-
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ment, in diesem Fall ein CAX4 -Element (4-Knoten bilinear), in einem rotationssymme-
trischen Körper darstellt. In dieser Arbeit wird jedoch ein Axisymmetric Element mit
reduzierter Integration verwendet (CAX4R, 4-Knoten bilniear mit reduzierter Integra-
tion und Hourglass-Control ([25]), da für die Anwendung von Abaqus/Explicit keine
CAX4-Elemente zugelassen sind (vgl. Abbildung 3.8 (a)). Nach der Berechnung ist eine
rotationsymmetrische Modellierung (sweep) des FE-Modells möglich, um den rotations-
symmetrischen Körper darzustellen (s. Abbildung 3.8 (b)). Wie in ([2]) werden Faser
und Matrix als zylindrisch angenommen. Durch eine Anwendung von Axisymmetric Ele-
ments in dieser Arbeit soll die Rechenzeit reduziert werden. Der Python-Code für das
rotationssymmetrische Modell ist in Anhang B zu �nden.

Abbildung 3.7: Axisymmetric Element ([26])

(a) (b)

Abbildung 3.8: (a) Meldung beim Versuch, CAX4-Elemente in Abaqus/Explicit zu ver-
wenden, (b) Sweep eines Faser-Matrix-Verbundes aus CAX4R-Elementen
in Abaqus

3.3.2. Viertelmodell aus Volumenelementen

Neben Axisymmetric Elements wurden in dieser Arbeit auch Volumenmodelle des Typs
C3D8R (8-Knoten Linear mit reduzierter Integration und Hourglass-Control) verwendet
([27]). Dieses verfügt über nur einen Integrationspunkt, welcher sich in der Mitte des Ele-
mentes be�ndet (s. Abbildung 3.9 (a)). Die reduzierte Variante wurde zwecks Einsparung
von Rechenzeit verwendet, die Hourglass-Control ist standardmäÿig aktiviert ([28]). Wie
in ([2]) werden Faser und Matrix als zylindrisch angenommen. Um weitere Rechenzeit
einzusparen, wurde die Rotationssymmetrie einiger Faser-Matrix-Verbunde genutzt, und
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ein Viertelmodell verwendet, wie in Abbildung 3.9 (b) sichtbar ist. Das Python-Skript
für das Viertelmodell ist in Anhang C zu �nden. Ein Viertelmodell wird z. B. auch in
([10]) genutzt.

(a) (b)

Abbildung 3.9: (a) Schematisches C3D8R-Element ([28]), (b) Viertelmodell eines Faser-
Matrix-Verbundes
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4. Analytische Validierung der Numerischen Modelle

In diesem Kapitel werden die im vorherigen Kapitel vorgestellten numerischen Modelle
mit den in Abschnitt 2.3 beschriebenen analytischen SLM verglichen. Zunächst wird die
numerische Modellierung der Haftungstrennung mit dem SLM von Azzam validiert, an-
schlieÿend die Reibung mit dem SLM von Sridhar et al. Zu beachten ist, dass die SLM
und somit auch die numerischen Modelle unterschiedliche Koordinatensysteme verwen-
den. Beim SLM von Azzam verläuft die Faserlängsachse entlang der z-Achse in positive
Richtung (vgl. Abbildung 2.4 (a)), bei dem von Sridhar et al. verläuft sie in negative
Richtung (vgl. Abbildung 2.8). In den Unterabschnitten werden analytische Ergebnisse
mit dem tiefgestellten Index analytisch und numerische Ergebnisse mit dem tiefgestellten
Index numerisch gekennzeichnet.

4.1. Validierung mit dem Shear-Lag-Modell nach Azzam

Um die Schädigung der Übergangs�äche sowie die Haftung verschiedener numerischer
Modelle mit dem analytischen Shear-Lag-Modell von Azzam aus Unterabschnitt 2.3.1
zu validieren, wurden die in ([4]) verwendeten Parameter für die Geometrie, sowie die
Materialeigenschaften und Eigenschaften des TSL verwendet. Diese sind in Tabelle 4.1
einsehbar. Da die Matrix starr ist, werden in ([4]) keine Angaben zum Elastizitätsmodul
Em sowie der Dichte ρm gemacht. Um eine starre Matrix zu simulieren, wurden beide
Parameter um den Faktor 10 gröÿer als die der Matrix gewählt. Als Querkontraktionszahl
wurde υ = 0, 33 gewählt ([29]), da Ef und ρf dem Material Aluminium ähneln ([30]).
In Anlehnung an ([2]) wurde ein Faservolumenanteil von f = 40 % angenommen. Die
Matrix Dicke berechnete sich mit f =

Vf

V ([31]) zu 0, 00581 mm.
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Tabelle 4.1: Parameter für das numerische Modell. Die Tabelle basiert gröÿtenteils auf
Daten von ([4])

Faser Matrix Übergangs-
�äche

Elastizitätsmodul E (MPa) 72000 720000

Dichte ρ ( tonne
mm3 ) 2, 7× 10−9 2, 7× 10−8

Querkontraktionszahl ν 0.33 0.33

Querschnitts�äche
der Faser Af (mm2)

3, 14× 10−4

Faserumfang ā (mm) 6, 28× 10−2

Länge l (mm) 5 5

Stei�gkeit der
Übergangs�äche K0 (MPa

mm )
652

Schlupf bei
Schadensinitiierung sm (mm)

0, 005

Schlupf bei Reibung sr (mm) 0, 08

Schlupf bei vollständigem Versagen
zwischen Faser und Matrix sf (mm)

0, 0941

Schubspannung bei
Schadensiniierung τm (MPa)

3, 26

Schubspannung bei Reibung τ r (MPa) 0, 517

Schubspannung τ s (MPa) 3, 44

Erregeramplitude Cn (mm) 6, 125× 10−2

Erregerkreisfrequenz λ
(
1
s

)
1× 105

Für das analytische Shear-Lag-Modell erfolgt die harmonische Anregung, wie in (2.27)
beschrieben, mit eiλt. Nach der Eulerschen Formel

eiy = cos(y) + isin(y) (4.1)

ist der Realteil der Anregung ein Kosinus. In dieser Arbeit wird für die numerischen
Modelle eine sinusförmige Anregung gewählt, da erwartet wird, dass eine Auslenkung
um die volle Amplitude im ersten Zeitschritt zu numerischen Problemen führt. Da Si-
nus und Kosinus um eine Viertelperiode phasenverschoben sind, wurden die numerischen
und analytischen Ergebnisse um eine Viertelperiode versetzt miteinander verglichen. Das
analytische Modell wurde zum Zeitpunkt tanalytisch = 0 s ausgewertet, der Zeitpunkt des
numerischen Modells ist tnumerisch = 1, 57× 10−5 s. tnumerisch wurde auf eine Viertelpe-
riode bei der Erregerkreisfrequenz λ = 1× 105 festgelegt, um Rechenzeit zu sparen. Das
rotationssymmetrische und das Viertelmodell für die Simulation der Hafttrennung sind
in Abbildung 4.1 (a) und (b) dargestellt.
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(a) (b)

Abbildung 4.1: (a) Rotationssymmetrisches Modell (b) Viertelmodell

Abbildung 4.2 zeigt das numerische Modell von Azzam für die Faser und einen Über-
gangsbereich aus Cohesive Elements. Aus den in Unterabschnitt 3.2.2 genannten Gründen
wird in dieser Arbeit ein Surface-Based Cohesive Behavior genutzt. Des Weiteren ist in
Abbildung 4.2 zu sehen, dass die Matrix nicht modelliert ist. Es wird angenommen, dass
die Cohesive Elements vollständig eingespannt sind. In dieser Arbeit wird statt der Cohe-
sive Elements die Matrix eingespannt. Azzam verwendet für die Faser C3D8R-Elemente,
was auch bei dem in dieser Arbeit verwendeten Viertelmodell der Fall ist, für die Cohesive
Elements werden COH3D8-Elemente verwendet ([4]).

Abbildung 4.2: Numerisches Modell der Faser und des Übergangsbereiches mit Cohesive
Elements ([4])

4.1.1. Hafttrennung mit dem rotationssymmetrischen Modell

In diesem Unterabschnitt werden analytische Shear-Lag- sowie numerische Lösungen für
das rotationssymmetrische Modell verglichen. In dem numerischen Modell wurden 20000
CAX4R-Elemente verwendet, die Übergangs�äche wurde mit 2500 Elementen diskreti-
siert. Die Rechenzeit betrug etwa 14 min, der mit (3.20) berechnete kritische Zeitschritt
betrug ∆tkrit,theoretisch = 2, 33 × 10−10 s. In Abaqus war der Zeitschritt im Mittel
∆tkrit,Abaqus = 2, 3× 10−10 s.
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Abbildung 4.3 (a) vergleicht den analytisch berechneten Schlupf ŝanalytisch(z, t) mit
dem numerisch berechneten ŝnumerisch(z, t). Bei beiden Modellen stieg der Schlupf von
z = 0 mm monoton mit zunehmenden Abstand zum unbelasteten Faserende. Am belas-
teten Faserende lag dieser für beide bei ŝ = 0, 06 mm. Der Schlupf wurde vom rotati-
onssymmetrischen Modell gut nachgebildet, im Mittel war die prozentuale Abweichung
ξ̄ = 5 %.

Abbildung 4.3: Schlupf entlang der Übergangs�äche für das rotationssymmetrische und
das SL-Modell

Die Schubspannungen τ̂analytisch(z, t) und τ̂numerisch(z, t) entlang der Übergangs�äche
sowie deren prozentuale Abweichung ξ voneinander werden in Abbildung 4.4 (a) und
4.4 (b) dargestellt. Der aus dem numerischen Modell berechnete Verlauf war zunächst
negativ, er wurde deshalb umgekehrt, damit der Verlauf mit dem des SLM verglichen
werden konnte. Des Weiteren wurde der leicht verrauschte Verlauf mit einem gleitenden
Mittelwert von 10 Datenpunkten geglättet, um Trends bei der prozentualen Abweichung
erkennbarer zu machen.
Der Verlauf von τ̂numerisch(z, t) ähnelte τ̂analytisch(z, t), unterschätztw aber die Schub-

spannung über die gesamte Länge der Übergangs�äche. Die Position zr0, bei der die
Schädigung der Übergangs�äche beginnt, ist durch τ̂max gekennzeichnet. Für das ana-
lytische Modell war zr0,analytisch = 1, 94 mm, für das numerische zr0,numerisch = 2, 03
mm. Sie wichen um ca. 5 % voneinander ab. An dieser Stelle ist die analytische Schub-
spannung τ̂max,analytisch = 3, 26 MPa, die numerische Schubspannung liegt darunter mit
τ̂max,numerisch = 2, 95 MPa. Die prozentualen Abweichungen waren in der UDZ gröÿer
als in der DZ. Die mittlere Abweichung ξ̄ betrug über die gesamte Länge der Übergangs-

Alexander Jannsen 46 Masterarbeit WS2024/2025



�äche 11 %.

(a)

(b)

Abbildung 4.4: (a) Schubspannung entlang der Übergangs�äche für das rotationssymme-
trische und das SL-Modell, (b) Prozentuale Abweichung zwischen Shear-
Lag-Modell und numerischem Modell
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4.1.2. Hafttrennung mit dem Viertelmodell

Im Viertelmodell waren 135000 C3D8R-Elemente eingesetzt. Die Länge der Übergangs-
�äche wurde mit 2500 Elementen diskretisiert. Die Berechnungszeit betrug ca. 4, 5 h. Der
kritische Zeitschritt nach (3.20) betrug ∆tkrit,theoretisch = 1, 35×10−10 s, der in Abaqus
verwendete Zeitschritt war ∆tkrit,Abaqus = 1, 3×10−10 s. Die Schlupf-Werte ŝ(z, t) für das
Viertel- und das SLM sind in den Abbildungen 4.5 (a) zu sehen, die Schubspannungen
τ̂analytisch(z, t) und τ̂numerisch(z, t) sowie deren prozentualen Abweichungen von einander
sind in den Abbildungen 4.6 (a) und (b) dargestellt. ŝnumerisch(z, t) und τ̂numerisch(z, t)
verliefen für das Viertelmodell ähnlich zum rotationssymmetrischen Modell. Aus dem
Viertelmodell ergab sich ein glatterer Schubspannungsverlauf. Die prozentuale Abwei-
chung ähnelte der des rotationssymmetrischen Modells, der Verlauf ist glatter. Die mitt-
lere prozentuale Abweichung des Schlupfes betrug ξ̄ = 5 %, die der Schubspannung ξ̄ = 11
%.

Abbildung 4.5: Schlupf entlang der Übergangs�äche für das Viertel- und das SL-Modell
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(a)

(b)

Abbildung 4.6: (a) Schubspannung entlang der Übergangs�äche für das Viertel- und das
SL-Modell, (b) Prozentuale Abweichung zwischen Shear-Lag-Modell und
numerischem Modell
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4.1.3. Auswertung der Modellvergleiche und Vergleich mit Literatur

Abschlieÿend werden allgemeine Beobachtungen und Besonderheiten der beiden Model-
le beschrieben. Des Weiteren werden diese mit den Ergebnissen aus ([4]) von Azzam

gegenübergestellt. Der Schlupf wurde von beiden numerischen Modellen nah am SLM
dargestellt, im Mittel liegt die prozentuale Abweichung ξ̄ = 5 %. Die Verläufe der Schub-
spannungen beider Modelle folgen qualitativ denen des SLM, beide unterschätzen sie
jedoch. Im Mittel betrugen die Abweichung ξ̄ = 11 %, wobei der Verlauf des rotations-
symmetrischen Modells für die Berechnung der Abweichung geglättet wurde. Die Abwei-
chung war in der UDZ gröÿer als in der DZ. Ein Grund dafür könnte die Verschiebung der
numerisch berechneten Länge der UDZ zr0 gegenüber der analytisch berechneten sein.
Sie wurde von beiden Modellen mit einer Abweichung von 5 % zum SLM gut geschätzt.
Durch diese Abweichung ist die Di�erenz der Schubspannungen gröÿer. Der Schubspan-
nungsverlauf des Viertelmodells war glatter als der des rotationssymmetrischen Modells.
Das rotationssymmetrische Modell wies eine signi�kant geringere Rechenzeit auf. Zu be-
achten ist, dass der Schubspannungsverlauf des rotationssymmetrischen Modells negativ
war. Eine Maÿnahme zur Annäherung der numerischen Schubspannungsverläufe an die
des SLM war eine Erhöhung der Stei�gkeit und Dichte der Matrix um den Faktor 10.
Auÿerdem wurde die Matrix an der Übergangs�äche eingespannt, um die im analytischen
Modell vorliegende starre Matrix zu imitieren. Dies brachte jedoch keine Verbesserun-
gen. Eine weitere Maÿnahme war eine Verdopplung der Netzfeinheit von le = 0, 002 mm
auf le = 0, 001 mm beim rotationssymmetrischen Modell. Dies näherte den Schubspan-
nungsverlauf des numerischen Modells den des analytischen tatsächlich an (s. Abbildung
4.7). Eine Folge war jedoch eine deutlich höheren Rechenzeit und ein stärkeres Rauschen
innerhalb des Verlaufes.
Zusammenfassend zeigte sich, dass beide Modelle den Schlupf-Verlauf und die Länge

der UDZ akkurat wiedergaben. Der Schubspannungsverlauf wurde von beiden Modellen
qualitativ wiedergegeben, unterschätze jedoch den des SLM. Der Schubspannungsverlauf
des Viertelmodells war glatter, das rotationssymmetrische Modell hatte eine deutlich
kürzere Rechenzeit.
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Abbildung 4.7: Schubspannung für numerisches und analytisches Modell bei einer Netz-
feinheit von le = 0, 001 mm

Abbildung 4.8 (a) und (b) zeigen die Schlupf- und Schubspannungsverläufe aus ([4])
für das SLM und das numerische Modell zu den Zeitpunkten t1 = 5, 23 × 10−5 s und
t2 = 6, 2832 × 10−5 s. Die Ergebnisse bei t2 = 6, 2832 × 10−5 s sollen mit denen aus
dieser Arbeit verglichen werden, obwohl diese für andere Zeiten erstellt wurden. Dies ist
möglich, weil bei den SLM dieser Arbeit die Gröÿen zum Zeitpunkt t = 0 s ausgewertet
wurden, was um eine Periode zu t2 = 6, 2832 × 10−5 s phasenverschoben ist und somit
die selben analytischen Verläufe liefert. Die Schlupf-Verteilung des numerischen Modells
aus ([4]) verhält sich zum Groÿteil wie die der numerischen Modelle dieser Arbeit. Das
numerische Modell von Azzam bildet den Schubspannungsverlauf exakter ab als die
Modelle dieser Arbeit, des Weiteren wird die Länge der UDZ zr0 passender berechnet.
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(a) (b)

Abbildung 4.8: Schlupf (a) und Schubspannung (b) entlang der Übergangs�äche für das
numerische und das analytische Modell von Azzam zu den Zeitpunkten
t1 = 5, 23× 10−5 s und t2 = 6, 2832× 10−5 s ([4])

4.2. Validierung mit dem Shear-Lag-Modell nach Sridhar et al.

Für die Validierung der für verschiedene Modelle formulierten numerischen Reibung mit
dem Shear-Lag-Modell von Sridhar et al. aus Unterabschnitt 2.3.2 müssen die Para-
meter der Modelle so eingestellt werden, dass sich die drei Fälle Pure Slip, Slip-Reverse
Slip und Slip-Stick einstellen. Das numerische Modell, welches Sridhar et al. für den
Vergleich mit dem Shear-Lag-Modell nutzen, ist ein Plane Stress Modell (deutsch: Modell
des ebenen Spannungszustandes), welches aus 4-Punkt bilinearen und Cohesive Elements
besteht. Eine Verwendung anstelle eines achsensymmetrischen Systems ist möglich, wenn
der Faserradius rf = 2h und f = h

H ist, wie in Abbildung 4.9 zu sehen. Die Reibung
wurde durch Cohesive Elements zwischen Faser und Matrix nachgebildet ([2]).

Abbildung 4.9: Numerisches Modell von Sridhar et al. ([2])

Im Folgenden werden die Geometrie-, Mechanik- und Werksto�eigenschaften vorge-
stellt, welche für eine Darstellung der drei Fälle genutzt wurden. Die in ([2]) verwendeten
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Parameter für die Darstellung der Modelle wurden nicht vollständig beschrieben, wes-
halb teilweise eigene Annahmen getro�en werden mussten. Direkt gegebene Parameter
waren der Faservolumenanteil f , die Reibungs-Schubspannung in der Übergangs�äche τ0,
die normierte Reibungs-schubspannung τ , das Modulverhältnis φ, die inverse Lastrate k
und die Wellengeschwindigkeitsverhältnisse C für die drei Fälle. Durch Umformung von
(2.69) kann der Elastizitätsmodul der Faser Ef berechnet werden, mit dem wiederum
durch Nutzung von (2.68) Em ermittelt werden kann. Es wurden Annahmen für den
Startzeitpunkt t0, die eingängliche Axialspannung σ0 und den Faserradius rf getro�en,
so kann durch Umformung von (2.71) die Faserwellengeschwindigkeit cf ermittelt wer-
den. Der Faserradius rf wurde wie in ([4]) gewählt. Die Matrixwellengeschwindigkeit cm
wird dann aus (2.67) bestimmt. Die Annahme der Querkontraktionszahlen νf und νm
ermöglicht abschlieÿend die Berechnung von Êf und Êm mit (2.63) sowie den Dichten ρf
und ρm aus (2.62). Die gegebenen und angenommen Parameter für die Fälle I und II sind
in Tabelle 4.2 dargestellt. Im Folgenden wird erläutert, warum der Fall III: Slip-Reverse
Slip nicht behandelt wird.
Nach (2.86) wird die normierte Verschiebung der Faser Uf (Z, T ) für den Fall Slip-

Reverse Slip berechnet. Nach Ableitung von (2.86) nach T ergeben sich die Faserparti-
kelgeschwindigkeiten für die Bereiche 2 [η1T < Z ≤ η2T ] und 3 [η2T < Z ≤ η3T ] zu

U̇f,2 (Z, T ) =
Θf,III,2

4k
(
η21 − 1

)
(η3 + 1)

(4.2)

mit

Θf,III,2 = τ2T

(
4η1k +

(
η21 − 1

)
(η3 + 1) + 2η3k

(
η21 + 2η1 − 1

)
+2Z (η3 + 1)

(
η21 + 4kη1 − 1

) )
(4.3)

und

U̇f,3 (Z, T ) =
(τη3 (Z − η3T ))

k
(
η23 − 1

) . (4.4)

Mit den Parametern C2 = 0, 1, k = 0, 05, τ = 0, 005 und T = 10 ergibt sich statt dem in
Abbildung 2.10 (c) dargestellten Verlauf der Fasergeschwindigkeiten in den Bereichen 2
und 2 der Verlauf aus Abbildung 4.10. In diesem sind die roten Linien die Faserpartikel-
geschwindigkeiten nach (4.2) und (4.4) für die Bereiche 2 und 3, welche nicht mit denen
aus Abbildung 2.10 (c) übereinstimmen. Aus diesem Grund wird der Fall III nicht weiter
untersucht.
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Abbildung 4.10: Partikelgeschwindigkeiten entlang der Übergangs�äche mit den Para-
metern C2 = 0, 1, φ = 2, 00, k = 0, 05, τ = 0, 005 und T = 10.
Die gestrichelten Linien sind die Matrixpartikelgeschwindigkeiten, die
Durchgezogenen die Faserpartikelgeschwindigkeiten. Des Weiteren sind
die roten Linien die Faserpartikelgeschwindigkeiten der Bereiche 2 und
3

Zu beachten ist abschlieÿend, dass in der Simulation in ([2]) die Querkontraktionszah-
len zu null gesetzt werden (vgl. Annahmen aus Unterabschnitt 2.2.2). Dies führte jedoch
bei den Modellen in dieser Arbeit zu numerischen Problemen, weshalb Querkontrakti-
on genutzt und stattdessen eine Ausdehnung der Faser in radialer Richtung verhindert
wird. Des Weiteren wird in ([2]) nicht angegeben, wie die normierten Partikelgeschwin-
digkeiten U̇ (Z, T ) in absolute Partikelgeschwindigkeiten u̇ (z, t) umgerechnet werden. Es
wird angenommen, dass dies durch Multiplikation mit der Faserwellengeschwindigkeit
cf geschieht. Für den Vergleich zwischen numerischem und analytischem Modell werden

die Partikelgeschwindigkeiten aus Abaqus mit U̇Abaqus =
u̇Abaqus

cf
normiert. Die Tabellen

4.2 (a) und (b) zeigen Parameter für das numerische Modell und das SLM sowie die
Parameter für die Reibung in der Übergangs�äche. In den folgenden Abbildungen stel-
len durchgezogene Linien die Faser- und gestrichelte Linien die Matrixgeschwindigkeiten
dar. Des Weiteren wird zwischen analytischen Ergebnissen (dünne Linien) und numeri-
schen Ergebnissen (starke Linien) unterschieden. In Abbildung 4.11 (a) und (b) sind das
rotationssymmetrische und das Viertelmodell für die Simulation der Reibung dargestellt.
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(a) (b)

Abbildung 4.11: (a) Rotationssymmetrisches Modell (b) Viertelmodell
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Tabelle 4.2: Parameter für das analytische Shear-Lag-Modell und das numerische Modell
(a) und Parameter für die Reibung in der Übergangs�äche (b). Die Tabelle
basiert zum Teil auf Daten von ([2])

Parameter Fall I: Pure Slip Fall II: Slip-Stick

Faserlänge lf (mm) 0,4 0,4
Faserradius rf (mm) 0,01 0,01

Elastizitätsmodul Faser Ef (MPa) 100000 100000
Elastizitätsmodul Matrix Em (MPa) 46296 46296

Querkontraktionszahl Faser νf 0,3 0,3
Querkontraktionszahl Matrix νm 0,25 0,25

Dichte Faser ρf
(
tonne
mm3

)
3, 3654× 10−8 3, 3654× 10−8

Dichte Matrix ρm
(
tonne
mm3

)
1, 3889× 10−7 1, 3889× 10−9

Êf (MPa) 134620 134620
Êm (MPa) 555560 555560
anteil f 0,4 0,4

Wellengeschwindigkeit Faser cf
(
mm
s

)
2× 106 2× 106

Wellengeschwindigkeit Matrix cm
(
mm
s

)
6, 3246× 106 6, 3246× 106

Wellengeschwindigkeitsverhältnis C 3,1623 0,3162
Modulverhältnis φ 1,44 1,44
Inverse Lastrate k 0,1 0,1

Normierte Reibungs-Schubspannung τ 0,002 0,002
Reibungs-Schubspannung τ0 (MPa) 100 100

Eingängliche Axialspannung p0 (MPa) 100 100
Startzeit t0 (s) 5× 10−10 5× 10−10

Normierter Zeitpunkt der Auswertung T 5,7 5,72

(a)

Surface-Based Cohesive Behavior

tm (MPa) 100
K0

(
MPa
mm

)
160000

sf (mm) 1× 108

τ0 (MPa) 100

κ
(

MPa
mm/s

)
160000

µr 1
pradial (MPa) 150

(b)
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4.2.1. Reibungssimulation mit dem rotationssymmetrischen Modell

In diesem Unterabschnitt werden die Ergebnisse des rotationssymmetrischen Modells aus
Axisymmetric Elements für die in Unterabschnitt 3.2.3 vorgestellten Modellierungsvari-
anten mit dem analytischen SLM von Sridhar et al. für die Fälle I: Pure-Slip und II:
Slip-Stick verglichen. Für beide Modellierungsvarianten und beide Fälle sind der theore-
tische kritische Zeitschritt ∆tkrit,theoretisch nach (3.20), sowie der von Abaqus gewählte
kritische Zeitschritt ∆tkrit,Abaqus in Tabelle 4.3 dargestellt. Die Rechenzeit wird nicht
aufgeführt, da sie nur wenige Sekunden betrug. Das numerische Modell aus Axisymme-
tric Elements bestand aus 1600 CAX4R-Elementen, die Übergangs�äche wurde mit 200
Elementen diskretisiert.

Tabelle 4.3: Zeitschritte für die Berechnung des rotationssymmetrischen Modells
Surface-Based Cohesive Behavior

∆tkrit,theoretisch Fall I (s) 3, 0× 10−9 3, 0× 10−9

∆tkrit,theoretisch Fall II (s) 3, 0× 10−10 3, 0× 10−10

∆tkrit,Abaqus Fall I (s) 2, 7× 10−10 8, 3× 10−10

∆tkrit,Abaqus Fall II (s) 2, 58× 10−10 2, 6× 10−10

Im Folgenden werden die Ergebnisse für die Fälle Pure Slip und Slip-Stick, welche mit
dem rotationssymmetrischen Modell und der Reibungsformulierung Shear stress versus
elastic slip erstellt wurden, mit den Ergebnissen des SLM verglichen. Die Abbildung 4.12
(a) zeigt die Partikelgeschwindigkeiten U̇f (z, t) und U̇m(z, t) für den Fall I: Pure-Slip
für das analytische SL- und das numerische Modell. Die Prozesszonen waren nicht iden-
tisch, die des numerischen Modells war gröÿer als die des Analytischen. Bei Z = 0 war
U̇f,analytisch betragsmäÿig gröÿer als U̇f,numerisch, dies änderte sich bei Z = 4. U̇f,analytisch

sank linear ab bis Z = 5, 2. U̇f,numerisch verlief nahezu linear, zum Ende der Prozesszo-
ne bei Z = 6 �acht die Steigung immer weiter ab. U̇m,analytisch bewegte sich mit einer
konstanten Geschwindigkeit bis ca. Z = 2, von wo aus es linear absank. U̇m,numerisch

hatte keinen konstanten Verlauf, sie schwankte bei niedrigen Z und sank bei höheren
Z nahezu linear auf null ab, wobei sich das Ende der Prozesszone mit denen der ana-
lytischen Modelle deckte (s. Detailansicht in Abbildung 4.12 (a)). Für U̇m,analytisch war
keine Bereichsgrenze erkennbar. Das numerische Modell unterschätzte auf weite Bereiche
entlang z die Geschwindigkeiten gegenüber dem analytischen Modell.
Abbildung 4.12 (b) zeigt die Geschwindigkeiten entlang der Prozesszone für den Fall II:

Slip-Stick. Von Z = 0 aus sank U̇f,analytisch linear ab und U̇m,analytisch verlief konstant.
Ab Z = 4 überlagerten sich die die beiden Verläufe, da Faser und Matrix aneinander haf-
teten. U̇m,numerisch wies Schwankungen auf, es war jedoch der Trend einer absinkenden
Geschwindigkeit erkennbar. Ein Wechsel des Bereiches war nicht erkennbar (vgl. Detail-
ansicht in Abbildung 4.12 (b)). Bei Z = 4, 8 schnitten sich die Verläufe von U̇m,numerisch

und U̇f,numerisch . Ein paralleler Verlauf, welcher wie beim analytischen Modell auf Haf-
tung hinweist, war nicht erkennbar. U̇f,numerisch sank bei Z = 6, 5 auf null, was für
U̇m,numerisch erst bei Z = 12 der Fall war. Für die numerischen und analytischen Faser-
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partikelgeschwindigkeiten lag die Di�erenz des Endes der Prozesszone bei L ≈ 1. Für die
Matrixpartikelgeschwindigkeiten lag die Di�erenz bei L ≈ 7. Auch für den Fall II wurden
die Geschwindigkeiten vom Modell unterbewertet. Die analytischen Verläufe bleiben für
alle weiteren in diesem Unterabschnitt dargestellten Fälle gleich und werden nicht erneut
erläutert, um Wiederholungen zu vermeiden.
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(a)

(b)

Abbildung 4.12: Faser- und Matrixpartikelgeschwindigkeiten entlang der Prozesszone für
das analytische und das rotationssymmetrischen Modell mit Reibung
durch Shear stress versus elastic slip für den Fall I: Pure Slip (a) und
Fall II: Slip-Stick (b). Durchgezogene Linien sind der Faser, gestrichelte
Linien der Matrix zuzuordnen. Des Weiteren markieren dünne Linien
das analytische und breite Linien das numerische Modell
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Die Berechnungen des rotationssymmetrischen Modells, dessen Reibung mit Surface-
Based Cohesive Behavior modelliert wurde, werden in den Abbildungen 4.13 (a) und 4.13
(b) den SLM für die beiden Fälle gegenübergestellt. Im Fall I: Pure Slip in Abbildung 4.13
(a) entsprachen die Verläufe von U̇f,numerisch und U̇m,numerisch zum Groÿteil denen aus
Abbildung 4.12 (a). U̇m,numerisch wies wie auch U̇m,numerisch aus dem SSVESWS-Modell
Schwankungen auf, diese waren jedoch kleiner. Für den Fall II: Slip-Stick verlief die mit
dem Surface-Based Cohesive Behavior berechnete Matrixgeschwindigkeit ruhiger als die
mit dem SSVESWS ermittelte und wies eine ähnlich groÿe Prozesszone auf.
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(a)

(b)

Abbildung 4.13: Faser- und Matrixpartikelgeschwindigkeiten entlang der Prozesszone für
das analytische und das rotationssymmetrischen Modell mit Reibung
durch Surface-Bases Cohesive Behavior für den Fall I: Pure Slip (a) und
Fall II: Slip-Stick (b). Durchgezogene Linien sind der Faser, gestrichelte
Linien der Matrix zuzuordnen. Des Weiteren markieren dünne Linien
das analytische und breite Linien das numerische Modell
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4.2.2. Reibungssimulation mit dem Viertelmodell

Im Folgenden werden die Ergebnisse der numerischen Volumenmodelle mit den in Unter-
abschnitt 3.2.3 vorgestellten Modellierungen der Reibung mit den Ergebnissen des ana-
lytischen SLM von Sridhar et al. für die Fälle I: Pure-Slip und II: Slip-Stick verglichen.
Beide Modelle setzten sich zusammen aus aus 10800 C3D8R-Elementen, die Übergangs-
�äche wurde mit 200 Elementen diskretisiert. Die Tabelle 4.4 zeigt den theoretischen
kritischen Zeitschritt nach (3.20) sowie den von Abaqus gewählten kritischen Zeitschritt
für beide Varianten und beiden Fällen, wie beim rotationssymmetrischen Modell wird
auch hier die Rechenzeit aufgrund ihrer geringen Dauer nicht aufgeführt.

Tabelle 4.4: Zeitschritte für die Berechnung des Viertelmodells
Surface-Based Cohesive Behavior

∆tkrit,theoretisch Fall I (s) 4, 3× 10−9 4, 3× 10−9

∆tkrit,theoretisch Fall II (s) 2, 7× 10−10 2, 7× 10−10

∆tkrit,Abaqus Fall I (s) 4, 2× 10−10 4, 2× 10−10

∆tkrit,Abaqus Fall II (s) 2, 6× 10−10 2, 6× 10−10

Für die Modellierung von Reibung mit SSVESWS in einem Viertelmodell sind die
Ergebnisse der Fälle I und II in den Abbildungen 4.14 (a) und 4.14 (b) den Berechnun-
gen des SLM gegenübergestellt. Der Verläufe der Partikelgeschwindigkeiten U̇f,numerisch

und U̇m,numerisch entsprachen denen der rotationssymmetrischen Modelle mit der glei-
chen Reibungsformulierung. Bei einem Viertelmodell, dessen Reibung mit Surface-Based
Cohesive Behavior modelliert wurde, ergaben sich für die numerisch berechneten Parti-
kelgeschwindigkeiten ähnliche Verläufe wie beim rotationssymmetrischen Modell.
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(a)

(b)

Abbildung 4.14: Faser- und Matrixpartikelgeschwindigkeiten entlang der Prozesszone für
das analytische und das Viertelmodell mit Reibung durch Shear stress
versus elastic slip für den Fall I: Pure Slip (a) und Fall II: Slip-Stick
(b). Durchgezogene Linien sind der Faser, gestrichelte Linien der Matrix
zuzuordnen. Des Weiteren markieren dünne Linien das analytische und
breite Linien das numerische Modell
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(a)

(b)

Abbildung 4.15: Faser- und Matrixpartikelgeschwindigkeiten entlang der Prozesszone für
das analytische und das Viertelmodell mit Reibung durch Surface-Bases
Cohesive Behavior für den Fall I: Pure Slip (a) und Fall II: Slip-Stick
(b). Durchgezogene Linien sind der Faser, gestrichelte Linien der Matrix
zuzuordnen. Des Weiteren markieren dünne Linien das analytische und
breite Linien das numerische Modell
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4.2.3. Auswertung der Modellvergleiche und Vergleich mit Literatur

In diesem Unterabschnitt sollen allgemeine Beobachtungen und Besonderheiten einzelner
Modelle erläutert werden. Des Weiteren werden die Ergebnisse aus ([2]) von Sridhar

et al. zum Vergleich herangezogen. Die Gröÿenordnungen der numerischen Partikelge-
schwindigkeiten passten zu denen aus dem SLM. Sowohl Faser- als auch Matrixparti-
kelgeschwindigkeit wurden von den numerischen Modellen unterbewertet. Die Verläufe
von U̇f,numerisch und U̇m,numerisch waren über alle Modellierungsvarianten ähnlich, die
Matrixpartikelgeschwindigkeit hatte bei einer Reibung mit Surface-Based Cohesive Be-
havior einen glatteren Verlauf als bei einer Modellierung mit SSVESWS. Die Steigung
der numerischen Ergebnisse �achte gegen Ende der Prozesszone ab, dies könnte an der
endlichen Steigung des Übergangsbereiches zwischen Haftung und Reibung liegen ([2]).
Für den Fall I: Pure Slip wurde die Prozesszone der Faser überschätzt, während beim Fall
II: Slip-Stick die Prozesszone der Matrix zu groÿ war. Keine der Modellierungen konnte
einen Bereichswechsel, welchen Z = η1T im analytischen Modell aufweist, darstellen. Die
Abbildung 4.16 zeigt stellvertretend für die numerischen Modelle den Schubspannungs-
verlauf des rotationssymmetrischen Modells mit SSVESWS entlang der Prozesszone. Die
Schubspannung stieg an und erreichte ihr Maximum bei ca. τmax = 100 MPa, was τ0
entsprach. Zum Ende der Prozesszone �el sie ab. Eine konstante Schubspannung ent-
lang der Prozesszone stellte sich nicht ein. Die anderen Modellierungsvarianten wiesen
ähnliche Verläufe auf, jedoch schwankte das Maximum zwischen τmax = 55 MPa und
τmax = 120 MPa.
Insgesamt zeigte sich, dass die numerischen Modelle die Partikelgeschwindigkeiten des

SLM in der selben Gröÿenordnung wiedergaben, jedoch besonders der Verlauf der Ma-
trixpartikelgeschwindigkeiten nicht akkurat wiedergegeben wurde. Eine konstante Parti-
kelgeschwindigkeit und Bereichswechsel konnten nicht ermittelt werden. Die Prozesszone
wurde im Fall II zu groÿ geschätzt. Besonders die numerische Modellierung der Matrix-
partikelgeschwindigkeit sollte weiter untersucht werden.
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Abbildung 4.16: Beispielhafter Schubspannungsverlauf entlang der Prozesszone

Der Vergleich einiger numerischer Berechnungen mit analytischen Ergebnissen aus ([2])
von Sridhar et al. sind in Abbildung 4.17 (a) für den Fall I: Pure Slip und in (b)
für den Fall II: Slip-Stick zu sehen. Die gestrichelten Linien stellen die Faserpartikelge-
schwindigkeit dar, die durchgezogenen die Matrixpartikelgeschwindigkeit, anders als die
in dieser Arbeit erstellten Abbildungen. In ([2]) werden die numerischen Ergebnisse mit
starken und die analytischen Ergebnisse mit dünnen Linien angegeben, in den Abbil-
dungen erscheinen jedoch alle Linienstärken gleich. Für beide Fälle ist zu sehen, dass
U̇f,numerisch und U̇f,analytisch zum Groÿteil parallel verliefen und das Ende der Prozesszo-
ne mit geringer Abweichung zum SLM erreichten. Anders als beim numerischen Modell,
welches im Verlauf dieser Arbeit ermittelt wurde, war U̇f,numerisch betragsmäÿig gröÿer
als U̇f,analytisch. Die numerisch berechneten Matrixpartikelgeschwindigkeiten verliefen für
beide Fälle bis zu den jeweiligen Bereichsgrenzen konstant, was mit dem SLM überein-
stimmt. Abschlieÿend sanken sie linear zum Ende der Prozesszone ab, welche sie mit
geringer Abweichung zum SLM erreichen. In Abbildung 4.17 (b) verliefen U̇f,numerisch

und U̇m,numerisch im Bereich von 6 ≤ Z ≤ 11 parallel. Eine Haftung von Faser und Ma-
trix konnte abgebildet werden. Dies war bei den numerischen Modellen, welche für diese
Arbeit erstellt wurden, nicht der Fall.
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(a) (b)

Abbildung 4.17: Faser- und Matrixpartikelgeschwindigkeiten entlang der Prozesszone für
das analytische und das numerische Modell für den Fall I: Pure Slip (a)
und Fall II: Slip-Stick (b). Gestrichelte Linien sind der Faser, durchge-
zogene Linien der Matrix zuzuordnen. Nach (Sridhar, Yang und Cox [2])
markieren dünne Linien das analytische und breite Linien das numeri-
sche Modell, jedoch erscheinen alle Linien in ähnlicher Strichstärke ([2])
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5. Abbildung von Experimenten mit einem numerischen

Modell

In diesem Kapitel wird die Darstellung eines dynamischen Faserauszugsversuchs mit ei-
nem numerischen Modell für Hafttrennung behandelt. Dafür werden zunächst der Ver-
suchsaufbau und die Versuchsergebnisse kurz dargestellt. Auÿerdem wird der Ein�uss der
Messposition für die Verschiebung untersucht. Anschlieÿend wird der Versuch mit einem
rotationssymmetrischen Modell reproduziert, welches abschlieÿend mit den Versuchen
verglichen wird. Aufgrund der Abweichungen der numerischen Reibungsmodelle zu den
SLM werden diese nicht mit dem Versuch verglichen.

5.1. Versuche für den Einzelfaserauszug von Sche�er et al.

Scheffler et al. haben 2017 ([5]) Faserauszugsversuche für alkalibeständigen glasfa-
serverstärkten Beton mit u. A. hohen Lastraten durchgeführt. Dabei werden für das
Experiment neben detaillierten Angaben zu Materialien und Geometrien sowie Kraft-
Verschiebungs-Kurven auch wichtige Parameter für die in Abschnitt 2.2 vorgestellten
Modellierungen des Übergangsbereichs angegeben. Diese Paramter werden in die SLM
aus Abschnitt 2.3 und in die numerischen Modelle aus Abschnitt 3.2 implementiert. Für
die Darstellung der Haftung im Übergangsbereich wird die maximal ertragbare Span-
nung (in diesem Fall handelt es sich um eine Schubspannung) τm angegeben, welche im
Experiment als local interfacial shear strength (IFSS, deutsch: Übergangs�ächenscher-
festigkeit) bezeichnet wird. Des Weiteren wird die Reibungs-Schubspannung τ0 in Form
des interfacial frictional stress (Übergangs�ächen-Reibungs-Spannung) angegeben ([5]).

5.1.1. Versuchsaufbau und Ergebnisse des Einzelfaserauszug-Versuches

Versuchsaufbau Für den Versuch wurden verschieden beschichtete, am Leibnitz-Institut
für Polymerforschung Dresden e.V. (IPF) hergestellte, alkalibeständige Glasfasern zu
unterschiedlichen Tiefen in Matrix-Tropfen aus Beton eingebettet. Diese hatten jeweils
einen Durchmesser von 2, 6 mm. Die Faserbeschichtungen bestanden aus Polypropylen
(W) oder Styrol-Butadien-Kautschuk (S), auÿerdem wurden einige Fasern unbehandelt
(U) gelassen. Der Beton besteht aus Portlandzement 42.5 R, welcher mit Flugasche ge-
bunden wurde. Genauere Angaben zur Herstellung von Faser und Matrix �nden sich in
([5]). Die Tabelle 5.1 zeigt die geometrischen und mechanischen Eigenschaften von Fa-
ser und Matrix. Für den dynamischen Faserauszug wurde eine Zugbelastung entlang in
axiale Faserrichtung aufgebracht, welche mit einer Geschwindigkeit von 10000 µm

s aus
der Matrix gezogen wurde. Dabei betrug die maximale Verschiebung 180 µm ([5]). Für
die Dichte von Faser und Matrix mussten in dieser Arbeit Annahmen getro�en werden.
Für die Glasfaser wurde eine Dichte von ρf = 2, 0× 10−9 tonne

mm3 ([32]) und für Beton eine
Dichte von ρm = 2, 4× 10−9 tonne

mm3 ([33]) angenommen.

Alexander Jannsen 68 Masterarbeit WS2024/2025



Tabelle 5.1: Geometrische und mechanische Eigenschaften von Faser und Matrix (nach
[5])

Eigenschaft Glasfaser Betonmatrix

Faserdurchmesser, U-, W-, S-Beschichtung 2rf (µm) 11...22 -
Radius des Matrix-Tropfens rm(mm) - 1,3

Axialer Zugmodul EA(GPa) 78 28
Transversaler Zugmodul ET (GPa) 78 28
Axiale Querkontraktionszahl νA 0,17 0,2

Transversale Querkontraktionszahl νT 0,17 0,2
Länge der eingebetteten Faser lembedded 300...2600 -

Versuchsergebnisse Die Ergebnisse des dynamischen Faserauszuges für alle drei Be-
schichtungsarten sind in Abbildung 5.1 (a) dargestellt. Die maximal ertragbare Schub-
spannung τm kann durch Umformung der Gleichung

Fmax =


2πrf τ

m

ζ tanh(ζle) ζle < ln
(
o+

√
o2 + 1

)
2πrf
ζ

{
τm u√

o2+1
+ τ0

[
ζlembedded − ln

(
o+

√
o2 + 1

)]}
ζle ≥ ln

(
o+

√
o2 + 1

) ,

(5.1)
berechnet werden. Fmaxist die Maximalkraft, rf der Faserradius, lembedded die Länge der
eingebetteten Faser und ζ der Shear-Lag-Parameter nach Nayfeh ist. Des Weiteren ist
τ0 die Reibungs-Schubspannung, welche nach dem Auftrennen der Verbindung zwischen
Faser und Matrix wirkt. Der Parameter o wird berechnet mit

o =

√
τmi
τ0

− 1. (5.2)

Eine genaue Berechnung des Shear-Lag-Parameters β �ndet sich in ([5]), die Maxi-
malkraft Fmax kann aus dem Kraft-Weg-Diagramm am Punkt B ermittelt werden, sche-
matisch zu sehen in Abbildung 5.1 (b). Die konstante Reibungs-Schubspannung, welche
nach der vollständigen Trennung zwischen Faser und Matrix wirkt, berechnet sich aus

τ0 =
Fb

πdf lembedded
. (5.3)

Die Reibungskraft Fb kann aus dem Kraft-Weg-Diagramm am Punkt C ermittelt werden
(vgl. Abbildung 5.1 (b) ([5])). Ausgewählte Ergebnisse für alle Beschichtungen und zwei
verschiedene Durchmesser, df = 12 µm und df = 17 µm, der dynamischen Faserauszugs-
versuche sind in Tabelle 5.2 einsehbar. Neben der Anzahl der Proben werden dort auch die
maximal ertragbaren Schubspannungen und die Reibungs-Schubspannungen angegeben.
Es ist zu erkennen, dass die unbeschichteten Fasern mit 12 µm Durchmesser die gröÿ-
te maximal ertragbare Schubspannung aufweisen. Die höchste Reibungs-Schubspannung
nach Hafttrennung weisen die Faser-Matrix-Verbände mit Styrol-Butadien-Kautschuk-
Beschichtung auf.
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(a) (b)

Abbildung 5.1: (a) Ergebnisse der dynamischen Faserauszugsversuche für Fasern mit ver-
schiedenen Beschichtungen (1: Unbeschichtete Faser, 2: Polypropylen-
Beschichtung. 3: Styrol-Butadien-Kautschuk-Beschichtung. (b) Schema-
tisches Kraft-Verschiebungs-Diagramm des Faserauszugs ([5])

Tabelle 5.2: Ergebnisse der Faserauszugs-Versuche für verschiedene Beschichtungen und
Durchmesser (nach [5])

Beschichtung Anzahl der Proben Maximal ertragbare
Schubspannung

in MPa

Schubspannung
in MPa

Unbeschichtet,
df = 12 µm

23 93, 2± 17, 9 4, 0± 1, 0

Unbeschichtet
df = 17 µm

63 84, 6± 24, 3 4, 8± 1, 7

Unbeschichtet,
beide Durchmesser

86 86, 9± 23, 0 4, 6± 1, 6

Styrol-Butadien-
Kautschuk-
Beschichtung

71 91, 8± 20, 0 6, 8± 3, 1

Polypropylen-
Beschichtung

92 75, 7± 17, 2 3, 5± 1, 2

5.1.2. Untersuchung der Messposition für die Verschiebung

Da aus ([5]) nicht hervorgeht, an welcher Faserposition die Kraft-Weg-Diagramme aus
Abbildung 5.1 (a) ermittelt wurden, soll in diesem Unterabschnitt untersucht werden,
wie groÿ der Unterschied zwischen einer Messung am belasteten Faserende und am Über-
gangsbereich zwischen Faser und Matrix ist. Um die Berechnung dieses Unterschiedes zu
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vereinfachen, wurde ein statischer Lastfall angenommen. Eine weitere Annahme ist, dass
sich Faser und Matrix bereits vollständig voneinander gelöst haben und die einzige Kraft
zwischen Faser und Matrix Reibung ist. In Abschnitt 2.1 wurde bereits erwähnt, dass
dies ab dem Punkt C der Fall ist ([5]). Weitere Annahmen sind, dass die Dehnung der
freien Länge konstant ist, dass die Matrix dehnstarr ist und dass sich der Faserdurchmes-
ser beim Auszug nicht verändert. Abbildung 5.2 zeigt das Modell schematisch. Die Faser
haftet nicht an der Matrix, sie ist auf die Länge ui in Folge der Kraft Fi herausgezogen.

Abbildung 5.2: Schematisches Modell des Faserauszugs

Die Verschiebung wurde mitMatlab® am Punkt I am Übergang zwischen eingebet-
teter und freier Länge lfrei sowie am belasteten Faserende am Punkt II berechnet. Die
Daten des quasistatischen Faserauszuges wurden von der Kurve 3 in Abbildung 5.3 (a)
mit Hilfe einer GUI (Graphical User Interface, deutsch: Gra�sche Benutzerober�äche)
von ([34]) inMatlab® übertragen. In ([5]) �nden sich keine Angaben zur freien Länge.
In einem anderen Faserauszugs-Versuch ([7]), welcher ebenfalls am IPF stattfand, wur-
de die freie Länge angegeben mit lfrei < 50 µm. Für die folgende Untersuchung wurde
lfrei = 30 µm angenommen. Der Faserradius wurde als rf = 0, 006 mm angenommen, da
dieser aus Tabelle 5.2 nach ([5]) nicht hervorgeht. Aus der Kraft Fi und der Verschiebung
ui des jeweiligen Datenpunktes i wurden anschlieÿend die Verschiebungsänderungen ∆u
berechnet, für den Punkt I mit

∆uI,i =
Fi

EfA
ui, (5.4)

und für den Punkt II mit

∆uII,i =
Fi

EfA
(ui + lfrei) . (5.5)

Die Tabelle 5.3 zeigt für in Abbildung 5.3 (b) dargestellte, ausgewählte Datenpunkte
(rote Kreuze), die mit (5.4) und (5.5) berechneten Verschiebungsänderungen sowie deren
Verhältnis ∆uI,i

∆uII,i
.
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(a)

(b)

Abbildung 5.3: (a) Quasistatische Faserauszugsversuche für Fasern mit verschiedenen Be-
schichtungen ([5]) (b) Mit GUI ([34]) in Matlab® aus (a) entnommene
Messdaten
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Tabelle 5.3: Ergebnisse der Untersuchung des Unterschiedes zwischen Punkt I und Punkt
II

Verschiebung Punkt I Verschiebung Punkt II Verhältnis ∆uI,i

∆uII,i

0, 00096 0, 00232 2, 421

0, 0026 0, 00374 1, 439

0, 00485 0, 00581 1, 199

0, 00653 0, 00734 1, 226

0, 00803 0, 00871 1, 084

0, 00876 0, 00932 1, 063

0, 00821 0, 00863 1, 051

0, 00689 0, 00718 1, 043

0, 00323 0, 00335 1, 038

5.2. Darstellung des Versuches als numerisches Modell

Im Folgenden soll auf die Findung der Parameter eingegangen werden, welche für eine
Darstellung der Haftung mit dem TSL notwendig sind. Die maximal ertragbare Schub-
spannung, bevor Schaden auftritt, sowie die Reibungs-Schubspannung sind für verschie-
dene Durchmesser und Beschichtungen aus Tabelle 5.2 entnehmbar. Für das TSL müssen
auÿerdem der Schlupf sm, bei der die Schädigung initiiert wird, und sf , bei der die Ver-
bindung Faser und Matrix vollständig versagt, aus dem Kraft-Weg-Diagramm ermittelt
werden. Dabei sind jedoch drei Unschärfen zu beachten: Zum einen die im vorherigen
Abschnitt beschriebene Abweichung der Ergebnisse je nach Verschiebungs-Messposition.
Zum anderen, dass das TSL auf Schlupf basiert, während das Kraft-Verschiebungs-
Diagramm absolute Verschiebungen darstellt. Des Weiteren haben die Faser-Matrix-
Proben aus den Versuchen freie Längen, welche im analytischen Shear-Lag-Modellen
nicht abgebildet werden.
Für die Ermittlung von sm muss der Punkt gefunden werden, bei dem die Schädigung

auftritt. Dies ist in Abbildung 5.1 (b) bei Punkt A der Fall. Dieser Punkt kann an
einem Knick im Kraft-Weg-Diagramm detektiert werden, wie theoretische Modelle und
Experimente gezeigt haben ([5]). Aus Abbildung 5.1 (a) ist dieser Knick jedoch für keine
Kraft-Weg-Kurve erkennbar, weshalb die Annahme getro�en wurde, dass er bei einer
Verschiebung von 0, 0005 mm liegt. Scheffler et al. geben eine lokale IFSS (Ψm im
TSL) an, welche im Mittel bei 75, 7 MPa liegt. Aus sm und der IFFS ergibt sich für den
linear elastischen Bereich des TSL eine Stei�gkeit von K0 = 151400 MPa

mm .
Der Punkt, an dem die Verbindung zwischen Faser und Matrix vollständig versagt, ist

in Abbildung 5.1 (b) an der Stelle C zu �nden, an welcher ebenfalls ein �Knick� auftritt
([5]). Dieser ist an der Kurve 2, welche das Kraft-Weg-Diagramm für den Auszug von
mit Polypropylen beschichteten Fasern darstellt, besonders gut erkennbar. Aus diesem
Grund wurde das TSL auf Basis der Kurve 2 erstellt und die Ergebnisse des numerischen
Modells mit dieser verglichen.
Für eine Darstellung der Anregung in der Simulation wurden folgende Annahmen ge-
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tro�en: Bis zum Versagen der Haftung wird die Faser 0, 0011 mm aus dem Beton gezogen
(vgl. Abbildung 5.1), die Auszugsgeschwindigkeit beträgt 10 mm

s ([5]). Die Auszugszeit
ist somit, wenn von einer linearen Verschiebung ausgegangen wird, 1, 1×10−4 s. ([4]) geht
von einer harmonischen Anregung aus, weshalb für einen ersten Vergleich mit dem SLM
eine harmonische Weganregung angenommen wird. Die Periode ist tPeriode = 4, 4× 10−4

s und die Eigenkreisfrequenz somit λ = 2π
tPeriode

(eine Abbildung der harmonischen Weg-
anregung ist in Abbildung 5.4 (a) zu sehen). Da das SLM von Azzam keine Erregeram-
plitude Cn oberhalb von sfnutzt, wurde für den Vergleich zwischen SLM und numeri-
schem Modell eine Amplitude Cn = 0, 0009 mm gewählt. Im zweiten Schritt soll das
numerische Modell eine lineare steigende Auslenkung, also einen Auszug mit konstanter
Geschwindigkeit bis u = 0, 007 mm erfahren. Dies entspricht der maximalen Verschie-
bung in Abbildung 5.1 (a). Um Rechenzeit zu sparen, wird das rotationssymmetrische
Modell verwendet, da es bei der Simulation der Haftung den Verlauf ähnlich darstellte
wie das Viertelmodell. Die Matrix wurde nicht vollständig modelliert, ihre Dicke wurde
wie in Abschnitt 4.1 gewählt. Das rotationssymmetrische Modell mit freier Länge ist in
Abbildung 5.4 (b) dargestellt.
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(a)

(b)

Abbildung 5.4: (a) Annäherung einer Verschiebung mit konstanter Geschwindigkeit
durch eine harmonische Anregung, (b) Rotationssymmetrisches Modell
mit freier Länge

5.3. Vergleich des Numerischen Modells mit den Versuchsergebnissen

In diesem Abschnitt werden die mit den in Tabelle 5.1 stehenden Eigenschaften gebildeten
numerischen Modelle mit den Versuchsergebnissen verglichen. Bevor die Ergebnisse des
numerischen Modells anhand eines Kraft-Verschiebungs-Diagrammes den Versuchsdaten
gegenübergestellt werden, erfolgt ein Vergleich mit dem SLM von Azzam. Aufgrund
der fehlenden Reibung im Modell wird kein Verlauf wie in Abbildung 5.1 (a) erwartet.
Numerische Simulationen von quasistatischen Faserauszugsversuchen haben gezeigt, dass
die Reaktionskraft bei Versagen absinkt ([10]). Dies ist in Abbildung 5.5 zu sehen. Für das
numerische Modell dieser Arbeit wird deshalb erwartet, dass die Reaktionskraft absinkt,
sobald eine Verschiebung auftritt, die gröÿer ist als sm = 0, 0005 mm.
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Abbildung 5.5: Kraft-Verschiebungs-Kurve aus Simulation und quasistatischem Versuch
([10])

Abbildung 5.6 (a) vergleicht die Ergebnisse der numerischen Berechnung einer harmo-
nischen Weganregung mit dem SLM. Das numerische Modell unterschätzte, wie schon in
Kapitel 4.1 beobachtet, die Schubspannung. Auÿerdem ist zu erkennen, dass die Länge
der UDZ zr0 beim numerischen Modell gröÿer war als beim analytischen. Dies kann ne-
ben der ohnehin auftretenden Abweichung von 5 % daran liegen, dass die Matrix weniger
steif war als beim Vergleich in Kapitel 4.1. Durch die Verschiebung der Matrix wurde
der numerische Schlupf und somit die Schädigung reduziert (vgl. Abbildung 5.6 (b), in
welcher der numerisch berechnete Schlupf dem des SLM gegenübergestellt wird). Ein
weiterer Ein�uss könnte die gröÿere Entfernung der Weganregung zur Übergangs�äche
sein.
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(a)

(b)

Abbildung 5.6: Schubspannung (a) und Schlupf (b) entlang der Übergangs�äche für das
analytische und das numerische Modell mit den Parametern aus den Ver-
suchen von ([5])

Die Abbildung 5.7 (a) zeigt das numerische Modell mit dem Auszug bei konstanter
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Geschwindigkeit bis 0, 007 mm zu den Zeitpunkten t1 = 8, 85×10−5 s, t2 = 2, 95×10−4 s
und t2 = 4, 425×10−4 s. Es ist zu erkennen, wie die maximale Schubspannung sich entlang
der Übergangs�äche bewegte und zr0 kleiner wurde. In Abbildung 5.7 (b) wird eine
harmonische Anregung einem Auszug mit konstanter Geschwindigkeit gegenübergestellt.
Dabei fällt auf, dass beide Verläufe gut übereinander lagen.
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(a)

(b)

Abbildung 5.7: (a) Schubspannung entlang der Übergangs�äche bei linear ansteigen-
der Verschiebung des Faserendes zu drei Zeitpunkten, (b) Vergleich der
Schubspannung von harmonischer und linear ansteigender Verschiebung
am Faserende
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Ein Kraft-Weg-Diagramm für den Punkt II aus Abbildung 5.2 für den linearen Fa-
serauszug ist in Abbildung 5.8 (a) dargestellt. Im Vergleich zu den Kräften im Kraft-
Weg-Diagramm aus Abbildung 5.1 waren die Reaktionskräfte des Punktes II niedrig,
die des Punktes I waren null. Ein Abfall der Kraft-Weg-Kurve war nicht erkennbar.
Stattdessen lagen die Reaktionskräfte unterhalb der im Versuch aufgetretenen Kräfte
und stiegen linear mit der Verschiebung an. In Abbildung 5.8 (b) zu sehen ist, dass sich
die Reaktionskräfte des numerischen Modells auf die Faserspitze beschränkten. In dieser
Arbeit verwendete Viertelmodelle wiesen ebenfalls nur lokale Reaktionskräfte an der Fa-
serspitze auf (vgl. Abbildung 5.8 (c)). Aufgrund der unplausiblen Ergebnisse konnte die
Untersuchung der Messposition für die Verschiebung aus Kapitel 5.1.2 nicht einbezogen
werden.

(a)

(b) (c)

Abbildung 5.8: (a) Kraft-Weg-Diagramm für den Punkt II, (b) Reaktionskräfte im rota-
tionssymmetrischen Modell (c) Reaktionskräfte im Viertelmodell
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Zusammenfassend zeigt sich, dass für das rotationssymmetrische Modell mit einer frei-
en Länge die UDZ gegenüber dem SLM vergröÿert wurde. Eine harmonische Anregung
lieferte die selben Ergebnisse wie ein Faserauszug mit konstanter Geschwindigkeit. Ein
Kraft-Weg-Diagramm zeigte einen linearen Anstieg der Reaktionskraft. Ein Abfall infolge
der Schädigung der Übergangs�äche konnte nicht dargestellt werden.
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6. Zusammenfassung der Ergebnisse

In dieser Arbeit wurden verschiedene numerische Modelle zur Darstellung von Haftung
und Reibung erstellt und mit analytischen Shear-Lag-Modellen sowie Versuchsergebnis-
sen verglichen. In diesem Kapitel sollen die Ergebnisse der Arbeit kurz zusammengefasst
werden.
Ein Vergleich des rotationssymmetrischen und des Viertelmodells mit dem SLM von

Azzam zeigte, dass beide numerischen Modelle den analytisch berechneten Verlauf des
Schlupfes ŝ(z, t) gut nachbilden konnten. Der Verlauf der Schubspannungen τ̂numerisch(z, t)
gab für beide Modelle den Verlauf von τ̂analytisch(z, t) qualitativ wieder. Im Mittel gab
es eine Abweichung zum SLM von 11 %. Gut abgeschätzt wurde hingegen die Länge der
UDZ zr0. Das Viertelmodell wies gegenüber dem rotationssymmetrischen einen glatteren
Schubspannungsverlauf auf, hatte jedoch eine deutlich höhere Rechenzeit. Durch eine hö-
here Netzfeinheit war eine Annäherung an den Verlauf des SLM möglich, was jedoch die
Rechenzeit in groÿen Maÿe erhöhte. Eine Versteifung der Matrix zur Annäherung an das
analytische Modell verbesserte die Ergebnisgüte nicht. Die Genauigkeit des numerischen
Modells von Azzam aus ([4]) hinsichtlich des Schubspannungsverlaufes und der Länge
der UDZ wurde nicht erreicht.
Eine Simulation der Modelle für Reibung in der Übergangs�äche brachte beim Ver-

gleich mit dem SLM von Azzam für alle Modellierungsvarianten ähnliche Ergebnisse für
die Fälle Pure Slip und Slip-Stick hervor. In der Regel wurden die Partikelgeschwindigkei-
ten der numerischen Modelle gegenüber den analytischen unterbewertet, sie lagen jedoch
in der selben Gröÿenordnung. Für den Fall I wurde die Prozesszone der Faser überschätzt,
für den Fall II die der Matrix. Ein Bereichswechsel, wie er beim SLM bei Z = η1T vor-
liegt, konnte nicht dargestellt werden. Die verschiedenen Modellierungsvarianten wiesen
keinen Unterschied in den Rechendauern auf. Die Genauigkeit des numerischen Modells
von Sridhar et al. aus ([2]) wurde nicht erreicht.
Eine Anpassung des rotationssymmetrischen Haftungsmodells an Versuche zeigte, dass

die Länge der UDZ gegenüber der eines SLM mit den selben Parametern für das TSL
deutlich vergröÿert wurde. Dies ist auf den gröÿeren Schlupf und die höhere Entfernung
der Anregung zurückzuführen. Ein Vergleich zwischen harmonischer und linear steigender
Weganregung zeigte, dass die Ergebnisse der numerischen Modelle sich nicht voneinan-
der unterscheiden. Ein Kraft-Weg-Diagramm aus dem numerischen Modell ergab keine
plausiblen Ergebnisse.
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7. Fazit und Ausblick

Das Ziel der Untersuchung im Rahmen dieser Arbeit war die Analyse numerischer Mo-
delle im Bezug ihrer Eignung zur Darstellung des Faserauszugs. Dafür wurde in Kapitel
1 zunächst ein Einblick in den Stand der Forschung gegeben, in Kapitel 2 wurden die
theoretischen Grundladen des Faserauszugs, Idealisierungen des Übergangsbereiches und
analytische Modelle, welche den Faserauszug beschreiben, erläutert. Kapitel 3 behandel-
te anschlieÿend Modellierungsmöglichkeiten für die Übergangs�äche, die Faser und die
Matrix. Die daraus resultierenden Modelle wurden in Kapitel 4 mit den in Kapitel 2
vorgestellten analytischen Modellen sowie mit Referenzlösungen aus der Literatur ver-
glichen. Die Modelle wurden anschlieÿend in Kapitel 5 auf Parameter eines Versuches
angepasst und ein Vergleich zu diesen gezogen. Abschlieÿend wurden die gewonnenen
Erkenntnisse aus den Kapiteln 4 und 5 in Kapitel 6 zusammengefasst.
Die Untersuchungen der Modelle für die Haftung mit dem Surface-Based Cohesive

Behavior ergaben, dass sie geeignet sind, den Verlauf des Schlupfes und die Länge der
UDZ gut darzustellen. Der Verlauf der Schubspannung in der Übergangs�äche konnte
ebenfalls qualitativ dargestellt werden. Beide numerischen Modelle unterschätzten die
Schubspannungverläufe des SLM im Mittel um 11 %. Durch die Wahl eines rotations-
symmetrischen Modells konnte eine kürzere Rechenzeit auf Kosten eines weniger glatten
Schubspannungsverlaufes erreicht werden.
Für die Reibungssimulation stellte sich heraus, dass die numerischen Modelle die analy-

tischen nur in der Gröÿenordnung der Partikelgeschwindigkeit und abhängig vom Fall in
der Gröÿenordnung der Prozesszone darstellten. Unabhängig von der Modellierungsart
von Faser, Matrix oder Reibung unterschätzten die numerischen Modelle die Analyti-
schen. Ein Bereichswechsel war ebenfalls nicht erkennbar. Anders als bei der Haftungssi-
mulation gab es für rotationssymmetrische und Viertelmodelle keinen Unterschied in der
Rechenzeit. Aufgrund der Abweichungen wurde keine Untersuchung mit Parametern aus
Versuchen durchgeführt.
Eine Abweichung des numerischen Modells zum SLM aufgrund der freien Länge und der

Stei�gkeit der Matrix konnte ebenfalls gezeigt werden. So war die Länge der UDZ gröÿer
als die des SLM. Wird statt einer harmonischen eine lineare Weganregung verwendet,
so gibt es nur geringe Abweichungen zum Schubspannungs-Verlauf. Zur Beschreibung
des Faserauszuges in Form eines Kraft-Weg-Diagrammes waren beide Modelle in ihrer
Ausführung aufgrund unplausibler Reaktionskräfte ungeeignet.
Weitere Forschungsschritte könnten deshalb eine bessere Simulation der Reaktionskräf-

te im Faserverbund sein. Durch eine bessere Modellierung der Haftung und insbesondere
der Reibung könnte ein Kraft-Weg-Diagramm realitätsnäher dargestellt werden. Dies
könnte durch die Verwendung von Cohesive Elements statt Surface-Based Cohesive Be-
havior gelingen, wie es bei ([4, 2]) der Fall war. Eine bessere Darstellung von Reibung
könnte auch durch ein eigen programmiertes Reibungsgesetz mit User-Subroutinen ge-
lingen. Bei der Haftungssimulation könnte eine Konvergenzstudie durchgeführt werden,
um eine Näherung an das Shear-Lag-Modell zu erreichen. Sobald beide Mechanismen
den Shear-Lag-Modellen entsprechen, sollte eine Kombination der beiden, z. B. durch
User-Subroutinen erfolgen, um den Faserauszug vollständig zu modellieren. Ein nächster
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Schritt wäre eine numerische Modellierung des dynamischen Auszugs mehrerer Fasern,
um das Verhalten von bewehrtem Beton unter dynamischer Belastung besser darzustel-
len.
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A. Anhang A

Matlab®-Skript für Shear-Lag-Modelle

clear; close all; clc;
%Verschiedene Shear-Lag-Modelle zur Validierung von FEM-Modellen des
%dynamischen Faserauszuges
%Ersteller Skript: Alexander Jannsen mit Matrikelnummer: 2308580

%Fall 1: Modell Azzam (DOI: https://doi.org/10.1016/j.ijmecsci.2016.09.030)
%Fall 2: Modell Sridhar et al. (DOI:https://doi.org/10.1016/S0022-5096(03)00035-8)
%Versuchsparameter von Scheffler et al. (https://doi.org/10.1016/j.cemconcomp.2017.08.009)

Fall=2;

%Shear-Lag-Model Azzam-----------------------------------------------------
%Anmerkung: x entspricht hier der Koordinate z in der Arbeit
if Fall==1

% %Parameter aus Versuchen von Scheffler et al. (https://doi.org/10.1016/j.cemconcomp.2017.08.009)
% %Anregung
% t_step=0.0011/10;
%
% C_n=0.0009; %Amplitude an Faserspitze in mm 0.0011
% lambda=2*pi/(4*t_step); %Erregerfrequenz in 1/s 2*pi/(4*t_step)
%
% %Shear-stress shear-slip relation
% K0=151400; %Steigung Schubspannung in MPa/mm %155333
% s_m=0.0005; %Schlupfschadensgrenze in mm %0.0005
% s_r=0.08; %Schlupf-Haftungsversagensgrenze in mm %0.08
% s_f=0.0011; %0.0011
% Tau_m=75.5; %Schubspannung, bis zu der Schaden auftritt in MPa %93.2
% Tau_s=138.42; %Schubspannung für softening curve in MPa 186.4
%
% %Faser-Parameter
% E_r=78000; %E-Modul Faser in MPa 78000
% A_r=pi*0.01^2; %Querschnittsfläche Faser in mm^2 pi*0.012^2
% Rho_r=2*10^-9; %Dichte des Fasermaterials in t/mm^3 2*10^-9
% a=pi*2*0.01; %Faserumfang in mm pi*2*0.012
% c_r=sqrt(E_r/Rho_r); %Schallgeschwindigkeit
% l=0.4; %Faserlänge in mm 0.4
% x=linspace(0,l,1000)'; %Vektor mit Positionen auf x-Koordinate
%---------------------------
%Paramter von Azzam (DOI: https://doi.org/10.1016/j.ijmecsci.2016.09.030)
C_n=6.125e-2; %Amplitude an Faserspitze in mm
lambda=1e5; %Erregerfrequenz in 1/s
%
%Shear-stress shear-slip relation
K0=652; %Steigung Schubspannung in MPa/mm
s_m=0.005; %Schlupfschadensgrenze in mm
s_r=0.08; %Schlupf-Haftungsversagensgrenze in mm
s_f=0.0941; %Schlupf failure
Tau_m=3.26; %Schubspannung, bis zu der Schaden auftritt in MPa
Tau_s=3.44; %Schubspannung für softening curve in MPa

%Faser-Parameter
E_r=72000; %E-Modul Faser in MPa
A_r=3.14e-4; %Querschnittsfläche Faser in mm^2
Rho_r=2.7*10^-9; %Dichte des Fasermaterials in t/mm^3
a=6.28e-2; %Faserumfang in mm
c_r=sqrt(E_r/Rho_r); %Schallgeschwindigkeit
l=5; %Faserlänge in mm
x=linspace(0,l,2501)'; %Vektor mit Positionen auf x-Koordinate
%-------------------
%Weitere Parameter
ke1=(K0*a)/A_r;
w_2=(ke1/E_r)-(lambda^2/c_r^2)
w=sqrt(w_2);
lambda_cut=c_r*sqrt(ke1/E_r);
q02=(Tau_s*a)/A_r;
ke2=ke1-(q02/s_m);
Z2=(ke2*A_r)/a;
w_2Strich_2=(abs(ke2)/E_r)+(lambda^2/c_r^2);
w_2Strich=sqrt(w_2Strich_2);

f=@(xr0_alt)(s_m-(q02/(E_r*w_2Strich_2)))*cos(w_2Strich*(l-xr0_alt))+(w/w_2Strich)*...
s_m*tanh(w*xr0_alt).*sin(w_2Strich*(l-xr0_alt))-C_n+(q02/(E_r*w_2Strich_2))

xr0=fzero(f,l)
[~,idx_xr0]=min(abs(x-xr0));
Nr0=E_r*A_r*w*s_m*tanh(w*xr0);

t_start=0; %Anfangszeit in s
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t_end=(2*pi)/(2*lambda); %Zeitdauer in s
t=linspace(t_start,t_end,10)'; %Vektor mit Zeitpunkten

%Schadensfälle
if C_n<=s_m %unbeschädigtes Interface

if w_2>0
for i=1:length(t)

s_Dach(:,i)=(cosh(w*x)/cosh(w*l))*C_n*exp(1i*lambda*t(i)); %Schlupf
Tau_Dach(:,i)=(cosh(w*x)/cosh(w*l))*K0*C_n*exp(1i*lambda*t(i)); %Schubspannung in Interface
N_r_Dach(:,i)=E_r*A_r*w*(sinh(w*x)/cosh(w*l))*C_n*exp(1i*lambda*t(i)); %Normalkraft in Faser
P_Dach(1,i)=E_r*A_r*w*tanh(w*l)*C_n*exp(1i*lambda*t(i)); %Faserauszugskraft

end
elseif w_2<0

for i=1:length(t)
s_Dach(:,i)=(C_n/(2*cos(w*l)))*(exp(1i*(w*x+lambda*t(i))) + exp(-1i*(w*x-lambda*t(i)))); %Schlupf
Tau_Dach(:,i)=((K0*C_n)/(2*cos(w*l)))*(exp(1i*(w*x+lambda*t(i))) + exp(-1i*(w*x-lambda*t(i)))); %Schubspannung in Interface
N_r_Dach(:,i)=((E_r*A_r*1i*w*C_n)/(2*cos(w*l)))*(exp(1i*(w*x+lambda*t(i))) - exp(-1i*(w*x-lambda*t(i)))); %Normalkraft in Faser

end
elseif w_2==0

s_Dach=C_n*exp(1i*lambda_cut*t); %Schlupf
Tau_Dach=K0*C_n*exp(1i*lambda_cut*t); %Schubspannung in Interface
N_r_Dach=zeros(1,length(t)); %Normalkraft in Faser

end
else %Beschädigtes Interface

x_UDZ=x(1:idx_xr0,1); %Vektor mit beschädigter Zone
x_DZ=x(idx_xr0+1:end,1); %Vektor mit unbeschädigter Zone

%Unbeschädigte Zone
for i=1:length(t)

s_Dach_UDZ(:,i)=s_m*(cosh(w*x)/cosh(w*xr0))*exp(1i*lambda*t(i));
Tau_Dach_UDZ(:,i)=Tau_m*(cosh(w*x)/cosh(w*xr0))*exp(1i*lambda*t(i));
N_Dach_UDZ(:,i)=E_r*A_r*w*s_m*(sinh(w*x)/cosh(w*xr0))*exp(1i*lambda*t(i));

end

%Beschädigte Zone
for i=1:length(t)

s_Dach_DZ(:,i)= ((q02/(E_r*w_2Strich_2))+(s_m-(q02/(E_r*w_2Strich_2)))*cos(w_2Strich*...
(x-xr0))+(Nr0/(E_r*A_r*w_2Strich))*sin(w_2Strich*(x-xr0)))*exp(1i*lambda*t(i));

Tau_Dach_DZ(:,i)=(Z2*(q02/(E_r*w_2Strich_2))+Tau_s+Z2*(s_m-(q02/(E_r*w_2Strich_2)))...
*cos(w_2Strich*(x-xr0))+Z2*(Nr0/(E_r*A_r*w_2Strich))*sin(w_2Strich*(x-xr0)))*exp(1i*lambda*t(i));

N_Dach_DZ(:,i)=E_r*A_r*w_2Strich*((-(s_m-q02/(E_r*w_2Strich_2)))*...
sin(w_2Strich*(x-xr0))+(Nr0/(E_r*A_r*w_2Strich))*cos(w_2Strich*(x-xr0)))*exp(1i*lambda*t(i));

end
% figure(1)
axsize=15;
fontsize=15;
linewidth_fac=3;
subplot(2,1,1)
plot(x(1:idx_xr0,1),real(s_Dach_UDZ(1:idx_xr0,1)),'r','LineWidth',2)
hold on
plot(x(idx_xr0+1:end,1),real(s_Dach_DZ(idx_xr0+1:end,1)),'r','LineWidth',2)
hold off
xlabel('Position an der Stelle z in mm','Interpreter','latex','FontSize',fontsize)
ylabel('Schlupf $\hat{s}$ (z,t) in mm','Interpreter','latex','FontSize',fontsize)
ax=gca;
ax.FontSize=axsize
grid on
subplot(2,1,2)
plot(x(1:idx_xr0,1),real(Tau_Dach_UDZ(1:idx_xr0,1)),'r')
hold on
plot(x(idx_xr0+1:end,1),real(Tau_Dach_DZ(idx_xr0+1:end,1)),'r')
hold off
xlabel('Position an der Stelle z in mm','Interpreter','latex','FontSize',fontsize)
ylabel('Schubspannung $\hat{\tau}$ (z,t) in MPa','Interpreter','latex','FontSize',fontsize)
ax=gca;
ax.FontSize=axsize
grid on

end

%Shear-Lag-Modell nach Sridhar
elseif Fall==2

%------------------------------------------------------------------------
%Fall I: Pure Slip
%Importparameter:
%Materialparameter
E_f=100000; %E-Modul Faser in MPa
E_m=46296; %E-Modul Matrix in MPa
nu_f=0.3; %Poissonsche Zahl Faser
nu_m=0.25; %Poissonsche Zahl Matrix
rho_f=3.3654E-08; %Dichte Faser in t/mm^3
rho_m=1.3889e-07; %Dichte Matrix in t/mm^3
R_f=0.01; %Radius Faser in mm
l_f=0.4; %Länge Faser in mm
z=linspace(0,l_f,201); %Vektor mit Positionen auf z-Koordinate
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f=0.4; %Faservolumenanteil

E_f_Dach=(E_f*(1-nu_f))/((1+nu_f)*(1-2*nu_f));
E_m_Dach=(E_m*(1-nu_m))/((1+nu_m)*(1-2*nu_m));

c_f=sqrt(E_f_Dach/rho_f)
c_m=sqrt(E_m_Dach/rho_m)
t_end=2.85e-8 %Zeit in s

%------------------------------------------------------------------------
%Fall II: Slip-Stick

%Materialparameter
E_f=100000; %E-Modul Faser in MPa 40000
E_m=4.6296e+04; %E-Modul Matrix in MPa E_f/3
nu_f=0.3; %Poissonsche Zahl Faser
nu_m=0.25; %Poissonsche Zahl Matrix
rho_f=3.3654E-08; %Dichte Faser in t/mm^3
rho_m=1.3889e-09; %Dichte Matrix in t/mm^3
R_f=0.01; %Radius Faser in mm
l_f=0.4; %Länge Faser in mm
z=linspace(0,l_f,201); %Vektor mit Positionen auf z-Koordinate
f=0.4; %Faservolumenanteil 0.4

E_f_Dach=(E_f*(1-nu_f))/((1+nu_f)*(1-2*nu_f));
E_m_Dach=(E_m*(1-nu_m))/((1+nu_m)*(1-2*nu_m));

c_f=sqrt(E_f_Dach/rho_f)
c_m=sqrt(E_m_Dach/rho_m)

E_f_Dach=(E_f*(1-nu_f))/((1+nu_f)*(1-2*nu_f));
E_m_Dach=(E_m*(1-nu_m))/((1+nu_m)*(1-2*nu_m));

c_f=sqrt(E_f_Dach/rho_f)
c_m=sqrt(E_m_Dach/rho_m)
t_end=2.86e-8 %Zeit in s

%------------------------------------------------------------------------
%Weitere Parameter
t0=5e-10; %Startzeit in s
t=linspace(t0,t_end,2)'; %Vektor mit Zeitpunkten
Tau0=100; %Reibungs-Schubspannung im Interface
sigma0=100; %Normalspannung am Faserende

%Normalisierungen
Z=(z/R_f)';
T=(c_f*t)/R_f;
C=c_f/c_m; %Schallgeschwindigkeitsverhältnis
phi=(f*E_f)/((1-f)*E_m); %Modulverhältnis
tau=(2*Tau0)/E_f; %Normalisierte Interface-Schubspannung

p=(sigma0*t)/t0; %Zeitabhängige Normalspannung
k=(Tau0*c_f*t0)/(sigma0*R_f) %Inverse Lastrate
%------------------------------------------------------------------------
% %Parameter wie im Paper
% C=sqrt(0.5) %Fall I: C=sqrt(1), Fall II C=sqrt(0.5)
% phi=2;
% k=0.05;
% tau=0.005;
% T=10;

%Ermittlung der Grenzen CU und CL
eta2=sqrt((1+phi)/(C^2+phi));
syms eta1_sym

eta1=double( solve(( (eta1_sym^2+2*k*eta1_sym-1)*(1+C^2*eta1_sym*eta2) + ...
2*k*phi*(1+eta1_sym*eta2)*eta1_sym)==0,eta1_sym));

eta1(eta1<0)=[];

syms CU_sym CL_sym

CU=double(solve((((eta1^2+2*k*eta1-1)*(1-CU_sym^2))/(2*k*(eta1*(1-CU_sym^2)+...
(1-eta1^2)*sqrt((CU_sym^2+phi)*(1+phi)))))==1,CU_sym));

CU(CU<0)=[];

CL=double(solve((((eta1^2+2*k*eta1-1)*(1-CL_sym^2))/(2*k*(eta1*(1-CL_sym^2)+...
(1-eta1^2)*sqrt((CL_sym^2+phi)*(1+phi)))))==-1,CL_sym));

CL(CL<0)=[]

%Regime-Fälle
if C>CU %Regime I: Pure Slip

eta1=1/C;
eta2=sqrt(1+k^2)-k;
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Z=linspace(0,eta2*T(end),201)';
lim1=eta1*T(end);
lim2=eta2*T(end);
l2=eta2*c_f*t(end)
% eta1=7*T;
% eta2=9.5*T;
syms T_sym
%Faser Bereich I:
U_f_s= (tau * (-Z+T_sym*eta2).*(Z*(k+eta2)-T_sym*(1-k*eta2)))/(2*k*(1+eta2^2));
V_f_s=diff(U_f_s,T_sym);
V_f=double(subs(V_f_s,T_sym,T(end)));
%Matrix Bereich I
U_m_s_1=tau*phi*(Z.^2*(1+eta1^2*C^2-2*eta1*eta2*C^2)+T_sym^2*...

(eta2^2-2*eta1*eta2+eta1^2*eta2^2*C^2))/...
(2*(1+eta1^2*C^2)*(1-eta2^2*C^2));

V_m_s_1=diff(U_m_s_1,T_sym);
V_m_1=double(subs(V_m_s_1,T_sym,T(end)));
%Matrix Bereich II
U_m_s_2=((tau*phi)/(2*(1-eta2^2*C^2)))*(Z-eta2*T_sym).^2;
V_m_s_2=diff(U_m_s_2,T_sym);
V_m_2=double(subs(V_m_s_2,T_sym,T(end)));

[~,idx_1]=min(abs(Z-eta1*T(end)))
[~,idx_2]=min(abs(Z-eta2*T(end)))

figure(1)
axsize=30;
fontsize=35;
plot(Z,V_f,'k','LineWidth',1)
hold on
plot(Z(1:idx_1),V_m_1(1:idx_1),'--k','LineWidth',1)
hold on
plot(Z(idx_1:idx_2),V_m_2(idx_1:idx_2),'--k','LineWidth',1)
hold off
grid on
legend('Faser','Matrix','','Interpreter','latex','FontSize',fontsize,'Position',[.7 .7 .3 .1])
ylabel('Partikelgeschwindigkeit $\dot{U}$','Interpreter','latex','FontSize',fontsize)
xlabel('Position an der Stelle Z','Interpreter','latex','FontSize',fontsize)
ax=gca;
ax.FontSize=axsize

elseif C>=CL && CU>=C %Regime II: Slip-Stick
eta2=eta2;
eta1=eta1;

Z=linspace(0,eta2*T(end),1000)';
lim1=eta1*T(end);
lim2=eta2*T(end);

[~,idx_1]=min(abs(Z-eta1*T(end)))
[~,idx_2]=min(abs(Z-eta2*T(end)))

syms T_sym
%Faser Bereich I
U_f_s_1=(tau*(-Z.^2*(2*k+eta1+eta2)+2*Z*T_sym*(1+eta1*eta2)+T_sym^2*...

(2*k*eta1*eta2-eta1-eta2)))/(4*k*(1+eta1*eta2));
V_f_s_1=diff(U_f_s_1,T_sym);
V_f_1=double(subs(V_f_s_1,T_sym,T(end)));
%Faser Bereich II
U_f_s_2=(tau*(eta1^2+2*k*eta1-1)*(Z-eta2*T_sym).^2)/(4*k*(1+eta1*eta2)*(eta2-eta1));
V_f_s_2=diff(U_f_s_2,T_sym);
V_f_2=double(subs(V_f_s_2,T_sym,T(end)));
%Matrix Bereich I
U_m_s_1=(tau*(Z.^2*((eta1^2+2*k*eta1-1)*(eta2-eta1)*C^2+2*k*phi*(1+eta1*eta2))+T_sym^2*...

((eta1^2+2*k*eta1-1)*(eta2-eta1)-2*k*phi*eta1^2*(1+eta1*eta2))))...
/(4*k*(1+eta1*eta2)*(1+eta1^2*C^2));

V_m_s_1=diff(U_m_s_1,T_sym);
V_m_1=double(subs(V_m_s_1,T_sym,T(end)));
%Matrix Bereich II
U_m_s_2=(tau*(eta1^2+2*k*eta1-1)*(Z-eta2*T_sym).^2)/(4*k*(1+eta1*eta2)*(eta2-eta1));
V_m_s_2=diff(U_m_s_2,T_sym);
V_m_2=double(subs(V_m_s_2,T_sym,T(end)));

figure(1)
axsize=30;
fontsize=35;
plot(Z(1:idx_1),V_f_1(1:idx_1),'k','LineWidth',1)
hold on
plot(Z(idx_1+1:idx_2),V_f_2(idx_1+1:idx_2),'k','LineWidth',1)
hold on
plot(Z(1:idx_1),V_m_1(1:idx_1),'--k','LineWidth',1)
hold on
plot(Z(idx_1+1:idx_2),V_m_2(idx_1+1:idx_2),'--k','LineWidth',1)
hold off
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grid on
legend('Faser','','Matrix','','Interpreter','latex','FontSize',fontsize,'Position',[.7 .7 .3 .1])
ylabel('Partikelgeschwindigkeit $\dot{U}$','Interpreter','latex','FontSize',fontsize)
xlabel('Position an der Stelle Z','Interpreter','latex','FontSize',fontsize)
ax=gca;
ax.FontSize=axsize

elseif C<=CL %Regime III: Slip Reverse-Slip
eta2=1;

syms eta1_sym eta3_sym
equations= [eta3_sym-eta1_sym^2*eta3_sym*C^2+2*eta1_sym*(eta3_sym^2*C^2-1)==0 , ...

((eta1_sym-1)/(eta1_sym+1))+(1/(eta3_sym+1))-(phi*(eta3_sym^2-4*eta1_sym*eta3_sym+...
eta1_sym^2*eta3_sym^2*C^2+2*eta1_sym^2))/((1-eta1_sym^2*C^2)*(1+eta3_sym^2*C^2))==(1-eta1_sym)/(2*k)];

[eta1,eta3]=solve(equations,eta1_sym,eta3_sym);

eta1=double(eta1);
eta1(eta1<0)=[];
eta1=eta1(eta1==real(eta1));
eta1=sort(eta1,'ascend');
eta1=eta1(1);
eta3=double(eta3);
eta3(eta3<0)=[];
eta3=eta3(eta3==real(eta3));
eta3=sort(eta3,'ascend');
eta3=eta3(1);

Z=linspace(0,eta3*T,100)';

syms T_sym
%Faser Bereich I
U_f_s_1=(tau*(Z.^2*(2*k*(eta1-2*eta3-1)-(1+eta1)*(1+eta3))...

-T_sym^2*(1+eta3+2*k*eta3+eta1*(1+eta3-2*k*(eta3+2)))...
+2*Z*T_sym*(1+eta1)*(1+eta3)))...
/(4*k*(1+eta1)*(1+eta3));

V_f_s_1=diff(U_f_s_1,T_sym);
V_f_1=double(subs(V_f_s_1,T_sym,T));
%Faser Bereich II
U_f_s_2=(tau*(Z.^2*(1+eta3-eta1^2*(1+eta3)+2*k*(eta1^2-1-2*eta1*(1+eta3)))...

+T_sym^2*((eta1^2-1)*(1+eta3)+4*k*eta1+2*k*eta3*(eta1^2+2*eta1-1))...
+2*Z*T_sym*(eta1^2+4*k*eta1-1)*(1+eta3)))/...
(4*k*(eta1^2-1)*(1+eta3));

V_f_s_2=diff(U_f_s_2,T_sym);
V_f_2=double(subs(V_f_s_2,T_sym,T));
%Faser Bereich III
U_f_s_3=(tau*(Z-eta3*T_sym).^2)/(2*k*(1-eta3^2));
V_f_s_3=diff(U_f_s_3,T_sym);
V_f_3=double(subs(V_f_s_3,T_sym,T));
%Matrix Bereich I
U_m_s_1=(tau*phi*(Z.^2*(1+eta1^2*C^2-4*eta1*eta3*C^2+2*eta3^2*C^2)...

+T_sym^2*(eta3^2-4*eta1*eta3+2*eta1^2*eta3^2*C^2+2*eta1^2)))/...
(2*(1-eta1^2*C^2)*(1+eta3^2*C^2));

V_m_s_1=diff(U_m_s_1,T_sym);
V_m_1=double(subs(V_m_s_1,T_sym,T));
U_m_1=double(subs(U_m_s_1,T_sym,T))
%Matrix Bereich II
U_m_s_2=(tau*phi*(Z-eta3*T_sym).*(Z*(1-eta1^2*C^2+4*eta1*eta3*C^2)...

+T_sym*(eta3-eta1^2*eta3*C^2-4*eta1)))/...
(2*(eta1^2*C^2-1)*(eta3^2*C^2+1));

V_m_s_2=diff(U_m_s_2,T_sym);
V_m_2=double(subs(V_m_s_2,T_sym,T));
U_m_2=double(subs(U_m_s_2,T_sym,T))

[~,idx_1]=min(abs(Z-eta1*T))
[~,idx_2]=min(abs(Z-eta2*T))
[~,idx_3]=min(abs(Z-eta3*T))

plot(Z(1:idx_1),V_f_1(1:idx_1),'k','LineWidth',3)
hold on
plot(Z(idx_1:idx_2),V_f_2(idx_1:idx_2),'r','LineWidth',3)
hold on
plot(Z(idx_2:idx_3),V_f_3(idx_2:idx_3),'r','LineWidth',3)
hold on
plot(Z(1:idx_1),V_m_1(1:idx_1),'--k','LineWidth',3)
hold on
plot(Z(idx_1:idx_3),V_m_2(idx_1:idx_3),'--k','LineWidth',3)
hold off
grid on
xlabel('Z')
ylabel('V')
legend('Faser','','','Matrix','')
annotation('arrow', [0.55 0.75], [0.03 0.03], 'LineWidth', 3);
annotation('arrow', [0.075 0.075], [0.6 0.8], 'LineWidth', 3);
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ax=gca;
ax.FontSize=30

end
end

B. Anhang B
Python-Skript für Rotationssymmetrisches Modell

# -*- coding: mbcs -*-
from part import *
from material import *
from section import *
from assembly import *
from step import *
from interaction import *
from load import *
from mesh import *
from optimization import *
from job import *
from sketch import *
from visualization import *
from connectorBehavior import *

#Ersteller: Alexander Jannsen Matrikelnummer: 2308580
#Parameter Kapitel 4.1: Azzam DOI: https://doi.org/10.1016/j.ijmecsci.2016.09.030
#Parameter Kapitel 4.2: Sridhar et al. DOI:https://doi.org/10.1016/S0022-5096(03)00035-8
#Parameter Kapitel 5: Scheffler et al. https://doi.org/10.1016/j.cemconcomp.2017.08.009

#Parameters
#Fälle
Interface=1 #1: Traction Separation Law bzw. Reibung mit Surface-Based Cohesive Behavior, 2: Reibung mit Shear-stress versus elastic slip
Loadcase=2 #1: Linear steigende Normalspannung, 2: Harmonische Weganregung, 3: Verschiebung mit konstanter Geschwindigkeit
BC=2 #1: Keine RB, 2: Einspannung, 3: x-Symmetrie Faser 4: Symmetrie und Einspannung

#Geometry
r_f=0.01 #Radius of fiber in mm
l_f=5 #Length of fiber in mm #Kapitel 4.1: l_f=5 #Kapitel 4.2: l_f=0.4 #Kapitel 5: l_f=0.4
t_r=0.00581 #Stärke der Matrix in mm
l_free=0.03 #Free length in mm #Kapitel 4.1: l_free=0.0 #Kapitel 4.2: l_free=0.0 #Kapitel 5: l_f=0.03
#Material
E_f=72000 #Youngs Modulus of fiber in MPa #Kapitel 4.1: E_f=72000 #Kapitel 4.2: E_f=100000 #Kapitel 5: E_f=78000
nu_f=0.33 #Poissons ratio #Kapitel 4.1: nu_f=0.33 #Kapitel 4.2: nu_f=0.3 #Kapitel 5: nu_f=0.17
rho_f=2.7e-9 #Density of fiber in t/mm^3 #Kapitel 4.1 rho_f=2.7e-9 Kapitel 4.2 rho_f=3.3654E-08 #Kapitel 5: rho_f=2.0e-9

E_m=72000*10 #Youngs Modulus of fiber in MPa #Kapitel 4.1: E_m=72000*10 #Kapitel 4.2: E_m=46296 #Kapitel 5: E_m=28000
nu_m=0.33 #Poissons ratio #Kapitel 4.1: nu_m=0.33 Kapitel 4.2: nu_m=0.25 #Kapitel 5: nu_m=0.2
rho_m=2.7e-9*10 #Density of fiber in t/mm^3 #Kapitel 4.1 rho_m=2.7e-9*10 Kapitel 4.2
#Fall I: rho_m=1.3889E-07 Fall II: rho_m=1.3889E-09 #Kapitel 5: rho_m=2.4e-9

#Step
t_period=1.57e-5 #time-period in s #Kapitel 4.1: t_period=1.57e-5 #Kapitel 4.2
#Fall I: t_period=2.85E-08 #Kapitel 4.2 Fall II: t_period=2.86E-08 Kapitel 5: t_period=1.1e-4

#Traction Separation Law properties
K_nn=0 #Interface Stiffness in MPa
K_ss=0 #Interface Stiffness in MPa
K_tt=652 #Interface Stiffness in MPa/mm #Kapitel 4.1 K_tt=652 Kapitel 4.2 K_tt=160000 Kapitel 5: K_tt=151400

t_n=3.26 #Traction at Damage Initiation #Kapitel 4.1 t_n=3.26 Kapitel 4.2 t_n=1e6 Kapitel 5: t_n=3.26
t_s=3.26 #Traction at Damage Initiation #Kapitel 4.1 t_s=3.26 Kapitel 4.2 t_s=100 Kapitel 5: t_s=3.26
t_t=3.26 #Traction at Damage Initiation #Kapitel 4.1 t_t=3.26 Kapitel 4.2 t_t=100 Kapitel 5: t_t=75.7

s_f=0.0941 #Maximum separation in mm #Kapitel 4.1: s_f=0.0941 Kapitel 4.2: s_f=1e8 Kapitel 5: s_f=0.0011

#Friction Law properties
fric_coeff=1
Tau_lim=100
K_slip=160000

#Load properties
#Harmonische Weganregung
C_n=6.125e-2 #Load amplitude in mm #Kapitel 4.1 C_n=6.125e-2 Kapitel 5: C_n=0.0009
omega=1e5 #Circular frequency in 1/s #Kapitel 4.1 omega=1e5 Kapitel 5: omega=14280
#Linear steigende Normalspannung
t_start=5e-10
traction_mag=-5700 #Zugspannung am Faserende in MPa :Kapitel 4.2 Fall I: traction_mag=-5700 Fall I: traction_mag=-5720
pressure_mag=-150
#Verschiebung mit konstanter Geschwindigkeit
U_2=0.0011 #Verschiebung in mm
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#Geometry
mdb.models['Model-1'].ConstrainedSketch(name='__profile__', sheetSize=0.1)
mdb.models['Model-1'].sketches['__profile__'].sketchOptions.setValues(

decimalPlaces=3, viewStyle=AXISYM)
mdb.models['Model-1'].sketches['__profile__'].ConstructionLine(point1=(0.0,

-0.05), point2=(0.0, 0.05))
mdb.models['Model-1'].sketches['__profile__'].FixedConstraint(entity=

mdb.models['Model-1'].sketches['__profile__'].geometry[2])
mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.0, 0.0),

point2=(r_f, l_f+l_free))
mdb.models['Model-1'].sketches['__profile__'].CoincidentConstraint(

addUndoState=False, entity1=
mdb.models['Model-1'].sketches['__profile__'].vertices[0], entity2=
mdb.models['Model-1'].sketches['__profile__'].geometry[2])

mdb.models['Model-1'].Part(dimensionality=AXISYMMETRIC, name='Fiber', type=
DEFORMABLE_BODY)

mdb.models['Model-1'].parts['Fiber'].BaseShell(sketch=
mdb.models['Model-1'].sketches['__profile__'])

del mdb.models['Model-1'].sketches['__profile__']
mdb.models['Model-1'].ConstrainedSketch(name='__profile__', sheetSize=0.1)
mdb.models['Model-1'].sketches['__profile__'].sketchOptions.setValues(

decimalPlaces=3, viewStyle=AXISYM)
mdb.models['Model-1'].sketches['__profile__'].ConstructionLine(point1=(0.0,

-0.05), point2=(0.0, 0.05))
mdb.models['Model-1'].sketches['__profile__'].FixedConstraint(entity=

mdb.models['Model-1'].sketches['__profile__'].geometry[2])
mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(r_f, 0.0),

point2=(r_f+t_r, l_f))
mdb.models['Model-1'].Part(dimensionality=AXISYMMETRIC, name='Matrix', type=

DEFORMABLE_BODY)
mdb.models['Model-1'].parts['Matrix'].BaseShell(sketch=

mdb.models['Model-1'].sketches['__profile__'])
del mdb.models['Model-1'].sketches['__profile__']

mdb.models['Model-1'].parts['Fiber'].Surface(name='Surf-Fiber', side1Edges=
mdb.models['Model-1'].parts['Fiber'].edges.getSequenceFromMask(('[#2 ]', ),
))

mdb.models['Model-1'].parts['Matrix'].Surface(name='Surf-Matrix', side1Edges=
mdb.models['Model-1'].parts['Matrix'].edges.getSequenceFromMask(('[#8 ]',
), ))

#Material
mdb.models['Model-1'].Material(name='Material-Fiber')
mdb.models['Model-1'].materials['Material-Fiber'].Density(table=((rho_f, ),

))
mdb.models['Model-1'].materials['Material-Fiber'].Elastic(table=((E_f,

nu_f), ))
mdb.models['Model-1'].Material(name='Material-Matrix')
mdb.models['Model-1'].materials['Material-Matrix'].Density(table=((rho_m, ),

))
mdb.models['Model-1'].materials['Material-Matrix'].Elastic(table=((E_m,

nu_m), ))
mdb.models['Model-1'].HomogeneousSolidSection(material='Material-Fiber', name=

'Section-Fiber', thickness=None)
mdb.models['Model-1'].parts['Fiber'].SectionAssignment(offset=0.0, offsetField=

'', offsetType=MIDDLE_SURFACE, region=Region(
faces=mdb.models['Model-1'].parts['Fiber'].faces.getSequenceFromMask(mask=(
'[#1 ]', ), )), sectionName='Section-Fiber', thicknessAssignment=
FROM_SECTION)

mdb.models['Model-1'].HomogeneousSolidSection(material='Material-Matrix', name=
'Section-Matrix', thickness=None)

mdb.models['Model-1'].parts['Matrix'].SectionAssignment(offset=0.0,
offsetField='', offsetType=MIDDLE_SURFACE, region=Region(
faces=mdb.models['Model-1'].parts['Matrix'].faces.getSequenceFromMask(
mask=('[#1 ]', ), )), sectionName='Section-Matrix', thicknessAssignment=
FROM_SECTION)

mdb.models['Model-1'].rootAssembly.DatumCsysByThreePoints(coordSysType=
CYLINDRICAL, origin=(0.0, 0.0, 0.0), point1=(1.0, 0.0, 0.0), point2=(0.0,
0.0, -1.0))

mdb.models['Model-1'].rootAssembly.Instance(dependent=ON, name='Fiber-1', part=
mdb.models['Model-1'].parts['Fiber'])

mdb.models['Model-1'].rootAssembly.Instance(dependent=ON, name='Matrix-1',
part=mdb.models['Model-1'].parts['Matrix'])

#Step
mdb.models['Model-1'].ExplicitDynamicsStep(improvedDtMethod=ON, name=

'Dynamic, Explicit', previous='Initial', timePeriod=t_period)
mdb.models['Model-1'].fieldOutputRequests['F-Output-1'].setValues(variables=(

'S', 'SVAVG', 'PE', 'PEVAVG', 'PEEQ', 'PEEQVAVG', 'LE', 'U', 'V', 'A',
'RF', 'CSTRESS', 'CSDMG', 'EVF'))

#Interface-----------------------------------------------------------------------------------
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#mdb.models['Model-1'].ContactProperty('FakeProp')
#mdb.models['Model-1'].interactionProperties['FakeProp'].NormalBehavior(
# allowSeparation=ON, constraintEnforcementMethod=DEFAULT,
# pressureOverclosure=HARD)
#mdb.models['Model-1'].ContactProperty('CohesiveProp')
#mdb.models['Model-1'].interactionProperties['CohesiveProp'].CohesiveBehavior(
# defaultPenalties=OFF, table=((K_nn, K_ss, K_tt), ))
#mdb.models['Model-1'].interactionProperties['CohesiveProp'].Damage(evolTable=((
# s_f, ), ), initTable=((t_n, t_s, t_t), ), useEvolution=ON)
#mdb.models['Model-1'].ContactExp(createStepName='Dynamic, Explicit', name=
# 'Cohesive-Interaction')
#mdb.models['Model-1'].interactions['Cohesive-Interaction'].includedPairs.setValuesInStep(
# stepName='Dynamic, Explicit', useAllstar=ON)
#mdb.models['Model-1'].interactions['Cohesive-Interaction'].contactPropertyAssignments.appendInStep(
# assignments=((GLOBAL, SELF, 'FakeProp'), (
# mdb.models['Model-1'].rootAssembly.instances['Fiber-1'].surfaces['Surf-Fiber'],
# mdb.models['Model-1'].rootAssembly.instances['Matrix-1'].surfaces['Surf-Matrix'],
# 'CohesiveProp')), stepName='Dynamic, Explicit')

if Interface==1:
mdb.models['Model-1'].ContactProperty('Normal-Contact')
mdb.models['Model-1'].interactionProperties['Normal-Contact'].NormalBehavior(

allowSeparation=ON, constraintEnforcementMethod=DEFAULT,
pressureOverclosure=HARD)

mdb.models['Model-1'].ContactProperty('Traction Separation Law')
mdb.models['Model-1'].interactionProperties['Traction Separation Law'].CohesiveBehavior(

defaultPenalties=OFF, table=((K_nn, K_ss, K_tt), ))
mdb.models['Model-1'].interactionProperties['Traction Separation Law'].Damage(

evolTable=((s_f, ), ), initTable=((t_n, t_s, t_t), ), useEvolution=
ON)

mdb.models['Model-1'].ContactExp(createStepName='Dynamic, Explicit', name=
'Traction Separation Law')

mdb.models['Model-1'].interactions['Traction Separation Law'].includedPairs.setValuesInStep(
stepName='Dynamic, Explicit', useAllstar=ON)

mdb.models['Model-1'].interactions['Traction Separation Law'].contactPropertyAssignments.appendInStep(
assignments=((GLOBAL, SELF, 'Normal-Contact'), (
mdb.models['Model-1'].rootAssembly.instances['Fiber-1'].surfaces['Surf-Fiber'],
mdb.models['Model-1'].rootAssembly.instances['Matrix-1'].surfaces['Surf-Matrix'],
'Traction Separation Law')), stepName='Dynamic, Explicit')

elif Interface==2:
mdb.models['Model-1'].ContactProperty('Friction')
mdb.models['Model-1'].interactionProperties['Friction'].NormalBehavior(

allowSeparation=ON, constraintEnforcementMethod=DEFAULT,
pressureOverclosure=HARD)

mdb.models['Model-1'].interactionProperties['Friction'].TangentialBehavior(
dependencies=0, directionality=ISOTROPIC, elasticSlipStiffness=K_slip,
formulation=PENALTY, fraction=0.005, maximumElasticSlip=FRACTION,
pressureDependency=OFF, shearStressLimit=Tau_lim, slipRateDependency=OFF,
table=((fric_coeff, ), ), temperatureDependency=OFF)

mdb.models['Model-1'].SurfaceToSurfaceContactExp(clearanceRegion=None,
createStepName='Dynamic, Explicit', datumAxis=None, initialClearance=OMIT,
interactionProperty='Friction', main=
mdb.models['Model-1'].rootAssembly.instances['Fiber-1'].surfaces['Surf-Fiber']
, mechanicalConstraint=PENALTY, name='Friction', secondary=
mdb.models['Model-1'].rootAssembly.instances['Matrix-1'].surfaces['Surf-Matrix']
, sliding=FINITE)

#mdb.models['Model-1'].ContactProperty('Normal-Contact')
#mdb.models['Model-1'].interactionProperties['Normal-Contact'].NormalBehavior(

#allowSeparation=ON, constraintEnforcementMethod=DEFAULT,
#pressureOverclosure=HARD)

#mdb.models['Model-1'].ContactProperty('Friction Law')
#mdb.models['Model-1'].interactionProperties['Friction Law'].TangentialBehavior(

#dependencies=0, directionality=ISOTROPIC, elasticSlipStiffness=K_slip,
#formulation=PENALTY, fraction=0.005, maximumElasticSlip=FRACTION,
#pressureDependency=OFF, shearStressLimit=Tau_lim, slipRateDependency=OFF,
#table=((fric_coeff, ), ), temperatureDependency=OFF)

#mdb.models['Model-1'].ContactExp(createStepName='Dynamic, Explicit', name='Friction Law')
#mdb.models['Model-1'].interactions['Friction Law'].includedPairs.setValuesInStep(

# stepName='Dynamic, Explicit', useAllstar=ON)
#mdb.models['Model-1'].interactions['Friction Law'].contactPropertyAssignments.appendInStep(

# assignments=((GLOBAL, SELF, 'Normal-Contact'), (
# mdb.models['Model-1'].rootAssembly.instances['Fiber-1'].surfaces['Surf-Fiber'],
# mdb.models['Model-1'].rootAssembly.instances['Matrix-1'].surfaces['Surf-Matrix'],
#'Friction Law')), stepName='Dynamic, Explicit')

#Load-------------------------------------------------------------------------------------------
if Loadcase==1:

mdb.models['Model-1'].TabularAmplitude(data=((t_start, t_start/t_period), (t_period, 1.0)), name=
'Ramp', smooth=SOLVER_DEFAULT, timeSpan=STEP)

mdb.models['Model-1'].Pressure(amplitude='Ramp', createStepName='Dynamic, Explicit',
distributionType=UNIFORM, field='', magnitude=traction_mag, name='Fiber stress'
, region=Region(
side1Edges=mdb.models['Model-1'].rootAssembly.instances['Fiber-1'].edges.getSequenceFromMask(
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mask=('[#1 ]', ), )))
mdb.models['Model-1'].Pressure(amplitude=UNSET, createStepName='Dynamic, Explicit',

distributionType=UNIFORM, field='', magnitude=pressure_mag, name=
'Normal stress on Interface', region=
mdb.models['Model-1'].rootAssembly.instances['Matrix-1'].surfaces['Surf-Matrix'])

elif Loadcase==2:
mdb.models['Model-1'].PeriodicAmplitude(a_0=0.0, data=((0.0, 1.0), ),

frequency=omega, name='Harmonic', start=0.0, timeSpan=STEP)
mdb.models['Model-1'].DisplacementBC(amplitude='Harmonic', createStepName=

'Dynamic, Explicit', distributionType=UNIFORM, fieldName='', fixed=OFF,
localCsys=None, name='Load', region=Region(
edges=mdb.models['Model-1'].rootAssembly.instances['Fiber-1'].edges.getSequenceFromMask(
mask=('[#4 ]', ), )), u1=UNSET, u2=C_n, ur3=UNSET)

elif Loadcase==3:
mdb.models['Model-1'].TabularAmplitude(data=((0, 0), (t_period, 1.0)), name=

'Ramp', smooth=SOLVER_DEFAULT, timeSpan=STEP)
mdb.models['Model-1'].DisplacementBC(amplitude='Ramp', createStepName=

'Dynamic, Explicit', distributionType=UNIFORM, fieldName='', fixed=OFF,
localCsys=None, name='Load', region=Region(
edges=mdb.models['Model-1'].rootAssembly.instances['Fiber-1'].edges.getSequenceFromMask(
mask=('[#4 ]', ), )), u1=UNSET, u2=U_2, ur3=UNSET)

#Randbedingungen----------------------------------------------------------------------------------
if BC==2:

mdb.models['Model-1'].EncastreBC(createStepName='Dynamic, Explicit', localCsys=None, name=
'Encastre', region=Region(
edges=mdb.models['Model-1'].rootAssembly.instances['Matrix-1'].edges.getSequenceFromMask(
mask=('[#2 ]', ), )))

elif BC==3:
mdb.models['Model-1'].XsymmBC(createStepName='Dynamic, Explicit', localCsys=None, name=

'x-symm', region=Region(
faces=mdb.models['Model-1'].rootAssembly.instances['Fiber-1'].faces.getSequenceFromMask(
mask=('[#1 ]', ), )))

elif BC==4:
mdb.models['Model-1'].EncastreBC(createStepName='Dynamic, Explicit', localCsys=None, name=

'Encastre', region=Region(
edges=mdb.models['Model-1'].rootAssembly.instances['Matrix-1'].edges.getSequenceFromMask(
mask=('[#2 ]', ), )))

mdb.models['Model-1'].XsymmBC(createStepName='Dynamic, Explicit', localCsys=None, name=
'x-symm', region=Region(
faces=mdb.models['Model-1'].rootAssembly.instances['Fiber-1'].faces.getSequenceFromMask(
mask=('[#1 ]', ), )))

#Mesh---------------------------------------------------------------------------------------------
mdb.models['Model-1'].parts['Matrix'].seedPart(deviationFactor=0.1,

minSizeFactor=0.1, size=r_f/5)
mdb.models['Model-1'].parts['Matrix'].generateMesh()
mdb.models['Model-1'].parts['Fiber'].seedPart(deviationFactor=0.1,

minSizeFactor=0.1, size=(6*r_f)/30)
mdb.models['Model-1'].parts['Fiber'].generateMesh()
mdb.models['Model-1'].rootAssembly.regenerate()

#Job
mdb.Job(activateLoadBalancing=False, atTime=None, contactPrint=OFF,

description='', echoPrint=OFF, explicitPrecision=SINGLE, historyPrint=OFF,
memory=90, memoryUnits=PERCENTAGE, model='Model-1', modelPrint=OFF,
multiprocessingMode=DEFAULT, name='Job-1', nodalOutputPrecision=SINGLE,
numCpus=1, numDomains=1, numThreadsPerMpiProcess=1, queue=None,
resultsFormat=ODB, scratch='', type=ANALYSIS, userSubroutine='', waitHours=
0, waitMinutes=0)

C. Anhang C
Python-Skript für Viertelmodell

# -*- coding: mbcs -*-
from part import *
from material import *
from section import *
from assembly import *
from step import *
from interaction import *
from load import *
from mesh import *
from optimization import *
from job import *
from sketch import *
from visualization import *
from connectorBehavior import *

#Ersteller: Alexander Jannsen Matrikelnummer: 2308580
#Parameter Kapitel 4.1: Azzam DOI: https://doi.org/10.1016/j.ijmecsci.2016.09.030
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#Parameter Kapitel 4.2: Sridhar et al. DOI:https://doi.org/10.1016/S0022-5096(03)00035-8
#Parameter Kapitel 5: Scheffler et al. https://doi.org/10.1016/j.cemconcomp.2017.08.009

#Parameters
#Fälle
Interface=1 #1: Traction Separation Law bzw. Reibung mit Surface-Based Cohesive Behavior, 2: Reibung mit Shear-stress versus elastic slip
Loadcase=2 #1: Linear steigende Normalspannung, 2: Harmonische Weganregung, 3: Verschiebung mit konstanter Geschwindigkeit
BC=2 #1: Keine RB, 2: Einspannung, 3: x-Symmetrie Faser 4: Symmetrie und Einspannung

#Geometry
r=0.01 #Radius of fiber in mm
l_f=5 #Length of fiber in mm #Kapitel 4.1: l_f=5 #Kapitel 4.2: l_f=0.4 #Kapitel 5: l_f=0.4
t_r=0.00581 #Stärke der Matrix in mm
l_free=0.0 #Free length in mm #Kapitel 4.1: l_free=0.0 #Kapitel 4.2: l_free=0.0 #Kapitel 5: l_f=0.03
#Material
E_f=72000 #Youngs Modulus of fiber in MPa #Kapitel 4.1: E_f=72000 #Kapitel 4.2: E_f=100000 #Kapitel 5: E_f=78000
nu_f=0.33 #Poissons ratio #Kapitel 4.1: nu_f=0.33 #Kapitel 4.2: nu_f=0.3 #Kapitel 5: nu_f=0.17
rho_f=2.7e-9 #Density of fiber in t/mm^3 #Kapitel 4.1 rho_f=2.7e-9 Kapitel 4.2 rho_f=3.3654E-08 #Kapitel 5: rho_f=2.0e-9

E_m=72000*10 #Youngs Modulus of fiber in MPa #Kapitel 4.1: E_m=72000*10 #Kapitel 4.2: E_m=46296 #Kapitel 5: E_m=28000
nu_m=0.33 #Poissons ratio #Kapitel 4.1: nu_m=0.33 Kapitel 4.2: nu_m=0.25 #Kapitel 5: nu_m=0.2
rho_m=2.7e-9*10 #Density of fiber in t/mm^3 #Kapitel 4.1 rho_m=2.7e-9*10 Kapitel 4.2
#Fall I: rho_m=1.3889E-07 Fall II: rho_m=1.3889E-09 #Kapitel 5: rho_m=2.4e-9

#Step
t_period=1.57e-5 #time-period in s #Kapitel 4.1: t_period=1.57e-5 #Kapitel 4.2
#Fall I: t_period=2.85E-08 #Kapitel 4.2 Fall II: t_period=2.86E-08 Kapitel 5: t_period=1.1e-4

#Traction Separation Law properties
K_nn=0 #Interface Stiffness in MPa
K_ss=0 #Interface Stiffness in MPa
K_tt=652 #Interface Stiffness in MPa/mm #Kapitel 4.1 K_tt=652 Kapitel 4.2 K_tt=160000 Kapitel 5: K_tt=151400

t_n=3.26 #Traction at Damage Initiation #Kapitel 4.1 t_n=3.26 Kapitel 4.2 t_n=1e6 Kapitel 5: t_n=3.26
t_s=3.26 #Traction at Damage Initiation #Kapitel 4.1 t_s=3.26 Kapitel 4.2 t_s=100 Kapitel 5: t_s=3.26
t_t=3.26 #Traction at Damage Initiation #Kapitel 4.1 t_t=3.26 Kapitel 4.2 t_t=100 Kapitel 5: t_t=75.7

s_f=0.0941 #Maximum separation in mm #Kapitel 4.1: s_f=0.0941 Kapitel 4.2: s_f=1e8 Kapitel 5: s_f=0.0011

#Friction Law properties
fric_coeff=1
Tau_lim=100
K_slip=160000

#Load properties
#Harmonische Weganregung
C_n=6.125e-2 #Load amplitude in mm #Kapitel 4.1 C_n=6.125e-2 Kapitel 5: C_n=0.0009
omega=1e5 #Circular frequency in 1/s #Kapitel 4.1 omega=1e5 Kapitel 5: omega=14280
#Linear steigende Normalspannung
t_start=5e-10
traction_mag=-5700 #Zugspannung am Faserende in MPa :Kapitel 4.2 Fall I: traction_mag=-5700 Fall I: traction_mag=-5720
pressure_mag=-150
#Verschiebung mit konstanter Geschwindigkeit
U_2=0.0011

#Geometrie
mdb.models['Model-1'].ConstrainedSketch(name='__profile__', sheetSize=0.001)
mdb.models['Model-1'].sketches['__profile__'].sketchOptions.setValues(

decimalPlaces=5)
mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.0, 0.0),

point2=(-r, r))
mdb.models['Model-1'].sketches['__profile__'].FilletByRadius(curve1=

mdb.models['Model-1'].sketches['__profile__'].geometry[4], curve2=
mdb.models['Model-1'].sketches['__profile__'].geometry[3], nearPoint1=(
-0.000101352095953189, 3.43709980370477e-05), nearPoint2=(
-5.91968127992004e-05, 9.86200175248086e-05), radius=r)

mdb.models['Model-1'].Part(dimensionality=THREE_D, name='Fiber', type=
DEFORMABLE_BODY)

mdb.models['Model-1'].parts['Fiber'].BaseSolidExtrude(depth=l_f+l_free, sketch=
mdb.models['Model-1'].sketches['__profile__'])

del mdb.models['Model-1'].sketches['__profile__']
mdb.models['Model-1'].ConstrainedSketch(name='__profile__', sheetSize=0.001)
mdb.models['Model-1'].sketches['__profile__'].sketchOptions.setValues(

decimalPlaces=5)
mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.0, 0.0),

point2=(-(r+t_r), r+t_r))
mdb.models['Model-1'].sketches['__profile__'].FilletByRadius(curve1=

mdb.models['Model-1'].sketches['__profile__'].geometry[4], curve2=
mdb.models['Model-1'].sketches['__profile__'].geometry[3], nearPoint1=(
-0.000406043254770339, 0.000142564589623362), nearPoint2=(
-0.000187569530680776, 0.000398847740143538), radius=r+t_r)

mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=(
0.0, 0.0), point1=(-r, 0.0))

mdb.models['Model-1'].sketches['__profile__'].CoincidentConstraint(
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addUndoState=False, entity1=
mdb.models['Model-1'].sketches['__profile__'].vertices[6], entity2=
mdb.models['Model-1'].sketches['__profile__'].geometry[5])

mdb.models['Model-1'].sketches['__profile__'].autoTrimCurve(curve1=
mdb.models['Model-1'].sketches['__profile__'].geometry[7], point1=(
-1.61092029884458e-05, -9.84801154118031e-05))

mdb.models['Model-1'].sketches['__profile__'].autoTrimCurve(curve1=
mdb.models['Model-1'].sketches['__profile__'].geometry[5], point1=(
-4.79122973047197e-05, -4.27872873842716e-06))

mdb.models['Model-1'].sketches['__profile__'].autoTrimCurve(curve1=
mdb.models['Model-1'].sketches['__profile__'].geometry[2], point1=(
-3.66446329280734e-06, 6.63723039906472e-05))

mdb.models['Model-1'].Part(dimensionality=THREE_D, name='Matrix', type=
DEFORMABLE_BODY)

mdb.models['Model-1'].parts['Matrix'].BaseSolidExtrude(depth=l_f,
sketch=mdb.models['Model-1'].sketches['__profile__'])

del mdb.models['Model-1'].sketches['__profile__']
mdb.models['Model-1'].parts['Fiber'].Surface(name='Surf-Fiber', side1Faces=

mdb.models['Model-1'].parts['Fiber'].faces.getSequenceFromMask(('[#1 ]', ),
))

mdb.models['Model-1'].parts['Matrix'].Surface(name='Surf-Matrix',
side1Faces=
mdb.models['Model-1'].parts['Matrix'].faces.getSequenceFromMask((
'[#4 ]', ), ))

#Materialien
mdb.models['Model-1'].Material(name='Material-Fiber')
mdb.models['Model-1'].materials['Material-Fiber'].Density(table=((rho_f, ),

))
mdb.models['Model-1'].materials['Material-Fiber'].Elastic(table=((E_f,

nu_f), ))
mdb.models['Model-1'].Material(name='Material-Matrix')
mdb.models['Model-1'].materials['Material-Matrix'].Density(table=((rho_m, ),

))
mdb.models['Model-1'].materials['Material-Matrix'].Elastic(table=((E_m,

nu_m), ))
mdb.models['Model-1'].HomogeneousSolidSection(material='Material-Fiber', name=

'Section-Fiber', thickness=None)
mdb.models['Model-1'].HomogeneousSolidSection(material='Material-Matrix', name=

'Section-Matrix', thickness=None)
mdb.models['Model-1'].parts['Fiber'].SectionAssignment(offset=0.0, offsetField=

'', offsetType=MIDDLE_SURFACE, region=Region(
cells=mdb.models['Model-1'].parts['Fiber'].cells.getSequenceFromMask(mask=(
'[#1 ]', ), )), sectionName='Section-Fiber', thicknessAssignment=
FROM_SECTION)

mdb.models['Model-1'].parts['Matrix'].SectionAssignment(offset=0.0,
offsetField='', offsetType=MIDDLE_SURFACE, region=Region(
cells=mdb.models['Model-1'].parts['Matrix'].cells.getSequenceFromMask(
mask=('[#1 ]', ), )), sectionName='Section-Matrix', thicknessAssignment=
FROM_SECTION)

#Assembly
mdb.models['Model-1'].rootAssembly.DatumCsysByDefault(CARTESIAN)
mdb.models['Model-1'].rootAssembly.Instance(dependent=ON, name='Fiber-1', part=

mdb.models['Model-1'].parts['Fiber'])
mdb.models['Model-1'].rootAssembly.Instance(dependent=ON, name=

'Matrix-1', part=mdb.models['Model-1'].parts['Matrix'])

#Step
mdb.models['Model-1'].ExplicitDynamicsStep(improvedDtMethod=ON, name=

'Dynamic, Explicit', previous='Initial', timePeriod=t_period)
mdb.models['Model-1'].fieldOutputRequests['F-Output-1'].setValues(variables=(

'S', 'SVAVG', 'PE', 'PEVAVG', 'PEEQ', 'PEEQVAVG', 'LE', 'U', 'V', 'A',
'RF', 'CSTRESS', 'CSDMG', 'EVF'))

#Interaction
if Interface==1:

mdb.models['Model-1'].ContactProperty('Cohesive')
mdb.models['Model-1'].interactionProperties['Cohesive'].CohesiveBehavior(

defaultPenalties=OFF, table=((0.0, 0.0, 652.0), ))
mdb.models['Model-1'].interactionProperties['Cohesive'].Damage(evolTable=((

0.0941, ), ), initTable=((3.26, 3.26, 3.26), ), useEvolution=ON)
mdb.models['Model-1'].ContactProperty('Normal Contact')
mdb.models['Model-1'].interactionProperties['Normal Contact'].NormalBehavior(

allowSeparation=ON, constraintEnforcementMethod=DEFAULT,
pressureOverclosure=HARD)

mdb.models['Model-1'].ContactExp(createStepName='Dynamic, Explicit', name=
'Cohesive')

mdb.models['Model-1'].interactions['Cohesive'].includedPairs.setValuesInStep(
stepName='Dynamic, Explicit', useAllstar=ON)

mdb.models['Model-1'].interactions['Cohesive'].contactPropertyAssignments.appendInStep(
assignments=((GLOBAL, SELF, 'Normal Contact'), (

mdb.models['Model-1'].rootAssembly.instances['Fiber-1'].surfaces['Surf-Fiber'],
mdb.models['Model-1'].rootAssembly.instances['Matrix-1'].surfaces['Surf-Matrix'],

'Cohesive')), stepName='Dynamic, Explicit')

Alexander Jannsen 98 Masterarbeit WS2024/2025



elif Interface==2:
mdb.models['Model-1'].ContactProperty('Friction')
mdb.models['Model-1'].interactionProperties['Friction'].NormalBehavior(

allowSeparation=ON, constraintEnforcementMethod=DEFAULT,
pressureOverclosure=HARD)

mdb.models['Model-1'].interactionProperties['Friction'].TangentialBehavior(
dependencies=0, directionality=ISOTROPIC, elasticSlipStiffness=K_slip,
formulation=PENALTY, fraction=0.005, maximumElasticSlip=FRACTION,
pressureDependency=OFF, shearStressLimit=Tau_lim, slipRateDependency=OFF,
table=((fric_coeff, ), ), temperatureDependency=OFF)

mdb.models['Model-1'].SurfaceToSurfaceContactExp(clearanceRegion=None,
createStepName='Dynamic, Explicit', datumAxis=None, initialClearance=OMIT,
interactionProperty='Friction', main=

mdb.models['Model-1'].rootAssembly.instances['Fiber-1'].surfaces['Surf-Fiber']
, mechanicalConstraint=PENALTY, name='Friction Law', secondary=

mdb.models['Model-1'].rootAssembly.instances['Matrix-1'].surfaces['Surf-Matrix']
, sliding=FINITE)

#Load-------------------------------------------------------------------------------------------
if Loadcase==1:

mdb.models['Model-1'].TabularAmplitude(data=((t_start, t_start/t_period), (t_period, 1.0)), name=
'Ramp', smooth=SOLVER_DEFAULT, timeSpan=STEP)

mdb.models['Model-1'].Pressure(amplitude='Ramp', createStepName=
'Dynamic, Explicit', distributionType=UNIFORM, field='', magnitude=traction_mag,
name='Fiber stress', region=Region(
side1Faces=mdb.models['Model-1'].rootAssembly.instances['Fiber-1'].faces.getSequenceFromMask(
mask=('[#10 ]', ), )))

mdb.models['Model-1'].Pressure(amplitude=UNSET, createStepName='Dynamic, Explicit',
distributionType=UNIFORM, field='', magnitude=pressure_mag, name=
'Normal stress on Interface', region=
mdb.models['Model-1'].rootAssembly.instances['Matrix-1'].surfaces['Surf-Matrix'])

elif Loadcase==2:
mdb.models['Model-1'].PeriodicAmplitude(a_0=0.0, data=((0.0, 1.0), ),

frequency=omega, name='Harmonic', start=0.0, timeSpan=STEP)
mdb.models['Model-1'].DisplacementBC(amplitude='Harmonic', createStepName=

'Dynamic, Explicit', distributionType=UNIFORM, fieldName='', fixed=OFF,
localCsys=None, name='Load', region=Region(
faces=mdb.models['Model-1'].rootAssembly.instances['Fiber-1'].faces.getSequenceFromMask(
mask=('[#8 ]', ), )), u1=UNSET, u2=UNSET, u3=C_n, ur1=UNSET, ur2=UNSET,
ur3=UNSET)

elif Loadcase==3:
mdb.models['Model-1'].TabularAmplitude(data=((0, 0), (t_period, 1.0)), name=

'Ramp', smooth=SOLVER_DEFAULT, timeSpan=STEP)
mdb.models['Model-1'].DisplacementBC(amplitude='Ramp', createStepName=

'Dynamic, Explicit', distributionType=UNIFORM, fieldName='', fixed=OFF,
localCsys=None, name='Load', region=Region(
faces=mdb.models['Model-1'].rootAssembly.instances['Fiber-1'].faces.getSequenceFromMask(
mask=('[#8]', ), )), u1=UNSET, u2=UNSET, u3=U_2, ur1=UNSET, ur2=UNSET,
ur3=UNSET)

#Randbedingungen----------------------------------------------------------------------------------
mdb.models['Model-1'].XsymmBC(createStepName='Dynamic, Explicit', localCsys=None

, name='x_symm', region=Region(
faces=mdb.models['Model-1'].rootAssembly.instances['Fiber-1'].faces.getSequenceFromMask(
mask=('[#2 ]', ), )+\

mdb.models['Model-1'].rootAssembly.instances['Matrix-1'].faces.getSequenceFromMask(
mask=('[#2 ]', ), )))

mdb.models['Model-1'].YsymmBC(createStepName='Dynamic, Explicit', localCsys=None
, name='y-symm', region=Region(
faces=mdb.models['Model-1'].rootAssembly.instances['Fiber-1'].faces.getSequenceFromMask(
mask=('[#4 ]', ), )+\

mdb.models['Model-1'].rootAssembly.instances['Matrix-1'].faces.getSequenceFromMask(
mask=('[#8 ]', ), )))

if BC==2:
mdb.models['Model-1'].EncastreBC(createStepName='Dynamic, Explicit', localCsys=

None, name='Encastre', region=Region(
faces=mdb.models['Model-1'].rootAssembly.instances['Matrix-1'].faces.getSequenceFromMask(
mask=('[#1 ]', ), )))

elif BC==3:
mdb.models['Model-1'].XsymmBC(createStepName='Dynamic, Explicit', localCsys=

None, name='x-symm-Fiber', region=Region(
faces=mdb.models['Model-1'].rootAssembly.instances['Fiber-1'].faces.getSequenceFromMask(
mask=('[#1 ]', ), )))

mdb.models['Model-1'].YsymmBC(createStepName='Dynamic, Explicit', localCsys=
None, name='y-symm-Fiber', region=Region(
faces=mdb.models['Model-1'].rootAssembly.instances['Fiber-1'].faces.getSequenceFromMask(
mask=('[#1 ]', ), )))

elif BC==4:
mdb.models['Model-1'].EncastreBC(createStepName='Dynamic, Explicit', localCsys=

None, name='Encastre', region=Region(
faces=mdb.models['Model-1'].rootAssembly.instances['Matrix-1'].faces.getSequenceFromMask(
mask=('[#1 ]', ), )))

mdb.models['Model-1'].XsymmBC(createStepName='Dynamic, Explicit', localCsys=
None, name='x-symm-Fiber', region=Region(
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faces=mdb.models['Model-1'].rootAssembly.instances['Fiber-1'].faces.getSequenceFromMask(
mask=('[#1 ]', ), )))

mdb.models['Model-1'].YsymmBC(createStepName='Dynamic, Explicit', localCsys=
None, name='y-symm-Fiber', region=Region(
faces=mdb.models['Model-1'].rootAssembly.instances['Fiber-1'].faces.getSequenceFromMask(
mask=('[#1 ]', ), )))

#Mesh---------------------------------------------------------------------------------------------
mdb.models['Model-1'].parts['Matrix'].seedPart(deviationFactor=0.1,

minSizeFactor=0.1, size=r/5)
mdb.models['Model-1'].parts['Matrix'].generateMesh()
mdb.models['Model-1'].parts['Fiber'].seedPart(deviationFactor=0.1,

minSizeFactor=0.1, size=(6*r)/30)
mdb.models['Model-1'].parts['Fiber'].generateMesh()
mdb.models['Model-1'].rootAssembly.regenerate()

#Job
mdb.Job(activateLoadBalancing=False, atTime=None, contactPrint=OFF,

description='', echoPrint=OFF, explicitPrecision=SINGLE, historyPrint=OFF,
memory=90, memoryUnits=PERCENTAGE, model='Model-1', modelPrint=OFF,
multiprocessingMode=DEFAULT, name='Job-1', nodalOutputPrecision=SINGLE,
numCpus=1, numDomains=1, numThreadsPerMpiProcess=1, queue=None,
resultsFormat=ODB, scratch='', type=ANALYSIS, userSubroutine='', waitHours=
0, waitMinutes=0)
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