
BACHELORTHESIS
Anatolie Sirbu

Responsive Natural Patterns: A
Computational Approach with
Fractals and L-Systems

FACULTY OF COMPUTER SCIENCE AND ENGINEERING
Department of Information and Electrical Engineering

Fakultät Technik und Informatik
Department Informations- und Elektrotechnik

HAMBURG UNIVERSITY
OF APPLIED SCIENCES
Hochschule für Angewandte
Wissenschaften Hamburg

Bachelor Thesis based on the examination and study regulations
for the Bachelor of Engineering degree programme
Bachelor of Science Information Engineering
at the Department of Information and Electrical Engineering
of the Faculty of Engineering and Computer Science
of the University of Applied Sciences Hamburg
Supervising examiner: Prof. Dr. Björn Gottfried
Second examiner: Prof. Dr. Martin Lapke

Day of delivery: 08. November 2024

Anatolie Sirbu

Responsive Natural Patterns: A Computational
Approach with Fractals and L-Systems

Anatolie Sirbu

Title of Thesis

Responsive Natural Patterns: A Computational Approach with Fractals and L-Systems

Keywords

Fractal, L-System, Axiom, Formal Grammar, Alphabet, Rewrite Rules

Abstract
The following thesis explores the synthesis of computational models with natural pat-
terns, using fractals and L-systems to create graphic representations of these models
and structures like tree and plants. The core of this work is the development of such a
system that would, in future, integrate real-time sensor data leading to the adjustment
of the parameters of these model’s growth angles and branching patterns.
The system is able to create an ever-changing set of dynamic visualizations in response to
changes within the environment through modification of the fractal and L-system rules
based on sensor input. It would allow possible applications on sensor data to be made
in both data visualization and interactive art for more engagement and interpretation.

iii

Anatolie Sirbu

Thema der Arbeit

Reaktive Naturmuster: Ein rechnergestützter Ansatz mit Fraktalen und L-Systemen.

Stichworte

Fraktal, L-System, Axiom, Formale Grammatik, Alphabet, Umschreibregeln

Kurzzusammenfassung

Die vorliegende Arbeit untersucht die Synthese von Rechenmodellen mit natürlichen
Mustern und verwendet Fraktale und L-Systeme, um grafische Darstellungen dieser
Modelle und Strukturen wie Bäume und Pflanzen zu erstellen. Der Kern dieser Ar-
beit ist die Entwicklung eines solchen Systems, das in Zukunft Echtzeit-Sensordaten
integrieren könnte, was zur Anpassung der Parameter dieser Modelle Wachstumswinkel
und Verzweigungsmuster – führen würde.
Das System ist in der Lage, eine ständig wechselnde Menge von dynamischen Visual-
isierungen als Reaktion auf Veränderungen in der Umgebung durch Modifikation der
Fraktal und L-Systemregeln basierend auf Sensoreingaben zu erstellen. Dies würde
mögliche Anwendungen von Sensordaten sowohl in der Datenvisualisierung als auch in
der interaktiven Kunst für mehr Engagement und Interpretation ermöglichen.

iv

Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Motivation . 1

2 State of Art 2
2.1 Overview . 2
2.2 L-Systems . 4

2.2.1 Origin and Application . 4
2.2.2 Formal definition . 4

2.3 Principles of Rewriting . 5
2.4 L-system Symbols . 7
2.5 Types of L-Systems . 10

2.5.1 Deterministic L-Systems . 10
2.5.2 Stochastic L-Systems . 12
2.5.3 Bracketed L-Systems . 13
2.5.4 Parametric L-Systems . 15
2.5.5 Context-sensitive L-Systems . 16

2.6 Software & Development Environment . 19
2.6.1 Python . 19
2.6.2 VS Code . 22

3 Requirements 23
3.1 Stakeholders . 23

3.1.1 Primary Stakeholders . 23
3.1.2 Secondary Stakeholders . 24

3.2 Functional Requirements . 25

v

Contents

3.3 Non-Functional Requirements . 26
3.4 User Requirements . 27
3.5 Use Cases . 28

3.5.1 Use Case 1: Parameter Exploration and Adjustment 28
3.5.2 Use Case 2: Comparative Analysis of Models 29
3.5.3 Use Case 3: Real-Time Data Integration 30
3.5.4 Use Case 4: Hypothesis Testing . 30
3.5.5 Use Case 5: Save and Load Configurations 31
3.5.6 Use Case 6: Export Visualization as Image 31
3.5.7 Use Case 7: Randomize Parameters 32

4 Concept 33
4.1 Objectives . 33
4.2 Planned Structure . 33

4.2.1 Imports and Logging Setup . 34
4.2.2 Branching Parameter Calculation 34
4.2.3 L-System Class . 35
4.2.4 User Interface Elements . 35
4.2.5 Helper Functions . 35
4.2.6 Main Execution Flow . 36

4.3 UML Diagram . 37
4.4 Summary . 37

5 Implementation 38
5.1 Imports and Logging Setup . 38
5.2 Branching Parameter Calculation . 40

5.2.1 Formula . 40
5.2.2 Implemented Code . 41

5.3 Generation of the L-System . 42
5.3.1 Formula . 42
5.3.2 Implemented Code . 42
5.3.3 Overwriting Default Behaviour . 43

5.4 Deterministic Approach . 44
5.4.1 Formulae . 45
5.4.2 Implemented Code . 45

vi

Contents

5.5 Stochastic Approach . 51
5.5.1 Formula . 51
5.5.2 Implemented Code . 51

5.6 L-System Class Implementation . 54
5.6.1 Generate the System . 54
5.6.2 Draw the System . 55

5.7 User Interface Elements . 58
5.7.1 Sliders . 58
5.7.2 Buttons . 60
5.7.3 Text Boxes . 62
5.7.4 Color Picker . 64

5.8 Helper Functions . 64
5.8.1 Draw the Grid . 65
5.8.2 Update L-System . 65
5.8.3 Fetch Real-Time Temperature . 66
5.8.4 Save/Load . 66
5.8.5 Export . 67
5.8.6 Randomize . 67

6 Results and Evaluation 70
6.1 Overview . 70

6.1.1 Pros . 70
6.1.2 Cons . 71

6.2 Variation Testing . 73
6.2.1 Iterations . 73
6.2.2 Temperature . 77

7 Conclusion 79
7.1 Future Outlooks . 79

7.1.1 Integration with Advanced Environmental Data Sources 79
7.1.2 Advanced Rule Systems and Machine Learning 80
7.1.3 Collaborative and Educational Platforms 80

Bibliography 81

A Appendix - Turtle interpretation of symbols 85

vii

Contents

B Appendix - Source Code 86

Declaration 94

viii

List of Figures

2.1 The "Genesis Effect" for Star Trek II.[5] 3
2.2 Images of trees generated from using an L-system.[31] 3
2.3 Simplified Version of the System where S=String.[31] 5
2.4 Parsing a string.[3]. 8
2.5 Koch Snowflake, 1 iteration . 9
2.6 Koch Snowflake, 2 iterations . 9
2.7 Koch Snowflake, 3 iterations . 9
2.8 Graphical Representation of the Dragon Curve.[30] 11
2.9 Graphical Representation of a stochastic plant with various probabilities

of the generation pattern.[17] . 13
2.10 2D plant-like structures from bracketed L-Systems.[21] 14
2.11 Pythagoras tree created with parametric L-system.[6] 16
2.12 Context-sensitive L-System.[16] . 18

3.1 UML Use Case Diagram . 32

4.1 UML-Diagram of the system. 37

5.1 Generated L-System using step function branching variations. 47
5.2 Generated L-System using the cosine function branching variations. . . . 48
5.3 Generated L-System using the sine function branching variations. 48
5.4 Generated L-System using the exponential function branching variations. 49
5.5 Generated L-System using hyperbolic sine function branching variations. . 50
5.6 Generated L-System using square root function branching variations. . . . 50
5.7 Plant generated with random branching attributes without stochastic

variations. 53
5.8 Plant generated with random branching attributes and stochastic varia-

tion. 53
5.9 Generated leaves on the plant branches(green dots). 58

ix

List of Figures

5.10 Available sliders for the simulation. 59
5.11 Available buttons for the simulation. 61
5.12 Textbox: F[+F][–F]F[++F][–F]F[++F][-F]F 63
5.13 Textbox: F[+F][–F]F[++F][–F]F[++F] . 63
5.14 First generation of an L-System with randomized values. 69
5.15 Second generation of an L-System with randomized values. 69

6.1 One iteration with random generation pattern at a temperature of 16°C. . 73
6.2 Two iterations with random generation pattern at a temperature of 16°C. 73
6.3 Three iterations with random generation pattern at a temperature of 16°C. 74
6.4 Four iterations with random generation pattern at a temperature of 16°C. 74
6.5 One iteration with sigmoid function generation pattern at a temperature

of 16°C. 75
6.6 Two iterations with sigmoid function generation pattern at a temperature

of 16°C. 75
6.7 Three iterations with sigmoid function generation pattern at a tempera-

ture of 16°C. 76
6.8 Four iterations with sigmoid function generation pattern at a temperature

of 16°C. 76
6.9 Inverse function with 3 iterations at temperature 5.0°C. 77
6.10 Inverse function with 3 iterations at temperature 10.0°C. 77
6.11 Inverse function with 3 iterations at temperature 19.5°C. 78
6.12 Inverse function with 3 iterations at temperature 26.4°C. 78

x

List of Tables

2.1 L-System Outputs Across Iterations . 7

3.1 Details for Developers and Programmers 23
3.2 Details for Researchers and Students . 24
3.3 Secondary Stakeholders . 24
3.4 User Interaction and Visualization Requirements 25
3.5 Data Management and System Capabilities Requirements 26
3.6 Non-Functional Requirements . 27
3.7 User Requirements . 28

5.1 L-system parameters at timestamp 1 (taken from the log file). 40
5.2 L-system parameters at timestamp 2 (taken from the log file). 40
5.3 Modification of the formula F based on different mathematical functions. 47
5.4 Effect of Pressing the Stochastic Button on the L-System Formula 52

A.1 Turtle commands for L-systems [3] . 85

xi

1 Introduction

1.1 Motivation

In the rapidly evolving field of computational modeling, Lindenmayer Systems (L-Systems)
have established their value through extensive applications in biology, graphics, and be-
yond. Originally designed to model plant growth, L-systems operate on fixed rules that
form the backbone of their structure[3]. However, these systems have not yet been fully
adapted to respond to the continuous influx of real-time data, a capability increasingly
vital in today’s data-driven environments.
This thesis proposes to advance L-systems by making them dynamic—capable of ad-
justing their rules in response to new information. This innovation would significantly
enhance the flexibility and applicability of L-systems, enabling them to model complex,
changing phenomena more accurately. The goal is to transform L-systems from static
to adaptive systems, which can update themselves automatically as new data becomes
available.
Implementing responsiveness in L-systems means embedding mechanisms that allow the
system to detect relevant environmental or contextual changes and to alter its genera-
tive rules. This could involve integrating sensors or data feeds that provide continuous
updates on external conditions, which the system could then interpret and use to adjust
its parameters.
The need for such dynamic systems is clear, as they would provide a more realistic
simulation of natural processes and other phenomena that are subject to change. For
example, dynamically adaptive L-systems could better simulate environmental changes
or growth patterns in plants that respond to varying conditions, offering more precise
tools for researchers and professionals in many fields.

1

2 State of Art

2.1 Overview

With the recent technological advancements, we have been offered the opportunity to
accurately translate mathematical frameworks into programming language and thus de-
vise a symbiotic way of developing and analyzing various complex models.
Two of those mathematical frameworks that are of interest with regards to the goal
of this thesis are: L-Systems, introduced in 1968 by Aristid Lindenmayer, a Hungar-
ian theoretical biologist and botanist at the University of Utrecht, and fractal geometry,
introduced in 1982 by Benoit Mandelbrot in his book "The Fractal Geometry of Nature".

With this in mind, the ability to combine L-systems and fractals with the power of
a modern CPU or GPU has lead to fascinating discoveries. For instance, the frame-
works describing the "growth" of mountains and trees has made it possible to visually
recreate natural patterns that can accurately resemble the real-world. An illustrative
example would be the fractal terrain generation, used in the movie Star Trek II the
Wrath of Khan (1982).

2

2 State of Art

Figure 2.1: The "Genesis Effect" for Star Trek II.[5]

Figure 2.2: Images of trees generated from using an L-system.[31]

This thesis will primarily focus on L-Systems, hence analysing the possibility expand-
ing and modifying its formal grammar in order to achieve a system that would help
dynamically visualize external inputs.

3

2 State of Art

2.2 L-Systems

2.2.1 Origin and Application

In 1968, biologist Aristid Lindenmayer developed Lindenmayer systems, commonly known
as L-systems, to formalize the patterns observed in bacterial growth. These systems uti-
lize a recursive string-rewriting mechanism and are widely employed in computer graph-
ics today for visualizing and simulating organic growth. L-systems have applications
across various fields, including plant development, procedural content generation, and
the creation of fractal-like art.[13]
Over time, L-systems have been adapted for use in a wide range of diverse fields. For
instance, they have been employed to create rivers in fractal mountains, lay out streets
in virtual cities, and describe the subdivision of curves. Beyond computer graphics,
L-systems have also found applications in music generation. They continue to be a pop-
ular tool in plant modeling, with models generated using L-systems featuring in modern
video games and films.[6]

2.2.2 Formal definition

An L-system, denoted as L, is defined as a triplet L = (Σ, ω, R), where:

• Σ is an alphabet, a non-empty set of symbols. The set Σ∗ represents all possible
strings (words) that can be formulated from Σ, and Σ+ denotes the set of all
non-empty strings.[3]

• ω ∈ Σ+ serves as the axiom or the initial state of the L-system. This axiom
defines the starting point of the system.

• R ⊆ Σ∗ × Σ∗ is a collection of rewrite rules or production rules. A rule (s →
v) ∈ R specifies how a substring s in any string from Σ∗ is replaced by v.[11]

If a symbol s ∈ Σ does not appear on the left-hand side of any rewrite rule in R, the
system assumes the identity rewrite rule s → s. Symbols that only appear in identity
rules are referred to as constants or terminals.

The formulation of an L-system resembles that of a deterministic context-free grammar,
with several key distinctions:

4

2 State of Art

• Unlike typical grammars, L-systems do not explicitly define terminal and non-
terminal symbols, except through the identity rewrite rules applied to terminal
symbols.

• The initial string in L-systems can be a non-empty word, unlike some grammars
that might allow a non-terminal initial state.

• The primary distinction lies in the rewriting mechanism, which operates under
different principles outlined in subsequent sections.

Figure 2.3: Simplified Version of the System where S=String.[31]

2.3 Principles of Rewriting

The theoretical principles of L-systems are rooted in their ability to model biological
growth processes through deterministic and parallel rewriting rules.[3]

Deterministic Rewriting: Each symbol in an L-system string is rewritten according to
specific, predefined rules. This deterministic approach ensures that the rewriting process
is entirely predictable, based entirely on the initial axiom. There is no ambiguity in the
transformation of symbols, making the evolution of the string fully reproducible and
dependent only on its initial configuration.

Parallel Rewriting: Unlike sequential rewriting systems where transformations occur
one after another, L-systems employ parallel rewriting. This means that all symbols in
the string are simultaneously rewritten in each iteration. Such a method is vital for sim-
ulating natural growth, where various parts of a biological entity grow concurrently.[10]

5

2 State of Art

In implementation, this simultaneous rewriting ensures that the new characters result-
ing from one symbol’s transformation do not influence the rewriting of another symbol
within the same iteration.[22]

This parallel processing distinguishes L-systems from formal grammars used in compu-
tational linguistics, where not all symbols necessarily need to be rewritten, and multiple
derivations can result from the same initial state.[6] L-systems, by contrast, follow a
strict set of rules with no variation in the production process, making them particularly
suited for modeling predictable and structured patterns found in nature.

The implementation of an L-system in a programming language like Python demon-
strates these principles effectively. Through a simple script, one can observe how com-
plex structures evolve from straightforward beginnings, governed by clear and consistent
rules. This simulation not only highlights the power of L-systems in generating intricate
patterns but also underscores their utility in educational and research settings, particu-
larly in the fields of biology and computer graphics.

1 class LSystem :
2 def __init__ (self , axiom , rules):
3 self. axiom = axiom
4 self. rules = rules
5 self. current_state = axiom
6

7 def apply_rules (self):
8 new_state = ""
9 for character in self. current_state :

10 new_state += self. rules.get(character , character)
11 self. current_state = new_state
12

13 def generate (self , num_iterations):
14 for i in range(num_iterations):
15 self. apply_rules ()
16 print(f" Iteration {i + 1}: {self. current_state }")
17 rules = {’A’: ’AB’, ’B’: ’A’}
18 l_system = LSystem (axiom =’A’, rules= rules)
19 l_system . generate (5)

Code Snippet 2.1: Python L-system Parallel Rewriting Example

6

2 State of Art

This Python example illustrates how parallel rewriting in L-systems enables simultane-
ous transformations of all elements in the string. This process is crucial for modeling
complex, natural phenomena that involve concurrent developments in different parts of
a structure. Below is the table showing the output for each iteration of the L-System
starting with the axiom ’A’ and rules where ’A’ -> ’AB’ and ’B’ -> ’A’:

Iteration Output
1 A
2 AB
3 ABA
4 ABAAB
5 ABAABABA
6 ABAABABAABAAB
7 ABAABABAABAABABAABABA
8 ABAABABAABAABABAABABAABAABABAABAAB

Table 2.1: L-System Outputs Across Iterations

2.4 L-system Symbols

The symbols of the sytem can be graphically represented using the concept of turtle
graphics.[28] In this graphical representation, commands are given to a virtual turtle
that moves within a 2D space, similar to how a pen plotter operates. For instance,
to draw a square, one might instruct a plotter to draw forward one centimeter, turn
right, and repeat the process three more times. Unlike a plotter, however, a turtle in
turtle graphics maintains an orientation, defined by Cartesian coordinates x and y, and
a direction angle, which is defined by the symbol α.

To facilitate the turtle’s movement in two dimensions, specific symbols are designated to
represent actions such as movement and rotation. Common symbols used in L-system
interpreters for these purposes are F , +, and −. After an L-system’s production rules
have been applied to generate a string, this string is parsed from left to right, with each
symbol affecting the state of the turtle as follows:

• F : The turtle moves forward by d units, drawing a line.

• +: The turtle rotates left by an angle δ.

• −: The turtle rotates right by an angle δ.

7

2 State of Art

Here, δ and d represent the global values dictating the magnitude of each symbol’s effect
on the turtle’s rotation and movement, respectively. In systems where these parameters
are non-parametric, the values remain constant throughout the system’s execution. All
the symbols of the system can be found in Apend[1] A.

FFF − FF − F − F + F + FF − F − FFF

Figure 2.4: Parsing a string.[3].

Now, a Python script has been generated to depict a more complex structure, namely
the Koch snowflake[32]. Initially defined by the axiom ’F+F+F’, representing an
equilateral triangle, the L-system employs a production rule that replaces each ’F’ with
’F-F+F-F’. This rule intricately adds segments and increases pattern complexity with
each iteration.

1 koch = ’F+F+F’ # axiom for Koch snowflake
2

3 #make the final L- System based on the number of iterations
4 for i in range(iterations):
5 koch = koch. replace (’F’, ’F-F+F-F’)

Code Snippet 2.2: Defining the Koch axiom as a string. B

Each iteration of the rule expands the string, which directs the turtle in a 2D space
to draw lines (’F’) and make turns (’+’ for 120 degrees right and ’-’ for 60 degrees
left). The movement commands are executed to depict the fractal nature of the Koch

8

2 State of Art

snowflake, which exhibits increasingly detailed perimeters within a finite area. The
length of each segment decreases geometrically with each iteration to fit the growing
number of segments within the defined drawing space, ensuring that the fractal remains
within viewable limits.

1 for move in koch:
2 if move == ’F’:
3 turtle . forward (startLength / (3**(iterations -1)))
4 elif move == ’+’:
5 turtle .right (120)
6 elif move == ’-’:
7 turtle .left (60)

Code Snippet 2.3: Defining the Koch axiom rules. B.1

This iterative process demonstrates how a simple rule can generate complex natural
patterns, showcasing the application of mathematical models in graphical simulations.
A depiction of the output can be seen in the figures below:

Figure 2.5: Koch
Snowflake,
1 iteration

Figure 2.6: Koch
Snowflake,
2 iterations

Figure 2.7: Koch
Snowflake,
3 iterations

9

2 State of Art

2.5 Types of L-Systems

This section of the thesis is dedicated to the classification of Lindenmayer Systems, which
are pivotal in modeling the iterative and recursive processes observed in natural growth
and fractal patterns. This exposition categorizes L-systems into five distinct types: De-
terministic, Stochastic, Context-sensitive, Parametric, and Bracketed L-systems. Each
classification encapsulates a unique approach to integrating environmental, probabilis-
tic, or contextual influences into the modeling process, thus facilitating sophisticated
simulations and analyses of complex systems.[20] The ensuing discourse aims to analyse
the mechanics and applications of each L-system type, enhancing the comprehension of
their transformative impact on theoretical and applied sciences.

2.5.1 Deterministic L-Systems

Deterministic L-systems, adhere to a strict set of substitution rules that lack any
form of randomness. In these systems, each symbol in the axiom or initial string is con-
sistently replaced by a predefined string according to unambiguous production rules[3].
The deterministic nature ensures that the same initial conditions and production rules
will invariably produce the same output each time the system is iterated.

Key Features of Deterministic L-systems:

1. Fixed Production Rules: Each symbol in the axiom or previous string has a
corresponding rule that applies deterministically, resulting in predictable and con-
sistent outcomes. This feature allows deterministic L-systems to model structures
that follow precise and repeatable patterns.

2. Modeling Regular Structures: Deterministic L-systems are particularly useful
for simulating natural phenomena with highly regular structures. They are ideal
for modeling organisms and phenomena where the same patterns repeat without
variation, such as certain types of algae, ferns, and other fractal-like structures.

3. Ease of Analysis: Because the production rules are fixed and the outcomes are
predictable, deterministic L-systems are easier to analyze and understand com-
pared to stochastic systems.[7] This predictability allows researchers to precisely
predict the growth and form of the modeled structures over time.

10

2 State of Art

4. Efficiency in Computation: The absence of randomness in rule application
makes deterministic L-systems computationally efficient. They can generate com-
plex structures from simple rules without the need for probabilistic calculations,
making them faster and more straightforward to implement in simulations.

One example of such a system is the Dragon Curve, this fractal is particularly fa-
mous for its appearance in Michael Crichton’s novel "Jurassic Park", where it is used
metaphorically to describe the unpredictable nature of dinosaur behavior, despite the
curve itself being a deterministic and predictable pattern. In reality, the Dragon Curve
is a visually appealing example of how simple rules can create complex and beautiful
patterns, a characteristic feature of deterministic L-systems.[15]

Figure 2.8: Graphical Representation of the Dragon Curve.[30]

1 axiom = "FX"
2 rules = {
3 "X": "X+YF+",
4 "Y": "-FX -Y"
5 }

Code Snippet 2.4: Defining a Dragon Curve in Python. B

11

2 State of Art

2.5.2 Stochastic L-Systems

Stochastic L-systems introduce an element of randomness into the generative rules
of Lindenmayer Systems, allowing for the simulation of more natural and diverse pat-
terns that cannot be fully predicted by deterministic approaches. Unlike deterministic
L-systems, where each symbol in the string has a fixed replacement, stochastic L-systems
assign probabilities to different possible replacements for each symbol, thus incorporat-
ing variability in the generation process.[3]

Key Features of Stochastic L-systems:

1. Probabilistic Rules: Each production rule in a stochastic L-system is associated
with a probability. When a rule is applied, one of several possible outcomes is
selected based on their assigned probabilities. This allows the system to simulate
natural variations seen in biological and ecological phenomena.

2. Modeling Realistic Scenarios: The inherent randomness in stochastic L-systems
makes them particularly useful for modeling environments where biological varia-
tions and irregularities are the norm, such as the distribution of leaves on a tree
or the branching patterns of coral.

3. Simulation of Uncertainty: Stochastic L-systems can simulate the uncertainty
and environmental factors affecting growth patterns in nature, making them ideal
for studies in theoretical biology and ecology where exact prediction is impossible.[27]

12

2 State of Art

Figure 2.9: Graphical Representation of a stochastic plant with various probabilities of
the generation pattern.[17]

1 # Stochastic L- system
2 axiom = "A"
3 rules = {
4 "A": [("AB", 0.5) , ("A", 0.5)],
5 "B": [("A", 0.7) , ("B", 0.3)]
6 # Each tuple contains a production and its probability
7 }

Code Snippet 2.5: Defining a Stochastic L-System in Python. B

2.5.3 Bracketed L-Systems

Bracketed L-systems provide a method for modeling branching structures such as
those found in plants, trees, and other organic forms.

Key Features of Bracketed L-systems:

1. Incorporation of Branching Structures: Bracketed L-systems use square
brackets ‘[‘ and ‘]‘ to denote the start and end of a branch, respectively. This

13

2 State of Art

allows for the simulation of complex branching structures. The brackets enable
the system to push and pop states onto a stack, facilitating the return to previous
points in the structure for further development.

2. Simulation of 3D Structures: The use of brackets makes these systems par-
ticularly suitable for generating three-dimensional models. By using branching
rules encoded within brackets, bracketed L-systems can effectively represent the
spatial orientation of branches and other offshoots, which is crucial for realistic 3D
rendering and analysis.[9]

3. Flexible and Complex Modelling: Bracketed L-systems provide a flexible
framework that can model a wide range of natural and artificial structures. The
ability to incorporate multiple branching levels within a single system allows for
the creation of highly detailed and complex models that more accurately reflect
the intricacies of natural growth patterns.

Figure 2.10: 2D plant-like structures from bracketed L-Systems.[21]

1 axiom = "X"
2 rules = {
3 "X": "F -[[X]+X]+F[+ FX]-X",
4 "F": "FF"
5 }

Code Snippet 2.6: Defining a Bracketed L-System in Python. B

14

2 State of Art

2.5.4 Parametric L-Systems

Parametric L-systems represent an advanced type of Lindenmayer system that incor-
porates parameters into the production rules to control and modify the attributes of the
generated structures dynamically

Key Features of Parametric L-systems:

1. Parameterization of Production Rules: Parametric L-systems extend the
classic L-system by incorporating parameters within the production rules. These
parameters can vary and are used to control aspects of growth and development,
such as angle, length, and width of structures. This allows for a more dynamic
and detailed description of the modeled organisms.

2. Enhanced Control Over Growth: By using parameters, these systems offer
enhanced control over the modeling process. Parameters can be adjusted based on
environmental factors or developmental stages, allowing the system to simulate how
changes in conditions affect the growth patterns of plants and other structures.[19]

3. Increased Realism and Complexity: The inclusion of parameters enables the
simulation of more complex and realistic forms. This is particularly beneficial for
studies in which biological realism is crucial, such as in the simulation of adaptive
growth behaviors in response to environmental stimuli.

4. Support for Conditional Logic: Parametric L-systems can incorporate condi-
tional logic into the production rules, making it possible to execute different rules
based on the current value of parameters. This supports more complex decision-
making processes within the model, closely mimicking natural decision processes
observed in biological organisms.

15

2 State of Art

Figure 2.11: Pythagoras tree created with parametric L-system.[6]

1 def rule_A (params):
2 x, y = params
3 return [(’B’, [x + 1, y]), (’A’, [x * 2, y / 2])]
4

5 def rule_B (params):
6 x = params [0]
7 return [(’A’, [x - 1]) ,]
8

9 # Example usage
10 axiom = [(’A’, [1, 2])]
11 rules = {
12 ’A’: rule_A ,
13 ’B’: rule_B
14 }

Code Snippet 2.7: Defining a Parametric L-System in Python. B

2.5.5 Context-sensitive L-Systems

Context-sensitive L-systems are an extension of the classic Lindenmayer systems, de-
signed to model environments and organisms where growth patterns depend on the local
context of individual components.

16

2 State of Art

Key Features of Context-Sensitive L-systems:

1. Dependence on Neighboring Information: Context-sensitive L-systems, un-
like traditional L-systems, consider the neighboring characters (both predecessors
and successors) around a focal character when applying production rules. This con-
text dependency allows for the simulation of more complex biological phenomena
where growth patterns depend on local interactions.

2. Enhanced Modeling of Biological Processes: These systems can more accu-
rately model biological processes such as the phyllotactic arrangement of leaves,
branching patterns in plants, and even cellular development, where interactions
between adjacent elements play a critical role in determining growth outcomes.[23]

3. Increased Computational Complexity: While context-sensitive L-systems of-
fer more detailed modeling capabilities, they also require more complex computa-
tions. The need to constantly evaluate the context of each character increases the
computational overhead compared to context-free systems.[12]

4. Ability to Simulate Environmental Interactions: The context-sensitivity of
these systems makes them particularly suited for simulating how environmental
factors or local densities affect growth and development. This can be crucial for
ecological and environmental modeling, where the behavior of one part of a system
can be significantly influenced by its immediate surroundings.

17

2 State of Art

Figure 2.12: Context-sensitive L-System.[16]

1 axiom = [’A’, ’A’, ’A’]
2 rules = {
3 (None , ’A’, ’A’): lambda : ’A’, # Context : Nothing on the left

, A on the right
4 (’A’, ’A’, ’A’): rule , # Context : A on both sides
5 (’A’, ’A’, None): lambda : ’A’ # Context : A on the left ,

Nothing on the right
6 }

Code Snippet 2.8: Defining a Context-Sensitive L-System in Python. B

18

2 State of Art

2.6 Software & Development Environment

This section focuses on thoroughly explaining the necessary choices regarding the soft-
ware that is going to be utilised throughout the entire experiment.

2.6.1 Python

For the following thesis Python has been chosen as the main programming language,
since it is highly regarded for its applicability in simulating and visualizing L-systems
due to its extensive library support, and robust community resources. The language’s
readability makes it ideal for educational and research purposes. Its rich ecosystem
includes libraries such as matplotlib for plotting, numpy for numerical operations, and
turtle for graphical outputs, which are essential for visualizing the intricate patterns
generated by L-systems.

Furthermore, Python’s cross-platform nature ensures that L-system simulations are
widely accessible across different operating systems. Although not the fastest language,
Python’s performance is adequate for most L-system simulations and can be enhanced
by integrating with performance-optimized languages like C when necessary.

Miniconda

For the purposes of this thesis, which focuses on the exploration and visualization of
L-systems, Miniconda offers several advantages that are critical to ensuring efficient
and reproducible research.

Miniconda is a minimalistic version of Anaconda, a popular open-source distribution
of the Python and R programming languages for scientific computing. By providing
only the package manager and Python, Miniconda offers a lightweight, flexible alterna-
tive to Anaconda, which includes a large number of scientific packages by default. This
minimal setup allows users to install only the specific packages they need, thus avoiding
unnecessary bloat and reducing potential conflicts between package dependencies.[2]

19

2 State of Art

Jupyter Notebook

The Jupyter Notebook is the original web application for creating and sharing compu-
tational documents. It offers a simple, streamlined, document-centric experience.[14]

In the context of this thesis, which involves the exploration and visualization of Lin-
denmayer Systems (L-Systems), Jupyter Notebooks offer several compelling advantages.
Firstly, the interactive environment provided by Jupyter Notebooks facilitates exploratory
research and iterative testing, which are essential for developing and fine-tuning the algo-
rithms associated with L-systems. Users can write code and observe the output directly
in the notebook, making adjustments as needed and visually tracking the impact of these
changes on the generated fractals and graphical outputs.

Tkinter

Tkinter, the standard Python interface to the Tcl/Tk GUI toolkit, has been selected for
the development of graphical user interfaces (GUIs) in the visualization component of
this thesis, which focuses on the implementation and analysis of L-systems. Tkinter pro-
vides a robust and platform-independent framework, which is particularly advantageous
for developing educational and research applications that require a straightforward and
effective means for users to interact with the system.[24]

The choice of Tkinter was motivated by several factors that align well with the needs
of the project. Firstly, Tkinter’s simplicity and integration with Python allow for rapid
GUI development, which is crucial in academic projects where time and resources may
be limited. This simplicity also facilitates quick modifications and iterations, which are
often necessary in a research setting to refine user interactions based on experimental
feedback.

Matplotlib

Matplotlib, a widely recognized plotting library in Python, is employed in this thesis
to facilitate the visualization of Lindenmayer Systems (L-systems). Matplotlib offers a
comprehensive suite of plotting functions that are adept at creating static, animated,
and interactive visualizations, which is essential for illustrating the complex geometrical
structures generated by L-systems.

20

2 State of Art

The decision to use Matplotlib was grounded in its robust capabilities and flexibility,
which are crucial for the detailed visualization tasks required in this research. The li-
brary’s ability to produce a wide range of plots, from simple line diagrams to complex
color maps and 3D diagrams enables the detailed representation of fractal patterns and
growth processes modeled by L-systems. Furthermore, Matplotlib’s extensive customiza-
tion options allow these visualizations to be precisely tailored to specific research needs,
enhancing the clarity and effectiveness of data presentation.[25]

Numpy

NumPy, a fundamental package for numerical computing with Python, plays a pivotal
role in the computational analysis and modeling of Lindenmayer Systems (L-systems)
in this thesis. Renowned for its powerful N-dimensional array object and broad suite of
mathematical functions, NumPy provides the computational efficiency and functionality
necessary for handling the complex calculations that L-systems require.[18]

The choice to utilize NumPy in this research is justified by its array-centric architecture,
which is highly optimized for performance. NumPy arrays facilitate efficient storage
and manipulation of large datasets, which is essential for generating and exploring the
intricate fractal patterns associated with L-systems. These capabilities allow for rapid
processing and transformation of data, crucial for real-time visualization and analysis.

Turtle

The Turtle module, a popular Python library for creating visual graphics and draw-
ings, is employed in this thesis to demonstrate the development and structure of Linden-
mayer Systems (L-systems). Originating from the Logo programming language, the Tur-
tle module provides an intuitive and accessible means for users to visualize and interact
with geometric computations and fractal patterns, which are central to L-systems.[26]

The selection of Turtle for this project is primarily due to its straightforward graphical
capabilities that allow users to directly translate algorithmic logic into visual form. This
feature is particularly beneficial for L-systems, where the growth patterns and rules can
be complex and abstract. By using Turtle, these patterns can be rendered visually as
they develop, offering immediate graphical feedback that is crucial for understanding
and fine-tuning the L-system parameters.

21

2 State of Art

2.6.2 VS Code

Visual Studio Code (VS Code) is a powerful and versatile Integrated Development
Environment (IDE) that has been selected for the software development tasks in this
thesis on L-systems. Developed by Microsoft, VS Code offers comprehensive coding
support and a wide range of extensions that enhance its functionality, making it an
ideal choice for modern software development, especially in the context of academic
research.[4]

22

3 Requirements

3.1 Stakeholders

In this section, we identify and describe the primary and secondary stakeholders involved
in the development and use of the system. Understanding the stakeholders is crucial for
ensuring that the system meets their needs and expectations.

3.1.1 Primary Stakeholders

The primary stakeholders are those directly involved in the development and primary
usage of the proposed L-system[29]. They include:

Stakeholder Description
Developers and
Programmers

Responsible for designing, implementing, and maintaining
the system. They ensure that the system is robust, efficient,
and user-friendly, incorporating feedback from other stake-
holders. They aim to create a system that is both powerful
for research purposes and accessible for educational use.

Table 3.1: Details for Developers and Programmers

23

3 Requirements

Stakeholder Description
Researchers and
Students

Primary users of the system. Their main interest lies in
exploring and understanding fractals and L-systems.

Exploring involves a hands-on interaction with the sys-
tem, where users experiment with various L-system rules,
parameters, and initial conditions to generate diverse
patterns. This includes testing deterministic or stochastic
rules, modifying growth angles, and adjusting branching
patterns. The goal of exploration is not merely academic
curiosity, but to discover new behaviors and properties of
fractals, identify emergent patterns, and test hypotheses
regarding fractal generation and real-world phenomena.

Understanding is a deeper analytical process where users
focus on the mathematical and geometric properties of
generated fractals. This involves analyzing how different
parameters influence fractal structures, interpreting their
practical implications, and developing theories that explain
these behaviors. The goal of understanding is to generalize
these findings, allowing researchers to contribute to scientific
knowledge, publish their results, and apply fractal models to
real-world problems.

Table 3.2: Details for Researchers and Students

3.1.2 Secondary Stakeholders

The secondary stakeholders are those who indirectly interact with the system or benefit
from its results[29]. They include:

Stakeholder Description
Environmental
Scientists

Use the system to model natural growth patterns and eco-
logical phenomena, focusing on its capability to simulate
realistic environmental interactions and changes.

Educational Insti-
tutions

Incorporate the system into their curriculum for teaching
computational modeling, natural patterns, and related sub-
jects.

Table 3.3: Secondary Stakeholders

24

3 Requirements

3.2 Functional Requirements

The functional requirements outline the specific behaviors and functions that the system
must support to meet the needs of its stakeholders[8]. These requirements ensure that
the system performs the necessary tasks effectively.

Requirement Description
Interactive Visualization The system must provide an interface for inter-

active visualization of fractals and L-systems, al-
lowing users to manipulate parameters and ob-
serve real-time changes.

Rule Modification Interface Users should be able to define and modify L-
system rules through a user-friendly interface,
supporting both deterministic and stochastic
variations.

User Interface Elements The system must include sliders, buttons, text
boxes, and color pickers to allow users to ad-
just parameters such as growth angles, branch-
ing patterns, and visualization colors. Given the
educational background of the primary stake-
holders, the system should prioritize efficiency
and clarity, allowing users to focus on research
and experimentation. Advanced functionality
should be easily accessible but not overwhelm-
ing.

Table 3.4: User Interaction and Visualization Requirements

25

3 Requirements

Requirement Description
Real-Time Data Integration The system must be capable of integrating real-

time sensor data to modify the parameters of
fractal and L-system models dynamically.

Saving and Loading Configu-
rations

The system should allow users to save their con-
figurations and load them later, enabling repro-
ducibility and sharing of specific setups.

Exporting Visualizations The system must support exporting visualiza-
tions as images or data files for further analysis,
presentations, or academic papers. Researchers
and students need this functionality to docu-
ment findings and share them in research publi-
cations or classroom settings.

Scalability The system should be scalable to accommodate
various levels of complexity in fractal and L-
systems models, ensuring that it can handle
both simple and highly detailed patterns. This
scalability is particularly crucial as research may
require testing L-systems of increasing complex-
ity.

Table 3.5: Data Management and System Capabilities Requirements

3.3 Non-Functional Requirements

The non-functional requirements describe the overall qualities and constraints of the
system. These requirements ensure that the system is usable, reliable, and efficient,
meeting the broader expectations of the stakeholders[8].

26

3 Requirements

Requirement Description
Performance The system must perform efficiently, handling

large datasets and complex computations with-
out significant delays. This is crucial for re-
searchers and students who may work with
highly detailed fractal models.

Usability While the primary stakeholders are highly edu-
cated, the user interface should still be intuitive
and efficient, offering advanced options for expe-
rienced users without creating unnecessary com-
plexity. Ease of use is important for speeding up
the exploration and understanding processes.

Reliability The system must be reliable enough to ensure
that research tasks can be completed without
critical errors. However, given the experimental
nature of the research environment, occasional
system failures or maintenance are acceptable as
long as they are well communicated and do not
hinder the reproducibility of results.

Extensibility The system should be designed with extensibil-
ity in mind, allowing for easy integration of new
features, models, and data sources in the future.
This is important for accommodating future re-
search needs.

Compatibility The system must be compatible with various op-
erating systems and devices, ensuring broad ac-
cessibility for all users. This allows researchers
to work in diverse computing environments.

Table 3.6: Non-Functional Requirements

3.4 User Requirements

The user requirements detail what the end-users expect from the system. These require-
ments are derived from the needs and goals of the stakeholders.

27

3 Requirements

Requirement Description
Ease of Use The system should be easy to use, with an intu-

itive interface that allows users to quickly learn
and operate the system without extensive train-
ing. Given their educational background, pri-
mary stakeholders should be able to navigate
the system efficiently while having access to ad-
vanced features as needed.

Customization Users should be able to customize the visualiza-
tion parameters and L-system rules to suit their
specific needs and preferences. This is crucial
for exploratory research.

Feedback The system should provide immediate visual
feedback to users as they adjust parameters, al-
lowing them to see the impact of their changes
in real-time. This supports the exploratory and
experimental nature of their work.

Documentation Comprehensive documentation should be avail-
able to guide users on how to use the system ef-
fectively, including examples and tutorials. This
supports both new and experienced users in uti-
lizing the system’s full capabilities.

Table 3.7: User Requirements

3.5 Use Cases

The following use cases describe how users will interact with the system to achieve specific
goals. Each use case outlines the steps involved in performing a particular task.

3.5.1 Use Case 1: Parameter Exploration and Adjustment

Description: Users interact with sliders and buttons to adjust parameters like temper-
ature, angle, branch length, and thickness, observing real-time changes in the L-system
visualization.

Actors: Researchers, Students

28

3 Requirements

Steps:

1. User selects a parameter to adjust (e.g., angle, branch length).

2. User modifies the parameter using sliders or input boxes.

3. System dynamically updates the visualization to reflect the changes.

4. User observes the changes in real-time and makes notes or adjustments.

Goal: To understand the impact of individual parameters on the fractal patterns, al-
lowing for hypothesis testing and analysis of sensitivity to initial conditions.

3.5.2 Use Case 2: Comparative Analysis of Models

Description: Users can switch between deterministic and stochastic variations to see
how these changes affect the growth patterns of the L-system.

Actors: Researchers, Students

Steps:

1. User selects the model type (deterministic or stochastic).

2. User runs simulations for both models with the same initial conditions.

3. System generates and displays the visualizations for both models.

4. User compares the visualizations side-by-side to identify differences and similari-
ties.

Goal: To explore and compare different growth models, enhancing the understanding
of fractal generation under varying conditions.

29

3 Requirements

3.5.3 Use Case 3: Real-Time Data Integration

Description: The system adjusts fractal parameters based on real-time environmental
data.

Actors: Environmental Scientists, Researchers

Steps:

1. System fetches real-time environmental data (e.g., temperature, humidity).

2. System updates the relevant parameters based on the fetched data.

3. Visualization dynamically reflects the changes due to real-time data input.

4. User observes the impact of real-time data on fractal growth.

Goal: To study the effects of real-world conditions on fractal patterns and to simulate
dynamic systems.

3.5.4 Use Case 4: Hypothesis Testing

Description: Researchers formulate and test hypotheses about fractal behavior.

Actors: Researchers, Students

Steps:

1. User formulates a hypothesis regarding fractal behavior.

2. User sets initial conditions and parameters to test the hypothesis.

3. User runs simulations and observes the outcomes.

4. User records results and compares them against the hypothesis.

5. User refines the hypothesis based on observed data.

Goal: To validate or refute hypotheses about fractal behavior and to advance scientific
understanding.

30

3 Requirements

3.5.5 Use Case 5: Save and Load Configurations

Description: Users save their current system settings to a file and load them later for
further examination or continuation of work.

Actors: Researchers, Students

Steps:

1. To save, the user clicks the ’Save’ button, and the system writes the current con-
figuration to a file.

2. To load, the user clicks the ’Load’ button, and the system retrieves configurations
from a file and applies them to the visualization.

Goal: To ensure reproducibility of experiments and facilitate the sharing of specific
setups with colleagues or for publication purposes.

3.5.6 Use Case 6: Export Visualization as Image

Description: Users export the current visualization of the L-system as an image file
for use in reports or presentations.

Actors: Researchers, Students, Educational Institutions

Steps:

1. User clicks the ’Export’ button.

2. System prompts the user to choose a file location and name.

3. System saves the current visualization to the specified location as an image file.

Goal: To document and present findings in academic papers, presentations, or educa-
tional materials, ensuring that visual evidence of the research is easily accessible and
shareable.

31

3 Requirements

3.5.7 Use Case 7: Randomize Parameters

Description: At the click of a button, users can randomize the visualization parameters
to explore various random configurations of the L-system.

Actors: Researchers, Students

Steps:

1. User clicks the ’Randomize’ button.

2. System randomly adjusts all adjustable parameters.

3. Visualization updates to reflect the new, randomized settings.

Goal: To stimulate creativity and discover unexpected patterns or properties by explor-
ing a wide range of random configurations.

Figure 3.1: UML Use Case Diagram

32

4 Concept

This section outlines the conceptual framework for developing a dynamic, responsive
L-system that can adjust its parameters based on real-time data. The aim is to create
a system that not only simulates natural growth patterns but also adapts to varying
environmental conditions, making it highly flexible and applicable for modeling complex,
changing phenomena. By planning the structure and approach meticulously, we ensure
a robust implementation that meets the objectives effectively.

4.1 Objectives

The primary goal of this project is to develop an interactive L-system capable of real-time
adaptation. Specifically, we aim to:

• Simulate natural growth patterns that respond dynamically to environmental changes.

• Incorporate user interface elements that allow real-time manipulation of parame-
ters.

• Integrate real-time data inputs to drive the L-system’s adaptability.

• Utilize both deterministic and stochastic rule variations to enhance realism.

• Ensure the system is modular and extensible, allowing future enhancements and
modifications.

4.2 Planned Structure

The implementation will be structured into several key components:

1. Imports and Logging Setup

33

4 Concept

2. Branching Parameter Calculation

3. L-System Class

4. User Interface Elements

5. Helper Functions

6. Main Execution Flow

4.2.1 Imports and Logging Setup

The foundation of the implementation involves importing necessary libraries and setting
up logging. The libraries to be used will support mathematical operations, visualiza-
tion, event recording, time-based functions, random number generation, configuration
management, and file dialogs. Logging will be configured to capture and log messages
with timestamps, helping track the flow of the program and debugging issues.

4.2.2 Branching Parameter Calculation

To achieve adaptability, the system will dynamically adjust the branching parameters
based on external factors such as temperature. The temperature variable will be utilized
as a dummy in this case. Further implementation shall include real-time data. The
planned approach includes:

• Defining realistic bounds for parameters to ensure natural growth patterns.

• Calculating branch attributes (length, angle, thickness) based on environmental
data.

• Introducing random variations to simulate natural randomness.

• Generating L-system rules that incorporate these dynamic parameters.

• Applying context-sensitive rules for more sophisticated transformations.

34

4 Concept

4.2.3 L-System Class

The core logic of the L-system will be encapsulated in a dedicated class. This class will
manage the generation and rendering of the L-system, including:

• Initializing with the starting axiom and iteration settings.

• Generating the L-system string by applying rules iteratively.

• Supporting context-sensitive rules for complex transformations.

• Visualizing the L-system on a graphical interface, including branch and leaf draw-
ing.

4.2.4 User Interface Elements

To facilitate user interaction, various UI elements will be developed:

• Sliders for adjusting parameters like temperature, angle, and branch length.

• Buttons for actions such as saving and loading configurations, and resetting pa-
rameters.

• Text input boxes for defining and modifying L-system rules.

• Color pickers for customizing the colors of branches and leaves.

4.2.5 Helper Functions

Helper functions will support the core functionality, including:

• Drawing a reference grid to help users understand the scale and orientation of the
L-system.

• Updating the L-system drawing in real-time based on user inputs.

• Simulating real-time environmental data to dynamically adjust parameters.

• Managing configuration files for saving and loading setups.

• Exporting images of the current L-system state for documentation and analysis.

35

4 Concept

• Randomizing parameter values to facilitate quick testing of different configurations.

4.2.6 Main Execution Flow

The main function will initialize the graphical interface and UI elements, and manage
the event loop. This will involve:

• Setting up the Pygame environment and initializing UI components.

• Handling user interactions with sliders, buttons, and text inputs.

• Continuously updating and redrawing the L-system based on current parameters.

• Implementing functionalities for saving, loading, exporting, and applying rule vari-
ations.

36

4 Concept

4.3 UML Diagram

For a better visual understanding of the system, the following UML-Diagram has been
created to sum up all the previously mentioned aspects and modules:

Figure 4.1: UML-Diagram of the system.

4.4 Summary

This conceptual plan lays the groundwork for a dynamic and interactive L-system. By
integrating real-time data, user interface elements, and both deterministic and stochastic
rule variations, the system will provide a robust platform for exploring natural growth
patterns and their responses to environmental changes. The modular and extensible
design ensures that the system can be adapted and expanded for various applications,
making it a valuable tool for modeling complex phenomena.

37

5 Implementation

In this section, the development of a dynamic, responsive L-system capable of adjusting
its parameters based on real-time data is detailed. This implementation enhances the
flexibility and applicability of L-systems. The primary goal is to create an interactive
system that can simulate natural growth patterns influenced by varying environmental
conditions. The system’s adaptability is achieved through the integration of user in-
terface elements and real-time data, providing a robust platform for exploring various
growth scenarios. The most crucial part of this experiment is analyzing the branching
behavior of the system.

The implementation is structured into several key components:

1. Imports and Logging Setup

2. Branching Parameter Calculation

3. L-System Class Implementation

4. User Interface Elements

5. Helper Functions

6. Main Execution Flow

5.1 Imports and Logging Setup

To begin with, the necessary libraries are imported. This includes numpy for mathe-
matical operations, Pygame for visualization, logging for recording events, datetime
for time-based functions, random for random number generation, json for configuration
management, and tkinter for file dialogs. The lru_cache from functools is employed
to cache function results, optimizing performance. These imports form the backbone

38

5 Implementation

of the implementation, ensuring that all required tools to handle computations, visu-
alizations, and configurations efficiently are available. The choice of libraries reflects
a balance between performance and ease of use, making the development process both
straightforward and effective.

1 import numpy as np
2 import pygame
3 import logging
4 import datetime
5 import random
6 import json
7 from functools import lru_cache
8 from pygame . locals import *
9 from tkinter import filedialog

10 from tkinter import Tk
11 import cProfile
12 import pstats
13 import io

Code Snippet 5.1: Imports

Logging is configured to capture and log messages into a file named lsystem_growth.log.
This setup helps in tracking the flow of the program and debugging issues. The log file
format includes timestamps, which are crucial for understanding the sequence of events
and the state of the system at any given time. The logging configuration is set to log
information level messages, ensuring that both regular operational messages and error
messages are recorded.

39

5 Implementation

1 logging . basicConfig (filename =’lsystem_growth .log ’,
2 level = logging .INFO ,
3 format =’%(asctime)s - %(message)s’)

Code Snippet 5.2: Logging Setup

Timestamp Temperature Angle Formula
2024-06-04 11:35:23,153 17.625 10 F[+++F][-F]F[+F][–F]F[+++F]

Table 5.1: L-system parameters at timestamp 1 (taken from the log file).

Timestamp Temperature Angle Formula
2024-06-04 11:35:23,186 13.0 10 F[+F][—F]F[+F][-F]F

Table 5.2: L-system parameters at timestamp 2 (taken from the log file).

5.2 Branching Parameter Calculation

To introduce adaptability in L-systems, it is essential to dynamically adjust the branch-
ing parameters based on external factors such as temperature. The function calcu-

late_branching_parameters is defined to compute these parameters. Initially, the
bounds for temperature, branch length, and angles are set to ensure that the system
operates within realistic limits. This setup is vital for simulating natural growth pat-
terns that respond to environmental changes. By defining these bounds, the system can
prevent unrealistic growth scenarios and maintain a level of biological plausibility.

For testing purposes the temperature in this case will be an easily adjustable dummy
value. Further implementations might use real-time data from sensors.

5.2.1 Formula

Given the temperature T , base angle θ, branch length L, and branch thickness σ:

40

5 Implementation

L(T) = L + (T − Tmin)
(Tmax − Tmin) · (Lmax − Lmin) + length_variation,

θ(T) = θ + (T − Tmin)
(Tmax − Tmin) · (θmax − θmin) + angle_variation,

σ(T) = σ + (T − Tmin)
(Tmax − Tmin) · 2.

Here, length_variation and angle_variation are random variations if use_random is
True, otherwise they are zero.

5.2.2 Implemented Code

1 @lru_cache (maxsize =None)
2 def calculate_branching_parameters (temperature , base_angle ,

branch_length , branch_thickness , use_random ,
deterministic_func , stochastic_rule =None , context_rules =()):

3 min_length , max_length = 8, 18
4 min_angle , max_angle = 5, 18
5 min_temp , max_temp = 0, 30
6 temperature = min(max(temperature , min_temp), max_temp)
7 length = branch_length + (temperature - min_temp) / (max_temp

- min_temp)* (max_length -min_length)
8 angle = base_angle + (temperature - min_temp) / (max_temp -

min_temp)* (max_angle - min_angle)
9 thickness = branch_thickness + (temperature - min_temp) / (

max_temp - min_temp) * 2
10 length_variation = random . uniform (-0.5, 0.5) if use_random

else 0
11 angle_variation = random . uniform (-2, 2) if use_random else 0
12 length += length_variation
13 angle += angle_variation

Code Snippet 5.3: Branching Parameter Calculation

The attributes of a branch in a fractal structure are calculated, allowing the following
functionality:

1. Compute the length, angle, and thickness of the branch based on temperature.

2. Optionally add random variations to length and angle.

41

5 Implementation

Structure:

• Length Calculation: Adjusts the branch length based on temperature, interpo-
lating between a minimum and maximum length.

• Angle Calculation: Adjusts the branch angle similarly, interpolating between a
base and maximum angle.

• Thickness Calculation: Adjusts the branch thickness with a linear scale factor.

• Random Variations:

– If randomness is enabled, adds a random variation to the length (between
-0.5 and 0.5) and to the angle (between -2 and 2 degrees).

– If deterministic, no variation is added.

• Final Adjustment: Updates the length and angle with the calculated variations.

5.3 Generation of the L-System

5.3.1 Formula

Given the axiom A, set of rules R, and number of iterations I. The generation process
can be described recursively:

Sk+1 =

A if k = 0,

R(Sk) if k > 0,

where Sk is the string at iteration k.

5.3.2 Implemented Code

1 steps = int(temperature // 5)
2 rule = "F"
3 for i in range(steps):
4 if use_random :
5 plus_variation = ’+’ * (random . randint (1, 3))
6 minus_variation = ’-’ * (random . randint (1, 3))

42

5 Implementation

7 else:
8 plus_variation , minus_variation =

deterministic_rule_variation (i, steps ,
deterministic_func)

9 rule = f"F[{ plus_variation }F][{ minus_variation }F]{ rule}"

Code Snippet 5.4: Rule Generation

Structure

• Steps Calculation: The number of iterations is determined by dividing the tem-
perature by 5.

• Initialization: The initial rule is set to a forward movement, denoted by "F".

• Iteration and Variation:

– If randomness is enabled, generate random sequences of ’+’ and ’-’ with
lengths between 1 and 3.

– If deterministic, use a predefined function to generate variations.

– Append and prepend these variations to the rule in each iteration, building
complexity.

5.3.3 Overwriting Default Behaviour

Finally, if a stochastic rule is provided, it overrides the deterministic rule. Context rules,
if any, are applied to the final rule string. The structure is as follows:

1 if stochastic_rule :
2 rule = stochastic_rule
3

4 context_rules_dict = dict(context_rules)
5 if context_rules_dict :
6 for context , replacement in context_rules_dict .items ():
7 rule = rule. replace (context , replacement)
8

9 return {
10 "F": rule ,

43

5 Implementation

11 " length ": length ,
12 "angle ": angle ,
13 " thickness ": thickness
14 }

Code Snippet 5.5: Returning Rules

1. Optionally replace the rule with a stochastic rule.

2. Apply context-specific replacements to the rule.

3. Return the final rule and branch attributes.

Structure

• Stochastic Rule Replacement:

– If a stochastic rule is provided, it replaces the current rule.

• Context-Specific Rule Replacement:

– Convert the list of context-specific rules into a dictionary.

– Iterate over the dictionary, replacing each context in the rule with its corre-
sponding replacement.

• Return Statement:

– Return a dictionary containing the final rule, branch length, angle, and thick-
ness.

5.4 Deterministic Approach

In order to further incorporate rule variations: two functions, calculate_variation and
deterministic_rule_variation, are defined to achieve this. These functions generate
variations for deterministic rule creation based on mathematical functions such as sine,
cosine, and exponential (etc). By employing different mathematical functions, the system
can create a wide range of branching patterns, each with unique characteristics.

44

5 Implementation

5.4.1 Formulae

Let i be the current step, and n be the total number of steps. The variation calculation
depends on the chosen deterministic function f(i, n):

variation =

+∗ if f(i, n) > 0,

−∗ if f(i, n) < 0,

where f(i, n) can be:

step : f(i, n) = i%3,

sine : f(i, n) = sin
(

iπ

n

)
,

cosine : f(i, n) = cos
(

iπ

n

)
,

exponential : f(i, n) = exp
(

i

n

)
,

logarithmic : f(i, n) = log(i + 1),

polynomial : f(i, n) =
(

i

n

)2
,

tangent : f(i, n) = tan
(

iπ

n

)
,

sqrt : f(i, n) =
√

i,

sinh : f(i, n) = sinh(i),

sigmoid : f(i, n) = 1
1 + exp(−i) ,

tanh : f(i, n) = tanh(i),

inverse : f(i, n) = 1
i + 1 .

5.4.2 Implemented Code

1 def calculate_variation (value , multiplier):
2 return ’+’ * (int(abs(value * multiplier) + 1)),
3 ’-’ * (int(abs(value * multiplier) + 1))

Code Snippet 5.6: Calculate Variation

45

5 Implementation

1 def deterministic_rule_variation (i, steps , deterministic_func):
2 multiplier = 3 # Common multiplier for variation calculations
3

4 if deterministic_func == "sine":
5 plus_variation , minus_variation = calculate_variation (np.

sin(i), multiplier)
6 elif deterministic_func == " cosine ":
7 plus_variation , minus_variation = calculate_variation (np.

cos(i), multiplier)
8 elif deterministic_func == " exponential ":
9 value = np.exp(i / steps)

10 plus_variation , minus_variation = calculate_variation (
value , 2)

Code Snippet 5.7: Deterministic Rule Variation

The function deterministic_rule_variation generates deterministic variations based
on different mathematical functions. The structure is as follows:

1. Introduce a common multiplier to scale the variations.

2. Depending on the chosen deterministic function, calculate the variation.

• For the sine function, compute the sine of the current step i.

• For the cosine function, compute the cosine of the current step i.

• For the exponential function, compute the exponential of the step normal-
ized by the total number of steps.

This approach allows the deterministic_rule_variation function to apply predictable
and mathematically varied modifications to L-system rules. By selecting different deter-
ministic functions, a wide range of fractal patterns with unique characteristics can be
generated.

46

5 Implementation

Function Resulting Formula
Initial F

Step F [+F][−F]F [+F][−F]F [+F][−F]F
Exponential F [++++F][−−−−F]F [+++F][−−−F]F [+++F][−−−F]F
Logarithmic F [+ + +F][− − −F]F [+ + F][− − F]F [+F][−F]F
Polynomial F [+ + F][− − F]F [+F][−F]F [+F][−F]F

Tangent F [+ + + + + + F][− − − − − − F]F [+ + + + + + F][− − − − − −
F]F [+F][−F]F

Square Root F [+++++F][−−−−−F]F [++++F][−−−−F]F [+F][−F]F

Sinh F [+ + + + + + + + + + +F][− − − − − − − − − − −F]F [+ + + +
F][− − − − F]F [+F][−F]F

Sigmoid F [+ + +F][− − −F]F [+ + +F][− − −F]F [+ + F][− − F]F
Tanh F [+ + +F][− − −F]F [+ + +F][− − −F]F [+F][−F]F
Inverse F [+ + F][− − F]F [+ + F][− − F]F [+ + + + F][− − − − F]F

Table 5.3: Modification of the formula F based on different mathematical functions.

Figure 5.1: Generated L-System using step function branching variations.

47

5 Implementation

Figure 5.2: Generated L-System using the cosine function branching variations.

Figure 5.3: Generated L-System using the sine function branching variations.

48

5 Implementation

Figure 5.4: Generated L-System using the exponential function branching variations.

It is worth highlighting that the following functions have allowed for a natural and
dynamic growth of the plant: step, sine, cosine, exponential, logarithmic, polynomial,
sigmoid, hyperbolic tangent and inverse. However, the tangent and hyperbolic sine have
exhibited an opposite behaviour, illustrating a non-natural growth pattern. This might
be due to the fact that the tangent grows too quickly due to its extreme and rapid
variations near its asymptotes. These characteristics lead to highly unpredictable and
unstable branching patterns with sharp turns and erratic angles, whereas the hyperbolic
sine simply grows too fast and thus leads to the same extreme variations.

49

5 Implementation

Figure 5.5: Generated L-System using hyperbolic sine function branching variations.

Figure 5.6: Generated L-System using square root function branching variations.

50

5 Implementation

5.5 Stochastic Approach

Furthermore, a function to generate stochastic rules, generate_stochastic_rule is
implemented. This function introduces randomness into the L-system rules, further en-
hancing the system’s ability to simulate natural and varied growth patterns. This func-
tion is essential for adding a layer of unpredictability. By incorporating random choices,
the system can produce a wide range of possible growth forms, each unique yet following
the underlying rule set. Every variation has a 0.2 chance of being implemented.

5.5.1 Formula

Let p be the probability of replacing F , and V be the set of variations. The rule
generation process is:

rule =

random choice from V with probability p,

F with probability 1 − p.

5.5.2 Implemented Code

1 def generate_stochastic_rule (base_rule):
2 stochastic_rule = ""
3 variations = ["F[+F][-F]", "F[++F][--F]", "F[+F][-F][++F][--F]

"]
4 for char in base_rule :
5 if char == "F" and random . random () < 0.2:
6 stochastic_rule += random . choice (variations)
7 else:
8 stochastic_rule += char
9 return stochastic_rule

Code Snippet 5.8: Generate Stochastic Rule

51

5 Implementation

Initial Formula Formula after Pressing Stochastic Button
F F[+F][-F]

F[+F][-F] F[+F][–F]F
F[++F][–F] F[++F][-F]F[+F][–F]

F[++F][-F]F[++F][–F] F[+F][–F]F[++F][-F]F[+F][++F]

Table 5.4: Effect of Pressing the Stochastic Button on the L-System Formula

Initial Formula F:

After pressing the stochastic button, F is replaced with F[+F][-F]. This change intro-
duces branching at the end of the segment represented by F.

Initial Formula F[+F][-F]:

One occurrence of F is replaced, resulting in F[+F][–F]F. The replacement introduces a
new branch with a double turn (–) to the left.

Initial Formula F[++F][–F]:

One occurrence of F is replaced, resulting in F[++F][-F]F[+F][–F]. This introduces
additional branching and variations in angles.

Initial Formula F[++F][-F]F[++F][–F]:

Multiple occurrences of F are replaced, resulting in F[+F][–F]F[++F][-F]F[+F][++F].
This creates a more complex and varied branching structure, mimicking natural growth
patterns.

52

5 Implementation

Figure 5.7: Plant generated with random branching attributes without stochastic varia-
tions.

Figure 5.8: Plant generated with random branching attributes and stochastic variation.

53

5 Implementation

In the figures provided above one can witness the nature of the modification that are
being applied to the system whenever the stochastic function is being toggled.

5.6 L-System Class Implementation

The LSystem class includes the axiom, iterations, and the resulting system string. The
class provides methods to generate the L-system string (generate_system) and draw it
on the Pygame screen (draw_system). This class forms the heart of the implementation,
managing the generation and rendering of the L-system.

1 class LSystem :
2 def __init__ (self , axiom , iterations):
3 self. axiom = axiom
4 self. iterations = iterations
5 self. system = axiom
6 self. length = 0
7 self. angle = 0
8 self. thickness = 0

Code Snippet 5.9: L-System Class Initialization

5.6.1 Generate the System

Next, the generate_system method is implemented. This method creates the L-system
string by iterating through the axiom and applying the rules. It also applies context-
sensitive rules if specified. This method is fundamental for evolving the L-system from
its initial state, ensuring that each iteration reflects the rules and parameters defined.
The iterative process is at the core of L-systems, allowing complex patterns to emerge
from simple rules through repeated application. This method must efficiently handle
large strings and numerous iterations, maintaining performance while generating detailed
patterns.

1 def generate_system (self , rules):
2 current_string = self. axiom
3 for _ in range(self. iterations):
4 next_string = []
5 for i, char in enumerate (current_string):

54

5 Implementation

6 context = current_string [i -1:i+2]
7 replacement = self. apply_context_rules (context ,

rules)
8 next_string . append (replacement if replacement else

rules .get(char , char))
9 current_string = ’’.join(next_string)

10 self. system = current_string
11 self. length = rules [" length "]
12 self. angle = rules[" angle"]
13 self. thickness = rules[" thickness "]

Code Snippet 5.10: Generate System

To support context-sensitive rules, the apply_context_rules method is implemented.
This method checks if the current character matches any context-sensitive rules and ap-
plies the replacement if found. This feature allows for more sophisticated and context-
aware transformations within the L-system. Context-sensitive rules add a layer of com-
plexity, enabling the system to produce patterns that depend on the local context of
each character, thus enhancing the diversity and realism of the generated forms.

1 def apply_context_rules (self , context , rules):
2 context_rules = rules .get(" context_rules ", [])
3 for rule in context_rules :
4 if context == rule[" context "]:
5 return rule[" replacement "]
6 return None

Code Snippet 5.11: Apply Context Rules

5.6.2 Draw the System

Draw Branches

The draw_system method is responsible for visualizing the L-system on the Pygame
screen. It interprets the L-system string and draws lines representing branches, with
variations in thickness and angle. Additionally, it handles the drawing of leaves and logs

55

5 Implementation

the branching data. This visualization is crucial for users to see the results of the L-
system generation process in real-time. The method must efficiently render potentially
complex and dense structures while maintaining visual clarity.

The function uses a stack to manage the state of the drawing context when dealing
with branching. The stack is used to save the current position and angle before a
branch is drawn. This allows the system to return to this state after completing a
branch, supporting the recursive nature of L-systems and enabling complex branching
structures.

1 def draw_system (self , screen , width , height , length , angle ,
thickness , scale , branch_color , leaf_color , offset_x ,
offset_y):

2 stack = []
3 x, y = width // 2 + offset_x , height - 120 + offset_y
4 current_angle = 90
5 leaves = []
6 min_thickness = 1
7 for i, char in enumerate (self. system):
8 color = branch_color [i % len(branch_color)]
9 current_thickness = max(min_thickness , int(thickness *

scale))
10 if char == "F":
11 x_new = x + np.cos(np. radians (current_angle)) *

length * scale
12 y_new = y - np.sin(np. radians (current_angle)) *

length * scale
13 pygame .draw.line(screen , color , (x, y), (x_new ,

y_new), current_thickness)
14 x, y = x_new , y_new
15 elif char == "+":
16 current_angle += angle
17 elif char == "-":
18 current_angle -= angle
19 elif char == "[":
20 stack . append ((x, y, current_angle))
21 elif char == "]":
22 leaves . append ((x, y))
23 x, y, current_angle = stack .pop ()

Code Snippet 5.12: Draw System

56

5 Implementation

Draw Leaves and Calculate Average Branch Length

The method continues by drawing circles for leaves and calculating the average branch
length. Logging the branching data for analysis is also included, which can be useful for
understanding the growth patterns and optimizing the L-system parameters. By analyz-
ing the logged data, developers can fine-tune the rules and parameters to achieve desired
outcomes, making the system more versatile and effective for various applications.

1 for (lx , ly) in leaves :
2 pygame .draw. circle (screen , leaf_color , (int(lx), int(

ly)), max (1, int (3 * scale)))
3

4 avg_branch_length = (sum(np. linalg .norm ([lx - width // 2,
ly - (height - 120)]) for (lx , ly) in leaves) / len(
leaves)) if leaves else 0

5

6 self. log_branching_data (len(leaves), avg_branch_length ,
leaves)

7

8 return len(leaves), avg_branch_length
9

10 def log_branching_data (self , num_branches , avg_branch_length ,
leaves):

11 branch_lengths = [np. linalg .norm ([lx - width // 2, ly - (
height - 120)]) for (lx , ly) in leaves]

12 logging .info(f" Number of branches : { num_branches }, Average
branch length : { avg_branch_length :.2f}")

13 logging .info(f" Branch lengths : { branch_lengths }")

Code Snippet 5.13: Draw System Final

57

5 Implementation

Figure 5.9: Generated leaves on the plant branches(green dots).

5.7 User Interface Elements

The implementation includes several UI elements to facilitate user interaction: Slider,
Button, TextBox, and ColorPicker classes. These classes manage the interactive com-
ponents, allowing users to manipulate the parameters dynamically. User interface ele-
ments are critical for creating an intuitive and engaging experience, enabling users to
explore the effects of different parameters on the L-system’s growth patterns. Users can
experiment with various configurations and observe the resulting changes in real-time.

5.7.1 Sliders

A slider control for adjusting parameters is created first. The Slider class handles
mouse events and updates its value accordingly. The slider is a key element in the user
interface, enabling real-time adjustments of parameters such as temperature, angle, and
length. Sliders provide a smooth and intuitive way for users to fine-tune parameters,
ensuring precise control over the simulation settings.

58

5 Implementation

1 class Slider :
2 def __init__ (self , x, y, w, h, min_val , max_val , init_val ,

label , integer = False):
3 self.rect = pygame .Rect(x, y, w, h)
4 self. min_val = min_val
5 self. max_val = max_val
6 self. value = init_val
7 self. handle_rect = pygame .Rect(x, y, w // 10, h)
8 self. handle_rect . centerx = x + (w * ((init_val - min_val)

/ (max_val - min_val)))
9 self. dragging = False

10 self. label = label
11 self.font = pygame .font.Font(None , 24)
12 self. integer = integer

Code Snippet 5.14: Slider Initialization

Figure 5.10: Available sliders for the simulation.

The Angle Slider controls the base angle of the branches in the L-System. This slider
ranges from 0 to 20 degrees. The base angle determines the initial divergence of the
branches from the main trunk. Adjusting this slider changes the angular spread of the
branches.

The Length Slider controls the length of each branch in the L-System. The length
value ranges from 8 to 18 units. Adjusting this slider changes the length of the branches,
making them longer or shorter.

59

5 Implementation

The Thickness Slider controls the thickness of the branches in the L-System. This
slider ranges from 1 to 5 units. The thickness affects the visual weight of the branches,
making them appear thicker or thinner.

The Iterations Slider controls the number of iterations the L-System goes through to
generate the final structure. It ranges from 1 to 4 iterations. Each iteration applies the
production rules to the current state of the system, increasing the complexity and detail
of the L-System.

5.7.2 Buttons

A clickable button that changes its color on hover and click, providing visual feedback
to the user, is also implemented. Buttons are used for various actions such as saving
configurations, loading configurations, and resetting parameters. Visual feedback, such
as color changes, helps users understand the state of the button, confirming that their
input has been registered.

1 class Button :
2 def __init__ (self , x, y, w, h, text , color , hover_color ,

click_color , tooltip =None , selectable =True):
3 self.rect = pygame .Rect(x, y, w, h)
4 self.text = text
5 self. color = color
6 self. hover_color = hover_color
7 self. click_color = click_color
8 self. selected_color = (255 , 255 , 0)
9 self. current_color = color

10 self.font = pygame .font.Font(None , 24)
11 self. text_surface = self.font. render (text , True , (255 ,

255, 255))
12 self. text_rect = self. text_surface . get_rect (center =self.

rect. center)
13 self. clicked = False
14 self. selected = False
15 self. tooltip = tooltip
16 self. tooltip_font = pygame .font.Font(None , 20)
17 self. selectable = selectable

Code Snippet 5.15: Button Initialization

60

5 Implementation

Figure 5.11: Available buttons for the simulation.

The Stochastic Button toggles the application of stochastic rules to the L-System.
When activated, it introduces random variations to the production rules, resulting in
more varied and less predictable patterns.

The Save Button saves the current configuration of the L-System parameters to a
file. This includes the axiom, iterations, temperature, base angle, branch length, branch
thickness, and the current rules.

The Load Button loads a previously saved configuration from a file. This restores
the L-System parameters and rules to the saved state, allowing continuation from the
previous point.

The Reset Button resets the stochastic variations, returning the L-System to its de-
terministic state based on the current parameters and rules.

The Toggle Temperature Button switches between using a fixed temperature and a
real-time temperature that changes dynamically over time. This simulates environmental
changes affecting the L-System growth.

The Export Button exports the current visualization of the L-System as an image file.
This allows the generated patterns to be saved and shared.

The Randomize Button randomizes the L-System parameters within their respective
ranges. This provides a quick way to explore different configurations and observe their
effects on the L-System.

The Switch Random Button toggles between random and deterministic behavior
for the L-System. In random mode, parameters and rules are varied randomly, while
in deterministic mode, they follow a fixed pattern based on the selected deterministic
function.

61

5 Implementation

5.7.3 Text Boxes

A text input box for defining L-system axioms and rules is also necessary, supporting
basic text editing operations. This component is crucial for users to input and modify
the initial conditions and rules of the L-system dynamically. Text input boxes allow users
to enter and edit text-based data, providing a way to directly influence the behavior and
structure of the L-system.

1 class TextBox :
2 def __init__ (self , x, y, w, h, text=’’):
3 self.rect = pygame .Rect(x, y, w, h)
4 self. color_inactive = pygame . Color(’lightskyblue3 ’)
5 self. color_active = pygame . Color (’dodgerblue2 ’)
6 self. color = self. color_inactive
7 self.text = text
8 self.font = pygame .font.Font(None , 24)
9 self. txt_surface = self.font. render (text , True , self.color

)
10 self. active = False
11 self. caret_visible = True
12 self. caret_position = len(text)
13 self. caret_timer = pygame .time. get_ticks ()

Code Snippet 5.16: TextBox Initialization

Below, there are two figures illustrating the ability to dynamically modifying the formula
of the system via the textbox as such:

F[+F][–F]F[++F][–F]F[++F][-F]F → F[+F][–F]F[++F][–F]F[++F]

62

5 Implementation

Figure 5.12: Textbox: F[+F][–F]F[++F][–F]F[++F][-F]F

Figure 5.13: Textbox: F[+F][–F]F[++F][–F]F[++F]

The handle_event method processes mouse and keyboard events for text input. This
functionality enables users to define and adjust the L-system’s parameters directly, pro-

63

5 Implementation

viding a hands-on way to experiment with different configurations. Handling keyboard
and mouse events involves detecting clicks to activate the text box, managing caret
position, and processing text input.

The blink_caret method toggles the visibility of the caret. This functionality provides
a visual cue that the text box is active and ready for input. This visual feedback is
essential for maintaining a responsive and user-friendly text input interface.

5.7.4 Color Picker

A color picker is implemented to display a palette of colors for the user to select the
color for branches and leaves. This component enhances the visual customization of
the L-system, allowing users to choose colors that best represent their desired growth
patterns.

1 class ColorPicker :
2 def __init__ (self , x, y, w, h, initial_colors , tooltip =None):
3 self.rect = pygame .Rect(x, y, w, h)
4 self. colors = initial_colors
5 self. selected_color_index = 0
6 self.font = pygame .font.Font(None , 24)
7 self. tooltip = tooltip
8 self. tooltip_font = pygame .font.Font(None , 20)

Code Snippet 5.17: ColorPicker Initialization

5.8 Helper Functions

Several helper functions support the core functionality, including drawing the grid,
updating the L-system, fetching real-time temperature, and managing configurations.
These functions enhance the overall usability and functionality of the system, making
it more robust and user-friendly. The implementation becomes more organized and
maintainable.

64

5 Implementation

5.8.1 Draw the Grid

The draw_grid function is first implemented to draw a reference grid on the Pygame
screen. The grid provides a visual reference for users, helping them understand the scale
and orientation of the L-system. Drawing a grid helps users gauge distances and angles
more accurately, providing a useful context for the L-system’s growth patterns. The grid
must be rendered efficiently to avoid performance issues, especially when dealing with
large or complex grids.

1 def draw_grid (screen , width , height , grid_size , offset_x , offset_y
, color =(30 , 30, 30)):

2 if grid_size <= 0:
3 return
4 for x in range(offset_x % grid_size , width , grid_size):
5 pygame .draw.line(screen , color , (x, 0), (x, height))
6 for y in range(offset_y % grid_size , height , grid_size):
7 pygame .draw.line(screen , color , (0, y), (width , y))

Code Snippet 5.18: Draw Grid

5.8.2 Update L-System

The update_lsystem function is implemented next to update the L-system drawing
based on the current rules and parameters. This function is crucial for rendering the
L-system in real-time, reflecting any changes made by the user through the UI elements.
Updating the L-system dynamically allows users to see the effects of their adjustments
immediately, providing a more interactive and engaging experience. The function must
efficiently handle updates to the L-system, ensuring that the rendering process is smooth
and responsive.

1 def update_lsystem (rules , screen , width , height , scale ,
branch_color , leaf_color , background_color , offset_x , offset_y)
:

2 screen .fill(background_color , (0, 0, width , height - 100))
3 draw_grid (screen , width , height - 100 , int (20 * scale),

offset_x , offset_y , (30, 30, 30))
4 try:
5 lsystem . generate_system (rules)
6 log_growth (rules)

65

5 Implementation

7 num_branches , avg_branch_length = lsystem . draw_system (
screen , width , height , rules[" length "], rules [" angle"],

rules [" thickness "], scale , branch_color , leaf_color ,
offset_x , offset_y)

8 log_branching_complexity (num_branches , avg_branch_length)
9 except Exception as e:

10 logging . error (f" Error updating L- system : {e}")

Code Snippet 5.19: Update L-System

5.8.3 Fetch Real-Time Temperature

To simulate fetching a real-time temperature, a helper function is implemented. This
function is used to dynamically adjust the L-system parameters based on changing envi-
ronmental conditions. Simulating real-time temperature data adds an element of realism
to the L-system, making it responsive to external factors. The function must generate
temperature values that vary over time, providing a dynamic input for the L-system’s
growth simulation.

1 def fetch_real_time_temperature ():
2 base_temp = 15
3 noise = np.sin(datetime . datetime .now (). timestamp () / 3600) * 5
4 temperature = base_temp + noise + 15 * np.sin(datetime .

datetime .now (). timestamp () / 3600)
5 return np.clip(temperature , 0, 30)

Code Snippet 5.20: Fetch Real-Time Temperature

5.8.4 Save/Load

Functions to save and load L-system configurations to/from a JSON file are also neces-
sary. These functions enable users to save their current setup and reload it later, facil-
itating experimentation and iterative development. Saving and loading configurations
allow users to preserve their work and continue from where they left off. The functions
must handle the serialization and deserialization of the L-system’s state, ensuring that
all relevant parameters are accurately saved and restored.

66

5 Implementation

1 def save_configuration (filename):
2 configuration = {
3 ’axiom ’: lsystem .axiom ,
4 ’iterations ’: lsystem .iterations ,
5 ’temperature ’: temperature_slider . get_value (),
6 ’base_angle ’: angle_slider . get_value (),
7 ’branch_length ’: length_slider . get_value (),
8 ’branch_thickness ’: thickness_slider . get_value (),
9 ’rules ’: {’F’: rule_box_f .text}

10 }
11 with open(filename , ’w’) as file:
12 json.dump(configuration , file)
13 logging .info(f" Configuration saved to { filename }")

Code Snippet 5.21: Save Configuration

5.8.5 Export

An export function is also required to save the current screen image to a file using
Tkinter’s file dialog. This functionality allows users to save a visual representation of
the L-system, which can be useful for documentation or further analysis. The function
must handle the file dialog interface and ensure that the image is saved correctly .

1 def export_image (screen):
2 Tk(). withdraw ()
3 export_path = filedialog . asksaveasfilename (defaultextension =".

png", filetypes =[("PNG files ", "*. png")])
4 if export_path :
5 pygame .image .save(screen , export_path)
6 logging .info(f"Image exported to { export_path }")

Code Snippet 5.22: Export Image

5.8.6 Randomize

Lastly, a function to randomize the values of the sliders is implemented to introduce
variability. This function is useful for testing different configurations quickly and explor-

67

5 Implementation

ing the effects of various parameter combinations. Randomizing parameters allows users
to explore a wide range of growth patterns without manually adjusting each slider.

1 def randomize_parameters ():
2 global temperature_slider , angle_slider , length_slider ,

thickness_slider , iterations_slider
3 temperature_slider .value = random . uniform (temperature_slider .

min_val , temperature_slider . max_val)
4 angle_slider . value = random . uniform (angle_slider .min_val ,

angle_slider . max_val)
5 length_slider . value = random . uniform (length_slider .min_val ,

length_slider . max_val)
6 thickness_slider . value = random . uniform (thickness_slider .

min_val , thickness_slider . max_val)
7 iterations_slider .value = random . randint (iterations_slider .

min_val , iterations_slider . max_val)

Code Snippet 5.23: Randomize Parameters

68

5 Implementation

Figure 5.14: First generation of an L-System with randomized values.

Figure 5.15: Second generation of an L-System with randomized values.

69

6 Results and Evaluation

This chapter conducts a thorough assessment of the system’s performance after its im-
plementation. It focuses on evaluating how accurately the implemented functionalities
correspond to the objectives established before implementation. This analysis will high-
light significant accomplishments and identify critical areas where improvements can be
made.

6.1 Overview

The system successfully met its primary objectives, demonstrating the integration of
fractals and Lindenmayer Systems (L-systems) with data inputs to create responsive
natural patterns. Several key results and observations were noted and divided into pros
and cons:

6.1.1 Pros

Dynamic Adaptation: The system effectively adjusted growth angles and branching
patterns in real-time based on simulated environmental data. This capability signifi-
cantly enhanced the realism and flexibility of the L-system models. The dynamic nature
of the system allowed it to respond to varying conditions.

User Interaction: The inclusion of interactive user interface elements, such as sliders
and buttons, allowed for real-time manipulation of parameters. This feature provided
immediate visual feedback, facilitating user engagement and experimentation.

Diverse Pattern Generation: Incorporating both stochastic and deterministic rule
variations enabled the system to generate a wide range of natural patterns. Stochastic
rules introduced randomness, mimicking the inherent unpredictability of natural growth,

70

6 Results and Evaluation

while deterministic rules ensured repeatable and predictable outcomes. This diversity
added depth to the simulations and demonstrated the robustness of the approach.

Visualization and Analysis: The use of graphical libraries like Pygame and Turtle
for visualization proved effective. These libraries provided a robust platform for render-
ing complex L-system structures, ensuring smooth and detailed graphics. The logging
mechanisms, implemented to track system parameters and outputs, provided valuable
insights into the branching complexity and overall system behavior. This data was cru-
cial for analyzing the effectiveness of different rule sets and for optimizing the L-system
parameters.

6.1.2 Cons

Predefined Mathematical Functions: The reliance on predefined mathematical
functions for deterministic variations constrained the diversity of patterns that could be
generated. While these functions (e.g., sine, cosine, exponential) were effective for certain
patterns, they limited the system’s ability to explore more complex or less predictable
structures. This limitation highlighted the need for more flexible and sophisticated rule
generation methods that can dynamically adapt based on broader criteria.

Basic Randomization: While the randomization approach introduced variability, it
could benefit from more advanced algorithms to enhance the realism and complexity
of the generated patterns. The current implementation of randomization was relatively
simple, primarily using uniform distributions to alter parameters. Advanced stochas-
tic models, such as Gaussian processes or Markov chains, could provide more nuanced
variations that better mimic natural phenomena.

2D Model: The thesis primarily focuses on the use of fractals and L-systems for gen-
erating 2D visualizations of natural patterns. While 2D representations are useful for
certain types of analysis and visualization, they inherently limit the depth and realism
that can be conveyed, especially when representing complex, three-dimensional struc-
tures like trees and plants. This dimensional limitation might restrict the application’s
effectiveness in fields that require more comprehensive spatial analysis and interpreta-
tion, such as ecological research, urban planning, and realistic 3D simulations in gaming
or virtual reality environments.

71

6 Results and Evaluation

Limited Error Handling: While the code includes basic logging and error handling,
it may not be robust enough to manage all potential errors that could occur, especially
those related to user input or external data integration. This could lead to unhandled
exceptions that crash the application or cause unintended behavior, affecting reliabil-
ity.

Python Limitations: The use of Python for complex simulations that involve graphical
output and real-time data handling can introduce performance bottlenecks. Python,
while versatile and easy to use, may not handle large-scale simulations as efficiently as
more performance-optimized languages like C++ or Java, especially when high frame
rates or real-time interactions are required.

Scalability Concerns: As the complexity or scale of the L-system increases, the recur-
sive nature of the system generation and the real-time update of parameters might lead
to scalability issues. The system’s ability to handle larger or more intricate L-systems
without a degradation in performance could be limited, particularly on less powerful
hardware.

Limited Scope of Generated Patterns: The current implementation of the L-system
primarily focuses on generating patterns that mimic natural phenomena, specifically
trees and plants. This focus, while beneficial for targeted studies, significantly limits
the potential of L-systems to explore a broader range of patterns and structures. L-
systems are capable of generating an extensive variety of both realistic and abstract
forms, including intricate architectural designs, fractal landscapes, and complex organic
structures.

72

6 Results and Evaluation

6.2 Variation Testing

6.2.1 Iterations

Random Pattern

Figure 6.1: One iteration with random generation pattern at a temperature of 16°C.

Figure 6.2: Two iterations with random generation pattern at a temperature of 16°C.

73

6 Results and Evaluation

Figure 6.3: Three iterations with random generation pattern at a temperature of 16°C.

Figure 6.4: Four iterations with random generation pattern at a temperature of 16°C.

74

6 Results and Evaluation

Sigmoid Function Pattern

Figure 6.5: One iteration with sigmoid function generation pattern at a temperature of
16°C.

Figure 6.6: Two iterations with sigmoid function generation pattern at a temperature of
16°C.

75

6 Results and Evaluation

Figure 6.7: Three iterations with sigmoid function generation pattern at a temperature
of 16°C.

Figure 6.8: Four iterations with sigmoid function generation pattern at a temperature
of 16°C.

76

6 Results and Evaluation

6.2.2 Temperature

Figure 6.9: Inverse function with 3 iterations at temperature 5.0°C.

Figure 6.10: Inverse function with 3 iterations at temperature 10.0°C.

77

6 Results and Evaluation

Figure 6.11: Inverse function with 3 iterations at temperature 19.5°C.

Figure 6.12: Inverse function with 3 iterations at temperature 26.4°C.

78

7 Conclusion

This thesis explored the integration of fractals and Lindenmayer Systems (L-systems)
to model and visualize natural patterns, focusing on a dynamic, responsive L-system
that adapted its parameters based on environmental data, specifically temperature. The
project enhanced L-systems’ flexibility and applicability, allowing more accurate simula-
tions of complex, changing phenomena. The study included a review of the state of the
art in fractal and L-system modeling, followed by the implementation of a robust system
using Python. This system incorporated user interface elements for real-time interaction
and integrated stochastic and deterministic rule variations. The results demonstrated
that the system could effectively generate dynamic visualizations of L-systems, respond-
ing to changes in temperature and user input. The integration of data inputs to adjust
growth parameters showcased the potential for applying such systems in various fields,
from data visualization to interactive art.

7.1 Future Outlooks

As we advance with the development of this dynamic, responsive L-system, several
future directions and enhancements can be envisioned. These outlooks aim to extend
the capabilities of the current project, making it more versatile, powerful, and applicable
across various domains.

7.1.1 Integration with Advanced Environmental Data Sources

A significant future enhancement involves integrating the L-system with advanced envi-
ronmental data sources. By leveraging APIs and IoT devices, the system could utilize
real-time data from weather stations, satellite feeds, or sensors deployed in natural en-
vironments.

79

7 Conclusion

7.1.2 Advanced Rule Systems and Machine Learning

Incorporating advanced rule systems and machine learning algorithms could significantly
enhance the L-system’s capabilities. Future developments might include:

• Using machine learning to enable the L-system to learn from past simulations and
adapt its rules and parameters for more accurate and efficient modeling.

• Developing more complex rule networks that can simulate interactions between
multiple species or environmental factors, creating more comprehensive ecological
models.

• Implementing optimization algorithms to automatically fine-tune parameters for
desired outcomes, improving the efficiency and effectiveness of the simulations.

7.1.3 Collaborative and Educational Platforms

Expanding the system’s use in collaborative and educational settings can open new
avenues for research and learning:

• Establishing public repositories where users can share their L-system configurations
and results, fostering a community of practice and knowledge exchange.

These future outlooks highlight the potential for continued innovation and expansion of
the L-system project. By integrating advanced technologies, enhancing user interaction,
and exploring practical applications, we can further develop this system into a powerful
tool for both research and real-world problem-solving.

80

Bibliography

[1] Abelson Harold, diSessa Andrea A.: Turtle Geometry: The Computer as a
Medium for Exploring Mathematics. Cambridge, MA : MIT Press, 1982

[2] Anaconda: Miniconda. https://docs.anaconda.com/free/miniconda/index.

html/. 2024. – Accessed: 09.05.2024

[3] Aristid Lindenmayer, Przemysław P.: The Algorithmic Beauty of Plants. New
York. 1990

[4] CODE, VS: Visual Studio Code in Action. https://code.visualstudio.com/

docs. n.d.. – Accessed: 05.05.2024

[5] Daniel Terdiman: 35 years of ’impossible’ ILM visual effects (photos).
2017. – URL https://www.cnet.com/pictures/35-years-of-impossible-ilm-

visual-effects-photos/2/. – Accessed on: May. 10, 2024.

[6] Fišer, Marek: L-systems online. Charles University in Prague, Faculty of Math-
ematics and Physics. – URL http://www.malsys.cz/Download/MarekFiser-

LsystemsOnline.150208.v101.pdf#page=91&zoom=100,153,428. – Department
of Software and Computer Science Education. Accessed: 10.05.2024

[7] Galarreta-Valverde, Macedo: Three-dimensional synthetic blood vessel gen-
eration using stochastic L-systems. In: Medical Imaging: Image Processing, 2013,
S. 86691I

[8] GeeksforGeeks: Functional vs Non-Functional Requirements. https://www.

geeksforgeeks.org/functional-vs-non-functional-requirements/. 2024. –
Accessed: 07.08.2024

[9] Guo, Jiang H.: Inverse Procedural Modeling of Branching Structures by Inferring
L-Systems. In: ACM Transactions on Graphics 39 (2020), June, Nr. 5, S. 1–13. –
URL https://www.cs.purdue.edu/cgvlab/www/publications/Guo20ToG/

81

Bibliography

[10] Ian McQuillan, Przemyslaw P.: Algorithms for Inferring Context-Sensitive L-
systems. Department of Computer Science, University of Saskatchewan Saskatoon,
SK, Canada. – URL https://algorithmicbotany.org/papers/algorithms-

for-inferring-context-sensitive-l-systems.pdf. – Accessed: 30.05.2024

[11] Jason Bernard, Ian M.: A Fast and Reliable Hybrid Approach for Infer-
ring L-systems. https://direct.mit.edu/isal/proceedings/alife2018/30/

444/99631. 2018. – Accessed: 07.06.2024

[12] JIANWEI GUO, HAIYONG J.: Inverse Procedural Modeling of Branching
Structures by Inferring L-Systems. Uni Konstanz. – URL https://graphics.uni-

konstanz.de/publikationen/Guo2020InverseProceduralModeling/paper.pdf.
– ACM Transactions on Graphics, Vol. 39, No. 5, Article 155. P

[13] Jordan Santell: L-systems. 2024. – URL https://jsantell.com/l-systems/.
– Accessed on: May. 08, 2024

[14] jupyter: Jupyter Notebook. https://jupyter.org/. n.d.. – Accessed: 05.05.2024

[15] Jurassic-Pedia: Dragon Curve (C/N). https://www.jurassic-pedia.com/

dragon-curve-cn/. 2012. – Accessed: 05.05.2024

[16] Lin, Tong: Context-sensitive L-systems. https://redirect.cs.umbc.edu/

~ebert/693/TLin/node17.html. n.d.. – Accessed: 07.05.2024

[17] Lin, Tong: Stochastic L-systems. https://redirect.cs.umbc.edu/~ebert/693/

TLin/node17.html. n.d.. – Accessed: 07.05.2024

[18] Numpy: NumPy documentation. https://numpy.org/doc/1.26/. n.d.. – Ac-
cessed: 05.05.2024

[19] O. Št’ava, R. Mech D. G. A. ; Krištof, P.: Inverse Procedural Modeling by Au-
tomatic Generation of L-systems. EUROGRAPHICS 2010. – URL https://www.

cs.jhu.edu/~misha/ReadingSeminar/Papers/Stava10.pdf. – Purdue University,
USA

[20] P. Prusinkiewicz, R. Karwowski B. L.: The use of positional information in the
modeling of plants. In: Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques ACM (Veranst.), 2001 (SIGGRAPH ’01),
S. 289–300

82

Bibliography

[21] Pike, Allen: Modeling Plants with Lindenmayer Systems. https://allenpike.

com/modeling-plants-with-l-systems/. 2007. – Accessed: 07.05.2024

[22] Prusinkiewicz, P.: Designing and growing virtual plants with L-systems. In:
Proceedings of the XXVI International Horticultural Congress Bd. 630, 2004, S. 15–
28

[23] Prusinkiewicz, Przemysław: Modeling Plant Development with L-systems.
https://algorithmicbotany.org/papers/modeling-plant-development-

with-l-systems.pdf. n.d.. – Accessed: 07.11.2024

[24] Python: Graphical User Interfaces with Tk. https://docs.python.org/3/

library/tk.html. n.d.. – Accessed: 05.05.2024

[25] Python: Matplotlib 3.8.4 documentation. https://matplotlib.org/stable/

index.html. n.d.. – Accessed: 05.05.2024

[26] Python: turtle — Turtle graphics. https://docs.python.org/3/library/

turtle.html. n.d.. – Accessed: 05.05.2024

[27] Radoslaw Karwowski, Przemyslaw P.: Design and implementation
of the L+C modeling language. University of Calgary, 2008. – URL
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=

019159e152c7af54bc3263efb2e7715c0fd345b7. – Department of Computer
Science

[28] Ron Goldman, Tao J.: Turtle Geometry in Computer Graphics and Computer
Aided Design. CSE.WUSTL.edu.. – URL https://www.cs.wustl.edu/~taoju/

research/TurtlesforCADRevised.pdf. – Department of Computer Science, Rice
University. Accessed: 30.05.2024

[29] Tasmanian Council of Social Service: How to Identify and Manage Pri-
mary and Secondary Stakeholders. https://www.tascosslibrary.org.au/how-

to/identify-and-manage-primary-and-secondary-stakeholders. 2024. – Ac-
cessed: 08.08.2024

[30] Wikipedia: Heighway dragon curve. https://en.wikipedia.org/wiki/Dragon_

curve#/media/File:Fractal_dragon_curve.jpg. n.d.. – Accessed: 12.05.2024

[31] Wikipedia: L-system. https://en.wikipedia.org/wiki/File:Dragon_trees.

jpg. n.d.. – Accessed: 05.05.2024

83

Bibliography

[32] Wolfram MathWorld: Koch Snowflake. 2018. – URL https://mathworld.

wolfram.com/KochSnowflake.html. – Accessed on: May. 09, 2024.

84

A Appendix - Turtle interpretation of
symbols

Symbol Interpretation
F Move forward and draw a line.
f Move forward without drawing a line.
+ Turn left.
- Turn right.
∧ Pitch up.
& Pitch down.
\ Roll left.
/ Roll right.
| Turn around.
$ Rotate the turtle to vertical.
[Start a branch.
] Complete a branch.
{ Start a polygon.
G Move forward and draw a line. Do not record a vertex.
. Record a vertex in the current polygon.
} Complete a polygon.
Incorporate a predefined surface.
! Decrement the diameter of segments.
, Increment the current color index.
% Cut off the remainder of the branch.

Table A.1: Turtle commands for L-systems [3]

85

B Appendix - Source Code

1 import turtle
2

3 iterations = input(" Enter the number of generations : ") #type in a
string

4 iterations = int(iterations) # convert from string to int
5 startLength = 200 # length of generation 0 line
6

7 #pick up the pen and move the turtle over to the left
8 turtle .up()
9 turtle . setpos (- startLength *3/2 , startLength *3/2/2)

10 turtle .speed (0)
11

12 # generation 0
13 #axiom type
14 # koch=’F’
15 koch = ’F+F+F’ # axiom for Koch snowflake
16

17 #make the final L- System based on the number of iterations
18 for i in range(iterations):
19 koch = koch. replace (’F’, ’F-F+F-F’)
20

21 turtle .down ()
22 turtle .color (’red ’, ’black ’) #draw line in red , enclosed spaces in

black
23 turtle . begin_fill ()
24

25 for move in koch:
26 if move == ’F’:
27 turtle . forward (startLength / (3**(iterations -1)))
28 elif move == ’+’:
29 turtle .right (120)
30 elif move == ’-’:

86

B Appendix - Source Code

31 turtle .left (60)
32

33 turtle . end_fill ()
34 turtle .done ()
35 l_system . generate (5)

Code Snippet B.1: Basic Generation of a Koch Snowflake in Python

1 import turtle
2

3 def serpinski (side ,level):
4 angle = 60
5

6 if level == 0:
7 for i in range (3): #draw a triangle
8 t.fd(side)
9 t.left (180 - angle)

10 else:
11 #Triangle , F, Triangle , B, LFR , Triangle , LBR
12 serpinski (side /2,level -1)
13 t.fd(side /2)
14 serpinski (side /2,level -1)
15 t.bk(side /2)
16 t.left(angle)
17 t.fd(side /2)
18 t.right(angle)
19 serpinski (side /2,level -1)
20 t.left(angle)
21 t.bk(side /2)
22 t.right(angle)
23

24

25

26 if __name__ == ’__main__ ’:
27 iterations = int(input(" Enter the number of generations : "))
28 myLen = int(input(" Enter the side length : "))
29

30 t = turtle . Turtle ()
31 t.shape (’turtle ’)
32 t.speed (0)
33

87

B Appendix - Source Code

34 # position t
35 t.up ()
36 t. setpos (- myLen /2,- myLen /2)
37 t.down ()
38

39 t.color (’black ’,’black ’)
40 t. begin_fill ()
41 serpinski (myLen , iterations)
42 t. end_fill ()

Code Snippet B.2: Serpinski Triangle Generation in Python

1 import turtle as t
2

3 def setTurtle (myTuple):
4 t.up ()
5 t.setx(myTuple [0])
6 t.sety(myTuple [1])
7 t. setheading (myTuple [2])
8 t.down ()
9

10 def make_fractal (length ,langle ,rangle ,iterations ,axiom ,target ,
replace ,target2 , replace2):

11 state = axiom
12 turtleState =[]
13

14 #make the L- System we want to process
15 for i in range(iterations):
16 nextState =’’
17 for character in state :
18 if character == target :
19 nextState += replace
20 elif character == target2 :
21 nextState += replace2
22 else:
23 nextState += character
24 state = nextState
25

26

27 t.down () #pen down
28 t.color (’green ’,’black ’) #draw line in red , fill black

88

B Appendix - Source Code

29

30 for move in state : # another way to loop through all the
characters in a string

31 if move == ’[’:
32 turtleState . append ((t.xcor (), t.ycor (), t. heading ()))
33 elif move == ’]’:
34 setTurtle (turtleState .pop ())
35 elif move == "F":
36 t. forward (length)
37 elif move == "L":
38 t.left(langle)
39 elif move == "R":
40 t.right(rangle)
41

42 t.done ()
43

44 if __name__ == ’__main__ ’:
45 iterations = int(input(" Enter the number of generations : "))
46 myLen = int(input(" Enter the forward movement length : "))
47 t.speed (0)
48 t. bgcolor (’black ’)
49 setTurtle ((0, -250, 90))
50 make_fractal (myLen , 25, 25, iterations , ’B’, ’F’, ’FF ’, ’B’, ’

F[RB]F[LB]RB’)

Code Snippet B.3: Fractal Weed Generation in Python

1 import random
2

3 class StochasticLSystem :
4 def __init__ (self , axiom , rules):
5 self. axiom = axiom
6 self. rules = rules
7 self. state = axiom
8

9 def expand (self , iterations):
10 for _ in range(iterations):
11 next_state = []
12 for character in self.state :
13 if character in self.rules :

89

B Appendix - Source Code

14 # Select a production randomly according to
defined probabilities

15 productions = self.rules [character]
16 weights = [prod [1] for prod in productions]
17 choices = [prod [0] for prod in productions]
18 chosen_production = random . choices (choices ,

weights =weights , k=1) [0]
19 next_state . append (chosen_production)
20 else:
21 next_state . append (character)
22 self. state = ’’.join(next_state)
23 return self.state
24

25 def __str__ (self):
26 return self.state
27

28 # Example usage for a stochastic L- system
29 axiom = "A"
30 rules = {
31 "A": [("AB", 0.5) , ("A", 0.5)],
32 "B": [("A", 0.7) , ("B", 0.3)]
33 }
34

35 l_system = StochasticLSystem (axiom , rules)
36 result = l_system . expand (10) # Expand the L- system 10 times
37 print(result)

Code Snippet B.4: Generation of a Stochastic system in Python

1 import random
2

3 class ParametricLSystem :
4 def __init__ (self , axiom):
5 self. state = axiom
6

7 def expand (self , rules , iterations):
8 for _ in range(iterations):
9 next_state = []

10 for symbol in self.state :
11 name = symbol [0]
12 params = symbol [1]

90

B Appendix - Source Code

13 rule = rules.get(name)
14

15 if rule:
16 new_symbols = rule(params)
17 if isinstance (new_symbols , tuple):
18 next_state . extend (new_symbols)
19 else:
20 next_state . append (new_symbols)
21 else:
22 next_state . append (symbol)
23 self. state = next_state
24 return self.state
25

26 def __str__ (self):
27 return ’’.join(f"{name }({’,’. join(map(str , params))})" for

name , params in self.state)
28

29 def rule_A (params):
30 x, y = params
31 return [(’B’, [x + 1, y]), (’A’, [x * 2, y / 2])]
32

33 def rule_B (params):
34 x = params [0]
35 return [(’A’, [x - 1]) ,]
36

37 # Example usage
38 axiom = [(’A’, [1, 2])]
39 rules = {
40 ’A’: rule_A ,
41 ’B’: rule_B
42 }
43

44 l_system = ParametricLSystem (axiom)
45 result = l_system . expand (rules , 3) # Expand the L- system 3 times
46 print(l_system)

Code Snippet B.5: Generation of a Parametric system in Python

1 class ContextSensitiveLSystem :
2 def __init__ (self , axiom):
3 self. state = axiom

91

B Appendix - Source Code

4

5 def expand (self , rules , iterations):
6 for _ in range(iterations):
7 next_state = []
8 for i, symbol in enumerate (self.state):
9 left = self. state[i -1] if i > 0 else None # Get

the left context if exists
10 right = self.state [i+1] if i < len(self.state) - 1

else None # Get the right context if exists
11

12 # Determine the key for the rules dictionary
13 context = (left , symbol , right)
14 rule = rules.get(context)
15

16 if rule:
17 next_state . append (rule ()) # Apply rule if

exists
18 else:
19 next_state . append (symbol) # No change if no

rule applies
20

21 self. state = next_state
22 return self.state
23

24 def __str__ (self):
25 return ’’.join(self.state)
26

27 def rule ():
28 return ’B’
29

30 # Example usage
31 axiom = [’A’, ’A’, ’A’]
32 rules = {
33 (None , ’A’, ’A’): lambda : ’A’, # Context : Nothing on the left

, A on the right
34 (’A’, ’A’, ’A’): rule , # Context : A on both sides
35 (’A’, ’A’, None): lambda : ’A’ # Context : A on the left ,

Nothing on the right
36 }
37

92

B Appendix - Source Code

38 l_system = ContextSensitiveLSystem (axiom)
39 result = l_system . expand (rules , 3) # Expand the L- system 3 times
40 print(l_system)

Code Snippet B.6: Generation of a Context-sensitive system in Python

93

Declaration

I declare that this Bachelor Thesis has been completed by myself independently without
outside help and only the defined sources and study aids were used.

City Date Signature

94

