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Kurzzusammenfassung

Diese Arbeit dient der Untersuchung von numerischen Modellen, welche den
dynamischen Faserauszug darstellen. Zur Beschreibung dieses Prozesses wurden
numerische Modelle erstellt, die Fasern und Matrizen abbilden. Darlber hinaus wurden
Idealisierungsmoglichkeiten des Ubergangsbereiches zwischen Faser und Matrix
modelliert, wobei Haftung und Reibung eine wesentliche Rolle spielten. Daraus
entstanden zwei numerische Modelle, die beide Mechanismen im Ubergangsbereich
darstellen. Diese Modelle wurden mit analytischen Modellen, sogenannten Shear-Lag-
Modellen, verglichen. Wichtige physikalische Gréf3en waren dabei die Schubspannung
in  der Ubergangsfliche zwischen Faser und Matrix sowie deren
Partikelgeschwindigkeiten. Die Haftungsmodellierung konnte den
Schubspannungsverlauf des Shear-Lag-Modells qualitativ wiedergeben. Des Weiteren
konnte durch die Anwendung von rotationssymmetrischen Elementen eine Einsparung
von  Rechenzeit gegenuber  Volumenelementen  erreicht  werden. Das
rotationssymmetrische Modell zur Haftungssimulation wurde mit Parametern aus einem
Faserauszugsversuch modifiziert und mit den experimentellen Ergebnissen verglichen.
Eine charakteristische Kraft-Verschiebungskurve aus dem Versuch konnte nicht
reproduziert werden, es zeigte sich, dass die Reaktionskrafte im Modell auf die
Faserspitze beschrankt waren. Dies stellt neben einer praziseren Abbildung von Haftung
und Reibung einen Ausgangspunkt fir weitere Forschungen dar.
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Abstract

This work serves to investigate numerical models that represent the dynamic fiber pull-
out. In order to describe this process, numerical models that display fiber and matrix
were created. Furthermore, idealization possibilities for the interface between fiber and
matrix were modelled, where cohesion and friction played an important role. This
resulted in two numerical models that depicted both mechanisms in the interface. These
models were compared to analytical models, so-called shear-lag-models. Important
physical quantities were the shear stress in the interface between fiber and matrix as
well as their particle velocities. The cohesion model was able to qualitatively reproduce
the shear stress distribution of the shear-lag-model. Furthermore, the use of
axisymmetric elements cost less computing time compared to volume elements. The
axisymmetric model for adhesion was modified with parameters of a fiber pull-out test
and compared to the experimental results. A characteristic force-displacement curve
from the experiment could not be reproduced since the reaction forces of the model were
limited to the fiber tip. This represents further research possibilities, next to a more
precise depiction of cohesion and friction.
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1. Einleitung

Die vorliegende Arbeit beschiftigt sich mit der Untersuchung numerischer Modelle hin-
sichtlich ihrer Eignung zur Beschreibung des dynamischen Faserauszugs.

1.1. Motivation

Bewehrungen sind von hoher Bedeutung fiir Beton. Bei dynamischen Lasten kénnen
Risse im Beton entstehen, welche durch die Bewehrungen iiberbriickt werden ([1]). Ei-
ne Untersuchung numerischer Modelle fiir den Fall, dass die Bewehrungsfasern infolge
dynamischen Lasten aus dem Beton gezogen werden, soll Gegenstand dieser Arbeit sein.

1.2. Stand der Forschung

Der dynamische Faserauszug wurde schon in Form von analytischen Modellen, Versuchen
und numerischen Modellen behandelt. Analytisch wurde der dynamische Faserauszug z.
B. erforscht durch (|2, 3, 4]). Dabei entwickelten (|3, 4]) Modelle, welche die Hafttrennung
beschreiben, wihrend das Modell von ([2]) die Reibung wéhrend des Auszugs darstellt.
Experimentell wurde der dynamische Auszug einzelner Bewehrungsfasern z. B. durch (|5,
6, 7, 8]) untersucht. Dabei wurden z. T. auch Parameter ermittelt, welche die Haftung
und Reibung in der Ubergangsfliche beschreiben ([5, 7]). Es gibt auch Versuche zum
Auszug von verschiedenen faserverstirkten Kunststoff-Lagen aus Beton (]|9]). Modellie-
rungsvarianten fiir Bewehrungen sind z. B. zylindrische Modelle ([4]) oder zylindrische
Viertelmodelle ([10]), sowie ebene Modelle (Plane Stress Models) ([2]). Haufig kommen
zur Beschreibung der Ubergangsfliche Cohesive Elements zum Einsatz ([2, 4, 10]). Nu-
merische Modelle fiir den dynamischen Faserauszug sind z. B. in (|4, 2|) zu finden. Dort
werden sie mit analytischen Modellen verglichen. In ([10]) wird ein numerisches Modell
mit einem quasistatischen Faserauszug verglichen. In dieser Arbeit sollen numerische
Modelle zunéchst mit analytischen Modellen validiert und anschliefend mit einem dyna-
mischen Einzelfaserauszugsversuch verglichen werden.

1.3. Inhalt der Arbeit

Zunichst werden in dieser Arbeit in Kapitel 2 die theoretischen Grundlagen wie die Me-
chanismen des Faserauszugs sowie die Darstellung des Ubergangsbereiches zwischen Faser
und Matrix beschrieben. Weiterhin werden analytische Modelle vorgestellt, welche den
Faserauszug beschreiben. In Kapitel 3 werden numerische Modellierungsmoglichkeiten
fiir die Ubergangsfliche sowie fiir Faser und Matrix dargestellt, aus denen zwei Modelle
mit drei Ubergangsflichenmodellierungen hervorgehen. Diese werden in Kapitel 4 mit
den in Kapitel 2 vorgestellten analytischen Modellen verglichen. Kapitel 5 kombiniert
ein numerisches Modell mit Parametern aus einem Versuch. Die Ergebnisse dieser Arbeit
werden in Kapitel 6 zusammengefasst. Abschliefsend werden in Kapitel 7 die vorherigen
Kapitel sowie die Erkenntnisse dieser Arbeit betrachtet und ein Ausblick gegeben.

Die im Zuge dieser Arbeit erstellten MATLAB®)- und PYTHON-Skripte sowie ABAQUS-
Dateien sind auf beigefiigten elektronischen Datentrégern (CD’s) enthalten.
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2. Theoretische Grundlagen

In diesem Kapitel sollen die Grundlagen betrachtet werden, welche den Faserauszug und
insbesondere den dynamischen Faserauszug beschreiben. Dafiir werden in Abschnitt 2.1
zundchst die Mechanismen des Faserauszugs erldutert. Anschliefsend behandelt Abschnitt
2.2 Idealisierungen des Ubergangsbereiches zwischen Faser und Matrix. Abschliefend
werden in Abschnitt 2.3 verschiedene Shear-Lag-Modelle, welche den dynamischen Fa-
serauszug analytisch beschreiben, betrachtet.

2.1. Mechanismen des Faserauszugs

Beim Faserauszug konnen vier Mechanismen auftreten (|11]):
1. Elastischer Faserauszug
2. Plastischer Faserauszug
3. Faser-Versagen beim Auszug
4. Matrix-Versagen beim Auszug.

Das Versagen von Faser oder Matrix wird in dieser Arbeit nicht betrachtet, stattdessen
wird das Versagen der Verbindung zwischen diesen untersucht.

Die Haftrennung der Ubergangsfliche wird durch eine Rissausbreitung in dieser verur-
sacht. In den bereits abgelosten Regionen tritt Reibung auf. Abbildung 2.1 zeigt beispiel-
haft ein Kraft-Verschiebungs-Diagramm fiir einen Faserauszug. Erreicht die Auszugskraft
den Punkt A, entsteht ein Riss in der Verbindung zwischen Faser und Matrix. Zwischen
den Punkten A und B wird der Riss grofser. Der Faserauszugskraft wirken Haft- sowie
Reibkréfte entgegen, aufgrund letzterer nimmt die Auszugskraft weiter zu. Beim Punkt
B liegt die maximale Auszugskraft vor, die intakte Region der Verbindung erreicht einen
Wert, dessen Uberschreiten eine Abnahme der Kraft zufolge hat. Ab Punkt C ist die Ver-
bindung zwischen Faser und Matrix vollstéindig aufgebrochen, die restliche Kraft, welche
zwischen den Punkten €' und D auftritt, ist auf Reibung zuriickzufithren. Beim Erreichen
des Punktes D ist die Faser vollstéindig herausgezogen ([5]).
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Abbildung 2.1: Schematisches Kraft-Weg-Diagramm des Faserauszugs ([5])

Der sich in der Verbindung ausbreitende Riss wird mit drei Moden unterschieden,
welche in Abbildung 2.2 dargestellt sind. Modus I beschreibt die Offnung des Risses in y-
Richtung, welche zur x, z-Ebene symmetrisch ist. Im Falle des Modus II bewegen sich die
Rissoberflachen relativ zueinander in x-Richtung, was zu einer asymmetrischen Trennung
fithrt. Bei Modus IIT entsteht die Trennung durch eine Relativbewegung in z-Richtung
(]12], S. 69). Im Zuge dieser Arbeit sollen Modus II-Risse fiir Relativverschiebungen
zwischen Faser und Matrix entlang der Faserachse untersucht werden.

Modus [ Modus I Modus Il

Abbildung 2.2: Riss-Moden ([12], S. 69)
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2.2. Darstellung des Ubergangsbereiches zwischen Faser und Matrix

Beim Modellieren des Faserauszugs ist die Darstellung der Ubergangsfliiche von grofer
Bedeutung. In Abschnitt 2.1 wurde gezeigt, dass beim Faserauszug sowohl eine (auftrenn-
bare) Haftung als auch Reibung auftreten. In diesem Abschnitt sollen Idealisierungsmog-
lichkeiten fiir beide Mechanismen dargestellt werden. Zunéchst wird in Unterabschnitt
2.2.1 eine Modellierung der Verbindung von Faser und Matrix sowie deren Schidigung
in Form des Traction Separation Law behandelt. Anschliefend wird in Unterabschnitt
2.2.2 eine Modellierung der Reibung mit einem Friction Law nach dem Versagen der
Verbindung erldutert.

2.2.1. Haftung - Traction Separation Law

Das Traction Separation Law (TSL, deutsch: Spannungs-Trennungs-Gesetz), beschreibt
die Schidigung der Ubergangsfliche zwischen Faser und Matrix, in Abhiingigkeit der
Trennung zwischen diesen beiden. Abbildung 2.3 zeigt beispielhaft ein TSL in Anlehnung
an ABDULLA et al. (|13]). Bis zur Schadensinitiierung bei s und W7" (der hochgestellte
Index m steht fiir maximal) wird der linear elastische Zusammenhang der Ubergangs-
flache beschrieben durch

\I/I K? 0 O ST
=< U p=| 0 K% 0 s ¢ =K. (2.1)
Virr 0 0 K9 SII1

Dabei ist ¥ der Zugspannungs- und s der Trennungsvektor zwischen Faser und Matrix,
die Matrix K° enthilt die Steifigkeiten ([13]). Die Indizes weisen auf die Zugehorigkeit
der Komponenten zu den in Abschnitt 2.1 beschriebenen Rissmodi hin. In Anlehnung an
Azzawm ([4]) wird die Schadens-Evolution des TSL dargestellt. Sobald s {iberschritten
ist, nimmt die Steifigkeit K" ab mit

Kl (s) = (1 —6(s;))KY. (2.2)

Die darin vorkommende Schadensvariable (s;) wird durch das lineare Schadensevoluti-
onsgesetz

(si — sm)sf
o(s;) = —/——+—+ 2.3
= (s] = s7)si 2

beschrieben, wobei der Schaden d(s;) in einem Intervall von [0 1] liegt ([4]). Der Wert
slf ist die Trennung, bei der Faser und Matrix vollstdndig voneinander separiert werden.
Dies wird durch den hochgestellten Index f (fail) beschrieben ([13]). Des Weiteren nimmt
die Zugspannung ¥; ab mit

\I/Z(SZ) = (1 — 5(81))]:{1081 (2.4)

(14)-
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Abbildung 2.3: Schematisches Traction Separation Law (in Anlehnung an [13])

2.2.2. Reibung - Friction Law

Sobald Faser und Matrix vollstdndig voneinander getrennt sind, ist der restliche Wi-
derstand gegen den Faserauszug auf Reibung zuriickzufiihren. In Abbildung 2.1 ist dies
zwischen den Punkten C und D der Fall ([5]). Gleichung (2.5) zeigt ein Friction Law (FL,
deutsch: Reibungsgesetz), bei dem eine konstante Reibungs-Schubspannung 7, abhéngig
ist von der Relativgeschwindigkeit zwischen Faser und Matrix,

o (i — iy < 0),
n={ F (= = 0), (25)
—70 (ﬂf—ﬂm >0).

Darin ist 7y die Geschwindigkeit der Faser und 1,, die Geschwindigkeit der Matrix.
Liegt eine Relativgeschwindigkeit zwischen Faser und Matrix vor, so ist die Reibungs-
Schubspannung einheitlich und konstant. Liegt diese nicht vor, so ist sie unbestimmt,
wobel |7| < 79 ist. Die Annahme, dass die Reibung einheitlich, sowie des Weiteren zeit-
und ratenunabhéngig ist, wird damit begriindet, dass die vier Effekte, welche die Rei-
bung beim Faserauszug beeinflussen, vernachlissigt werden kénnen. Bei den Effekten
handelt es sich um (1) den Poisson-Effekt, durch den der Faserradius infolge der Faser-
dehnung sinkt und somit die Normalspannung auf die Ubergangsfliche verringert; (2)
die Restdruckspannungen auf die Ubergangsfliche aufgrund ungleichen Schrumpfens bei
der Abkiihlung; (3) Rauheitseffekte, welche die Normalspannungen auf die Ubergangsfli-
che beim Faserauszug vergrofern; und (4) dynamische Effekte. Dabei heben sich jedoch
Poisson- und Rauheitseffekte gegenseitig auf. Des Weiteren haben Tests gezeigt, dass Rei-
bung nach einer Zustandsinderung fiir kurze Zeiten (~ 1lus), welche fiir dieses Modell
angenommen werden, unverdndert bleibt ([2]).
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2.3. Analytische Shear-Lag-Modelle

Der Begriff Shear-Lag-Model (SLM, deutsch Schubverzerrungs-Modell ([14], S. 28)), ist
urspriinglich zuriickzufiihren auf die Biegeanalyse von Trigern mit weiten Flanschen, fiir
die Schubspannungen und Dehnungen infolge dieser vernachléssigt werden. Die realen
Biegungen “hinken” (englisch: to lag) den analytisch berechneten hinterher, da in der
Realitdt Schubspannungen (englisch: shear stresses) in den Flanschen auftreten, wodurch
sich der Begriff Shear-Lag-Model ergibt (|15]).

Fiir Komposit-Materialien wurde der Begriff urspriinglich 1952 von CoX als Methode
der Analyse von Spannungsiibertragungen eingefiihrt. Die Schubspannung im Ubergangs-
bereich 7 zwischen Faser und Matrix berechnet sich dabei aus der durchschnittlichen

Faser-Axialspannung (o) mit
oy) 21

0: (2.6)
wobei r1 der Faserradius ist ([15]). In den folgenden Unterabschnitten werden SLM vor-
gestellt, welche den dynamischen Faserauszug beschreiben. Im Zuge dieser Arbeit werden
sie auch als analytische Modelle bezeichnet. Fiir eine einheitliche Darstellung verschie-
dener analytischer und numerischer Modelle werden im Folgenden einige Indizes und
Zeichen aus den Literaturquellen abgedndert. Die im Rahmen dieser Arbeit verwende-
ten SLM wurden mit dem Programm MATLAB®) in den Versionen R2023b und R2024a
umgesetzt. Das MATLAB®)-Skript ist in Anhang A zu finden.

2.3.1. Shear-Lag-Modell von Azzam

AzzAM veroffentlichte 2016 eine Methode, den dynamischen Faserauszug analytisch zu
berechnen, wobei die Faserspitze harmonisch angeregt wird. Abbildung 2.4 (a) zeigt sche-
matisch das Modell des Faser-Matrix-Verbundes in Anlehnung an das Modell von AzzAM.
Darin sind fiir das Modell verwendete Material- und Geometrieeigenschaften sowie an
der Faser und in der Ubergangsfliche wirkende Spannungen und Kriifte erkennbar. Fiir
dieses SLM gilt zunéchst die Annahme, dass Faser und Matrix linear-elastisch und ho-
mogen sind. Im weiteren Verlauf dieses Unterabschnittes wird die Matrix als dehnstarr
angenommen werden, um die Ermittlung analytischer Ergebnisse zu vereinfachen. Ei-
ne Ratenabhiingigkeit von Faser, Matrix und Ubergangsbereich wird aus diesem Grund
ebenfalls vernachléssigt ([4]). Sowohl Faser als auch Matrix haben einen Elastizitdtsmodul
E,, eine Dichte pg, als auch eine Fléche A,, wobei die Faser mit dem Buchstaben f, die
Matrix mit dem Buchstaben m indiziert ist. Die Faser hat des Weiteren den Faserumfang
a. Die Abbildung 2.4 (b) stellt den Freischnitt eines infinitesimal kleinen Faserelementes
dar, dessen dynamisches Gleichgewicht in z-Richtung

Af(;iaf(z,t)dz = ppAypdziif(z,t) — adzt(2,t) (2.7)

lautet. Die Verschiebungen von Faser und Matrix werden mit uy und w,, beschrieben,
die zeitliche Ableitungen % mit (-).
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(a) (b)
Abbildung 2.4: (a) Schematische Darstellung des Faser-Matrix-Verbundes, (b) Infinitesi-
mal kleines Faserelement (in Anlehnung an [4])
Mit dem Hookeschen Gesetz o¢(2,t) = Efe¢(2,t), bei dem die Dehnung mit e¢(z,t) =
%u #(z,t) beschrieben wird, kann (2.7) erweitert werden zu

0? 1 92

a
= t) = 5+ t) — t 2.8
g2 1) = G gp=1) — g (D) 28)

wobei ¢y = 4/ f—f die Wellengeschwindigkeit in der Faser beschreibt. Analog kann die
Bewegungsgleichung der Matrix beschrieben werden durch

iz ( t) — iiz ( t) + a
92 i\t = c2, Ot2 Umi%, E,A,,

7(z,1) (2.9)

mit der Matrix-Wellengeschwindigkeit ¢,, = ,/% (14])-

Um die Bewegungsgleichung der Ubergangsfliche zwischen Faser und Matrix zu ermit-
teln, wird zunéchst die Auszugskraft

l l
P(t) = Nj(2,1) + N (2, 1) +Afpf/ i (2, £)dz +Ampm/ (s )dz (2.10)

berechnet, welche im Freikorperbild von Abbildung 2.5 (a) dargestellt ist. Dabei sind
N¢(z,t) und Np,(z,t) die Normalkréfte in Faser und Matrix. Abbildung 2.5 (b) zeigt
Faser und Matrix als infinitesimal kleine Elemente. Das sich daraus ergebende dynamische
Gleichgewicht lautet

el o)
Ny(z,t) + Ny (2,t) = Nf(“z,t) + &Nf(z,t)d,.z: + Np(2,t) + gNm(z,t)dz (2.11)
—Afpriig(z,t)dz — Appmiim(z,t)dz
bzw.

%Nf(z, t)dz + %Nm(z, t)dz = Agpriip(z,t)dz + Appmiim (2, t)dz. (2.12)
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(a) (b)
Abbildung 2.5: (a) Freikorperbild des Faser-Matrix-Verbundes, (b) infinitesimal kleines
Faser-Matrix-Element (in Anlehnung an [4])

Des Weiteren wird die Steigung der Normalkraft in Faser und Matrix beschrieben
durch

9 Ny(e1t) = =7z, ) + Agpyitg (=, 1) (2.13)
und 5
éNm(z, t) =ar(z,t) + Appmiim(z, ). (2.14)

Die Relativbewegung zwischen Faser und Matrix in der Ubergangsfliiche wird im Folgen-
den als Schlupf (englisch: slip) bezeichnet, dieser berechnet sich mit

s(z,t) = up(2,t) — um(z,1). (2.15)
Die Ableitung nach z liefert
0 d d
&S(Z’t) = &u]c(z,t) - aum(z,t) =cf(z,t) —em(2,t), (2.16)

was eine Differenz der Dehnungen von Faser und Matrix darstellt. Eine weitere Ableitung
nach z fithrt zu

0? 0 0
@s(z,t) = aef(z,t) - asm(z,t). (2.17)
Die Dehnungen von Faser und Matrix ergeben sich nach dem Hookeschen Gesetz zu
Ny(z,t)
1) = 2.18
=T (218)
und N .
em(2,t) = m. (2.19)
Werden (2.18) und (2.19) in (2.17) eingesetzt, dann ergibt sich
0? 1 0 1 9
sz t) = —— — Np(2,8) — ———— Np(z,1). 2.20
02" = g V=D~ g, 9 () (2:20)
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Darin werden die Ableitungen der Normalkréfte nach der z-Koordinate wiederum ersetzt
durch (2.13) und (2.14), um die Differentialgleichung der Grenzfliche darzustellen als

1 I 1 9? 1 0?
ﬁs(z,t) =— <EfAf + T A > ar(z,t) + ?@Uf(z,t) - ?@Um(%t)- (2.21)
m+<im f m

Die Gleichung (2.21) kann vereinfacht werden mit der Einfilhrung einer Ersatznachgie-
bigkeit

1 1 1

(EA)}  E;A; T EnAn (2.22)
u
’ 0? 1 1 9° 1 9
@s(z,t) = —(EA)*QT(z,t) + ?@Uf(z,t) - ?@um(z,t). (2.23)
f m

Im Folgenden wird die Matrix als dehnstarr angenommen, um das Ermitteln analytischer

Losungen praktikabler zu machen. Dadurch kann die Ersatznachgiebigkeit T E114)* néhe-

rungsweise als ﬁ beschrieben werden. Auferdem sind die Dehnung ,,(z,¢) und die
Verschiebung u,, (z,t) der Matrix null, wodurch sich (2.23) reduziert zu

0? 1 92 1
8223(z,t) = C—Q@S(Z,t) + B ar(z,t). (2.24)
f

Da die Verschiebung und die Dehnung der Faser nun dem Schlupf entspricht, ist die
Normalkraft in der Faser, abhéngig von der Dehnung des Schlupfes,

Ny(z,t) :EfAf%S(Z,L‘) (2.25)

(14).

Um die Schidigung des Ubergangsbereiches zwischen Faser und Matrix zu beschreiben,
wird das TSL aus Abbildung 2.6, welche an Azzam ([4]) angelehnt ist, verwendet. Der
Schaden basiert auf dem Schlupf in der Ubergangsfliche und ist punktsymmetrisch zum
Ursprung. Gleichung (2.26) zeigt die Schubspannungs-Schlupf-Beziehung fiir verschiedene
Zustinde der Ubergangsfliche:

K 5] < s/,
T(s) =< (1-6(s))K%  s™<|s| <s", (2.26)
7r89n(8) |s| > s".

Die Gleichung 2.26 verbindet das in Unterabschnitt 2.2.1 vorgestellte TSL mit Reibung.
Diese tritt zwischen Faser und Matrix bereits bei Uberschreitung des Schlupfes s” auf.
Dadurch liegen nur noch Reibungs-Schubspannungen vor, diese sind abhéngig vom Vor-
zeichen der Relativgeschwindigkeit $ ([4]).
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Abbildung 2.6: Traction Separation Law mit Reibung (in Anlehung an [4])

Die harmonische Anregung an der Faserspitze, d. h. an der Position z = [ ist eine
Weganregung der Form ‘
5(t) = Cre™, (2.27)

wobei C,, die Amplitude und A die Erregerkreisfrequenz ist ([4]). Im Folgenden wird die
analytische Darstellung der Fille der beschédigten und unbeschidigten Ubergangsfliiche
erldutert.

Fall I: Unbeschidigte Ubergangsfliche Solange die Amplitude der Weganregung an
der Faserspitze den Schlupf-Wert s™ nicht {iberschreitet, bleibt die Ubergangsfliiche un-
beschédigt. Die Schlupf-Antwort des Systems infolge harmonischer Anregung wird mit
5(z,t) gekennzeichnet, wodurch (2.24) dargestellt werden kann als

0?2 i t)_keh 1 92

v el — 3 = 2.2
822 Efs(z’t) C} 8t28(z,t> 07 ( 8)

wobei
Kla

Ay

ist. Diese Differentialgleichung zweiter Ordnung wird gelést mit dem Ansatz

ker (2.29)
3(z,t) = y(z)e. (2.30)

Darin ist y(z) die Antwort-Amplitude an der Stelle z der Faser. Wird dieser Ansatz, nach
zweifacher Ableitung g—;é(z,t) = —\2y(2)e™, in (2.28) eingesetzt, so wird diese, nach
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At
, Z

herauskiirzen des Terms e* u

— @?y(z) = 0. (2.31)

@? berechnet sich mit L .
_9 el 2
= e 2 (2.32)
Ef C?c
Die Losung von (2.31) hiingt von w? ab, dabei gibt es drei charakteristische Fille: @? > 0,
©? < 0 und @? = 0. Diese hingen von der Erregerkreisfrequenz A ab im Bezug auf die

Grenzfrequenz

Acut = Cfrl = - (233)

Im Folgenden werden die Losungen fiir die verschiedenen Fille verkiirzt dargestellt, eine
ausfiihrliche Herleitung findet sich in ([4]).

Ist @? > 0, 50 gilt —Aeur < A < Aewr. Die drei zeit- und ortsabhiingigen Groken Schlupf
3(z,t), Ubergangsflichen-Schubspannung 7(z,t) und Normalkraft in der Faser N t(z,1)
sowie die zeitabhdngige Grofe Auszugskraft an der Faserspitze ]5(75) werden berechnet
mit
cosh(wz) ., i\

§(z,t) = cosh(@l) e, (2.34)
cosh(wz .
7(z,t) = m((m))fc?cnem, (2.35)
Ny(a,t) = B Ao o i (2.36)
cosh(wl)
und
P(t) = EpAsotanh(@l)Cpe™. (2.37)

Liegt der charakteristische Fall @2 < 0 vor, 50 ist A > Ay Die vier Gréfien berechnen
sich mit

Ch

.§(Z,t) _ W(ei(@z—k)\t) + e—i(&;z—)ﬂt))7 (238)
S KOCTL i(wz —i(wz—
1) = 2008(@5)( E0 4 T, (2.39)
. ErApicoCh , ios i@
Ny(z,t) = #@l)(e (©24M) _ o=il@2=At)) (2.40)
und R ‘
P(t) = —E; Apotan(@l)Cpe™. (2.41)

Fiir den dritten charakteristischen Fall @ = 0 und somit A = A.ys werden der Schlupf
5(2,t), die Ubergangsflichen-Schubspannung 7(z,t) und die Normalkraft in der Faser
Nf(z, t) berechnet mit

3(z,t) = Cpeteutt, (2.42)
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7(z,t) = K2C,ereut! (2.43)

und

Ny(z,t) = 0. (2.44)
Die fehlende Ortsabhingigkeit von §(z,t) und 7(z,t) kann als Starrkérperbewegung in-
terpretiert werden ([4]).

Fall 11: Beschidigte Ubergangsfliche Ist die Amplitude C,, der Weganregung an der
Faserspitze groker als der Schlupf-Wert s™, bei dessen Uberschreiten eine Schidigung
initiiert wird, und kleiner als der Schlupf-Wert s”, so wird die Ubergangsfliche teilwei-
se beschiidigt. Der unbeschidigte Teil wird als unbeschidigte Zone der Ubergangsfliche
bezeichnet. In dieser Arbeit wird jedoch die Abkiirzung UDZ (englisch: undamaged zone
of the interface) verwendet. Diese hat die Linge z,9. Der beschiidigte Teil der Uber-
gangsfliche wird als beschiidigte Zone der Ubergangsfliche (DZ fiir damaged zone of the
interface) mit der Linge [ — 2,9 bezeichnet. Wie beim Fall der unbeschédigten Ubergangs-
fliche werden hier nur die Losungen dargestellt, die ausfiihrlichen Herleitungen sind zu
finden in ([4]).

Fiir die unbeschédigte Zone kénnen die drei zeit- und ortsabhéngigen Grofen Schlupf,
Ubergangsflichen-Schubspannung und Normalkraft in der Faser ermittelt werden mit

cosh(wz)

$(z,t) = " —r——— 24
Sz t)=s cosh(@0z0) (245)
. cosh(wz)
= pm SO i 2.4
Tt =7 cosh(wz) (246)
und .
Ny(z,t) = EfAfwsmM ixt (2.47)

cosh(wzrp)

Die Lénge der UDZ z.9 kann durch Losen der Gleichung

(sm — E?;iz) cos ((0(l — zr0)) + (g) s™tanh (wzpo) sin (0 (I — zp0)) = Cy, — do2

w Ef(I)Q
(2.48)
ermittelt werden, darin ist
T°a
= 2.49
q02 Af ( )
und L .
2 = ’E‘j?' + A% (2.50)
f Cy
keo kann berechnet werden, indem
ket qo2 ke (251)

Ef _Efsm _E7f
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umgestellt wird zu
keo = ke1 — @ (252)

Sm

Die Schubspannung 7% kann Abbildung 2.6 entnommen werden.
Schlupf, Schubspannung und Normalkraft in der Faser in der DZ sowie die Auszugskraft
an der Faserspitze kdnnen wie folgt berechnet werden:

. _ | 402 m 402 = Nyo L= it
5(z,t) = [Eﬂfﬂ + <s Efazﬂ) cos (@ (z — z0)) + <EfAf(f;> sin (@ (z Zro))} e,

. (2.53)
_ N, _
7(z,t) = |:Z2E1qf(l)%2 +7° 4+ Z <sm - quoéz) cos (w (2 — zr0)) + Z2 (EfAjr@) sin (0 (z — zro))} e,
B (2.54)
. m 4902 = . Nyo = . it
Ny(z,t) = EfAzo [ <S Efw2> sin (w (z — 20)) + (EfAfW) cos (w(z— z0))| e
2.55)
und
P(t)=EfA;o |— (™ — 22 ) sin (@ (= 2zr0)) + Nrg cos (& (1 — zp0)) | €M
fAf Ef(z'Q r0 EfAfu:) 70 .
(2.56)
Z9 wird berechnet mit
k}eQAf
Ty = 2T (2.57)
a
&2 ergibt sich aus
- ke 1
] + A% (2.58)
abschlieRend kann N, ermittelt werden mit
Nyo = EfAros™tanh (0zy0) (2.59)

([4]). Die Abbildung 2.7 (a) zeigt beispielhaft den Verlauf der Ubergangsfiichen-Schubspannung
entlag der Ubergangsfliiche. In der UDZ steigt die Schubspannung bis z = z.9 an, wo sie

ihr Maximum 7" erreicht. In der DZ sinkt die Schubspannung wieder ab. Abbildung 2.7

(b) zeigt den Verlauf des Schlupfes in der Ubergangsfliiche. Der Schlupf steigt unabhingig

von der Zone an und ist maximal am belasteten Faserende bei z = [.
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(a) (b)

Abbildung 2.7: (a) Reprisentativer Verlauf der Ubergangsflichen-Schubspannung, (b)
Représentativer Verlauf des Schlupfes (in Anlehnung an [4])

2.3.2. Shear-Lag-Modell von Sridhar et al.

Das SLM von SRIDHAR et al. aus dem Jahr 2003 (|2|) beschreibt den dynamischen
Faserauszug fiir zylindrische Fasern als achsensymmetrisches Modell. Die Hafttrennungs-
Energie ist null, Faser und Matrix sind bereits voneinander getrennt. Da in der Uber-
gangsflache nur eine Reibungs-Schubspannung wirkt, kann der dynamische Faserauszug
als Wellenausbreitungsmodell entlang der Faser betrachtet werden. Abbildung 2.8 zeigt
schematisch das Modell des Faser-Matrix-Verbundes in Anlehnung an SRIDHAR et al.
Bei z = 0 greift die Spannung og an, die Matrix ist dort frei von Spannungen.

Abbildung 2.8: Schematische Darstellung des Faser-Matrix-Verbundes (in Anlehnung an
[2])
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Die in der Grenzfliche wirkende Reibungs-Schubspannung 7, kann durch das in Unter-
abschnitt 2.2.2 eingefithrte F'L nach (2.5) beschrieben werden. Weitere Annahmen sind,
dass beide Materialien isotrop sind mit einem Elastizitdtsmodul £, einer Querkontrakti-
onszahl v, und einer Dichte p,, wobei die Faser mit f und die Matrix mit m indiziert ist.
Die Faser hat auferdem den Radius 7y, die Matrix ist ebenfalls zylindrisch, wobei ihre
Dicke aus einem Faservolumenanteil f folgt. Die axialen Verschiebungen, Dehnungen und
Spannungen von Faser und Matrix werden, unter Beriicksichtigung ihrer Indizes, mit u,,
g4 und o4 beschrieben (|2]).

Die Wellengleichung lautet

D%y 27, 1 %ug

= —— 2.60

fir die Faser und
0% Uy, _ 2f T i i82um (2.61)
072 1—f TfEm 2, ot? ’

fiir die Matrix. Dabei ist die Wellengeschwindigkeit von Faser und Matrix

2

o (2.62)

A Ei(1—vy)
“ (1 +vg) (1 —2uy)

An der Stelle z = 0 ist die Matrix spannungsfrei, die Faser unterliegt der Axialspannung

(2.63)

or(0,2) = p(t), (2.64)
auferdem werden die z-Koordinate, Zeit und Verschiebung normiert mit Z = %, T = %t

und U = % Das Reibungs-Schubspannungsgesetz aus (2.5) wird in die Wellengleichun-
gen (2.60) und (2.61) von Faser und Matrix eingesetzt. Daraus ergibt sich

02U 02U ) )
822f = 8T2f — rsgn(Up, — Uy) (2.65)
fiir die Faser und o o2
U, U, . .
o7 = C? 72 + orsgn(Uy, — Uy) (2.66)

fiir die Matrix. Darin sind die dimensionslosen Parameter des Wellengeschwindigkeits-
verhéltnisses C', des Modulverhéltnisses ¢ und der normierten Reibungs-Schubspannung
7 enthalten. Sie werden berechnet mit

2 E
c? =L = ZfPm (2.67)
Cin mPf
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[Ef

=—-"J 2.68
und 5
70
= —. 2.69
5 (2:69)
Fiir die Last wird eine lineare Last-Funktion
oot
plt) = 2 (2.70)
0
angenommen, des Weiteren wird die normierte inverse Lastrate
Tonto
k=—— (2.71)
oorf

eingefiihrt ([2]).

Bei linearen Lasten existieren zwei oder drei Bereiche auf der z-Koordinate, welche
von den Parametern C' und ¢ abhéngen. In diesen bewegen sich Faser und Matrix ent-
weder gleich schnell bewegen, sie “haften” aneinander (englisch: stick), oder es liegt eine
Relativgeschwindigkeit und somit ein Schlupf zwischen den beiden (englisch: slip). Die
dimensionsbehafteten Grenzen 1, lo und I3 dieser Bereiche bewegen sich linear mit der
Zeit. Sie werden berechnet mit

lj = T]ijt (2.72)

(j = 1,2 oder 3). Dabei beschreibt 7; die normierte Frontgeschwindigkeit, welche von
den Geometrie-, sowie Materialeigenschaften abhéngt. Die Gesamtheit dieser Bereiche
wird als Prozesszone bezeichnet. Die Verschiebungen sind abschnittsweise von der z-
Koordinate abhéngige quadratische Funktionen, welche im Folgenden fiir drei Fille (eng-
lisch: Regimes) dargestellt werden. Fiir die dimensionslose Z-Koordinate werden die Be-
reichsgrenzen berechnet aus

([2D)-

Ermittlung der Grenzen C; und Cy  Um Festzulegen, welcher der drei Falle vorliegt,
miissen sowohl das Wellengeschwindigkeitsverhéltnis C' mit (2.67) als auch die Grenzen
Cr, und Cy ermittelt werden. Diese hingen ab von dem Wellengeschwindigkeitsverhéltnis
C', dem Modulverhiltnis ¢ aus (2.68) und der inversen Lastrate k aus (2.71). Zur Berech-
nung wird zunéchst der Fall IT (slip-stick) angenommen, fiir den mit (2.83) die normierte
Frontgeschwindigkeit n; ermitteln l&sst. Anschliefend wird die Grenze Cy berechnet mit
Hilfe der Annahme, dass beim Wechsel von Fall I zu Fall I die Reibungs-Schubspannung
in dem “stick”™Bereich den Wert 7 = 7 erreicht. Gleichung (2.84) éndert sich somit zu

(nf + 2k771 - 1)(1-Cp)
2(m (1 - CF) + (1= 1)/ (CE + ) (1 +9)

=1. (2.74)
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Aus (2.74) kann die Grenze Cy ermittelt werden. Soll die Grenze C, ermittelt werden,
so wird davon ausgegangen, dass die Reibungs-Schubspannung in dem Stick-Bereich den
Wert 7 = —79 erreicht, wodurch ein Wechsel zu einem Reverse Slip-Bereich stattfindet.
Auch dafiir wird zunéchst die normierte Frontgeschwindigkeit n; mit (2.83) ermittelt,
um anschliefend mit der aus (2.84) abgeleiteten Gleichung

(1 + 2k — 1)(1 — C3)
2(m(1— C3) + (1= n2)\/(C] + 9)(1 +¢)

die Grenze Cf, zu berechnen. Sind die Grenzen ermittelt, so konnen wiederum der Fall,
sowie weitere normierte Frontgeschwindigkeiten und Verschiebungen bestimmt werden
(12)).

Welcher der drei Fille Pure Slip, Slip-Stick und Slip-Reverse Slip sich einstellt, hingt
neben dem Wellengeschwindigkeitsverhiltnis C' auch von dem Modulverhéltnis ¢ und
der inversen Lastrate k ab. Ist C' grofs, d. h. die Faserwellengeschwindigkeit ist grofer
als die Matrixwellengeschwindigkeit, dann stellt sich der Fall Pure Slip ein. Fiir sehr
kleine Modulverhéltnisse ¢ konnen sich, abhéngig vom Wellengeschwindigkeitsverhéltnis
C, nur die Falle Pure Slip oder Slip-Stick einstellen. Der Fall Slip-Reverse Slip kann
erst vorliegen, sobald das Modulverhaltnis ¢ eine gewisse Grofe erreicht. Mit steigender
inverser Lastrate & wird das Einstellen des Falles Slip-Stick wahrscheinlicher (]2]).

=1 (2.75)

2.
0.10 - ’ .
- ///
e
—

41 . 0.05 = s

1.5 - //// Pure Slip
- —
e 4

[ k = 0.0l

1. F . .
" % o= 001 Slip - Stick

|
I T T
4 6 8 10
p———»

Abbildung 2.9: Abhéngigkeit der Fille Pure Slip, Slip-Stick und Slip-Reverse Slip von
dem Wellengeschwindigkeitsverhéltnis C', dem Modulverhéltnis ¢ und der
inversen Lastrate k (]|2])

Fall I: Pure Slip (C > Cy) Der Fall des Pure Slip, also der des reinen Rutschens,
liegt dann vor, wenn das Wellengeschwindigkeitsverhéltnis C' den kritischen Wert Cp
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iiberschreitet. In diesem Fall liegen zwei Bereiche vor, die normierten Verschiebungen der
Matrix fiir diese Prozesszone werden berechnet mit

O, 1,1
ol < <
U (2.T) = | Ao (=707 (0= Z<mT),

S5 (Z — D) (nT < Z <),
. Z2(1 + 77202 — 277177202)
wobei ©,, 71 =T < 1
LTI 4208 — 2 + nindC?)
Verschiebung berechnet werden durch

(2.76)

> ist. Fiir die Faser kann die normierte

Up(2.1) = HEAERIEEEIEHIERL (0 < Z < ). (2.77)

Die Konstanten 7; und 72 ergeben sich aus

_1
771—0

m =V 1 + ]{2 — k (279)

Die Abbildung 2.10 (a) zeigt die Partikelgeschwindigkeit, also die Ableitungen der nor-
mierten Verschiebungen von Faser und Matrix, fiir den Fall I. Die Faser hat bis auf die
Position Z = T die betragsméfig grofere Partikelgeschwindigkeit ([2]).

(2.78)

und

Fall I1: Slip-Stick (C, < C < Cy) Liegt der Fall II vor, so gibt es in einem Bereich eine
Relativgeschwindigkeit und dadurch slip zwischen Faser und Matrix. In einem zweiten
Bereich bewegen sich beide gleich schnell, sie “kleben” also aneinander (englisch: stick).
Dies ist der Fall, wenn das Wellengeschwindigkeitsverh&ltnis C innerhalb der Grenzen
von Cp, und Cy liegt. In Abbildung 2.10 (b) ist zu erkennen, wie oberhalb der Grenze
m 7T die Partikelgeschwindigkeiten von Faser und Matrix iibereinstimmen. Die normierten
Verschiebungen der Matrix lassen sich ermitteln aus
O, 11,1
Um(Z T) _ 4?(%+g}€n2)(11;r(7§02)T)2 (0 <Z< an)a
’ (i +2km —1)(Z—n2

41k(1+771772)(772*771) (nT < Z < nT),

Z2((n + 2km — 1)(112 = m)C? + 2k (1 + mn2))

mit ©,, ;711 =T (
bt +T%((nf + 2km — 1)(n2 — m) — 2keni (1 + mn2))
Verschiebungen der Faser werden berechnet mit

(2.80)

> . Die normierten

< Z <mT),
Us(2,T) = {%igﬁfﬂxzn 7)? (2.81)
41k(1+7711772)(772—77?) (mT < Z < noT),

—Z%((2k +m +m) +2ZT(1 + mng))
+T%((2kmnz —m — n2)

schwindigkeit 72 ergibt sich aus
1+e
=/ =" 2.82
2 VC2+¢ (2:82)
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11 aus der quadratischen Gleichung
(nF + 2km — 1) (1 + C?mnz) + 2k (1 + mnz)m = 0, (2.83)

71 ist die positiv-reelle Losung und liegt zwischen [0 1|. Die Reibungs-Schubspannung im
stick-Bereich, also im Bereich ()T < Z < 19T, wird berechnet mit

(n? + 2km — 1)(1 — C?)

' 2%(m(1—C2) + (1 -2/ (C2+ o)1+ ¢)
dabei ist |7| < 79 ([2]).
Fall Ill: Slip-Reverse Slip (C < C1) Im letzten Fall, in dem das Wellengeschwindig-

keitsverhéltnis C' < (', ist, existieren drei Bereiche, zwischen denen sich die Geschwindig-
keiten von Faser und Matrix schneiden. In einem Bereich bewegt sich die Matrix schneller
als die Faser und in den anderen beiden Bereichen die Faser schneller als die Matrix (Re-
verse Slip, vgl. Abbildung 2.10 (c)). Die normierten Verschiebungen der Matrix kénnen
in diesem Fall berechnet werden mit

Om, 1111
U (Z T) _ 2(1— %02)(1+ 202) (0 < A < 771T)a (285)
m m L2 (mT < Z < nsT),

2(n2C%2-1)(n2C2+1)

Z%(1+ 77%02 4ninzC? + 2n3 2C?)
+T2(n3 — 4mins + 4nin3C% + 2n7)

T) < Z(1 = niC? + 4mnsC?)
s +T(n3 — ninsC? — 4my)
ermittelt mit

wobeil Oy, 1771 = 7'(,0( ) und O, 1772 = TY(Z —

> sind. Die normierten Verschiebungen der Faser werden

Oy 11,1 (0 <z< an)’

4k(1éFn1)(1+773)

11,2

Uf(Z7 T)= 4k(n%i1)(1+n3) (mT < Z <naT), (2.86)
T(Z—n3T)?
ék(liz?)ng% (mT" < Z < n3T),

Z*(2k(n — 203 — 1) — (L +m) (1 +n3))
dabeiist ©f i1 =7 [ =T?(1+n3 4+ 2knz +m(1+ 13 — 2k(nz +2))) | und O 1172 =
+2ZT(1 + ) (1 +n3)
Z2(1 43 — 07 (1 +m3) + 2k(nf — 1 —2n1(1 +13)))
| +T%((n — 1)(1 + n3) + 4kn1 + 2kns(n? + 2m — 1)) | . Die normierten Frontgeschwin-
+2ZT (0} + 4km — 1)(1 + 13)
digkeiten n; und 73 kénnen durch das Losen der quadratischen Gleichungen

13— mimC? + 2m (i3C% — 1) = 0 (2.87)
und 2 22072 2
(m —1) L ey —4mns +ninsC™ +207) _ (1 —m) (2.88)
(m+1) (3 +1) (1 =niC?)(1+n5C?) 2k '
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ermittelt werden ([2]).

Abbildung 2.10: Partikelgeschwindigkeiten von Faser (durchgezogene Linien) und Matrix
(gestrichelte Linien) fiir die Falle I (a), IT (b) und III (c) mit den Para-
metern ¢ = 2,00, k = 0,05, 7 = 0,005 und 7" = 10 ([2])
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3. Numerische Modelle

In dieser Arbeit werden die Ergebnisse der im vorherigen Kapitel vorgestellten analyti-
schen SLM mit numerischen Finite-Element-Modellen verglichen. Dafiir wird das Pro-
gramm ABAQUS in der Version 2024 von DASSAULT SYSTEMES verwendet. Zunéchst
werden in diesem Kapitel die Solver vorgestellt, die fiir die numerische Beschreibung
des dynamischen Faserauszuges im Rahmen dieser Arbeit in Betracht gezogen wurden.
Anschliefend werden Idealisierungen des Ubergangsbereiches zwischen Faser und Matrix
erldutert und abschlieffend verschiedene Modellierungsmdéglichkeiten von beiden erortert.
Bei der Finite-Elemente-Methode (FEM) wird ein Kontinuum in finite Teilbereiche dis-
kretisiert, deren Verhalten durch Ansatzfunktionen abgebildet wird. (|16], S. 3).
Zunichst werden verschiedene Solver fiir dynamische Problemstellungen in ABAQUS
erliutert, anschlieRend wird die Darstellung des Ubergangsbereiches als numerisches Mo-
dell behandelt, bevor abschliefsend mdégliche Modellierungen des Faser-Matrix-Verbundes
dargestellt werden. Fiir diese Arbeit wurden mit Hilfe des Programmes PYTHON 3.12.6
Eingabedateien erstellt, an welchen Parameterdnderungen fiir die numerischen ABAQUS-
Modelle vorgenommen werden kénnen. Die Grundstruktur dieser Skripte wurde aus
ABAQus-Journal-Dateien ibernommen und anschlieffend modifiziert.

3.1. Untersuchung der Solver fiir dynamische Probleme in Abaqus

Nichtlineare zeitabhédngige Probleme werden in der FEM beschrieben mit der Differenti-
algleichung
Mii(t) + R(u(t)) = F(t). (3.1)

Dabei ist M die Massenmatrix, i(t) der Beschleunigungsvektor und R(u(t)) der Vektor
der inneren Reaktionskrifte. Diese stehen im Gleichgewicht mit dem Vektor der &uferen
Lasten F'(t). Fiir eine Losung von (3.1) wird eine direkte Zeitintegration verwendet. Die
Differentialgleichung wird zum diskreten Zeitpunkt t,, und anschlieRend zum Zeitpunkt
trr1 = tr + At berechnet, At ist der Zeitschritt. Dabei gibt es zwei Vorgehensweisen, die
Implizite und Explizite Zeitintegration, welche im Folgenden kurz beschrieben werden
([17], S. 211 und 224).

3.1.1. Implizite Zeitintegration

Bei der impliziten Zeitintegration wird die Differentialgleichung

Mii(ti1) + R(u(tsn)) = F(ts) (3.2)

zum zukiinftigen Zeitpunkt t;,q ausgewertet. Die Gleichung kann nicht direkt nach den
Zustandsgrofen wie der Verschiebung u geldst werden, es wird ein iteratives Verfahren
bendtigt ([17], S. 224).

In ABAQUS wird dieses Verfahren dynamisch implizit (englisch: Implicit dynamic ana-
lysis oder dynamic, implicit) genannt, die Zeitschrittintegration erfolgt mit dem Newmark-
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B-Verfahren ([18]). Fiir zwei Randbeschleunigungen wird einer konstanter Mittelwert ge-
bildet,

a(t) = % (aks1 + ak), (3.3)

zu sehen in Abbildung 3.1. Daraus wird die Geschwindigkeit v und Verschiebung u be-
rechnet mit

t
- 1

v ka—i-/ adt:vk+§(ak+1 +ag) (t —tg), (3.4)

tr

und
t 1 ) .
u(t) = up, + / <Uk: + 5 (arp +a) (E - tk)> di. (3.5)
tr

Fiir die rechten Intervallrénder werden vy 1 und ugy1 durch die Taylorreihenentwicklung
bis zur dritten Zeitableitung berechnet mit

V41 = Vg + ap At + ’yéLkAtQ (3.6)
und
A2
Ug41 = U + VAL + akT + BapAt°, (3.7)
darin ist
N a1 — Ak
= —. 3.8
i = AL (3.9

Durch Einsetzen von (3.8) und (3.6) und (3.7) ergeben sich

Vg1 = g + [(1 — ) ag + vagry1] At. (3.9)

sowie

1
Uk41 = Uk + v At + |:<2 — ﬁ) ag + Bak+1:| At?. (310)

In (3.6) und (3.7) sowie (3.9) und (3.10) sind 8 und v Kontrollkonstanten fiir den Fehler
des Abbruchs der Taylorreihenentwicklung. Da die Berechnung iterativ fiir jeden Zeit-
schritt erfolgt, ist die Rechendauer hoch. Vorteilhaft ist jedoch, dass das Verfahren un-
bedingt stabil ist und somit groe Zeitschritte erlaubt (|17], S. 227-229).
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Abbildung 3.1: Konstante Beschleunigung ([17], S. 227)

3.1.2. Explizite Zeitintegration

Mit der expliziten Zeitintegration wird die Differentialgleichung

Mii(ty) + R(u(ty)) = F(ty) (3.11)

zum aktuellen Zeitpunkt t; analysiert und die Zustandsgréfien, welche am zukiinftigen
Zeitpunkt t;41 vorhanden sind, werden durch Extrapolieren ermittelt ([17], S. 224).

Die Zeitintegration erfolgt mit dem zentralen Differenzenverfahren, bei dem zu einem
Zeitpunkt t; die Geschwindigkeit als Steigung zwischen den Zeitpunkten ¢;_1, t; und
tx+1 als Vorwarts- bzw. Riickwértsdifferenzenquotient berechnet wird mit

vorw Uk+1 — Uk

Uk T Ukt12 T T Ay (3.12)
und
rickw Ug — Uk—1
e e VI (3.13)

(vgl. Abbildung 3.2).

Alexander Jannsen 32 Masterarbeit WS2024 /2025



Abbildung 3.2: Zentrales Differenzenverfahren (|17], S. 232)

Anschliefsend wird mit dem Mittelwert aus 3.12 und 3.13 der zentrale Differenzenquo-

tient

1 vorw riickw Uk+1 — Ug—1
1 _ Wkg1 — Uk 3.14
Uk 2(Uk + vy, ) INT ( )

berechnet. Um die Beschleunigung zu berechnen, wird der Geschwindigkeitsverlauf als
linear angenommen, sodass die Beschleunigung die Steigung zwischen den Vorwirts- und
Riickwartskoeffizienten der Geschwindigkeit ist,

— pplickw _ Ukt1/2 ~ Vk-1/2

At At

vorw
Vg

ap = (3.15)
(|17], S. 231-232).
Diese Methode ist nur bedingt stabil, weshalb der Zeitschritt At einen kritischen Zeit-
schritt 1
Atkrit = le,min; (316)

€
nicht iiberschreiten darf. lc ., ist die kleinste Elementkantenldnge und c. die Schallge-
schwindigkeit einer Longitudinalwelle im Element. Diese Berechnung des kritischen Zeit-
schrittes ist nur fiir lineare Systeme geeignet. Fiir nichtlineare Systeme wird hiufig ein
Stabilisierungsfaktor namens Courant-Zahl, welcher meist 0,9 betrigt, verwendet. Die
Berechnung der Schallgeschwindigkeit ist abhingig von der Dimension des Elementes.
Fiir 1-D-Elemente wird sie berechnet mit

: (3.17)
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fiir 2-D-Elemente mit
E

PR (3.18)

Ce =

und fiir 3-D-Elemente mit

B E(1-v)
Co = \/pe(1 ST (3.19)

Wird die Courant-Zahl beriicksichtigt, so betrigt der tatsichliche kritische Zeitschritt
At = 0,9At iz (3.20)

([17], S. 238-240).

Abbildung 3.3 zeigt, dass bei der expliziten Zeitintegration Schwingungen auftreten
konnen, welche physikalisch nicht auftreten sollten. Das gezeigte Volumenmodell eines
Stabes wurde entlang der Faser harmonisch angeregt, jedoch bilden sich Auslenkungen
normal zur Lingsachse aus. Dieses Phinomen wird als numerische Schwingung bezeich-
net, fiir das es Stabilisierungsverfahren gibt. In ABAQUS wird dieses Verfahren dynamisch
explizit (englisch: Implicit dynamic analysis oder dynamic, explicit) genannt ([19]), es
bietet die Moglichkeit, den kritischen Zeitschritt Atg,;; selbst zu berechnen.

Abbildung 3.3: Numerische Schwingung eines Stabes

3.1.3. Wahl des Zeitintegrationsverfahrens

Im Folgenden sind in Tabelle 3.1 einige Eigenschaften beider Zeitintegrationsverfahren
gegeniibergestellt.
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Tabelle 3.1: Eigenschaften des impliziten und expliziten Zeitschrittintegrationsverfahrens
(nach [17], S. 244)

explizit implizit

Nur bedingte Stabilitdt des Zeitschrittverfahren ist unbedingt stabil,

Verfahrens gegeben eine Wahl grofter Zeitschritte ist moglich.

Fiir nichtlineare Fragestellungen | Bei unstetigen nichtlinearen Anwendungen
gibt es keine Konvergenzprobleme miissen kleine Zeitschritte zum Erhalt

der Konvergenz gewahlt werden.

Zeitschritt sehr klein Sehr grofie Rechenzeit fiir einen Zeitschritt

Benétigt hohe Zeitschrittanzahl Kommt abhéingig von der Rechnung

mit wenigen Zeitschritten aus

Das implizite Zeitintegrationsverfahren wird hiufig auf lineare oder schwach nichtlinea-
re, langanhaltende transiente dynamische Probleme angewandt, das dynamisch explizite
Verfahren fiir stark nichlineare Vorgéinge iiber kleine Zeitrdume, wie sie bei der Kurz-
zeitdynamik auftreten ([17], S. 245). Aus diesem Grund wird in dieser Arbeit fiir die
Simulation des dynamischen Faserauszuges das dynamisch explizite Verfahren verwen-
det.

3.2. Darstellung des Ubergangsbereiches zwischen Faser und Matrix in
Abaqus

Im Folgenden werden von ABAQUS gebotene Mdoglichkeiten zur Modellierung der in Ab-
schnitt 2.2 vorgestellten Kontaktarten (TSL und FL) des Ubergangsbereiches zwischen
Faser und Matrix dargestellt. In diesem Abschnitt sollen Idealisierungsmoglichkeiten fiir
beide Mechanismen dargestellt werden.

3.2.1. Modellierung der Haftung und Schidigung des Ubergangsbereiches als
Surface-Based Cohesive Behavior

Eine Moglichkeit, die (auftrennbare) Haftung zwischen Faser und Matrix in ABAQUS zu
modellieren, ist ihre Definition in Form einer Interaction Property (deutsch: Interaktions-
Eigenschaft) im Interaction Module (deutsch: Interaktions-Modul). In diesem Unterab-
schnitt sollen die von ABAQUS gebotenen Optionen dargestellt werden, welche in dieser
Arbeit Anwendung gefunden haben. Die (auftrennbare) Haftung wird zwischen zwei Fli-
chen definiert, fiir den Solver Dynamic, Explicit, welcher in dieser Arbeit verwendet wird,
geschieht dies mit einem General Contact (deutsch: Allgemeiner Kontakt). Die Tren-
nungen s des TSL entspricht den Relativverschiebungen der Knoten der Slave Surface
(deutsch: untergeordnete Fliche) zu ihren Projektionen auf die Master Surface (deutsch:
iibergeordnete Flache) (|20]).

Um die mechanischen Eigenschaften des Ubergangsbereiches zu definieren, verwendet
ABAQUS das in Unterabschnitt 2.2.1 vorgestelle T'SL. Diese Arbeit benutzt ein ungekop-
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peltes T'SL, deren linear-elastischer Bereich durch

v, K% 0 0 Sn
U={ U, »=| 0 K% 0 ss ¢ =K' (3.21)
U, 0 0 K s

und deren Aussehen in Abbildung 2.3 dargestellt ist. Dabei stellt der Index n das T'SL in
lokaler Normalenrichtung und die Indizes s und ¢ das T'SL in die beiden lokalen Tangenti-
alrichtungen dar. Bei dieser Einstellung beeinflusst eine Trennung in eine der in Abschnitt
2.1 dargestellten Riss-Modenrichtungen die anderen Moden nicht. Soll ein gekoppeltes
Gesetz genutzt werden, so ist diese Option in ABAQUS/CAE auszuwihlen unter Create
Interaction Property > Contact > Mechanical > Cohesive Behaviour: Specify
stiffness coefficients: Coupled. Des Weiteren sind neben den Steifigkeitstermen K, |
K2, und K} auch Kopplungsterme zu definieren. Andernfalls kénnen die Steifigkeitster-
me fiir den ungekoppelten Fall unter Create Interaction Property > Contact >
Mechanical > Cohesive Behaviour: Specify stiffness coefficients: Uncoupled
definiert werden. Soll ein Riss-Modus nicht beriicksichtigt werden, so kann der Steifig-
keitsterm zu null gesetzt werden (|20]). Modellierungen in dieser Arbeit haben gezeigt,
dass die drei Rissmoden aus Abschnitt 2.1 nicht zwangsldufig den Indizes n, ¢ und s
zugeordnet sind. So kann ein Modus II-Riss beispielsweise mit ¢, = Ks,, zu modellieren
sein

Fiir die Schadensinitiierung kénnen vier Kriterien ausgewihlt werden, welche entweder
von der Spannung ¢" oder der Trennung s abhéngen. Beim Maximum Stress Criterion
(deutsch: Maximal-Spannungs-Kriterium) tritt Schaden auf, sobald

ma:c{<tn> 2 tt} _ 1. (3.22)

tm 7 gm gm

Die Macaulay-Klammer () deutet an, dass bei einer Druckspannung kein Schaden auf-
tritt. In ABAQUS/CAE kann dieses Kriterium eingestellt werden unter Create Interac-
tion Property > Contact > Mechanical > Damage: Initiation unter dem Tab
Criterion: Maximum nominal stress. Das Maximum Separation Criterion (deutsch:
Maximal-Trennungs-Kriterium) wiederum definiert die Schadensinitiierung mit

mazx { (o) 55 St} = 1. (3.23)

m 7 oem’ cm
n Ss" St

In diesem Fall bedeutet die Macaulay-Klammer (), dass bei reiner Kompression kein Scha-
den in der Ubergangsfliche auftritt. Auswihlbar ist dieses Kriterium in ABAQUS/CAE
unter Create Interaction Property > Contact > Mechanical > Damage: In-
itiation unter dem Tab Criterion: Maximum separation. Weitere Kriterien sind das
Quadratic Stress Criterion und das Quadratic Separation Criterion. Fiir Surface-Based
Cohesive Behavior ist keine Dicke der Ubergangsfliiche definierbar (|20]).

Eine lineare Schadensevolution kann in ABAQUS/CAE eingestellt werden unter Me-
chanical > Damage: Evolution unter dem Tab Type: Displacement: Softening:
Linear ([20]).
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3.2.2. Modellierung der Haftung im Ubergangsbereich als Cohesive Element

Anders als bei der in Unterabschnitt 3.2.1 beschriebenen Modellierung der Haftung als
Kontaktbedingung kann das Cohesive Elements eine Dicke des Ubergangsbereiches dar-
stellen, was jedoch nicht zwangslaufig notwendig ist ([20]). Bei Cohesive Elements handelt
es sich um modellierte Elemente, denen als Material- und Netz-Eigenschaften kohésives
Verhalten zugeordnet wird. Bei den Element-Typen handelt es sich um COH-Elemente,
welche fiir 2D-, 3D- oder achsensymmetrische Anwendungen erstellt werden kénnen (|21]).
Die Steifigkeitseigenschaften (vgl. K?) des TSL, sowie die Schadensevolution kénnen un-
ter den Materialeigenschaften eingestellt werden. Die Steifigkeit des Cohesive Element
berechnet sich aus der Stérke der Ubergangsfliiche t.,;, und ihren Elastizitéits- bzw. Schub-
moduln mit

0 p— Enn
K’I’Lon - tdoh
Kg, =7 (3.24)
K = g

(|22]). Fiir dynamische Analysen muss fiir die Cohesive Elements auch eine Dichte fest-
gelegt werden.

Da weder die SLM aus Abschnitt 2.3, noch der Versuch aus Abschnitt 5.1 eine Dicke,
Elastizitits- oder Schubmoduln der Ubergangsfliche angegeben, wird in dieser Arbeit die
Haftung mit dem Surface-Based Cohesive Behavior statt mit Cohesive Elements model-
liert. Des Weiteren miissen bei einer Modellierung als Kontaktbedingung keine Annahmen
zur Dichte der Ubergangsfliche getroffen werden.

3.2.3. Modellierung der Reibung im Ubergangsbereich

Um das in Unterabschnitt 2.2.2 vorgestellte FL (2.5) in ABAQUS umzusetzen, werden in
dieser Arbeit zwei Modellierungsvarianten angewandt. Zum einen bietet ABAQUS mit der
Funktion Shear stress versus elastic slip while sticking (SSVESWS, deutsch: Schubspan-
nung versus elastischer Schlupf wiahrend des Haftens) die Moglichkeit, das FL anzuwen-
den. Zum anderen verwenden (|2|) die in Unterabschnitt 3.2.2 beschriebenen Cohesive
Elements, um Reibung zwischen Faser und Matrix zu simulieren. In dieser Arbeit wird
jedoch ein Surface-Based Cohesive Behavior, wie in Unterabschnitt 3.2.1 dargestellt, ver-
wendet. Beide Varianten haben gemeinsam, dass sie, um numerische Probleme bei einer
Relativgeschwindigkeit von null zwischen Faser und Matrix zu vermeiden, einen linearen
Ubergangsbereich zwischen den Zustinden eines nicht vorhandenen oder vorhandenen
Schlupfes herstellen. Somit werden, wie in Abbildung 3.4 dargestellt, Unstetigkeiten ver-
mieden ([2]). Im Folgenden werden die beiden Modellierungsarten kurz vorgestellt.
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Abbildung 3.4: Friction Law fiir numerische Analyse ([2])

Shear stress versus elastic slip while sticking Die Funktion SSVESWS, erlaubt eine
Modellierung eines Ubergangsbereiches zwischen Haftung und Reibung, welcher nicht
sprunghaft ist, sobald es eine Relativbewegung zwischen Faser und Matrix gibt. Statt-
dessen wird eine Relativbewegung zwischen beiden Komponenten erlaubt, obwohl der
Zustand eigentlich “haftend” ist, bis eine kritische Schubspannung 7y erreicht wird. Dafiir
wird eine Steifigkeit k definiert, welche fiir den “haftenden” Bereich bis zum Erreichen
von 7y gilt. Abbildung 3.5 zeigt das SSVESWS-Modell fiir die Reibung (|23]). Die Pa-
rameter der SSVESWS-Funktion kénnen eingestellt werden unter Create Interaction
Property > Contact > Tangential Behavior > Friction formulation: Penalty.
Die Interaction wird dann als Surface-to surface contact (Explicit) mit der Mechanical
constraint formulation: Penalty contact method und Finite sliding definiert.

Abbildung 3.5: Shear stress versus elastic slip while sticking (nach [23])

Reibung durch Surface-Based Cohesive Behavior Fiir eine Abbildung des FL (2.5) mit
einem Surface-Based Cohesive Behavior wird fiir die Relativverschiebung s/, bei der die
Verbindung zwischen Faser und Matrix vollstandig versagt, ein grofier Wert angenommen,
sodass die Spannung in der Ubergangsfliche nach (2.4) kaum abnimmt (vgl. Abbildung
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3.6). Die maximal ertragbare Schubspannung entspricht dabei dem Wert der Reibungs-
Schubspannung.

Abbildung 3.6: Reibung als Surface Based Cohesive Behavior (nach [20])

3.3. Untersuchung der Modellierungsmoglichkeiten des Faserverbundes

In diesem Abschnitt werden Modellierungsméglichkeiten des Faserverbundes vorgestellt,
welche in dieser Arbeit betrachtet wurden. Tabelle 3.2 zeigt, welche Parameter der nu-
merischen Modelle im PyYTHON-Skript geéindert werden konnen. Fiir alle Modelle gilt,
dass die Erdbeschleunigung vernachléssigt wird.
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Tabelle 3.2: Verdnderbare Parameter fiir numerische Modelle im PYTHON-Sript
’ Parameter Spezifikation ‘

Geometrie e Faser- und Matrixlénge

e Faser-Radius- und Matrix-Dicke

o Freie Lange

Randbedingung e Einspannung der Matrix

Symmetrie der Faser

Keine Randbedingung

e Eingpannung der Matrix und Symmetrie der Faser

Ubergangsbedingung Haftung:
e Surface-Based Cohesive Behavior
Reibung:
e Shear Stress versus elastic slip while sticking

e Surface-Based Cohesive Behavior

Belastung e Harmonische Weganregung
e lineare Zugspannung am Faserende

e Lineare Verschiebung am Faserende

Material e Mechanische Eigenschaften von Faser und Matrix
e Elastizitdtsmodul

e Dichte

Querkontraktionszahl

3.3.1. Rotationssymmetrisches Modell aus Axisymmetric Elements

ABAQUS bietet die Moglichkeit, fiir rotationssymmetrische Kérper sogenannte Axisym-
metric Elements zu nutzen, wobei die Belastung ebenfalls rotationssymmetrisch wir-
ken muss (|24]). Die Abbildung 3.7 zeigt beispielhaft, wie sich ein Axisymmetric Ele-
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ment, in diesem Fall ein CAX/-Element (4-Knoten bilinear), in einem rotationssymme-
trischen Korper darstellt. In dieser Arbeit wird jedoch ein Axisymmetric Element mit
reduzierter Integration verwendet (CAX/R, 4-Knoten bilniear mit reduzierter Integra-
tion und Hourglass-Control ([25]), da fiir die Anwendung von ABAQUS/Explicit keine
CAX4-Elemente zugelassen sind (vgl. Abbildung 3.8 (a)). Nach der Berechnung ist eine
rotationsymmetrische Modellierung (sweep) des FE-Modells moglich, um den rotations-
symmetrischen Korper darzustellen (s. Abbildung 3.8 (b)). Wie in ([2]) werden Faser
und Matrix als zylindrisch angenommen. Durch eine Anwendung von Axisymmetric Ele-
ments in dieser Arbeit soll die Rechenzeit reduziert werden. Der PYTHON-Code fiir das
rotationssymmetrische Modell ist in Anhang B zu finden.

Abbildung 3.7: Axisymmetric Element (]|26])

(a) (b)

Abbildung 3.8: (a) Meldung beim Versuch, CAX4-Elemente in ABAQUS/Explicit zu ver-
wenden, (b) Sweep eines Faser-Matrix-Verbundes aus CAX4R-Elementen
in ABAQUS

3.3.2. Viertelmodell aus Volumenelementen

Neben Axisymmetric Elements wurden in dieser Arbeit auch Volumenmodelle des Typs
C3D8R (8-Knoten Linear mit reduzierter Integration und Hourglass-Control) verwendet
(|27]). Dieses verfiigt iiber nur einen Integrationspunkt, welcher sich in der Mitte des Ele-
mentes befindet (s. Abbildung 3.9 (a)). Die reduzierte Variante wurde zwecks Einsparung
von Rechenzeit verwendet, die Hourglass-Control ist standardméfig aktiviert ([28]). Wie
in ([2]) werden Faser und Matrix als zylindrisch angenommen. Um weitere Rechenzeit
einzusparen, wurde die Rotationssymmetrie einiger Faser-Matrix-Verbunde genutzt, und
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ein Viertelmodell verwendet, wie in Abbildung 3.9 (b) sichtbar ist. Das PYTHON-Skript
fiir das Viertelmodell ist in Anhang C zu finden. Ein Viertelmodell wird z. B. auch in
([10]) genutzt.

(a) (b)

Abbildung 3.9: (a) Schematisches C3D8R-Element ([28]), (b) Viertelmodell eines Faser-
Matrix-Verbundes

Alexander Jannsen 42 Masterarbeit WS2024 /2025



4. Analytische Validierung der Numerischen Modelle

In diesem Kapitel werden die im vorherigen Kapitel vorgestellten numerischen Modelle
mit den in Abschnitt 2.3 beschriebenen analytischen SLM verglichen. Zunéchst wird die
numerische Modellierung der Haftungstrennung mit dem SLM von AzzAM validiert, an-
schliefend die Reibung mit dem SLM von SRIDHAR et al. Zu beachten ist, dass die SLM
und somit auch die numerischen Modelle unterschiedliche Koordinatensysteme verwen-
den. Beim SLM von AzzAM verlduft die Faserlingsachse entlang der z-Achse in positive
Richtung (vgl. Abbildung 2.4 (a)), bei dem von SRIDHAR et al. verlduft sie in negative
Richtung (vgl. Abbildung 2.8). In den Unterabschnitten werden analytische Ergebnisse
mit dem tiefgestellten Index analytisch und numerische Ergebnisse mit dem tiefgestellten
Index numerisch gekennzeichnet.

4.1. Validierung mit dem Shear-Lag-Modell nach Azzam

Um die Schiidigung der Ubergangsfliche sowie die Haftung verschiedener numerischer
Modelle mit dem analytischen Shear-Lag-Modell von AzzAaM aus Unterabschnitt 2.3.1
zu validieren, wurden die in ([4]) verwendeten Parameter fiir die Geometrie, sowie die
Materialeigenschaften und Eigenschaften des TSL verwendet. Diese sind in Tabelle 4.1
einsehbar. Da die Matrix starr ist, werden in ([4]) keine Angaben zum Elastizitdtsmodul
E,, sowie der Dichte p,, gemacht. Um eine starre Matrix zu simulieren, wurden beide
Parameter um den Faktor 10 grofer als die der Matrix gewéhlt. Als Querkontraktionszahl
wurde v = 0,33 gewdhlt (|29]), da Ey und ps dem Material Aluminium &dhneln (|30]).
In Anlehnung an ([|2]) wurde ein Faservolumenanteil von f = 40 % angenommen. Die
Matrix Dicke berechnete sich mit f = % (31]) zu 0,00581 mm.
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Tabelle 4.1: Parameter fiir das numerische Modell. Die Tabelle basiert grofstenteils auf
Daten von ([4])

Faser Matrix Ubergangs-
flache
Elastizitatsmodul E (M Pa) 72000 720000
Dichte p (t22%2) 2,7x107° [2,7x1078
Querkontraktionszahl v 0.33 0.33
Querschnittsflache 3,14 x 1074
der Faser Ay (mm?)
Faserumfang a (mm) 6,28 x 1072
Lénge | (mm) 5 5
Steifigkeit der 652
Ubergangsfliche K° (%)
Schlupf bei 0,005
Schadensinitiierung s (mm)
Schlupf bei Reibung s" (mm) 0,08
Schlupf bei vollstédndigem Versagen 0,0941
zwischen Faser und Matrix s (mm)
Schubspannung bei 3,26
Schadensiniierung 7 (M Pa)

Schubspannung bei Reibung 7" (M Pa) 0,517
Schubspannung 7% (M Pa) 3,44
Erregeramplitude C,, (mm) 6,125 x 10~
Erregerkreisfrequenz A (%) 1 x10°

Fiir das analytische Shear-Lag-Modell erfolgt die harmonische Anregung, wie in (2.27)
beschrieben, mit e***. Nach der Eulerschen Formel

e = cos(y) + isin(y) (4.1)

ist der Realteil der Anregung ein Kosinus. In dieser Arbeit wird fiir die numerischen
Modelle eine sinusférmige Anregung gewihlt, da erwartet wird, dass eine Auslenkung
um die volle Amplitude im ersten Zeitschritt zu numerischen Problemen fiihrt. Da Si-
nus und Kosinus um eine Viertelperiode phasenverschoben sind, wurden die numerischen
und analytischen Ergebnisse um eine Viertelperiode versetzt miteinander verglichen. Das
analytische Modell wurde zum Zeitpunkt £,,a1ytiscn = 0 s ausgewertet, der Zeitpunkt des
numerischen Modells ist tpumerisch = 1,57 X 107° 8. tpumerisch wurde auf eine Viertelpe-
riode bei der Erregerkreisfrequenz A = 1 x 10° festgelegt, um Rechenzeit zu sparen. Das
rotationssymmetrische und das Viertelmodell fiir die Simulation der Hafttrennung sind
in Abbildung 4.1 (a) und (b) dargestellt.
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(a) (b)
Abbildung 4.1: (a) Rotationssymmetrisches Modell (b) Viertelmodell

Abbildung 4.2 zeigt das numerische Modell von AzzAM fiir die Faser und einen Uber-
gangsbereich aus Cohesive Elements. Aus den in Unterabschnitt 3.2.2 genannten Griinden
wird in dieser Arbeit ein Surface-Based Cohesive Behavior genutzt. Des Weiteren ist in
Abbildung 4.2 zu sehen, dass die Matrix nicht modelliert ist. Es wird angenommen, dass
die Cohesive Elements vollstindig eingespannt sind. In dieser Arbeit wird statt der Cohe-
sive Elements die Matrix eingespannt. AzzZAM verwendet fiir die Faser C3D8R-Elemente,
was auch bei dem in dieser Arbeit verwendeten Viertelmodell der Fall ist, fiir die Cohesive
Elements werden COH3D8-Elemente verwendet ([4]).

Abbildung 4.2: Numerisches Modell der Faser und des Ubergangsbereiches mit Cohesive
Elements ([4])

4.1.1. Hafttrennung mit dem rotationssymmetrischen Modell

In diesem Unterabschnitt werden analytische Shear-Lag- sowie numerische Losungen fiir
das rotationssymmetrische Modell verglichen. In dem numerischen Modell wurden 20000
CAX4R-Elemente verwendet, die Ubergangsfliche wurde mit 2500 Elementen diskreti-
siert. Die Rechenzeit betrug etwa 14 min, der mit (3.20) berechnete kritische Zeitschritt
betrug Atgrit theoretisch = 2,33 x 10710 s. In ABAQUS war der Zeitschritt im Mittel
Atkrit,Abaqus =2,3x 10710 5.
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Abbildung 4.3 (a) vergleicht den analytisch berechneten Schlupf $4pa1ytiscn(2,t) mit
dem numerisch berechneten $,umerisch(2,t). Bei beiden Modellen stieg der Schlupf von
z = 0 mm monoton mit zunehmenden Abstand zum unbelasteten Faserende. Am belas-
teten Faserende lag dieser fiir beide bei § = 0,06 mm. Der Schlupf wurde vom rotati-
onssymmetrischen Modell gut nachgebildet, im Mittel war die prozentuale Abweichung

£E=5"%.

Abbildung 4.3: Schlupf entlang der Ubergangsfliiche fiir das rotationssymmetrische und
das SL-Modell

Die Schubspannungen 7onqiytisch (2, t) und Tnumerisch (2, t) entlang der Ubergangsfliche
sowie deren prozentuale Abweichung ¢ voneinander werden in Abbildung 4.4 (a) und
4.4 (b) dargestellt. Der aus dem numerischen Modell berechnete Verlauf war zunéchst
negativ, er wurde deshalb umgekehrt, damit der Verlauf mit dem des SLM verglichen
werden konnte. Des Weiteren wurde der leicht verrauschte Verlauf mit einem gleitenden
Mittelwert von 10 Datenpunkten gegléttet, um Trends bei der prozentualen Abweichung
erkennbarer zu machen.

Der Verlauf von Tpumerisch(2,t) dhnelte Tanaiytisen(2,t), unterschitztw aber die Schub-
spannung iiber die gesamte Linge der Ubergangsfliche. Die Position z., bei der die
Schidigung der Ubergangsfliche beginnt, ist durch 7,4, gekennzeichnet. Fiir das ana-
lytische Modell war 2.0 gnaiytisch = 1,94 mm, fiir das numerische 2.0 pumerisch = 2,03
mm. Sie wichen um ca. 5 % voneinander ab. An dieser Stelle ist die analytische Schub-
SPANNUNg Trnaz, analytisch = 9, 26 M Pa, die numerische Schubspannung liegt darunter mit
Tmaz,numerisch = 2,95 M Pa. Die prozentualen Abweichungen waren in der UDZ grofser
als in der DZ. Die mittlere Abweichung ¢ betrug iiber die gesamte Linge der Ubergangs-

Alexander Jannsen 46 Masterarbeit WS2024 /2025



fliche 11 %.

(b)

Abbildung 4.4: (a) Schubspannung entlang der Ubergangsfliche fiir das rotationssymme-
trische und das SL-Modell, (b) Prozentuale Abweichung zwischen Shear-
Lag-Modell und numerischem Modell
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4.1.2. Hafttrennung mit dem Viertelmodell

Im Viertelmodell waren 135000 C3D8R-Elemente eingesetzt. Die Linge der Ubergangs-
flache wurde mit 2500 Elementen diskretisiert. Die Berechnungszeit betrug ca. 4,5 h. Der
kritische Zeitschritt nach (3.20) betrug Atgpit theoretiseh = 1,35 x 10710 s, der in ABAQUS
verwendete Zeitschritt war At Apaqus = 1,3 X 10719 5. Die Schlupf-Werte 3(z, t) fiir das
Viertel- und das SLM sind in den Abbildungen 4.5 (a) zu sehen, die Schubspannungen
Tanalytisch (%, ) und Tpumerisch(2,t) sowie deren prozentualen Abweichungen von einander
sind in den Abbildungen 4.6 (a) und (b) dargestellt. $pumerisch(2,t) und Tpumeriseh (2, t)
verliefen fiir das Viertelmodell &hnlich zum rotationssymmetrischen Modell. Aus dem
Viertelmodell ergab sich ein glatterer Schubspannungsverlauf. Die prozentuale Abwei-
chung #hnelte der des rotationssymmetrischen Modells, der Verlauf ist glatter. Die mitt-
lere prozentuale Abweichung des Schlupfes betrug & = 5 %, die der Schubspannung & = 11
%.

Abbildung 4.5: Schlupf entlang der Ubergangsfliiche fiir das Viertel- und das SL-Modell
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(b)

Abbildung 4.6: (a) Schubspannung entlang der Ubergangsfliiche fiir das Viertel- und das
SL-Modell, (b) Prozentuale Abweichung zwischen Shear-Lag-Modell und
numerischem Modell
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4.1.3. Auswertung der Modellvergleiche und Vergleich mit Literatur

Abschliefsend werden allgemeine Beobachtungen und Besonderheiten der beiden Model-
le beschrieben. Des Weiteren werden diese mit den Ergebnissen aus ([4]) von AzzaMm
gegeniibergestellt. Der Schlupf wurde von beiden numerischen Modellen nah am SLM
dargestellt, im Mittel liegt die prozentuale Abweichung & = 5 %. Die Verliufe der Schub-
spannungen beider Modelle folgen qualitativ denen des SLM, beide unterschétzen sie
jedoch. Im Mittel betrugen die Abweichung & = 11 %, wobei der Verlauf des rotations-
symmetrischen Modells fiir die Berechnung der Abweichung gegléttet wurde. Die Abwei-
chung war in der UDZ gréfer als in der DZ. Ein Grund dafiir kénnte die Verschiebung der
numerisch berechneten Linge der UDZ z.9 gegeniiber der analytisch berechneten sein.
Sie wurde von beiden Modellen mit einer Abweichung von 5 % zum SLM gut geschétzt.
Durch diese Abweichung ist die Differenz der Schubspannungen gréfter. Der Schubspan-
nungsverlauf des Viertelmodells war glatter als der des rotationssymmetrischen Modells.
Das rotationssymmetrische Modell wies eine signifikant geringere Rechenzeit auf. Zu be-
achten ist, dass der Schubspannungsverlauf des rotationssymmetrischen Modells negativ
war. Eine Maknahme zur Anndherung der numerischen Schubspannungsverldufe an die
des SLM war eine Erhéhung der Steifigkeit und Dichte der Matrix um den Faktor 10.
Auferdem wurde die Matrix an der Ubergangsfliiche eingespannt, um die im analytischen
Modell vorliegende starre Matrix zu imitieren. Dies brachte jedoch keine Verbesserun-
gen. Eine weitere Mafknahme war eine Verdopplung der Netzfeinheit von [, = 0,002 mm
auf [, = 0,001 mm beim rotationssymmetrischen Modell. Dies ndherte den Schubspan-
nungsverlauf des numerischen Modells den des analytischen tatséchlich an (s. Abbildung
4.7). Eine Folge war jedoch eine deutlich hoheren Rechenzeit und ein stérkeres Rauschen
innerhalb des Verlaufes.

Zusammenfassend zeigte sich, dass beide Modelle den Schlupf-Verlauf und die Lénge
der UDZ akkurat wiedergaben. Der Schubspannungsverlauf wurde von beiden Modellen
qualitativ wiedergegeben, unterschétze jedoch den des SLM. Der Schubspannungsverlauf
des Viertelmodells war glatter, das rotationssymmetrische Modell hatte eine deutlich
kiirzere Rechenzeit.
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Abbildung 4.7: Schubspannung fiir numerisches und analytisches Modell bei einer Netz-
feinheit von [, = 0,001 mm

Abbildung 4.8 (a) und (b) zeigen die Schlupf- und Schubspannungsverldufe aus (|4])
fiir das SLM und das numerische Modell zu den Zeitpunkten ¢; = 5,23 x 107° s und
to = 6,2832 x 107° s. Die Ergebnisse bei to = 6,2832 x 10~ s sollen mit denen aus
dieser Arbeit verglichen werden, obwohl diese fiir andere Zeiten erstellt wurden. Dies ist
moglich, weil bei den SLM dieser Arbeit die Grofsen zum Zeitpunkt ¢ = 0 s ausgewertet
wurden, was um eine Periode zu t, = 6,2832 x 10™° s phasenverschoben ist und somit
die selben analytischen Verldufe liefert. Die Schlupf-Verteilung des numerischen Modells
aus (|4]) verhélt sich zum Grofteil wie die der numerischen Modelle dieser Arbeit. Das
numerische Modell von AzzAM bildet den Schubspannungsverlauf exakter ab als die
Modelle dieser Arbeit, des Weiteren wird die Lénge der UDZ z,¢ passender berechnet.
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(a) (b)

Abbildung 4.8: Schlupf (a) und Schubspannung (b) entlang der Ubergangsfliche fiir das
numerische und das analytische Modell von AzzAM zu den Zeitpunkten
t1 =5,23 x 107° s und to = 6,2832 x 107° s ([4])

4.2. Validierung mit dem Shear-Lag-Modell nach Sridhar et al.

Fiir die Validierung der fiir verschiedene Modelle formulierten numerischen Reibung mit
dem Shear-Lag-Modell von SRIDHAR et al. aus Unterabschnitt 2.3.2 miissen die Para-
meter der Modelle so eingestellt werden, dass sich die drei Fille Pure Slip, Slip-Reverse
Slip und Slip-Stick einstellen. Das numerische Modell, welches SRIDHAR et al. fiir den
Vergleich mit dem Shear-Lag-Modell nutzen, ist ein Plane Stress Modell (deutsch: Modell
des ebenen Spannungszustandes), welches aus 4-Punkt bilinearen und Cohesive Elements
besteht. Eine Verwendung anstelle eines achsensymmetrischen Systems ist moglich, wenn
der Faserradius ry = 2h und f = % ist, wie in Abbildung 4.9 zu sehen. Die Reibung
wurde durch Cohesive Elements zwischen Faser und Matrix nachgebildet (|2]).

Abbildung 4.9: Numerisches Modell von SRIDHAR et al. (|2])

Im Folgenden werden die Geometrie-, Mechanik- und Werkstoffeigenschaften vorge-
stellt, welche fiir eine Darstellung der drei Félle genutzt wurden. Die in ([2]) verwendeten
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Parameter fiir die Darstellung der Modelle wurden nicht vollstindig beschrieben, wes-
halb teilweise eigene Annahmen getroffen werden mussten. Direkt gegebene Parameter
waren der Faservolumenanteil f, die Reibungs-Schubspannung in der Ubergangsfliche 7,
die normierte Reibungs-schubspannung 7, das Modulverhéltnis ¢, die inverse Lastrate k
und die Wellengeschwindigkeitsverhéltnisse C' fiir die drei Félle. Durch Umformung von
(2.69) kann der Elastizitdtsmodul der Faser E; berechnet werden, mit dem wiederum
durch Nutzung von (2.68) E,, ermittelt werden kann. Es wurden Annahmen fiir den
Startzeitpunkt o, die eingéngliche Axialspannung oo und den Faserradius ry getroffen,
so kann durch Umformung von (2.71) die Faserwellengeschwindigkeit c; ermittelt wer-
den. Der Faserradius ry wurde wie in (|4|) gewéhlt. Die Matrixwellengeschwindigkeit ¢,
wird dann aus (2.67) bestimmt. Die Annahme der Querkontraktionszahlen v; und vy,
ermdglicht abschliefiend die Berechnung von E rund E,, mit (2.63) sowie den Dichten pg
und p,, aus (2.62). Die gegebenen und angenommen Parameter fiir die Falle I und II sind
in Tabelle 4.2 dargestellt. Im Folgenden wird erldutert, warum der Fall III: Slip-Reverse
Slip nicht behandelt wird.

Nach (2.86) wird die normierte Verschiebung der Faser Uf(Z,T') fiir den Fall Slip-
Reverse Slip berechnet. Nach Ableitung von (2.86) nach T ergeben sich die Faserparti-
kelgeschwindigkeiten fiir die Bereiche 2 [T < Z < noT| und 3 [T < Z < n3T] zu

) Oy 1112
Uro (Z.T) = 1T, 4.2
2T = e e 7 1) .
mit
) Ak + (2 = 1) (3 + 1) + 20k (72 + 21 — 1)
Oy 11,2 = 12T < +2Z (n3 + 1) (n} + 4km — 1) -
und
: Z —n3T
Ura (2.T) = (13 (Z —n3T)) (4.4)

k(n3 —1)

Mit den Parametern C? = 0,1, k = 0,05, 7 = 0,005 und 7" = 10 ergibt sich statt dem in
Abbildung 2.10 (c) dargestellten Verlauf der Fasergeschwindigkeiten in den Bereichen 2
und 2 der Verlauf aus Abbildung 4.10. In diesem sind die roten Linien die Faserpartikel-
geschwindigkeiten nach (4.2) und (4.4) fiir die Bereiche 2 und 3, welche nicht mit denen
aus Abbildung 2.10 (c¢) iibereinstimmen. Aus diesem Grund wird der Fall IIT nicht weiter
untersucht.
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Abbildung 4.10: Partikelgeschwindigkeiten entlang der Ubergangsfliche mit den Para-
metern C? = 0,1, ¢ = 2,00, &k = 0,05, 7 = 0,005 und T = 10.
Die gestrichelten Linien sind die Matrixpartikelgeschwindigkeiten, die
Durchgezogenen die Faserpartikelgeschwindigkeiten. Des Weiteren sind
die roten Linien die Faserpartikelgeschwindigkeiten der Bereiche 2 und
3

Zu beachten ist abschliefend, dass in der Simulation in ([2]) die Querkontraktionszah-
len zu null gesetzt werden (vgl. Annahmen aus Unterabschnitt 2.2.2). Dies fiihrte jedoch
bei den Modellen in dieser Arbeit zu numerischen Problemen, weshalb Querkontrakti-
on genutzt und stattdessen eine Ausdehnung der Faser in radialer Richtung verhindert
wird. Des Weiteren wird in ([2]) nicht angegeben, wie die normierten Partikelgeschwin-
digkeiten U (Z,T) in absolute Partikelgeschwindigkeiten  (z,t) umgerechnet werden. Es
wird angenommen, dass dies durch Multiplikation mit der Faserwellengeschwindigkeit

cy geschieht. Fiir den Vergleich zwischen numerischem und analytischem Modell werden

zlAba,qu.s

die Partikelgeschwindigkeiten aus ABAQUS mit U Abaqus = ~ ¢, normiert. Die Tabellen

4.2 (a) und (b) zeigen Parameter fiir das numerische Modell und das SLM sowie die
Parameter fiir die Reibung in der Ubergangsfliche. In den folgenden Abbildungen stel-
len durchgezogene Linien die Faser- und gestrichelte Linien die Matrixgeschwindigkeiten
dar. Des Weiteren wird zwischen analytischen Ergebnissen (diinne Linien) und numeri-
schen Ergebnissen (starke Linien) unterschieden. In Abbildung 4.11 (a) und (b) sind das
rotationssymmetrische und das Viertelmodell fiir die Simulation der Reibung dargestellt.
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(a) (b)
Abbildung 4.11: (a) Rotationssymmetrisches Modell (b) Viertelmodell
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Tabelle 4.2: Parameter fiir das analytische Shear-Lag-Modell und das numerische Modell
(a) und Parameter fiir die Reibung in der Ubergangsfliche (b). Die Tabelle
basiert zum Teil auf Daten von ([2])

Parameter | Fall I: Pure Slip | Fall II: Slip-Stick |
Faserlange [y (mm) 0,4 0,4
Faserradius r (mm) 0,01 0,01
Elastizitatsmodul Faser E; (MPa) 100000 100000
Elastizitdtsmodul Matrix E,, (MPa) 46296 46296
Querkontraktionszahl Faser vy 0,3 0,3
Querkontraktionszahl Matrix v, 0,25 0,25
Dichte Faser py (f2ng) 3,3654 x 10~8 3,3654 x 10~8
Dichte Matrix p,, (12%) 1,3889 x 10~7 1,3889 x 1077
Ey (MPa) 134620 134620
E,, (MPa) 555560 555560
anteil f 0,4 0,4
Wellengeschwindigkeit Faser c (msm 2 x 10° 2 x 10°
Wellengeschwindigkeit Matrix ¢, (Z2%) 6,3246 x 10° 6,3246 x 10°
Wellengeschwindigkeitsverhaltnis C' 3,1623 0,3162
Modulverhé&ltnis ¢ 1,44 1,44
Inverse Lastrate k 0,1 0,1
Normierte Reibungs-Schubspannung 7 0,002 0,002
Reibungs-Schubspannung 7o (MPa) 100 100
Eingéngliche Axialspannung py (MPa) 100 100
Startzeit tg (s) 5x 10710 5x 10719
Normierter Zeitpunkt der Auswertung T’ 5,7 5,72

(a)

’ \ \ Surface-Based Cohesive Behavior
t"™ (MPa) 100

KO (MLa) 160000

s7 (mm) 1 x 108
70 (MPa) 100

K ( M Pa ) 160000

mm/s

Hr 1
Pradial (MP(I) 150
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4.2.1. Reibungssimulation mit dem rotationssymmetrischen Modell

In diesem Unterabschnitt werden die Ergebnisse des rotationssymmetrischen Modells aus
Axisymmetric Elements fiir die in Unterabschnitt 3.2.3 vorgestellten Modellierungsvari-
anten mit dem analytischen SLM von SRIDHAR et al. fiir die Falle I: Pure-Slip und II:
Slip-Stick verglichen. Fiir beide Modellierungsvarianten und beide Félle sind der theore-
tische kritische Zeitschritt Atgpit theoretiseh nach (3.20), sowie der von ABAQUS gewdhlte
kritische Zeitschritt At Abaqus in Tabelle 4.3 dargestellt. Die Rechenzeit wird nicht
aufgefithrt, da sie nur wenige Sekunden betrug. Das numerische Modell aus Axisymme-
tric Elements bestand aus 1600 CAX4R-Elementen, die Ubergangsfliche wurde mit 200
Elementen diskretisiert.

Tabelle 4.3: Zeitschritte fiir die Berechnung des rotationssymmetrischen Modells

’ \ \ Surface-Based Cohesive Behavior

Atprit theoretisch, Fall 1 (s) | 3,0 x 1079 3,0 x 1079
Atprit theoretisch Fall 1T (s) | 3,0 x 10710 3,0 x 10710
Atgrit, Abaqus Fall 1 (s) 2,7x 10710 8,3x 10710
Atkrit, Abaqus Fall 1T (s) | 2,58 x 10710 2,6 x 10710

Im Folgenden werden die Ergebnisse fiir die Félle Pure Slip und Slip-Stick, welche mit
dem rotationssymmetrischen Modell und der Reibungsformulierung Shear stress versus
elastic slip erstellt wurden, mit den Ergebnissen des SLM verglichen. Die Abbildung 4.12
(a) zeigt die Partikelgeschwindigkeiten Uf(z,t) und Uy, (z,t) fiir den Fall I: Pure-Slip
fiir das analytische SL- und das numerische Modell. Die Prozesszonen waren nicht iden-
tisch, die des numerischen Modells war grofser als die des Analytischen. Bei Z = 0 war
U f,analytisch betragsméfig groker als U fnumerisch, dies anderte sich bei Z = 4. Uf,amlytisch
sank linear ab bis Z = 5, 2. U tnumerisch verlief nahezu linear, zum Ende der Prozesszo-
ne bei Z = 6 flacht die Steigung immer weiter ab. Um7analyn’sch bewegte sich mit einer
konstanten Geschwindigkeit bis ca. Z = 2, von wo aus es linear absank. Um,numerisch
hatte keinen konstanten Verlauf, sie schwankte bei niedrigen Z und sank bei héheren
Z nahezu linear auf null ab, wobei sich das Ende der Prozesszone mit denen der ana-
lytischen Modelle deckte (s. Detailansicht in Abbildung 4.12 (a)). Fiir Um,analytisch war
keine Bereichsgrenze erkennbar. Das numerische Modell unterschitzte auf weite Bereiche
entlang z die Geschwindigkeiten gegeniiber dem analytischen Modell.

Abbildung 4.12 (b) zeigt die Geschwindigkeiten entlang der Prozesszone fiir den Fall II:
Slip-Stick. Von Z = 0 aus sank U f,analytisch linear ab und Um,analytisch verlief konstant.
Ab Z = 4 iiberlagerten sich die die beiden Verldufe, da Faser und Matrix aneinander haf-
teten. Um,numerisch wies Schwankungen auf, es war jedoch der Trend einer absinkenden
Geschwindigkeit erkennbar. Ein Wechsel des Bereiches war nicht erkennbar (vgl. Detail-
ansicht in Abbildung 4.12 (b)). Bei Z = 4, 8 schnitten sich die Verlaufe von Um,nume’/‘isch
und U fnumerisch - in paralleler Verlauf, welcher wie beim analytischen Modell auf Haf-
tung hinweist, war nicht erkennbar. Uf,numerisch sank bei Z = 6,5 auf null, was fiir
Um’numerisch erst bei Z = 12 der Fall war. Fiir die numerischen und analytischen Faser-
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partikelgeschwindigkeiten lag die Differenz des Endes der Prozesszone bei L = 1. Fiir die
Matrixpartikelgeschwindigkeiten lag die Differenz bei L ~ 7. Auch fiir den Fall II wurden
die Geschwindigkeiten vom Modell unterbewertet. Die analytischen Verldufe bleiben fiir
alle weiteren in diesem Unterabschnitt dargestellten Félle gleich und werden nicht erneut
erlautert, um Wiederholungen zu vermeiden.

Alexander Jannsen 28 Masterarbeit WS2024 /2025



(b)

Abbildung 4.12: Faser- und Matrixpartikelgeschwindigkeiten entlang der Prozesszone fiir
das analytische und das rotationssymmetrischen Modell mit Reibung
durch Shear stress versus elastic slip fiir den Fall I: Pure Slip (a) und
Fall II: Slip-Stick (b). Durchgezogene Linien sind der Faser, gestrichelte
Linien der Matrix zuzuordnen. Des Weiteren markieren diinne Linien
das analytische und breite Linien das numerische Modell

Alexander Jannsen 29 Masterarbeit WS2024 /2025



Die Berechnungen des rotationssymmetrischen Modells, dessen Reibung mit Surface-
Based Cohesive Behavior modelliert wurde, werden in den Abbildungen 4.13 (a) und 4.13
(b) den SLM fiir die beiden Fille gegeniibergestellt. Im Fall I: Pure Slip in Abbildung 4.13
(a) entsprachen die Verldufe von Uf,numem‘sch und Um,numm‘sch zum Grofsteil denen aus
Abbildung 4.12 (a). Um,numerisch wies wie auch Um,numerisch aus dem SSVESWS-Modell
Schwankungen auf, diese waren jedoch kleiner. Fiir den Fall II: Slip-Stick verlief die mit
dem Surface-Based Cohesive Behavior berechnete Matrixgeschwindigkeit ruhiger als die

mit dem SSVESWS ermittelte und wies eine &hnlich grofse Prozesszone auf.
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(b)

Abbildung 4.13: Faser- und Matrixpartikelgeschwindigkeiten entlang der Prozesszone fiir
das analytische und das rotationssymmetrischen Modell mit Reibung
durch Surface-Bases Cohesive Behavior fiir den Fall I: Pure Slip (a) und
Fall II: Slip-Stick (b). Durchgezogene Linien sind der Faser, gestrichelte
Linien der Matrix zuzuordnen. Des Weiteren markieren diinne Linien
das analytische und breite Linien das numerische Modell
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4.2.2. Reibungssimulation mit dem Viertelmodell

Im Folgenden werden die Ergebnisse der numerischen Volumenmodelle mit den in Unter-
abschnitt 3.2.3 vorgestellten Modellierungen der Reibung mit den Ergebnissen des ana-
lytischen SLM von SRIDHAR et al. fiir die Falle I: Pure-Slip und II: Slip-Stick verglichen.
Beide Modelle setzten sich zusammen aus aus 10800 C3D8R-Elementen, die Ubergangs-
fliche wurde mit 200 Elementen diskretisiert. Die Tabelle 4.4 zeigt den theoretischen
kritischen Zeitschritt nach (3.20) sowie den von ABAQUS gewdhlten kritischen Zeitschritt
fiir beide Varianten und beiden Fillen, wie beim rotationssymmetrischen Modell wird
auch hier die Rechenzeit aufgrund ihrer geringen Dauer nicht aufgefiihrt.

Tabelle 4.4: Zeitschritte fiir die Berechnung des Viertelmodells
’ ‘ ‘ Surface-Based Cohesive Behavior

Atkrit,theoretisch Fall I (5) 4,3 x 107 4,3 x 1077
Atgrit theoretisch, Fall IT (s) | 2,7 x 10710 2,7x 10710
Atgrit, Abaqus Fall T (s) 4,2 x 10710 4,2 x 10710
Atgrit Abagus Fall II (s) | 2,6 x 10719 2,6 x 10719

Fiir die Modellierung von Reibung mit SSVESWS in einem Viertelmodell sind die
Ergebnisse der Félle I und II in den Abbildungen 4.14 (a) und 4.14 (b) den Berechnun-
gen des SLM gegeniibergestellt. Der Verldaufe der Partikelgeschwindigkeiten U ¢ numerisch
und Um’nummsch entsprachen denen der rotationssymmetrischen Modelle mit der glei-
chen Reibungsformulierung. Bei einem Viertelmodell, dessen Reibung mit Surface-Based
Cohesive Behavior modelliert wurde, ergaben sich fiir die numerisch berechneten Parti-
kelgeschwindigkeiten dhnliche Verldufe wie beim rotationssymmetrischen Modell.
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(b)

Abbildung 4.14: Faser- und Matrixpartikelgeschwindigkeiten entlang der Prozesszone fiir
das analytische und das Viertelmodell mit Reibung durch Shear stress
versus elastic slip fiir den Fall I: Pure Slip (a) und Fall II: Slip-Stick
(b). Durchgezogene Linien sind der Faser, gestrichelte Linien der Matrix
zuzuordnen. Des Weiteren markieren diinne Linien das analytische und
breite Linien das numerische Modell
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(b)

Abbildung 4.15: Faser- und Matrixpartikelgeschwindigkeiten entlang der Prozesszone fiir
das analytische und das Viertelmodell mit Reibung durch Surface-Bases
Cohesive Behavior fiir den Fall I: Pure Slip (a) und Fall II: Slip-Stick
(b). Durchgezogene Linien sind der Faser, gestrichelte Linien der Matrix
zuzuordnen. Des Weiteren markieren diinne Linien das analytische und
breite Linien das numerische Modell
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4.2.3. Auswertung der Modellvergleiche und Vergleich mit Literatur

In diesem Unterabschnitt sollen allgemeine Beobachtungen und Besonderheiten einzelner
Modelle erldutert werden. Des Weiteren werden die Ergebnisse aus (|2]) von SRIDHAR
et al. zum Vergleich herangezogen. Die Grofenordnungen der numerischen Partikelge-
schwindigkeiten passten zu denen aus dem SLM. Sowohl Faser- als auch Matrixparti-
kelgeschwindigkeit wurden von den numerischen Modellen unterbewertet. Die Verldufe
von U f.numerisch und Um,numem;sch waren iiber alle Modellierungsvarianten dhnlich, die
Matrixpartikelgeschwindigkeit hatte bei einer Reibung mit Surface-Based Cohesive Be-
havior einen glatteren Verlauf als bei einer Modellierung mit SSVESWS. Die Steigung
der numerischen Ergebnisse flachte gegen Ende der Prozesszone ab, dies kénnte an der
endlichen Steigung des Ubergangsbereiches zwischen Haftung und Reibung liegen ([2]).
Fiir den Fall I: Pure Slip wurde die Prozesszone der Faser iiberschitzt, wihrend beim Fall
IT: Slip-Stick die Prozesszone der Matrix zu grofs war. Keine der Modellierungen konnte
einen Bereichswechsel, welchen Z = 1T im analytischen Modell aufweist, darstellen. Die
Abbildung 4.16 zeigt stellvertretend fiir die numerischen Modelle den Schubspannungs-
verlauf des rotationssymmetrischen Modells mit SSVESWS entlang der Prozesszone. Die
Schubspannung stieg an und erreichte ihr Maximum bei ca. Tiee = 100 M Pa, was g
entsprach. Zum Ende der Prozesszone fiel sie ab. Eine konstante Schubspannung ent-
lang der Prozesszone stellte sich nicht ein. Die anderen Modellierungsvarianten wiesen
dhnliche Verldufe auf, jedoch schwankte das Maximum zwischen 7,4, = 55 M Pa und
Tmaz = 120 M Pa.

Insgesamt zeigte sich, dass die numerischen Modelle die Partikelgeschwindigkeiten des
SLM in der selben Grofenordnung wiedergaben, jedoch besonders der Verlauf der Ma-
trixpartikelgeschwindigkeiten nicht akkurat wiedergegeben wurde. Eine konstante Parti-
kelgeschwindigkeit und Bereichswechsel konnten nicht ermittelt werden. Die Prozesszone
wurde im Fall IT zu groft geschitzt. Besonders die numerische Modellierung der Matrix-
partikelgeschwindigkeit sollte weiter untersucht werden.
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Abbildung 4.16: Beispielhafter Schubspannungsverlauf entlang der Prozesszone

Der Vergleich einiger numerischer Berechnungen mit analytischen Ergebnissen aus ([2])
von SRIDHAR et al. sind in Abbildung 4.17 (a) fiir den Fall I: Pure Slip und in (b)
fiir den Fall II: Slip-Stick zu sehen. Die gestrichelten Linien stellen die Faserpartikelge-
schwindigkeit dar, die durchgezogenen die Matrixpartikelgeschwindigkeit, anders als die
in dieser Arbeit erstellten Abbildungen. In ([2]) werden die numerischen Ergebnisse mit
starken und die analytischen Ergebnisse mit diinnen Linien angegeben, in den Abbil-
dungen erscheinen jedoch alle Linienstirken gleich. Fiir beide Félle ist zu sehen, dass
U # numerisch und U t.analytisch zum Grofteil parallel verliefen und das Ende der Prozesszo-
ne mit geringer Abweichung zum SLM erreichten. Anders als beim numerischen Modell,
welches im Verlauf dieser Arbeit ermittelt wurde, war U fnumerisch betragsméfig grofer
als U f,analytisch- Die numerisch berechneten Matrixpartikelgeschwindigkeiten verliefen fiir
beide Fille bis zu den jeweiligen Bereichsgrenzen konstant, was mit dem SLM iiberein-
stimmt. Abschlieffend sanken sie linear zum Ende der Prozesszone ab, welche sie mit
geringer Abweichung zum SLM erreichen. In Abbildung 4.17 (b) verliefen U ¢ numerisch
und Um’nummsch im Bereich von 6 < Z < 11 parallel. Eine Haftung von Faser und Ma-
trix konnte abgebildet werden. Dies war bei den numerischen Modellen, welche fiir diese
Arbeit erstellt wurden, nicht der Fall.
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(a) (b)

Abbildung 4.17: Faser- und Matrixpartikelgeschwindigkeiten entlang der Prozesszone fiir
das analytische und das numerische Modell fiir den Fall I: Pure Slip (a)
und Fall II: Slip-Stick (b). Gestrichelte Linien sind der Faser, durchge-
zogene Linien der Matrix zuzuordnen. Nach (Sridhar, Yang und Cox [2])
markieren diinne Linien das analytische und breite Linien das numeri-
sche Modell, jedoch erscheinen alle Linien in dhnlicher Strichstérke (|2])
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5. Abbildung von Experimenten mit einem numerischen
Modell

In diesem Kapitel wird die Darstellung eines dynamischen Faserauszugsversuchs mit ei-
nem numerischen Modell fiir Hafttrennung behandelt. Dafiir werden zunéchst der Ver-
suchsaufbau und die Versuchsergebnisse kurz dargestellt. Aukerdem wird der Einfluss der
Messposition fiir die Verschiebung untersucht. Anschlieffend wird der Versuch mit einem
rotationssymmetrischen Modell reproduziert, welches abschlieffend mit den Versuchen
verglichen wird. Aufgrund der Abweichungen der numerischen Reibungsmodelle zu den
SLM werden diese nicht mit dem Versuch verglichen.

5.1. Versuche fiir den Einzelfaserauszug von Scheffler et al.

SCHEFFLER et al. haben 2017 (|5]) Faserauszugsversuche fiir alkalibestdndigen glasfa-
serverstidrkten Beton mit u. A. hohen Lastraten durchgefiihrt. Dabei werden fiir das
Experiment neben detaillierten Angaben zu Materialien und Geometrien sowie Kraft-
Verschiebungs-Kurven auch wichtige Parameter fiir die in Abschnitt 2.2 vorgestellten
Modellierungen des Ubergangsbereichs angegeben. Diese Paramter werden in die SLM
aus Abschnitt 2.3 und in die numerischen Modelle aus Abschnitt 3.2 implementiert. Fiir
die Darstellung der Haftung im Ubergangsbereich wird die maximal ertragbare Span-
nung (in diesem Fall handelt es sich um eine Schubspannung) 7™ angegeben, welche im
Experiment als local interfacial shear strength (IFSS, deutsch: Ubergangsflichenscher-
festigkeit) bezeichnet wird. Des Weiteren wird die Reibungs-Schubspannung 7y in Form
des interfacial frictional stress (Ubergangsflichen-Reibungs-Spannung) angegeben ([5]).

5.1.1. Versuchsaufbau und Ergebnisse des Einzelfaserauszug-Versuches

Versuchsaufbau Fiir den Versuch wurden verschieden beschichtete, am Leibnitz-Institut
fiir Polymerforschung Dresden e.V. (IPF) hergestellte, alkalibestéindige Glasfasern zu
unterschiedlichen Tiefen in Matrix-Tropfen aus Beton eingebettet. Diese hatten jeweils
einen Durchmesser von 2,6 mm. Die Faserbeschichtungen bestanden aus Polypropylen
(W) oder Styrol-Butadien-Kautschuk (S), auferdem wurden einige Fasern unbehandelt
(U) gelassen. Der Beton besteht aus Portlandzement 42.5 R, welcher mit Flugasche ge-
bunden wurde. Genauere Angaben zur Herstellung von Faser und Matrix finden sich in
([5]). Die Tabelle 5.1 zeigt die geometrischen und mechanischen Eigenschaften von Fa-
ser und Matrix. Fiir den dynamischen Faserauszug wurde eine Zugbelastung entlang in
axiale Faserrichtung aufgebracht, welche mit einer Geschwindigkeit von 10000 #7* aus
der Matrix gezogen wurde. Dabei betrug die maximale Verschiebung 180 pum ([5]). Fiir
die Dichte von Faser und Matrix mussten in dieser Arbeit Annahmen getroffen werden.
Fiir die Glasfaser wurde eine Dichte von py = 2,0 x 1079 £22¢ ([32]) und fiir Beton eine
Dichte von pp, = 2,4 x 1079 222 ([33]) angenommen.
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Tabelle 5.1: Geometrische und mechanische Eigenschaften von Faser und Matrix (nach

[51)

Eigenschaft ‘ Glasfaser | Betonmatrix ‘
Faserdurchmesser, U-, W-, S-Beschichtung 27 ¢(um) 11...22 -
Radius des Matrix-Tropfens r,,(mm) - 1,3
Axialer Zugmodul E4(GPa) 78 28
Transversaler Zugmodul Ep (GPa) 78 28
Axiale Querkontraktionszahl v 4 0,17 0,2
Transversale Querkontraktionszahl vy 0,17 0,2
Lénge der eingebetteten Faser lompedded 300...2600 -

Versuchsergebnisse Die Ergebnisse des dynamischen Faserauszuges fiir alle drei Be-
schichtungsarten sind in Abbildung 5.1 (a) dargestellt. Die maximal ertragbare Schub-
spannung 7" kann durch Umformung der Gleichung

. %wnh(ﬂe) Cle <In(o+ Vo2 +1
R {Tm\/o?jﬁ + 70 [Clembedded — In (o + \/m)” Cle > In o+ Vo2 +1

(5.1)

berechnet werden. Fj,q,ist die Maximalkraft, ¢ der Faserradius, lempedded die Linge der
eingebetteten Faser und ¢ der Shear-Lag-Parameter nach NAYFEH ist. Des Weiteren ist
79 die Reibungs-Schubspannung, welche nach dem Auftrennen der Verbindung zwischen
Faser und Matrix wirkt. Der Parameter o wird berechnet mit

Tm
=4/ —1. 2
o=\T 52

Eine genaue Berechnung des Shear-Lag-Parameters § findet sich in ([5]), die Mazi-
malkraft Fiq; kann aus dem Kraft-Weg-Diagramm am Punkt B ermittelt werden, sche-
matisch zu sehen in Abbildung 5.1 (b). Die konstante Reibungs-Schubspannung, welche
nach der vollstdndigen Trennung zwischen Faser und Matrix wirkt, berechnet sich aus

E,
T0 —

= 5.3
Wdflembedded ( )

Die Reibungskraft Fj kann aus dem Kraft-Weg-Diagramm am Punkt C ermittelt werden
(vgl. Abbildung 5.1 (b) (|5])). Ausgewéhlte Ergebnisse fiir alle Beschichtungen und zwei
verschiedene Durchmesser, dy = 12 pm und dy = 17 pm, der dynamischen Faserauszugs-
versuche sind in Tabelle 5.2 einsehbar. Neben der Anzahl der Proben werden dort auch die
maximal ertragbaren Schubspannungen und die Reibungs-Schubspannungen angegeben.
Es ist zu erkennen, dass die unbeschichteten Fasern mit 12 pm Durchmesser die grof-
te maximal ertragbare Schubspannung aufweisen. Die hiochste Reibungs-Schubspannung
nach Hafttrennung weisen die Faser-Matrix-Verbédnde mit Styrol-Butadien-Kautschuk-
Beschichtung auf.
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(a) (b)

Abbildung 5.1: (a) Ergebnisse der dynamischen Faserauszugsversuche fiir Fasern mit ver-
schiedenen Beschichtungen (1: Unbeschichtete Faser, 2: Polypropylen-
Beschichtung. 3: Styrol-Butadien-Kautschuk-Beschichtung. (b) Schema-
tisches Kraft-Verschiebungs-Diagramm des Faserauszugs ([5])

Tabelle 5.2: Ergebnisse der Faserauszugs-Versuche fiir verschiedene Beschichtungen und
Durchmesser (nach [5])

Beschichtung Anzahl der Proben | Maximal ertragbare | Schubspannung
Schubspannung in MPa
in MPa
Unbeschichtet, 23 93,24+17,9 4,0+1,0
dy =12 pym
Unbeschichtet 63 84,6 24,3 4,8+1,7
dy =17 pm
Unbeschichtet, 86 86,9 + 23,0 4,6+1,6
beide Durchmesser
Styrol-Butadien- 71 91,8 4+ 20,0 6,8+ 3,1
Kautschuk-
Beschichtung
Polypropylen- 92 75,7+ 17,2 3,5+ 1,2
Beschichtung

5.1.2. Untersuchung der Messposition fiir die Verschiebung

Da aus (|5]) nicht hervorgeht, an welcher Faserposition die Kraft-Weg-Diagramme aus
Abbildung 5.1 (a) ermittelt wurden, soll in diesem Unterabschnitt untersucht werden,
wie grof der Unterschied zwischen einer Messung am belasteten Faserende und am Uber-
gangsbereich zwischen Faser und Matrix ist. Um die Berechnung dieses Unterschiedes zu
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vereinfachen, wurde ein statischer Lastfall angenommen. Eine weitere Annahme ist, dass
sich Faser und Matrix bereits vollstindig voneinander gelést haben und die einzige Kraft
zwischen Faser und Matrix Reibung ist. In Abschnitt 2.1 wurde bereits erwdhnt, dass
dies ab dem Punkt C' der Fall ist (|5]). Weitere Annahmen sind, dass die Dehnung der
freien Lange konstant ist, dass die Matrix dehnstarr ist und dass sich der Faserdurchmes-
ser beim Auszug nicht verdndert. Abbildung 5.2 zeigt das Modell schematisch. Die Faser
haftet nicht an der Matrix, sie ist auf die Linge u; in Folge der Kraft F; herausgezogen.

Abbildung 5.2: Schematisches Modell des Faserauszugs

Die Verschiebung wurde mit MATLAB®) am Punkt I am Ubergang zwischen eingebet-
teter und freier Lange lf,.; sowie am belasteten Faserende am Punkt I1 berechnet. Die
Daten des quasistatischen Faserauszuges wurden von der Kurve 3 in Abbildung 5.3 (a)
mit Hilfe einer GUI (Graphical User Interface, deutsch: Grafische Benutzeroberfliche)
von ([34]) in MATLAB®) iibertragen. In ([5]) finden sich keine Angaben zur freien Lange.
In einem anderen Faserauszugs-Versuch ([7]), welcher ebenfalls am IPF stattfand, wur-
de die freie Linge angegeben mit [f,..; < 50 pum. Fiir die folgende Untersuchung wurde
ltre; = 30 pm angenommen. Der Faserradius wurde als 7y = 0,006 mm angenommen, da
dieser aus Tabelle 5.2 nach ([5]) nicht hervorgeht. Aus der Kraft F; und der Verschiebung
u; des jeweiligen Datenpunktes ¢ wurden anschlieffend die Verschiebungsidnderungen Au
berechnet, fiir den Punkt I mit

F.
Augr; = ﬁui, (5.4)
und fiir den Punkt I7 mit P
Aupr; = KZA (i + lprei) - (5.5)

Die Tabelle 5.3 zeigt fiir in Abbildung 5.3 (b) dargestellte, ausgew#hlte Datenpunkte
(rote Kreuze), die mit (5.4) und (5.5) berechneten Verschiebungsénderungen sowie deren
Verhéltnis AA:[I[J"
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(b)

Abbildung 5.3: (a) Quasistatische Faserauszugsversuche fiir Fasern mit verschiedenen Be-
schichtungen ([5]) (b) Mit GUI ([34]) in MATLAB@®) aus (a) entnommene
Messdaten
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Tabelle 5.3: Ergebnisse der Untersuchung des Unterschiedes zwischen Punkt I und Punkt

17
Verschiebung Punkt I | Verschiebung Punkt I7 | Verhiltnis AA;LIII’Z
0, 00096 0,00232 2,421
0,0026 0,00374 1,439
0,00485 0,00581 1,199
0,00653 0,00734 1,226
0,00803 0,00871 1,084
0, 00876 0,00932 1,063
0,00821 0,00863 1,051
0,00689 0,00718 1,043
0,00323 0,00335 1,038

5.2. Darstellung des Versuches als numerisches Modell

Im Folgenden soll auf die Findung der Parameter eingegangen werden, welche fiir eine
Darstellung der Haftung mit dem TSL notwendig sind. Die maximal ertragbare Schub-
spannung, bevor Schaden auftritt, sowie die Reibungs-Schubspannung sind fiir verschie-
dene Durchmesser und Beschichtungen aus Tabelle 5.2 entnehmbar. Fiir das TSL miissen
aukerdem der Schlupf s, bei der die Schiidigung initiiert wird, und s/, bei der die Ver-
bindung Faser und Matrix vollstdndig versagt, aus dem Kraft-Weg-Diagramm ermittelt
werden. Dabei sind jedoch drei Unschirfen zu beachten: Zum einen die im vorherigen
Abschnitt beschriebene Abweichung der Ergebnisse je nach Verschiebungs-Messposition.
Zum anderen, dass das TSL auf Schlupf basiert, wihrend das Kraft-Verschiebungs-
Diagramm absolute Verschiebungen darstellt. Des Weiteren haben die Faser-Matrix-
Proben aus den Versuchen freie Léngen, welche im analytischen Shear-Lag-Modellen
nicht abgebildet werden.

Fiir die Ermittlung von s™ muss der Punkt gefunden werden, bei dem die Schiadigung
auftritt. Dies ist in Abbildung 5.1 (b) bei Punkt A der Fall. Dieser Punkt kann an
einem Knick im Kraft-Weg-Diagramm detektiert werden, wie theoretische Modelle und
Experimente gezeigt haben (|5]). Aus Abbildung 5.1 (a) ist dieser Knick jedoch fiir keine
Kraft-Weg-Kurve erkennbar, weshalb die Annahme getroffen wurde, dass er bei einer
Verschiebung von 0,0005 mm liegt. SCHEFFLER et al. geben eine lokale IFSS (¥ im
TSL) an, welche im Mittel bei 75,7 M Pa liegt. Aus s™ und der IFFS ergibt sich fiir den
linear elastischen Bereich des TSL eine Steifigkeit von K° = 151400 Aﬁ; 4.

Der Punkt, an dem die Verbindung zwischen Faser und Matrix vollstdndig versagt, ist
in Abbildung 5.1 (b) an der Stelle C' zu finden, an welcher ebenfalls ein “Knick” auftritt
(]5]). Dieser ist an der Kurve 2, welche das Kraft-Weg-Diagramm fiir den Auszug von
mit Polypropylen beschichteten Fasern darstellt, besonders gut erkennbar. Aus diesem
Grund wurde das TSL auf Basis der Kurve 2 erstellt und die Ergebnisse des numerischen
Modells mit dieser verglichen.

Fiir eine Darstellung der Anregung in der Simulation wurden folgende Annahmen ge-
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troffen: Bis zum Versagen der Haftung wird die Faser 0,0011 mm aus dem Beton gezogen
(vgl. Abbildung 5.1), die Auszugsgeschwindigkeit betrdgt 10 ™™ ([5]). Die Auszugszeit
ist somit, wenn von einer linearen Verschiebung ausgegangen wird, 1,1x10~% 5. ([4]) geht
von einer harmonischen Anregung aus, weshalb fiir einen ersten Vergleich mit dem SLM
eine harmonische Weganregung angenommen wird. Die Periode ist ¢ perioge = 4,4 X 1074
s und die Eigenkreisfrequenz somit A\ = tpjﬁ (eine Abbildung der harmonischen Weg-
anregung ist in Abbildung 5.4 (a) zu sehen). Da das SLM von AzzAM keine Erregeram-
plitude C,, oberhalb von s/nutzt, wurde fiir den Vergleich zwischen SLM und numeri-
schem Modell eine Amplitude C,, = 0,0009 mm gewédhlt. Im zweiten Schritt soll das
numerische Modell eine lineare steigende Auslenkung, also einen Auszug mit konstanter
Geschwindigkeit bis u = 0,007 mm erfahren. Dies entspricht der maximalen Verschie-
bung in Abbildung 5.1 (a). Um Rechenzeit zu sparen, wird das rotationssymmetrische
Modell verwendet, da es bei der Simulation der Haftung den Verlauf dhnlich darstellte
wie das Viertelmodell. Die Matrix wurde nicht vollstindig modelliert, ihre Dicke wurde
wie in Abschnitt 4.1 gewéhlt. Das rotationssymmetrische Modell mit freier Lange ist in
Abbildung 5.4 (b) dargestellt.
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(b)

Abbildung 5.4: (a) Anndherung einer Verschiebung mit konstanter Geschwindigkeit
durch eine harmonische Anregung, (b) Rotationssymmetrisches Modell
mit freier Lange

5.3. Vergleich des Numerischen Modells mit den Versuchsergebnissen

In diesem Abschnitt werden die mit den in Tabelle 5.1 stehenden Eigenschaften gebildeten
numerischen Modelle mit den Versuchsergebnissen verglichen. Bevor die Ergebnisse des
numerischen Modells anhand eines Kraft-Verschiebungs-Diagrammes den Versuchsdaten
gegeniibergestellt werden, erfolgt ein Vergleich mit dem SLM von AzzAM. Aufgrund
der fehlenden Reibung im Modell wird kein Verlauf wie in Abbildung 5.1 (a) erwartet.
Numerische Simulationen von quasistatischen Faserauszugsversuchen haben gezeigt, dass
die Reaktionskraft bei Versagen absinkt ([10]). Dies ist in Abbildung 5.5 zu sehen. Fiir das
numerische Modell dieser Arbeit wird deshalb erwartet, dass die Reaktionskraft absinkt,
sobald eine Verschiebung auftritt, die grofer ist als s = 0,0005 mm.
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Abbildung 5.5: Kraft-Verschiebungs-Kurve aus Simulation und quasistatischem Versuch

([101)

Abbildung 5.6 (a) vergleicht die Ergebnisse der numerischen Berechnung einer harmo-
nischen Weganregung mit dem SLM. Das numerische Modell unterschétzte, wie schon in
Kapitel 4.1 beobachtet, die Schubspannung. Aufserdem ist zu erkennen, dass die Léinge
der UDZ z,9 beim numerischen Modell grofer war als beim analytischen. Dies kann ne-
ben der ohnehin auftretenden Abweichung von 5 % daran liegen, dass die Matrix weniger
steif war als beim Vergleich in Kapitel 4.1. Durch die Verschiebung der Matrix wurde
der numerische Schlupf und somit die Schiadigung reduziert (vgl. Abbildung 5.6 (b), in
welcher der numerisch berechnete Schlupf dem des SLM gegeniibergestellt wird). Ein
weiterer Einfluss konnte die grofere Entfernung der Weganregung zur Ubergangsfliiche
sein.
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(b)

Abbildung 5.6: Schubspannung (a) und Schlupf (b) entlang der Ubergangsfliche fiir das
analytische und das numerische Modell mit den Parametern aus den Ver-
suchen von ([5])

Die Abbildung 5.7 (a) zeigt das numerische Modell mit dem Auszug bei konstanter
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Geschwindigkeit bis 0,007 mm zu den Zeitpunkten t; = 8,85x 1075 5, to = 2,95x 1074 5
und to = 4,425x10~* s. Es ist zu erkennen, wie die maximale Schubspannung sich entlang
der Ubergangsfliche bewegte und z, kleiner wurde. In Abbildung 5.7 (b) wird eine
harmonische Anregung einem Auszug mit konstanter Geschwindigkeit gegeniibergestellt.
Dabei fillt auf, dass beide Verldufe gut {ibereinander lagen.
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(b)

Abbildung 5.7: (a) Schubspannung entlang der Ubergangsfliiche bei linear ansteigen-
der Verschiebung des Faserendes zu drei Zeitpunkten, (b) Vergleich der

Schubspannung von harmonischer und linear ansteigender Verschiebung
am Faserende
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Ein Kraft-Weg-Diagramm fiir den Punkt /I aus Abbildung 5.2 fiir den linearen Fa-
serauszug ist in Abbildung 5.8 (a) dargestellt. Im Vergleich zu den Kriften im Kraft-
Weg-Diagramm aus Abbildung 5.1 waren die Reaktionskréfte des Punktes II niedrig,
die des Punktes I waren null. Ein Abfall der Kraft-Weg-Kurve war nicht erkennbar.
Stattdessen lagen die Reaktionskréfte unterhalb der im Versuch aufgetretenen Krifte
und stiegen linear mit der Verschiebung an. In Abbildung 5.8 (b) zu sehen ist, dass sich
die Reaktionskréfte des numerischen Modells auf die Faserspitze beschrankten. In dieser
Arbeit verwendete Viertelmodelle wiesen ebenfalls nur lokale Reaktionskrifte an der Fa-
serspitze auf (vgl. Abbildung 5.8 (¢)). Aufgrund der unplausiblen Ergebnisse konnte die
Untersuchung der Messposition fiir die Verschiebung aus Kapitel 5.1.2 nicht einbezogen
werden.

(b) (c)

Abbildung 5.8: (a) Kraft-Weg-Diagramm fiir den Punkt II, (b) Reaktionskréfte im rota-
tionssymmetrischen Modell (¢) Reaktionskrifte im Viertelmodell
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Zusammenfassend zeigt sich, dass fiir das rotationssymmetrische Modell mit einer frei-
en Linge die UDZ gegeniiber dem SLM vergréfsert wurde. Eine harmonische Anregung
lieferte die selben Ergebnisse wie ein Faserauszug mit konstanter Geschwindigkeit. Ein
Kraft-Weg-Diagramm zeigte einen linearen Anstieg der Reaktionskraft. Ein Abfall infolge
der Schidigung der Ubergangsfliiche konnte nicht dargestellt werden.
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6. Zusammenfassung der Ergebnisse

In dieser Arbeit wurden verschiedene numerische Modelle zur Darstellung von Haftung
und Reibung erstellt und mit analytischen Shear-Lag-Modellen sowie Versuchsergebnis-
sen verglichen. In diesem Kapitel sollen die Ergebnisse der Arbeit kurz zusammengefasst
werden.

Ein Vergleich des rotationssymmetrischen und des Viertelmodells mit dem SLM von
AzzAM zeigte, dass beide numerischen Modelle den analytisch berechneten Verlauf des
Schlupfes §(z, t) gut nachbilden konnten. Der Verlauf der Schubspannungen 7, ymerisch (2, t)
gab fiir beide Modelle den Verlauf von 7apaiytisch(2,t) qualitativ wieder. Im Mittel gab
es eine Abweichung zum SLM von 11 %. Gut abgeschétzt wurde hingegen die Lénge der
UDZ z,9. Das Viertelmodell wies gegeniiber dem rotationssymmetrischen einen glatteren
Schubspannungsverlauf auf, hatte jedoch eine deutlich hohere Rechenzeit. Durch eine ho-
here Netzfeinheit war eine Ann&herung an den Verlauf des SLM moglich, was jedoch die
Rechenzeit in grofien Make erhéhte. Eine Versteifung der Matrix zur Annéherung an das
analytische Modell verbesserte die Ergebnisgiite nicht. Die Genauigkeit des numerischen
Modells von AzzAM aus ([4]) hinsichtlich des Schubspannungsverlaufes und der Lange
der UDZ wurde nicht erreicht.

Eine Simulation der Modelle fiir Reibung in der Ubergangsfliche brachte beim Ver-
gleich mit dem SLM von AzzAM fiir alle Modellierungsvarianten dhnliche Ergebnisse fiir
die Félle Pure Slip und Slip-Stick hervor. In der Regel wurden die Partikelgeschwindigkei-
ten der numerischen Modelle gegeniiber den analytischen unterbewertet, sie lagen jedoch
in der selben Grofsenordnung. Fiir den Fall I wurde die Prozesszone der Faser tiberschétzt,
fiir den Fall TI die der Matrix. Ein Bereichswechsel, wie er beim SLM bei Z = nT vor-
liegt, konnte nicht dargestellt werden. Die verschiedenen Modellierungsvarianten wiesen
keinen Unterschied in den Rechendauern auf. Die Genauigkeit des numerischen Modells
von SRIDHAR et al. aus ([2]) wurde nicht erreicht.

Eine Anpassung des rotationssymmetrischen Haftungsmodells an Versuche zeigte, dass
die Lénge der UDZ gegeniiber der eines SLM mit den selben Parametern fiir das TSL
deutlich vergrofsert wurde. Dies ist auf den grofseren Schlupf und die héhere Entfernung
der Anregung zuriickzufiihren. Ein Vergleich zwischen harmonischer und linear steigender
Weganregung zeigte, dass die Ergebnisse der numerischen Modelle sich nicht voneinan-
der unterscheiden. Ein Kraft-Weg-Diagramm aus dem numerischen Modell ergab keine
plausiblen Ergebnisse.
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7. Fazit und Ausblick

Das Ziel der Untersuchung im Rahmen dieser Arbeit war die Analyse numerischer Mo-
delle im Bezug ihrer Eignung zur Darstellung des Faserauszugs. Dafiir wurde in Kapitel
1 zunéchst ein Einblick in den Stand der Forschung gegeben, in Kapitel 2 wurden die
theoretischen Grundladen des Faserauszugs, Idealisierungen des Ubergangsbereiches und
analytische Modelle, welche den Faserauszug beschreiben, erldutert. Kapitel 3 behandel-
te anschliefend Modellierungsméglichkeiten fiir die Ubergangsfliiche, die Faser und die
Matrix. Die daraus resultierenden Modelle wurden in Kapitel 4 mit den in Kapitel 2
vorgestellten analytischen Modellen sowie mit Referenzlosungen aus der Literatur ver-
glichen. Die Modelle wurden anschliefend in Kapitel 5 auf Parameter eines Versuches
angepasst und ein Vergleich zu diesen gezogen. Abschlieffend wurden die gewonnenen
Erkenntnisse aus den Kapiteln 4 und 5 in Kapitel 6 zusammengefasst.

Die Untersuchungen der Modelle fiir die Haftung mit dem Surface-Based Cohesive
Behavior ergaben, dass sie geeignet sind, den Verlauf des Schlupfes und die Lange der
UDZ gut darzustellen. Der Verlauf der Schubspannung in der Ubergangsfliiche konnte
ebenfalls qualitativ dargestellt werden. Beide numerischen Modelle unterschitzten die
Schubspannungverldufe des SLM im Mittel um 11 %. Durch die Wahl eines rotations-
symmetrischen Modells konnte eine kiirzere Rechenzeit auf Kosten eines weniger glatten
Schubspannungsverlaufes erreicht werden.

Fiir die Reibungssimulation stellte sich heraus, dass die numerischen Modelle die analy-
tischen nur in der Grofenordnung der Partikelgeschwindigkeit und abhéingig vom Fall in
der Grofenordnung der Prozesszone darstellten. Unabhéngig von der Modellierungsart
von Faser, Matrix oder Reibung unterschétzten die numerischen Modelle die Analyti-
schen. Ein Bereichswechsel war ebenfalls nicht erkennbar. Anders als bei der Haftungssi-
mulation gab es fiir rotationssymmetrische und Viertelmodelle keinen Unterschied in der
Rechenzeit. Aufgrund der Abweichungen wurde keine Untersuchung mit Parametern aus
Versuchen durchgefiihrt.

Eine Abweichung des numerischen Modells zum SLM aufgrund der freien Linge und der
Steifigkeit der Matrix konnte ebenfalls gezeigt werden. So war die Lange der UDZ grofser
als die des SLM. Wird statt einer harmonischen eine lineare Weganregung verwendet,
so gibt es nur geringe Abweichungen zum Schubspannungs-Verlauf. Zur Beschreibung
des Faserauszuges in Form eines Kraft-Weg-Diagrammes waren beide Modelle in ihrer
Ausfiihrung aufgrund unplausibler Reaktionskrifte ungeeignet.

Weitere Forschungsschritte konnten deshalb eine bessere Simulation der Reaktionskraf-
te im Faserverbund sein. Durch eine bessere Modellierung der Haftung und insbesondere
der Reibung konnte ein Kraft-Weg-Diagramm realitétsndher dargestellt werden. Dies
konnte durch die Verwendung von Cohesive Elements statt Surface-Based Cohesive Be-
havior gelingen, wie es bei ([4, 2]) der Fall war. Eine bessere Darstellung von Reibung
konnte auch durch ein eigen programmiertes Reibungsgesetz mit User-Subroutinen ge-
lingen. Bei der Haftungssimulation kénnte eine Konvergenzstudie durchgefiihrt werden,
um eine Ndherung an das Shear-Lag-Modell zu erreichen. Sobald beide Mechanismen
den Shear-Lag-Modellen entsprechen, sollte eine Kombination der beiden, z. B. durch
User-Subroutinen erfolgen, um den Faserauszug vollstindig zu modellieren. Ein néchster
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Schritt wire eine numerische Modellierung des dynamischen Auszugs mehrerer Fasern,
um das Verhalten von bewehrtem Beton unter dynamischer Belastung besser darzustel-
len.
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A. Anhang A

MATLAB®)-Skript fiir Shear-Lag-Modelle

clear; close all; clc;

WVerschiedene Shear-Lag-Modelle zur Validierung von FEM-Modellen des
dynamischen Faserauszuges

%Ersteller Skript: Alexander Jannsen mit Matrikelnummer: 2308580

%Fall 1: Modell Azzam (DOI: https://doi.org/10.1016/j.ijmecsci.2016.09.030)
%Fall 2: Modell Sridhar et al. (DOI:https://doi.org/10.1016/50022-5096(03)00035-8)
%Versuchsparameter von Scheffler et al. (https://doi.org/10.1016/j.cemconcomp.2017.08.009)

Fall=2;

%Shear-Lag-Model Azzam----——= === - oo oo

%Anmerkung: x entspricht hier der Koordinate z in der Arbeit

if Fall==1
%Parameter aus Versuchen von Scheffler et al. (https://doi.org/10.1016/j.cemconcomp.2017.08.009)
%Anregung
t_step=0.0011/10;

C_n=0.0009; %Amplitude an Faserspitze in mm 0.0011
lambda=2xpi/ (4*t_step); %Erregerfrequenz in 1/s 2*pi/(4*t_step)

h

h

h

h

A

A

A

% %Shear-stress shear-slip relation

% K0=151400; %Steigung Schubspannung in MPa/mm %155333
% s_m=0.0005; %Schlupfschadensgrenze in mm %0.0005

% s_r=0.08; %Schlupf-Haftungsversagensgrenze in mm %0.08
% s_£=0.0011; %0.0011

% Tau_m=75.5; %Schubspannung, bis zu der Schaden auftritt in MPa %93.2
% Tau_s=138.42; %Schubspannung fiir softening curve in MPa 186.4

h
h
h
h
h
h
h
A

YFaser-Parameter
E_r=78000; %E-Modul Faser in MPa 78000

A_r=pi*0.01~2; %Querschnittsfléche Faser in mm~2 pi*0.012°2
Rho_r=2%10"-9; %Dichte des Fasermaterials in t/mm~3 2%10~-9
a=pix2x0.01; YFaserumfang in mm pix*2x0.012

c_r=sqrt (E_r/Rho_r); %Schallgeschwindigkeit

1=0.4; JFaserlsnge in mm 0.4

inspace(0,1,1000)7;

Vektor mit Positionen auf x-Koordinate

Y- _-
%Paramter von Azzam (DOI: https://doi.org/10.1016/j.ijmecsci.2016.09.030)
C_n=6.125e-2; %Amplitude an Faserspitze in mm

lambda=1e5; %Erregerfrequenz in 1/s

%

Shear-stress shear-slip relation

K0=652; %Steigung Schubspannung in MPa/mm

s_m=0.005; %Schlupfschadensgrenze in mm

.08; %Schlupf-Haftungsversagensgrenze in mm

=0.0941; %Schlupf failure

Tau_m=3.26; %Schubspannung, bis zu der Schaden auftritt in MPa
Tau_s=3.44; %Schubspannung fiir softening curve in MPa

AFaser-Parameter

E_r=72000; %E-Modul Faser in MPa

A_r=3.14e-4; Y%Querschnittsfléche Faser in mm~2
Rho_r=2.7%10"-9; %Dichte des Fasermaterials in t/mm~3
a=6.28e-2; YFaserumfang in mm

c_r=sqrt(E_r/Rho_r); %Schallgeschwindigkeit

1=5; JFaserlinge in mm

x=linspace(0,1,2501); %Vektor mit Positionen auf x-Koordinate
Y-
JWeitere Parameter

kel=(KO*a)/A_r;
w_2=(kel/E_r)-(lambda~2/c_r~2)

w=sqrt (w_2);

lambda_cut=c_r*sqrt(ke1/E_r);
q02=(Tau_s*a)/A_r;

ke2=ke1-(q02/s_m);

Z2=(ke2*A_r)/a;
w_2Strich_2=(abs(ke2)/E_r)+(lambda~2/c_r~2);
w_2Strich=sqrt (w_2Strich_2);

£=0(xr0_alt) (s_m-(q02/ (E_r*w_2Strich_2)))*cos(w_2Strich*(1-xr0_alt))+(w/w_2Strich)*...
s_m¥tanh (w*xr0_alt).*sin(w_2Strich*(1-xr0_alt))-C_n+(q02/(E_r*w_2Strich_2))

xr0=fzero(£,1)

[~,idx_xr0]=min(abs(x-xr0));

NrO=E_r*A_r*w*s_m*tanh (w*xr0) ;

t_start=0; %Anfangszeit in s
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t_end=(2%pi)/(2%lambda); %Zeitdauer in s
t=linspace(t_start,t_end,10)’; %Vektor mit Zeitpunkten

hSchadensfélle
if C_n<=s_m %unbeschidigtes Interface
if w_2>0
for i=1:length(t)
s_Dach(:,i)=(cosh(w*x)/cosh(w*1))*C_n*exp(lixlambdaxt(i)); %Schlupf
Tau_Dach(:,i)=(cosh(w*x)/cosh(w*1))*KO*C_nxexp(1i*lambda*t(i)); %Schubspannung in Interface
N_r_Dach(:,i)=E_r*A_r*w*(sinh(w*x)/cosh(w*1))*C_n*exp(li*lambda*t(i)); %Normalkraft in Faser
P_Dach(1,i)=E_r*A_r*w¥tanh(w*1)*C_n*exp(li*lambda*t(i)); JFaserauszugskraft
end
elseif w_2<0
for i=1:length(t)
s_Dach(:,i)=(C_n/(2%cos(w*1)))*(exp(1i* (wkx+lambda*t(i))) + exp(-1i*(wkx-lambda*t(i)))); %Schlupf
Tau_Dach(:,1)=((KO*C_n)/(2%cos (wx1)))*(exp(1i* (wkx+lambda*t(i))) + exp(-1lix(wxx-lambdaxt(i)))); %Schubspannung in Interface

N_r_Dach(:,i)=((E_r*A_r*1i*wxC_n)/(2*cos(w*1)))* (exp(1i* (wkx+lambda*t(i))) - exp(-1ix(w¥x-lambda*t(i)))); %Normalkraft in Faser

end

elseif w_2==0
s_Dach=C_n*exp (lixlambda_cut*t); %Schlupf
Tau_Dach=KO*C_n*exp(li*lambda_cut*t); %Schubspannung in Interface
N_r_Dach=zeros(1,length(t)); %Normalkraft in Faser

end

else /Beschédigtes Interface
x_UDZ=x(1:idx_xr0,1); %Vektor mit beschédigter Zone
x_DZ=x(idx_xrO+l:end,1); %Vektor mit unbeschédigter Zone

%Unbeschédigte Zone

for i=1:length(t)
s_Dach_UDZ(:,i)=s_m*(cosh(w*x)/cosh(u*xr0))*exp(li*lambdaxt(i));
Tau_Dach_UDZ(:,i)=Tau_m*(cosh(w¥x)/cosh(w*xr0))*exp(1i*lambda*t(i));
N_Dach_UDZ(:,i)=E_r*A_r*wks_m*(sinh(w*x)/cosh(w*xr0))*exp(li*lambda*t(i));

end

%Beschédigte Zone
for i=1:length(t)
s_Dach_DZ(:,i)= ((q02/(E_r*w_2Strich_2))+(s_m-(q02/ (E_r*w_2Strich_2)))*cos(w_2Strich*...
(x-x10) ) +(Nr0/ (E_r*A_r*w_2Strich))*sin(w_2Strich* (x-xr0)))*exp(lixlambdaxt (i));
Tau_Dach_DZ(:,i)=(Z2%(q02/ (E_r*w_2Strich_2))+Tau_s+Z2*(s_m-(q02/ (E_r*w_2Strich_2)))...
*cos(w_2Strich*(x-xr0))+Z2%(Nr0/(E_r*A_r*w_2Strich))*sin(w_2Strich*(x-xr0)))*exp(li*lambdaxt(i));
N_Dach_DZ(:,i)=E_r*A_r*w_2Strich*((-(s_m-q02/(E_r*w_2Strich_2)))*...
sin(w_2Strich*(x-xr0))+(Nr0/(E_r*A_r*w_2Strich))*cos(w_2Strich*(x-xr0)))*exp(lixlambda*t(i));
end
% figure(1)
axsize=15;
fontsize=15;
linewidth_fac=3;

subplot (2,1,1)

plot (x(1:idx_xr0,1),real(s_Dach_UDZ(1:idx_xr0,1)),’r’,’LineWidth’,2)

hold on

plot (x(idx_xrO+1:end,1) ,real(s_Dach_DZ(idx_xrO+l:end,1)),’r’,’LineWidth’,2)
hold off

xlabel(’Position an der Stelle z in mm’,’Interpreter’,’latex’,’FontSize’,fontsize)
ylabel(’Schlupf $\hat{s}$ (z,t) in mm’,’Interpreter’,’latex’,’FontSize’,fontsize)

ax=gca;
ax.FontSize=axsize

grid on

subplot (2,1,2)
plot(x(1:idx_xr0,1),real(Tau_Dach_UDZ(1:idx_xr0,1)),’r?)

hold on
plot(x(idx_xrO+i:end,1),real(Tau_Dach_DZ(idx_xr0+i:end,1)),’r’)
hold off

xlabel(’Position an der Stelle z in mm’,’Interpreter’,’latex’,’FontSize’,fontsize)
ylabel(’Schubspannung $\hat{\tau}$ (z,t) in MPa’,’Interpreter’,’latex’,’FontSize’,fontsize)
ax=gca;
ax.FontSize=axsize
grid on

end

%Shear-Lag-Modell nach Sridhar

elseif Fall==2
o o e e
4Fall I: Pure Slip
Importparameter:
Materialparameter
E_£=100000; %E-Modul Faser in MPa
E_m=46296; %E-Modul Matrix in MPa
nu_£=0.3; %Poissonsche Zahl Faser
nu_m=0.25; %Poissonsche Zahl Matrix
rho_£=3.3654E-08; %Dichte Faser in t/mm~3
rho_m=1.3889e-07; %Dichte Matrix in t/mm"~3
R_f=0.01; %Radius Faser in mm
1_£=0.4; YLinge Faser in mm

z=linspace(0,1_f,201); %Vektor mit Positionen auf z-Koordinate
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£=0.4; %Faservolumenanteil

E_f_Dach=(E_f*(1-nu_£))/((1+nu_£)*(1-2*nu_£));
E_m_Dach=(E_m*(1-nu_m))/((1+nu_m)*(1-2*nu_m));

c_f=sqrt(E_f_Dach/rho_f)
c_m=sqrt (E_m_Dach/rho_m)
t_end=2.85e-8 }Zeit in s

%Fall II: Slip-Stick

/Materialparameter

E_£=100000; %E-Modul Faser in MPa 40000
E_m=4.6296e+04; %E-Modul Matrix in MPa E_f/3
nu_£=0.3; %Poissonsche Zahl Faser

nu_m=0.25; %Poissonsche Zahl Matrix

rho_£=3.3654E-08; %Dichte Faser in t/mm~3

rho_m=1.3889e-09; %Dichte Matrix in t/mm"3

R_£=0.01; JRadius Faser in mm

1_£=0.4; Linge Faser in mm

z=linspace(0,1_f,201); %Vektor mit Positionen auf z-Koordinate
£=0.4; %Faservolumenanteil 0.4

E_f_Dach=(E_f*(1-nu_£))/((1+nu_£)*(1-2*nu_£));
E_m_Dach=(E_mx(1-nu_m))/((1+nu_m)*(1-2*nu_m));

c_f=sqrt(E_f_Dach/rho_£)
c_m=sqrt (E_m_Dach/rho_m)

E_f_Dach=(E_f*(1-nu_£f))/((1+nu_£)*(1-2*nu_£f));
E_m_Dach=(E_m*(1-nu_m))/((1+nu_m)*(1-2*%nu_m));

c_f=sqrt (E_f_Dach/rho_f)
c_m=sqrt (E_m_Dach/rho_m)
t_end=2.86e-8 %Zeit in s

AWeitere Parameter

t0=5e-10; YStartzeit in s
t=linspace(t0,t_end,2)’; %Vektor mit Zeitpunkten
Tau0=100; %Reibungs-Schubspannung im Interface
sigma0=100; %Normalspannung am Faserende

Normalisierungen

Z=(z/R_£)’;

T=(c_f*t)/R_£;

C=c_f/c_m; %Schallgeschwindigkeitsverh&ltnis
phi=(£%E_£)/((1-£)*E_m); %Modulverh&ltnis
tau=(2%Tau0)/E_f; /Normalisierte Interface-Schubspannung

p=(sigmaO*t)/t0; %Zeitabhingige Normalspannung
k=(TauO%c_£*t0)/(sigmaO*R_f) %Inverse Lastrate

Parameter wie im Paper

% C=sqrt(0.5) %Fall I: C=sqrt(1), Fall II C=sqrt(0.5)
% phi=2;

% k=0.05;

% tau=0.005;

% T=10;

JErmittlung der Grenzen CU und CL
eta2=sqrt ((1+phi)/(C~2+phi));
syms etal_sym

etal=double( solve(( (etal_sym~2+2%k*etal_sym-1)*(1+C~2*etal_sym*eta2) + ...
2*k*phi*(1+etal_symketa2)*etal_sym)==0,etal_sym));
etal(etal<0)=[1;

syms CU_sym CL_sym

CU=double (solve ((((etal~2+2xk*etal-1)*(1-CU_sym~2))/(2xk* (etal*(1-CU_sym~2)+...
(1-etal~2)*sqrt ((CU_sym~2+phi)*(1+phi)))))==1,CU_sym));
Cu(cu<0)=[1;

CL=double (solve((((etal~2+2xk*etal-1)*(1-CL_sym~2))/(2*k* (etal*(1-CL_sym~2)+...
(1-etal~2)*sqrt ((CL_sym~2+phi)*(1+phi)))))==-1,CL_sym));

CL(CL<0)=[]

%Regime-Fille

if C>CU %Regime I: Pure Slip
etal=1/C;
eta2=sqrt (1+k~2) -k;
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Z=linspace (0,eta2*T(end),201)’;

limi=etal*T(end);

lim2=eta2*T(end) ;

12=eta2*c_fx*t(end)

% etal=T7x*T;

% eta2=9.5%T;

syms T_sym

%Faser Bereich I:

U_f_s= (tau * (-Z+T_symxeta2).*(Z*(k+eta2)-T_symx (1-kxeta2)))/(2xk*(1+eta2~2));

=diff (U_f_s,T_sym);
V_f=double (subs(V_f_s,T_sym,T(end)));
%Matrix Bereich I
U_m_s_1l=tau*phi*(Z. 2x(1+etal~2%C"2-2%etal*eta2*C~2)+T_sym~2%. ..

(eta2"2-2%etalteta+etal 2keta2"2%C"2))/. ..

(2x(1+etal~2xC~2)*(1-eta2~2%C~2));

V_m_s_1=diff(U_m_s_1,T_sym);
V_m_1i=double(subs(V_m_s_1,T_sym,T(end)));
%Matrix Bereich II
U_m_s_2=((tau*phi)/(2*(1-eta2-2xC"2)))*(Z-eta2*T_sym) ."2;
V_m_s_2=diff (U_m_s_2,T_sym);
V_m_2=double(subs(V_m_s_2,T_sym,T(end)));

[~,idx_1]=min(abs(Z-etal*T(end)))
[~,idx_2]=min(abs(Z-eta2*T(end)))

figure(1)

axsize=30;

fontsize=35;

plot(Z,V_£,’k’,’LineWidth’,1)

hold on

plot(Z(1:idx_1),V_m_1(1:idx_1),’--k’,’LineWidth’,1)

hold on

plot(Z(idx_1:idx_2),V_m_2(idx_1:idx_2),’--k’,’LineWidth’,1)

hold off

grid on
legend(’Faser’,’Matrix’,’’,’Interpreter’,’latex’,’FontSize’,fontsize, ’Position’,[.7 .7 .3 .1])
ylabel(’Partikelgeschwindigkeit $\dot{U}$’,’Interpreter’,’latex’,’FontSize’,fontsize)
xlabel(’Position an der Stelle Z’,’Interpreter’,’latex’,’FontSize’,fontsize)

ax=gca;

ax.FontSize=axsize

elseif C>=CL && CU>=C JRegime II: Slip-Stick
eta2=etal;
etal=etal;

Z=linspace (0,eta2*T(end),1000)’;
liml=etal*T(end) ;
lim2=eta2*T(end) ;

[*,idx_1]=min(abs(Z-etal*T(end)))
[*,idx_2]=min(abs(Z-eta2*T(end)))

syms T_sym

%Faser Bereich I

U_f_s_1=(taux(-Z."2x(2*k+tetal+tetal) +2*Z*T_sym* (1+etal*etal) +T_sym~2x...
(2xk*etal*eta2-etal-eta2)))/(4*kx (1+etal*eta2));

V_f_s_1=diff(U_f_s_1,T_sym);

V_f_1=double(subs(V_f_s_1,T_sym,T(end)));

%Faser Bereich II

U_f_s_2=(tau*(etal~2+2xkxetal-1)*(Z-eta2*T_sym).~2)/(4*k*(l+etal*eta) * (eta2-etal));

V_f_s_2=diff(U_f_s_2,T_sym);

V_f_2=double(subs(V_f_s_2,T_sym,T(end)));

%Matrix Bereich I

U_m_s_1=(tau*(Z. 2% ((etal~2+2%k*etal-1)* (eta2-etal) *C~2+2xk*phi*(1+etal*eta))+T_sym~2%. ..
((etal~2+2*k*etal-1)*(eta2-etal)-2%kkphi*etal~2x(1+etal*eta2))))...

/ (4xk* (1+etal*eta)*(1+etal~2xC~2));

V_m_s_1=diff (U_m_s_1,T_sym);

V_m_1i=double(subs(V_m_s_1,T_sym,T(end)));

%Matrix Bereich II

U_m_s_2=(tau*(etal~2+2*k*etal-1)*(Z-eta2*T_sym).~2)/(4*k*(1+etal*eta)*(eta2-etal));

V_m_s_2=diff (U_m_s_2,T_sym);

V_m_2=double(subs(V_m_s_2,T_sym,T(end)));

figure(1)

axsize=30;

fontsize=35;
plot(Z(1:idx_1),V_f_1(1:idx_1),’k’,’LineWidth’,1)

hold on
plot(Z(idx_1+1:idx_2),V_f_2(idx_1+1:idx_2),’k’,’LineWidth’,1)
hold on

plot(Z(1:idx_1),V_m_1(1:idx_1),’--k’,’LineWidth’,1)

hold on
plot(Z(idx_1+1:idx_2),V_m_2(idx_1+1:idx_2),’--k’,’LineWidth’,1)
hold off
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grid on

legend(’Faser’,”,’Matrix’,",’Interpreter’,’latex’,’FontSize’,fontsize,’Position’,[.7 .7 .3 .1])
ylabel(’Partikelgeschwindigkeit $\dot{U}$’,’Interpreter’,’latex’,’FontSize’,fontsize)
xlabel(’Position an der Stelle Z’,’Interpreter’,’latex’,’FontSize’,fontsize)

ax=gca;

ax.FontSize=axsize

elseif C<=CL %Regime III: Slip Reverse-Slip
eta2=1;

syms etal_sym eta3_sym
equations= [eta3_sym-etal_sym~2%etal3_sym*C~2+2%etal_sym*(etad_sym~2*C~2-1)==0 ,
((etal_sym-1)/(etal_sym+1))+(1/(eta3_sym+1))-(phi*(etad_sym~2-4*etal_sym*eta3_sym+...
etal_sym~2*eta3_sym~2xC~2+2*etal_sym~2))/((1-etal_sym~2%C~2)*(1+eta3_sym~2%C~2))==(1-etal_sym)/(2%k)];
[etal,eta3]=solve(equations,etal_sym,eta3_sym);

etal=double(etal);
etal(etal<0)=[];
etal=etal(etal==real(etal));
etal=sort(etal,’ascend?);
etal=etal(1);
eta3=double(etal);
eta3(etad<0)=[1;
eta3=etal3(eta3==real(etal));
eta3=sort(eta3,’ascend’);
eta3=etal3(1);

Z=linspace (0,eta3*T,100)’;

syms T_sym

%Faser Bereich I

U_f_s_1=(taux(Z. 2x(2*k*(etal-2xeta3-1)-(1+etal)*(1+eta3))...
-T_sym~2%(1+eta3+2*k*eta3+etal*(1+etald-2xk*(etad+2)))...
+2%Z*T_sym* (1+etal) *(1+eta3)))...
/ (4%k* (1+etal) *x (1+eta3));

V_f_s_1=diff(U_f_s_1,T_sym);

V_f_1=double(subs(V_f_s_1,T_sym,T));

%Faser Bereich II

U_f_s_2=(tau*(Z."2*(1+eta3-etal~2*(1+eta3) +2xkx (etal~2-1-2*etal*(1+eta3)))...
+T_sym~2*((etal~2-1)*(1+eta3) +4*xkxetal+2xk*etald* (etal~2+2%etal-1))...
+2*Z*T_sym* (etal~2+4*k*etal-1)*(1+eta3))) /...
(4xk*(etal~2-1)*(1+etal));

V_f_s_2=diff(U_f_s_2,T_sym);

V_f_2=double(subs(V_f_s_2,T_sym,T));

%Faser Bereich III

U_f_s_3=(tau*(Z-eta3*T_sym)."2)/(2%k*(1-eta3"2));

V_f_s_3=diff(U_f_s_3,T_sym);

V_f_3=double(subs(V_f_s_3,T_sym,T));

%Matrix Bereich I

U_m_s_1=(tau*phix(Z. 2% (1+etal~2xC~2-4*etal*etald*C 2+2*eta3"2%C"~2)...
+T_sym~2x(eta3~2-4xetal*eta3+2ketal~2%eta3d ~2xC 2+2xetal~2)))/...
(2% (1-eta1~2xC~2)*(1+eta3-2%C~2));

V_m_s_1=diff (U_m_s_1,T_sym);

V_m_1=double(subs(V_m_s_1,T_sym,T));

U_m_1=double(subs(U_m_s_1,T_sym,T))

%Matrix Bereich II

U_m_s_2=(tau*phi*(Z-eta3*T_sym) .*(Z*(1-etal~2xC~2+4xetal*etald*C"2)...
+T_sym* (eta3-etal~2*eta3*C~2-4%etal)))/...
(2% (etal~2xC~2-1) *(eta3"2xC~2+1));

V_m_s_2=diff (U_m_s_2,T_sym);

V_m_2=double(subs(V_m_s_2,T_sym,T));

U_m_2=double(subs(U_m_s_2,T_sym,T))

[*,idx_1]=min(abs(Z-etal*T))
[¥,idx_2]=min(abs(Z-eta2*T))
[*,idx_3]=min(abs(Z-eta3*T))

plot(Z(1:idx_1),V_£_1(1:idx_1),’k’,’LineWidth’,3)

hold on
plot(Z(idx_1:idx_2),V_f_2(idx_1:idx_2),’r’,’LineWidth’,3)
hold on
plot(Z(idx_2:idx_3),V_f_3(idx_2:idx_3),’r’,’LineWidth’,3)
hold on

plot(Z(1:idx_1),V_m_1(1:idx_1),’--k?,’LineWidth’,3)

hold on
plot(Z(idx_1:idx_3),V_m_2(idx_1:idx_3),’--k’,’LineWidth’,3)
hold off

grid on

xlabel(’Z?)

ylabel(?V?)

legend(’Faser?,’’,??,’Matrix’,?’)

annotation(’arrow’, [0.55 0.75], [0.03 0.03], ’LineWidth’, 3);
annotation(’arrow’, [0.075 0.075], [0.6 0.8], ’LineWidth’, 3);
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ax=gca;
ax.FontSize=30
end
end

B. Anhang B

PyTHON-Skript fiir Rotationssymmetrisches Modell

# -*- coding: mbcs -*-

from part import *

from material import *

from section import *

from assembly import *

from step import *

from interaction import *
from load import *

from mesh import *

from optimization import *
from job import *

from sketch import *

from visualization import *
from connectorBehavior import *

#Ersteller: Alexander Jannsen Matrikelnummer: 2308580

#Parameter Kapitel 4.1: Azzam DOI: https://doi.org/10.1016/j.ijmecsci.2016.09.030
#Parameter Kapitel 4.2: Sridhar et al. DOI:https://doi.org/10.1016/50022-5096(03)00035-8
#Parameter Kapitel 5: Scheffler et al. https://doi.org/10.1016/j.cemconcomp.2017.08.009

#Parameters

#Fdlle

Interface=1 #1: Traction Separation Law bzw. Reibung mit Surface-Based Cohesive Behavior, 2: Reibung mit Shear-stress versus elastic slip
Loadcase=2 #1: Linear steigende Normalspannung, 2: Harmonische Weganregung, 3: Verschiebung mit konstanter Geschwindigkeit

BC=2 #1: Keine RB, 2: Einspannung, 3: x-Symmetrie Faser 4: Symmetrie und Einspannung

#Geometry

r_£f=0.01 #Radius of fiber in mm

1_£f=5 #Length of fiber in mm #Kapitel 4.1: 1_f=5 #Kapitel 4.2: 1_f=0.4 #Kapitel 5: 1_£=0.4

t_r=0.00581 #Stédrke der Matrix in mm

1_free=0.03 #Free length in mm #Kapitel 4.1: 1_free=0.0 #Kapitel 4.2: 1l_free=0.0 #Kapitel 5: 1_£=0.03

#Material

E_£f=72000 #Youngs Modulus of fiber in MPa #Kapitel 4.1: E_f=72000 #Kapitel 4.2: E_f=100000 #Kapitel 5: E_£=78000
nu_£=0.33 #Poissons ratio #Kapitel 4.1: nu_f=0.33 #Kapitel 4.2: nu_f=0.3 #Kapitel 5: nu_£f=0.17

rho_f=2.7e-9 #Density of fiber in t/mm~3 #Kapitel 4.1 rho_f=2.7e-9 Kapitel 4.2 rho_f=3.3654E-08 #Kapitel 5: rho_f=2.0e-9

E_m=72000%10 #Youngs Modulus of fiber in MPa #Kapitel 4.1: E_m=72000%10 #Kapitel 4.2: E_m=46296 #Kapitel 5: E_m=28000
nu_m=0.33 #Poissons ratio #Kapitel 4.1: nu_m=0.33 Kapitel 4.2: nu_m=0.25 #Kapitel 5: nu_m=0.2

rho_m=2.7e-9%10 #Density of fiber in t/mm~3 #Kapitel 4.1 rho_m=2.7e-9%10 Kapitel 4.2

#Fall I: rho_m=1.3889E-07 Fall II: rho_m=1.3889E-09 #Kapitel 5: rho_m=2.4e-9

#Step
t_period=1.57e-5 #time-period in s #Kapitel 4.1: t_period=1.57e-5 #Kapitel 4.2
#Fall I: t_period=2.85E-08 #Kapitel 4.2 Fall II: t_period=2.86E-08 Kapitel 5: t_period=1.1e-4

#Traction Separation Law properties
K_nn=0 #Interface Stiffness in MPa
K_ss=0 #Interface Stiffness in MPa
K_tt=652 #Interface Stiffness in MPa/mm #Kapitel 4.1 K_tt=652 Kapitel 4.2 K_tt=160000 Kapitel 5: K_tt=151400

t_n=3 1 t_n=3.26 Kapitel 4.2 t_n=1e6 Kapitel 5: t_n=3.26
t_s=3.26 #Traction at Damage Initiation #Kapitel 4.1 t_s=3.26 Kapitel 4.2 t_s=100 Kapitel 5: t_s=3.26
t_t=3 1 t_t=83.26 Kapitel 4.2 t_t=100 Kapitel 5: t_t=75.7

s_£=0.0941 #Maximum separation in mm #Kapitel 4.1: s_£f=0.0941 Kapitel 4.2: s_f=1e8 Kapitel 5: s_£=0.0011

#Friction Law properties
fric_coeff=1

Tau_1im=100
K_s1ip=160000

#Load properties

#Harmonische Weganregung

C_n=6.125e-2 #Load amplitude in mm #Kapitel 4.1 C_n=6.125e-2 Kapitel 5: C_n=0.0009

omega=le5 #Circular frequency in 1/s #Kapitel 4.1 omega=le5 Kapitel 5: omega=14280

#Linear steigende Normalspannung

t_start=5e-10

traction_mag=-5700 #Zugspannung am Faserende in MPa :Kapitel 4.2 Fall I: traction_mag=-5700 Fall I: traction_mag=-5720
pressure_mag=-150

#Verschiebung mit konstanter Geschwindigkeit

U_2=0.0011 #Verschiebung in mm
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#Geometry

mdb.models[’Model-1’].ConstrainedSketch(name=?__profile__?, sheetSize=0.1)

mdb.models[’Model-1’].sketches[’__profile__’].sketchOptions.setValues(

decimalPlaces=3, viewStyle=AXISYM)

.models[’Model-1’].sketches[’__profile__’].ConstructionLine(point1=(0.0,

-0.05), point2=(0.0, 0.05))

mdb.models[’Model-1’].sketches[?__profile__’].FixedConstraint (entity=
mdb.models[?Model-1’].sketches[’__profile__’].geometry[2])

mdb.models[’Model-1].sketches[’__profile__’].rectangle(point1=(0.0, 0.0),
point2=(r_f, 1_f+l_free))

mdb.models[’Model-1’].sketches[’__profile__’].CoincidentConstraint(
addUndoState=False, entityl=
mdb.models[’Model-1’].sketches[’__profile__’].vertices[0], entity2=
mdb.models[’Model-1’].sketches[’__profile__’].geometry[2])

mdb.models[’Model-1].Part (dimensionality=AXISYMMETRIC, name=’Fiber’, type=
DEFORMABLE_BODY)

mdb.models[’Model-1’].parts[’Fiber’].BaseShell (sketch=
mdb.models[?Model-1’].sketches[’__profile__’])

del mdb.models[’Model-1’].sketches[’__profile__’]

mdb.models[’Model-1’].ConstrainedSketch(name=?__profile__?, sheetSize=0.1)

mdb.models[’Model-1’].sketches[?__profile__’].sketchOptions.setValues(
decimalPlaces=3, viewStyle=AXISYM)

mdb.models[’Model-1’].sketches[?__profile__’].ConstructionLine(point1=(0.0,
-0.05), point2=(0.0, 0.05))

mdb.models[’Model-1’].sketches[?__profile__’].FixedConstraint (entity=
mdb.models[’Model-1’].sketches[’__profile__’].geometry[2])

mdb.models[’Model-1].sketches[’__profile__’].rectangle(pointi=(r_f, 0.0),
point2=(r_f+t_r, 1_£))

mdb.models[’Model-1].Part (dimensionality=AXISYMMETRIC, name=’Matrix’, type=
DEFORMABLE_BODY)

mdb.models[’Model-1’].parts[’Matrix’].BaseShell (sketch=
mdb.models[’Model-1’].sketches[’__profile__’])

del mdb.models[’Model-1’].sketches[’__profile__’]

md]

13

mdb.models[’Model-1’].parts[?Fiber’].Surface (name=’Surf-Fiber’, sidelEdges=
mdb.models[?Model-1’].parts[’Fiber’] .edges.getSequenceFromMask((’ [#2 17, ),
)

mdb.models[’Model-1’].parts[?Matrix’].Surface(name=’Surf-Matrix’, sidelEdges=
mdb.models[’Model-12].parts[’Matrix’].edges.getSequenceFromMask((’[#8 17,
), )

#Material
mdb.models[’Model-1’].Material (name=’Material-Fiber’)
mdb.models[’Model-1’].materials[’Material-Fiber’].Density(table=((rho_£f, ),
)
mdb.models[’Model-1’] .materials[’Material-Fiber’] .Elastic(table=((E_f,
nu_f), ))
mdb.models[’Model-1’].Material (name=’Material-Matrix’)
mdb.models[’Model-1’].materials[’Material-Matrix’] .Density(table=((rho_m, ),
)
mdb.models[’Model-1’] .materials[’Material-Matrix’].Elastic(table=((E_m,
nu_m), ))
mdb.models[’Model—l’].HomogeneousSolidSection(materia1=’Material—Fiber’, name=
’Section-Fiber’, thickness=None)
mdb.models[’Model-1’].parts[?Fiber’].SectionAssignment (offset=0.0, offsetField=
77, offsetType=MIDDLE_SURFACE, region=Region(
faces=mdb.models[’Model-1’].parts[’Fiber’].faces.getSequenceFromMask (mask=(
'[#1 17, ), )), sectionlame=’Section-Fiber’, thicknessAssignment=
FROM_SECTION)
mdb.models[’Model—l’].HomogeneousSolidSection(material=’Matsrial—Matrix’, name=
'Section-Matrix’, thickness=None)
mdb.models[’Model-1’].parts[?Matrix’].SectionAssignment (offset=0.0,
offsetField=’’, offsetType=MIDDLE_SURFACE, region=Region(
faces=mdb.models[’Model-1’].parts[’Matrix’].faces.getSequenceFromMask (
mask=(’[#1 1’, ), )), sectionName=’Section-Matrix’, thicknessAssignment=
FROM_SECTION)
mdb.models[’Model-1].rootAssembly.DatumCsysByThreePoints(coordSysType=
CYLINDRICAL, origin=(0.0, 0.0, 0.0), pointi=(1.0, 0.0, 0.0), point2=(0.0,
0.0, -1.0))
mdb.models[’Model-1’].rootAssembly.Instance (dependent=0N, name=’Fiber-1’, part=
mdb.models[?Model-1’].parts[’Fiber’])
mdb .models[’Model-1’].rootAssembly.Instance (dependent=0N, name=’Matrix-1’,
part=mdb.models[’Model-1].parts[’Matrix’])

#Step

mdb.models[’Model-1°].ExplicitDynamicsStep (improvedDtMethod=0N, name=
’Dynamic, Explicit’, previous=’Initial’, timePeriod=t_period)

mdb.models[’Model-1].field0utputRequests[’F-Qutput-1’].setValues(variables=(
’$7, ISVAVG?, ’PE’, 'PEVAVG’, 'PEEQ’, 'PEEQVAVG’, °LE’, *U’, 'V?, ’A?,
JRF’, ’CSTRESS’, ’CSDMG’, ’EVF’))

#Interface——-——— - e e
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#mdb.models[’Model-1'].ContactProperty(’FakeProp?’)
#mdb.models[’Model-1’].interactionProperties[?FakeProp’].NormalBehavior (

# allowSeparation=0N, constraintEnforcementMethod=DEFAULT,

# pressurelverclosure=HARD)

#mdb.models[’Model-1’].ContactProperty(’CohesiveProp’)
#mdb.models[’Model-1’].interactionProperties[’CohesiveProp’].CohesiveBehavior (

#  defaultPenalties=0FF, table=((K_nn, K_ss, K_tt), ))
#mdb.models[’Model-1’].interactionProperties[’CohesiveProp’].Damage(evolTable=((

# s_f, ), ), initTable=((t_n, t_s, t_t), ), useEvolution=0N)
#mdb.models[’Model-1’].ContactExp(createStepName=’Dynamic, Explicit’, name=

# ’Cohesive-Interaction?’)
#mdb.models[’Model-1’].interactions[’Cohesive-Interaction’].includedPairs.setValuesInStep(
# stepName=’Dynamic, Explicit’, useAllstar=0N)
#mdb.models[’Model-1’].interactions[’Cohesive-Interaction’].contactPropertyAssignments.appendInStep(
# assignments=((GLOBAL, SELF, ’FakeProp’), (

# mdb.models[’Model-1’].rootAssembly.instances[’Fiber-12].surfaces[’Surf-Fiber’],

# mdb.models[’Model-1’].rootAssembly.instances[’Matrix-1’].surfaces[’Surf-Matrix’],

# ’CohesiveProp’)), steplName=’Dynamic, Explicit’)

if Interface==1:

mdb.models[?Model-1’].ContactProperty(’Normal-Contact’)

mdb.models[’Model-1’].interactionProperties[’Normal-Contact’].NormalBehavior(
allowSeparation=0N, constraintEnforcementMethod=DEFAULT,
pressurelverclosure=HARD)

mdb.models[’Model-1°].ContactProperty(’Traction Separation Law’)

mdb.models[?Model-1’].interactionProperties[’Traction Separation Law’].CohesiveBehavior(
defaultPenalties=0FF, table=((K_nn, K_ss, K_tt), ))

mdb.models[’Model-1’].interactionProperties[’Traction Separation Law’].Damage(
evolTable=((s_f, ), ), initTable=((t_n, t_s, t_t), ), useEvolution=
on)

mdb.models[’Model-1’].ContactExp(createStepName=’Dynamic, Explicit’, name=
’Traction Separation Law?)

mdb.models[’Model-1’].interactions[’Traction Separation Law’].includedPairs.setValuesInStep(
stepName=’Dynamic, Explicit’, useAllstar=0N)

mdb.models[?Model-1’].interactions[’Traction Separation Law’].contactPropertyAssignments.appendInStep (
assignments=((GLOBAL, SELF, ’Normal-Contact’), (
mdb.models[’Model-1’].rootAssembly.instances[’Fiber-1’].surfaces[’Surf-Fiber’],
mdb.models[’Model-1’].rootAssembly.instances[’Matrix-1’].surfaces[’Surf-Matrix’],
’Traction Separation Law’)), stepName=’Dynamic, Explicit?)

elif Interface==2:

mdb.models[?Model-1’].ContactProperty(?Friction?’)

mdb.models[’Model-1’].interactionProperties[’Friction’].NormalBehavior(
allowSeparation=0N, constraintEnforcementMethod=DEFAULT,
pressurelverclosure=HARD)

mdb.models[’Model-1’].interactionProperties[’Friction’].TangentialBehavior (
dependencies=0, directionality=ISOTROPIC, elasticSlipStiffness=K_slip,
formulation=PENALTY, fraction=0.005, maximumElasticS1ip=FRACTION,
pressureDependency=0FF, shearStressLimit=Tau_lim, slipRateDependency=0FF,
table=((fric_coeff, ), ), temperatureDependency=0FF)

mdb.models[?Model-1’].SurfaceToSurfaceContactExp(clearanceRegion=None,
createStepName=’Dynamic, Explicit’, datumAxis=None, initialClearance=0MIT,
interactionProperty=’Friction’, main=
mdb.models[’Model-1’].rootAssembly.instances[’Fiber-1’].surfaces[’Surf-Fiber’]
, mechanicalConstraint=PENALTY, name=’Friction’, secondary=
mdb.models[’Model-1’].rootAssembly.instances[’Matrix-1’].surfaces[’Surf-Matrix’]
, sliding=FINITE)

#mdb.models[?Model-1’].ContactProperty(’Normal-Contact?’)
#mdb.models[?Model-1°].interactionProperties[’Normal-Contact’].NormalBehavior(
#allowSeparation=0N, constraintEnforcementMethod=DEFAULT,
#pressureOverclosure=HARD)
#mdb.models[?Model-12].ContactProperty(’Friction Law?’)
#mdb.models[?Model-1’].interactionProperties[’Friction Law’].TangentialBehavior(
#dependencies=0, directionality=ISOTROPIC, elasticSlipStiffness=K_slip,
#formulation=PENALTY, fraction=0.005, maximumElasticS1ip=FRACTION,
#pressureDependency=0FF, shearStressLimit=Tau_lim, slipRateDependency=0FF,
#table=((fric_coeff, ), ), temperatureDependency=0FF)
#mdb.models[?Model-1’].ContactExp(createStepName=’Dynamic, Explicit’, name=’Friction Law’)
#mdb.models[’Model-1’].interactions[’Friction Law’].includedPairs.setValuesInStep(
# stepName=’Dynamic, Explicit’, useAllstar=0N)
#mdb.models[?Model-1’].interactions[’Friction Law’].contactPropertyAssignments.appendInStep (
# assignments=((GLOBAL, SELF, ’Normal-Contact’), (
# mdb.models[’Model-17] .rootAssembly.instances[?Fiber-1’].surfaces[’Surf-Fiber’],
# mdb.models[’Model-1’].rootAssembly.instances[’Matrix-1°].surfaces[’Surf-Matrix’],
#’Friction Law’)), stepName=’Dynamic, Explicit?)

mdb.models[’Model-1’].TabularAmplitude(data=((t_start, t_start/t_period), (t_period, 1.0)), name=
’Ramp’, smooth=SOLVER_DEFAULT, timeSpan=STEP)

mdb.models[’Model-1’].Pressure (amplitude=’Ramp’, createStepName=’Dynamic, Explicit’,
distributionType=UNIFORM, field=’’, magnitude=traction_mag, name=’Fiber stress’
, region=Region(
side1Edges=mdb.models[’Model-1’].rootAssembly.instances[?Fiber-1’].edges.getSequenceFromMask(
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mask=(’[#1 12, ), )))
mdb.models[?Model-1’] .Pressure (amplitude=UNSET, createStepName=’Dynamic, Explicit?’,
distributionType=UNIFORM, field=’’, magnitude=pressure_mag, name=
’Normal stress on Interface’, region=
mdb.models[?Model-1’].rootAssembly.instances[’Matrix-1’].surfaces[’Surf-Matrix’])
elif Loadcase==2:
mdb.models[’Model-1’] .PeriodicAmplitude(a_0=0.0, data=((0.0, 1.0), ),
frequency=omega, name=’Harmonic’, start=0.0, timeSpan=STEP)
mdb.models[’Model-1’].DisplacementBC (amplitude=’Harmonic’, createStepName=
’Dynamic, Explicit’, distributionType=UNIFORM, fieldName=’’, fixed=0FF,
localCsys=None, name=’Load’, region=Region(
edges=mdb.models[’Model-1’].rootAssembly.instances[’Fiber-1’].edges.getSequenceFromMask (
mask=(’[#4 17, ), )), ul=UNSET, u2=C_n, ur3=UNSET)
elif Loadcase==3:
mdb.models[’Model-1’].TabularAmplitude(data=((0, 0), (t_period, 1.0)), name=
’Ramp’, smooth=SOLVER_DEFAULT, timeSpan=STEP)
mdb.models[?Model-1’].DisplacementBC(amplitude=’Ramp’, createStepName=
’Dynamic, Explicit’, distributionType=UNIFORM, fieldName=’’, fixed=0FF,
localCsys=None, name=’Load’, region=Region(
edges=mdb.models[’Model-1’] .rootAssembly.instances[’Fiber-1’].edges.getSequenceFromMask(
mask=(’[#4 17, ), )), ul=UNSET, u2=U_2, ur3=UNSET)

#RandbedingUNngen - - == == === =~ oo o e
if BC==2:
mdb.models[?Model-1’] .EncastreBC(createStepName=’Dynamic, Explicit’, localCsys=None, name=
’Encastre’, region=Region(
edges=mdb.models[’Model-1’].rootAssembly.instances[’Matrix-12].edges.getSequenceFromMask(
mask=(’[#2 17, ), )))
elif BC==3:
mdb.models[?Model-1’].XsymmBC(createStepName=’Dynamic, Explicit’, localCsys=None, name=
’x-symm’, region=Region(
faces=mdb.models[’Model-1’].rootAssembly.instances[’Fiber-1’].faces.getSequenceFromMask(
mask=(’[#1 17, ), )))
elif BC==4:
mdb.models[?Model-1’] .EncastreBC(createStepName='Dynamic, Explicit’, localCsys=None, name=
’Encastre’, region=Region(
edges=mdb.models[’Model-1’].rootAssembly.instances[’Matrix-17].edges.getSequenceFromMask(
mask=(’[#2 17, ), )))
mdb.models[?Model-1’].XsymmBC(createStepName=’Dynamic, Explicit’, localCsys=None, name=
’x-symm’, region=Region(
faces=mdb.models[’Model-1’].rootAssembly.instances[?Fiber-1’].faces.getSequenceFromMask(
mask=(’[#1 12, ), )))

mdb.models[’Model-1].parts[’Matrix’].seedPart (deviationFactor=0.1,
minSizeFactor=0.1, size=r_£/5)
mdb.models[’Model-1’].parts[’Matrix’].generateMesh()
mdb.models[’Model-1’].parts[’Fiber’].seedPart(deviationFactor=0.1,
minSizeFactor=0.1, size=(6*r_f)/30)
mdb.models[’Model-1’].parts[?Fiber’].generateMesh()
mdb.models[’Model-1’].rootAssembly.regenerate()

#Job

mdb.Job(activateLoadBalancing=False, atTime=None, contactPrint=0FF,
description=’’, echoPrint=0FF, explicitPrecision=SINGLE, historyPrint=0FF,
memory=90, memoryUnits=PERCENTAGE, model=’Model-1’, modelPrint=0FF,
multiprocessingMode=DEFAULT, name=’Job-1’, nodalOutputPrecision=SINGLE,
numCpus=1, numDomains=1, numThreadsPerMpiProcess=1, queue=None,
resultsFormat=0DB, scratch=’’, type=ANALYSIS, userSubroutine=’’, waitHours=
0, waitMinutes=0)

C. Anhang C

PyTtHON-Skript fiir Viertelmodell

# -x- coding: mbcs -*-

from part import *

from material import *
from section import *

from assembly import *
from step import *

from interaction import *
from load import *

from mesh import *

from optimization import *
from job import *

from sketch import *

from visualization import *
from connectorBehavior import *

#Ersteller: Alexander Jannsen Matrikelnummer: 2308580
#Parameter Kapitel 4.1: Azzam DOI: https://doi.org/10.1016/j.ijmecsci.2016.09.030
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#Parameter Kapitel 4.2: Sridhar et al. DOI:https://doi.org/10.1016/50022-5096(03)00035-8
#Parameter Kapitel 5: Scheffler et al. https://doi.org/10.1016/j.cemconcomp.2017.08.009

#Parameters

#Fdlle

Interface=1 #1: Traction Separation Law bzw. Reibung mit Surface-Based Cohesive Behavior, 2: Reibung mit Shear-stress versus elastic slip
Loadcase=2 #1: Linear steigende Normalspannung, 2: Harmonische Weganregung, 3: Verschiebung mit konstanter Geschwindigkeit

BC=2 #1: Keine RB, 2: Einspannung, 3: x-Symmetrie Faser 4: Symmetrie und Einspannung

#Geometry

r=0.01 #Radius of fiber in mm

1_f=5 #Length of fiber in mm #Kapitel 4.1: 1_f=b5 #Kapitel 4.2: 1_f=0.4 #Kapitel 5: 1_f=0.4

t_r=0.00581 #St&drke der Matrix in mm

1_free=0.0 #Free length in mm #Kapitel 4.1: 1_free=0.0 #Kapitel 4.2: 1_free=0.0 #Kapitel 5: 1_£=0.03

#Material

E_£=72000 #Youngs Modulus of fiber in MPa #Kapitel 4.1: E_f=72000 #Kapitel 4.2: E_f=100000 #Kapitel 5: E_£=78000
nu_£=0.33 #Poissons ratio #Kapitel 4.1: nu_f=0.33 #Kapitel 4.2: nu_f=0.3 #Kapitel 5: nu_£=0.17

rho_f=2.7e-9 #Density of fiber in t/mm~3 #Kapitel 4.1 rho_f=2.7e-9 Kapitel 4.2 rho_f=3.3654E-08 #Kapitel 5: rho_f=2.0e-9

E_m=72000%10 #Youngs Modulus of fiber in MPa #Kapitel 4.1: E_m=72000%10 #Kapitel 4.2: E_m=46296 #Kapitel 5: E_m=28000
nu_m=0.33 #Poissons ratio #Kapitel 4.1: nu_m=0.33 Kapitel 4.2: nu_m=0.25 #Kapitel 5: nu_m=0.2

rho_m=2.7e-9%10 #Density of fiber in t/mm~3 #Kapitel 4.1 rho_m=2.7e-9*10 Kapitel 4.2

#Fall I: rho_m=1.3889E-07 Fall II: rho_m=1.3889E-09 #Kapitel 5: rho_m=2.4e-9

#Step
t_period=1.57e-5 #time-period in s #Kapitel 4.1: t_period=1.57e-5 #Kapitel 4.2
#Fall I: t_period=2.85E-08 #Kapitel 4.2 Fall II: t_period=2.86E-08 Kapitel 5: t_period=1.1e-4

#Traction Separation Law properties
K_nn=0 #Interface Stiffness in MPa
K_ss=0 #Interface Stiffness in MPa
K_tt=652 #Interface Stiffness in MPa/mm #Kapitel 4.1 K_tt=652 Kapitel 4.2 K_tt=160000 Kapitel 5: K_tt=151400

t_n=3.26 #Traction at Damage Initiation #Kapitel 4.1 t_n=3.26 Kapitel 4.2 t_n=1e6 Kapitel 5: t_n=3.26
t_s=3.26 #Traction at Damage Initiation #Kapitel 4.1 t_s=3.26 Kapitel 4.2 t_s=100 Kapitel 5: t_s=3.26
t_t=3.26 #Traction at Damage Initiation #Kapitel 4.1 t_t=3.26 Kapitel 4.2 t_t=100 Kapitel 5: t_t=75.7

s_£=0.0941 #Maximum separation in mm #Kapitel 4.1: s_f=0.0941 Kapitel 4.2: s_f=1e8 Kapitel 5: s_£f=0.0011

#Friction Law properties
fric_coeff=1

Tau_1im=100
K_s1ip=160000

#Load properties

#Harmonische Weganregung

C_n=6.125e-2 #Load amplitude in mm #Kapitel 4.1 C_n=6.125e-2 Kapitel 5: C_n=0.0009

omega=1e5 #Circular frequency in 1/s #Kapitel 4.1 omega=1e5 Kapitel 5: omega=14280

#Linear steigende Normalspannung

t_start=5e-10

traction_mag=-5700 #Zugspannung am Faserende in MPa :Kapitel 4.2 Fall I: traction_mag=-5700 Fall I: traction_mag=-5720
pressure_mag=-150

#Verschiebung mit konstanter Geschwindigkeit

U_2=0.0011

#Geometrie
mdb.models[’Model-1’].ConstrainedSketch(name=?__profile__’, sheetSize=0.001)
mdb.models[’Model-1’].sketches[?__profile__’].sketchOptions.setValues(
decimalPlaces=5)
mdb.models[’Model-1’].sketches[?__profile__’].rectangle(point1=(0.0, 0.0),
point2=(-r, r))
mdb.models[’Model-1’].sketches[’__profile__’].FilletByRadius(curvel=
mdb.models[’Model-1’].sketches[’__profile__’].geometry[4], curve2=
mdb.models[’Model-1’].sketches[’__profile__’].geometry[3], nearPoint1=(
-0.000101352095953189, 3.43709980370477e-05), nearPoint2=(
-5.91968127992004e-05, 9.86200175248086e-05), radius=r)
mdb.models[’Model-1].Part (dimensionality=THREE_D, name='Fiber’, type=
DEFORMABLE_BODY)
mdb.models[’Model-1’].parts[’Fiber’].BaseSolidExtrude(depth=1_f+1_free, sketch=
mdb.models[’Model-1°].sketches[’__profile__’])
del mdb.models[’Model-1’].sketches[’__profile__’]
mdb.models[?’Model-1’].ConstrainedSketch(name=?__profile__’, sheetSize=0.001)
mdb.models[’Model-1?].sketches[?__profile__’].sketchOptions.setValues(
decimalPlaces=5)
mdb.models[’Model-1’].sketches[?__profile__’].rectangle(point1=(0.0, 0.0),
point2=(-(r+t_r), r+t_r))
mdb.models[’Model-1’].sketches[’__profile__’].FilletByRadius(curvel=
mdb.models[?Model-1’].sketches[’__profile__’].geometry[4], curve2=
mdb.models[?Model-1’].sketches[’__profile__’].geometry[3], nearPointi=(
-0.000406043254770339, 0.000142564589623362), nearPoint2=(
-0.000187569530680776, 0.000398847740143538), radius=r+t_r)
mdb.models[’Model-1’].sketches[’__profile__’].CircleByCenterPerimeter(center=(
0.0, 0.0), pointi=(-r, 0.0))
mdb.models[’Model-1’].sketches[’__profile__’].CoincidentConstraint (
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addUndoState=False, entityl=
mdb.models[?Model-1’].sketches[’__profile__’].vertices[6], entity2=
mdb.models[?Model-1’].sketches[’__profile__’].geometry[5])

mdb.models[’Model-1’].sketches[?__profile__’].autoTrimCurve (curvel=
mdb.models[?Model-1’].sketches[’__profile__’].geometry[7], pointi=(
-1.61092029884458e-05, -9.84801154118031e-05))

mdb.models[’Model-1’].sketches[?__profile__’].autoTrimCurve (curvel=
mdb.models[?Model-1’].sketches[’__profile__’].geometry[5], pointi=(
-4.79122973047197e-05, -4.27872873842716e-06))

mdb.models[’Model-1’].sketches[?__profile__’].autoTrimCurve (curvel=
mdb.models[’Model-1’].sketches[’__profile__’].geometry[2], pointi=(
-3.66446329280734e-06, 6.63723039906472e-05))

mdb.models[’Model-1].Part (dimensionality=THREE_D, name=’Matrix’, type=
DEFORMABLE_BODY)

mdb.models[’Model-1’].parts[?Matrix’] .BaseSolidExtrude(depth=1_f,
sketch=mdb.models[’Model-1’].sketches[’__profile__’])

del mdb.models[’Model-1’].sketches[’__profile__’]

mdb.models[’Model-1’].parts[’Fiber’].Surface (name=’Surf-Fiber’, sidelFaces=
mdb.models[’Model-1’].parts[’Fiber’].faces.getSequenceFromMask((’[#1 1’, ),
)

mdb .models[’Model-1’].parts[’Matrix’].Surface (name=’Surf-Matrix?,
sidelFaces=
mdb.models[’Model-1’].parts[’Matrix’].faces.getSequenceFromMask((
[#a 17, ), )

#Materialien
mdb.models[’Model-1’].Material (name=’Material-Fiber’)
mdb.models[’Model-1’].materials[’Material-Fiber’].Density(table=((rho_£f, ),
)
mdb.models[’Model-1’] .materials[’Material-Fiber’] .Elastic(table=((E_f,
nu_f), ))
mdb.models[’Model-1’].Material (name=’Material-Matrix’)
mdb.models[’Model-1’].materials[’Material-Matrix’] .Density(table=((rho_m, ),
)
mdb.models[’Model-1’] .materials[’Material-Matrix’].Elastic(table=((E_m,
nu_m), ))
mdb.models[’Model—l’].HomogeneousSolidSection(materia1=’Material—Fiber’, name=
’Section-Fiber’, thickness=None)
mdb.models[’Model—l’].HomogeneousSolidSection(materia1=’Material—Matrix’, name=
’Section-Matrix’, thickness=None)
mdb.models[’Model-1’].parts[?Fiber’].SectionAssignment (offset=0.0, offsetField=
7?7, offsetType=MIDDLE_SURFACE, region=Region(
cells=mdb.models[’Model-1’].parts[’Fiber’].cells.getSequenceFromMask (mask=(
'[#1 17, ), )), sectionlName=’Section-Fiber’, thicknessAssignment=
FROM_SECTION)
mdb.models[’Model-1’].parts[?Matrix’].SectionAssignment (offset=0.0,
offsetField=’’, offsetType=MIDDLE_SURFACE, region=Region(
cells=mdb.models[’Model-1’].parts[’Matrix’].cells.getSequenceFromMask(
mask=(’[#1 1’, ), )), sectionName=’Section-Matrix’, thicknessAssignment=
FROM_SECTION)

#Assembly
mdb.models[’Model-1].rootAssembly.DatumCsysByDefault (CARTESIAN)
mdb.models[’Model-1’].rootAssembly.Instance (dependent=0N, name=’Fiber-1’, part=
mdb.models[?Model-1’].parts[’Fiber’])
mdb.models[’Model-1’].rootAssembly.Instance (dependent=0N, name=
’Matrix-1’, part=mdb.models[’Model-1’].parts[’Matrix’])

#Step
mdb.models[’Model-1°].ExplicitDynamicsStep (improvedDtMethod=0N, name=
’Dynamic, Explicit’, previous=’Initial’, timePeriod=t_period)
mdb.models[’Model-1’].fieldOutputRequests[’F-Output-12].setValues(variables=(
’S3, PSVAVG?, °PE’, PEVAVG®, ’PEEQ’, 'PEEQVAVG’, °LE’, U?, 'V, *A’,
JRF’, ’CSTRESS’, ’CSDMG’, ’EVF’))
#Interaction
if Interface==1:
mdb.models[’Model-1’].ContactProperty(’Cohesive’)
mdb.models[?Model-1’].interactionProperties[’Cohesive’].CohesiveBehavior(
defaultPenalties=0FF, table=((0.0, 0.0, 652.0), ))
mdb.models[?Model-1’].interactionProperties[’Cohesive’].Damage(evolTable=((
0.0941, ), ), initTable=((3.26, 3.26, 3.26), ), useEvolution=0N)
mdb.models[?Model-1’].ContactProperty(’Normal Contact’)
mdb.models[’Model-1’].interactionProperties[’Normal Contact’].NormalBehavior(
allowSeparation=0N, constraintEnforcementMethod=DEFAULT,
pressurelverclosure=HARD)
mdb.models[?Model-1’].ContactExp(createStepName=’Dynamic, Explicit’, name=
’Cohesive’)
mdb.models[?Model-1’].interactions[’Cohesive’].includedPairs.setValuesInStep(
stepName=’Dynamic, Explicit’, useAllstar=0N)

mdb.models[?Model-1’].interactions[’Cohesive’].contactPropertyAssignments.appendInStep(

assignments=((GLOBAL, SELF, ’Normal Contact’), (
mdb.models[?Model-1’].rootAssembly.instances[’Fiber-1’].surfaces[’Surf-Fiber’],

mdb.models[?Model-1’].rootAssembly.instances[’Matrix-1’].surfaces[’Surf-Matrix’],

YCohesive’)), stepName=’Dynamic, Explicit’)
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elif Interface==2:

mdb.models[?Model-1’].ContactProperty(?Friction?’)

mdb.models[’Model-1’].interactionProperties[’Friction’].NormalBehavior(
allowSeparation=0N, constraintEnforcementMethod=DEFAULT,
pressurelverclosure=HARD)

mdb.models[’Model-1’].interactionProperties[’Friction’].TangentialBehavior (
dependencies=0, directionality=ISOTROPIC, elasticSlipStiffness=K_slip,
formulation=PENALTY, fraction=0.005, maximumElasticS1ip=FRACTION,
pressureDependency=0FF, shearStressLimit=Tau_lim, slipRateDependency=0FF,
table=((fric_coeff, ), ), temperatureDependency=0FF)

mdb.models[?Model-1’].SurfaceToSurfaceContactExp(clearanceRegion=None,
createStepName=’Dynamic, Explicit’, datumAxis=None, initialClearance=0MIT,
interactionProperty=’Friction’, main=

mdb.models[’Model-1’] .rootAssembly.instances[’Fiber-1’].surfaces[’Surf-Fiber’]
, mechanicalConstraint=PENALTY, name=’Friction Law’, secondary=

mdb.models[?Model-1’].rootAssembly.instances[’Matrix-1’].surfaces[’Surf-Matrix’]
, sliding=FINITE)

if Loadcase==1:
mdb.models[’Model-1’].TabularAmplitude(data=((t_start, t_start/t_period), (t_period, 1.0)), name=
'Ramp’, smooth=SOLVER_DEFAULT, timeSpan=STEP)
mdb.models[?Model-1’] .Pressure (amplitude=’Ramp’, createStepName=
’Dynamic, Explicit’, distributionType=UNIFORM, field=’’, magnitude=traction_mag,
name=’Fiber stress’, region=Region(
sidelFaces=mdb.models[’Model-1’].rootAssembly.instances[?Fiber-1’].faces.getSequenceFromMask(
mask=(’[#10 17, ), )))
mdb.models[’Model-1’] .Pressure (amplitude=UNSET, createStepName=’Dynamic, Explicit’,
distributionType=UNIFORM, field=’’, magnitude=pressure_mag, name=
’Normal stress on Interface’, region=
mdb.models[’Model-1’].rootAssembly.instances[’Matrix-1’].surfaces[’Surf-Matrix’])
elif Loadcase==2:
mdb.models[’Model-1’] .PeriodicAmplitude (a_0=0.0, data=((0.0, 1.0), ),
frequency=omega, name=’Harmonic’, start=0.0, timeSpan=STEP)
mdb.models[?Model-1’].DisplacementBC(amplitude='Harmonic’, createStepName=
’Dynamic, Explicit’, distributionType=UNIFORM, fieldName=’’, fixed=0FF,
localCsys=None, name=’Load’, region=Region(
faces=mdb.models[’Model-1’].rootAssembly.instances[?Fiber-1’].faces.getSequenceFromMask(
mask=(’[#8 17, ), )), ul=UNSET, u2=UNSET, u3=C_n, uril=UNSET, ur2=UNSET,
ur3=UNSET)
elif Loadcase==3:
mdb.models[’Model-1’].TabularAmplitude(data=((0, 0), (t_period, 1.0)), name=
'Ramp’, smooth=SOLVER_DEFAULT, timeSpan=STEP)
mdb.models[?Model-1’].DisplacementBC(amplitude=’Ramp’, createStepName=
’Dynamic, Explicit’, distributionType=UNIFORM, fieldName=’’, fixed=0FF,
localCsys=None, name=’Load’, region=Region(
faces=mdb.models[’Model-1’].rootAssembly.instances[’Fiber-1’].faces.getSequenceFromMask(
mask=(’[#8]°, ), )), ul=UNSET, u2=UNSET, u3=U_2, url=UNSET, ur2=UNSET,
ur3=UNSET)

#Randbedingungen - - —— - - —— - - - - o -
mdb.models[’Model-1].XsymmBC(createStepName=’Dynamic, Explicit’, localCsys=None
, name=’x_symm’, region=Region(
faces=mdb.models[’Model-1’].rootAssembly.instances[’Fiber-1’].faces.getSequenceFromMask (
mask=(?[#2 17, ), )+\
mdb.models[’Model-1’].rootAssembly.instances[’Matrix-12].faces.getSequenceFromMask (
mask=(’[#2 17, ), )))
mdb.models[’Model-1’].YsymmBC(createStepName=’Dynamic, Explicit’, localCsys=None
, name=’y-symm’, region=Region(
faces=mdb.models[’Model-1’].rootAssembly.instances[’Fiber-1’].faces.getSequenceFromMask(
mask=(’[#4 17, ), )+\
mdb.models[’Model-1’].rootAssembly.instances[’Matrix-12].faces.getSequenceFromMask(
mask=(’[#8 17, ), )))
if BC==2:
mdb.models[?Model-1’] .EncastreBC(createStepName=’Dynamic, Explicit’, localCsys=
None, name=’Encastre’, region=Region(
faces=mdb.models[’Model-1’].rootAssembly.instances[’Matrix-1’].faces.getSequenceFromMask(
mask=(’[#1 12, ), )))
elif BC==3:
mdb.models[?Model-1’].XsymmBC(createStepName=’Dynamic, Explicit’, localCsys=
None, name=’x-symm-Fiber’, region=Region(
faces=mdb.models[’Model-17].rootAssembly.instances[?Fiber-1’].faces.getSequenceFromMask (
mask=(?[#1 12, ), )))
mdb.models[?Model-1’].YsymmBC(createStepName=’Dynamic, Explicit’, localCsys=
None, name=’y-symm-Fiber?’, region=Region(
faces=mdb.models[’Model-1’].rootAssembly.instances[?Fiber-1’].faces.getSequenceFromMask(
mask=(’[#1 12, ), )))
elif BC==4:
mdb.models[?Model-1’].EncastreBC(createStepName=’Dynamic, Explicit’, localCsys=
None, name=’Encastre’, region=Region(
faces=mdb.models[’Model-1’].rootAssembly.instances[’Matrix-1’].faces.getSequenceFromMask(
mask=("[#1 17, ), )))
mdb.models[?Model-1’].XsymmBC(createStepName=’Dynamic, Explicit’, localCsys=
None, name=’x-symm-Fiber’, region=Region(
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faces=mdb.models[’Model-1’].rootAssembly.instances[’Fiber-1’].faces.getSequenceFromMask(
mask=(?[#1 17, ), )))

mdb.models[?Model-1’].YsymmBC(createStepName=’Dynamic, Explicit’, localCsys=
None, name=’y-symm-Fiber?’, region=Region(
faces=mdb.models[’Model-1’].rootAssembly.instances[?Fiber-1’].faces.getSequenceFromMask (
mask=(’[#1 12, ), )))

mdb.models[’Model-1’].parts[’Matrix’].seedPart (deviationFactor:
minSizeFactor=0.1, size=r/5)
mdb.models[’Model-1].parts[’Matrix’].generateMesh()
mdb.models[’Model-1’].parts[’Fiber’].seedPart(deviationFactor=0.1,
minSizeFactor=0.1, size=(6*r)/30)
mdb.models[’Model-1’].parts[?Fiber’].generateMesh()
mdb.models[’Model-1’].rootAssembly.regenerate()

#Job

mdb. Job(activateLoadBalancing=False, atTime=None, contactPrint=0FF,
description=’’, echoPrint=0FF, explicitPrecision=SINGLE, historyPrint=0FF,
memory=90, memoryUnits=PERCENTAGE, model=’Model-1’, modelPrint=0FF,
multiprocessingMode=DEFAULT, name=’Job-1’, nodalOutputPrecision=SINGLE,
numCpus=1, numDomains=1, numThreadsPerMpiProcess=1, queue=None,
resultsFormat=0DB, scratch=’’, type=ANALYSIS, userSubroutine=’’, waitHours=
0, waitMinutes=0)
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