=

L I

> >

MBURG

BACHELORTHESIS
Seifeldin Abdelwahab

Realistic Shadow Generation
for Image Composition Using
Deep Learning

FACULTY OF COMPUTER SCIENCE AND ENGINEERING
Department of Information and Electrical Engineering

Fakultdt Technik und Informatik
Department Informations- und Elektrotechnik

HAMBURG UNIVERSITY
OF APPLIED SCIENCES

Hochschule fiir Angewandte
Wissenschaften Hamburg



Seifeldin Abdelwahab

Realistic Shadow Generation for Image Composition
Using Deep Learning

Bachelor Thesis based on the examination and study regulations
for the Bachelor of Engineering degree programme

Bachelor of Science Information Engineering

at the Department of Information and Electrical Engineering

of the Faculty of Engineering and Computer Science

of the University of Applied Sciences Hamburg

Supervising examiner: Prof. Dr. Ulrike Herster

Second examiner: Prof. Dr. Marc Hensel

Day of delivery: 06. June 2025



Seifeldin Abdelwahab

Title of Thesis

Realistic Shadow Generation for Image Composition Using Deep Learning

Keywords

Artificial Intelligence, Deep Learning, Computer Vision, Shadow generation, Image com-

position

Abstract

Realistic shadows are key to making virtual objects appear naturally integrated into
real-world scenes. However, many deep learning models fall short when handling high-
resolution images, often producing inconsistent or low-quality results. This thesis pro-
poses RRSGNet(Resolution-Robust Shadow Generation Network), which introduces a
resolution-robust solution by using Fast Fourier Convolutions, allowing the model to
adapt to different image sizes without sacrificing visual quality. Experiments show that
RRSGNet generates consistent and high-quality shadows across a wide range of reso-
lutions, which makes it well suited for applications like augmented reality and visual

effects.

Seifeldin Abdelwahab

Thema der Arbeit

Realistische Schattengenerierung fiir Bildkomposition mit Deep Learning

Stichworte

Kiinstliche Intelligenz, Deep Learning, Computer Vision, Schattengenerierung, Bildkom-

position

Kurzzusammenfassung

iii



Realistische Schatten sind entscheidend, damit virtuelle Objekte glaubwiirdig in reale
Szenen integriert wirken. Viele Deep-Learning-Modelle stofsen dabei an ihre Grenzen, ins-
besondere bei hochauflésenden Bildern, und erzeugen hiufig uneinheitliche oder qualita-
tiv minderwertige Ergebnisse. RRSGNet bietet eine auflosungsrobuste Losung durch den
Einsatz von Fast Fourier Convolutions, wodurch das Modell flexibel mit unterschiedlich
groften Bildern arbeiten kann, ohne an Bildqualitit zu verlieren. Zusétzlich werden kon-
textbezogene Informationen wie Hintergrund- und Schattenbereiche automatisch erkannt,
was den manuellen Aufwand reduziert und die Benutzerfreundlichkeit erhoht. Experi-
mente zeigen, dass RRSGNet {iber verschiedene Auflésungen hinweg konsistente und
hochwertige Schatten erzeugt und sich somit ideal fiir Anwendungen wie Augmented

Reality und visuelle Effekte eignet.

v



List of Abbreviations

Al Artificial Intelligence

AR Augmented Reality

BCE Binary Cross-Entropy

BER Balanced Error Rate

CloU Complete Intersection over Union

CNN Convolutional Neural Network

CPU Central Processing Unit

DESOBA DEshadowed Shadow-OBject Association (dataset)
DMASNet Decomposed Mask Prediction and Attentive Shadow Filling Network
FC Fully Connected (Layer)

FCN Fully Convolutional Network

FFC Fast Fourier Convolution

FFT Fast Fourier Transform

FID Fréchet Inception Distance

FPN Feature Pyramid Network

FR Functional Requirement

FU Fourier Unit

GAN Generative Adversarial Network

GPU Graphics Processing Unit



HD High Definition

loU Intersection over Union

LaMa Large Mask Inpainting (model)

LFU Local Fourier Unit

LPIPS Learned Perceptual Image Patch Similarity

Mbo Mask of background objects

Mbs Mask of background shadows

Mfo Mask of foreground object

Mfs Mask of foreground shadow

NFR Non-Functional Requirement

PSNR Peak Signal-to-Noise Ratio

RASOBA Rendered Shadow-Object Association (dataset)
ReLU Rectified Linear Unit

ResNet Residual Network

RGB Red, Green, Blue

RMSE Root Mean Square Error

RRSGNet Resolution-Robust Shadow Generation Network
SE Squeeze-and-Excitation

SGRNet Shadow Generation and Refinement Network
SMART Specific, Measurable, Achievable, Relevant, Time-bound
SOBA Shadow-Object Association (dataset)

SSIM Structural Similarity Index Measure

SSIS Single-Stage Instance Shadow Detection

TPU Tensor Processing Unit

vi



UC Use Case
VGG Visual Geometry Group (network architecture)

VRAM Video Random Access Memory

vii



Contents

List of Figures

List of Tables

1 Introduction

1.1
1.2
1.3
1.4
1.5

Motivation. . . . . . . .

Company & Project Overview . . . . . . . . . ... ... ... ... ..

Initial Situation . . . . .
Goals and Contributions
Thesis Outline . . . . .

2 Requirement Analysis

21
2.2

2.3

24

Stakeholders . . . . . ..

Use Cases . . . . . ...

2.2.1 UC-01: Generate Shadow for a Single Object . . . . . .. ... ..
2.2.2 UC-02: Generate Shadows for Multiple Objects . . . . . . . .. ..

2.2.3 UC-03: Embedded

Deployment on Raspberry Pi . . . . . ... ..

2.2.4 UC-04: Generate Shadow in AR Application . . ... .. .. ...

Requirements . . . . . .

2.3.1 Functional Requirements . . . . . . . . . . ... .. ... ... ..

2.3.2 Non-Functional Requirements . . . . . . ... ... .. ... ....

Traceability Matrix . . .

3 Background

3.1
3.2
3.3

Image compostion . . .

Shadow Generation Techniques . . . . . . . ... ... ... ... .....

Foundational Deep Learning Concepts for Image Processing . . . . . . . .

3.3.1 Convolutional Neu
3.3.2 Residual Networks

ral Networks (CNNs) . . .. ... ... .. ...

xii

xiii

10
10
11
11
11
12
13

14
14
16
18
18
26

viii



Contents

3.3.3

3.3.4
3.3.5
3.3.6

Fast Fourier Convolutions (FFCs) for Global Context and Resolu-

tion Robustness . . . . . . . ...
Deep Learning Frameworks . . . . . . . ... ... . ... .....
Loss Functions in Deep Learning . . . . . . ... .. ... .. ...

Evaluation Metrics . . . . . . . . . ...

3.4 DMASNet: Decomposed Mask Prediction and Attentive Shadow Filling

3.4.1
3.4.2

Two-Stage Architecture Overview . . . . . . . . .. .. .. .. ...

Strengths and Limitations . . . . . . . . ... ... ... ... ...

3.5 Single-Stage Instance Shadow Detection (SSIS) . . . ... ... ... ...

Concept and Methodology

4.1 Technology Stack and Tools . . . . . ... ... ... ... ... ......

4.1.1

Programming Language and Core Libraries . . . . ... ... ...

4.2 Dataset Selection and Preparation . . . .. ... .. ... .........

4.2.1
4.2.2
4.2.3
4.2.4

Synthetic Dataset: RASOBA . . . . . . .. ... ... ... ....
Real-World Datasets: DESOBA and DESOBAv2 . . . ... .. ..
Data Preprocessing . . . . . . . . . ... Lo

SumMmary . . ...

4.3 Baseline Architecture: DMASNet . . . . . . . . . . . . .. ...

4.3.1

Replication Strategy . . . . . . . . . .. ..

4.4 RRSGNet: Architectural Concept and Design Choices . . . .. . ... ..

4.4.1
4.4.2
4.4.3

Using FFCs for Resolution Robustness and Global Context
Stage 1: FFC-Enhanced Decomposed Mask Prediction . . . . . . .
Stage 2: FFC-Enhanced Shadow Filling . . . ... ... ... ...

4.5 Automation of Additional Mask Inputs . . . . . . . ... ... ... ...
4.6 Training details . . . . . . .. Lo

4.6.1
4.6.2

Loss Functions . . . . . . . . . .. ..o

Optimization Strategy . . . . . . . . .. . ... ... .. ...

4.7 Evaluation Strategy . . . . . . . .. .. L

4.7.1

Numerical Metrics: Measuring Performance . . . . . . .. ... ..

5 Implementation

5.1 Development Environment . . . . . . . . . ... . L.

5.1.1

Hardware Configurations . . . . . .. .. .. ... ... ... ...,

5.2 DMASNet Replication . . . . . . . .. ...

5.2.1

Initial Implementation Steps . . . . . . .. ... ... ... ...

43
43
43
44
44
46
47
48
48
48
49

50
53
55
56
o7
o7
o7
58

59
59
59
60
60

X



Contents

5.2.2 Challenges and Adaptations during DMASNet Replication . . . . . 61
5.2.3 Training Setup and Limited Evaluation . . . . .. ... ... ... 62
5.2.4 Outcome of DMASNet Replication . . . . ... ... ... ..... 64

5.3 RRSGNet Implementation . . . . . . . . ... ... L. 64
5.3.1 FFC Encoder for Mask Prediction . . . ... ... ... ...... 64

5.4 RRSGNet Components Implementation . . . . .. ... ... ... .... 65
5.4.1 FFC Encoder for Mask Prediction . . . ... ... ... ...... 65
542 BoxHead . .. .. .. ... ... 66
543 ShapeHead . . .. .. .. . . . ... ... 66
5.4.4 FFC-Hybrid Decoder . . . . . . .. .. ... ... ... ... ..., 66
5.4.5 FFC Encoder for Shadow Filling . . . . ... ... ... ...... 67
5.4.6 Flexible Additive Shadow Filling . . . . . . ... ... ... .... 67

5.5 RRSGNet Model Assembly . . . ... .. ... ... ... .. ... 68
5.5.1 Overview . . . . ... 68
5.5.2 Forward Pass Summary . . .. ... .. ... ... ... .. .. .. 68

5.6 Utilities . . . . . . . L 69
5.6.1 Data Loading and Preprocessing . . . . . ... ... .. ... ... 69
5.6.2 Experiment Management and Logging . . . . .. ... ... .... 69
5.6.3 Metrics Calculation . . . . . .. .. ... Lo 69
5.6.4 Visualization . . . .. ... ... 0 70

5.7 Training Pipeline Implementation . . . . . . . . ... .. .. ... ... .. 70
5.7.1 Configuration Management . . . . .. .. .. ... ... ...... 71

5.8 Inference Pipeline Implentation . . . . . . . .. .. ... ... .. ..... 72
5.81 Overview . . . . . ..o 72

5.8.2 Background Analysis with SSIS . . . . . ... ... ... ... ... 73
5.8.3 Placing a Foreground Object . . . . . ... ... ... ... .... 73
5.8.4 Shadow Generation with RRSGNet . . . . . ... ... ... .... 73
5.8.5 Usage Summary . . . . . . . . . ... 73

6 Experiments and Results 74
6.1 DMASNet Replication: Overfitting . . . . . .. .. ... ... ... .... 74
6.2 RRSGNet Experiments . . . . . . . .. .. ... 75
6.2.1 First Experiment . . . . . . .. ... Lo Lo Lo 76
6.2.2 Main Training Experiment . . . . . . . ... ... ... 0. 76

6.3 Evaluation and Comparison . . . . . . . . ... ... . ... ... .... 81
6.4 Testing at Different Input Resolutions . . . . . .. ... ... ... .... 81



Contents

7 Discussion 83
7.1 Replication of DMASNet . . . . . . . . .. .. .. . 83
7.2 RRSGNet Performance Evaluation . . . . . . . . .. ... ... ... ... 83

7.2.1 Pre-training and Fine-tuning . . . . . ... ... ... ... 83
7.2.2 Comparison with Baseline Models . . . . ... .. ... .. .... 84
7.2.3 Generalization Across Resolutions . . . . . . . . .. ... .. ... 84
7.2.4 Automated Mask Prediction . . . . . . . .. ... ... ... ... 84
7.3 Limitations . . . . . . . . . 84
7.4 Relation to Existing Work . . . . . . ... o oo 85

8 Conclusion and Future Work 87
81 Conclusion . . . . . . . . . e 87
8.2 Future Work . . . . . . 88

Bibliography 90

A Appendix 96

Declaration 101

X1



List

3.1
3.2

3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2

5.1
5.2
9.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7

of Figures

An Example of the architecture of a CNN. [43] . . .. ... ... ... .. 19
Hierarchy of layers, showing learned patterns from early to deeper layers.

[16] . . o o 20
[lustration of a convolution operation. [16] . . . . . .. .. .. ... ... 21
Example of zero padding in a convolutional layer. [16] . . . . ... .. .. 22
Example of stride in a convolutional layer. [43] . . .. ... .. ... ... 23
Comparison between Sigmoid, Tanh and ReLU. [20] . . . ... ... ... 24
Example of max and average pooling. [43] . . . . . .. ... ... ... .. 25
ResNet-34 Architecture Diagram. [13] . . . ... ... .. .. ... ... .. 28
DMASNet Architecture diagram. [44] . . . ... ... ... ... .. 38
An example output of SSIS. [48] . . . . .. ... Lo L 41
Example of a tuple in the RASOBA dataset [44]. . . . ... ... ... .. 45
Example of a tuple in the DESOBA dataset [44]. . . . . ... ... ... .. 47
Example of the output after 1 epoch. . . . . . . . ... ... ... ..... 61

Example of the output after 1 epoch, with max darkening factor = —0.7. 61
Example of the output after 1 epoch, with max darkening factor = —0.9. 62

Example of DMASNet’s output after overfitting for 280 epochs. . . . . . . 63
Example of DMASNet after overfitting for 280 epochs. . . . . . . . . . .. 75
Example of RRSGNet (Experiment 1) after 270 epochs. . . . . .. .. .. 76
Loss curve from pretraining on the RASOBA dataset for 50 epochs . . . . 78
Sample predictions from RRSGNet after pretraining . . . . . .. ... .. 79
Loss curve after fine-tuning on the DESOBAv1v2 dataset for 447 epochs . 79
Sample predictions from RRSGNet at epoch 441 . . . . . . .. ... ... 80
Example results of different models . . . . . . . ... ... 81

xii



List of Tables

3.1

6.1
6.2

6.3
6.4

Key differences between standard convolutions and Fast Fourier Convolu-
tions (FFC). . . . . . . .. o 34
Average results of the metrics on validation set after pretraining. . . . . . T
Average results of the metrics on validation set (256x256) after fine-tuning

at epoch 441. . . . . . L 78
Performance comparison on DESOBA test set (256x256) . . . . . ... .. 81
RRSGNet performance across different resolutions . . . . . . .. .. ... 81

xiii



1 Introduction

1.1 Motivation

Image composition, the process of inserting a foreground object copied from an image
or a virtual object into a background image or scene, is a fundamental operation with
wide-ranging applications. It is used in creative arts, film postproduction and visual
effects, advertising, virtual product placement, data augmentation for training computer
vision models, and emerging fields such as augmented and virtual reality [54, 52|. The
primary objective of image composition is typically photorealism — creating a final im-
age where the inserted object appears naturally integrated within the background scene
[31]. However, simply pasting the object in the background scene often leads to visual
inconsistencies, like the difference in illumination between object and background scene
[31], lack of foreground shadow or reflection [15, 44] and so on, making it look weird and
non-realistic to the eye.

The accurate rendering of shadows cast by the inserted foreground object is particu-
larly critical for achieving a convincing composite image[15, 44|. Shadows are essential
for blending objects within their environment, as they provide clues about the shape
of surfaces, and provide information about the lighting [32]. An image lacking plausible
shadows, or one where the shadow’s characteristics (e.g., softness, direction, color) are in-
consistent with the background scene, immediately appears artificial and non-believable
[15].

Creating these shadows automatically is a challenge. The appearance of a shadow de-
pends on many complex factors: the 3D shape of the object that casts the shadow,
the shape of the surface the shadow falls on, and the properties of the light source(s)
[54]. Traditional computer graphics methods can render physically accurate shadows but
require explicit 3D scene models and lighting setups, which are rarely available [32].
Although manual shadow creation by digital artists is a common practice, it is a very

time-consuming process that requires a lot of skill and effort.



1 Introduction

Deep learning techniques have recently shown great potential in synthesizing visual el-
ements, including shadows, directly from image data without the need to explicit 3D
models or lightning information. These methods aim to learn the complex mapping from
scene appearance to shadow appearance implicitly. [28, 29, 44, 15, 54|. These methods
try to learn a connection between how a scene looks and how its shadows should look.
However, state-of-the-art shadow generation models often face practical limitations. A
key issue, seen in the recent DMASNet model [44] and many others, is the restriction
to fixed input resolutions (typically 256x256 pixels). This means high-resolution images,
that are most common today, have to be down sampled, limiting the final shadow detail
and making them less suitable for professional applications using high-resolution im-
agery. Furthermore, DMASNet and similar approaches [15] frequently require additional
manually annotated inputs beyond the composite image and foreground object mask.
Specifically, they often need masks that identify background objects (Mbo) and existing
background shadows (Mbs) [44, 15|. While these masks help guide the neural network,
they are not commonly available in real-world scenarios, limiting automation and ease
of use.

This thesis is motivated bythe need to address these specific limitations in current deep
learning-based shadow generation. We aim to develop a deep learning approach for re-
alistic foreground shadow generation that is (1) capable of operating on variable input
resolutions without being restricted to a fixed training size, and (2) reduces the reliance
on hard-to-obtain input masks like Mbo and Mbs by automating their prediction within
the pipeline. This moves towards a more flexible, automated, and broadly applicable

solution for realistic image composition.

1.2 Company & Project Overview

This thesis project is carried out in collaboration with portrix.net GmbH. The project
focuses on the use of a drone of some sort to capture high-resolution images or videos of
landscape areas. The core objective is to augment these scenes by digitally inserting a
virtual object or building and, crucially, to cast realistic shadows of the inserted object

into the captured environment.



1 Introduction

Background

portrix.net GmbH is an independent software vendor known for developing high-performance
and scalable software solutions tailored to corporate customers. Since its establishment
in 2001, the company has emphasized process standardization to guarantee quality and

reliability in every project.

Core Services

e Custom Software Development: Delivering tailor-made solutions for diverse

client needs.

e IT Consulting and Project Management: Providing comprehensive require-

ment analysis and strategic oversight.

e AI-Driven Innovations: Recently, the company has also started to utilize arti-

ficial intelligence (AI) to further enhance its processes and offerings.

1.3 Initial Situation

Recent advancements in deep learning have led to several promising approaches to auto-
mate shadow generation in image composition. Models like ShadowGAN [54] and AR-
ShadowGAN [27] utilize generative adversarial networks to synthesize shadows. More
recently, SGRNet [15] introduced a two-stage approach involving mask prediction and
illumination-based filling, while DMASNet [44] further refined mask prediction using de-
composition and employed attentive filling strategies, achieving state-of-the-art results

on standard benchmarks.

Despite this progress, significant limitations hinder the practical applicability of these
methods. Critically, DMASNet, which represents one of the current state-of-the-art
methods and serves as a baseline for this work, is restricted to operating on fixed resolu-
tion inputs (256x256 pixels) [44]|. This restricts its use with common high-resolution im-
ages. Furthermore, DMASNet requires pre-defined background object (Mbo) and back-

ground shadow (Mbs) masks as essential inputs to guide its network.[44]. The need for



1 Introduction

these auxiliary masks complicates the workflow and prevents full automation. These spe-

cific constraints regarding resolution flexibility and input requirements form the primary

motive for the novel approach developed in this thesis.

1.4 Goals and Contributions

The primary objectives of this thesis are defined using the SMART (Specific, Measurable,

Achievable, Relevant, Time-bound) criteria:

e Goal 1: Replication and Baseline Establishment

S (Specific): Replicate the DMASNet architecture and training procedure
as described in the original paper [44], including its decomposed mask pre-
diction and attentive shadow filling stages, using the DESOBA and RASOBA

datasets.

M (Measurable): Achieve numerical performance metrics (RMSE, PSNR,
BER) on the DESOBA test set that are comparable to those reported in
the DMASNet paper. The visual appearance of generated shadows should
resemble the shadow quality and characteristics presented in the DMASNet
paper [44].

A (Achievable): The DMASNet paper provides sufficient architectural and
training details. Standard deep learning frameworks (PyTorch/TensorFlow)
and datasets (DESOBA/RASOBA) are accessible.

R (Relevant): This replication is crucial for deeply understanding the model,
identifying its practical limitations, and establishing a verified performance

baseline to evaluate the proposed novel model against.

T (Time-bound): Complete the implementation, training, and evaluation
for the DMASNet replication the 31st of March, 2025

e Goal 2: Design and Implementation of RRSGNet for Variable Resolution



1 Introduction

— S (Specific): Design and implement a novel shadow generation network that
incorporates Fast Fourier Convolutions (FFCs), inspired by LaMa [42], into
a DMASNet-like architecture to enable processing of variable input image

resolutions.

— M (Measurable): RRSGNet must successfully process images of varying in-
put resolutions (e.g., ranging from 128x128, 256x256, 512x512, up to 1920x1080)
without requiring architectural changes or retraining. producing visually plau-
sible shadows assessed on DESOBA test images across different resolutions
mentioned above. Performance on fixed-size (256x256) DESOBA benchmarks
should be the same with the replicated DMASNet on key metrics.

— A (Achievable): FFC principles are documented [42, 6], and the basic blocks
are implemented and available. The core logic builds upon the replicated
DMASNet.

— R (Relevant): Directly addresses the critical limitation of fixed resolution
identified in DM ASNet, significantly increasing the practicality of the shadow

generation model.

— T (Time-bound): Complete the design, implementation, and initial train-
ing/testing of the variable-resolution RRSGNet module by the 30th of April
2025.

e Goal 3: Integration of Automated Background Mask Prediction

— S (Specific): Integrate a pre-trained object/shadow detection model based
on SSIS [49] into the RRSGNet pipeline to automatically predict background
object (Mbo) and background shadow (Mbs) masks, removing the need for

manual input.

— M (Measurable): RRSGNet, using predicted Mbo/Mbs masks, should gen-
erate shadows that achieve quantitative scores on the DESOBA 256x256 test
set that are the same as RRSGNet performance using ground-truth Mbo/Mbs
masks. Visual assessment on test images should show successful shadow gen-

eration guided by the predicted masks.

— A (Achievable): Pre-trained models for related detection tasks exist. In-
tegration involves adding a pre-processing step to the pipeline to feed the

RRSGNet shadow generation module.



1 Introduction

— R (Relevant): Addresses the second major limitation of DMASNet (manual
Mbo/Mbs input), further enhancing the automation and practicality of the

proposed system.

— T (Time-bound): Complete the integration and testing of the automated
mask prediction pipeline by the 10th of May 2025

e Goal 4: Visual Evaluation and User Preference Study

— S (Specific): Conduct a user study comparing the visual realism of shadows
generated by the final RRSGNet model against the replicated DMASNet and

other baselines on a set of real composite images.

— M (Measurable): Show through user testing that RRSGNet’s shadows are
chosen as more realistic compared to other baselines like DMASnet, SGRnet,
ARShadowGAN, etc. Collect preference data from at least 20 participants on
10 real composite image examples. RRSGNet should receive a clear majority

of preference votes.

— A (Achievable): Using an existing online survey tool, in particular google

forms.

— R (Relevant): Provides crucial validation of the practical effectiveness and
perceived quality improvement of the proposed model, by assessing visual

realism as perceived by humans.

— T (Time-bound): Design, execute, and analyze the user study by 30th of
May 2025.

Based on these goals, the main contributions of this work are:

1. A successful replication and analysis of the DMASNet model, providing a verified

baseline.

2. The design and implementation of RRSGNet, a novel shadow generation architec-

ture incorporating FFCs for robust handling of variable image resolutions.

3. The integration of an automated background mask prediction module into the

RRSGNet pipeline, reducing manual input requirements.



1 Introduction

4. Comprehensive quantitative and visual evaluation, including a user study, demon-
strating the effectiveness and improved practicality of the proposed RRSGNet com-

pared to the other baselines.

1.5 Thesis Outline

Chapter 1 covers the problem of realistic shadow generation and project goals. Chapter
2 outlines requirements and stakeholder needs. Chapter 3 reviews background on image
composition, shadow techniques, DMASNet and Deep learing fundamentals. Chapter 4
introduces the RRSGNet method with Fast Fourier Convolutions and mask automation.
Chapter 5 details the implementation of both DMASNet and RRSGNet. Chapter 6
presents experiments and compares results. Chapter 7 discusses the findings, limitations,

and related work. Chapter 8 concludes and suggests future directions.



2 Requirement Analysis

This chapter outlines what is needed to develop a shadow generation model that works
well in augmented reality (AR) applications. In AR, making virtual objects look like
they truly belong in the real world is a big challenge, and realistic lighting and shadows

are essential to achieve that illusion.

To understand what the system should do, this chapter looks at who will use it, how
it will be used, and what technical and design goals it needs to meet. The sections
that follow describe the key stakeholders, typical use cases, and both the functional and

non-functional requirements of the project.

2.1 Stakeholders

This project involves several key stakeholders, each with different needs and expecta-

tions:

e Portrix.net GmbH
Portrix.net GmbH sponsors this project with the aim of exploring practical ma-
chine learning solutions for augmented reality. Their interest lies in lightweight,
deployable AT model that will enhance the realism of AR content, particularly on

constrained hardware platforms such as the Raspberry Pi.

e The Developer
The person designing, building, and optimizing the model. The focus of the devel-
oper is to create an overall working solution and to achieve this within the thesis

time frame.

e AR Application Teams
This group includes engineers and product designers who will use the model within

AR systems. They care about visual realism that the shadows should look natural



2 Requirement Analysis

and the model should fit smoothly into the AR workflow, without needing extra

manual steps and that the model works with various image sizes.

e End Users
These are the people who use AR applications. They may not know how the model

works, but they will notice if the shadows look wrong or out of place. For them,

convincing shadows are the key to a believable AR experience.

2.2 Use Cases

The following use cases describe interactions with the shadow generation system.

2.2.1 UC-01: Generate Shadow for a Single Object

e Actors: End User, AR Application

e Preconditions:

— A background image and a single foreground object, with a transparent back-

ground, are available.

e Flow:

1.

The user submits the background image and the image of the object to the

system.

. The user places the objects onto the background image.

The system infers generates intermediate masks to pass to the shadow gener-

ation model.

The system generates a realistic, correctly oriented shadow for the inserted

object .

. The system returns the final image at the same resolution and aspect ratio as

the input.



2 Requirement Analysis

2.2.2 UC-02: Generate Shadows for Multiple Objects

e Actors: End User

e Preconditions:

— A background image and two or more foreground objects, with transparent

backgrounds, are provided.

e Flow:

1.

The user or application submits the background image the images of the ob-

jects.

. The user places the objects onto the background image.

. The system infers generates intermediate masks to pass to the shadow gener-

ation model.

. The system generates a realistic, correctly oriented shadow for all inserted

objects.

. The system returns the final image at the same resolution and aspect ratio as

the input.

2.2.3 UC-03: Embedded Deployment on Raspberry Pi

e Actors: Developer, Embedded System

e Preconditions:

— The model and its dependencies are installed on the Raspberry Pi.

e Flow:

1.

2.

3.

4.

The developer loads an image—object pair onto the device.
The device runs inference on CPU-only hardware.
The system generates and composites the shadow as in UC-01.

The result is saved or streamed back to the user interface.

10



2 Requirement Analysis

2.2.4 UC-04: Generate Shadow in AR Application

e Actors: AR Application, End User
e Preconditions:

— A background scene and a foreground object, with a transparent background,

or a 3D object model are available.
e Flow:
1. The user places the objects onto the background scene.

2. The system infers generates intermediate masks to pass to the shadow gener-

ation model.

3. The system generates a realistic, correctly oriented shadow for the inserted

object .

4. The system returns the final image with the generated shadow to the AR

application.

2.3 Requirements

Based on the project goals, stakeholder needs, and identified use cases, the following
functional and non-functional requirements are defined for the shadow generation sys-

tem.

2.3.1 Functional Requirements
e FR-1: The system must generate a shadow for a given foreground object, placed
onto a background image.

e FR-2: The system must accept input images of various resolutions and aspect

ratios, and output a same sized image.

e FR-3: The system should generate shadows without needing masks for background

objects or existing shadows.

11



2 Requirement Analysis

e FR-4: The system must output a composite image including the background,

inserted object, and its generated shadow.

e FR-5: The system could generate shadows for multiple inserted objects in the

same image.

2.3.2 Non-Functional Requirements

These describe how well the system should perform, not just what it does.

e NFR-1: The model should run fast enough on cpu only devices, such as small

embedded devices like a Raspberry Pi.
— For a 256x256 image, inference time should be less than 10 seconds.
— For an HD image, inference time should be less than 120 seconds.

e NFR-2: Shadows must look realistic and better or at least as good as existing
models like DMASNet.

— This will be tested using both user studies and image similarity metrics (e.g.,
LPIPS, SSIM, PSNR).

e NFR-3: The system should be easy to use with minimal setup. Users should not

need to tweak many settings to get good results.
e NFR-4: The system should handle a variety of input conditions well:
— Different lighting and background scenes.
— Different object sizes and shapes.

e NFR-6: The code should be clean, well documented, and easy to extend for future

development or research.

12



2 Requirement Analysis

2.4 Traceability Matrix

Requirement

UC-01 UC-02

UC-03 UC-04

FR-1: Generate single shadow

FR-2: Preserve input resolution

FR-3: No manual masks required

FR-4: Output composite image

FR-5: Multiple-object support

NFR-1: Embedded (Raspberry Pi) time
NFR-3: Minimal setup

X

o

X

I Tl

>~

X

>

>

X

oA

13



3 Background

This chapter provides the necessary background information and reviews prior research
relevant to the task of realistic shadow generation for image composition using deep
learning. We begin by defining image composition and its associated challenges, then
delve into specific techniques for shadow generation, relevant deep learning concepts like
Fast Fourier Convolutions, the baseline DMASNet model, and finally, object/shadow

detection methods.

3.1 Image compostion

Image composition refers to the process of selecting and extracting a foreground object
or region from a source image (or creating a virtual object) and integrating it seamlessly
into a target background image or scene [31]. This fundamental operation allows for the
creation of new visual content by combining elements from different contexts and this
process employed across many different fields, including visual effects, advertising, art,

data augmentation, and augmented/virtual reality[5? |.

Achieving this seamless integration is not that simple. Simply overlaying the foreground
element onto the background often results in visually disturbing artifacts because the
foreground may not be consistent with the background scene in several crucial aspects
[31]. These inconsistencies are major obstacles to realism and can be broadly classified

as follows:

e Geometric Inconsistencies: These happen when the inserted object does not
match the scene in terms of position, size, or perspective. For example, the object
might look too big or too small compared to its surroundings, be placed at an

unrealistic angle, or not follow the 3D structure of the background properly [31]

14



3 Background

e Semantic Inconsistencies: These occur when the inserted object does not make
sense in the context of the scene, even if it is placed correctly in terms of geometry.
For example, adding a deep-sea diver into a desert landscape would feel out of place

because it does not fit the environment or story of the image. [31].

e Appearance Inconsistencies: These refer to visual mismatches between the
inserted object and the background, especially in terms of lighting, color, and

overall atmosphere. Common types include:

— 1llumination Contradiction: When the lighting on the foreground object doesn’t
match the background, such as differences in light direction, intensity, or color
temperature, it becomes immediately noticeable. Image harmonization meth-
ods aim to correct these mismatches by adjusting the color and tone of the
inserted object to better blend with the scene [45, 7, §].

— Boundary Artifacts: These happen when the edges around the object are too
sharp or do not blend well, making it obvious that the object was added later.
Blending and matting techniques are used to smooth the edges and make the

transition look more natural [37].

— Shadow and Lighting Effect Inconsistency: One of the most important parts
of realism is how light and shadows interact. If the object doesn’t cast the
right shadow or if the background does not affect the lighting of the object, it
breaks the illusion. This also includes reflections and how the light bounces
around the scene [15, 44, 47]|.

Among all of the possible inconsistencies in a composite image, shadows play one of the
most important roles in making the scene look realistic [15, 44, 47|. Shadows provide
strong visual cues that anchor the inserted object within the scene, show its shape and
how it interacts with surfaces, and provide valuable clues about the direction and quality
of the light in the environment [32]. When a shadow is missing or does not match the
lighting in the scene, whether it is in the wrong direction, too sharp, too soft, or the
wrong color, it can quickly break the illusion. That’s why this thesis focuses on creating
methods that can automatically generate realistic and consistent shadows for inserted

objects, so they fit naturally into the scene.

15



3 Background

3.2 Shadow Generation Techniques

There are two main approaches to generating realistic shadows for inserted objects. The
first relies on traditional computer graphics rendering techniques that require detailed
information about the scene. The second uses deep learning, where models learn to

predict shadows directly from image data without needing explicit scene geometry.

Rendering Based Shadow Generation

Traditional methods for generating shadows are based on the physical principles of light
and how it behaves in the real world, and computer graphics rendering [9]. These ap-
proaches aim to produce physically accurate shadows, but they need a lot of detailed

information about the scene, including:

1. 3D Geometry: Detailed 3D models of both the inserted object and the back-

ground surfaces onto which shadows will be cast.[22, 9.
2. Material Properties: Information about how different surfaces reflect light.

3. Lighting Conditions: A precise understanding of the scene’s lighting setup, in-
cluding the position, size, intensity, and color of light sources; for example, sunlight,

sky light, or indoor lamps [9].

With this information, rendering techniques like ray tracing or shadow mapping can sim-
ulate how light is blocked or scattered to generate realistic shadows. These methods can

produce both sharp and soft shadows that look physically accurate in the scene [10].

While rendering based methods can produce highly realistic results, one of their main
disadvantages in image composition is the challenge of obtaining the necessary informa-
tion from real world scenes using only 2D images [22|. It is extremely difficult, and often
impossible, to accurately estimate detailed 3D geometry, material properties, and the full
lighting information of a scene from a single image, which is a process known as inverse
rendering [3]. Because of this, many of the practical methods used in rendering require
a lot of manual work, like defining geometry or estimating lighting conditions by hand
[22]. Sometimes, they also need additional data, like environment maps [9], but that is
not always feasible. Although differential rendering [9] can help insert objects with min-

imal geometry, it still relies on known lighting and has trouble handling complex shadow

16



3 Background

interactions.

Deep Learning Based Shadow Generation

To overcome the need for detailed 3D information, recent research has turned to deep
learning, particularly using image-to-image translation models like [18]. These methods
aim to learn how to add realistic shadows to a composite image without the need for
detailed 3D data. Instead, the model is trained on datasets of images paired with cor-
responding ground-truth images that include realistic shadows. By learning from these
pairs, the model can generate plausible shadows for inserted objects, even when working

with just a 2D composite image.

A key challenge for these supervised methods is gathering enough suitable training data.
It is very hard to collect large-scale, real-world image pairs that perfectly align, with one
version having foreground shadows and the other without, all under the same lighting

conditions [15, 44]. As a result, researchers often turn to:

e Synthetic Data: This involves generating training pairs using 3D rendering en-
gines [54, 27|. While this approach is scalable, it can introduce a gap between the

synthetic data used for training and the real-world images the model is tested on.

e Real-World Data Synthesis Pipelines: In this case, researchers create paired
data from real images with object-shadow pairs. For example, DESOBA [15] and
its extension, DESOBAv2 [29], involve manually removing shadows of objects or
using inpainting models to remove the shadow [29] to generate shadow-free versions

of images.

e Unpaired or Weakly Supervised Methods: Getting perfectly matched image
pairs, one with a shadow and one without a shadow, is somewhat of a hard task.
So, some methods skip that pairing. For example, CycleGAN [57] just needs two
sets of images: some with shadows, some without. It tries to learn what makes
them different, even if the images do not match one-to-one. Other approaches
borrow ideas from shadow removal like Mask-ShadowGAN [54] to help the model

understand how shadows behave [27].

17



3 Background

Even though deep learning models have made a lot of progress in generating shadows,
they still face some common challenges. For example, advanced methods like SGRNet
and DMASNet [15, 44] work at low, fixed resolutions, which makes it hard to capture

fine shadow details like soft edges or smooth changes in intensity.

3.3 Foundational Deep Learning Concepts for Image

Processing

The deep learning-based shadow generation methods discussed previously rely on several
fundamental concepts and architectures commonly used in computer vision and image
processing. Understanding these principles and building blocks is essential to analyze
the design and capabilities of models such as DMASNet and the proposed RRSGNet.
This section provides an overview of key building blocks such as Convolutional Neural
Networks (CNNs) , Residual Networks (ResNets), Fast Fourier Convolutions (FFC) and
Fully Convolutional Networks (FCNs) . These concepts help explain how models can
learn to understand both local details and the broader structure of a scene, something

that is especially important when generating realistic shadows.

3.3.1 Convolutional Neural Networks (CNNs)

Convolutional neural networks (CNNs) are a class of deep neural networks and it was
originally developed for image recognition [51]. The typical architecture of it consists of
an input image layer, followed by multiple convolutional layers, each convolutional layer
is often followed directly by a pooling layer, and then ending with one or more fully
connected layers for classification or regression. The way convolutional layers work, is
that they apply layers of filters that detect patterns like edges, shapes, textures, and then
the filters begin to combine those simple features into more complex structures, such as
eyes, noses, or wheels or even entire objects like faces or cars [51]. For example, the
LeNet-5 model by LeCun et al. (1998) was an early CNN that achieved high accuracy on
digit recognition tasks [25]. CNNs have since become the most used approach for many

computer vision tasks [26].

18



3 Background

Figure 3.1: An Example of the architecture of a CNN. [43]

Convolution Operation

A convolutional layer basically applies a set of filters also known as kernels, that the model
learns, across the input image to produce output feature maps that represents learned
visual patterns. Each filter is a small matrix that slides (convolves) over the width and
height of the input image to compute the dot product between the filter weights and
the corresponding input patch. The result of this dot product is a single number and so
sliding the filter over all the positions in the input produces a 2D matrix, referred to as
a feature map, that highlights the learned patterns across the input [33]. Multiple filters
can be used, their outputs are then stacked as separate channels in the layer’s output,
where each stack corresponds to the response of a specific filter. This way, early layers
can learn simple patterns such as edges or colors, and deeper layers can combine them

into complex features such as textures or object parts [33].

19



3 Background

Figure 3.2: Hierarchy of layers, showing learned patterns from early to deeper layers. [16]

In convolutional neural networks (CNNs), several key concepts make the convolution

operation efficient:

e Local receptive fields: Each neuron in a convolutional layer connects only to a
small local region of the input,its receptive field. The size of this region is the filter

size, and as layers stack, the effective receptive field grows [33].

e Channel depth: Each filter looks at the entire depth of the input for example,
all three RGB channels of an image. If multiple filters are used, the output will
have one feature map per filter, so convolutional layer with K filters will produce

K output channels.

e Parameter sharing: The wieghts of each filter are reused and shared across all
the input positions when the filter is sliding, which greatly reduces the number of

parameters relative to a fully connected layer for example [33].

20



3 Background

Figure 3.3: Illustration of a convolution operation. [16]

Padding

When a convolution is applied, the output usually becomes smaller because the filter
can’t fully slide over the edges of the input. Padding is a way to fix this. It adds extra
pixels, usually zeros, around the border of the input so the filter can go over every part,

including the edges.
e Valid padding: No padding; output size = (input size — filter size + 1).

e Same padding: Pad enough zeros (typically [ F/2] on each side) so that output size

matches input size (for stride 1).
Padding helps:
e Keep the output size the same as the input which is useful in deep networks.
e Avoid losing information at the edges.

e Make sure features align well across layers.

21



3 Background

PADDING
Input
*,3;‘.""‘-.‘0-—44_.;nh,-":Uh“'"0‘“-0~--‘9‘ Output
B — ey ——1 - Kernel
0 !

[ e ' =
0 -
0 0
0! o m ol o Feature Map

Figure 3.4: Example of zero padding in a convolutional layer. [16]

Stride

The stride of a convolution is the step size of how much the filter window moves across
the input. A stride of 1, which is the default, means the filter shifts one pixel at a time.
A larger stride moves the filter by multiple pixels, effectively downsampling the output,
making the output smaller [33|. For example, using a 3 x 3 filter with stride 2 on a
224 x 224 image "with padding" produces an output of about 112 x 112 which is half
the size in each dimension. Larger strides reduce the spatial resolution more quickly, but
may lose detail. They are often used instead of pooling layers to reduce the size of the

feature map in some network architectures.

e Stride s: Number of pixels the filter takes in each step, both horizontally and

vertically.

o Effect: Bigger strides results in smaller outputs, it downsamples by a factor of s.

22



3 Background

Figure 3.5: Example of stride in a convolutional layer. [43]

Activation Functions

After each convolution, an activation function is applied to the output of that convolution
to introduce non-linearity. This helps the network learn complex patterns instead of just
linear ones. The most common activation in CNNs currently is the Rectified Linear Unit
(ReLU). ReLU is defined as:

f(z) = max(0, x)

This function is simple yet effective, it sets negative values to zero while keeping positive
values unchanged. This makes the network faster to train and helps avoid issues like
vanishing gradients (a situation where gradients become very small as they are back-
propagated through many layers, causing the weights to update very slowly or not at
all) [30]. Nair and Hinton (2010) showed that replacing traditional activation units with
ReLUs in deep networks leads to improved learning and better feature representations
[30]. Before, earlier networks used functions like sigmoid or tanh, but these can slow

training because they saturate, flatten out, for large inputs [30].

23



3 Background

e ReLU: f(z) = max(0, ). Fast, simple, and works well in deep networks.|30]

e Sigmoid/Tanh: Older choices, smooth but can slow training due to vanishing
gradients.|30]

e Softmax: Turns raw scores into probabilities, used in the output layer for multi-

class classification.|36]

Stgmodd tanh

Figure 3.6: Comparison between Sigmoid, Tanh and ReLU. [20]

Pooling Layers

Pooling layers reduce the spatial dimensions, height and width, of feature maps while
retaining important information. This helps make the network more efficient and pro-
vides a degree of translational invariance. The two most common types are max pooling
and average pooling [33]. Max pooling (e.g., with a 2 x 2 window and stride 2) takes
the maximum value in each non-overlapping region of the input, effectively summarizing
the most prominent feature in that region. Average pooling takes the mean of the values
in the region instead of the maximum value. By reducing the height and width of the
representation, pooling layers make models more efficient and help prevent overfitting by
reducing sensitivity to exact feature locations [33]. For example, the ImageNet architec-
ture interleaved max pooling layers between convolutional layers to progressively reduce

resolution while preserving critical features [24].

e Max pooling: Outputs the maximum value from each region.

e Average pooling: Outputs the mean value from each region.

24



3 Background

e Effect: If a 2 x 2 max-pool is applied, the output dimensions are halved.

POOLING

Max Pooling Average Pooling

Figure 3.7: Example of max and average pooling. [43]

Normalization Layers (Batch and Instance)

Normalization layers are used between convolution and activation to improve training
speed and stability. They help standardize the inputs to each layer, which reduces train-
ing difficulties and speeds up convergence.

Batch Normalization (BatchNorm) is a widely adopted method, introduced by Ioffe and
Szegedy (2015) [17], normalizes each channel’s activations to have zero mean and unit
variance, computed over a small batch. This helps reduce internal covariate shift, which
is the change in input distribution across layers during training, and allow the use for
higher learning rates and results in faster training [17]. BatchNorm also includes learn-
able scale and shift parameters to keep the flexibility after normalization [17].

Instance Normalization (InstanceNorm), on the other hand, normalizes each feature
channel for each input sample individually, across its dimensions. Initially proposed
for style transfer networks [46], it has been found effective in generative models, espe-
cially when image appearance or style is more important than keeping the original visual
details of each input [46].

e Batch Normalization: Normalizes each feature channel using the mean and vari-

ance over the mini-batch, improves training speed and stability [17].

25



3 Background

e Instance Normalization: Normalizes each feature channel per sample, indepen-

dently of the batch, often used in image generation and style transfer [46].

3.3.2 Residual Networks

Residual Networks (ResNets) are a type of deep convolutional neural network architecture
designed to solve the challenges that come with training very deep networks. Simply
stacking many layers on top of each other, makes it harder for the network to learn,
gradients can also vanish, and training accuracy may even get worse as it goes deeper
into the network. To solve this, He et al.(2015) introduced the concept of residual learning
[13].

What residual learning means is basically that instead of making the network try to learn
the full mapping H (z)(the function or the relationship that connects "maps" the input

to the output) directly, each block in a ResNet learns a residual function defined as:

[13] This can be rearranged as:

So basically, residual networks add the input x directly to the output of a few layers
using a shortcut connection. This helps the network learn more easily by focusing on the
difference between the input and the desired output. If the best solution is to leave the
input unchanged, it is easier for the network to learn to do nothing than to force several

layers to copy the input exactly [13].

This approach allowed very deep ResNets, up to 152 layers, to be trained more effec-
tively and much faster, achieving better accuracy than traditional deep networks [13].
ResNets were the first models to successfully train a model with over 100 layers on the
ImageNet dataset|24] and achieved state-of-the-art results, winning the ImageNet Large
Scale Visual Recognition Challenge 2015 competition [13]. Overall, the introduction of
skip connections in residual networks significantly reduces training difficulties in very

deep architectures.

26



3 Background

Skip Connections and Identity Mapping

One of the most important features of ResNets is the use of skip connections, also known
as shortcut connections. These shortcuts allow the input x to skip one or more con-
volutional layers and be added directly to the output of those layers. So basically, the
shortcut simply copies the input, this is called an identity mapping. [13] For example,
if  is an input to a residual block and F(x) is the function learned by the stacked

convolutional layers, the output is then:
x + F(x)

[13] Most importantly is that these shortcuts do not introduce extra weights or compu-
tation and simply pass the input data through. This structure helps information and
gradients flow more easily through the network because the shortcut adds the input
directly to the output [13].

To summarize, residual networks use skip connections to preserve input information and

help gradients flow, which leads to faster training and better performance.

ResNet-34 Architecture

ResNet-34 is a type of deep convolutional neural network that uses residual learning to
train effectively, even with many layers. It was introduced as part of the ResNet family
by He et al. [13], and is specifically designed to reduce the training problems found in
very deep networks, such as vanishing gradients. ResNet-34 has 34 layers with learnable
weights, including convolutional layers, and is known for its good balance of accuracy and
efficiency [13]. The architecture begins with an initial convolutional layer that employs
a 7 x 7 kernel with 64 filters and a stride of 2. This initial convolution is followed by a
3 x 3 max pooling layer with a stride of 2, which reduces the spatial dimensions of the
input image. [13]Following the initial layers, the network consists of four stages, each

containing a sequence of residual blocks:

e Conv2 x: 3 residual blocks, each with two 3 x 3 convolutional layers, 64 filters

[13].

e Conv3 x: 4 residual blocks, each with two 3 x 3 convolutional layers, 128 filters.

The first block uses stride 2 for downsampling [13].

27



3 Background

e Conv4 x: 6 residual blocks, each with two 3 x 3 convolutional layers, 256 filters.

The first block uses stride 2 for downsampling [13].

e Convb x: 3 residual blocks, each with two 3 x 3 convolutional layers, 512 filters.

The first block uses stride 2 for downsampling [13].

Each residual block includes a skip connection that adds the input of the block to its
output, enabling the network to learn residual functions with reference to the layer inputs.

After the stacks of the residual blocks, the network includes:
e Global Average Pooling: Reduces each feature map to a single value.
e Fully Connected Layer: Outputs class scores for classification.

This configuration results in a total of 34 layers with learnable parameters. The use of
residual connections allows for efficient training of deep networks by mitigating issues

such as vanishing gradients |[13].

Figure 3.8: ResNet-34 Architecture Diagram. [13]

28



3 Background

Training Deep Networks with Residuals

Residual learning makes it much easier to train very deep neural networks. The key
idea is to use these identity shortcut connections, also known as skip connections, that
create shortcuts for gradients to flow backward during training. These shortcuts help
prevent problems like vanishing or exploding gradients, which commonly occur in very
deep networks [13]. In the ResNet paper [13], it was shown that simply making a plain
non-residual network deeper often made training worse. For example, a 56-layer plain
network performed worse than a 20-layer one on CIFAR-10[23, 13|. Where on the other

hand, a 56-layer ResNet trained successfully and even improved accuracy [13].

The reason is that identity shortcuts allow gradients to pass through the network more
directly, without being blocked or for them to fade. So, if both the residual function
and the shortcut use identity mappings, the output of each block is just the input plus
a small learned change. This makes it easier for the network to update itself during
training [13]. Thanks to this design, adding more layers no longer makes training harder.
As long as overfitting is managed, deeper ResNets generally achieve better accuracy.
While techniques like Batch Normalization are also important, the residual structure is
the main reason ResNets can successfully train networks with tens or even hundreds of

layers [13].

Relevance for Segmentation and Generation Tasks

ResNets are not only useful for image classification, they are also widely used in other
computer vision tasks like image segmentation and image generation. As ResNets work
well as feature extractors because they can capture both local and global context. ResNet
blocks are also popular in encoder-decoder models like U-Net [39], where they are used
in the encoder to extract meaningful features from input images. These features are then

used by the decoder to predict pixels for the output image.

So to summarize, residual networks, such as ResNet-34, offer a powerful and reliable ar-
chitecture for deep learning in computer vision. The key innovations are residual learning
and identity skip connections which make it possible to train much deeper networks effec-
tively by preserving information flow and allowing gradients to pass through layers more

easily [14][13]. Because of their flexibility and strong performance, ResNets have become

29



3 Background

the standard backbones in a variety of visual tasks, including image classification, object

detection, semantic segmentation, and image generation [34].

3.3.3 Fast Fourier Convolutions (FFCs) for Global Context and
Resolution Robustness

The field of image processing is continually advancing, driven by an increasing demand
for models capable of understanding the very details of visual data while also needing
robustness to variations in image resolution. Many modern vision tasks, such as image
inpainting, semantic segmentation, and shadow generation, require an understanding of
global relationships and details across the entire image. For example, inpainting large
missing regions or generating realistic shadows requires information about lighting and
geometry that can extend throughout the full image. Also, segmentation of distant

objects or large structures benefits from global context in the image.

Traditional CNNs struggle with this because they use small filters for example, a 3x3
filter, that only look at local parts of the image where they are applied. To see the whole
image, they must stack many layers [6]. Because of this limitation, they have trouble
connecting distant regions. In addition, when applied to images with different resolutions

from training data, the performance of the model is much worse [42](6].

In short, regular CNNs struggle to understand the overall structure of an image and are

not naturally robust to changes in image size.

Classical signal processing offers a solution to handle global image context more efficiently.
According to the convolution theorem, a convolution in the spatial domain is the same as
multiplying in the frequency domain. This means that a small change in the frequency

domain can affect the entire image when transformed back.

Mathematically speaking, if F is the 2D Fourier transform, then applying it to a feature
map X gives a frequency representation X. By multiplying this with a learned function
W (k) in the frequency domain, we get }A/, and the inverse Fourier transform gives us the

output Y in which every pixel in Y depends on all pixels in X.

In other words, a simple operation in the frequency domain can influence the whole image,
making it useful for capturing global relationships [6]. The Fast Fourier Transform (FFT)
makes this efficient, running in O(N log(/N)) time ,where N is equal to the total number

30



3 Background

of pixels , which is often faster than using large convolutional filters or stacking many

layers [6].

Fast Fourier Convolution Architecture

The Fast Fourier Convolution (FFC) block [6] combines standard convolutions with global
processing using the Fourier Transform. It splits the feature channels of an input tensor

X into two parts:

e X;: the local branch, which handles features with normal small kernel convolu-

tions

e X,: the global branch, which uses the Fourier Transform to capture image-wide

context

The split is controlled by a ratio «jy so that:
X ={X},X,}, with X;eRIWxU-en)C x ¢ REXWxainC

Where:
e H is the height of the image or feature map (number of rows),
e W is the width (number of columns),
e (' is the number of channels.

The outputs are also split as Y = {Y],Y,}, possibly with a different ratio aoyt. Each
part in the FFC block then computes:

e Local-to-local: Y;_,; = f;(X;) via standard convolution
e Global-to-global: Y, ,, = f,(X,) using a spectral transformer

e Cross terms: Local and global branches influence each other through:

Yg—>l = fg—>l(Xg)7 Yl—>g = fl—>g(Xl)

31



3 Background

The final outputs are sums of these contributions:

Y = fi(Xy) + fg%l(Xg% Y, = fg(Xg) + flﬁg(Xl)

The key innovation in the global branch is the Fourier Unit (FU). It includes:
1. A 1 x 1 convolution to reduce channel size
2. Two sub-units:
e A Fourier Unit (FU) applied to all channels for global context

e A Local Fourier Unit (LFU) applied to a small subset (typically 1/4) for

semi-global context
3. A skip connection that adds the input back
4. A final 1 x 1 convolution to restore full channel size

So basically, the local branch processes the local channels with normal convolutions, while
the global branch transforms the frequency channels via FFT-based operations. Cross
branch convolutions ensure that local features can influence the global output and vice

versa.

The multibranch structure of the FFC gives each layer access to both fine local details
and broad global context. Because operations in the spectral branch affect the entire
image at once, an FFC layer has a global receptive field, even in the early layers. As
noted by Suvorov et al.[42], “FFCs allow for a receptive field that covers an entire image
even in the early layers of the network.” [42] This global reasoning improves the efficiency
and quality of the output of the model, especially in tasks that depend on understanding

the whole scene.

FFC in inpainting Inspiration

An existing proof of the efficiency of ffcs is the model LaMa, a high-resolution inpainting
network that incorporates Fast Fourier Convolutions into a fully convolutional encoder-
decoder architecture [42]. Each residual block in LaMa, except the first, replaces standard

convolutions with FFC layers, enabling early access to global context through spectral

32



3 Background

processing [42]. The generator downscales the input image, applies several FFC-based

residual blocks, and then upsamples the output [42].
The authors highlight two key benefits of FFCs in LaMa:

e Global consistency: Because spectral convolutions have image-wide receptive
fields, LaMa can reconstruct large-scale patterns such as brick walls, fences, or
windows more accurately and consistently than conventional CNNs. This is par-

ticularly important for inpainting structured textures or repeating elements [42].

e Resolution robustness: Unlike traditional CNNs, which often fail when applied
to images larger than those seen during training, LaMa generalizes well to much
higher resolutions, from 512 x 512 to 2048 x 2048 [42]. This robustness is because of
the frequency domain processing of FFC, which naturally works well with various

sizes.

Despite using only about 45M parameters, the LaMa-Fourier model outperforms larger
CNN-based models like CoModGAN [55], which has 109M parameters, in high resolu-
tion inpainting tasks [42]. It also offered greater parameter efficiency and showed fewer
artifacts when tested on images with resolutions higher than those used in training [42].
These results showed that FFC-based architectures are very good at capturing large-scale

and periodic patterns and generalizing beyond trained resolutions.

33



3 Background

Comparison Between Standard Convolutional Layers and Fast Fourier

Convolutions

Table 3.1: Key differences between standard convolutions and Fast Fourier Convolutions

(FFC).
Property Standard Convolution Fast Fourier Convolution
Receptive field Local (limited by kernel size; | Global (covers entire image
grows with depth) from early layers)

Architecture Single spatial branch Dual branches: local + global
(spectral)

Frequency-domain use Not used Yes (FFT — spectral conv —
iFFT)

Kernel size K x K (e.g.,3x3) Effectively global (via FFT,
using 1 x 1 conv)

Context awareness Needs many layers Directly captures broad con-
text

Resolution robustness No Yes

Summary

To summarize, FFCs overcome the limited receptive field of standard convolutional layers
by combining local convolutions with global frequency domain processing [6, 42|. and
unlike traditional CNNs, which need deep stacks to capture long range dependencies,
FFCs offer full image context from the early layers. Also, their spectral branch makes
the model naturally better at handling images of different sizes, since frequency based

features generalize well across scales [42].

3.3.4 Deep Learning Frameworks

Deep learning today is powered by widely used frameworks like TensorFlow and Py-
Torch, which make it easier to build and train neural networks. TensorFlow is devel-
oped by Google Brain and released in 2015 and it uses a static computation graph to
represent operations. This approach allows the framework to optimize the entire com-

putation ahead of time, which is useful for scaling up models and deploying them across

34



3 Background

different devices like CPUs, GPUs, and TPUs [1, 2|. That is why TensorFlow has become

a popular choice for production environments, especially at Google.

On the other hand, PyTorch, released by Facebook Al Research in 2016, takes a more
flexible approach. It uses dynamic computation graphs and eager execution, which means
code runs immediately and is easier to write and debug similar to working with NumPy
but with GPU support [35]. PyTorch builds on the older Torch library, but makes
everything accessible in Python, which has helped it become a favorite in the research

community [35].

In short, TensorFlow offers a more structured system that is great for large scale deploy-
ment, while PyTorch focuses on simplicity and flexibility, making it ideal for experimen-

tation and rapid development.

3.3.5 Loss Functions in Deep Learning

Loss functions are a key part of supervised learning. They measure how far the predictions
of a model are from the actual targets and guide the learning process during training.
Here are some commonly used loss functions in deep learning, with their formulas and

explanations.

L1 and L2 Loss

The L1 (mean absolute error) and L2 (mean squared error) losses are standard for re-

gression tasks:

1 & 1 &
_ E A _ § 52
£L1 - N . ‘yz yz|7 £L2 - N (yz yz) ) (3'1)

i=1
where ; is the prediction and y; is the groundtruth value. L2 loss penalizes larger errors
more heavily and assumes normally distributed noise [19]. L1 loss works better when
there are unexpected values in the data and usually makes the model focus on the most

important parts [19].

35



3 Background

Binary Cross-Entropy (BCE)

The binary cross-entropy loss , also know as the logistic loss, measures the difference
between predicted probabilities p € (0,1) and groundtruth labels y € 0,1. For a single
example, the loss is

Lpce = —[ylog(p) + (1 —y)log(1 — p)]. (32)

[38]

In practice, this is averaged or summed over all examples. BCE is widely used for binary
classification tasks, logistic regression, and for binary segmentation masks in computer

vision problems.

Perceptual Loss

Perceptual loss compares high-level features from a pretrained network, like VGG [41],
instead of comparing raw pixels like in other losses |21]. Perceptual loss is typically
used in image generation tasks to produce outputs that look visually similar to human

observers, even if the pixel-wise differences are large [21].

Learned Perceptual Image Patch Similarity (LPIPS)

LPIPS is an advanced, commonly used, perceptual similarity metric between images [53].
It calculates the distance between two image patches x and & by using learned weights
on deep network features [53|. It is often used as a loss or evaluation metric in generative
models where human perception quality is important. And it is better at capturing

differences in images like the human eye.

Complete Intersection over Union (CIoU)

CloU loss is used in object detection to compare bounding boxes. For a predicted bound-
ing box b and a ground truth box b¥!, the Intersection over Union (IoU) measures how
much the two boxes overlap, divided by the total area covered by both [56]. The Complete
IoU (CIoU) improves upon this by also penalizing differences in the distance between box

centers and in their aspect ratios [56].

36



3 Background

3.3.6 Evaluation Metrics

Metrics are important for knowing how well the model performs on unseen data, and for

benchmarking the model for it to be compared with other baselines.

Root mean square error (RMSE)

RMSE is a simple metric that calculates the average difference between pixel values in
the generated image and groundtruth image [4]. It is the square root of the average
of the squared pixel-wise differences. A low RMSE means that the generated image is
more similar to the groundtruth [4]. RMSE is measured in the same units as the pixel
values, intensity, so it offers an insight of the average error per pixel. This makes RMSE

especially useful in tasks such as image restoration, where precise pixel values matter.

Peak Signal-to-Noise Ratio (PSNR)

PSNR is closely related to RMSE but expressed on a logarithmic scale [40]. It uses
the maximum possible pixel value as the signal and compares it with the mean squared
error, which is considered the noise [40]. A higher PSNR indicates less noise and a higher
quality image. Since PSNR is derived from RMSE, they are closely related so, as RMSE
decreases, PSNR increases. It is widely used because its ability to normalize error across

different image scales [40].

Balanced Error Rate (BER)

BER is a way to measure how well a model performs in a classification task where there
are two classes, like shadow and non-shadow. BER looks at the error rate for each class
separately, instead of just counting how many total predictions were correct [12]. It
then takes the average of those two error rates. This gives a fair evaluation by treating
both classes equally, no matter how many pixels belong to each one [12]. A BER of 0
means that the model correctly classified all pixels and a higher BER means the model
made more mistakes [12]. Because of this balanced approach, BER is often used in
tasks like shadow detection, where the shadow regions are usually much smaller than the

non-shadow ones.

37



3 Background

3.4 DMASNet: Decomposed Mask Prediction and
Attentive Shadow Filling

DMASNet is a two-stage convolutional neural network designed to generate realistic shad-
ows for inserted foreground objects in a composite image [44]. It is designed to separate
the task of generating shadow into two parts, predicting the shape and position of the
shadow, and filling in the shadow. This division of tasks helps produce accurate, clean
shadow shapes and ensures that their appearance matches the lighting of the background

scene.

3.4.1 Two-Stage Architecture Overview

DMASNet works in two stages. In the first stage, called mask prediction, the model
guesses where and what shape the missing shadow should be. In the second stage, called
shadow filling, it adjusts the appearance of the shadow so it blends naturally with the
lighting of the background scene.

This method has been shown to produce more realistic shadows than earlier approaches

and works well even on real-world composite images [44].

______________________

g
’ = o & =
i & element-wise multiplication

® ? | ® soft attention © concatenate

[Mps) Mpo, Mgy, 1] !
; \ @ fusion ® padding i

M fo E ® bounding-box regression
' stage 1 stage 2
\\ ==--» upsample + 1*I conv i

Figure 3.9: DMASNet Architecture diagram. [44]

38



3 Background

Mask Prediction Stage

This is the first stage of DMASNet, it focuses on predicting a binary shadow mask for
the foreground object. This task of predicting the shadow is also split into two subtasks,

bounding-box regression and shape prediction.

A CNN backbon extracts multi-scale features from the input. This input consists of the
composite RGB image along with masks for the foreground object and background ob-

jects and shadows. These features are passed to two separate branches of the network:

1. Box head (bounding-box regression): This branch predicts a set of four values
(Az, Ay, Aw, Ah), which are used to adjust predict a bounding box, a place for the
shadow to be placed at, based on the location of the inserted object [44]. The network
first computes a bounding box around the foreground object, then learns how to shift
and resize it to match the expected position and size of the to be generated shadow [44].
This transformation is trained using a Complete IoU (CIoU) loss, which encourages the

predicted shadow box to align well with the ground truth [44].

2. Shape head (mask prediction): The shape head is responsible for predicting what
the shape of the shadow. For simplicity, DMASNet always predicts the shadow shape
within a fixed-size square region, specifically, a 64 x 64 pixel area. To achieve this, the
model first crops the part of the input image that contains the foreground object. This
cropped region is then resized to 64 x 64 pixels [44]. The shape head takes this resized
patch and outputs a 64 x 64 binary mask, which represents the shape of the shadow
within that region. During training, the groundtruth shadow mask is processed the same
way, cropped, resized, and compared to the predicted mask [44]. This allows the model to
focus on learning realistic shadow shapes, without needing to worry about their position
in the full image [44]|. After both the bounding box and the shape mask are predicted,
the 64 x 64 shadow mask is upscaled and placed inside the predicted shadow box. This
creates a rough version of the shadow that is in the right place and has the right general

shape, but may still lack finer details.

After that the shadow is refined using a small decoder network. It takes the features
from the CNN backbone and combines them with the rough shadow mask. They are
then passed together through several convolutional layers that upsample and enhance
the mask, producing a final high-resolution, refined version. This refined mask is trained
using an L1 loss, which helps it capture finer details like soft edges and smooth transitions

[44].

39



3 Background

In summary, the output of the first stage is a binary shadow mask My, that defines

location and shape of the shadow.

Attentive Shadow Filling Stage

Once the shadow mask is predicted in stage 1, the second stage of DMASNet adjusts the
intensity of the shadow to make it blend naturally into the bachground scene. The idea
is that the generated shadow should have a similar appearance to the already presented
background shadows in the image [44]. To achieve this, DMASNet uses an attention-
based mechanism that uses shading information from background shadows to fill the

predicted foreground shadow [44].

Feature Extraction: The network uses the input composite image and input masks,
and processes them through a second encoder to get feature maps at multiple scales
[44].

How it works:

e The network looks at features, visual details, from the predicted shadow area and

from all background shadows.
e It then calculates how similar the predicted shadow is to each background shadow.

e Based on these similarities, it gives more weight to background shadows that are

more alike.

The model then computes the average darkness of similar background shadows using this
weighted attention. After that it adjusts the predicted intensity of the shadow to match

this average, making the new shadow blend naturally with the image [44].

3.4.2 Strengths and Limitations

DMASNet has a lot of strengths for example, its two-step mask prediction, bounding
box and shape, helps generate clean, realistic shadows with an accurate placement. The
attentive shadow filling even improves realism more by adapting the intensity of the
shadow to match the scene. In experiments, DMASNet outperformed previous methods
like SGRNet and generalized well to real-world images. However, it works with fixed

input sizes only, 256x256 to be exact, and predicts shadows at a fixed resolution of

40



3 Background

64x64, which limits scalability. Finally, its shading approach assumes uniform shadows,
that all of the shadow has the same darnkness or intensity, which may not handle complex
lighting well. Despite these limitations, DMASNet provides a structured and effective

solution for realistic shadow generation in image compositing.

3.5 Single-Stage Instance Shadow Detection (SSIS)

SSIS is an Al model that predicts object and shadow pairs.
Traditional approaches handled this task in two separate steps:

1. Detect object masks and shadow masks.

2. Apply a post-processing step to match each shadow to its corresponding object.
SSIS: A Unified Approach
SSIS introduces a simpler, end-to-end approach. It uses a single convolutional neural
network that takes an entire image as input and directly outputs all object and shadow
masks, along with their correct pairings. By learning both detection and relationships

together, SSIS avoids post-processing and improves both efficiency and accuracy.

Instance Shadow Detection

Applications: Light direction estimation

Figure 3.10: An example output of SSIS. [48]

41



3 Background

Architecture and Key Features

The model is built upon Detectron2, which is a high-performance object detection
model developed by Facebook AI Research [49]. So it is built on top of the architecture
used in detectron2, which creates custom convolution filters for each object or shadow,
and this allows it to produce detailed masks more quickly and handle complicated shapes,

like irregular shadows, more effectively [49] [48].

A key feature of SSIS is its bidirectional relation learning [49]. This part of the network
learns the locational relationships between shadows and their objects by predicting the
direction and distance as offset vectors from each shadow to its object, and the other way
around. This helps the model correctly match pairs even when objects and shadows are
far apart or partly hidden [49]. To increase accuracy even more, SSIS uses a deformable
MaskIoU head, which checks how well each predicted mask matches the ground truth.
It acts like a quality filter, helping to remove bad predictions and keeping only the most

reliable ones [49].

In short, SSIS offers a smart and efficient way to understand how objects and shadows
relate in an image. Its object-shadow matching and fast architecture make it an ideal fit

for modern tools that work with complex scenes in real world.

42



4 Concept and Methodology

This chapter will detail the technical concepts and methods used to design the shadow
generation system, building directly on the requirements from chapter 2. It describes

how the selected techniques, from chapter 3, are applied to satisfy those requirements.

4.1 Technology Stack and Tools

The system is implemented in Python 3.9.21, a widely adopted language in the field
of machine learning and computer vision. Python’s simplicity, extensive community
support, and the availability of high-performance libraries make it an ideal choice for

prototyping and experimentation.

4.1.1 Programming Language and Core Libraries

e Python 3.9.21: Chosen for its popularity and support in scientific computing and

deep learning workflows.

e Pytorch: Chosen for its flexibility in model design and debugging, its strong

support for GPU acceleration, and for its huge community support.
e NumPy: Used for efficient numerical computations and array manipulations.

e OpenCV: Employed for image input/output, preprocessing, and transformations

such as resizing, cropping, and mask processing.

e Matplotlib: Supports visualization of training metrics, intermediate outputs, and

final results, aiding in debugging and visual analysis.

e TensorBoard: Utilized for logging training metrics, visualizations, and experi-

ment tracking.

43



4 Concept and Methodology

4.2 Dataset Selection and Preparation

This section outlines the datasets used for training and evaluating the shadow generation
model, as well as the reason for their selection. A combination of synthetic and real-world

datasets was used to ensure both scalability and real-world generalization.

4.2.1 Synthetic Dataset: RASOBA

The primary dataset used for initial training is the Rendered Shadow-Object Association
(RASOBA) dataset [44], a large scale synthetic collection designed for shadow realated
tasks, created using a unity game engine. RASOBA consists of [44]:

e 30 distinct 3D scenes.
e 788 3D object models.

e 4 super-categories for foreground objects, containing people, animals, vehicles,

plants.

e Approximately 600 synthetic 2D scenes rendered from different viewpoints of the

3D scenes.
e About 80,000 object-shadow image pairs.

e Total of 280,000 example tuples.

In this dataset, each object is rendered with and without shadows, and the differences
are used to generate the shadow and object masks [44]. Figure 4.2 illustrates example

scenes from RASOBA. For each example, the dataset provides [44]:
e The composite image with a foreground object (I..).

e The foreground object mask (Ms,).

The foreground shadow mask (Ms).

The background object mask (My,).

The background shadow mask (Myg).

The groundtruth image (Ig).

44



4 Concept and Methodology

This large dataset offers diversity and scale, it ensures the model learns a broad range of
shadow patterns before ever seeing real photos, satisfying our requirement for handling

different conditions.

animals

Figure 4.1: Example of a tuple in the RASOBA dataset [44].

45



4 Concept and Methodology

4.2.2 Real-World Datasets: DESOBA and DESOBAv2

To improve real-world generalization, the model was fine-tuned and evaluated using two
datasets based on real-world images: DESOBA and DESOBAv2.

DESOBA

The DEshadowed Shadow-OBject Association (DESOBA) dataset [15] is built on the
basis of the Shadow-Object Association dataset (SOBA) [50] collection of outdoor scenes.
Shadows are manually removed from these images to produce realistic composite-shadow

pairs. It consists of:
e 581 test image tuples, with available background objects.
e 31 test image tuples, without background objects.
e Total of 11509 training example tuples.

DESOBA offers high quality, groundtruth shadows while preserving realistic lighting and

textures.

DESOBA is used for further fine-tuning and validation because its shadows and shadow
masks are derived from real photographs, which tests the ability of the model to handle

real textures.

DESOBAv2

DESOBAv2 [28] expands on DESOBA. It includes:
e 28573 image tuples.

For each image, a shadow is removed using a pretrained inpainting model to generate a
shadow-free composite. This resulted in accurate training pairs where the only variation

is the presence or absence of a foreground shadow.

The model will be fine tuned using the combined DESOBA and DESOBAv2 datasets,
to improve and encourage the model to generalize well to real-world data, and evaluated
on the test split in the DESOBA dataset.

46



4 Concept and Methodology

Figure 4.2: Example of a tuple in the DESOBA dataset [44].

4.2.3 Data Preprocessing

All training and validation images are resized to 256 x 256 pixels. This resolution was cho-
sen as a compromise between maintaining enough detail for shadow quality and keeping
computation and memory requirements reasonable. The model is then tested on various

resolutions to assess its resolution robustness.

47



4 Concept and Methodology

4.2.4 Summary

To summarize, this dataset preparation takes advantage of the scale of synthetic data
(RASOBA) and the authenticity of real data (DESOBA, DESOBAv2) to meet the system

requirements for both performance and realism.

4.3 Baseline Architecture: DM ASNet

DMASNet was chosen as the baseline, and the ground to build upon, because it is one
of the most recent and state-of-the-art approaches to shadow generation. It divides the
main task into two smaller clearer ones, mask prediction and shadow filling, making
the training process more stable and the architecture easier to understand and extend.
Also, when it is compared to other models for shadow generation, it achieves significantly
better results in both accuracy and visual realism and appearance, when compared on
the real-world dataset DESOBA. Its use of convolutional neural networks (CNNs) also
makes it highly efficient and suitable for being used or deployed on CPU-only embedded
devices, unlike heavier models such as Stable Diffusion which require GPU acceleration,
which fits the requirements discussed in chapter 2. The design of the model makes each
part of the model able to focus on a specific task, making the whole system easier to

understand and more effective across different scenes and conditions.

4.3.1 Replication Strategy

Since the official implemntaion of DMASNet was not published by the authors, the first
part of this research will be replicating the DMASNet architecture and training pipeline,
as described in the original paper [44].

This includes:

e Implementing the ResNet-34-based encoders (E. and E) and other modules such
as the Box Head, Shape Head, and the decoder D;.

e Reproducing the original loss functions: Complete Intersection over Union (CIoU)

for bounding box prediction, and L losses for mask supervision.

48



4 Concept and Methodology

e Training the model on the DESOBA [15] and RASOBA [44] datasets, following the

original training protocols.
This replication serves three main purposes:
1. Ensure a full understanding of the design and training pipeline of DMASNet.
2. Establish a strong and comparable performance baseline.
3. Create an implementation that can be extended to the proposed RRSGNet .

This replication lays the groundwork for the architecture of RRSGNet.

4.4 RRSGNet: Architectural Concept and Design Choices

The proposed Resolution-Robust Shadow Generation Network (RRSGNet) builds
directly on the strengths of DMASNet while trying to address its limitations discussed
in 3.4.2. RRSGNet is designed to offer a more flexible and resolution-robust shadow gen-
eration method. To achieve this, some architectural design changes are introduced, and
the most significant change is the use of Fast Fourier Convolutions (FFCs). These
changes focus on making the model work in real-world scenarios, where images vary in

size and scene complexity.

4.4.1 Using FFCs for Resolution Robustness and Global Context

To overcome the fixed size input limitation in existing methods, RRSGNet integrates
FFCs into its feature extraction modules. The use of FFCs instead of noraml Con-
voloutianal layers is mainly inspired by the inpainting model LaMa [42|. As discussed
in 3.3.3, FFCs offer two important benefits relevant to this task. First, they enable the
network to access global context information early in the network because of their use
of the full receptive field in the frequency domain, where in normal CNNs this happens
deeper in the network as seen in Figure 3.2. Second, FFCs are naturally robust to changes
in input resolution, which makes them particularly suitable for tasks involving varying

image sizes.

Based on that, RRSGNet modifies the architecture of DMASNet by either replacing or

enhancing some of its normal convolutional layers with FFC layers. More specifically,

49



4 Concept and Methodology

these changes are applied to the main encoder modules E. and Fg, and to the decoder
D;. The use of FFCs in these parts of the network makes RRSGNet learn more adaptable
features that are not limited by a fixed image resolution. As a result, the network can
more easily handle input images of different sizes without needing to be retrained for each
new resolution. Also, FFCs can significantly improve computational efficiency, especially
on larger images, by performing convolutions as multiplications in the frequency domain
rather than in the spatial domain. This frequency domain operation becomes more
efficient as image size increases, offering a huge advantage in scenarios involving high-

resolution input images.

Also, due to that the wide receptive field introduces global awareness, that helps the
network predict shadow masks more accurately and produce shadows that appear natural

and consistent.

Despite these changes, RRSGNet still keeps the core two-stage design of DMASNet,
where the first stage focuses on predicting the shadow mask and the second stage fills in

the shadowed areas.

4.4.2 Stage 1: FFC-Enhanced Decomposed Mask Prediction

This is the first stage of the RRSGNet architecture, it focuses on predicting the shape
and size of the shadow that should be cast by the inserted object. In this stage the model
predicts a bounding box and a relative shadow shape. After that a final refinement then
brings these predictions together. In this work, the original architecture has been signifi-
cantly enhanced using Fast Fourier Convolutions (FFCs) to improve resolution robustness

and increase the model’s ability to understand broader contextual information.

FFC-based Encoder L.

e Purpose: This encoder is designed to extract the visual features from a the input
which consists of, the composite image, a mask of the inserted foreground object
relative to the background image, mask of existing background objects and a mask
for their shadows. They form a 6-channel tensor, 3 for the RGB composite image
and one for each mask. By using this input structure, the model can learn how
objects interact within the scene, including how their locations and shapes influence

can shadow.

50



4 Concept and Methodology

e Architecture Overview: The encoder has a structure like that of ResNet34,
which known for its strength in extracting hierarchical features. However, the stan-
dard convolutional layers are replaced with FFC-based blocks to improve context

awareness.
e Layer Details:

1. Initial Layer: Begins with a wide (7x7) convolution using FFCs, padded to
avoid artifacts around the edges. The large 7x7 kernel is to capture features
in the image across a wider area. This layer splits output into local and global

streams, preparing the features for further FFC layers.

2. Subsequent Layers: These are three layers that follow other, each including
several FFC-based residual blocks:

— The first layer maintains original resolution while deepening the feature
representation, allowing the network to learn more complex patterns by

combining with the initial layer features.

— The second and third layers progressively reduce resolution dimensions
by factors of 2, while doubling the number of feature channels. Each
downsampling step is followed by deeper FFC processing to extract more
features at this reduced resolution. This hierarchical downsampling cre-
ates a feature pyramid, allowing these layers to learn features at different

scales.

3. Final Processing: A final downsampling stage brings features to their lowest
spatial resolution, 1/8 of the original size, which is common for ResNet-like
backbones, to provide a significant reduction in resolution dimensions while
keeping essential information from the input. The output from local and

global branches is then merged into a single, combined feature map.

e Output: Is a feature map that summarizes both detailed local structure and the
global scene context. This output serves as the main input for shadow shape and

position prediction steps.

51



4 Concept and Methodology

Bounding Box Prediction Head

e Purpose: This module predicts the geometric transformations needed to shift
from the bounding box of the inserted object to the bounding box of the predicted

shadow. It effectively estimates where and how the shadow should fall in the scene.

e Architecture: The feature map from the encoder is first refined using a channel
attention mechanism, which helps the network focus on the most important, infor-
mative features. These refined features are then processed by several convolutional
layers, followed by global pooling to create a fixed-size feature vector. Finally, a
fully connected layer outputs four values that define the offset and scale of the

shadow relative to its object.

e Output: A 4-dimensional vector containing the predicted shift and size changes

for the bounding box of the shadow.

Shape Prediction Head

e Purpose: This part of the network focuses on predicting the actual shape of the
shadow. The shape is predicted at a lower resolution and will be scaled up and

refined later.

e Approach: The same encoder feature map is processed through several convolu-
tional layers to predict the shape mask. A final convolution maps this to a single
channel output, and a Tanh activation is applied to ensure the values of the output
pixels are in a range between -1 and 1, where 1 is the highest probability that this
is a shadow pixel and -1 is the least probability.

e Output: A low-resolution, normalized mask representing the general structure of
the shadow.

Rough Shadow Mask Construction

e This step combines the outputs of the bounding box and shape prediction heads

to form an initial rough version of the mask.

52



4 Concept and Methodology

e The shadow shape predicted in the shape head is geometrically warped to fit into
the predicted bounding box using affine transformation. This means each pixel
here is traced back to where it came from in the lower-resolution shadow shape,
predicted in the shape head. This process adjusts the shape so that it is it is

properly scaled and positioned within the scene.

e Output: A full-resolution shadow mask that roughly approximates the final shadow

location and shape.

FFC-Hybrid Decoder for Mask Refinement

e Purpose: The main purpose is to produce a final shadow mask that looks realistic

and matches the scene precisely.

e Structure: This decoder combines the strengths of the global context of FFCs

with traditional convolutions:

1. Initial Processing: The output of the encoder is processed at its original
resolution using FFCs. This captures any remaining global context needed for

refinement.

2. Upsampling: The feature maps are then gradually upsampled using a series

of standard convolution layers to recover full spatial resolution.

3. Final Composition: After upsampling, the features are combined with the
inserted object mask and the rough shadow mask from the previous step.
This combined input is then passed through standard convolutional layers to

sharpen and finalize the shadow.

e Output: A final high-resolution, refined shadow mask that aligns well with the

shape and geometry of the object and fits naturally into the scene.

4.4.3 Stage 2: FFC-Enhanced Shadow Filling

After obtaining the final shadow mask from Stage 1, the next step is to generate the
visual appearance of the shadow. This is done by predicting pixel intensities for each

pixel in the predicted shadow mask to match the lighting conditions of the scene.

53



4 Concept and Methodology

Flexible FFC-Based Encoder with FPN Eg

The goal of this encoder is to learn a multi-scale representation of the lighting conditions
of the scenes, textures, and the existing shadows and objects. This information is used
to help guide how the new shadow should look. The encoder is based on Fast Fourier
Convolution (FFC), which provides strong global context, and it integrates a Feature

Pyramid Network (FPN) to capture details at multiple resolutions.

e Input: The encoder takes as input the composite image, foreground and back-
ground object masks, and the background shadow mask, resulting in a six-channel
input. The shadow and object masks provide information that helps the model

understand how shadows naturally behave in the scene.

e Architecture: The encoder begins with a stem layer that does an initial feature
extraction and downsampling. This early reduction in resolution allows the network
to quickly capture broader higher-level context information. The input is then
passed through several layers, each designed to extract increasingly meaningful
features at different levels of detail. Each layer works on a smaller version of the
image but learns more meaningful and high-level information, helping the network

understand both fine details and the overall structure of the scene.

e Feature Pyramid Network: The FPN structure improves the encoder by com-
bining detailed high-resolution features with abstract low-resolution ones. It uses
a top-down path and side connections to merge features at different scales, helping

the model capture both fine textures and overall lighting.

e Output: The result is a multi-scale feature map that preserves important details

and context.

Additive Shadow Filling Module

After obtaining the feature map from the previous step, the next step is to generate the

final image with the shadow applied.

e Purpose: This module takes the refined shadow mask, features from the encoder
FEg, and the original composite image as inputs. It then predicts a darkening factor

for each pixel in the predicted shadowed areas. This lets the model control shadow

54



4 Concept and Methodology

intensity based on both local details and the overall scene context and allows for

different light intensity across the shadow
e Process:

— The feature map is first upsampled to match the original image size for proper

alignment.

— These features are combined with the image and the refined shadow mask and

used as input to a small convolutional network.

— The network outputs a per-pixel darkening factor between 0 and 1, where 0

means no darkening and 1 represents the maximum allowed darkening.

e Applying the Shadow: The predicted darkening factor is used to compute a
pixel-wise offset that darkens the image. This offset is applied only within the
shadow region, leaving the rest of the image unchanged. The darkened shadow
region is then blended into the original image to produce a natural looking shadow
effect.

e Output: The final output is the final image with the shadow generated. And
because the model adjusts the shadow strength at each pixel, it can make the

shadow look right for different surfaces and lighting, making it more realistic.

This two-part setup allows the model to create realistic shadows by combining a broad
understanding of the scene, using FFC and FPN, with a flexible method that adjusts

shadow pixels based on lighting and surface details.

4.5 Automation of Additional Mask Inputs

To improve the practicality and scalability of RRSGNet, the system incorporates an
automated task for predicting the background object mask (Mp,) and the background

shadow mask (Mps), to remove the need for manual annotation.

55



4 Concept and Methodology

Proposed Solution: Using SSIS SSIS | is employed to generate these masks. This

model is selected based on the following considerations:

¢ End-to-End Detection: SSIS detects both objects and their corresponding shad-
ows in a single stage, offering a much efficient approach than than deticting the
objects alone with a segmentaion model and then detecting the shadow with a

shadow detection model.

e Robust Framework: It is built on Detectron2, which make it have a strong
object detection and instance segmentation backbone, supporting reliable mask

generation.

e Output Compatibility: The instance masks produced by SSIS can be easily
adjusted to fit the input structure required by RRSGNet.

Integration into RRSGNet SSIS will be used as a pre-processing step within the
RRSGNet pipeline. It takes the original background image, prior to the insertion of
the new object, as input and produces My, and Mps. These masks are then used by
RRSGNet generate shadows.

Expected Outcome Using automated mask prediction allows for a more user-friendly
shadow generation system. Although the quality of generated shadows may be affected by
possible inaccuracies in SSIS predictions, this tradeoff is acceptable given the significant

improvement in usability.

4.6 Training details

The training process for RRSGNet is fully supervised, relying on multiple loss functions
that guide the network towards generating realistic shadows. Each loss is chosen to target

a specific part of the task.

56



4 Concept and Methodology

4.6.1 Loss Functions

e Reconstruction Loss (L1): This ensures that the generated image matches the
ground truth closely. L1 loss is used because it produces sharper results than L2

and is more robust to outliers, making it suitable for image generation tasks.

e Mask Loss (Weighted L1): This guides the accuracy of the predicted shadow
mask. A weighted version of L1 is applied to give more importance to shadow
pixels, which are often not as much compared to non-shadow areas. This helps the

model focus on correctly placing the shadow.

e Perceptual Loss (LPIPS): This encourages the output to look more realistic from
a human eye perspective. LPIPS compares features from deep networks rather than
raw pixels, making it better suited for evaluating the texture of the image and the

overall visual quality.

e Box Loss (CloU): This ensures the predicted bounding box for the shadow is
well aligned. CloU is used because it takes into account overlap, center alignment,

and shape consistency, making it more effective than simpler box losses.

e Shape Loss (L1): This helps the network learn the relative shape of the shadow
within its bounding box. The loss of L1 is effective here to capture the outline

without introducing blur.

4.6.2 Optimization Strategy
The Adam optimizer is used due to its strong performance in deep learning tasks. It

adapts the learning rate for each parameter, helping the model to converge quickly and

stably.

4.7 Evaluation Strategy

To evaluate RRSGNet and compare it with the baselines, a well-rounded evaluation
strategy is used. This includes both objective, numerical metrics and visual assessments

to measure shadow quality, mask accuracy, and perceptual realism.

o7



4 Concept and Methodology

4.7.1 Numerical Metrics: Measuring Performance

The following metrics will be used to evaluate specific aspects of the output of the

model:

Image Reconstruction Quality

e Root Mean Square Error (RMSE) It measures the average difference between
predicted and real pixel values. Chosen because it provides a clear sense of how far

off the prediction is per pixel.

e Peak Signal-to-Noise Ratio (PSNR) It measures the quality of an image by
comparing the signal (the image) to the noise (the error). Chosen because it is

widely accepted for image quality tasks.
Both metrics will be calculated over the full image and also just for the shadow region.

This helps evaluate both overall quality and how well the shadowed area is rendered.

Shadow Mask Accuracy

e Balanced Error Rate (BER) It measures errors in both shadow and non-shadow
areas equally. Which is important because shadow regions are much smaller, and
without a balanced metric, the result might be good because the effect of the

shadow pixels is smaller.

Also calculated for the entire mask and specifically for the shadow region as well, to focus

on how well shadow pixels are predicted.

Perceptual Image Quality

e LPIPS It measures similarity based on learned features from pre-trained deep
networks. It is chosen because it better reflects what looks realistic to the human

eye compared to the pixel-wise metrics.

58



5 Implementation

This chapter details the development environment, step-by-step module implementation,
model assembly, and training and evaluation pipeline setup. It also highlights challenges

encountered along the way and how initial designs were adapted overcome them.

5.1 Development Environment

5.1.1 Hardware Configurations

There were two main experiments for training RRSGNet on different setups.

Setup 1:

e GPU: NVIDIA GeForce RTX 4090

e VRAM: 24 GB

Used for the main training with a large dataset.

Setup 2:

e GPU: NVIDIA RTX 2000 Ada Generation Laptop GPU

e VRAM: 16 GB

Used to train on a smaller dataset and for running fast experiments to test different

modules and losses.

59



5 Implementation

5.2 DMASNet Replication

The first step in this project was to replicate the DMASNet architecture as a starting
point. This replication served two main purposes, to develop a deep understanding of
two-stage architecture of dmasnet and to build a codebase that could be extended into
the proposed RRSGNet architecture.

5.2.1 Initial Implementation Steps

The codebase was set up with separate files for each major component such as encoders,
decoders, prediction heads, shadow filler, and utility tools like data loading, loss functions,

and logging. Then the key parts of the DMASNet architecture were implemented.

e Stage 1 — Mask Prediction:

— Encoder E. for feature extraction.

The Box Head H,;, for bounding box regression.

The Shape Head Hj for relative shadow shape prediction.
— The Decoder Dy for refining the coarse shadow mask.
e Stage 2 — Shadow Filling:
— Encoder F; for extracting features relevant to shadow appearance.

— The attentive shadow filling mechanism as described in the original paper.

Each part of the network was implemented and tested alone to make sure everything
worked as expected. For each part a small test script was written to make sure that
the layers were connected correctly and that the outputs had the expected shapes. By
checking each part of the network this way, shape mismatches and other small bugs were

caught early, making it easier to assemble the full model without unexpected issues.

Data loaders were also implemented to handle the RSOBADataset and DESOBADataset
strucure, also loss functions as mentioned in the paper, logging and visualization scripts

for inspecting intermediate and final outputs.

60



5 Implementation

5.2.2 Challenges and Adaptations during DM ASNet Replication

Problem with the Attentive Shadow Filler: One of the first major issues was from
the shadow filling module. According to the DMASNet paper, this component should
darken specific regions of the image to simulate shadows by predicting RGB pixel values.
However, in practice, the results often looked strange, so instead of simply darkening
the masked area, the module would introduce odd colored pixels, in green, red, or blue.

Figure 5.1 shows an example of this issue.

PUE Compbiste
Sampie 0

Predscted Shadun Mask

1
(1]
ae
a4
a2
an

Figure 5.1: Example of the output after 1 epoch.

It did not make sense to have it predict RGB values for the shadow because it just needs
to be darker so there is need to mess with the colors of the pixels. So to fix this, a new
version of the filler was designed, an additive shadow filler. So, instead of predicting
full RGB pixel values, this new version learns how much to subtract from the existing
pixel brightness. Basically, how much to darken each pixel, without changing the color
itself. The new shadow filler predicts a darkening intensity for each pixel and this this
is multiplied by a constant Mazimum darkening factor. This approach kept the shadows

consistent with the original scene and looked much more natural Figure 5.3.

Input Composite
Sample 0

Ground Truth

Generated Image

Fredicted Shadow Mask

10
08
06 \
04
02
0.0

Figure 5.2: Example of the output after 1 epoch, with max darkening factor = —0.7.

61



5 Implementation

Predsted Shadow Mask

rin

00

Figure 5.3: Example of the output after 1 epoch, with max darkening factor = —0.9.

After testing by overfitting for around 50 epochs, it was decided to keep using the max-
imum darkening factor as -0.9, to avoid lighter shadow when it should be darker, and

-0.9 showed to work better with all shadow intensities.

Limitations of Standard L1 Loss for mask loss: Another issue came from the loss
function for the shadow mask. DMASNet originally used a standard L1 loss, but during
experiments it was shown that it had a problem. The model could just avoid predicting
shadows altogether and still get a decent loss score, so after one epoch it will just predict

a completely black shadow mask.

To solve this, a weighted L1 loss was implemented. This version places more emphasis
on false negatives, which are the pixels that should be shadow but were not predicted as
shadow. This made the model more sensitive to actual shadow regions and led to more

accurate mask predictions.

5.2.3 Training Setup and Limited Evaluation

The training setup built for DMASNet was also the base for RRSGNet’s pipeline. It

included:

e Mixed precision training for faster convergence and lower GPU memory usage ,re-

sulting in a much faster training.
e A custom PyTorch dataset class to load the specific structure of the datasets.

e Visualizations of intermediate outputs, shadow masks, and predictions.

62



5 Implementation

e Standard training utilities such as checkpointing, logging, and TensorBoard inte-

gration.

Due to the primary focus on developing RRSGNet and limited time, the replicated
DMASNet was not fully trained on the entire dataset. Instead, it was tested through
batch overfitting on the test dataset. These experiments were enough to confirm that

the model worked and that the changes made to the filler and loss were meaningful.

Figure 5.4: Example of DMASNet’s output after overfitting for 280 epochs.

63



5 Implementation

5.2.4 Outcome of DM ASNet Replication
The DMASNet replication phase, despite its limited training scope, was a crucial step.
It resulted in:

1. A functional, but adapted, implementation of the DMASNet architecture.

2. Identification of practical limitations in the original attentive shadow filler and L1

mask loss, leading to effective solutions.

3. A solid codebase for core model components, data loading, training loops, and

utility functions, which helped speed up the development of RRSGNet.

4. A deeper understanding of the challenges involved in realistic shadow generation,
which directly influenced the design of RRSGNet’s FFC-based modules and overall

structure.

This adapted DMASNet implementation provided the foundation for developing RRS-
GNet. It helped guide the design choices and served as a baseline for evaluating the

improvements introduced in the new model.

5.3 RRSGNet Implementation

This section explains how the main components of RRSGNet was implemented, based
on the design in the previous chapter. FEach part of the network was designed to work

with inputs of varying resolution and uses FFCs or standard convolutions as needed.

5.3.1 FFC Encoder for Mask Prediction

This encoder replaces DMASNet’s CNN with an FFC-based design to generate resolution-
robust features F, from the input tuple (I, M¢o, Myo, Mps).

64



5 Implementation

5.4 RRSGNet Components Implementation

Following the adaptations made to DMASNet, the key modules of the Resolution-Robust
Shadow Generation Network (RRSGNet) were developed. These components are de-
signed to support variable input resolutions and improve shadow prediction performance
by integrating Fast Fourier Convolutions . The following subsections outline each major

module, its role, and notable implementation details.

5.4.1 FFC Encoder for Mask Prediction

This module serves as the main feature extractor for the shadow mask prediction stage.

e Implementation:

— Based on a ResNet-like structure, using FFCResnetBlocks to process both

local and global features.

— The FFC blocks were configured with specific ratio_gin and ratio_gout
parameters, set as 0.5, to manage the split between local and global features.
Local Fourier Unit and gating, which are parts of the FFC block in the existing

library, were disabled for simplicity.

— Downsampling between stages is achieved using FFC_BN_ACT layers with a
stride of 2, which is an FFC layer followed by a Batch Normalization layer

and then an identity activation layer.

— The encoder is designed to produce an output feature map F; at a resolution
of Height/8 x Width/8 relative to the input.

— A final ConcatTupleLayer is used to merge the local and global features out-

puts from the last FFC block into a single tensor output F.

e Notes: Careful handling of the tuple structure across FFC layers was essential for

stable training and correct feature merging.

65



5 Implementation

5.4.2 Box Head

e Implementation:
— Uses a series of 3x 3 convolution layers with Instance Normalization and ReLLU.
— A Squeeze-and-Excitation (SE) block is used for channel-wise attention.

— Global pooling is applied before the final fully connected layer, allowing the

head to handle variable feature sizes.

5.4.3 Shape Head

e Implementation:

— Consists of four 3x3 convolutional blocks, which consist of standard convolu-

tional layer, Instance normalization and ReL.U.

— A final 3x3 convolutional layer reduces the feature map to a single channel,
producing the final mask where each pixel represents the predicted likelihood

of it being shadow.

— A Tanh () activation function is applied to scale the output mask to the range
[-1, 1].

5.4.4 FFC-Hybrid Decoder

e Implementation:

— The decoder begins by processing the features F, using a series of FFCRes-
netBlocks.

— Upsampling is performed using standard 2D convolutional layers instead of
FFC-based upsampling. This choice helps reduce computational cost while

maintaining sufficient spatial detail.

— After upsampling, a convolutional refinement block combines the decoder’s
feature map with the rough shadow mask M fs_rough and the foreground object

mask My, to refine the final prediction.

66



5 Implementation

— Before applying the final Tanh () activation, a fixed bias derived from M fs_rough
is added. This bias subtly boosts the confidence in regions already predicted

as shadow, helping the network focus on likely shadow areas.

5.4.5 FFC Encoder for Shadow Filling

e Implementation:

— The core architecture uses FFCResnetBlock and FFC BN ACT layers sim-
ilar to FFCEncoderEc.

— Then four stages of FFC blocks further process features, with downsampling
between each stage, resulting in features at H/32 x W/32 in the deepest FFC

layer.

— A Feature Pyramid Network (FPN) structure is implemented on top of the
FFC backbone.

— Top-down upsampling combines coarse and fine features.

Final 3x3 convolution produces the final feature map F at H/4 resolution.

5.4.6 Flexible Additive Shadow Filling

e Implementation:

Features F are upsampled to match the resolution of I..

— A small CNN predicts a per-pixel darkening factor « (0 to 1) using Fj, I,
and Mfs~

— An additive offset is calculated as o x max_dark_offset, which is -0.9, and

added to I. resulting in Igq k.

— The final output is then I. without the masked area added to it is Igq.; of

only the masked area.

67



5 Implementation

5.5 RRSGNet Model Assembly

5.5.1 Overview

e Stage 1: Shadow Mask Prediction. The input image I. is combined with

object and background masks (Mo, My, Mps) and passed through the encoder E.
to extract features F,. The two heads then predict a rough shadow shape M and a
bounding box. These are used to construct a rough shadow mask Mys ;ougn using
geometric warping to fit the shadow in the box. A decoder then refines this into
the final predicted shadow mask M ]’c s

Stage 2: Attentive Shadow Filling. The same inputs are encoded again to
produce the features F§, which, together with M} s and I, are used to calculate an
additive darkening offset. This offset is applied to shadow regions in I. to generate

the final image I,.

5.5.2 Forward Pass Summary

Given an input I. and masks (Mj,, Mo, Mys), the network does the following:

1.

Merge the inputs together and encode them through FE. to produce feature map
F..

. Predict the bounding box r and the shadow shape Mg, through passing F, to the

box head and the shaper head respectively.

. Generate M fs_rough by placing and wrapping the predicted shadow shape M; into

the bounding box.

Then this is passed to the decoder to refine My ougn to produce the final shadow
mask M.

The inputs are encoded again through Eg to produce F.

. Use Fy, My, and I. to calculate and apply darkening for the predicted shadow

area, resulting in a fila image I, with a show casted for the insterted object.

68



5 Implementation

5.6 Utilities

A range of utilities were implemented to support the training, evaluation, and visualiza-

tion.

5.6.1 Data Loading and Preprocessing

This handles the loading of RASOBA and DESOBA datasets, loading tuples of images
and masks: (1., Mo, Myo, Mys, Iy, My,). This includes:

e Resizing: All images and masks were resized to a specific resolution for training.

e Normalization: Input images were normalized to the range [—1, 1], suitable for

dealing with Tanh activation functions.

5.6.2 Experiment Management and Logging

e Logger): The Logger class tracked experiments via TensorBoard, also logging
scalar metrics such as losses, scores and the visual outputs. It also handled the
basic model checkpointing, saving both the latest model state and the best one
with the highest score in chosen metric, and supported resuming from checkpoints

with the complete state of the training.

e Checkpoint Manager: Was developed after the logger to save more checkpoints
if needed. It saves only the top-k checkpoints based on a chosen validation metric
such as LPIPS, PSNR, etc. This is done using a min or a max heap, depending on
the metric, whether the higher the better or if the lower the better.

5.6.3 Metrics Calculation

The metrics mentioned in the Concept chapter were implemnted here and variations were

made for the specific shadow patches, and these are s_psnr, s rmse and s_ ber.

69



5 Implementation

5.6.4 Visualization

This is to visualize the model performance througout the traing. It includes:

e Comparison Grids: A side by side visualizations of inputs, predicted outputs,

and ground truths, with the bounding boxes overlayed where relevant.

e Training Curves: Plotted trends of key metrics across epochs, helping to track

the training process. These images would update each epoch without the need to

create extra images.

e Mask Detail: For debuggin to check the shadow prediction process, this dis-

plays intermediate mask predictions, decoder features, and refined masks for given

sample.

e Metrics Archiving: Logs all training metrics to a JSON files, that gets updated

each epoch as well.

5.7 Training Pipeline Implementation

The core logic is structured around a training loop for epochs. Each epoch includes:

1. Training Phase: The model is set to training mode. Then for each batch in the

epoch:

Input tensors (Ic, Mfo, Myo, Mys) and ground truth targets (I i, Mys 4¢) are
loaded to the appropriate device (CPU/GPU).

A forward pass through RRSGNet produces the predictions most importantly
the generated image (1), final shadow mask (M) and the predicted bounding
box (Bs_pred)

The Loss module calculates the total loss based on these outputs and the

targets.
Gradients are calculated using backpropagation.
Model parameters are updated using the Adam optimizer.

Batch loss values are then logged to TensorBoard for real-time monitoring.

70



5 Implementation

Training is stabilized and accelerated using;:
e Automatic Mixed Precision: For memory efficient and faster training.

e Gradient Accumulation: To effectively simulate larger batch sizes if needed.
This means The weights will not get updated until a chosen number batches

has been seen by the model.
e The training script also supports training on multiple GPUs if available.

2. Validation Phase: Validation runs are triggered at intervals defined in the con-

figuration file. During this phase:
e The model is set to evaluation mode, so gradient computation is disabled.
e Predictions are generated for each batch from the validation dataset.

e Evaluation metrics, including RMSE, PSNR, BER and LPIPS, are computed

using the Metrics module.

e An average of these metrics across the epoch is calculated and logged.

A sample batch is saved for visualization.

After each validation cycle, model checkpointing is managed by the logger and the check-

point Manager.

The Visualization utility is then used to generate visualizations of the model outputs,
including comparison grids and detailed mask progression views. These visual assets are

logged to TensorBoard and saved locally for inspection.

Finally, training curves and a complete history of metrics are exported to a JSON file,

providing a detailed and a summary of the training run.

5.7.1 Configuration Management

All major hyperparameters and settings for training and evaluation are in a single Python
module. This module defines a Config class, which acts as a global configuration object
that other modules across the codebase can import and use. The following is managed
by the config file:

71



5 Implementation

5.8

Data Paths: Specifies directories for datasets, for training and validation.

Experiment Settings: Includes setting a name for the experiment, setting a
path for the log, and option for setting a path for resuming training from a specific

checkpoint.

Training Parameters: Defines important training parameters such as the number
of epochs, batch sizes, learning rates , and optimizer beta values. Also choosing
a specific size to resize images for training and validation and setting the gradient

accumulation steps.
Loss Weights: Setting weights for each loss component.

Checkpointing: The number of checkpoints to be saved and based on which

metric.

Logging and Visualization: The frequency of running validation, and generating

visual outputs.

Performance and Hardware Settings: Setting the number of CPU workers
for loading the data, and flags to control GPU usage, multi-GPU support, model

compilation and mixed precision.

Inference Pipeline Implentation

This covers the implementation of the inference pipeline with automated background

masks detection.

5.8.1 Overview

e A shadow segmentation model (SSIS) to analyze the background and extract rele-

vant shadow and object masks.

e The proposed RRSGNet model to generate realistic shadows for newly placed fore-

ground objects.

This setup allows a user to load a background image, place a new object anywhere in

the scene, and then generate a composite image with plausible shadows.

72



5 Implementation

5.8.2 Background Analysis with SSIS

When a background image is first loaded, it is processed using a pre-trained SSIS model.

This model predicts two important binary masks:

e Mbo — binary mask for object shadows already present in the scene.

e Mbs — binary mask shadows of the shadows of the background objects.

5.8.3 Placing a Foreground Object

While the background image is being analyzed, a user can place an object anywhere
on the image. The object is then represented by a binary mask (Mfo) that marks its
location. This mask is the same size as the background image (Ic), making it easy to

align and combine the inputs.

5.8.4 Shadow Generation with RRSGNet

With the composite image, inserted object mask, and background objects and shadows
available, the pipeline forwards the data to RRSGNet. Before the model processes the
inputs, all tensors are resized and padded if needed to ensure compatibility with the
network’s input dimensions, meaning that resolution is divisible by 32, so there would

not be a mismatch after downsampling and the upsampling.

RRSGNet then generates a realistic shadow corresponding to the object placement.

5.8.5 Usage Summary

The full process involves three steps:

1. Load and process the background image using SSIS to extract Mbo, and Mbs.
2. Add a foreground object then the mask Mfo and Ic will be generated.

3. Generate a shadow with RRSGNet, resulting in an output that can be saved, or
edited.

73



6 Experiments and Results

This chapter details the experimental setup, training configurations, dataset splits, and
results for the DMASNet replication and the proposed RRSGNet model. Experiments
were conducted in several phases to iteratively validate design decisions and measure

performance under different constraints.

6.1 DMASNet Replication: Overfitting

To validate the experimental setup and ensure correct implementation, DMASNet was
replicated and run in a batch overfitting using the DESOBA test set. This type of test
is used to confirm whether a model can perfectly memorize a small amount of data,

indicating that the training pipeline and loss computations are functioning correctly.

The overfitting was successful, showing that the model was implemented correctly. No

further training of DMASNet was conducted beyond this due to time constraints.

74



6 Experiments and Results

Figure 6.1: Example of DMASNet after overfitting for 280 epochs.

6.2 RRSGNet Experiments

The RRSGNet was trained in two different setups with different conditions.

75



6 Experiments and Results

6.2.1 First Experiment

In the first experiment, training was done on an RTX 2000 GPU with a batch size of 10.
The dataset used was a combined version of DESOBA v1 and v2, while evaluation was
performed on the DESOBA test set. Under these conditions, the model showed minimal
improvement and poor learning, confirming the limitation of using such a small dataset
for this task. These results highlighted the need for the larger training set and how much

of a difference it makes.

Figure 6.2: Example of RRSGNet (Experiment 1) after 270 epochs.

6.2.2 Main Training Experiment

This experiment was conducted on an RTX 4090 which allowed for handling larger data

and faster training. This experiment is divided into two parts, first is pretraining the

76



6 Experiments and Results

model using the synthetic dataset RASOBA[44], and the second is fine-tuning the model
on real-world data using the combined dataset of DESOBA v1 and v2[15][28].

The original DMASNet’s paper pretrained their model for 50 epochs on the RASOBA
dataset and fine-tuned it further for 1000 epochs with only DESOBA v1. Since DESOBA
vl is approximately 10000 images, and the combined dataset of DESOBA v1 and v2 is
approximately 40000 images, so it was estimated for RRSGNet to acheive comparable
results to DMASNet after 250 epochs of fine-tuning on DESOBA v1 and v2.

Pretraining on RASOBA

e Dataset: RASOBA

Epochs: 50

Batch Size: 16

e Precision: Mixed precision for faster training.

Loss weights ()\): All set to 10, to avoid early convergence.

e Learning rate: 0.0001 common practica and recommended by DMASNet’s paper|44|

PSNR BER RMSE LPIPS
31.54 18.59 7.39 0.011

Table 6.1: Average results of the metrics on validation set after pretraining.

Fine-Tuning on Desoba Real-World Data

e Dataset: Desoba vl and v2

Epochs: 500

Batch Size: 10

e Precision: Mixed precision disabled.

Loss weights (\): All set to 10

e Learning rate: 0.00003

77



6 Experiments and Results

Figure 6.3: Loss curve from pretraining on the RASOBA dataset for 50 epochs

Mixed precision had to be disabled in this session due to frequent instability. This is
because the mixed percision support for fast fourier transform, which is used in the FFC
blocks is currently experimental in PyTorch. It was also unstable in the pretraining
run but would eventually work when resuming or restarting the training process, but in
the fine-tuning run it would not work properly at all, causing GPU memory leaks and

therefore leading to out of memory errors.

Using full precision requires more memory that is why the batch size here is set to 10

according to the equation LRyew = LRog X % [11].

Checkpoint selection was made at epoch 441, where the model’s outputs showed the

best perceptual quality and realism.

PSNRT BER] RMSE| LPIPS|
34.88 16.81 5.79 0.0076

Table 6.2: Average results of the metrics on validation set (256x256) after fine-tuning at
epoch 441.

78



6 Experiments and Results

Figure 6.4: Sample predictions from RRSGNet after pretraining

Figure 6.5: Loss curve after fine-tuning on the DESOBAv1v2 dataset for 447 epochs

79



6 Experiments and Results

Figure 6.6: Sample predictions from RRSGNet at epoch 441

80



6 Experiments and Results

6.3 Evaluation and Comparison

To measure performance, several standard image quality metrics were calculated for

RRSGNet and compared to other baselines. All models were evaluated on the Desoba
test set using PSNR, SSIM, FID, and LPIPS.

SGRNet

';",6

Composite

DMASNet

RRSGNet

Figure 6.7: Example results of different models

Model RMSE| PSNRT BER/]
RRSGNet 5.79 34.88 16.81

SGRNet 4.676 36.898  27.233
DMASNet 4.703 37.149  24.295

Table 6.3: Performance comparison on DESOBA test set (256x256)

6.4 Testing at Different Input Resolutions

Groundtruth

To assess the robustness of the model to different resolutions, it was tested across a range

of input resolutions. This is crucial for applications where the image dimensions may not

match the training setup.

Model RMSE| PSNRT?

BER| LPIPS|

128 %128 5.68
256 %256 5.79
512x512 5.81

1280720 6.14
1920x 1080 5.86

35.28
34.88
35.10
34.47
35.63

25.89
16.81
22.44
26.29
27.34

0.0090
0.0076
0.0083
0.0088
0.0093

Table 6.4: RRSGNet performance across different resolutions

81



6 Experiments and Results

The results show that the model maintains consistent output quality across most scales,
with only minor degradation observed at the highest resolutions. This shows strong

generalization capabilities beyond the resolution used during training.

82



7 Discussion

7.1 Replication of DM ASNet

Replicating the DMASNet architecture [44] on a small subset of the DESOBA dataset
confirmed the correct implementation and established a functional training pipeline. This
step provided essential insight into the architecture’s mechanics and served as a founda-
tion for the proposed RRSGNet.

7.2 RRSGNet Performance Evaluation

Initial RRSGNet training using only the DESOBA v1 and v2 datasets, under limited
computational resources, showed minimal progress. This highlighted the insufficiency
of small datasets for training deep networks in shadow generation and motivated the

pre-training approach using the larger, more diverse RASOBA dataset.

7.2.1 Pre-training and Fine-tuning

Pre-training on RASOBA allowed RRSGNet to learn a broad representation of shadow
patterns. Loss curves showed consistent improvement, and early visual results showed
reasonable shadow formation, although synthetic in appearance. Fine-tuning then on
DESOBA v1 and v2 significantly improved realism and generalization for real-world data,
as shown in the visual outputs and the improved evaluation metrics. This has validated
the training strategy and emphasized the importance of large-scale pre-training followed

by domain-specific fine-tuning.

83



7 Discussion

7.2.2 Comparison with Baseline Models

RRSGNet delivered mixed results compared to DMASNet and SGRNet. Although RRS-
GNet did not surpass them in RMSE and PSNR, it performed better in BER, indicating
stronger accuracy in mask placement. The FFC-based architecture contributed to this
improvement due to its enhanced global context capabilities. LPIPS scores further sup-
ported the perceptual quality of RRSGNet’s outputs, although a direct comparison for

this metric with other models was not available as it was not published.

7.2.3 Generalization Across Resolutions

The main design goal was to maintain performance across varying image resolutions with-
out retraining. Evaluation showed that RRSGNet remained stable from low resolutions
(128 x 128) to full HD (1920 x 1080). LPIPS remained nearly constant, while RMSE
and PSNR fluctuated slightly, and BER showed some changes at extreme resolutions.
These results confirmed the advantage of using FFCs to achieve resolution robustness,

especially when compared to traditional CNN-based models.

7.2.4 Automated Mask Prediction

RRSGNet was tested using both ground-truth and predicted masks (M, and Myy).
Results suggested that the model maintained reasonable performance with predicted
masks, though slight degradation was observed. This indicates a degree of robustness to
auxiliary mask errors, an important trait for practical deployment without ground-truth
data.

7.3 Limitations

Despite its strengths, RRSGNet faces several limitations:

e Dependence on Auxiliary Masks: The quality of predicted My, and Mp; masks
affects the final output. Inaccurate inputs can badly affect shadow placement and

realism.

84



7 Discussion

e Pixel-level Accuracy: Although RRSGNet achieves high perceptual quality, it
does not outperform baselines in pixel-wise metrics such as RMSE or PSNR. This
trade-off is typical when optimizing for realism rather than strict pixel correspon-

dence.

e Sensitivity to Shadow Orientation: Most training data featured objects casting
shadows downward. As a result, when tested on bird’s-eye images where shadows
should appear to the side or above, the model still tends to place shadows under-
neath. This bias reduces generalization across viewing angles. A potential remedy
involves augmenting the dataset with rotated versions of each image to expose the

model to all shadow directions.

e Increased Training Requirements: The FFC blocks, while offering greater
global context awareness and resolution generalization, are architecturally more
complex than standard convolutional layers. As a result, RRSGNet may require
longer training durations or larger datasets to converge effectively, potentially ex-
plaining why DMASNet and SGRNet outperform it on some low-level metrics de-

spite simpler designs.

e Failure Cases in Complex Scenes: In certain challenging scenarios, such as
complicated structures, or bad lighting, the generated shadows can contain arti-

facts. Further refinement and a more diverse dataset may help address these issues.

7.4 Relation to Existing Work

RRSGNet builds upon DMASNet’s two-stage shadow generation pipeline but replaces
core components with FFCs to enable resolution robustness. Unlike DMASNet, which is
limited to a fixed input size, RRSGNet processes varied resolutions with minimal degra-
dation. In addition, the improved BER indicates improved mask prediction, probably
due to the global context provided by the FFCs.

The use of FFCs is inspired by their success in LaMa [42], where they contributed to
resolution-robust inpainting. RRSGNet extends this architectural principle to shadow
synthesis, a more structurally complex task. By incorporating FFCs into a structured
generation pipeline, RRSGNet bridges concepts from inpainting and compositional image

understanding.

85



7 Discussion

Overall, RRSGNet contributes a resolution robust and visually strong approach that of-

fers practical benefits for real-world image editing and augmented reality applications.

86



8 Conclusion and Future Work

This chapter summarizes the key outcomes of the thesis and outlines possible directions
for future research and development based on the limitations and observations discussed
in Chapter 7.

8.1 Conclusion

This thesis introduced RRSGNet, a novel model for generating realistic shadows in
composite images that operates effectively across a wide range of input resolutions by
integrating Fast Fourier Convolution (FFC) blocks. These blocks enable the model to
capture both local details and global context, enhancing flexibility and robustness com-
pared to traditional convolution-based methods like DMASNet.

The project addressed four main goals:

1. Replication of DMASNet: The baseline replication was completed, although
it took approximately six weeks instead of the four planned. This delay was due
to the complexity of the DMASNet architecture and practical challenges with its
shadow filling mechanism and loss functions, necessitating adaptations such as the
additive shadow filler and weighted L1 loss. This replication provided essential

understanding and a solid foundation for the project.

2. Design and Implementation of RRSGNet: Building on the DMASNet frame-
work, RRSGNet was implemented efficiently within about two weeks by replacing
traditional convolution blocks with FFCs to enable resolution robustness. The
model was pre-trained on the large synthetic RASOBA dataset and fine-tuned on
real-world DESOBA and DESOBAv2 datasets. It produced visually realistic shad-

ows and performed competitively, especially on structural metrics like BER. Most

87



8 Conclusion and Future Work

importantly, RRSGNet handled varying input resolutions without retraining or

resizing, fulfilling a key practical requirement.

3. Integration of Automated Mask Prediction: The system included automated
background mask prediction using a pre-trained SSIS model, reducing reliance on
manual mask inputs and enhancing usability. RRSGNet showed reasonable perfor-

mance using these automatically predicted masks.

4. Visual Evaluation: Due to extended time spent on DMASNet replication and
RRSGNet training, the planned user study could not be completed within the

project’s timeframe.

RRSGNet’s ability to process images at different resolutions without retraining presents
a significant advantage for real-world applications. Nonetheless, challenges remain, such
as sensitivity to the quality of predicted masks and not generalizing well to images where
the shadow should not be beneath the object. These areas suggest promising directions

for future work.

Overall, this thesis establishes RRSGNet as a strong foundation for resolution-robust

shadow generation.

8.2 Future Work

There are several ways this work can be expanded and improved:

e Data Augmentation for Better Shadow Direction: The training datasets
mostly contain objects with shadows cast directly beneath them. This has caused
the model to consistently cast shadows downward, even in situations where a dif-
ferent direction would be more realistic, such as in a top-down view. Rotating the
training data in different directions could help the model learn a wider variety of

shadow placements.

e Reducing Dependence on Input Masks: The quality of predicted My, and
My masks can affect how realistic the final shadow looks. A useful improvement
would be training the model to work without these masks, relying instead only on
the composite image and the foreground object mask (My,). This could make the

model more robust and easier to use in practice.

88



8 Conclusion and Future Work

e Larger and More Diverse Training Sets: Since FFCs allow the model to work
across different resolutions, training on a larger and more varied dataset could help
it generalize even better. This might also improve pixel-level performance metrics

while keeping the benefits seen in perceptual quality.

Overall, RRSGNet lays the groundwork for more flexible and realistic shadow generation.
With further refinement in training methods and data preparation, it could become a

more powerful tool for applications in image editing, augmented reality, and beyond.

89



Bibliography

1]

2]

3]

4]

[5]

[6]

ABADI, Martin ; BARHAM, Paul ; CHEN, Jianmin ; CHEN, Zhifeng ; DAVIS,
Andy ; DEAN, Jeffrey ; DEVIN, Matthieu ; GHEMAWAT, Sanjay ; IRVING, Geof-
frey ; ISARD, Michael ; KUDLUR, Manjunath ; LEVENBERG, Josh ; MONGA, Ra-
jat ; MOORE, Sherry ; MURRAY, Derek G. ; STEINER, Benoit ; TUCKER, Paul ;
VASUDEVAN, Vijay ; WARDEN, Pete ; WICKE, Martin ; YU, Yuan ; ZHENG, Xi-
aoqiang: TensorFlow: A system for large-scale machine learning. 2016. — URL
https://arxiv.org/abs/1605.08695

A1vi, Farooq: PyTorch vs TensorFlow in 2025: A Comparative Guide of Al Frame-
works. In: AI Careers (2024). — URL https://opencv.org/blog/pytorch-

vs—tensorflow/

BARRON, Jonathan T. ; MALIK, Jitendra: Shape, Illumination, and Reflectance
from Shading. 2020. — URL https://arxiv.org/abs/2010.03592

CHaI, Tianfeng ; DRAXLER, R.R.: Root mean square error (RMSE) or mean
absolute error (MAE)?— Arguments against avoiding RMSE in the literature. In:
Geoscientific Model Development 7 (2014), 06, S. 1247-1250

CHEN, Bi-Shiun ; KAE, Arcot: Toward realistic image compositing with adversarial
learning. In: Proceedings of the IEEE/CVFE Conference on Computer Vision and
Pattern Recognition, 2019, S. 8415-8424

CH1, Lu ; JiaNG, Borui ; Mu, Yadong: Fast Fourier Convolution. In:
LAROCHELLE, H. (Hrsg.) ; RanzaTto, M. (Hrsg.) ; HADseELL, R. (Hrsg.) ;
BavcaN, M.F. (Hrsg.) ; LiN, H. (Hrsg.): Advances in Neural Informa-
tion Processing Systems Bd. 33, Curran Associates, Inc., 2020, S. 4479-4488.
— URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/2fd5d4lec6cefabd7e32164d56242690b1-Paper.pdf

90



Bibliography

7]

18]

19]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

ConNG, Wenyan ; ZHANG, Jianfu ; Niu, Li ; L1u, Liu ; LING, Zhixin ; L1, Weiyuan ;
ZHANG, Liqging: DoveNet: Deep Image Harmonization via Domain Verification.
2020. — URL https://arxiv.org/abs/1911.13239

CuN, Xiaodong ; PUN, Chi-Man: Improving the Harmony of the Composite Image
by Spatial-Separated Attention Module. In: IEEE Transactions on Image Processing
29 (2020), S. 4759-4771. — URL http://dx.doi.org/10.1109/TIP.2020.
2975979. — ISSN 1941-0042

DEBEVEC, Paul: Rendering synthetic objects into real scenes, 08 2008, S. 1

DoNNELLY, William ; LAURITZEN, Andrew: Variance shadow maps, 01 2006,
S. 161-165

GovAL, Priya ; DOLLAR, Piotr ; GIRSHICK, Ross ; NOORDHUIS, Pieter ;
WESOLOWSKI, Lukasz ; KYROLA, Aapo ; TULLOCH, Andrew ; JIA, Yangqing ; HE,
Kaiming: Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour. 2018. —
URL https://arxiv.org/abs/1706.02677

GuAN, Huankang ; Xu, Ke ; LAU, Rynson W. H.: Delving into Dark Regions for
Robust Shadow Detection. 2024. — URL https://arxiv.org/abs/2402.13631

HE, Kaiming ; ZHANG, Xiangyu ; REN, Shaoqing ; SUN, Jian: Deep Residual
Learning for Image Recognition. 2015. — URL https://arxiv.org/abs/1512.
03385

He, Kaiming ; ZHANG, Xiangyu ; REN, Shaoqing ; SUN, Jian: Identity Mappings in
Deep Residual Networks. 2016. — URL https://arxiv.org/abs/1603.05027

HONG, Yan ; N1u, Li ; ZHANG, Jing: Shadow generation for composite image in
real-world scenes. In: Proceedings of the AAAI Conference on Artificial Intelligence
Bd. 36, 2022

IBM: What are convolutional neural networks? In: IBM (2020). - URL https:

//www.ibm.com/think/topics/convolutional—-neural-networks

IOFFE, Sergey ; SZEGEDY, Christian: Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. In: BACH, Francis (Hrsg.) ;
BLEI, David (Hrsg.): Proceedings of the 32nd International Conference on Machine
Learning Bd. 37. Lille, France : PMLR, 07-09 Jul 2015, S. 448-456. — URL
https://proceedings.mlr.press/v37/1io0ffel5.html

91



Bibliography

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

IsoLA, Phillip ; ZHU, Jun-Yan ; ZHOU, Tinghui ; EFROS, Alexei A.: Image-to-
Image Translation with Conditional Adversarial Networks. 2018. — URL https:
//arxiv.org/abs/1611.07004

JANOCHA, Katarzyna ; CZARNECKI, Wojciech M.:  On Loss Functions for Deep
Neural Networks in Classification. 2017. — URL https://arxiv.org/abs/
1702.05659

JIN, Rui ; N1U, Qiang: Automatic Fabric Defect Detection Based on an Improved
YOLOv5. In: Mathematical Problems in Engineering 2021 (2021), 09, S. 1-13

JOHNSON, Justin ; ALAHI, Alexandre ; FEI-FEI, Li: Perceptual Losses for Real-
Time Style Transfer and Super-Resolution. 2016. — URL https://arxiv.org/
abs/1603.08155

KARscH, Kevin ; SUNKAVALLI, Kalyan ; HADAP, Sunil ; CARR, Nathan ; JIN,
Hailin ; FONTE, Rafael ; SITTIG, Michael: Automatic Scene Inference for 3D Object
Compositing. 2019. — URL https://arxiv.org/abs/1912.12297

KRrIZHEVSKY, Alex: Learning Multiple Layers of Features from Tiny Images. In:
University of Toronto (2012), 05

KRIZHEVSKY, Alex ; SUTSKEVER, Ilya ; HINTON, Geoffrey: ImageNet Classifica-

tion with Deep Convolutional Neural Networks. In: Neural Information Processing
Systems 25 (2012), 01

LECUN, Y. ; BorTou, L. ; BENGIO, Y. ; HAFFNER, P.: Gradient-based learning
applied to document recognition. In: Proceedings of the IEEE 86 (1998), Nr. 11,
S. 2278-2324

LECUN, Yann ; BENGIO, Y. ; HINTON, Geoffrey: Deep Learning. In: Nature 521
(2015), 05, S. 436-44

Liu, Daquan ; LONG, Chengjiang ; ZHANG, Hongpan ; YU, Hanning ; DONG,
Xinzhi ; X1A0, Chunxia: ARShadowGAN: Shadow Generative Adversarial Net-
work for Augmented Reality in Single Light Scenes. In: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020

Liu, Qingyang ; YOU, Junqgi ; WANG, Jianting ; TA0, Xinhao ; ZHANG, Bo ; NIu,
Li: Shadow Generation for Composite Image Using Diffusion model. 2024. — URL
https://arxiv.org/abs/2403.15234

92



Bibliography

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Liu, Qingyang ; YouU, Junqi ; WANG, Jianting ; TAO, Xinhao ; ZHANG, Bo ; NIU,
Li: Shadow Generation for Composite Image Using Diffusion model. 2024. — URL
https://arxiv.org/abs/2403.15234

NAIR, Vinod ; HINTON, Geoffrey: Rectified Linear Units Improve Restricted Boltz-
mann Machines Vinod Nair, 06 2010

Niu, Li ; CoONG, Wenyan ; Liu, Liu ; HONG, Yan ; ZHANG, Bo ; LIANG, Jing ;
ZHANG, Liqing: Making Images Real Again: A Comprehensive Survey on Deep
Image Composition. 2025. — URL https://arxiv.org/abs/2106.14490

O’BRIEN, James ; FARID, Hany: Exposing Photo Manipulation with Inconsistent
Shadows. In: ACM Transactions on Graphics - TOG 32 (2012), 05, S. 1-11

O’SHEA, Keiron ; NASH, Ryan: An Introduction to Convolutional Neural Networks.
2015. — URL https://arxiv.org/abs/1511.08458

PARK, Taesung ; EFROS, Alexei A. ; ZHANG, Richard ; ZHU, Jun-Yan: Contrastive
Learning for Unpaired Image-to-Image Translation. 2020. — URL https://arxiv.
org/abs/2007.15651

PaszkE, Adam ; GROSS, Sam ; MASSA, Francisco ; LERER, Adam ; BRADBURY,
James ; CHANAN, Gregory ; KILLEEN, Trevor ; LIN, Zeming ; GIMELSHEIN, Natalia ;
ANTIGA, Luca ; DESMAISON, Alban ; KOPF, Andreas ; YANG, Edward ; DEVITO,
Zach ; RAISON, Martin ; TEJANI, Alykhan ; CHILAMKURTHY, Sasank ; STEINER,
Benoit ; FANG, Lu ; Bal, Junjie ; CHINTALA, Soumith: PyTorch: An Imperative
Style, High-Performance Deep Learning Library. 2019. — URL https://arxiv.
org/abs/1912.01703

PEARCE, Tim ; BRINTRUP, Alexandra ; ZHU, Jun: Understanding Softmax Confi-
dence and Uncertainty. 2021. — URL https://arxiv.org/abs/2106.04972

PEREZ, P. ; GANGNET, M. ; BLAKE, A.: Poisson Image Editing. In: Proceedings of
the ACM SIGGRAPH 2003 Conference, 2003, S. 313-318

PyTorcH: BCE Loss. In: Pytorch Documentation. — URL https://docs.
pytorch.org/docs/stable/generated/torch.nn.BCELoss.html

RONNEBERGER, Olaf ; FISCHER, Philipp ; BROX, Thomas: U-Net: Convolutional
Networks for Biomedical Image Segmentation. 2015. — URL https://arxiv.
org/abs/1505.04597

93



Bibliography

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]

SARA, Akter M. ; UDDIN, M.: Image Quality Assessment through FSIM, SSIM, MSE
and PSNR—A Comparative Study. In: Journal of Computer and Communications
(2019). - URL 10.4236/5cc.2019.73002.

SIMONYAN, Karen ; ZISSERMAN, Andrew: Very Deep Convolutional Networks for
Large-Scale Image Recognition. 2015. — URL https://arxiv.org/abs/1409.
1556

SUVOROV, Roman ; LOGACHEVA, Elizaveta ; MASHIKHIN, Anton ; REMIZOVA,
Anastasia ; ASHUKHA, Arsenii ; SILVESTROV, Aleksei ; KONG, Naejin ; GOKA,
Harshith ; PARK, Kiwoong ; LEMPITSKY, Victor: Resolution-robust Large Mask
Inpainting with Fourier Convolutions. 2021. — URL https://arxiv.org/abs/
2109.07161

SWAPNA: Convolutional Neural Network | Deep Learning. In: Developers Breach
(2020). — URL https://developersbreach.com/convolution-neural-

network—-deep-learning

Tao0, Xinhao ; CAO, Junyan ; HONG, Yan ; Niu, Li: Shadow Generation with
Decomposed Mask Prediction and Attentive Shadow Filling. In: Proceedings of the
AAAI Conference on Artificial Intelligence, 2024

Tsar, Y.-H. ; CHEN, Y.-Y. ; Hsied, J-W. ; YANG, M.-H.: Deep Image Har-
monization. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern  Recognition (CVPR), URL https://openaccess.thecvf.com/
content_cvpr_2017/html/Tsai_Deep_Image_Harmonization_CVPR_
2017_paper.html, 2017, S. 1-9

ULYANOV, Dmitry ; VEDALDI, Andrea ; LEMPITSKY, Victor: Instance Nor-
malization: The Missing Ingredient for Fuast Stylization. 2017. — URL https:
//arxiv.org/abs/1607.08022

VALENGA, Lucas ; ZHANG, Jinsong ; GHARBI, Michaél ; HOLD-GEOFFROY, Yan-
nick ; LALONDE, Jean-Frangois: Shadow Harmonization for Realistic Compositing.
In: ACM SIGGRAPH Asia 2023 Conference Proceedings, 2023

WanNG, Tianyu ; Hu, Xiaowei ; Fu, Chi-Wing ; HENG, Pheng-Ann: Single-Stage
Instance Shadow Detection With Bidirectional Relation Learning. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
June 2021, S. 1-11

94



Bibliography

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

WANG, Tianyu ; Hu, Xiaowei ; HENG, Pheng-Ann ; Fu, Chi-Wing: Instance
Shadow Detection with A Single-Stage Detector. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence (2022), S. 1-14

WANG, Tianyu ; Hu, Xiaowei ; WANG, Qiong ; HENG, Pheng-Ann ; Fu, Chi-Wing:
Instance Shadow Detection. In: IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020

YAMASHITA, Rikiya ; NisH10, Mizuho ; DO, Richard ; TocAsHI, Kaori: Convolu-
tional neural networks: an overview and application in radiology. In: Insights into
Imaging 9 (2018), 06

ZHANG, Bo ; DUAN, Yuxuan ; LAN, Jun ; HONG, Yan ; ZHU, Huijia ; WANG,
Weiqiang ; Niu, Li: ControlCom: Controllable Image Composition using Diffusion
Model. 2023. — URL https://arxiv.org/abs/2308.10040

ZHANG, Richard ; IsoLa, Phillip ; EFROS, Alexei A. ; SHECHTMAN, Eli ; WANG,
Oliver: The Unreasonable Effectiveness of Deep Features as a Perceptual Metric.
2018. — URL https://arxiv.org/abs/1801.03924

ZHANG, Shuyang ; LIANG, Runze ; WANG, Miao: ShadowGAN: Shadow synthesis

for virtual objects with conditional adversarial networks. In: Computational Visual
Media 5 (2019), 03, S. 105-115

ZHAO, Shengyu ; Cul, Jonathan ; SHENG, Yilun ; DONG, Yue ; LIANG, Xiao ;
CHANG, Eric I. ; XU, Yan: Large Scale Image Completion via Co-Modulated Gen-
erative Adversarial Networks. 2021. — URL https://arxiv.org/abs/2103.
10428

ZHENG, Zhaohui ; WANG, Ping ; L1u, Wei ; L1, Jinze ; YE, Rongguang ; REN, Dong-
wei: Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression.
2019. — URL https://arxiv.org/abs/1911.08287

ZHU, Jun-Yan ; PARK, Taesung ; IsoLA, Phillip ; EFROS, Alexei A.: Unpaired
Image-to-Image Translation using Cycle-Consistent Adversarial Networks. 2020. —
URL https://arxiv.org/abs/1703.10593

95



A Appendix

96



A Appendix

97



A Appendix

98



A Appendix

99



A Appendix

The rest of the appendix to the thesis, including source code and other metrics values,

is on CD and can be obtained from the first examiner.

100



Declaration

I declare that this Bachelor Thesis has been completed by myself independently without

outside help and only the defined sources and study aids were used.

City Date Signature

101





