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In dieser Arbeit wird das Prinzip des Deep Reinforcement Learnings untersucht. Hierzu
soll am Beispiel eines Wiirfelspiels eine Lernumgebung aufgebaut und zwei verschiedene
Algorithmen implementiert und evaluiert werden. Am Ende soll ein Demonstrator fiir das
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1 Einleitung

Im Folgenden werden die Motivation und das Ziel der Arbeit beschrieben, um einen
Uberblick zugeben.

1.1 Motivation

Kiinstliche Intelligenz (KI) zahlt heute zu den einflussreichsten Technologien der digitalen
Transformation. Ihre Einsatzmoglichkeiten reichen von der Bild- und Spracherkennung
iiber automatisierte Entscheidungsprozesse bis hin zur Optimierung komplexer Systeme
in Wirtschaft und Gesellschaft. In jiingerer Vergangenheit konnte insbesondere der Be-
reich der industriellen Prozessoptimierung durch KI signifikante Fortschritte erzielen. So
gelang es beispielsweise Google, mithilfe intelligenter KI-Systeme den Energieverbrauch
seiner Rechenzentren um bis zu 40% zu reduzieren — durch eine automatisierte, adaptive
Steuerung der Kiihlsysteme auf Basis lernender Algorithmen [7]. Auch in Bereichen wie
der Verkehrssteuerung, der Logistik oder der dynamischen Preisgestaltung hat KI bereits

messbaren Einfluss auf Effizienz, Kosten und Nutzererfahrung. |1, 33, 18]

Ein besonders aktives Forschungsfeld innerhalb der KI ist das sogenannte Deep Reinfor-
cement Learning (DRL). DRL kombiniert das klassische Reinforcement Learning (RL),
bei dem Agenten durch Riickmeldung aus der Umgebung lernen, optimale Handlungen zu
wéhlen, mit Deep Learning (DL). Dieses ermoglicht es auch komplexe, hochdimensionale
Zustédnde effizient zu verarbeiten. Die Verbindung macht DRL besonders geeignet fiir
anspruchsvolle Aufgaben mit grofen Zustandsrdumen und unsicheren Handlungskonse-
quenzen. In der Praxis findet DRL heute Anwendung in so unterschiedlichen Feldern wie
dem autonomen Fahren, der Robotik oder dem algorithmischen Handel. Ein prominentes
Beispiel fiir den Erfolg dieser Methode ist der historische Sieg des DRL-Systems Alpha-
Go von Google DeepMind iiber den damaligen Weltmeister Lee Sedol im Jahr 2016. |2, 32]
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Angesichts der zunehmenden Bedeutung von DRL in Forschung und Praxis stellt sich
die Frage, wie diese Methode im Detail funktioniert, welche Konzepte ihr zugrunde lie-
gen und wie sich ihr Lernverhalten anhand praktischer Beispiele untersuchen lésst. Ziel
dieser Arbeit ist es daher, die Methodik des Deep Reinforcement Learning systematisch

zu analysieren und am Beispiel des Wiirfelspiels Yahtzee experimentell zu erproben.

Das Spiel Yahtzee bietet sich aus mehreren Griinden als geeignetes Testfeld fiir DRL-
Ansétze an. Zum einen sind die Spielregeln vergleichsweise einfach und gut formal be-
schreibbar. Zum anderen ldsst sich das Spiel in digitaler Form problemlos simulieren,
was eine effiziente Datengewinnung fiir das Training von Agenten ermoglicht. Beson-
ders relevant ist dariiber hinaus die Balance zwischen Zufall und Strategie, die das Spiel
auszeichnet: Wahrend Spiele wie Schach oder Go stark deterministisch sind, spielt beim
Wiirfeln das Zufallselement eine zentrale Rolle. Dies stellt spezielle Anforderungen an die
Modellierung des Lernverhaltens eines Agenten, insbesondere in Bezug auf Unsicherheit,

Exploration und langfristige Planung.

Im Rahmen dieser Arbeit soll zunéchst ein einfacher Reinforcement-Learning- Algorithmus
entwickelt und auf das Spiel Yahtzee angewendet werden. Anschlieftend wird dieser An-
satz um Deep Learning-Komponenten erweitert, um auch komplexere Zustandsraume
verarbeiten zu konnen. Ein besonderer Fokus liegt auf dem Vergleich zwischen kurzfristi-
gem und langfristigem Lernen sowie auf der Untersuchung des Einflusses der Zufallskom-
ponente auf das Lernverhalten. Frithere Studien [5, 14, 35] bieten dabei eine Grundlage,

auf die in der vorliegenden Arbeit aufgebaut wird.

Die Ergebnisse dieser Arbeit sollen sowohl einen praxisnahen Einstieg in die Thematik
des Deep Reinforcement Learnings ermoglichen als auch ein neuartiges, reproduzierbares

Beispiel fiir weiterfithrende Forschungsarbeiten in diesem Bereich liefern.

1.2 Ziel dieser Arbeit

Ziel dieser Arbeit ist die Untersuchung und Anwendung von Deep Reinforcement Lear-
ning (DRL) am Beispiel des Wiirfelspiels Yahtzee. Zu diesem Zweck soll ein DRL-
Algorithmus entwickelt, implementiert und hinsichtlich seiner Leistungsfahigkeit im Hin-
blick auf die Erreichung einer moglichst hohen Punktzahl evaluiert werden. Ein beson-

derer Fokus liegt auf der Analyse des Lernverhaltens auf dem Spielergebnis, was durch
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geeignete Visualisierungen veranschaulicht werden soll.

Dariiber hinaus wird angestrebt, einen interaktiven Demonstrator zu entwickeln, der
es ermoglicht, die untersuchten Algorithmen praktisch zu erproben und deren Eigen-
schaften nachvollziehbar zu machen. Ein weiterer Aspekt der Arbeit ist der Vergleich
der Leistungsfahigkeit der Algorithmen in Abhéngigkeit von der Trainingsdauer (kurzes
vs. langes Training). Zusétzlich wird die Moglichkeit untersucht, das Spiel mithilfe einer
Kamera und realen Wiirfeln zu realisieren, um eine Mensch-Maschine-Interaktion zu er-

moglichen und von der rein digitalen Zufallszahlengenerierung unabhéngig zu werden.

Ziel ist es, durch dieses praxisnahe Projekt vertiefte Erkenntnisse im Bereich des Deep
Reinforcement Learnings zu gewinnen und Erfahrungen im Umgang mit entsprechenden

Methoden und Technologien zu sammeln.



2 Grundlagen

Nachdem die Motivation und das Ziel der Arbeit erértert wurden, wird im Folgenden
die Grundlagen dieser Arbeit beschrieben. Hierzu wird auf alle notwendigen Grundlagen
fiir das Reinforcement Learning (RL) und das Deep Learning (DL) eingegangen und ein
paar fiir diese Arbeit interessante Algorithmen vorgestellt. Zuerst werden die Spielregeln

von Yahtzee erortert.

2.1 Spielregeln

Die Spielregeln von Yahtzee werden nach [10] und [9] beschrieben. Yahtzee ist fiir einen
oder mehrere Spieler. Es werden fiinf Wiirfel, ein Wiirfelbecher und eine oder mehrere
Punktetabellen benétigt. Die Punktetabelle ist in der Abbildung 2.1 dargestellt und setzt

sich aus einem oberen und unteren Tabellenteil zusammen.

Yahtzee ist ein rundenbasiertes Spiel und besteht aus 13 Runden. Ziel ist es in jeder

Runde die fiinf Wiirfel zu wiirfeln, um verschiedene Wiirfelkombinationen zu erzielen. In

Abbildung 2.1: Punktetabelle Yahtzee aus [10].
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jeder Runde stehen dem Spieler nach dem ersten Wurf bis zu zwei weitere Wiirfe zu. Nach
jedem Wurf kann die Person entscheiden, ob sie den Wurf in die Punktetabelle eintragen
oder noch einmal wiirfeln méchte. Die Person darf nach jedem Wurf entscheiden, welche
der fiinf Wiirfel sie noch einmal wiirfeln méchte. Die Wiirfel, die sie behalten md&chte,
legt sie beiseite. Spatestens nach dem dritten Wurf muss die Person sich fiir ein Feld auf
der Punktetabelle entscheiden, in der sie das Ergebnis eintrdgt und die entsprechenden
Punkte dafiir erhélt. Im oberen Tabellenteil werden immer Wiirfel mit der gleichen Au-
genzahl zusammengezahlt und die Summe in das entsprechende Feld eingetragen. Des
Weiteren wird Einem ein Bonus von 35 Punkten gewiahrt, wenn die gesamte Punktzahl
fiir den oberen Tabellenteil mindestens 63 Punkte betrdgt. Im unteren Tabellenteil sind
nach Abbildung 2.1 verschiedene Kombinationen méglich. Bei einem Dreierpasch werden
mindestens drei Wiirfel mit der gleichen Augenzahl ben6tigt und beim Viererpasch ent-
sprechend vier. Eine Eintragung in das Feld Full House ist moglich, wenn drei Wiirfel die
gleiche Zahl und zwei Wiirfel eine gleiche andere Zahl zeigen. Die kleine Strafse setzt sich
aus vier aufeinander folgende Zahlen zusammen und die grofse Strafte aus fiinf. Bei einem
Yahtzee miissen alle fiinf Wiirfel dieselbe Zahl aufweisen. Zum Schluss steht jedem eine
Chance zur Verfiigung, in der die Summe der fiinf Wiirfel eingetragen werden kann. In
dieser Arbeit sollen die Regeln bzgl. der Anwendung des Jokers und des Yahtzee Bonus

nicht weiter berticksichtigt werden.

Gewonnen hat der Spieler, der zum Schluss die meisten Punkte besitzt. Deshalb ist neben
dem Wiirfelgliick eine entsprechende Strategie nicht unbedeutend, um die Gesamtpunkt-

zahl zu maximieren.

2.2 Reinforcement Learning

Das Reinforcement Learning (RL, dt. das bestdrkende Lernen) gehort zu den drei grofen
Bereichen des Machine Learnings (ML). Die beiden anderen Bereiche sind das iiberwachte
und uniiberwachte Lernen. Das Ziel von RL ist es mit der Zeit zu erlernen optimale Ent-
scheidungen zu treffen [16]. Im Gegensatz zum iiberwachten oder uniiberwachten Lernen,
wo Datensétze fiir das Training eines Algorithmus notwendig sind, befindet sich beim be-
stdrkenden Lernen der Algorithmus oder auch der Agent in einer definierten Umgebung.
In dieser Umgebung kann der Agent festgelegte Aktionen ausfithren. Das Ausfithren die-
ser Aktionen fithrt zu einer Verédnderung des Ursprungszustands innerhalb der Umgebung

und gibt dem Agent eine unmittelbare Belohnung. Die Belohnung kann positiv als auch
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negativ sein. Die Verdnderung des Zustands innerhalb der Umgebung bewertet der Agent
neu und fiihrt eine neue Aktion aus. Hier gilt es zu beachten, dass immer nur eine Aktion
zu einem bestimmten Zeitpunkt ausgefiihrt werden kann, also ein sequenzieller Ablauf
stattfindet. Der Agent besitzt keinerlei Vorwissen und muss zu Beginn die Umgebung
erst einmal erkunden und Erfahrung sammeln. Ist der Erkundungsprozess abgeschlossen,
kann der Agent die Umgebung zu seinen Gunsten nutzen. Interessant ist, dass Entschei-
dungen, die der Agent am Anfang trifft, die Belohnung auch zu einem spéteren Zeit
Punkt beeinflussen kann und somit sich auf die maximal mdgliche Belohnung auswirkt.
Ein bekanntes Beispiel aus der Praxis ist unter anderem das Trainieren von Hunden, um
das gewlinschte Verhalten zu bestérken oder schlechtes Verhalten zu bestrafen. Ein weite-
res Beispiel ist das Entkommen einer Maus aus dem Labyrinth, die mit einem Stiick Kése

belohnt wird. Im Folgenden sind die wichtigsten Begriffe noch einmal zusammengefasst:
[34, 7, 16]

e Der Agent (engl. agent) trifft die Entscheidung, welche Aktion als Néchstes aus-

gefiihrt werden soll.

e Die Umgebung (engl. environment) ist der Raum, in dem der Agent interagieren

darf, um die Aufgabe oder das Problem zu lésen.

e Der Zustand (engl. state) ist die Position des Agenten in der Umgebung und

spiegelt die momentan beobachtete Situation wider.

e Die Aktion (engl. action) ist eine Handlung, die ausgefiihrt wird und zu einer

Zustandsverdanderung innerhalb der Umgebung fiihrt.

e Die Belohnung (engl. reward) ist eine Zahl, welche die Belohnung oder die Be-
strafung (bei negativem Vorzeichen) fiir die ausgefiihrte Aktion symbolisiert, die
der Agent erhéalt. Die Belohnung kann je nach Aufgabe regelméfig oder einmalig

vergeben werden.
Die Abbildung 2.2 veranschaulicht das Prinzip des Reinforcement Learnings.
2.2.1 Markov-Entscheidungsprozess

Markov-Entscheidungsprozesse (engl. Markov decision process; MDP) bilden die Grund-
lage jeder Reinforcement Learning Aufgabe. Der MDP dient der Modellierung, wofiir
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Abbildung 2.2: Prinzip des Reinforcement Learnings aus [7].

das Problem oder die Aufgabe die Markov-Eigenschaft besitzen muss. Die Markov-
Eigenschaft beschreibt, dass die beste Aktion fiir einen bestimmten Zustand ohne di-
rekten Bezug auf andere vorherige Zustdnde gewidhlt werden kann. Der Agent befindet
sich in einem Zustand und gibt die erwartete Belohnung fiir die entsprechende Aktion
zuriick. Fir den MDP gilt somit, dass in einem bestimmten Zustand die beste Aktion
gewahlt werden kann, weil der Zustand alle Informationen aus der Vergangenheit besitzt,
die einen Unterschied auf zukiinftige Belohnungen haben. Der Agent kann somit durch

die Auswahl der besten Aktion seine Belohnung maximieren. |34, 39|

Die Markov-Kette (.S, P) setzt sich aus allen Zustdnden S zusammen, wobei die Wechsel
zwischen den Zustianden durch die Ubergangswahrscheinlichkeiten P definiert sind. Wird
die Markov-Kette um die Belohnung R erweitert, ist das der Markov-Belohnungsprozess
(S, P,R). Wird wiederum diesem Prozess die Aktion A hinzugefiigt, entspricht dies
dem Markov-Entscheidungsprozess (S, P, R, A). Der Markov-Belohnungsprozess und die
Markov-Kette konnen die Umgebung nicht beeinflussen, sondern nur beobachten. Erst
durch das Hinzufiigen der Aktion kann das Modell beeinflusst werden und der Agent
kann mit dem Modell interagieren. Des Weiteren gilt es zu beachten, dass nicht fiir jedes
Problem die Ubergangswahrscheinlichkeiten einfach oder iiberhaupt zu ermitteln sind.
Deshalb kann zwischen zwei Kategorien unterschieden werden - dem modellbasierten
und dem modellfreien Lernen. Beim modellbasierten Lernen sind die Gesetzméafigkei-
ten der Umgebung bekannt und der Agent versucht daraus die bestmdoglichen Handlun-
gen abzuleiten. Beim modellfreien Lernen ist kein Modell notwendig und dem Agenten

sind die Gesetzmaéfigkeiten der Umgebung nicht bekannt. Dadurch entfallt die komplexe
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Modellierung der Umgebung. Zu beriicksichtigen gilt auch, dass es sich bei Markov-
Entscheidungsprozesse oft um endliche (engl. finite) Zustandsrdume handelt. Endliche
Zustandsraume besitzen einen terminierenden, finalen Zustand. Weitere Abbruchbedin-

gungen sind moglich. [7, 16]

2.2.2 Policy

Eine Policy oder auch Strategie ist eine Funktion m(als), die einen Zustand auf eine
Wahrscheinlichkeitsverteilung {iber die Menge der méoglichen Aktionen in diesem Zu-
stand abbildet [39, 16|. Eine andere Formulierung ist, dass die Wahrscheinlichkeit jeder
moglichen Aktion in der Verteilung gleich der Wahrscheinlichkeit ist, dass die gewahlte
Aktion die grofite Belohnung zuriickgibt. Das bedeutet, dass eine Aktion aus einer Men-
ge von Aktionen a € A abhédngig vom Zustand s die Wahrscheinlichkeit mit der groften
Belohnung G verfolgt. Zum Beispiel steht der Agent auf einer Plattform und vor ihm
sowie links und rechts befindet sich ein sehr tiefer Abgrund. Er hat vier Richtungen (vor-
wérts, nach links, nach rechts und riickwérts), in denen er sich bewegen kann. Die Aktion
Riickwartsbewegen besitzt die Wahrscheinlichkeit eins, wohingegen die anderen Drei null
sind. Demzufolge ist das Ziel die Strategie zu optimieren, sodass auf lange Sicht die Be-
lohnung maximal wird. Um festzustellen, wie zielfiihrend eine Aktion a oder Zustand s
ist, wird eine Werte-Funktion verwendet. Der zu erwartende Gewinn G dient hierzu als
Vergleichswert. [34]

Policy- und Wert-Funktionen

Die Werte-Funktionen werden unterschieden in die Zustandswertfunktion (engl. State-
Value-Function) und die Aktionswertfunktion (engl. Action-Value-Function). Die Zu-
standswertfunktion eines Zustandes s, die die Policy 7 verfolgt, wird als v, (s) bezeichnet
und ist die erwartete Belohnung, wenn im Zustand s begonnen und danach 7 weiterver-
folgt wird. Fiir MDPs wird v,(s) formal wie folgt definiert: [34]

'UW(S) = Eﬂ[Gt | St = S] = Eﬂ |:Z”yth+k+1
k=0

S = s], Vs e S (2.1)

Ex[] bezeichnet den Erwartungswert einer Zufallsvariablen, wenn der Agent die Policy 7
verfolgt und ¢ ein beliebiger Zeitschritt ist. v, ist die Zustandswertfunktion fiir die Policy

7. Ahnlich wird die Aktionswertfunktion ¢, fiir die Policy 7 definiert. Sie beschreibt den



2 Grundlagen

Erwartungswert den der Agent erhélt, wenn dieser beginnend vom Zustand s die Aktion

a ausfithrt und anschliefiend die Policy 7 verfolgt. [34]
qr(s,a) = Ex[G| St = s, Ay = al

[o¢]
= EW[Z%RHM
k=0

St:s,At:a],VSES,VaEA (2.2)
Die Wert-Funkionen v, und ¢, kénnen durch Erfahrung geschétzt werden [34].

Optimale Policy- und Werte-Funktion

Es ist nach wie vor das Ziel, dass der Agent eine Policy findet, die am meisten Beloh-
nungen einbringt. Ist eine Policy 7 gefunden, wo der Gewinn maximal ist, wird diese als
optimale Policy bezeichnet. Hierfiir reicht es aus, wenn der zu erwartende Gewinn fiir
alle moglichen Zustdnde mindestens genauso gut oder besser ist, wie von jeder anderen
Policy #'. Demzufolge gilt fiir die Zustandswertfunktionen v, (s) und v,/ (s) sowie die

Aktionswertfunktionen ¢, (s,a) und g/ (s,a) [34]:

>, wenn v (s) > v(s), Vs € S (2.3)

7> 7', wenn q(s,a) > ¢ (s,a), Vs € Sund Va € A (2.4)

Die optimale Policy wird als 7, bezeichnet, was dquivalent fiir die optimale Zustands-
wertfunktion v, sowie die optimale Aktionswertfunktion ¢, gilt. Diese geben immer den
maximalen Erwartungswert bzw. die maximale Belohnung zuriick und werden wie folgt

definiert [34]:

vi(s) = max vr(s), Vs € § (2.5)

g«(s,a) = max q(s,a), Vs € Sund Va € A (2.6)

Zum Schluss soll noch der erwartete Gewinn eines Zustandsaktionspaares (s, a) fiir das

Ausfithren einer Aktion a im Zustand s und dem anschliefsenden Verfolgen der optimalen
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Policy in Abhéngigkeit von v, beschrieben werden.
¢«(8,a) = E[Ri+1 + Y4 (Se41) ST = s, At = q] (2.7)

Die Grundlage dafiir ermoglicht die Optimalitétsgleichung von Bellman, welche in Sutton

[34] nachgelesen werden kann.

Epsilon-Greedy-Policy

Eine optimale Policy gibt immer den bestmoglichen Ertrag aus dem aktuellen Zustand
zuriick. Bis eine bessere Strategie gefunden wird, kann der Agent mit einer optimalen
Policy die Umgebung ausbeuten. Demzufolge hat der Agent schon Erfahrung in der Um-
gebung gesammelt oder ihm wurde diese von Anfang an mitgegeben. Im letzteren Fall hat
der Agent nicht selber gelernt, sondern befolgt eine vorgegebene Handlungsdirektive. In
diesem Fall wiirde der Agent immer wieder gleich handeln und keine neuen Erfahrungen
machen. Die Umgebung wird somit von dem Agenten nicht weiter erkundet. Das Ziel ist
jedoch, dass der Agent selbstdndig lernt, also die Umgebung erkundet und ausbeutet.
Dariiber hinaus ist es sinnvoll, wenn der Agent auf lange Sicht gelegentlich etwas Neues
in der Umgebung ausprobiert und somit die Erkundung nicht génzlich einstellt. So kann
gewéahrleistet werden, dass der Agent auch zu einem spéteren Zeitpunkt neue Erkennt-
nisse gewinnen und die Policy optimieren kann. Wie schon Einstein formulierte, kénnen

keine neuen Erkenntnisse erlangt werden ohne neue Wege auszuprobieren.

"Die Definition von Wahnsinn ist: immer wieder das Gleiche zu tun und

andere Ergebnisse zu erwarten.” Appert Einstein

Eine der bekanntesten Policies, die die Erkundung und Ausbeutung miteinander vereint,
ist die e-Greedy-Policy. Bei dieser Strategie wird die Erkundungsrate (Exploration Rate)
€ eingefiihrt, die sich im Bereich von null bis eins bewegt. Die e-Greedy-Strategie wahlt
mit einer Wahrscheinlichkeit von 1 — € die Aktion, die die hochste bisher erlernte Be-
lohnung verspricht. Eine andere Aktion wird zuféllig mit einer Wahrscheinlichkeit von e
ausgewahlt, um die Erkundung zu fordern. Ein e-Wert von Null bedeutet, dass nur auf
das bereits erlernte Wissen zuriickgegriffen wird (Ausbeutung der Umgebung), wihrend
bei einem Wert von Eins ausschliefslich zuféllige Aktionen zur Erkundung durchgefiihrt
werden. Die Entscheidung, welche Aktion gewéhlt wird, basiert auf einer zufillig gene-

rierten Zahl zwischen null und eins. Ist diese Zahl kleiner als e, wird eine zuféllige Aktion

10
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durchgefiihrt, andernfalls wird die Aktion mit der héchsten erwarteten Belohnung ausge-
wahlt. Zu Beginn des Trainings wird der e-Wert oft hoch angesetzt, um eine umfassende
Exploration zu erméglichen. Mit fortschreitendem Training wird der Wert schrittweise
reduziert, um die Strategie zu verfeinern und eine Konvergenz zu einer optimalen Lésung

basierend auf den gesammelten Erfahrungen zu erreichen. [34, 39, 7]

2.3 Deep Learning

Bevor auf die verschiedenen Algorithmen eingegangen wird, soll zuerst das Deep Learning
vorgestellt werden. Dies ist ein weiteres Teilgebiet des Machine Learnings. Das Reinforce-
ment Learning in Kombination mit Deep Learning ermoglicht noch méchtigere Losungs-
verfahren, weil die Ergebnisse geschitzt werden konnen. Dadurch wird die urspriingliche
Q-Tabelle, die die Ergebnisse bisher gespeichert hat, obsolet. Das Deep Learning kann im
verallgemeinerten Sinne als die Nachbildung der Funktionsweise eines Gehirns beschrie-
ben werden. Dazu werden neuronale Netze (NN) oder auch kiinstliche neuronale Netze
(KNN) konstruiert bzw. implementiert. Diese neuronalen Netze setzen sich wiederum
aus verschiedenen Schichten zusammen. In diesen Schichten befinden sich die kleinsten

Einheiten eines neuronalen Netzes, die Knoten oder Neuronen genannt werden. [24|

2.3.1 Das Perzeptron

Das Perzeptron beruht auf der Arbeit [28] von Frank Rosenblatt. Es besitzt Eingabe-
variablen von x1 bis z,, (siehe hellgrau dargestellt in 2.3). Des Weiteren wird der Bias
b definiert. Dieser gehort zu den Eingangsvariablen, weshalb er auch aufgrund der Be-
ziehung z¢o = b als xy bezeichnet werden kann (siehe dunkelgrau dargestellt in 2.3).
Anschlieffend wird die gewichtete Summe z der Eingabevariablen gebildet und an eine
Aktivierungsfunktion iibergeben. In der Abbildung 2.3 ist die gewichteten Summe mit
einem gelblich gefarbten Rechteck und die Aktivierungsfunktion o(z) mit einem hellblau
gefarbten Rechteck symbolisiert. Das Ergebnis oder die Ausgabe nach der Aktivierungs-

funktion ist g.

z = ij:nj +b (2.8)
j=o()= 1 — (2.9

11
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Abbildung 2.3: Darstellung eines Perzeptrons nach Perrotta [24].

Die hier verwendete Aktivierungsfunktion o(z) ist eine Sigmoidfunktion. Die urspriingli-
che Form des Perzeptrons kann jedoch nur entweder eine Null oder eine Eins zuriickgeben.
Sie besitzt also als Aktivierungsfunktion eine Sprungfunktion, die iiber einen Schwellen-

wert (Bias) b zwischen eins und null unterscheidet. [22, 24]

0 ,wenn z=) .w;jz; <b
§= 225 i) (2.10)
1 ,wenn z =) ;w;z; >b

Bei Betrachtung der zuvor beschriebenen Gleichungen ohne o(z) wird ersichtlich, dass je
nach Anderung eines Gewichts oder Bias das Perzeptron andere Ergebnisse als mit den
zuvor eingestellten Gréfsen produzieren kann. Die Aktivierungsfunktion kann je nach Be-
darf und abhéngig von der Aufgabenstellung angepasst werden. Dadurch ist es moglich
mehr als nur zwischen null und eins zu unterscheiden. Kleine Anderungen in den Gewich-
ten oder dem Bias verursachen nicht allzu groffe Anderungen am Ausgang. Dies bringt
jedoch auch neue Herausforderungen mit sich. Dazu betrachten wir die oben genannte
Aktivierungsfunktion o(z). Diese Funktion eréffnet den Wertebereich zwischen null und
eins. Damit jedoch zum Beispiel die Funktion gegen null tangiert, muss e — oo ver-

laufen und fiir eins muss e™* &~ 0 sein. [22, 24|
Bisher wurde nur ein einzelner Knoten oder ein einzelnes Neuron betrachtet. Die Stér-

ke des Perzeptrons liegt darin, dass es parallelisiert und serialisiert werden kann. Im

Ergebnis ldsst sich damit ein neuronales Netz aufspannen.

12
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Abbildung 2.4: Aufbau eines tiefen neuronalen Feedforward Netzes [22].

2.3.2 Neuronales Netz

Ein neuronales Netz setzt sich aus mehreren Schichten zusammen. Eine Schicht kann
wiederum mehrere Neuronen besitzen. Es besteht aus einer Eingabeschicht (input layer),
einer Ausgabeschicht (output layer) und mindestens einer verborgenen Schicht (hidden
layer). Wenn ein solches neuronales Netz nur eine verborgene Schicht besitzt, wird es
auch als flaches Netz bezeichnet. Die Abbildung 2.4 veranschaulicht dies. Das Deep in
Deep Learning steht dafiir, dass das neuronale Netz mehr als eine verborgene Schicht
besitzt. [22]

Feedforward Netze

Es gibt verschiedene Arten, wie ein neuronales Netz aufgebaut sein kann. Die einfachste
Form sind die Feedforward Netze (siche Abbildung 2.4). Feedforward Netze sind Netze,
bei denen der Ausgang der einen Schicht als Eingang fiir die néchste Schicht verwendet
wird. Sie geben die Information immer nur in Vorwértsrichtung weiter. Das bedeutet,
dass es keine Schleifen in dem Netz gibt. Neuronale Netze, die Riickkopplungsschleifen

enthalten, werden rekurrente Netze genannt. [22]

13
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Rekurrente Netze

Das Konzept hinter rekurrente Netze ist, dass Neuronen fiir eine bestimmte Zeitspanne
immer wieder aktiviert werden, bevor sie in einen inaktiven Zustand iibergehen. Diese
wiederholte Aktivierung kann andere Neuronen anregen, die nach einer kurzen Verzo-
gerung ebenfalls erneut aktiviert werden. Auf diese Weise entsteht eine Kaskade von
Neuronen, die iiber einen ldngeren Zeitraum hinweg immer wieder aktiviert werden. Das
Ziel ist es, die Funktionsweise des menschlichen Gehirns noch realistischer nachzubilden,
da auch dort Informationen nicht nur direkt von einem Eingang zu einem Ausgang wei-
tergegeben werden. Aus diesem Grund eignet sich das rekurrente neuronale Netzwerk
besonders gut flir Aufgaben, die die Analyse von Daten oder Prozessen umfassen, die
sich im Laufe der Zeit verdndern. Das einfachste Beispiel dafiir ist, wenn der Ausgang

eines Neurons wieder auf einen seiner Eingénge gelegt wird. [22]

Faltungsnetze

Zum Schluss sollen noch die Faltungsnetze (Convolutional Neural Network, CNN) er-
wihnt werden. Sie kommen bei der Bild- und Videoanalyse zum Einsatz. Im Gegensatz
zu Feedforward Netzen nutzt das Faltungsnetz keine vollstéandig verbundenen Schichten.
Demzufolge steht nicht jedes Neuron einer Schicht in Verbindung mit jedem Neuron in
der néchsten Schicht. Faltungsnetze konnen dadurch schneller trainiert werden und er-
moglichen eine tiefere Netzwerkstruktur. Die Funktionsweise orientiert sich dabei sehr
stark an die der Sehrinde des menschlichen Gehirns fiir die Erkennung von Objekten
[25]. Dafiir werden die drei Konzepte lokales Rezeptivfeld, geteilte Gewichte und Pooling
verwendet. Zum Beispiel bei der Analyse eines Bildes von 100x100 Pixeln wird mit einem
kleineren Fenster (lokales Rezeptivfeld) der Grofe 5x5 Pixel Stiick fiir Stiick betrachtet
und je mit einem verborgenem Neuron iibergeben. Das Pixelfenster kann auch als Filter
der Grofse 5x5 betrachtet werden, welches Pixel fiir Pixel iiber das Bild geschoben wird
und anschliefflend mit konstanten Gewichten (geteilte Gewichte) multipliziert wird. Ge-
teilte Gewichte bedeuten in diesem Fall, dass im Gegensatz zum Feedforward Netz im
Faltungsnetz nur eine Teilmenge an konstanten Gewichten benétigt wird. Das Pooling
trigt dazu bei eine gewisse lokale Invarianz zu gewéhrleisten, was bedeutet, dass ge-
ringe Veranderungen in der unmittelbaren Umgebung eines Bildbereichs nicht zu einem

verdnderten Ergebnis fiihren. [22]

14
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Abbildung 2.5: Gradientenverfahren [8].

2.3.3 Gradientenverfahren

Eine Moglichkeit, wie neuronale Netze lernen und ihre Ergebnisse optimieren, bietet das
Gradientenverfahren oder Verfahren des steilsten Abstiegs. Dieses Verfahren lésst sich
am besten an einem Beispiel erklaren. Eine Bergsteigerin, die sich gerade an einem Hang
befindet, versucht ins Tal zu ihrem Basislager zu kommen. In diesem Tal befinden sich
keine Klippen oder Locher. Der Weg ist also stetig. Erschwerend kommt hinzu, dass
es schon so dunkel ist, dass sie nur den Boden unmittelbar um ihre Fiiffe sehen kann.
Sie nimmt dafiir den Weg des steilsten Abstiegs. Auf kurz oder lang fithrt sie so der
Weg in ihr Lager. Betrachten wir den Querschnitt dieses Tals, ldsst sich der Verlauf
als Normalparabel beschreiben, bei welchem sich das Basislager im globalen Tiefpunkt
befindet. Die Normalparabel wird auch als Kosten- oder Verlustfunktion bezeichnet. Um
die Steigung in dem Punkt zu bestimmen, an dem sich die Wanderin befindet, muss der
Gradient gebildet werden. Dieser zeigt jedoch in die entgegengesetzte Richtung, in die
die Wanderin gehen muss. Das Ziel des Trainings ist es die Kostenfunktion C(w,b) zu
minimieren. Im Optimalfall stimmt am Ende des Trainings das tatséchliche Ergebnis mit
dem geschétzten Ergebnis iiberein. Dann sind die besten Gewichte w und der Bias b
gefunden worden. Es ist zu beriicksichtigen, dass eine Anpassung der Schrittweite erfolgt

je tiefer wir ins Tal wandern. Sie wird also kleiner, weil die Steigung abnimmt (siche

Abbildung 2.5). |22, 24|
0C (w,b)
Ve = (ac%,m) (2.11)

ob
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(a) Gradient mit zu kleiner Lernrate [8]. (b) Gradient mit zu groRer Lernrate [8].

Eine Aktualisierung der Parameter w und b kann wie folgt aussehen:

b—)b’:b—a-M:b—kAb (2.12)
b

w—>w':w—a~7ac(w’b) =w+ Aw (2.13)
ow

« ist die Lernrate, welche die Schrittgrofie beeinflusst. Fallt sie zu grofs aus, kann das Sys-
tem oszillieren, d.h. es springt iiber das Tal. Féllt sie zu klein aus, kann die Schrittweite
zu kurz sein und der Algorithmus muss viele Iterationen durchfiihren, bis er konvergiert.
Die Abbildung 2.3.3 (a) veranschaulicht das Gradientenverfahren bei zu kleiner Lernrate
und die Abbildung 2.3.3 (b) bei zu grofer Lernrate. [8, 24|

Eine weitere Herausforderung gibt es bei Verlustfunktionen mit lokalem Minimum oder
Sattelpunkten, z. B. bei einem Plateau. Die Abbildung 2.6 veranschaulicht dies. Hier
besteht die Gefahr, dass das globale Minimum nicht erreicht wird. Es gilt zu beriicksich-
tigen, dass bei einer dreidimensionalen Betrachtung der Verlauf ins Tal zickzackformig
und nicht direkt, wie im Diagrammen dargestellt ist (siche Abbildung 2.5). Perrotta fiigt
dem Gradienten ein Momentum hinzu. Dieses Momentum sorgt fiir mehr Dynamik beim
Lernen. Dadurch wird der Pfad glatter, den die Bergsteigerin nimmt. Gleichzeitig wird

das Training beschleunigt und es ist sogar moglich lokale Minima zu tiberwinden. |8, 24|
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Abbildung 2.6: Fallstricke des Gradienten |[8].

Mini-Batch-Gradientenverfahren

Das Hinzufiigen des Momentums ist eine Mdéglichkeit das Training zu beschleunigen. Ei-
ne Weitere ist das Mini-Batch-Gradientenverfahren. Die Vorteile dieses Verfahrens sind
im Allgemeinen, dass es schneller konvergiert und weniger Speicherplatz bendtigt. Es
besteht sogar die Moglichkeit, dass es einen geringeren Verlust findet, weil lokale Minima
iiberwunden werden. Im zuvor beschriebenen Gradientenverfahren wurden alle Trainings-
daten als ein Batch gesammelt und fiir das Training des neuronalen Netzes verwendet.
Wie der Name schon vermuten lésst, wird die Menge der Batches verkleinert und kleinere
Teilmengen m (Mini-)Batches dem neuronalen Netz hinzugefiigt. Anschliefend werden
zufillige Punkte x berechnet. Dadurch wird der durchschnittliche Gradient geschétzt
und nur eine kleine Gradientenmenge VC, berechnet. So kann der Gesamtgradient VC

angendhert werden. |22, 24|

1 m
VO~ — Z; VC,, (2.14)
]:

2.3.4 Aktivierungsfunktionen
Anhand der Abbildung 2.3 lésst sich eine Linearitdt erkennen. Wird dies zu einem Netz

von Neuronen aufgespannt, bleibt die Linearitét bestehen und die Summe aller Gewichte

kann als Matrix W dargestellt werden. Demzufolge werden auch die Eingabeschicht x
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und die Ausgabeschicht y zu Vektoren. Die folgende Formel veranschaulicht dies:
y=W.x (2.15)

Die Aktivierungsfunktion bringt die notwendige Nichtlinearitét mit in die Gleichung ein,
die der Dreh- und Angelpunkt eines neuronalen Netzes sind. Normalerweise wird in den
verborgenen Schichten nur eine Art von Aktivierungsfunktion verwendet, wobei es kei-
nen Wechsel innerhalb dieser Schichten gibt. Fiir die Ausgabe hingegen sollte die Akti-
vierungsfunktion je nach Aufgabe angepasst werden und kann sich von derjenigen der

verborgenen Schichten unterscheiden. [24]

Sigmoid

Die Sigmoid-Funktion wurde vorher schon einmal in Kapitel 2.3.1 erwdhnt. Im Gegen-
satz zur Stufenfunktion kann sie abgeleitet werden. Demzufolge konnen Gradienten gebil-
det und das zuvor beschriebene Gradientenverfahren angewendet werden. Die Sigmoid-
Funktion kommt in der Regel nicht in den verborgenen Schichten zum Einsatz, sondern
findet hauptséchlich in der Ausgabeschicht Anwendung. Sie ist besonders vorteilhaft fiir
Aufgaben, bei denen Wahrscheinlichkeiten vorhergesagt werden, da ihr Wertebereich zwi-

schen null und eins liegt.

o(z) = (2.16)

Wird o(z) nach z abgeleitet, ergibt sich

0o (z)
0z

=0(2)(1 —o(2)). (2.17)

Neben den zuvor genannten Vorteilen ergeben sich aus der Sigmoid-Funktion auch neue
Herausforderungen wie zum Beispiel, dass z gegen —oo oder +oo strebt. In diesem Fél-
len treten entweder tote Neuronen oder verschwindende Gradienten auf. Tote Neuronen
entstehen, wenn der Gradient gegen null strebt. Dies fithrt zu einer Verlangsamung oder
Stillstand beim Lernen. Bei verschwindenden Gradienten dagegen kann durch die Steige-
rung der Anzahl der Schichten der Gesamtgradient abnehmen und ebenfalls null werden,
weil die Steigerung der Anzahl der Schichten ab einem bestimmten Punkt nichts mehr
bringt. Neben dem verschwindenden Gradient, bei dem der Gesamtgradient null wird,

kann der Gesamtgradient auch explodieren. Dies bedeutet, dass der Absolutwert des Ge-
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samtgradienten zunimmt. Explodierende Gradienten konnen auch tote Neuronen oder

Uberliufe verursachen. [24]

Softmax

Ahnlich wie die Sigmoid-Funktion gibt es auch die Softmax-Funktion einen Vektor zu-
riick, dessen Werte im Bereich zwischen null und eins liegen. Zusétzlich ist die Summe
aller Ausgaben immer gleich eins. Diese Eigenschaft ist besonders niitzlich, da wir die
Werte als Wahrscheinlichkeiten interpretieren kénnen, wenn sie sich zu eins addieren.
Dies entspricht einer Normierung. Die Softmax-Funktion wird meist als letzte Aktivie-
rungsfunktion in der Ausgabeschicht des neuronalen Netzes eingesetzt, wenn mehr als

zwel Klassen zu unterscheiden sind. |24, 25|

e
e
Weitere Aktivierungsfunktionen neben der Sigmoid- und der Softmax-Funktion sind die
Tangens hyperbolicus- [8, 25|, die ReLU- [8, 24] und die Leaky ReLU-Funktion [8, 24].

softmax(z;) = (2.18)

2.3.5 Backpropagation

Eine der grofiten Herausforderung beim Lernen ist es den Gradienten zu bestimmen.
In der Praxis konnen neuronale Netze, bestehend aus vielen miteinander verkniipften
Schichten und Gewichtsmatrizen, dufserst komplex sein. Bei einem so grofsen Netzwerk
wird es schwierig, die Verlustfunktion zu definieren sowie ihre Ableitung zu berechnen.
Das Ziel ist es, den Verlustgradienten fiir beliebige neuronale Netze zu bestimmen. Die
Ableitungen sind nur fiir die einfachsten und weniger leistungsfahigen Netze berechenbar.
Hier kommt die Backpropagation ins Spiel. Sie nutzt im Kern die Kettenregel (siehe
Formel 2.19), um verschachtelte Funktionen effizient abzuleiten und das Problem zu
l6sen. [24]

d _df ~dg

wf @)= (2.19)

Der Algorithmus fiithrt zundchst jeden Trainingsdatenpunkt durch das Netzwerk und be-
rechnet die Ausgabe jedes Neurons in den verschiedenen Schichten. Dies entspricht einem

Vorwértsdurchlauf wie bei der Vorhersage. Danach wird der Fehler der Netzwerk-Ausgabe
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gemessen. Dies entspricht der Differenz zwischen der gewiinschten und der tatsdchlichen
Ausgabe. Fiir jedes Neuron in der letzten verborgenen Schicht wird ermittelt, wie stark
es zum Fehler beigetragen hat. Anschlieffend wird zuriickverfolgt, welcher Anteil des
Fehlerbeitrags auf jedes Neuron in der vorherigen Schicht entféllt. Dieser Prozess wird
fortgesetzt, bis die Eingabeschicht erreicht ist. Im Riickwartsdurchlauf wird der Fehler-
gradient fiir alle Gewichte im Netzwerk berechnet (daher der Begriff Backpropagation).
Der letzte Schritt des Backpropagation-Algorithmus besteht darin mittels Gradienten-
verfahren die Gewichte im Netzwerk basierend auf dem zuvor berechneten Gradienten zu
aktualisieren. Kurz gesagt: bei jedem Trainingsdatenpunkt macht der Backpropagation-
Algorithmus zunéchst eine Vorhersage (Vorwértsdurchlauf), berechnet den Fehler, ermit-
telt dann riickwérts den Fehlerbeitrag jeder Verbindung (Riickwértsdurchlauf) und passt
schliefslich die Gewichte an, um den Fehler zu verringern. Der letztes Schritt findet im
Gradientenverfahren statt. [8, 25, 22|

2.3.6 Gewichtsinitialisierung

Die Initialisierung der Gewichte hat einen ein Einfluss auf die Lerndynamik des neuro-
nalen Netzes. Je nachdem wie es initialisiert wird, konnen zum Beispiel verschwindende
oder explodierende Gradienten verstidrkt, minimiert oder wenn nicht sogar verhindert
werden. Werden Sattigungen und somit tote Neuronen vermieden, bleibt das neurona-
le Netz leistungsfidhig. Hierzu werden im Folgenden mogliche Gewichtsinitialisierungen
und ihre Auswirkungen auf die Lerndynamik und demzufolge auf das neuronale Netz
betrachtet. [24]

Symmetrische Initialisierung

Perrotta erklart in seinem Buch [24], dass es niemals gut ist alle Gewichte mit dem glei-
chen Wert, d.h. weder mit null, eins oder einer anderen Konstante, zu initialisieren. Bei
identischen werten lernen alle Gewichte eines Neurons in der Backpropagation gleich und
werden immer identische Werte behalten. Die Verlustfunktion beginnt beim Training ei-
nes neuronalen Netzes entweder gegen null zu sinken oder zu divergieren. Das Netzwerk
liefert infolgedessen keine sinnvollen Ergebnisse mehr. Diese Symmetrie kann aufgebro-
chen werden, indem es mit zuféilligen Werten initialisiert wird. Die zuféllige Initialisierung
kann zum Beispiel nach der Normalverteilung passieren. Es gilt zu beriicksichtigen, dass

die Gewichte ebenfalls nicht mit groflen Werten initialisiert werden diirfen, damit die
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Neuronen nicht in die Séttigung kommen. Ob dies grofse negative oder positive Wer-
te umfasst, ist flir die Sattigung unerheblich. Zusammenfassend ldsst sich sagen, dass
die Werte klein und zuféllig sein miissen, um das Training zu beschleunigen und tote

Neuronen zu vermeiden. [24]

Xavier-Initialisierung

Eine weitere Mdglichkeit die Gewichte zu initialisieren, beschreiben Xavier Glorot und
Yoshua Bengio in ihrer Arbeit [6]. Ziel der Arbeit war es das Problem der verschwinden-
den und explodierenden Gradienten in tiefen neuronalen Netzen zu minimieren, was die
Stabilitat und Effizienz des Trainingsprozesses verbessert. Bei dieser Technik wird die Va-
rianz o2 der Gradienten gleichmiiRig auf die verschiedenen Schichten verteilt, sodass keine
Schicht iiberméfig gewichtet und andere Schichten vernachléssigt werden. Die Gewichts-
werte werden unter Beriicksichtigung der Anzahl n der Eingangs- und Ausgangsneuronen
einer Schicht initialisiert. Es kann zwischen einer Normal- oder einer Gleichverteilung ge-
wahlt werden. Bei der Normalverteilung ergibt sich mit einem Mittelwert p = 0 eine

Standardabweichung o

2
o= (2.20)
N Eingang + N Ausgang
oder fiir die Gleichverteilung im Intervall [—r, 7] fir r
6
r= . (2.21)
NEingang T MAusgang

Mit ihrer Arbeit konnten Glorot und Bengio zeigen, dass die Initialisierung der Ge-
wichte fiir das Training eine nicht unwesentliche Bedeutung hat und die Lerndynamik
abhéngig von der Aktivierungsfunktion, in diesem Fall die Sigmoid-Funktion oder die

tanh-Funktion, verbessern kann. |8, 6]

He-Initialisierung
Die Arbeit von Glorot und Bengio wurde 2015 von einer anderen Forschergruppe mit der

He-Initialisierung weiterentwickelt. Sie wurde speziell fiir die ReLU-Aktivierungsfunktion

und deren Varianten mit dem gleichen Ziel wie bei der Xavier-Initialisierung entwickelt.
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Da sie eine Weiterentwicklung ist, wird iiber den Mittelwert p = 0 die Standardabwei-

chung ¢ in der Normalverteilung iiber die Formel

2
o=2 (2.22)
NEingang + N Ausgang
und fiir die Gleichverteilung im Intervall [—r, 7] fiir r mit
6
r=v2 (2.23)
NEingang + N Ausgang

angegeben. (8, 11]

2.3.7 Verlustfunktion

Die Verlustfunktion ist auch als Kosten-, Fehler- oder Straffunktion bekannt. Die richtige
Wahl héngt von der Aufgabenstellung ab. Die Verwendung des mittleren quadratischen
Fehlers (MSE) fiir Regressionsaufgaben und die Kreuzentropie-Kostenfunktionen eignet
sich fiir Klassifikationsaufgaben besser [25]. Sie bildet ein Qualitatsmal dafiir, wie stark
der Fehler, also die Differenz zwischen vorhergesagtem und erwartetem Wert, bei der

Anpassung der Gewichte berticksichtigt wird. [8]

Der RMSE (Root Mean Square Error) wird auch fiir Regressionsaufgaben ver-
wendet und entspricht der Grofse des Fehlers, den das System im Mittel bei Vorhersagen
macht. Zu beachten ist, dass grofen Fehlern ein hoheres Gewicht gegeniiber kleinen Feh-
lern beigemessen wird. Sie kann auch als mittlere quadratische Abweichung (MSE, Mean
Sqaure Error) ohne Wurzel verwendet werden [25]. Der RMSE ist definiert als

1 & X
RMSE = m Z;(yi —9i)?, (2.24)
=
wobei m die Anzahl der Datenpunkte im Datensatz, y der tatsichliche und g der vor-

hergesagte Wert ist. [8]

Der MAE (Mean Absolute Error) bietet sich an, wenn es viele Ausreifser gibt, weil

es die durchschnittliche absolute Differenz zwischen zwei Punkten misst. Diese werden
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genauso stark gewichtet wie die anderen Fehler. [8]

1 m
MAE = — i — Ui 2.25
o Dl (2:25)

Die Kreuzentropie ist eine weit verbreitete Verlustfunktion, die in Klassifikationsaufga-
ben zum Einsatz kommt. Ein hoherer Wert der Kreuzentropie bedeutet, dass die Differenz
zwischen der vorhergesagten und der tatséchlichen Klasse grofier ist. Bei Vorhersagen fiir
mehrere Klassen spricht man von kategorischer Kreuzentropie wiahrend bei nur zwei Klas-

sen die bindre Kreuzentropie verwendet wird. [25, 8|

m K
—%ZZM Log(Hix) (2.26)

i=1 k=1
2.3.8 Einstellung Hyperparameter

Die Flexibilitdt neuronaler Netze ist gleichzeitig auch einer ihrer grofiten Nachteile. Es
gibt viele Hyperparameter, die angepasst werden kénnen. Zusétzlich kénnen verschiedene
Netzwerktopologien, d.h. unterschiedliche Arten wie die Neuronen miteinander verbun-
den sind, verwendet werden. Bereits bei einem einfachen neuronalen Netzwerk konnen
zahlreiche Parameter wie etwa die Anzahl der Trainingsepochen, die Anzahl der Schich-
ten, die Anzahl der Neuronen in jeder Schicht, die Wahl der Aktivierungsfunktion, die
Methode zur Initialisierung der Gewichte, die Lernrate und die Batchgrofie eingestellt
werden [8]. Es ist sinnvoll immer nur einen Parameter auf einmal anzupassen und sich
die Anderungen anzuschauen [24]. Im Folgenden sollen einige Hinweise und Ratschlige

fiir das Finden geeigneter Hyperparameter gegeben werden.

Anzahl der Epochen

Die Anzahl der Epochen ist der Hyperparameter, der am einfachsten angepasst werden
kann. Es ist bekannt, dass das System mit zunehmendem Training immer genauer wird,
je langer es trainiert wird. Dies passiert jedoch nur bis zu einem gewissen Punkt. Nach
einer bestimmten Anzahl an Epochen erreicht die Genauigkeit ihren Hochstwert, sodass

weiteres Training nur noch ineffizient wére. Ein Nachteil von zu viel Training kann die
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Uberanpassung sein, welche die Genauigkeit sogar verschlechtern konnte. Auf das Thema
Uberanpassung wird in Kapitel 2.3.9 niher eingegangen. Perrotta [24] empfiehlt, mit
einer grofsen Anzahl an Epochen zu starten und zu beobachten, nach welcher Anzahl

absolvierter Epochen die Genauigkeit nicht mehr steigt. [24]

Anzahl der verdeckten Schichten

Mit ausreichend Neuronen kann ein flaches neuronales Netz mit nur einer verborgenen
Schicht auch komplexeste Funktionen modellieren [24]. Tiefere Netze besitzen jedoch
eine hohere Parametereffizienz, wodurch komplexe Funktionen mit exponentiell weniger
Neuronen als flache Netze modelliert werden kénnen. Hieraus resultiert auch eine kiirzere
Trainingszeit. Dies liegt an der hierarchischen Architektur. Durch das schnellere Training
konvergiert das neuronale Netz schneller gegen annehmbare Losungen. Fiir den Beginn
wird meist empfohlen mit einer oder zwei verborgenen Schichten zu starten und diese je
nach Komplexitat der Aufgabe schrittweise zu erhohen bis die Trainingsdaten iiberan-
gepasst sind. In der Praxis ist es géngig Teile eines sehr gut vortrainierten neuronalen

Netzes fiir bekannte Probleme wiederzuverwenden. [§]

Zum Schluss soll noch erwéhnt werden, dass Géron 8| explizit beschreibt die Trainings-
daten in diesem Fall {iberanzupassen. Perrotta [24] weist dagegen darauf hin, dass dies
kontraproduktiv fiir den Testdatensatz sein kann und das Netz dort schlechter performt,

weil es liberangepasst ist [24].

Anzahl der verdeckten Neuronen pro Schicht

Hier gilt das gleiche Prinzip wie im Abschnitt zuvor. Am Anfang sollte mit wenigen
Neuronen gestartet und diese schrittweise bis zur Uberanpassung erhoht werden. Hier
kann je nach Problem viel Aufwand notwendig sein, um die richtige Anzahl an Neuronen
zu finden. Es gilt dabei zu beachten, dass zu viele Knoten das Training verlangsamen,
was das Netz zu intelligent macht und dadurch zu einer Uberanpassung fithren kann
[24]. Géron beschreibt in seinem Buch [8], dass es ein einfacher Ansatz der Stretch Pants
Ansatz ist. Hier wird ein neuronales Netz mit mehr Schichten und Neuronen ausgewéhlt,
als tatsdchlich benotigt werden. Durch ein frithes Beenden wird versucht (Early Stopping)

die Gefahr einer Uberanpassung zu verhindern. [8]
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Lernrate

Die Lernrate ist ein entscheidender Hyperparameter im Gradientenabstiegsverfahren. In
jedem Schritt des Verfahrens wird der Gradient mit der Lernrate multipliziert, um die
Gewichte anzupassen. Je hoher die Lernrate gewéhlt wird, desto grofere Anpassungen
werden erreicht. Daraus resultiert, dass bei einer zu kleinen Lernrate das Training ver-
langsamt wird. Bei einer zu grofsen Lernrate besteht dagegen die Moglichkeit sich vom
globalen Minimum zu entfernen. Laut Perrotta [24] kann mathematisch gezeigt werden,
dass das Batch-Gradientenverfahren bei einer glatten Verlustfunktion immer das Mini-
mum erreicht, solange die Lernrate ausreichend klein ist. Bei einer zu grofen Lernrate
ist dies jedoch nicht garantiert. Perrotta veranschaulicht die Einstellung an einem ex-
ponentiellem Verfahren, um schneller eine passende Gréfenordnung zu finden und diese

anschliefend nachzujustieren. [8, 24|

Batchgrofie

Die Batchgrofse legt fest, wie viele Trainingsdaten verarbeitet werden, bevor die Modell-
parameter angepasst werden. Sie hat Einfluss auf die Trainingsgeschwindigkeit sowie die
Genauigkeit des Modells. Eine grofere Batchsize beschleunigt das Training des neuro-
nalen Netzwerks, erfordert jedoch mehr Speicherkapazitédt. Eine kleinere Batchsize fiihrt
zwar zu einer langeren Trainingsdauer, ermoglicht dem Netzwerk jedoch eine bessere

Generalisierung der Daten, was die Leistung des Modells verbessern kann. [24]

2.3.9 Herausforderung des Trainierens von neuronalen Netzen

Bisher wurden einige Stellschrauben zum Trainieren von neuronalen Netzen vorgestellt.
In diesem Abschnitt soll darauf eingegangen werden, wie mogliche Herausforderungen be-
waltigt werden konnen und wie diese aussehen. Eine Herausforderung kann zum Beispiel
sein, dass die Verlustfunktion nicht konvergiert oder die Leistung des neuronalen Netzes
abnimmt. Unvorteilhaft ist es auch, wenn die Verlustfunktion sich zu gut dem Trainings-
datensatz anpasst. Dies kann mit einem Schiiler verglichen werden, der die Antworten
flir einen Test auswendig lernt, aber das Wissen nicht auf neue Aufgaben vom gleichen
Typus transferiert. In einem solchen Fall ist das neuronale Netz nicht gut generalisiert

und fokussiert sich auf die falschen Dinge. [24]
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Verschwindende und explodierende Gradienten

Tote Neuronen wurden vorher schon einmal erwidhnt. Dies passiert, wenn die Sigmoid-
Funktion in Sattigung geht. Die Folge ist, dass das Training immer langsamer wird. Beim
verschwindenden Gradienten werden zum Beispiel wahrend der Backpropagation die Teil-
gradienten miteinander multipliziert. Sind die Teilgradienten sehr klein, ist der Gesamt-
gradient am Ende winzig und hat kaum bis keinen Einfluss auf die Gewichtsdnderung
der ersten Schichten. Das neuronale Netz konvergiert nicht. Bei explodierenden Gradien-
ten verhélt sich dies gegensétzlich. Der Gradient wéchst wiahrend der Backpropagation
sehr schnell, was den Namen explodierender Gradient begriindet und das neuronale Netz
divergieren ldsst. Beides kann vermieden werden, indem anstatt der Sigmoid-Funktion

andere Aktivierungsfunktionen eingesetzt werden, die nicht séttigen. [8, 24]

Uber- und Unteranpassung

Eine Unteranpassung entsteht, wenn das ML-System nicht leistungsfahig genug ist. Dies
fithrt zu einer unzureichenden Aussagegenauigkeit. Mogliche Ursachen kénnen die Archi-
tektur oder die Einstellung der Hyperparameter sein. Bei der Uberanpassung hingegen
trifft das System genauere Vorhersagen bei neuen, ihm unbekannten Daten. Dies ist mit
dem zu vorgenannten Beispiel des Schiilers zu vergleichen, der die Erkenntnisse nicht auf
neue Situationen transferieren kann. Im Falle eines ML-Systems kann die Generalisie-
rung der Trainingsdaten nicht ausreichend sein, um sie auf neue Situationen anwenden

zu konnen. |24]

Vermeiden von verschwindenden und explodierenden Gradienten

Die folgenden Moglichkeiten helfen dabei verschwindende / explodierende Gradienten zu
reduzieren:

e Anpassung Gewichtsinitialisierung,

e nicht sittigende Aktivierungsfunktionen,

e Batch-Normalisierung, oder

e Gradient-Clipping.
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Abbildung 2.7: Sattigung der Sigmoid-Aktivierungsfunktion [§].

Leaky ReLU-Aktivierungsfunktion

Abbildung 2.8: Leaky ReLU-Aktivierungsfunktion [8].

Auf die Anpassung der Gewichtsinitialisierung wurde bereits im Kapitel 2.3.6 eingegan-
gen. Wichtig ist, dass durch die Anpassung der Initialisierung am Anfang des Trainings,
das Auftreten von toten Neuronen verhindert werden kann. Diese kann im spéteren Trai-

ningsverlauf immer noch auftreten. 8]

Nicht sittigende Aktivierungsfunktionen: Neben der Sigmoid-Funktion wurden im
Kapitel 2.3.4 noch weitere Aktivierungsfunktionen erwéhnt. Eine Andere ist die Tangens
hyperbolicus-Funktion. Diese beiden kénnen fiir sehr grofie positive und negative Werte in
Sattigung geraten, wie die folgende Abbildung 2.7 veranschaulicht. Andere Aktivierungs-
funktionen hingegen wie zum Beispiel die ELU- oder Leaky RelU-Aktivierungsfunktion
wurden speziell dafiir entwickelt, dass das nicht passiert. Der Verlauf der Leaky ReLU-
Funktion ist in der folgenden Abbildung 2.8 dargestellt. Aus der Abbildung 2.7 wird
ersichtlich, dass fiir unendlich grofse positive als auch fiir negative Werte keine Séttigung
eintritt. Im Jahr 2015 wurde mit der Exponential Linear Unit (ELU) [3] eine weitere
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ELU-Aktivierungsfunktion

Abbildung 2.9: ELU-AKtivierungsfunktion [8].

Aktivierungsfunktion vorgestellt. In der Abbildung 2.9 ist ersichtlich, dass sie der ReLLU-

Funktion sehr dhnelt. Die Funktion wird durch die folgende Formel beschrieben:

BLUL(2) = alexp(z) —1) ,wenn z <0 (2.27)

z ,wenn z > 0

Die ELU-Funktion weist gegeniiber der ReLU-Funktion einige grofse Unterschiede auf.
Zum FEinen ist es moglich, dass sie fiir z < 0 negative Werte annehmen kann. « ist ein Hy-
perparameter, der eingestellt werden kann. Thm néhert sich die ELU-Funktion an, wenn
die Werte von z stark negativ werden. Dadurch kann das Neuron eine durchschnittliche
Ausgabe um null haben. Zum Anderen ist die Ableitung fiir negative Argumente z < 0
ungleich null, was das Problem sterbender Neuronen umgeht. Ein weiterer Unterschied
ist, dass die Funktion glatt ist. Dadurch springt die Funktion weniger links und rechts

von z = 0 umher, was das Gradientenverfahren beschleunigt. [8]

Ein Nachteil der ELU- gegeniiber der ReLLU-Funktion ist, dass sie sich langsamer berech-
nen lasst. Im Allgemeinen empfiehlt Géron in seinem Buch [8] die Aktivierungsfunktionen
aufsteigend von der Sigmoid < tanh < ReLU < Leaky ReLU < ELU zu verwenden. (8]

Die Batch-Normalisierung ist eine weitere Moglichkeit um verschwindende Gradien-
ten zu vermeiden. Die Xavier- und He-Initialisierung zusammen mit der ELU- oder einer
anderen Aktivierungsfunktion kénnen zwar verschwindende oder explodierende Gradien-
ten zu Beginn des Trainings sehr reduzieren, sind aber keine Garantie dafiir, dass diese
nicht im spéteren Trainingsverlauf wieder zuriickkehren kénnen. Die Methode besteht

darin in jeder Schicht des Modells eine Operation unmittelbar vor der Aktivierungsfunk-
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tion hinzuzufiigen. Diese Operation zentriert die Eingaben auf null und normalisiert sie.

Danach werden die normalisierten Werte mithilfe von zwei neuen Parametern pro Schicht

skaliert bzw. verschoben. Dadurch kann das Modell die ideale Skalierung und den Mit-

telwert fiir die Eingaben jeder Schicht selbst erlernen. Um die Eingaben zu zentrieren

und zu normalisieren, schitzt der Algorithmus den Mittelwert und die Standardabwei-

chung der Eingaben. Diese Werte werden aus dem aktuellen Mini-Batch berechnet. Der

Algorithmus ist in der folgenden Formel zusammengefasst: [§]

mit

1 <& .
1. = = Y 'x® 2.28
1B mB; (2.28)
L QR4
0= — D 2 2.2
2. op o ;(X ©B) (2.29)
5 o0 _ X" —pp (2.30)
\/O’%-FG
4. 29 =% 4 5 (2.31)

up ist der empirische Mittelwert fiir den gesamten Mini-Batch B.

op ist die empirische Standardabweichung, ebenfalls fiir den gesamten Mini-Batch

bestimmt.

mp ist die Anzahl Datenpunkte im Mini-Batch.

% ist die auf null zentrierte und normalisierte Eingabe.
v ist der Parameter zum Skalieren der Schicht.

B ist der Parameter zum Verschieben der Schicht (Offset).

€ ist eine kleine Zahl, zum Vermeiden einer Division durch null (normalerweise

107). Dies wird als Smoothing-Term bezeichnet.

z( ist die Ausgabe der BN-Operation: Sie ist eine skalierte und verschobene Version

der Eingaben.

Das Gradient Clipping ist eine gidngige Methode, um das Problem der explodierenden

Gradienten zu mildern. Es besteht darin, die Gradienten wiahrend der Backpropagation zu
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begrenzen, sodass sie niemals einen bestimmten Schwellenwert {iberschreiten. Heutzutage

bevorzugen jedoch viele die Anwendung der Batch-Normalisierung. (8, 41|

Vermeiden von Unter- und Uberanpassung

Wenn das ML-System nicht leistungsfihig genug und unterangepasst ist, kann dies aus-
schliefslich durch mehr Leistung behoben werden. Das ML-System ist dann am besten in
die Uberanpassung (Overfitting) zu bringen und die folgenden Methoden anzuwenden,

um dieses zu reduzieren. [24]

Early-Stopping: Um eine Uberanpassung an die Trainingsdaten zu verhindern, ist Early
Stopping eine effektive Methode. Sobald die Leistung des Modells auf den Validierungs-
daten zu sinken beginnt, wird das Training gestoppt. In TensorFlow kann dies durch
regelméfige Evaluierung des Modells auf einem Validierungsdatensatz umgesetzt wer-
den (z. B. alle 50 Schritte). Ein Gewinnermodell wird gespeichert, wenn es das bisher
beste Modell {ibertrifft. Es wird verfolgt wie viele Schritte seit dem letzten Speichern
des Gewinnermodells vergangen sind und das Training beendet, wenn diese Zahl einen
festgelegten Schwellenwert {iberschritten hat. Anschlieffend wird das gespeicherte Gewin-

nermodell wieder hergestellt. 8]

11-und 12-Regularisierung: Ahnlich wie bei einfachen linearen Modellen kénnen auch
bei neuronalen Netzen mithilfe von 11- und 12-Regularisierung Einschrankungen auf die
Verbindungsgewichte (jedoch nicht auf die Bias-Terme) anwenden [8]. Beide Methoden
integrieren die Gewichte in die Verlustfunktion des neuronalen Netzes. Das Gradienten-
verfahren versucht dann, den Verlust zu minimieren, indem es die Gewichte kleinhélt.

Kleinere Gewichte tragen zu einem glatteren Modell bei. [24]

Weitere Regularisierungstechniken sind Drop-Out, Max-Norm-Regularisierung und Data

Augmentation [8].

Optimierer
Im Kapitel 2.3.3 wurde das Gradientenverfahren sowie das Mini-Batch-Gradientenverfahren

vorgestellt. Damit sich die Gewichte und der Bias in die gewiinschte Richtung verschie-

ben und die Verlustfunktion abnimmt, muss eine entsprechende Optimierungsfunktion
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definiert werden. Diese wird als Optimierer bezeichnet und steuert die Anpassung der
Gewichte und des Bias. Durch die Wahl eines guten Optimierers wird das Training be-
schleunigt. In dem Paper [29] von Sebastian Ruder von 2017 gibt dieser einen Uberblick

dartiber mit welchen Optimierern das Gradientenverfahren verbessert werden kann. (8]

Der stochastische Gradienten Abstieg (SGD) beruht auf der von Robbins und
Monro vorgestellten stochastischen Approximationsmethode |27, 29]. Das Hauptproblem
des Batch-Gradientenverfahrens liegt darin, dass es fiir jeden Berechnungsschritt der Gra-
dienten den gesamten Trainingsdatensatz bendtigt. Das macht es bei sehr grofsen Daten-
sitzen extrem langsam. Auf der anderen Seite steht das SGD, das bei jedem Schritt nur
einen zufillig ausgewéhlten Datenpunkt verwendet, um die Gradienten zu berechnen.
Dies beschleunigt den Algorithmus erheblich, da in jeder Iteration nur ein minimaler Teil
des Datensatzes verarbeitet werden muss. Daher ist es besonders geeignet, um mit sehr
grofen Datensétzen zu arbeiten, da nur ein einzelner Datenpunkt pro Iteration gedndert
wird. Allerdings fiihrt diese stochastische Herangehensweise dazu, dass der Algorithmus
viel unregelméfiger als das Batch-Gradientenverfahren ist. Anstatt gleichméfig zum Mi-
nimum zu konvergieren, ,hiipft* die Kostenfunktion auf und ab und sinkt nur im Durch-
schnitt. Im Laufe der Zeit erreicht sie zwar ein Minimum, bleibt dort jedoch nie stabil und
schwankt weiter. Am Ende des Trainings liefert der Algorithmus somit gute, aber nicht
optimale Parameter. Bei einer stark unregelméfigen Kostenfunktion kann diese Schwan-
kung jedoch dabei helfen, aus lokalen Minima herauszukommen. Aus diesem Grund hat
das stochastische Gradientenverfahren im Vergleich zum Batch-Gradientenverfahren eine
groflere Chance, das globale Minimum zu finden. Die Zufélligkeit hilft, in lokale Minima
zu entkommen, verhindert jedoch, dass der Algorithmus im globalen Minimum zur Ruhe
kommt. Eine mogliche Losung fiir dieses Problem besteht darin, die Lernrate nach und
nach zu verringern. Zu Beginn sind die Schritte groff, um schnell voranzukommen. In der
Folge werden die Schritte immer kleiner, sodass der Algorithmus letztlich im globalen

Minimum stabil wird. [§]

Das AdaGrad (Adaptive Gradient Algorithm) passt die Lernrate an die einzel-
nen Modellparameter an, indem es die bisherigen Gradientenwerte beriicksichtigt. Fs
summiert die quadrierten Gradienten fiir jeden Parameter wihrend des Trainings auf
und verfolgt so, wie stark sich der Gradient in der Vergangenheit verdndert hat. Auf
dieser Grundlage wird die Lernrate fiir jeden Parameter angepasst, indem die urspriing-
lich festgelegte Lernrate durch die berechnete Summe der quadrierten Gradienten geteilt

wird. Die Lernrate wird antiproportional zu der Grofse des Gradienten gewéhlt. Dadurch
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wird eine individuelle Skalierung fiir die Parameter erreicht. Parameter mit seltenen oder
grofen Gradienten bekommen eine niedrigere Lernrate, wihrend Parameter mit h&ufi-
gen oder kleinen Gradienten eine hohere Lernrate erhalten. Aufgrund dieser Eigenschaft
eignet sich AdaGrad besonders gut fiir sparliche Datensétze und erspart das manuel-
le Anpassen der Lernrate. Ein wesentlicher Nachteil von AdaGrad ist jedoch, dass die
Lernrate mit der Zeit immer weiter sinkt. Wird sie so klein, dass keine weiteren Aktua-

lisierungen mehr stattfinden, kommt der Lernprozess schlieflich zum Stillstand. 4, 29|

Die RMSProp (Root Means Square Propagation) ist eine adaptive Methode, wel-
che die Lernrate wiahrend des Trainings anpasst. Es verwendet eine kumulierte Summe
der quadrierten Gradienten, die mit einem gleitenden Durchschnitt gewichtet wird. Auf
diese Weise werden jedoch nur die fritheren Gradienten bei der Berechnung der Aktuali-
sierung beriicksichtigt. Eine weitere Methode, die zur selben Zeit wie RMSProp entwickelt
wurde und die auch die vergangenen Aktualisierungsschritte beriicksichtigt, ist AdaDelta

[40]. Dadurch wird die Anpassung genauer, benétigt jedoch mehr Rechenaufwand. [12, 29|

Die Adam (Adaptive Moment Estimation) vereint zwei Prinzipien - den RMSprop-
Algorithmus mit einer dynamischen Lernrate und den stochastischen Gradientenabstieg
(SGD) mit Momentum. Dabei werden zwei verschiedene Momente verwendet. Das erste
Momentum hilft dabei, die Richtung des néchsten Schrittes im Parameterraum festzule-
gen. Das zweite Momentum passt hingegen die Schrittgrofe. Adam hat sich als beson-
ders effektiv, insbesondere bei komplexen Netzwerkstrukturen oder grofen Datensétzen,
erwiesen. Die dynamische Anpassung der Lernrate sorgt fiir eine schnelle und stabile
Konvergenz der Verlustfunktion zum Minimum, was das Training beschleunigt und sta-
biler macht. Zudem tragt die Momentschéitzung dazu bei, Probleme mit verschwindenden
oder explodierenden Gradienten zu reduzieren, die beim Training von neuronalen Netzen
héufig auftreten. [15, 8, 29|

Weitere Optimierer sind beschleunigter Gradient nach Nesterov und Momentum Opi-

mization [8].

2.4 Algorithmen

Nachdem die grundlegenden RL- und DL-Formalismen beschrieben wurden, wird im Fol-

genden auf verschiedene Methoden eingegangen, die fiir eine Losung in Frage kommen.
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2.4.1 Tabellenbasierte Losungsverfahren

Die Aufteilung von RL-Methoden kann je nach Quelle leicht unterschiedlich sein. Sutton
und Barto [34] unterscheiden in erster Instanz zwischen tabellarischen und approximier-
ten Losungsverfahren. Gridin [7] unterscheidet hingegen zuerst zwischen dem Bandits-
Problem und dem Markov Entscheidungsprozess. Das Bandits-Problem ist eine Sonder-
form des MDP, bei welchem es nur einen einzigen Zustand gibt. Diese Aufteilung kann
auf den ersten Blick verwirrend sein. Trotz dessen die Anordnungen voneinander abwei-
chen, werden sie dennoch in die gleichen Kategorien aufgeteilt. So unterscheiden bei-
de im Wesentlichen zwischen modellfreien, modellbasierten, strategiebasierte (nach [34]
approximierte Losungsverfahren) und wertebasierte Methoden (nach [34] tabellarische
Losungsverfahren) sowie Off-Policy und On-Policy Ansétze. Nach Gridin [7]| lernen mo-
dellbasierte Verfahren indirekt das optimale Verhalten durch das Erlernen eines Modells
der Umgebung. Die in der Umgebung ausgefiithrten Handlungen und dessen Ergebnisse,
also der neue Zustand sowie die sofortige Belohnung, werden beobachtet. Bei den mo-
dellfreien Verfahren ist ein Modell nicht notwendig. Hier wird jedoch zuerst zwischen
den strategiebasierten (Policy-Based) und den wertebasierten (Value-Based) Methoden
unterschieden. Letzteres wird zusétzlich zwischen Off-Policy und On-Policy differenziert.
(34, 7]

Monte-Carlo

Die Monte-Carlo-Methode ist eine breite Klasse von Algorithmen, die auf der wiederhol-
ten Durchfiihrung von Zufallsstichproben basiert. Ihr Hauptmerkmal ist, dass es nach
einer ausreichend groffen Anzahl an Zufallsexperimenten moglich wird, die Eigenschaf-
ten und Merkmale eines bestimmten Prozesses oder einer Umgebung zu ermitteln. Diese
Methode findet Anwendung in vielen Berechnungsproblemen, insbesondere dann, wenn
es schwierig ist, analytische Ergebnisse iiber die betreffende Umgebung zu erzielen. Die
Ergebnisse werden in der Q-Tabelle gesammelt. Diese Tabelle beinhaltet zu jedem Zu-
stand die entsprechende Aktion. Das ist die zuvor beschrieben Aktionswertfunktion ¢
und gehort zu den wertebasierten Losungsverfahren. Ein Nachteil der Methode ist, dass
entweder nur trainiert oder nur bewertet werden kann. Ein Update der Q-Tabelle ist erst
am Ende des Trainings moglich. Der Q-Wert eines Zustandsaktionspaares ergibt sich aus
der Summe aller Gewinne in der Episode n, der durch die Gesamtanzahl des Zustandsak-

tionspaares im jeweiligen Trainingsverlauf geteilt wird. Dies wird in der folgende Formel
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beschrieben:

_ 20 G(s,a5n)

@s,0) N(s,a)

(2.32)
Die Summer aller Gewinne beinhaltet auch die zukiinftigen diskontierten Belohnungen,

wie durch die Formel

t
G(sk,ar;n) = Z v E (2.33)
ik

ausgedriickt wird. [7]

Q-Learning

Wie bei der Monte-Carlo Methode wird beim Q-Learning eine Tabelle mit den Q-Werten
befiillt. Jedoch im Fall des Q-Learnings ndhert sich die gelernte Aktionswertefunktion ¢
direkt der optimalen Aktionswertefunktion ¢, an, unabhéngig von der verfolgten Policy.
Anders ausgedriickt wird nach dem Ausfiihren einer Aktion und dem Erreichen des néchs-
ten Zustands die Werte in der Q-Tabelle aktualisiert. Dies vereinfacht die Analyse des
Algorithmus erheblich und ermdglicht frithzeitige Nachweise von Konvergenzen. Die Poli-
cy bleibt weiterhin von Bedeutung, da sie festlegt, welche Zustandsaktionspaare besucht
und aktualisiert werden. Fiir eine korrekte Konvergenz ist jedoch lediglich erforderlich,
dass alle Paare weiterhin aktualisiert werden. Je deterministischer die Umgebung ist, in
welcher der Q-Learning Algorithmus lernen soll, desto besser. Eine Herausforderung beim
Q-Learning ist, dass dieselben Stichproben zur Bestimmung der maximierenden Aktion
als auch zur Schétzung ihres Wertes verwendet werden. Dies kann zu einer erheblichen
Maximierungsverzerrung fithren, was mit dem Double Q-Learning unterbunden werden
kann. Die Formel 2.34 veranschaulicht den Algorithmus. Das aktuelle Zustandsaktions-
paar Q(S;, A;) wird mit der Multiplikation der temporalen Differenz (engl. Temporale
Difference) und der Lernschrittweite () addiert sowie anschliefend in der Q-Tabelle ak-
tualisiert. Die Lernschrittweite o und der Diskontierungsfaktor « liegen beide im Bereich
zwischen null und eins. Die Summe innerhalb der Klammer wird auch als Temporale
Difference bezeichnet und driickt die erwartete Differenz in verschiedenen Momenten der
Untersuchung bzw. des Trainings aus. Sie bildet sich aus der Summe der Belohnung des
néchsten Zeitschritts Ry1; und der Differenz zwischen dem diskontierten () maximalen

Q-Werts vy max, Q(S¢+1,a) des nichsten Zustands, nach der gewéhlten Aktion, minus des
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aktuellen Q-Werts Q(Sy, A;) des Zustandsaktionspaar. |7, 34, 37|

Q(St, At) — Q(St, At) + Oé[RH_l + ’yméix Q(St+1, a) — Q(St, At)] (234)

SARSA

Die SARSA-Methode (State-Action-Reward-State-Action) nimmt hier als On-Policy und
Value-Based Methode eine Sonderstellung ein. Der Einsatz von SARSA empfiehlt sich
immer dann, wenn die Erfiillung der Aufgabe wichtiger ist, anstatt das optimale Ergebnis
zu erzielen. Demzufolge eignet sich SARSA fiir Probleme in der realen Welt, wo ein Fehler
sehr teuer und zum Verlust einer wichtigen Ressource fiihren kann. Die SARSA-Methode
funktioniert analog des Q-Learnings, wie aus der Formel 2.35 ersichtlich wird. Der Un-
terschied besteht lediglich darin, dass nicht nach der maximal mdglichen Belohnungen

gesucht wird. [7]

Q(St, Ay) + Q(Si, Ap) + a[Rip1 +vQ(Siy1,a) — Q(St, Ay)] (2.35)

2.4.2 Approximierte Losungsverfahren

In diesem Abschnitt wird das Beste aus zwei Welten vereint und die approximierten oder
geschétzten Losungsverfahren beschrieben. Die Vereinigung des Reinforcement Learnings
mit dem Deep Learning hat im Bereich des Machine Learnings neue Tore gedffnet und

leistungsfahigere Algorithmen hervorgebracht.

Deep Q-Learning

Das Deep Q-Learning oder auch Deep Q-Network (DQN) ist bei vielen Problemstel-
lungen ein vielversprechender Ansatz. Er wurde im Jahr 2013 von Google DeepMind
vorgestellt [21]. Deep Q-Learning setzt sich aus dem Q-Learning und dem Deep Lear-
ning zusammen. FEin méglicher Aufbau wird in der Abbildung 2.10 dargestellt. Bei den
wertebasierten Losungsverfahren ist die Pflege und Aktualisierung einer Q-Tabelle in
Umgebungen mit groffen Zustandsraumen wenig praktikabel. Dies fiihrt zur Verwendung
des Deep Q-Learnings. Statt einer Q-Tabelle nutzt das Deep Q-Learning ein neurona-
les Netzwerk, das einen Zustand als Eingabe erhélt und die Q-Werte fiir jede mogliche

Aktion in diesem Zustand schatzt. Das macht diese Methode attraktiv fiir den Einsatz
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Reward r

Take action a Environment

Observe state s

Abbildung 2.10: Reinforcement Learning in Kombination mit einem neuronalen Netz-
werk [19].

in grofsen Zustandsrdumen, wie zum Beispiel beim Spiel Yahtzee. Hinzu kommt, dass
durch die Verwendung von Erfahrungsspeicher (Replay Buffer) der Agent stabiler und
effizienter lernt. [7, 21, 34|

Die Formeln 2.36 - 2.39 zeigen, wie die beiden Methoden mathematisch zusammenhan-
gen. Die Aktionswertfunktion Q*(s,a) wird um den Parameter 6 erweitert und ange-
nommen, dass diese Erweiterung ungeféhr gleich der urspriinglichen Aktionswertfunktion
Q*(s,a) = Q(s,a;0;) ist. Der Parameter 6 beinhaltet die Gewichte W und Bias b, die
bei der Minimierung der Verlustfunktion L;(6;) in jeder Iteration optimiert werden. Ziel
ist es, wie beim Q-Learning die erwartete Belohnung in Formel 2.36 zu maximieren. Dies
passiert analog des Q-Learning Algorithmus, indem die Differenz zwischen dem aktuellen
und dem néchsten Zustandsaktionspaar gebildet und die Differenz quadriert wird. Dabei
werden die Parameter 6;_; der vorherigen Iteration fiir die Optimierung der Verlustfunk-
tion festgehalten. Zum Schluss wird wie in Formel 2.39 gezeigt, das Gradientenverfahren

fiir die Optimierung des Parameters 6 angewendet. [21]

Q*(s,a) = Egelr +ymaxQ*(s, a’)|s, al (2.36)
Li(0;) = Eq gp(y[(yi — Q(s, a5 6;))] (2.37)
Yi = Egnelr +ymax Q(s',ad;0;_1)|s,d] (2.38)
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Vo,Li(03) = Eq gup(ysine ( +ymaxQ(s', a'; 6;-1) — Q(s. en) Vo, Qs a: 00]

(2.39)

Alle wichtigen Informationen werden nun im neuronalen Netz und nicht mehr in einer
Q-Tabelle gespeichert. Dadurch kann die Methode groftere Zustandsrdume besser gene-
ralisieren, weil sie die passenden Aktionen in den jeweiligen Zusténden approximiert. Das

spart Speicherplatz.

Policy Gradient-Methode

Die Policy Gradient-Methode ist eine Reinforcement Learning-Methode, bei der eine sto-
chastische Policy direkt optimiert wird. Sie ist mit dem Deep Learning kombinierbar und
macht die Methode besonders effektiv, wenn ein neuronales Netz fiir die Parametrisie-
rung der Policy eingesetzt wird [7]. Das Hauptziel dieser Methode besteht darin, den
Parameter zu bestimmen, bei dem der Agent die héchste Belohnung geméfs der Policy g
erzielt. Anhand der Formel 2.40 maximiert die Methode die erwartete Gesamtbelohnung

E durch iterative Schétzung des Gradienten von g.
o0
g=E Z U, Vglogm(a|st) (2.40)
t=0
U, kann dabei eine der folgenden Moglichkeiten annehmen:
1. 3272, re: Gesamtbelohnung der Trajektorie,
2. > o, ry: Belohnung bei Verfolgung der Aktion ay,
3. Y g, v — b(s¢): Baseline Version der Formel zuvor,
4. Q™ (s, ar) Zustands-Aktionswertfunktion,
5. A™(sy, a;) Advantage-Funktion, oder
6. 7+ V™(s¢11) — V™ (s¢) Temporal Difference Residual. [30]

Die Variante drei mit der Baseline ist eine Moglichkeit, dass die Varianz reduziert wird.
Die zusétzliche Verwendung eines neuronalen Netzes macht diesen Algorithmus noch leis-
tungsfahiger. Eine Moglichkeit der Implementierung als REINFORCE oder auch Monte-
Carlo Policy Gradient-Methode beschreiben Sutton und Barto in ihrem Buch [34] und
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wurde von Williams 1992 in seiner Arbeit [38] vorgestellt. [30, 7|

Klassische Methoden wie Q-Learning versagen bei kontinuierlichen oder stochastischen
Aktionsrdumen. Die Policy Gradient-Methode ist eine méchtige Technik, die sich gut
flir solche Reinforcement Learning-Probleme eignet. Trotz der hohen Varianz und der
langsamen Konvergenz gibt es viele Weiterentwicklungen wie zum Beispiel die Actor-
Critic-Methoden, die diese Methoden stabiler und effizienter machen. [34, 7|

Actor-Critc-Methoden

Die Actor-Critic-Methode vereinigen sowohl die Policy-Based als auch die Value-Based
Methoden, im Speziellen die Policy Gradient-Methode und das Q-Learning. Es gibt einen
Akteur (Actor), der zum Beispiel nach der Policy-Gradienten Methode eine Aktion aus-
wéahlt und einen Kritiker (Critic), der diese Aktion anschliefend bewertet. Durch die
Zusammenarbeit dieser beiden Methoden wird direkt die Policy des Akteurs als auch
des Kritikers optimiert und verbessert. Des Weiteren lassen sich beide Methoden mit

neuronalen Netzen erweitern. 7]

Die Actor-Critic-Methode und die Policy Gradient-Methode sind in W, iiber die Vari-
ante 5 durch die Advantage-Funktion A™ (s, a;) miteinander verbunden [30]. Diese setzt

sich wie folgt zusammen
A" (st,at) == Q" (st,at) — V7 (s1), (2.41)

wobei V7 (s;) die Wertefunktion bzw. der Kritiker und Q7 (s, a;) die Aktionswertfunktion
bzw. der Akteur ist. Somit ergibt sich fiir g die folgende Formel fiir die grundlegende
Actor-Critic-Methode:

g=E Z Vologme(ai]s ) (QT (s¢,ar) — V™ (sy)) (2.42)
t=0

Die Vorteile dieser Methode sind, dass die Varianz geringer, der Lernprozess durch die
Wertefunktion effizienter ist, die Methode auch in kontinuierlichen Aktionsrdumen ein-
gesetzt werden kann und die Methode flexibel ist, was ihre vielen Erweiterungen zeigen.
Zusétzliche Erweiterungen sind zum Beispiel A2C [7], A3C [20] und PPO [31]. Nachteile
dieser Methode und seiner Varianten sind unter anderem die komplexere Implementierung

und dass die Kombination aus zwei Netzwerken zu Instabilitéten fithren kann. [7, 34|
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Nachdem in dem Kapitel zuvor auf die Grundlagen eingegangen wurde, wird in diesem
Kapitel der Stand der Technik beschrieben. Dazu wird erortert welche Untersuchungen es
mit dem Spiel Yahtzee als Problemstellung gibt, welche Losungsansétze fiir eine Punkt-

maximierung verfolgt wurden sowie deren Ergebnisse.

3.1 Der Ursprung

Den Startschuss legte 1999-2000 Tom Verhoeff von der Eindhoven University of Tech-
nology mit der Arbeit Optimal Solitaire Yahtzee Strategies [36]. In dieser Arbeit entwi-
ckelte er eine optimale Strategie mit Hilfe der Modellierung von Yahtzee als Markov-
Entscheidungsprozess und dem Losungsansatz der dynamischen Programmierung. Dazu
wurde ein Yahtzee Spielbaum aufgestellt und die moglichen Zustdnde minimiert, die wéh-
rend eines Spiel erreicht werden kénnen. In seiner Arbeit definierte er seine optimalen

Kriterien wie folgt:
e Maximierung der erwarteten Gesamtpunktzahl,
e Minimierung der Varianz der Gesamtpunktzahl,
e Maximierung der Wahrscheinlichkeit, die Hochstpunktzahl zu iibertreffen,
e Maximierung der Wahrscheinlichkeit gegen einen Gegenspieler zu gewinnen, und
e Maximierung der minimalen Gesamtpunktzahl.

Auch Verhoeff stand vor dem Dilemma, welche Entscheidung bei Wiirfen getroffen wer-
den soll, die in mehrere Kategorien passen. Ein schones Beispiel dafiir ist die folgende
Wiirfelkombination Wurf = [1 16 6 6].
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Kategorie Erwartete Punktzahl | Standardabweichung
Aces 1,82 1,14
Twos 5,25 1,95
Threes 8,57 2,65
Fours 12,19 3,24
Fives 15,74 3,81
Sixes 19,29 4,61
’ Bonus Upper Part 24,14 16,19
Three of a Kind 22,23 5,5
Four of a Kind 13,04 11,44
Full House 22,86 6,99
Small Straight 29,53 3,71
Large Straight 33,04 15,16
Yahtzee 15,89 23,28
Chance 22,26 2,44
| Grand Total | 245,87 39,82

Tabelle 3.1: Punktzahl und Standardabweichung pro Kategorie ohne extra Yahtzee Bonus
und Joker [36].

Mit diesem Wurf kénnen verschiedene Pfade, abhéngig davon wie viele Wiederholungs-
wiirfe noch offen stehen, verfolgt werden. Sollen die Wiirfel mit der Augenzahl sechs
behalten werden und die beiden Einsen erneut gewiirfelt oder bereits eine Kategorie aus-
gewahlt werden? In seiner Arbeit konnte Verhoeff zeigen, dass es besser war die drei
Sechsen zu behalten, um mehr Punkte zu erzielen. Des Weiteren simulierte er seinen
Losungsansatz auch an einem Yahtzee in dem es keinen Bonus oder Joker gab. In der
Tabelle 3.1 sind die Ergebnisse von Verhoeff dargestellt, von der Yahtzee-Simulation ohne
Bonus und Joker. [36]

2006 wurde die Arbeit von Tom Verhoeff von James Glenn am Loyola College in Ma-
ryland, Baltimore aufgegriffen. In seiner Arbeit [5] versucht auch er mittels elementarer
Kombinatorik und Graphentheorie eine optimale Strategie zu bestimmen. Diese optimale
Strategie verglich er mit anderen Strategien, die zum Beispiel gezielt auf Yahtzees und
/ oder Strafen gehen, weil diese im Schnitt die meisten Punkte bringen. Es gilt zu be-
riicksichtigen, dass Glenn den Bonus und Joker beriicksichtigt und somit die erwartete
Gesamtpunktzahl mit 254,59 Punkten und einer Standardabweichung von 59,61 Punk-
ten auf den ersten Blick etwas grofer ausfallt. Jedoch mit der von Tom Verhoeff unter

der gleichen Fallbetrachtung identisch ist. |5, 36|
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Eine weitere Arbeit, welche die Entwicklung einer optimalen Strategie fiir Yahtzee mit
der Verwendung von Graphentheorie und dynamischer Programmierung versucht, ist die
Arbeit von Marcus Larsson und Andreas Sjoberg von 2012 [17]. Sie erreichten in ih-
rer Publikation ein durchschnittliches Gesamtergebnis von 248,63 Punkten. Es gilt zu
bertiicksichtigen, dass sich die Rechenleistung von 2000 zu 2006 und zu 2012 jedes mal
weiterentwickelt hat. Der Vollstdndigkeit halber soll die KTH Royal Institute of Tech-
nology in Schweden erwéhnt werden, weil auch hier verschiedene Abschlussarbeiten fiir
optimales Yahtzee verdffentlicht wurden, welche die Nutzung verschiedener Algorithmen
behandelt haben [13, 23].

Zusammenfassend lasst sich sagen, dass diese Arbeiten einen guten Einblick iiber mogli-
che Untersuchungen mit Yahtzee geben. Alle greifen jedoch auf ein Modell zuriick, dass
die Wahrscheinlichkeiten von einem Zustand in den néchsten benétigt. In der vorliegen-

den Arbeit wird versucht einen modellfreien Ansatz zu verfolgen.

3.2 Arbeiten mit modellfreien Losungsansatzen

In den Arbeiten von Minhyung Kang und Luca Schroeder [14] sowie Philip Vasseur [35]
wurde ein modellfreier Ansatz verfolgt. In beiden Publikationen wurden verschiedene Al-
gorithmen des ML angewendet. In der Arbeit von Kang und Schroeder [14] wurden spe-
ziell Algorithmen des Reinforcement Learnings priorisiert. Philip Vasseur hat dagegen in
seiner Arbeit [35] das Deep Q-Learning fiir den Vergleich verschiedener Strategie-Leitern
verwendet, um zu untersuchen, wie die Leistung der KI in Abhéngigkeit der Regelsétze

variiert.

Kang und Schroeder [14] entwickelten einen Simulator, der es erlaubt, die Spieleran-
zahl einzustellen und Turniere zwischen den entwickelten Algorithmen auszutragen. Eine
Mensch-Maschinen-Interaktion mit dem Simulator wurde nicht implementiert. Demzu-
folge wurden die Agenten ausschlieflich miteinander verglichen. Des Weiteren war es ein
Ziel dieser Arbeit herauszufinden, welche RIL-Algorithmen wie gut gegen einfachere Al-
gorithmen bestehen kénnen. Fiir die einfacheren Algorithmen wurden ein Random-Agent
(Zufallsagent) und drei Greedy-Agenten (gierige Agenten) entwickelt. Der Random-Agent
wahlte jede Aktion zufillig aus. Die Greedy-Agent wurden in drei Stufen unterteilt, in

Level eins bis drei. Der Greedy-Agent Level-1 nahm den Initialwurf und ordnete den Wurf
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der Punktetabelle zu, wo er die meisten Punkte fiir bekam. Der Greedy-Agent Level-2
hatte einen weiteren Wurf zur Verfiigung und der Greedy-Agent Level-3 entsprechend alle
drei Wurfversuche. Dadurch besafien die hoherstufigen Greedy-Agenten bessere Moglich-
keiten, um eine hohere Endpunktzahl zu erreichen. Die verwendeten RL-Agenten waren
unter anderem das Perceptron Q(A) und das Hierarchical Learning (HRL). Dem HRL
wurde im Verlauf der Arbeit ein Greedy-Element hinzugefiigt und somit zum HRL-G1-
Agent. Dies sollte dafiir sorgen, dass der HRL-G1-Agent mehr Beispiele sieht und so
seine Endpunktzahl erhohen kann. Neben der durchschnittlichen Endpunktzahl wurde
die durchschnittliche Zeit pro Zug ermittelt. Hier ergab sich, dass der Greedy-Agent
Level-3 mehr als drei Sekunden pro Zug braucht. Dies macht ihn sehr langsam, ob-
wohl er damit die durchschnittlich hochste Endpunktzahl mit 203,88 Punkten erreicht
hatte. Dieser kam dem Greedy-Algorithmus von Glenn von der Gesamtpunktzahl am
Néchsten. Der Greedy Level-3 wurde nicht weiter fiir das Turnier beriicksichtigt und
demzufolge auch nicht in der Auswertung. Es stellte sich heraus, dass der Perceptron
Q(A)-Agent die meisten Spiele gegen den Random-Agenten gewann. Die Ergebnisse ge-
gen den Greedy-Agenten Level-1 und Level-2 waren dagegen eher bescheiden. Die beiden
anderen RL-Agenten schnitten insgesamt gegen den Greedy-Agenten Level-1 mit einer
Gewinnwahrscheinlichkeit von mehr als 50% besser ab. Der Greedy-Agent Level-2 hatte
in dieser Arbeit die hochste Gewinnwahrscheinlichkeit. Es gilt zu beachten, dass Unter-
suchungen wie in Arbeit [14] der Agent oder auch menschliche Spieler zu einem anderen
Lernverhalten neigen, wenn das Siegen gegeniiber der Maximierung der Gesamtpunktzahl
in Vordergrund steht. Zum Beispiel kann der verlierende Spieler zu einem risikoreichen
Verhalten und Entscheidungen neigen, solange weiterhin eine Chance auf den Sieg be-
steht. [14]

Aus den Ergebnissen der Arbeiten ergeben sich interessante Fragestellungen inwiefern
Deep Reinforcement Learning unter Verwendung von tiefen neuronalen Netzen die Wahr-
scheinlichkeiten und strukturellen Eigenschaften von Yahtzee besser erfassen konnen. Aus
dem Abstract von Kan und Schroeder [14] geht hervor, dass einfache Benchmarks iiber-
troffen werden konnen, aber insgesamt suboptimal sind. Wenn wir uns die Ergebnisse
in der Tabelle 3.2 anschauen, wird ersichtlich, dass die Gesamtpunktzahl der optimalen

Yahtzee Strategien ausbaufihig ist.
In [35] wurde ein Deep Q-Learning Algorithmus entwickelt und verwendet, der Yahtzee

spielen lernt. Ziel dieser Arbeit ist nicht die Untersuchung, ob der Algorithmus eine er-

folgreiche Strategie zur Maximierung der Endpunktzahl entwickelt, sondern ob es eine
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Agent Gesamtpunktzahl
Random 45,635
Greedy Level-1 112,541
Greedy Level-2 171,166
Greedy Level-3 203,882
Perceptron Q(\) 77,772
HRL 120,299
HRL-G1 129,580

Tabelle 3.2: Durchschnittliche Gesamtpunktzahl verschiedener Agenten [14].

Korrelation zwischen den Strategieleitern von Mensch und Maschine gibt. Hieraus soll
eine Beurteilung erfolgen, ob ein Spiel fiir einen Menschen gut und herausfordernd ist.
Dabei wird untersucht wie eine Anderung der Regelsiitze die Leistung des Algorithmus
variiert und sich auf das Lernverhalten des Agenten auswirkt. Dies wird unter ande-
rem erreicht, indem die Schwelle fiir die Mindestpunktzahl des Bonus zwischen 53 bis
75 Punkten variiert. Das Ergebnis von [35] zeigt, dass eine niedrigere Punkteschwelle

zwischen 53-57 Punkten zu einer interessanteren Variante von Yahtzee fithren konnte.

Zusammenfassend lésst sich sagen, dass Vasseur dem Agenten nur die Kategorie iibergibt
und eine untergeordnete Hilfsfunktion die Auswahl der Wiirfel und die Wiederholungs-
wiirfe iibernimmt. Bei der Arbeit von Kang und Schroeder entscheidet der Agent selb-
standig zwischen der Auswahl einer Kategorie oder einem Wiederholungswurf mit allen
oder nur bestimmten Wiirfeln. Dies gibt zwar mehr Freiheiten, gestaltet allerdings das

(Er-)Lernen des Spiels herausfordernder.
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4 Anforderungsanalyse

Bevor es an die konzeptionelle Ausarbeitung und Umsetzung geht, wird zuerst das zu
entwickelnde System beschrieben und analysiert. Des Weiteren werden die Bediirfnisse
und Wiinsche verschiedener Stakeholder beriicksichtigt, die zu unterschiedlichen Anwen-
dungsfillen und Anforderungen fiihren. Zusammen bilden sie die Grundlage fiir eine
systematische Umsetzung der Arbeit und dokumentieren das Projektziel. Ein weiterer
Vorteil ist, dass sich die Ergebnisse durch die verschiedenen Anforderungen am Ende der
Arbeit messen lassen. Hierdurch kann der Erfolg iberpriift werden sowie verfolgt werden,

welche Erkenntnisse aus der Umsetzung bestimmter Losungswege gewonnen wurden.

4.1 Systembeschreibung

In der Abbildung 4.1 ist eine Ubersicht des Gesamtsystems mit all seinen Komponen-
ten und deren Zusammenhénge zu finden. Das System kann in zwei Teile unterschieden

werden:
e den KI-Agenten und der Simulationsumgebung, und

e dem physischen Demonstrator der in einer ersten Betrachtung ausschlieklich aus

einem Bildverarbeitungssystem bestehen kann.

Zum Einen soll es moglich sein, dass die KI-Agenten und die Simulationsumgebung un-
abhéngig vom Bildverarbeitungssystem interagieren. Zum Anderen soll es moglich sein,
in den genannten Systemen unabhéngig die Entwicklung vorantreiben zu kénnen. Somit
lasst sich Teil eins unabhéngig von Teil zwei entwickeln. Dies ist moglich, weil die Zu-
standsaktualisierung aus der Simulationsumgebung erfolgt. Das Bildverarbeitungssystem
kann als Schnittstelle fiir das Spielen mit echten Wiirfeln verwendet werden. Die Simu-

lationsumgebung ist notwendig, damit der KI-Agent schnell und einfach trainieren kann.
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Abbildung 4.1: Systemumgebung.
4.2 Zielgruppen

Der Erfolg des Projekts hdngt nicht nur von der technischen Machbarkeit, der Umsetzung
und den funktionalen Anforderungen ab. Ebenso ist es entscheidend, die Bediirfnisse und
Erwartungen aller beteiligten Interessensgruppen zu beriicksichtigen. Die Stakeholder
haben einen direkten oder indirekten Einfluss auf den Verlauf und den Erfolg der Arbeit.
Die nachfolgend betrachteten Stakeholder haben ein besonderes Interesse am Erfolg dieser
Abschlussarbeit.

4.2.1 Auftraggeber

Als Erstpriifer, Betreuer und Auftraggeber der Abschlussarbeit nimmt Herr Prof. Dr.
Hensel eine zentrale Rolle ein. Er verfolgt dabei verschiedene Ziele und Interessen. Mit
dem Demonstrator soll einerseits das Interesse von anderen Studierenden an RL geweckt
werden. Andererseits soll damit die Méglichkeit geschaffen werden das Spiel Yahtzee mit
Hilfe von KI zu l6sen, da es einen nicht deterministischen Anteil besitzt. Nicht jedes
Problem, das mittels Einsatz von KI gelost werden soll, erfiillt die Anforderungen und
Qualitédten fiir den Praxiseinsatz. Die Arbeit kann zudem als Anwendungsbeispiel fiir
zukiinftige studentische Arbeiten genutzt werden, um Weiterentwicklungen verschiedener
KI-Methoden und Algorithmen zu erforschen. Aus Sicht des Priifers ist nicht nur die
fachliche Qualitat der Losung von Bedeutung, sondern auch der Erkenntnisgewinn und

die methodische Bearbeitung der Aufgabenstellung. Dies schliefst sowohl theoretische
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4 Anforderungsanalyse

Einblicke in die Funktionsweise von KI-Systemen als auch praktische Erfahrungen in

deren Implementierung und Anwendung ein.

4.2.2 Autor der Arbeit

Mit der Erstellung der Arbeit liegt der Schwerpunkt auf der personlichen Weiterent-
wicklung im Bereich der Kiinstlichen Intelligenz. Hierbei ist es es wichtig, umfassendes
Grundlagenwissen zu erwerben und neue Féhigkeiten zu erlernen. Das Hauptziel besteht
jedoch darin, am Ende der Arbeit einen Prototypen zu erstellen, der als Referenz dienen
und von anderen Studierenden genutzt werden kann, um diese oder dhnliche Projekte

fortzufithren oder weiterzuentwickeln.

4.2.3 Interessierte an Kiinstlicher Intelligenz

Als weitere Nutzergruppen lassen sich die Interessierten identifizieren. Dies kénnten Per-
sonen sein, die sich einen greifbaren Eindruck von den Ergebnissen studentischer Arbei-
ten verschaffen mochten oder an der Art und Weise der Umsetzung interessiert sind.
Das Projekt bietet eine ideale Plattform, um das Interesse an Kiinstlicher Intelligenz
und technischer Innovation zu férdern. Es ermoglicht einen Einblick in die Potenziale der

Technologie und zeigt, wie theoretische Konzepte praktisch umgesetzt werden.

4.2.4 Spieler

Des Weiteren haben Spieler die Moglichkeit, ihre strategischen und problemlésenden
Fahigkeiten zu schirfen, wiahrend sie gleichzeitig Freude daran haben, sich mit einer KI
zu messen. Das Projekt dient somit nicht nur als Bildungs- und Forschungsinstrument,

sondern bietet auch eine unterhaltsame Freizeitbeschéftigung.

4.2.5 Weiterentwickler

Das System und die Ergebnisse dieser Arbeit bieten insbesondere fiir Studierende eine
solide Grundlage fiir weitere Entwicklungen und Forschungsarbeiten. Vor allem MINT-
Studierenden stellt das automatisierte Yahtzee-Spiel sowie die Simulation eine interessan-

te Moglichkeit dar, theoretisches Wissen in die Praxis umzusetzen. Es gibt zudem zahlrei-
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4 Anforderungsanalyse

che Ansétze, um verschiedene Konzepte der Bildverarbeitung zu testen und miteinander
zu vergleichen. Auch der physische Demonstrator eréffnet viel Raum fiir kreative Auto-
matisierungslésungen bis hin zur Robotik. Neben den Studierenden kénnte diese Arbeit
auch Menschen aus der allgemeinen Offentlichkeit als Inspirationsquelle fiir Selbststudien

oder Optimierungen dienen.

4.3 Die KI-Agenten und die Simulationsumgebung

Die folgenden beiden Unterkapitel beschreiben und analysieren die Anwendungsfélle und
Anforderungen an den KI-Agenten sowie der Simulationsumgebung. Sie stellen eine An-
leitung fiir die Systementwicklung sowie die Erstellung von Testszenarien zur Bewertung

bereit.

4.3.1 Anwendungsfille

Dieses Unterkapitel betrachtet die Anwendungsfille, die sich fiir die KI-Agenten und
der Simulationsumgebung ergeben. Die Abbildung 4.2 visualisiert die Anwendungsfalle
in einem Diagramm und stellt deren Beziehung zueinander dar. Es werden fiir eine Lo-
sungsfindung verschiedene KI-Agenten ausprobiert. Fiir eine spitere Verwendung wére
es ebenfalls von Interesse die mit den entsprechenden Parametereinstellungen erzielte
Ergebnisse zu reproduzieren oder das Lernverhalten der Agenten zu untersuchen. Dazu
muss der Anwender den Agenten nicht nur trainieren sondern auch evaluieren kénnen. Des
Weiteren kann tiber die Lernparameter die Anzahl der Durchléufe, die der Agent trainie-
ren soll, oder die Parameter, die das Lernverhalten beeinflussen, eingestellt werden. Mit
der Moglichkeit, das Spiel konfigurieren zu kénnen, kann die Grofse der Punktetabelle,
d.h. die Beriicksichtigung des oberen und / oder unteren Tabellenabschnitts, angepasst
und somit die Komplexitét des Spiels verdndert werden. Aus der Sicht des Agenten ist es
wichtig mit der Simulationsumgebung interagieren zu kénnen. Dazu wahlt er eine Aktion
aus, die die Simulationsumgebung durchfiihrt und anschlieffend den neuen Zustand des
Agenten aktualisiert. Je nach Agent stehen verschiedene Modelle zur Verfiigung. Zudem
soll die Moglichkeit der Speicherung des trainierten Modells aufgenommen werden, so
dass es zu Beginn eines neuen Trainingslaufs geladen werden kann, um die Trainings-

zeiten zu verkleinern. Auch soll es moglich sein verschieden Trainingsstdnde laden oder
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speichern zu konnen.
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Abbildung 4.2: Anwendungsfalldiagramm der Software.

4.3.2 Anforderungen

Speicher

Kamera

Die Anforderungen werden in funktionale und nicht funktionale Anforderungen unter-

schieden. Funktionale Anforderungen (F) legen fest, welche Aufgaben und Funktio-

nen das System erfiillen muss und welchen Zweck es verfolgt. Sie definieren demnach,

was das System leisten soll. Im Gegensatz dazu beschreiben nicht-funktionale An-

forderungen (NF) die Eigenschaften, Qualitdtsmerkmale oder Einschriankungen des

Systems. Sie beziehen sich darauf, wie das System seine Funktionen unter bestimmten

Bedingungen ausfiihren soll. Dazu wird im Folgenden die Anforderungen der KI-Agenten

(KTI) ausformuliert.
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4 Anforderungsanalyse

KI-F1: Aufbau einer Simulationsumgebung, mit der die KI-Agenten interagieren kénnen
und in welcher die ausgewéhlten Aktionen durchgefiihrt werden.

Die Simulationsumgebung reprisentiert das Yahtzee-Spiel mit allen notwendigen Funk-
tionen und Bedingungen, die fir die Durchfihrung der Aktion notwendig sind. Sie gibt

fiir das Training und die Evaluation die Zustandsaktualisierung an den Agenten zuriick.

KI-F2: Die Lernparameter des Agenten miissen vor dem Training anpassbar sein.

KI-F3: Das Spiel muss konfigurierbar sein, sodass die Komplexitét einstellbar ist.

Die Anforderung gilt als erfillt, wenn die Punktetabelle des Yahtzee-Spiels angepasst
werden kann. Hierzu soll die Moglichkeit bestehen, dass entweder nur mit der oberen
Punktetabelle, der oberen Punktetabelle inklusive des Bonus oder der oberen und unteren

Punktetabelle trainiert werden kann.

KI-F4: Der Trainingsfortschritt muss bewertbar visualisierbar sein.

Die Anforderung gilt als erfillt, wenn fiir die Visualisierung ein Diagramm am Ende
des Trainings generiert wird. Die Messbarkeit des Lernfortschritts ergibt sich aus der
durchschnittlich erreichten Gesamtpunktzahl sowie der durchschnittlichen Punktzahl pro

gewdhlter Kategorie.

KI-F5: Bei Agenten, die verschiedene Modelle besitzen, soll das Modell anpassbar sein.
Ein Modell kann zum Beispiel ein neuronales Netz sein. Dies kann aus mehreren Schich-
ten bestehen. Die Anzahl der Schichten soll bis zu einem Maximum von drei Schichten

eingestellt werden kénnen.

KI-F6: Sind bereits Trainingsdaten vorhanden, sollen diese bei Bedarf geladen werden
konnen.

Das Laden der vorhandenen Trainingsdaten ist fiir zwei Fdlle besonders interessant. Zum
Einen kann hiermit das Training bis zu einem bestimmten Punkt evaluiert werden oder
es kann zum Anderen fir die Fortfihrung des Trainings von einem bestimmten Punkt

aus weiterverwendet werden.
KI-F7: Trainingsdaten sollen speicherbar sein.

Diese Anforderung gilt als erfillt, wenn abhdngig von den zuvor eingestellten Parametern

die Trainingsdaten gespeichert werden kénnen.
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KI-F8: Nachdem alle notwendigen Einstellungen getétigt wurden, kann der Agent trai-
niert werden.
Der Agent soll selbststindig trainieren kénnen und es soll wihrend des Trainings keine

weitere Aktion von auflerhalb notwendig sein.
KI-NF1: Der Code soll in der Programmiersprache Python implementiert werden.

KI-NF2: Der Programmecode soll strukturiert und {ibersichtlich implementiert sein. Zu-
dem soll eine Kommentierung erfolgen, die den Code gut lesbar gestaltet und eine einfache
Wartung ermoglicht.

Es soll mit Klassen gearbeitet werden, um eine klare Struktur in zusammenhdngende Be-
reiche zu schaffen. Auferdem sollen aussagekriftige Namen fiir Variablen, Methoden und

Klassen gewdhlt werden.

4.4 Physischer Demonstrator

Der physische Demonstrator besteht unter anderem aus dem Bildverarbeitungssystem.
Auch fiir die Bildverarbeitung sollen die Anwendungsfille und Anforderungen beleuchtet

werden.

4.4.1 Anwendungsfille
Der wichtigste Anwendungsfall ist, dass die Kamera das Bild aufnimmt und daraus den

Zustand mit Bildverarbeitungsmethoden ermittelt werden kann. Anschliefsend kann der

Agent aus dem neu ermittelten Zustand eine Entscheidung iiber die Aktion ableiten.

4.4.2 Anforderungen

Daraus ergeben sich die Anforderungen fiir das Bildverarbeitungssystem BV.

BV-F1: Die fiinf Wiirfel und deren entsprechende Augenzahl soll mit einer Sicherheit
von 80% erkannt werden.

Die Anforderung gilt als erfillt, wenn die Wiirfelaugen auf den Wiirfeln innerhalb der

definierten Grenzen erkannt werden.
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BV-F2: Fiir den Fall, dass die Augenzahl auf den Wiirfeln nicht richtig erkannt wird,

muss es eine Korrekturmoglichkeit geben.
BV-F3: Nur der menschliche Spieler soll mit echten Wiirfeln spielen kénnen.

BV-F4: Das System erkennt eigensténdig, wenn ein neuer Wurf vorliegt bzw. iiber-

mittelt wurde.

BV-F5: Das System erlaubt keine Ubermittlung des Bildes nach dem zweiten Wie-

derholungswurf.

BV-F6: Nach dem zweiten Wiederholungswurf steht nur die Auswahl eines freien Feldes

auf der Punktetabelle zur Verfiigung.
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5 Konzept

Nachdem die Anforderungen an das System definiert sind, wird in diesem Kapitel auf die
Vorgehensweise eingegangen. Dazu wird im Folgenden auf die notwendigen Werkzeuge,
der konzeptionelle Aufbau der Software und mégliche Methoden, die in diesem Projekt
untersucht werden, beschrieben. Die Software setzt sich grundlegend aus der Simulati-

onsumgebung und dem Agenten zusammen.

5.1 Software

5.1.1 Entwicklungsumgebung und Programmiersprache

Die richtige Entwicklungsumgebung (IDE = Intergated Development Environment) und
Programmiersprache sind nicht unerheblich fiir die Entwicklung eines Projektes. Es ste-
hen viele Entwicklungsumgebungen zur Verfiigung: Visual Studio Code, PyCharm, Spy-
der, Jupyter Notebook, PyDev etc. Einige dieser IDEs kénnen iiber die Distribution Ana-
conda Navigator installiert werden, unter anderem Spyder. Die IDE Spyder bietet alle
notwendigen Anwendungen, wie einen integrierten Debugger, einen Variableninspektor
und eine interaktive Konsolenschnittstelle. Des Weiteren hilft Anaconda als Distribution
dabei den Uberblick iiber die installierten Bibliotheken zu behalten und bietet die Mog-
lichkeit verschiedene Versionen einer Programmiersprache zu verwenden. Bei der Pro-
grammiersprache ist es von Relevanz eine solche zu verwenden, die eine grofse Beliebtheit
besitzt, sodass das Ergebnis fiir eine grofse Interessengruppe zugénglich ist. Gleichzeitig
sollte sie leicht zu verstehen sein und viele Bibliotheken fiir das Machine Learning besit-
zen. Die Wahl fiel hier auf Python. Sie bietet eine einfache Syntax und die Mdglichkeit
flir eine strukturierte und objektorientierte Programmierung. Des Weiteren gibt es viele
verschiedene Bibliotheken fiir das Thema Machine Learning. Zudem erfreut sich Python

einer grofen Anwenderzahl in Wissenschaft und Praxis!. [39]

"https://pypl.github.io/PYPL.html
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5.1.2 Machine Learning Framework

Fiir das klassische Reinforcement Learning gibt es keine speziellen Machine Learning Fra-
meworks, die die Handhabung vereinfachen. Beim Deep Learning hingegen sind die am
héufigsten genutzten Frameworks TensorFlow und PyTorch [7]. Diese Frameworks sind
in der Programmiersprache Python verfiigbar und bieten eine breite Palette an Funk-
tionen zur Erstellung von Machine-Learning- und Deep Learning-Modellen. TensorFlow
wurde im Jahr 2016 von Google verdffentlicht, wahrend PyTorch 2017 durch Facebook
Al Research entwickelt wurde. In der Forschung gilt PyTorch heute als das bevorzug-
te Framework, wihrend TensorFlow in der Industrie hdufiger verwendet wird.[26] Die
Kombination des klassischen Reinforcement Learnings mit dem Deep Learning und des-
sen Frameworks eroffnete die Moglichkeit neue starke Algorithmen fir komplexere Pro-
blemstellungen zu entwickeln. Je nach Gegebenheit bietet das eine Framework Vorteile
gegeniiber dem Anderen. Somit wurde PyTorch fiir eine erste Implementierung gewéhlt,
weil es eine bessere Nachvollziehbarkeit bietet. Ein spiterer Umstieg auf TensorFlow mit
Keras ist nicht ausgeschlossen. Weitere Bibliotheken, die verwendet werden, sind Pandas

zur Daten Analyse in Python und Matplotlib fiir die Visualisierung von Diagrammen.

5.1.3 Simulationsumgebung

Fiir den Aufbau einer Simulationsumgebung und das Training von KI-Modellen ist Ope-
nAl Gym ein dufserst wertvolles Werkzeug. Seit seiner Veroffentlichung im April 2016
durch die Firma OpenAl wird es kontinuierlich weiterentwickelt. Die Plattform bietet
eine breite Auswahl an standardisierten Umgebungen, Algorithmen und verschiedenste
Methoden, was die Entwicklung und den Vergleich von KI-Modellen deutlich vereinfacht.
Als standardisierte Schnittstelle ermoglicht OpenAl Gym dem KI-Agenten sowohl mit
vordefinierten als auch benutzerdefinierten Umgebungen zu interagieren. Im Kern dieser
Python-Bibliothek steht die Fahigkeit eines Agenten mit seiner Umgebung auf flexible
Weise zu kommunizieren. Dadurch besteht die Moglichkeit eine Simulationsumgebung
aufzubauen, die alle KI-Agenten verwenden konnen. Dies ist auch fiir weiterfithrende

Arbeiten interessant, wenn eine Erweiterung mit anderen Algorithmen gewiinscht ist.
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5.2 Lernstrategie des Spiels Yahtzee

Yahtzee birgt beim Spielen verschiedene Herausforderungen. Zum Beispiel kann keine
Vorhersage iiber den néchsten Spielzug gemacht werden. Der Spieler weifs nicht was er
als néchstes wiirfelt. Er kann daher nicht vorher entscheiden, wann die Wahl eines Felds
sinnvoll ist. Daher besitzt das Spiel eine grofe Abhéngigkeit vom Zufall. Die einzige M6g-
lichkeit den Zufall zu reduzieren, geht ausschlieflich durch das Auswéhlen der Wiirfeln,
die der Spieler erneut im Rahmen seiner drei Versuche wiirfeln méchte. Allein der ers-
te Wurf (Initialwurf) eines Zuges besitzt bei Beriicksichtigung aller Wiirfelanordnungen
6° = 7.776 Moglichkeiten. Danach darf der Spieler noch zweimal wiirfeln und sich bei je-
dem Wurf entscheiden, welche der fiinf Wiirfel er erneut wiirfeln méchte. Um die Anzahl
an Moglichkeiten schon beim Initialwurf gering zu halten, ist es sinnvoll die Wiirfel zu
sortieren, zum Beispiel von links nach rechts aufsteigend. Dadurch wird die Anordnung
von 7.776 Moglichkeiten auf (150) = 252 Moglichkeiten reduziert. Hinzu kommen dann
noch die beiden Wiederholungswiirfe und die Auswahl des Felds. [14]

Um auch hier die Komplexitdt des Spiels weiter zu minimieren, gibt es verschiedene
Ansétze. Die Punktetabelle wird dazu wie in der Abbildung 5.1 veranschaulicht in unter-
schiedliche Segmente unterteilt. Das erste Segment (griin) des oberen Tabellenteils wird
immer trainiert. Die weiteren beide Segmente (in orange und rot) kénnen unabhingig
voneinander zusatzlich ausgewéhlt werden. So kann zum Beispiel nur mit dem oberen Ta-
bellenteil trainiert werden und der Untere bei Bedarf mit dazugenommen werden. Dies
bringt verschiedene Vorteile mit sich. Der Zustandsraum wird verkleinert. Die Zeit pro
Spiel und somit auch die Trainingszeit des Agenten werden verkiirzt. Dieser befasst sich
hierdurch erst einmal mit kleineren Herausforderungen und nicht von Beginn mit dem
gesamten Spiel. Des Weiteren ist es eine gute Option den Bonus fiir den oberen Tabel-
lenteil analog dem unteren Tabellenteil auswéhlbar zu machen. Der Bonus kann fiir den
Agenten fiir den Anfang eine zu abstrakte Belohnung sein, die er erst bei Erreichen von
mehr als 63 Punkten im oberen Tabellenteil bekommt. Dies wird im schlimmsten Fall
nie erreicht. Zusétzlich ist es gut fiir den Agenten am Anfang ohne Wiederholungswiir-
fe zu starten, sodass er den Initialwurf nur den Abschnitten der Punkttabelle zuordnen
muss. Mit diesen Aufteilungen kann die Komplexitét schrittweise gesteigert und geschaut
werden, ab wann der Agent an seine Grenzen stofit, sowohl beim Lernen als auch beim

Spielen.
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Abbildung 5.1: Beispiel einer Yahtzee Punktetabelle mit den einstellbaren Trainingsbe-
reichen.

5.3 Der Agent

Neben den verschiedenen Methoden, die fiir die Umsetzung in Betracht kommen, stellt
sich auch die Frage, ob das System mit einem oder zwei Agenten aufgebaut werden soll. So
kann zum Beispiel ein Agent entscheiden, ob er einen Wiederholungswurf tétigen oder ein
leeres Feld auswihlen mochte. Andererseits konnen die Aufgaben auch aufgeteilt werden.
Zum Beispiel lernt ein Agent, welche Wiirfel er neu wiirfelt und ein zweiter Agent, welche
Felder er auswéhlt. Die Abbildung 5.2 veranschaulicht dies, indem links das System mit

einem Agenten und rechts das System mit zwei Agenten dargestellt ist.

5.3.1 System mit einem Agenten

Das System mit einem Agenten bietet den Vorteil, dass nur ein Modell trainiert werden
muss. Der Nachteil kann unter anderem sein, dass sich das Modell nur fiir die Auswahl
der Felder eignet, aber zum Beispiel bei der hohen Komplexitdt der Auswahl der Wiir-
fel scheitern kénnte. Hier konnte bei einem System mit zwei Agenten fiir die jeweilige

Aufgabe das entsprechend beste Modell verwendet werden. Ein Vorteil bei einem System
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Abbildung 5.2: Aufbau des System mit links einem Agenten und rechts zwei Agenten.

mit nur einem Agenten ist, dass bei der Durchfiihrung der Aufgaben nur ein Belohnungs-
system beriicksichtigt werden muss. Die Belohnung kann zum Beispiel die gewonnenen
Punkte sein. Dies stellt gleichzeitig auch das Hauptziel des Spiels dar so viele Punkte wie
moglich zu erzielen. Hierdurch muss nur ein Modell kontrolliert werden, ob dieses richtig
lernt. Dies vereinfacht die Entwicklung. Bei einem System mit zwei Agenten hingegen ist
dies ein Nachteil, da zwei Agenten auf ihren Lernfortschritt hin iiberpriift werden miis-
sen. Des Weiteren stellt sich die Frage, ob beide das gleiche Belohnungssystem nutzen
kénnen. Fiir die Auswahl der Felder kénnen zum Beispiel, wie auch beim System mit
einem Agenten, die gewonnenen Punkte genutzt werden. Doch wie sieht das beim Agent
aus, der die Wiirfel auswahlt? Wie wird die Wahl der Felder belohnt und was ist eine gute
Wahl und was nicht? Nach der Abbildung 5.2 wird ersichtlich, dass eine Kommunikation
der Agenten nicht zwangsweise notwendig ist. Dies wiirde zwar die Umsetzung erleich-
tern, jedoch nicht wesentlich vereinfachen. Werden die Vor- und Nachteile gegeneinander
abgewogen, stellt sich eine Implementierung mit einem Agenten als vorteilhaft dar. Die
Tabelle 5.1 fasst die zuvor beschriebenen Kriterien in einer Tabelle zusammen, wobei +
positiv gegeniiber dem anderen Agentensystem und — negativ gegeniiber dem anderen

Agentensystem zu bewerten ist.
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Kriterien 1 Agent | 2 Agenten
Implementierungsaufwand + -
Belohnungssystem + -
Aufgabenverteilung - +
Training und Validierung + -
Extraaufwand + -

Tabelle 5.1: Kriterien fiir ein ein Agenten- oder zwei Agentensystem.

5.3.2 Methoden

In der vorliegenden Arbeit werden ausschliefslich Methoden in Betracht gezogen, die einen
Bezug zum Reinforcement Learning haben. Hierzu wurden einige Ansétze im Grund-
lagenkapitel vorgestellt. Im weiteren Verlauf der Arbeit werden Q-Learning und Deep
Q-Learning verwendet. Hierzu wird zuerst das Q-Learning untersucht und entwickelt,
weil dies eine Methode ist, die ausschlieflich auf dem Prinzip des Reinforcement Lear-
nings beruht. Q-Learning ist gegeniiber der Monte-Carlo-Methode effizienter beim Ler-
nen, weil schon wahrend des Trainings die Q-Tabelle aktualisiert und fiir das weitere
Training verwendet wird. Bei der Monte-Carlo-Methode [7] erfolgt dies erst am Ende
das Trainings. Generell wird erwartet, dass der Zustandsraum fiir eine Methode, die
ausschlieflich auf einen Bereich des Machine Learnings beruht, zu grofs ist. Fiir die ta-
bellarischen Losungsverfahren bedeutet dies einen sehr grofen Speicherbedarf, um die
Zustands-Aktions-Wertepaar abzuspeichern. Anschlieffend wird die natiirliche Erweite-
rung des Q-Learnings, das Deep Q-Learning bzw. die Deep Q-Networks untersucht. Dies
ist eine Kombination aus Deep und Q-Learning. Die Vorteile sind ein geringerer Speicher-
bedarf und weniger Trainingszeit als beim Q-Learning. Es muss jedoch zusétzlich ein
neuronales Netz entwickelt, ein Erfahrungsspeicher zur Steigerung der Lerneffizienz im-
plementiert und mehr Parameter eingestellt werden. Dies bedeutet auf den ersten Blick
gegeniiber dem Q-Learning Algorithmus mehr Aufwand, erzielt bei erfolgreichem Trai-
ning jedoch wesentlich bessere Ergebnisse. Zunéchst wird eine Epsilon-Greedy-Policy
verwendet, um das Ziel, eine h6chstmdogliche Punktzahl zu erreichen, verfolgt wird. Diese

Strategie wird fiir beide Methoden angewendet.

Bei der SARSA-Methode wird nicht nach dem bestmoglichen Ergebnis (maximale Punkt-
zahl) gestrebt, sondern ressourcenschonend versucht, die Aufgabe zu erledigen. Beim
Policy Gradient-Methode legt diese zu viel Wert darauf, Aktionen in Zusténden zu ver-

bessern, in denen der Agent bereits gelernt hat mit diesen umzugehen. Dies macht sie
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5 Konzept

sehr ineffizient und fithrt zu sehr langen Trainingszeiten. Die Actor-Critic-Methode steht
vor dem Dilemma, dass eine Entscheidung des Akteurs sowohl gut als auch schlecht sein
kann. Zum Beispiel entscheidet sich der Akteur dafiir drei Dreien zu behalten, obwohl
die Felder fiir die Dreien und die Chance schon belegt sind, da dieser mit den verblei-
benden Wiirfen einen Yahtzee erzielen mochte. Dann wiirde der Kritiker dies als gut
bewerten, obwohl das Risiko sehr hoch ist. Wird kein Yahtzee erzielt und ein Feld muss
im schlimmsten Fall mit null Punkten bewertet werden, dann wird die Entscheidung
schlechter bewertet. Der Zufall kann bei diesem Beispiel eine starke Gewichtung einneh-
men. Des Weiteren scheint der Implementierungsaufwand bei der Actor-Critic-Methode
grofler als beim Deep Q-Learning zu sein. Dies sind weitere Griinde, warum sich fiir eine
Umsetzung der Q-Learning- und der Deep Q-Learning-Algorithmen in der vorliegenden

Arbeit entschieden wurde.
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Dieses Kapitel beschreibt den Aufbau einer benutzerdefinierten Simulationsumgebung
nach dem Standard von OpenAl Gym, sodass verschiedene Reinforcement Learning
Agenten die gleiche Simulationsumgebung nutzen kénnen. Dies eréffnet auch die Moglich-
keit des Vergleichs verschiedener Agenten und wie gut diese die Problemstellung l6sen.
Hierzu wird zuerst auf den allgemeinen Aufbau der benutzerdefinierten Umgebung nach
OpenAl Gym eingegangen. Anschliefend wird die Umsetzung des Wiirfelspiels Yahtzee
beschrieben. Zum Schluss werden die Schnittstellen erldautert, die einem Agenten zur

Verfiigung stehen, um mit der erstellten Yahtzee Umgebung zu interagieren.

6.1 OpenAl Gymnasium API

OpenAl bietet zum Einen die Mdglichkeit, vorgefertigte Umgebungen zum Trainieren
von Agenten zu verwenden. Bekannte Beispiele sind u.a. Cartpole, Pendulum, Mountain-
Car oder Lunar Lander. Zum Anderen kénnen eigene Trainingsumgebungen erstellt und
mit diesen interagiert werden. Hierzu empfiehlt es sich die API (Application Program-
ming Interface) nach OpenAl Gym zu verwenden. Die Environment-Klasse besteht im

Wesentlichen aus den vier folgenden Methoden:

e init_ (): Die Init-Methode ist der Konstruktor und initialisiert das Environ-

ment und definiert den Aktions- und Zustandsraum.

e reset(): Diese Methode wird zu Beginn jeder Episode aufgerufen und versetzt das
Environment in seinen Initialzustand zuriick. Alle Parameter und Zustandsrdume

werden zuriickgesetzt.

e step(): Bei der Step-Methode wird der Parameter mit der nichsten auszufithrenden
Aktion (Action) tibergeben. Anschliefend wird diese ausgefiihrt und tiberpriift, ob

eine Belohnung (Reward) erhalten wurde. Zum Schluss gibt die Methode den neuen
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6 Entwicklung der Simulationsumgebung

Zustand (Next State), die Belohnung, ob die Trainingsepisode beendet wurde oder

nicht und, falls nétig, weitere Informationen zuriick.

e render(): Mit der Render-Methode wird die Moglichkeit gegeben, die Aktionen des
Agenten grafisch zu visualisieren. Sie bietet somit eine Moglichkeit das Lernverhal-
ten des Agent zu analysieren. Die Bibliothek PyGame bietet fiir die Visualisierung

weitere Unterstiitzungen und Moglichkeiten.

e close(): Sie ist eine zusétzliche Methode, die am Ende eines Trainings alle notwendi-
gen Bereinigungen durchfiihrt. Umgebungen, in denen das Programm durchgelau-
fen ist oder durch Fehler- bzw. Ausnahmebedingungen abgefangen wurde, schliefsen

sich automatisch von alleine.

6.2 Die benutzerdefinierte Umgebung Yahtzee

In der Bibliothek von OpenAl fiir die Standard-Trainingsumgebungen gibt es keine fiir
das Wiirfelspiel Yahtzee. Bevor mit der Implementierung begonnen werden kann, miis-
sen einige Voriiberlegungen getroffen werden. Wie sieht der Zustandsraum aus, welche

Aktionen kann der Agent auswihlen und wie soll das Belohnungssystem aussehen?

Der Zustandsraum (state_ space oder observation space) wurde in Anlehnung an die
Arbeit von Kang und Schroeder [14] entwickelt. Dabei werden die fiinf Wiirfelwerte (di-
ce_wvalues), die Kategorien der Punktetabelle, ob diese leer sind oder nicht (fields em-
pty) und wie viele Wiederholungswiirfe noch zur Verfiigung stehen (remainings rolls),
zusammengefasst. Der Zustandsraum ist zu Beginn als Dictionary definiert und kann
spéter beliebig in ein Tupel oder Array transformiert werden. Das Listing 6.1 zeigt den
verwendeten Zustandsraum. Im Listing 6.2 sind zwei Beispiele des Zustandsraums dar-
gestellt, das Erste fiir ein Dictionary und das Zweite fiir die Darstellung eines Arrays.
In dieser Darstellung ist nur der Zustandsraum fiir ein Spiel fiir den oberen Tabellen-
teil visualisiert. In einer frithen Phase der Arbeit wurden auch die behaltenen Wiirfel
(kept_ dice), also die Wiirfel, die wéhrend eines Wiederholungswurfs nicht erneut gewtir-
felt wurden, mit im Zustandsraum aufgenommen. Diese wurden wieder entfernt, weil
sie die Trainingszeit erhohten und keine Vorteile bei der Punktemaximierung bzw. beim

Training des Agenten brachten.

Des Weiteren miissen dem Agenten die gleichen Aktionen zur Verfiigung stehen wie
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# Observation space = state space
self.observation_space = gym.spaces.Dict (
{
# Values of the dice
"dice_values’: gym.spaces.MultiDiscrete([6] * 5),
# Score card boxes (is_selected, True or False)
"fields_empty’: gym.spaces.MultiDiscrete([2] x number_boxes),
# Remaining dice rolls
"remaining_rolls’: gym.spaces.Discrete (2)

Listing 6.1: Zustandsraum des Wiirfelspiels.

state_space_Dictionary = {’dice_values’ = [1, 1, 4, 6, 6],
'fields_empty’ = [0, 1, O, O, 1, 11,
"remaining_rolls’ = [2]}

state_space_Array = [1 1 4 6 6 0 1 00 1 1 2]

Listing 6.2: Beispiel des Zustandsraums als Dictionary und Array fiir den oberen
Tabellenteil mit Zufallswerten.

einem menschlichen Spieler, d.h. er darf zwischen erneutem Wiirfeln von allen oder nur
ausgewahlten Wiirfeln und dem Auswéhlen eines noch freien Felds entscheiden. Hier ist
bei der Entwicklung auf bestimmte Restriktionen zu achten. Wenn der Agent keine Wie-
derholungswiirfe mehr hat, darf er nur noch ein leeres Feld auswahlen. Mehrfachbelegung
von Feldern ist dem Agenten ebenfalls untersagt (siehe Spielregeln Kapitel 2.1). Deshalb
sind Aktionen, die die Auswahl der Felder betreffen, mit zunehmenden Spielverlauf aus
dem Aktionsraum zu entnehmen. Auch fiir den Aktionsraum (action_ space) wurde sich
an der Arbeit von Kang und Schroeder [14] orientiert. Dieser setzt sich aus der Auswahl
einer Kategorie der Punktetabelle (scorecard action space) und der Moglichkeit eines

Wiederholungswurfs bestimmter oder aller Wiirfel (dice action  space) zusammen.

self.total_action_space = gym.spaces.Discrete(len(self.

scorecard_action_space) + len(self.dice_action_space))

Wichtig ist, dass die jeweiligen Aktionsrdume nicht miteinander vertauscht werden diir-
fen. Dies hat folgende Ursache: Abhéngig davon, ob mit oder ohne dem unteren Tabellen-
abschnitt gespielt wird, ist der Aktionsraum entweder 37 oder 44 auswéahlbare Aktionen
groft. Hierbei sind die ersten Aktionen entweder von [0, ..., 5] oder [0, ..., 12] fiir die

Auswahl der Felder reserviert und die restlichen Aktionen fiir die Auswahl der Wiirfel der
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6 Entwicklung der Simulationsumgebung

Wiederholungswiirfe. Dabei kann der Fall, dass alle Wiirfel behalten werden, vernachlas-
sigt werden, weil dies der Auswahl einer Kategorie gleichzusetzen ist. Damit die richtigen
Wiirfel behalten werden, muss demzufolge der Aktionsraum fiir die Auswahl der Felder
(scorecard__action_ space) vom gesamten Aktionsraum abgezogen werden. Folglich wird
der richtige Integer Wert der ausgewéhlten Aktion in eine bindre Darstellung umgewan-

delt, um die Wiirfel zu behalten. Das folgende Beispiel soll dies veranschaulichen:

Aktionsraum = 37

Wurf = [1, 1, 4, 6, 6]

ausgewaehlte Aktion = 33

ausgewaehlte Aktion - Aktionsraum Auswahl Felder = 27
bin(27) = [1, 1, 0, 1, 1]

Aus dem Beispiel geht hervor, dass nur die Vier erneut gewiirfelt wird.

Zum Schluss bleibt noch zu entscheiden, wann der Agent eine Belohnung (reward)
erhalt. Wird dem Agenten erst ganz zum Schluss die Endpunktzahl pro Spiel mitgeteilt,
kann dies zu spét sein. Deshalb wurde zu Beginn der Arbeit entschieden, dass bei der
Auswahl eines Feldes die Punktzahl pro Runde als Belohnung zuriickgegeben wird. Dies
ghnelt dem Spielprinzip, dass die Punkte nach jeder Runde in die Tabelle eingetragen
werden. Im Laufe der Arbeit wurde die Riickgabe der Punktzahl um die Riickgabe des
Verhéltnisses des aktuellen Gewinns einer Kategorie zu der maximal erreichbaren Punkt-
zahl in dieser Kategorie (reward_ratio) erweitert. Das sind die einzigen Belohnungen, die

der Agent von der Umgebung wéhrend des Trainings erhélt.

Nach den Voriiberlegungen wird nun auf die Umsetzung eingegangen. Die fiir das Trai-
ning der Agenten entwickelte Umgebung besteht aus drei Klassen und ist im Klassendia-
gramm 6.1 veranschaulicht. Die Klasse YahtzeeEnv ist die Schnittstelle fiir die Agenten
nach dem Vorbild der OpenAl Gym API. Des Weiteren importiert sie die Klassen Dice

und Scorecard.

Die init-Methode erhalt drei Parameter: seed, has_lower part und has_bonus. Mit dem
Integer seed kann ein Zahlenwert iibergeben werden, der die Reihenfolge der zuféllig ge-
nerierten Wiirfel beeinflusst. Dies ist fiir das Trainieren der Agenten und die Suche nach
guten Lernparametern wichtig. Mit den Boolean-Parametern has lower part und has_ -
bonus kann eingestellt werden, ob der untere Tabellenteil und / oder der Bonus fiir das

Training berticksichtigt werden. In Abhéngigkeit der iibergebenden Parameter wird der
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YahtzeeEnv Scorecard
+ dice: Dice + seed: int
+ scorecard: Scorecard + has_lower_part: boolean
+ has_bonus: boolean + has_bonus: boolean
+ has_lower_part: boolean + upper_part: list[int]
+ remaining_rolls=2: int + received_scores: list[int]
+ total_reward=0: int + selected_fields: list[boolean]
+ terminated: boolean + lower_part: list[int]
+ window=None: int @ + bonus: list[int
+ action=0: int 11 = [ ] ;
| ) - __init__(seed: int, has_lower_part: boolean,

+ number_fields: int has_bonus: boolean)
+ dice_action_space: list[int] + get_received_scores(): list[int]
+ scorecard_action_space: int + get_selected_fields(): list{boolean]
+ total_action_space: list[int] - _check_bonus()
+ observation_space: Dict + set_score(dice: Dice, action: int): int
+ state_size: int - __max_dice_in_row(dice: Dice): int
+ action_size: int + get_total_score(): int
- __init__(seed: int, has_lower_part: boolean,

has_bonus: boolean) -
- _get_observation(): Dict Dice
+ get_actions(): list[int] ® + dice_values: list[int]
+ _get_info(): int 11 + keep_dice: list[boolean]
+ reset(seed=None: int):Dict, int + same_dice: list[int]

+ step(action: int): Dict, int, boolean, int
+ is_scorecard_full(): boolean

+ render()

+ close()

- __init__(seed=None: int)

+ roll_dice(): list[int]

+ get_dice_values(): list[int]

+ get_keep_dice(): listlboolean]

- _update_same_dice(): list[int]

+ set_keep_dice(list[boolean]): listfboolean]

Abbildung 6.1: Klassendiagramm der benutzerdefinierten Umgebung fiir Yahtzee.

1 def _get_observation (self):

2 dice_values = self.dice.get_dice_values/()

3 open_fields [1 if item == True else 0 for item in self.
scorecard.get_selected_fields ()]

1 return { ’'dice_values’: dice_values, ’fields_occupied’:
open_fields, ’'remaining_rolls’: self.remaining rolls }

Listing 6.3: _get_observation-Methode.

Zustands- und Aktionsraum initialisiert. Die Parameter werden an die Klasse Scorecard
weitergegeben. Die Klasse Dice hingegen benétigt nur den seed. Von der YahtzeeEnv

ausgehend werden die Klassen Scorecard und Dice initialisiert.

Die Methode get observation gibt den aktuellen Zustand zuriick. Dies beinhaltet
den Zustandsraum, wie er in den Voriiberlegungen dargestellt ist. Sie ist wichtig, damit
der Agent seinen aktuellen Zustand erhélt. Das Listing 6.3 zeigt den dazugehorigen Code.
Die reset-Methode setzt die Umgebung auf ihren Initialzustand zuriick. Dies bedeu-

tet, dass die erreichte Gesamtpunktzahl auf null zuriickgesetzt wird und die belegten
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def reset (self, seed = None):
self.remaining_rolls = 2
self.total_reward = 0
self.terminated = False
self.dice = Dice (seed = seed)
self.scorecard._ _init__ (None, self.has_lower_part, self.has_bonus

)

self.dice_action_space = list (range (self.number_fields, self.
number_ fields + (2x%x5 — 1)))

self.scorecard_action_space = list (range (0, self.number_fields))
info = None

return self._get_observation(), info

Listing 6.4: Reset-Mehode.

Felder der Scorecard wieder freigegeben werden. Dafiir wird die Klasse Scorecard neu
initialisiert. Die Methode gibt den zuriickgesetzten Zustandsraum zuriick und das Spiel

kann von Neuem starten. Das Listing 6.4 veranschaulicht die dazugehorige Methode.

Die step-Methode fiihrt die vom Agenten ausgewihlte Aktion aus. Dies kann entweder
die Wahl eines leeren Feldes der Punktetabelle oder das erneute Wiirfeln bestimmter
Wiirfel sein. Die Methode kontrolliert dabei, ob die Aktion giiltig ist. Das bedeutet bei-
spielsweise, dass das Environment unterscheiden muss, ob die gewédhlte Aktion ein Wie-
derholungswurf oder die Auswahl eines Feldes ist. Wird ein Feld ausgewahlt, wird diese
Aktion nach der Ausfiihrung aus dem Aktionsraum entfernt. Bei der Wahl dieser Kate-
gorie wird die Punktzahl (reward) und das Verhéltnis zur maximal moglichen Punktzahl
(reward_ ratio) zuriickgegeben. Die Erweiterung des rewards um das reward_ ratio wird
im folgenden Kapitel ndher beschrieben. Dynamiken, die das Lernverhalten erschweren,
sind zum Beispiel, wenn der Agent gelernt hat, dass viele Sechsen eine hohe Belohnung
bringen, aber das Feld schon belegt ist. Versucht er dennoch gezielt die Anzahl der Sech-
sen zu erhohen, bringt dies eine niedrigere Gesamtpunktzahl, weil das Feld bereits belegt
ist. Des Weiteren wird nach dem Entfernen der Aktion fiir das ausgewéhlte Feld die
Anzahl der iibrigen Wiederholungswiirfe fiir die néchste Runde wieder auf zwei gesetzt
und der Initialwurf ausgefiihrt. Ist die ausgewéhlte Aktion ein Wiederholungswurf, wird
die Lange des Aktionsraums fiir die Feldauswahl abgezogen und die Dezimalzahl in ihr
bindres Aquivalent umgewandelt. Diese wird dann an die entsprechende Methode iiber-
geben, die sich die entsprechenden Wiirfel merkt und nur die Ubrigen wiirfelt. Sollte die
Aktion in keinem der beiden Bereiche liegen, wird eine Ausnahme zuriickgegeben. Dies

hat sich bei der Entwicklung der Agenten als hilfreich erwiesen, wenn die ausgewéhlten
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1 def step(self, action):

V]

self.action = action

3 reward = 0

4 reward_ratio = 0

5 if action in self.scorecard_action_space:

6 reward, reward_ratio = self.scorecard.set_score(self.dice,
action)

7 self.scorecard_action_space.remove (action)

8 # reset all round parameters

9 self.remaining_rolls = 2

10 self.dice.keep_dice = [False] * 5

11 self.dice.roll_dice ()

12 self.dice._update_same_dice ()

13 elif action in self.dice_action_space and self.remaining_rolls >
0:

14 binActionValue = [bool ((action-self.number fields) & (1<<n))
for n in range (5) ]

5 self.dice.set_keep_dice (binActionValue)

16 self.dice.roll_dice ()

17 self.dice._update_same_dice ()

18 self.remaining rolls —= 1

19 else:

20 raise Exception("sth went wrong! Neither field category nor
dice were selected!")

21 self.observation = self._get_observation ()
22 self.terminated = self.is_scorecard_full ()
23 info = self._get_info()

24 # contain most of the logical env
25 return self.observation, reward, self.terminated, info,
reward_ratio

Listing 6.5: Step-Mehode.

Aktionen aufserhalb der Grenzen lagen. Im Normalfall gibt diese Methode den neuen Zu-
stand (next_state), die Belohnung (reward), die Beendigung der Episode (terminated)
und eine zusétzliche Information (info) zuriick. Wie zuvor erwihnt, wurde die Riickgabe
um das (reward_ratio) erweitert. Die entsprechende Methode ist im Listing 6.5 darge-
stellt.

In der Klasse YahtzeeEnv sind die folgenden, weiteren Methoden enthalten:

e get actions: Der Agent erhélt beim Aufruf dieser Methode die giiltigen Aktionen
fiir die aktuelle Runde.
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e is scorecard full: Hier wird iiberpriift, ob alle leeren Felder der Scorecard belegt
sind und der Parameter, der die Beendigung einer Episode definiert (terminated),
auf wahr gesetzt wurde. Es gibt noch den Parameter truncated, der angewendet
wird, wenn zum Beispiel eine Episode zu lange dauert oder andere Abbruchbedin-
gungen erfiillt sind. In diesem Fall wird die Episode vorzeitig beendet, aber nicht
das Training. Dieser Parameter findet hier keine Anwendung, da das Spiel deter-

ministisch ist und nach maximal 13 Runden oder 39 Ziigen endet.

e render: Die Methode bietet die Moglichkeit der visuellen Darstellung, wurde aber
nicht weiter berticksichtigt, weil die Trainingszeiten der Agenten dadurch verldngert
wird. Bei Bedarf kénnen die Spielziige iiber die Ausgabekonsole ausgegeben und

nachvollzogen werden.

e get info: Mit dieser Methode kénnen zusétzliche Informationen bereitgestellt

werden. Sie ist implementiert, wird jedoch in dieser Arbeit nicht verwendet.

e close: Die close-Methode beendet noch alle offenen Ressourcen, die von dem En-

vironment benétigt wurden, wie das Listing 6.6 zeigt.

def close(self):
if self.window is not None:
self.showrender = False
pygame.display.quit ()
pygame.quit ()

Listing 6.6: Close-Mehode.

Von der Klasse YahtzeeEnv ausgehend werden die Klassen Dice ( Wiirfel) und Scorecard
(Punktetabelle) initialisiert. Sie bilden alle notwendigen Funktionalitdten fir die Wiirfel
und die Punktetabelle ab. Fiir die Klasse Dice bedeutet dies die Ausgabe der Wiirfel-
werte (dice values) und welche Wiirfel behalten werden sollen (keep dice) und welche
Wiirfel fiir die Punkteermittlung gleich sind (same_ dice). Des Weiteren muss der Agent
zum Spielen Wiederholungswiirfe durchfithren konnen. Dafiir muss er die aktuellen Wiir-
felwerte von der Klasse Dice erhalten. Der Agent iibergibt diese der Punktetabelle oder

wahlt fiir den Folgewurf welche Wiirfel behalten werden sollen.
Fiir die Scorecard muss bei der Initialisierung darauf geachtet werden, ob der Bonus

und der untere Tabellenteil fiir das Training berticksichtigt werden. Hinzu kommt, dass

der Agent die Punkte setzen bzw. die Liste mit den aktuellen Punkten eventuell auslesen
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kénnen muss. Nach der Definition des Zustandsraums braucht der Agent eine Liste der
Punktetabelle mit den belegten Feldern. Zum Schluss benétigt der Agent die Endpunkt-
zahl fiir die Auswertung. Fiir einen schnellen Test, ob die YahtzeeEnv funktioniert, wurde
ein Random-Agent im main-Abschnitt der YahtzeeEnv implementiert, der zuféllige Ak-

tionen auswahlt.
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In diesem Kapitel wird auf den Aufbau und die Umsetzung der beiden Agenten eingegan-
gen, die das Wiirfelspiel erlernen sollen. Hierzu wird zuerst der Q-Learning Algorithmus
und anschliefend der Deep Q-Learning Algorithmus beschrieben. Im Weiteren werden
diese Beiden als Q-Agent und DQN-Agent bezeichnet. Der Q-Agent ist, wie im Kapitel
2.4.1 beschrieben, ein reiner Reinforcement Learning Algorithmus. Seine Entwicklung ist
verglichen zum DQN-Agent einfacher. Dies spiegelt sich auch in der Funktionsweise bzw.
beim Trainieren wieder. Andererseits sind die Einsatzmoglichkeiten nicht so flexibel wie
beim DQN-Algorithmus.

7.1 Aufbau der Agenten Klassen

7.1.1 Q-Agent

Der Q-Learning Off-Policy Algorithmus, der in dieser Arbeit verwendet wird, wird in der
Abbildung 7.1 in Anlehnung an Sutton [34] beschrieben. Zu Beginn wird die Q-Tabelle
Q(s, a) initialisiert. Anschlieffend wird fiir die aktuelle Trainingsepisode der Startzustand
initialisiert. Danach wird fiir jeden Schritt der aktuellen Trainingsepisode eine Aktion A
im Zustand S nach der gewéhlten Policy (e-greedy) fiir @ ausgewéhlt. Nach Ausfithrung
wird beobachtet, was der neue néichste Zustand ist. Danach wird die Q-Tabelle nach der
Formel 2.34 aktualisiert. Zum Schluss wird der neue Zustand iibergeben. Dies wiederholt
sich so lange bis der Terminierungszustand der aktuellen Trainingsepisode erreicht ist.
Im Fall von Yahtzee ist der letzte Zustand erreicht, wenn die Punktetabelle voll ist. Aus
diesem Algorithmus hat sich fiir den Q-Agent das Klassendiagramm 7.2 mit den entspre-

chenden Methoden ergeben.
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Q-learning (off-policy TD control) for estimating 7 =~ T,

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 8T,a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S,A) + a[R + ymax, Q(S’,a) — Q(S, A)]
S+ 5

until S is terminal

Abbildung 7.1: Q-Learning Algorithmus aus [34].

Agenteninitialisierung:

Fiir den Q-Agent ist nur eine Klasse (QAgent) notwendig. Alle notwendigen Parameter
werden bei der Initialisierung durch ein Dictionary parameter iibergeben. Uber das Dic-
tionary kann definiert werden, wie die Punktetabelle fiir das Training aussieht. Des Wei-
teren konnen die Lernschrittweite, der Diskontierungsfaktor, die Anzahl der Trainings-
und Evaluierungsepisoden sowie die Werte fiir die Epsilon-Strategie, also wie schnell ver-
kleinert sich Epsilon und sein Minimalwert, eingestellt werden. Zusatzlich kann die Fens-
tergrofse angepasst werden, mit dem die Graphen der Diagramme fiir die Auswertung
lokal gemittelt werden. Dadurch sind diese weniger verrauscht fiir die Interpretation. Die
Abbildung 7.3 zeigt ein verrauschtes und ein lokal gemitteltes Diagramm mit der Fens-
tergrofe von 100. An dieser Stelle wird auch die Q-Tabelle wie nach dem Algorithmus
7.1 initialisiert. Des Weiteren wird eine Liste fiir die Temporal Difference Werte erzeugt,

um zu veranschaulichen, dass diese mit der Zeit abnehmen.

Epsilon-Aktualisierung:
Die Anpassung von Epsilon erfolgt nach jedem Spiel. Wiirde die Aktualisierung nach
jedem Spielzug erfolgen, wire der Epsilonwert sehr schnell bei seinem Minimalwert. Die

Aktualisierung erfolgt in der Methode decay epsilon nach dem folgenden Schema:

€ = € — €decay_rate

€ + max(€ , €min)
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YahtzeeEnv
Scorecard
11
i
1
1

- __seed: int

- __has_lower_part: boolean

- __has_bonus: boolean

- __pretraining: boolean

- __episodes_pretraining: int

- __episodes_training: int

- __episodes_evaluation: int

+ env: YahtzeeEnv

-__Q:Dict

- _ td_value: list

- __rerolls_per_round=0: int

- __epsilon: float

- __epsilon_decay_rate: float

- __epsilon_min: float

- __ alpha: float

- __gamma: float

- __window_size: int

- __init__(parameter: Dict)

+ env_state_to_dict_index(state: Dict):tensor

+ epsilon_greedy_policy(state: tensor, actions: list[int]): int
+ decay_epsilon()

+ temporal_difference(state: tensor, action: int, reward: int, next_state: tensor): float
+ update_g_table(state: tensor, action: int, reward: int, next_state: tensor)
+ pretrain(): list[int]

+ train()

+ run_episode_policy(): int

+ evaluate()

+ plot(List_of_values: list[int], title="title', xlabel="x-label’, ylabel="y-label', color="blue")
+ moving_average(data: list[int], _ window_size=1): list[int]
+ standard_deviation(data: list[int]): float

+ save(path: string)

+ load(path: string)

QAgent

Abbildung 7.2: Klassendiagramm des Q-Agenten.

Epsilon wird dabei, um die €gecay rate verringert und kann nicht kleiner als der Wert €pin,

werden.

Aktionsauswahl:

Die Aktionsauswahl erfolgt in der Methode epsilon_greedy policy nach der im Kapitel
2.2.2 vorgestellten Strategie. Dafiir wird der aktuelle Zustand sowie die fiir diese Runde
giiltigen Aktionen iibergeben. Anschlieffend wird eine Zufallszahl p zwischen null und eins
erzeugt. Ist p kleiner als Epsilon, wird eine zufillige Aktion aus den iibergebenen Ak-
tionen ausgewéhlt. Ansonsten wird fiir den Zustand die beste Aktion aus der Q-Tabelle

ausgewdhlt und anschliefsend zurtickgegeben.
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(a) (b)

Abbildung 7.3: (a) verrauschtes Diagramm (b) lokal gemitteltes Diagramm mit einer
Fenstergrofe von 100.

# Loop for each episode

for e in range(l, self._ episodes_training + 1):
# Initialize State S
state, _ = self.env.reset ()

terminated = False
# Loop for each step of episode until finish
while not terminated:

state = self.env._get_observation ()

valid_actions = self.env.get_actions/()

# Choose A from S using epsilon-greedy policy derived from Q
action = self.epsilon_greedy_policy(state, valid_actions)

# Take action A, observe R, S’=next_state

next_state, reward, terminated, _, _ = self.env.step(action)

# Update Q-table according to Q-Learning formular
self.update_qg table(state, action, reward, next_state)
# S <—- S’
state = next_state

# repeat until S is terminal

self.decay_epsilon ()

Listing 7.1: Trainingsschleifen des Q-Agenten.

Trainieren:

Die Methode train beinhaltet die Schleifen des Q-Learning Algorithmus 7.1. Das Listing
7.1 veranschaulicht die Methode, die auf das Wesentlichste reduziert ist. Die Q-Tabelle
als auch die YahtzeeEnv werden bei der Initialisierung des Agenten mit erzeugt, wie aus
dem Klassendiagramm entnommen werden kann. In der YahtzeeEnv werden anschliefend
der Zustandsraum und der Aktionsraum definiert. Beginnt das Training, wird der Initi-

alzustand mit der reset-Methode der YahtzeeEnv hergestellt und die Variable terminated
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auf False gesetzt. Anschliefend beginnt mit der zweiten Schleife die erste Runde des
Spiels, in welcher der Agent sich zuerst den Zustandsraum (state) aus der YahtzeeEnv
ladt. Danach werden die fiir diese Runde giiltigen Aktionen wvalid_actions geladen und
beide an die Methode epsilon_ greedy policy iibergeben. Diese gibt die Aktion zuriick, die
der Agent an die step-Methode der Environment iibergibt und somit ausfiihrt. Die step-
Methode gibt, wie in Kapitel 6.2 beschrieben, den néchsten Zustand, die Belohnung, die
Terminierungsbedingung, weitere Informationen (hier mit einem Platzhalter versehen)
sowie das Belohnungsverhéltnis der erreichten zur theoretischen Maximalpunktzahl zu-
riick. Im Listing 7.1 ist das reward_ ratio ebenfalls mit einem Platzhalter versehen, weil
es fiir den Q-Agent nicht bendtigt wird. Danach erfolgt die Aktualisierung der Q-Tabelle
und die Uberschreibung des neuen Zustands zum Aktuellen. Die Uberschreibung von
state = next _state ist nicht notwendig, weil nach dem Ausfiihren der step-Methode der
neue Zustand schon der Aktuelle in der YahtzeeEnv ist und automatisch bei dem néchsten
Schleifendurchlauf zu Beginn geladen wird. Des Weiteren ist zu beachten, dass das erste
state in Listing 7.1 in Zeile vier und das erste next state in Zeile 13 in ein Numpy Array
umgewandelt werden miissen. Dies erfolgt mit der Methode env_state to dict index
und wird im Folgenden an einem Beispiel mit zufélligen Werten veranschaulicht.
Dict = {dice_values: [1, 5, 2, 6, 4]),
fields_empty: [0, 1, O, 0O, 0, 11),
21}

remaining_rolls: [

Das Beispiel-Dictionary Dict sieht dann wie folgt aus:

[1 5264010001 2]

Ist das aktuelle Spiel beendet, wird mit der Methode decay epsilon der Epsilonwert re-

duziert und das néchste Trainingsspiel gestartet, bis alle Episoden durchgelaufen sind.

Evaluieren:

Die Evaluierung funktioniert sehr &hnlich wie das Trainieren. Dafiir wurde die Metho-
de evaluate entwickelt. Der wesentliche Unterschied ist, dass sie zuerst in der Q-Tabelle
nach einer optimalen Losung schaut. Wenn es diese Situation noch nicht gab, wird eine
zufallige Entscheidung getroffen. In der Praxis konnen neue Zustédnde wéihrend der Nut-
zung in der Q-Tabelle gespeichert werden. Dies wird in dieser Arbeit nicht gemacht, um

ausschlieflich den bisherigen Trainingsstand zu bewerten.
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Speichern und Laden:

Mit den Methoden load und safe konnen alte Trainingsergebnisse geladen und Neue ge-
speichert werden. Dies bietet verschiedene Vorteile. Zum Einen kénnen bereits existieren-
de Q-Tabellen weiter trainiert werden und zum Anderen kénnen alte Trainingsergebnisse
reproduziert und erneut evaluiert werden. Die Ergebnisse werden in einer .npy-Datei ge-
speichert und sollten sich beim Laden im gleichen Verzeichnis wie die Datei des Agenten

befinden.

Auswertungen:

Fiir die Beurteilung der Ergebnisse wurden verschiedene Methoden implementiert, unter
anderem die plot-Methode. Diese ermoglicht die Ausgabe von Diagrammen im Plot Fens-
ter der Spyder IDE. Ziel der Arbeit ist es zu zeigen, dass der Agent die Gesamtpunktzahl
des Wiirfelspiels maximiert. Dafiir werden die Gesamtpunktzahlen pro Spiel, jeweils fiir
das Training und die Evaluation, in einem Diagramm festgehalten. Ein weiterer Indikator
fiir den Lernerfolg des Agenten ist, wenn die Temporale Differenz gegen null konvergiert.
Diese wird deshalb auch in einem Diagramm veranschaulicht. Zum Schluss soll noch
iiberpriift werden, ob der Agent seine Chancen zur Punktmaximierung ausnutzt. Deshalb
wird fiir das Training und die Evaluation ein Diagramm mit der Anzahl der Wiederho-
lungswiirfe pro Runde erstellt. Hinzu kommt, dass in der Konsole die durchschnittliche
Gesamtpunktzahl aller Episoden und die durchschnittlichen Punkte pro Kategorie aus-
gegeben werden. Die gleichen Konsolenausgaben und Diagramme werden auch fiir den
DQN-Agenten erstellt.

7.1.2 DQN-Agent

In der Abbildung 7.4 ist der Algorithmus nach DeepMind [21] dargestellt. Dort wird,
wie auch in dem Buch [7] von Ivan Gridin, ein DQN-Agent mit Erfahrungsspeicher ver-
wendet. Wie aus der Abbildung 7.4 hervorgeht, wird zuerst der Replay Buffer D mit
einer Kapazitdt N initialisiert. Danach wird die Aktionswertefunktion () oder auch das
neuronale Netz mit zufélligen Gewichten initialisiert. Darauf folgend wird fiir die erste
Trainingsepisode die erste Sequenz oder der erste initiale Zustand erzeugt. Anschliefend
wird fiir jeden Schritt mit der Wahrscheinlichkeit von e eine zufillige Aktion a; oder
mit der Wahrscheinlichkeit von 1 — e die Aktion a; mit der groften Erfolgschance ausge-
wahlt, ausgefiihrt und beobachtet, welcher néchste neue Zustand von dem Environment

zuriickgegeben wird. Der Ubergang (Minibatch) wird dann im Replay Buffer gespeichert.
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Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function ) with random weights
for episode = 1, M do
Initialise sequence s1 = {21} and preprocessed sequenced ¢ = ¢(s1)
fort = 1.7 do
With probability € select a random action a,
otherwise select a; = maxg Q" (P(s¢), ;0)
Execute action a; in emulator and observe reward r; and image x4
Set $401 = 8¢, ¢, Ty and preprocess Prrq1 = P(Sp41)
Store transition (¢, ag, re, ¢y41) in D
Sample random minibatch of transitions (¢, a;,r;, ¢;41) from D

T for terminal ¢
Setyj: . U O(d "0 f ter . al i
r; + 7 maxy Q(pjt1,a’;6) or non-terminal ¢ ;41
< : Y 2
Perform a gradient descent step on (y; — Q(¢;,a;:0))
end for
end for

Abbildung 7.4: DQN-Algorithmus aus [21].

Danach wird, sofern vorhanden, ein zufélliges Minibatch aus dem Replay Buffer geladen.
In Abhéngigkeit davon, ob der Terminierungszustand erreicht wurde oder nicht, wird y;
gesetzt und das Gradientenverfahren bzw. Gradientenabstiegsverfahren nach Formel 2.39
durchgefiihrt. Dies wird solange wiederholt, bis alle Trainingsepisoden M durchlaufen
sind. Aus dem Algorithmus hat sich das Klassendiagramm 7.5 ergeben. Der DQN-Agent
baut sich sehr dhnlich zum Q-Agent auf. Sie unterscheiden sich in der Agenteninitiali-
sierung, der Aktionsauswahl und dem Training des neuronalen Netzes. Daher wird im

Wesentlichen auch nur auf die Unterschiede eingegangen.

Agenteninitialisierung:

Bei der Initialisierung des Agenten werden verschiedene Parameter festgelegt, darunter
Epsilon, die Grofsen von Zustands- und Aktionsraum, der Diskontierungsfaktor Gamma,
die Batchgrofse sowie die Lernrate. Zudem wird der Replay-Buffer eingerichtet und die
Methode ~ init g net aufgerufen. Diese Methode ist fiir die Einrichtung des neurona-
len Netzes zustédndig und definiert sowohl den Optimierer als auch die Verlustfunktion.
Als Optimierer kommt Adam zum Einsatz, der in PyTorch iiber optim.Adam verfiigbar
ist. Der Adam-Optimierer wird verwendet, weil er fast immer funktioniert und viele Vor-
teile vereint. Die Verlustfunktion basiert auf dem mittleren quadratischen Fehler (Mean
Squared Error) und wird mit nn.MSELoss() implementiert. Die Wahl fiel auf diese Ver-
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| torch::nn:Module |
1 1
1 1

QNet ReplayBuffer YahtzeeEnv
+ fcl: torch.nn.Linear - __memory:collections::deque
+ fc2: torch.nn.Linear - __ batch_size: int
+ fc3: torch.nn.Linear - __experience: namedtuple

+ fcd: torch.nn.Linear - __init__(Buffer_size: int, batch_size: int)

+ bnl: torch.nn.BatchNorm1d + add(state, action, reward, next_state, done)
+ bn2: torch.nn.BatchNorm1d + get_random_batch()

+ bn3: torch.nn.BatchNorm1d - len_ ():int

- __init__(state_size, action_size, gnet: Dict)
+ forward(state): torch.Tensor

. .

DQNAgent

gt

- __device: string

- _ seed:int

- __has_lower_part: boolean

- __has_bonus: boolean

- __pretraining: boolean

+ env: YahtzeeEnv

- _ state_size: int

- __action_size: int

- __episodes_pretraining: int

- __episodes_training: int

- __episodes_evaluation: int

- __epsilon: float

- __epsilon_decay_rate: float

- __epsilon_min: float

- __memory: ReplayBuffer

- _ training_steps_counter=0: int

- __gamma: float

- __learning_rate: float

- __learn_period: int

- __g_net: QNet

- __optimizer: torch.optim.Adam

- __loss: torch.nn.MSELoss

- __print_loss_counter=0: int

- _ list_loss: list

- __rerolls_per_round=0: int

- __window_size: int

- __init__(parameter: Dict)

- __init_q_net(gnet: Dict)

+ decay_epsilon()

+ select_action(state, mode="train’): int

+ step(state, action, reward, next_state, done)
- __batch_temporal_difference_step()

+ env_state_to_dict_index(state: Dict):tensor
+ pretrain(): list[int], list[bool], list[int], int, bool
+ pretrain2(): list[bool], list[int], int

+ reroll_utility(action: int, dice_values_this_round: list[int]): int
+ train()

+ evaluate()

+ plot(List_of_values: list[int], title="title', xlabel="x-label', ylabel="y-label’, color="blue’)
+ moving_average(data: list[int], _ window_size=1): list[int]
+ standard_deviation(data: list[int]): float

+ save(path: string)

+ load(path: string)

Abbildung 7.5: Klassendiagramm des DQN-Agenten.
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lustfunktion, weil sie auch von Gridin in seinem Buch fiir die Maximierung der Belohnung
verwendet wurde. Der Q-Agent konnte in einer Klasse umgesetzt werden. Fiir den DQN-
Agent hat es sich angeboten mehrere Klassen zu erstellen. Wie im Klassendiagramm 7.5
dargestellt, gibt es fiir das neuronale Netz und den Replay Buffer jeweils eine eigene

Klasse.

Aktionsauswahl:

Kommen wir zur Trainings- oder Evaluierungssequenz mit der Aktionsauswahl. Auch
hier wird die Epsilon-Greedy-Strategie angewendet, welche in der Methode select action
umgesetzt wird. Um eine Aktion im Greedy-Modus zu wahlen, muss der aktuelle Zustand
(state) zunédchst vom Numpy-Array in ein PyTorch-Tensor umgewandelt werden, damit
das neuronale Netz ihn verarbeiten kann. Danach wird das Netzwerk in den Evaluie-
rungsmodus versetzt (self. g net.eval()) und die Berechnung von Gradienten durch
torch.no_grad() deaktiviert. Dies spart sowohl Speicher als auch Rechenzeit, da keine
Backpropagation erforderlich ist und lediglich eine Vorhersage durchgefiihrt wird. Bevor
jedoch die Aktion mit dem hoéchsten Q-Wert ausgewdhlt wird, muss der Aktionsraum
nach der Vorhersage kontrolliert werden. Deshalb wird der Methode select action auch
die giiltigen Aktionen der aktuellen Runde iibergeben, da das neuronale Netz immer die
Q-Werte fiir alle Entscheidungen zuriickgibt. Demzufolge sind auch solche Werte fiir be-
reits ausgewahlte Kategorien dabei. Diese werden vor der Wahl des hochsten Q-Werts
entfernt. Nach Abschluss der Vorhersage wird das Netzwerk wieder in den Trainingsmo-

dus mit self.  q net.train() zuriickgesetzt.

Trainieren:

Auch wenn das Trainieren der beiden Agenten grundlegend gleich ablauft, sind wie beim
Q-Agent die beiden Trainingsschleifen im Listing 7.2 dargestellt. Beim Vergleich von Lis-
ting 7.2 und Listing 7.1 wird der Vorteil der OpenAl Gym API im Kapitel 6.1 deutlich.
Beide Listings unterscheiden sich nicht. Die Aktionsauswahl (select action) sowie der
Lernschritt (step) finden an der gleichen Stelle wie beim Listing 7.1 des Q-Agenten statt.
Jedoch haben sich beim Trainieren des DQN-Agenten einige Schwierigkeiten aufgetan.
Das erste Belohnungssystem hatte nicht den gewiinschten Lerneffekt. Daher wurden im
Laufe der Arbeit verschiedene Belohnungssysteme ausprobiert. Fiir die Trainingsstrate-
gie wurde immer zuerst nur mit dem oberen Tabellenteil begonnen zu trainieren. War
dies erfolgsversprechend, wurde dies auf den unteren Tabellenteil erweitert. Auf die Er-
gebnisse wird im Kapitel 7.2 eingegangen. Im Folgenden werden die Belohnungssysteme

genauer beschrieben:
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1 # Loop for each episode:

2

for e in range(l, self._ episodes_training + 1):

# Initialise sequence
state, _ = self.env.reset ()
terminated = False
# Loop for each step of episode until finish
while not terminated:
state = self.env._get_observation ()
valid_actions = self.env.get_actions/()
# with propability epsilon select a random action
action = self.select_action(state, valid_actions)
# execute action and observe
next_state, reward, terminated, _, reward_ratio = self.env.
step (action)
# store transition in replay buffer
# sample random minibatch of transitions from replay buffer
# set v = r
# perform a gradient descent step
self.step(state, action, reward, next_state, terminated,
reward_ratio)
self.decay_epsilon ()

Listing 7.2: Trainingsschleifen des DQN-Agenten.

1. Punkte pro Kategorie (PK): Bei diesem Belohnungssystem werden die von der

Umgebung zuriickgegebenen Punkte als Belohnung zum Lernen verwendet. Dies
bedeutet, der Agent erhélt nur Belohnungen, wenn eine Kategorie ausgewahlt wird
und die Bedingungen fiir die Punkte erfiillt sind. Wiederholungswiirfe werden nicht

belohnt. Das NN wird ausschlieflich nach der Auswahl einer Kategorie aktualisiert.

. Punkte pro Kategorie riickwirkend pro Runde (PKR): Die Idee dieses Be-

lohnungssystems ist es die Punkte, welche fiir die Kategorie am Ende vergeben
werden, zu teilen. Somit werden auch die Wiederholungswiirfe mit der gleichen
Punktzahl wie auch die Auswahl der Kategorie am Ende belohnt. Dafiir werden
alle Ziige einer Runde in einer Historie gespeichert. Dies konnen maximal drei sein.
Fiir den Trainingsschritt werden die vorherigen Ziige ausgelesen und bekommen
die gleiche Belohnung, wie der letzte Zug. Anschliefend wird das NN fiir jeden Zug

aktualisiert.

. Minimum Delta (MinA): Mit der Minimum Delta-Belohnung wird zu Beginn

der Trainingsrunde die Belohnung auf 63 Punkte gesetzt. Dies entspricht der Min-

destpunktzahl, um den Bonus zu erhalten und symbolisiert die erwartete Belohnung
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fiir den oberen Tabellenteil. Jedes Mal wenn eine Kategorie ausgewahlt wird, wird
iiberpriift, ob die von der Umgebung zuriickgegebene Belohnung drei gleiche Wiirfel
hat. In diesem Fall wiirde sich die erwartete Belohnung nicht verdndern. Liegt die
Belohnung unterhalb der Grenze, wird die Summe der fehlenden Wiirfel abgezogen.
Liegt sie dagegen oberhalb der Grenze, wird diese hinzuaddiert. Betrachten wir fol-
gendes Beispiel: die erwartete Punktzahl ist die initiale Belohnung mit 63 Punkten.
Nach zwei Wiederholungswiirfen wird die Kategorie mit den Einsen ausgewéhlt. Es
wurde jedoch keine eins gewdiirfelt. Demzufolge ist die neue erwartete Belohnung
63 — 3 = 60. Bei Wiederholungswiirfen war die Runde zuvor die Belohnung gleich
der initialen Belohnung (63). Fiir die néchste Runde werden die Wiederholungs-
wiirfe nur noch mit 60 Punkten belohnt. Somit werden im Gegensatz zum ersten
Belohnungssystem auch die Wiederholungswiirfe belohnt. Die Aktualisierung der

Belohnung sieht wie folgt aus:

# (action + 1) ist die ausgewaehlte Kategorie

current_reward += (reward-((action + 1)=%3))

Das NN wird nach jedem Zug aktualisiert.

4. Maximum Delta (MaxA): Die Maximum Delta-Belohnung folgt einem #hn-
lichen Prinzip wie die Minimum Delta-Belohnung. Die von der Umgebung zuriick
erhaltene Belohnung fiir den oberen Tabellenteil muss mindestens zwei gleiche Wiir-
fel haben, sodass null zuriickgegeben wird. Die Ermittlung der Gesamtpunktzahl
ist abhéngig von der theoretisch maximalen Punktzahl fiir die Kategorie. Werden
weniger als zwei gleiche Wiirfel zuriickgegeben, erhélt der Agent eine negative Be-
lohnung. Ab drei gleichen Wiirfeln wird der Agent belohnt. Im Folgenden ist die
Aktualisierung dargestellt:

# (action + 1) ist die ausgewaehlte Kategorie

reward = reward — ((action+1l) x2)

Das NN wird nur nach der Auswahl einer Kategorie angepasst.

5. Belohnung fiir richtige Wiirfel- und Kategoriewahl (RWK): Mit diesem
Belohnungssystem wird in Anlehnung an zweite genannte Belohnungssystem ver-
sucht, rickwirkend das Auswahlen der Wiirfel zu belohnen oder zu bestrafen. Da-
fiir werden wieder die Ziige der Runde sowie die letzte ausgewéhlte Aktion (die

Wahl der Kategorie), die erhaltenen Punkte fiir die gewéhlte Kategorie und das
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reward_ratio gespeichert. Anschlieffend werden zusétzliche Belohnungen vor Be-
ginn des Trainings verteilt. Die erste zusétzliche Belohnung des DQN-Agenten ist,
wenn das reward_ ratio iber die drei Ziige zunimmt. Dafiir werden sich fiir diesen
Zustand die Wiirfelwerte angesehen und mit der letzten Aktion tiberpriift, welche
mogliche Punktzahl (Belohnung) fiir die Punktekategorie nach der letzten ausge-
wahlten Aktion erzielt worden wire. Die Klasse Scorecard wurde dafiir um die
Methode get possible_score erweitert, die die mogliche Belohnung reward und das
Gewinnverhéltnis reward_ ratio zuriickgibt. Die Methode get possible _score ist die
gleiche, wie die Methode set score in der Klasse Scorecard mit dem Unterschied,
dass nur bei dieser keine Vergabe der Punkte oder andere Aktualisierungen in der
Klasse stattfinden. Dadurch ist es moglich fiir die jeweilige Runde einen Vergleich
der beiden reward_ratios durchzufiithren und eine zusétzliche Belohnung zu ver-
geben. Nimmt das reward_ratio zu, bekommt der DQN-Agent einen zusétzlichen
Punkt. Nimmt dieses ab, werden diesem zwei Punkte abgezogen. Des Weiteren wird
der DQN-Agent zusétzlich belohnt, wenn er in diesen drei Ziigen seine Wiederho-
lungswiirfe nutzt. Dafiir wird bei der Auslesung der Rundenhistorie gepriift, ob die
Aktion ein Wiederholungswurf war. Dafiir bekommt der DQN-Agent pauschal 10
Punkte. Die pauschale Vergabe der Punkte wurde mit verschiedenen Werten ge-
testet und durfte nicht zu grof oder zu klein sein. 10 Punkte haben sich als guter
Wert durch Probieren ergeben. Nach dieser pauschalen Vergabe wird iiberpriift, ob
die Auswahl der Wiirfel zielfithrend zur Punktemaximierung waren. Dafiir wird der
DQN-Agent mit einem Punkt belohnt, wenn er die richtigen Wiirfel zum Behalten
ausgewahlt hat und mit einem Punkt bestraft, wenn er einen falschen Wiirfel, der
nicht fiir die Kategorie benotigt wird, behalten hat. Auch wird der DQN-Agent da-
fiir bestraft, wenn er einen Wiirfel vergessen hat zu behalten, der fiir diese Kategorie
gewinnbringend gewesen wire. Belohnung und Bestrafung bewegen sich hierfiir je-
weils bei einem Punkt. Nach der Vergabe aller zusétzlichen Belohnungen wird die

Trainingsmethode step fiir diesen Zug ausgefiihrt.

6. Normalisiertes RWK (NRWK): Dieses Belohnungssystem ist fast identisch
zum RWK, weil das gleiche Prinzip der Anpassung fiir die Belohnung angewen-
det wird. Es wurde jedoch eine Normalisierung der Punkte integriert. Dafiir wird
die Belohnung mit dem reward ratio iiberschrieben. Die Idee der Normalisierung
ist die Vergabe der Punkte zu vereinheitlichen und unabhéngig von den Wiirfelwer-
ten zu machen. Zum Beispiel bekommt der DQN-Agent den Wurf [1, 1, 1, 1, 6].

Sind beide Kategorien noch frei, wiirde er mit sehr hoher Wahrscheinlichkeit auf
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die Sechs gehen, anstatt auf die Einsen, weil die Sechs mehr Punkte bringt. Je-
der menschliche Spieler wiirde auf die Kategorie der Einsen gehen, weil schon vier
von fiinf Wiirfel gleich sind. Das entspricht in diesem Fall einem reward_ ratio von
0,8, bei der Sechs nur 0,2. Auch die Vergabe der zuséitzlichen Belohnungen wurde
dementsprechend angepasst. Fiir die Zunahme des reward_ ratios, wird der DQN-
Agent um 0,1 Punkte belohnt oder bei Verkleinerung des reward ratio um 0,1
Punkte bestraft. Die pauschale Belohnung fiir einen Wiederholungswurf betrigt
0,5 Punkte. Die Belohnung und Bestrafung fiir das richtige Wiirfelauswéhlen be-
wegt sich um 0,1 Punkte. Die Aktualisierung des NN erfolgt fiir das RWK und
NRWK fiir jeden Zug nachdem die Belohnungen angepasst wurden.

7. Die Reroll-Utility-Methode (R-U-M): Alle vorhergehenden Belohnungssyste-
me haben grundlegend ein positives Lernverhalten gezeigt. Jedoch waren die Er-
gebnisse bescheiden, sodass die reroll wutility-Methode eingefithrt wurde. Mit ihr
wurde sich an der Arbeit von Philip Vasseur [35] orientiert. Dieser verwendet ei-
ne Methode, die vom DQN-Agenten nur die Kategorie erhilt, auf die dieser gehen
mochte. Anschlieffend wihlt er die Wiirfel und fithrt die Wiederholungswiirfe durch.
Der gleiche Ansatz wurde mit der reroll wutility-Methode verfolgt. Dafiir wurde der
Aktionsraum, aus dem der DQN-Agent wahlen kann, verkleinert. Dieser kann nur
noch Aktionen fiir die Auswahl der Kategorien auswéhlen. Anschlieffend wird die
Auswahl der reroll_ utility-Methode iibergeben. Besitzt der DQN-Agent fiir diese
Runde noch Wiederholungswiirfe, wahlt die Methode die neu zu wiirfelnden Wiirfel
und iibergibt dem Environment anschlieftend die Aktion fiir einen Wiederholungs-
wurf. Besitzt der DQN-Agent fiir diese Runde keine Wiederholungswiirfe mehr,
wird die ausgewahlte Kategorie an das Environment tibergeben und ausgewéahlt.
Sollte die ausgewéahlte Kategorie schon optimal sein, z. B. bei einer groften Strafe,
werden alle Wiirfel behalten und die Aktion fiir die Auswahl der Kategorie direkt
dem Environment ohne Nutzung von Wiederholungswiirfen iibergeben. Der DQN-
Agent wihlt nach jedem Zug die Kategorie erneut. Die Einfiihrung der Methode
bietet den Vorteil, dass sich der Aktionsraum des DQN-Agent verkleinert, weil die
Methode die Auswahl der Wiirfel iibernimmt, die gewiirfelt werden sollen. Dafiir
muss bei der Initialisierung des Aktionsraums darauf geachtet werden, dass die
Aktionen fiir die Wiederholungswiirfe exkludiert sind. Gleichzeitig muss das Envi-
ronment diese weiterhin ausfithren, wenn sie ihm iibergeben werden. Das NN wird

nach jeder Kategorieauswahl trainiert.
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Neuronales Netzwerk:

Das neuronale Netzwerk, welches durch die QNet-Klasse repriasentiert wird, besteht
aus mehreren vollstdndig verbundenen Schichten (Linear Layers), die in PyTorch mit
nn.Linear umgesetzt werden. Jede dieser Schichten benotigt zwei Parameter: die An-
zahl der Eingabewerte und die Anzahl der Ausgabewerte. Konkret kann das Netzwerk
bis zu drei verdeckte Schichten umfassen, benannt als fcl bis fc3. Die erste Schicht (fcl)
transformiert beispielsweise Eingabedaten mit der Dimension state size (also dem Zu-
standsraum) in eine verdeckte Repréasentation mit fc1 units Neuronen. Zwischen den ein-
zelnen Schichten wird eine Batch-Normalisierung eingesetzt, um die Verteilung der Ein-
gabedaten zu stabilisieren. Das verbessert die Trainingsgeschwindigkeit und -stabilitét.
In PyTorch wird dies mit nn.BatchNormld umgesetzt, das speziell fiir eindimensionale
Daten, wie sie typischerweise in vollstindig verbundenen Schichten vorkommen, geeig-
net ist . Als Aktivierungsfunktion kommt Leaky ReLU zum Einsatz, diese wird iiber
nn. functional.leaky relu bereitgestellt. Diese Funktion erlaubt einen kleinen Gradien-
tenfluss auch fiir negative Eingabewerte, was das Problem toter Neuronen vermeidet.
Die Gewichte des Netzwerks werden mit der He-Initialisierung zuféllig gesetzt. Diese Me-
thode ist speziell fiir ReLU-basierte Aktivierungsfunktionen ausgelegt und sorgt dafiir,
dass die Gewichtswerte gut verteilt sind, um stabile Trainingsverlaufe zu ermoglichen.
In PyTorch kann die He-Initialisierung mit nn.init.kaiming uniform__ verwendet wer-
den. Der Vorwirtsdurchlauf des Netzwerks wird durch die Forward-Methode definiert.
Hier wird der Eingabezustand (state) nacheinander durch die linearen Schichten, die
Batch-Normalisierung sowie die Aktivierungsfunktionen geleitet. Die Tiefe des neurona-
len Netzes kann eingestellt werden. Demzufolge kénnen zwischen einer bis drei verdeckten
Schichten genutzt werden. Die Einstellung erfolgt iiber der Anzahl der Neuronen, die im
Parameter-Dictionary iibergeben werden, wie aus dem Listing 7.4 entnommen werden
kann. Steht dort fiir die Schicht fc3 beispielsweise ein Wert (64) wird diese initialisiert.
Steht in der Schicht fc3 None wird diese Schicht nicht initialisiert und das neuronale
Netz besitzt nur zwei verdeckte Schichten. Hinzu kommt, dass die Ausgabe des neurona-
len Netzes mit einer Softmax-Funktion normalisiert wird. Diese wird durch nn.Softmax

von Pytorch bereitgestellt.

Replay Buffer:

Die Klasse ReplayBuffer bildet das Replay-Memory ab, das im Deep Q-Learning einge-
setzt wird. Dieses speichert vergangene Erfahrungen, um die Korrelation zwischen aufein-
anderfolgenden Trainingsdaten zu verringern und somit die Stabilitdt des Lernprozesses

zu verbessern. Das Replay-Memory funktioniert nach dem FIFO-Prinzip (First In, First
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Out), wodurch ein effizienter Einfiige- und Loschmechanismus ermdoglicht wird. Die maxi-
male Speichergrofie kann definiert werden. Ist diese erreicht, wird beim Hinzufiigen eines
neuen Elements automatisch das Alteste entfernt. So wird ein Speicheriiberlauf verhin-
dert und gewéhrleistet, dass stets nur die aktuellsten Erfahrungen erhalten bleiben. Ist
der Speicher einmal voll, miissen die neuen Erfahrungen die Bedingung erfiillen, dass
ihr reward ratio grofer oder gleich 0,6 sein muss. Dies soll dafiir sorgen, dass nur noch
interessante Erfahrungen gespeichert werden. Des Weiteren werden Erfahrungen mithilfe
der Methode add in Form eines benannten Tupels strukturiert im Puffer abgelegt. Fir
das Training des neuronalen Netzes konnen mit der Methode get random_batch zufélli-

ge Mini-Batches aus dem Replay-Buffer entnommen werden.

main:

Das Ausfithren der Programme gestaltet sich bei beiden Agenten gleich. In der jeweili-
gen .py-Datei des Agenten befindet sich ein  main__ -Abschnitt. Dort wird als erstes
das Dictionary Parameter mit allen notwendigen Parametern initialisiert. In diesem Dic-
tionary konnen alle notwendigen Einstellungen vorgenommen werden, die das Training
des Agenten beeinflussen. Anschlieffend muss in dem  main_ -Abschnitt der Agent
initialisiert und das Dictionary iibergeben werden. Ist das Objekt instanziiert, kann auf
die Methoden der Klassen QAgent oder DQNAgent zugegriffen werden. Mit der Metho-
de load("Name.npy") konnen gespeicherte Trainingsdaten geladen werden. Anschliefsend
besteht die Moglichkeit von diesem Trainingsstand aus mit der Methode train weiter zu
trainieren. Sollen die Trainingsergebnisse nach dem Training gespeichert werden, steht
dafiir die Methode save("Name.npy") zur Verfiigung. Mit der Methode evaluate kann der
Agent nach dem Training evaluiert werden. Dafiir muss der Agent nicht trainiert werden,
wenn bereits ein gespeichertes Modell zuvor geladen wurde. Zum Schluss ist es ratsam die
Methode close aufzurufen, um alle benutzten Ressourcen wieder freizugeben. Anschlie-
fend konnen die Trainingsparameter {iber das Dictionary nach Belieben angepasst und
das unterschiedliche Trainingsverhalten beobachtet werden. Im Gegensatz zum Q-Agent
besitzt der DQN-Agent noch zwei weitere Klassen. Dort kénnen weitere Einstellungen
vorgenommen werden, die das Training des DQN-Agent beeinflussen koénnen. Bei der
ReplayBuffer-Klasse kann zum Beispiel beeinflusst werden, wann und welche Beispiele
flir das Training gespeichert werden sollen wohingegen bei der QNet-Klasse die gesamte
Architektur des neuronalen Netzes verdndert und angepasst werden kann. Hierzu zéhlen
unter Anderem die Anzahl der versteckten Schichten und die Aktivierungsfunktionen fiir

die jeweilige versteckte oder Ausgabeschicht.
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7.2 Training der Agenten

Nachdem der Aufbau der Agenten beschrieben wurde, soll auf das Training eingegangen
werden. Dabei wird das Trainingsverhalten der unterschiedlichen Belohnungssysteme des
DQN-Agent beleuchtet. Der Q-Agent hat keine weiteren Anpassungen erfahren. Hier
wurde sich auf die Argumentation von Kang und Schroeder [14] gestiitzt, dass der Zu-
standsaktionsraum zu speicherintensiv ist, um jede Moglichkeit in der Q-Tabelle abbilden
zu konnen. Es wurden fiir beide Agenten die gleiche Vortrainingsfunktionen entwickelt,

auf die zuerst eingegangen werden soll.

7.2.1 Vortrainingsfunktionen

In einer frithen Phase der Arbeit wurde versucht beide Agenten mit speziellen Funktionen
vorzutrainieren, sodass die Q-Tabelle oder das neuronale Netz schneller gute Zustdnde
erreicht an denen es lernen kann und nicht auf den Zufall angewiesen ist. Dafiir wurden
zwei unterschiedliche Funktionen (pretrain und pretrain2) implementiert. Die pretrain-
Funktion geht verschiedene Wiirfelzustdnde und Feldkombinationen durch, indem sie
die bereits belegten Felder, die Anzahl der Wiederholungswiirfe und Wiirfelkombinatio-
nen manipuliert. Da diese Manipulation auch das Environment betrifft, miissen neben
den Wiirfelwerten, der Anzahl der Wiederholungswiirfe und den belegten Feldern auch
die verbleibenden giiltigen Aktionen fiir diesen Zug zuriickgegeben werden. Der Vor-
teil dieser Methode ist, dass die Agenten viele verschiedene Zustdnde sehen, z. B. die
Wiirfelanordnung [1, 1, 1, 1, 1], bei welcher nur die Kategorie der Einsen oder ein
Yahtzee auswihlbar ist. Jedoch werden sehr viele andere weniger interessante Zustdnde
durchlaufen, was das Vortraining sehr lang macht, weil die Anzahl der Trainingsepiso-
den statisch ist. Die Trainingsepisoden fiir den oberen Tabellenteil ergibt sich aus der
Multiplikation von der Anzahl der Wiederholungswiirfe (3), der moglichen Wiirfelpunkte
eines Wiirfels, exponiert mit der Anzahl der Schleifen, die die Wiirfelwerte manipulie-
ren (63) und den Moglichkeiten der Kombinationen der auswithlbaren Felder minus dem
Fall, dass alle Felder belegt sind (2% — 1). Dies ergibt insgesamt 40.824 Trainingsepi-
soden. Analog ergeben sich fiir den unteren Tabellenteil 191.079.648 Trainingsepisoden.
Da dies die Trainingszeit sehr stark erhohte, jedoch keinen Mehrwert fiir das Training
brachte, wurde diese Methode verworfen. Die zweite Methode pretrain2 funktioniert fol-
gendermafsen. Sie gibt nach und nach die belegten Felder der Punktetabelle frei. Das

heifst dem Agenten steht am Anfang nur ein freies Feld zur Verfligung, das er auswéhlen
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kann. Im néachsten Schritt stehen ihm dann zwei Felder zur Verfiigung. Die Methode
manipuliert nicht die Wiirfelwerte und auch nicht die Anzahl der Wiederholungswiir-
fe. Jedoch miissen auch hier die giiltigen Aktionen zuriickgegeben werden, damit nicht
ein falsches Feld, das bereits belegt ist, ausgewéhlt werden kann. Ein Unterschied zur
pretrain-Funktion ist, dass die Anzahl der Trainingsepisoden im Parametersatz unter
episodes pre_training eingestellt werden kann. Dies beeinflusst, wie oft eine Feldkom-
bination durchlaufen werden soll. Gemeinsam haben beide Funktionen, dass sie als Funk-
tionsgenerator implementiert sind und nach jeder Riickgabe der Werte stoppen. In der
Methode train() konnen sie dann wieder getriggert werden, um eine Iteration weiter-
zugehen. Beide Vortrainingsfunktionen haben sich als nicht zielfiihrend herausgestellt,
weshalb diese Losungsstrategie verworfen wurde. Sie sind dennoch weiterhin im Code
implementiert, um die Ergebnisse reproduzierbar zu halten. Die Abbildung 7.6 zeigt
jeweils die Ergebnisse der pretrain- und pretrain2-Funktion fiir den Q-Agent und den
DQN-Agent. Zur Erinnerung durchlaufen beide Agenten die Vortrainingsschleife 40.824
Mal fiir die Methodepretrain. Die Anzahl der Wiederholungen fiir die pretrain2 kann in
den Parametern unter episodes pre training eingestellt werden. Fiir die in der Ab-

bildung 7.6 dargestellten Diagramme wurde episodes pre_training = 100 eingestellt.

7.2.2 Training des Q-Agenten

Beim Q-Agenten ist das Training wesentlich einfacher als beim DQN-Agent, da es weni-
ger Parameter mit einem Einfluss auf das Lernverhalten als beim DQN-Agent gibt. Das
Listing 7.3 veranschaulicht das Dictionary mit moéglichen Parametereinstellungen. An
diesen Stellschrauben wird fiir die Evaluierung des Q-Agenten gestellt und Anpassungen
vorgenommen. Die Einstellung des seed sorgt dafiir, dass immer die gleiche Sequenz an
Zufallszahlen erzeugt wird. Mit den Parametern has lower part und has_bonus kann
die Komplexitét eingestellt und erweitert werden, wenn diese auf True gesetzt werden.
Abgesehen von der window _size, die die Fenstergrdfe fiir eine Verringerung des Rau-
schens in den Diagrammen einstellt, beeinflussen alle anderen Parameter direkt das Trai-
ning. Die Belohnung, die der Q-Agent erhélt, sind die erreichten Punkte fiir die jeweils
ausgewihlte Kategorie. Das heiftt es gibt keine zusétzlichen Belohnungen oder Funktio-
nen, die darauf abzielen die Chancen des Q-Agenten wiahrend des Lernens zu erhdhen.
Fiir das Training des Q-Agenten wurden der Einfluss der Lernschrittweite («), der Dis-

kontierungsfaktor () und die Anzahl der Trainingsepisoden genauer untersucht. Die in
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(c) (d)

Abbildung 7.6: Ergebnisse der Vortrainingsfunktionen (a) Verlauf der Punktzahl vom
Training des Q-Agenten mit der pretrain-Methode, (b) Verlauf der Punkt-
zahl vom Training des Q-Agenten mit der pretrain2-Methode, (c) Verlauf
der Punktzahl vom Training des DQN-Agenten mit der pretrain-Methode
und (d) Verlauf der Punktzahl vom Training des DQN-Agenten mit der
pretrain2-Methode.

den folgenden Untersuchungen dargestellten Ergebnisse sind eine Zusammenfassung und
sollen einen Uberblick iiber die Auswirkung der Verinderung der Parameter geben. Es
werden die durchschnittlichen Punkte des Trainings sowie der Evaluation mit der Stan-

dardabweichung dargestellt.

Lernschrittweitentest:

Fiir die Untersuchung der Lernschrittweite wurden die Parameter wie im Listing 7.3 ein-

gestellt und « von 0,9 schrittweise um 0, 1 verkleinert.
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parameter = {
"seed’ : 3,
"has_lower_part’: False,
"has_bonus’: False,
"pre_training’: False,
"episodes_pre_training’: 10,
"episodes_training’: 100000,
"episodes_evaluation’: 2000,
"epsilon’: 1,
"epsilon_decay_rate’: 0.00001,
"epsilon_min’: 0.1,
"alpha’: 0.7,
"gamma’: 0.99,
"window_size’: 1000

}
Listing 7.3: Parameter Q-Agent.

« Training Evaluation
0,9 | 26,5 +£10,67 | 38,5 +7,73
0,8 | 27,2 £10,81 | 39,8 £ 7,46
0,7 | 27,5 £10,67 | 40,3 +7,49
0,6 | 27,5 £10,41 | 39,2 +£7,25
0,5 | 27,4 £10,17 | 39,0 +6,82
0,4 27,1 £9,75 | 37,0 £6,60
0,3 ] 26,9 £9,40 | 35,7 +6,51
0,2 | 26,4 +£8,83 | 33,2 +6,19
0,11 25,5 +£8,24 | 30,6 +6,25

Tabelle 7.1: Die durchschnittliche Gesamtpunktzahl des Lernschrittweitentests.

Fazit:

Aus der Tabelle 7.1 wird ersichtlich, dass eine zu klein gewédhlte Lernschrittweite das
Lernverhalten verschlechtert und die maximale Punktzahl abnimmt. Fiir die weiteren
Untersuchungen wurde die Lernschrittweite von 0,7 beibehalten, weil die Gesamtpunkt-
zahl beim Training grofser und die Standardabweichung kleiner war als im Versuch mit
der Lernschrittweite 0, 8. Die Tabelle 7.1 veranschaulicht sehr schén nach Gridin [7] oder
Sutton [34], dass die Lernschrittweite nicht zu grof oder zu klein sein darf. Der Q-Agent
lernt bei einer zu kleinen Lernschrittweite nicht schnell genug. Bei einer zu grofen Lern-
schrittweite beeinflussen dagegen die schwankenden Punkte (Belohnungen) die Werte der
Q-Tabelle stérker.
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v Training Evaluation
0,99 | 27,3 £10,65 | 40,0 £7,61
0,9 | 27,8 £10,18 | 38,0 £6,71
0,8 | 27,3 £9,42 | 35,2 £6,29
0,7 | 26,9 £8,93 | 33,0 £6,34
0,6 | 26,7 £8,64 | 32,5 £6,03
0,5 | 26,4 £8,45 | 31,7 £6,12
0,4 | 26,2 £8,33 | 31,5 £6,10
0,3 | 26,1 £8,29 | 31,3 £6,00
0,2 | 26,1 £8,27 | 31,1 +£6,05
0,1 | 26,0 £8,22 | 31,1 £5,94

Tabelle 7.2: Die durchschnittliche Gesamtpunktzahl nach dem Diskontierungsfaktortests.

Diskontierungsfaktortest:

Fiir die Untersuchung des Diskontierungsfaktors wurden die Parameter wie im Listing

7.3 eingestellt und + von 0,99 auf 0,9 und weiter schrittweise um 0, 1 verkleinert.

Fazit:

Aus der Tabelle 7.2 fiir den Diskontierungsfaktortest wird deutlich, dass die maximale
Punktzahl abnimmt sofern dieser zu klein gewéhlt ist. Dies liegt daran, dass der Q-Agent
nur auf kurzfristige Belohnungen aus ist. Die Abbildungen 7.7 (a) und (b) bestétigen dies,
weil die Anzahl der Wiederholungswiirfe wihrend der Evaluation vom Q-Agenten mit
kleinerem Diskontierungsfaktor kleiner ist. Fiir alle weiteren Tests und Untersuchungen

wurde ein vy von 0,99 beibehalten.

Veridnderung der Episodenanzahl:

Die Anzahl der Episoden wurde fiir die Evaluierung immer auf 2.000 Episoden gelas-
sen, um ein statistisch verwertbares Ergebnis zu bekommen. Die Anzahl der Episoden
fiir die Trainings des Q-Agent haben einen signifikanten Einfluss auf die Qualitédt der
Q-Tabelle. Dafiir wurde mit 10.000 Episoden begonnen und diese zweimal um den Fak-
tor 10 erweitert. Die epsilon_decay rate wurde dementsprechend angepasst, sodass sie
fiir 10.000 Episoden 0,0001, fiir 100.000 Episoden 0,00001 und fiir 1.000.000 Episoden
0,000001 betrug. Demzufolge befindet sich Epsilon in den letzten 10% der Trainingszeit

auf dem Minimalwert von 0,1. Es ist grundsétzlich zu empfehlen die Verzogerungsrate
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(a) (b)

Abbildung 7.7: Wiederholungswiirfe der Evaluation mit unterschiedlichen Diskontie-
rungsfaktoren (a) 0,99 und (b) 0,1.

Episoden Training Evaluation
10.000 22,0 £8,28 | 27,8 £6,94
100.000 | 27,5 £10,66 | 39,6 £7,60

1.000.000 | 29,6 +12,23 | 45,1 +7,91

Tabelle 7.3: Die durchschnittliche Gesamtpunktzahl nach Zunahme der Trainingsepiso-
den.

von Epsilon so klein wie moglich zu wéhlen, damit der Agent so viel wie moglich aus-
probieren kann. Schauen wir uns zuerst die Ergebnisse der drei Durchldufe an und wie
sich die Verldngerung der Trainingszeit auf die Gesamtpunktzahl auswirkt. Wie aus der
Tabelle 7.3 hervorgeht, nimmt sowohl beim Training als auch bei der Evaluation die
durchschnittliche Gesamtpunktzahl zu. Jedoch ist der Punkteanstieg nicht linear zum
Anstieg der Episoden. Gleiches gilt auch fiir die Tabelle 7.4, in welcher der Anstieg
der Punkte pro Kategorie von 100.000 Episoden auf 1.000.000 Episoden nicht mehr so
stark ausfillt wie bei der Zunahme von 10.000 Episoden auf 100.000 Episoden. In der
Abbildung 7.8 ist die Temporale Difference veranschaulicht, die im Idealfall gegen null
konvergiert. Die Diagramme veranschaulichen sehr gut, dass mit der Steigerung der Epi-
sodenzahl die Temporale Difference immer besser konvergiert. Das wiederum bedeutet,
dass der Agent immer besser wird, was sich auch in der Zunahme der durchschnittlichen
Gesamtpunktzahl widerspiegelt. Dass die Temporale Difference am Anfang konvergiert,
liegt an dem gewéhlten Diskontfaktor von 0,99. Aus der Abbildung 7.9 (a) entnommen
werden kann, konvergiert die Temporale Difference bei einem Diskontierungsfaktor von
0,1 sofort. Des Weiteren kann aus der Abbildung 7.9 entnommen werden, dass ab einem

Diskontierungsfaktor von 0,4 eine Divergenz zu Beginn des Trainings erkennbar ist. Dies
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Episoden Einsen | Zweien | Dreien | Vieren | Fiinfen | Sechsen
10.000 Training 0,85 1,79 2,88 4,09 5,48 6,90
2.000 Evaluation 0,92 1,98 3,36 5,23 7,26 9,00
100.000 Training 1,02 2,27 3,67 5,27 6,83 8,42
2.000 Evaluation 1,44 3,32 5,42 7,68 9,97 11,81

1.000.000 Training 1,16 2,65 4,21 5,69 7,20 8,66
2.000 Evaluation 1,50 3,92 6, 36 8,64 11,18 13,45

Tabelle 7.4: Punkte pro Kategorie in Abhéngigkeit der Trainingsepisoden.

(c)

Abbildung 7.8: Temporale Difference von (a) 10.000 Episoden, (b) 100.000 Episoden und
(c) 1.000.000 Episoden mit den Parametern aus Listing 7.3.

liegt daran, dass die erzielten Punkte (Belohnungen) sehr schwanken kénnen und der

grofte Diskontierungsfaktor diese entsprechend nach der Formel 2.34 gewichtet.

Nach den zuvor gewonnenen Erkenntnissen wurde der Q-Agent einmal mit 1.000.000

Episoden fiir das komplette Spiel trainiert. Werden die Ergebnisse der durchschnittli-
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(a) (b)

Abbildung 7.9: Temporale Difference unterschiedlicher Diskontierungsfaktoren (a) 0,1
und (b) 0,4.

chen Gesamtpunktzahl des Trainings in Hohe von 74,1 mit einer Standardabweichung
von = 32,66 Punkte mit der erreichten Punktzahl aus der Evaluation in Héhe von 117,7
mit einer Standardabweichung von =+ 28,86 Punkte verglichen, ist auch hier ein Ler-
neffekt erkennbar. Jedoch erreicht der Q-Agent gerade einmal das Niveau des Greedy
Level-1 Agenten mit einer Punktzahl von 112,541 von Kang und Schroeder [14]. Dies
kann als eine Bestétigung der Annahme interpretiert werden, warum der Q-Learning Al-
gorithmus nicht in der Arbeit der Beiden beriicksichtigt wurde. Die Q-Tabelle bendtigt
ca. 2,7 GB Speicherplatz, wohingegen die Trainings des oberen Tabellenteils nicht mehr
als ca. 32 MB brauchen.

7.2.3 Training des DQN-Agenten

Zu Beginn der Arbeit wurde angenommen, dass mehr als 1.024 Neuronen fiir die Be-
waltigung der Aufgabe bendtigt werden. Dafiir wurde zusétzlich das Cuda-Toolkit von
Nvidia installiert, um die Berechnungen auf einer Grafikkarte vom gleichnamigen Herstel-
ler machen zu koénnen. Dies verkiirzt die Trainingszeiten des DQN-Agenten erheblich. Es
stellte sich jedoch heraus, dass 64 Neuronen ausreichend waren. Verbesserungen wurden
durch die Anpassungen des Belohnungssystems erzielt. Das Listing 7.4 zeigt die Stan-
dardparameter des DQN-Agenten. Diese wurden durch Probieren ermittelt und waren
der Ausgangspunkt fiir alle weiteren Untersuchungen. Der Aufbau der Parameter ist sehr
dhnlich zu denen des Q-Agenten. Hinzu kommen noch die Parameter, die fiir den Replay
Buffer sowie fiir das neuronale Netz eingestellt werden kénnen. Dies erschwert das Finden

von geeigneten Parametern. Die Werte im Listing 7.4 haben sich als guter Ausgangspunkt

90



7 Entwicklung der Agenten

parameter = {
"seed’ : 3,
"has_lower_part’: False,
"has_bonus’: False,
"pre_training’: False,
"episodes_pre_training’: 10,
"episodes_training’: 1000,
"episodes_evaluation’: 2000,
"epsilon’: 1,
"epsilon_decay_rate’: 0.001,
"epsilon_min’: 0.1,
"replay_buffer size’: 900,
"batch_size’: 100,
"gamma’: 0.99,
"learning_rate’: 0.0001,
"learn_period’: 1,
"fcl’: 64,
TEe2 s 64,
"fc3’: None,
"window_size’: 100

Listing 7.4: Parameter DQN-Agent.

fiir das Training erwiesen, nachdem mit vielen verschiedenen, manuellen Einstellungen
getestet wurde. Des Weiteren wurde auch beim DQN-Agenten immer zundchst nur mit
dem oberen Tabellenteil trainiert und die Komplexitdt bei erfolgreichen Ergebnissen er-
hoht. Im Gegensatz zum Q-Agenten werden beim DQN-Agenten zuerst die verschiedenen
Belohnungssysteme mit den im Listing 7.4 angegebenen Parametern verglichen. Anschlie-
fend werden analog zum Q-Agent bei Feststellen eines akzeptablen Belohnungssystems
verschiedene Parameteranpassungen vorgenommen und néher beleuchtet. Die Tabelle 7.5

fasst die Belohnungssysteme noch einmal zusammen.

1. PK:

Beim Trainieren des DQN-Agenten wurde in einem ersten rudimentiren Ansatz das glei-
che Prinzip wie beim Q-Agenten verfolgt. Der DQN-Agent lernt nach jeder ausgefiihrten
Aktion. Es konnte keine Konvergenz der Verlustfunktion erzeugt werden. Des Weiteren
hat der DQN-Agent mit dieser Strategie seine Chancen mit den Wiederholungswiirfen
nicht optimal ausgenutzt. Insgesamt konnte ein positives Lernverhalten festgestellt wer-
den, weil die Gesamtpunktzahl iiber die Trainingszeit von durchschnittlich weniger als 18
Punkten auf durchschnittlich mehr als 27 Punkte zugenommen hat. Die Abbildung 7.10

91



7 Entwicklung der Agenten

Belohnungssystem Abkiirzung
1. Punkte pro Kategorie PK

2. Punkte pro Kategorie riickwirkend pro Runde PKR

3. Minimum Delta MinA

4. Maximum Delta MaxA

5. Richtige Wiirfel- und Kategoriewahl RWK

6. Normalisierte richtige Wiirfel- und Kategoriewahl NRWK

7. Reroll-Utility-Methode R-U-M

Tabelle 7.5: Zusammenfassung der Belohnungssysteme.

(b) zeigt den Verlauf der Punktzahl iiber die Trainingszeit. In der Evaluation konnten
im Schnitt 27,2 Punkte erzielt werden. Aus den in Abbildungen 7.10 (c) und (d) darge-
stellten Ergebnissen wurde geschlussfolgert, dass dem DQN-Agenten ein Anreiz gegeben
werden muss die Wiederholungswiirfe besser auszunutzen, um so seine Chancen zu erho-
hen. Die Divergenz in Abbildung 7.10 (a) ist dadurch zu begriinden, dass das Erhalten
der Punktzahl (Belohnung) sehr sprunghaft fiir den DQN-Agenten ist. Zuerst wurde sich

im Folgenden weiter auf die Maximierung der Gesamtpunktzahl fokussiert.

2. PKR:

Eine Uberlegung fiir eine bessere Nutzung der Wiederholungswiirfe durch den DQN-
Agenten bestand darin die erzielten Punkte pro Kategorie riickwirkend zu teilen. Dafiir
werden alle Ziige in einer Rundenhistorie zwischengespeichert. Wenn der DQN-Agent eine
Kategorie auswéhlt, werden die erzielten Punkte als Belohnung fiir die Wiederholungs-
wiirfe gegeben. Auch mit diesem Belohnungssystem hat sich ein positives Lernverhalten
eingestellt. Jedoch hat die Anzahl der Wiederholungswiirfe nur leicht zugenommen, wie
aus der Abbildung 7.11 ersichtlich wird. Der Verlauf der anderen Graphen verhielt sich

sehr dhnlich, wie zu PK.

3. MinA und 4. MaxA:

Die Ergebnisse von MinA und MaxA verhalten sich sehr dhnlich zueinander. In der Ab-
bildung 7.12 sind die Verldufe von MinA dargestellt. Fiir beide A-Belohnungssysteme hat
die Verlustfunktion zum ersten Mal ein Konvergenzverhalten gezeigt (siche Abbildung
7.12 (a)). Das Konvergenzverhalten kann dadurch begriindet werden, dass die Punkte
und somit die Belohnungen fiir den DQN-Agenten weniger sprunghaft sind. Des Weite-

ren musste wie beim PKR keine Rundenhistorie zur Steigerung der Wiederholungswiirfe
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(c) (d)

Abbildung 7.10: Diagramme vom PK (a) Verlustfunktion, (b) durchschnittliche Gesamt-
punktzahl pro Episode, (¢) Anzahl der Wiederholungswiirfe pro Episode
wahrend des Trainings und (d) Anzahl der Wiederholungswiirfe pro Epi-
sode wahrend der Evaluation.

(a) (b)
Abbildung 7.11: Diagramme vom PKR (a) Anzahl der Wiederholungswiirfe pro Episo-

de wihrend des Trainings und (b) Anzahl der Wiederholungswiirfe pro
Episode wiahrend der Evaluation.
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(c) (d)

Abbildung 7.12: Diagramme vom MinA (a) Verlustfunktion, (b) durchschnittliche Ge-
samtpunktzahl pro Episode, (c¢) Anzahl der Wiederholungswiirfe pro
Episode wihrend des Trainings und (d) Anzahl der Wiederholungswiir-
fe pro Episode wihrend der Evaluation.

genutzt werden. Dies liegt daran, dass die Wiederholungswiirfe im Trainingsverlauf nicht
so schnell abnehmen, wie bei der PK und PKR. Dies veranschaulichen auch die Abbil-
dungen 7.12 (c¢) und (d). Des Weiteren wird daraus ersichtlich, dass sich die Anzahl der
Wiederholungswiirfe bei der Evaluation um den letzten erreichten Wert bewegt, der beim
Training fiir die Anzahl der Wiederholungswiirfe erreicht wurde. Bei der Gesamtpunkt-

zahl bewegen sich beide um ca. 30 Punkte bei der Evaluation.

5. RWK:

RWK wurde einmal mit den Standardparametern getestet und einmal wurde die Epi-
sodenanzahl auf 10.000 erhoht und die Verzogerungsrate von Epsilon entsprechend auf
0,0001 angepasst. Der Grund fiir die Erhohung war zu tberpriifen, ob sich die Anzahl

der Wiederholungswiirfe pro Runde mit steigender Trainingsanzahl verschlechtert. Wie
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aus den Abbildungen 7.13 (a) und (b) ersichtlich wird, ist dies auch der Fall. Des Weite-
ren nahm nach der Erhohung der Episodenanzahl die Gesamtpunktzahl nicht weiter zu.
Diese bewegte sich nach Abbildungen 7.13 (c) und (d) weiter um die 30 Punkte. Auch
zeigen die Abbildungen 7.13 (e) und (f) den Verlauf der beiden Verlustfunktionen, aus
denen keine Konvergenz ersichtlich ist. Der Verlauf der Verlustfunktion stieg auch mit der
Anzahl der Episoden weiter an. Dies war ein Grund dafiir die Punkte zu normalisieren.
Dadurch wird die Belohnung fiir den DQN-Agenten weniger sprunghaft und ein Kon-
vergenzverhalten wahrscheinlicher. Des Weiteren war die Wahl der Héhe der Belohnung
fiir die Wiederholungswiirfe schwer zu ermitteln, damit der Agent einen ausreichenden
Anreiz bekommt. Werden die moglichen Punkte und somit die Belohnungen nur fiir den
oberen Tabellenteil betrachtet, dann sind die Belohnungen, die der DQN-Agent erhalten
kann, 0 bis 30 Punkte in Abhéngigkeit der gewéhlten Kategorie. Die Spriinge bei den
Punkten und somit den Belohnungen fiir den DQN-Agenten kénnen die Divergenz der

Verlustfunktion verursachen.

6. NRWK:
Das NRWK wurde wie das RWK einmal mit 1.000 und 10.000 Episoden getestet. Es zeig-
te bis auf das Konvergenzverhalten, welches mit der steigenden Episodenanzahl zunahm,

die gleichen Ergebnisse fiir die Maximierung der Gesamtpunktzahl.

7. R-U-M:

Nachdem die vorhergehenden Belohnungssysteme nicht das gewtiinschte Lernverhalten ge-
zeigt haben, wurde die reroll_ utility-Funktion entwickelt. Diese wurde von der Arbeit [35]
von Philip Vasseur inspiriert. Wie aus der Abbildung 7.15 fiir das Training entnommen
werden kann, hat sich mithilfe der reroll wtility-Funktion ein gewiinschtes Lernverhalten
fiir den oberen Tabellenabschnitt ergeben. Die Ergebnisse tangieren in Richtung der opti-
malen Strategie von Tom Verhoeff [36]. Wird die Tabelle 7.6 mit der Tabelle 3.1 in Kapitel
3.1 verglichen, schneidet der DQN-Agent in fast allen Kategorien aufer fiir die Einsen
schlechter ab. Dies kann daran liegen, dass er eine reine Maximierungsstrategie und keine
optimale Strategie verfolgt. Das bedeutet, dass der DQN-Agent bei einem Wurf, welcher
gut fiir die Kategorie der Einsen ist, versucht die maximal mdéglichen Punkte zu erzie-
len. Sind noch alle oder die Mehrheit der anderen Kategorien frei, ist das suboptimal,
weil mit dem Feld der Einsen die Verluste gering gehalten werden kénnen. Dies ist eine
mogliche Ursache, dass die durchschnittliche Gesamtpunktzahl beim DQN-Agenten in
der Evaluation in HOohe von 52,2 mit einer Standardabweichung von 4 10,33 Punkten

geringer ausfillt, als bei der optimalen Strategie von Tom Verhoeff nach der Tabelle 3.1.
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(e) (f)

Abbildung 7.13: Diagramme vom RWK (a) Anzahl der Wiederholungswiirfe pro Episode
wahrend des Trainings fiir 1.000 Episoden, (b) Anzahl der Wiederho-
lungswiirfe pro Episode wihrend des Trainings fiir 10.000 Episoden, (c)
Verlauf der Gesamtpunktzahl fiir 1.000 Episoden, (d) Verlauf der Ge-
samtpunktzahl fiir 10.000 Episoden, (e) Verlauf der Verlustfunktion fiir
1.000 Episoden und (f) Verlauf der Verlustfunktion fiir 10.000 Episoden.
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(a) (b)

Abbildung 7.14: Diagramme vom NRWK (a) Verlauf der Verlustfunktion fiir 1.000 Epi-
soden und (b) Verlauf der Verlustfunktion fir 10.000 Episoden.

Episoden Einsen | Zweien | Dreien | Vieren | Fiinfen | Sechsen
1.000 Training 1,49 3,63 5,09 6,42 8,06 10, 33
2.000 Evaluation 2,26 5,16 7,5 9,87 11,39 16,05

Tabelle 7.6: Erreichte Punkte pro Kategorie mit der R-U-M.

Ein Anreiz durch eine Belohnung fiir die Wiederholungswiirfe muss durch diese Methode
nicht gegeben werden. Es werden wie bei der PK die Punkte der ausgewéhlten Katego-
rie als Belohnung verwendet und nach der Auswahl einer Kategorie gelernt. Solange der
DQN-Agent noch Wiederholungswiirfe offen hat und die maximal mogliche Punktzahl
flir das Feld noch nicht erreicht ist, werden die Ziige ausgenutzt. Dies ist in beiden Ab-
bildungen 7.15 (c) und 7.16 (a) zu erkennen. Des Weiteren kann der Abbildung 7.16 (b)
entnommen werden, dass das neuronale Netz stabil ist, weil es um die beim Training er-
reichte maximale Punktzahl pendelt. Obwohl die Gesamtpunktzahl zunimmt, divergiert
die Verlustfunktion. Nachdem sich die reroll utility-Funktion als erfolgreich fiir den obe-
ren Tabellenabschnitt erwiesen hat, wurde diese fiir den unteren Tabellenabschnitt mit
Bonus erweitert. Fiir das komplette Spiel wuchs die durchschnittliche Gesamtpunktzahl
von ca. 70 Punkten auf ca. 130 Punkte an. In der Evaluation wurden im Schnitt 138, 4
Punkte erzielt. Des Weiteren wurde die Episodenanzahl auf 10.000 Episoden erhéht. Dies
fithrte zu einer Steigerung der Gesamtpunktzahl auf iiber 140 Punkte. Dadurch, dass die
Punkte der ausgewahlten Kategorie als Belohnung verwendet werden, fiihrt dies zu Di-
vergenz der Verlustfunktion. Die folgenden Optimierungen (O1 - O5) fiihrten schrittweise

zu einer Konvergenz und sind in den Abbildungen 7.17 veranschaulicht.

e O1: Als Belohnung wird das reward_ ratio verwendet(siche Abbildung 7.17 (a)).
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e O2: Die Episodenanzahl wurde von 1.000 auf 10.000 angehoben und die Epsilon-
verzogerungsrate von 0,001 auf 0,0001 gesetzt (sieche Abbildung 7.17 (a)).

e 0O3: Die Lernrate wurde auf 0,00001 verkleinert (siche Abbildung 7.17 (b)).

e O4: Die verdeckte Schicht fc2 wird nicht weiterverwendet (siche Abbildung 7.17
().

e O5: Zum Schluss wurde die Grofe des Replay Buffers gleich der Batchgrofe gesetzt.
Diese betrégt fiir die in der Abbildung 7.17 (d) dargestellten Verlustfunktion fiir
beide 50.

Die Optimierungen gingen jedoch zu Lasten der maximalen Punktzahl.

(c)
Abbildung 7.15: Diagramme vom R-U-M-Training. (a) durchschnittliche Gesamtpunkt-

zahl pro Episode, (b) Verlustfunktion und (c¢) Anzahl der Wiederho-
lungswiirfe pro Episode wiahrend des Trainings.

98



7 Entwicklung der Agenten

(a) (b)

Abbildung 7.16: Diagramme von der R-U-M-Evaluation. (a) durchschnittliche Gesamt-
punktzahl pro Episode, (b) Verlustfunktion und (c¢) Anzahl der Wieder-
holungswiirfe pro Episode wahrend des Trainings.

() (d)

Abbildung 7.17: Optimierte Verlustfunktionen von O1-O5 (a) O1 und O2: Verwendung
des reward _ratio und Erhohung der Episodenanzahl, (b) O3: Anpassung
der Lernrate, (c) O3: Reduzierung der Schichten des NN und (d) O5:
Grofse Replay Buffer = Batchgrofe gesetzt.
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8 Evaluierung

Zuerst werden die beiden Agenten kurz gegeniibergestellt und anschliefsend eine Priifung

der Anforderungsanalyse durchgefiihrt.

8.1 Reinforcement- vs Deep Reinforcement-Learning

Ein direkter Vergleich zwischen den beiden Agenten ist aufgrund der reroll wutility-
Methode nicht moglich. Beide Agenten haben beim Wiirfelspiel, bei welcher es nur die
Punkte der Kategorien als Belohnung gab, eine Punktmaximierung erreicht. Diese fiel
jedoch nicht im ausreichendem Mafe aus, sodass sie als Gegner fiir einen Menschen in
Frage kommen wiirden. Fiir den Q-Agent wurden keine zusétzlichen Belohnungssysteme
entwickelt. Verglichen mit dem DQN-Agenten hat der Q-Agent ohne zusétzliche Beloh-
nungssysteme ein bessere Lernverhalten gezeigt. Es konnte fiir den Q-Agent die Aussage
von Kang und Schroeder [14]| bestétigt werden, dass der Q-Learning Algorithmus fiir
das Wiirfelspiel ungeeignet ist und das Punkteniveaunur ein Level erreichte, wie der von
ihnen genutzte Greedy-Level 1 Algorithmus. Der DQN-Agent erzielte dank der reroll -
utility-Methode deutliche bessere Ergebnisse als der Q-Agent. Leider ist auch dieser noch
nicht auf dem Niveau, um gegen eine Menschen antreten zu kénnen. Dies liegt an der
reroll _utility-Methode. Diese bietet noch Verbesserungspotential, um je nach Kategorie
die Chancen zu verbessern, besonders fiir den unteren Tabellenbereich. Des Weiteren hat
sich fiir den DQN-Agent gezeigt, dass eine Verdnderung der Architektur, die im Listing
7.4 angegeben ist, nur eine geringe Auswirkung auf die Gesamtpunktzahl hat. Das heifst
eine Steigerung der Schichten und Neuronen fithrt zu keiner signifikanten Steigerung der
Gesamtpunktzahl. Das Gleiche gilt auch fiir die Verdnderung des Seeds und damit der

Zufallskomponente.
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8.2 Priifung der Anforderungen

In diesem Abschnitt sollen die Anforderungen, die im Kapitel 4.3 aufgestellt wurden,

iiberpriift werden.

KI-F1: (erfillt) Es wurde eine eigene Simulationsumgebung aufgebaut, mit dem die
Agenten interagieren konnen und in welcher die Aktionen ausgefiihrt werden. Des Wei-
teren wurde darauf geachtet, dass der Agent die Spielregeln nicht verletzen oder ein Feld

zweimal auswahlen kann.

KI-F2: (erfillt) Die Lernparameter konnen im jeweiligen main-Abschnitt des Agen-
ten angepasst werden. Dadurch befinden sie sich gebiindelt an einem Ort und werden bei

der Initialisierung des Agenten iibergeben.

KI-F3: (erfullt) Die Komplexitit des Spiels kann zusammen mit den Lernparametern
konfiguriert werden. Dafiir miissen die entsprechenden Parameter auf True gesetzt wer-
den. Die Basiseinstellung ist, dass der obere Tabellenteil immer ausgewahlt ist und um

den Bonus und / oder den unteren Tabellenteil erweitert werden kann.

KI-F4: (erfillt) Der Trainingsfortschritt wird durch die Ausgabe von Diagrammen vi-

sualisiert und durch Ausgaben von Punkten in der Konsole messbar gemacht.

KI-F5: (erfillt) Der DQN-Agent besitzt ein neuronales Netz. Des Architektur kann
in der entsprechenden Klasse angepasst werden. Das implementierte neuronale Netz be-

sitzt drei versteckte Schichten, die iiber die Lernparameter eingestellt werden kénnen.

KI-F6: (erfillt) Gibt es bereits vorhandene Trainingsdateien im Format .npy miissen
diese in das gleiche Verzeichnis wie die Agenten geladen werden. Anschliefsend muss der
Agent mit der Methode load("Name.npy") geladen werden. Es gilt darauf zu achten, dass

die gleichen Parameter eingestellt sind, mit denen der Agent zuvor trainiert wurde.
KI-F7: (erfillt) Die Trainingsdaten konnen mit der Methode safe gespeichert werden.
Der Methode muss ein Name iibergeben werden, unter welche diese die Daten speichert.

Die Daten werden im .npy Format gespeichert.

KI-F8: (erfullt) Der Agent trainiert ohne weitere Eingriffe selbststidndig, nachdem al-
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le notwendigen Einstellungen bei den Lernparametern getétigt wurden. Des Weiteren
steht neben dem Training auch eine Moglichkeit der Evaluierung zur Verfiigung. Dies
bedeutet, dass bereits gespeicherte Trainingsdaten wieder geladen und deren Ergebnisse
reproduziert werden kénnen. Dabei gilt lediglich zu beachten, dass die Lernparameter die

Gleichen sein miissen wie diejenigen, die fiir das Training eingestellt wurden.

KI-NF1: (erfillt) Alle Klassen wurden in der Programmiersprache Python implemen-

tiert.

KI-NF2: (teilweise erfillt) Das Programm wurde in verschiedene Klassen aufgeteilt.
Die Methoden der Klassen selbst besitzen noch weiteres Verbesserungspotenzial. Zum
Beispiel miissen fiir die Klasse des DQN-Agenten, abhéngig vom verwendeten Beloh-
nungssystem oder der Vortrainingsfunktion, umsténdlich Programmzeilen ein- oder aus-
kommentiert werden. Gleichzeitig tragen weitere Kommentare zu einem noch besseren

Programmversténdnis bei.

102



9 Fazit und Ausblick

Es konnte in der vorliegenden Arbeit gezeigt werden, dass der DQN-Algorithmus und
Q-Learning-Algorithmus in der Lage sind die Punkte des Wiirfelspiels Yahtzee zu ma-
ximieren. Fiir den Q-Learning-Algorithmus konnte ein erster praktischer Nachweis er-
bracht werden, dass dieser in der Arbeit von Kang und Schroeder [14] zurecht nicht
beriicksichtigt wurde. Interessanterweise war der Q-Learning-Algorithmus im Gegensatz
zum verwendeten DQN-Algorithmus in der Lage mit dem Yahtzee-Environment bessere
Lernfortschritte zu erzielen. Der DQN-Algorithmus erreichte diese grundlegend auch, je-
doch nicht so erfolgreich wie der Q-Learning-Algorithmus. Der Q-Learning-Algorithmus
nutzte unter anderem die Chancen durch die Wiederholungswiirfe besser aus. Fiir den
DQN-Algorithmus mussten extra Anreize im Belohnungssystem geschaffen werden, da-
mit dieser seine Chancen besser ausnutzt. Schlussendlich wurde sich dafiir entschieden
die Wiederholungswiirfe aus dem Aktionsraum des DQN-Agenten zu entfernen und die-

sen mit einer Hilfsfunktion zu unterstiitzen.

Fiir zukiinftige Arbeiten konnte es interessant sein, wie die Problematik der unterschied-
lichen Aufgaben in einem neuronalen Netz vereint werden konnen, da dies die grofite
Schwierigkeit bereitet hat. Hier stellt sich auch die Frage, ob ein anderer DQN-Ansatz
gewahlt werden sollte, z. B. mit einem Target-Netzwerk. Eine Untersuchung der Monte-
Carlo-Tree-Search-Methode konnte ebenfalls vielversprechend sein. Diese beiden Algo-

rithmen kénnen durchaus genauere Ergebnisse liefern.

Die Entwicklung der beiden Algorithmen hat mehr Zeit in Anspruch genommen als
urspriinglich erwartet. Dadurch konnte die urspriingliche Zielsetzung nicht vollstéandig
erreicht werden. Aus diesem Grund wurde auf die Realisierung eines Demonstrators mit
einem Kamerasystem zu Gunsten der erfolgreichen Entwicklung der Agenten verzichtet.
Dennoch bietet das erlangte Ergebnis dieser Arbeit einen guten Einstieg in das Thema
Reinforcement Learning als auch Deep Reinforcement Learning, von dem aus Weiter-

entwicklungen durchgefiihrt werden kénnen. Die Erweiterung eines Kamerasystems oder
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einer Benutzeroberfliche bieten dafiir die groften Potentiale.

Verbesserungen der Arbeit konnen unter anderem erzielt werden, in dem die Hilfsfunkti-
on fiir den DQN-Agent optimiert wird. Die Strukturierung der Agenten-Klassen kénnen
fiir ein besseres Verstdndnis ebenfalls weiter verbessert werden. Es wurden im Programm
Kommentierungen an den Schliisselstellen vorgenommen, um anderen Benutzern einen
leichten Einstieg zu bereiten. Fiir zukiinftige Arbeiten oder andere Benutzer bietet die
Arbeit den Vorteil, dass bereits erlangte Trainingsergebnisse zur Verfiigung stehen, die
reproduziert werden kénnen. Des Weiteren bietet der Aufbau des sehr einfach gehaltenen
Hauptabschnittes die Moglichkeit schnell und einfach selbst in die Thematik des Agenten

Trainings einzusteigen.

104



Literaturverzeichnis

1]

2]

13l

4]

15]

[6]

7]

18]

AREL, L. ; Liu, C. ; URBANIK, T. ; KOHLS, A.G.: Reinforcement learning-based multi-

agent system for network traffic signal control. S. 8, The University of Tennessee,
2009

BOROWIEC, Steven: AlphaGo seals 4-1 wvictory over Go grandmaster Lee
Sedol, The Guardian, 2016.
technology/2016/mar/15/googles—alphago-seals—-4-1-victory-

URL https://www.theguardian.com/

over—grandmaster—lee—-sedol

CLEVERT, Djork-Arné ; UNTERTHINER, Thomas ; HOCHREITER, Sepp: Fast and
Accurate Deep Network Learning by Exponential Linear Units (ELUs). S. 14, ICLR,
2016. — URL https://arxiv.org/pdf/1511.07289v5

DucHi, John ; HAZAN, Elad ; SINGER, Yoram: Adaptive Subgradient Methods for
Online Learning and Stochastic Optimization. S. 13, Journal of machine learning
research, 2011. — URL https://web.stanford.edu/~jduchi/projects/
DuchiHaSil0_colt.pdf

GLENN, James: An optimal strategy for Yahizee. S. 16, Loyola College in Maryland,
2006

GLOROT, Xavier ; BENGIO, Yoshua: Understanding the diffculty of training deep
feedforward neural networks. S. 8. In: Paper, Université de Montréal, 2010. — URL
https://proceedings.mlr.press/v9/glorotlOa/glorotlla.pdf

GRIDIN, Ivan: Practical Deep Reinforcement Learning with Python. bpb online,
2022. — URL www.bpbonline.com. — ISBN 978-93-55512-055

GERON, Aurélien: Praziseinstieg Machine Learning mit Scikit-Learn und Ten-
sorFlow: Konzepte, Tools und Techniken fiir intelligente Systeme. 1. Auflage.
dpunkt.verlag GmbH, 2018. — ISBN 978-3-96010-114-7

105



Literaturverzeichnis

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

HASBRO: Yahtzee Rules. S. 8, Hasbro, 1996. — URL https://www.hasbro.com/

common/instruct/yahtzee.pdf

HASBRO: Yahtzee Rules. S. 3, Hasbro, 2003. — URL https://www.hasbro.com/
common/instruct/Yahtzee_ (2003) .pdf

He, Kaiming ; ZHANG, Xiangyu ; REN, Shaoqing ; SUN, Jian: Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. S. 11,
Microsoft Research, 2015. — URL https://arxiv.org/pdf/1502.01852

HINTON, Geoffrey: Neuronal Networks for Machine Learning: Lecture 6a Owver-
view of mini-batch gradient descent. S. 31, University of Toronto, lecture,
2012. — URL https://www.cs.toronto.edu/~tijmen/csc321/slides/
lecture_slides_lec6.pdf

JENDEBERG, Daniel ; WIKSTEN, Louise: OptimalYahtzeea Comparison. S. 21, KTH.
—  URL https://www.csc.kth.se/utbildning/kth/kurser/DD143X/
dkandl3/GrouplVahid/report/Optimal_Yahtzee_Nils_DN_&_ Philip_
S.pdf

KANG, Minhyung ; SCHROEDER, Luca: Reinforcement Learning for Solving Yahtzee.
S. 7, 2018

KNncMA, Diederik P. ; BA, Jimmy: Adam: A Method for Stochastic Optimization.
S. 15, conference paper at ICLR, 2015. — URL https://arxiv.org/abs/1412.
6980

LAPAN, Maxim: Deep Reinforcement Learning, Das umfassende Prazis-Handbuch.
mitp-verlag, 2020. — ISBN 978-3-7475-0037-8

LARSSON, Marcus ; SIOBERG, Andreas: Optimal Yatzy Strategy. S. 45, KTH, 2012.
— URL https://www.csc.kth.se/utbildning/kth/kurser/DD143X/
dkandl2/Group89Michael/report/Larsson+Sjoberg.pdf

LEMKE, Christian: Reinforcement  Learning kompakt erklirt, URL
https://www.alexanderthamm.com/de/blog/einfach-erklaert-

so-funktioniert-reinforcement—-learning/, 2023

MaAoO, Hongzi ; ALIZADEH, Mohammad ; MENACHE, Ishai ; KANDULA, Srikanth:
Resource Management with Deep Reinforcement Learning. S. 7, Microsoft Research,
MIT, 2016. — URL https://people.csail.mit.edu/hongzi/content/
publications/DeepRM-HotNetsl6.pdf

106



Literaturverzeichnis

[20]

21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

MNIH, Volodymyr ; BADIA, Adria P. ; MIRzA, Mehdi ; GRAVES, Alex ; HARLEY,
Tim ; LILLICRAP, Timothy P. ; SILVER, David ; KAVUKCUOGLU, Koray: Asynchro-
nous Methods for Deep Reinforcement Learning. S. 19, Google DeepMind & MILA,
2016. — URL https://arxiv.org/pdf/1602.01783v2

MNIH, Volodymyr ; KAVUKCUOGLU, Koray ; SILVER, David ; GRAVES, Alex ; AN-
TONOGLOU, loannis ; WIERSTRA, Daan ; RIEDMILLER, Martin: Playing Atari
with Deep Reinforcement Learning. S. 9, DeepMind Technologies, 2013. — URL
https://arxiv.org/pdf/1312.5602

NIELSEN, Michael A.: Neural Networks and Deep Learning. Determination Press,
2015

NORGREN, Nils D. ; SVENSSON, Philip: Optimal Yahtzee. S. 45, KTH, 2013.
— URL https://www.diva-portal.org/smash/get/diva2:812165/
FULLTEXTO1.pdf

PERROTTA, Paolo: Machine Learning fir Softwareentwickler. dpunkt Verlag GmbH,
2020. — ISBN 978-3-86490-787-6

RASCHKA, Sebastian ; MIRJALILI, Vahid: Machine Learning mit Python und Kears,
Tensorflow 2 und Scikit-learn: Das umfassende Parxis-Handbuch fir Data Science,
Deepl Learning und Prediction Analystics. 8. Auflage. mitp-Verlag, 2021. — ISBN
978-3-7475-0215-0

RASCHKA, Sebastian ; PATTERSON, Joshua ; NOLET, Corey: Machine Learning in
Python: Main developments and technology trends in data science, machine learning,
and artificial intelligence. S. 48, URL https://arxiv.org/pdf/2002.04803,
2020

ROBBINS, Herbert ; MONRO, Sutton: A Stochastic Approzimation Method. S. 8, The
Annals of Mathematical Statistics, Ann. Math. Statist. 22(3), 400-407, September,
1951. — URL https://doi.org/10.1214/aoms/1177729586

ROSENBLATT, Frank: The perceptron: A probabilistic model for information storage
and organization in the brain. S. 23, American Psychological Association, 1958. —
URL https://doi.org/10.1037/h0042519

RUDER, Sebastian: An overview of gradient descent optimization algorithms. S. 14,
NUI Galway Aylien Ltd, 2017. — URL https://arxiv.org/pdf/1609.04747

107



Literaturverzeichnis

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

SCHULMAN, John ; MORITZ, Philipp ; LEVINE, Sergey ; JORDAN, Micheal I. ;
ABBEEL, Pieter: High-Dimensional Continuous Control using Generalized Ad-
vantage Estimation. S. 14, conference paper at ICLR, 2016. — URL https:
//arxiv.org/pdf/1506.02438

SCHULMAN, John ; WoLskl, Filip ; DHARIWAL, Prafulla ; RADFORD, Alec ; KLI-
MoV, Oleg: Proximal Policy Opimization Algorithms. S. 12, OpenAl, 2017. — URL
https://arxiv.org/pdf/1707.06347

SILVER, D. ; SCHRITTWIESER, J. ; SIMONYAN, K. ; ANTONOGLOU, [. ; HUANG,
A. ; Guez, A. ; HUBERT, T. ; La1, L. Bakerand M. ; BorTon, A. ; CHEN, Y. ;
LirLicrap, T. ; Hul, F. ; SIFRE, L. ; DRIESSCHE, G. van den ; GRAEPEL, T. ;
HassaBis, D.: Mastering the game Go without human knowledge. S. 42, Nature,
2017

SOMMER, Matthias: Resilient Traffic Management from reactive to proactive sys-
tems. S. 200, University of Augsburg, 2018

SUTTON, Richard S. ; BARTO, Andrew G.: Reinforcement Learning An Introduction,
second edition. The MIT Press, 2018. — ISBN 9780262039246

VASSEUR, Philip: Using Deep Q-Learning to Compare Strategy Ladders of Yahtzee.
S. 12, URL https://scholar.google.com/scholar?hl=de&as_sdt=0%
2C5&g=Using+Deep+Q-Learning+to+Compare+Strategy+Ladders+of+
Yahtzee&btnG=, 2019

VERHOEFF, Tom: Optimal Solitaire Yahtzee Strategies. S. 18, Eindhoven University
of Technology, 1999-2000. — URL https://www—-set.win.tue.nl/~wstomv/
misc/yahtzee/slides—2up.pdf

WATKINS, Christopher J. ; DAYAN, Peter: Technical Note Q-Learning. S. 14, Kluwer
Academics Publishers, 1992. — URL https://link.springer.com/article/
10.1007/BF00992698

WiLLIAMS, Ronald J.: Simple Statistical Gradient-Following Algorithms for Connec-
tionist Reinforcement Learning. S. 28, Kluwer Academi, 1992. — URL http:
//1link.springer.com/content/pdf/10.1007/BF00992696.pdf

ZAl1, Alexander ; BROWN, Brandon: FEinstieg in Deep Reinforcement Learning KI-
Agenten mit Python und Pytorch programmieren. Hanser-Verlag, 2020. — URL
www .hanser—-fachbuch.de. — ISBN 978-3-446-45900-7

108



Literaturverzeichnis

[40] ZEILER, Matthew D.. ADADELTA: AN ADAPTIVE LEARNING RATE ME-
THOD. S. 6, Google Inc. & New York University, 2012. — URL https://arxiv.
org/pdf/1212.5701

[41] ZHANG, Jingzhao ; HE, Tianxing ; SRA, Suvrit ; JADBABAIE, Ali: Why Gradi-
ent Clipping Accelerates Training: A Theoretical Justification for Adaptivity. S. 21,
Nassachusetts Institute of Technology, 2020. — URL https://arxiv.org/pdf/
1905.11881

109



A Anhang

Der Anhang zur Arbeit befindet sich auf der beigelegten CD und kann beim Erstgutachter

eingesehen werden. Auf dem zugehorigen Datentriager befinden sich folgende Anhénge:

e Die Custom Environment fiir das Wiirfelspiel

Der Code des Q-Agenten

Der Code des DQN-Agenten

Die Ergebnisse der verschiedenen Untersuchungen beider Agenten

Verschiedene trainierte Modelle der Agenten
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