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Abstract

The following thesis explores the synthesis of computational models with natural pat-
terns, using fractals and L-systems to create graphic representations of these models
and structures like tree and plants. The core of this work is the development of such a
system that would, in future, integrate real-time sensor data leading to the adjustment
of the parameters of these model’s growth angles and branching patterns.

The system is able to create an ever-changing set of dynamic visualizations in response to
changes within the environment through modification of the fractal and L-system rules
based on sensor input. It would allow possible applications on sensor data to be made

in both data visualization and interactive art for more engagement and interpretation.
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Thema der Arbeit

Reaktive Naturmuster: Ein rechnergestitzter Ansatz mit Fraktalen und L-Systemen.

Stichworte
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Kurzzusammenfassung

Die vorliegende Arbeit untersucht die Synthese von Rechenmodellen mit natiirlichen
Mustern und verwendet Fraktale und L-Systeme, um grafische Darstellungen dieser
Modelle und Strukturen wie Bdume und Pflanzen zu erstellen. Der Kern dieser Ar-
beit ist die Entwicklung eines solchen Systems, das in Zukunft Echtzeit-Sensordaten
integrieren konnte, was zur Anpassung der Parameter dieser Modelle Wachstumswinkel
und Verzweigungsmuster — fithren wiirde.

Das System ist in der Lage, eine sténdig wechselnde Menge von dynamischen Visual-
isierungen als Reaktion auf Verdnderungen in der Umgebung durch Modifikation der
Fraktal und L-Systemregeln basierend auf Sensoreingaben zu erstellen. Dies wiirde
mogliche Anwendungen von Sensordaten sowohl in der Datenvisualisierung als auch in

der interaktiven Kunst fiir mehr Engagement und Interpretation ermoglichen.
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1 Introduction

1.1 Motivation

In the rapidly evolving field of computational modeling, Lindenmayer Systems (L-Systems)
have established their value through extensive applications in biology, graphics, and be-
yond. Originally designed to model plant growth, L-systems operate on fixed rules that
form the backbone of their structure[3]. However, these systems have not yet been fully
adapted to respond to the continuous influx of real-time data, a capability increasingly
vital in today’s data-driven environments.

This thesis proposes to advance L-systems by making them dynamic—capable of ad-
justing their rules in response to new information. This innovation would significantly
enhance the flexibility and applicability of L-systems, enabling them to model complex,
changing phenomena more accurately. The goal is to transform L-systems from static
to adaptive systems, which can update themselves automatically as new data becomes
available.

Implementing responsiveness in L-systems means embedding mechanisms that allow the
system to detect relevant environmental or contextual changes and to alter its genera-
tive rules. This could involve integrating sensors or data feeds that provide continuous
updates on external conditions, which the system could then interpret and use to adjust
its parameters.

The need for such dynamic systems is clear, as they would provide a more realistic
simulation of natural processes and other phenomena that are subject to change. For
example, dynamically adaptive L-systems could better simulate environmental changes
or growth patterns in plants that respond to varying conditions, offering more precise

tools for researchers and professionals in many fields.
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2.1 Overview

With the recent technological advancements, we have been offered the opportunity to
accurately translate mathematical frameworks into programming language and thus de-
vise a symbiotic way of developing and analyzing various complex models.

Two of those mathematical frameworks that are of interest with regards to the goal
of this thesis are: L-Systems, introduced in 1968 by Aristid Lindenmayer, a Hungar-
ian theoretical biologist and botanist at the University of Utrecht, and fractal geometry,
introduced in 1982 by Benoit Mandelbrot in his book "The Fractal Geometry of Nature".

With this in mind, the ability to combine L-systems and fractals with the power of
a modern CPU or GPU has lead to fascinating discoveries. For instance, the frame-
works describing the "growth" of mountains and trees has made it possible to visually
recreate natural patterns that can accurately resemble the real-world. An illustrative
example would be the fractal terrain generation, used in the movie Star Trek II the
Wrath of Khan (1982).



2 State of Art

Figure 2.1: The "Genesis Effect" for Star Trek II.[5]

Figure 2.2: Images of trees generated from using an L-system.[31]

This thesis will primarily focus on L-Systems, hence analysing the possibility expand-
ing and modifying its formal grammar in order to achieve a system that would help

dynamically visualize external inputs.
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2.2 L-Systems

2.2.1 Origin and Application

In 1968, biologist Aristid Lindenmayer developed Lindenmayer systems, commonly known
as L-systems, to formalize the patterns observed in bacterial growth. These systems uti-
lize a recursive string-rewriting mechanism and are widely employed in computer graph-
ics today for visualizing and simulating organic growth. L-systems have applications
across various fields, including plant development, procedural content generation, and
the creation of fractal-like art.[13]

Over time, L-systems have been adapted for use in a wide range of diverse fields. For
instance, they have been employed to create rivers in fractal mountains, lay out streets
in virtual cities, and describe the subdivision of curves. Beyond computer graphics,
L-systems have also found applications in music generation. They continue to be a pop-
ular tool in plant modeling, with models generated using L-systems featuring in modern

video games and films.[6]

2.2.2 Formal definition

An L-system, denoted as L, is defined as a triplet L = (X, w, R), where:

e Y is an alphabet, a non-empty set of symbols. The set ¥* represents all possible
strings (words) that can be formulated from ¥, and T denotes the set of all

non-empty strings.[3]

e w € X7 serves as the axiom or the initial state of the L-system. This axiom

defines the starting point of the system.

e R C ¥* x X*is a collection of rewrite rules or production rules. A rule (s —

v) € R specifies how a substring s in any string from ¥* is replaced by v.[11]

If a symbol s € ¥ does not appear on the left-hand side of any rewrite rule in R, the
system assumes the identity rewrite rule s — s. Symbols that only appear in identity

rules are referred to as constants or terminals.

The formulation of an L-system resembles that of a deterministic context-free grammar,

with several key distinctions:
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o Unlike typical grammars, L-systems do not explicitly define terminal and non-
terminal symbols, except through the identity rewrite rules applied to terminal

symbols.

e The initial string in L-systems can be a non-empty word, unlike some grammars

that might allow a non-terminal initial state.

e The primary distinction lies in the rewriting mechanism, which operates under

different principles outlined in subsequent sections.

Graphg

[ Output

Reproduction Rules y
N S1to S2 e
/ Axiom” \ N - S210 S3 = -
\ Initial Input L
Stnng String |/ y
~ 4 [f Output |
. String
i &
1

Figure 2.3: Simplified Version of the System where S=String.[31]

2.3 Principles of Rewriting

The theoretical principles of L-systems are rooted in their ability to model biological

growth processes through deterministic and parallel rewriting rules.[3]

Deterministic Rewriting: Each symbol in an L-system string is rewritten according to
specific, predefined rules. This deterministic approach ensures that the rewriting process
is entirely predictable, based entirely on the initial axiom. There is no ambiguity in the
transformation of symbols, making the evolution of the string fully reproducible and

dependent only on its initial configuration.

Parallel Rewriting: Unlike sequential rewriting systems where transformations occur
one after another, L-systems employ parallel rewriting. This means that all symbols in
the string are simultaneously rewritten in each iteration. Such a method is vital for sim-

ulating natural growth, where various parts of a biological entity grow concurrently.[10]
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In implementation, this simultaneous rewriting ensures that the new characters result-
ing from one symbol’s transformation do not influence the rewriting of another symbol

within the same iteration.[22]

This parallel processing distinguishes L-systems from formal grammars used in compu-
tational linguistics, where not all symbols necessarily need to be rewritten, and multiple
derivations can result from the same initial state.[6] L-systems, by contrast, follow a
strict set of rules with no variation in the production process, making them particularly

suited for modeling predictable and structured patterns found in nature.

The implementation of an L-system in a programming language like Python demon-
strates these principles effectively. Through a simple script, one can observe how com-
plex structures evolve from straightforward beginnings, governed by clear and consistent
rules. This simulation not only highlights the power of L-systems in generating intricate
patterns but also underscores their utility in educational and research settings, particu-

larly in the fields of biology and computer graphics.

class LSystem:

def __init__(self, axiom, rules):
self.axiom = axiom
self .rules = rules
self.current_state = axiom

def apply_rules(self):
new_state = ""
for character in self.current_state:
new_state += self.rules.get(character, character)

self.current_state = new_state

def generate(self, num_iterations):
for i in range(num_iterations):
self .apply_rules ()
print (f"Iteration {i + 1}: {self.current_statel}")
rules = {’A’: ’AB’, ’B’: A’}
1_system = LSystem(axiom=’A’, rules=rules)

1 _system.generate (5)

Code Snippet 2.1: Python L-system Parallel Rewriting Example
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This Python example illustrates how parallel rewriting in L-systems enables simultane-
ous transformations of all elements in the string. This process is crucial for modeling
complex, natural phenomena that involve concurrent developments in different parts of
a structure. Below is the table showing the output for each iteration of the L-System
starting with the axiom A’ and rules where A’ -> "AB’ and 'B’ -> "A”:

Iteration Output
1 A
AB
ABA
ABAAB
ABAABABA
ABAABABAABAAB
ABAABABAABAABABAABABA

ABAABABAABAABABAABABAABAABABAABAAB

0 N O U = Wi

Table 2.1: L-System Outputs Across Iterations

2.4 L-system Symbols

The symbols of the sytem can be graphically represented using the concept of turtle
graphics.[28] In this graphical representation, commands are given to a virtual turtle
that moves within a 2D space, similar to how a pen plotter operates. For instance,
to draw a square, one might instruct a plotter to draw forward one centimeter, turn
right, and repeat the process three more times. Unlike a plotter, however, a turtle in
turtle graphics maintains an orientation, defined by Cartesian coordinates x and y, and

a direction angle, which is defined by the symbol «.

To facilitate the turtle’s movement in two dimensions, specific symbols are designated to
represent actions such as movement and rotation. Common symbols used in L-system
interpreters for these purposes are F', +, and —. After an L-system’s production rules
have been applied to generate a string, this string is parsed from left to right, with each

symbol affecting the state of the turtle as follows:

e F: The turtle moves forward by d units, drawing a line.
o +: The turtle rotates left by an angle ¢.

e —: The turtle rotates right by an angle 9.
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Here, § and d represent the global values dictating the magnitude of each symbol’s effect
on the turtle’s rotation and movement, respectively. In systems where these parameters
are non-parametric, the values remain constant throughout the system’s execution. All

the symbols of the system can be found in Apend[1] A.

FFF-FF—-F—-F+F+FF—-F—-FFF

Figure 2.4: Parsing a string.[3].

Now, a Python script has been generated to depict a more complex structure, namely
the Koch snowflake[32]. Initially defined by the axiom 'F+F+F’| representing an
equilateral triangle, the L-system employs a production rule that replaces each 'F’ with
'F-F+F-F’. This rule intricately adds segments and increases pattern complexity with

each iteration.

koch = ’F+F+F’ #axiom for Koch snowflake

#make the final L-System based on the number of iterations
for i in range(iterations):
koch = koch.replace(’F’, ’F-F+F-F’)

Code Snippet 2.2: Defining the Koch axiom as a string. B

Each iteration of the rule expands the string, which directs the turtle in a 2D space
to draw lines ("F’) and make turns (*+’ for 120 degrees right and ’-’ for 60 degrees

left). The movement commands are executed to depict the fractal nature of the Koch
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snowflake, which exhibits increasingly detailed perimeters within a finite area. The
length of each segment decreases geometrically with each iteration to fit the growing
number of segments within the defined drawing space, ensuring that the fractal remains

within viewable limits.

for move in koch:
if move == ’F’:
turtle.forward(startLength / (3**(iterations-1)))
elif move == ’+’:
turtle.right (120)
elif move == ’-’:
turtle.left (60)

Code Snippet 2.3: Defining the Koch axiom rules. B.1

This iterative process demonstrates how a simple rule can generate complex natural
patterns, showcasing the application of mathematical models in graphical simulations.

A depiction of the output can be seen in the figures below:

Figure 2.5: Koch Figure 2.6: Koch Figure 2.7: Koch
Snowflake, Snowflake, Snowflake,
1 iteration 2 iterations 3 iterations
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2.5 Types of L-Systems

This section of the thesis is dedicated to the classification of Lindenmayer Systems, which
are pivotal in modeling the iterative and recursive processes observed in natural growth
and fractal patterns. This exposition categorizes L-systems into five distinct types: De-
terministic, Stochastic, Context-sensitive, Parametric, and Bracketed L-systems. Each
classification encapsulates a unique approach to integrating environmental, probabilis-
tic, or contextual influences into the modeling process, thus facilitating sophisticated
simulations and analyses of complex systems.[20] The ensuing discourse aims to analyse
the mechanics and applications of each L-system type, enhancing the comprehension of

their transformative impact on theoretical and applied sciences.

2.5.1 Deterministic L-Systems

Deterministic L-systems, adhere to a strict set of substitution rules that lack any
form of randomness. In these systems, each symbol in the axiom or initial string is con-
sistently replaced by a predefined string according to unambiguous production rules|[3].
The deterministic nature ensures that the same initial conditions and production rules

will invariably produce the same output each time the system is iterated.

Key Features of Deterministic L-systems:

1. Fixed Production Rules: Each symbol in the axiom or previous string has a
corresponding rule that applies deterministically, resulting in predictable and con-
sistent outcomes. This feature allows deterministic L-systems to model structures

that follow precise and repeatable patterns.

2. Modeling Regular Structures: Deterministic L-systems are particularly useful
for simulating natural phenomena with highly regular structures. They are ideal
for modeling organisms and phenomena where the same patterns repeat without

variation, such as certain types of algae, ferns, and other fractal-like structures.

3. Ease of Analysis: Because the production rules are fixed and the outcomes are
predictable, deterministic L-systems are easier to analyze and understand com-
pared to stochastic systems.[7] This predictability allows researchers to precisely

predict the growth and form of the modeled structures over time.

10
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4. Efficiency in Computation: The absence of randomness in rule application
makes deterministic L-systems computationally efficient. They can generate com-
plex structures from simple rules without the need for probabilistic calculations,

making them faster and more straightforward to implement in simulations.

One example of such a system is the Dragon Curve, this fractal is particularly fa-
mous for its appearance in Michael Crichton’s novel "Jurassic Park"', where it is used
metaphorically to describe the unpredictable nature of dinosaur behavior, despite the
curve itself being a deterministic and predictable pattern. In reality, the Dragon Curve
is a visually appealing example of how simple rules can create complex and beautiful

patterns, a characteristic feature of deterministic L-systems.[15]

Figure 2.8: Graphical Representation of the Dragon Curve.[30]

axiom = "FX"
rules = {
"X "X+YF4",
my ) FX =Y
¥

Code Snippet 2.4: Defining a Dragon Curve in Python. B

11
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2.5.2 Stochastic L-Systems

Stochastic L-systems introduce an element of randomness into the generative rules
of Lindenmayer Systems, allowing for the simulation of more natural and diverse pat-
terns that cannot be fully predicted by deterministic approaches. Unlike deterministic
L-systems, where each symbol in the string has a fixed replacement, stochastic L-systems
assign probabilities to different possible replacements for each symbol, thus incorporat-

ing variability in the generation process.[3]

Key Features of Stochastic L-systems:

1. Probabilistic Rules: Each production rule in a stochastic L-system is associated
with a probability. When a rule is applied, one of several possible outcomes is
selected based on their assigned probabilities. This allows the system to simulate

natural variations seen in biological and ecological phenomena.

2. Modeling Realistic Scenarios: The inherent randomness in stochastic L-systems
makes them particularly useful for modeling environments where biological varia-
tions and irregularities are the norm, such as the distribution of leaves on a tree

or the branching patterns of coral.

3. Simulation of Uncertainty: Stochastic L-systems can simulate the uncertainty
and environmental factors affecting growth patterns in nature, making them ideal

for studies in theoretical biology and ecology where exact prediction is impossible.[27]
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Figure 2.9: Graphical Representation of a stochastic plant with various probabilities of
the generation pattern.[17]

# Stochastic L-system
axiom = "A"
rules = {
"A": [("AB", 0.5), ("A", 0.5)1],
"B": [("A", 0.7), ("B", 0.3)]
# Each tuple contains a production and its probability

}

Code Snippet 2.5: Defining a Stochastic L-System in Python. B

2.5.3 Bracketed L-Systems

Bracketed L-systems provide a method for modeling branching structures such as

those found in plants, trees, and other organic forms.

Key Features of Bracketed L-systems:

1. Incorporation of Branching Structures: Bracketed L-systems use square

brackets ‘[* and ‘|° to denote the start and end of a branch, respectively. This

13
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allows for the simulation of complex branching structures. The brackets enable
the system to push and pop states onto a stack, facilitating the return to previous

points in the structure for further development.

2. Simulation of 3D Structures: The use of brackets makes these systems par-
ticularly suitable for generating three-dimensional models. By using branching
rules encoded within brackets, bracketed L-systems can effectively represent the
spatial orientation of branches and other offshoots, which is crucial for realistic 3D

rendering and analysis.[9]

3. Flexible and Complex Modelling: Bracketed L-systems provide a flexible
framework that can model a wide range of natural and artificial structures. The
ability to incorporate multiple branching levels within a single system allows for
the creation of highly detailed and complex models that more accurately reflect

the intricacies of natural growth patterns.

Figure 2.10: 2D plant-like structures from bracketed L-Systems.[21]

I |axiom = "X"
> [rules = {
3 "X": "F-[[X]+X]+F[+FX]-X",
4 gt g WpE®
}

Code Snippet 2.6: Defining a Bracketed L-System in Python. B
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2.5.4 Parametric L-Systems

Parametric L-systems represent an advanced type of Lindenmayer system that incor-
porates parameters into the production rules to control and modify the attributes of the

generated structures dynamically

Key Features of Parametric L-systems:

1. Parameterization of Production Rules: Parametric L-systems extend the
classic L-system by incorporating parameters within the production rules. These
parameters can vary and are used to control aspects of growth and development,
such as angle, length, and width of structures. This allows for a more dynamic

and detailed description of the modeled organisms.

2. Enhanced Control Over Growth: By using parameters, these systems offer
enhanced control over the modeling process. Parameters can be adjusted based on
environmental factors or developmental stages, allowing the system to simulate how

changes in conditions affect the growth patterns of plants and other structures.[19]

3. Increased Realism and Complexity: The inclusion of parameters enables the
simulation of more complex and realistic forms. This is particularly beneficial for
studies in which biological realism is crucial, such as in the simulation of adaptive

growth behaviors in response to environmental stimuli.

4. Support for Conditional Logic: Parametric L-systems can incorporate condi-
tional logic into the production rules, making it possible to execute different rules
based on the current value of parameters. This supports more complex decision-
making processes within the model, closely mimicking natural decision processes

observed in biological organisms.
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Figure 2.11: Pythagoras tree created with parametric L-system.[6]

def rule_A(params):
X, y = params
return [(’°B’, [x + 1, y1), (’A°, [x * 2, v / 2])]

def rule_B(params):
x = params [0]
return [(’A°, [x - 11),]

# Example usage
axiom = [(’A’, [1, 2]1)]
rules = {

A’ rule_ A,

’B’: rule_B

Code Snippet 2.7: Defining a Parametric L-System in Python. B

2.5.5 Context-sensitive L-Systems
Context-sensitive L-systems are an extension of the classic Lindenmayer systems, de-

signed to model environments and organisms where growth patterns depend on the local

context of individual components.
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Key Features of Context-Sensitive L-systems:

1. Dependence on Neighboring Information: Context-sensitive L-systems, un-
like traditional L-systems, consider the neighboring characters (both predecessors
and successors) around a focal character when applying production rules. This con-
text dependency allows for the simulation of more complex biological phenomena

where growth patterns depend on local interactions.

2. Enhanced Modeling of Biological Processes: These systems can more accu-
rately model biological processes such as the phyllotactic arrangement of leaves,
branching patterns in plants, and even cellular development, where interactions

between adjacent elements play a critical role in determining growth outcomes.[23]

3. Increased Computational Complexity: While context-sensitive L-systems of-
fer more detailed modeling capabilities, they also require more complex computa-
tions. The need to constantly evaluate the context of each character increases the

computational overhead compared to context-free systems.[12]

4. Ability to Simulate Environmental Interactions: The context-sensitivity of
these systems makes them particularly suited for simulating how environmental
factors or local densities affect growth and development. This can be crucial for
ecological and environmental modeling, where the behavior of one part of a system

can be significantly influenced by its immediate surroundings.
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{c)

(b)

{d)

Figure 2.12: Context-sensitive L-System.[16]

JA),

)A)):

JAJ]

lambda:

, A on the right

axiom = [’A’,

rules = {
(None, ’A’,
(’A’, ’A’,
()A), )A)’

JA)):

None) :

rule, # Context:

lambda:

Nothing on the right

)Ai’

)A’

# Context:

# Context:

Nothing on the left

A on both sides

A on the left,

Code Snippet 2.8: Defining a Context-Sensitive L-System in Python. B
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2.6 Software & Development Environment

This section focuses on thoroughly explaining the necessary choices regarding the soft-

ware that is going to be utilised throughout the entire experiment.

2.6.1 Python

For the following thesis Python has been chosen as the main programming language,
since it is highly regarded for its applicability in simulating and visualizing L-systems
due to its extensive library support, and robust community resources. The language’s
readability makes it ideal for educational and research purposes. Its rich ecosystem
includes libraries such as matplotlib for plotting, numpy for numerical operations, and
turtle for graphical outputs, which are essential for visualizing the intricate patterns

generated by L-systems.

Furthermore, Python’s cross-platform nature ensures that L-system simulations are
widely accessible across different operating systems. Although not the fastest language,
Python’s performance is adequate for most L-system simulations and can be enhanced

by integrating with performance-optimized languages like C when necessary.

Miniconda

For the purposes of this thesis, which focuses on the exploration and visualization of
L-systems, Miniconda offers several advantages that are critical to ensuring efficient

and reproducible research.

Miniconda is a minimalistic version of Anaconda, a popular open-source distribution
of the Python and R programming languages for scientific computing. By providing
only the package manager and Python, Miniconda offers a lightweight, flexible alterna-
tive to Anaconda, which includes a large number of scientific packages by default. This
minimal setup allows users to install only the specific packages they need, thus avoiding

unnecessary bloat and reducing potential conflicts between package dependencies.[2]
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Jupyter Notebook

The Jupyter Notebook is the original web application for creating and sharing compu-

tational documents. It offers a simple, streamlined, document-centric experience.[14]

In the context of this thesis, which involves the exploration and visualization of Lin-
denmayer Systems (L-Systems), Jupyter Notebooks offer several compelling advantages.
Firstly, the interactive environment provided by Jupyter Notebooks facilitates exploratory
research and iterative testing, which are essential for developing and fine-tuning the algo-
rithms associated with L-systems. Users can write code and observe the output directly
in the notebook, making adjustments as needed and visually tracking the impact of these

changes on the generated fractals and graphical outputs.

Tkinter

Tkinter, the standard Python interface to the Tcl/Tk GUI toolkit, has been selected for
the development of graphical user interfaces (GUIs) in the visualization component of
this thesis, which focuses on the implementation and analysis of L-systems. Tkinter pro-
vides a robust and platform-independent framework, which is particularly advantageous
for developing educational and research applications that require a straightforward and

effective means for users to interact with the system.[24]

The choice of Tkinter was motivated by several factors that align well with the needs
of the project. Firstly, Tkinter’s simplicity and integration with Python allow for rapid
GUI development, which is crucial in academic projects where time and resources may
be limited. This simplicity also facilitates quick modifications and iterations, which are
often necessary in a research setting to refine user interactions based on experimental
feedback.

Matplotlib

Matplotlib, a widely recognized plotting library in Python, is employed in this thesis
to facilitate the visualization of Lindenmayer Systems (L-systems). Matplotlib offers a
comprehensive suite of plotting functions that are adept at creating static, animated,
and interactive visualizations, which is essential for illustrating the complex geometrical

structures generated by L-systems.
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The decision to use Matplotlib was grounded in its robust capabilities and flexibility,
which are crucial for the detailed visualization tasks required in this research. The li-
brary’s ability to produce a wide range of plots, from simple line diagrams to complex
color maps and 3D diagrams enables the detailed representation of fractal patterns and
growth processes modeled by L-systems. Furthermore, Matplotlib’s extensive customiza-
tion options allow these visualizations to be precisely tailored to specific research needs,

enhancing the clarity and effectiveness of data presentation.|[25]

Numpy

NumPy, a fundamental package for numerical computing with Python, plays a pivotal
role in the computational analysis and modeling of Lindenmayer Systems (L-systems)
in this thesis. Renowned for its powerful N-dimensional array object and broad suite of
mathematical functions, NumPy provides the computational efficiency and functionality

necessary for handling the complex calculations that L-systems require.[18]

The choice to utilize NumPy in this research is justified by its array-centric architecture,
which is highly optimized for performance. NumPy arrays facilitate efficient storage
and manipulation of large datasets, which is essential for generating and exploring the
intricate fractal patterns associated with L-systems. These capabilities allow for rapid

processing and transformation of data, crucial for real-time visualization and analysis.

Turtle

The Turtle module, a popular Python library for creating visual graphics and draw-
ings, is employed in this thesis to demonstrate the development and structure of Linden-
mayer Systems (L-systems). Originating from the Logo programming language, the Tur-
tle module provides an intuitive and accessible means for users to visualize and interact

with geometric computations and fractal patterns, which are central to L-systems.[26]

The selection of Turtle for this project is primarily due to its straightforward graphical
capabilities that allow users to directly translate algorithmic logic into visual form. This
feature is particularly beneficial for L-systems, where the growth patterns and rules can
be complex and abstract. By using Turtle, these patterns can be rendered visually as
they develop, offering immediate graphical feedback that is crucial for understanding

and fine-tuning the L-system parameters.
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2.6.2 VS Code

Visual Studio Code (VS Code) is a powerful and versatile Integrated Development
Environment (IDE) that has been selected for the software development tasks in this
thesis on L-systems. Developed by Microsoft, VS Code offers comprehensive coding
support and a wide range of extensions that enhance its functionality, making it an
ideal choice for modern software development, especially in the context of academic

research.[4]
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3.1 Stakeholders

In this section, we identify and describe the primary and secondary stakeholders involved
in the development and use of the system. Understanding the stakeholders is crucial for

ensuring that the system meets their needs and expectations.

3.1.1 Primary Stakeholders

The primary stakeholders are those directly involved in the development and primary

usage of the proposed L-system[29]. They include:

Stakeholder Description
Developers  and | Responsible for designing, implementing, and maintaining
Programmers the system. They ensure that the system is robust, efficient,

and user-friendly, incorporating feedback from other stake-
holders. They aim to create a system that is both powerful
for research purposes and accessible for educational use.

Table 3.1: Details for Developers and Programmers
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Stakeholder Description
Researchers and | Primary users of the system. Their main interest lies in
Students exploring and understanding fractals and L-systems.

Exploring involves a hands-on interaction with the sys-
tem, where users experiment with various L-system rules,
parameters, and initial conditions to generate diverse
patterns. This includes testing deterministic or stochastic
rules, modifying growth angles, and adjusting branching
patterns. The goal of exploration is not merely academic
curiosity, but to discover new behaviors and properties of
fractals, identify emergent patterns, and test hypotheses
regarding fractal generation and real-world phenomena.

Understanding is a deeper analytical process where users
focus on the mathematical and geometric properties of
generated fractals. This involves analyzing how different
parameters influence fractal structures, interpreting their
practical implications, and developing theories that explain
these behaviors. The goal of understanding is to generalize
these findings, allowing researchers to contribute to scientific
knowledge, publish their results, and apply fractal models to
real-world problems.

Table 3.2: Details for Researchers and Students

3.1.2 Secondary Stakeholders

The secondary stakeholders are those who indirectly interact with the system or benefit

from its results[29]. They include:

Stakeholder Description
Environmental Use the system to model natural growth patterns and eco-
Scientists logical phenomena, focusing on its capability to simulate

realistic environmental interactions and changes.

tutions

Educational Insti-

Incorporate the system into their curriculum for teaching
computational modeling, natural patterns, and related sub-
jects.

Table 3.3: Secondary Stakeholders
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3.2 Functional Requirements

The functional requirements outline the specific behaviors and functions that the system
must support to meet the needs of its stakeholders[8]. These requirements ensure that

the system performs the necessary tasks effectively.

Requirement Description

Interactive Visualization The system must provide an interface for inter-
active visualization of fractals and L-systems, al-
lowing users to manipulate parameters and ob-
serve real-time changes.

Rule Modification Interface Users should be able to define and modify L-
system rules through a user-friendly interface,
supporting both deterministic and stochastic
variations.

User Interface Elements The system must include sliders, buttons, text
boxes, and color pickers to allow users to ad-
just parameters such as growth angles, branch-
ing patterns, and visualization colors. Given the
educational background of the primary stake-
holders, the system should prioritize efficiency
and clarity, allowing users to focus on research
and experimentation. Advanced functionality
should be easily accessible but not overwhelm-
ing.

Table 3.4: User Interaction and Visualization Requirements
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Requirement

Description

Real-Time Data Integration

The system must be capable of integrating real-
time sensor data to modify the parameters of
fractal and L-system models dynamically.

Saving and Loading Configu-
rations

The system should allow users to save their con-
figurations and load them later, enabling repro-
ducibility and sharing of specific setups.

Exporting Visualizations

The system must support exporting visualiza-
tions as images or data files for further analysis,
presentations, or academic papers. Researchers
and students need this functionality to docu-
ment findings and share them in research publi-
cations or classroom settings.

Scalability

The system should be scalable to accommodate
various levels of complexity in fractal and L-
systems models, ensuring that it can handle
both simple and highly detailed patterns. This
scalability is particularly crucial as research may
require testing L-systems of increasing complex-

ity.

Table 3.5: Data Management and System Capabilities Requirements

3.3 Non-Functional Requirements

The non-functional requirements describe the overall qualities and constraints of the

system. These requirements ensure that the system is usable, reliable, and efficient,

meeting the broader expectations of the stakeholders][8].
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Requirement

Description

Performance

The system must perform efficiently, handling
large datasets and complex computations with-
out significant delays. This is crucial for re-
searchers and students who may work with
highly detailed fractal models.

Usability

While the primary stakeholders are highly edu-
cated, the user interface should still be intuitive
and efficient, offering advanced options for expe-
rienced users without creating unnecessary com-
plexity. Ease of use is important for speeding up
the exploration and understanding processes.

Reliability

The system must be reliable enough to ensure
that research tasks can be completed without
critical errors. However, given the experimental
nature of the research environment, occasional
system failures or maintenance are acceptable as
long as they are well communicated and do not
hinder the reproducibility of results.

Extensibility

The system should be designed with extensibil-
ity in mind, allowing for easy integration of new
features, models, and data sources in the future.
This is important for accommodating future re-
search needs.

Compeatibility

The system must be compatible with various op-
erating systems and devices, ensuring broad ac-
cessibility for all users. This allows researchers
to work in diverse computing environments.

Table 3.6: Non-Functional Requirements

3.4 User Requirements

The user requirements detail what the end-users expect from the system. These require-

ments are derived from the needs and goals of the stakeholders.
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Requirement Description

Ease of Use The system should be easy to use, with an intu-
itive interface that allows users to quickly learn
and operate the system without extensive train-
ing. Given their educational background, pri-
mary stakeholders should be able to navigate
the system efficiently while having access to ad-
vanced features as needed.

Customization Users should be able to customize the visualiza-
tion parameters and L-system rules to suit their
specific needs and preferences. This is crucial
for exploratory research.

Feedback The system should provide immediate visual
feedback to users as they adjust parameters, al-
lowing them to see the impact of their changes
in real-time. This supports the exploratory and
experimental nature of their work.
Documentation Comprehensive documentation should be avail-
able to guide users on how to use the system ef-
fectively, including examples and tutorials. This
supports both new and experienced users in uti-
lizing the system’s full capabilities.

Table 3.7: User Requirements

3.5 Use Cases

The following use cases describe how users will interact with the system to achieve specific

goals. Each use case outlines the steps involved in performing a particular task.

3.5.1 Use Case 1: Parameter Exploration and Adjustment

Description: Users interact with sliders and buttons to adjust parameters like temper-
ature, angle, branch length, and thickness, observing real-time changes in the L-system

visualization.

Actors: Researchers, Students
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Steps:
1. User selects a parameter to adjust (e.g., angle, branch length).
2. User modifies the parameter using sliders or input boxes.
3. System dynamically updates the visualization to reflect the changes.
4. User observes the changes in real-time and makes notes or adjustments.

Goal: To understand the impact of individual parameters on the fractal patterns, al-

lowing for hypothesis testing and analysis of sensitivity to initial conditions.

3.5.2 Use Case 2: Comparative Analysis of Models
Description: Users can switch between deterministic and stochastic variations to see
how these changes affect the growth patterns of the L-system.
Actors: Researchers, Students
Steps:
1. User selects the model type (deterministic or stochastic).
2. User runs simulations for both models with the same initial conditions.
3. System generates and displays the visualizations for both models.

4. User compares the visualizations side-by-side to identify differences and similari-

ties.

Goal: To explore and compare different growth models, enhancing the understanding

of fractal generation under varying conditions.
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3.5.3 Use Case 3: Real-Time Data Integration
Description: The system adjusts fractal parameters based on real-time environmental
data.
Actors: Environmental Scientists, Researchers
Steps:
1. System fetches real-time environmental data (e.g., temperature, humidity).
2. System updates the relevant parameters based on the fetched data.
3. Visualization dynamically reflects the changes due to real-time data input.
4. User observes the impact of real-time data on fractal growth.

Goal: To study the effects of real-world conditions on fractal patterns and to simulate

dynamic systems.

3.5.4 Use Case 4: Hypothesis Testing

Description: Researchers formulate and test hypotheses about fractal behavior.
Actors: Researchers, Students
Steps:

1. User formulates a hypothesis regarding fractal behavior.

2. User sets initial conditions and parameters to test the hypothesis.

3. User runs simulations and observes the outcomes.

4. User records results and compares them against the hypothesis.

5. User refines the hypothesis based on observed data.

Goal: To validate or refute hypotheses about fractal behavior and to advance scientific

understanding.
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3.5.5 Use Case 5: Save and Load Configurations

Description: Users save their current system settings to a file and load them later for
further examination or continuation of work.

Actors: Researchers, Students

Steps:

1. To save, the user clicks the "Save’ button, and the system writes the current con-

figuration to a file.

2. To load, the user clicks the 'Load’ button, and the system retrieves configurations

from a file and applies them to the visualization.

Goal: To ensure reproducibility of experiments and facilitate the sharing of specific

setups with colleagues or for publication purposes.

3.5.6 Use Case 6: Export Visualization as Image
Description: Users export the current visualization of the L-system as an image file
for use in reports or presentations.
Actors: Researchers, Students, Educational Institutions
Steps:
1. User clicks the ’Export’ button.
2. System prompts the user to choose a file location and name.
3. System saves the current visualization to the specified location as an image file.

Goal: To document and present findings in academic papers, presentations, or educa-
tional materials, ensuring that visual evidence of the research is easily accessible and

shareable.
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3.5.7 Use Case 7: Randomize Parameters

Description: At the click of a button, users can randomize the visualization parameters
to explore various random configurations of the L-system.
Actors: Researchers, Students
Steps:
1. User clicks the 'Randomize’ button.
2. System randomly adjusts all adjustable parameters.

3. Visualization updates to reflect the new, randomized settings.

Goal: To stimulate creativity and discover unexpected patterns or properties by explor-

ing a wide range of random configurations.

Figure 3.1: UML Use Case Diagram
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This section outlines the conceptual framework for developing a dynamic, responsive
L-system that can adjust its parameters based on real-time data. The aim is to create
a system that not only simulates natural growth patterns but also adapts to varying
environmental conditions, making it highly flexible and applicable for modeling complex,
changing phenomena. By planning the structure and approach meticulously, we ensure

a robust implementation that meets the objectives effectively.

4.1 Objectives

The primary goal of this project is to develop an interactive L-system capable of real-time

adaptation. Specifically, we aim to:
o Simulate natural growth patterns that respond dynamically to environmental changes.

e Incorporate user interface elements that allow real-time manipulation of parame-

ters.
o Integrate real-time data inputs to drive the L-system’s adaptability.
o Utilize both deterministic and stochastic rule variations to enhance realism.

e Ensure the system is modular and extensible, allowing future enhancements and

modifications.

4.2 Planned Structure

The implementation will be structured into several key components:

1. Imports and Logging Setup
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2. Branching Parameter Calculation
3. L-System Class

4. User Interface Elements

5. Helper Functions

6. Main Execution Flow

4.2.1 Imports and Logging Setup

The foundation of the implementation involves importing necessary libraries and setting
up logging. The libraries to be used will support mathematical operations, visualiza-
tion, event recording, time-based functions, random number generation, configuration
management, and file dialogs. Logging will be configured to capture and log messages

with timestamps, helping track the flow of the program and debugging issues.

4.2.2 Branching Parameter Calculation

To achieve adaptability, the system will dynamically adjust the branching parameters
based on external factors such as temperature. The temperature variable will be utilized
as a dummy in this case. Further implementation shall include real-time data. The

planned approach includes:
e Defining realistic bounds for parameters to ensure natural growth patterns.

o Calculating branch attributes (length, angle, thickness) based on environmental
data.

e Introducing random variations to simulate natural randomness.
e Generating L-system rules that incorporate these dynamic parameters.

o Applying context-sensitive rules for more sophisticated transformations.
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4.2.3 L-System Class

The core logic of the L-system will be encapsulated in a dedicated class. This class will

manage the generation and rendering of the L-system, including:
¢ Initializing with the starting axiom and iteration settings.
o Generating the L-system string by applying rules iteratively.
e Supporting context-sensitive rules for complex transformations.

e Visualizing the L-system on a graphical interface, including branch and leaf draw-

ing.

4.2.4 User Interface Elements

To facilitate user interaction, various Ul elements will be developed:
e Sliders for adjusting parameters like temperature, angle, and branch length.

e Buttons for actions such as saving and loading configurations, and resetting pa-

rameters.
e Text input boxes for defining and modifying L-system rules.

e Color pickers for customizing the colors of branches and leaves.

4.2.5 Helper Functions

Helper functions will support the core functionality, including;:

o Drawing a reference grid to help users understand the scale and orientation of the

L-system.
o Updating the L-system drawing in real-time based on user inputs.
e Simulating real-time environmental data to dynamically adjust parameters.
e Managing configuration files for saving and loading setups.

o Exporting images of the current L-system state for documentation and analysis.
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« Randomizing parameter values to facilitate quick testing of different configurations.

4.2.6 Main Execution Flow
The main function will initialize the graphical interface and Ul elements, and manage
the event loop. This will involve:

e Setting up the Pygame environment and initializing Ul components.

o Handling user interactions with sliders, buttons, and text inputs.

e Continuously updating and redrawing the L-system based on current parameters.

e Implementing functionalities for saving, loading, exporting, and applying rule vari-

ations.
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4.3 UML Diagram

For a better visual understanding of the system, the following UML-Diagram has been

created to sum up all the previously mentioned aspects and modules:
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Figure 4.1: UML-Diagram of the system.

This conceptual plan lays the groundwork for a dynamic and interactive L-system. By
integrating real-time data, user interface elements, and both deterministic and stochastic

rule variations, the system will provide a robust platform for exploring natural growth

patterns and their responses to environmental changes. The modular and extensible

design ensures that the system can be adapted and expanded for various applications,

making it a valuable tool for modeling complex phenomena.
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In this section, the development of a dynamic, responsive L-system capable of adjusting
its parameters based on real-time data is detailed. This implementation enhances the
flexibility and applicability of L-systems. The primary goal is to create an interactive
system that can simulate natural growth patterns influenced by varying environmental
conditions. The system’s adaptability is achieved through the integration of user in-
terface elements and real-time data, providing a robust platform for exploring various
growth scenarios. The most crucial part of this experiment is analyzing the branching

behavior of the system.
The implementation is structured into several key components:
1. Imports and Logging Setup
2. Branching Parameter Calculation
3. L-System Class Implementation
4. User Interface Elements
5. Helper Functions

6. Main Execution Flow

5.1 Imports and Logging Setup

To begin with, the necessary libraries are imported. This includes numpy for mathe-
matical operations, Pygame for visualization, logging for recording events, datetime
for time-based functions, random for random number generation, json for configuration
management, and tkinter for file dialogs. The 1lru_cache from functools is employed

to cache function results, optimizing performance. These imports form the backbone
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of the implementation, ensuring that all required tools to handle computations, visu-
alizations, and configurations efficiently are available. The choice of libraries reflects

a balance between performance and ease of use, making the development process both

straightforward and effective.

import
import
import
import
import

import

numpy as np

pygame
logging
datetime
random

json

from functools import lru_cache

from pygame.locals import *

from tkinter import filedialog

from tkinter import Tk

import
import

import

cProfile
pstats

io

Code Snippet 5.1: Imports

Logging is configured to capture and log messages into a file named 1system_growth.log.
This setup helps in tracking the flow of the program and debugging issues. The log file
format includes timestamps, which are crucial for understanding the sequence of events
and the state of the system at any given time. The logging configuration is set to log
information level messages, ensuring that both regular operational messages and error

messages are recorded.
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logging.basicConfig(filename=’1system_growth.log’,
level=logging.INFO,

format="%(asctime)s - %(message)s’)

Code Snippet 5.2: Logging Setup

Timestamp Temperature | Angle Formula

2024-06-04 11:35:23,153 17.625 10 | F+++F|-FIF[+F][ F|F[+++F]

Table 5.1: L-system parameters at timestamp 1 (taken from the log file).

Timestamp Temperature | Angle Formula
2024-06-04 11:35:23,186 13.0 10 F[+F|[—F|F[+F]|[-F]F

Table 5.2: L-system parameters at timestamp 2 (taken from the log file).

5.2 Branching Parameter Calculation

To introduce adaptability in L-systems, it is essential to dynamically adjust the branch-
ing parameters based on external factors such as temperature. The function calcu-
late_branching parameters is defined to compute these parameters. Initially, the
bounds for temperature, branch length, and angles are set to ensure that the system
operates within realistic limits. This setup is vital for simulating natural growth pat-
terns that respond to environmental changes. By defining these bounds, the system can

prevent unrealistic growth scenarios and maintain a level of biological plausibility.

For testing purposes the temperature in this case will be an easily adjustable dummy

value. Further implementations might use real-time data from sensors.

5.2.1 Formula

Given the temperature T', base angle 6, branch length L, and branch thickness o:
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T — T
L(T)=L+ M * (Lmax — Lmin) + length_ variation,
max min
T — T
0(T) =0+ M + (Omax — Omin) + angle_ variation,
max min
(T - Tmin)
cT)=0c+ ———""-"-2.
( ) (Tmax - Tmin)

Here, length_ variation and angle variation are random variations if use_random is

True, otherwise they are zero.

5.2.2 Implemented Code

@lru_cache (maxsize=None)

def calculate_branching_parameters (temperature, base_angle,
branch_length, branch_thickness, use_random,
deterministic_func, stochastic_rule=None, context_rules=()):
min_length, max_length = 8, 18
min_angle, max_angle = 5, 18
min_temp, max_temp = 0, 30
temperature = min(max(temperature, min_temp), max_temp)
length = branch_length + (temperature - min_temp) / (max_temp

- min_temp)* (max_length -min_length)

angle = base_angle + (temperature - min_temp) / (max_temp -
min_temp)* (max_angle - min_angle)

thickness = branch_thickness + (temperature - min_temp) / (
max_temp - min_temp) * 2

length_variation = random.uniform(-0.5, 0.5) if use_random
else O

angle_variation = random.uniform(-2, 2) if use_random else O

length += length_variation

angle += angle_variation

Code Snippet 5.3: Branching Parameter Calculation

The attributes of a branch in a fractal structure are calculated, allowing the following
functionality:

1. Compute the length, angle, and thickness of the branch based on temperature.

2. Optionally add random variations to length and angle.
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Structure:

e Length Calculation: Adjusts the branch length based on temperature, interpo-

lating between a minimum and maximum length.

e Angle Calculation: Adjusts the branch angle similarly, interpolating between a

base and maximum angle.
e Thickness Calculation: Adjusts the branch thickness with a linear scale factor.
e Random Variations:

— If randomness is enabled, adds a random variation to the length (between
-0.5 and 0.5) and to the angle (between -2 and 2 degrees).

— If deterministic, no variation is added.

e Final Adjustment: Updates the length and angle with the calculated variations.

5.3 Generation of the L-System

5.3.1 Formula

Given the axiom A, set of rules R, and number of iterations /. The generation process

can be described recursively:

A if k=0,
Skt1 =
R(Sy) if k>0,

where S, is the string at iteration k.

5.3.2 Implemented Code

steps = int(temperature // 5)
rule = "F"
for i in range(steps):
if use_random:
plus_variation = ’+’ * (random.randint (1, 3))

minus_variation = ’-’ * (random.randint (1, 3))
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else:
plus_variation, minus_variation =
deterministic_rule_variation(i, steps,
deterministic_func)

rule = f£"F[{plus_variation}F] [{minus_variation}F]{rulel}"

Code Snippet 5.4: Rule Generation

Structure

e Steps Calculation: The number of iterations is determined by dividing the tem-

perature by 5.
o Initialization: The initial rule is set to a forward movement, denoted by "F".
o Iteration and Variation:

— If randomness is enabled, generate random sequences of '+’ and ’-’ with

lengths between 1 and 3.
— If deterministic, use a predefined function to generate variations.

— Append and prepend these variations to the rule in each iteration, building

complexity.

5.3.3 Overwriting Default Behaviour

Finally, if a stochastic rule is provided, it overrides the deterministic rule. Context rules,

if any, are applied to the final rule string. The structure is as follows:

if stochastic_rule:

rule = stochastic_rule

context_rules_dict = dict(context_rules)
if context_rules_dict:
for context, replacement in context_rules_dict.items():

rule = rule.replace(context, replacement)

return {

"F": rule,
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11 "length": length,
12 "angle": angle,

13 "thickness": thickness

Code Snippet 5.5: Returning Rules

1. Optionally replace the rule with a stochastic rule.
2. Apply context-specific replacements to the rule.

3. Return the final rule and branch attributes.

Structure
e Stochastic Rule Replacement:
— If a stochastic rule is provided, it replaces the current rule.
e Context-Specific Rule Replacement:
— Convert the list of context-specific rules into a dictionary.

— Iterate over the dictionary, replacing each context in the rule with its corre-

sponding replacement.
e« Return Statement:

— Return a dictionary containing the final rule, branch length, angle, and thick-

ness.

5.4 Deterministic Approach

In order to further incorporate rule variations: two functions, calculate_variation and
deterministic_rule_variation, are defined to achieve this. These functions generate
variations for deterministic rule creation based on mathematical functions such as sine,
cosine, and exponential (etc). By employing different mathematical functions, the system

can create a wide range of branching patterns, each with unique characteristics.
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5.4.1 Formulae

Let ¢ be the current step, and n be the total number of steps. The variation calculation

depends on the chosen deterministic function f(i,n):

o +x if f(i,n) >0,
variation =
—x if f(i,n) <0,

where f(i,n) can be:

step : f(i,n) = i%3,

sine : f(i,n) = sin

&
3
\/\/

M~ 7D
Si- 3|33y

cosine : f(i,n) = cos

N———

exponential : f(i,n) = exp

+
—

),

logarithmic : f(i,n) = log(i
-(1)
n )
n
i,

fi,n) =
tangent : f(i,n) = ta (Z) )

polynomial :

sqrt < f(i,n) = Vi

sinh : f(i,n) = sinh(3),
sigmoid : f(i,n) = Heip(_i),

tanh : f(i,n) = tanh(i),
e (i) = -

5.4.2 Implemented Code

V)

def calculate_variation(value, multiplier):
return '+’ *x (int(abs(value * multiplier) + 1)),

J

-’ * (int(abs(value * multiplier) + 1))

Code Snippet 5.6: Calculate Variation
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def deterministic_rule_variation(i, steps, deterministic_func):

multiplier = 3 # Common multiplier for variation calculations

if deterministic_func == "sine":
plus_variation, minus_variation = calculate_variation(np.

sin(i), multiplier)
elif deterministic_func == "cosine":
plus_variation, minus_variation = calculate_variation(np.
cos(i), multiplier)
elif deterministic_func == "exponential":
value = np.exp(i / steps)
plus_variation, minus_variation = calculate_variation(

value, 2)

Code Snippet 5.7: Deterministic Rule Variation

The function deterministic_rule_variation generates deterministic variations based

on different mathematical functions. The structure is as follows:

1. Introduce a common multiplier to scale the variations.

2. Depending on the chosen deterministic function, calculate the variation.
e For the sine function, compute the sine of the current step 3.
e For the cosine function, compute the cosine of the current step <.

e For the exponential function, compute the exponential of the step normal-

ized by the total number of steps.

This approach allows the deterministic_rule_variation function to apply predictable
and mathematically varied modifications to L-system rules. By selecting different deter-
ministic functions, a wide range of fractal patterns with unique characteristics can be

generated.
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Function Resulting Formula

Initial

Step F[+FH FIF[+F][-FIF [+ F][-F]F

Exponential Fl++++F|[—-———-F|F|[+++F][———F|F[+++F|[- ——F|F

Logarithmic F[+ + +F][— — —F|F[+ + F|[- — F]JF[+F|[-F]F

Polynomial F[+ + F]|— — F|F[+F][-F|F[+F]|-F|F
F++++++F|[-———— FIF++++++F|[-—————

Tangent F|F|+F|[-F|F

Square Root | F[+++++F][-———— FIF[++++ F][- — = = FIF[+ F][-F]F

Sinh Fldb++++++++++F-—————————— FIF[++++
F|[- — — — F|F[+F][-F]F

Sigmoid Fl+ + +F][- — —F|F[+ + +F][- — —=F|F[+ + F][- — FIF

Tanh Fl++ +F|[- — =F|F[+ + +F|[- — =F|F[+F|[-F|F

Inverse Fl++ F|[- - FIF[++ F|[- - F]F[++++ F][- - — - F|F

Table 5.3: Modification of the formula F based on different mathematical functions.

Stochastic Save

x15

Temperature: 15.0

Load

Toggle Temp - Randomize Switch Rand

FL+F][-FIF[+F][-FIF[+FI[-FIF

—|
—

Sine

Export Image

Cosine
TR LT

ALY T A Exponential
A\ H /] Logarithmic

Polynomial
att als oy

alrtively Tangent

Dy 17/ Square Root

Sinh
P LB b T
Sigmoid

olrtirel, g

Aty BELL

Inverse

Base Angle: 10.0 Branch Length: 15.0 Branch Thickness: 1.8 Iterations: 2

Figure 5.1: Generated L-System using step function branching variations.
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Stochastic Save Load Export Image

Toggle Temp - Randomize Switch Rand
I

F[++F JF[++F][—FIF[++++F][-FIF Exponential
Logarithmic

— Polynomial
- Tangent
Square Root
Sinh
Sigmoid
Tanh

Inverse

x15 Configuration loaded

Temperature: 15.0 Base Angle: 10.0 Branch Length: 15.0 Branch Thickness: 1.8 Iterations: 2

Figure 5.2: Generated L-System using the cosine function branching variations.

Stochastic Save Load Export Image
Toggle Temp - Randomize Switch Rand “
Cosine
Exponential
Logarithmic
Polynomial
Tangent
Square Root
Sinh
Sigmoid
Tanh

Inverse

x15

Configuration saved

Temperature: 15.0 Base Angle: 10.0 Branch Length: 15.0 Branch Thickness: 1.8 Iterations: 2

Figure 5.3: Generated L-System using the sine function branching variations.
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Stochastic Save Load Export Image Step

Toggle Temp - Randomize Switch Rand Sine

Flr s+ FI—FIFE++FI—FIF [r+FI—FIF
Logarithmic

— Polynomial
- Tangent
Square Root
Sinh
Sigmoid
Tanh

Inverse

x15

Using exponential function

Temperature: 15.0 Base Angle: 10.0 Branch Length: 15.0 Branch Thickness: 1.8 Iterations: 2

Figure 5.4: Generated L-System using the exponential function branching variations.

It is worth highlighting that the following functions have allowed for a natural and
dynamic growth of the plant: step, sine, cosine, exponential, logarithmic, polynomial,
sigmoid, hyperbolic tangent and inverse. However, the tangent and hyperbolic sine have
exhibited an opposite behaviour, illustrating a non-natural growth pattern. This might
be due to the fact that the tangent grows too quickly due to its extreme and rapid
variations near its asymptotes. These characteristics lead to highly unpredictable and
unstable branching patterns with sharp turns and erratic angles, whereas the hyperbolic

sine simply grows too fast and thus leads to the same extreme variations.
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Stochastic

Export Image
Toggle Temp

Step

Randomize Switch Rand

Sine
Cosine
i -1 oy
Exponential
il Ly
- - Logarithmic
Polynomial
Square Root
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Sigmoid
Tanh

Inverse

x15

Using tangent function
Temperature: 15.0

Branch Length: 15.0 Branch Thickness: 1.8

Base Angle: 10.0 Iterations: 2
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Figure 5.5: Generated L-System using hyperbolic sine function branching variations
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Exponential
Logarithmic
Polynomial
Tangent

Square Root

Sigmoid
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Inverse

x15

R aad Using sinh function
Base Angle: 10.0 Branch Length: 15.0 Branch Thickness: 1.8 Iterations: 2
T DTN EEENTEEE O

Temperature: 15.0

Figure 5.6: Generated L-System using square root function branching variations.
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5.5 Stochastic Approach

Furthermore, a function to generate stochastic rules, generate_stochastic_rule is
implemented. This function introduces randomness into the L-system rules, further en-
hancing the system’s ability to simulate natural and varied growth patterns. This func-
tion is essential for adding a layer of unpredictability. By incorporating random choices,
the system can produce a wide range of possible growth forms, each unique yet following

the underlying rule set. Every variation has a 0.2 chance of being implemented.

5.5.1 Formula

Let p be the probability of replacing F', and V be the set of variations. The rule

generation process is:

| random choice from V' with probability p,
rule =
F with probability 1 — p.

5.5.2 Implemented Code

def generate_stochastic_rule(base_rule):
stochastic_rule = ""
variations = ["F[+F][-F]", "F[++F][--F]", "F[+F][-F][++F][--F]
"]
for char in base_rule:
if char == "F" and random.random() < 0.2:
stochastic_rule += random.choice(variations)
else:
stochastic_rule += char

return stochastic_rule

Code Snippet 5.8: Generate Stochastic Rule
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Initial Formula Formula after Pressing Stochastic Button
F F[+F]|[-F]
F[+F][-F] F[+F][-F|F
F[++F]|[-F] F[++F][-F]F[+F][-F]
F[++F|[-F|F[++F][-F] F[+F|[-F|F[++F]|[-F]F[+F][++F]

Table 5.4: Effect of Pressing the Stochastic Button on the L-System Formula

Initial Formula F:

After pressing the stochastic button, F is replaced with F[+F] [-F]. This change intro-
duces branching at the end of the segment represented by F.

Initial Formula F[+F] [-F]:

One occurrence of F is replaced, resulting in F [+F] [-F]F. The replacement introduces a
new branch with a double turn (—) to the left.

Initial Formula F[++F] [-F]:

One occurrence of F is replaced, resulting in F[++F] [-F]1F[+F] [-F]. This introduces

additional branching and variations in angles.

Initial Formula F[++F] [-F]F [++F] [-F]:

Multiple occurrences of F are replaced, resulting in F[+F] [-F]F [++F] [-F]1F [+F] [++F].
This creates a more complex and varied branching structure, mimicking natural growth

patterns.
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Figure 5.7: Plant generated with random branching attributes without stochastic varia-
tions.

Figure 5.8: Plant generated with random branching attributes and stochastic variation.
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In the figures provided above one can witness the nature of the modification that are

being applied to the system whenever the stochastic function is being toggled.

5.6 L-System Class Implementation

The LSystem class includes the axiom, iterations, and the resulting system string. The
class provides methods to generate the L-system string (generate_system) and draw it
on the Pygame screen (draw_system). This class forms the heart of the implementation,

managing the generation and rendering of the L-system.

class LSystem:

def __init__(self, axiom, iterations):
self.axiom = axiom
self.iterations = iterations
self .system = axiom

self.length = 0
self .angle = O
self.thickness = 0

Code Snippet 5.9: L-System Class Initialization

5.6.1 Generate the System

Next, the generate_system method is implemented. This method creates the L-system
string by iterating through the axiom and applying the rules. It also applies context-
sensitive rules if specified. This method is fundamental for evolving the L-system from
its initial state, ensuring that each iteration reflects the rules and parameters defined.
The iterative process is at the core of L-systems, allowing complex patterns to emerge
from simple rules through repeated application. This method must efficiently handle
large strings and numerous iterations, maintaining performance while generating detailed

patterns.

def generate_system(self, rules):

current_string = self.axiom
for _ in range(self.iterations):
next_string = []

for i, char in enumerate(current_string):
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context = current_string[i-1:i+2]
replacement = self.apply_context_rules(context,
rules)

next_string.append(replacement if replacement else

rules.get (char, char))
current_string = ’’.join(next_string)
self .system = current_string
self.length = rules["length"]
self.angle = rules["angle"]
self.thickness = rules["thickness"]

Code Snippet 5.10: Generate System

To support context-sensitive rules, the apply_context_rules method is implemented.
This method checks if the current character matches any context-sensitive rules and ap-
plies the replacement if found. This feature allows for more sophisticated and context-
aware transformations within the L-system. Context-sensitive rules add a layer of com-
plexity, enabling the system to produce patterns that depend on the local context of

each character, thus enhancing the diversity and realism of the generated forms.

def apply_context_rules(self, context, rules):
context_rules = rules.get("context_rules",
for rule in context_rules:
if context == rule["context"]:
return rule["replacement"]

return None

[

Code Snippet 5.11: Apply Context Rules

5.6.2 Draw the System

Draw Branches

The draw_system method is responsible for visualizing the L-system on the Pygame
screen. It interprets the L-system string and draws lines representing branches, with

variations in thickness and angle. Additionally, it handles the drawing of leaves and logs
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the branching data. This visualization is crucial for users to see the results of the L-
system generation process in real-time. The method must efficiently render potentially

complex and dense structures while maintaining visual clarity.

The function uses a stack to manage the state of the drawing context when dealing
with branching. The stack is used to save the current position and angle before a
branch is drawn. This allows the system to return to this state after completing a
branch, supporting the recursive nature of L-systems and enabling complex branching

structures.

def draw_system(self, screen, width, height, length, angle,

thickness, scale, branch_color, leaf_color, offset_x,

offset_y):

stack = []

X, y = width // 2 + offset_x, height - 120 + offset_y
current_angle = 90

leaves = []

1

for i, char in enumerate(self.system):

min_thickness

color = branch_color[i % len(branch_color)]
current_thickness = max(min_thickness, int(thickness *
scale))
if char == "F":
x_new = x + np.cos(np.radians(current_angle)) x*
length * scale
y_new = y - np.sin(np.radians(current_angle)) =x*
length * scale
pygame .draw.line (screen, color, (x, y), (x_new,
y_new), current_thickness)
X, y = X_new, y_new
elif char == "+":

current_angle += angle

elif char

current_angle -= angle
elif char == "[":

stack.append((x, y, current_angle))
elif char == "]":

leaves.append ((x, y))

X, y, current_angle = stack.pop()

Code Snippet 5.12: Draw System
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Draw Leaves and Calculate Average Branch Length

The method continues by drawing circles for leaves and calculating the average branch
length. Logging the branching data for analysis is also included, which can be useful for
understanding the growth patterns and optimizing the L-system parameters. By analyz-
ing the logged data, developers can fine-tune the rules and parameters to achieve desired

outcomes, making the system more versatile and effective for various applications.

for (1lx, ly) in leaves:
pygame .draw.circle(screen, leaf_color, (int(lx), int(
ly)), max(l, int(3 * scale)))

avg_branch_length = (sum(np.linalg.norm([lx - width // 2,
ly - (height - 120)]) for (lx, 1ly) in leaves) / len(

leaves)) if leaves else O

self .log_branching_data(len(leaves), avg_branch_length,

leaves)
return len(leaves), avg_branch_length

def log_branching_data(self, num_branches, avg_branch_length,
leaves) :
branch_lengths = [np.linalg.norm([lx - width // 2, 1y - (
height - 120)]) for (1lx, ly) in leaves]
logging.info (f"Number of branches: {num_branches}, Average
branch length: {avg_branch_length:.2f}")
logging.info (f"Branch lengths: {branch_lengths}")

Code Snippet 5.13: Draw System Final
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Stochastic Save Load Reset Export Image

Toggle Temp - Randomize Switch Rand

FL++F][-FIF[+++F][-F]F[++F][-FIF

=
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x24

Temperature: 15.0 Base Angle: 10.0 Branch Length: 15.0 Branch Thickness: 1.0 Iterations: 3

Figure 5.9: Generated leaves on the plant branches(green dots).

5.7 User Interface Elements

The implementation includes several Ul elements to facilitate user interaction: Slider,
Button, TextBox, and ColorPicker classes. These classes manage the interactive com-
ponents, allowing users to manipulate the parameters dynamically. User interface ele-
ments are critical for creating an intuitive and engaging experience, enabling users to
explore the effects of different parameters on the L-system’s growth patterns. Users can

experiment with various configurations and observe the resulting changes in real-time.

5.7.1 Sliders

A slider control for adjusting parameters is created first. The Slider class handles
mouse events and updates its value accordingly. The slider is a key element in the user
interface, enabling real-time adjustments of parameters such as temperature, angle, and
length. Sliders provide a smooth and intuitive way for users to fine-tune parameters,

ensuring precise control over the simulation settings.

58



V]

5 Implementation

class Slider:
def _ _init__(self, x, y, W, h, min_val, max_val, init_val,
label, integer=False):
self .rect = pygame.Rect(x, y, w, h)

self .min_val = min_val
self .max_val = max_val
self.value = init_val

self .handle_rect = pygame.Rect(x, y, w // 10, h)

self.handle_rect.centerx = x + (w * ((init_val - min_val)
/ (max_val - min_val)))

self .dragging = False

self.label = label

self.font = pygame.font.Font (None, 24)

self.integer = integer

Code Snippet 5.14: Slider Initialization

Figure 5.10: Available sliders for the simulation.

The Angle Slider controls the base angle of the branches in the L-System. This slider
ranges from 0 to 20 degrees. The base angle determines the initial divergence of the
branches from the main trunk. Adjusting this slider changes the angular spread of the

branches.

The Length Slider controls the length of each branch in the L-System. The length
value ranges from 8 to 18 units. Adjusting this slider changes the length of the branches,

making them longer or shorter.
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The Thickness Slider controls the thickness of the branches in the L-System. This
slider ranges from 1 to 5 units. The thickness affects the visual weight of the branches,

making them appear thicker or thinner.

The Iterations Slider controls the number of iterations the L-System goes through to
generate the final structure. It ranges from 1 to 4 iterations. Each iteration applies the
production rules to the current state of the system, increasing the complexity and detail
of the L-System.

5.7.2 Buttons

A clickable button that changes its color on hover and click, providing visual feedback
to the user, is also implemented. Buttons are used for various actions such as saving
configurations, loading configurations, and resetting parameters. Visual feedback, such
as color changes, helps users understand the state of the button, confirming that their

input has been registered.

class Button:
def __init__(self, x, y, w, h, text, color, hover_color,
click_color, tooltip=None, selectable=True):
self .rect = pygame.Rect(x, y, w, h)
self.text = text
self.color = color

self .hover_color = hover_color

self.click_color click_color
self.selected_color = (255, 255, 0)
self.current_color = color

self .font = pygame.font.Font(None, 24)

self.text_surface = self.font.render (text, True, (255,
255, 255))
self .text_rect = self.text_surface.get_rect(center=self.

rect.center)
self.clicked = False
self.selected = False
self .tooltip = tooltip
self.tooltip_font = pygame.font.Font (None, 20)

self.selectable = selectable

Code Snippet 5.15: Button Initialization
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Figure 5.11: Available buttons for the simulation.

The Stochastic Button toggles the application of stochastic rules to the L-System.
When activated, it introduces random variations to the production rules, resulting in

more varied and less predictable patterns.

The Save Button saves the current configuration of the L-System parameters to a
file. This includes the axiom, iterations, temperature, base angle, branch length, branch

thickness, and the current rules.

The Load Button loads a previously saved configuration from a file. This restores
the L-System parameters and rules to the saved state, allowing continuation from the

previous point.

The Reset Button resets the stochastic variations, returning the L-System to its de-

terministic state based on the current parameters and rules.

The Toggle Temperature Button switches between using a fixed temperature and a
real-time temperature that changes dynamically over time. This simulates environmental

changes affecting the L-System growth.

The Export Button exports the current visualization of the L-System as an image file.

This allows the generated patterns to be saved and shared.

The Randomize Button randomizes the L-System parameters within their respective
ranges. This provides a quick way to explore different configurations and observe their

effects on the L-System.

The Switch Random Button toggles between random and deterministic behavior
for the L-System. In random mode, parameters and rules are varied randomly, while
in deterministic mode, they follow a fixed pattern based on the selected deterministic

function.
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5.7.3 Text Boxes

A text input box for defining L-system axioms and rules is also necessary, supporting

basic text editing operations. This component is crucial for users to input and modify

the initial conditions and rules of the L-system dynamically. Text input boxes allow users

to enter and edit text-based data, providing a way to directly influence the behavior and

structure of the L-system.

class TextBox:

def

__init__(self, x, y, w, h, text=’’):

self .rect = pygame.Rect(x, y, w, h)
self.color_inactive = pygame.Color (’lightskyblue3’)
self.color_active = pygame.Color (’dodgerblue2’)
self.color = self.color_inactive

self.text = text

self.font = pygame.font.Font (None, 24)

self.txt_surface = self.font.render(text, True, self.color
)

self.active = False

self.caret_visible = True

self.caret_position = len(text)

self .caret_timer = pygame.time.get_ticks()

Code Snippet 5.16: TextBox Initialization

Below, there are two figures illustrating the ability to dynamically modifying the formula

of the system via the textbox as such:

F[+F|[-F|F[++F|[-F|F[++F][-F|F — F[+F|[-F|F[++F|[-F|F[++F]
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Stochastic Save Load Reset Export Image

Toggle Temp - Randomize Switch Rand

FL+FI—FIF [+++F—FIF[++FI-FIF

Temperature: 15.0 Base Angle: 10.0 Branch Length: 15.0 Branch Thickness: 3.6 Iterations: 3

Figure 5.12: Textbox: F[+F][-F]F[++F][-F|F[++F][-F]F

Stochastic Save Load Reset Export Image

Toggle Temp - Randomize Switch Rand

F[+F][—FIF[+++F][—FIF[++F]

Temperature: 15.0 Base Angle: 10.0 Branch Length: 15.0 Branch Thickness: 3.6 Iterations: 3

Figure 5.13: Textbox: F[+F][-F|F[++F][-F|F[++F]

The handle_event method processes mouse and keyboard events for text input. This

functionality enables users to define and adjust the L-system’s parameters directly, pro-
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viding a hands-on way to experiment with different configurations. Handling keyboard
and mouse events involves detecting clicks to activate the text box, managing caret

position, and processing text input.

The blink_caret method toggles the visibility of the caret. This functionality provides
a visual cue that the text box is active and ready for input. This visual feedback is

essential for maintaining a responsive and user-friendly text input interface.

5.7.4 Color Picker

A color picker is implemented to display a palette of colors for the user to select the
color for branches and leaves. This component enhances the visual customization of
the L-system, allowing users to choose colors that best represent their desired growth

patterns.

class ColorPicker:
def __init__(self, x, y, w, h, initial_colors, tooltip=DNomne):

self .rect = pygame.Rect(x, y, w, h)
self.colors = initial_colors
self.selected_color_index = 0
self .font = pygame.font.Font(None, 24)
self.tooltip = tooltip
self .tooltip_font = pygame.font.Font(None, 20)

Code Snippet 5.17: ColorPicker Initialization

5.8 Helper Functions

Several helper functions support the core functionality, including drawing the grid,
updating the L-system, fetching real-time temperature, and managing configurations.
These functions enhance the overall usability and functionality of the system, making
it more robust and user-friendly. The implementation becomes more organized and

maintainable.
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5.8.1 Draw the Grid

The draw_grid function is first implemented to draw a reference grid on the Pygame
screen. The grid provides a visual reference for users, helping them understand the scale
and orientation of the L-system. Drawing a grid helps users gauge distances and angles
more accurately, providing a useful context for the L-system’s growth patterns. The grid
must be rendered efficiently to avoid performance issues, especially when dealing with

large or complex grids.

def draw_grid(screen, width, height, grid_size, offset_x, offset_y

, color=(30, 30, 30)):

if grid_size <= 0:
return

for x in range(offset_x % grid_size, width, grid_size):
pygame .draw.line(screen, color, (x, 0), (x, height))

for y in range(offset_y % grid_size, height, grid_size):
pygame .draw.line(screen, color, (0, y), (width, y))

Code Snippet 5.18: Draw Grid

5.8.2 Update L-System

The update_lsystem function is implemented next to update the L-system drawing
based on the current rules and parameters. This function is crucial for rendering the
L-system in real-time, reflecting any changes made by the user through the UI elements.
Updating the L-system dynamically allows users to see the effects of their adjustments
immediately, providing a more interactive and engaging experience. The function must
efficiently handle updates to the L-system, ensuring that the rendering process is smooth

and responsive.

def update_lsystem(rules, screen, width, height, scale,

branch_color, leaf_color, background_color, offset_x, offset_y)

screen.fill (background_color, (0, O, width, height - 100))
draw_grid(screen, width, height - 100, int (20 * scale),
offset_x, offset_y, (30, 30, 30))
try:
lsystem.generate_system(rules)

log_growth(rules)
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num_branches, avg_branch_length = lsystem.draw_system(
screen, width, height, rules["length"], rules["angle"],
rules["thickness"], scale, branch_color, leaf_color,
offset_x, offset_y)
log_branching_complexity (num_branches, avg_branch_length)
except Exception as e:

logging.error (f"Error updating L-system: {el}")

Code Snippet 5.19: Update L-System

5.8.3 Fetch Real-Time Temperature

To simulate fetching a real-time temperature, a helper function is implemented. This
function is used to dynamically adjust the L-system parameters based on changing envi-
ronmental conditions. Simulating real-time temperature data adds an element of realism
to the L-system, making it responsive to external factors. The function must generate
temperature values that vary over time, providing a dynamic input for the L-system’s

growth simulation.

def fetch_real_time_temperature():
base_temp = 15
noise = np.sin(datetime.datetime.now () .timestamp() / 3600) * 5
temperature = base_temp + noise + 15 * np.sin(datetime.
datetime.now () .timestamp () / 3600)

return np.clip(temperature, 0, 30)

Code Snippet 5.20: Fetch Real-Time Temperature

5.8.4 Save/Load

Functions to save and load L-system configurations to/from a JSON file are also neces-
sary. These functions enable users to save their current setup and reload it later, facil-
itating experimentation and iterative development. Saving and loading configurations
allow users to preserve their work and continue from where they left off. The functions
must handle the serialization and deserialization of the L-system’s state, ensuring that

all relevant parameters are accurately saved and restored.
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1 |def save_configuration(filename):

2 configuration = {

3 ’axiom’: lsystem.axiom,

| ’iterations’: lsystem.iterations,

5 ’temperature’: temperature_slider.get_value(),
6 ’base_angle’: angle_slider.get_value(),

7 ’branch_length’: length_slider.get_value(),

8 ’branch_thickness’: thickness_slider.get_value(),
9 ’rules’: {’F’: rule_box_f.text}

10 }

11 with open(filename, ’w’) as file:

12 json.dump (configuration, file)

13 logging.info(f"Configuration saved to {filenamel}")

Code Snippet 5.21: Save Configuration

5.8.5 Export

An export function is also required to save the current screen image to a file using
Tkinter’s file dialog. This functionality allows users to save a visual representation of
the L-system, which can be useful for documentation or further analysis. The function

must handle the file dialog interface and ensure that the image is saved correctly .

| |def export_image (screen):
Tk () .withdraw ()

3 export_path = filedialog.asksaveasfilename (defaultextension=".

png", filetypes=[("PNG files", "*.png")])
1 if export_path:
5 pygame .image .save (screen, export_path)

6 logging.info (f"Image exported to {export_pathl}")

Code Snippet 5.22: Export Image

5.8.6 Randomize

Lastly, a function to randomize the values of the sliders is implemented to introduce

variability. This function is useful for testing different configurations quickly and explor-
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ing the effects of various parameter combinations. Randomizing parameters allows users

to explore a wide range of growth patterns without manually adjusting each slider.

def randomize_parameters () :
global temperature_slider, angle_slider, length_slider,

thickness_slider, iterations_slider

temperature_slider.value = random.uniform(temperature_slider.

min_val, temperature_slider.max_val)

angle_slider.value = random.uniform(angle_slider.min_val,
angle_slider .max_val)

length_slider.value = random.uniform(length_slider .min_val,
length_slider.max_val)

thickness_slider.value = random.uniform(thickness_slider.
min_val, thickness_slider .max_val)

iterations_slider.value = random.randint(iterations_slider.

min_val, iterations_slider .max_val)

Code Snippet 5.23: Randomize Parameters
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Stochastic Save Load Reset > Export Image

Toggle Temp - Switch Rand

Fla++FI—FIF[++FI—FIF [++FI-FIF[++FI-FIF

| E—

Temperature: 221 Base Angle: 9.5 Branch Length: 11.8 Branch Thickness: 3.8 Iterations: 3

Figure 5.14: First generation of an L-System with randomized values.
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Figure 5.15: Second generation of an L-System with randomized values.
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6 Results and Evaluation

This chapter conducts a thorough assessment of the system’s performance after its im-
plementation. It focuses on evaluating how accurately the implemented functionalities
correspond to the objectives established before implementation. This analysis will high-
light significant accomplishments and identify critical areas where improvements can be

made.

6.1 Overview

The system successfully met its primary objectives, demonstrating the integration of
fractals and Lindenmayer Systems (L-systems) with data inputs to create responsive
natural patterns. Several key results and observations were noted and divided into pros

and cons:

6.1.1 Pros

Dynamic Adaptation: The system effectively adjusted growth angles and branching
patterns in real-time based on simulated environmental data. This capability signifi-
cantly enhanced the realism and flexibility of the L-system models. The dynamic nature

of the system allowed it to respond to varying conditions.

User Interaction: The inclusion of interactive user interface elements, such as sliders
and buttons, allowed for real-time manipulation of parameters. This feature provided

immediate visual feedback, facilitating user engagement and experimentation.

Diverse Pattern Generation: Incorporating both stochastic and deterministic rule
variations enabled the system to generate a wide range of natural patterns. Stochastic

rules introduced randomness, mimicking the inherent unpredictability of natural growth,
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while deterministic rules ensured repeatable and predictable outcomes. This diversity

added depth to the simulations and demonstrated the robustness of the approach.

Visualization and Analysis: The use of graphical libraries like Pygame and Turtle
for visualization proved effective. These libraries provided a robust platform for render-
ing complex L-system structures, ensuring smooth and detailed graphics. The logging
mechanisms, implemented to track system parameters and outputs, provided valuable
insights into the branching complexity and overall system behavior. This data was cru-
cial for analyzing the effectiveness of different rule sets and for optimizing the L-system

parameters.

6.1.2 Cons

Predefined Mathematical Functions: The reliance on predefined mathematical
functions for deterministic variations constrained the diversity of patterns that could be
generated. While these functions (e.g., sine, cosine, exponential) were effective for certain
patterns, they limited the system’s ability to explore more complex or less predictable
structures. This limitation highlighted the need for more flexible and sophisticated rule

generation methods that can dynamically adapt based on broader criteria.

Basic Randomization: While the randomization approach introduced variability, it
could benefit from more advanced algorithms to enhance the realism and complexity
of the generated patterns. The current implementation of randomization was relatively
simple, primarily using uniform distributions to alter parameters. Advanced stochas-
tic models, such as Gaussian processes or Markov chains, could provide more nuanced

variations that better mimic natural phenomena.

2D Model: The thesis primarily focuses on the use of fractals and L-systems for gen-
erating 2D visualizations of natural patterns. While 2D representations are useful for
certain types of analysis and visualization, they inherently limit the depth and realism
that can be conveyed, especially when representing complex, three-dimensional struc-
tures like trees and plants. This dimensional limitation might restrict the application’s
effectiveness in fields that require more comprehensive spatial analysis and interpreta-
tion, such as ecological research, urban planning, and realistic 3D simulations in gaming

or virtual reality environments.
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Limited Error Handling: While the code includes basic logging and error handling,
it may not be robust enough to manage all potential errors that could occur, especially
those related to user input or external data integration. This could lead to unhandled

exceptions that crash the application or cause unintended behavior, affecting reliabil-
ity.

Python Limitations: The use of Python for complex simulations that involve graphical
output and real-time data handling can introduce performance bottlenecks. Python,
while versatile and easy to use, may not handle large-scale simulations as efficiently as
more performance-optimized languages like C++ or Java, especially when high frame

rates or real-time interactions are required.

Scalability Concerns: As the complexity or scale of the L-system increases, the recur-
sive nature of the system generation and the real-time update of parameters might lead
to scalability issues. The system’s ability to handle larger or more intricate L-systems
without a degradation in performance could be limited, particularly on less powerful

hardware.

Limited Scope of Generated Patterns: The current implementation of the L-system
primarily focuses on generating patterns that mimic natural phenomena, specifically
trees and plants. This focus, while beneficial for targeted studies, significantly limits
the potential of L-systems to explore a broader range of patterns and structures. L-
systems are capable of generating an extensive variety of both realistic and abstract
forms, including intricate architectural designs, fractal landscapes, and complex organic

structures.
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6.2 Variation Testing

6.2.1 Iterations

Random Pattern

Slochastic Save Load Resel Expart Image
Toggte Tomp [JERESHI] Randomize Switch Rand

x43

Temparatura: 15.0 Base Angle: 10.0 Branch Length: 15.0 Branch Thickness: 3.4 lterationa: 1

Figure 6.1: One iteration with random generation pattern at a temperature of 16°C.
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x16

Temparatura: 15.0 Base Angle: 10.0 Branch Length: 15.0 Branch Thickness: 3.4 lterations: 2

Figure 6.2: Two iterations with random generation pattern at a temperature of 16°C.
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Toggle Temp _ Randomize Switch Rand

Temperature: 15.0 Base Angle: 10.0 Branch Length: 15.0 Branch Thickness: 3.4 lterations: 3

Figure 6.3: Three iterations with random generation pattern at a temperature of 16°C.
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Figure 6.4: Four iterations with random generation pattern at a temperature of 16°C.
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Sigmoid Function Pattern
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Figure 6.5: One iteration with sigmoid function generation pattern at a temperature of
16°C.
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Figure 6.6: Two iterations with sigmoid function generation pattern at a temperature of

16°C.
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Figure 6.7: Three iterations with sigmoid function generation pattern at a temperature
of 16°C.
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Figure 6.8: Four iterations with sigmoid function generation pattern at a temperature
of 16°C.
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6.2.2 Temperature
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Figure 6.9: Inverse function with 3 iterations at temperature 5.0°C.
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Figure 6.10: Inverse function with 3 iterations at temperature 10.0°C.
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Figure 6.11: Inverse function with 3 iterations at temperature 19.5°C.
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Figure 6.12: Inverse function with 3 iterations at temperature 26.4°C.
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7 Conclusion

This thesis explored the integration of fractals and Lindenmayer Systems (L-systems)
to model and visualize natural patterns, focusing on a dynamic, responsive L-system
that adapted its parameters based on environmental data, specifically temperature. The
project enhanced L-systems’ flexibility and applicability, allowing more accurate simula-
tions of complex, changing phenomena. The study included a review of the state of the
art in fractal and L-system modeling, followed by the implementation of a robust system
using Python. This system incorporated user interface elements for real-time interaction
and integrated stochastic and deterministic rule variations. The results demonstrated
that the system could effectively generate dynamic visualizations of L-systems, respond-
ing to changes in temperature and user input. The integration of data inputs to adjust
growth parameters showcased the potential for applying such systems in various fields,

from data visualization to interactive art.

7.1 Future Outlooks

As we advance with the development of this dynamic, responsive L-system, several
future directions and enhancements can be envisioned. These outlooks aim to extend
the capabilities of the current project, making it more versatile, powerful, and applicable

across various domains.

7.1.1 Integration with Advanced Environmental Data Sources

A significant future enhancement involves integrating the L-system with advanced envi-
ronmental data sources. By leveraging APIs and IoT devices, the system could utilize
real-time data from weather stations, satellite feeds, or sensors deployed in natural en-

vironments.
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7.1.2 Advanced Rule Systems and Machine Learning

Incorporating advanced rule systems and machine learning algorithms could significantly

enhance the L-system’s capabilities. Future developments might include:

e Using machine learning to enable the L-system to learn from past simulations and

adapt its rules and parameters for more accurate and efficient modeling.

e Developing more complex rule networks that can simulate interactions between
multiple species or environmental factors, creating more comprehensive ecological

models.

e Implementing optimization algorithms to automatically fine-tune parameters for

desired outcomes, improving the efficiency and effectiveness of the simulations.

7.1.3 Collaborative and Educational Platforms

Expanding the system’s use in collaborative and educational settings can open new

avenues for research and learning:

o Establishing public repositories where users can share their L-system configurations

and results, fostering a community of practice and knowledge exchange.

These future outlooks highlight the potential for continued innovation and expansion of
the L-system project. By integrating advanced technologies, enhancing user interaction,
and exploring practical applications, we can further develop this system into a powerful

tool for both research and real-world problem-solving.
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A Appendix - Turtle interpretation of

symbols

Symbol

Interpretation

Move forward and draw a line.

Move forward without drawing a line.

+ | =

Turn left.

Turn right.

Pitch up.

Pitch down.

Roll left.

Roll right.

Turn around.

Rotate the turtle to vertical.

Start a branch.

Complete a branch.

Start a polygon.

Ql~=|—|—| ep|— |~ —| & >

Move forward and draw a line. Do not record a vertex.

Record a vertex in the current polygon.

Complete a polygon.

Incorporate a predefined surface.

Decrement the diameter of segments.

Increment the current color index.

%

Cut off the remainder of the branch.

Table A.1: Turtle commands for L-systems [3]
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import turtle

iterations = input("Enter the number of generations: ") #type in a

string

iterations int(iterations) #convert from string to int

startLength = 200 #length of generation O line

#pick up the pen and move the turtle over to the left
turtle.up )

turtle.setpos(-startLength*3/2, startLength *3/2/2)
turtle.speed (0)

#generation O
#axiom type
# koch=’F’

koch = ’F+F+F’ #axiom for Koch snowflake
#make the final L-System based on the number of iterations
for i in range(iterations):

koch = koch.replace(’F’, ’F-F+F-F’)

turtle.down ()

turtle.color(’red’, ’black’) #draw line in red, enclosed spaces in

black
turtle.begin_£fill ()

for move in koch:
if move == ’F’:
turtle.forward(startLength / (3**(iterations-1)))
elif move == ’+’:
turtle.right (120)

elif move == ’-7:
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turtle.left (60)

turtle.end_£fill ()
turtle.done ()
1_system.generate (5)

Code Snippet B.1: Basic Generation of a Koch Snowflake in Python

import turtle

def serpinski(side,level):

angle = 60

if level == O:
for i in range(3): #draw a triangle
t.fd(side)
t.left (180-angle)
RILEE §
#Triangle, F, Triangle, B, LFR, Triangle, LBR
serpinski (side/2,level-1)
t.fd(side/2)
serpinski (side/2,level-1)
t.bk(side/2)
t.left (angle)
t.fd(side/2)
t.right (angle)
serpinski (side/2,level-1)
t.left (angle)
t.bk(side/2)
t.right (angle)

if __name__ == ’_main__’:
iterations = int (input ("Enter the number of generations:

myLen = int (input ("Enter the side length: "))

t = turtle.Turtle ()
t.shape(’turtle’)
t.speed (0)
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#position t

t.up ()
t.setpos(-myLen/2,-myLen/2)
t.down ()

t.color(’black’,’black’)
t.begin_£ill ()

serpinski (myLen,iterations)
t.end _fill ()

Code Snippet B.2: Serpinski Triangle Generation in Python

import turtle as t

def setTurtle(myTuple) :
t.up )

.setx (myTuple [0])

.sety (myTuple [1])

.setheading (myTuple [2])

.down ()

¢ o o

def make_fractal (length,langle ,rangle,iterations,axiom, target,
replace ,target2,replace2):
state = axiom
turtleState=[]

#make the L-System we want to process
for i in range(iterations):
nextState=""
for character in state:
if character == target:
nextState += replace
elif character == target2:
nextState += replace2
else:
nextState += character

state = nextState

t.down () #pen down
t.color(’green’,’black’) #draw line in red, fill black
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for move in state: #another way to loop through all the
characters in a string

if move == ’[’:

turtleState.append ((t.xcor (), t.ycor(), t.heading()))

elif move == ’]7:
setTurtle (turtleState.pop())
elif move == "F":
t.forward(length)

elif move == "L":
t.left(langle)
elif move == "R":

t.right (rangle)

t.done ()
if __name__ == ’_ _main__"’:
iterations = int(input ("Enter the number of generations:

ll))

myLen = int(input("Enter the forward movement length: "))

t.speed (0)

t.bgcolor (’black’)

setTurtle ((0O, -250, 90))

make_fractal (mylLen, 25, 25, iterations, ’B’, ’F’, ’FF’,
F[RB]JF[LB]IRB’)

JB)’ )

Code Snippet B.3: Fractal Weed Generation in Python

import random

class StochasticLSystem:

def _ _init__(self, axiom, rules):
self.axiom = axiom
self .rules = rules
self.state = axiom

def expand(self, iterations):
for _ in range(iterations):
next_state = []
for character in self.state:

if character in self.rules:
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# Select a production randomly according to

defined probabilities

productions = self.rules[character]

weights = [prod[1] for prod in productions]
choices = [prod[0] for prod in productions]
chosen_production = random.choices (choices,

weights=weights, k=1) [0]
next_state.append(chosen_production)
RILEE 8
next_state.append(character)
self.state = ’’.join(next_state)

return self.state

def _ _str__(self):

return self.state

# Example usage for a stochastic L-system
axiom = "A"
rules = {

"A": [("AB", 0.5), ("A", 0.5)1],

"B": [("A", 0.7), ("B", 0.3)]

1_system = StochasticLSystem(axiom, rules)
result = 1_system.expand(10) # Expand the L-system 10 times
print (result)

Code Snippet B.4: Generation of a Stochastic system in Python

import random

class ParametricLSystem:
def __init__(self, axiom):

self.state = axiom

def expand(self, rules, iterations):
for _ in range(iterations):
next_state = []
for symbol in self.state:
name = symbol [0]
params = symbol [1]
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rule = rules.get (name)

if rule:
new_symbols = rule(params)
if isinstance(new_symbols, tuple):
next_state.extend (new_symbols)
else:
next_state.append(new_symbols)
RILEE 8
next_state.append (symbol)
self.state = next_state

return self.state

def _ _str__(self):

return ’’.join(f"{namel}({’,’.join(map(str, params))})"

name , params in self.state)

def rule_A(params):
X, y = params
return [(’B’, [x + 1, yl), (CA°, [x * 2, y / 2])]

def rule_B(params):
x = params [0]
return [(’A’, [x - 11),]

# Example usage
axiom = [(’A°, [1, 2])]
rules = {

A’ : rule_ A,

’B’: rule_B

1 _system = ParametricLSystem(axiom)

for

result = 1_system.expand(rules, 3) # Expand the L-system 3 times

print(1_system)

Code Snippet B.5: Generation of a Parametric system in Python

class ContextSensitiveLSystem:
def _ _init__(self, axiom):

self.state = axiom
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def expand(self, rules, iterations):
for _ in range(iterations):
next_state = []
for i, symbol in enumerate(self.state):
left = self.statel[i-1] if i > O else None # Get
the left context if exists
right = self.state[i+1] if i < len(self.state) - 1

else None # Get the right context if exists

# Determine the key for the rules dictionary
context = (left, symbol, right)

rule = rules.get(context)

if rule:

next_state.append(rule()) # Apply rule if

exists
else:
next_state.append(symbol) # No change if no
rule applies
self.state = next_state

return self.state

def _ _str__(self):

return ’’.join(self.state)

def rule():

return ’B’

# Example usage

axiom = [?A’, A, ’A’]
rules = {
(None, ’A’, ’A’): lambda: ’A’, # Context: Nothing on the left

, A on the right

(’A’, ’A’, ’A’): rule, # Context: A on both sides

(’A>, ’A’, None): lambda: ’A’ # Context: A on the left,
Nothing on the right
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1_system = ContextSensitiveLSystem(axiom)

1_system.expand(rules, 3) # Expand the L-system 3 times
print(1_system)

result =

Code Snippet B.6: Generation of a Context-sensitive system in Python

93



Declaration

I declare that this Bachelor Thesis has been completed by myself independently without

outside help and only the defined sources and study aids were used.

City Date Signature

94





