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Abstract 

This work focuses on the development of a calculation tool for determining the energy 
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1 Einleitung 

Im Zuge des globalen und zunehmenden Wandels hin zur Elektromobilität (Karle, 2022 S. 5) 

und der gestiegenen Verfügbarkeit von Daten zu Elektrofahrzeugen gewinnt die präzise Vor-

hersage ihres Energieverbrauchs und Reichweite an Bedeutung. Dies ist besonders in der 

frühen Konzeptions- und Entwicklungsphase neuer Fahrzeugmodelle entscheidend, da ge-

naue Prognosen über den Energiebedarf eine optimierte Antriebsdimensionierung und fun-

dierte Entscheidungsfindungen ermöglichen. Eine zuverlässige Verbrauchskalkulation ermög-

licht es, die Auswirkungen von Entwicklungsentscheidungen frühzeitig zu erkennen und bildet 

somit die Grundlage für die Entwicklung effizienter und leistungsfähiger E-Fahrzeuge. 

Ein großer Nachtteil von Elektrofahrzeugen sind die im Vergleich zum Verbrenner einge-

schränkte Reichweite, so wie die Kosten der Traktionsbatterie (Karle, 2022 S. 14). Einige wich-

tige Komponenten, wie beispielsweise das Batteriesystem, bieten zudem erhebliches Poten-

zial auf zukünftige Verbesserungen. Dies erzeugt, gerade bei den Endverbrauchern, eine 

Sorge. Knapp 50% geben an, dass die Technologie noch nicht ausgereift ist, und sehen es als 

Kriterium, welches gegen den Kauf eines E-Fahrzeugs spricht (IfD, 2023). Die Sicht auf die 

Betrachtung der Käuferentscheidung wird durch weitere Umfragen unterstützt. Es zeigt sich, 

dass die Reichweite neben den Kosten und Infrastrukturproblemen, die mit Abstand größten 

Sorgen sind (Management, 2017) (Deloitte, 2021) (Management, 2017). (Civey, 2021). 

In Bezug auf den Produktentwicklungsprozess kommt durch die Gewichtsspirale eine wichtige 

Komponente bei der Dimensionierung hinzu. Dies zeigt, dass eine frühzeitige Erkennung von 

Problemen in Bezug auf die Reichweite von Bedeutung ist. Des Weiteren muss bei der Erhe-

bung empirischer Daten die technologische Entwicklung in den Modellen berücksichtigt und 

untersucht sein. Eine entscheidende Herausforderung ist es das Fahrzeug trotz teurer und 

schwerer Akkus attraktiv zu gestalten, aber genügend Reichweite im realen Betrieb zu ge-

währleisten. Hier setzt die Arbeit an sich genauer in die theoretischen Grundlagen einzuarbei-

ten, mögliche Entwicklungen und Zusammenhänge zu erkennen, und so auf einen Realver-

brauch schließen zu können.  

Die vorliegende Arbeit zielt darauf ab, das bestehende Verbrauchskalkulationstool durch die 

Integration empirischer und physikalischer Erkenntnisse zum Energiebedarf von Elektrofahr-

zeugen weiterzuentwickeln. In der Anfangsphase der Konzeptentwicklung ist es unerlässlich, 

verlässliche Prognosen zum Energieverbrauch und zur Reichweite zu erstellen, um die Di-

mensionierung des Antriebs und anderer konzeptioneller Fahrzeuggrößen zu optimieren. Hier-

für werden empirische Daten analysiert und wesentliche Einflussfaktoren identifiziert, die dann 



          
        

 
 

        
2 
 

physikalisch oder mathematisch in Zusammenhang mit anderen konzeptionellen Gesamtfahr-

zeuggrößen gebracht werden. 

Diese Untersuchung berücksichtigt nicht nur offensichtliche Parameter wie Gewicht, Antriebs-

leistung und Abmaße, sondern ein breites Spektrum potenzieller Einflussgrößen wie regene-

ratives Bremsen, Heizleistung und Batteriekapazitäten, die im bisherigen Berechnungsverfah-

ren nicht ausreichend berücksichtigt sind, aber gerade bei Elektrofahrzeugen eine entschei-

dende Rolle spielen. Ziel ist es, nur die relevantesten Faktoren in das Tool zu integrieren, um 

eine effiziente, zielgerichtete und ausreichend sichere Dimensionierung während der frühen 

Konzeptdefinitionsphase des Entwicklungsprozesses zu gewährleisten. 

2 Stand der Technik  

 

Die Überarbeitung des vorhanden Kalkulationstool für den Verbrauch von PKWs ist Ausgangs-

punkt dieser Arbeit. Bei dem Tool handelt es sich um eine Excel-Tabelle die mithilfe grundle-

gender Parameter die gesuchten Größen berechnet. Die Tabelle ist zuverlässig in der Bestim-

mung des Verbrauchs anhand weniger Parametereingaben. Es wird mithilfe weniger Konzept-

parameter auf das Leergewicht, den Verbrauch und die Reichweite des Fahrzeugs geschlos-

sen. Das Tool ermöglicht die Bestimmung des Verbrauchs nach NEFZ, WLTC sowie eines 

Realverbrauchs. Im Folgenden wird das aktuelle Tool genauer vorgestellt um einen Einblick in 

die aktuelle Lösung für Verbrenner zu geben. Eine weitere Darstellung des NEFZ entfällt, da 

dieser durch den WLTC abgelöst ist. 

Der WLTC (Worldwide Harmonized Light Vehicles Test Cycle) ist der zugrunde liegende Fahr-

zyklus im Rahmen des WLTP (Worldwide Harmonized Light Vehicles Test Procedure). Der 

WLTP beschreibt alle fest definierten Rahmenbedingungen, um den WLTC einheitlich durch-

zuführen. Es umfasst unteranderem die Regelung einer Berücksichtigung von Sonderausstat-

tungen, Reifendruck und Umgebungstemperatur.  Der WLTC beinhaltet verschiedene Fahr-

zyklen, wobei sich diese Arbeit auf den WLTC Class 3 Zyklus konzentriert. Dieser Zyklus ist 

für Fahrzeuge mit einem Leistungsgewicht von mindestens 34 kW/t ausgelegt.  Eine weitere 

Unterteilung findet in Fahrzeuge mit einer Höchstgeschwindigkeit von unter 120km/h (Class 

3a und über 120km/h statt. Im Folgenden beschreibt WLTC immer den WLTC Class 3b-Zyklus. 

Es ist wichtig zwischen WLTC und WLTP zu unterscheiden. Der WLTC bezeichnet den reinen 

Fahrzyklus, wobei der WLTP die gesamte Prozedur zur Einhaltung der festgelegten Vorschrif-

ten beinhaltet.  
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2.1 Leergewichtsberechnung 

Das aktuelle Tool berechnet das Leergewicht eines Fahrzeugs nach der Methode von (Yanni, 
et al., 2010). Das Karosseriegewicht ist mit Hilfe einer Ersatzdichte und des Ersatzvolumens, 

basierend auf den Fahrzeugdimensionen, ermittelt. Die Ersatzdichte ergibt sich aus dem Stahl 

und Aluminiumanteil der Karosserie. Diese Ersatzdichte steht in einem Verhältnis zum Ersatz-

volumen des Fahrzeugs, das aus den Fahrzeugdimensionen abgeleitet wird. Mithilfe dieser 

Werte ist das Karosseriegewicht bestimmt. 

 

𝐸𝑟𝑠𝑎𝑡𝑧𝑑𝑖𝑐ℎ𝑡𝑒	 -
𝑘𝑔
𝑚!1 = 102

𝑘𝑔
𝑚! ⋅ 𝑆𝑡𝑎ℎ𝑙𝑎𝑛𝑡𝑒𝑖𝑙	(%) + 82

𝑘𝑔
𝑚! ⋅ 𝐴𝑙𝑢𝑚𝑖𝑛𝑖𝑢𝑚𝑎𝑛𝑡𝑒𝑖𝑙(%) 

 

𝐸𝑟𝑠𝑎𝑡𝑧𝑣𝑜𝑙𝑢𝑚𝑒𝑛	(𝑚!) = 𝐹𝑎ℎ𝑟𝑧𝑒𝑢𝑔𝑙ä𝑛𝑔𝑒	(𝑚) ⋅ 𝐹𝑎ℎ𝑟𝑧𝑒𝑢𝑔𝑏𝑟𝑒𝑖𝑡𝑒	(𝑚) ⋅ 𝐹𝑎ℎ𝑟𝑧𝑒𝑢𝑔ℎöℎ𝑒	(𝑚) 

 

𝐾𝑎𝑟𝑜𝑠𝑠𝑒𝑟𝑖𝑒𝑔𝑒𝑤𝑖𝑐ℎ𝑡	(𝑘𝑔) = 𝐸𝑟𝑠𝑎𝑡𝑧𝑣𝑜𝑙𝑢𝑚𝑒𝑛	(𝑚!) ⋅ 𝐸𝑟𝑠𝑎𝑡𝑧𝑑𝑖𝑐ℎ𝑡𝑒	(𝑘𝑔𝑚!) 

Zusätzlich wird das Gewicht des Antriebsstrangs in Abhängigkeit von der Leistung berücksich-

tigt  (Yanni, et al., 2010). Für Dieselfahrzeuge, Cabrios und per Allrad angetriebene Fahrzeuge 

wird ein empirisch ermittelter Wert hinzuaddiert. 

𝐴𝑛𝑡𝑟𝑖𝑒𝑏𝑠𝑠𝑡𝑟𝑎𝑛𝑔 = 1,38
𝑘𝑔
𝑘𝑊 ⋅ 𝐿𝑒𝑖𝑠𝑡𝑢𝑛𝑔	(𝑘𝑊) 

 

Es ergibt sich das Leergewicht des Fahrzeugs. Der Ausdruck „Gewicht“ ist physikalisch nicht 

richtig. Korrekterweise muss von der Leermasse gesprochen werden. Da auch im Experten-

kreis das Wort Leergewicht synonym Verwendung findet, wird es in der Arbeit weiter genutzt. 

Ein durchgeführter Benchmark mit 25 Verbrenner-Fahrzeugen unterschiedlicher Fahrzeug-

klassen zeigt die Genauigkeit der Modellberechnung (vgl. Abb. 1). 
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Abbildung 1 Prozentuale Abweichung des berechneten Leergewicht nach Fahrzeugklasse 

2.2 Verbrauchsberechnung 

Die Berechnung des Verbrauchs setzt sich, aufbauend auf das Leergewicht, aus mehreren 

Komponenten zusammen. Der größte Einflussfaktor sind die Fahrwiderstände. Diese teilen 

sich in die drei Hauptfahrwiderstände: Luft-, Roll- und Beschleunigungswiderstand auf (Karle, 

2022 S. 125), (Liebl, et al., 2014 S. 190), (Doppelbauer, 2020 S. 99). Hinzukommen beim 

Verbrenner Restbremsmomente, Gelenkwellenverluste, Getriebeverluste, elektrische Ver-

braucher, ein Generatorverlust, Klimatisierung und die natürliche Rekuperation.  

2.2.1 Fahrwiderstände 

Die Berechnung der Fahrwiderstände basiert auf Grundlage des WLTC. Ein gesetzlich vorge-

schriebener Fahrzyklus auf dem Rollenprüfstand entspricht immer einer Fahrt auf einer Ebene 

(Liebl, et al., 2014 S. 188). Die Fahrwiderstände setzten sich daher wie folgt zusammen: 

Luftwiderstand ergibt sich aus: 

𝐹! = 0,5 ⋅ 𝜌 ⋅ 𝑐" ⋅ 𝐴#$%&' ⋅ 𝜐( 

Der Luftwiderstand eines Fahrzeugs entsteht überwiegend durch Druckdifferenzen in Strö-

mungsrichtung (Anteil Druckwiderstand >80%), Reibung an der Fahrzeugoberfläche und Ver-

luste durch die Durchströmung von Kühler und Motorraum. Diese Widerstände werden im di-

mensionslosen cw-Wert zusammengefasst. Der Luftwiderstand steigt mit der 
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Geschwindigkeit, wobei auch Windgeschwindigkeit und -richtung Einfluss haben. Seitenwinde 

erhöhen den Widerstand meist nur geringfügig (Schütz, 2023 S. 54f). 

 

Rollwiderstand ergibt sich aus: 

𝐹) = 𝑓 ⋅ 𝑚 ⋅ 𝑔 

Der Rollwiderstand entsteht hauptsächlich durch sogenannte Walkverluste bei der Deforma-

tion der Reifenstruktur während des Abrollens. Diese entstehen durch die Kompression und 

Biegung der Lauffläche und Seitenwände. Weitere Faktoren sind Mikroschlupf zwischen Rei-

fen und Straße, Schwingungen, Reibungsverluste in Radlagern sowie Luftverwirbelungen. Der 

Rollwiderstandsbeiwert hat sich in den letzten Jahrzehnten deutlich reduziert. Er variiert jedoch 

mit Faktoren wie Radlast, Reifeninnendruck, Temperatur und Geschwindigkeit, was bei Ver-

brauchsberechnungen berücksichtigt werden sollte (Schütz, 2023 S. 172f) (Leister, 2015 S. 

75ff). 

 

Beschleunigungswiderstand ergibt sich aus: 

𝐹* = 𝑚 ⋅ 𝑓)+$ ⋅ 𝑎 

Der Beschleunigungswiderstand resultiert aus der Trägheit der Masse. Das Trägheitsmoment 

rotierender Massen im Fahrzeug wird durch einen Faktor berücksichtigt. Dazu gehören bei-

spielsweise Räder und Antriebswellen (Liebl, et al., 2014 S. 189). 

Parameter Größe  Einheit 

 𝜌 Dichte Luft kg/m3 

 𝑐! cw-Wert  - 

𝐴"#$%&  Stirnfläche m2 

 𝑓 Rollwiderstandsbeiwert -  

𝑚 Fahrzeugmasse kg 

𝑔 Erdbeschleunigung m/s2 

v Geschwindigkeit m/s 

𝑎 Fahrzeugbeschleunigung m/s2 

𝑓'(# Faktor rotatorische Massen - 
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Die Berechnung im Tool erfolgt dabei auf Grundlage von (Liebl, et al., 2014 S. 188ff). Die 

Parameter Rollwiderstandsbeiwert sind mit 0,01 und die Dichte der Luft mit 1,19 kg/m3 kon-

stant angenommen. Der Faktor zur Berücksichtigung der rotatorischen Massen ist mit 1,03 

bestimmt. Über den Flächeninhalt der Kraftverlaufskurven im WLTC Fahrzyklus lässt sich die 

Antriebsarbeit bestimmen.  

𝑊𝑅	 = 	2𝐹𝑅 ⋅ 	𝑑𝑠	 = 	2𝑚 ⋅ 	𝑔	 ⋅ 	𝑓	 ⋅ 	𝑑𝑠	

𝑊𝐿	 = 2𝐹𝐿 ⋅ 	𝑑𝑠	 = ∫ 0,5 ⋅ 𝜌 ⋅ 	𝑣( 	 ⋅ 	𝑐𝑊	 ⋅ 	𝐴 ⋅ 	𝑑𝑠	

	

𝑊𝐵	 = 2𝐹𝐵 ⋅ 	𝑑𝑠	 = 2𝑚 ⋅ 	𝑓𝑅𝑜𝑡	 ⋅ 	𝑎	 ⋅ 	𝑑𝑠		

(Liebl, et al., 2014) zieht alle konstanten Größen vor das Integral, dadurch können Fahrzyk-

lusspezifische Konstanten bestimmt werden, da das Geschwindigkeitsprofil immer gleich ist. 

So bestimmen sich die verwendeten WLTC-Konstanten. 

𝐶,) 	= 2𝑑𝑠 = 	𝑐𝑜𝑛𝑠𝑡. 

 

𝐶,! 	= 2𝑣( ⋅ 	𝑑𝑠	 = 	𝑐𝑜𝑛𝑠𝑡.	

 

𝐶,. = 2𝑎 ⋅ 	𝑑𝑠	 = 	𝑐𝑜𝑛𝑠𝑡. 

 

Es ergeben sich die im Tool verwendeten Formeln: 
 

𝑊𝑅	 = 	𝑚	 ⋅ 	𝑔	 ⋅ 	𝑓	 ⋅ 	𝐶,) 

𝑊𝐿	 = 0,5 ⋅ 𝜌	 ⋅ 	 𝑐" 	 ⋅ 	𝐴 ⋅ 	𝐶,!	

	

𝑊𝐵 = 𝑚	 ⋅ 	𝑓𝑅𝑜𝑡	 ⋅ 𝐶,. 

Den cw-Wert muss der Anwender manuell eingeben. Die Stirnfläche ergibt sich über einen 

empirisch ermittelten Korrekturfaktor über die Breite und Höhe vom Fahrzeug. Mit einer Um-

rechnung von der WLTC-Zykluslänge (23,26km) ist der Verbrauch der Fahrwiderstände in 

kWh/100km bestimmt. 
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2.2.2 Antriebsverluste und elektrische Verbraucher 

Auf Grundlage von Literaturwerten ist der Verbrauch im Tool präzisiert. Zu der Fahrwiderstand-

berechnung kommen weitere Einflüsse hinzu. 

Restbremsmomente 

Restbremsmomente sind die Bremsmomente, die in einem Bremssystem auch dann auftreten, 

wenn die Bremse nicht aktiv betätigt wird. Diese Momente entstehen durch die Reibungskräfte 

zwischen den Bremsbelägen und der Bremsscheibe oder -trommel. In den Bremssystemen 

werden die Bremsbeläge nach der Betätigung nicht aktiv zurückgestellt, um ein Spiel zu ver-

meiden. Dies hat den Vorteil, dass bei einer erneuten Betätigung der Bremse eine möglichst 

schnelle Verzögerung erreicht wird, da die Bremsbeläge bereits nahe an der Bremsscheibe 

oder -trommel positioniert sind. Allerdings führt dies auch dazu, dass kontinuierlich ein Brems-

moment wirkt (Breuer, et al., 2015 S. 48). 

Verbrennerfahrzeuge unterliegen aufgrund der Restbremsmomente einem Energieaufwand, 

der zwischen 0,6 und 2,1 kWh/100 Kilometer schwankt (Liebl, et al., 2014 S. 200). Das Tool 

rechnet mit einem konstanten Wert von 1 kWh/100 Kilometer, um die Auswirkungen der Rest-

bremsmomente auf den Energieverbrauch abzubilden.  

Gelenkwellenverlust & Getriebeverlust 

Gelenkwellenverlust bezeichnet den Energieverlusten, die durch Reibung und elastische Ver-

formungen in der Gelenkwelle und ihren Verbindungen entstehen, während sie die Kraft vom 

Getriebe zum Differenzial überträgt. Diese Verluste resultieren hauptsächlich aus der Bewe-

gung der Gelenke und der mechanischen Beanspruchung der Welle. Je geringer der Beuge-

winkel ist, desto effizierter arbeiten die Gelenke. Eine Einbaulage von 0° wäre optimal, ist je-

doch aufgrund der Mindestbodenfreiheit nur selten möglich. Verlustenergien steigen linear in 

Abhängigkeit vom Beugewinkel. Der Beuge Winkel liegt bei den meisten Fahrzeugen zwischen 

drei und acht Grad. Näherungsweise kann mit einem Verlust von 0,5% der Antriebsleistung 

pro Gelenk gerechnet werden.  (Liebl, et al., 2014 S. 197) 

Getriebeverluste beschreiben den Energieverluste, die innerhalb eines Getriebes auftreten. 

Diese Verluste entstehen durch die Reibung der Zahnräder, Lager und die daraus resultie-

rende Wärmeabgabe. Einfluss darauf hat zudem das Gewicht, Antriebsleistung und ob es sich 

um ein Manuelles oder Automatikgetriebe handelt. Damit steig die Verlustleistung bei größeren 

und leistungsstärkeren Fahrzeugen an. Bei Automatikgetrieben kann eine Verdoppelung der 
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Verlustleistung angenommen werden. (Liebl, et al., 2014 S. 196). Im Tool wird ein Verlust von 

0,8% für Manuelle Getriebe und eine Verdopplung für Automatikgetrieben angenommen. 

Elektrische Verbraucher 

Der elektrische Verbrauch beschreibt, die Last, die durch Verbraucher wie Bordcomputer, Be-

leuchtung und andere elektronische Systeme entsteht. Die Leistungsaufnahme dieser Ver-

braucher variiert je nach Fahrzeugklasse und -größe. Das Tool nimmt für Fahrzeuge mit einer 

Länge zwischen 3500 mm und 5300 mm eine Mindestlast von 0,4 kW bis 1,2 kW an (Liebl, et 

al., 2014 S. 202). Diese Annahme berücksichtigt so die zunehmende Anzahl an Verbrauchern, 

die in größeren Fahrzeugen und so korrelierend die Fahrzeugklasse vorhanden sind. 

Generatorverlust 

Die elektrische Energie wird in der Regel durch einen riemengetriebenen Generator erzeugt. 

Der Generator wandelt mechanische Energie, die vom Motor über den Riemenantrieb bereit-

gestellt wird, in elektrische Energie um. Dabei wird eine Effizienz von etwa 70 % angenommen 

(Liebl, et al., 2014 S. 439).  

Klimatisierung 

Die Klimatisierung von Fahrzeugen verursacht den signifikantesten elektrischen Anteil und 

wird separat von den elektrischen Verbrauchern in der Berechnung geführt. Der Energiebedarf 

der Klimaanlage ist dabei sehr variabel und schwer vorhersagbar, da er von vielen Faktoren 

wie z.B. Antriebsdrehzahl, Außentemperatur, Luftfeuchtigkeit und Sonneneinstrahlung ab-

hängt (Liebl, et al., 2014 S. 205). Das Tool nutzt empirische Erkenntnisse des ADAC, um die-

sen Energieverbrauch über einen Mittelwert abzubilden. Basierend auf den Daten des ADAC 

ist für die Klimatisierung eine konstante Größe von 1,15 kWh pro 100 Kilometer angenommen.  

Nach (Liebl, et al., 2014 S. 206) kann bei moderaten Außentemperaturen (ca. 25 °C) die An-

triebsleistung des Klimakompressors mit etwa 1 kW angenommen, während sie bei höheren 

Temperaturen (ca. 35 °C) auf 2 kW steigt. Dabei wird zusätzlich der Energiebedarf geschwin-

digkeitsabhängig berechnet. Da dies einen großen Einfluss auf den zusätzlichen Verbrauch 

hat. 

Natürliche Rekuperation 

Die natürliche Rekuperation bezieht sich auf den Prozess, bei dem ein Fahrzeug durch den 

Luft- und Rollwiderstand beim Verzögern oder Bergabfahren kinetische Energie abbaut, ohne 
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dass die Betriebsbremse aktiv eingesetzt werden muss. In diesen Fällen wirken der Luftwider-

stand und der Rollwiderstand als Verzögerungskräfte, die dazu beitragen, die Geschwindigkeit 

des Fahrzeugs zu reduzieren. Dabei wird die bereits aufgebrachte Energie durch die Trägheit 

der Fahrzeugmasse genutzt, um diese Widerstände zu überwinden, ohne dass zusätzliche 

Energie durch den Einsatz der Betriebsbremse in Wärme umgewandelt und somit verloren 

geht. Auf diese Weise wird die kinetische Energie des Fahrzeugs effizienter genutzt und der 

Gesamtenergieverbrauch reduziert (Liebl, et al., 2014 S. 207). 

Der natürlich rekuperierende Anteil des Rollwiderstands beträgt dabei etwa 30,5 %, während 

der des Luftwiderstands bei 22,4 % liegt (Kirsch, 2018 S. 20). 

Nullleistungsverbrauch Motor  

Der Nullleistungsverbrauch vom Motor berücksichtigt den Verbrauch als Grundlast, wenn das 

Fahrzeug nicht bewegt wird. Die Berechnung findet über die Drehzahl in Abhängigkeit von der 

Zeit statt. 

Mit der Ergänzung dieser Einzelverbräuche zu dem Fahrwiderstandsverbrauch ergibt sich der 

Gesamtverbrauch. Ein Benchmark der bereits getesteten Fahrzeuge zeigt die Genauigkeit 

(vgl. Abb. 2).  

 

 

Abbildung 2 Prozentuale Abweichung des berechneten Kraftstoffverbrauchs 
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2.2.3 Schlussfolgerungen  

Das bestehende Tool verwendet grundlegende Parameter wie Fahrzeuggewicht, Fahrwider-

stände und Antriebsverluste, um den Verbrauch nach dem WLTC zu bestimmen. Diese Me-

thodik kann auch bei Elektrofahrzeugen angewendet werden, da die Fahrwiderstände unab-

hängig vom Antrieb sind. Allerdings weist der Antriebsstrang eines Elektrofahrzeugs signifi-

kante Unterschiede auf, die bei der Weiterentwicklung des Tools berücksichtigt werden müs-

sen. Zudem spielt der Einfluss der elektrischen Rekuperation eine entscheidende Rolle. Eine 

Modellierung der rekuperativen Bremsleistung kann nicht durch die in der Literatur verwende-

ten Integrationskonstanten dargestellt werden, da der Einfluss auf die zurückgewonnene Ener-

gie von verschiedenen Wechselwirkungen abhängt.  

Ein weiterer Aspekt sind die elektrischen Verbraucher wie Bordcomputer, Beleuchtung und 

andere elektronische Systeme. Es wird grundlegend der Einfluss bei Elektrofahrzeugen unter-

sucht. Zudem kann bei der Klimatisierung von Elektrofahrzeugen nicht wie beim Verbrenner 

die erzeugte Abwärme genutzt werden. Die Antriebsbatterie kommt als zusätzlicher Gewichts-

faktor hinzu, während gleichzeitig die Energiedichte gegenüber Benzin und Diesel deutlich 

geringer ist, was sich negativ auf die Reichweite auswirkt. 

Das bestehende Tool ist bereits durch einen kontinuierlichen Verbesserungsprozess für Verb-

rennerfahrzeuge optimiert. Der Vergleich mit realen Fahrzeugdaten zeigt die Genauigkeit der 

Vorhersagen und dient als Benchmark (vgl. Abb. 1 und 2). 

Insgesamt zeigt die Analyse, dass das Kalkulationstool für Elektrofahrzeuge signifikant ange-

passt werden muss, um den spezifischen Anforderungen von Elektrofahrzeugen gerecht zu 

werden. Manuelle Eingabewerte wie beispielsweise der cw-Wert sind in der frühen Konzept-

phase oft nicht ausreichend bekannt. Eine Untersuchung zur Unterstützung der Parameter-

auswahl ist daher sinnvoll. 

 

 

 

 



          
        

 
 

        
11 
 

3 Methodik 
 

Die schematische Darstellung stellt das methodische Vorgehen in der Arbeit dar (vgl. Abb. 3). 

Um die Aufgabe effektiv zu bearbeiten, ist es notwendig zunächst mit einem ausreichenden 

Wissensstand zu beginnen und rechtzeitig zu erkennen, wenn erforderliche Vorgaben für das 

Modell nicht eingehalten werden. Ist es beispielsweise möglich das System physikalisch zu 

beschreiben oder kann es nur über ein statistisches Modell bestimmt werden? Sind benötigte 

Informationen vorhanden? Muss eine hybride Lösung geschaffen werden? Wie Vorhersage-

fähig ist das Modell? Diese Fragen können zu Beginn meist nicht in Gänze beantwortet wer-

den. Ein rekursiver Ansatz ist zwingend für ein optimiertes Modell. Die Einarbeitung in die 

jeweiligen Themengebiete kann dann dabei helfen die iterativen Schleifen zu reduzieren.  

 

 

Abbildung 3 Schematische Darstellung des methodischen Vorgehens zur Modellentwicklung 

 

Es gibt unterschiedliche Ansätze, ein Modell aufzubauen, darunter auch empirische Modelle. 

Diese Modelle basieren auf der Analyse von Daten sowie der Identifikation von Beziehungen 

und Mustern innerhalb dieser Daten. Historische Daten können mithilfe statistischer Techniken 
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genutzt werden, um Vorhersagen zu treffen. In dieser Arbeit liegt der Fokus auf der Auswer-

tung statistischer Modelle, Regressionsanalysen und physikalischen Modellen. 

Ein physikalisches Modell stützt sich auf die physikalischen Gesetze und Prinzipien, die bei-

spielsweise den Energieverbrauch beeinflussen. Dazu muss das System umfassend verstan-

den und in Einzelsysteme wie Fahrzeugmasse, Fahrwiderstände und Antriebseffizienz unter-

teilt sein. Mithilfe physikalischer Prozesse können dann die Wechselwirkungen innerhalb des 

Systems beschrieben werden. 

Im Hinblick auf diese Arbeit ist zunächst analysiert, welche Vorteile die jeweiligen Modellan-

sätze bieten (vgl. Tabelle 1). Darauf aufbauend stützt sich die weitere Bearbeitung.  

Bewertungskriterien für Modelle: 

1. Genauigkeit/Vorhersagekraft (20 Punkte): Die wichtigste Eigenschaft eines Modells. 

Es muss eine gewisse Genauigkeit aufweisen, um nützlich zu sein. Ohne eine zuver-

lässige Vorhersagekraft ist das Modell wertlos. 

2. Komplexität (20 Punkte): Je komplexer ein Modell aufgebaut ist desto schwieriger ist 

es alle Einflüsse zu berücksichtigen und möglicherweise nicht umsetzbar. 

3. Datenbedarf (20 Punkte): Stehen alle benötigten Daten zur Verfügung? Sind die not-

wendigen Daten vorhanden? Ohne ausreichende Daten kann das Modell nicht erstellt 

oder genutzt werden. 

4. Anpassungsfähigkeit (15 Punkte): Für die fortlaufende Arbeit am Modell ist es wich-

tig, dass es einfach zu bearbeiten und anzupassen ist. Ein flexibles Modell kann leich-

ter an neue Bedingungen oder Daten angepasst werden. 

5. Implementierungsaufwand (5 Punkte): Wie einfach kann man das Modell ins beste-

hende Tool integrieren? Ein geringer Implementierungsaufwand ist von Vorteil, um das 

Modell schnell und effektiv anpassen zu können. 

6. Überanpassung (10 Punkte): Ein Modell muss generalisieren können und nicht den 

gegebenen Datensatz widerspiegeln. Überanpassung führt zu schlechteren Ergebnis-

sen bei neuen Daten. 

7. Robustheit/Datenabhängigkeit (10 Punkte): Ein robustes Modell bleibt unter ver-

schiedenen Bedingungen und bei unterschiedlichen Datensätzen zuverlässig. Gleich-

zeitig wird der Einfluss der benötigten Qualität der Daten bewertet 
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Tabelle 1 Modellbewertung 

Kriterium Gewichtung Physikalisches Modell Empirisches Modell 
Genauigkeit/Vorhersagekraft 20 4 4 

Komplexität 20 1 5 

Datenbedarf 20 4 2 

Anpassungsfähigkeit 15 4 3 

Implementierungsaufwand 5 3 4 

Überanpassung 10 4 2 

Robustheit Datenabhängigkeit 10 4 2 

 100 405 325 

 

Beide Modelle können theoretisch sehr genaue Vorhersagen treffen. Der Vorteil physikalischer 

Modelle liegt darin, dass sie kaum anfällig für Überanpassung sind. Ihr Datenbedarf ist we-

sentlich geringer, und aufgrund der zugrunde liegenden Kausalitäten weisen sie eine höhere 

Robustheit auf. Anpassungen durch technologische Veränderungen können in solchen Mo-

dellen deutlich schneller vorgenommen werden. Allerdings müssen die grundlegenden Bezie-

hungen für ein physikalisches Modell bekannt sein, was diese Modelle schnell sehr komplex 

macht. Es besteht die Gefahr, dass nicht ausreichend Informationen verfügbar sind. 

Ein empirisches Modell hingegen ist stark datenabhängig, bietet aber bei einer guten Daten-

lage eine sehr präzise Abbildung des aktuellen Zustands. Die Bewertung dieser Kriterien zeigt, 

dass beide Modelle gegensätzliche Stärken und Schwächen haben. In dieser Arbeit ist daher 

ein hybrider Ansatz gewählt, bei dem mehrere Modelle parallel untersucht sind. 

Der Aufbau einer umfassenden Fahrzeugdatenbank ist notwendig, um eine detaillierte und 

verlässliche empirische Analyse zu ermöglichen.  
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3.1 Datenerhebung 

Ausgangspunkt der Analysen sind die erhobenen Daten. Diese lassen sich in drei Gruppen 
unterteilen. 

Datenbank GreenNCAP                                                                            

 

Green NCAP ist eine unabhängige Initiative, die darauf abzielt, einen realistischen Energie-

verbrauch von Fahrzeugen zu ermitteln und die Entwicklung von Autos zu fördern, die eine 

möglichst geringe Umweltbelastung aufweisen (GreenNCAP, 2024). Für diese Arbeit sind 

Testdaten zu 27 Fahrzeugen bereitgestellt. Die Daten umfassen Labortests der Fahrzeuge auf 

Grundlage des WLTC. Jedes Fahrzeug durchlief den WLTC-Zyklus sowohl bei Betriebstem-

peratur (Warmstart) als auch im Kaltstart bei einer Umgebungstemperatur von 23°C. Zusätz-

lich ist ein weiterer Test bei einer Umgebungstemperatur von -7°C durchgeführt. Ein weiterer 

Prüfzyklus simuliert eine Autobahnfahrt. Der Datensatz enthält eine Vielzahl an Messwerten, 

die während der Zyklen erfasst sind. 

Datenbank Herstellerangaben 

Es ist eine umfangreiche Datenbank mit knapp 200 Fahrzeugen unterschiedlicher Hersteller, 

Modellen und Motorisierungen erstellt. Dabei ist darauf geachtet, dass bei unterschiedlicher 

Motorisierung einer Modelllinie das gleiche Basisausstattungspaket gewählt ist, um Fehler be-

züglich des Gewichts möglichst gering zu halten. Für die Untersuchung sind Parameter aus-

gewählt, die potenziell einen Einfluss auf das Gewicht, den Verbrauch und das Batteriegewicht 

haben. Insgesamt sind Daten zu 22 Parametern (vgl. Abb. 4) erfasst. Zur Untersuchung der 

Entwicklung der Batterietechnologie ist zusätzlich das Datum der Markteinführung des Fahr-

zeugs erfasst. Die gesamte Datenbank enthält nur Fahrzeuge die aktuell auf dem Markt sind, 

um eine möglichst hohe Aktualität der Daten zu gewährleisten (Stand Februar 2024). Diese 

Parameter bilden die Datengrundlage, um die Wechselwirkungen und Abhängigkeiten zwi-

schen verschiedenen Fahrzeugmerkmalen zu untersuchen. 
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Abbildung 4 Parameter der Datenbank 

Datenbank Realverbräuche 

Die Daten zu den Realverbräuchen stammen von Mile21, dem ADAC Ecotest und Spritmoni-

tor. Sie sind entscheidend, um die Diskrepanz zwischen dem WLTC und dem realen Ver-

brauch zu bestimmen.  

Mile21 ist eine von der EU unterstützte Initiative, um realistischere Informationen über den 

Kraftstoffverbrauch bereitzustellen. Die Plattform ermittelt dabei Verbrauchswerte auf der 

Grundlage einer großen Anzahl realer Messdaten sowie statistischer und physikalischer Mo-

delle  (Mile21, 2024). 

Der ADAC Ecotest führt ähnlich wie GreenNCAP Laborprüfungen durch, bei denen beispiels-

weise die Klimaanlage auf 20°C eingestellt und der WLTC-Zyklus sowohl im Warmstart als 

auch im Kaltstart durchfahren wird. Ein weiterer Zyklus, der eine Autobahnfahrt simuliert, wird 

mit 30% in die Bewertung einbezogen (ADAC Ecotest, 2024). 

Spritmonitor ist eine Website, auf der Nutzer den Verbrauch ihrer Fahrzeuge dokumentieren 

können. Die Plattform ermöglicht es auch die Anteile an Stadt-, Land- und Autobahnfahrten 

festzustellen. Basierend auf einer großen Anzahl an Fahrzeugdaten kann so ein realer Durch-

schnittsverbrauch ermittelt werden. 

 

 

 

 

 



          
        

 
 

        
16 
 

3.2 Lineare Regression 

 

Die Ausarbeitung statistischer Modelle in dieser Arbeit beruht auf der Linearen Regression. 

Dies ermöglicht es Beziehungen zwischen einer oder mehreren abhängigen Variablen (ge-

suchte Werte) und einer oder mehreren unabhängigen Variablen (gegebene Werte) zu erken-

nen (Kleppmann, 2020 S. 185). Es ermöglicht zusammenhänge quantitativ zu beschreiben 

und sie zu erklären, sowie die Werte der abhängigen Variablen zu prognostizieren (Backhaus, 

et al., 2016 S. 64). Wichtig dabei zu beachten ist, dass diese Analysemethode keine Kausali-

täten, sondern immer Korrelationen aufzeigt (Backhaus, et al., 2016 S. 66).  

 

Dummy-Variablen 

 

Um bei einer Regression auch qualitative Variablen in die Regressionsanalyse mit einbeziehen 

zu können kann man auf die Dummy-Variablen-Technik zurückgreifen. Dabei handelt es sich 

um binäre Variablen, die nur die Werte 0 oder 1 annehmen. So kann die Information, ob es 

sich um ein Allradfahrzeug handelt, berücksichtigt werden. Kommen weitere Möglichkeiten vor 

wie beispielsweise Vorderradantrieb oder Hinterradantrieb, wird die nominale Variable mit n 

Ausprägungen durch n – 1 Dummy-Variablen ersetzen. 

Im genannten Beispiel erhält Vorderradantrieb = (0,0), Hinterradantrieb = (1,0) und Allrad = 

(0,1). Die Variablen lassen sich im Anschluss wie metrische Variablen behandeln (Backhaus, 

et al., 2016 S. 17). Dummy-Variablen können nur bei unabhängigen Variablen angewandt wer-

den. Eine einzelne binäre Variable kann in der Regressionsanalyse als abhängige Variable 

fungieren. Dadurch kann im beschränkten Umfang auch Probleme der Diskriminanzanalyse 

behandelt werden. Nachtteilig ist zudem, dass sich dadurch die Zahl der Variablen stark erhö-

hen kann. Eine Alternative kann dann die Varianzanalyse sein (Backhaus, et al., 2016 S. 68). 

 

Prüfung der Regressionsfunktion 

 

Um die Güte der Regressionsfunktion zu prüfen, gibt es mehrere Möglichkeiten. Dabei spielen 

drei Möglichkeiten eine wichtige Rolle bei der Prüfung des generelle Gütemaßes einer Re-

gressionsfunktion. 

 

Das Bestimmtheitsmaß (R^2) kann einen Wert von 0 bis 1 annehmen. Dabei beschreibt es 

den Anteil der Summe der quadrierten Abweichungen der Versuchsergebnisse vom Mittelwert, 

der durch das Modell erklärt wird. Ein Wert von 1 bedeutet es gibt keine Abweichung 

(Kleppmann, 2020 S. 334). 
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Die F-Statistik ist ein statistischer Test, um die Gesamtbedeutung eines Regressionsmodells 

zu testen. Es vergleicht die Anpassung des Modells, mit einem einfachen Modell, das nur den 

Mittelwert der abhängigen Variablen als Vorhersage verwendet. Dadurch kann geprüft werden, 

ob die unabhängigen Variablen einen signifikanten Einfluss auf die abhängige Variable haben. 

Die Nullhypothese besagt dabei, dass alle Regressionskoeffizienten gleich null sind und keine 

der unabhängigen Variablen einen signifikanten Einfluss haben. (Backhaus, et al., 2016 S. 

89). 

 

Die Bestimmung des F-Werts wird mittels Tabellen durchgeführt. Mittels Tools ist es aber ein-

fach den p-Wert zu bestimmen. Er beschreibt das empirische Signifikanzniveau und liegt zwi-

schen 0 und 1.  Diese genormte Größe ermöglicht im Vergleich zum F-Wert eine direkte Ein-

schätzung des Werts, da er beispielsweise nicht von den Freiheitsgraden abhängig ist.  

(Backhaus, et al., 2016 S. 91). 

 

Der t-Test ermöglicht es, einzelne unabhängige Variablen zu überprüfen. Dieser Test ähnelt 

dem F-Test und basiert ebenfalls auf tabellierten Werten. Auch hier kann der p-Wert den Test 

vereinfachen und wird in den meisten statistischen Tools direkt ausgegeben. Der p-Wert des 

F-Tests gibt die Signifikanz des Gesamtmodells an, während der p-Wert der t-Tests die Signi-

fikanz einzelner Parameter bewertet. Unter einem Wert von 0,05 ist von einer Signifikanz aus-

zugehen (Backhaus, et al., 2016 S. 95). 

 

Ein weiteres Gütemaß ist der Standardfehler der Schätzung. Er zeigt den mittleren Fehler bei 

der Verwendung des Modells zur Abschätzung der abhängigen Variablen. Mithilfe des Mittel-

werts der abhängigen Variablen kann man anschließend auf eine prozentuale Abweichung 

schließen. (Backhaus, et al., 2016 S. 91)  

 

Residuen 

 

Residuen geben die Differenz zwischen dem tatsächlichen und berechneten Wert an.  

In einem gut angepassten Modell sollten die Residuen zufällig verteilt sein und einer Normal-

verteilung folgen. Dies kann über ein Histogramm bzw. durch ein Q-Q Diagramm überprüft 

werden. Abweichungen zeigen ein Problem des Modells, wie bspw. nicht-lineare Zusammen-

hänge. Zudem sollten die Residuen über den gesamten Wertebereich eine konstante Varianz 

aufweisen. Man spricht dann von Homoskedastizität (Backhaus, et al., 2016 S. 117ff). 
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Effektstärke f2 

 

Effektstärken werden verwendet, um die Bedeutsamkeit von Variablen zu beurteilen. Ein Maß 

ist Cohen's f2, das auch bei ungleichen Gruppengrößen angewendet werden kann. Das R2 aus 

Regressionsanalysen kann in f2 umgerechnet werden, welches einen Wertebereich von null 

bis unendlich hat. Dabei wird das Bestimmtheitsmaß inklusive der Variabel und ohne die zu 

testende Variable bestimmt: 

𝑓) =
𝑅$&*+) − 𝑅,-*+)

1 − 𝑅$&*+)  

 

Laut Cohen entspricht f2=0,02 einem schwachen, f2=0,15 einem mittleren und f2=0,35 einem 

starken Effekt. Dies ermöglicht die Bewertung des Einflusses bestimmter Variablen (Wolf, et 

al., 2010 S. 473). 

 

Prüfung auf Multikollinearität 

 

Korrelationsmatrix  

 

Eine Korrelationsmatrix ist eine tabellarische Darstellung der Paar-Korrelationskoeffizienten 

zwischen mehreren Variablen. Sie zeigt auf einen Blick, wie stark und in welche Richtung (po-

sitiv oder negativ) jede Variable mit jeder anderen Variable zusammenhängt. In einer perfekten 

Korrelationsmatrix korrelieren die Variablen nur mit sich selbst, was sich durch Einsen auf der 

Hauptdiagonale und Nullen an allen anderen Positionen zeigt. Abweichungen davon weisen 

auf Beziehungen zwischen den verschiedenen Variablen hin. Die Matrix ist ein nützliches 

Werkzeug in der Datenanalyse, um multivariate Zusammenhänge zu identifizieren und multi-

kollineare Probleme zu erkennen (Siebertz, et al., 2017 S. 64). 

 

Varianz-Inflations-Faktor (VIF) 

 

Bei einer größeren Anzahl von Faktoren kann die Korrelationsmatrix unübersichtlich werden, 

um mehrere unabhängige Variablen auf Abhängigkeiten untereinander zu untersuchen. In sol-

chen Fällen ist es hilfreich, den Varianz-Inflations-Faktor (VIF) zu betrachten (Backhaus, et al., 

2016 S. 108). Der VIF gibt an, um wie viel die Varianz einer Schätzung aufgrund von Multiko-

llinearität verstärkt wird. Ein VIF-Wert von 1 ist ideal und zeigt keine Multikollinearität an. Werte 

über 5 deuten auf potenzielle Probleme hin, und ab einem Wert von 10 ist der Effekt praktisch 

nicht mehr auswertbar (Siebertz, et al., 2017 S. 65). 
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Mithilfe dieser Methoden werden in der Arbeit sämtliche statistischen Auswertungen unter-

sucht. Eine manuelle Ausarbeitung unterschiedlicher Modellmöglichkeiten ist zwar über Excel 

möglich, aber sehr zeitintensiv. Um effizienter arbeiten zu können, ist auf das Programm 

SmartPLS zurückgegriffen worden. Dieses Tool ermöglicht es, effektiv verschiedene Parame-

ter in Bezug auf die statistische Auswertung zu berücksichtigen. Dazu ist die vorhandene Da-

tenbank in ein .csv-Format umgewandelt und in das Programm geladen. Mithilfe einer Drag-

&-Drop-Funktion können anschließend unterschiedlichste Modelle erstellt werden. 

Gleichzeitig bietet SmartPLS eine automatische Analyse der erstellten Modelle, wodurch die 

zuvor beschriebenen Kriterien untersucht werden können. Abbildung 5 zeigt die grafische 

Übersicht der beschriebenen Drag-&-Drop-Funktion bei der Erstellung eines Modells unter Be-

rücksichtigung einer Vielzahl von Parametern. Zusätzlich lassen sich von diesem Ausgangs-

punkt aus automatisierten Diagrammen wie Q-Q-Plots und Residuen Plots anzeigen, um wei-

terführende Informationen aus dem Modell zu gewinnen. 

 

 
Abbildung 5 Anwendungsbeispiel Smart PLS 

 

 

 

 

 



          
        

 
 

        
20 
 

4 Modellentwicklung Leergewicht 
 

Die Berechnung des Leergewichts von Elektrofahrzeugen bei Verwendung des bestehenden 

Tools zeigt, dass es eine signifikante Abweichung der berechneten Werte gibt (vgl. Abb. 6). 

Dies bestätigt die Notwendigkeit einer grundlegenden Überarbeitung des Tools bezüglich des 

Karosserie- und Leistungsgewichts. Der erste Schritt in diesem Prozess ist die Untersuchung 

des Batteriegewichts, das im aktuellen Tool nicht bestimmt ist. 

 

 
Abbildung 6 Abweichung des berechneten Leergewichts (Batteriegewicht im Tool addiert) 

4.1 Batterie 

 

Für die Berechnung des Leergewichts eines Fahrzeuges muss das gesamte Batteriesystem 

berücksichtigt werden. Es besteht grundlegend aus drei Hauptbestandteilen: Batteriezellen, 

Batteriemanagementsystem und dem Gehäuse mit Isolierung und Kühlsystem (Kleine-

Möllhoff, et al., 2012 S. 6f). 

4.1.1 Analyse Batteriesystem 

 

Das Batteriesystem, beginnt auf der Zellebene. Es gibt unterschiedliche Zelldesigns mit unter-

schiedlichen Eigenschaften, z.B. hinsichtlich der Kühlung. Grundsätzlich können alle Elektro-

denmaterialien in allen Zelldesigns eingesetzt werden. Aktuell ist nicht absehbar, dass sich im 

Automobilbereich eines der drei Zelldesigns (prismatisch, zylindrisch, pouch) durchsetzt 

(Heimes, et al., 2024 S. 140). Mehrere Zellen werden zu einem Modul zusammengeführt. Hier 

kommen auch elektronische Überwachungseinheiten, Anschlüsse sowie Kühlelemente hinzu. 
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Diese Module sind auf übergeordneter Basis zu einem Gesamtsystem vereint (vgl. Abb. 7). 

Neben den Zellcontrollern und der Modultechnik kommt noch das Batteriemanagementsystem 

hinzu, das alle elektronischen Parameter regelt und verwaltet. Auch hier umgibt das System 

ein Package aus Kühlung, Sicherheitskomponenten und Anschlüssen (Doppelbauer, 2020 S. 

170). 

 

 
Abbildung 7 Aufbau Batteriesystem (Doppelbauer, 2020 S. S. 132) 

 

 

Das Gesamtsystem muss eine Vielzahl von Anforderungen erfüllen. Es muss die nötige Leis-

tung bereitstellen können, ein thermisches Management besitzen, den Zustand der Batterie 

überwachen und Schutz bei einem Unfall bieten (Heimes, et al., 2024 S. 148).  

 

Diese Faktoren spielen eine Rolle in Bezug auf das Gewicht. Das Leergewicht eines Fahr-

zeugs setzt sich mit einem Anteil von 22% aus dem Batteriesystem zusammen (Heimes, et 

al., 2024 S. 98). Ein Vergleich mit der Herstellerdatenbank zeigt, dass der minimale Anteil bei 

14% liegt und bis zu 28% betragen kann. Der Mittelwert liegt bei 22% und bestätigt den Lite-

raturwert (vgl. Abb. 8). 
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Abbildung 8 ermittelte Abweichung bezogen auf das Leergewicht 

 

(Thielmann, et al., 2017) beschreiben detailliert die Fortschritte und Herausforderungen der 

Batterieforschung, insbesondere im Bereich der Lithium-Ionen-Batterien und zukünftiger 

Hochenergie-Batterien. Die gravimetrischen und volumetrische Energiedichte sowie die Kos-

ten unterschiedlicher Zellformate haben sich vor zehn Jahren bei den Zelldesigns deutlich un-

terschieden (vgl. Abb. 9). Diese Unterschiede haben sich im Laufe der letzten Jahre immer 

weiter verringert. Ein Schwerpunkt liegt auf der Entwicklung Silizium-basierter Anoden und 

Feststoffbatterien, um die Energiedichte zu erhöhen. Dabei werden Herausforderungen auf 

Material-, Komponenten- und Prozessebene genannt, die noch nicht gelöst sind. Alternative 

Batterietechnologien könnten in spezifischen Anwendungen von Vorteil sein, erfüllen jedoch 

noch nicht die Anforderungen für die Anwendung in der Automobilindustrie. Eine Abschätzung 

der zukünftigen Entwicklung ist dadurch schwierig. „Es zeichnen sich jedoch keine Technolo-

gien ab, welche Zukunftsmärkte in einer ähnlichen Breite adressieren könnten wie Lithium-

Batterien (Thielmann, et al., 2017 S. 112).“ 

 
Abbildung 9 Entwicklung der gravimetrischen Energiedichte von LiB-Zellen nach Zellformaten (Thielmann, et al., 

2017 S. 16) 
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In der 2023 veröffentlichten weiterführenden Studie vom Frauenhofer-Institut wird die Ein-

schätzung von 2017 grundsätzlich bestätigt. In Bezug auf die Automobilindustrie bleiben Li-

thium-Ionen-Batterien (LiB) für das nächste Jahrzehnt die einzige skalierbare Technologie und 

weisen die höchsten Wachstumsraten auf. In Bezug auf eine ressourcenschonendere und ge-

opolitische Betrachtung kommen Natrium-Ion Batterie in Frage, die kurz vor einer Kommerzi-

alisierung stehen. Diese weisen eine geringere Energiedichte auf, bieten jedoch beispiels-

weise bei niedrigen Temperaturen eine gute Performance und günstigere Produktionskosten. 

Es gibt Hinweise darauf, dass diese Batterien zukünftig in Kleinfahrzeugen eingesetzt werden 

könnten. Hier sind dann hybride Varianten mit Lithium-Batterien vorstellbar. Eine kombinierte 

Energiedichteabschätzung dieser Systeme ist nicht möglich (Thielmann, et al., 2023 S. 238). 

Aktuell beträgt die Energiedichte von Lithium-Ionen-Batterien 200-300 Wh/kg, mit einer prog-

nostizierten langfristigen Steigerung auf 320-360 Wh/kg. Natrium-Ionen-Batterien  liegen der-

zeit bei 130-160 Wh/kg mit einem Potential von über 200Wh/kg zukünftig. Lithium-Luft-Batte-

rien sind in den nächsten 10-15 Jahren noch nicht einsetzbar, könnten aber langfristig theore-

tisch 3500 Wh/kg bzw. prognostiziert einen realistischen Wert von 1230 Wh/kg erreichen. Eine 

fundierte Einschätzung kann hier jedoch noch nicht getroffen werden (Thielmann et al., 2023, 

S. 77).  

 

Die Prognose und Angaben bezüglich Lithium-Ionen-Batterien, deckt sich weitestgehend über 

die Literatur hinweg bezüglich der spezifischen Energiedichte von Zellebene bis Modulebene 

(Wessel, et al., 2020 S. 6), (Heimes, et al., 2024 S. 667)  (Wallentowitz, et al., 2011 S. 74), 

(Doppelbauer, 2020 S. 170) und (Karle, 2022 S. 78). 

 

Fahrzeughersteller geben zwei unterschiedliche Werte bei der Batteriekapazität an (Brutto- 

Netto-Kapazität). Die Kapazität einer Batterie gibt an, wie viel Energie gespeichert werden 

kann. Dabei muss zwischen der tatsächlich nutzbaren und der maximalen Speicherkapazität 

unterschieden werden. Die Bruttokapazität gibt die maximale Speicherkapazität des Akkus an, 

während die Nettokapazität die tatsächlich nutzbare Energie beschreibt.  

In der Literatur werden Annahmen getroffen, dass die Nettokapazität um 10% geringer ist 

(Helms, et al., 2022). Es finden sich jedoch auch Angaben, die besagen, dass die Abweichung 

zwischen 10% bis 20% betragen kann (Mobileo, 2024). (Doppelbauer, 2020) spricht von einer 

Nettokapazität, die von unter 10% bis 40% geringer ist als die Bruttokapazität. 

 

Ein Vergleich mit den Fahrzeugdaten zeigt, dass die Abweichung bei den Herstellerangaben 

zwischen 2,24% und 12,59% liegt. Der Mittelwert beträgt 5,82%. Es ist kein Einfluss von der 

Batteriekapazität auf die prozentuale Abweichung erkennbar (vgl. Abb. 10). 
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Abbildung 10 Abweichung der Herstellerangabe vom Brutto- zur Nettokapazität 

 

Die Angabe der Nettokapazität ist entscheidend für die Beurteilung der Fahrleistung und der 

nutzbaren Energie. Im weiteren Verlauf wird daher in Bezug auf die Kapazität immer vom 

Nettowert gesprochen.  

 

 

Für das Batteriegewicht ist die spez. gravimetrische Energiedichte bezogen auf das Gesamt-

system von entscheidender Bedeutung. Hierzu gibt es nur wenig Daten in der Literatur. Eine 

Umrechnung von Zell- auf Modulebene ergibt nach (Thielmann, et al., 2017 S. 18) einen Ver-

lust von 8 bis 18 % der Energiedichte. Nach (Heimes, et al., 2024 S. 100) ergibt sich ein Verlust 

von Zelle zu Modul von 20% und ca. 25% von Modul zu System. Das entspricht einem Ge-

samtverlust von der Zelle zum System von etwa 40%. (Kücükay, 2022 S. 316) geht von einem 

Faktor 3 bei der Reduzierung von Zellebene auf Systemebene. Eine Berechnung zeigt, dass 

die Abweichungen mit diesen Berechnungen zu groß sind. 

 

Basierend auf der Herstellerdatenbank liegt die berechnete mittlere spez. Energiedichte von 

Batteriesystemen bei 155Wh/kg (vgl. Abb. 11). Ein Einfluss auf einen technologischen Fort-

schritt ist in dieser Zeit nicht erkennbar (vgl. Abb. 12). 
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Abbildung 11 spez. Energiedichte heutiger Batteriesysteme 

 

 
Abbildung 12 zeitlicher Einfluss auf die spez. Energiedichte 

 

 

In den vorhandenen Fahrzeugdaten sind vier unterschiedliche Technologien verbaut: Lithium-

Ion, Li-Nickel-Cobalt-Mangan (Li-NCM), Lithium-Eisenphosphat und Lithium-Polymer. Ein Ein-

fluss auf die Energiedichte durch unterschiedliche Technologien zeigt sich dabei nicht (vgl. 

Abb 13). 

 

Eine Modellierung zeigt, dass das Batteriegewicht sehr gut über die Kapazität dargestellt wer-

den kann. Auf Grundlage der Annahme, dass Batteriesysteme in Zukunft eine höhere Ener-

giedichte besitzen werden, wird vorausgesetzt, diese Entwicklung zu berücksichtigen. Da die 

Berechnung des Aufbaus der einzelnen Systeme zu komplex ist, erfolgt die Untersuchung auf 

statistischer Ebene.  
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Abbildung 13 Linearer Zusammenhang Kapazität zu Batteriegewicht und Technologievergleich 

 

4.1.2 Modellaufbau Batteriegewicht 

 

Die Bestimmung des Batteriegewichts erfolgt über einen ermittelten linearen Zusammenhang 

zwischen der Batteriekapazität und der spezifischen Systemenergiedichte. Dadurch kann auf 

Grundlage heutiger Daten das Gewicht der Batterie berechnet werden. Diese Methode be-

rücksichtigt die Tatsache, dass die spezifische Energiedichte eines Gesamtsystems bei gerin-

gerer Kapazität abnimmt. Dies liegt wahrscheinlich daran, dass fixe Komponenten wie Ge-

häuse, Kühlung und das Batteriemanagementsystem einen größeren Anteil am Gesamtge-

wicht haben, je kleiner die Batteriekapazität ist. 

 

Über die Formel ist die spezifische Energiedichte der aktuellen Systeme berechnet: 

 

𝑠𝑝𝑒𝑧. 𝐸𝑛𝑒𝑟𝑔𝑖𝑒𝑑𝑖𝑐ℎ𝑡𝑒	 E
𝑊ℎ
𝑘𝑔 G = 0,43J

𝑊ℎ
𝑘𝑔
	𝑘𝑊ℎK ⋅ 𝐵𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑘𝑎𝑝𝑎𝑧𝑖𝑡ä𝑡	

(𝑘𝑊ℎ) ⋅ 123,78	 E
𝑊ℎ
𝑘𝑔 G 

Mit 

 

𝐵𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑔𝑒𝑤𝑖𝑐ℎ𝑡	(𝑘𝑔) =
𝐵𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑘𝑎𝑝𝑎𝑧𝑖𝑡ä𝑡(𝑘𝑊ℎ)

𝑠𝑝𝑒𝑧. 𝐸𝑛𝑒𝑟𝑔𝑖𝑒𝑑𝑖𝑐ℎ𝑡𝑒	 E𝑊ℎ𝑘𝑔 G
⋅ 1000 

 

Wird das Batteriegewicht berechnet. Zur Bestimmung des Batteriegewichts ist so nur die An-

gabe der Batteriekapazität nötig. 
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Unter der Annahme, dass dieser lineare Zusammenhang auf Faktoren beruht, die mit der Leis-

tungsdichte der Zellen nicht im Zusammenhang stehen, kann die Formel für die spezifische 

Energiedichte in Zukunft wie folgt angepasst werden: 

𝑛𝑒𝑢𝑒	𝑚𝑖𝑡𝑡𝑙𝑒𝑟𝑒	𝑠𝑝𝑒𝑧. 𝐸𝑛𝑒𝑟𝑔𝑖𝑒𝑑𝑖𝑐ℎ𝑡𝑒	 E
𝑊ℎ
𝑘𝑔 G = 0,43J

𝑊ℎ
𝑘𝑔
	𝑘𝑊ℎK ⋅ 71,44𝑘𝑊ℎ + 𝑛𝑒𝑢𝑒	𝐾𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 E

𝑊ℎ
𝑘𝑔 G 

Die durchschnittliche Kapazität der aktuellen Systeme beträgt 71,44 kWh und fungiert in der 

Gleichung als feste Konstante. Die neue Konstante passt den linearen Verlauf in Abhängigkeit 

der neuen mittleren spez. Energiedichte zukünftiger Batteriesystemen an.  

 

Die Bestimmung der Konstante erfolgt durch Umstellung: 

 

𝑛𝑒𝑢𝑒	𝐾𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 E
𝑊ℎ
𝑘𝑔 G 	= 𝑛𝑒𝑢𝑒	𝑚𝑖𝑡𝑡𝑙𝑒𝑟𝑒	𝑠𝑝𝑒𝑧. 𝐸𝑛𝑒𝑟𝑔𝑖𝑒𝑑𝑖𝑐ℎ𝑡𝑒 E

𝑊ℎ
𝑘𝑔 G − 0,43J

𝑊ℎ
𝑘𝑔
	𝑘𝑊ℎK ⋅ 	71,44𝑘𝑊ℎ 

 

 

Die berechnete neue Konstante wird in die ursprüngliche Gleichung eingefügt: 
 

𝑛𝑒𝑢𝑒	𝑠𝑝𝑒𝑧. 𝐸𝑛𝑒𝑟𝑔𝑖𝑒𝑑𝑖𝑐ℎ𝑡𝑒 -
𝑊ℎ
𝑘𝑔 1 	= 0,43O

𝑊ℎ
𝑘𝑔
	𝑘𝑊ℎP ⋅ 𝐵𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑘𝑎𝑝𝑎𝑧𝑖𝑡ä𝑡	

(𝑘𝑊ℎ) 	+ 	𝑏𝑒𝑟𝑒𝑐ℎ𝑛𝑒𝑡𝑒	𝐾𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 -
𝑊ℎ
𝑘𝑔 1	 

 

 

𝐵𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑔𝑒𝑤𝑖𝑐ℎ𝑡	(𝑘𝑔) =
𝐵𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑘𝑎𝑝𝑎𝑧𝑖𝑡ä𝑡(𝑘𝑊ℎ)

𝑛𝑒𝑢𝑒	𝑠𝑝𝑒𝑧. 𝐸𝑛𝑒𝑟𝑔𝑖𝑒𝑑𝑖𝑐ℎ𝑡𝑒	 E𝑊ℎ𝑘𝑔 G
⋅ 1000 

 

Die Verschiebung des linearen Zusammenhangs in Abhängigkeit von der neuen mittleren 

Energiedichte ermöglicht es, den technologischen Fortschritt zu berücksichtigen. Dafür ist le-

diglich eine rechnerische Anpassung basierend auf einem Literatur- oder empirischen Wert 

erforderlich. Diese Annahme muss zunächst in weiteren Untersuchungen, basierend auf den 

zukünftigen Entwicklungen der Batterietechnologie, überprüft werden. Eine Implementierung 

erfolgt daher nicht im Tool.  

 

 

Ein Vergleich des gezeigten Zusammenhangs über die Energiedichte ist mit der zu Beginn 

gezeigten Regressionsmöglichkeit von Kapazität zum Batteriegewicht (R2=0,94) verglichen. 
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Die Auswertung beider Modelle zeigt, dass die Gewichtsberechnung etwas genauer über die 

Energiedichte dargestellt ist (vgl. Tabelle 2).  

 
Tabelle 2 Abbildungsgüte Modellvergleich Batteriegewicht 

Modell 

Stichpro-
bengröße 
(n) 

Mittelwert 
(%) 

Standardab-
weichung 
(%) 

Konfidenzintervall 95% 
(%) 

Varianz 
(%)² 

Kapazität 133 -0,3 6,2 -1,35 0,75 58 

Spez. Energiedichte 133 -0,7 5,5 -1,7 0,2 30 

 

 

4.2 Antriebsstrang & Karosserie 

 

 

Ein modularer Ansatz ist auch für den Antriebsstrang erfolgt. Das Leistungsgewicht von E-

Motoren und Getrieben wird zunächst aus literaturbasierter Sicht betrachtet. Eine Anpassung 

der im Verbrenner-Tools angegebenen Leistungsdichte ist erforderlich, da diese für Elektro-

motoren deutlich höher ist als bei Verbrennungsmotoren (vgl. Abb. 14). Eine Analyse soll Auf-

schluss darüber geben, wie groß dieser Einflussfaktor tatsächlich ist. 

 

 
Abbildung 14 Übersicht Leistungsgewicht unterschiedlicher Motoren (Karle, 2022 S. 198) 

Verbrenner besitzen meist einen Motor, dessen Leistung über das Getriebe und die Achsen 

an die Reifen übertragen wird. Bei E-Motoren gibt es verschiedene Antriebskonzepte. Bei 
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Allradantrieben sind häufig jeweils ein Motor für die Vorder- und ein Motor für die Hinterachse 

verbaut. Bei Fahrzeugen mit Frontantrieb befindet sich der Motor in der Regel vorne, während 

bei Fahrzeugen mit Heckantrieb der Motor hinten angeordnet ist. Zudem muss zwischen Rad-

nabenantrieb Radantrieb und Achsantrieb unterschieden werden (vgl. Abb. 15). 

 

 
Abbildung 15 Antriebskonzepte E-Fahrzeug (Doppelbauer, 2020 S. S.58) 

 

Nach einer Prognose von (Cai, et al., 2021 S. 18), entwickelt sich das spezifische Gewicht für 

E-Motoren voraussichtlich alle 5 Jahre um 1kW/kg. Ausgangspunkt ist ein angegebenes Leis-

tungsgewicht von 4kw/kg im Jahr 2020. Brusa ist Zulieferer im PKW-Bereich und ist eine von 

wenigen Quellen zu, aktuellen auf dem Markt verfügbaren, E-Motorkonzepten für Fahrzeuge. 

Das berechnete Leistungsgewicht aus Datenblättern von Brusa-Motoren liegt unter der An-

nahme des prognostizierten Werts (vgl. Tab. 3). Die Abweichung kann möglicherweise durch 

die Motorbauart erklärt werden. PSM-Motoren haben eine geringere Leistungsdichte im Ver-

gleich zu ASM-Motoren (vgl. Abb. 14). 

 
Tabelle 3 Leistungsgewicht E-Motor nach Daten von (BRUSA HyPower AG, 2024) 

Marke Modell Peak Drehmoment 
Peak 
Power Gewicht Volt Motorart 

Leistungs-

gewicht 
(kW/kg) 

Brusa 

HSM2-

10.18.22 500 275 79 400 PSM 3,48 

Brusa 
HSM1-
10.18.22 440 210 73,1 400 PSM 2,87 

Brusa 

HSM1-

10.18.13 380 183 49,7 400 PSM 3,68 
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Brusa 

HSM1-

10.18.13-

W7 302 214 49,7 400 PSM 4,31 

Brusa 
HSM1-
6.17.12 320 120 51,5 400 PSM 2,33 

 

 

 

Bei den Komplettlösungen eines Antriebsstrangs (vgl. Tab. 4) handelt es sich um Achsantriebe 

mit Getriebe und Differential. Das DTD01 besitzt 2 E-motoren, die jeweils eine Seite antreiben. 

Es handelt sich dabei um ein Radantrieb. Radantrieb und Achsantrieb haben hier das gleiche 

Leistungsgewicht. Das Leistungsgewicht beträgt durchschnittlich 2,2kw/kg. 

 
Tabelle 4 Leistungsgewicht Antriebsstränge nach Daten von (BRUSA HyPower AG, 2024) 

Modell Übersetzungsverhältnis 

max. 

Leistung 
(kW) 

max. 

RPM 
(rpm) 

Gewicht 

kg 

Leistungsge-

wicht (kW/kg) 

DTSP2 1:2.842 270 3518 98,5 
2,74 

DTSP1 1:2.842 207 3518 92,6 
2,24 

DTDO1  1:5.5 2x177 2180 148 
2,39 

DTSO1-
097 

1:9.7 121 1175 73,4 
1,65 

DTS01-
096 

1:9.59 165 1250 75 
2,20 

 

 

(Fuchs, 2014) ermittelt das Leistungsgewicht über eine Regression (vgl. Abb.16). Die Erkennt-

nisse aus 2014 sind jedoch aufgrund des technologischen Fortschritts inzwischen veraltet und 

daher nicht mehr brauchbar. Das damals ermittelte Leistungsgewicht liegt deutlich unter den 

heutigen Werten. Die Untersuchung zeigt jedoch, dass der Einfluss unterschiedlicher E-Mo-

torkonzepte das Leistungsgewicht erheblich beeinflusst. 
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Abbildung 16 E-Motorgewicht in Abhängigkeit von Leistung und Drehmoment (Fuchs, 2014 S. 58) 

 

Auf Grundlage der Herstellerangaben sind Varianten der gleichen Modellreihen von Fahrzeug-

herstellern untersucht, um ein mögliches Leistungsgewicht aus der Recherche zu validieren 

sowie den Einfluss des Allradantriebs auf das Gewicht zu bestimmen. Dabei ist das Leerge-

wicht der Fahrzeuge in Zusammenhang mit der Leistung und dem Allradantrieb analysiert (vgl. 

Abb. 17). Die Datenbank basiert bei den untersuchten Modellreihen auf Fahrzeugen derselben 

Ausstattungslinie, um mögliche Gewichtsfehler zu minimieren. 

 

Abbildung 17 Gewichtseinfluss durch Allradantrieb und Leistungssteigerung 
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Es stellte sich heraus, dass häufig mit einer Leistungssteigerung auch ein Allradantrieb in der 
Modelllinie hinzukommt, was eine Differenzierung erschwert. Zudem zeigt sich, dass in einem 

bestimmten Bereich das Gewicht trotz Leistungszunahme nicht ansteigt. Dies könnte darauf 

hindeuten, dass einige Hersteller denselben Elektromotor in verschiedenen Leistungsstufen 

anbieten. Bei anderen Modellreihen gibt es bei gleicher Leistung jedoch einen Einfluss auf das 

Gewicht. Letztendlich kann aufgrund der begrenzten Datenmenge keine endgültige Aussage 

getroffen werden.  

Das weitere Herunterbrechen des Leergewichts auf Karosserie und Antriebsstrang ist mit den 

für die Arbeit verfügbaren Daten nicht möglich, da diese größtenteils nicht öffentlich verfügbar 

sind. Neben der geringen Anzahl an Referenzdaten zu aktuellen Antriebssträngen kann keine 

verlässliche Einschätzung zur Bestimmung des Karosseriegewichts vorgenommen werden. 

Da es neben dem Leistungsgewicht, mit dem Karosseriegewicht eine zweite unbekannte gibt. 

Ein Zugriff auf detailliertere Daten wie z.B. über eine A2Mac1-Datenbank kann hier eine Diffe-

renzierung der Einflussparameter einzelner Komponenten liefern. Gerade in Bezug auf das 

Karosseriegewicht kann anschließend die Abhängigkeit zwischen Batteriegewicht, Leistungs-

gewicht und Karosseriegewicht analysiert werden. Die Betrachtung über die Modellreihen, 

zeigt einen tendenziellen Einfluss. Die Datenlage ist bei gleichen Modellvarianten allerdings 

zu gering. Aufgrund der begrenzten und schwer zugänglichen Datenlage zu Antriebskompo-

nenten ist auf Grundlage der empirischen Daten ein Regressionsmodell zu Berechnung des 

Leergewichts entwickelt. 

4.3 Modellaufbau Leergewicht 

Um die maßgeblichen Einflussfaktoren auf das Leergewicht zu ermitteln, ist eine statistische 

Analyse durchgeführt. Zu den untersuchten Variablen zählen die Fahrzeugabmessungen 

(Länge, Breite, Höhe), die Leistung, das Drehmoment, die angetriebene Achse, die Fahrzeug-

klasse, das Batteriegewicht, die Karosserieform, das Kofferraumvolumen und der Preis des 

Fahrzeugs. 

Eine Regression, die alle genannten Parameter einschließt, ergibt eine Abbildungsgüte mit 

einem R2-Wert von 0,969. Das lässt auf eine nahezu vollständige Erklärungsfähigkeit des Mo-

dells schließen. Anschließend sind die Parameter auf Relevanz und Unabhängigkeit überprüft. 

Die systematische Analyse aller Variablen führt zu dem Ergebnis, dass das Leergewicht durch 

die Parameter Länge, Breite, Höhe, Batteriegewicht und Antrieb (Allrad als Dummy-Variabel) 

vorhergesagt werden kann. Diese Parameter erwiesen sich als ausreichend, um das Leerge-

wicht ohne nennenswerten Genauigkeitsverlust zu bestimmen. Daraus ergibt sich auch die 
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Einflussgröße durch den Allradantrieb von 116kg. Die Gewichtszunahme der drei Vergleichs-

fahrzeuge liegen bei 90, 112 und 115kg (vgl. Abb. 17). 

Andere Parameter wie die Leistung, die Fahrzeugklasse, die Karosserieform sind in den ver-

bleibenden Variablen implizit enthalten. Die Leistung verliert ihren signifikanten Einfluss bei 

Berücksichtigung des Allradantriebs. Dies zeigt möglicherweise die untergeordnete Rolle des 

E-Motors beim Leergewicht. Die Signifikanz der Leistung spielt vermutlich daher eine Rolle, 

das mit höherer Leistung auch ein Allradantrieb im Fahrzeug verbaut ist. Eine theoretische 

Betrachtung bei einem Leistungsgewicht von 4,5kw/kg zeigt, das eine Gewichtszunahme von 

66kg bei einer Leistungssteigerung von 300kWh eigentlich nicht vernachlässigbar ist. Es ist 

wahrscheinlich, dass im Wert Allrad ein Anteil enthalten ist. In dem Regressionsmodel ist eine 

Berücksichtigung nicht nötig. Die Bestimmung des Leergewichts ist über beide Parameter ver-

glichen (vgl. Tab. 5). Dabei zeigt der Einfluss über den Allradantrieb eine bessere vorhersage 

Möglichkeit.  

Tabelle 5 Modellvergleich Allrad und Leistung 

Model  
Standardab-

weichung 
R^2 Vairanz 

AWD 4,1 94,7 17,1 

Leistung 4,6 93,5 20,8 

 

Bezogen auf das Modell, indem alle Parameter berücksichtig sind, hast sich das Be-

stimmtheitsmaß nur geringfügig verringert. Die Abbildungsgüte des reduzierten Modells mit 

einem R2-Wert von 0,947 und einer gleich gebliebenen Standardabweichung ist als gut einzu-

schätzen.  

Insgesamt zeigt die Analyse, dass eine Reduktion der Parameter auf Länge, Breite, Höhe, 

Allradantrieb und Batteriegewicht ausreicht, um das Leergewicht eines Fahrzeugs präzise vor-

herzusagen (vgl. Abb. 18). Zusätzliche Parameter wie Leistung, Fahrzeugklasse oder Karos-

serieform sind nicht notwendig, um die Modellgenauigkeit weiter zu verbessern. 
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Abbildung 18 Regressionsmodell Leergewicht 

5 Modellentwicklung Verbrauch 
 

Kernpunkt dieser Arbeit ist die Bestimmung des Verbrauchs von E-Fahrzeugen. Hierbei liegt 

ein Augenmerk auch auf dem realen Verbrauch durch den Endkunden. 2018 hat der WLTP 

den NEFZ abgelöst mit dem Ziel eine Annäherung an die Realverbräuche zu erreichen und 

eine weltweite Vereinheitlichung zu schaffen (Liebl, et al., 2014 S. 234). Eine Studie vom ICCT 

(International Council on Clean Transportation) zeigt, dass die Abweichung vom Realver-

brauch nach der Einführung gesunken ist, aber mittlerweile wieder ansteigt (Dornoff, et al., 

2024). Es ist zunächst eine Verbesserung von 33% gegenüber dem NEFZ im Jahr 2018 zu 

verzeichnen. Was einer 8% Abweichung durch den WLTP zum Realverbrauch beschreibt. 

Diese Abweichung ist bis ins Jahr 2022 auf 15% angestiegen.  

In einem weiteren Bericht beschreibt die ICCT die Möglichkeiten, um der Diskrepanz entge-

genzuwirken. Empfohlene Maßnahmen umfassen unabhängige Nachtests, strikte Durchset-

zung von Richtlinien, realitätsnähere Testverfahren und bessere Informationsbereitstellung für 

Verbraucher. Diese Maßnahmen sollen die wieder steigende Lücke zwischen offiziellen und 

realen Werten näher zusammenbringen (Tietge, et al., 2017). Die Datenlage zu E-Fahrzeugen 

ist dabei beschränkt. In dem Bericht werden Verbrenner und Hybrid-Varianten untersucht. Es 

ist aber davon auszugehen, dass diese Problematik auch auf reine E-Fahrzeuge zutrifft, da 

gerade hier der Verbrauch von elektrischen Verbrauchern, beispielsweise durchs Heizen, eine 
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signifikante Rolle spielen. Um zu erklären, wie diese Diskrepanz entsteht muss zunächst ver-

standen werden, wie der WLTP genau testet und welche Einflüsse den Realverbrauch bestim-

men. Der Realverbrauch setzt sich aus einer Vielzahl von Parametern zusammen. Die Haupt-

einflussfaktoren sind nach (Liebl, et al., 2014 S. 293) neben den Fahrwiderständen: 
 
Außentemperatur 

Fahrereinfluss (Geschwindigkeit, Dynamik) 

eingeschaltete Verbraucher (Klima, Entertainment, elektr. Heizungen, usw.) 

Zusatzlasten (Personen, Gepäck, Dachgepäck, Anhänger usw.) 

Verkehrsfluss 

Streckenprofil 

 

(Helms, et al., 2022 S. 63) zeigt, dass der Einfluss von NAE-Verbrauchern (Nicht-Antriebs-

Energie) einen Anteil von bis zu 65% des Gesamtenergieverbrauchs bei BEVs (kurze Stadt-

fahrten mit -10° Außentemperatur) ausmachen kann. Das zeigt, dass gerade bei BEVs von 

einer möglicherweise noch größeren Diskrepanz zu den WLTP-Werten auszugehen ist. Ge-

rade in Szenarien mit Temperaturen unter 0° spielt die elektrische Heizung eine entscheidende 

Rolle. Diese Energie kann nicht wie bei Verbrenner aus der Ineffizienz des Motors gewonnen 

werden.  

 

Die Betrachtung vom Realverbrauch zeigt, dass der tatsächliche individuelle Realverbrauch 

stark abweichen kann. Hier spielen neben dem persönlichen Fahrstil, auch ortsbezogene Fak-

toren (klimatisch und topografisch) eine wichtige Rolle. Um sich einem Realverbrauch anzu-

nähern, wird in dieser Arbeit das Augenmerk darauf gelegt von einem standardisierten Fahr-

widerstandverbrauch eine gemittelte reale Verbrauchsschätzung liefern zu können. Dazu ist 

untersucht, wie groß und welche Parameter wichtig sind, um einen Realverbrauch besser zu 

berücksichtigen. 

 

Der WLTC basiert auf einem standardisierten Prüfverfahren. Der Zyklus hat eine Länge von 

23km mit einer Durchschnittsgeschwindigkeit von 47km/h. Dabei durchläuft das Fahrzeug vier 

unterschiedliche Fahrzyklen mit einem Höchstgeschwindigkeitsbereich von 60,80,100 und 

130km/h. Der Test läuft unter Laborbedingungen auf einem Dynamo bei einer Temperatur von 

23°. Berücksichtigt werden bei dem Test auch ausstattungsbezogene Optionen. Im Vergleich 

zum NEFZ berücksichtigt der WLTP einen wesentlich realistischen Bezug auf die physikali-

schen Parameter der Fahrwiderstände durch ein angepasstes Fahrprofil. NAE-Verbraucher 

wie die Klimaanlage und Infotainment ist abgeschaltet. Hier zeigt sich auf die vorweggenom-

mene Schwäche auf. 
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5.1 Fahrwiderstands Simulation 

 

Grundlage der weiteren Berechnung des Verbrauchs ist ein Simulationsmodell basierend auf 

dem WLTC es berechnet den Fahrwiderstandverbrauch. Um ein robustes Modell zu erzeugen, 

wird der WLTC auf Grundlage einer physikalischen Simulation entwickelt. Dabei werden die 

physikalischen Fahrwiderstände über das Fahrprofil simuliert. Unbekannte Parameter sind da-

bei cw-Wert, Stirnfläche, Rollwiderstandskoeffizient und das Restbremsmoment. Hinzukom-

men Verluste durch den Antriebsstrang und der Batterie. Außerdem ist die Effizienz der Reku-

peration untersucht.  

 

5.1.1 Einflussgrößen Fahrwiderstand 

 

5.1.1.1 Cw-Wert, Stirnfläche und Rollwiderstandsbeiwert 

 

Der Luftwiderstand hängt von der äußeren Formgebung und von den Verhältnissen bei der 

Durchströmung des Fahrzeuges ab und setzt sich zusammen aus Reibungs- und Druckkräf-

ten, die an der Oberfläche des Fahrzeugs wirken (Schramm, et al., 2017) S197. 

Der cw-Wert einzelner Fahrzeuge ergibt sich dabei durch eine Simulation oder wird empirisch 

ermittelt (LEIFIphysik, 2024). In der früher Konzeptphase muss dieser Wert zunächst ange-

nommen werden. Eine Regressionsanalyse ergibt, dass die Hauptparameter die Länge und 

Höhe sowie Karosserieform des Fahrzeugs sind. In den zugrunde liegenden Daten gibt es drei 

Fahrzeugtypen Stufenheck, Schrägheck und SUV. Die Mittelwerte der cw-Werte unterschei-

den sich bezüglich der Fahrzeugform. So besitzt das Schrägheck einen Mittelwert von 0,252, 

das Stufenheck von 0,218 und SUVs von 0,274. Nach (Karle, 2022 S. 140) hat die Änderung 

vom cw-Wert um 0,01 einen Einfluss von zusätzlichen 0,126kWh/100km auf den 

Verbrauch(NEFZ-Zyklus). Dieser Tyklus hat im Vergleich mit 34km/h zum WLTC mit 47km/h 

eine geringere Durchschnittsgeschwindikeit. Daher ist von einem größeren Einfluss 

auszugehen. (Fuchs, 2014) ermittelt den cw-Wert über die Fahrzeuglänge für die einzelnen 

Karosserieformen (Vgl. Abb. 19). Hier hat die Regression keine gute Abbildungsgüte. Eine 

Betrachtung der zugrundeliegenden Daten zeigt, dass eine Anwendung der Regressionen bei 

E-Fahrzeugen zu einer hohen Abweichung führt. 
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Abbildung 19 Bestimmung cw-Wert in Abhängigkeit von Länge und Karosserieform (Fuchs, 2014 S. 56) 

  

Eine Regression zur Ermittlung des cw-Werts ist über Länge und Höhe realisiert, um bei der 

Wahl des cw-Werts im Tool einen Anhaltspunkt zu gewährleisten. Auf Basis der 

Regressionsanlyse stellt sich heraus, dass die Fahrzeugform bezogen auf die anderen 

Parametern einen geringen Einfluss hat und das Modell mit Länge und Breite ausreichend 

beschrieben wird (vgl. Abb. 20) Das Modell über Länge und Breite weist eine 

Standardabweichung von 0,0183 vom cw-Wert auf, mit Fahrzeugform von 0,0189. Das R2 sinkt 

von 66,39 auf 64,1. Der VIF zeigt, dass eine Multikolinearität besteht. Für eine erste Anahme 

des cw-Werts kann angenommen werden, dass die Bestimmung über Länge und Breite gut 

bestimmt ist.   

 

 

 
Abbildung 20 Einfluss von Länge und Höhe auf den cw-Wert 
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Die Stirnfläche eines Fahrzeugs kann, wenn keine CAD-Daten vorliegen, beispielsweise über 

Kantentracking erfolgen. Dazu wird in einem automatisierten Verfahren über eine optische 

Messeinrichtung die Silhouette des Fahrzeugs getrackt und so die Stirnfläche ermittelt (TWW 

System GmbH, 2024). Die aktuelle Fahrzeugphysiktabelle berechnet die Stirnfläche über die 

Breite und Höhe des Fahrzeugs mit einem Korrekturfaktor von 0,845. Ein Abgleich der vor-

handenen Daten der Stirnfläche von E-Fahrzeugen bestätigt den Korrekturfaktor. Aus 9 be-

kannten Stirnflächen ist ein Mittelwert von 0,849 ermittelt. Auf Grundlage der geringen Daten-

lage wird der Wert lediglich als Bestätigung gesehen und ein Wert von 0,845 angenommen. 

 

𝑆𝑡𝑖𝑟𝑛𝑓𝑙ä𝑐ℎ𝑒	(𝑚() =
𝐵𝑟𝑒𝑖𝑡𝑒(𝑚𝑚) ⋅ 𝐻öℎ𝑒(𝑚𝑚) ⋅ 0,845

1000000  

 

In der Datenbank ist für jedes Fahrzeug der Standardreifen definiert. Bei der Recherche hat 

sich aber gezeigt, dass für eine einzelne Zuweisung des Rollwiderstandsbeiwert in Abhängig-

keit des Reifen keine Daten vorliegen. In der Simulation wird eine trockene asphaltierte Straße 

angenommen. Die Angaben zu Werten unter diesen Voraussetzungen liegen in der Literatur 

bei 0,006 für hochmoderne besonders rollwiderstandreduzierte Reifen (Liebl, et al., 2014 S. 

103). Eine Durchschnittsangabe bei PKWs von 0,1 ist  (Doppelbauer, 2020 S. 101) und (Karle, 

2022 S. 127) zu entnehmen. (Helms, et al., 2022 S. 54) rechnet in einer Simulation mit 0,006 

für ein effizientes E-Fahrzeug. 

 

(Kücükay, 2022 S. 113f) benennt den Wert mit 0,008 über für alle Fahrzeugklassen. Es wird 

dabei eine lineare Abhängigkeit zur Geschwindigkeit berücksichtigt. Diese steigt mit der Fahr-

zeugklasse von 0,0004 für Kleinstwagen bis hin zu 0,0006 bei der Oberklasse. Um keinen 

neuen Parameter hinzufügen zu müssen wird der Mittelwert über die Fahrzeugklassen mit 

0,0005 angenommen.  

 

Daraus ergibt sich die Berechnung für den Rollwiderstandsbeiwert: 

 

𝑓%(++ = 𝑓%(++. + 𝑓%(++) 	 ⋅ 	
𝑣 0𝑘𝑚ℎ 3
100𝑘𝑚
ℎ

 

 

𝑓%(++ = 0,008 + 0,0005	 ⋅ 	
𝑣 0𝑘𝑚ℎ 3
100𝑘𝑚
ℎ
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Es ergibt sich ein Rollwiderstandsbeiwert bei 130km/h von  𝑓%(++,.01 = 0,00865 im Vergleich 

zum statischen Wert bei 0km/h von 𝑓%(++,1 = 0,008. (Schütz, 2023 S. 172) empfiehlt die Berück-

sichtigung der Geschwindigkeit bei der Bestimmung des Rollwiderstands. In der Simulation 

wird er dynamisch in Abhängigkeit der Geschwindigkeit angenommen. Eine Berücksichtigung 

vom Reifeninnendruck findet nicht statt. Hier wird vom optimalen Reifendruck ausgegangen. 

Die Annahme von 0,008 im unteren Geschwindigkeitsbereich wird von (Pischinger, et al., 2021 

S. 49) für neue rollwiderstandsarme Reifen bestätigt. 

 

5.1.1.2 Restbremsmoment 

 

Für die quantitative Abschätzung des Energiebedarfs durch das Restbremsmoment wird von 

einem wahrscheinlichen Bereich von 2 bis 5 Nm pro Rad ausgegangen (Liebl, et al., 2014 S. 

199f). (Heimann, 2012) untersucht in seiner Dissertation Restbremsmomente von Scheiben-

bremsen. Restbremsmomente bauen sich über die Zeit ab. Dabei ist ein Spektrum von 2 bis 

10Nm angegeben. Unter der Annahme, dass elektrische Fahrzeuge wesentlich seltener über 

die tatsächliche Bremse bremsen, ist ein Wert von 3Nm angenommen. Die Berechnung des 

Reifendurchmesser über die Standardreifen der Fahrzeuge aus der Datenbank der Hersteller-

angaben ergibt sich ein durchschnittlicher Reifenradius von 0,35m. Daraus ergibt sich die Kraft 

für das Restbremsmoment: 

 

𝐹'23(𝑚) =
𝑀'23(𝑁𝑚)
𝑟',$4,&(𝑚)

 

 

5.1.1.3 Ladeverluste 

 

Ladeverluste sind auch bei dem Verbrauch nach WLTP berücksichtigt. Das genaue Vorgehen 

ist dabei fest definiert, die Ladeleistung wird nicht festgelegt. Hier kann man davon ausgehen, 

dass die Hersteller mit den maximalen 22kW laden. Das ermöglicht die beste Effizienz.  

 

Ladeverluste entstehen beim Laden der Batterie und sind ein wichtiger Kostenfaktor für den 

Endkunden, da sie den tatsächlichen Energieverbrauch und damit die Abrechnung beeinflus-

sen. (Kalb, 2022) untersucht die Verluste, die beim Laden über eine Haushaltssteckdose (2,3 

kW) und eine 11 kW-Wallbox auftreten. Den größten Einfluss hat das Onboard-Ladegerät mit 

einem Verlust von 5-10% bei der 11 kW-Wallbox, während andere Verluste vernachlässigbar 

sind. Zuleitungsverluste beim Laden über die Haushaltssteckdose betragen etwa 4%. Zudem 

beeinflusst das 12-Volt-Bordnetz bei langen Ladezeiten den Gesamtverlust mit 5-15%. Die 
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Ladeverluste an der Wallbox liegen zwischen 5-10%, während sie bei der Haushaltssteckdose 

mit 10-30% deutlich höher ausfallen.  

 

(Genovese, et al., 2015) führt einen Versuch an einem Fahrzeug durch bei dem mit 3,16,22,43 

und 50 kW Ladeleistung der Einfluss von unterschiedlichen State-of-Charge Zuständen sowie 

der Einfluss extremer Temperaturen betrachtet werden (vgl. Abb. 21). Hohe Temperaturen 

haben einen wesentlich kleineren Einfluss auf die Ladeeffizienz als sehr niedrige Temperatu-

ren. Teilweise ist mit extremen Effizienz verlusten zu rechnen. Einige getestete Ladesäulen 

haben bei der Kälte nicht funktioniert. 

 

Mehrere Studien bestätigen, dass mit geringerer Ladeleistung die Effizienz sinkt. Dabei ist ein 

Ladeleistungsspektrum von 2,3kw bis 50kw untersucht. Ein gemittelter Wert ergibt einen La-

deverlust von etwa 17% (Germana, et al., 2018) (Apostolaki-Iosifidou, et al., 2017) (Kieldsen, 

et al., 2016) (Reick, et al., 2021). In dem Modell wird eine aus den Testdaten ermittelter Lade-

verlust berücksichtigt. Aus den Versuchsdaten ergibt sich ein Ladeverlust beim Laden mit 

11kW von ungefähr 11%. Dieser Wert deckt sich mit Angaben aus der Literatur. Er ist im Tool 

als Ladeverlust festgelegt. 

 
Abbildung 21 Temperatureinfluss auf die Ladeeffizienz in Abhängigkeit der Ladeleistung (Genovese, et al., 2015 S. 

12) 

Zudem entstehen Verluste der Kapazität durch Alterung und nicht Nutzung des Fahrzeugs. Mit 

der Zeit nimmt die Kapazität einer Batterie ab. Diese Degradation ist ein natürlicher Prozess, 

der durch Ladezyklen, hohe Entladeströme und extreme Temperaturen beschleunigt wird. 

Auch wenn das Fahrzeug nicht genutzt wird, verliert die Batterie über die Zeit Energie. Dies 



          
        

 
 

        
41 
 

tritt aufgrund chemischer Reaktionen innerhalb der Batterie auf. Bei der Degradation ist eine 

nicht lineare Alterung feststellbar (Brand, et al., 2012). 

 

(Brand, et al., 2012) kommen zu dem Ergebnis, dass ohne die genaue Historie einer Batterie, 

einschließlich ihrer Lade- und Entladezyklen sowie der Temperaturbedingungen, es nahezu 

unmöglich ist, eine verlässliche Aussage über den aktuellen Zustand (State of Health, SOH) 

und die verbleibende Lebensdauer zu treffen. Ein umfassendes Batterie-Management-Sys-

tem, das die gesamte Lebensdauer der Batterie überwacht und dokumentiert, ist daher ent-

scheidend. In den ersten vier Jahren kann man von einer Verringerung von unter 10% ausge-

hen. (Ou, 2023) führt weiter auf, dass nach 10 Jahren eine Alterung von 14% bei niedriger 

Ladeleistung auftritt. Tägliches schnellladen mit 60kW lässt die Alterung auf 33% ansteigen 

und hat somit einen erheblichen Einfluss. Batterie-Thermomanagementsysteme können über 

längere Zeiträume einen positiven Einfluss auf die Degradation mit einer Reduzierung von 

0,5% pro Jahr haben. Zudem sind kalte Temperaturen schlechter für den SOH. (Suri, et al., 

2016) erstellt aufgrund empirischer Daten ein Modell der Degradation in Abhängigkeit vom 

State-of-Charge (SOC) und der Temperatur (vgl. Tab.). Keine Alterung bei 0% SOC ist hierbei 

jedoch im Kontext zu betrachten, da eine Tiefenentladung ausgeschlossen sein muss. Tiefen-

entladung führt ebenfalls zu negativem Einfluss auf die Kapazität. In extremen Fällen kann 

dies zu einer vollständigen Zerstörung der Batterie führen (Jossen, et al., 2016). Abgesehen 

davon kann man annehmen, dass geringere SOC eine Alterung reduzieren, solange eine Tie-

fenentladung ausgeschlossen ist. Eine Recherche bezüglich eines Energieverbrauch bei E-

Fahrzeugen im Park-Zustand war erfolglos. Je seltener ein Fahrzeug gebraucht wird, desto 

größer könnte der Einfluss von diesem Verbrauch sein. Eine Alterung ist im Tool nicht berück-

sichtigt, da die Bestimmung ohne spezifische Daten nicht möglich ist. 

 
Ladezu-
stand 
(SOC) 

Zeit (Jahre) Alterung bei 25°C Alterung bei 35°C 

15% 

1 100% 100% 

2 100% 100% 

5 98% 98% 

10 96% 95% 

20 90% 87% 

90% 

1 99% 99% 

2 97% 96% 

5 92% 89% 

10 87% 79% 

20 81% 65% 

Abbildung 22 Übersicht Einfluss vom SOC auf die Batteriealterung nach (Ou, 2023) 
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5.1.1.4 Antriebsverluste 

 

Ein weiterer Faktor sind die entstehenden Verluste die bei der Betrachtung der 

Antriebsleistung berücksichtig sein müssen. Abbildung 23 zeigt den Energiefluss eines BEVs. 

Neben den Fahrwiderständen zeigt sich, dass verschiedenste Verluste bei dem Verbrauch 

eine Rolle spielen. Für einen ersten Schritt zur Bestimmung dieser Verluste, werden die 

Verluste in der Literatur betachtet.  

 

Die Bestimmung von Verlusten spielt im Vergleich zu Verbrennern aufgrund der Rekuperation 

eine größere Rolle, so kann eine Wirkungsgradverbesserung von 1% im Antriebsstrang ein 

Einsparpotential von 0,9 bis 1,6 % bei dem Gesamtverbrauch erreicht werden (Schmahl, et 

al., 2018 S. 11). 

 

Bei der Fahrt entstehen Batterieverluste hauptsächlich durch Stromverluste am Innenwider-

stand. Können aber auch durch das aktive kühlen oder heizen der Batterie erfolgen 

(Seirlehner, 2019 S. 59). In der Literatur finden sich angaben von einem Batterieverlust von 

unter 5% (Doppelbauer, 2020 S. 137), 5% (Kücükay, 2022 S. 583) sowie einer Bereichsan-

gabe von 4% bis 8% (Tschöke, 2015 S. 39). Bei der letzten Quellenangabe muss das Erschei-

nungsalter berücksichtigt werden. 

 

 
Abbildung 23 Energiefluss bei einem E-Fahrzeug (Zhang, et al., 2017 S. 8) 
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Verluste E-Motor und Leistungselektronik 

 

Bei der Leistungsaufnahme eines Elektromotors treten verschiedene Verluste auf, die die Ef-

fizienz des Motors beeinflussen. Zu den wichtigsten Verlustarten gehören die Kupferverluste, 

die durch den elektrischen Widerstand in den Wicklungen entstehen und mit der Stromstärke 

zunehmen. Eisenverluste entstehen im Kern des Motors durch Hysterese- und Wirbelströme 

und steigen mit der Drehzahl. Mechanische Verluste wie Reibungsverluste nehmen ebenfalls 

mit der Drehzahl zu. Schaltverluste führen im Wechselrichter (Leistungselektronik), der den 

Gleichstrom in Wechselstrom umwandelt, zu zusätzlichen Verlusten, insbesondere bei höhe-

ren Leistungsanforderungen (Husain, et al., 2021).  

 

Die Verluste sind zudem abhängig vom Betriebszustand des E-Motors und damit auch von der 

Drehzahl, sowie der benötigten Leistung. Die kombinierten Verluste sind über eine Dreh-

zahl/Drehmoment-Kennlinie darstellbar. Es werden in der Literatur für den E-Motor Verluste 

von 5% angenommen  (Tschöke, 2015 S. 39) (Kücükay, 2022 S. 590) (Fuchs, 2014 S. 63). 

Die Leistungselektronik mach ungefähr 3%-5% aus  (Tschöke, 2015 S. 39). 

 

Antriebsstrangverluste 

 

Weitere Verluste entstehen bei dem Antriebsstrang. Die zusätzlichen Reibungsverluste des 

Getriebes sind bei BEVs in Bezug zu Verbrennern meist geringer, da überwiegend eingängige 

Getriebe mit wenigen Stufen verwendet werden. Diese besitzen daher einen hohen Wirkungs-

grad von über 95 % (Doppelbauer, 2020 S. 56). Alle Fahrzeuge, die von GreenNCAP getestet 

sind haben ebenfalls ein einstufiges Getriebe. (Kücükay, 2022 S. 610) gibt zu einem 1-Gang 

Getriebe eine Effizienz von 2% an. Getriebe mit fester Übersetzung haben nach  (Tschöke, 

2015 S. 39) auch einen Verlust von bis zu 2%. 

 

Zusammengefasst lassen sich die Verluste recht einheitlich über die Literatur bestätigen. Und 

fallen alle in die von (Tschöke, 2015) erstellten maximalen Richtwerte. Dies ist darauf zurück-

zuführen, dass das Buch bereits 2015 veröffentlicht wurde und es eine technologische Ent-

wicklung gab. Es ergibt sich unter dieser Berücksichtigung eine gesamt Antriebsdifferenz von 

15%-17%. 

 

Rekuperation 

 

Bremsverluste treten auf, wenn die Bremse kinetische Energie in Wärmeenergie umwandelt. 

Dies passiert, wenn die Fahrwiderstände (natürliche Rekuperation) und die elektrische 
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Bei der Rekuperation treten die gleichen Verluste in entgegengesetzter Energierichtung auf. 

Obwohl dieselben Komponenten beteiligt sind, können Unterschiede in den Verlusten auftre-

ten. Unterschiede können möglicherweise durch leichte Variationen in den Betriebsbedingun-

gen entstehen. Übliche Kennfelder der Motoren Effizienz zeigen, dass die gleiche Effizienz für 

Rekuperation übereinstimmt. (Zhang, et al., 2017 S. 1958) nutzen in ihrem Modell den gleichen 

Energieverlust wie für die Beschleunigung. Nach (Doppelbauer, 2020 S. 105) entstehen bei 

der Rekuperation zusätzliche Rückspeiseverluste von 5%. (Karle, 2022 S. 133) gibt einen Ge-

samtwirkungsgrad von 90% bei der Rekuperation an. Was einen gleichen Wirkungsgrad von 

der Beschleunigung entspricht. Eine Differenzierung ist hier nicht nötig.  

 

Betrachtung Batterie State-of-Charge (SOC) 

 

Die Betrachtung vom SOC spielt in Bezug auf die Rekuperation eine wichtige Rolle. Bei voll-

geladenem Akku kann das Fahrzeug möglicherweise zunächst nicht rekuperieren. Im Testver-

fahren von GreenNCAP ist das für einige ältere Test noch nicht berücksichtigt. Daher ist eine 

Betrachtung des SOC der einzelnen Fahrzeuge erfolgt. Bei einigen Fahrzeugen ist der SOC 

zu Prüfbeginn nicht dokumentiert. Drei Fahrzeuge haben die Zyklen mit knapp 100% SOC 

begonnen. Die restlichen Fahrzeuge schwanken in einem groben Bereich von 50% bis 80%. 

Bei der Ausarbeitung des Simulationstools ist hier ein möglicher Fehler betrachtet. Es hat sich 

gezeigt, dass es bei den drei Fahrzeugen keinen Einfluss auf die Rekuperation im Zyklus hat 

 

5.1.2 Fahrwiderstands Simulation 

 

Auf Grundlage der ermittelten Werte und aus der Literatur gewonnen Erkenntnisse wird die 

physikalische Simulation mit den von GreenNcap zur Verfügung gestellten Testdaten erstellt. 

Parallel dient eine Regressionsanalyse als Benchmark der Ergebnisse. Zunächst ist mit Hilfe 

der Regressionsanalyse die Korrelationen zu den konzeptionellen Parametern untersucht. Die 

Analyse dient dazu, dass mögliche nicht berücksichtige Einflüsse erkannt werden. Diese kön-

nen anschließend in der Simulation berücksichtigt werden. Der Einfluss der Batteriekapazität, 

Fahrzeugklasse, Leistung, Leergewicht, cw-Wert, Stirnfläche, cwA-Wert (Produkt aus cw-Wert 

und Stirnfläche), sowie die Fahrzeugdimensionen Länge, Breite und Höhe sind untersucht.  

Die Analyse zeigt, dass die Parameter Breite, Leergewicht, Antrieb und der cw-Wert die be-

stimmenden Parameter bei der Regression darstellen. Die Variable Antrieb stellt als Dummy-

Variabel die Information bereit. Eine Regression über alle untersuchten Parameter erzeugt ein 

R2 von knapp 80 mit einer Standardabweichung von 7,5%. Im weiteren Analyseprozess ist das 

Regressionsmodell von zehn auf vier signifikante Parameter heruntergebrochen. Mit einem R2 
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von etwas über 77 und einer Standardabweichung von 7,6%. Es lässt sich daraus Schlussfol-

gern, dass die optimierte Bestimmung des WLTP-Verbrauchs über diese vier Parameter mög-

lich ist: 

 

𝑉𝑒𝑟𝑏𝑟𝑎𝑢𝑐ℎ	𝑊𝐿𝑇𝑃	 -
𝑘𝑊ℎ
100𝑘𝑚1

= −39,34 + 0,02157	𝑥	𝐵𝑟𝑒𝑖𝑡𝑒(𝑚𝑚) + 0,0018	𝑥	𝐿𝑒𝑒𝑟𝑔𝑒𝑤𝑖𝑐ℎ𝑡	(𝑘𝑔) + 𝐴𝑛𝑡𝑟𝑖𝑒𝑏	 -
0
11 	𝑥	1,336

+ 44,9977	𝑥	𝑐𝑤 −𝑊𝑒𝑟𝑡 

 

Für die Simulation lässt sich ableiten, dass eine Berücksichtigung eines Allradantriebs und der 

Fahrzeugklasse zusätzlich untersucht werden muss. Die Breite eines Fahrzeuges korreliert 

mit der Fahrzeugklasse mit einem R2 von 82. 

 

Ausgangspunkt der Simulation sind die Messdaten der 27 getesteten Fahrzeuge von GreenN-

CAP. Diese Messdaten umfassen zwei unterschiedliche Fahrprofile, die für die Simulation ver-

wendet werden: 

1. WLTC Class 3b: Hier liegen je Fahrzeug 3 unterschiedliche Messungen vor. Fahrzeug 

im Betriebszustand (Warmstart), Nicht betriebstemperiertes Fahrzeug (Kaltstart) und 

eine Vorkonditionierung bei -7° in einer Klimakammer. 

2. Autobahnfahrt: Zusätzlich zum WLTC Class 3b wird eine Autobahnfahrt simuliert, die 

einen Verbrauch bei höheren Geschwindigkeiten abbilden soll. Dieses Fahrprofil zielt 

darauf ab, die Leistung und den Energieverbrauch des Fahrzeugs unter Betriebsbe-

dingungen zu bewerten, die auf Autobahnen üblich sind. Das Zyklusprofil stammt von 

GreenNCAP. 

Zunächst sind aus den Messdaten der beiden Fahrprofile die Geschwindigkeitsangabe pro 

Sekunde extrahiert. Dies ermöglicht das Geschwindigkeitsprofil in Abhängigkeit der Zeit zu 

erstellen. Die Simulation erfolgt in 1Hz Schritten. 

Ausgehend von der Geschwindigkeit 𝑣(𝑡), die für die Sekunde 𝑡 vorgegeben ist, kann die Be-

schleunigung 𝑎(𝑡) berechnet werden, die notwendig ist, um in der nächsten Sekunde die Ge-

schwindigkeit 𝑣(𝑡 + 1) zu erreichen. Die Beschleunigung ergibt sich aus der Differenz der Ge-

schwindigkeiten zwischen zwei aufeinanderfolgenden Sekunden: 

𝑎(𝑡) =
𝑣(𝑡 + 1) − 𝑣(𝑡)

𝛥𝑡 	 
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Da die Schritte in der Simulation 1 Hz betragen, ist 𝛥𝑡 = 1 Sekunde, was die Gleichung ver-

einfacht zu: 

 

𝑎(𝑡) =
𝑣(𝑡 + 1) − 𝑣(𝑡)

1𝑠  

 

Die zurückgelegte Strecke 𝑠(𝑡) innerhalb einer Sekunde kann unter Verwendung der Ge-

schwindigkeit und der berechneten Beschleunigung ermittelt werden. Die allgemeine Formel 

für die Strecke, die ein beschleunigendes Fahrzeug zurücklegt, lautet: 

𝑠(𝑡) = 𝑣(𝑡) ⋅ 𝛥𝑡 +
1
2 ⋅ 𝑎

(𝑡) ⋅ (𝛥𝑡)( 

Auch hier ist 𝛥𝑡 = 1 Sekunde, sodass sich die Gleichung vereinfacht zu: 

𝑠(𝑡) = 𝑣(𝑡) ⋅ 1𝑠 +
1
2 ⋅ 𝑎

(𝑡) 

 

 

In Abhängigkeit der Fahrwiderstandskräfte kann auf die Arbeit geschlossen werden: 

 
𝑊456&"%78&9$5'7(𝑡) = 𝐹456&"%78&9$5'7(𝑡) ⋅ 𝑠(𝑡) 

 

Die Gesamt Fahrwiderstandsarbeit ergibt sich aus den ermittelten Einzelkräften, sowie dem 

konstanten Restbremsmoment und elektrischen Verbrauchern. 

 

𝑊567%!$8,%9#6&8(𝑡)

= (𝐹'(++!$8,%9#6&8(𝑡) + 𝐹:;4#!$8,%9#6&8(𝑡)

+ 𝐹2,9<7+.>!$8,%9#6&8(𝑡)	+	𝐹',9#?%,@9@(@,&#) ⋅ 𝑠(𝑡) 

 

 

Für den Gesamtverbrauch müssen noch die elektrischen Verbraucher berücksichtigt werden. 

 

𝑊A,96@# = 𝑊567%!$8,%9#6&8 +𝑊BCD 
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Das Vorgehen ermöglicht es die jeweiligen Fahrwiderstände automatisiert über den zugrun-

deliegenden Zyklus in EXCEL zu simulieren. So kann sukzessive eine Überprüfung der ge-

troffenen Annahmen erfolgen. 

 

Validierung der Fahrwiderstandsparameter: 

𝑊:(𝑡) = 0,5 ⋅ 𝜌 ⋅ 𝑐! ⋅ 𝐴"#$%& ⋅ 𝜐(𝑡)) ⋅ 𝑠(𝑡) 

𝑊'(𝑡) = 𝑓 ⋅ 𝑚 ⋅ 𝑔 ⋅ 𝑠(𝑡) 

𝑊2(𝑡) = 𝑚 ⋅ 𝑎 ⋅ 𝑠(𝑡) 

Die Geschwindigkeit v(t) und Strecke s(t) ergeben sich aus dem Fahrzyklus. Der cw-Wert (cw), 

die Stirnfläche (AStirn) und die Masse (m) des Fahrzeugs sind die individuellen Parameter, die 

durch die entwickelten Modelle bestimmt sind. Die Dichte der Luft wird mit 1,247kg/m^3 ange-

nommen. Dies entspricht der Dichte bei der Durchschnittstemperatur von ungefähr 10° in 

Deutschland. Der Rollreibkoeffizient wird angenommen mit:  

𝑓&+:: = 0,008 + 0,0005	 ⋅ 	
𝑣 ]𝑘𝑚ℎ ^
100𝑘𝑚
ℎ

 

Zur Einschätzung der Fehler wird zunächst der Einfluss einzelner Parameter überprüft, um 

anschließend empirisch auf die Gesamtverlustleistung der Fahrzeuge schließen zu können.  

Rollreibkoeffizient 

Eine Änderung des Rollwiderstandskoeffizienten hat einen signifikanten Einfluss auf die Ver-

brauchsangabe. Dabei nimmt der Einfluss in Abhängigkeit der Masse des Fahrzeugs zu (vgl. 

Tab. 6). Hier sind in der Arbeit durch rekursiv schleifen verschiedene Annahmen aus der Lite-

ratur analysiert. Die in der Simulation angenommen Berechnung stellt, die genaueste Berech-

nung dar.  
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Tabelle 6 Verbrauchszunahme durch Änderung des Rollwiderstandsbeiwerts 

Δf 
Masse 

(kg) 

ΔVerbrauch 

(kWh/100km) 

0,002 

1500 0,9 

2000 1,2 

2500 1,57 

3000 1,79 

 

Restbremsmoment 

Das Restbremsmoment bietet in Abhängigkeit vom Fahrzeugreifen eine weitere Fehlerquelle. 

Diese kann bei Fehlschätzung der Reifen und Annahme eines falschen Restbremsmoment bis 

zu 0,8kWh/100km ausmachen. Hier ist von einem extremen Fall ausgegangen. Der Reifen-

durchmesser ist mit einem Fehler von 400mm angenommen und das Restbremsmoment, ist 

in dem sich verstärkenden Fall mit einer Differenz von 2Nm zu 7Nm berechnet. Es zeigt sich, 

dass das Restbremsmoment nicht vernachlässigt werden darf, neben der Annahme dieses 

Extrems ist aber kein signifikanter Fehler zu erwarten.  

Stirnfläche und cw-Wert  

Diese beiden Einflussgrößen sind im fertigen Tool über empirische Abhängigkeiten gegeben. 

Für eine Validation der zugrunde liegenden physikalischen Berechnung ist zunächst versucht 

worden mit den tatsächlichen Werten zu rechnen. Es stellt sich heraus, dass bei der Messung 

auf dem Prüfstand die Parameterwerte für den cw-Wert und Stirnfläche nicht benötigt sind. Die 

Hersteller geben Koeffizienten heraus, die beim Prüfstand eingegeben werden. Diese beinhal-

ten die Information. Ein Auslesen ist nicht möglich. Daher basieren die cw-Werte auf einer 

Internetrecherche zu den spezifischen Fahrzeugmodellen. Die Information zur Stirnfläche ist 

nur vereinzelt gefunden und muss über die Höhe und Breite mit Korrekturfaktor berechnet 

werden.  

5.1.3 Verlustbestimmung 

Zur weiteren Bestimmung der Einflussgrößen bei der Fahrwiderstandsberechnung ist der 

elektrische NAE-Verbrauch bei dem GreenNCAP Test bestimmt. Der WLTC bietet die Mög-

lichkeit den Verbrauch im Stand zu bestimmen. 13% der Zeit des 30-minütigen Zyklus befindet 
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sich das Fahrzeug im Stillstand. Eine Extraktion dieser Messwerte für die einzelnen Fahrzeuge 

ermöglicht die Bestimmung des NAE-Verbrauchs je Fahrzyklus. Dadurch kann im weiteren 

Verlauf dieser Einfluss zunächst unberücksichtigt bleiben. Nachdem die Grundlast der einzel-

nen Fahrzeuge ermittelt ist, ist diese als elektrischer Verbrauch der Simulation hinzugefügt. 

Ziel dabei ist die Bestimmung der Gesamtverlustleistung der einzelnen Fahrzeuge. So kann 

zunächst eine noch nicht bestimmte Unbekannte in der Simulation unberücksichtigt bleiben. 

Grund hierfür ist die Bestimmung einer WLTP-Simulation. GreenNCAP fährt den WLTC jedoch 

mit Klimaanlage.  

Als Ausgangspunkt der Verlustbestimmung dient eine Recherche zu den 27 Fahrzeugen, um 

grundlegende Parameter für die Verlustbetrachtung zu erheben. Es ist eine Datenbank zur 

Motorbauart, Einbauposition (Motor), Antriebsachse Getriebeart sowie die Anzahl der Gänge 

zusammengetragen (vgl. Anhang A). Eine spezifischere Fehleranalyse ist so gewährleistet. 

Alle Fahrzeuge besitzen ein 1-Gang Getriebe zudem sind fast nur PSM-Motoren verbaut. Der 

E-Motor ist immer bei der angetriebenen Achse verbaut. Es konnten jedoch keine Fehler auf-

grund dieser Information im Laufe der Arbeit erklärt werden. Kritisch zu betrachten ist dabei, 

dass die ermittelte empirische Verlustleistung, sich somit auf 1-Gang Getriebe Fahrzeuge mit 

PSM-Motor optimiert ist. 

 

Die Messdaten beinhalten die Umdrehung des Motors über die Zyklen. Über die simulierten 

Fahrwiderstände kann die benötigte Leistung ermittelt werden. So ist es möglich die Effizienz 

vom E-Motor über ein Kennlinien-Diagramm (vgl. Abb. 26) zu simulieren. Hier fehlt es jedoch 

an Daten zu Kennlinien von häufig verbauten Motoren. Eine Implementierung macht Sinn, 

wenn zu unterschiedlich leistungsstarken Motoren, Kennfelder existieren. Hochmotorisierte 

oder besonders niedrigmotorisierte Fahrzeuge können sich aufgrund der zu geringen/starken 

Leistungsanforderung in einem sehr ineffizienten Betriebszustand im WLTC-Zyklus befinden. 

Eine Analyse der Verfügbaren GreenNCAP Messdaten zeigt, dass bei den aufgezeichneten 

Drehzahlen der E-Motoren eine Range von der niedrigsten maximalen Drehzahl im WLTC 

(7550) zu der höchsten maximalen Drehzahl (13048) eine erhebliche Differenz gibt. Auf 

Grundlage dessen und dass keine Kennfeldlinien aktueller Fahrzeuge vorliegen wird sich auf 

eine durchschnittliche Annahme basierend auf den empirischen Daten aus den Tests bezo-

gen.  
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Abbildung 26 Beispiel vereinfachtes Kennfeld E-Motoreffizienz (Zhang, et al., 2017 S. 6) 

Die Verlustleistung ist als Gesamtverlust ermittelt. Alle Fahrzeuge sind zunächst mit einer 

100% Effizienz simuliert. Die Erstellung eines Hilfstools (vgl. Abb. 27) ermöglicht eine effiziente 

Bearbeitung unterschiedlichster Modelltheorien über alle 27 Fahrzeuge hinweg. Das Tool, 

greift dabei automatisch auf die Fahrzeugparameter und Messdaten zu. So können Anpas-

sungen schnell getroffen und für alle Fahrzeuge simuliert werden. Eine visuelle Darstellung 

des berechneten und gemessenen Energieverbrauchs pro Sekunde ermöglicht es erste Fehler 

schnell zu identifizieren, die im weiteren Verlauf überprüft werden. Die Verlustleistung ist an-

hand mehrerer Simulationsmodelle untersucht, die auf unterschiedlichen Parameterangaben 

aus der Literatur basieren. Das Modell ist so optimiert, dass es möglichst den am häufigsten 

in der Literatur genannten Werten entspricht (Restbremsmoment, Rollreibungsfaktor, Verlust-

leistung) und sich ein Mittelwert der Abweichung von den Testfahrzeugen möglichst bei 0 liegt.  

 

 
Abbildung 27 Semi-Automatisiertes Hilfstool zur Unterstützung bei der Modellentwicklung 



          
        

 
 

        
52 
 

Die Gesamtverlustleistung liegt dabei bei 15% und 18% bei der Rekuperation. Der Vergleich 

mit den aus der Literatur gewonnen Antriebsverlusten zeigt, dass die Werte gut übereinstim-

men. Für die Simulation sind diese Werte damit plausibilisiert. Der ermittelte Verlust von 15% 

verteilt sich auf Grundlage der Literaturangaben auf 5% Motorverlust, 3% Verlust durch Leis-

tungselektronik, 5% Batterieverluste und 2% Getriebeverluste. 

Verluste Allradantrieb 

Um alle signifikanten Einflüsse auf den Verbrauch zu bestimmen, hat sich in der Regressions-

analyse gezeigt, dass ein Allradantrieb Einwirkungen auf den Verbrauch hat. Eine Bestimmung 

über die 27 Fahrzeuge ist bei nur drei Allrad-Fahrzeugen nicht möglich. Mithilfe der Fahrzeug-

datenbank ist in rekursiven Schritten der zusätzliche Verlust durch den Allradantrieb bestimmt. 

Die Auswertung aller Fahrzeuge mit Vorderrad- oder Hinterradantrieb bei einer Mittelwertab-

weichung von fast 0% durch die Simulation ergab, dass sich über einen zusätzlichen Verlust 

von 3% der Einfluss eines Allradantriebs bestimmen lässt. 

Verluste bei Kälte 

Die Betrachtung der Messergebnisse im -7° Test haben gezeigt, dass die Temperatur einen 

zu berücksichtigen Einfluss auf die Verluste hat. Bei der Ermittlung ist ebenfalls die Grundlast 

herausgerechnet. In diesem Zyklus ist die Grundlast jedoch nicht konstant (vgl. Abb. 28). 

 

Abbildung 28 Stichprobe Grundlastverlauf bei Coldtest -7° 

Durch eine Betrachtung des Mittelwerts ist vereinzelt ein Fehler bei der Grundlastannahme 

ersichtlich. Eine Optimierung erfolgt durch die Betrachtung der Verläufe und einer Einschät-

zung auf Grundlage einer Anpassung an die tatsächlichen Messdaten. Bei -7° erhöht sich der 

Verlust bei der Verbrauchsenergie um 10%. Die zurückgewonnene Energie über die Rekupe-

ration sinkt um 13%. Bei der Angabe kann von einem gewissen Fehler ausgegangen werden. 
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Der Anstieg der Verluste ist bei niedirigen Temperaturen auf steigende innere widerstände 

beispielsweise in der Batterie zurückzuführen (vgl. Abb. 29). Es ist davon auszugehen, dass 

der größte Einfluss auf die Grundlast die Klimaanlage darstellt. Mögliche weitere Einflüsse sind 

aktive Heizsysteme bspw. in dem Batteriesystem. Eine direkte Kausalität kann nicht hergestellt 

werden. 

 
Abbildung 29 Innenwiderstand Batterie in Abhängigkeit der Temperatur (Germana, et al., 2018 S. 5) 

Nicht-Antriebs-Verbraucher im WLTP  

Im WLTP ist ein Teil des NAE-Verbrauchs berücksichtigt. Dabei handelt es sich hauptsächlich 

um Verbraucher, die sich nicht abstellen lassen. Eine Auswahl von Fahrzeugen aus jeder 

Fahrzeugklasse mit WLTP-Herstellerangaben sind simuliert, ohne einen NAE-Verbrauch mit 

einzubeziehen. Der Mittelwert gibt Aufschluss über die Diskrepanz des zusätzlichen Ver-

brauchs. Es zeigt sich, dass ein Verbrauch von etwa 1kWh/100km als Annahme für den NAE-

Verbrauch angenommen werden kann. Diese Annahme ist eine grobe erste Annäherung, da 

von einer Abhängigkeit zur Fahrzeugklasse ausgegangen wird. Im nachfolgenden Kapitel wird 

auf die Thematik genauer eingegangen. 

5.2 Realverbrauch  

 

Um auf einen Realverbrauch zu schließen, müssen noch weitere Faktoren berücksichtig wer-

den. Zur Erstellung der Fahrsimulation ist aus den Messdaten die Grundlast herausgemittelt. 

Die Grundlast ergibt sich aus dem Verbrauch durch verschiedenste Einflüsse sogenannter 

Nicht-Antriebs-Energie Verbraucher. Damit sind alle elektrischen Verbraucher gemeint, die 

keinen Einfluss auf den Antrieb haben. Vom kleinsten Controller bis hin zur Klimaanlage. Im 

nächsten Schritt werden die signifikantesten Einflüsse beleuchtet dieser beleuchtet. 
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5.2.1 Einflussgrößen  

 

 

NAE-Verbraucher  

 

Im vorherigen Kapitel ist zur Ermittlung der Fahrwiderstände der NAE-Verbrauch aller drei 

Zyklen über die Standzeit bestimmt (vgl. Tabelle 7). Es zeigt sich, dass bei dem Warmstart-, 

Kaltstart- und Autobahn-Test eine über die Zeit konstante Grundlast je Fahrzeug vorliegt. Der 

BAB-Zyklus ist als Validierung und Plausibilisierung des NAE-Verbrauchs für den Warmstart-

test hinzugezogen. Eine Standzeit von 10s zu Beginn des Zyklus lässt keine belastbare Fest-

stellung zu. Zwischen den Fahrzeugen variiert die Grundlast bei allen Zyklen. Hier ist keine 

Korrelation zur Fahrzeugklasse und weiteren konzeptionellen Parametern feststellbar. Der Mit-

telwert liegt bei dem Kaltstart-Test mit 2,4kWh/100km über dem Wert der Warmstart-Tests mit 

2 kWh/100km. Es treten vereinzelt signifikante Schwankungen zwischen dem Warmstart- und 

Kaltstart-Zyklus auf. Bei vielen Fahrzeugen ist aber keine Änderung zu erkennen. Der Wer-

tebereich der Grundlast in diesen Zyklen liegt zwischen 0,77 und 4,6 kWh/100km.  

Die Messung bei -7° zeigt eine erhebliche Steigerung des NAE-Verbrauchs. Der Wertebereich 

reicht von 6kWh/100km bis zu 20,5kWh/100km. Eine statistische Analyse zeigt, dass für den 

elektrischen Verbrauch keine Einflüsse der Fahrzeugparameter erkennbar sind. 

 
Tabelle 7 Ermittelte Grundlast 

Fahrzeug Modell 
Warmstart 
(kWh/100km) 

Kaltstart 
(kWh/100km) 

-7°  
(kWh/100km) 

Dacia Spring 3,02 3,02 6,89 

Renault Mégane 0,77 0,77 11,06 

Tesla Model 3 2,94 2,94 9,83 

BMW i4 2,48 2,48 14,24 

MG 4 1,24 1,93 16,25 

Nissan Leaf 1,62 1,93 9,13 

Cupra Born 2,86 2,86 14,39 

Renault Zoe 1,55 1,55 6,11 

MG 5 2,01 3,09 12,53 

Hyundai Ioniq 6 1,78 1,78 7,81 

Volkswagen ID.3 1,70 3,09 20,58 

Fiat 500 3,71 4,56 7,81 

Lexus UX 300e 2,40 4,02 12,22 
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Tesla Model S 2,63 2,63 9,44 

Volkswagen ID.7 1,78 1,78 9,44 

Smart #3 1,93 2,63 11,91 

Hyundai Kona 2,32 3,48 11,14 

Ora Funky Cat 2,24 2,17 9,59 

Volkswagen ID.5 1,55 1,55 13,62 

Nio ET7 1,86 1,86 8,05 

Audi Q4 e-tron 2,24 2,24 8,43 

BYD Atto 3 1,24 1,24 6,03 

Hyundai Ioniq 5 1,24 1,24 12,69 

Škoda Enyaq 2,01 2,01 8,36 

Nissan Ariya 1,39 1,70 7,89 

Ford Mustang Mach-E 2,40 4,64 12,38 

Xpeng G9 1,47 1,47 8,82 

 

 

(Helms, et al., 2022 S. 42) Gibt eine Annahme zu allen elektrischen Verbrauchern im Fahrzeug 

an, mit Schätzungen für den Verbrauch auf 100km. Darunter fallen Sensoren, Sitzheizung, 

Infotainment etc. Über Annahmen der jährlichen Aktivität wird ein Verbrauch von 

542Wh/100km angenommen (vgl. Anhang C). Mit Klimaanlage erhöht sich der angenommene 

Wert auf 851Wh/100km. 

 

In der Simulation ist mit einer Angabe von Wh/s gerechnet, um den Verbrauch zu simulieren. 

Eine Umrechnung ermöglicht die ermittelten Grundlasten zu vergleichen. Für eine schnelle 

Umrechnung ist auf dem Simulations-Datenblatt ein automatischer Umrechner von 

kWh/100km zu Wh/s und zurück implementiert. 

Energieverbrauch: 542 Wh/100 km 

Zurückgelegte Strecke im Zyklus: 23,26 km 

Dauer des Zyklus: 1.800 Sekunden 

Gesamtenergiebedarf im WLTC 

542  H
𝑊ℎ

100𝑘𝑚I
= 5,42 

𝑊ℎ
𝑘𝑚

 

 

5,42 
𝑊ℎ
𝑘𝑚

⋅ 23,26 𝑘𝑚 = 126,09𝑊ℎ  
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Umrechnung Energieverbrauch pro Sekunde: 

 
126,09	𝑊ℎ
1.800 𝑠

= 0,07
𝑊ℎ
𝑠

 

 

GreenNCAP berücksichtigt beim Warmtest in der Messung die Klimaanlage bei einer Innen- 

und Außentemperatur von 23°. Hier ist ein sehr geringer Einfluss von der Klimaanalage zu 

erwarten. Die durchschnittliche Grundlast beträgt dabei 2 kWh/100km. Dieser Wert weicht er-

heblich von der Literaturannahme von 0,85kWh/100km ab. Mit dem Vergleich der ermittelnden 

WLTP-Grundlast von ungefähr 1kWh/100km lässt sich die getroffene Aussage auch in Bezug 

auf die 0,5kWh/100km plausibilisieren.  

Bei Kälte steigt die Grundlast stark an. Der Mittelwert von 2,2kWh/100km im Warm- und Kalt-

start steigt auf über 10kWh/100km (-7°) (vgl. Abb. 30) an. Unter Berücksichtigung der beiden 

Ausreißer auf 10,62kWh/100km. Dieser Wert ist als konstante bei der Simulierung für den 

Kalttest angenommen. 

 

Abbildung 30 Vergleich NAE-Verbrauch Warmstart (links) und bei -7° (rechts) 

Batterietemperierung  

Bei niedrigen Temperaturen nimmt die Leistungsfähigkeit von Elektrofahrzeugbatterien signi-

fikant ab. Um diese Einschränkung zu minimieren, wird teilweise über eine elektrische Heizung 

die Batteriezellen erwärmt. Diese Maßnahme beschleunigt das Erreichen der optimalen Be-

triebstemperatur, wodurch die volle Leistung der Batterie für das Fahren und die Rekuperation 

schneller zur Verfügung steht.  

Daten einer Testfahrt mit einem VW ID.3, zeigen, dass für die Batteriekonditionierung rund 

730 Wh benötigt wurden. Das Heizen ist nach etwa 900 Sekunden abgeschlossen. Basierend 

auf der Batteriemasse von 385 kg versucht (Helms, et al., 2022) mit der Annahme das 70% 
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des Gesamtsystem geheizt werden die spezifische Wärmekapazität zu bestimmen. Mit dieser 

Rechnung ist eine spezifische Wärmekapazität von cBat = 0,17 Wh/(kg*K) ermittelt. Die Wär-

mekapazität für Lithium-Ionen-Zellen der Bauform 18650 liegen im Bereich von 0,19 bis 0,22 

Wh / (kg x K) (Lit, 2024). Mit Hilfe einer Formel lässt sich so auf den Energieverbrauch schlie-

ßen: 

𝐸*5$	;+'7	(𝑊ℎ) = 𝑚	*5$𝑥	`𝑇	<%8:(°𝐾) − 𝑇#$5&$(°𝐾)c𝑥	𝑐*5$	 E
𝑊ℎ
𝑘𝑔𝐾G 

 

Es ist nicht ersichtlich welche Fahrzeuge tatsächlich aktiv heizen und wie groß die Einfluss-

Faktoren sind. Wärmekapazität, Temperaturbereich und wann eine Temperierung einsetzt ist 

nicht feststellbar.  

5.2.2 Realverbrauch Statistische Betrachtung 

Neben den zusätzlichen NAE-Verbrauch gibt es viele Faktoren, die in standardisierten Tests 

nicht berücksichtigt sind. Um einen möglichst realistischen Verbrauch abzuleiten, sind Daten 

von Spritmonitor zu den einzelnen Fahrzeugmodellen aus der Herstellerangaben-Datenbank 

recherchiert. Da jedoch ein Großteil der Fahrzeuge bei Spritmonitor nicht ausreichend doku-

mentiert ist, um als statistisch aussagekräftig zu gelten, sind gezielt Fahrzeuge ausgewählt, 

die dem jeweiligen Modell aus der Herstellerangaben-Datenbank entsprechen und eine aus-

reichende Anzahl an Einträgen aufweisen. Zusätzlich sind Daten aus dem ADAC Ecotest und 

der Mile21-Datenbank berücksichtigt. 

Eine Analyse aller Verbrauchsdaten zeigt eine erhebliche Streuung der Verbrauchswerte, die 

von -4,5% bis 67% reicht. Im Durchschnitt liegt die Abweichung über alle Datenpunkte bei 

19%. Dabei zeigen die Daten aus dem ADAC Ecotest und Mile21 eine ähnliche Abweichung 

von etwa 17,5%, während die Spritmonitor-Daten eine Abweichung von 22% aufweisen und 

gleichzeitig die größte Streuung haben (vgl. Abb. 31).  
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Abbildung 31 Ermittelte Abweichung zwischen WLTP und Realverbrauchen 

Der durchschnittliche Realverbrauch ist mit 19 % über dem WLTP-angenommen. Der Einfluss 

der Fahrzeugklasse auf den NAE-Verbrauch bei BEVs ist untersucht. Es hat sich gezeigt, dass 

kein Zusammenhang erkennbar ist. Das kann an der zu geringen Datenlage unterschiedlicher 

Fahrzeugklassenliegen. Es kann nicht bestimmt werden, wie dieser Verbrauch in Abhängigkeit 

von der Fahrzeugklasse beeinflusst wird. Eine Betrachtung aller Herstellerangaben zum 

WLTP-Verbrauch ergibt einen durchschnittlichen Verbrauch von 17,35 kWh/100km. Das ent-

spricht einem mittleren Mehrverbrauch von 3,3kWh/100km. Ein Einfluss auf diesen Wert-

konnte nicht vernünftig erklärt werden. Es ist davon auszugehen, dass der größte Teil die 

Klimaanlage widerspiegelt, einen genauen Einfluss kann nicht festgestellt werden. In dem Tool 

ist für den Realverbrauch mit einer Erhöhung von 19% auf den WLTC gerechnet.   

Reichweite 

 

Die Reichweitenermittlung im Modell wird durch den simulierten Verbrauch des jeweiligen Si-

mulationszyklus in Abhängigkeit der Batteriekapazität bestimmt. Hier fließen keine Ladever-

luste mit hinein, da diese die Reichweite nicht beeinflusst. Daraus ergibt sich: 

 

𝑅𝑒𝑖𝑐ℎ𝑤𝑒𝑖𝑡𝑒	(𝑘𝑚) =
𝐵𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑘𝑎𝑝𝑎𝑧𝑖𝑡ä𝑡&,##(	(𝑘𝑊ℎ)

𝑉𝑒𝑟𝑏𝑟𝑎𝑢𝑐ℎ9$@;+$,%# 	0
𝑘𝑊ℎ
100𝑘𝑚3

	𝑥	100 
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5.3 Modellgrenzen 

Das Modell ist anhand empirischer Daten entwickelt, innerhalb dieser Parameter ist das Modell 
vorhersagekräftig. Eine Regressionsanalyse kann innerhalb bestimmter Grenzen eine Extra-

polation ermöglichen, jedoch können dabei vermehrt Fehler auftreten. Die verwendeten Para-

meter bewegen sich in folgenden Bereichen: 

• Länge 2900mm bis 5400mm 

• Breite 1550mm bis 2000mm 

• Höhe 1400mm bis 1750mm  
• Batteriekapazität 20kWh bis 120kWh 

Innerhalb dieser Wertebereiche kann von der gegebenen Genauigkeit ausgegangen werden. 

Kombi-Fahrzeuge sind aufgrund geringer Daten bei Elektrofahrzeugen (BEV) nicht ausrei-

chend repräsentiert und können daher in Bezug auf den cw-Wert eine Ungenauigkeit aufwei-

sen. 

Das Simulationsmodell basiert auf physikalischen Berechnungen und ist bei korrekten Einga-

bewerten stets vorhersagekräftig. Eine Schwäche liegt darin, dass nicht berücksichtig ist, ob 

der Elektromotor über genügend Leistung verfügt, um das Fahrprofil zu erfüllen. 

Die Peak-Leistung eines Elektromotors steht nur für einige Sekunden bis Minuten zur Verfü-

gung. Im Fahrzeug hängt dies zudem von der Batterie und der Leistungselektronik ab, die die 

Leistungsabgabe ermöglichen (Dobmann, 2018 S. 43). Die Nennleistung ist deutlich geringer 

(vgl. Tab. 8). Bei konstanten Fahrten auf der Autobahn ist die Nennleistung entscheidend. 

Nach DIN EN 1821-1 entspricht die Dauerleistung eine 30-Minuten-Höchstgeschwindigkeits 

Fahrt ohne Geschwindigkeitsabregelung  (Dobmann, 2018 S. 42). Eine signifikante Abwei-

chung ist beim Testfahrzeug mit der geringsten Leistung (Dacia Spring, 33 kW) nicht festge-

stellt. 
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Tabelle 8 Abweichung von Nennleistung zu Peakleistung 

Motor Peak-Leistung (kW) Nennleistung (kW) 
Nennleistung zu Peak-

Leistung 

A 33 19 58% 

B 60 31 52% 

C 80 51 64% 

D 150 68 45% 

E 230 94 41% 

F 400 125 31% 

G 485 135 28% 

6 Modellvalidierung 
 

Die Validierung der endgültigen Modelle erfolgt anhand der gesamten Datenbank der Herstel-

lerangaben. Diese umfasst je nach Modell 40 bis 130 zusätzliche Fahrzeuge, die nicht für die 

Modellierung verwendet sind.  Das Tool ist in der Lage auf Grundlage der elementarsten Kon-

zeptparameter mit einer guten Genauigkeit auf den Verbrauch zu schließen. Mithilfe der Mo-

delle zur Berechnung vom cw-Wert, Stirnfläche, Batteriegewicht und dem daraus folgenden 

Leergewicht, kann das Modell nur auf Grundlage der Parameter Länge, Breite, Höhe, Batte-

riekapazität und ob es sich um ein Allradfahrzeug handelt den Verbrauch vom WLTP simulie-

ren (vgl. Abb. 32). 

 

 
Abbildung 32  Abbildungsgüte Gesamtmodell bei 164 Fahrzeugen getestet 
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Ein zweites Benchmark Modell basiert auf reiner Regression. Hier sind für den WLTP-Ver-

brauch die gleichen Parameter nötig. Das Regressionsmodell zeigt dabei bei ähnlicher Stan-

dardabweichung eine geringere Varianz. Die Streuung fällt etwas geringer aus als bei der Si-

mulation (vgl. Abb. 33). 

 

 
Abbildung 33 Abbildungsgüte Regressionsmodell bei 164 Fahrzeugen getestet 

 

 

 

Bewertung 

 

Das Regressionsmodell liefert eine geringere Streuung im Vergleich zum Simulationsmodell. 

Als Modell ist jedoch das Simulationsmodell gewählt. In Blick auf zukünftige Optimierungsar-

beiten, kann das Simulationsmodell wesentlich präziser angepasst werden. Weitere Vertiefun-

gen, in aufgezeigte Schwachstellen, können dadurch angepasst und berücksichtigt werden. 

Das Simulationsmodell bietet zudem die Möglichkeit den genauen Einfluss einzelner Energie-

verbräuche anzuzeigen und auf unterschiedliche Fahrprofile anzupassen. Insgesamt weisen 

die verwendeten Modelle eine geringe Abweichung auf (vgl. Tab. 9). Ein Benchmark vergleich 

mit dem Verbrennertool zeigt, dass die Gewichtsberechnung ähnlich genau ist und bei der 

Verbrauchsprognose eine bessere vorhersage Genauigkeit bietet. 
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Tabelle 9 Modellübersicht Abbildungsgüte 

Modell 

Stichpro-
bengröße 
(n) 

Mittelwert 
(%) 

Stan-
dardabwei-
chung (%) 

Konfidenzintervall 95% 
(%) Varianz (%)² 

cw-Wert 72 -0,4 7,1 -1,1 2,1 50 

Batteriege-
wicht 133 -0,7 5,5 -1,7 0,2 30 

Leergewicht 164 -0,3 5,4 -1,3 0,4 29 

Verbrauch 164 0,8 8,5 -1,4 1,2 72 

7 Ausblick & Schlussfolgerungen 

Das überarbeitete Tool bietet bereits eine gute Möglichkeit, den Verbrauch nach WLTP vor-

herzusagen. Dazu ist die kleinste Anzahl an Parametern gefunden, um über frühe Konzeptpa-

rameter eine ausreichend genaue vorhersage zu treffen. Für eine Einschätzung unterschied-

licher Szenarien wird der Verbrauch auch auf der Autobahn sowie bei einer sehr niedrigen 

Temperatur simuliert. Der bestimmte Realverbrauch zeigt in Abhängigkeit mehrerer Quellen 

einen durchschnittlichen Mehrverbrauch an. Es hat sich gezeigt, dass die Definition von einem 

Realverbrauch komplex ist und je nach Annahme stark schwanken kann. In dieser Arbeit ist 

die Ansicht vertreten, dass der WLTP grundsätzlich einen realen Verbrauch darstellt. Es sich 

jedoch aus individueller Kundenperspektive nicht um einen realistischen Verbrauch handelt. 

Die Vielzahl der gezeigten Einflüsse bezweckt eine hohe Schwankung der realen Verbräuche. 

Der persönliche Fahrstil und andere nicht quantifizierbare Eigenschaften spielen dabei auch 

eine Rolle. Daher wird der standardisierte Zyklus als Ausgangspunkt für die grundlegende 

Verbrauchsschätzung eines Fahrzeugs verwendet. Es ist sinnvoll, den realen Verbrauch über 

eine statistische Betrachtung durchzuführen, um dann rückwirkend ein mögliches durch-

schnittliches Fahrprofil annehmen zu können. Hier war es noch nicht möglich fahrzeugspezifi-

sche Abhängigkeiten zu NAE-Verbrauchern aufzuzeigen. Die Arbeit hat aber die Grundlage 

geschaffen genau an diesem Punkt weiter anzusetzen und fahrzeugspezifische oder Fahr-

zeugklassen abhängigen NAE-Verbräuche zu definieren. Mit dem Tool ist es gelungen, die 

Fahrwiderstände gut abzubilden. Ein mögliches weiteres Optimierungsfeld bietet die Effizienz 

des E-Motors. Dieser stellt auch in der Literatur die Komponente mit dem höchsten Energie-

verlust im Antriebsstrang. Eine Implementierung einer Drehzahlabhängigen Effizienzbetrach-

tung kann die Bestimmung der Verlustleistung weiter optimieren. Ziel war es ein Tool zu schaf-

fen, dass den Studierenden bei der konzeptionellen Entscheidungsfindung unterstützten kann. 

Dieses Tool bietet die Möglichkeit den Energieverbrauch von E-Fahrzeugen nachzuvollziehen 

und bietet gleichzeitig die Möglichkeit, Anpassungen einfach durchzuführen. 
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9 Anhang  
Anhang A Daten zu GreenNCAP Fahrzeugen 
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Anhang B 

Validation Messdaten GreenNCAP 
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