
Masterarbeit
Jan Erich Klaus Wolter

Deep Reinforcement Learning
zur Maximierung des Gewinns
eines Würfelspiels

FAKULTÄT TECHNIK UND INFORMATIK
Department Informations- und Elektrotechnik

Faculty of Engineering and Computer Science
Department of Information and Electrical Engineering

HOCHSCHULE FÜR ANGEWANDTE
WISSENSCHAFTEN HAMBURG
Hamburg University of Applied Sciences

Masterarbeit eingereicht im Rahmen der Masterprüfung
im Studiengang Master of Science Automatisierung
am Department Informations- und Elektrotechnik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr.-Ing. Marc Hensel
Zweitgutachter: Prof. Dr. Florian Wenck

Eingereicht am: 11. Juli 2025

Jan Erich Klaus Wolter

Deep Reinforcement Learning zur Maximierung des
Gewinns eines Würfelspiels

Jan Erich Klaus Wolter

Thema der Arbeit

Deep Reinforcement Learning zur Maximierung des Gewinns eines Würfelspiels

Stichworte

Reinforcement Learning, Deep Learning, Deep Reinforcement Learning

Kurzzusammenfassung

In dieser Arbeit wird das Prinzip des Deep Reinforcement Learnings untersucht. Hierzu
soll am Beispiel eines Würfelspiels eine Lernumgebung aufgebaut und zwei verschiedene
Algorithmen implementiert und evaluiert werden. Am Ende soll ein Demonstrator für das
Deep Reinforcement Learning entstehen, der als Grundlage für weiterführende Arbeiten
in diesem Bereich genutzt werden kann.

Jan Erich Klaus Wolter

Title of Thesis

Deep reinforcement learning to maximize the win of a dice game

Keywords

Reinforcement Learning, Deep Learning, Deep Reinforcement Learning

Abstract

This thesis examines the principle of deep reinforcement learning. For this purpose, a
learning environment will be set up using the example of a dice game and two different
algorithms will be implemented and evaluated. In the end, a demonstrator for deep
reinforcement learning will be created that can be used as a basis for further work in this
area.

iii

Inhaltsverzeichnis

Abbildungsverzeichnis vii

Tabellenverzeichnis x

1 Einleitung 1
1.1 Motivation . 1
1.2 Ziel dieser Arbeit . 2

2 Grundlagen 4
2.1 Spielregeln . 4
2.2 Reinforcement Learning . 5

2.2.1 Markov-Entscheidungsprozess . 6
2.2.2 Policy . 8

2.3 Deep Learning . 11
2.3.1 Das Perzeptron . 11
2.3.2 Neuronales Netz . 13
2.3.3 Gradientenverfahren . 15
2.3.4 Aktivierungsfunktionen . 17
2.3.5 Backpropagation . 19
2.3.6 Gewichtsinitialisierung . 20
2.3.7 Verlustfunktion . 22
2.3.8 Einstellung Hyperparameter . 23
2.3.9 Herausforderung des Trainierens von neuronalen Netzen 25

2.4 Algorithmen . 32
2.4.1 Tabellenbasierte Lösungsverfahren 33
2.4.2 Approximierte Lösungsverfahren 35

3 Stand der Wissenschaft 39
3.1 Der Ursprung . 39

iv

Inhaltsverzeichnis

3.2 Arbeiten mit modellfreien Lösungsansätzen 41

4 Anforderungsanalyse 44
4.1 Systembeschreibung . 44
4.2 Zielgruppen . 45

4.2.1 Auftraggeber . 45
4.2.2 Autor der Arbeit . 46
4.2.3 Interessierte an Künstlicher Intelligenz 46
4.2.4 Spieler . 46
4.2.5 Weiterentwickler . 46

4.3 Die KI-Agenten und die Simulationsumgebung 47
4.3.1 Anwendungsfälle . 47
4.3.2 Anforderungen . 48

4.4 Physischer Demonstrator . 50
4.4.1 Anwendungsfälle . 50
4.4.2 Anforderungen . 50

5 Konzept 52
5.1 Software . 52

5.1.1 Entwicklungsumgebung und Programmiersprache 52
5.1.2 Machine Learning Framework . 53
5.1.3 Simulationsumgebung . 53

5.2 Lernstrategie des Spiels Yahtzee . 54
5.3 Der Agent . 55

5.3.1 System mit einem Agenten . 55
5.3.2 Methoden . 57

6 Entwicklung der Simulationsumgebung 59
6.1 OpenAI Gymnasium API . 59
6.2 Die benutzerdefinierte Umgebung Yahtzee 60

7 Entwicklung der Agenten 68
7.1 Aufbau der Agenten Klassen . 68

7.1.1 Q-Agent . 68
7.1.2 DQN-Agent . 73

7.2 Training der Agenten . 83
7.2.1 Vortrainingsfunktionen . 83

v

Inhaltsverzeichnis

7.2.2 Training des Q-Agenten . 84
7.2.3 Training des DQN-Agenten . 90

8 Evaluierung 100
8.1 Reinforcement- vs Deep Reinforcement-Learning 100
8.2 Prüfung der Anforderungen . 101

9 Fazit und Ausblick 103

Literaturverzeichnis 105

A Anhang 110
Selbstständigkeitserklärung . 111

vi

Abbildungsverzeichnis

2.1 Punktetabelle Yahtzee aus [10]. 4
2.2 Prinzip des Reinforcement Learnings aus [7]. 7
2.3 Darstellung eines Perzeptrons nach Perrotta [24]. 12
2.4 Aufbau eines tiefen neuronalen Feedforward Netzes [22]. 13
2.5 Gradientenverfahren [8]. 15
2.6 Fallstricke des Gradienten [8]. 17
2.7 Sättigung der Sigmoid-Aktivierungsfunktion [8]. 27
2.8 Leaky ReLU-Aktivierungsfunktion [8]. 27
2.9 ELU-AKtivierungsfunktion [8]. 28
2.10 Reinforcement Learning in Kombination mit einem neuronalen Netzwerk

[19]. 36

4.1 Systemumgebung. 45
4.2 Anwendungsfalldiagramm der Software. 48

5.1 Beispiel einer Yahtzee Punktetabelle mit den einstellbaren Trainingsberei-
chen. 55

5.2 Aufbau des System mit links einem Agenten und rechts zwei Agenten. . . 56

6.1 Klassendiagramm der benutzerdefinierten Umgebung für Yahtzee. 63

7.1 Q-Learning Algorithmus aus [34]. 69
7.2 Klassendiagramm des Q-Agenten. 70
7.3 (a) verrauschtes Diagramm (b) lokal gemitteltes Diagramm mit einer Fens-

tergröße von 100. 71
7.4 DQN-Algorithmus aus [21]. 74
7.5 Klassendiagramm des DQN-Agenten. 75

vii

Abbildungsverzeichnis

7.6 Ergebnisse der Vortrainingsfunktionen (a) Verlauf der Punktzahl vom Trai-
ning des Q-Agenten mit der pretrain-Methode, (b) Verlauf der Punkt-
zahl vom Training des Q-Agenten mit der pretrain2-Methode, (c) Verlauf
der Punktzahl vom Training des DQN-Agenten mit der pretrain-Methode
und (d) Verlauf der Punktzahl vom Training des DQN-Agenten mit der
pretrain2-Methode. 85

7.7 Wiederholungswürfe der Evaluation mit unterschiedlichen Diskontierungs-
faktoren (a) 0,99 und (b) 0,1. 88

7.8 Temporale Difference von (a) 10.000 Episoden, (b) 100.000 Episoden und
(c) 1.000.000 Episoden mit den Parametern aus Listing 7.3. 89

7.9 Temporale Difference unterschiedlicher Diskontierungsfaktoren (a) 0,1 und
(b) 0,4. 90

7.10 Diagramme vom PK (a) Verlustfunktion, (b) durchschnittliche Gesamt-
punktzahl pro Episode, (c) Anzahl der Wiederholungswürfe pro Episode
während des Trainings und (d) Anzahl der Wiederholungswürfe pro Epi-
sode während der Evaluation. 93

7.11 Diagramme vom PKR (a) Anzahl der Wiederholungswürfe pro Episode
während des Trainings und (b) Anzahl der Wiederholungswürfe pro Epi-
sode während der Evaluation. 93

7.12 Diagramme vom Min∆ (a) Verlustfunktion, (b) durchschnittliche Gesamt-
punktzahl pro Episode, (c) Anzahl der Wiederholungswürfe pro Episode
während des Trainings und (d) Anzahl der Wiederholungswürfe pro Epi-
sode während der Evaluation. 94

7.13 Diagramme vom RWK (a) Anzahl der Wiederholungswürfe pro Episode
während des Trainings für 1.000 Episoden, (b) Anzahl der Wiederholungs-
würfe pro Episode während des Trainings für 10.000 Episoden, (c) Verlauf
der Gesamtpunktzahl für 1.000 Episoden, (d) Verlauf der Gesamtpunkt-
zahl für 10.000 Episoden, (e) Verlauf der Verlustfunktion für 1.000 Episo-
den und (f) Verlauf der Verlustfunktion für 10.000 Episoden. 96

7.14 Diagramme vom NRWK (a) Verlauf der Verlustfunktion für 1.000 Episo-
den und (b) Verlauf der Verlustfunktion für 10.000 Episoden. 97

7.15 Diagramme vom R-U-M-Training. (a) durchschnittliche Gesamtpunktzahl
pro Episode, (b) Verlustfunktion und (c) Anzahl der Wiederholungswürfe
pro Episode während des Trainings. 98

viii

Abbildungsverzeichnis

7.16 Diagramme von der R-U-M-Evaluation. (a) durchschnittliche Gesamtpunkt-
zahl pro Episode, (b) Verlustfunktion und (c) Anzahl der Wiederholungs-
würfe pro Episode während des Trainings. 99

7.17 Optimierte Verlustfunktionen von O1-O5 (a) O1 und O2: Verwendung des
reward_ratio und Erhöhung der Episodenanzahl, (b) O3: Anpassung der
Lernrate, (c) O3: Reduzierung der Schichten des NN und (d) O5: Größe
Replay Buffer = Batchgröße gesetzt. 99

ix

Tabellenverzeichnis

3.1 Punktzahl und Standardabweichung pro Kategorie ohne extra Yahtzee Bo-
nus und Joker [36]. 40

3.2 Durchschnittliche Gesamtpunktzahl verschiedener Agenten [14]. 43

5.1 Kriterien für ein ein Agenten- oder zwei Agentensystem. 57

7.1 Die durchschnittliche Gesamtpunktzahl des Lernschrittweitentests. 86
7.2 Die durchschnittliche Gesamtpunktzahl nach dem Diskontierungsfaktortests. 87
7.3 Die durchschnittliche Gesamtpunktzahl nach Zunahme der Trainingsepi-

soden. 88
7.4 Punkte pro Kategorie in Abhängigkeit der Trainingsepisoden. 89
7.5 Zusammenfassung der Belohnungssysteme. 92
7.6 Erreichte Punkte pro Kategorie mit der R-U-M. 97

x

1 Einleitung

Im Folgenden werden die Motivation und das Ziel der Arbeit beschrieben, um einen
Überblick zugeben.

1.1 Motivation

Künstliche Intelligenz (KI) zählt heute zu den einflussreichsten Technologien der digitalen
Transformation. Ihre Einsatzmöglichkeiten reichen von der Bild- und Spracherkennung
über automatisierte Entscheidungsprozesse bis hin zur Optimierung komplexer Systeme
in Wirtschaft und Gesellschaft. In jüngerer Vergangenheit konnte insbesondere der Be-
reich der industriellen Prozessoptimierung durch KI signifikante Fortschritte erzielen. So
gelang es beispielsweise Google, mithilfe intelligenter KI-Systeme den Energieverbrauch
seiner Rechenzentren um bis zu 40% zu reduzieren – durch eine automatisierte, adaptive
Steuerung der Kühlsysteme auf Basis lernender Algorithmen [7]. Auch in Bereichen wie
der Verkehrssteuerung, der Logistik oder der dynamischen Preisgestaltung hat KI bereits
messbaren Einfluss auf Effizienz, Kosten und Nutzererfahrung. [1, 33, 18]

Ein besonders aktives Forschungsfeld innerhalb der KI ist das sogenannte Deep Reinfor-
cement Learning (DRL). DRL kombiniert das klassische Reinforcement Learning (RL),
bei dem Agenten durch Rückmeldung aus der Umgebung lernen, optimale Handlungen zu
wählen, mit Deep Learning (DL). Dieses ermöglicht es auch komplexe, hochdimensionale
Zustände effizient zu verarbeiten. Die Verbindung macht DRL besonders geeignet für
anspruchsvolle Aufgaben mit großen Zustandsräumen und unsicheren Handlungskonse-
quenzen. In der Praxis findet DRL heute Anwendung in so unterschiedlichen Feldern wie
dem autonomen Fahren, der Robotik oder dem algorithmischen Handel. Ein prominentes
Beispiel für den Erfolg dieser Methode ist der historische Sieg des DRL-Systems Alpha-
Go von Google DeepMind über den damaligen Weltmeister Lee Sedol im Jahr 2016. [2, 32]

1

1 Einleitung

Angesichts der zunehmenden Bedeutung von DRL in Forschung und Praxis stellt sich
die Frage, wie diese Methode im Detail funktioniert, welche Konzepte ihr zugrunde lie-
gen und wie sich ihr Lernverhalten anhand praktischer Beispiele untersuchen lässt. Ziel
dieser Arbeit ist es daher, die Methodik des Deep Reinforcement Learning systematisch
zu analysieren und am Beispiel des Würfelspiels Yahtzee experimentell zu erproben.

Das Spiel Yahtzee bietet sich aus mehreren Gründen als geeignetes Testfeld für DRL-
Ansätze an. Zum einen sind die Spielregeln vergleichsweise einfach und gut formal be-
schreibbar. Zum anderen lässt sich das Spiel in digitaler Form problemlos simulieren,
was eine effiziente Datengewinnung für das Training von Agenten ermöglicht. Beson-
ders relevant ist darüber hinaus die Balance zwischen Zufall und Strategie, die das Spiel
auszeichnet: Während Spiele wie Schach oder Go stark deterministisch sind, spielt beim
Würfeln das Zufallselement eine zentrale Rolle. Dies stellt spezielle Anforderungen an die
Modellierung des Lernverhaltens eines Agenten, insbesondere in Bezug auf Unsicherheit,
Exploration und langfristige Planung.

Im Rahmen dieser Arbeit soll zunächst ein einfacher Reinforcement-Learning-Algorithmus
entwickelt und auf das Spiel Yahtzee angewendet werden. Anschließend wird dieser An-
satz um Deep Learning-Komponenten erweitert, um auch komplexere Zustandsräume
verarbeiten zu können. Ein besonderer Fokus liegt auf dem Vergleich zwischen kurzfristi-
gem und langfristigem Lernen sowie auf der Untersuchung des Einflusses der Zufallskom-
ponente auf das Lernverhalten. Frühere Studien [5, 14, 35] bieten dabei eine Grundlage,
auf die in der vorliegenden Arbeit aufgebaut wird.

Die Ergebnisse dieser Arbeit sollen sowohl einen praxisnahen Einstieg in die Thematik
des Deep Reinforcement Learnings ermöglichen als auch ein neuartiges, reproduzierbares
Beispiel für weiterführende Forschungsarbeiten in diesem Bereich liefern.

1.2 Ziel dieser Arbeit

Ziel dieser Arbeit ist die Untersuchung und Anwendung von Deep Reinforcement Lear-
ning (DRL) am Beispiel des Würfelspiels Yahtzee. Zu diesem Zweck soll ein DRL-
Algorithmus entwickelt, implementiert und hinsichtlich seiner Leistungsfähigkeit im Hin-
blick auf die Erreichung einer möglichst hohen Punktzahl evaluiert werden. Ein beson-
derer Fokus liegt auf der Analyse des Lernverhaltens auf dem Spielergebnis, was durch

2

1 Einleitung

geeignete Visualisierungen veranschaulicht werden soll.

Darüber hinaus wird angestrebt, einen interaktiven Demonstrator zu entwickeln, der
es ermöglicht, die untersuchten Algorithmen praktisch zu erproben und deren Eigen-
schaften nachvollziehbar zu machen. Ein weiterer Aspekt der Arbeit ist der Vergleich
der Leistungsfähigkeit der Algorithmen in Abhängigkeit von der Trainingsdauer (kurzes
vs. langes Training). Zusätzlich wird die Möglichkeit untersucht, das Spiel mithilfe einer
Kamera und realen Würfeln zu realisieren, um eine Mensch-Maschine-Interaktion zu er-
möglichen und von der rein digitalen Zufallszahlengenerierung unabhängig zu werden.

Ziel ist es, durch dieses praxisnahe Projekt vertiefte Erkenntnisse im Bereich des Deep
Reinforcement Learnings zu gewinnen und Erfahrungen im Umgang mit entsprechenden
Methoden und Technologien zu sammeln.

3

2 Grundlagen

Nachdem die Motivation und das Ziel der Arbeit erörtert wurden, wird im Folgenden
die Grundlagen dieser Arbeit beschrieben. Hierzu wird auf alle notwendigen Grundlagen
für das Reinforcement Learning (RL) und das Deep Learning (DL) eingegangen und ein
paar für diese Arbeit interessante Algorithmen vorgestellt. Zuerst werden die Spielregeln
von Yahtzee erörtert.

2.1 Spielregeln

Die Spielregeln von Yahtzee werden nach [10] und [9] beschrieben. Yahtzee ist für einen
oder mehrere Spieler. Es werden fünf Würfel, ein Würfelbecher und eine oder mehrere
Punktetabellen benötigt. Die Punktetabelle ist in der Abbildung 2.1 dargestellt und setzt
sich aus einem oberen und unteren Tabellenteil zusammen.

Yahtzee ist ein rundenbasiertes Spiel und besteht aus 13 Runden. Ziel ist es in jeder
Runde die fünf Würfel zu würfeln, um verschiedene Würfelkombinationen zu erzielen. In

Abbildung 2.1: Punktetabelle Yahtzee aus [10].

4

2 Grundlagen

jeder Runde stehen dem Spieler nach dem ersten Wurf bis zu zwei weitere Würfe zu. Nach
jedem Wurf kann die Person entscheiden, ob sie den Wurf in die Punktetabelle eintragen
oder noch einmal würfeln möchte. Die Person darf nach jedem Wurf entscheiden, welche
der fünf Würfel sie noch einmal würfeln möchte. Die Würfel, die sie behalten möchte,
legt sie beiseite. Spätestens nach dem dritten Wurf muss die Person sich für ein Feld auf
der Punktetabelle entscheiden, in der sie das Ergebnis einträgt und die entsprechenden
Punkte dafür erhält. Im oberen Tabellenteil werden immer Würfel mit der gleichen Au-
genzahl zusammengezählt und die Summe in das entsprechende Feld eingetragen. Des
Weiteren wird Einem ein Bonus von 35 Punkten gewährt, wenn die gesamte Punktzahl
für den oberen Tabellenteil mindestens 63 Punkte beträgt. Im unteren Tabellenteil sind
nach Abbildung 2.1 verschiedene Kombinationen möglich. Bei einem Dreierpasch werden
mindestens drei Würfel mit der gleichen Augenzahl benötigt und beim Viererpasch ent-
sprechend vier. Eine Eintragung in das Feld Full House ist möglich, wenn drei Würfel die
gleiche Zahl und zwei Würfel eine gleiche andere Zahl zeigen. Die kleine Straße setzt sich
aus vier aufeinander folgende Zahlen zusammen und die große Straße aus fünf. Bei einem
Yahtzee müssen alle fünf Würfel dieselbe Zahl aufweisen. Zum Schluss steht jedem eine
Chance zur Verfügung, in der die Summe der fünf Würfel eingetragen werden kann. In
dieser Arbeit sollen die Regeln bzgl. der Anwendung des Jokers und des Yahtzee Bonus
nicht weiter berücksichtigt werden.

Gewonnen hat der Spieler, der zum Schluss die meisten Punkte besitzt. Deshalb ist neben
dem Würfelglück eine entsprechende Strategie nicht unbedeutend, um die Gesamtpunkt-
zahl zu maximieren.

2.2 Reinforcement Learning

Das Reinforcement Learning (RL, dt. das bestärkende Lernen) gehört zu den drei großen
Bereichen des Machine Learnings (ML). Die beiden anderen Bereiche sind das überwachte
und unüberwachte Lernen. Das Ziel von RL ist es mit der Zeit zu erlernen optimale Ent-
scheidungen zu treffen [16]. Im Gegensatz zum überwachten oder unüberwachten Lernen,
wo Datensätze für das Training eines Algorithmus notwendig sind, befindet sich beim be-
stärkenden Lernen der Algorithmus oder auch der Agent in einer definierten Umgebung.
In dieser Umgebung kann der Agent festgelegte Aktionen ausführen. Das Ausführen die-
ser Aktionen führt zu einer Veränderung des Ursprungszustands innerhalb der Umgebung
und gibt dem Agent eine unmittelbare Belohnung. Die Belohnung kann positiv als auch

5

2 Grundlagen

negativ sein. Die Veränderung des Zustands innerhalb der Umgebung bewertet der Agent
neu und führt eine neue Aktion aus. Hier gilt es zu beachten, dass immer nur eine Aktion
zu einem bestimmten Zeitpunkt ausgeführt werden kann, also ein sequenzieller Ablauf
stattfindet. Der Agent besitzt keinerlei Vorwissen und muss zu Beginn die Umgebung
erst einmal erkunden und Erfahrung sammeln. Ist der Erkundungsprozess abgeschlossen,
kann der Agent die Umgebung zu seinen Gunsten nutzen. Interessant ist, dass Entschei-
dungen, die der Agent am Anfang trifft, die Belohnung auch zu einem späteren Zeit
Punkt beeinflussen kann und somit sich auf die maximal mögliche Belohnung auswirkt.
Ein bekanntes Beispiel aus der Praxis ist unter anderem das Trainieren von Hunden, um
das gewünschte Verhalten zu bestärken oder schlechtes Verhalten zu bestrafen. Ein weite-
res Beispiel ist das Entkommen einer Maus aus dem Labyrinth, die mit einem Stück Käse
belohnt wird. Im Folgenden sind die wichtigsten Begriffe noch einmal zusammengefasst:
[34, 7, 16]

• Der Agent (engl. agent) trifft die Entscheidung, welche Aktion als Nächstes aus-
geführt werden soll.

• Die Umgebung (engl. environment) ist der Raum, in dem der Agent interagieren
darf, um die Aufgabe oder das Problem zu lösen.

• Der Zustand (engl. state) ist die Position des Agenten in der Umgebung und
spiegelt die momentan beobachtete Situation wider.

• Die Aktion (engl. action) ist eine Handlung, die ausgeführt wird und zu einer
Zustandsveränderung innerhalb der Umgebung führt.

• Die Belohnung (engl. reward) ist eine Zahl, welche die Belohnung oder die Be-
strafung (bei negativem Vorzeichen) für die ausgeführte Aktion symbolisiert, die
der Agent erhält. Die Belohnung kann je nach Aufgabe regelmäßig oder einmalig
vergeben werden.

Die Abbildung 2.2 veranschaulicht das Prinzip des Reinforcement Learnings.

2.2.1 Markov-Entscheidungsprozess

Markov-Entscheidungsprozesse (engl. Markov decision process; MDP) bilden die Grund-
lage jeder Reinforcement Learning Aufgabe. Der MDP dient der Modellierung, wofür

6

2 Grundlagen

Abbildung 2.2: Prinzip des Reinforcement Learnings aus [7].

das Problem oder die Aufgabe die Markov-Eigenschaft besitzen muss. Die Markov-
Eigenschaft beschreibt, dass die beste Aktion für einen bestimmten Zustand ohne di-
rekten Bezug auf andere vorherige Zustände gewählt werden kann. Der Agent befindet
sich in einem Zustand und gibt die erwartete Belohnung für die entsprechende Aktion
zurück. Für den MDP gilt somit, dass in einem bestimmten Zustand die beste Aktion
gewählt werden kann, weil der Zustand alle Informationen aus der Vergangenheit besitzt,
die einen Unterschied auf zukünftige Belohnungen haben. Der Agent kann somit durch
die Auswahl der besten Aktion seine Belohnung maximieren. [34, 39]

Die Markov-Kette (S, P) setzt sich aus allen Zuständen S zusammen, wobei die Wechsel
zwischen den Zuständen durch die Übergangswahrscheinlichkeiten P definiert sind. Wird
die Markov-Kette um die Belohnung R erweitert, ist das der Markov-Belohnungsprozess
(S, P,R). Wird wiederum diesem Prozess die Aktion A hinzugefügt, entspricht dies
dem Markov-Entscheidungsprozess (S, P,R,A). Der Markov-Belohnungsprozess und die
Markov-Kette können die Umgebung nicht beeinflussen, sondern nur beobachten. Erst
durch das Hinzufügen der Aktion kann das Modell beeinflusst werden und der Agent
kann mit dem Modell interagieren. Des Weiteren gilt es zu beachten, dass nicht für jedes
Problem die Übergangswahrscheinlichkeiten einfach oder überhaupt zu ermitteln sind.
Deshalb kann zwischen zwei Kategorien unterschieden werden - dem modellbasierten
und dem modellfreien Lernen. Beim modellbasierten Lernen sind die Gesetzmäßigkei-
ten der Umgebung bekannt und der Agent versucht daraus die bestmöglichen Handlun-
gen abzuleiten. Beim modellfreien Lernen ist kein Modell notwendig und dem Agenten
sind die Gesetzmäßigkeiten der Umgebung nicht bekannt. Dadurch entfällt die komplexe

7

2 Grundlagen

Modellierung der Umgebung. Zu berücksichtigen gilt auch, dass es sich bei Markov-
Entscheidungsprozesse oft um endliche (engl. finite) Zustandsräume handelt. Endliche
Zustandsräume besitzen einen terminierenden, finalen Zustand. Weitere Abbruchbedin-
gungen sind möglich. [7, 16]

2.2.2 Policy

Eine Policy oder auch Strategie ist eine Funktion π(a|s), die einen Zustand auf eine
Wahrscheinlichkeitsverteilung über die Menge der möglichen Aktionen in diesem Zu-
stand abbildet [39, 16]. Eine andere Formulierung ist, dass die Wahrscheinlichkeit jeder
möglichen Aktion in der Verteilung gleich der Wahrscheinlichkeit ist, dass die gewählte
Aktion die größte Belohnung zurückgibt. Das bedeutet, dass eine Aktion aus einer Men-
ge von Aktionen a ∈ A abhängig vom Zustand s die Wahrscheinlichkeit mit der größten
Belohnung Gt verfolgt. Zum Beispiel steht der Agent auf einer Plattform und vor ihm
sowie links und rechts befindet sich ein sehr tiefer Abgrund. Er hat vier Richtungen (vor-
wärts, nach links, nach rechts und rückwärts), in denen er sich bewegen kann. Die Aktion
Rückwärtsbewegen besitzt die Wahrscheinlichkeit eins, wohingegen die anderen Drei null
sind. Demzufolge ist das Ziel die Strategie zu optimieren, sodass auf lange Sicht die Be-
lohnung maximal wird. Um festzustellen, wie zielführend eine Aktion a oder Zustand s

ist, wird eine Werte-Funktion verwendet. Der zu erwartende Gewinn Gt dient hierzu als
Vergleichswert. [34]

Policy- und Wert-Funktionen

Die Werte-Funktionen werden unterschieden in die Zustandswertfunktion (engl. State-
Value-Function) und die Aktionswertfunktion (engl. Action-Value-Function). Die Zu-
standswertfunktion eines Zustandes s, die die Policy π verfolgt, wird als υπ(s) bezeichnet
und ist die erwartete Belohnung, wenn im Zustand s begonnen und danach π weiterver-
folgt wird. Für MDPs wird υπ(s) formal wie folgt definiert: [34]

υπ(s)
.
= Eπ[Gt | St = s] = Eπ

[∞∑
k=0

γkRt+k+1

∣∣∣∣ St = s

]
, ∀s ∈ S (2.1)

Eπ[·] bezeichnet den Erwartungswert einer Zufallsvariablen, wenn der Agent die Policy π

verfolgt und t ein beliebiger Zeitschritt ist. υπ ist die Zustandswertfunktion für die Policy
π. Ähnlich wird die Aktionswertfunktion qπ für die Policy π definiert. Sie beschreibt den

8

2 Grundlagen

Erwartungswert den der Agent erhält, wenn dieser beginnend vom Zustand s die Aktion
a ausführt und anschließend die Policy π verfolgt. [34]

qπ(s, a)
.
= Eπ[Gt | St = s, At = a]

= Eπ

[∞∑
k=0

γkRt+k+1

∣∣∣∣ St = s, At = a

]
, ∀s ∈ S, ∀a ∈ A (2.2)

Die Wert-Funkionen υπ und qπ können durch Erfahrung geschätzt werden [34].

Optimale Policy- und Werte-Funktion

Es ist nach wie vor das Ziel, dass der Agent eine Policy findet, die am meisten Beloh-
nungen einbringt. Ist eine Policy π gefunden, wo der Gewinn maximal ist, wird diese als
optimale Policy bezeichnet. Hierfür reicht es aus, wenn der zu erwartende Gewinn für
alle möglichen Zustände mindestens genauso gut oder besser ist, wie von jeder anderen
Policy π′. Demzufolge gilt für die Zustandswertfunktionen υπ(s) und υπ′(s) sowie die
Aktionswertfunktionen qπ(s, a) und qπ′(s, a) [34]:

π ≥ π′, wenn υπ(s) ≥ υπ′(s), ∀s ∈ S (2.3)

π ≥ π′, wenn qπ(s, a) ≥ qπ′(s, a), ∀s ∈ S und ∀a ∈ A (2.4)

Die optimale Policy wird als π∗ bezeichnet, was äquivalent für die optimale Zustands-
wertfunktion υ∗ sowie die optimale Aktionswertfunktion q∗ gilt. Diese geben immer den
maximalen Erwartungswert bzw. die maximale Belohnung zurück und werden wie folgt
definiert [34]:

υ∗(s)
.
= max

π
υπ(s), ∀s ∈ S (2.5)

q∗(s, a)
.
= max

π
qπ(s, a), ∀s ∈ S und ∀a ∈ A (2.6)

Zum Schluss soll noch der erwartete Gewinn eines Zustandsaktionspaares (s, a) für das
Ausführen einer Aktion a im Zustand s und dem anschließenden Verfolgen der optimalen

9

2 Grundlagen

Policy in Abhängigkeit von v∗ beschrieben werden.

q∗(s, a) = E[Rt+1 + γυ∗(St+1) ST = s, At = a] (2.7)

Die Grundlage dafür ermöglicht die Optimalitätsgleichung von Bellman, welche in Sutton
[34] nachgelesen werden kann.

Epsilon-Greedy-Policy

Eine optimale Policy gibt immer den bestmöglichen Ertrag aus dem aktuellen Zustand
zurück. Bis eine bessere Strategie gefunden wird, kann der Agent mit einer optimalen
Policy die Umgebung ausbeuten. Demzufolge hat der Agent schon Erfahrung in der Um-
gebung gesammelt oder ihm wurde diese von Anfang an mitgegeben. Im letzteren Fall hat
der Agent nicht selber gelernt, sondern befolgt eine vorgegebene Handlungsdirektive. In
diesem Fall würde der Agent immer wieder gleich handeln und keine neuen Erfahrungen
machen. Die Umgebung wird somit von dem Agenten nicht weiter erkundet. Das Ziel ist
jedoch, dass der Agent selbständig lernt, also die Umgebung erkundet und ausbeutet.
Darüber hinaus ist es sinnvoll, wenn der Agent auf lange Sicht gelegentlich etwas Neues
in der Umgebung ausprobiert und somit die Erkundung nicht gänzlich einstellt. So kann
gewährleistet werden, dass der Agent auch zu einem späteren Zeitpunkt neue Erkennt-
nisse gewinnen und die Policy optimieren kann. Wie schon Einstein formulierte, können
keine neuen Erkenntnisse erlangt werden ohne neue Wege auszuprobieren.

"Die Definition von Wahnsinn ist: immer wieder das Gleiche zu tun und
andere Ergebnisse zu erwarten." Albert Einstein

Eine der bekanntesten Policies, die die Erkundung und Ausbeutung miteinander vereint,
ist die ϵ-Greedy-Policy. Bei dieser Strategie wird die Erkundungsrate (Exploration Rate)
ϵ eingeführt, die sich im Bereich von null bis eins bewegt. Die ϵ-Greedy-Strategie wählt
mit einer Wahrscheinlichkeit von 1 − ϵ die Aktion, die die höchste bisher erlernte Be-
lohnung verspricht. Eine andere Aktion wird zufällig mit einer Wahrscheinlichkeit von ϵ

ausgewählt, um die Erkundung zu fördern. Ein ϵ-Wert von Null bedeutet, dass nur auf
das bereits erlernte Wissen zurückgegriffen wird (Ausbeutung der Umgebung), während
bei einem Wert von Eins ausschließlich zufällige Aktionen zur Erkundung durchgeführt
werden. Die Entscheidung, welche Aktion gewählt wird, basiert auf einer zufällig gene-
rierten Zahl zwischen null und eins. Ist diese Zahl kleiner als ϵ, wird eine zufällige Aktion

10

2 Grundlagen

durchgeführt, andernfalls wird die Aktion mit der höchsten erwarteten Belohnung ausge-
wählt. Zu Beginn des Trainings wird der ϵ-Wert oft hoch angesetzt, um eine umfassende
Exploration zu ermöglichen. Mit fortschreitendem Training wird der Wert schrittweise
reduziert, um die Strategie zu verfeinern und eine Konvergenz zu einer optimalen Lösung
basierend auf den gesammelten Erfahrungen zu erreichen. [34, 39, 7]

2.3 Deep Learning

Bevor auf die verschiedenen Algorithmen eingegangen wird, soll zuerst das Deep Learning
vorgestellt werden. Dies ist ein weiteres Teilgebiet des Machine Learnings. Das Reinforce-
ment Learning in Kombination mit Deep Learning ermöglicht noch mächtigere Lösungs-
verfahren, weil die Ergebnisse geschätzt werden können. Dadurch wird die ursprüngliche
Q-Tabelle, die die Ergebnisse bisher gespeichert hat, obsolet. Das Deep Learning kann im
verallgemeinerten Sinne als die Nachbildung der Funktionsweise eines Gehirns beschrie-
ben werden. Dazu werden neuronale Netze (NN) oder auch künstliche neuronale Netze
(KNN) konstruiert bzw. implementiert. Diese neuronalen Netze setzen sich wiederum
aus verschiedenen Schichten zusammen. In diesen Schichten befinden sich die kleinsten
Einheiten eines neuronalen Netzes, die Knoten oder Neuronen genannt werden. [24]

2.3.1 Das Perzeptron

Das Perzeptron beruht auf der Arbeit [28] von Frank Rosenblatt. Es besitzt Eingabe-
variablen von x1 bis xn (siehe hellgrau dargestellt in 2.3). Des Weiteren wird der Bias
b definiert. Dieser gehört zu den Eingangsvariablen, weshalb er auch aufgrund der Be-
ziehung x0 = b als x0 bezeichnet werden kann (siehe dunkelgrau dargestellt in 2.3).
Anschließend wird die gewichtete Summe z der Eingabevariablen gebildet und an eine
Aktivierungsfunktion übergeben. In der Abbildung 2.3 ist die gewichteten Summe mit
einem gelblich gefärbten Rechteck und die Aktivierungsfunktion σ(z) mit einem hellblau
gefärbten Rechteck symbolisiert. Das Ergebnis oder die Ausgabe nach der Aktivierungs-
funktion ist ŷ.

z =
∑
j

wjxj + b (2.8)

ŷ = σ(z) ≡ 1

1 + e−z
(2.9)

11

2 Grundlagen

Abbildung 2.3: Darstellung eines Perzeptrons nach Perrotta [24].

Die hier verwendete Aktivierungsfunktion σ(z) ist eine Sigmoidfunktion. Die ursprüngli-
che Form des Perzeptrons kann jedoch nur entweder eine Null oder eine Eins zurückgeben.
Sie besitzt also als Aktivierungsfunktion eine Sprungfunktion, die über einen Schwellen-
wert (Bias) b zwischen eins und null unterscheidet. [22, 24]

ŷ =

0 ,wenn z =
∑

j wjxj ≤ b

1 ,wenn z =
∑

j wjxj > b
(2.10)

Bei Betrachtung der zuvor beschriebenen Gleichungen ohne σ(z) wird ersichtlich, dass je
nach Änderung eines Gewichts oder Bias das Perzeptron andere Ergebnisse als mit den
zuvor eingestellten Größen produzieren kann. Die Aktivierungsfunktion kann je nach Be-
darf und abhängig von der Aufgabenstellung angepasst werden. Dadurch ist es möglich
mehr als nur zwischen null und eins zu unterscheiden. Kleine Änderungen in den Gewich-
ten oder dem Bias verursachen nicht allzu große Änderungen am Ausgang. Dies bringt
jedoch auch neue Herausforderungen mit sich. Dazu betrachten wir die oben genannte
Aktivierungsfunktion σ(z). Diese Funktion eröffnet den Wertebereich zwischen null und
eins. Damit jedoch zum Beispiel die Funktion gegen null tangiert, muss e−z → ∞ ver-
laufen und für eins muss e−z ≈ 0 sein. [22, 24]

Bisher wurde nur ein einzelner Knoten oder ein einzelnes Neuron betrachtet. Die Stär-
ke des Perzeptrons liegt darin, dass es parallelisiert und serialisiert werden kann. Im
Ergebnis lässt sich damit ein neuronales Netz aufspannen.

12

2 Grundlagen

Abbildung 2.4: Aufbau eines tiefen neuronalen Feedforward Netzes [22].

2.3.2 Neuronales Netz

Ein neuronales Netz setzt sich aus mehreren Schichten zusammen. Eine Schicht kann
wiederum mehrere Neuronen besitzen. Es besteht aus einer Eingabeschicht (input layer),
einer Ausgabeschicht (output layer) und mindestens einer verborgenen Schicht (hidden
layer). Wenn ein solches neuronales Netz nur eine verborgene Schicht besitzt, wird es
auch als flaches Netz bezeichnet. Die Abbildung 2.4 veranschaulicht dies. Das Deep in
Deep Learning steht dafür, dass das neuronale Netz mehr als eine verborgene Schicht
besitzt. [22]

Feedforward Netze

Es gibt verschiedene Arten, wie ein neuronales Netz aufgebaut sein kann. Die einfachste
Form sind die Feedforward Netze (siehe Abbildung 2.4). Feedforward Netze sind Netze,
bei denen der Ausgang der einen Schicht als Eingang für die nächste Schicht verwendet
wird. Sie geben die Information immer nur in Vorwärtsrichtung weiter. Das bedeutet,
dass es keine Schleifen in dem Netz gibt. Neuronale Netze, die Rückkopplungsschleifen
enthalten, werden rekurrente Netze genannt. [22]

13

2 Grundlagen

Rekurrente Netze

Das Konzept hinter rekurrente Netze ist, dass Neuronen für eine bestimmte Zeitspanne
immer wieder aktiviert werden, bevor sie in einen inaktiven Zustand übergehen. Diese
wiederholte Aktivierung kann andere Neuronen anregen, die nach einer kurzen Verzö-
gerung ebenfalls erneut aktiviert werden. Auf diese Weise entsteht eine Kaskade von
Neuronen, die über einen längeren Zeitraum hinweg immer wieder aktiviert werden. Das
Ziel ist es, die Funktionsweise des menschlichen Gehirns noch realistischer nachzubilden,
da auch dort Informationen nicht nur direkt von einem Eingang zu einem Ausgang wei-
tergegeben werden. Aus diesem Grund eignet sich das rekurrente neuronale Netzwerk
besonders gut für Aufgaben, die die Analyse von Daten oder Prozessen umfassen, die
sich im Laufe der Zeit verändern. Das einfachste Beispiel dafür ist, wenn der Ausgang
eines Neurons wieder auf einen seiner Eingänge gelegt wird. [22]

Faltungsnetze

Zum Schluss sollen noch die Faltungsnetze (Convolutional Neural Network, CNN) er-
wähnt werden. Sie kommen bei der Bild- und Videoanalyse zum Einsatz. Im Gegensatz
zu Feedforward Netzen nutzt das Faltungsnetz keine vollständig verbundenen Schichten.
Demzufolge steht nicht jedes Neuron einer Schicht in Verbindung mit jedem Neuron in
der nächsten Schicht. Faltungsnetze können dadurch schneller trainiert werden und er-
möglichen eine tiefere Netzwerkstruktur. Die Funktionsweise orientiert sich dabei sehr
stark an die der Sehrinde des menschlichen Gehirns für die Erkennung von Objekten
[25]. Dafür werden die drei Konzepte lokales Rezeptivfeld, geteilte Gewichte und Pooling
verwendet. Zum Beispiel bei der Analyse eines Bildes von 100x100 Pixeln wird mit einem
kleineren Fenster (lokales Rezeptivfeld) der Größe 5x5 Pixel Stück für Stück betrachtet
und je mit einem verborgenem Neuron übergeben. Das Pixelfenster kann auch als Filter
der Größe 5x5 betrachtet werden, welches Pixel für Pixel über das Bild geschoben wird
und anschließend mit konstanten Gewichten (geteilte Gewichte) multipliziert wird. Ge-
teilte Gewichte bedeuten in diesem Fall, dass im Gegensatz zum Feedforward Netz im
Faltungsnetz nur eine Teilmenge an konstanten Gewichten benötigt wird. Das Pooling
trägt dazu bei eine gewisse lokale Invarianz zu gewährleisten, was bedeutet, dass ge-
ringe Veränderungen in der unmittelbaren Umgebung eines Bildbereichs nicht zu einem
veränderten Ergebnis führen. [22]

14

2 Grundlagen

Abbildung 2.5: Gradientenverfahren [8].

2.3.3 Gradientenverfahren

Eine Möglichkeit, wie neuronale Netze lernen und ihre Ergebnisse optimieren, bietet das
Gradientenverfahren oder Verfahren des steilsten Abstiegs. Dieses Verfahren lässt sich
am besten an einem Beispiel erklären. Eine Bergsteigerin, die sich gerade an einem Hang
befindet, versucht ins Tal zu ihrem Basislager zu kommen. In diesem Tal befinden sich
keine Klippen oder Löcher. Der Weg ist also stetig. Erschwerend kommt hinzu, dass
es schon so dunkel ist, dass sie nur den Boden unmittelbar um ihre Füße sehen kann.
Sie nimmt dafür den Weg des steilsten Abstiegs. Auf kurz oder lang führt sie so der
Weg in ihr Lager. Betrachten wir den Querschnitt dieses Tals, lässt sich der Verlauf
als Normalparabel beschreiben, bei welchem sich das Basislager im globalen Tiefpunkt
befindet. Die Normalparabel wird auch als Kosten- oder Verlustfunktion bezeichnet. Um
die Steigung in dem Punkt zu bestimmen, an dem sich die Wanderin befindet, muss der
Gradient gebildet werden. Dieser zeigt jedoch in die entgegengesetzte Richtung, in die
die Wanderin gehen muss. Das Ziel des Trainings ist es die Kostenfunktion C(w, b) zu
minimieren. Im Optimalfall stimmt am Ende des Trainings das tatsächliche Ergebnis mit
dem geschätzten Ergebnis überein. Dann sind die besten Gewichte w und der Bias b

gefunden worden. Es ist zu berücksichtigen, dass eine Anpassung der Schrittweite erfolgt
je tiefer wir ins Tal wandern. Sie wird also kleiner, weil die Steigung abnimmt (siehe
Abbildung 2.5). [22, 24]

∇C =

(
∂C(w,b)

∂w
∂C(w,b)

∂b

)
(2.11)

15

2 Grundlagen

(a) Gradient mit zu kleiner Lernrate [8]. (b) Gradient mit zu großer Lernrate [8].

Eine Aktualisierung der Parameter w und b kann wie folgt aussehen:

b→ b′ = b− α · ∂C(w, b)

∂b
= b+∆b (2.12)

w → w′ = w − α · ∂C(w, b)

∂w
= w +∆w (2.13)

α ist die Lernrate, welche die Schrittgröße beeinflusst. Fällt sie zu groß aus, kann das Sys-
tem oszillieren, d.h. es springt über das Tal. Fällt sie zu klein aus, kann die Schrittweite
zu kurz sein und der Algorithmus muss viele Iterationen durchführen, bis er konvergiert.
Die Abbildung 2.3.3 (a) veranschaulicht das Gradientenverfahren bei zu kleiner Lernrate
und die Abbildung 2.3.3 (b) bei zu großer Lernrate. [8, 24]

Eine weitere Herausforderung gibt es bei Verlustfunktionen mit lokalem Minimum oder
Sattelpunkten, z. B. bei einem Plateau. Die Abbildung 2.6 veranschaulicht dies. Hier
besteht die Gefahr, dass das globale Minimum nicht erreicht wird. Es gilt zu berücksich-
tigen, dass bei einer dreidimensionalen Betrachtung der Verlauf ins Tal zickzackförmig
und nicht direkt, wie im Diagrammen dargestellt ist (siehe Abbildung 2.5). Perrotta fügt
dem Gradienten ein Momentum hinzu. Dieses Momentum sorgt für mehr Dynamik beim
Lernen. Dadurch wird der Pfad glatter, den die Bergsteigerin nimmt. Gleichzeitig wird
das Training beschleunigt und es ist sogar möglich lokale Minima zu überwinden. [8, 24]

16

2 Grundlagen

Abbildung 2.6: Fallstricke des Gradienten [8].

Mini-Batch-Gradientenverfahren

Das Hinzufügen des Momentums ist eine Möglichkeit das Training zu beschleunigen. Ei-
ne Weitere ist das Mini-Batch-Gradientenverfahren. Die Vorteile dieses Verfahrens sind
im Allgemeinen, dass es schneller konvergiert und weniger Speicherplatz benötigt. Es
besteht sogar die Möglichkeit, dass es einen geringeren Verlust findet, weil lokale Minima
überwunden werden. Im zuvor beschriebenen Gradientenverfahren wurden alle Trainings-
daten als ein Batch gesammelt und für das Training des neuronalen Netzes verwendet.
Wie der Name schon vermuten lässt, wird die Menge der Batches verkleinert und kleinere
Teilmengen m (Mini-)Batches dem neuronalen Netz hinzugefügt. Anschließend werden
zufällige Punkte x berechnet. Dadurch wird der durchschnittliche Gradient geschätzt
und nur eine kleine Gradientenmenge ∇Cx berechnet. So kann der Gesamtgradient ∇C
angenähert werden. [22, 24]

∇C ≈ 1

m

m∑
j=1

∇Cxj (2.14)

2.3.4 Aktivierungsfunktionen

Anhand der Abbildung 2.3 lässt sich eine Linearität erkennen. Wird dies zu einem Netz
von Neuronen aufgespannt, bleibt die Linearität bestehen und die Summe aller Gewichte
kann als Matrix W dargestellt werden. Demzufolge werden auch die Eingabeschicht x

17

2 Grundlagen

und die Ausgabeschicht y zu Vektoren. Die folgende Formel veranschaulicht dies:

y = W · x (2.15)

Die Aktivierungsfunktion bringt die notwendige Nichtlinearität mit in die Gleichung ein,
die der Dreh- und Angelpunkt eines neuronalen Netzes sind. Normalerweise wird in den
verborgenen Schichten nur eine Art von Aktivierungsfunktion verwendet, wobei es kei-
nen Wechsel innerhalb dieser Schichten gibt. Für die Ausgabe hingegen sollte die Akti-
vierungsfunktion je nach Aufgabe angepasst werden und kann sich von derjenigen der
verborgenen Schichten unterscheiden. [24]

Sigmoid

Die Sigmoid-Funktion wurde vorher schon einmal in Kapitel 2.3.1 erwähnt. Im Gegen-
satz zur Stufenfunktion kann sie abgeleitet werden. Demzufolge können Gradienten gebil-
det und das zuvor beschriebene Gradientenverfahren angewendet werden. Die Sigmoid-
Funktion kommt in der Regel nicht in den verborgenen Schichten zum Einsatz, sondern
findet hauptsächlich in der Ausgabeschicht Anwendung. Sie ist besonders vorteilhaft für
Aufgaben, bei denen Wahrscheinlichkeiten vorhergesagt werden, da ihr Wertebereich zwi-
schen null und eins liegt.

σ(z) =
1

1 + e−z
(2.16)

Wird σ(z) nach z abgeleitet, ergibt sich

∂σ(z)

∂z
= σ(z)(1− σ(z)). (2.17)

Neben den zuvor genannten Vorteilen ergeben sich aus der Sigmoid-Funktion auch neue
Herausforderungen wie zum Beispiel, dass z gegen −∞ oder +∞ strebt. In diesem Fäl-
len treten entweder tote Neuronen oder verschwindende Gradienten auf. Tote Neuronen
entstehen, wenn der Gradient gegen null strebt. Dies führt zu einer Verlangsamung oder
Stillstand beim Lernen. Bei verschwindenden Gradienten dagegen kann durch die Steige-
rung der Anzahl der Schichten der Gesamtgradient abnehmen und ebenfalls null werden,
weil die Steigerung der Anzahl der Schichten ab einem bestimmten Punkt nichts mehr
bringt. Neben dem verschwindenden Gradient, bei dem der Gesamtgradient null wird,
kann der Gesamtgradient auch explodieren. Dies bedeutet, dass der Absolutwert des Ge-

18

2 Grundlagen

samtgradienten zunimmt. Explodierende Gradienten können auch tote Neuronen oder
Überläufe verursachen. [24]

Softmax

Ähnlich wie die Sigmoid-Funktion gibt es auch die Softmax-Funktion einen Vektor zu-
rück, dessen Werte im Bereich zwischen null und eins liegen. Zusätzlich ist die Summe
aller Ausgaben immer gleich eins. Diese Eigenschaft ist besonders nützlich, da wir die
Werte als Wahrscheinlichkeiten interpretieren können, wenn sie sich zu eins addieren.
Dies entspricht einer Normierung. Die Softmax-Funktion wird meist als letzte Aktivie-
rungsfunktion in der Ausgabeschicht des neuronalen Netzes eingesetzt, wenn mehr als
zwei Klassen zu unterscheiden sind. [24, 25]

softmax(zi) =
ezi∑
ez

(2.18)

Weitere Aktivierungsfunktionen neben der Sigmoid- und der Softmax-Funktion sind die
Tangens hyperbolicus- [8, 25], die ReLU- [8, 24] und die Leaky ReLU-Funktion [8, 24].

2.3.5 Backpropagation

Eine der größten Herausforderung beim Lernen ist es den Gradienten zu bestimmen.
In der Praxis können neuronale Netze, bestehend aus vielen miteinander verknüpften
Schichten und Gewichtsmatrizen, äußerst komplex sein. Bei einem so großen Netzwerk
wird es schwierig, die Verlustfunktion zu definieren sowie ihre Ableitung zu berechnen.
Das Ziel ist es, den Verlustgradienten für beliebige neuronale Netze zu bestimmen. Die
Ableitungen sind nur für die einfachsten und weniger leistungsfähigen Netze berechenbar.
Hier kommt die Backpropagation ins Spiel. Sie nutzt im Kern die Kettenregel (siehe
Formel 2.19), um verschachtelte Funktionen effizient abzuleiten und das Problem zu
lösen. [24]

d

dx
[f(g(x))] =

df

dg
· dg
dx

(2.19)

Der Algorithmus führt zunächst jeden Trainingsdatenpunkt durch das Netzwerk und be-
rechnet die Ausgabe jedes Neurons in den verschiedenen Schichten. Dies entspricht einem
Vorwärtsdurchlauf wie bei der Vorhersage. Danach wird der Fehler der Netzwerk-Ausgabe

19

2 Grundlagen

gemessen. Dies entspricht der Differenz zwischen der gewünschten und der tatsächlichen
Ausgabe. Für jedes Neuron in der letzten verborgenen Schicht wird ermittelt, wie stark
es zum Fehler beigetragen hat. Anschließend wird zurückverfolgt, welcher Anteil des
Fehlerbeitrags auf jedes Neuron in der vorherigen Schicht entfällt. Dieser Prozess wird
fortgesetzt, bis die Eingabeschicht erreicht ist. Im Rückwärtsdurchlauf wird der Fehler-
gradient für alle Gewichte im Netzwerk berechnet (daher der Begriff Backpropagation).
Der letzte Schritt des Backpropagation-Algorithmus besteht darin mittels Gradienten-
verfahren die Gewichte im Netzwerk basierend auf dem zuvor berechneten Gradienten zu
aktualisieren. Kurz gesagt: bei jedem Trainingsdatenpunkt macht der Backpropagation-
Algorithmus zunächst eine Vorhersage (Vorwärtsdurchlauf), berechnet den Fehler, ermit-
telt dann rückwärts den Fehlerbeitrag jeder Verbindung (Rückwärtsdurchlauf) und passt
schließlich die Gewichte an, um den Fehler zu verringern. Der letztes Schritt findet im
Gradientenverfahren statt. [8, 25, 22]

2.3.6 Gewichtsinitialisierung

Die Initialisierung der Gewichte hat einen ein Einfluss auf die Lerndynamik des neuro-
nalen Netzes. Je nachdem wie es initialisiert wird, können zum Beispiel verschwindende
oder explodierende Gradienten verstärkt, minimiert oder wenn nicht sogar verhindert
werden. Werden Sättigungen und somit tote Neuronen vermieden, bleibt das neurona-
le Netz leistungsfähig. Hierzu werden im Folgenden mögliche Gewichtsinitialisierungen
und ihre Auswirkungen auf die Lerndynamik und demzufolge auf das neuronale Netz
betrachtet. [24]

Symmetrische Initialisierung

Perrotta erklärt in seinem Buch [24], dass es niemals gut ist alle Gewichte mit dem glei-
chen Wert, d.h. weder mit null, eins oder einer anderen Konstante, zu initialisieren. Bei
identischen werten lernen alle Gewichte eines Neurons in der Backpropagation gleich und
werden immer identische Werte behalten. Die Verlustfunktion beginnt beim Training ei-
nes neuronalen Netzes entweder gegen null zu sinken oder zu divergieren. Das Netzwerk
liefert infolgedessen keine sinnvollen Ergebnisse mehr. Diese Symmetrie kann aufgebro-
chen werden, indem es mit zufälligen Werten initialisiert wird. Die zufällige Initialisierung
kann zum Beispiel nach der Normalverteilung passieren. Es gilt zu berücksichtigen, dass
die Gewichte ebenfalls nicht mit großen Werten initialisiert werden dürfen, damit die

20

2 Grundlagen

Neuronen nicht in die Sättigung kommen. Ob dies große negative oder positive Wer-
te umfasst, ist für die Sättigung unerheblich. Zusammenfassend lässt sich sagen, dass
die Werte klein und zufällig sein müssen, um das Training zu beschleunigen und tote
Neuronen zu vermeiden. [24]

Xavier-Initialisierung

Eine weitere Möglichkeit die Gewichte zu initialisieren, beschreiben Xavier Glorot und
Yoshua Bengio in ihrer Arbeit [6]. Ziel der Arbeit war es das Problem der verschwinden-
den und explodierenden Gradienten in tiefen neuronalen Netzen zu minimieren, was die
Stabilität und Effizienz des Trainingsprozesses verbessert. Bei dieser Technik wird die Va-
rianz σ2 der Gradienten gleichmäßig auf die verschiedenen Schichten verteilt, sodass keine
Schicht übermäßig gewichtet und andere Schichten vernachlässigt werden. Die Gewichts-
werte werden unter Berücksichtigung der Anzahl n der Eingangs- und Ausgangsneuronen
einer Schicht initialisiert. Es kann zwischen einer Normal- oder einer Gleichverteilung ge-
wählt werden. Bei der Normalverteilung ergibt sich mit einem Mittelwert µ = 0 eine
Standardabweichung σ

σ =

√
2

nEingang + nAusgang
(2.20)

oder für die Gleichverteilung im Intervall [−r, r] für r

r =

√
6

nEingang + nAusgang
. (2.21)

Mit ihrer Arbeit konnten Glorot und Bengio zeigen, dass die Initialisierung der Ge-
wichte für das Training eine nicht unwesentliche Bedeutung hat und die Lerndynamik
abhängig von der Aktivierungsfunktion, in diesem Fall die Sigmoid-Funktion oder die
tanh-Funktion, verbessern kann. [8, 6]

He-Initialisierung

Die Arbeit von Glorot und Bengio wurde 2015 von einer anderen Forschergruppe mit der
He-Initialisierung weiterentwickelt. Sie wurde speziell für die ReLU-Aktivierungsfunktion
und deren Varianten mit dem gleichen Ziel wie bei der Xavier-Initialisierung entwickelt.

21

2 Grundlagen

Da sie eine Weiterentwicklung ist, wird über den Mittelwert µ = 0 die Standardabwei-
chung σ in der Normalverteilung über die Formel

σ =
√
2

√
2

nEingang + nAusgang
(2.22)

und für die Gleichverteilung im Intervall [−r, r] für r mit

r =
√
2

√
6

nEingang + nAusgang
(2.23)

angegeben. [8, 11]

2.3.7 Verlustfunktion

Die Verlustfunktion ist auch als Kosten-, Fehler- oder Straffunktion bekannt. Die richtige
Wahl hängt von der Aufgabenstellung ab. Die Verwendung des mittleren quadratischen
Fehlers (MSE) für Regressionsaufgaben und die Kreuzentropie-Kostenfunktionen eignet
sich für Klassifikationsaufgaben besser [25]. Sie bildet ein Qualitätsmaß dafür, wie stark
der Fehler, also die Differenz zwischen vorhergesagtem und erwartetem Wert, bei der
Anpassung der Gewichte berücksichtigt wird. [8]

Der RMSE (Root Mean Square Error) wird auch für Regressionsaufgaben ver-
wendet und entspricht der Größe des Fehlers, den das System im Mittel bei Vorhersagen
macht. Zu beachten ist, dass großen Fehlern ein höheres Gewicht gegenüber kleinen Feh-
lern beigemessen wird. Sie kann auch als mittlere quadratische Abweichung (MSE, Mean
Sqaure Error) ohne Wurzel verwendet werden [25]. Der RMSE ist definiert als

RMSE =

√√√√ 1

m

m∑
i=1

(yi − ŷi)2 , (2.24)

wobei m die Anzahl der Datenpunkte im Datensatz, y der tatsächliche und ŷ der vor-
hergesagte Wert ist. [8]

Der MAE (Mean Absolute Error) bietet sich an, wenn es viele Ausreißer gibt, weil
es die durchschnittliche absolute Differenz zwischen zwei Punkten misst. Diese werden

22

2 Grundlagen

genauso stark gewichtet wie die anderen Fehler. [8]

MAE =
1

m

m∑
i=1

|yi − ŷi| (2.25)

Die Kreuzentropie ist eine weit verbreitete Verlustfunktion, die in Klassifikationsaufga-
ben zum Einsatz kommt. Ein höherer Wert der Kreuzentropie bedeutet, dass die Differenz
zwischen der vorhergesagten und der tatsächlichen Klasse größer ist. Bei Vorhersagen für
mehrere Klassen spricht man von kategorischer Kreuzentropie während bei nur zwei Klas-
sen die binäre Kreuzentropie verwendet wird. [25, 8]

L = − 1

m

m∑
i=1

K∑
k=1

yik · log(ŷik) (2.26)

2.3.8 Einstellung Hyperparameter

Die Flexibilität neuronaler Netze ist gleichzeitig auch einer ihrer größten Nachteile. Es
gibt viele Hyperparameter, die angepasst werden können. Zusätzlich können verschiedene
Netzwerktopologien, d.h. unterschiedliche Arten wie die Neuronen miteinander verbun-
den sind, verwendet werden. Bereits bei einem einfachen neuronalen Netzwerk können
zahlreiche Parameter wie etwa die Anzahl der Trainingsepochen, die Anzahl der Schich-
ten, die Anzahl der Neuronen in jeder Schicht, die Wahl der Aktivierungsfunktion, die
Methode zur Initialisierung der Gewichte, die Lernrate und die Batchgröße eingestellt
werden [8]. Es ist sinnvoll immer nur einen Parameter auf einmal anzupassen und sich
die Änderungen anzuschauen [24]. Im Folgenden sollen einige Hinweise und Ratschläge
für das Finden geeigneter Hyperparameter gegeben werden.

Anzahl der Epochen

Die Anzahl der Epochen ist der Hyperparameter, der am einfachsten angepasst werden
kann. Es ist bekannt, dass das System mit zunehmendem Training immer genauer wird,
je länger es trainiert wird. Dies passiert jedoch nur bis zu einem gewissen Punkt. Nach
einer bestimmten Anzahl an Epochen erreicht die Genauigkeit ihren Höchstwert, sodass
weiteres Training nur noch ineffizient wäre. Ein Nachteil von zu viel Training kann die

23

2 Grundlagen

Überanpassung sein, welche die Genauigkeit sogar verschlechtern könnte. Auf das Thema
Überanpassung wird in Kapitel 2.3.9 näher eingegangen. Perrotta [24] empfiehlt, mit
einer großen Anzahl an Epochen zu starten und zu beobachten, nach welcher Anzahl
absolvierter Epochen die Genauigkeit nicht mehr steigt. [24]

Anzahl der verdeckten Schichten

Mit ausreichend Neuronen kann ein flaches neuronales Netz mit nur einer verborgenen
Schicht auch komplexeste Funktionen modellieren [24]. Tiefere Netze besitzen jedoch
eine höhere Parametereffizienz, wodurch komplexe Funktionen mit exponentiell weniger
Neuronen als flache Netze modelliert werden können. Hieraus resultiert auch eine kürzere
Trainingszeit. Dies liegt an der hierarchischen Architektur. Durch das schnellere Training
konvergiert das neuronale Netz schneller gegen annehmbare Lösungen. Für den Beginn
wird meist empfohlen mit einer oder zwei verborgenen Schichten zu starten und diese je
nach Komplexität der Aufgabe schrittweise zu erhöhen bis die Trainingsdaten überan-
gepasst sind. In der Praxis ist es gängig Teile eines sehr gut vortrainierten neuronalen
Netzes für bekannte Probleme wiederzuverwenden. [8]

Zum Schluss soll noch erwähnt werden, dass Géron [8] explizit beschreibt die Trainings-
daten in diesem Fall überanzupassen. Perrotta [24] weist dagegen darauf hin, dass dies
kontraproduktiv für den Testdatensatz sein kann und das Netz dort schlechter performt,
weil es überangepasst ist [24].

Anzahl der verdeckten Neuronen pro Schicht

Hier gilt das gleiche Prinzip wie im Abschnitt zuvor. Am Anfang sollte mit wenigen
Neuronen gestartet und diese schrittweise bis zur Überanpassung erhöht werden. Hier
kann je nach Problem viel Aufwand notwendig sein, um die richtige Anzahl an Neuronen
zu finden. Es gilt dabei zu beachten, dass zu viele Knoten das Training verlangsamen,
was das Netz zu intelligent macht und dadurch zu einer Überanpassung führen kann
[24]. Géron beschreibt in seinem Buch [8], dass es ein einfacher Ansatz der Stretch Pants
Ansatz ist. Hier wird ein neuronales Netz mit mehr Schichten und Neuronen ausgewählt,
als tatsächlich benötigt werden. Durch ein frühes Beenden wird versucht (Early Stopping)
die Gefahr einer Überanpassung zu verhindern. [8]

24

2 Grundlagen

Lernrate

Die Lernrate ist ein entscheidender Hyperparameter im Gradientenabstiegsverfahren. In
jedem Schritt des Verfahrens wird der Gradient mit der Lernrate multipliziert, um die
Gewichte anzupassen. Je höher die Lernrate gewählt wird, desto größere Anpassungen
werden erreicht. Daraus resultiert, dass bei einer zu kleinen Lernrate das Training ver-
langsamt wird. Bei einer zu großen Lernrate besteht dagegen die Möglichkeit sich vom
globalen Minimum zu entfernen. Laut Perrotta [24] kann mathematisch gezeigt werden,
dass das Batch-Gradientenverfahren bei einer glatten Verlustfunktion immer das Mini-
mum erreicht, solange die Lernrate ausreichend klein ist. Bei einer zu großen Lernrate
ist dies jedoch nicht garantiert. Perrotta veranschaulicht die Einstellung an einem ex-
ponentiellem Verfahren, um schneller eine passende Größenordnung zu finden und diese
anschließend nachzujustieren. [8, 24]

Batchgröße

Die Batchgröße legt fest, wie viele Trainingsdaten verarbeitet werden, bevor die Modell-
parameter angepasst werden. Sie hat Einfluss auf die Trainingsgeschwindigkeit sowie die
Genauigkeit des Modells. Eine größere Batchsize beschleunigt das Training des neuro-
nalen Netzwerks, erfordert jedoch mehr Speicherkapazität. Eine kleinere Batchsize führt
zwar zu einer längeren Trainingsdauer, ermöglicht dem Netzwerk jedoch eine bessere
Generalisierung der Daten, was die Leistung des Modells verbessern kann. [24]

2.3.9 Herausforderung des Trainierens von neuronalen Netzen

Bisher wurden einige Stellschrauben zum Trainieren von neuronalen Netzen vorgestellt.
In diesem Abschnitt soll darauf eingegangen werden, wie mögliche Herausforderungen be-
wältigt werden können und wie diese aussehen. Eine Herausforderung kann zum Beispiel
sein, dass die Verlustfunktion nicht konvergiert oder die Leistung des neuronalen Netzes
abnimmt. Unvorteilhaft ist es auch, wenn die Verlustfunktion sich zu gut dem Trainings-
datensatz anpasst. Dies kann mit einem Schüler verglichen werden, der die Antworten
für einen Test auswendig lernt, aber das Wissen nicht auf neue Aufgaben vom gleichen
Typus transferiert. In einem solchen Fall ist das neuronale Netz nicht gut generalisiert
und fokussiert sich auf die falschen Dinge. [24]

25

2 Grundlagen

Verschwindende und explodierende Gradienten

Tote Neuronen wurden vorher schon einmal erwähnt. Dies passiert, wenn die Sigmoid-
Funktion in Sättigung geht. Die Folge ist, dass das Training immer langsamer wird. Beim
verschwindenden Gradienten werden zum Beispiel während der Backpropagation die Teil-
gradienten miteinander multipliziert. Sind die Teilgradienten sehr klein, ist der Gesamt-
gradient am Ende winzig und hat kaum bis keinen Einfluss auf die Gewichtsänderung
der ersten Schichten. Das neuronale Netz konvergiert nicht. Bei explodierenden Gradien-
ten verhält sich dies gegensätzlich. Der Gradient wächst während der Backpropagation
sehr schnell, was den Namen explodierender Gradient begründet und das neuronale Netz
divergieren lässt. Beides kann vermieden werden, indem anstatt der Sigmoid-Funktion
andere Aktivierungsfunktionen eingesetzt werden, die nicht sättigen. [8, 24]

Über- und Unteranpassung

Eine Unteranpassung entsteht, wenn das ML-System nicht leistungsfähig genug ist. Dies
führt zu einer unzureichenden Aussagegenauigkeit. Mögliche Ursachen können die Archi-
tektur oder die Einstellung der Hyperparameter sein. Bei der Überanpassung hingegen
trifft das System genauere Vorhersagen bei neuen, ihm unbekannten Daten. Dies ist mit
dem zu vorgenannten Beispiel des Schülers zu vergleichen, der die Erkenntnisse nicht auf
neue Situationen transferieren kann. Im Falle eines ML-Systems kann die Generalisie-
rung der Trainingsdaten nicht ausreichend sein, um sie auf neue Situationen anwenden
zu können.[24]

Vermeiden von verschwindenden und explodierenden Gradienten

Die folgenden Möglichkeiten helfen dabei verschwindende / explodierende Gradienten zu
reduzieren:

• Anpassung Gewichtsinitialisierung,

• nicht sättigende Aktivierungsfunktionen,

• Batch-Normalisierung, oder

• Gradient-Clipping.

26

2 Grundlagen

Abbildung 2.7: Sättigung der Sigmoid-Aktivierungsfunktion [8].

Abbildung 2.8: Leaky ReLU-Aktivierungsfunktion [8].

Auf die Anpassung der Gewichtsinitialisierung wurde bereits im Kapitel 2.3.6 eingegan-
gen. Wichtig ist, dass durch die Anpassung der Initialisierung am Anfang des Trainings,
das Auftreten von toten Neuronen verhindert werden kann. Diese kann im späteren Trai-
ningsverlauf immer noch auftreten. [8]

Nicht sättigende Aktivierungsfunktionen: Neben der Sigmoid-Funktion wurden im
Kapitel 2.3.4 noch weitere Aktivierungsfunktionen erwähnt. Eine Andere ist die Tangens
hyperbolicus-Funktion. Diese beiden können für sehr große positive und negative Werte in
Sättigung geraten, wie die folgende Abbildung 2.7 veranschaulicht. Andere Aktivierungs-
funktionen hingegen wie zum Beispiel die ELU- oder Leaky RelU-Aktivierungsfunktion
wurden speziell dafür entwickelt, dass das nicht passiert. Der Verlauf der Leaky ReLU-
Funktion ist in der folgenden Abbildung 2.8 dargestellt. Aus der Abbildung 2.7 wird
ersichtlich, dass für unendlich große positive als auch für negative Werte keine Sättigung
eintritt. Im Jahr 2015 wurde mit der Exponential Linear Unit (ELU) [3] eine weitere

27

2 Grundlagen

Abbildung 2.9: ELU-AKtivierungsfunktion [8].

Aktivierungsfunktion vorgestellt. In der Abbildung 2.9 ist ersichtlich, dass sie der ReLU-
Funktion sehr ähnelt. Die Funktion wird durch die folgende Formel beschrieben:

ELUα(z) =

α(exp(z)− 1) ,wenn z < 0

z ,wenn z ≥ 0
(2.27)

Die ELU-Funktion weist gegenüber der ReLU-Funktion einige große Unterschiede auf.
Zum Einen ist es möglich, dass sie für z < 0 negative Werte annehmen kann. α ist ein Hy-
perparameter, der eingestellt werden kann. Ihm nähert sich die ELU-Funktion an, wenn
die Werte von z stark negativ werden. Dadurch kann das Neuron eine durchschnittliche
Ausgabe um null haben. Zum Anderen ist die Ableitung für negative Argumente z < 0

ungleich null, was das Problem sterbender Neuronen umgeht. Ein weiterer Unterschied
ist, dass die Funktion glatt ist. Dadurch springt die Funktion weniger links und rechts
von z = 0 umher, was das Gradientenverfahren beschleunigt. [8]

Ein Nachteil der ELU- gegenüber der ReLU-Funktion ist, dass sie sich langsamer berech-
nen lässt. Im Allgemeinen empfiehlt Géron in seinem Buch [8] die Aktivierungsfunktionen
aufsteigend von der Sigmoid < tanh < ReLU < Leaky ReLU < ELU zu verwenden. [8]

Die Batch-Normalisierung ist eine weitere Möglichkeit um verschwindende Gradien-
ten zu vermeiden. Die Xavier- und He-Initialisierung zusammen mit der ELU- oder einer
anderen Aktivierungsfunktion können zwar verschwindende oder explodierende Gradien-
ten zu Beginn des Trainings sehr reduzieren, sind aber keine Garantie dafür, dass diese
nicht im späteren Trainingsverlauf wieder zurückkehren können. Die Methode besteht
darin in jeder Schicht des Modells eine Operation unmittelbar vor der Aktivierungsfunk-

28

2 Grundlagen

tion hinzuzufügen. Diese Operation zentriert die Eingaben auf null und normalisiert sie.
Danach werden die normalisierten Werte mithilfe von zwei neuen Parametern pro Schicht
skaliert bzw. verschoben. Dadurch kann das Modell die ideale Skalierung und den Mit-
telwert für die Eingaben jeder Schicht selbst erlernen. Um die Eingaben zu zentrieren
und zu normalisieren, schätzt der Algorithmus den Mittelwert und die Standardabwei-
chung der Eingaben. Diese Werte werden aus dem aktuellen Mini-Batch berechnet. Der
Algorithmus ist in der folgenden Formel zusammengefasst: [8]

1. µB =
1

mB

mB∑
i=1

x(i) (2.28)

2. σ2
B =

1

mB

mB∑
i=1

(x(i) − µB)
2 (2.29)

3. x̂(i) =
x(i) − µB√

σ2
B + ϵ

(2.30)

4. z(i) = γx̂(i) + β (2.31)

mit

• µB ist der empirische Mittelwert für den gesamten Mini-Batch B.

• σB ist die empirische Standardabweichung, ebenfalls für den gesamten Mini-Batch
bestimmt.

• mB ist die Anzahl Datenpunkte im Mini-Batch.

• x̂(i) ist die auf null zentrierte und normalisierte Eingabe.

• γ ist der Parameter zum Skalieren der Schicht.

• β ist der Parameter zum Verschieben der Schicht (Offset).

• ϵ ist eine kleine Zahl, zum Vermeiden einer Division durch null (normalerweise
10−5). Dies wird als Smoothing-Term bezeichnet.

• z(i) ist die Ausgabe der BN-Operation: Sie ist eine skalierte und verschobene Version
der Eingaben.

Das Gradient Clipping ist eine gängige Methode, um das Problem der explodierenden
Gradienten zu mildern. Es besteht darin, die Gradienten während der Backpropagation zu

29

2 Grundlagen

begrenzen, sodass sie niemals einen bestimmten Schwellenwert überschreiten. Heutzutage
bevorzugen jedoch viele die Anwendung der Batch-Normalisierung. [8, 41]

Vermeiden von Unter- und Überanpassung

Wenn das ML-System nicht leistungsfähig genug und unterangepasst ist, kann dies aus-
schließlich durch mehr Leistung behoben werden. Das ML-System ist dann am besten in
die Überanpassung (Overfitting) zu bringen und die folgenden Methoden anzuwenden,
um dieses zu reduzieren. [24]

Early-Stopping: Um eine Überanpassung an die Trainingsdaten zu verhindern, ist Early
Stopping eine effektive Methode. Sobald die Leistung des Modells auf den Validierungs-
daten zu sinken beginnt, wird das Training gestoppt. In TensorFlow kann dies durch
regelmäßige Evaluierung des Modells auf einem Validierungsdatensatz umgesetzt wer-
den (z. B. alle 50 Schritte). Ein Gewinnermodell wird gespeichert, wenn es das bisher
beste Modell übertrifft. Es wird verfolgt wie viele Schritte seit dem letzten Speichern
des Gewinnermodells vergangen sind und das Training beendet, wenn diese Zahl einen
festgelegten Schwellenwert überschritten hat. Anschließend wird das gespeicherte Gewin-
nermodell wieder hergestellt. [8]

l1-und l2-Regularisierung: Ähnlich wie bei einfachen linearen Modellen können auch
bei neuronalen Netzen mithilfe von l1- und l2-Regularisierung Einschränkungen auf die
Verbindungsgewichte (jedoch nicht auf die Bias-Terme) anwenden [8]. Beide Methoden
integrieren die Gewichte in die Verlustfunktion des neuronalen Netzes. Das Gradienten-
verfahren versucht dann, den Verlust zu minimieren, indem es die Gewichte kleinhält.
Kleinere Gewichte tragen zu einem glatteren Modell bei. [24]

Weitere Regularisierungstechniken sind Drop-Out, Max-Norm-Regularisierung und Data
Augmentation [8].

Optimierer

Im Kapitel 2.3.3 wurde das Gradientenverfahren sowie das Mini-Batch-Gradientenverfahren
vorgestellt. Damit sich die Gewichte und der Bias in die gewünschte Richtung verschie-
ben und die Verlustfunktion abnimmt, muss eine entsprechende Optimierungsfunktion

30

2 Grundlagen

definiert werden. Diese wird als Optimierer bezeichnet und steuert die Anpassung der
Gewichte und des Bias. Durch die Wahl eines guten Optimierers wird das Training be-
schleunigt. In dem Paper [29] von Sebastian Ruder von 2017 gibt dieser einen Überblick
darüber mit welchen Optimierern das Gradientenverfahren verbessert werden kann. [8]

Der stochastische Gradienten Abstieg (SGD) beruht auf der von Robbins und
Monro vorgestellten stochastischen Approximationsmethode [27, 29]. Das Hauptproblem
des Batch-Gradientenverfahrens liegt darin, dass es für jeden Berechnungsschritt der Gra-
dienten den gesamten Trainingsdatensatz benötigt. Das macht es bei sehr großen Daten-
sätzen extrem langsam. Auf der anderen Seite steht das SGD, das bei jedem Schritt nur
einen zufällig ausgewählten Datenpunkt verwendet, um die Gradienten zu berechnen.
Dies beschleunigt den Algorithmus erheblich, da in jeder Iteration nur ein minimaler Teil
des Datensatzes verarbeitet werden muss. Daher ist es besonders geeignet, um mit sehr
großen Datensätzen zu arbeiten, da nur ein einzelner Datenpunkt pro Iteration geändert
wird. Allerdings führt diese stochastische Herangehensweise dazu, dass der Algorithmus
viel unregelmäßiger als das Batch-Gradientenverfahren ist. Anstatt gleichmäßig zum Mi-
nimum zu konvergieren, „hüpft“ die Kostenfunktion auf und ab und sinkt nur im Durch-
schnitt. Im Laufe der Zeit erreicht sie zwar ein Minimum, bleibt dort jedoch nie stabil und
schwankt weiter. Am Ende des Trainings liefert der Algorithmus somit gute, aber nicht
optimale Parameter. Bei einer stark unregelmäßigen Kostenfunktion kann diese Schwan-
kung jedoch dabei helfen, aus lokalen Minima herauszukommen. Aus diesem Grund hat
das stochastische Gradientenverfahren im Vergleich zum Batch-Gradientenverfahren eine
größere Chance, das globale Minimum zu finden. Die Zufälligkeit hilft, in lokale Minima
zu entkommen, verhindert jedoch, dass der Algorithmus im globalen Minimum zur Ruhe
kommt. Eine mögliche Lösung für dieses Problem besteht darin, die Lernrate nach und
nach zu verringern. Zu Beginn sind die Schritte groß, um schnell voranzukommen. In der
Folge werden die Schritte immer kleiner, sodass der Algorithmus letztlich im globalen
Minimum stabil wird. [8]

Das AdaGrad (Adaptive Gradient Algorithm) passt die Lernrate an die einzel-
nen Modellparameter an, indem es die bisherigen Gradientenwerte berücksichtigt. Es
summiert die quadrierten Gradienten für jeden Parameter während des Trainings auf
und verfolgt so, wie stark sich der Gradient in der Vergangenheit verändert hat. Auf
dieser Grundlage wird die Lernrate für jeden Parameter angepasst, indem die ursprüng-
lich festgelegte Lernrate durch die berechnete Summe der quadrierten Gradienten geteilt
wird. Die Lernrate wird antiproportional zu der Größe des Gradienten gewählt. Dadurch

31

2 Grundlagen

wird eine individuelle Skalierung für die Parameter erreicht. Parameter mit seltenen oder
großen Gradienten bekommen eine niedrigere Lernrate, während Parameter mit häufi-
gen oder kleinen Gradienten eine höhere Lernrate erhalten. Aufgrund dieser Eigenschaft
eignet sich AdaGrad besonders gut für spärliche Datensätze und erspart das manuel-
le Anpassen der Lernrate. Ein wesentlicher Nachteil von AdaGrad ist jedoch, dass die
Lernrate mit der Zeit immer weiter sinkt. Wird sie so klein, dass keine weiteren Aktua-
lisierungen mehr stattfinden, kommt der Lernprozess schließlich zum Stillstand. [4, 29]

Die RMSProp (Root Means Square Propagation) ist eine adaptive Methode, wel-
che die Lernrate während des Trainings anpasst. Es verwendet eine kumulierte Summe
der quadrierten Gradienten, die mit einem gleitenden Durchschnitt gewichtet wird. Auf
diese Weise werden jedoch nur die früheren Gradienten bei der Berechnung der Aktuali-
sierung berücksichtigt. Eine weitere Methode, die zur selben Zeit wie RMSProp entwickelt
wurde und die auch die vergangenen Aktualisierungsschritte berücksichtigt, ist AdaDelta
[40]. Dadurch wird die Anpassung genauer, benötigt jedoch mehr Rechenaufwand. [12, 29]

Die Adam (Adaptive Moment Estimation) vereint zwei Prinzipien - den RMSprop-
Algorithmus mit einer dynamischen Lernrate und den stochastischen Gradientenabstieg
(SGD) mit Momentum. Dabei werden zwei verschiedene Momente verwendet. Das erste
Momentum hilft dabei, die Richtung des nächsten Schrittes im Parameterraum festzule-
gen. Das zweite Momentum passt hingegen die Schrittgröße. Adam hat sich als beson-
ders effektiv, insbesondere bei komplexen Netzwerkstrukturen oder großen Datensätzen,
erwiesen. Die dynamische Anpassung der Lernrate sorgt für eine schnelle und stabile
Konvergenz der Verlustfunktion zum Minimum, was das Training beschleunigt und sta-
biler macht. Zudem trägt die Momentschätzung dazu bei, Probleme mit verschwindenden
oder explodierenden Gradienten zu reduzieren, die beim Training von neuronalen Netzen
häufig auftreten. [15, 8, 29]

Weitere Optimierer sind beschleunigter Gradient nach Nesterov und Momentum Opi-
mization [8].

2.4 Algorithmen

Nachdem die grundlegenden RL- und DL-Formalismen beschrieben wurden, wird im Fol-
genden auf verschiedene Methoden eingegangen, die für eine Lösung in Frage kommen.

32

2 Grundlagen

2.4.1 Tabellenbasierte Lösungsverfahren

Die Aufteilung von RL-Methoden kann je nach Quelle leicht unterschiedlich sein. Sutton
und Barto [34] unterscheiden in erster Instanz zwischen tabellarischen und approximier-
ten Lösungsverfahren. Gridin [7] unterscheidet hingegen zuerst zwischen dem Bandits-
Problem und dem Markov Entscheidungsprozess. Das Bandits-Problem ist eine Sonder-
form des MDP, bei welchem es nur einen einzigen Zustand gibt. Diese Aufteilung kann
auf den ersten Blick verwirrend sein. Trotz dessen die Anordnungen voneinander abwei-
chen, werden sie dennoch in die gleichen Kategorien aufgeteilt. So unterscheiden bei-
de im Wesentlichen zwischen modellfreien, modellbasierten, strategiebasierte (nach [34]
approximierte Lösungsverfahren) und wertebasierte Methoden (nach [34] tabellarische
Lösungsverfahren) sowie Off-Policy und On-Policy Ansätze. Nach Gridin [7] lernen mo-
dellbasierte Verfahren indirekt das optimale Verhalten durch das Erlernen eines Modells
der Umgebung. Die in der Umgebung ausgeführten Handlungen und dessen Ergebnisse,
also der neue Zustand sowie die sofortige Belohnung, werden beobachtet. Bei den mo-
dellfreien Verfahren ist ein Modell nicht notwendig. Hier wird jedoch zuerst zwischen
den strategiebasierten (Policy-Based) und den wertebasierten (Value-Based) Methoden
unterschieden. Letzteres wird zusätzlich zwischen Off-Policy und On-Policy differenziert.
[34, 7]

Monte-Carlo

Die Monte-Carlo-Methode ist eine breite Klasse von Algorithmen, die auf der wiederhol-
ten Durchführung von Zufallsstichproben basiert. Ihr Hauptmerkmal ist, dass es nach
einer ausreichend großen Anzahl an Zufallsexperimenten möglich wird, die Eigenschaf-
ten und Merkmale eines bestimmten Prozesses oder einer Umgebung zu ermitteln. Diese
Methode findet Anwendung in vielen Berechnungsproblemen, insbesondere dann, wenn
es schwierig ist, analytische Ergebnisse über die betreffende Umgebung zu erzielen. Die
Ergebnisse werden in der Q-Tabelle gesammelt. Diese Tabelle beinhaltet zu jedem Zu-
stand die entsprechende Aktion. Das ist die zuvor beschrieben Aktionswertfunktion q

und gehört zu den wertebasierten Lösungsverfahren. Ein Nachteil der Methode ist, dass
entweder nur trainiert oder nur bewertet werden kann. Ein Update der Q-Tabelle ist erst
am Ende des Trainings möglich. Der Q-Wert eines Zustandsaktionspaares ergibt sich aus
der Summe aller Gewinne in der Episode n, der durch die Gesamtanzahl des Zustandsak-
tionspaares im jeweiligen Trainingsverlauf geteilt wird. Dies wird in der folgende Formel

33

2 Grundlagen

beschrieben:

Q(s, a) =

∑
nG(s, a;n)

N(s, a)
(2.32)

Die Summer aller Gewinne beinhaltet auch die zukünftigen diskontierten Belohnungen,
wie durch die Formel

G(sk, ak;n) =
t∑

i=k

γi−k rk (2.33)

ausgedrückt wird. [7]

Q-Learning

Wie bei der Monte-Carlo Methode wird beim Q-Learning eine Tabelle mit den Q-Werten
befüllt. Jedoch im Fall des Q-Learnings nähert sich die gelernte Aktionswertefunktion q

direkt der optimalen Aktionswertefunktion q∗ an, unabhängig von der verfolgten Policy.
Anders ausgedrückt wird nach dem Ausführen einer Aktion und dem Erreichen des nächs-
ten Zustands die Werte in der Q-Tabelle aktualisiert. Dies vereinfacht die Analyse des
Algorithmus erheblich und ermöglicht frühzeitige Nachweise von Konvergenzen. Die Poli-
cy bleibt weiterhin von Bedeutung, da sie festlegt, welche Zustandsaktionspaare besucht
und aktualisiert werden. Für eine korrekte Konvergenz ist jedoch lediglich erforderlich,
dass alle Paare weiterhin aktualisiert werden. Je deterministischer die Umgebung ist, in
welcher der Q-Learning Algorithmus lernen soll, desto besser. Eine Herausforderung beim
Q-Learning ist, dass dieselben Stichproben zur Bestimmung der maximierenden Aktion
als auch zur Schätzung ihres Wertes verwendet werden. Dies kann zu einer erheblichen
Maximierungsverzerrung führen, was mit dem Double Q-Learning unterbunden werden
kann. Die Formel 2.34 veranschaulicht den Algorithmus. Das aktuelle Zustandsaktions-
paar Q(St, At) wird mit der Multiplikation der temporalen Differenz (engl. Temporale
Difference) und der Lernschrittweite (α) addiert sowie anschließend in der Q-Tabelle ak-
tualisiert. Die Lernschrittweite α und der Diskontierungsfaktor γ liegen beide im Bereich
zwischen null und eins. Die Summe innerhalb der Klammer wird auch als Temporale
Difference bezeichnet und drückt die erwartete Differenz in verschiedenen Momenten der
Untersuchung bzw. des Trainings aus. Sie bildet sich aus der Summe der Belohnung des
nächsten Zeitschritts Rt+1 und der Differenz zwischen dem diskontierten (γ) maximalen
Q-Werts γmaxaQ(st+1, a) des nächsten Zustands, nach der gewählten Aktion, minus des

34

2 Grundlagen

aktuellen Q-Werts Q(St, At) des Zustandsaktionspaar. [7, 34, 37]

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)] (2.34)

SARSA

Die SARSA-Methode (State-Action-Reward-State-Action) nimmt hier als On-Policy und
Value-Based Methode eine Sonderstellung ein. Der Einsatz von SARSA empfiehlt sich
immer dann, wenn die Erfüllung der Aufgabe wichtiger ist, anstatt das optimale Ergebnis
zu erzielen. Demzufolge eignet sich SARSA für Probleme in der realen Welt, wo ein Fehler
sehr teuer und zum Verlust einer wichtigen Ressource führen kann. Die SARSA-Methode
funktioniert analog des Q-Learnings, wie aus der Formel 2.35 ersichtlich wird. Der Un-
terschied besteht lediglich darin, dass nicht nach der maximal möglichen Belohnungen
gesucht wird. [7]

Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, a)−Q(St, At)] (2.35)

2.4.2 Approximierte Lösungsverfahren

In diesem Abschnitt wird das Beste aus zwei Welten vereint und die approximierten oder
geschätzten Lösungsverfahren beschrieben. Die Vereinigung des Reinforcement Learnings
mit dem Deep Learning hat im Bereich des Machine Learnings neue Tore geöffnet und
leistungsfähigere Algorithmen hervorgebracht.

Deep Q-Learning

Das Deep Q-Learning oder auch Deep Q-Network (DQN) ist bei vielen Problemstel-
lungen ein vielversprechender Ansatz. Er wurde im Jahr 2013 von Google DeepMind
vorgestellt [21]. Deep Q-Learning setzt sich aus dem Q-Learning und dem Deep Lear-
ning zusammen. Ein möglicher Aufbau wird in der Abbildung 2.10 dargestellt. Bei den
wertebasierten Lösungsverfahren ist die Pflege und Aktualisierung einer Q-Tabelle in
Umgebungen mit großen Zustandsräumen wenig praktikabel. Dies führt zur Verwendung
des Deep Q-Learnings. Statt einer Q-Tabelle nutzt das Deep Q-Learning ein neurona-
les Netzwerk, das einen Zustand als Eingabe erhält und die Q-Werte für jede mögliche
Aktion in diesem Zustand schätzt. Das macht diese Methode attraktiv für den Einsatz

35

2 Grundlagen

Abbildung 2.10: Reinforcement Learning in Kombination mit einem neuronalen Netz-
werk [19].

in großen Zustandsräumen, wie zum Beispiel beim Spiel Yahtzee. Hinzu kommt, dass
durch die Verwendung von Erfahrungsspeicher (Replay Buffer) der Agent stabiler und
effizienter lernt. [7, 21, 34]

Die Formeln 2.36 - 2.39 zeigen, wie die beiden Methoden mathematisch zusammenhän-
gen. Die Aktionswertfunktion Q∗(s, a) wird um den Parameter θ erweitert und ange-
nommen, dass diese Erweiterung ungefähr gleich der ursprünglichen Aktionswertfunktion
Q∗(s, a) ≈ Q(s, a; θi) ist. Der Parameter θ beinhaltet die Gewichte W und Bias b, die
bei der Minimierung der Verlustfunktion Li(θi) in jeder Iteration optimiert werden. Ziel
ist es, wie beim Q-Learning die erwartete Belohnung in Formel 2.36 zu maximieren. Dies
passiert analog des Q-Learning Algorithmus, indem die Differenz zwischen dem aktuellen
und dem nächsten Zustandsaktionspaar gebildet und die Differenz quadriert wird. Dabei
werden die Parameter θi−1 der vorherigen Iteration für die Optimierung der Verlustfunk-
tion festgehalten. Zum Schluss wird wie in Formel 2.39 gezeigt, das Gradientenverfahren
für die Optimierung des Parameters θ angewendet. [21]

Q∗(s, a) = Es′∼ϵ[r + γmax
a′

Q∗(s′, a′)|s, a] (2.36)

Li(θi) = Es,a∼p(·)[(yi −Q(s, a; θi))
2] (2.37)

yi = Es′∼ϵ[r + γmax
a′

Q(s′, a′; θi−1)|s, a] (2.38)

36

2 Grundlagen

∇θiLi(θi) = Es,a∼p(·);s′∼ϵ

[(
r + γmax

a′
Q(s′, a′; θi−1)−Q(s, a; θi)

)
∇θiQ(s, a; θi)

]
(2.39)

Alle wichtigen Informationen werden nun im neuronalen Netz und nicht mehr in einer
Q-Tabelle gespeichert. Dadurch kann die Methode größere Zustandsräume besser gene-
ralisieren, weil sie die passenden Aktionen in den jeweiligen Zuständen approximiert. Das
spart Speicherplatz.

Policy Gradient-Methode

Die Policy Gradient-Methode ist eine Reinforcement Learning-Methode, bei der eine sto-
chastische Policy direkt optimiert wird. Sie ist mit dem Deep Learning kombinierbar und
macht die Methode besonders effektiv, wenn ein neuronales Netz für die Parametrisie-
rung der Policy eingesetzt wird [7]. Das Hauptziel dieser Methode besteht darin, den
Parameter zu bestimmen, bei dem der Agent die höchste Belohnung gemäß der Policy πθ

erzielt. Anhand der Formel 2.40 maximiert die Methode die erwartete Gesamtbelohnung
E durch iterative Schätzung des Gradienten von g.

g = E

[∞∑
t=0

Ψt∇θlogπθ(at|st)

]
(2.40)

Ψt kann dabei eine der folgenden Möglichkeiten annehmen:

1.
∑∞

t=0 rt: Gesamtbelohnung der Trajektorie,

2.
∑∞

t′=t rt′ : Belohnung bei Verfolgung der Aktion at,

3.
∑∞

t′=t rt′ − b(st): Baseline Version der Formel zuvor,

4. Qπ(st, at) Zustands-Aktionswertfunktion,

5. Aπ(st, at) Advantage-Funktion, oder

6. rt + V π(st+1)− V π(st) Temporal Difference Residual. [30]

Die Variante drei mit der Baseline ist eine Möglichkeit, dass die Varianz reduziert wird.
Die zusätzliche Verwendung eines neuronalen Netzes macht diesen Algorithmus noch leis-
tungsfähiger. Eine Möglichkeit der Implementierung als REINFORCE oder auch Monte-
Carlo Policy Gradient-Methode beschreiben Sutton und Barto in ihrem Buch [34] und

37

2 Grundlagen

wurde von Williams 1992 in seiner Arbeit [38] vorgestellt. [30, 7]

Klassische Methoden wie Q-Learning versagen bei kontinuierlichen oder stochastischen
Aktionsräumen. Die Policy Gradient-Methode ist eine mächtige Technik, die sich gut
für solche Reinforcement Learning-Probleme eignet. Trotz der hohen Varianz und der
langsamen Konvergenz gibt es viele Weiterentwicklungen wie zum Beispiel die Actor-
Critic-Methoden, die diese Methoden stabiler und effizienter machen. [34, 7]

Actor-Critc-Methoden

Die Actor-Critic-Methode vereinigen sowohl die Policy-Based als auch die Value-Based
Methoden, im Speziellen die Policy Gradient-Methode und das Q-Learning. Es gibt einen
Akteur (Actor), der zum Beispiel nach der Policy-Gradienten Methode eine Aktion aus-
wählt und einen Kritiker (Critic), der diese Aktion anschließend bewertet. Durch die
Zusammenarbeit dieser beiden Methoden wird direkt die Policy des Akteurs als auch
des Kritikers optimiert und verbessert. Des Weiteren lassen sich beide Methoden mit
neuronalen Netzen erweitern. [7]

Die Actor-Critic-Methode und die Policy Gradient-Methode sind in Ψt über die Vari-
ante 5 durch die Advantage-Funktion Aπ(st, at) miteinander verbunden [30]. Diese setzt
sich wie folgt zusammen

Aπ(st, at) := Qπ(st, at)− V π(st), (2.41)

wobei V π(st) die Wertefunktion bzw. der Kritiker und Qπ(st, at) die Aktionswertfunktion
bzw. der Akteur ist. Somit ergibt sich für g die folgende Formel für die grundlegende
Actor-Critic-Methode:

g = E

[∞∑
t=0

∇θlogπθ(at|st)(Qπ(st, at)− V π(st))

]
(2.42)

Die Vorteile dieser Methode sind, dass die Varianz geringer, der Lernprozess durch die
Wertefunktion effizienter ist, die Methode auch in kontinuierlichen Aktionsräumen ein-
gesetzt werden kann und die Methode flexibel ist, was ihre vielen Erweiterungen zeigen.
Zusätzliche Erweiterungen sind zum Beispiel A2C [7], A3C [20] und PPO [31]. Nachteile
dieser Methode und seiner Varianten sind unter anderem die komplexere Implementierung
und dass die Kombination aus zwei Netzwerken zu Instabilitäten führen kann. [7, 34]

38

3 Stand der Wissenschaft

Nachdem in dem Kapitel zuvor auf die Grundlagen eingegangen wurde, wird in diesem
Kapitel der Stand der Technik beschrieben. Dazu wird erörtert welche Untersuchungen es
mit dem Spiel Yahtzee als Problemstellung gibt, welche Lösungsansätze für eine Punkt-
maximierung verfolgt wurden sowie deren Ergebnisse.

3.1 Der Ursprung

Den Startschuss legte 1999-2000 Tom Verhoeff von der Eindhoven University of Tech-
nology mit der Arbeit Optimal Solitaire Yahtzee Strategies [36]. In dieser Arbeit entwi-
ckelte er eine optimale Strategie mit Hilfe der Modellierung von Yahtzee als Markov-
Entscheidungsprozess und dem Lösungsansatz der dynamischen Programmierung. Dazu
wurde ein Yahtzee Spielbaum aufgestellt und die möglichen Zustände minimiert, die wäh-
rend eines Spiel erreicht werden können. In seiner Arbeit definierte er seine optimalen
Kriterien wie folgt:

• Maximierung der erwarteten Gesamtpunktzahl,

• Minimierung der Varianz der Gesamtpunktzahl,

• Maximierung der Wahrscheinlichkeit, die Höchstpunktzahl zu übertreffen,

• Maximierung der Wahrscheinlichkeit gegen einen Gegenspieler zu gewinnen, und

• Maximierung der minimalen Gesamtpunktzahl.

Auch Verhoeff stand vor dem Dilemma, welche Entscheidung bei Würfen getroffen wer-
den soll, die in mehrere Kategorien passen. Ein schönes Beispiel dafür ist die folgende
Würfelkombination Wurf = [1 1 6 6 6].

39

3 Stand der Wissenschaft

Kategorie Erwartete Punktzahl Standardabweichung
Aces 1,82 1,14
Twos 5,25 1,95

Threes 8,57 2,65
Fours 12,19 3,24
Fives 15,74 3,81
Sixes 19,29 4,61

Bonus Upper Part 24,14 16,19
Three of a Kind 22,23 5,5
Four of a Kind 13,04 11,44

Full House 22,86 6,99
Small Straight 29,53 3,71
Large Straight 33,04 15,16

Yahtzee 15,89 23,28
Chance 22,26 2,44

Grand Total 245,87 39,82

Tabelle 3.1: Punktzahl und Standardabweichung pro Kategorie ohne extra Yahtzee Bonus
und Joker [36].

Mit diesem Wurf können verschiedene Pfade, abhängig davon wie viele Wiederholungs-
würfe noch offen stehen, verfolgt werden. Sollen die Würfel mit der Augenzahl sechs
behalten werden und die beiden Einsen erneut gewürfelt oder bereits eine Kategorie aus-
gewählt werden? In seiner Arbeit konnte Verhoeff zeigen, dass es besser war die drei
Sechsen zu behalten, um mehr Punkte zu erzielen. Des Weiteren simulierte er seinen
Lösungsansatz auch an einem Yahtzee in dem es keinen Bonus oder Joker gab. In der
Tabelle 3.1 sind die Ergebnisse von Verhoeff dargestellt, von der Yahtzee-Simulation ohne
Bonus und Joker. [36]

2006 wurde die Arbeit von Tom Verhoeff von James Glenn am Loyola College in Ma-
ryland, Baltimore aufgegriffen. In seiner Arbeit [5] versucht auch er mittels elementarer
Kombinatorik und Graphentheorie eine optimale Strategie zu bestimmen. Diese optimale
Strategie verglich er mit anderen Strategien, die zum Beispiel gezielt auf Yahtzees und
/ oder Straßen gehen, weil diese im Schnitt die meisten Punkte bringen. Es gilt zu be-
rücksichtigen, dass Glenn den Bonus und Joker berücksichtigt und somit die erwartete
Gesamtpunktzahl mit 254, 59 Punkten und einer Standardabweichung von 59, 61 Punk-
ten auf den ersten Blick etwas größer ausfällt. Jedoch mit der von Tom Verhoeff unter
der gleichen Fallbetrachtung identisch ist. [5, 36]

40

3 Stand der Wissenschaft

Eine weitere Arbeit, welche die Entwicklung einer optimalen Strategie für Yahtzee mit
der Verwendung von Graphentheorie und dynamischer Programmierung versucht, ist die
Arbeit von Marcus Larsson und Andreas Sjöberg von 2012 [17]. Sie erreichten in ih-
rer Publikation ein durchschnittliches Gesamtergebnis von 248, 63 Punkten. Es gilt zu
berücksichtigen, dass sich die Rechenleistung von 2000 zu 2006 und zu 2012 jedes mal
weiterentwickelt hat. Der Vollständigkeit halber soll die KTH Royal Institute of Tech-
nology in Schweden erwähnt werden, weil auch hier verschiedene Abschlussarbeiten für
optimales Yahtzee veröffentlicht wurden, welche die Nutzung verschiedener Algorithmen
behandelt haben [13, 23].

Zusammenfassend lässt sich sagen, dass diese Arbeiten einen guten Einblick über mögli-
che Untersuchungen mit Yahtzee geben. Alle greifen jedoch auf ein Modell zurück, dass
die Wahrscheinlichkeiten von einem Zustand in den nächsten benötigt. In der vorliegen-
den Arbeit wird versucht einen modellfreien Ansatz zu verfolgen.

3.2 Arbeiten mit modellfreien Lösungsansätzen

In den Arbeiten von Minhyung Kang und Luca Schroeder [14] sowie Philip Vasseur [35]
wurde ein modellfreier Ansatz verfolgt. In beiden Publikationen wurden verschiedene Al-
gorithmen des ML angewendet. In der Arbeit von Kang und Schroeder [14] wurden spe-
ziell Algorithmen des Reinforcement Learnings priorisiert. Philip Vasseur hat dagegen in
seiner Arbeit [35] das Deep Q-Learning für den Vergleich verschiedener Strategie-Leitern
verwendet, um zu untersuchen, wie die Leistung der KI in Abhängigkeit der Regelsätze
variiert.

Kang und Schroeder [14] entwickelten einen Simulator, der es erlaubt, die Spieleran-
zahl einzustellen und Turniere zwischen den entwickelten Algorithmen auszutragen. Eine
Mensch-Maschinen-Interaktion mit dem Simulator wurde nicht implementiert. Demzu-
folge wurden die Agenten ausschließlich miteinander verglichen. Des Weiteren war es ein
Ziel dieser Arbeit herauszufinden, welche RL-Algorithmen wie gut gegen einfachere Al-
gorithmen bestehen können. Für die einfacheren Algorithmen wurden ein Random-Agent
(Zufallsagent) und drei Greedy-Agenten (gierige Agenten) entwickelt. Der Random-Agent
wählte jede Aktion zufällig aus. Die Greedy-Agent wurden in drei Stufen unterteilt, in
Level eins bis drei. Der Greedy-Agent Level-1 nahm den Initialwurf und ordnete den Wurf

41

3 Stand der Wissenschaft

der Punktetabelle zu, wo er die meisten Punkte für bekam. Der Greedy-Agent Level-2
hatte einen weiteren Wurf zur Verfügung und der Greedy-Agent Level-3 entsprechend alle
drei Wurfversuche. Dadurch besaßen die höherstufigen Greedy-Agenten bessere Möglich-
keiten, um eine höhere Endpunktzahl zu erreichen. Die verwendeten RL-Agenten waren
unter anderem das Perceptron Q(Λ) und das Hierarchical Learning (HRL). Dem HRL
wurde im Verlauf der Arbeit ein Greedy-Element hinzugefügt und somit zum HRL-G1-
Agent. Dies sollte dafür sorgen, dass der HRL-G1-Agent mehr Beispiele sieht und so
seine Endpunktzahl erhöhen kann. Neben der durchschnittlichen Endpunktzahl wurde
die durchschnittliche Zeit pro Zug ermittelt. Hier ergab sich, dass der Greedy-Agent
Level-3 mehr als drei Sekunden pro Zug braucht. Dies macht ihn sehr langsam, ob-
wohl er damit die durchschnittlich höchste Endpunktzahl mit 203, 88 Punkten erreicht
hatte. Dieser kam dem Greedy-Algorithmus von Glenn von der Gesamtpunktzahl am
Nächsten. Der Greedy Level-3 wurde nicht weiter für das Turnier berücksichtigt und
demzufolge auch nicht in der Auswertung. Es stellte sich heraus, dass der Perceptron
Q(Λ)-Agent die meisten Spiele gegen den Random-Agenten gewann. Die Ergebnisse ge-
gen den Greedy-Agenten Level-1 und Level-2 waren dagegen eher bescheiden. Die beiden
anderen RL-Agenten schnitten insgesamt gegen den Greedy-Agenten Level-1 mit einer
Gewinnwahrscheinlichkeit von mehr als 50% besser ab. Der Greedy-Agent Level-2 hatte
in dieser Arbeit die höchste Gewinnwahrscheinlichkeit. Es gilt zu beachten, dass Unter-
suchungen wie in Arbeit [14] der Agent oder auch menschliche Spieler zu einem anderen
Lernverhalten neigen, wenn das Siegen gegenüber der Maximierung der Gesamtpunktzahl
in Vordergrund steht. Zum Beispiel kann der verlierende Spieler zu einem risikoreichen
Verhalten und Entscheidungen neigen, solange weiterhin eine Chance auf den Sieg be-
steht. [14]

Aus den Ergebnissen der Arbeiten ergeben sich interessante Fragestellungen inwiefern
Deep Reinforcement Learning unter Verwendung von tiefen neuronalen Netzen die Wahr-
scheinlichkeiten und strukturellen Eigenschaften von Yahtzee besser erfassen können. Aus
dem Abstract von Kan und Schroeder [14] geht hervor, dass einfache Benchmarks über-
troffen werden können, aber insgesamt suboptimal sind. Wenn wir uns die Ergebnisse
in der Tabelle 3.2 anschauen, wird ersichtlich, dass die Gesamtpunktzahl der optimalen
Yahtzee Strategien ausbaufähig ist.

In [35] wurde ein Deep Q-Learning Algorithmus entwickelt und verwendet, der Yahtzee
spielen lernt. Ziel dieser Arbeit ist nicht die Untersuchung, ob der Algorithmus eine er-
folgreiche Strategie zur Maximierung der Endpunktzahl entwickelt, sondern ob es eine

42

3 Stand der Wissenschaft

Agent Gesamtpunktzahl
Random 45,635

Greedy Level-1 112,541
Greedy Level-2 171,166
Greedy Level-3 203,882
Perceptron Q(λ) 77,772

HRL 120,299
HRL-G1 129,580

Tabelle 3.2: Durchschnittliche Gesamtpunktzahl verschiedener Agenten [14].

Korrelation zwischen den Strategieleitern von Mensch und Maschine gibt. Hieraus soll
eine Beurteilung erfolgen, ob ein Spiel für einen Menschen gut und herausfordernd ist.
Dabei wird untersucht wie eine Änderung der Regelsätze die Leistung des Algorithmus
variiert und sich auf das Lernverhalten des Agenten auswirkt. Dies wird unter ande-
rem erreicht, indem die Schwelle für die Mindestpunktzahl des Bonus zwischen 53 bis
75 Punkten variiert. Das Ergebnis von [35] zeigt, dass eine niedrigere Punkteschwelle
zwischen 53-57 Punkten zu einer interessanteren Variante von Yahtzee führen könnte.

Zusammenfassend lässt sich sagen, dass Vasseur dem Agenten nur die Kategorie übergibt
und eine untergeordnete Hilfsfunktion die Auswahl der Würfel und die Wiederholungs-
würfe übernimmt. Bei der Arbeit von Kang und Schroeder entscheidet der Agent selb-
ständig zwischen der Auswahl einer Kategorie oder einem Wiederholungswurf mit allen
oder nur bestimmten Würfeln. Dies gibt zwar mehr Freiheiten, gestaltet allerdings das
(Er-)Lernen des Spiels herausfordernder.

43

4 Anforderungsanalyse

Bevor es an die konzeptionelle Ausarbeitung und Umsetzung geht, wird zuerst das zu
entwickelnde System beschrieben und analysiert. Des Weiteren werden die Bedürfnisse
und Wünsche verschiedener Stakeholder berücksichtigt, die zu unterschiedlichen Anwen-
dungsfällen und Anforderungen führen. Zusammen bilden sie die Grundlage für eine
systematische Umsetzung der Arbeit und dokumentieren das Projektziel. Ein weiterer
Vorteil ist, dass sich die Ergebnisse durch die verschiedenen Anforderungen am Ende der
Arbeit messen lassen. Hierdurch kann der Erfolg überprüft werden sowie verfolgt werden,
welche Erkenntnisse aus der Umsetzung bestimmter Lösungswege gewonnen wurden.

4.1 Systembeschreibung

In der Abbildung 4.1 ist eine Übersicht des Gesamtsystems mit all seinen Komponen-
ten und deren Zusammenhänge zu finden. Das System kann in zwei Teile unterschieden
werden:

• den KI-Agenten und der Simulationsumgebung, und

• dem physischen Demonstrator der in einer ersten Betrachtung ausschließlich aus
einem Bildverarbeitungssystem bestehen kann.

Zum Einen soll es möglich sein, dass die KI-Agenten und die Simulationsumgebung un-
abhängig vom Bildverarbeitungssystem interagieren. Zum Anderen soll es möglich sein,
in den genannten Systemen unabhängig die Entwicklung vorantreiben zu können. Somit
lässt sich Teil eins unabhängig von Teil zwei entwickeln. Dies ist möglich, weil die Zu-
standsaktualisierung aus der Simulationsumgebung erfolgt. Das Bildverarbeitungssystem
kann als Schnittstelle für das Spielen mit echten Würfeln verwendet werden. Die Simu-
lationsumgebung ist notwendig, damit der KI-Agent schnell und einfach trainieren kann.

44

4 Anforderungsanalyse

Abbildung 4.1: Systemumgebung.

4.2 Zielgruppen

Der Erfolg des Projekts hängt nicht nur von der technischen Machbarkeit, der Umsetzung
und den funktionalen Anforderungen ab. Ebenso ist es entscheidend, die Bedürfnisse und
Erwartungen aller beteiligten Interessensgruppen zu berücksichtigen. Die Stakeholder
haben einen direkten oder indirekten Einfluss auf den Verlauf und den Erfolg der Arbeit.
Die nachfolgend betrachteten Stakeholder haben ein besonderes Interesse am Erfolg dieser
Abschlussarbeit.

4.2.1 Auftraggeber

Als Erstprüfer, Betreuer und Auftraggeber der Abschlussarbeit nimmt Herr Prof. Dr.
Hensel eine zentrale Rolle ein. Er verfolgt dabei verschiedene Ziele und Interessen. Mit
dem Demonstrator soll einerseits das Interesse von anderen Studierenden an RL geweckt
werden. Andererseits soll damit die Möglichkeit geschaffen werden das Spiel Yahtzee mit
Hilfe von KI zu lösen, da es einen nicht deterministischen Anteil besitzt. Nicht jedes
Problem, das mittels Einsatz von KI gelöst werden soll, erfüllt die Anforderungen und
Qualitäten für den Praxiseinsatz. Die Arbeit kann zudem als Anwendungsbeispiel für
zukünftige studentische Arbeiten genutzt werden, um Weiterentwicklungen verschiedener
KI-Methoden und Algorithmen zu erforschen. Aus Sicht des Prüfers ist nicht nur die
fachliche Qualität der Lösung von Bedeutung, sondern auch der Erkenntnisgewinn und
die methodische Bearbeitung der Aufgabenstellung. Dies schließt sowohl theoretische

45

4 Anforderungsanalyse

Einblicke in die Funktionsweise von KI-Systemen als auch praktische Erfahrungen in
deren Implementierung und Anwendung ein.

4.2.2 Autor der Arbeit

Mit der Erstellung der Arbeit liegt der Schwerpunkt auf der persönlichen Weiterent-
wicklung im Bereich der Künstlichen Intelligenz. Hierbei ist es es wichtig, umfassendes
Grundlagenwissen zu erwerben und neue Fähigkeiten zu erlernen. Das Hauptziel besteht
jedoch darin, am Ende der Arbeit einen Prototypen zu erstellen, der als Referenz dienen
und von anderen Studierenden genutzt werden kann, um diese oder ähnliche Projekte
fortzuführen oder weiterzuentwickeln.

4.2.3 Interessierte an Künstlicher Intelligenz

Als weitere Nutzergruppen lassen sich die Interessierten identifizieren. Dies könnten Per-
sonen sein, die sich einen greifbaren Eindruck von den Ergebnissen studentischer Arbei-
ten verschaffen möchten oder an der Art und Weise der Umsetzung interessiert sind.
Das Projekt bietet eine ideale Plattform, um das Interesse an Künstlicher Intelligenz
und technischer Innovation zu fördern. Es ermöglicht einen Einblick in die Potenziale der
Technologie und zeigt, wie theoretische Konzepte praktisch umgesetzt werden.

4.2.4 Spieler

Des Weiteren haben Spieler die Möglichkeit, ihre strategischen und problemlösenden
Fähigkeiten zu schärfen, während sie gleichzeitig Freude daran haben, sich mit einer KI
zu messen. Das Projekt dient somit nicht nur als Bildungs- und Forschungsinstrument,
sondern bietet auch eine unterhaltsame Freizeitbeschäftigung.

4.2.5 Weiterentwickler

Das System und die Ergebnisse dieser Arbeit bieten insbesondere für Studierende eine
solide Grundlage für weitere Entwicklungen und Forschungsarbeiten. Vor allem MINT-
Studierenden stellt das automatisierte Yahtzee-Spiel sowie die Simulation eine interessan-
te Möglichkeit dar, theoretisches Wissen in die Praxis umzusetzen. Es gibt zudem zahlrei-

46

4 Anforderungsanalyse

che Ansätze, um verschiedene Konzepte der Bildverarbeitung zu testen und miteinander
zu vergleichen. Auch der physische Demonstrator eröffnet viel Raum für kreative Auto-
matisierungslösungen bis hin zur Robotik. Neben den Studierenden könnte diese Arbeit
auch Menschen aus der allgemeinen Öffentlichkeit als Inspirationsquelle für Selbststudien
oder Optimierungen dienen.

4.3 Die KI-Agenten und die Simulationsumgebung

Die folgenden beiden Unterkapitel beschreiben und analysieren die Anwendungsfälle und
Anforderungen an den KI-Agenten sowie der Simulationsumgebung. Sie stellen eine An-
leitung für die Systementwicklung sowie die Erstellung von Testszenarien zur Bewertung
bereit.

4.3.1 Anwendungsfälle

Dieses Unterkapitel betrachtet die Anwendungsfälle, die sich für die KI-Agenten und
der Simulationsumgebung ergeben. Die Abbildung 4.2 visualisiert die Anwendungsfälle
in einem Diagramm und stellt deren Beziehung zueinander dar. Es werden für eine Lö-
sungsfindung verschiedene KI-Agenten ausprobiert. Für eine spätere Verwendung wäre
es ebenfalls von Interesse die mit den entsprechenden Parametereinstellungen erzielte
Ergebnisse zu reproduzieren oder das Lernverhalten der Agenten zu untersuchen. Dazu
muss der Anwender den Agenten nicht nur trainieren sondern auch evaluieren können. Des
Weiteren kann über die Lernparameter die Anzahl der Durchläufe, die der Agent trainie-
ren soll, oder die Parameter, die das Lernverhalten beeinflussen, eingestellt werden. Mit
der Möglichkeit, das Spiel konfigurieren zu können, kann die Größe der Punktetabelle,
d.h. die Berücksichtigung des oberen und / oder unteren Tabellenabschnitts, angepasst
und somit die Komplexität des Spiels verändert werden. Aus der Sicht des Agenten ist es
wichtig mit der Simulationsumgebung interagieren zu können. Dazu wählt er eine Aktion
aus, die die Simulationsumgebung durchführt und anschließend den neuen Zustand des
Agenten aktualisiert. Je nach Agent stehen verschiedene Modelle zur Verfügung. Zudem
soll die Möglichkeit der Speicherung des trainierten Modells aufgenommen werden, so
dass es zu Beginn eines neuen Trainingslaufs geladen werden kann, um die Trainings-
zeiten zu verkleinern. Auch soll es möglich sein verschieden Trainingsstände laden oder

47

4 Anforderungsanalyse

speichern zu können.

Zustand erkennen

Kamera

Speicher

Anwender

Aktion durchführen

Spiel konfigurieren

Modell laden

Modell speichern

System

Modell auswählen

Lernparameter einstellen

Agenten trainieren

Agenten evaluieren
Agent

«extends»

«includes»

«includes»

«extends»

«includes»

«includes»

«includes»
«includes»

«includes»

«includes»

Abbildung 4.2: Anwendungsfalldiagramm der Software.

4.3.2 Anforderungen

Die Anforderungen werden in funktionale und nicht funktionale Anforderungen unter-
schieden. Funktionale Anforderungen (F) legen fest, welche Aufgaben und Funktio-
nen das System erfüllen muss und welchen Zweck es verfolgt. Sie definieren demnach,
was das System leisten soll. Im Gegensatz dazu beschreiben nicht-funktionale An-
forderungen (NF) die Eigenschaften, Qualitätsmerkmale oder Einschränkungen des
Systems. Sie beziehen sich darauf, wie das System seine Funktionen unter bestimmten
Bedingungen ausführen soll. Dazu wird im Folgenden die Anforderungen der KI-Agenten
(KI) ausformuliert.

48

4 Anforderungsanalyse

KI-F1: Aufbau einer Simulationsumgebung, mit der die KI-Agenten interagieren können
und in welcher die ausgewählten Aktionen durchgeführt werden.
Die Simulationsumgebung repräsentiert das Yahtzee-Spiel mit allen notwendigen Funk-
tionen und Bedingungen, die für die Durchführung der Aktion notwendig sind. Sie gibt
für das Training und die Evaluation die Zustandsaktualisierung an den Agenten zurück.

KI-F2: Die Lernparameter des Agenten müssen vor dem Training anpassbar sein.

KI-F3: Das Spiel muss konfigurierbar sein, sodass die Komplexität einstellbar ist.
Die Anforderung gilt als erfüllt, wenn die Punktetabelle des Yahtzee-Spiels angepasst
werden kann. Hierzu soll die Möglichkeit bestehen, dass entweder nur mit der oberen
Punktetabelle, der oberen Punktetabelle inklusive des Bonus oder der oberen und unteren
Punktetabelle trainiert werden kann.

KI-F4: Der Trainingsfortschritt muss bewertbar visualisierbar sein.
Die Anforderung gilt als erfüllt, wenn für die Visualisierung ein Diagramm am Ende
des Trainings generiert wird. Die Messbarkeit des Lernfortschritts ergibt sich aus der
durchschnittlich erreichten Gesamtpunktzahl sowie der durchschnittlichen Punktzahl pro
gewählter Kategorie.

KI-F5: Bei Agenten, die verschiedene Modelle besitzen, soll das Modell anpassbar sein.
Ein Modell kann zum Beispiel ein neuronales Netz sein. Dies kann aus mehreren Schich-
ten bestehen. Die Anzahl der Schichten soll bis zu einem Maximum von drei Schichten
eingestellt werden können.

KI-F6: Sind bereits Trainingsdaten vorhanden, sollen diese bei Bedarf geladen werden
können.
Das Laden der vorhandenen Trainingsdaten ist für zwei Fälle besonders interessant. Zum
Einen kann hiermit das Training bis zu einem bestimmten Punkt evaluiert werden oder
es kann zum Anderen für die Fortführung des Trainings von einem bestimmten Punkt
aus weiterverwendet werden.

KI-F7: Trainingsdaten sollen speicherbar sein.
Diese Anforderung gilt als erfüllt, wenn abhängig von den zuvor eingestellten Parametern
die Trainingsdaten gespeichert werden können.

49

4 Anforderungsanalyse

KI-F8: Nachdem alle notwendigen Einstellungen getätigt wurden, kann der Agent trai-
niert werden.
Der Agent soll selbstständig trainieren können und es soll während des Trainings keine
weitere Aktion von außerhalb notwendig sein.

KI-NF1: Der Code soll in der Programmiersprache Python implementiert werden.

KI-NF2: Der Programmcode soll strukturiert und übersichtlich implementiert sein. Zu-
dem soll eine Kommentierung erfolgen, die den Code gut lesbar gestaltet und eine einfache
Wartung ermöglicht.
Es soll mit Klassen gearbeitet werden, um eine klare Struktur in zusammenhängende Be-
reiche zu schaffen. Außerdem sollen aussagekräftige Namen für Variablen, Methoden und
Klassen gewählt werden.

4.4 Physischer Demonstrator

Der physische Demonstrator besteht unter anderem aus dem Bildverarbeitungssystem.
Auch für die Bildverarbeitung sollen die Anwendungsfälle und Anforderungen beleuchtet
werden.

4.4.1 Anwendungsfälle

Der wichtigste Anwendungsfall ist, dass die Kamera das Bild aufnimmt und daraus den
Zustand mit Bildverarbeitungsmethoden ermittelt werden kann. Anschließend kann der
Agent aus dem neu ermittelten Zustand eine Entscheidung über die Aktion ableiten.

4.4.2 Anforderungen

Daraus ergeben sich die Anforderungen für das Bildverarbeitungssystem BV.

BV-F1: Die fünf Würfel und deren entsprechende Augenzahl soll mit einer Sicherheit
von 80% erkannt werden.
Die Anforderung gilt als erfüllt, wenn die Würfelaugen auf den Würfeln innerhalb der
definierten Grenzen erkannt werden.

50

4 Anforderungsanalyse

BV-F2: Für den Fall, dass die Augenzahl auf den Würfeln nicht richtig erkannt wird,
muss es eine Korrekturmöglichkeit geben.

BV-F3: Nur der menschliche Spieler soll mit echten Würfeln spielen können.

BV-F4: Das System erkennt eigenständig, wenn ein neuer Wurf vorliegt bzw. über-
mittelt wurde.

BV-F5: Das System erlaubt keine Übermittlung des Bildes nach dem zweiten Wie-
derholungswurf.

BV-F6: Nach dem zweiten Wiederholungswurf steht nur die Auswahl eines freien Feldes
auf der Punktetabelle zur Verfügung.

51

5 Konzept

Nachdem die Anforderungen an das System definiert sind, wird in diesem Kapitel auf die
Vorgehensweise eingegangen. Dazu wird im Folgenden auf die notwendigen Werkzeuge,
der konzeptionelle Aufbau der Software und mögliche Methoden, die in diesem Projekt
untersucht werden, beschrieben. Die Software setzt sich grundlegend aus der Simulati-
onsumgebung und dem Agenten zusammen.

5.1 Software

5.1.1 Entwicklungsumgebung und Programmiersprache

Die richtige Entwicklungsumgebung (IDE = Intergated Development Environment) und
Programmiersprache sind nicht unerheblich für die Entwicklung eines Projektes. Es ste-
hen viele Entwicklungsumgebungen zur Verfügung: Visual Studio Code, PyCharm, Spy-
der, Jupyter Notebook, PyDev etc. Einige dieser IDEs können über die Distribution Ana-
conda Navigator installiert werden, unter anderem Spyder. Die IDE Spyder bietet alle
notwendigen Anwendungen, wie einen integrierten Debugger, einen Variableninspektor
und eine interaktive Konsolenschnittstelle. Des Weiteren hilft Anaconda als Distribution
dabei den Überblick über die installierten Bibliotheken zu behalten und bietet die Mög-
lichkeit verschiedene Versionen einer Programmiersprache zu verwenden. Bei der Pro-
grammiersprache ist es von Relevanz eine solche zu verwenden, die eine große Beliebtheit
besitzt, sodass das Ergebnis für eine große Interessengruppe zugänglich ist. Gleichzeitig
sollte sie leicht zu verstehen sein und viele Bibliotheken für das Machine Learning besit-
zen. Die Wahl fiel hier auf Python. Sie bietet eine einfache Syntax und die Möglichkeit
für eine strukturierte und objektorientierte Programmierung. Des Weiteren gibt es viele
verschiedene Bibliotheken für das Thema Machine Learning. Zudem erfreut sich Python
einer großen Anwenderzahl in Wissenschaft und Praxis1. [39]

1https://pypl.github.io/PYPL.html

52

5 Konzept

5.1.2 Machine Learning Framework

Für das klassische Reinforcement Learning gibt es keine speziellen Machine Learning Fra-
meworks, die die Handhabung vereinfachen. Beim Deep Learning hingegen sind die am
häufigsten genutzten Frameworks TensorFlow und PyTorch [7]. Diese Frameworks sind
in der Programmiersprache Python verfügbar und bieten eine breite Palette an Funk-
tionen zur Erstellung von Machine-Learning- und Deep Learning-Modellen. TensorFlow
wurde im Jahr 2016 von Google veröffentlicht, während PyTorch 2017 durch Facebook
AI Research entwickelt wurde. In der Forschung gilt PyTorch heute als das bevorzug-
te Framework, während TensorFlow in der Industrie häufiger verwendet wird.[26] Die
Kombination des klassischen Reinforcement Learnings mit dem Deep Learning und des-
sen Frameworks eröffnete die Möglichkeit neue starke Algorithmen für komplexere Pro-
blemstellungen zu entwickeln. Je nach Gegebenheit bietet das eine Framework Vorteile
gegenüber dem Anderen. Somit wurde PyTorch für eine erste Implementierung gewählt,
weil es eine bessere Nachvollziehbarkeit bietet. Ein späterer Umstieg auf TensorFlow mit
Keras ist nicht ausgeschlossen. Weitere Bibliotheken, die verwendet werden, sind Pandas
zur Daten Analyse in Python und Matplotlib für die Visualisierung von Diagrammen.

5.1.3 Simulationsumgebung

Für den Aufbau einer Simulationsumgebung und das Training von KI-Modellen ist Ope-
nAI Gym ein äußerst wertvolles Werkzeug. Seit seiner Veröffentlichung im April 2016
durch die Firma OpenAI wird es kontinuierlich weiterentwickelt. Die Plattform bietet
eine breite Auswahl an standardisierten Umgebungen, Algorithmen und verschiedenste
Methoden, was die Entwicklung und den Vergleich von KI-Modellen deutlich vereinfacht.
Als standardisierte Schnittstelle ermöglicht OpenAI Gym dem KI-Agenten sowohl mit
vordefinierten als auch benutzerdefinierten Umgebungen zu interagieren. Im Kern dieser
Python-Bibliothek steht die Fähigkeit eines Agenten mit seiner Umgebung auf flexible
Weise zu kommunizieren. Dadurch besteht die Möglichkeit eine Simulationsumgebung
aufzubauen, die alle KI-Agenten verwenden können. Dies ist auch für weiterführende
Arbeiten interessant, wenn eine Erweiterung mit anderen Algorithmen gewünscht ist.

53

5 Konzept

5.2 Lernstrategie des Spiels Yahtzee

Yahtzee birgt beim Spielen verschiedene Herausforderungen. Zum Beispiel kann keine
Vorhersage über den nächsten Spielzug gemacht werden. Der Spieler weiß nicht was er
als nächstes würfelt. Er kann daher nicht vorher entscheiden, wann die Wahl eines Felds
sinnvoll ist. Daher besitzt das Spiel eine große Abhängigkeit vom Zufall. Die einzige Mög-
lichkeit den Zufall zu reduzieren, geht ausschließlich durch das Auswählen der Würfeln,
die der Spieler erneut im Rahmen seiner drei Versuche würfeln möchte. Allein der ers-
te Wurf (Initialwurf) eines Zuges besitzt bei Berücksichtigung aller Würfelanordnungen
65 = 7.776 Möglichkeiten. Danach darf der Spieler noch zweimal würfeln und sich bei je-
dem Wurf entscheiden, welche der fünf Würfel er erneut würfeln möchte. Um die Anzahl
an Möglichkeiten schon beim Initialwurf gering zu halten, ist es sinnvoll die Würfel zu
sortieren, zum Beispiel von links nach rechts aufsteigend. Dadurch wird die Anordnung
von 7.776 Möglichkeiten auf

(
10
5

)
= 252 Möglichkeiten reduziert. Hinzu kommen dann

noch die beiden Wiederholungswürfe und die Auswahl des Felds. [14]

Um auch hier die Komplexität des Spiels weiter zu minimieren, gibt es verschiedene
Ansätze. Die Punktetabelle wird dazu wie in der Abbildung 5.1 veranschaulicht in unter-
schiedliche Segmente unterteilt. Das erste Segment (grün) des oberen Tabellenteils wird
immer trainiert. Die weiteren beide Segmente (in orange und rot) können unabhängig
voneinander zusätzlich ausgewählt werden. So kann zum Beispiel nur mit dem oberen Ta-
bellenteil trainiert werden und der Untere bei Bedarf mit dazugenommen werden. Dies
bringt verschiedene Vorteile mit sich. Der Zustandsraum wird verkleinert. Die Zeit pro
Spiel und somit auch die Trainingszeit des Agenten werden verkürzt. Dieser befasst sich
hierdurch erst einmal mit kleineren Herausforderungen und nicht von Beginn mit dem
gesamten Spiel. Des Weiteren ist es eine gute Option den Bonus für den oberen Tabel-
lenteil analog dem unteren Tabellenteil auswählbar zu machen. Der Bonus kann für den
Agenten für den Anfang eine zu abstrakte Belohnung sein, die er erst bei Erreichen von
mehr als 63 Punkten im oberen Tabellenteil bekommt. Dies wird im schlimmsten Fall
nie erreicht. Zusätzlich ist es gut für den Agenten am Anfang ohne Wiederholungswür-
fe zu starten, sodass er den Initialwurf nur den Abschnitten der Punkttabelle zuordnen
muss. Mit diesen Aufteilungen kann die Komplexität schrittweise gesteigert und geschaut
werden, ab wann der Agent an seine Grenzen stößt, sowohl beim Lernen als auch beim
Spielen.

54

5 Konzept

Abbildung 5.1: Beispiel einer Yahtzee Punktetabelle mit den einstellbaren Trainingsbe-
reichen.

5.3 Der Agent

Neben den verschiedenen Methoden, die für die Umsetzung in Betracht kommen, stellt
sich auch die Frage, ob das System mit einem oder zwei Agenten aufgebaut werden soll. So
kann zum Beispiel ein Agent entscheiden, ob er einen Wiederholungswurf tätigen oder ein
leeres Feld auswählen möchte. Andererseits können die Aufgaben auch aufgeteilt werden.
Zum Beispiel lernt ein Agent, welche Würfel er neu würfelt und ein zweiter Agent, welche
Felder er auswählt. Die Abbildung 5.2 veranschaulicht dies, indem links das System mit
einem Agenten und rechts das System mit zwei Agenten dargestellt ist.

5.3.1 System mit einem Agenten

Das System mit einem Agenten bietet den Vorteil, dass nur ein Modell trainiert werden
muss. Der Nachteil kann unter anderem sein, dass sich das Modell nur für die Auswahl
der Felder eignet, aber zum Beispiel bei der hohen Komplexität der Auswahl der Wür-
fel scheitern könnte. Hier könnte bei einem System mit zwei Agenten für die jeweilige
Aufgabe das entsprechend beste Modell verwendet werden. Ein Vorteil bei einem System

55

5 Konzept

B

Wiederholungswürfe = 2

Wiederhol-
ungswürfe -= 1

A

Actions = Würfel

Agent:
Wähle Feld

Agent:
Wähle Würfel

Actions = Felder

Würfeln

Actions = Felder Actions = Felder + Würfel

Wiederhol-
ungswürfe -= 1

Wiederholungswürfe = 2

Agent:
Wähle Würfel oder Feld

Würfeln

[Feld
gewählt]

[Alle Felder
belegt

[Wiederhol-
ungswürfe >0]

[Wiederhol-
ungswürfe == 0]

[Leere Felder]

[Würfel gewählt]

[Alle Felder
belegt]

[Feld gewählt]

[Wiederhol-
ungswürfe == 0]

[Wiederholungswürfe > 0]

[Leere Felder]

[Würfel gewählt]

Abbildung 5.2: Aufbau des System mit links einem Agenten und rechts zwei Agenten.

mit nur einem Agenten ist, dass bei der Durchführung der Aufgaben nur ein Belohnungs-
system berücksichtigt werden muss. Die Belohnung kann zum Beispiel die gewonnenen
Punkte sein. Dies stellt gleichzeitig auch das Hauptziel des Spiels dar so viele Punkte wie
möglich zu erzielen. Hierdurch muss nur ein Modell kontrolliert werden, ob dieses richtig
lernt. Dies vereinfacht die Entwicklung. Bei einem System mit zwei Agenten hingegen ist
dies ein Nachteil, da zwei Agenten auf ihren Lernfortschritt hin überprüft werden müs-
sen. Des Weiteren stellt sich die Frage, ob beide das gleiche Belohnungssystem nutzen
können. Für die Auswahl der Felder können zum Beispiel, wie auch beim System mit
einem Agenten, die gewonnenen Punkte genutzt werden. Doch wie sieht das beim Agent
aus, der die Würfel auswählt? Wie wird die Wahl der Felder belohnt und was ist eine gute
Wahl und was nicht? Nach der Abbildung 5.2 wird ersichtlich, dass eine Kommunikation
der Agenten nicht zwangsweise notwendig ist. Dies würde zwar die Umsetzung erleich-
tern, jedoch nicht wesentlich vereinfachen. Werden die Vor- und Nachteile gegeneinander
abgewogen, stellt sich eine Implementierung mit einem Agenten als vorteilhaft dar. Die
Tabelle 5.1 fasst die zuvor beschriebenen Kriterien in einer Tabelle zusammen, wobei +
positiv gegenüber dem anderen Agentensystem und − negativ gegenüber dem anderen
Agentensystem zu bewerten ist.

56

5 Konzept

Kriterien 1 Agent 2 Agenten
Implementierungsaufwand + -
Belohnungssystem + -
Aufgabenverteilung - +
Training und Validierung + -
Extraaufwand + -

Tabelle 5.1: Kriterien für ein ein Agenten- oder zwei Agentensystem.

5.3.2 Methoden

In der vorliegenden Arbeit werden ausschließlich Methoden in Betracht gezogen, die einen
Bezug zum Reinforcement Learning haben. Hierzu wurden einige Ansätze im Grund-
lagenkapitel vorgestellt. Im weiteren Verlauf der Arbeit werden Q-Learning und Deep
Q-Learning verwendet. Hierzu wird zuerst das Q-Learning untersucht und entwickelt,
weil dies eine Methode ist, die ausschließlich auf dem Prinzip des Reinforcement Lear-
nings beruht. Q-Learning ist gegenüber der Monte-Carlo-Methode effizienter beim Ler-
nen, weil schon während des Trainings die Q-Tabelle aktualisiert und für das weitere
Training verwendet wird. Bei der Monte-Carlo-Methode [7] erfolgt dies erst am Ende
das Trainings. Generell wird erwartet, dass der Zustandsraum für eine Methode, die
ausschließlich auf einen Bereich des Machine Learnings beruht, zu groß ist. Für die ta-
bellarischen Lösungsverfahren bedeutet dies einen sehr großen Speicherbedarf, um die
Zustands-Aktions-Wertepaar abzuspeichern. Anschließend wird die natürliche Erweite-
rung des Q-Learnings, das Deep Q-Learning bzw. die Deep Q-Networks untersucht. Dies
ist eine Kombination aus Deep und Q-Learning. Die Vorteile sind ein geringerer Speicher-
bedarf und weniger Trainingszeit als beim Q-Learning. Es muss jedoch zusätzlich ein
neuronales Netz entwickelt, ein Erfahrungsspeicher zur Steigerung der Lerneffizienz im-
plementiert und mehr Parameter eingestellt werden. Dies bedeutet auf den ersten Blick
gegenüber dem Q-Learning Algorithmus mehr Aufwand, erzielt bei erfolgreichem Trai-
ning jedoch wesentlich bessere Ergebnisse. Zunächst wird eine Epsilon-Greedy-Policy
verwendet, um das Ziel, eine höchstmögliche Punktzahl zu erreichen, verfolgt wird. Diese
Strategie wird für beide Methoden angewendet.

Bei der SARSA-Methode wird nicht nach dem bestmöglichen Ergebnis (maximale Punkt-
zahl) gestrebt, sondern ressourcenschonend versucht, die Aufgabe zu erledigen. Beim
Policy Gradient-Methode legt diese zu viel Wert darauf, Aktionen in Zuständen zu ver-
bessern, in denen der Agent bereits gelernt hat mit diesen umzugehen. Dies macht sie

57

5 Konzept

sehr ineffizient und führt zu sehr langen Trainingszeiten. Die Actor-Critic-Methode steht
vor dem Dilemma, dass eine Entscheidung des Akteurs sowohl gut als auch schlecht sein
kann. Zum Beispiel entscheidet sich der Akteur dafür drei Dreien zu behalten, obwohl
die Felder für die Dreien und die Chance schon belegt sind, da dieser mit den verblei-
benden Würfen einen Yahtzee erzielen möchte. Dann würde der Kritiker dies als gut
bewerten, obwohl das Risiko sehr hoch ist. Wird kein Yahtzee erzielt und ein Feld muss
im schlimmsten Fall mit null Punkten bewertet werden, dann wird die Entscheidung
schlechter bewertet. Der Zufall kann bei diesem Beispiel eine starke Gewichtung einneh-
men. Des Weiteren scheint der Implementierungsaufwand bei der Actor-Critic-Methode
größer als beim Deep Q-Learning zu sein. Dies sind weitere Gründe, warum sich für eine
Umsetzung der Q-Learning- und der Deep Q-Learning-Algorithmen in der vorliegenden
Arbeit entschieden wurde.

58

6 Entwicklung der Simulationsumgebung

Dieses Kapitel beschreibt den Aufbau einer benutzerdefinierten Simulationsumgebung
nach dem Standard von OpenAI Gym, sodass verschiedene Reinforcement Learning
Agenten die gleiche Simulationsumgebung nutzen können. Dies eröffnet auch die Möglich-
keit des Vergleichs verschiedener Agenten und wie gut diese die Problemstellung lösen.
Hierzu wird zuerst auf den allgemeinen Aufbau der benutzerdefinierten Umgebung nach
OpenAI Gym eingegangen. Anschließend wird die Umsetzung des Würfelspiels Yahtzee
beschrieben. Zum Schluss werden die Schnittstellen erläutert, die einem Agenten zur
Verfügung stehen, um mit der erstellten Yahtzee Umgebung zu interagieren.

6.1 OpenAI Gymnasium API

OpenAI bietet zum Einen die Möglichkeit, vorgefertigte Umgebungen zum Trainieren
von Agenten zu verwenden. Bekannte Beispiele sind u.a. Cartpole, Pendulum, Mountain-
Car oder Lunar Lander. Zum Anderen können eigene Trainingsumgebungen erstellt und
mit diesen interagiert werden. Hierzu empfiehlt es sich die API (Application Program-
ming Interface) nach OpenAI Gym zu verwenden. Die Environment-Klasse besteht im
Wesentlichen aus den vier folgenden Methoden:

• __init__(): Die Init-Methode ist der Konstruktor und initialisiert das Environ-
ment und definiert den Aktions- und Zustandsraum.

• reset(): Diese Methode wird zu Beginn jeder Episode aufgerufen und versetzt das
Environment in seinen Initialzustand zurück. Alle Parameter und Zustandsräume
werden zurückgesetzt.

• step(): Bei der Step-Methode wird der Parameter mit der nächsten auszuführenden
Aktion (Action) übergeben. Anschließend wird diese ausgeführt und überprüft, ob
eine Belohnung (Reward) erhalten wurde. Zum Schluss gibt die Methode den neuen

59

6 Entwicklung der Simulationsumgebung

Zustand (Next State), die Belohnung, ob die Trainingsepisode beendet wurde oder
nicht und, falls nötig, weitere Informationen zurück.

• render(): Mit der Render-Methode wird die Möglichkeit gegeben, die Aktionen des
Agenten grafisch zu visualisieren. Sie bietet somit eine Möglichkeit das Lernverhal-
ten des Agent zu analysieren. Die Bibliothek PyGame bietet für die Visualisierung
weitere Unterstützungen und Möglichkeiten.

• close(): Sie ist eine zusätzliche Methode, die am Ende eines Trainings alle notwendi-
gen Bereinigungen durchführt. Umgebungen, in denen das Programm durchgelau-
fen ist oder durch Fehler- bzw. Ausnahmebedingungen abgefangen wurde, schließen
sich automatisch von alleine.

6.2 Die benutzerdefinierte Umgebung Yahtzee

In der Bibliothek von OpenAI für die Standard-Trainingsumgebungen gibt es keine für
das Würfelspiel Yahtzee. Bevor mit der Implementierung begonnen werden kann, müs-
sen einige Vorüberlegungen getroffen werden. Wie sieht der Zustandsraum aus, welche
Aktionen kann der Agent auswählen und wie soll das Belohnungssystem aussehen?

Der Zustandsraum (state_space oder observation_space) wurde in Anlehnung an die
Arbeit von Kang und Schroeder [14] entwickelt. Dabei werden die fünf Würfelwerte (di-
ce_values), die Kategorien der Punktetabelle, ob diese leer sind oder nicht (fields_em-
pty) und wie viele Wiederholungswürfe noch zur Verfügung stehen (remainings_rolls),
zusammengefasst. Der Zustandsraum ist zu Beginn als Dictionary definiert und kann
später beliebig in ein Tupel oder Array transformiert werden. Das Listing 6.1 zeigt den
verwendeten Zustandsraum. Im Listing 6.2 sind zwei Beispiele des Zustandsraums dar-
gestellt, das Erste für ein Dictionary und das Zweite für die Darstellung eines Arrays.
In dieser Darstellung ist nur der Zustandsraum für ein Spiel für den oberen Tabellen-
teil visualisiert. In einer frühen Phase der Arbeit wurden auch die behaltenen Würfel
(kept_dice), also die Würfel, die während eines Wiederholungswurfs nicht erneut gewür-
felt wurden, mit im Zustandsraum aufgenommen. Diese wurden wieder entfernt, weil
sie die Trainingszeit erhöhten und keine Vorteile bei der Punktemaximierung bzw. beim
Training des Agenten brachten.

Des Weiteren müssen dem Agenten die gleichen Aktionen zur Verfügung stehen wie

60

6 Entwicklung der Simulationsumgebung

1 # Observation space = state space
2 self.observation_space = gym.spaces.Dict(
3 {
4 # Values of the dice
5 ’dice_values’: gym.spaces.MultiDiscrete([6] * 5),
6 # Score card boxes (is_selected, True or False)
7 ’fields_empty’: gym.spaces.MultiDiscrete([2] * number_boxes),
8 # Remaining dice rolls
9 ’remaining_rolls’: gym.spaces.Discrete(2)

10 }
11)

Listing 6.1: Zustandsraum des Würfelspiels.

state_space_Dictionary = {’dice_values’ = [1, 1, 4, 6, 6],
’fields_empty’ = [0, 1, 0, 0, 1, 1],

’remaining_rolls’ = [2]}

state_space_Array = [1 1 4 6 6 0 1 0 0 1 1 2]

Listing 6.2: Beispiel des Zustandsraums als Dictionary und Array für den oberen
Tabellenteil mit Zufallswerten.

einem menschlichen Spieler, d.h. er darf zwischen erneutem Würfeln von allen oder nur
ausgewählten Würfeln und dem Auswählen eines noch freien Felds entscheiden. Hier ist
bei der Entwicklung auf bestimmte Restriktionen zu achten. Wenn der Agent keine Wie-
derholungswürfe mehr hat, darf er nur noch ein leeres Feld auswählen. Mehrfachbelegung
von Feldern ist dem Agenten ebenfalls untersagt (siehe Spielregeln Kapitel 2.1). Deshalb
sind Aktionen, die die Auswahl der Felder betreffen, mit zunehmenden Spielverlauf aus
dem Aktionsraum zu entnehmen. Auch für den Aktionsraum (action_space) wurde sich
an der Arbeit von Kang und Schroeder [14] orientiert. Dieser setzt sich aus der Auswahl
einer Kategorie der Punktetabelle (scorecard_action_space) und der Möglichkeit eines
Wiederholungswurfs bestimmter oder aller Würfel (dice_action_space) zusammen.

self.total_action_space = gym.spaces.Discrete(len(self.

scorecard_action_space) + len(self.dice_action_space))

Wichtig ist, dass die jeweiligen Aktionsräume nicht miteinander vertauscht werden dür-
fen. Dies hat folgende Ursache: Abhängig davon, ob mit oder ohne dem unteren Tabellen-
abschnitt gespielt wird, ist der Aktionsraum entweder 37 oder 44 auswählbare Aktionen
groß. Hierbei sind die ersten Aktionen entweder von [0, . . . , 5] oder [0, . . . , 12] für die
Auswahl der Felder reserviert und die restlichen Aktionen für die Auswahl der Würfel der

61

6 Entwicklung der Simulationsumgebung

Wiederholungswürfe. Dabei kann der Fall, dass alle Würfel behalten werden, vernachläs-
sigt werden, weil dies der Auswahl einer Kategorie gleichzusetzen ist. Damit die richtigen
Würfel behalten werden, muss demzufolge der Aktionsraum für die Auswahl der Felder
(scorecard_action_space) vom gesamten Aktionsraum abgezogen werden. Folglich wird
der richtige Integer Wert der ausgewählten Aktion in eine binäre Darstellung umgewan-
delt, um die Würfel zu behalten. Das folgende Beispiel soll dies veranschaulichen:

Aktionsraum = 37

Wurf = [1, 1, 4, 6, 6]

ausgewaehlte Aktion = 33

ausgewaehlte Aktion - Aktionsraum Auswahl Felder = 27

bin(27) = [1, 1, 0, 1, 1]

Aus dem Beispiel geht hervor, dass nur die Vier erneut gewürfelt wird.

Zum Schluss bleibt noch zu entscheiden, wann der Agent eine Belohnung (reward)
erhält. Wird dem Agenten erst ganz zum Schluss die Endpunktzahl pro Spiel mitgeteilt,
kann dies zu spät sein. Deshalb wurde zu Beginn der Arbeit entschieden, dass bei der
Auswahl eines Feldes die Punktzahl pro Runde als Belohnung zurückgegeben wird. Dies
ähnelt dem Spielprinzip, dass die Punkte nach jeder Runde in die Tabelle eingetragen
werden. Im Laufe der Arbeit wurde die Rückgabe der Punktzahl um die Rückgabe des
Verhältnisses des aktuellen Gewinns einer Kategorie zu der maximal erreichbaren Punkt-
zahl in dieser Kategorie (reward_ratio) erweitert. Das sind die einzigen Belohnungen, die
der Agent von der Umgebung während des Trainings erhält.

Nach den Vorüberlegungen wird nun auf die Umsetzung eingegangen. Die für das Trai-
ning der Agenten entwickelte Umgebung besteht aus drei Klassen und ist im Klassendia-
gramm 6.1 veranschaulicht. Die Klasse YahtzeeEnv ist die Schnittstelle für die Agenten
nach dem Vorbild der OpenAI Gym API. Des Weiteren importiert sie die Klassen Dice
und Scorecard.

Die init-Methode erhält drei Parameter: seed, has_lower_part und has_bonus. Mit dem
Integer seed kann ein Zahlenwert übergeben werden, der die Reihenfolge der zufällig ge-
nerierten Würfel beeinflusst. Dies ist für das Trainieren der Agenten und die Suche nach
guten Lernparametern wichtig. Mit den Boolean-Parametern has_lower_part und has_-
bonus kann eingestellt werden, ob der untere Tabellenteil und / oder der Bonus für das
Training berücksichtigt werden. In Abhängigkeit der übergebenden Parameter wird der

62

6 Entwicklung der Simulationsumgebung

Dice

+ dice_values: list[int]
+ keep_dice: list[boolean]
+ same_dice: list[int]

- __init__(seed=None: int)
+ roll_dice(): list[int]
+ get_dice_values(): list[int]
+ get_keep_dice(): list[boolean]
- _update_same_dice(): list[int]
+ set_keep_dice(list[boolean]): list[boolean]

Scorecard

+ seed: int
+ has_lower_part: boolean
+ has_bonus: boolean
+ upper_part: list[int]
+ received_scores: list[int]
+ selected_fields: list[boolean]
+ lower_part: list[int]
+ bonus: list[int]

- __init__(seed: int, has_lower_part: boolean,
 has_bonus: boolean)
+ get_received_scores(): list[int]
+ get_selected_fields(): list[boolean]
- _check_bonus()
+ set_score(dice: Dice, action: int): int
- __max_dice_in_row(dice: Dice): int
+ get_total_score(): int

YahtzeeEnv

+ dice: Dice
+ scorecard: Scorecard
+ has_bonus: boolean
+ has_lower_part: boolean
+ remaining_rolls=2: int
+ total_reward=0: int
+ terminated: boolean
+ window=None: int
+ action=0: int
+ number_fields: int
+ dice_action_space: list[int]
+ scorecard_action_space: int
+ total_action_space: list[int]
+ observation_space: Dict
+ state_size: int
+ action_size: int

- __init__(seed: int, has_lower_part: boolean,
 has_bonus: boolean)
- _get_observation(): Dict
+ get_actions(): list[int]
+ _get_info(): int
+ reset(seed=None: int):Dict, int
+ step(action: int): Dict, int, boolean, int
+ is_scorecard_full(): boolean
+ render()
+ close()

1 1

1 1

Abbildung 6.1: Klassendiagramm der benutzerdefinierten Umgebung für Yahtzee.

1 def _get_observation(self):
2 dice_values = self.dice.get_dice_values()
3 open_fields = [1 if item == True else 0 for item in self.

scorecard.get_selected_fields()]
4 return { ’dice_values’: dice_values, ’fields_occupied’:

open_fields, ’remaining_rolls’: self.remaining_rolls }

Listing 6.3: _get_observation-Methode.

Zustands- und Aktionsraum initialisiert. Die Parameter werden an die Klasse Scorecard
weitergegeben. Die Klasse Dice hingegen benötigt nur den seed. Von der YahtzeeEnv
ausgehend werden die Klassen Scorecard und Dice initialisiert.

Die Methode _get_observation gibt den aktuellen Zustand zurück. Dies beinhaltet
den Zustandsraum, wie er in den Vorüberlegungen dargestellt ist. Sie ist wichtig, damit
der Agent seinen aktuellen Zustand erhält. Das Listing 6.3 zeigt den dazugehörigen Code.

Die reset-Methode setzt die Umgebung auf ihren Initialzustand zurück. Dies bedeu-
tet, dass die erreichte Gesamtpunktzahl auf null zurückgesetzt wird und die belegten

63

6 Entwicklung der Simulationsumgebung

1 def reset(self, seed = None):
2 self.remaining_rolls = 2
3 self.total_reward = 0
4 self.terminated = False
5 self.dice = Dice (seed = seed)
6 self.scorecard.__init__(None, self.has_lower_part, self.has_bonus

)
7 self.dice_action_space = list(range(self.number_fields, self.

number_fields + (2**5 - 1)))
8 self.scorecard_action_space = list(range(0, self.number_fields))
9 info = None

10 return self._get_observation(), info

Listing 6.4: Reset-Mehode.

Felder der Scorecard wieder freigegeben werden. Dafür wird die Klasse Scorecard neu
initialisiert. Die Methode gibt den zurückgesetzten Zustandsraum zurück und das Spiel
kann von Neuem starten. Das Listing 6.4 veranschaulicht die dazugehörige Methode.

Die step-Methode führt die vom Agenten ausgewählte Aktion aus. Dies kann entweder
die Wahl eines leeren Feldes der Punktetabelle oder das erneute Würfeln bestimmter
Würfel sein. Die Methode kontrolliert dabei, ob die Aktion gültig ist. Das bedeutet bei-
spielsweise, dass das Environment unterscheiden muss, ob die gewählte Aktion ein Wie-
derholungswurf oder die Auswahl eines Feldes ist. Wird ein Feld ausgewählt, wird diese
Aktion nach der Ausführung aus dem Aktionsraum entfernt. Bei der Wahl dieser Kate-
gorie wird die Punktzahl (reward) und das Verhältnis zur maximal möglichen Punktzahl
(reward_ratio) zurückgegeben. Die Erweiterung des rewards um das reward_ratio wird
im folgenden Kapitel näher beschrieben. Dynamiken, die das Lernverhalten erschweren,
sind zum Beispiel, wenn der Agent gelernt hat, dass viele Sechsen eine hohe Belohnung
bringen, aber das Feld schon belegt ist. Versucht er dennoch gezielt die Anzahl der Sech-
sen zu erhöhen, bringt dies eine niedrigere Gesamtpunktzahl, weil das Feld bereits belegt
ist. Des Weiteren wird nach dem Entfernen der Aktion für das ausgewählte Feld die
Anzahl der übrigen Wiederholungswürfe für die nächste Runde wieder auf zwei gesetzt
und der Initialwurf ausgeführt. Ist die ausgewählte Aktion ein Wiederholungswurf, wird
die Länge des Aktionsraums für die Feldauswahl abgezogen und die Dezimalzahl in ihr
binäres Äquivalent umgewandelt. Diese wird dann an die entsprechende Methode über-
geben, die sich die entsprechenden Würfel merkt und nur die Übrigen würfelt. Sollte die
Aktion in keinem der beiden Bereiche liegen, wird eine Ausnahme zurückgegeben. Dies
hat sich bei der Entwicklung der Agenten als hilfreich erwiesen, wenn die ausgewählten

64

6 Entwicklung der Simulationsumgebung

1 def step(self, action):
2 self.action = action
3 reward = 0
4 reward_ratio = 0
5 if action in self.scorecard_action_space:
6 reward, reward_ratio = self.scorecard.set_score(self.dice,

action)
7 self.scorecard_action_space.remove(action)
8 # reset all round parameters
9 self.remaining_rolls = 2

10 self.dice.keep_dice = [False] * 5
11 self.dice.roll_dice()
12 self.dice._update_same_dice()
13 elif action in self.dice_action_space and self.remaining_rolls >

0:
14 binActionValue = [bool((action-self.number_fields) & (1<<n))

for n in range(5)]
15 self.dice.set_keep_dice(binActionValue)
16 self.dice.roll_dice()
17 self.dice._update_same_dice()
18 self.remaining_rolls -= 1
19 else:
20 raise Exception("sth went wrong! Neither field category nor

dice were selected!")
21 self.observation = self._get_observation()
22 self.terminated = self.is_scorecard_full()
23 info = self._get_info()
24 # contain most of the logical env
25 return self.observation, reward, self.terminated, info,

reward_ratio

Listing 6.5: Step-Mehode.

Aktionen außerhalb der Grenzen lagen. Im Normalfall gibt diese Methode den neuen Zu-
stand (next_state), die Belohnung (reward), die Beendigung der Episode (terminated)
und eine zusätzliche Information (info) zurück. Wie zuvor erwähnt, wurde die Rückgabe
um das (reward_ratio) erweitert. Die entsprechende Methode ist im Listing 6.5 darge-
stellt.

In der Klasse YahtzeeEnv sind die folgenden, weiteren Methoden enthalten:

• get_actions: Der Agent erhält beim Aufruf dieser Methode die gültigen Aktionen
für die aktuelle Runde.

65

6 Entwicklung der Simulationsumgebung

• is_scorecard_full: Hier wird überprüft, ob alle leeren Felder der Scorecard belegt
sind und der Parameter, der die Beendigung einer Episode definiert (terminated),
auf wahr gesetzt wurde. Es gibt noch den Parameter truncated, der angewendet
wird, wenn zum Beispiel eine Episode zu lange dauert oder andere Abbruchbedin-
gungen erfüllt sind. In diesem Fall wird die Episode vorzeitig beendet, aber nicht
das Training. Dieser Parameter findet hier keine Anwendung, da das Spiel deter-
ministisch ist und nach maximal 13 Runden oder 39 Zügen endet.

• render: Die Methode bietet die Möglichkeit der visuellen Darstellung, wurde aber
nicht weiter berücksichtigt, weil die Trainingszeiten der Agenten dadurch verlängert
wird. Bei Bedarf können die Spielzüge über die Ausgabekonsole ausgegeben und
nachvollzogen werden.

• _get_info: Mit dieser Methode können zusätzliche Informationen bereitgestellt
werden. Sie ist implementiert, wird jedoch in dieser Arbeit nicht verwendet.

• close: Die close-Methode beendet noch alle offenen Ressourcen, die von dem En-
vironment benötigt wurden, wie das Listing 6.6 zeigt.

1 def close(self):

2 if self.window is not None:

3 self.showrender = False

4 pygame.display.quit()

5 pygame.quit()

Listing 6.6: Close-Mehode.

Von der Klasse YahtzeeEnv ausgehend werden die Klassen Dice (Würfel) und Scorecard
(Punktetabelle) initialisiert. Sie bilden alle notwendigen Funktionalitäten für die Würfel
und die Punktetabelle ab. Für die Klasse Dice bedeutet dies die Ausgabe der Würfel-
werte (dice_values) und welche Würfel behalten werden sollen (keep_dice) und welche
Würfel für die Punkteermittlung gleich sind (same_dice). Des Weiteren muss der Agent
zum Spielen Wiederholungswürfe durchführen können. Dafür muss er die aktuellen Wür-
felwerte von der Klasse Dice erhalten. Der Agent übergibt diese der Punktetabelle oder
wählt für den Folgewurf welche Würfel behalten werden sollen.

Für die Scorecard muss bei der Initialisierung darauf geachtet werden, ob der Bonus
und der untere Tabellenteil für das Training berücksichtigt werden. Hinzu kommt, dass
der Agent die Punkte setzen bzw. die Liste mit den aktuellen Punkten eventuell auslesen

66

6 Entwicklung der Simulationsumgebung

können muss. Nach der Definition des Zustandsraums braucht der Agent eine Liste der
Punktetabelle mit den belegten Feldern. Zum Schluss benötigt der Agent die Endpunkt-
zahl für die Auswertung. Für einen schnellen Test, ob die YahtzeeEnv funktioniert, wurde
ein Random-Agent im main-Abschnitt der YahtzeeEnv implementiert, der zufällige Ak-
tionen auswählt.

67

7 Entwicklung der Agenten

In diesem Kapitel wird auf den Aufbau und die Umsetzung der beiden Agenten eingegan-
gen, die das Würfelspiel erlernen sollen. Hierzu wird zuerst der Q-Learning Algorithmus
und anschließend der Deep Q-Learning Algorithmus beschrieben. Im Weiteren werden
diese Beiden als Q-Agent und DQN-Agent bezeichnet. Der Q-Agent ist, wie im Kapitel
2.4.1 beschrieben, ein reiner Reinforcement Learning Algorithmus. Seine Entwicklung ist
verglichen zum DQN-Agent einfacher. Dies spiegelt sich auch in der Funktionsweise bzw.
beim Trainieren wieder. Andererseits sind die Einsatzmöglichkeiten nicht so flexibel wie
beim DQN-Algorithmus.

7.1 Aufbau der Agenten Klassen

7.1.1 Q-Agent

Der Q-Learning Off-Policy Algorithmus, der in dieser Arbeit verwendet wird, wird in der
Abbildung 7.1 in Anlehnung an Sutton [34] beschrieben. Zu Beginn wird die Q-Tabelle
Q(s, a) initialisiert. Anschließend wird für die aktuelle Trainingsepisode der Startzustand
initialisiert. Danach wird für jeden Schritt der aktuellen Trainingsepisode eine Aktion A

im Zustand S nach der gewählten Policy (ϵ-greedy) für Q ausgewählt. Nach Ausführung
wird beobachtet, was der neue nächste Zustand ist. Danach wird die Q-Tabelle nach der
Formel 2.34 aktualisiert. Zum Schluss wird der neue Zustand übergeben. Dies wiederholt
sich so lange bis der Terminierungszustand der aktuellen Trainingsepisode erreicht ist.
Im Fall von Yahtzee ist der letzte Zustand erreicht, wenn die Punktetabelle voll ist. Aus
diesem Algorithmus hat sich für den Q-Agent das Klassendiagramm 7.2 mit den entspre-
chenden Methoden ergeben.

68

7 Entwicklung der Agenten

Abbildung 7.1: Q-Learning Algorithmus aus [34].

Agenteninitialisierung:
Für den Q-Agent ist nur eine Klasse (QAgent) notwendig. Alle notwendigen Parameter
werden bei der Initialisierung durch ein Dictionary parameter übergeben. Über das Dic-
tionary kann definiert werden, wie die Punktetabelle für das Training aussieht. Des Wei-
teren können die Lernschrittweite, der Diskontierungsfaktor, die Anzahl der Trainings-
und Evaluierungsepisoden sowie die Werte für die Epsilon-Strategie, also wie schnell ver-
kleinert sich Epsilon und sein Minimalwert, eingestellt werden. Zusätzlich kann die Fens-
tergröße angepasst werden, mit dem die Graphen der Diagramme für die Auswertung
lokal gemittelt werden. Dadurch sind diese weniger verrauscht für die Interpretation. Die
Abbildung 7.3 zeigt ein verrauschtes und ein lokal gemitteltes Diagramm mit der Fens-
tergröße von 100. An dieser Stelle wird auch die Q-Tabelle wie nach dem Algorithmus
7.1 initialisiert. Des Weiteren wird eine Liste für die Temporal Difference Werte erzeugt,
um zu veranschaulichen, dass diese mit der Zeit abnehmen.

Epsilon-Aktualisierung:
Die Anpassung von Epsilon erfolgt nach jedem Spiel. Würde die Aktualisierung nach
jedem Spielzug erfolgen, wäre der Epsilonwert sehr schnell bei seinem Minimalwert. Die
Aktualisierung erfolgt in der Methode decay_epsilon nach dem folgenden Schema:

ϵ = ϵ− ϵdecay_rate

ϵ← max(ϵ , ϵmin)

69

7 Entwicklung der Agenten

QAgent

- __seed: int
- __has_lower_part: boolean
- __has_bonus: boolean
- __pretraining: boolean
- __episodes_pretraining: int
- __episodes_training: int
- __episodes_evaluation: int
+ env: YahtzeeEnv
- __Q: Dict
- __td_value: list
- __rerolls_per_round=0: int
- __epsilon: float
- __epsilon_decay_rate: float
- __epsilon_min: float
- __alpha: float
- __gamma: float
- __window_size: int

- __init__(parameter: Dict)
+ env_state_to_dict_index(state: Dict):tensor
+ epsilon_greedy_policy(state: tensor, actions: list[int]): int
+ decay_epsilon()
+ temporal_difference(state: tensor, action: int, reward: int, next_state: tensor): float
+ update_q_table(state: tensor, action: int, reward: int, next_state: tensor)
+ pretrain(): list[int]
+ train()
+ run_episode_policy(): int
+ evaluate()
+ plot(List_of_values: list[int], title='title', xlabel='x-label', ylabel='y-label', color='blue')
+ moving_average(data: list[int], __window_size=1): list[int]
+ standard_deviation(data: list[int]): float
+ save(path: string)
+ load(path: string)

Dice

Scorecard
YahtzeeEnv

 1
 1

1 1

1 1

Abbildung 7.2: Klassendiagramm des Q-Agenten.

Epsilon wird dabei, um die ϵdecay_rate verringert und kann nicht kleiner als der Wert ϵmin

werden.

Aktionsauswahl:
Die Aktionsauswahl erfolgt in der Methode epsilon_greedy_policy nach der im Kapitel
2.2.2 vorgestellten Strategie. Dafür wird der aktuelle Zustand sowie die für diese Runde
gültigen Aktionen übergeben. Anschließend wird eine Zufallszahl p zwischen null und eins
erzeugt. Ist p kleiner als Epsilon, wird eine zufällige Aktion aus den übergebenen Ak-
tionen ausgewählt. Ansonsten wird für den Zustand die beste Aktion aus der Q-Tabelle
ausgewählt und anschließend zurückgegeben.

70

7 Entwicklung der Agenten

(a) (b)

Abbildung 7.3: (a) verrauschtes Diagramm (b) lokal gemitteltes Diagramm mit einer
Fenstergröße von 100.

1 # Loop for each episode
2 for e in range(1, self.__episodes_training + 1):
3 # Initialize State S
4 state, _ = self.env.reset()
5 terminated = False
6 # Loop for each step of episode until finish
7 while not terminated:
8 state = self.env._get_observation()
9 valid_actions = self.env.get_actions()

10 # Choose A from S using epsilon-greedy policy derived from Q
11 action = self.epsilon_greedy_policy(state, valid_actions)
12 # Take action A, observe R, S’=next_state
13 next_state, reward, terminated, _, _ = self.env.step(action)
14 # Update Q-table according to Q-Learning formular
15 self.update_q_table(state, action, reward, next_state)
16 # S <- S’
17 state = next_state
18 # repeat until S is terminal
19 self.decay_epsilon()

Listing 7.1: Trainingsschleifen des Q-Agenten.

Trainieren:
Die Methode train beinhaltet die Schleifen des Q-Learning Algorithmus 7.1. Das Listing
7.1 veranschaulicht die Methode, die auf das Wesentlichste reduziert ist. Die Q-Tabelle
als auch die YahtzeeEnv werden bei der Initialisierung des Agenten mit erzeugt, wie aus
dem Klassendiagramm entnommen werden kann. In der YahtzeeEnv werden anschließend
der Zustandsraum und der Aktionsraum definiert. Beginnt das Training, wird der Initi-
alzustand mit der reset-Methode der YahtzeeEnv hergestellt und die Variable terminated

71

7 Entwicklung der Agenten

auf False gesetzt. Anschließend beginnt mit der zweiten Schleife die erste Runde des
Spiels, in welcher der Agent sich zuerst den Zustandsraum (state) aus der YahtzeeEnv
lädt. Danach werden die für diese Runde gültigen Aktionen valid_actions geladen und
beide an die Methode epsilon_greedy_policy übergeben. Diese gibt die Aktion zurück, die
der Agent an die step-Methode der Environment übergibt und somit ausführt. Die step-
Methode gibt, wie in Kapitel 6.2 beschrieben, den nächsten Zustand, die Belohnung, die
Terminierungsbedingung, weitere Informationen (hier mit einem Platzhalter versehen)
sowie das Belohnungsverhältnis der erreichten zur theoretischen Maximalpunktzahl zu-
rück. Im Listing 7.1 ist das reward_ratio ebenfalls mit einem Platzhalter versehen, weil
es für den Q-Agent nicht benötigt wird. Danach erfolgt die Aktualisierung der Q-Tabelle
und die Überschreibung des neuen Zustands zum Aktuellen. Die Überschreibung von
state = next_state ist nicht notwendig, weil nach dem Ausführen der step-Methode der
neue Zustand schon der Aktuelle in der YahtzeeEnv ist und automatisch bei dem nächsten
Schleifendurchlauf zu Beginn geladen wird. Des Weiteren ist zu beachten, dass das erste
state in Listing 7.1 in Zeile vier und das erste next_state in Zeile 13 in ein Numpy Array
umgewandelt werden müssen. Dies erfolgt mit der Methode env_state_to_dict_index
und wird im Folgenden an einem Beispiel mit zufälligen Werten veranschaulicht.

Dict = {dice_values: [1, 5, 2, 6, 4]),

fields_empty: [0, 1, 0, 0, 0, 1]),

remaining_rolls: [2]}

Das Beispiel-Dictionary Dict sieht dann wie folgt aus:

[1 5 2 6 4 0 1 0 0 0 1 2]

Ist das aktuelle Spiel beendet, wird mit der Methode decay_epsilon der Epsilonwert re-
duziert und das nächste Trainingsspiel gestartet, bis alle Episoden durchgelaufen sind.

Evaluieren:
Die Evaluierung funktioniert sehr ähnlich wie das Trainieren. Dafür wurde die Metho-
de evaluate entwickelt. Der wesentliche Unterschied ist, dass sie zuerst in der Q-Tabelle
nach einer optimalen Lösung schaut. Wenn es diese Situation noch nicht gab, wird eine
zufällige Entscheidung getroffen. In der Praxis können neue Zustände während der Nut-
zung in der Q-Tabelle gespeichert werden. Dies wird in dieser Arbeit nicht gemacht, um
ausschließlich den bisherigen Trainingsstand zu bewerten.

72

7 Entwicklung der Agenten

Speichern und Laden:
Mit den Methoden load und safe können alte Trainingsergebnisse geladen und Neue ge-
speichert werden. Dies bietet verschiedene Vorteile. Zum Einen können bereits existieren-
de Q-Tabellen weiter trainiert werden und zum Anderen können alte Trainingsergebnisse
reproduziert und erneut evaluiert werden. Die Ergebnisse werden in einer .npy-Datei ge-
speichert und sollten sich beim Laden im gleichen Verzeichnis wie die Datei des Agenten
befinden.

Auswertungen:
Für die Beurteilung der Ergebnisse wurden verschiedene Methoden implementiert, unter
anderem die plot-Methode. Diese ermöglicht die Ausgabe von Diagrammen im Plot Fens-
ter der Spyder IDE. Ziel der Arbeit ist es zu zeigen, dass der Agent die Gesamtpunktzahl
des Würfelspiels maximiert. Dafür werden die Gesamtpunktzahlen pro Spiel, jeweils für
das Training und die Evaluation, in einem Diagramm festgehalten. Ein weiterer Indikator
für den Lernerfolg des Agenten ist, wenn die Temporale Differenz gegen null konvergiert.
Diese wird deshalb auch in einem Diagramm veranschaulicht. Zum Schluss soll noch
überprüft werden, ob der Agent seine Chancen zur Punktmaximierung ausnutzt. Deshalb
wird für das Training und die Evaluation ein Diagramm mit der Anzahl der Wiederho-
lungswürfe pro Runde erstellt. Hinzu kommt, dass in der Konsole die durchschnittliche
Gesamtpunktzahl aller Episoden und die durchschnittlichen Punkte pro Kategorie aus-
gegeben werden. Die gleichen Konsolenausgaben und Diagramme werden auch für den
DQN-Agenten erstellt.

7.1.2 DQN-Agent

In der Abbildung 7.4 ist der Algorithmus nach DeepMind [21] dargestellt. Dort wird,
wie auch in dem Buch [7] von Ivan Gridin, ein DQN-Agent mit Erfahrungsspeicher ver-
wendet. Wie aus der Abbildung 7.4 hervorgeht, wird zuerst der Replay Buffer D mit
einer Kapazität N initialisiert. Danach wird die Aktionswertefunktion Q oder auch das
neuronale Netz mit zufälligen Gewichten initialisiert. Darauf folgend wird für die erste
Trainingsepisode die erste Sequenz oder der erste initiale Zustand erzeugt. Anschließend
wird für jeden Schritt mit der Wahrscheinlichkeit von ϵ eine zufällige Aktion at oder
mit der Wahrscheinlichkeit von 1− ϵ die Aktion at mit der größten Erfolgschance ausge-
wählt, ausgeführt und beobachtet, welcher nächste neue Zustand von dem Environment
zurückgegeben wird. Der Übergang (Minibatch) wird dann im Replay Buffer gespeichert.

73

7 Entwicklung der Agenten

Abbildung 7.4: DQN-Algorithmus aus [21].

Danach wird, sofern vorhanden, ein zufälliges Minibatch aus dem Replay Buffer geladen.
In Abhängigkeit davon, ob der Terminierungszustand erreicht wurde oder nicht, wird yj

gesetzt und das Gradientenverfahren bzw. Gradientenabstiegsverfahren nach Formel 2.39
durchgeführt. Dies wird solange wiederholt, bis alle Trainingsepisoden M durchlaufen
sind. Aus dem Algorithmus hat sich das Klassendiagramm 7.5 ergeben. Der DQN-Agent
baut sich sehr ähnlich zum Q-Agent auf. Sie unterscheiden sich in der Agenteninitiali-
sierung, der Aktionsauswahl und dem Training des neuronalen Netzes. Daher wird im
Wesentlichen auch nur auf die Unterschiede eingegangen.

Agenteninitialisierung:
Bei der Initialisierung des Agenten werden verschiedene Parameter festgelegt, darunter
Epsilon, die Größen von Zustands- und Aktionsraum, der Diskontierungsfaktor Gamma,
die Batchgröße sowie die Lernrate. Zudem wird der Replay-Buffer eingerichtet und die
Methode __init_q_net aufgerufen. Diese Methode ist für die Einrichtung des neurona-
len Netzes zuständig und definiert sowohl den Optimierer als auch die Verlustfunktion.
Als Optimierer kommt Adam zum Einsatz, der in PyTorch über optim.Adam verfügbar
ist. Der Adam-Optimierer wird verwendet, weil er fast immer funktioniert und viele Vor-
teile vereint. Die Verlustfunktion basiert auf dem mittleren quadratischen Fehler (Mean
Squared Error) und wird mit nn.MSELoss() implementiert. Die Wahl fiel auf diese Ver-

74

7 Entwicklung der Agenten

DiceScorecardtorch::nn:Module

YahtzeeEnvReplayBuffer

- __memory:collections::deque
- __batch_size: int
- __experience: namedtuple

- __init__(Buffer_size: int, batch_size: int)
+ add(state, action, reward, next_state, done)
+ get_random_batch()
- __len__(): int

QNet

+ fc1: torch.nn.Linear
+ fc2: torch.nn.Linear
+ fc3: torch.nn.Linear
+ fc4: torch.nn.Linear
+ bn1: torch.nn.BatchNorm1d
+ bn2: torch.nn.BatchNorm1d
+ bn3: torch.nn.BatchNorm1d

- __init__(state_size, action_size, qnet: Dict)
+ forward(state): torch.Tensor

DQNAgent

- __device: string
- __seed: int
- __has_lower_part: boolean
- __has_bonus: boolean
- __pretraining: boolean
+ env: YahtzeeEnv
- __state_size: int
- __action_size: int
- __episodes_pretraining: int
- __episodes_training: int
- __episodes_evaluation: int
- __epsilon: float
- __epsilon_decay_rate: float
- __epsilon_min: float
- __memory: ReplayBuffer
- __training_steps_counter=0: int
- __gamma: float
- __learning_rate: float
- __learn_period: int
- __q_net: QNet
- __optimizer: torch.optim.Adam
- __loss: torch.nn.MSELoss
- __print_loss_counter=0: int
- __list_loss: list
- __rerolls_per_round=0: int
- __window_size: int

- __init__(parameter: Dict)
- __init_q_net(qnet: Dict)
+ decay_epsilon()
+ select_action(state, mode='train'): int
+ step(state, action, reward, next_state, done)
- __batch_temporal_difference_step()
+ env_state_to_dict_index(state: Dict):tensor
+ pretrain(): list[int], list[bool], list[int], int, bool
+ pretrain2(): list[bool], list[int], int
+ reroll_utility(action: int, dice_values_this_round: list[int]): int
+ train()
+ evaluate()
+ plot(List_of_values: list[int], title='title', xlabel='x-label', ylabel='y-label', color='blue')
+ moving_average(data: list[int], __window_size=1): list[int]
+ standard_deviation(data: list[int]): float
+ save(path: string)
+ load(path: string)

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

Abbildung 7.5: Klassendiagramm des DQN-Agenten.

75

7 Entwicklung der Agenten

lustfunktion, weil sie auch von Gridin in seinem Buch für die Maximierung der Belohnung
verwendet wurde. Der Q-Agent konnte in einer Klasse umgesetzt werden. Für den DQN-
Agent hat es sich angeboten mehrere Klassen zu erstellen. Wie im Klassendiagramm 7.5
dargestellt, gibt es für das neuronale Netz und den Replay Buffer jeweils eine eigene
Klasse.

Aktionsauswahl:
Kommen wir zur Trainings- oder Evaluierungssequenz mit der Aktionsauswahl. Auch
hier wird die Epsilon-Greedy-Strategie angewendet, welche in der Methode select_action
umgesetzt wird. Um eine Aktion im Greedy-Modus zu wählen, muss der aktuelle Zustand
(state) zunächst vom Numpy-Array in ein PyTorch-Tensor umgewandelt werden, damit
das neuronale Netz ihn verarbeiten kann. Danach wird das Netzwerk in den Evaluie-
rungsmodus versetzt (self.__q_net.eval()) und die Berechnung von Gradienten durch
torch.no_grad() deaktiviert. Dies spart sowohl Speicher als auch Rechenzeit, da keine
Backpropagation erforderlich ist und lediglich eine Vorhersage durchgeführt wird. Bevor
jedoch die Aktion mit dem höchsten Q-Wert ausgewählt wird, muss der Aktionsraum
nach der Vorhersage kontrolliert werden. Deshalb wird der Methode select_action auch
die gültigen Aktionen der aktuellen Runde übergeben, da das neuronale Netz immer die
Q-Werte für alle Entscheidungen zurückgibt. Demzufolge sind auch solche Werte für be-
reits ausgewählte Kategorien dabei. Diese werden vor der Wahl des höchsten Q-Werts
entfernt. Nach Abschluss der Vorhersage wird das Netzwerk wieder in den Trainingsmo-
dus mit self.__q_net.train() zurückgesetzt.

Trainieren:
Auch wenn das Trainieren der beiden Agenten grundlegend gleich abläuft, sind wie beim
Q-Agent die beiden Trainingsschleifen im Listing 7.2 dargestellt. Beim Vergleich von Lis-
ting 7.2 und Listing 7.1 wird der Vorteil der OpenAI Gym API im Kapitel 6.1 deutlich.
Beide Listings unterscheiden sich nicht. Die Aktionsauswahl (select_action) sowie der
Lernschritt (step) finden an der gleichen Stelle wie beim Listing 7.1 des Q-Agenten statt.
Jedoch haben sich beim Trainieren des DQN-Agenten einige Schwierigkeiten aufgetan.
Das erste Belohnungssystem hatte nicht den gewünschten Lerneffekt. Daher wurden im
Laufe der Arbeit verschiedene Belohnungssysteme ausprobiert. Für die Trainingsstrate-
gie wurde immer zuerst nur mit dem oberen Tabellenteil begonnen zu trainieren. War
dies erfolgsversprechend, wurde dies auf den unteren Tabellenteil erweitert. Auf die Er-
gebnisse wird im Kapitel 7.2 eingegangen. Im Folgenden werden die Belohnungssysteme
genauer beschrieben:

76

7 Entwicklung der Agenten

1 # Loop for each episode:
2 for e in range(1, self.__episodes_training + 1):
3 # Initialise sequence
4 state, _ = self.env.reset()
5 terminated = False
6 # Loop for each step of episode until finish
7 while not terminated:
8 state = self.env._get_observation()
9 valid_actions = self.env.get_actions()

10 # with propability epsilon select a random action
11 action = self.select_action(state, valid_actions)
12 # execute action and observe
13 next_state, reward, terminated, _, reward_ratio = self.env.

step(action)
14 # store transition in replay buffer
15 # sample random minibatch of transitions from replay buffer
16 # set y = r
17 # perform a gradient descent step
18 self.step(state, action, reward, next_state, terminated,

reward_ratio)
19 self.decay_epsilon()

Listing 7.2: Trainingsschleifen des DQN-Agenten.

1. Punkte pro Kategorie (PK): Bei diesem Belohnungssystem werden die von der
Umgebung zurückgegebenen Punkte als Belohnung zum Lernen verwendet. Dies
bedeutet, der Agent erhält nur Belohnungen, wenn eine Kategorie ausgewählt wird
und die Bedingungen für die Punkte erfüllt sind. Wiederholungswürfe werden nicht
belohnt. Das NN wird ausschließlich nach der Auswahl einer Kategorie aktualisiert.

2. Punkte pro Kategorie rückwirkend pro Runde (PKR): Die Idee dieses Be-
lohnungssystems ist es die Punkte, welche für die Kategorie am Ende vergeben
werden, zu teilen. Somit werden auch die Wiederholungswürfe mit der gleichen
Punktzahl wie auch die Auswahl der Kategorie am Ende belohnt. Dafür werden
alle Züge einer Runde in einer Historie gespeichert. Dies können maximal drei sein.
Für den Trainingsschritt werden die vorherigen Züge ausgelesen und bekommen
die gleiche Belohnung, wie der letzte Zug. Anschließend wird das NN für jeden Zug
aktualisiert.

3. Minimum Delta (Min∆): Mit der Minimum Delta-Belohnung wird zu Beginn
der Trainingsrunde die Belohnung auf 63 Punkte gesetzt. Dies entspricht der Min-
destpunktzahl, um den Bonus zu erhalten und symbolisiert die erwartete Belohnung

77

7 Entwicklung der Agenten

für den oberen Tabellenteil. Jedes Mal wenn eine Kategorie ausgewählt wird, wird
überprüft, ob die von der Umgebung zurückgegebene Belohnung drei gleiche Würfel
hat. In diesem Fall würde sich die erwartete Belohnung nicht verändern. Liegt die
Belohnung unterhalb der Grenze, wird die Summe der fehlenden Würfel abgezogen.
Liegt sie dagegen oberhalb der Grenze, wird diese hinzuaddiert. Betrachten wir fol-
gendes Beispiel: die erwartete Punktzahl ist die initiale Belohnung mit 63 Punkten.
Nach zwei Wiederholungswürfen wird die Kategorie mit den Einsen ausgewählt. Es
wurde jedoch keine eins gewürfelt. Demzufolge ist die neue erwartete Belohnung
63− 3 = 60. Bei Wiederholungswürfen war die Runde zuvor die Belohnung gleich
der initialen Belohnung (63). Für die nächste Runde werden die Wiederholungs-
würfe nur noch mit 60 Punkten belohnt. Somit werden im Gegensatz zum ersten
Belohnungssystem auch die Wiederholungswürfe belohnt. Die Aktualisierung der
Belohnung sieht wie folgt aus:

(action + 1) ist die ausgewaehlte Kategorie

current_reward += (reward-((action + 1)*3))

Das NN wird nach jedem Zug aktualisiert.

4. Maximum Delta (Max∆): Die Maximum Delta-Belohnung folgt einem ähn-
lichen Prinzip wie die Minimum Delta-Belohnung. Die von der Umgebung zurück
erhaltene Belohnung für den oberen Tabellenteil muss mindestens zwei gleiche Wür-
fel haben, sodass null zurückgegeben wird. Die Ermittlung der Gesamtpunktzahl
ist abhängig von der theoretisch maximalen Punktzahl für die Kategorie. Werden
weniger als zwei gleiche Würfel zurückgegeben, erhält der Agent eine negative Be-
lohnung. Ab drei gleichen Würfeln wird der Agent belohnt. Im Folgenden ist die
Aktualisierung dargestellt:

(action + 1) ist die ausgewaehlte Kategorie

reward = reward - ((action+1)*2)

Das NN wird nur nach der Auswahl einer Kategorie angepasst.

5. Belohnung für richtige Würfel- und Kategoriewahl (RWK): Mit diesem
Belohnungssystem wird in Anlehnung an zweite genannte Belohnungssystem ver-
sucht, rückwirkend das Auswählen der Würfel zu belohnen oder zu bestrafen. Da-
für werden wieder die Züge der Runde sowie die letzte ausgewählte Aktion (die
Wahl der Kategorie), die erhaltenen Punkte für die gewählte Kategorie und das

78

7 Entwicklung der Agenten

reward_ratio gespeichert. Anschließend werden zusätzliche Belohnungen vor Be-
ginn des Trainings verteilt. Die erste zusätzliche Belohnung des DQN-Agenten ist,
wenn das reward_ratio über die drei Züge zunimmt. Dafür werden sich für diesen
Zustand die Würfelwerte angesehen und mit der letzten Aktion überprüft, welche
mögliche Punktzahl (Belohnung) für die Punktekategorie nach der letzten ausge-
wählten Aktion erzielt worden wäre. Die Klasse Scorecard wurde dafür um die
Methode get_possible_score erweitert, die die mögliche Belohnung reward und das
Gewinnverhältnis reward_ratio zurückgibt. Die Methode get_possible_score ist die
gleiche, wie die Methode set_score in der Klasse Scorecard mit dem Unterschied,
dass nur bei dieser keine Vergabe der Punkte oder andere Aktualisierungen in der
Klasse stattfinden. Dadurch ist es möglich für die jeweilige Runde einen Vergleich
der beiden reward_ratios durchzuführen und eine zusätzliche Belohnung zu ver-
geben. Nimmt das reward_ratio zu, bekommt der DQN-Agent einen zusätzlichen
Punkt. Nimmt dieses ab, werden diesem zwei Punkte abgezogen. Des Weiteren wird
der DQN-Agent zusätzlich belohnt, wenn er in diesen drei Zügen seine Wiederho-
lungswürfe nutzt. Dafür wird bei der Auslesung der Rundenhistorie geprüft, ob die
Aktion ein Wiederholungswurf war. Dafür bekommt der DQN-Agent pauschal 10
Punkte. Die pauschale Vergabe der Punkte wurde mit verschiedenen Werten ge-
testet und durfte nicht zu groß oder zu klein sein. 10 Punkte haben sich als guter
Wert durch Probieren ergeben. Nach dieser pauschalen Vergabe wird überprüft, ob
die Auswahl der Würfel zielführend zur Punktemaximierung waren. Dafür wird der
DQN-Agent mit einem Punkt belohnt, wenn er die richtigen Würfel zum Behalten
ausgewählt hat und mit einem Punkt bestraft, wenn er einen falschen Würfel, der
nicht für die Kategorie benötigt wird, behalten hat. Auch wird der DQN-Agent da-
für bestraft, wenn er einen Würfel vergessen hat zu behalten, der für diese Kategorie
gewinnbringend gewesen wäre. Belohnung und Bestrafung bewegen sich hierfür je-
weils bei einem Punkt. Nach der Vergabe aller zusätzlichen Belohnungen wird die
Trainingsmethode step für diesen Zug ausgeführt.

6. Normalisiertes RWK (NRWK): Dieses Belohnungssystem ist fast identisch
zum RWK, weil das gleiche Prinzip der Anpassung für die Belohnung angewen-
det wird. Es wurde jedoch eine Normalisierung der Punkte integriert. Dafür wird
die Belohnung mit dem reward_ratio überschrieben. Die Idee der Normalisierung
ist die Vergabe der Punkte zu vereinheitlichen und unabhängig von den Würfelwer-
ten zu machen. Zum Beispiel bekommt der DQN-Agent den Wurf [1, 1, 1, 1, 6].
Sind beide Kategorien noch frei, würde er mit sehr hoher Wahrscheinlichkeit auf

79

7 Entwicklung der Agenten

die Sechs gehen, anstatt auf die Einsen, weil die Sechs mehr Punkte bringt. Je-
der menschliche Spieler würde auf die Kategorie der Einsen gehen, weil schon vier
von fünf Würfel gleich sind. Das entspricht in diesem Fall einem reward_ratio von
0, 8, bei der Sechs nur 0, 2. Auch die Vergabe der zusätzlichen Belohnungen wurde
dementsprechend angepasst. Für die Zunahme des reward_ratios, wird der DQN-
Agent um 0, 1 Punkte belohnt oder bei Verkleinerung des reward_ratio um 0, 1

Punkte bestraft. Die pauschale Belohnung für einen Wiederholungswurf beträgt
0, 5 Punkte. Die Belohnung und Bestrafung für das richtige Würfelauswählen be-
wegt sich um 0, 1 Punkte. Die Aktualisierung des NN erfolgt für das RWK und
NRWK für jeden Zug nachdem die Belohnungen angepasst wurden.

7. Die Reroll-Utility-Methode (R-U-M): Alle vorhergehenden Belohnungssyste-
me haben grundlegend ein positives Lernverhalten gezeigt. Jedoch waren die Er-
gebnisse bescheiden, sodass die reroll_utility-Methode eingeführt wurde. Mit ihr
wurde sich an der Arbeit von Philip Vasseur [35] orientiert. Dieser verwendet ei-
ne Methode, die vom DQN-Agenten nur die Kategorie erhält, auf die dieser gehen
möchte. Anschließend wählt er die Würfel und führt die Wiederholungswürfe durch.
Der gleiche Ansatz wurde mit der reroll_utility-Methode verfolgt. Dafür wurde der
Aktionsraum, aus dem der DQN-Agent wählen kann, verkleinert. Dieser kann nur
noch Aktionen für die Auswahl der Kategorien auswählen. Anschließend wird die
Auswahl der reroll_utility-Methode übergeben. Besitzt der DQN-Agent für diese
Runde noch Wiederholungswürfe, wählt die Methode die neu zu würfelnden Würfel
und übergibt dem Environment anschließend die Aktion für einen Wiederholungs-
wurf. Besitzt der DQN-Agent für diese Runde keine Wiederholungswürfe mehr,
wird die ausgewählte Kategorie an das Environment übergeben und ausgewählt.
Sollte die ausgewählte Kategorie schon optimal sein, z. B. bei einer großen Straße,
werden alle Würfel behalten und die Aktion für die Auswahl der Kategorie direkt
dem Environment ohne Nutzung von Wiederholungswürfen übergeben. Der DQN-
Agent wählt nach jedem Zug die Kategorie erneut. Die Einführung der Methode
bietet den Vorteil, dass sich der Aktionsraum des DQN-Agent verkleinert, weil die
Methode die Auswahl der Würfel übernimmt, die gewürfelt werden sollen. Dafür
muss bei der Initialisierung des Aktionsraums darauf geachtet werden, dass die
Aktionen für die Wiederholungswürfe exkludiert sind. Gleichzeitig muss das Envi-
ronment diese weiterhin ausführen, wenn sie ihm übergeben werden. Das NN wird
nach jeder Kategorieauswahl trainiert.

80

7 Entwicklung der Agenten

Neuronales Netzwerk:
Das neuronale Netzwerk, welches durch die QNet-Klasse repräsentiert wird, besteht
aus mehreren vollständig verbundenen Schichten (Linear Layers), die in PyTorch mit
nn.Linear umgesetzt werden. Jede dieser Schichten benötigt zwei Parameter: die An-
zahl der Eingabewerte und die Anzahl der Ausgabewerte. Konkret kann das Netzwerk
bis zu drei verdeckte Schichten umfassen, benannt als fc1 bis fc3. Die erste Schicht (fc1)
transformiert beispielsweise Eingabedaten mit der Dimension state_size (also dem Zu-
standsraum) in eine verdeckte Repräsentation mit fc1_units Neuronen. Zwischen den ein-
zelnen Schichten wird eine Batch-Normalisierung eingesetzt, um die Verteilung der Ein-
gabedaten zu stabilisieren. Das verbessert die Trainingsgeschwindigkeit und -stabilität.
In PyTorch wird dies mit nn.BatchNorm1d umgesetzt, das speziell für eindimensionale
Daten, wie sie typischerweise in vollständig verbundenen Schichten vorkommen, geeig-
net ist . Als Aktivierungsfunktion kommt Leaky ReLU zum Einsatz, diese wird über
nn.functional.leaky_relu bereitgestellt. Diese Funktion erlaubt einen kleinen Gradien-
tenfluss auch für negative Eingabewerte, was das Problem toter Neuronen vermeidet.
Die Gewichte des Netzwerks werden mit der He-Initialisierung zufällig gesetzt. Diese Me-
thode ist speziell für ReLU-basierte Aktivierungsfunktionen ausgelegt und sorgt dafür,
dass die Gewichtswerte gut verteilt sind, um stabile Trainingsverläufe zu ermöglichen.
In PyTorch kann die He-Initialisierung mit nn.init.kaiming_uniform_ verwendet wer-
den. Der Vorwärtsdurchlauf des Netzwerks wird durch die Forward-Methode definiert.
Hier wird der Eingabezustand (state) nacheinander durch die linearen Schichten, die
Batch-Normalisierung sowie die Aktivierungsfunktionen geleitet. Die Tiefe des neurona-
len Netzes kann eingestellt werden. Demzufolge können zwischen einer bis drei verdeckten
Schichten genutzt werden. Die Einstellung erfolgt über der Anzahl der Neuronen, die im
Parameter-Dictionary übergeben werden, wie aus dem Listing 7.4 entnommen werden
kann. Steht dort für die Schicht fc3 beispielsweise ein Wert (64) wird diese initialisiert.
Steht in der Schicht fc3 None wird diese Schicht nicht initialisiert und das neuronale
Netz besitzt nur zwei verdeckte Schichten. Hinzu kommt, dass die Ausgabe des neurona-
len Netzes mit einer Softmax-Funktion normalisiert wird. Diese wird durch nn.Softmax

von Pytorch bereitgestellt.

Replay Buffer:
Die Klasse ReplayBuffer bildet das Replay-Memory ab, das im Deep Q-Learning einge-
setzt wird. Dieses speichert vergangene Erfahrungen, um die Korrelation zwischen aufein-
anderfolgenden Trainingsdaten zu verringern und somit die Stabilität des Lernprozesses
zu verbessern. Das Replay-Memory funktioniert nach dem FIFO-Prinzip (First In, First

81

7 Entwicklung der Agenten

Out), wodurch ein effizienter Einfüge- und Löschmechanismus ermöglicht wird. Die maxi-
male Speichergröße kann definiert werden. Ist diese erreicht, wird beim Hinzufügen eines
neuen Elements automatisch das Älteste entfernt. So wird ein Speicherüberlauf verhin-
dert und gewährleistet, dass stets nur die aktuellsten Erfahrungen erhalten bleiben. Ist
der Speicher einmal voll, müssen die neuen Erfahrungen die Bedingung erfüllen, dass
ihr reward_ratio größer oder gleich 0, 6 sein muss. Dies soll dafür sorgen, dass nur noch
interessante Erfahrungen gespeichert werden. Des Weiteren werden Erfahrungen mithilfe
der Methode add in Form eines benannten Tupels strukturiert im Puffer abgelegt. Für
das Training des neuronalen Netzes können mit der Methode get_random_batch zufälli-
ge Mini-Batches aus dem Replay-Buffer entnommen werden.

main:
Das Ausführen der Programme gestaltet sich bei beiden Agenten gleich. In der jeweili-
gen .py-Datei des Agenten befindet sich ein __main__-Abschnitt. Dort wird als erstes
das Dictionary Parameter mit allen notwendigen Parametern initialisiert. In diesem Dic-
tionary können alle notwendigen Einstellungen vorgenommen werden, die das Training
des Agenten beeinflussen. Anschließend muss in dem __main__-Abschnitt der Agent
initialisiert und das Dictionary übergeben werden. Ist das Objekt instanziiert, kann auf
die Methoden der Klassen QAgent oder DQNAgent zugegriffen werden. Mit der Metho-
de load("Name.npy") können gespeicherte Trainingsdaten geladen werden. Anschließend
besteht die Möglichkeit von diesem Trainingsstand aus mit der Methode train weiter zu
trainieren. Sollen die Trainingsergebnisse nach dem Training gespeichert werden, steht
dafür die Methode save("Name.npy") zur Verfügung. Mit der Methode evaluate kann der
Agent nach dem Training evaluiert werden. Dafür muss der Agent nicht trainiert werden,
wenn bereits ein gespeichertes Modell zuvor geladen wurde. Zum Schluss ist es ratsam die
Methode close aufzurufen, um alle benutzten Ressourcen wieder freizugeben. Anschlie-
ßend können die Trainingsparameter über das Dictionary nach Belieben angepasst und
das unterschiedliche Trainingsverhalten beobachtet werden. Im Gegensatz zum Q-Agent
besitzt der DQN-Agent noch zwei weitere Klassen. Dort können weitere Einstellungen
vorgenommen werden, die das Training des DQN-Agent beeinflussen können. Bei der
ReplayBuffer-Klasse kann zum Beispiel beeinflusst werden, wann und welche Beispiele
für das Training gespeichert werden sollen wohingegen bei der QNet-Klasse die gesamte
Architektur des neuronalen Netzes verändert und angepasst werden kann. Hierzu zählen
unter Anderem die Anzahl der versteckten Schichten und die Aktivierungsfunktionen für
die jeweilige versteckte oder Ausgabeschicht.

82

7 Entwicklung der Agenten

7.2 Training der Agenten

Nachdem der Aufbau der Agenten beschrieben wurde, soll auf das Training eingegangen
werden. Dabei wird das Trainingsverhalten der unterschiedlichen Belohnungssysteme des
DQN-Agent beleuchtet. Der Q-Agent hat keine weiteren Anpassungen erfahren. Hier
wurde sich auf die Argumentation von Kang und Schroeder [14] gestützt, dass der Zu-
standsaktionsraum zu speicherintensiv ist, um jede Möglichkeit in der Q-Tabelle abbilden
zu können. Es wurden für beide Agenten die gleiche Vortrainingsfunktionen entwickelt,
auf die zuerst eingegangen werden soll.

7.2.1 Vortrainingsfunktionen

In einer frühen Phase der Arbeit wurde versucht beide Agenten mit speziellen Funktionen
vorzutrainieren, sodass die Q-Tabelle oder das neuronale Netz schneller gute Zustände
erreicht an denen es lernen kann und nicht auf den Zufall angewiesen ist. Dafür wurden
zwei unterschiedliche Funktionen (pretrain und pretrain2) implementiert. Die pretrain-
Funktion geht verschiedene Würfelzustände und Feldkombinationen durch, indem sie
die bereits belegten Felder, die Anzahl der Wiederholungswürfe und Würfelkombinatio-
nen manipuliert. Da diese Manipulation auch das Environment betrifft, müssen neben
den Würfelwerten, der Anzahl der Wiederholungswürfe und den belegten Feldern auch
die verbleibenden gültigen Aktionen für diesen Zug zurückgegeben werden. Der Vor-
teil dieser Methode ist, dass die Agenten viele verschiedene Zustände sehen, z. B. die
Würfelanordnung [1, 1, 1, 1, 1], bei welcher nur die Kategorie der Einsen oder ein
Yahtzee auswählbar ist. Jedoch werden sehr viele andere weniger interessante Zustände
durchlaufen, was das Vortraining sehr lang macht, weil die Anzahl der Trainingsepiso-
den statisch ist. Die Trainingsepisoden für den oberen Tabellenteil ergibt sich aus der
Multiplikation von der Anzahl der Wiederholungswürfe (3), der möglichen Würfelpunkte
eines Würfels, exponiert mit der Anzahl der Schleifen, die die Würfelwerte manipulie-
ren (63) und den Möglichkeiten der Kombinationen der auswählbaren Felder minus dem
Fall, dass alle Felder belegt sind (26 − 1). Dies ergibt insgesamt 40.824 Trainingsepi-
soden. Analog ergeben sich für den unteren Tabellenteil 191.079.648 Trainingsepisoden.
Da dies die Trainingszeit sehr stark erhöhte, jedoch keinen Mehrwert für das Training
brachte, wurde diese Methode verworfen. Die zweite Methode pretrain2 funktioniert fol-
gendermaßen. Sie gibt nach und nach die belegten Felder der Punktetabelle frei. Das
heißt dem Agenten steht am Anfang nur ein freies Feld zur Verfügung, das er auswählen

83

7 Entwicklung der Agenten

kann. Im nächsten Schritt stehen ihm dann zwei Felder zur Verfügung. Die Methode
manipuliert nicht die Würfelwerte und auch nicht die Anzahl der Wiederholungswür-
fe. Jedoch müssen auch hier die gültigen Aktionen zurückgegeben werden, damit nicht
ein falsches Feld, das bereits belegt ist, ausgewählt werden kann. Ein Unterschied zur
pretrain-Funktion ist, dass die Anzahl der Trainingsepisoden im Parametersatz unter
episodes_pre_training eingestellt werden kann. Dies beeinflusst, wie oft eine Feldkom-
bination durchlaufen werden soll. Gemeinsam haben beide Funktionen, dass sie als Funk-
tionsgenerator implementiert sind und nach jeder Rückgabe der Werte stoppen. In der
Methode train() können sie dann wieder getriggert werden, um eine Iteration weiter-
zugehen. Beide Vortrainingsfunktionen haben sich als nicht zielführend herausgestellt,
weshalb diese Lösungsstrategie verworfen wurde. Sie sind dennoch weiterhin im Code
implementiert, um die Ergebnisse reproduzierbar zu halten. Die Abbildung 7.6 zeigt
jeweils die Ergebnisse der pretrain- und pretrain2 -Funktion für den Q-Agent und den
DQN-Agent. Zur Erinnerung durchlaufen beide Agenten die Vortrainingsschleife 40.824

Mal für die Methodepretrain. Die Anzahl der Wiederholungen für die pretrain2 kann in
den Parametern unter episodes_pre_training eingestellt werden. Für die in der Ab-
bildung 7.6 dargestellten Diagramme wurde episodes_pre_training = 100 eingestellt.

7.2.2 Training des Q-Agenten

Beim Q-Agenten ist das Training wesentlich einfacher als beim DQN-Agent, da es weni-
ger Parameter mit einem Einfluss auf das Lernverhalten als beim DQN-Agent gibt. Das
Listing 7.3 veranschaulicht das Dictionary mit möglichen Parametereinstellungen. An
diesen Stellschrauben wird für die Evaluierung des Q-Agenten gestellt und Anpassungen
vorgenommen. Die Einstellung des seed sorgt dafür, dass immer die gleiche Sequenz an
Zufallszahlen erzeugt wird. Mit den Parametern has_lower_part und has_bonus kann
die Komplexität eingestellt und erweitert werden, wenn diese auf True gesetzt werden.
Abgesehen von der window_size, die die Fenstergröße für eine Verringerung des Rau-
schens in den Diagrammen einstellt, beeinflussen alle anderen Parameter direkt das Trai-
ning. Die Belohnung, die der Q-Agent erhält, sind die erreichten Punkte für die jeweils
ausgewählte Kategorie. Das heißt es gibt keine zusätzlichen Belohnungen oder Funktio-
nen, die darauf abzielen die Chancen des Q-Agenten während des Lernens zu erhöhen.
Für das Training des Q-Agenten wurden der Einfluss der Lernschrittweite (α), der Dis-
kontierungsfaktor (γ) und die Anzahl der Trainingsepisoden genauer untersucht. Die in

84

7 Entwicklung der Agenten

(a) (b)

(c) (d)

Abbildung 7.6: Ergebnisse der Vortrainingsfunktionen (a) Verlauf der Punktzahl vom
Training des Q-Agenten mit der pretrain-Methode, (b) Verlauf der Punkt-
zahl vom Training des Q-Agenten mit der pretrain2-Methode, (c) Verlauf
der Punktzahl vom Training des DQN-Agenten mit der pretrain-Methode
und (d) Verlauf der Punktzahl vom Training des DQN-Agenten mit der
pretrain2-Methode.

den folgenden Untersuchungen dargestellten Ergebnisse sind eine Zusammenfassung und
sollen einen Überblick über die Auswirkung der Veränderung der Parameter geben. Es
werden die durchschnittlichen Punkte des Trainings sowie der Evaluation mit der Stan-
dardabweichung dargestellt.

Lernschrittweitentest:

Für die Untersuchung der Lernschrittweite wurden die Parameter wie im Listing 7.3 ein-
gestellt und α von 0, 9 schrittweise um 0, 1 verkleinert.

85

7 Entwicklung der Agenten

1 parameter = {
2 ’seed’: 3,
3 ’has_lower_part’: False,
4 ’has_bonus’: False,
5 ’pre_training’: False,
6 ’episodes_pre_training’: 10,
7 ’episodes_training’: 100000,
8 ’episodes_evaluation’: 2000,
9 ’epsilon’: 1,

10 ’epsilon_decay_rate’: 0.00001,
11 ’epsilon_min’: 0.1,
12 ’alpha’: 0.7,
13 ’gamma’: 0.99,
14 ’window_size’: 1000
15 }

Listing 7.3: Parameter Q-Agent.

α Training Evaluation
0, 9 26, 5 ± 10, 67 38, 5 ± 7, 73

0, 8 27, 2 ± 10, 81 39, 8 ± 7, 46

0, 7 27, 5 ± 10, 67 40, 3 ± 7, 49

0, 6 27, 5 ± 10, 41 39, 2 ± 7, 25

0, 5 27, 4 ± 10, 17 39, 0 ± 6, 82

0, 4 27, 1 ± 9, 75 37, 0 ± 6, 60

0, 3 26, 9 ± 9, 40 35, 7 ± 6, 51

0, 2 26, 4 ± 8, 83 33, 2 ± 6, 19

0, 1 25, 5 ± 8, 24 30, 6 ± 6, 25

Tabelle 7.1: Die durchschnittliche Gesamtpunktzahl des Lernschrittweitentests.

Fazit:
Aus der Tabelle 7.1 wird ersichtlich, dass eine zu klein gewählte Lernschrittweite das
Lernverhalten verschlechtert und die maximale Punktzahl abnimmt. Für die weiteren
Untersuchungen wurde die Lernschrittweite von 0, 7 beibehalten, weil die Gesamtpunkt-
zahl beim Training größer und die Standardabweichung kleiner war als im Versuch mit
der Lernschrittweite 0, 8. Die Tabelle 7.1 veranschaulicht sehr schön nach Gridin [7] oder
Sutton [34], dass die Lernschrittweite nicht zu groß oder zu klein sein darf. Der Q-Agent
lernt bei einer zu kleinen Lernschrittweite nicht schnell genug. Bei einer zu großen Lern-
schrittweite beeinflussen dagegen die schwankenden Punkte (Belohnungen) die Werte der
Q-Tabelle stärker.

86

7 Entwicklung der Agenten

γ Training Evaluation
0, 99 27, 3 ± 10, 65 40, 0 ± 7, 61

0, 9 27, 8 ± 10, 18 38, 0 ± 6, 71

0, 8 27, 3 ± 9, 42 35, 2 ± 6, 29

0, 7 26, 9 ± 8, 93 33, 0 ± 6, 34

0, 6 26, 7 ± 8, 64 32, 5 ± 6, 03

0, 5 26, 4 ± 8, 45 31, 7 ± 6, 12

0, 4 26, 2 ± 8, 33 31, 5 ± 6, 10

0, 3 26, 1 ± 8, 29 31, 3 ± 6, 00

0, 2 26, 1 ± 8, 27 31, 1 ± 6, 05

0, 1 26, 0 ± 8, 22 31, 1 ± 5, 94

Tabelle 7.2: Die durchschnittliche Gesamtpunktzahl nach dem Diskontierungsfaktortests.

Diskontierungsfaktortest:

Für die Untersuchung des Diskontierungsfaktors wurden die Parameter wie im Listing
7.3 eingestellt und γ von 0, 99 auf 0, 9 und weiter schrittweise um 0, 1 verkleinert.

Fazit:
Aus der Tabelle 7.2 für den Diskontierungsfaktortest wird deutlich, dass die maximale
Punktzahl abnimmt sofern dieser zu klein gewählt ist. Dies liegt daran, dass der Q-Agent
nur auf kurzfristige Belohnungen aus ist. Die Abbildungen 7.7 (a) und (b) bestätigen dies,
weil die Anzahl der Wiederholungswürfe während der Evaluation vom Q-Agenten mit
kleinerem Diskontierungsfaktor kleiner ist. Für alle weiteren Tests und Untersuchungen
wurde ein γ von 0, 99 beibehalten.

Veränderung der Episodenanzahl:

Die Anzahl der Episoden wurde für die Evaluierung immer auf 2.000 Episoden gelas-
sen, um ein statistisch verwertbares Ergebnis zu bekommen. Die Anzahl der Episoden
für die Trainings des Q-Agent haben einen signifikanten Einfluss auf die Qualität der
Q-Tabelle. Dafür wurde mit 10.000 Episoden begonnen und diese zweimal um den Fak-
tor 10 erweitert. Die epsilon_decay_rate wurde dementsprechend angepasst, sodass sie
für 10.000 Episoden 0, 0001, für 100.000 Episoden 0, 00001 und für 1.000.000 Episoden
0, 000001 betrug. Demzufolge befindet sich Epsilon in den letzten 10% der Trainingszeit
auf dem Minimalwert von 0, 1. Es ist grundsätzlich zu empfehlen die Verzögerungsrate

87

7 Entwicklung der Agenten

(a) (b)

Abbildung 7.7: Wiederholungswürfe der Evaluation mit unterschiedlichen Diskontie-
rungsfaktoren (a) 0,99 und (b) 0,1.

Episoden Training Evaluation
10.000 22, 0 ± 8, 28 27, 8 ± 6, 94

100.000 27, 5 ± 10, 66 39, 6 ± 7, 60

1.000.000 29, 6 ± 12, 23 45, 1 ± 7, 91

Tabelle 7.3: Die durchschnittliche Gesamtpunktzahl nach Zunahme der Trainingsepiso-
den.

von Epsilon so klein wie möglich zu wählen, damit der Agent so viel wie möglich aus-
probieren kann. Schauen wir uns zuerst die Ergebnisse der drei Durchläufe an und wie
sich die Verlängerung der Trainingszeit auf die Gesamtpunktzahl auswirkt. Wie aus der
Tabelle 7.3 hervorgeht, nimmt sowohl beim Training als auch bei der Evaluation die
durchschnittliche Gesamtpunktzahl zu. Jedoch ist der Punkteanstieg nicht linear zum
Anstieg der Episoden. Gleiches gilt auch für die Tabelle 7.4, in welcher der Anstieg
der Punkte pro Kategorie von 100.000 Episoden auf 1.000.000 Episoden nicht mehr so
stark ausfällt wie bei der Zunahme von 10.000 Episoden auf 100.000 Episoden. In der
Abbildung 7.8 ist die Temporale Difference veranschaulicht, die im Idealfall gegen null
konvergiert. Die Diagramme veranschaulichen sehr gut, dass mit der Steigerung der Epi-
sodenzahl die Temporale Difference immer besser konvergiert. Das wiederum bedeutet,
dass der Agent immer besser wird, was sich auch in der Zunahme der durchschnittlichen
Gesamtpunktzahl widerspiegelt. Dass die Temporale Difference am Anfang konvergiert,
liegt an dem gewählten Diskontfaktor von 0, 99. Aus der Abbildung 7.9 (a) entnommen
werden kann, konvergiert die Temporale Difference bei einem Diskontierungsfaktor von
0, 1 sofort. Des Weiteren kann aus der Abbildung 7.9 entnommen werden, dass ab einem
Diskontierungsfaktor von 0, 4 eine Divergenz zu Beginn des Trainings erkennbar ist. Dies

88

7 Entwicklung der Agenten

Episoden Einsen Zweien Dreien Vieren Fünfen Sechsen
10.000 Training 0, 85 1, 79 2, 88 4, 09 5, 48 6, 90

2.000 Evaluation 0, 92 1, 98 3, 36 5, 23 7, 26 9, 00

100.000 Training 1, 02 2, 27 3, 67 5, 27 6, 83 8, 42

2.000 Evaluation 1, 44 3, 32 5, 42 7, 68 9, 97 11, 81

1.000.000 Training 1, 16 2, 65 4, 21 5, 69 7, 20 8, 66

2.000 Evaluation 1, 50 3, 92 6, 36 8, 64 11, 18 13, 45

Tabelle 7.4: Punkte pro Kategorie in Abhängigkeit der Trainingsepisoden.

(a) (b)

(c)

Abbildung 7.8: Temporale Difference von (a) 10.000 Episoden, (b) 100.000 Episoden und
(c) 1.000.000 Episoden mit den Parametern aus Listing 7.3.

liegt daran, dass die erzielten Punkte (Belohnungen) sehr schwanken können und der
große Diskontierungsfaktor diese entsprechend nach der Formel 2.34 gewichtet.

Nach den zuvor gewonnenen Erkenntnissen wurde der Q-Agent einmal mit 1.000.000

Episoden für das komplette Spiel trainiert. Werden die Ergebnisse der durchschnittli-

89

7 Entwicklung der Agenten

(a) (b)

Abbildung 7.9: Temporale Difference unterschiedlicher Diskontierungsfaktoren (a) 0,1
und (b) 0,4.

chen Gesamtpunktzahl des Trainings in Höhe von 74, 1 mit einer Standardabweichung
von ± 32, 66 Punkte mit der erreichten Punktzahl aus der Evaluation in Höhe von 117, 7

mit einer Standardabweichung von ± 28, 86 Punkte verglichen, ist auch hier ein Ler-
neffekt erkennbar. Jedoch erreicht der Q-Agent gerade einmal das Niveau des Greedy
Level-1 Agenten mit einer Punktzahl von 112, 541 von Kang und Schroeder [14]. Dies
kann als eine Bestätigung der Annahme interpretiert werden, warum der Q-Learning Al-
gorithmus nicht in der Arbeit der Beiden berücksichtigt wurde. Die Q-Tabelle benötigt
ca. 2, 7GB Speicherplatz, wohingegen die Trainings des oberen Tabellenteils nicht mehr
als ca. 32MB brauchen.

7.2.3 Training des DQN-Agenten

Zu Beginn der Arbeit wurde angenommen, dass mehr als 1.024 Neuronen für die Be-
wältigung der Aufgabe benötigt werden. Dafür wurde zusätzlich das Cuda-Toolkit von
Nvidia installiert, um die Berechnungen auf einer Grafikkarte vom gleichnamigen Herstel-
ler machen zu können. Dies verkürzt die Trainingszeiten des DQN-Agenten erheblich. Es
stellte sich jedoch heraus, dass 64 Neuronen ausreichend waren. Verbesserungen wurden
durch die Anpassungen des Belohnungssystems erzielt. Das Listing 7.4 zeigt die Stan-
dardparameter des DQN-Agenten. Diese wurden durch Probieren ermittelt und waren
der Ausgangspunkt für alle weiteren Untersuchungen. Der Aufbau der Parameter ist sehr
ähnlich zu denen des Q-Agenten. Hinzu kommen noch die Parameter, die für den Replay
Buffer sowie für das neuronale Netz eingestellt werden können. Dies erschwert das Finden
von geeigneten Parametern. Die Werte im Listing 7.4 haben sich als guter Ausgangspunkt

90

7 Entwicklung der Agenten

1 parameter = {
2 ’seed’: 3,
3 ’has_lower_part’: False,
4 ’has_bonus’: False,
5 ’pre_training’: False,
6 ’episodes_pre_training’: 10,
7 ’episodes_training’: 1000,
8 ’episodes_evaluation’: 2000,
9 ’epsilon’: 1,

10 ’epsilon_decay_rate’: 0.001,
11 ’epsilon_min’: 0.1,
12 ’replay_buffer_size’: 900,
13 ’batch_size’: 100,
14 ’gamma’: 0.99,
15 ’learning_rate’: 0.0001,
16 ’learn_period’: 1,
17 ’fc1’: 64,
18 ’fc2’: 64,
19 ’fc3’: None,
20 ’window_size’: 100
21 }

Listing 7.4: Parameter DQN-Agent.

für das Training erwiesen, nachdem mit vielen verschiedenen, manuellen Einstellungen
getestet wurde. Des Weiteren wurde auch beim DQN-Agenten immer zunächst nur mit
dem oberen Tabellenteil trainiert und die Komplexität bei erfolgreichen Ergebnissen er-
höht. Im Gegensatz zum Q-Agenten werden beim DQN-Agenten zuerst die verschiedenen
Belohnungssysteme mit den im Listing 7.4 angegebenen Parametern verglichen. Anschlie-
ßend werden analog zum Q-Agent bei Feststellen eines akzeptablen Belohnungssystems
verschiedene Parameteranpassungen vorgenommen und näher beleuchtet. Die Tabelle 7.5
fasst die Belohnungssysteme noch einmal zusammen.

1. PK:
Beim Trainieren des DQN-Agenten wurde in einem ersten rudimentären Ansatz das glei-
che Prinzip wie beim Q-Agenten verfolgt. Der DQN-Agent lernt nach jeder ausgeführten
Aktion. Es konnte keine Konvergenz der Verlustfunktion erzeugt werden. Des Weiteren
hat der DQN-Agent mit dieser Strategie seine Chancen mit den Wiederholungswürfen
nicht optimal ausgenutzt. Insgesamt konnte ein positives Lernverhalten festgestellt wer-
den, weil die Gesamtpunktzahl über die Trainingszeit von durchschnittlich weniger als 18
Punkten auf durchschnittlich mehr als 27 Punkte zugenommen hat. Die Abbildung 7.10

91

7 Entwicklung der Agenten

Belohnungssystem Abkürzung
1. Punkte pro Kategorie PK
2. Punkte pro Kategorie rückwirkend pro Runde PKR
3. Minimum Delta Min∆
4. Maximum Delta Max∆
5. Richtige Würfel- und Kategoriewahl RWK
6. Normalisierte richtige Würfel- und Kategoriewahl NRWK
7. Reroll-Utility-Methode R-U-M

Tabelle 7.5: Zusammenfassung der Belohnungssysteme.

(b) zeigt den Verlauf der Punktzahl über die Trainingszeit. In der Evaluation konnten
im Schnitt 27, 2 Punkte erzielt werden. Aus den in Abbildungen 7.10 (c) und (d) darge-
stellten Ergebnissen wurde geschlussfolgert, dass dem DQN-Agenten ein Anreiz gegeben
werden muss die Wiederholungswürfe besser auszunutzen, um so seine Chancen zu erhö-
hen. Die Divergenz in Abbildung 7.10 (a) ist dadurch zu begründen, dass das Erhalten
der Punktzahl (Belohnung) sehr sprunghaft für den DQN-Agenten ist. Zuerst wurde sich
im Folgenden weiter auf die Maximierung der Gesamtpunktzahl fokussiert.

2. PKR:
Eine Überlegung für eine bessere Nutzung der Wiederholungswürfe durch den DQN-
Agenten bestand darin die erzielten Punkte pro Kategorie rückwirkend zu teilen. Dafür
werden alle Züge in einer Rundenhistorie zwischengespeichert. Wenn der DQN-Agent eine
Kategorie auswählt, werden die erzielten Punkte als Belohnung für die Wiederholungs-
würfe gegeben. Auch mit diesem Belohnungssystem hat sich ein positives Lernverhalten
eingestellt. Jedoch hat die Anzahl der Wiederholungswürfe nur leicht zugenommen, wie
aus der Abbildung 7.11 ersichtlich wird. Der Verlauf der anderen Graphen verhielt sich
sehr ähnlich, wie zu PK.

3. Min∆ und 4. Max∆:
Die Ergebnisse von Min∆ und Max∆ verhalten sich sehr ähnlich zueinander. In der Ab-
bildung 7.12 sind die Verläufe von Min∆ dargestellt. Für beide ∆-Belohnungssysteme hat
die Verlustfunktion zum ersten Mal ein Konvergenzverhalten gezeigt (siehe Abbildung
7.12 (a)). Das Konvergenzverhalten kann dadurch begründet werden, dass die Punkte
und somit die Belohnungen für den DQN-Agenten weniger sprunghaft sind. Des Weite-
ren musste wie beim PKR keine Rundenhistorie zur Steigerung der Wiederholungswürfe

92

7 Entwicklung der Agenten

(a) (b)

(c) (d)

Abbildung 7.10: Diagramme vom PK (a) Verlustfunktion, (b) durchschnittliche Gesamt-
punktzahl pro Episode, (c) Anzahl der Wiederholungswürfe pro Episode
während des Trainings und (d) Anzahl der Wiederholungswürfe pro Epi-
sode während der Evaluation.

(a) (b)

Abbildung 7.11: Diagramme vom PKR (a) Anzahl der Wiederholungswürfe pro Episo-
de während des Trainings und (b) Anzahl der Wiederholungswürfe pro
Episode während der Evaluation.

93

7 Entwicklung der Agenten

(a) (b)

(c) (d)

Abbildung 7.12: Diagramme vom Min∆ (a) Verlustfunktion, (b) durchschnittliche Ge-
samtpunktzahl pro Episode, (c) Anzahl der Wiederholungswürfe pro
Episode während des Trainings und (d) Anzahl der Wiederholungswür-
fe pro Episode während der Evaluation.

genutzt werden. Dies liegt daran, dass die Wiederholungswürfe im Trainingsverlauf nicht
so schnell abnehmen, wie bei der PK und PKR. Dies veranschaulichen auch die Abbil-
dungen 7.12 (c) und (d). Des Weiteren wird daraus ersichtlich, dass sich die Anzahl der
Wiederholungswürfe bei der Evaluation um den letzten erreichten Wert bewegt, der beim
Training für die Anzahl der Wiederholungswürfe erreicht wurde. Bei der Gesamtpunkt-
zahl bewegen sich beide um ca. 30 Punkte bei der Evaluation.

5. RWK:
RWK wurde einmal mit den Standardparametern getestet und einmal wurde die Epi-
sodenanzahl auf 10.000 erhöht und die Verzögerungsrate von Epsilon entsprechend auf
0, 0001 angepasst. Der Grund für die Erhöhung war zu überprüfen, ob sich die Anzahl
der Wiederholungswürfe pro Runde mit steigender Trainingsanzahl verschlechtert. Wie

94

7 Entwicklung der Agenten

aus den Abbildungen 7.13 (a) und (b) ersichtlich wird, ist dies auch der Fall. Des Weite-
ren nahm nach der Erhöhung der Episodenanzahl die Gesamtpunktzahl nicht weiter zu.
Diese bewegte sich nach Abbildungen 7.13 (c) und (d) weiter um die 30 Punkte. Auch
zeigen die Abbildungen 7.13 (e) und (f) den Verlauf der beiden Verlustfunktionen, aus
denen keine Konvergenz ersichtlich ist. Der Verlauf der Verlustfunktion stieg auch mit der
Anzahl der Episoden weiter an. Dies war ein Grund dafür die Punkte zu normalisieren.
Dadurch wird die Belohnung für den DQN-Agenten weniger sprunghaft und ein Kon-
vergenzverhalten wahrscheinlicher. Des Weiteren war die Wahl der Höhe der Belohnung
für die Wiederholungswürfe schwer zu ermitteln, damit der Agent einen ausreichenden
Anreiz bekommt. Werden die möglichen Punkte und somit die Belohnungen nur für den
oberen Tabellenteil betrachtet, dann sind die Belohnungen, die der DQN-Agent erhalten
kann, 0 bis 30 Punkte in Abhängigkeit der gewählten Kategorie. Die Sprünge bei den
Punkten und somit den Belohnungen für den DQN-Agenten können die Divergenz der
Verlustfunktion verursachen.

6. NRWK:
Das NRWK wurde wie das RWK einmal mit 1.000 und 10.000 Episoden getestet. Es zeig-
te bis auf das Konvergenzverhalten, welches mit der steigenden Episodenanzahl zunahm,
die gleichen Ergebnisse für die Maximierung der Gesamtpunktzahl.

7. R-U-M:
Nachdem die vorhergehenden Belohnungssysteme nicht das gewünschte Lernverhalten ge-
zeigt haben, wurde die reroll_utility-Funktion entwickelt. Diese wurde von der Arbeit [35]
von Philip Vasseur inspiriert. Wie aus der Abbildung 7.15 für das Training entnommen
werden kann, hat sich mithilfe der reroll_utility-Funktion ein gewünschtes Lernverhalten
für den oberen Tabellenabschnitt ergeben. Die Ergebnisse tangieren in Richtung der opti-
malen Strategie von Tom Verhoeff [36]. Wird die Tabelle 7.6 mit der Tabelle 3.1 in Kapitel
3.1 verglichen, schneidet der DQN-Agent in fast allen Kategorien außer für die Einsen
schlechter ab. Dies kann daran liegen, dass er eine reine Maximierungsstrategie und keine
optimale Strategie verfolgt. Das bedeutet, dass der DQN-Agent bei einem Wurf, welcher
gut für die Kategorie der Einsen ist, versucht die maximal möglichen Punkte zu erzie-
len. Sind noch alle oder die Mehrheit der anderen Kategorien frei, ist das suboptimal,
weil mit dem Feld der Einsen die Verluste gering gehalten werden können. Dies ist eine
mögliche Ursache, dass die durchschnittliche Gesamtpunktzahl beim DQN-Agenten in
der Evaluation in Höhe von 52, 2 mit einer Standardabweichung von ± 10, 33 Punkten
geringer ausfällt, als bei der optimalen Strategie von Tom Verhoeff nach der Tabelle 3.1.

95

7 Entwicklung der Agenten

(a) (b)

(c) (d)

(e) (f)

Abbildung 7.13: Diagramme vom RWK (a) Anzahl der Wiederholungswürfe pro Episode
während des Trainings für 1.000 Episoden, (b) Anzahl der Wiederho-
lungswürfe pro Episode während des Trainings für 10.000 Episoden, (c)
Verlauf der Gesamtpunktzahl für 1.000 Episoden, (d) Verlauf der Ge-
samtpunktzahl für 10.000 Episoden, (e) Verlauf der Verlustfunktion für
1.000 Episoden und (f) Verlauf der Verlustfunktion für 10.000 Episoden.

96

7 Entwicklung der Agenten

(a) (b)

Abbildung 7.14: Diagramme vom NRWK (a) Verlauf der Verlustfunktion für 1.000 Epi-
soden und (b) Verlauf der Verlustfunktion für 10.000 Episoden.

Episoden Einsen Zweien Dreien Vieren Fünfen Sechsen
1.000 Training 1, 49 3, 63 5, 09 6, 42 8, 06 10, 33

2.000 Evaluation 2, 26 5, 16 7, 5 9, 87 11, 39 16, 05

Tabelle 7.6: Erreichte Punkte pro Kategorie mit der R-U-M.

Ein Anreiz durch eine Belohnung für die Wiederholungswürfe muss durch diese Methode
nicht gegeben werden. Es werden wie bei der PK die Punkte der ausgewählten Katego-
rie als Belohnung verwendet und nach der Auswahl einer Kategorie gelernt. Solange der
DQN-Agent noch Wiederholungswürfe offen hat und die maximal mögliche Punktzahl
für das Feld noch nicht erreicht ist, werden die Züge ausgenutzt. Dies ist in beiden Ab-
bildungen 7.15 (c) und 7.16 (a) zu erkennen. Des Weiteren kann der Abbildung 7.16 (b)
entnommen werden, dass das neuronale Netz stabil ist, weil es um die beim Training er-
reichte maximale Punktzahl pendelt. Obwohl die Gesamtpunktzahl zunimmt, divergiert
die Verlustfunktion. Nachdem sich die reroll_utility-Funktion als erfolgreich für den obe-
ren Tabellenabschnitt erwiesen hat, wurde diese für den unteren Tabellenabschnitt mit
Bonus erweitert. Für das komplette Spiel wuchs die durchschnittliche Gesamtpunktzahl
von ca. 70 Punkten auf ca. 130 Punkte an. In der Evaluation wurden im Schnitt 138, 4

Punkte erzielt. Des Weiteren wurde die Episodenanzahl auf 10.000 Episoden erhöht. Dies
führte zu einer Steigerung der Gesamtpunktzahl auf über 140 Punkte. Dadurch, dass die
Punkte der ausgewählten Kategorie als Belohnung verwendet werden, führt dies zu Di-
vergenz der Verlustfunktion. Die folgenden Optimierungen (O1 - O5) führten schrittweise
zu einer Konvergenz und sind in den Abbildungen 7.17 veranschaulicht.

• O1: Als Belohnung wird das reward_ratio verwendet(siehe Abbildung 7.17 (a)).

97

7 Entwicklung der Agenten

• O2: Die Episodenanzahl wurde von 1.000 auf 10.000 angehoben und die Epsilon-
verzögerungsrate von 0, 001 auf 0, 0001 gesetzt (siehe Abbildung 7.17 (a)).

• O3: Die Lernrate wurde auf 0, 00001 verkleinert (siehe Abbildung 7.17 (b)).

• O4: Die verdeckte Schicht fc2 wird nicht weiterverwendet (siehe Abbildung 7.17
(c)).

• O5: Zum Schluss wurde die Größe des Replay Buffers gleich der Batchgröße gesetzt.
Diese beträgt für die in der Abbildung 7.17 (d) dargestellten Verlustfunktion für
beide 50.

Die Optimierungen gingen jedoch zu Lasten der maximalen Punktzahl.

(a) (b)

(c)

Abbildung 7.15: Diagramme vom R-U-M-Training. (a) durchschnittliche Gesamtpunkt-
zahl pro Episode, (b) Verlustfunktion und (c) Anzahl der Wiederho-
lungswürfe pro Episode während des Trainings.

98

7 Entwicklung der Agenten

(a) (b)

Abbildung 7.16: Diagramme von der R-U-M-Evaluation. (a) durchschnittliche Gesamt-
punktzahl pro Episode, (b) Verlustfunktion und (c) Anzahl der Wieder-
holungswürfe pro Episode während des Trainings.

(a) (b)

(c) (d)

Abbildung 7.17: Optimierte Verlustfunktionen von O1-O5 (a) O1 und O2: Verwendung
des reward_ratio und Erhöhung der Episodenanzahl, (b) O3: Anpassung
der Lernrate, (c) O3: Reduzierung der Schichten des NN und (d) O5:
Größe Replay Buffer = Batchgröße gesetzt.

99

8 Evaluierung

Zuerst werden die beiden Agenten kurz gegenübergestellt und anschließend eine Prüfung
der Anforderungsanalyse durchgeführt.

8.1 Reinforcement- vs Deep Reinforcement-Learning

Ein direkter Vergleich zwischen den beiden Agenten ist aufgrund der reroll_utility-
Methode nicht möglich. Beide Agenten haben beim Würfelspiel, bei welcher es nur die
Punkte der Kategorien als Belohnung gab, eine Punktmaximierung erreicht. Diese fiel
jedoch nicht im ausreichendem Maße aus, sodass sie als Gegner für einen Menschen in
Frage kommen würden. Für den Q-Agent wurden keine zusätzlichen Belohnungssysteme
entwickelt. Verglichen mit dem DQN-Agenten hat der Q-Agent ohne zusätzliche Beloh-
nungssysteme ein bessere Lernverhalten gezeigt. Es konnte für den Q-Agent die Aussage
von Kang und Schroeder [14] bestätigt werden, dass der Q-Learning Algorithmus für
das Würfelspiel ungeeignet ist und das Punkteniveaunur ein Level erreichte, wie der von
ihnen genutzte Greedy-Level 1 Algorithmus. Der DQN-Agent erzielte dank der reroll_-
utility-Methode deutliche bessere Ergebnisse als der Q-Agent. Leider ist auch dieser noch
nicht auf dem Niveau, um gegen eine Menschen antreten zu können. Dies liegt an der
reroll_utility-Methode. Diese bietet noch Verbesserungspotential, um je nach Kategorie
die Chancen zu verbessern, besonders für den unteren Tabellenbereich. Des Weiteren hat
sich für den DQN-Agent gezeigt, dass eine Veränderung der Architektur, die im Listing
7.4 angegeben ist, nur eine geringe Auswirkung auf die Gesamtpunktzahl hat. Das heißt
eine Steigerung der Schichten und Neuronen führt zu keiner signifikanten Steigerung der
Gesamtpunktzahl. Das Gleiche gilt auch für die Veränderung des Seeds und damit der
Zufallskomponente.

100

8 Evaluierung

8.2 Prüfung der Anforderungen

In diesem Abschnitt sollen die Anforderungen, die im Kapitel 4.3 aufgestellt wurden,
überprüft werden.

KI-F1: (erfüllt) Es wurde eine eigene Simulationsumgebung aufgebaut, mit dem die
Agenten interagieren können und in welcher die Aktionen ausgeführt werden. Des Wei-
teren wurde darauf geachtet, dass der Agent die Spielregeln nicht verletzen oder ein Feld
zweimal auswählen kann.

KI-F2: (erfüllt) Die Lernparameter können im jeweiligen main-Abschnitt des Agen-
ten angepasst werden. Dadurch befinden sie sich gebündelt an einem Ort und werden bei
der Initialisierung des Agenten übergeben.

KI-F3: (erfüllt) Die Komplexität des Spiels kann zusammen mit den Lernparametern
konfiguriert werden. Dafür müssen die entsprechenden Parameter auf True gesetzt wer-
den. Die Basiseinstellung ist, dass der obere Tabellenteil immer ausgewählt ist und um
den Bonus und / oder den unteren Tabellenteil erweitert werden kann.

KI-F4: (erfüllt) Der Trainingsfortschritt wird durch die Ausgabe von Diagrammen vi-
sualisiert und durch Ausgaben von Punkten in der Konsole messbar gemacht.

KI-F5: (erfüllt) Der DQN-Agent besitzt ein neuronales Netz. Des Architektur kann
in der entsprechenden Klasse angepasst werden. Das implementierte neuronale Netz be-
sitzt drei versteckte Schichten, die über die Lernparameter eingestellt werden können.

KI-F6: (erfüllt) Gibt es bereits vorhandene Trainingsdateien im Format .npy müssen
diese in das gleiche Verzeichnis wie die Agenten geladen werden. Anschließend muss der
Agent mit der Methode load("Name.npy") geladen werden. Es gilt darauf zu achten, dass
die gleichen Parameter eingestellt sind, mit denen der Agent zuvor trainiert wurde.

KI-F7: (erfüllt) Die Trainingsdaten können mit der Methode safe gespeichert werden.
Der Methode muss ein Name übergeben werden, unter welche diese die Daten speichert.
Die Daten werden im .npy Format gespeichert.

KI-F8: (erfüllt) Der Agent trainiert ohne weitere Eingriffe selbstständig, nachdem al-

101

8 Evaluierung

le notwendigen Einstellungen bei den Lernparametern getätigt wurden. Des Weiteren
steht neben dem Training auch eine Möglichkeit der Evaluierung zur Verfügung. Dies
bedeutet, dass bereits gespeicherte Trainingsdaten wieder geladen und deren Ergebnisse
reproduziert werden können. Dabei gilt lediglich zu beachten, dass die Lernparameter die
Gleichen sein müssen wie diejenigen, die für das Training eingestellt wurden.

KI-NF1: (erfüllt) Alle Klassen wurden in der Programmiersprache Python implemen-
tiert.

KI-NF2: (teilweise erfüllt) Das Programm wurde in verschiedene Klassen aufgeteilt.
Die Methoden der Klassen selbst besitzen noch weiteres Verbesserungspotenzial. Zum
Beispiel müssen für die Klasse des DQN-Agenten, abhängig vom verwendeten Beloh-
nungssystem oder der Vortrainingsfunktion, umständlich Programmzeilen ein- oder aus-
kommentiert werden. Gleichzeitig tragen weitere Kommentare zu einem noch besseren
Programmverständnis bei.

102

9 Fazit und Ausblick

Es konnte in der vorliegenden Arbeit gezeigt werden, dass der DQN-Algorithmus und
Q-Learning-Algorithmus in der Lage sind die Punkte des Würfelspiels Yahtzee zu ma-
ximieren. Für den Q-Learning-Algorithmus konnte ein erster praktischer Nachweis er-
bracht werden, dass dieser in der Arbeit von Kang und Schroeder [14] zurecht nicht
berücksichtigt wurde. Interessanterweise war der Q-Learning-Algorithmus im Gegensatz
zum verwendeten DQN-Algorithmus in der Lage mit dem Yahtzee-Environment bessere
Lernfortschritte zu erzielen. Der DQN-Algorithmus erreichte diese grundlegend auch, je-
doch nicht so erfolgreich wie der Q-Learning-Algorithmus. Der Q-Learning-Algorithmus
nutzte unter anderem die Chancen durch die Wiederholungswürfe besser aus. Für den
DQN-Algorithmus mussten extra Anreize im Belohnungssystem geschaffen werden, da-
mit dieser seine Chancen besser ausnutzt. Schlussendlich wurde sich dafür entschieden
die Wiederholungswürfe aus dem Aktionsraum des DQN-Agenten zu entfernen und die-
sen mit einer Hilfsfunktion zu unterstützen.

Für zukünftige Arbeiten könnte es interessant sein, wie die Problematik der unterschied-
lichen Aufgaben in einem neuronalen Netz vereint werden können, da dies die größte
Schwierigkeit bereitet hat. Hier stellt sich auch die Frage, ob ein anderer DQN-Ansatz
gewählt werden sollte, z. B. mit einem Target-Netzwerk. Eine Untersuchung der Monte-
Carlo-Tree-Search-Methode könnte ebenfalls vielversprechend sein. Diese beiden Algo-
rithmen können durchaus genauere Ergebnisse liefern.

Die Entwicklung der beiden Algorithmen hat mehr Zeit in Anspruch genommen als
ursprünglich erwartet. Dadurch konnte die ursprüngliche Zielsetzung nicht vollständig
erreicht werden. Aus diesem Grund wurde auf die Realisierung eines Demonstrators mit
einem Kamerasystem zu Gunsten der erfolgreichen Entwicklung der Agenten verzichtet.
Dennoch bietet das erlangte Ergebnis dieser Arbeit einen guten Einstieg in das Thema
Reinforcement Learning als auch Deep Reinforcement Learning, von dem aus Weiter-
entwicklungen durchgeführt werden können. Die Erweiterung eines Kamerasystems oder

103

9 Fazit und Ausblick

einer Benutzeroberfläche bieten dafür die größten Potentiale.

Verbesserungen der Arbeit können unter anderem erzielt werden, in dem die Hilfsfunkti-
on für den DQN-Agent optimiert wird. Die Strukturierung der Agenten-Klassen können
für ein besseres Verständnis ebenfalls weiter verbessert werden. Es wurden im Programm
Kommentierungen an den Schlüsselstellen vorgenommen, um anderen Benutzern einen
leichten Einstieg zu bereiten. Für zukünftige Arbeiten oder andere Benutzer bietet die
Arbeit den Vorteil, dass bereits erlangte Trainingsergebnisse zur Verfügung stehen, die
reproduziert werden können. Des Weiteren bietet der Aufbau des sehr einfach gehaltenen
Hauptabschnittes die Möglichkeit schnell und einfach selbst in die Thematik des Agenten
Trainings einzusteigen.

104

Literaturverzeichnis

[1] Arel, I. ; Liu, C. ; Urbanik, T. ; Kohls, A.G.: Reinforcement learning-based multi-
agent system for network traffic signal control. S. 8, The University of Tennessee,
2009

[2] Borowiec, Steven: AlphaGo seals 4-1 victory over Go grandmaster Lee
Sedol, The Guardian, 2016. – URL https://www.theguardian.com/

technology/2016/mar/15/googles-alphago-seals-4-1-victory-

over-grandmaster-lee-sedol

[3] Clevert, Djork-Arné ; Unterthiner, Thomas ; Hochreiter, Sepp: Fast and
Accurate Deep Network Learning by Exponential Linear Units (ELUs). S. 14, ICLR,
2016. – URL https://arxiv.org/pdf/1511.07289v5

[4] Duchi, John ; Hazan, Elad ; Singer, Yoram: Adaptive Subgradient Methods for
Online Learning and Stochastic Optimization. S. 13, Journal of machine learning
research, 2011. – URL https://web.stanford.edu/~jduchi/projects/

DuchiHaSi10_colt.pdf

[5] Glenn, James: An optimal strategy for Yahtzee. S. 16, Loyola College in Maryland,
2006

[6] Glorot, Xavier ; Bengio, Yoshua: Understanding the diffculty of training deep
feedforward neural networks. S. 8. In: Paper, Université de Montréal, 2010. – URL
https://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

[7] Gridin, Ivan: Practical Deep Reinforcement Learning with Python. bpb online,
2022. – URL www.bpbonline.com. – ISBN 978-93-55512-055

[8] Géron, Aurélien: Praxiseinstieg Machine Learning mit Scikit-Learn und Ten-
sorFlow: Konzepte, Tools und Techniken für intelligente Systeme. 1. Auflage.
dpunkt.verlag GmbH, 2018. – ISBN 978-3-96010-114-7

105

Literaturverzeichnis

[9] Hasbro: Yahtzee Rules. S. 8, Hasbro, 1996. – URL https://www.hasbro.com/

common/instruct/yahtzee.pdf

[10] Hasbro: Yahtzee Rules. S. 3, Hasbro, 2003. – URL https://www.hasbro.com/

common/instruct/Yahtzee_(2003).pdf

[11] He, Kaiming ; Zhang, Xiangyu ; Ren, Shaoqing ; Sun, Jian: Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. S. 11,
Microsoft Research, 2015. – URL https://arxiv.org/pdf/1502.01852

[12] Hinton, Geoffrey: Neuronal Networks for Machine Learning: Lecture 6a Over-
view of mini-batch gradient descent. S. 31, University of Toronto, lecture,
2012. – URL https://www.cs.toronto.edu/~tijmen/csc321/slides/

lecture_slides_lec6.pdf

[13] Jendeberg, Daniel ; Wikstén, Louise: OptimalYahtzeeaComparison. S. 21, KTH.
– URL https://www.csc.kth.se/utbildning/kth/kurser/DD143X/

dkand13/Group1Vahid/report/Optimal_Yahtzee_Nils_DN_&_Philip_

S.pdf

[14] Kang, Minhyung ; Schroeder, Luca: Reinforcement Learning for Solving Yahtzee.
S. 7, 2018

[15] Kngma, Diederik P. ; Ba, Jimmy: Adam: A Method for Stochastic Optimization.
S. 15, conference paper at ICLR, 2015. – URL https://arxiv.org/abs/1412.

6980

[16] Lapan, Maxim: Deep Reinforcement Learning, Das umfassende Praxis-Handbuch.
mitp-verlag, 2020. – ISBN 978-3-7475-0037-8

[17] Larsson, Marcus ; Sjöberg, Andreas: Optimal Yatzy Strategy. S. 45, KTH, 2012.
– URL https://www.csc.kth.se/utbildning/kth/kurser/DD143X/

dkand12/Group89Michael/report/Larsson+Sjoberg.pdf

[18] Lemke, Christian: Reinforcement Learning kompakt erklärt, URL
https://www.alexanderthamm.com/de/blog/einfach-erklaert-

so-funktioniert-reinforcement-learning/, 2023

[19] Mao, Hongzi ; Alizadeh, Mohammad ; Menache, Ishai ; Kandula, Srikanth:
Resource Management with Deep Reinforcement Learning. S. 7, Microsoft Research,
MIT, 2016. – URL https://people.csail.mit.edu/hongzi/content/

publications/DeepRM-HotNets16.pdf

106

Literaturverzeichnis

[20] Mnih, Volodymyr ; Badia, Adrià P. ; Mirza, Mehdi ; Graves, Alex ; Harley,
Tim ; Lillicrap, Timothy P. ; Silver, David ; Kavukcuoglu, Koray: Asynchro-
nous Methods for Deep Reinforcement Learning. S. 19, Google DeepMind & MILA,
2016. – URL https://arxiv.org/pdf/1602.01783v2

[21] Mnih, Volodymyr ; Kavukcuoglu, Koray ; Silver, David ; Graves, Alex ; An-

tonoglou, Ioannis ; Wierstra, Daan ; Riedmiller, Martin: Playing Atari
with Deep Reinforcement Learning. S. 9, DeepMind Technologies, 2013. – URL
https://arxiv.org/pdf/1312.5602

[22] Nielsen, Michael A.: Neural Networks and Deep Learning. Determination Press,
2015

[23] Norgren, Nils D. ; Svensson, Philip: Optimal Yahtzee. S. 45, KTH, 2013.
– URL https://www.diva-portal.org/smash/get/diva2:812165/

FULLTEXT01.pdf

[24] Perrotta, Paolo: Machine Learning für Softwareentwickler. dpunkt Verlag GmbH,
2020. – ISBN 978-3-86490-787-6

[25] Raschka, Sebastian ; Mirjalili, Vahid: Machine Learning mit Python und Kears,
Tensorflow 2 und Scikit-learn: Das umfassende Parxis-Handbuch für Data Science,
Deepl Learning und Prediction Analystics. 3. Auflage. mitp-Verlag, 2021. – ISBN
978-3-7475-0215-0

[26] Raschka, Sebastian ; Patterson, Joshua ; Nolet, Corey: Machine Learning in
Python: Main developments and technology trends in data science, machine learning,
and artificial intelligence. S. 48, URL https://arxiv.org/pdf/2002.04803,
2020

[27] Robbins, Herbert ; Monro, Sutton: A Stochastic Approximation Method. S. 8, The
Annals of Mathematical Statistics, Ann. Math. Statist. 22(3), 400-407, September,
1951. – URL https://doi.org/10.1214/aoms/1177729586

[28] Rosenblatt, Frank: The perceptron: A probabilistic model for information storage
and organization in the brain. S. 23, American Psychological Association, 1958. –
URL https://doi.org/10.1037/h0042519

[29] Ruder, Sebastian: An overview of gradient descent optimization algorithms. S. 14,
NUI Galway Aylien Ltd, 2017. – URL https://arxiv.org/pdf/1609.04747

107

Literaturverzeichnis

[30] Schulman, John ; Moritz, Philipp ; Levine, Sergey ; Jordan, Micheal I. ;
Abbeel, Pieter: High-Dimensional Continuous Control using Generalized Ad-
vantage Estimation. S. 14, conference paper at ICLR, 2016. – URL https:

//arxiv.org/pdf/1506.02438

[31] Schulman, John ; Wolski, Filip ; Dhariwal, Prafulla ; Radford, Alec ; Kli-

mov, Oleg: Proximal Policy Opimization Algorithms. S. 12, OpenAI, 2017. – URL
https://arxiv.org/pdf/1707.06347

[32] Silver, D. ; Schrittwieser, J. ; Simonyan, K. ; Antonoglou, I. ; Huang,
A. ; Guez, A. ; Hubert, T. ; Lai, L. Bakerand M. ; Bolton, A. ; Chen, Y. ;
Lillicrap, T. ; Hui, F. ; Sifre, L. ; Driessche, G. van den ; Graepel, T. ;
Hassabis, D.: Mastering the game Go without human knowledge. S. 42, Nature,
2017

[33] Sommer, Matthias: Resilient Traffic Management from reactive to proactive sys-
tems. S. 200, University of Augsburg, 2018

[34] Sutton, Richard S. ; Barto, Andrew G.: Reinforcement Learning An Introduction,
second edition. The MIT Press, 2018. – ISBN 9780262039246

[35] Vasseur, Philip: Using Deep Q-Learning to Compare Strategy Ladders of Yahtzee.
S. 12, URL https://scholar.google.com/scholar?hl=de&as_sdt=0%

2C5&q=Using+Deep+Q-Learning+to+Compare+Strategy+Ladders+of+

Yahtzee&btnG=, 2019

[36] Verhoeff, Tom: Optimal Solitaire Yahtzee Strategies. S. 18, Eindhoven University
of Technology, 1999-2000. – URL https://www-set.win.tue.nl/~wstomv/

misc/yahtzee/slides-2up.pdf

[37] Watkins, Christopher J. ; Dayan, Peter: Technical Note Q-Learning. S. 14, Kluwer
Academics Publishers, 1992. – URL https://link.springer.com/article/

10.1007/BF00992698

[38] Williams, Ronald J.: Simple Statistical Gradient-Following Algorithms for Connec-
tionist Reinforcement Learning. S. 28, Kluwer Academi, 1992. – URL http:

//link.springer.com/content/pdf/10.1007/BF00992696.pdf

[39] Zai, Alexander ; Brown, Brandon: Einstieg in Deep Reinforcement Learning KI-
Agenten mit Python und Pytorch programmieren. Hanser-Verlag, 2020. – URL
www.hanser-fachbuch.de. – ISBN 978-3-446-45900-7

108

Literaturverzeichnis

[40] Zeiler, Matthew D.: ADADELTA: AN ADAPTIVE LEARNING RATE ME-
THOD. S. 6, Google Inc. & New York University, 2012. – URL https://arxiv.

org/pdf/1212.5701

[41] Zhang, Jingzhao ; He, Tianxing ; Sra, Suvrit ; Jadbabaie, Ali: Why Gradi-
ent Clipping Accelerates Training: A Theoretical Justification for Adaptivity. S. 21,
Nassachusetts Institute of Technology, 2020. – URL https://arxiv.org/pdf/

1905.11881

109

A Anhang

Der Anhang zur Arbeit befindet sich auf der beigelegten CD und kann beim Erstgutachter
eingesehen werden. Auf dem zugehörigen Datenträger befinden sich folgende Anhänge:

• Die Custom Environment für das Würfelspiel

• Der Code des Q-Agenten

• Der Code des DQN-Agenten

• Die Ergebnisse der verschiedenen Untersuchungen beider Agenten

• Verschiedene trainierte Modelle der Agenten

110

Erklärung zur selbstständigen Bearbeitung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig
verfasst und nur die angegebenen Hilfsmittel benutzt habe. Wörtlich oder dem Sinn
nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich
gemacht.

Ort Datum Unterschrift im Original

111

