=

L I

> >

MBURG

BACHELOR THESIS
Flemming Grabowski

Sketch-basierte Generierung
von fiktionalen Landkarten

FAKULTAT TECHNIK UND INFORMATIK
Department Informatik

Faculty of Engineering and Computer Science
Department Computer Science

HOCHSCHULE FUR ANGEWANDTE
WISSENSCHAFTEN HAMBURG

Hamburg University of Applied Sciences

Flemming Grabowski

Sketch-basierte Generierung von fiktionalen
Landkarten

Bachelorarbeit eingereicht im Rahmen der Bachelorpriifung
im Studiengang Bachelor of Science Angewandte Informatik
am Department Informatik

der Fakultdt Technik und Informatik

der Hochschule fiir Angewandte Wissenschaften Hamburg

Betreuender Priifer: Prof. Dr. Philipp Jenke
Zweitgutachter: Prof. Dr. Peer Stelldinger

Eingereicht am: 06. Méarz 2025

Flemming Grabowski

Thema der Arbeit

Sketch-basierte Generierung von fiktionalen Landkarten

Stichworte

Prozedurale Content Generierung, Fiktionale Landkarten, Sketch-basierte Generierung,

Geometrische Algorithmen, Regelbasierte Verfahren, Noise-basierte Verfahren

Kurzzusammenfassung

Diese Arbeit stellt die Entwicklung eines prototypischen Systems zur sketch-basierten
Generierung fiktionaler Landkarten vor, bei dem geometrische Algorithmen wie die
Delaunay-Triangulation mit prozeduralen Methoden kombiniert werden. Basierend auf
Skizzen werden Landmassen segmentiert, Regionen durch Icons definiert und mittels
Noise-basierter sowie regelbasierter Verfahren detaillierte Landschaften erzeugt. Die Eva-
luation zeigt, dass durch die gezielte Kombination dieser Methoden eine kohérente und
intuitiv steuerbare Kartengenerierung moglich ist. Gleichzeitig wurden Herausforderun-
gen identifiziert, insbesondere in der Handhabung ungenauer Eingaben und der Echtzeit-
performance. Das System ermoglicht modular erweiterbare Generierungsstrategien und

sorgt fiir natiirliche Ubergéinge zwischen Biomen.

Flemming Grabowski

Title of Thesis

Sketch-based Generation of Fictional Maps

Keywords

Procedural Content Generation, Fictional Maps, Sketch-based Generation, Geometric
Algorithms, Rule-based Methods, Noise-based Methods

Abstract

This thesis presents the development of a prototype system for sketch-based generation

of fictional maps, combining geometric algorithms such as Delaunay triangulation with

iii

procedural methods. Based on sketches, landmasses are segmented, regions are defined
through icons, and detailed landscapes are generated using noise-based and rule-based
techniques. The evaluation demonstrates that a targeted combination of these methods
enables coherent and intuitively controllable map generation. At the same time, chal-
lenges were identified, particularly in handling imprecise inputs and ensuring real-time
performance. The system allows for modularly extensible generation strategies and en-

sures natural transitions between biomes.

v

Inhaltsverzeichnis

Abbildungsverzeichnis viii
1 Einleitung 1
1.1 Motivation 1
1.2 Zieleo 2
1.3 Aufbau der Arbeit 2
2 Grundlagen 4
2.1 Geometrische Algorithmen L. 4
2.1.1 Bresenham 4

2.1.2 Delaunay-Triangulation, 6

2.1.3 Voronoi-Diagrammeo 8

2.2 Clustering und Formerkennung 9

2.2.1 Density-Based Spatial Clustering of Applications with Noise 9

2.2.2 Alpha Shape 10

2.3 Prozedurale Content Generierung 12
2.3.1 Regel-basiert 13

2.3.2 Noise-basiert 16

3 Stand der Technik 19
3.1 Relevanz 19
3.2 Ansétze und Systeme 20
3.2.1 Sketch2Map 20
3.22 Mapgend 21
3.2.3 Terrain Sketching o oo 22

3.3 Vergleich und Synthese 23

Inhaltsverzeichnis

4 Konzept
4.1 Funktionale Anforderungen L.
4.1.1 Sketch-Eingabe und Segmentierung der Regionen
4.1.2 Landschafts Generierung
4.1.3 Ausgabe
4.2 Nicht-funktionale Anforderungen
4.2.1 Performance.
4.2.2 Erweiterbarkeit L
4.3 Von der Skizze zur Karte.
4.4 Methodisches Vorgehen oL

5 Umsetzung

5.1
5.2

9.3
5.4

Technologie
Systemarchitektur
5.2.1 Technische Bausteine
5.2.2 MVC-Architektur mit JavaFX
5.2.3 Fachliche Bausteine
5.2.4 Modulare Strategieimplementierung
52,5 Datenfluss
Vorverarbeitung oo
Generierung der Kartenelemente
54.1 Gebirge L.
542 Ozean
543 Seen
544 Walder,
5.4.5 Dorfer
54.6 Details. oo

6 Evaluation

6.1 Methodik

6.2 Qualitative und Asthetische Bewertung

6.3 Performance-Analyse

6.4 Erfillungsgrad der Anforderungen

6.5 Zukunftsperspektiven und Erweiterungsmoglichkeiten
7 Fazit

25
25
25
27
28
28
29
30
30
32

34
34
36
36
37
39
40
43
44
46
46
47
47
48
49
50

52
52
55
67
68
70

72

vi

Inhaltsverzeichnis

Literaturverzeichnis

A Anhang
A.1 Verwendete Hilfsmittel

Selbststindigkeitserklarung

vii

Abbildungsverzeichnis

2.1
2.2
2.3

24

4.1

5.1

5.2

5.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Visualisierung der Delaunay-Triangulation einer Punktmenge. 7
Visualisierung des Voronoi-Diagramms fiir eine Punktmenge. 8
Voronoi-Diagramm (oben links), Delaunay-Triangulation (oben rechts) und
Alpha-Shape (unten) mit Parameter o zur Steuerung des Detailgrads. . . 12
Schematische Darstellung des Perlin Noise Algorithmus. Links: Rasterun-
terteilung des Raums. Mitte: Ein Punkt innerhalb einer Rasterzelle sowie
zuféllig zugewiesene Gradienten an den Rasterpunkten. Rechts: Vektoren

von den Rasterpunkten zum betrachteten Punkt. 17

Pipeline unterteilt in die Phasen Skizzenverarbeitung, Regionsegmentie-

rung, Regiongenerierung und Integration. 32

Bausteinsicht zeigt die drei Hauptkomponenten und stellt das MVC-Muster
innerhalb jeder Komponente dar. 40
Klassendiagramm, das die Implementierung des Strategie-Musters in der
Anwendung zeigt. 41
Sequenzdiagramm, das den beschriebenen Datenfluss veranschaulicht . . . 44

Eingabebild fiir den WFC-Algorithmus mit einem 3x3-Raster zur besseren

Erkennbarkeit der Struktur oo 49
Links ist die urspriingliche Eingabe, rechts der verarbeitete Umriss. 61
Links ist die ungenaue Eingabe, rechts der korrigierte Umriss 62
Links ist die ungenaue Eingabe, rechts der fehlerhafte Umriss. 62
Links ist die Eingabe, rechts die individuellen Umrisse. 63
Links ist der verarbeitete Umriss, rechts das Polygon. 63
Links eine generierte Ozeanregion ohne Filter, rechts mit Filter 64
Links ein generiertes Gebirge ohne Filter, rechts mit Filter 64
Links ein generierter See ohne Filter, rechts mit Filter 64
Links ein generierter Wald ohne Filter, rechts mit Filter 65

viii

Abbildungsverzeichnis

6.10 Links ein generiertes Dorf ohne Filter, rechts mit Filter

6.11 Links generierte Fliisse ohne Filter, rechts mit Filter

6.12 Zeigt den gesamten Prozess vom Zeichnen iiber die Verarbeitung bis zur
generierten Karte, wobei auf Grundlage derselben Polygone zweimal ge-

neriert wurde, um die Unterschiede der Ergebnisse hervorzuheben.

66

1X

1 Einleitung

1.1 Motivation

Die Erstellung fiktionaler Landkarten spielt eine zentrale Rolle in vielen kreativen Berei-
chen, darunter Videospiele, Pen-and-Paper-Rollenspiele und Fantasy-Literatur. Traditio-
nell erfordert die Gestaltung solcher Karten viel kiinstlerisches Geschick und Zeitaufwand.
Insbesondere fiir Personen ohne zeichnerische Vorerfahrung kann dies eine erhebliche Hiir-

de darstellen.

Eine Moglichkeit, diesen Prozess zu erleichtern, liegt in der Verwendung von prozedura-
len Algorithmen, die auf Grundlage bestimmter Eingaben eine detailreiche und koharente
Karte generieren. Bisher existierende Systeme zur automatisierten Kartenerstellung bie-
ten jedoch oft wenig interaktive Gestaltungsmoglichkeiten oder sind stark an bestimmte

Darstellungsstile gebunden.

Diese Arbeit untersucht den Ansatz der sketch-basierten Generierung fiktionaler Land-
karten. Dabei konnen Nutzer durch einfache Skizzen und Markierungen den grundle-
genden Aufbau ihrer Karte definieren, wihrend Algorithmen die Skizze analysieren und
weiterverarbeiten, um eine detailreiche, kohéarente und optisch ansprechende Karte zu

erzeugen.

Die zentrale Forschungsfrage lautet dabei: Lésst sich eine strategische Kombination algo-
rithmisch unterschiedlicher Verfahren so gestalten, dass trotz ihrer strukturellen Diver-
genz eine visuell kohdrente und intuitiv steuerbare sketch-basierte Generierung fiktionaler

Landkarten ermdoglicht wird?

1 FEinleitung

1.2 Ziele

Ziel dieser Arbeit ist die Entwicklung eines prototypischen Systems zur sketch-basierten
Generierung von fiktionalen Landkarten. Das System soll es ermdglichen, durch einfache
Strichzeichnungen und Markierungen geografische Strukturen wie Kiistenlinien, Gebirge
oder Wilder intuitiv zu definieren. Diese Eingaben werden anschlieffend durch eine Kom-
bination aus geometrischen Algorithmen, regelbasierten Verfahren und noise-basierten

Methoden weiterverarbeitet.
Die zentralen Teilziele sind:

e Benutzerfreundlichkeit: Das System soll eine intuitive Zeicheneingabe ermogli-

chen und auch ungenaue Skizzen zuverlassig interpretieren.

e Modulare Generierungsstrategien: Unterschiedliche algorithmische Verfahren
sollen trotz ihrer strukturellen Divergenz zu einem koh#renten System integriert
und flexibel kombiniert werden kénnen, um eine hohe Anpassungsfahigkeit zu ge-

wahrleisten.

e Natiirlich wirkende Ergebnisse: Die generierten Karten sollen visuell anspre-

chend sein und organische Ubergiinge zwischen Landschaftstypen enthalten.

e Effizienz: Die Generierung soll in einer angemessenen Zeit erfolgen, um eine inter-

aktive Nutzung zu ermoglichen.

1.3 Aufbau der Arbeit

Die vorliegende Arbeit ist in mehrere Kapitel unterteilt, die schrittweise von den theo-
retischen Grundlagen bis zur praktischen Umsetzung und Evaluation des entwickelten

Systems fiihren.

Kapitel 2 beschreibt die theoretischen Grundlagen der verwendeten Algorithmen und
Methoden. Dazu gehoren geometrische Verfahren wie die Delaunay-Triangulation und

Voronoi-Diagramme sowie verschiedene Ansétze der prozeduralen Content Generierung.

1 FEinleitung

Kapitel 3 gibt einen Uberblick iiber bestehende Systeme zur Generierung von Landkarten
mit einem Fokus auf sketch-basierte und prozedurale Ansétze. Dazu werden verschiede-
ne Methoden analysiert und miteinander verglichen, um deren Stérken und Schwichen

herauszuarbeiten.

Kapitel 4 entwickelt darauf aufbauend ein Konzept fiir das eigene System. Hier wer-
den die funktionalen und nicht-funktionalen Anforderungen definiert, der grundlegende

Verarbeitungsprozess skizziert und das methodische Vorgehen beschrieben.

Kapitel 5 behandelt die technische Umsetzung, einschliefslich der verwendeten Technolo-

gien, der Systemarchitektur und der Implementierung der einzelnen Komponenten.

Kapitel 6 bewertet die verwendete Methodik, evaluiert die Qualitit der generierten Kar-
ten anhand von visuellen und technischen Kriterien, reflektiert die Herausforderungen

des Systems und gibt einen Ausblick auf mégliche Erweiterungen.

Abschlieftend fasst Kapitel 7 die Ergebnisse zusammen.

2 Grundlagen

2.1 Geometrische Algorithmen

Im Kontext der sketch-basierten Generierung spielen geometrische Algorithmen eine
wichtige Rolle. Sie erméglichen es, die Benutzereingabe wie vom Nutzer beabsichtigt
einzulesen und in geeigneten Datenstrukturen zu halten. Somit konnen einfache Benut-
zereingaben wie das Gedriickthalten einer Maustaste und das gleichzeitige Bewegen der
Maus zu einer komplexen Struktur wie einem Dreiecksnetz umgewandelt werden, welches

dann wiederum genutzt werden kann, um effizient mit der Eingabe zu arbeiten.

In diesem Abschnitt werden drei wesentliche geometrische Algorithmen vorgestellt, die

in der Computergrafik und der algorithmischen Geometrie weit verbreitet sind:

e Der Bresenham-Algorithmus, der eine effiziente Methode zur rasterbasierten Lini-

enzeichnung bereitstellt und dabei nur Ganzzahloperationen verwendet.

e Die Delaunay-Triangulation, die eine optimale Zerlegung einer Menge von Punkten

in Dreiecke erméglicht, dabei aber spitze Winkel vermeidet.

e Das Voronoi-Diagramm, welches eine Ebene in mehrere Regionen unterteilt.

2.1.1 Bresenham

Wenn zwei Punkte, die irgendwo auf einem Computerbildschirm gesetzt werden, ver-
bunden werden sollen, indem eine Linie gezeichnet wird, dann muss diese durch die
Auswahl der néchstgelegenen Pixel moglichst prazise und effizient dargestellt werden.
Der Bresenham-Algorithmus 16st dieses Problem, indem er entscheidet, welcher Pixel
dem idealen Linienverlauf am néchsten liegt, und dabei nur Ganzzahlen sowie einfache
Additionen, Subtraktionen und Vergleiche verwendet [2]. Der Algorithmus funktioniert
wie folgt:

2 Grundlagen

Als Erstes werden die Differenzen in x- und y-Richtung zwischen Startpunkt und End-
punkt berechnet (dz und dy). Anschliefend wird die ,schnelle Richtung® bestimmt — also
die Achse, entlang derer die Linie am stérksten ansteigt. Der Algorithmus schreitet dann
Pixel fiir Pixel in dieser schnellen Richtung voran und entscheidet bei jedem Schritt an-
hand einer Fehlervariable D, ob ein zusétzlicher Schritt in der langsamen Richtung nétig

ist, um die ideale Linie moglichst exakt nachzuziehen. Der initiale Fehler wird als

D=2.dy—dx

berechnet. In der Hauptschleife wird dann fiir jeden Pixel folgendes durchgefiihrt:

e Der aktuelle Pixel wird gezeichnet.
e Es wird uberpriift, ob der Zielpunkt erreicht wurde.
e D wird um 2 - dy inkrementiert.

e Falls D > 0, wird zusétzlich ein Schritt in der langsamen Richtung ausgefiithrt und

D um 2 - dr dekrementiert.

Der Algorithmus ist sehr effizient, da:
e Er nur ganzzahlige Operationen verwendet.

e Nur einfache Additionen, Subtraktionen, Vergleiche und konstante Multiplikationen

bendtigt.

e Die Laufzeit O(max(dz, dy)) betrégt, die Schleife also nur so oft durchlaufen wird,

wie die langste Achsendifferenz vorgibt.

Der Algorithmus ldsst sich aufgrund der genannten Aspekte hervorragend in jegliche
Systeme implementieren, in denen per Hand Linien gezeichnet werden und in denen fiir

ein moglichst natiirliches Ergebnis interpoliert werden muss.

2 Grundlagen

2.1.2 Delaunay-Triangulation

Die Delaunay-Triangulation ist ein fundamentales Konzept im Bereich der algorithmi-
schen Geometrie. Sie wurde urspriinglich von Boris Delone eingefiihrt [3] und ermdglicht
eine effiziente Zerlegung einer Punktmenge P in eine Dreiecksmenge 1. Die Menge T
zeichnet sich durch die Eigenschaft aus, dass der Umkreis jedes Dreiecks keine weiteren
Punkte aus P enthélt. Somit entsteht eine Triangulation, die die kleinsten Innenwinkel

tiber alle Dreiecke aus 7" maximiert, es werden also sehr spitze Winkel vermieden [12].

Es gibt unterschiedliche Ansétze fiir das Erstellen einer solchen Triangulation. Ein ite-
rativer Ansatz ware der Bowyer-Watson-Algorithmus, welcher iiber die Punktmenge P
iteriert und dabei die Punkte sukzessive zur Triangulation hinzufiigt, aber dabei die

genannte Eigenschaft beibehélt [1].

Die Delaunay-Triangulation ldsst sich in den folgenden Schritten zusammenfassen:
e Initialisierung: Ein Dreieck wird erstellt, das alle Punkte aus P umfasst.
e Uberpriifung der Delaunay-Eigenschaft:

— Fir jeden Punkt p; aus P wird iiberpriift, welche Dreiecke aus der Triangula-

tion die Delaunay-Eigenschaft verletzen.
— Falls ein Dreieck die Delaunay-Eigenschaft verletzt, wird es markiert.

¢ Entfernung der Kanten: Die Kanten der markierten Dreiecke werden entfernt,

was zu einem "Loch"fihrt.

e Verschliefien des Lochs: Das Loch wird durch das Verbinden von p; mit den

Eckpunkten der entfernten Dreiecke geschlossen.

e Entfernung des Initialisierungs-Dreiecks: Das Initialisierungs-Dreieck wird

entfernt, und die Delaunay-Triangulation ist vollstdndig.

2 Grundlagen

Abbildung 2.1: Visualisierung der Delaunay-Triangulation einer Punktmenge.
1

Heutzutage findet man Delaunay-Triangulationen in einer Vielzahl von Anwendungsge-
bieten. Darunter fallen beispielsweise die Analyse medizinischer Bilder zur Hautkrebser-

kennung sowie die Erzeugung realistischer 3D-Modelle [6].

!Eigene Abbildung, nachempfunden basierend auf der Quelle: https://www.gorillasun.de/blog
/bowyer-watson-algorithm-for-delaunay-triangulation/.

2 Grundlagen

2.1.3 Voronoi-Diagramme

Ein Voronoi-Diagramm, urspriinglich eingefithrt von Georgy Voronoi [22], ist ein grund-
legendes geometrisches Konstrukt, welches eine Ebene in Regionen unterteilt. Diese Un-
terteilung entsteht durch die geografische Lage von Punkten aus einer Punktmenge P.
Jede Region, auch Voronoi-Zelle genannt, enthéalt genau einen Punkt p aus P und um-
fasst alle Punkte der Ebene, die ndher an p liegen als an allen anderen Punkten aus P.
Somit besitzt jeder Punkt, der auf einer Kante zweier Voronoi-Zellen liegt, den gleichen

Abstand zu den beiden erzeugenden Punkten.

Das Voronoi-Diagramm ist dual zur bereits vorgestellten Delaunay-Triangulierung, was
bedeutet, dass sich aus der einen Struktur immer die jeweils andere ableiten lésst. Die
Dualitat zeigt sich darin, dass zwei Punkte genau dann durch eine Delaunay-Kante
verbunden sind, wenn ihre zugehdrigen Voronoi-Regionen eine gemeinsame Kante tei-
len [13].

Voronoi-Diagramme kénnen genutzt werden, um moglichst natiirliche Grenzen innerhalb
eines Bereiches, wie dem Umriss einer Landmasse, zu generieren, um diese in distinkte
Regionen zu unterteilen. Die Voronoi-Zellen erzeugen organisch wirkende Grenzverlaufe,

die den natiirlichen Gegebenheiten einer Landkarte &hneln.

Abbildung 2.2: Visualisierung des Voronoi-Diagramms fiir eine Punktmenge.
2

2Eigene Abbildung, nachempfunden basierend auf der Quelle: https://de.wikipedia.org/wiki/
Voronoi-Diagramm.

2 Grundlagen

2.2 Clustering und Formerkennung

Die Grundlagen des Clusterings und der Formerkennung, auf die im Folgenden eingegan-
gen wird, konnen niitzlich sein, um zugrundeliegende Datenstrukturen zu analysieren, zu
gruppieren und anzupassen. So macht es Clustering im Kontext von Skizzen beispiels-
weise moglich, lokale Eigenschaften der jeweiligen Skizze getrennt zu behandeln. Die
Formerkennung bietet die Moglichkeit, eine Skizze parametrisierbar zu analysieren und

zu verfeinern.

2.2.1 Density-Based Spatial Clustering of Applications with Noise

Der Density-Based Spatial Clustering of Applications with Noise (DBSCAN) Algorith-
mus, entwickelt von Ester et al., ist ein weit verbreiteter Algorithmus fiir Data-Mining-
Zwecke |7]. Im Bereich des Data Minings miissen Datenpunkte oft kategorisiert bezie-
hungsweise gruppiert werden. Die Anforderungen an einen solchen Algorithmus sind
meistens: Effizienz, die Bedingung, dass dieser trotz wenig Vorwissen iiber die Doméne
funktioniert, und vor allem die Fahigkeit, Cluster unterschiedlichster Formen zu erken-
nen. Der DBSCAN-Algorithmus erfiillt diese Bedingungen, indem er dichtebasiert arbei-
tet. Dabei werden zwei zentrale Parameter genutzt: € und MinPts. Hierbei definiert e
einen Radius um jeden Datenpunkt, wihrend MinPts die Mindestanzahl an Punkten
beschreibt, die sich innerhalb des Radius € befinden miissen, damit der jeweilige Punkt

als Kernpunkt angesehen wird.
Der DBSCAN-Algorithmus lésst sich in den folgenden Schritten zusammenfassen:

e Punkte priifen: Ist der Punkt schon Teil eines Clusters? Falls nicht, wird versucht,

um ihn herum ein neues Cluster zu bilden.
e Cluster-Bildung:

— Es wird gezdhlt, wie viele Nachbarn sich in einem bestimmten Radius € befin-

den.

— Falls es genug Nachbarn (MinPts) gibt, wird ein neues Cluster erstellt und
der Punkt als Kernpunkt markiert.

2 Grundlagen

— Alle direkt und indirekt verbundenen Punkte werden dem Cluster hinzuge-
fligt. Dabei koénnen auch Punkte, die selbst nicht die MinPts-Bedingung er-
fiillen, Teil des Clusters werden, solange sie von einem Kernpunkt aus dichte-

erreichbar sind.

o Erweiterung: Der Prozess wiederholt sich fiir neu hinzugefiigte Punkte, bis keine

weiteren dazugehoren.
e Rauschen: Punkte, die kein Cluster bilden konnen, werden als Rauschen markiert.

e Ergebnis: Alle Punkte sind entweder Teil eines Clusters oder als Rauschen klassi-

fiziert.

Der Algorithmus erkennt Rauschen, also Datenpunkte, die weder Kernpunkte sind noch
in der e-Nachbarschaft eines Kernpunktes liegen, also Randpunkte sind. Im Vergleich
zu vielen anderen Clustering-Algorithmen bendtigt DBSCAN kein Vorwissen iiber die
Anzahl der zu findenden Cluster und ist auferdem in der Lage, auch nicht konvexe

Strukturen zu gruppieren.

Der Algorithmus arbeitet effizient und hat eine Laufzeitkomplexitit von O(n -logn) bei

n Datenpunkten.

Auch in der Computergrafik findet der Algorithmus seine Anwendung und kann als es-
sentielles Werkzeug zur Analyse von Skizzen dienen. Im Kontext von Landkarten kann
DBSCAN also eingesetzt werden, um einzelne Landmassen oder Inseln als eigensténdige
Einheiten zu erkennen und dementsprechend in nachfolgenden Verarbeitungsschritten zu
behandeln.

2.2.2 Alpha Shape

Um a-Shapes verstehen zu kénnen, muss zunéchst ein Blick auf die verwandten konve-
xen Hiillen geworfen werden. Eine konvexe Hiille fiir eine Punktmenge S beschreibt den
Schnitt aller geschlossenen Halbrdume, die alle Punkte aus S enthalten. Sie ist somit die

kleinste konvexe Menge, die alle Punkte aus S enthélt [5].

Eine konvexe Hiille ist allerdings nicht in der Lage, die Form einer Punktmenge genau
zu beschreiben und ldsst im Extremfall sogar keinerlei Aussagen iiber diese treffen. Um

also die Form genauer beschreiben zu koénnen, kénnen a-Shapes verwendet werden. Ein

10

2 Grundlagen

a-Shape ist eine Verallgemeinerung der konvexen Hiille, bei der die Form durch die

Verwendung von Kreisen mit einem parametrisierbaren Radius beeinflusst wird.

Je nach Wahl dieses Radius wird die Hiille enger an die Punkte angepasst oder bleibt
grober. Mit grofserem Radius werden nur die ,wesentlichen Punkte beriicksichtigt, wéh-
rend mit kleinerem Radius die Details der Punktmenge immer feiner erfasst werden. Fiir

a = 0 entspricht die a-Shape der konvexen Hiille.

Ein zentraler Aspekt bei der Konstruktion von a-Shapes ist ihr Zusammenhang mit der
Delaunay-Triangulation. Je nach Wahl von « basiert die a-Shape entweder auf einer Va-
riante der Delaunay-Triangulation oder der konvexen Hiille. Diese Verbindung ermdglicht
eine effiziente Berechnung, da die a-Shape direkt aus der zugrunde liegenden Triangula-

tion abgeleitet werden kann.

Fiir ein gegebenes o wird gepriift, ob zwei Punkte a-Nachbarn sind. Dafiir muss es einen

Kreis mit Radius 1/« geben, der:
e beide Punkte auf seinem Rand hat,

e alle anderen Punkte der Punktmenge entweder enthélt (fir o > 0) oder nicht
enthélt (fiir a < 0).

Ein Punkt ist a-extrem, wenn es einen Kreis mit Radius 1/« gibt, der:
e den Punkt auf seinem Rand hat,

e alle anderen Punkte der Punktmenge entweder enthélt (fiir « > 0) oder nicht
enthélt (fiir o < 0).

Die a-Shape ist nun der Graph aus:
e allen a-extremen Punkten und den Kanten zwischen Punkten, die a-Nachbarn sind.

a-Shapes konnen verwendet werden, um aus einer Zeichnung, also einer Menge von Punk-
ten, eine geschlossene Form zu gewinnen. Da die Umrisse von Landmassen auf Landkarten
immer geschlossen vorkommen, also zyklisch sind, bietet sich die Nutzung eines solchen

Algorithmus an.

11

2 Grundlagen

Alpha Shape

Abbildung 2.3: Voronoi-Diagramm (oben links), Delaunay-Triangulation (oben rechts)
und Alpha-Shape (unten) mit Parameter a zur Steuerung des Detail-
grads.

2.3 Prozedurale Content Generierung

Prozedurale Content-Generierung (PCG) bezeichnet die algorithmische Erstellung von
Inhalten mit begrenzter oder indirekter Benutzerinteraktion. Sie umfasst die automati-
sierte Generierung verschiedenster Elemente wie Landschaften, Karten oder Texturen.
PCG findet in verschiedenen Bereichen Anwendung, wobei ein hdufig genanntes Beispiel
die Spieleentwicklung ist. Die Motivation zur Verwendung von PCG ist vielfiltig. Neben
der Reduktion von Entwicklungszeit und Kosten ermoglicht sie die Schaffung endloser
Variationen, adaptiver Spielerfahrungen sowie die Unterstiitzung von Designern im Ent-
wicklungsprozess. Wahrend PCG bereits seit den 1980er Jahren in kommerziellen Spielen
zum Einsatz kommt, gewinnt sie durch neue Forschungsansétze und technologische Mog-
lichkeiten zunehmend an Bedeutung [18|. Die verschiedenen Ansétze zur PCG, die im
Rahmen dieser Arbeit betrachtet werden, lassen sich dabei grundsétzlich in regelbasierte
und noise-basierte Verfahren unterteilen, die jeweils eigene Stidrken und Charakteristika

aufweisen.

3Eigene Abbildung, nachempfunden basierend auf der Quelle: Zhou, W. und Yan, H. (2012). Alpha
shape and Delaunay triangulation in studies of protein-related interactions.

12

2 Grundlagen

2.3.1 Regel-basiert

Regelbasierte Verfahren sind ein zentraler Ansatz in der PCG. Sie beruhen auf der Defi-
nition von klaren Regeln und Constraints, die den Aufbau und die Struktur von Inhalten
steuern. Durch die systematische Anwendung dieser Regeln kénnen komplexe und konsis-
tente Strukturen erzeugt werden, die oft sowohl dsthetisch ansprechend als auch logisch
kohérent sind. Zu bekannten Vertretern zdhlen L-Systeme und der Wave Function Col-
lapse Algorithmus, die jeweils unterschiedliche Ansétze verfolgen, um Inhalte prozedural

und effizient zu generieren.

L-Systeme

L-Systeme wurden urspriinglich 1968 von dem Biologen Astrid Lindenmayer entwickelt,
um das Wachstum von Pflanzen zu modellieren [17]. Sie sind ein formales System zur
Beschreibung der Entwicklung von verzweigten Strukturen durch regelbasierte Ersetzun-

gen.
Ein L-System besteht dabei aus folgenden Komponenten:
e dem Alphabet V
e cinem Axiom w
e und Regeln P

Das Alphabet V' wird hierbei durch eine Menge von Symbolen représentiert, die ersetzt
werden konnen (Variablen) oder nicht ersetzbar sind (Konstanten). Das Axiom w ist
ein Ausgangszustand (Startstring) und besteht aus Symbolen des Alphabets. P ist eine
Tabelle von Regeln, wobei der Schliissel ein bestimmtes Symbol des Alphabets ist und
der Wert ebenfalls ein Symbol oder eine Symbolkette ist, durch welches der Schliissel

ersetzt wird.

Ein System kann also anhand der zuvor vorgestellten Werte parametrisiert werden. Ein
weiterer Parameter ist die Anzahl der Iterationen, also wie oft der gesamte Regelsatz
auf die Zeichenkette angewendet werden soll. Hierbei werden die Regeln in der ersten
Iteration nur auf das Axiom angewendet, wihrend die Regeln in der néchsten Iteration

auf das Resultat der vorherigen Iteration angewendet werden. Wenn also z[n| den Zustand

13

2 Grundlagen

nach n Iterationen darstellt mit 2[0] = w, dann ist z[n+ 1] = P(z[n]), wobei P(z[n]) die

Anwendung der Regeln P auf den Zustand z[n] bedeutet.

Fiir die grafische Interpretation von L-Systemen wird oft eine sogenannte “Turtle” ver-
wendet. Eine Turtle ist an spezifische Symbole gebunden, wobei d eine variable Linge

und § einen Rotationswinkel bezeichnet. Konventionell ist die Turtle wie folgt definiert:

e [: Zeichnet eine Linie in aktuelle Richtung mit Lange d

f: Bewegt sich in aktuelle Richtung mit Schrittweite d

+: Rotiert nach links um Winkel §

e —: Rotiert nach rechts um Winkel 6

e [: Speichert aktuellen Zustand der Turtle (Grundlegend die Position und Orientie-
rung)
e |: Stellt den zuletzt gespeicherten Zustand der Turtle wieder her und entfernt diesen

aus dem Speicher.

Eine solche Definition reicht aus, um erstaunlich organisch wirkende Strukturen zu mo-
dellieren. Besonders fiir Landkarten gibt es diverse Anwendungsfille, um L-Systeme dort
einsetzen zu konnen. Ein Beispiel wére die dynamische Generierung von Flussstrukturen,
die auf natiirlichen Prozessen wie Sedimentierung und Flieltbewegungen basieren. Um Va-
riabilitdt und Realismus dieser Strukturen zu foérdern, konnen L-Systeme stochastisch er-
weitert werden, indem unterschiedliche Regeln und Parameter angewendet werden. Diese
stochastischen Erweiterungen erlauben es, Flussverzweigungen mit variierenden Winkeln,
Léngen und Verzweigungsmustern zu erzeugen, wodurch die resultierenden Strukturen
natiirlicher wirken. Die stochastische Komponente sorgt zudem dafiir, dass selbst mit

denselben Ausgangsparametern unterschiedliche Flussnetze entstehen kénnen [21].

WFC

Der Wave Function Collapse Algorithmus (WFC), entwickelt von Maxim Gumin, ist eine
Methode zur prozeduralen Generierung von Inhalten*. Urspriinglich stammt der Begriff

aus der Quantenmechanik, wurde jedoch fiir den von Gumin entwickelten Algorithmus

4Maxim Gumin, "Wave Function Collapse", GitHub Repository, https://github.com/mxgmn/Wav
eFunctionCollapse

14

2 Grundlagen

zur Generierung von Texturen und Leveldesigns in Computerspielen genutzt. Der Anwen-
dungsbereich entfaltet sich jedoch weiter, sodass eine abgewandelte Form des Algorith-
mus sogar fiir die Generierung von Gedichten verwendet wird. Der Algorithmus arbeitet
beispielbasiert und erzeugt neue Inhalte, die den lokalen Mustern eines vorgegebenen

Beispiels entsprechen [11].

In der urspriinglichen Implementierung existieren zwei Hauptvarianten: Der Simple
Tiled Ansatz, der mit diskreten Kacheln und festen Nachbarschaftsregeln arbeitet,
sowie der Overlapping Ansatz, der iberlappende Nachbarschaften von Pixeln oder
Elementen betrachtet. Beide Varianten folgen denselben Grundprinzipien, unterscheiden

sich jedoch in der Definition und Anwendung ihrer Constraints.

Der Algorithmus zerlegt eine Eingabedatei, typischerweise ein Bild, in eine Menge lokaler
Muster, die durch iiberlappende Bereiche kleiner ,Unterbilder” definiert werden. Diese
Muster werden als Constraints interpretiert, die die moglichen Anordnungen der Muster

in der Ausgabe beschrianken.

Im Vergleich zu herkémmlichen Textursyntheseverfahren, bei denen Pixelwerte interpo-
liert werden, arbeitet der WFC Algorithmus ausschliefSlich mit diskreten Mustern. Dies
macht den Algorithmus besonders geeignet fiir Anwendungen, bei denen semantische
Konsistenz entscheidend ist, wie beispielsweise bei der Generierung von Spielumgebun-

gen.

Der WFC Algorithmus verwendet Techniken zur Lésung von Constraints, wobei jedem
Gitterpunkt eine begrenzte Menge an Mustern zugewiesen wird. Durch die Anwendung
einer Heuristik wird der Algorithmus dazu gebracht, zunéchst die Bereiche mit der grofs-

ten Einschrankung zu bearbeiten, was zu einem effizienten Algorithmus fiihrt.

Die Arbeitsweise des WFC Algorithmus lésst sich in vier zentrale Schritte unterteilen:

e Musterextraktion: Die lokalen Muster werden aus der Eingabedatei extrahiert

und katalogisiert.

e Constraint-Erstellung: Eine Datenstruktur wird aufgebaut, die die zuléssigen

Uberlappungen der Muster speichert.

e Iterative Generierung: Das Ausgabegitter wird schrittweise gefiillt, indem fiir
jeden Punkt ein Muster gewéhlt wird, das den Constraints entspricht und mit den

bereits platzierten Mustern kompatibel ist.

15

2 Grundlagen

e Ausgabe: Das generierte Ergebnis wird als vollstdndige Konfiguration zuriickge-

geben.

Die Eigenschaften des Wave Function Collapse Algorithmus eréffnen zahlreiche Méglich-
keiten, ihn im Kontext der Generierung von fiktionalen Landkarten einzusetzen. Bei-
spielsweise kénnten aus einer groben Skizze detaillierte Hintergrundelemente der Karte
generiert werden, indem der WFC Algorithmus lokal konsistente Muster aus vorgegebe-
nen Beispieltexturen anwendet. Die stochastische Natur des Algorithmus fordert dabei
die Variabilitét.

2.3.2 Noise-basiert

Noise-basierte Verfahren bilden ebenfalls einen fundamentalen Baustein in der PCG. Sie
basieren auf der Erzeugung und Manipulation verschiedener Rauschfunktionen, die kon-
trollierte Zufélligkeit und natiirlich wirkende Variationen erzeugen. Durch die geschickte
Parametrisierung dieser Funktionen kénnen organische Strukturen und Muster generiert

werden, die sowohl visuell iiberzeugend als auch flexibel anpassbar sind.

Perlin Noise

Perlin Noise ist eine Methode zur Erzeugung von glattem, pseudo-zufilligem Rauschen,
die von Ken Perlin eingefithrt wurde [14]. Heute ist sie ein grundlegendes Werkzeug
in der Computergrafik und wird héufig fiir prozedurale Textur- und Terraingenerierung

verwendet.

Perlin Noise wurde entwickelt, um die Einschrankungen von klassischen, vollstandigen
Rauschmethoden zu iiberwinden, die oft zu harten Ubergingen und visuellen Artefakten

fiihren. Im Gegensatz dazu weist Perlin Noise die folgenden Eigenschaften auf:

¢ Kontinuit#t: Perlin Noise erzeugt glatte Uberginge zwischen benachbarten Wer-

ten, wodurch organische und natiirlich wirkende Muster entstehen.

e Zufilligkeit: Die erzeugten Werte wirken zuféllig, sind aber deterministisch, sodass

sie reproduzierbar sind, wenn der gleiche Startwert verwendet wird.

e Variabilitat: Durch die Kombination von Perlin Noise auf unterschiedlichen Skalen

kénnen komplexere Muster wie Fraktale erzeugt werden [4].

16

2 Grundlagen

Der urspriingliche Algorithmus beruht auf einem Punktraster und der Interpolation zwi-

schen den Punkten. Die wichtigsten Schritte sind folgende [14]:

e Rastererzeugung: Der Raum wird in ein regelméfiges Raster unterteilt, wobei

jedem Punkt in diesem Raster eine zuféllige Gradientenrichtung zugewiesen wird.

e Skalarprodukt: Fiir jeden Punkt im Raum wird das Skalarprodukt zwischen dem
Gradienten der Rasterpunkte, in dem der jeweilige Punkt liegt, und dem Vektor
der Rasterpunkte zum aktuellen Punkt berechnet. In 2D wiirden dabei also vier

skalare Werte herauskommen.

e Interpolation: Die Werte der umliegenden Rasterpunkte werden mithilfe einer
glatten Interpolationsfunktion kombiniert. Diese Funktion sorgt fiir die glatten

Ubergénge, die fiir Perlin Noise charakteristisch sind.

Abbildung 2.4: Schematische Darstellung des Perlin Noise Algorithmus.
Links: Rasterunterteilung des Raums.
Mitte: Ein Punkt innerhalb einer Rasterzelle sowie zufillig zugewiesene
Gradienten an den Rasterpunkten.
Rechts: Vektoren von den Rasterpunkten zum betrachteten Punkt.
5

Perlin Noise findet zahlreiche Anwendungen in der Computergrafik, insbesondere in der
Generierung von natiirlich wirkenden Strukturen. Der Algorithmus kann beispielsweise
eingesetzt werden, um realistische Texturen fiir Wasseroberflachen zu erzeugen. Durch die
Kombination von Perlin Noise auf verschiedenen Skalen kénnen realistische Landschaften

erstellt werden, indem die Noise-Werte als Hohenkarte interpretiert werden.

®Eigene Darstellung.

17

2 Grundlagen

Simplex Noise

Simplex Noise ist eine Weiterentwicklung der Perlin Noise Methode und wurde ebenfalls
von Ken Perlin vorgestellt [15]. Diese Methode verbessert vor allem die Performance in
hoéheren Dimensionen und bei groferen Datenmengen. Wéhrend die Komplexitét von
Perlin Noise bei O(2") fiir n Dimensionen liegt, arbeitet der Simplex Noise Algorithmus
in O(n?) [10].

Der Hauptunterschied liegt in der Art, wie das Gitter zur Berechnung des Rauschens auf-
gebaut ist. Wahrend Perlin Noise ein reguléres, orthogonales Raster nutzt, das aus gleich-
méfig verteilten Rasterpunkten besteht, basiert Simplex Noise auf dem sogenannten
Simplex-Gitter. Ein Simplex ist die einfachste geometrische Form, die einen n-dimensionalen
Raum aufspannen kann. In 2D ist dies beispielsweise ein gleichseitiges Dreieck. Diese
Simplexformen haben den Vorteil, dass sie die minimale Anzahl an Eckpunkten fiir die
jeweilige Dimension besitzen. Wahrend ein Quadrat in 2D vier Eckpunkte hat, kommt
ein Dreieck mit drei Eckpunkten aus. Dies reduziert die Anzahl der notwendigen Berech-

nungen erheblich.
Der Algorithmus von Simplex Noise arbeitet in mehreren Schritten [10]:

e Transformation des Eingaberaums: Der Raum wird entlang der Hauptdiago-
nalen verzerrt, sodass die Simplexzellen zu reguldren, achsenausgerichteten Hyper-

wiirfeln werden.

¢ Bestimmung der Simplexzelle: Durch Betrachtung der ganzzahligen Koordina-

tenanteile wird ermittelt, in welcher Zelle sich der zu berechnende Punkt befindet.

e Traversierung der Rasterpunkte: Die Rasterpunkte des Simplex werden in
einer bestimmten Reihenfolge durchlaufen, die sich aus der Gréfenordnung der

Koordinaten ergibt.

e Berechnung der Beitrége: Fiir jeden Rasterpunkt wird dessen Beitrag zum Rau-
schen berechnet und aufsummiert, wobei eine Abschwichungsfunktion zum Einsatz

kommt.

Diese Methode fithrt zu effizienterem und qualitativ hochwertigerem Rauschen, das be-
sonders fiir Anwendungen in héheren Dimensionen geeignet ist, aber ansonsten genau

wie Perlin Noise verwendet werden kann.

18

3 Stand der Technik

In diesem Kapitel werden bestehende Systeme und Methoden vorgestellt, die sich auf
die sketch-basierte Generierung von Landschaften und Karten spezialisiert haben. Der
Fokus liegt dabei darauf, zu untersuchen, wie diese Ansétze funktionieren, welche Tech-
nologien und Algorithmen sie verwenden und wie sie zur Losung spezifischer Probleme

beitragen.

Zunachst wird die Relevanz der sketch-basierten Generierung von Landschaften erlédu-
tert, um den praktischen und wissenschaftlichen Wert dieser Techniken zu verdeutlichen.
Anschliefsend werden ausgewéhlte Projekte und Systeme detailliert beschrieben. Der Ver-
gleich und die Synthese der betrachteten Arbeiten geben schliefslich Aufschluss dariiber,

wie diese Ansétze in den Kontext der vorliegenden Arbeit eingeordnet werden kénnen.

3.1 Relevanz

Die Beschéftigung mit sketch-basierten Methoden in der Generierung von Landschaften
ist von grofser Bedeutung, da sie eine intuitive und benutzerfreundliche Herangehensweise
an ein komplexes Problem bietet, besonders in der Unterhaltungsindustrie, die oft nicht

nur realistische, sondern auch stilisierte Darstellungen von Landschaften erfordert.

Ein Vorteil von sketch-basierten Ansétzen liegt in ihrer Fahigkeit, die Komplexitéit der
Generierung zu abstrahieren. Sie bieten dem Nutzer eine direkte Einflussnahme auf die
entstehenden Topologien, was bei der Entwicklung von virtuellen Landschaften zugute-
kommt, da somit eine feingranulare Kontrolle iiber visuelle Aspekte geschaffen werden

kann.

Im Designprozess von Spielen — als Beispiel fiir viele mogliche Anwendungsgebiete — kann
es hilfreich sein, dass die Skizze eines Designers direkt in die virtuelle Welt iibertragen
werden kann, um darauf aufbauend zu testen und weiterzuentwickeln. Dieser automati-

sierte Prozess kann somit Zeit und Kosten sparen [19].

19

3 Stand der Technik

3.2 Ansatze und Systeme

3.2.1 Sketch2Map

Eine interessante Herangehensweise wird in der Arbeit Sketch2Map vorgestellt [23], in

der das beschriebene System folgendermafsen arbeitet:

Der Nutzer gibt eine handgezeichnete Skizze als Input in das System, welche wichtige
Merkmale wie Kiistenlinien, Fliisse und andere Geldndeformen in einfachen Konturen
darstellt. Nun verarbeitet das System die Skizze stufenweise, wobei zuerst ein Condi-
tional Generative Adversarial Network (cGAN) eingesetzt wird, um die Skizze zu einer
Art topografischer Karte umzuwandeln. Dabei werden Konturen und Hohenmerkmale
basierend auf der Skizze realistisch interpretiert. Anschliefend wird die Karte, die In-
formationen iiber die Oberflichentopologie des Gelandes enthélt, als Eingabe fiir einen
deterministischen Algorithmus genutzt. Dieser Algorithmus wandelt die Eingabe in ein
konkretes Asset um, welches im weiteren Prozess als 2D- oder 3D-Modell verwendet

werden kann.

Da hier Generative Adversarial Networks (GAN) genutzt werden, sind Trainingsdaten

erforderlich, die auf unterschiedliche Weise generiert werden:

Einerseits durch prozedural erstellte Welten, bei denen systematisch Hohenkarten erzeugt
werden, aus denen sich dann Kiistenlinien, Fliisse und andere geografische Merkmale ab-
leiten lassen. Diese Hohenkarten werden durch mehrere Perlin Noise Ebenen generiert.
Die so erzeugten Karten werden dann in mehrdimensionale 2D-Bitmap-Darstellungen
umgewandelt. Um aus diesen Karten die entsprechenden Trainingsskizzen zu erzeugen,
wird eine Interpolation mit verschiedenen Glattungsparametern angewendet, wodurch
drei unterschiedliche Stile entstehen. Neben den prozedural generierten Daten werden
auch echte Hohendaten der Erde als Trainingsgrundlage verwendet. Mit diesen Trainings-
paaren aus Skizzen und entsprechenden Karten wird dann das zweistufige GAN-System
trainiert, wobei die erste Stufe die grobe Land-Meer-Segmentierung lernt und die zweite

Stufe die detaillierte Hohenkartengeneration innerhalb dieser Segmente iibernimmt.

20

3 Stand der Technik

3.2.2 Mapgen4

Eine weitere interessante Herangehensweise findet sich im Projekt Mapgen4 von Amit
Patel, das fiir die interaktive Erstellung von Landkarten entwickelt wurde!. Dieses System
ermoglicht es dem Nutzer, durch Skizzen direkt Einfluss auf die Gestaltung der Karte zu
nehmen. Dabei konnen gezielt Landschaftsformen wie Berge, Téler oder Gewésser an den
gewiinschten Stellen gezeichnet werden. Das Besondere ist, dass das System automatisch
Fliisse generiert und Biome auf Grundlage einer physikalischen Simulation von Faktoren
wie Wind, Verdunstung und Niederschlag berechnet. Das System arbeitet hauptséchlich
prozedural. Der zugrunde liegende Algorithmus basiert auf einer Delaunay-Triangulation
und ihrer dualen Voronoi-Diagramm-Struktur, die eine effiziente Verarbeitung und Dar-
stellung geografischer Merkmale ermoglicht. Die erzeugten Karten werden in Echtzeit
gerendert, was dem Nutzer ein unmittelbares visuelles Feedback bietet und iteratives
Arbeiten erleichtert.

Ein zentraler Bestandteil ist die Berechnung der Hohenwerte fiir die Landkarte?. Hierbei
greift das Projekt auf unterschiedliche Methoden zuriick und kombiniert diese. Dafiir
wird Simplex Noise verwendet, um grobe Landmassen und Wasserstrukturen vorab aus
einem Startwert zu generieren. Durch diese Technik entstehen natiirlich wirkende Kiis-
tenlinien, die als Basis fiir die weitere Bearbeitung dienen. Die Veranderungen durch den
Nutzer werden vom System erneut durch Simplex Noise verfeinert, sodass die Ubergin-
ge zwischen Land und Wasser natiirlicher wirken und kleinrdumige Details wie Buchten
oder Kiistenlinien hinzugefiigt werden. Gebirgsketten werden ebenfalls durch Simplex
Noise generiert, das die Verteilung und Ausrichtung dieser bestimmt. Die Verfeinerung
geschieht allerdings durch die Einbeziehung von sogenannten Distanzfeldern, die ebenfalls
als Grundlage fiir die Hohenverteilung dienen. Distanzfelder messen den Abstand von je-
dem Punkt auf der Karte zu bestimmten Merkmalen, wie beispielsweise den Abstand zur
Kiistenlinie. Diese Werte werden dann genutzt, um die Hohe der Punkte realistisch zu
interpolieren. Fiir die Verteilung von individuellen Bergen wird ebenfalls eine spezielle
Art von Noise, namlich “Blue-Noise”, verwendet, was dafiir sorgt, dass die Berge relativ

gleichméfig, aber nicht regelméfig angeordnet sind [20].

Der Renderer arbeitet auf einer Delaunay-Triangulation, wobei jedes Dreieck mit einem
der vier Typen assoziiert werden kann: Ozean, Flussquelle, Flussbiegung, Flussgabelung.

Je nach Typ wird eine unterschiedliche Stromung simuliert und eine davon abhéngige

! Amit Patel, "Mapgen4", https://simblob.blogspot.com/search/label /mapgen4
2Amit Patel, "Mapgen4: elevation", https://simblob.blogspot.com/2018/08 /mapgen4-elevation.html

21

3 Stand der Technik

Textur gewihlt?. Um die Fliisse an den Biegungen nicht zu kantig zu gestalten, da das
Eintreten des Flusses auf einer Seite des Dreiecks und das Austreten auf einer anderen
Seite mit einer trivialen Methodik dazu fiihren konnte, werden Bézier-Kurven genutzt.
Zur Darstellung des Flusssystems wird ein bindrer Baum konstruiert, wobei fiir jeden
Fluss ein Baum entsteht. Von der Kiistenlinie ausgehend werden die Fliisse stromaufwérts
aufgebaut. Regen wird simuliert, indem das Wasser von den Bléattern des aufgebauten
Baumes stromabwérts, also zu den Elternknoten, fliekt. Wahrend dieses Prozesses wird
fiir jeden Knoten der Niederschlag berechnet, die Flussmenge des aktuellen Knotens um

den Regen erhdht und die Flussmenge dem Elternknoten hinzugefiigt.

Anstatt die herkommlichen Perspektiven wie eine reine Draufsicht oder Seitenansicht zu
verwenden, werden hier diese beiden Methoden zu einer einzigen Darstellung kombiniert.
Dadurch entstehen Karten, bei denen Eigenschaften der Draufsicht wie Fliisse und Kiis-
tenlinien zusammen mit Seitenansichten von Bergen dargestellt werden. Dafiir werden
die Informationen, die in der z-Koordinate der Punkte enthalten sind, in die y-Koordinate
des jeweiligen Punktes iibertragen. Wenn also Informationen in der z-Koordinate enthal-
ten sind, wie es durch die Hohenkarte bei Bergen der Fall ist, dann wird diese Information

durch eine Abbildung auf die y-Achse iibertragen, also ,nach oben®.

Durch eine Kombination aus geometrischen Algorithmen und physikalischen Simulatio-
nen stellt Mapgen4 ein leistungsstarkes Werkzeug fiir die prozedurale Kartenerstellung
bereit. Es bietet eine wertvolle Perspektive auf Ansétze, die auch fiir diese Arbeit relevant

sein konnen.

3.2.3 Terrain Sketching

In der Arbeit Terrain Sketching wird ebenfalls ein sketch-basierter Ansatz prasentiert, der
in der Lage ist, Geldnde zu generieren [8]. Das System erméglicht es Nutzern, Landschafts-
formen intuitiv durch Striche zu definieren, die dann anschlieffend in dreidimensionales
Terrain umgewandelt werden. Das System arbeitet mit drei verschiedenen Interaktions-

modi:

Im Silhouetten-Modus zeichnen Nutzer Hohenprofile von Landschaftsformen, die auf ei-
ne vertikale Ebene projiziert werden. Der Aerial-Modus erméglicht das Zeichnen aus

der Vogelperspektive, was besonders fiir einschneidende Landschaftsformen wie Canyons

3Amit Patel, "Mapgen4: river appearance", https://simblob.blogspot.com/2018/09/mapgen4-river-
appearance.html

22

3 Stand der Technik

geeignet ist. Im Region-Modus kdnnen Gebiete markiert werden, um deren Oberflachen-
beschaffenheit zu modifizieren. Ein zentraler Aspekt des Systems ist die Verarbeitung der
Benutzerstriche. Aus einer gezeichneten Silhouette wird automatisch eine Schattenkurve
durch Schnitt mit dem existierenden Terrain erzeugt. Zusétzlich wird eine Begrenzungs-
kurve generiert, die die seitliche Ausdehnung der Landschaftsform definiert. Diese wird
basierend auf den “Schulterregionen” der Silhouette berechnet, also den Bereichen, die
zu lokalen Maxima oder Minima fiihren. Die Form dieser Begrenzungskurve passt sich

automatisch an. Bei einzelnen Gipfeln wird sie kreisférmig, bei Bergketten léanglich.

Die finale Generierung basiert auf einer Oberflichendeformation auf mehreren Auflo-
sungsebenen. Fir jede Auflésungsebene wird das Geldnde innerhalb der Begrenzungs-
kurve durch eine Kombination aus “Wavelet Noise” und Deformation angepasst. Die
Varianz des Rauschens wird dabei aus der Analyse der Silhouettenkurve abgeleitet. Die

Deformation selbst erfolgt durch eine kurvenbasierte raumliche Verformung.

Durch diese Kombination aus intuitiver sketch-basierter Eingabe und komplexer algorith-
mischer Verarbeitung ermoglicht das vorgestellte System die effiziente Erstellung realis-
tischer Landschaftsformen, wobei hier ein ganz klarer Fokus auf die Darstellung von

Hohenmerkmalen gelegt wird.

3.3 Vergleich und Synthese

Die analysierten Systeme demonstrieren unterschiedliche Herangehensweisen an die sketch-
basierte Generierung von Landschaften, die sowohl auf algorithmischer Komplexitit als
auch auf Nutzerfreundlichkeit abzielen. Trotz ihrer Unterschiede lassen sich Gemeinsam-
keiten sowie komplementére Ansétze identifizieren, die wichtige Erkenntnisse fiir eine

eigene Implementierung bieten.

Alle betrachteten Systeme verfolgen das Ziel, dem Nutzer eine intuitive und interaktive
Moglichkeit zu bieten, Landschaften durch einfache Skizzen oder Eingaben zu erstellen.
Dabei werden grundlegende Geometrien und topografische Merkmale wie Berge, Fliisse
und Kiistenlinien aus den Skizzen extrahiert und durch algorithmische Prozesse verfei-

nert.

Die Systeme setzen aukerdem auf verschiedene Methoden zur Hohenerzeugung und zur

Strukturierung geografischer Merkmale. Sowohl Sketch2Map als auch Mapgen4 und Ter-

23

3 Stand der Technik

rain Sketching nutzen Noise-Algorithmen, um natiirliche Uberginge und realistische De-

tails zu generieren.

Die Unterschiede der Systeme liegen vor allem in den eingesetzten Algorithmen und der
Zielsetzung der jeweiligen Ansétze. Sketch2Map setzt auf ein zweistufiges GAN-System,
das insbesondere fiir eine variable Stilisierung des Ergebnisses geeignet ist, wahrend Map-
gend und Terrain Sketching mit einer stérker prozeduralen Herangehensweise arbeiten,
die physikalische Simulationen und geometrische Algorithmen kombiniert. Dieser Fokus
macht Mapgend und Terrain Sketching zu interaktiven Werkzeugen, die besonders fiir
kreative Anwendungen wie die Erstellung von Karten in Spielen oder fiir “Storytelling”

geeignet sind.

Terrain Sketching bietet durch seine drei Interaktionsmodi eine hohe Flexibilitdt in der
sketch-basierten Benutzereingabe und legt dabei besonderen Wert auf die intuitive Defi-
nition von Héhenmerkmalen. Hier steht die detaillierte Verarbeitung einzelner Striche im
Vordergrund, wodurch Nutzern eine prézise Kontrolle iiber die erzeugten Landschafts-

formen erméglicht wird.

Die Stérken der analysierten Ansétze bieten wertvolle Hinweise fiir eine eigene Imple-
mentierung. Insbesondere die Integration von physikalischen Simulationen und geometri-
schen Algorithmen kénnte helfen, realistische und anpassbare Landschaften zu generieren.
Gleichzeitig bietet die GAN-basierte Methode von Sketch2Map Potenzial, um realistische

topografische Details automatisch aus groben Skizzen abzuleiten.

Die Synthese dieser Ansétze kdnnte ein System hervorbringen, das sowohl kiinstlerischen
als auch funktionalen Anforderungen gerecht wird. Ein solches System konnte eine fle-
xible Skizzeneingabe mit prozeduralen und datenbasierten Techniken kombinieren, um
sowohl stilisierte als auch realistische Landschaften zu erstellen. Besondere Aufmerksam-
keit sollte dabei auf die Benutzerfreundlichkeit und das unmittelbare visuelle Feedback

wahrend der Eingabe gelegt werden, um iterative Designprozesse zu fordern.

24

4 Konzept

Dieses Kapitel bildet die Briicke zwischen der bisher behandelten theoretischen Basis und
einer konkreten Losungsimplementierung der einleitend skizzierten Herausforderungen.
Es beschreibt den zentralen Ansatz zur Umsetzung der sketch-basierten Generierung von
fiktionalen Landkarten. Ziel ist es, die funktionalen und nicht-funktionalen Anforderun-
gen an das System klar zu definieren und ein methodisches Vorgehen zu entwickeln, das

die Grundlagen fiir die praktische Implementierung bildet.

Im Folgenden werden zunéchst die gewiinschten Funktionen und Eigenschaften des Sys-
tems beschrieben, bevor auf iibergeordnete Qualitdtsmerkmale eingegangen wird. Dar-
auf aufbauend wird der grundlegende Losungsansatz skizziert, der beschreibt, wie die
einzelnen Verarbeitungsschritte von der Skizzeneingabe bis zur fertigen Karte ineinan-
dergreifen. Abschliefend wird das methodische Vorgehen erldutert, das den iterativen

Entwicklungsprozess der Umsetzung beschreibt.

4.1 Funktionale Anforderungen

Im Folgenden wird darauf eingegangen, was das System mindestens leisten soll, und es
werden die funktionalen Anforderungen spezifiziert. Die Anforderungen orientieren sich
an der erwarteten Interaktion des Nutzers mit dem System und bilden eine wichtige

Grundlage fiir die Systemarchitektur und Implementierung.

4.1.1 Sketch-Eingabe und Segmentierung der Regionen

Ein zentraler Bestandteil des Systems ist die intuitive Sketch-Eingabe durch den Nutzer.
Der Nutzer hat hierbei die Moglichkeit, auf einer Zeichenfliche mit der Maus beliebig und
freihand zu zeichnen und gegebenenfalls Korrekturen vorzunehmen. In diesem Schritt des

Prozesses geht es also nur um den Umriss einer Landkarte. Ist der Nutzer zufrieden mit

25

4 Konzept

dem Ergebnis seiner Skizze, dann kann dieser die Sketch-Eingabe beenden. Diese Skiz-
ze dient als Grundlage fiir die weitere Verarbeitung und stellt einen Ausgangspunkt fiir
die Generierung der Karte dar. Es ist essentiell, dass das System auch ungenaue Einga-
ben zuverléssig interpretiert. Da eine Landkarte aus einem oder mehreren geschlossenen
Umrissen besteht, miissen gezeichnete Konturen zu vollstdndigen Polygonen verarbeitet
werden. Das System ist also auch in der Lage, mit Insel-artigen Umrissen umzugehen und
kann somit mehrere Umrisse gleichzeitig behandeln. Somit generiert das System geschlos-
sene Formen, die den urspriinglichen Umriss bestmdglich approximieren und gleichzeitig

die gewiinschte natiirliche Asthetik beibehalten.

Der Nutzer wird, nachdem die Skizze geschlossen wurde, die Umrisse der Landkarte in
Regionen unterteilen konnen. Hierfiir ist ein Icon-Platzierungs-Mechanismus vorgesehen.
Der Nutzer kann dabei zwischen unterschiedlichen Icons wie dem Berg-Icon, Wald-Icon,
See-Icon oder Dorf-Icon wéhlen und diese beliebig auf der Zeichenflache platzieren. Das
System priift daraufhin, ob sich die platzierten Icons innerhalb eines Umrisses befinden
oder ob sie ignoriert werden. Die validen Icons bilden dann zusammen mit dem geschlosse-
nen Umriss die Grundlage fiir die Unterteilung in Regionen beziehungsweise geografische

Zonen, welche jeweils mit einer Landschaftsart assoziiert werden kénnen.
Die konkreten Anforderungen an das System fiir diesen Schritt sind also:
e Zeichnungen kénnen Pixelgenau eingelesen werden.
e Zeichnungen sind korrigierbar.

e Linien mit Unterbrechungen von bis zu 5 Pixeln werden automatisch verbunden

und unvollstéindig geschlossene Formen werden dabei erkannt.

e Details von Sketch-Eingaben bleiben auch nach der Verarbeitung erhalten. Dabei
wird durch Stichproben an mindestens 20 charakteristischen Punkten (wie Ecken,
Einbuchtungen und Ausbuchtungen) tiberpriift, ob die Pixel hochstens um 5 Pixel

von ihrer urspriinglichen Position abweichen.
e Inselstrukturen werden korrekt, also individuell, behandelt.
e Icons werden validiert.

e [cons unterteilen die Fldche in Teilmengen, die mit Landschaftstypen assoziiert

werden.

26

4 Konzept

4.1.2 Landschafts Generierung

Nach der Vorverarbeitung der Landkarte in geografische Zonen ist der nichste Schritt die
Generierung der Landschaften, die den definierten Regionen zugewiesen werden. Dieser
Prozess stellt den Kern der Anwendung dar und sorgt dafiir, dass die Landkarte mit Land-
schaftsdetails versehen wird, die zusammen eine typische Darstellung von Fantasy-Karten
ergeben. Diese Karten zeichnen sich durch stilisierte, aber dennoch plausible geografische
Merkmale aus, die in fiktionalen und oft magischen Welten Verwendung finden. Zu diesen
Merkmalen gehoren beispielsweise Gebirge, Wélder, Seen, Fliisse und Dérfer. Diese Ele-
mente sind klar voneinander abgegrenzt, gehen jedoch in ihren Ubergingen harmonisch

ineinander tber.

Die Landschaftsmodellierung zielt darauf ab, eine Karte zu erzeugen, die sowohl den
spezifischen visuellen Anforderungen von Fantasy-Karten entspricht, als auch geogra-
fisch konsistent bleibt. Uberginge von Gebirgsregionen zu Wildern miissen beispiels-
weise sanft und organisch wirken, um ein glaubhaftes visuelles Erlebnis zu schaffen. Die
generierten Landschaften sollen nicht nur die dsthetischen Merkmale einer Fantasy-Karte
widerspiegeln, sondern auch eine gewisse Authentizitdt und Kohérenz in den geografi-

schen Beziehungen der Zonen bieten.

Ein weiteres Ziel ist die Einzigartigkeit der generierten Karten: Auch bei gleichen Einga-
ben sollen leicht abweichende Ergebnisse erzielt werden, um die Individualitat der Karten

zu gewahrleisten.
Zusammengefasst ergeben sich die folgenden Anforderungen:

e Stilisierte Landschaften werden auf Basis der jeweiligen Icons der Regionen gene-

riert.

e Uberginge zwischen Landschaften werden so gestaltet, dass sie realistisch und flie-

Rend wirken.

e Die Karte wird mit bekannten Details ausgestattet, wie organisch wirkenden Fluss-

verlaufen, Pergament-Optik und Namen fiir Dorfer.

e Die Generierung liefert einzigartige Ergebnisse, selbst bei identischen Eingaben.

27

4 Konzept

4.1.3 Ausgabe

Nachdem die Landkarte erfolgreich generiert wurde, muss das System das Resultat als
Bild ausgeben. Der Fokus liegt dabei auf der Bereitstellung einer einfachen und effizi-
enten Moglichkeit, die fertige Landkarte als Bilddatei zu speichern. Der Export als Bild
ermoglicht es den Nutzern, ihre generierte Karte in einem géngigen Format zu speichern

und weiterzuverwenden.

Das System muss die erzeugte Landkarte als Bild rendern. Dabei wird der gesamte Kar-
tenausschnitt, einschliefllich der generierten Landschaftstypen, in einem Bild zusammen-
gefiihrt. Die generierte Karte sollte alle visuellen Elemente wie Farben, Texturen und
Uberginge beriicksichtigen, um das gewiinschte #sthetische Ergebnis zu liefern. Fiir die
Erstellung des Bildes wird ein Rendering-Mechanismus eingesetzt, der die einzelnen Kar-
tenelemente basierend auf den festgelegten Parametern kombiniert und in ein pixelba-

siertes Format tiberfiihrt.

Der Nutzer kann die Landkarte direkt nach der Generierung in ein iibliches Bildformat
exportieren. Eine benutzerfreundliche Oberfliche wird bereitgestellt, die es ermdglicht,

die Bilddatei mit einem Klick zu speichern.
Zusammengefasst ergeben sich die folgenden Anforderungen:

e Die gesamten zuvor generierten Informationen werden in einem einzigen Bild ge-

rendert.

e Das Bild ist beispielsweise als png oder jpg exportierbar.

4.2 Nicht-funktionale Anforderungen

Neben den funktionalen Anforderungen spielen auch die nicht-funktionalen Anforde-
rungen eine wesentliche Rolle bei der Entwicklung des Systems. Diese Anforderungen
definieren qualitative Eigenschaften des Systems, die fiir die Nutzererfahrung und die
langfristige Nutzbarkeit entscheidend sind. Sie betreffen Aspekte wie Effizienz, Benutzer-
freundlichkeit und Anpassungsfahigkeit. Folgende nicht-funktionale Anforderungen sind
essentiell, um sicherzustellen, dass das System den gewiinschten Qualitatsstandards ent-

spricht und langfristig genutzt werden kann.

28

4 Konzept

4.2.1 Performance

Die Performance des Systems ist ein entscheidender Faktor fiir eine positive Nutzerer-
fahrung. Insbesondere bei der Generierung und Darstellung komplexer Karten muss das
System schnell und effizient arbeiten. Die Berechnung der Landkarte, einschlieflich der
Verarbeitung der Sketch-Eingabe und der Landschaftszuordnung, sollte innerhalb eines
angemessenen Zeitrahmens erfolgen, um eine fliissige Interaktion zu ermdéglichen. Auch
der Export der Landkarte als Bild muss ziigig ablaufen, damit Nutzer nicht unnétig war-
ten miissen. In Bezug auf die Performance bedeutet dies, dass das System die Eingaben
der Nutzer innerhalb von wenigen Sekunden verarbeiten und die fertige Karte erstellen

konnen sollte.

Hierbei gibt es jedoch eine Ausnahme: Das Modul, das fiir das Einlesen der Zeichnung
zustandig ist, muss die Ergebnisse in Echtzeit anzeigen, so wie man es von iiblichen
Zeichenprogrammen kennt. In dieser Arbeit bezieht sich der Begriff Echtzeit auf eine
Nutzerinteraktion ohne wahrnehmbare Verzégerung. Dies bedeutet, dass das System so
schnell auf Benutzereingaben reagiert, dass die Reaktionszeit fiir den Menschen als unmit-
telbar empfunden wird. Fiir alle weiteren Schritte, wie der Approximierung des Umrisses,

wird eine gewisse Berechnungszeit eingeplant.

Durch die Sicherstellung einer guten Performance wird gewéhrleistet, dass Nutzer das

System effektiv und ohne Frustration verwenden konnen.
Das System garantiert:
e Eine Echtzeitanzeige der gezeichneten Skizze.

e Der Berechnungsschritt, der fiir die Segmentierung der Regionen sorgt, braucht

maximal eine Sekunde.
e Die Landschaftsgenerierung erfolgt in weniger als fiinf Sekunden.

e Keine Uberlastung des Systems durch Karten mit bis zu 20 Icons, sodass alle An-

forderungen weiterhin erfiillt werden.

29

4 Konzept

4.2.2 Erweiterbarkeit

Die Erweiterbarkeit des Systems ist von entscheidender Bedeutung, um sicherzustellen,
dass es auch in Zukunft an neue Anforderungen oder Nutzungsgewohnheiten angepasst
und erweitert werden kann. Das System wird so entwickelt, dass mit minimalem Aufwand

neue Funktionen oder Komponenten integriert werden kénnen.
Die Erweiterbarkeit des Systems wird durch folgende Merkmale gewahrleistet:

e Der modulare Aufbau ermdglicht eine einfache Integration neuer Funktionen, da

jede Komponente klar abgegrenzt ist.

e Jedes Modul erfiillt eine spezifische Aufgabe, die in sich abgeschlossen ist, was die
Wartbarkeit erhoht.

e Eine geringe Kopplung erleichtert die Austauschbarkeit von Komponenten und mi-

nimiert unerwartete Seiteneffekte an anderen Stellen im System.

e Abstraktionen und Schnittstellen machen das System flexibler, da Anpassungen

vorgenommen werden konnen, ohne die interne Logik im Detail &ndern zu miissen.

e Eine Steuerung durch Parameter ermoglicht Anpassungen am System, ohne tief in

den Quellcode eingreifen zu miissen.

e Gut dokumentierter Code sorgt dafiir, dass das System auch bei zukiinftigen Wei-

terentwicklungen leicht verstandlich bleibt.

Durch die Schaffung einer robusten und erweiterbaren Architektur wird das System zu-
kunftssicher gestaltet und bleibt in der Lage, flexibel auf neue Anforderungen zu reagie-

ren.

4.3 Von der Skizze zur Karte

Zur systematischen Transformation von Skizzen in detaillierte Landkarten wird eine
mehrstufige Verarbeitungspipeline implementiert, die folgende Schliisselkomponenten um-

fasst:

1. Skizzenverarbeitung

30

4 Konzept

e Bresenham-Algorithmus: Gewihrleistet ein natiirliches Gefiihl beim Zeich-

nen der Umrisse.

e DBSCAN-Clustering: Gruppiert die Pixel und stellt sicher, dass mehrere

Landmassen korrekt gezeichnet werden kénnen.

e Delaunay-Triangulation: Dient als Grundlage fiir die Berechnung der Alpha

Shapes und der Voronoi-Diagramme.

e Alpha Shape: Schliefst mogliche Liicken in den Umrissen und korrigiert Feh-

ler in der Skizze.
2. Regionsegmentierung

e Voronoi-Diagramm: Unterteilt die Landmasse basierend auf platzierten Icons

in Zellen.
3. Regiongenerierung

e Perlin Noise und Simplex Noise: Erzeugen organische Verteilungen fiir

Berge und Ozeane.

e Wave Function Collapse (WFC): Generiert strukturierte Wélder, die aus

einzelnen Baumen bestehen.
4. Integration

e L-System: Erzeugt organische Flussstrukturen iiber die gesamte Karte hin-

weg.
e Filter: Harmonisieren die Uberginge und fiigen Texturen hinzu.

Die einzelnen Phasen bauen aufeinander auf. Die Ausgabe eines Schrittes dient dabei als

Eingabe fiir den néchsten.

31

4 Konzept

Abbildung 4.1: Pipeline unterteilt in die Phasen Skizzenverarbeitung, Regionsegmentie-
rung, Regiongenerierung und Integration.

4.4 Methodisches Vorgehen

Die Entwicklung des Systems folgt einem agilen, iterativen und komponentenbasierten
Ansatz, bei dem zunéchst grundlegende Funktionalitdten implementiert und dann schritt-
weise erweitert werden. Das Vorgehen gliedert sich in mehrere aufeinander aufbauende

Phasen.

Die erste Phase widmet sich der Entwicklung des grundlegenden Applikationsgeriists mit
Fokus auf die Sketch-Eingabe. Es wird ein Framework geschaffen, das Basisinteraktionen
ermoOglicht und eine robuste Routing-Struktur zwischen verschiedenen Anwendungszu-
standen bereitstellt. Die zentrale Herausforderung besteht in der Implementierung einer

interaktiven Zeichenflache, die prézise Benutzereingaben erfassen kann.

In der zweiten Phase liegt der Fokus auf der Analyse und Optimierung der Sketch-
Eingabe. Es werden Methoden entwickelt, die die Freihandzeichnung des Nutzers ana-
lysieren und in eine strukturierte Form iiberfithren. Dies umfasst die Identifikation und

Bereinigung von Ungenauigkeiten sowie die Generierung geschlossener Polygone.

Die dritte Phase behandelt die Icon-basierte Segmentierung der Karte. Auf Basis des

generierten Polygons wird ein System entwickelt, das die Platzierung von Icons ermdglicht

32

4 Konzept

und diese zur Unterteilung der Fliche in distinkte Regionen nutzt. Die Entwicklung

effizienter Algorithmen zur rdumlichen Analyse spielt hierbei eine zentrale Rolle.

Die vierte Phase konzentriert sich auf die prozedurale Generierung der verschiedenen
Landschaftstypen. Fiir jeden Landschaftstyp werden spezifische Generierungsstrategien
entwickelt, die charakteristische Merkmale der jeweiligen Landschaft erzeugen. Aufgrund

der modularen Struktur kénnen diese unabhéngig voneinander betrachtet werden.

In der abschliekenden Phase geht es um die Zusammenfithrung der Informationen zu
einem Gesamtbild, sowie die Ergénzung kleiner Details. Besondere Aufmerksamkeit gilt
dabei der Entwicklung von Methoden fiir iiberzeugende Ubergiéinge zwischen den ver-

schiedenen Landschaftstypen.

Die Phasen bauen logisch aufeinander auf, wobei jede Phase die Grundlage fiir die nach-
folgende bildet. Dadurch kénnen grundlegende Funktionalitdten friihzeitig getestet und
schrittweise erweitert werden, wiahrend die Gesamtarchitektur des Systems konsistent
bleibt. Dies wird vor allem durch die erste Phase ermoglicht, da hier durch den Auf-
bau einer modularen Anwendungsstruktur mit klar definierten Verantwortlichkeiten die
Grundlage fiir erweiterbare und wartbare Komponenten geschaffen wird. Die gewéhlte
Architektur erlaubt es, neue Funktionalitdten schrittweise zu integrieren, ohne bestehen-

de Komponenten grundlegend {iberarbeiten zu miissen.

Die beschriebenen Phasen kénnen im Kontext agiler Entwicklung als Epics betrachtet
werden, die sich in konkrete User Stories und Tasks untergliedern lassen. Dieser An-
satz ermoglicht eine flexible und iterative Entwicklung, bei der einzelne Funktionalita-
ten schrittweise implementiert und verfeinert werden kénnen. So kann beispielsweise die
Sketch-Eingabe zunédchst mit grundlegenden Zeichenfunktionen umgesetzt und in spé-
teren Iterationen um Features wie Korrekturmoglichkeiten erweitert werden. Diese agile
Herangehensweise erlaubt es, frithzeitig Feedback zu einzelnen Komponenten einzuholen
und potenzielle Probleme rechtzeitig zu erkennen und zu beheben, wahrend die tiberge-

ordnete Struktur der Entwicklungsphasen als Orientierungsrahmen bestehen bleibt.

33

5 Umsetzung

Die Umsetzung der sketch-basierten Generierung fiktionaler Landkarten erforderte einen
ganzheitlichen Ansatz, der theoretische Konzepte, softwaretechnische Losungen und krea-
tive Algorithmen vereint. In den folgenden Abschnitten wird der Weg von der initialen
Idee bis zur funktionsfihigen Anwendung detailliert beschrieben. Der Fokus liegt dabei
auf den technologischen Entscheidungen, der Architektur des Systems und den spezifi-
schen Implementierungsstrategien, die entwickelt wurden, um aus einer einfachen Skizze

eine komplexe und lebendige Landkarte zu generieren.

5.1 Technologie

Die praktische Umsetzung basiert auf einem speziell zusammengestellten Technologie-
stack, der die zentralen Anforderungen an die prozedurale Generierung und die Verar-
beitung benutzerdefinierter Skizzen adressiert. Die verwendeten Technologien lassen sich

in Programmiersprachen, Bibliotheken und Werkzeuge gliedern:

Programmiersprache

Die wichtigste Entscheidung ist hierbei wahrscheinlich die Wahl der Programmiersprache,

da alle anderen genannten Technologien davon abhéngig sind.

Java mit JDK 17! : Java dient als Kerntechnologie fiir die Implementierung der An-
wendung. Die Wahl fiel auf Java aufgrund seiner Plattformunabhéngigkeit und seiner
umfangreichen Bibliotheken. Diese spielen insbesondere bei der Verarbeitung geometri-
scher Strukturen und bei rechenintensiven Algorithmen fiir die prozedurale Generierung

eine zentrale Rolle.

! Java, https://docs.oracle.com /en/java/javase/17/

34

5 Umsetzung

Frameworks und Bibliotheken

JavaFX? : Fiir die Benutzerinteraktion und Visualisierung kommt JavaFX zum Ein-
satz. Es ermoglicht eine intuitive und interaktive Benutzeroberfliche, die fiir die Ein-
gabe und Bearbeitung von Skizzen optimiert ist. Dariiber hinaus wird JavaFX genutzt,
um die generierten fiktionalen Landkarten in einer ansprechenden grafischen Darstellung
auszugeben. JavaFX erleichtert auflerdem die Umsetzung eines Model-View-Controller-
Paradigmas durch Eigenschaften wie die Trennung von FXML-Dateien zur Gestaltung
der Benutzeroberfliche und die Verwendung von Java-Klassen fiir die Steuerung der
Views und Models.

Java Topology Suite (JTS)3 : Diese Bibliothek ist essenziell fiir die geometrische
Verarbeitung und Analyse der eingegebenen Skizzen. Sie stellt Funktionen zur Verfiigung,
um komplexe Algorithmen wie Delaunay-Triangulationen, Voronoi-Diagramme oder die
Erkennung geometrischer Formen effizient zu implementieren. JTS ermoglicht es, aus den

skizzierten Eingaben prazise Regionen und Grenzen abzuleiten.

Auburn FastNoiseLite* : Fiir die prozedurale Generierung wird Auburn FastNoiseLite
verwendet. Die Bibliothek bietet eine schnelle und vielseitige Implementierung von Noise-
Algorithmen wie Perlin oder Simplex Noise, die zur Generierung von realistisch wirkenden

Landschaftsmerkmalen wie Hohenkarten oder Gebirgsziigen genutzt werden.

Allison Casey WaveFunctionCollapse® : Diese Java-Adaption des WFC Algorithmus
wird genutzt, um strukturierte und kohérente Kartenbereiche aus vorgegebenen Mustern

ZU generieren.

Apache Commons® : Diese vielseitige Bibliothek unterstiitzt die Entwicklung durch
grundlegende Hilfsfunktionen, etwa fiir mathematische Operationen oder Datenverarbei-

tung.

2JavaFX, https://openjfx.io/

3Java Topology Suite (JTS), https://github.com/locationtech /jts

4Auburn FastNoiseLite, https://github.com/Auburn/FastNoiseLite

% Allison Casey WaveFunctionCollapse, https://github.com /allison-casey /wavefunctioncollapse
6 Apache Commons, https://commons.apache.org/

35

5 Umsetzung

Werkzeuge

IntelliJ IDEA7 : Die Entwicklung der Anwendung erfolgt in Intelli] IDEA, einer leis-
tungsstarken Entwicklungsumgebung, die speziell fiir grofse, komplexe Projekte geeignet
ist. Sie bietet Funktionen wie automatische Codeanalyse, Debugging-Tools und Codesu-

che, wodurch die Effizienz bei der Implementierung erheblich gesteigert wird.

Gradle® : Gradle dient als Build-Tool und unterstiitzt die Automatisierung von Build-
Prozessen, die Verwaltung von Abhéngigkeiten und die Integration der eingesetzten Bi-
bliotheken.

Git? : Fiir die Versionskontrolle wird Git verwendet. Es ermdglicht die Nachverfolgung
von Anderungen wihrend der Entwicklung und bietet Sicherheit bei der Arbeit an ver-

schiedenen Aspekten der Anwendung.

5.2 Systemarchitektur

Die Systemarchitektur bildet das Grundgeriist der Anwendung und definiert, wie die
einzelnen Komponenten miteinander interagieren und welche Entwurfsprinzipien bei der
Entwicklung verfolgt wurden. Ziel war es, eine modulare, erweiterbare und wartbare Soft-
warearchitektur zu schaffen, die die Anforderungen der sketch-basierten Generierung fik-
tionaler Landkarten effizient abbilden kann. Dabei orientierte sich die Architektur an be-
wahrten Entwurfsmustern, wie sie von Gamma et al. [9] beschrieben sind, und nutzt diese
zur Gestaltung einer flexiblen und skalierbaren Lésung. Die nachfolgenden Abschnitte er-
lautern die technischen und fachlichen Bausteine sowie zentrale Entwurfsmuster, die bei

der Implementierung zum Einsatz kamen.

5.2.1 Technische Bausteine

Die technische Architektur des Systems basiert auf einem modularen und flexiblen De-
sign, das auf den Prinzipien von Skalierbarkeit, Erweiterbarkeit und einer klaren Tren-

nung der Verantwortlichkeiten aufgebaut ist. Das System folgt einer modifizierten Model-

"IntelliJ IDEA, https://www.jetbrains.com/idea/
8Gradle, https://gradle.org/
9Git, https://git-scm.com/

36

5 Umsetzung

View-Controller-Architektur (MVC), um die Kernlogik, die Benutzeroberfliche und die

Steuerung der Anwendung klar voneinander zu trennen.
Die Anwendung gliedert sich in folgende technische Hauptkomponenten:

e Controller: Verarbeitet Benutzerinteraktionen und koordiniert die Daten zwischen
Model und View.

e View: Stellt die Benutzerschnittstelle dar und visualisiert die vom Controller ge-
lieferten Daten, wiahrend sie Benutzereingaben erfasst und an den Controller wei-
tergibt.

e Model: Reprisentiert die Daten und enthélt nur simple Geschéftslogik. Daher kann
das Model auch als sogenanntes Data Transfer Object (DTO) betrachtet werden.

e Service: Kapselt komplexere Geschéftslogik, die auf Models angewendet wird.
e Util: Bietet eigenstidndige Hilfsfunktionen und Werkzeuge.

Diese klare Trennung gewihrleistet, dass Anderungen oder Erweiterungen in einer Kom-

ponente minimale Auswirkungen auf andere Komponenten haben.

5.2.2 MVC-Architektur mit JavaFX

Das MVC-Architekturmuster der Anwendung wird durch das JavaFX-Framework un-
terstiitzt. Die Views werden durch FXML-Dateien definiert, die eine deklarative Be-
schreibung der Benutzeroberfliche ermoglichen. So definiert beispielsweise die Main-
View.fxml den Einstiegspunkt der Anwendung. Durch das Attribut fx:controller
werden die Views mit dem entsprechenden Controller verkniipft. Nach dem gleichen Prin-
zip lassen sich mit dem Attribut £x:1id Objektvariablen oder Methoden mit bestimmten

grafischen Elementen verbinden.

Die Kommunikation zwischen View und Controller wird durch FXML-Annotationen un-
terstiitzt. Mit @FXML annotierte Felder und Methoden werden automatisch mit den ent-

sprechenden FXML-Elementen verbunden.

Der Startpunkt der Anwendung ist die MainApp-Klasse, die von der JavaFX-Application-
Klasse erbt. In der start () -Methode wird die erste View geladen und der grundlegende

Aufbau der Anwendung initialisiert.

37

5 Umsetzung

Die Navigation zwischen verschiedenen Views wird durch ein zentrales Routing-System
gesteuert. Der NavigationController fungiert dabei als Router und ermdoglicht den
Wechsel zwischen den Views. Alle spezifischen Controller erben von einem Abstract-—
Controller, wodurch sie Zugriff auf die Navigationsfunktionalitédt erhalten, indem ei-
ne Methode bereitgestellt wird, die den NavigationController fiir eine beliebige

Instanz setzt, die AbstractController implementiert.
Der NavigationController implementiert zwei Varianten der switchView () -Methode:

e Die erste Variante nimmt nur den Pfad der View entgegen, auf die gewechselt

werden soll.
e Die zweite Variante ermoglicht zusétzlich die Ubergabe von Daten an die Ziel-View.
Der Navigationsprozess lauft dabei wie folgt ab:
1. Die neue View wird iiber den FXMLLoader geladen.
2. Der zugehorige Controller wird extrahiert.

3. Der NavigationController wird fiir den neuen Controller gesetzt, falls dieser

von AbstractController erbt.

4. Falls Daten iibergeben wurden und der Controller das DataReceiver-Interface

implementiert, werden diese iiber die receiveData ()-Methode weitergereicht.
5. Die neue Szene wird in der Stage gesetzt.

Die Pfade zu den Views sind zentral in der ViewRoutes-Klasse als Konstanten de-
finiert. Dies gewéhrleistet eine typsichere Navigation und vereinfacht die Wartung der

Routenpfade.

Die eigentliche Geschiéftslogik ist in Service-Klassen ausgelagert, die von den Controllern
verwendet werden. Dies ermoglicht eine klare Trennung zwischen der Ul-Logik und der

Datenverarbeitung.

Diese Architektur ermdglicht eine modulare Erweiterung der Anwendung. Neue Funktio-
nalitdten konnen durch das Hinzufligen von FXML-Views, zugehérigen Controllern und
entsprechenden Services implementiert werden, ohne bestehende Komponenten zu beein-
flussen. Die lose Kopplung zwischen den Komponenten wird durch das Routing-System

und die Service-Abstraktion gewéhrleistet.

38

5 Umsetzung

5.2.3 Fachliche Bausteine

Um die fachlichen Funktionalitdten der Anwendung klar voneinander abzugrenzen und
die Modularitédt des Systems zu férdern, wurden logische Einheiten definiert. Diese fach-
lichen Komponenten (im Folgenden vereinfacht als . Komponenten bezeichnet) biindeln
jeweils eine spezifische Funktionalitit, bestehen aus Teilen mehrerer technischer Kom-
ponenten und arbeiten unabhéngig von anderen Komponenten, wobei definierte Schnitt-
stellen zur Interaktion genutzt werden. Nachfolgend werden die Hauptkomponenten der

Anwendung und deren Zusammenspiel erlautert.

Skizzenerstellung

e Funktion: Dient der Erstellung und Bearbeitung des Skizzenmodells.

e Bestandteile: DrawView, DrawController, SketchService und SketchMo-
del.

e Interaktion: Nimmt eine Skizze vom Nutzer entgegen und liefert Daten fiir die

Regionorganisation.

Regionorganisation

e Funktion: Organisiert die Platzierung von Icons und teilt die Karte in Regionen

auf.

e Bestandteile: IconPlacementView, IconPlacementController, Region-—
PartitioningService und CellModel / CellModelCollection.

e Interaktion: Nutzt die Ergebnisse der Skizzenerstellung und stellt strukturierte

Daten fiir die Kartengenerierung bereit.

Kartengenerierung

e Funktion: Generiert die finale Karte und stellt diese dar.

e Bestandteile: ResultView, ResultController, MapGenerationService

und GeneratedMapModel.

39

5 Umsetzung

e Interaktion: Nutzt Daten von der Regionorganisation.

Abbildung 5.1: Bausteinsicht zeigt die drei Hauptkomponenten und stellt das MVC-
Muster innerhalb jeder Komponente dar.

5.2.4 Modulare Strategieimplementierung
Das Strategie-Entwurfsmuster gehort zu den Verhaltensmustern und bietet die Moglich-

keit, Algorithmen zu kategorisieren, diese innerhalb einer Kategorie wiahrend der Laufzeit

auszutauschen und sie kontextunabhingig zu nutzen. In der Softwareentwicklung stellt

40

5 Umsetzung

dieses Muster eine elegante Losung dar, um verschiedene Implementierungen eines Algo-

rithmus zu kapseln und sie dynamisch austauschbar zu machen.

Fiir dieses Projekt wird das Entwurfsmuster genutzt, um die Logik fiir die Generierung
einzelner Kartenregionen zu modularisieren. Die einzelnen Regionen, die jeweils mit ei-
nem Icon assoziiert werden, besitzen unterschiedliche Eigenschaften. Jede dieser Eigen-
schaften erfordert eine spezifische Logik zur Generierung der Karteninhalte, die flexibel

und erweiterbar sein muss.

Die Strategie-Schnittstelle MapCellGenerationStrategy definiert einen einheitli-

chen Vertrag fiir alle Generierungsstrategien.
Fiir jede Region wird eine separate Logik in den folgenden Klassen implementiert:

e MountainMapCellGenerator

ForestMapCellGenerator

VillageMapCellGenerator

LakeMapCellGenerator
e OceanMapCellGenerator

Die konkreten Implementierungsdetails werden im Abschnitt ,Generierung der Kartenele-
mente” detailliert beschrieben. Der zentrale Generierungs-Service MapGenerationSer—
vice verwendet eine Zuordnung (strategyMap), um die passende Generierungsstrate-
gie fiir jedes Kartenelement dynamisch auszuwéhlen. Dies geschieht in der Hauptmethode

der Klasse generateMap ().

Abbildung 5.2: Klassendiagramm, das die Implementierung des Strategie-Musters in der
Anwendung zeigt.

41

5 Umsetzung

Ablauf der Generierung

Die Methode durchlauft folgende Schritte:

1. Erstellung des finalen Modells: Das Modell, das spater zur Ausgabe des Er-

gebnisses genutzt wird, wird instanziiert.
2. Strategiebasierte Generierung:
e [teration iiber alle Regionen.
e Auswahl der passenden Generierungsstrategie.

o Aufruf der jeweiligen Generierungsmethode.

Vorteile des Ansatzes

Die Vorteile dieses Ansatzes fiir den Anwendungsfall sind:

o Erweiterbarkeit: Neue Landschaftstypen konnen einfach durch das Hinzufiigen

einer neuen Strategie-Klasse und eines neuen Icons implementiert werden.

e Lose Kopplung: Der Generierungs-Service ist unabhéngig von spezifischen Gene-

rierungsimplementierungen.
e Wartbarkeit: Jede Strategie kann separat entwickelt und getestet werden.

e Laufzeitflexibilitét: Strategien konnen dynamisch ausgetauscht oder hinzugefiigt

werden.

Alternativ wurde ebenfalls ein weiterer Ansatz implementiert, in dem die Generierung
selektiv fiir einzelne Symboltypen erfolgt. Dies geschieht iiber die iiberladene genera-
teMap (Icon icon)-Methode, die nur fiir ein bestimmtes Icon die entsprechende Ge-
nerierungsstrategie anwendet. Ein entscheidender Vorteil dieses Ansatzes besteht darin,
dass der Controller die Kartenelemente nun einzeln laden und direkt anzeigen kann. Da-
durch entsteht ein interaktiveres Erlebnis fiir den Nutzer, da sich die Karte schrittweise
aufbaut, anstatt erst nach vollstidndiger Generierung sichtbar zu werden. Der zentra-
le Nachteil dieses Ansatzes ist die erhohte Kopplung zwischen Controller und Generie-
rungslogik. Der Controller muss nun aktiv steuern, welche Elemente wann generiert und

angezeigt werden, was die Architektur weniger flexibel macht.

42

5 Umsetzung

5.2.5 Datenfluss

Das MVC-Muster macht es leicht, Daten innerhalb der technischen Komponenten wei-
terzureichen. Ein Controller kann somit das zugrundeliegende Model einfach anpassen,
wodurch dieses wiederum die View verédndert. Es wurde bewusst die Entscheidung ge-
troffen, nur triviale Logik in die Model-Klassen aufzunehmen und die Hauptlogik in die
Services auszulagern, damit ein Model als Transportmedium fiir Daten zwischen den
fachlichen Komponenten dienen kann, also als Data Transfer Object. Dies verhindert

eine unnotig enge Kopplung zwischen Komponenten.

Um Daten zwischen den fachlichen Komponenten zu {ibertragen, wird ein zusétzliches
Konzept eingefiihrt, das die Kommunikation innerhalb der verschiedenen Systemkompo-

nenten ermoglicht.

Beim Wechsel der Views ruft der zugehorige Controller, sofern er das Interface DataRe—
ceiver implementiert, automatisch die Methode receiveData () auf. Dies ermdglicht
eine saubere Trennung der Verantwortung zwischen der View und dem Controller, wah-
rend gleichzeitig der Controller die Flexibilitdt behélt, auf die iibergebenen Daten zu

reagieren.

Das Vorgehen lasst sich folgendermafen beschreiben:

1. View-Wechsel: Wenn der Benutzer eine Aktion ausfiihrt, die den Wechsel der
aktuellen View auslost, wird die neue View geladen. Diese View ist mit einem

Controller verkniipft, der als DataReceiver fungiert.

2. Dateniibergabe: Sobald die neue View angezeigt wird, werden eventuell vorhan-
dene Daten an den Controller weitergereicht. Dies geschieht durch den Aufruf der

Methode receiveData ().

3. Verarbeitung im Controller: Der Controller, der das DataReceiver-Interface
implementiert, empfangt die libergebenen Daten und kann sie geméfs den spezifi-
schen Anforderungen der Anwendung verarbeiten. Dies konnte die Aktualisierung
von Zustanden, das Fiillen von Modellen oder das Auslésen weiterer logischer Pro-

zesse innerhalb der Anwendung umfassen.

Diese Implementierung férdert die Entkopplung zwischen View und Controller, da der

Controller lediglich das Interface DataReceiver implementiert und nicht direkt von

43

5 Umsetzung

Abbildung 5.3: Sequenzdiagramm, das den beschriebenen Datenfluss veranschaulicht

der View abhingig ist. Die Verantwortung fiir die Datenverarbeitung liegt klar beim

Controller und nicht bei der View.

5.3 Vorverarbeitung

Erstellung der Skizze

Die Erstellung der Skizze bildet den ersten interaktiven Schritt in der Generierungslo-
gik. Entsprechend den Anforderungen wurde eine Losung entwickelt, die eine intuitive
und flexible Zeicheneingabe ermdglicht und gleichzeitig die Komplexitit ungenauer oder

skizzenhafter Eingaben bewaltigt.

Die Sketch-Eingabe wurde als Canvas-Oberfliche implementiert, die dem Nutzer zwei

primére Interaktionsméglichkeiten bietet: Zeichnen und Radieren.

Der SketchService kiimmert sich um die Verarbeitung der Skizze, indem er wéhrend
der Eingabe die gezeichneten Pixel speichert und verwaltet. Dafiir interpoliert der Service
die Mauspositionen, die er vom Controller erhélt, indem er den Bresenham-Algorithmus

anwendet. Dieses Vorgehen gewéhrleistet ein fliissiges Verhalten beim Zeichnen.

Das SketchModel repriasentiert die interne Datenstruktur der Skizze. Es speichert ge-
setzte Pixel als ClusterableCoordinate in einer Menge. Die Utility-Klasse Clus—
terableCoordinate erbt von einer Koordinatenreprisentation aus der Java Topology

Suite und implementiert das Clusterable-Interface aus Apache Commons.

44

5 Umsetzung

Wenn der Nutzer mit der Eingabe fertig ist, kann er iiber die Oberflache die Verarbeitung

der Skizze anstofsen. Dies fithrt zu folgenden Berechnungen in der Service-Klasse:

1. Clustering: Gruppierung zusammenhéngender Pixelcluster mit dem DBSCAN-
Algorithmus.

2. Berechnung der Alpha Shape: Approximation des gezeichneten Umrisses fiir

jedes identifizierte Cluster und gleichzeitige Schliefsung.

Das erzeugte SketchModel wird darauthin vom aktuellen Controller an den Controller

der nachsten View weitergereicht

Segmentierung der Regionen

Ausgehend von der verarbeiteten Skizze wird ein Verfahren benétigt, das die Landkarte

in sinnvolle, zusammenhangende Bereiche unterteilt.

Die Segmentierung basiert auf dem SketchModel und den Icons, die vom Nutzer be-

liebig platziert werden koénnen.

Der RegionPartitioningService erhélt beim Platzieren eines Icons die Koordina-

ten und das jeweilige Icon vom Controller iibergeben und speichert diese.
Nach einer Platzierung wird der Hauptprozess angestofsen:

1. Voronoi-Diagramm-Generierung: Auf Grundlage der Icon-Positionen wird zu-
néchst ein Voronoi-Diagramm generiert. Dies erfolgt unter Verwendung einer Delaunay-
Triangulation. Anschliefiend erfolgt das Beschneiden der Zellen anhand des gezeich-

neten und verarbeiteten Umrisses der Skizze.

2. CellModel-Erstellung: Assoziierung einer Zelle mit einem Icon, wobei der ge-
samte Bereich, der nicht zu einer geschlossenen Flache der Skizze gehort, dem

Ozean-Icon zugeordnet wird.

3. Hinzufiigen zur CellModelCollection: Die einzelnen Cel1Model werden einer
Collection-Klasse hinzugefiigt, wobei angrenzende Zellen mit gleichen Icons zusam-

mengefasst werden.

45

5 Umsetzung

Die entstehende CellModelCollection, die eine Sammlung an CellModel repra-
sentiert, wird dem Controller der néchsten View iibergeben. Ein Cel1Model besteht aus
einem Polygon, einer Farbe fiir die Visualisierung dieses Zwischenschrittes, einem Icon

und der Koordinate des geometrischen Schwerpunkts.

5.4 Generierung der Kartenelemente

Die Implementierungen der MapCellGenerationStrategy erhalten iiber den Map-
GenerationService jeweils ein CellModel, das die zu generierende Region repré-
sentiert, sowie ein GeneratedMapModel. Letzteres dient als iibergreifendes Model, in
dem alle generierten Kartenelemente zusammengefiihrt werden, um das finale Karten-
bild zu erstellen. Das GeneratedMapModel besteht hauptséchlich aus einem JavaFX
WritableImage, das als zentrale Datenstruktur fiir die kumulierte Kartengenerierung
dient. Es speichert sdmtliche erzeugten Pixelwerte und Assets, die durch die verschie-
denen Strategien der MapCellGenerationStrategy hinzugefiigt werden, und bringt
die generierten Inhalte somit zuriick auf die Pixelebene. Dabei funktioniert es dhnlich
wie ein Array, das Farbwerte fiir jede Pixelposition speichert, ist jedoch durch die bereit-
gestellten Methoden leichter zu handhaben.

5.4.1 Gebirge

Die Generierung von Gebirgsregionen erfolgt unter Verwendung der MountainMap-—
CellGenerator-Klasse. Diese Implementierung nutzt ein Perlin Noise Verfahren zur
Platzierung von Berg-Assets innerhalb der definierten Zellen. Hierfiir durchlduft die Im-

plementierung folgende Schritte:

e Initialisierung der Parameter: Faktoren wie die Berggrofe, die Rauschschwelle

und der minimale Abstand zwischen den Bergen werden definiert.

e Noise-Generator konfigurieren: Mit der FastNoiseLite-Bibliothek wird ein
Perlin Noise Algorithmus genutzt, um natiirliche Hohenstrukturen fiir die Gebirge

zu simulieren.

e Noise-basierte Bergplatzierung: Basierend auf den Noise-Werten und dem Schwell-
wert werden Berge nur an geeigneten Stellen platziert, wobei ein Mindestabstand

zu bereits gesetzten Bergen eingehalten wird.

46

5 Umsetzung

e Visualisierung der Berge: Je nach berechnetem Noise-Wert wird die Berggrofse
dynamisch angepasst, um eine realistische Darstellung zu erzielen. Zuféllige Spie-

gelungen und Rotationen erhéhen dabei die optische Variation.

5.4.2 Ozean

Die Generierung der Ozeanregion erfolgt durch die OceanMapCellGenerator-Klasse,
die einen Simplex Noise Algorithmus nutzt, um organische Tiefenverldufe und sanfte
Ubergéinge zwischen flachen Regionen und tiefem Ozean zu erzeugen. Dabei wird ein ab-
gestufter Farbverlauf verwendet, um die verschiedenen Wassertiefen visuell darzustellen.

Die Implementierung folgt diesen Schritten:

e Initialisierung des Noise-Generators: Mit der FastNoiseLite-Bibliothek

wird dieses Mal ein Simplex Noise Algorithmus genutzt.

e Sanfte Ubergiinge zu Landmassen: Ein Distanzfaktor von allen Punkten zur
Zellgrenze wird berechnet, um weiche Ubergéinge zwischen Wasser- und Landbe-
reichen zu schaffen. Dieser Faktor wird mit dem berechneten Noise-Wert kombi-
niert, um den finalen Héhenwert zu beeinflussen. Dadurch entstehen an den Rén-
dern flachere Kiistenregionen, die durch die Kombination von Distanz und Noise-

Interpolation erzielt werden.

e Farbzuweisung anhand der Hé6he: Der finale Hohenwert wird in eine passende
Farbe umgewandelt. Durch Interpolation zwischen verschiedenen Blautonen ent-

steht ein natiirlicher Farbverlauf.

5.4.3 Seen

Die Generierung der Seen erfolgt durch die LakeMapCellGenerator-Klasse, die eine
organische Form fiir den See innerhalb der gegebenen Zellen erzeugt. Dies geschieht durch
die Verwendung einer Kombination aus geometrischen Berechnungen und stochastischen
Methoden, um den natiirlichen Verlauf eines Sees zu simulieren. Die Implementierung

folgt dabei den folgenden Schritten:

e Maximalen Radius berechnen: Der maximal erlaubte Radius des Sees wird

berechnet, indem der Abstand vom Zentrum der Zelle zu der nichsten Kante des

47

5 Umsetzung

Polygons ermittelt wird. Dies hilft dabei, die Grofe an die Zellform anzupassen und

sicherzustellen, dass der See innerhalb der Zelle bleibt.

e Organische Form erzeugen: Eine organische Seeform wird generiert, die eine
unregelméfige und natiirliche Kontur aufweist. Der See erhélt eine variable Form,
die durch eine zuféllige Variation des Radius an jedem Punkt entlang des Randes

des Sees erzeugt wird.

¢ Rendering des Sees: Die Farbe jedes Pixels wird basierend auf seiner Entfernung
zum Zentrum des Sees und zum Rand des Sees berechnet. Diese Entfernung wird
verwendet, um einen sanften Farbverlauf zwischen tiefem Wasser und Wasserober-

fliche zu erzeugen.

5.4.4 Walder

Die Generierung von Waldregionen erfolgt mithilfe der ForestMapCellGenerator-
Klasse, die durch den Einsatz des Wave Function Collapse Algorithmus eine realistische
und organische Verteilung von Baumtexturen innerhalb der definierten Zellen realisiert.
Dabei kommen sowohl deterministische als auch stochastische Elemente zum Einsatz, um
eine natiirliche Optik zu gewahrleisten. Die Implementierung folgt dabei den folgenden
Schritten:

e Initialisierung des Input-Tile-Assets: Zu Beginn wird ein vorgefertigtes Asset

geladen, welches als Grundlage fiir das spétere Texturmuster dient.

e Konfiguration des WFC-Models: Mit Hilfe der OverlappingModel-Klasse
aus der WFC-Bibliothek von Allison Casey wird aus dem Input-Asset ein Textur-
muster generiert. Dabei spielt die Parametrisierung eine entscheidende Rolle, damit

es nicht zu Fehlern kommt.

e Texturierung der Zellregion: Wurde die Methode des WFC-Models erfolgreich
ausgefiithrt, wird das daraus resultierende Muster in ein TexturePaint-Objekt
iiberfithrt, um dann die gesamte Flache der Zellregion kachelartig zu texturieren.
Die Textur wird hier also aus Performancegriinden gegebenenfalls mehrfach ver-
wendet, anstatt direkt ein groferes Ausgabebild mit dem WFC-Algorithmus zu

generieren.

48

5 Umsetzung

Abbildung 5.4: Eingabebild fiir den WFC-Algorithmus mit einem 3x3-Raster zur besse-
ren Erkennbarkeit der Struktur

e Weichzeichnen des Randes: Bevor die Pixel dem GeneratedMapModel hin-
zugefiigt werden, wird zunédchst die Entfernung dieses Pixels zur Zellgrenze berech-
net. Anhand dieser Distanz wird ein weicher Ubergang zwischen der intensiveren
Waldtextur im Zellinneren und angrenzenden Regionen erzeugt. Hierbei wird ein
Noise-Faktor hinzugefiigt, der fiir eine dynamische Variation und ein natiirlicheres

Erscheinungsbild sorgt.

5.4.5 Dorfer

Die Generierung der Dorfregionen erfolgt durch die Implementierung der villageMap—
CellGenerator-Klasse. Hier werden Strafsennetze als infrastrukturelles Riickgrat sowie
Markierungspunkte mit zuféllig generierten Dorfnamen integriert. Der Algorithmus folgt

dabei diesen Schritten:

e Erzeugung eines Strafiennetzwerks: Um die strukturelle Grundlage der Dorfer
zu bilden, wird ein Strafennetzwerk in Abhéngigkeit von der Grofe des Polygons

generiert. Hierbei kommen mehrere Teilschritte zum Einsatz:

— Seed-Punkt-Generierung: Eine Anzahl an Seed-Punkten wird relativ zur

Flache des Polygons ermittelt. Diese Seed-Punkte, die zuféllig innerhalb des

49

5 Umsetzung

Polygons platziert werden, fungieren als Knotenpunkte, die spéter als Anker

fiir das Stralkennetz dienen.

— Berechnung des minimalen Spannbaums (MST): Mithilfe von Prim’s
Algorithmus wird aus den generierten Seed-Punkten ein MST berechnet. Die-
ser stellt die effizienteste Verbindung zwischen den Punkten dar und bildet

somit ein organisch wirkendes Strafsennetz [16].

— Zeichnen der Strafsen: Die ermittelten Liniensegmente werden pixelweise
auf das Model iibertragen. Dabei sorgt eine teilweise randomisierte Zeichen-
technik dafiir, dass die Strafsen nicht nur als diinne Linien, sondern mit aus-

gefransten Kanten und variabler Breite dargestellt werden.

e Platzierung von Markierungspunkten und Dorfnamen: Die Knotenpunkte
werden als Standorte fiir Dorfer genutzt und durch leicht versetzte Markierungs-
punkte visualisiert. Um genug Abstand zwischen den Namen zu gewéhrleisten, wird
gepriift, ob bereits ein Namensschild in der Ndhe platziert wurde, bevor ein neuer

Name hinzugefiigt wird.

e Zufallige Namensgenerierung: Zur Beschriftung der Dorfer wird ein Name gene-
riert, der durch die zuféllige Kombination von Préfixen, Wortstdmmen und Suffixen
entsteht.

5.4.6 Detalils

Neben den bereits beschriebenen Implementierungen der MapCellGenerationStrat—
egy umfasst die Kartengenerierung weitere Verarbeitungsschritte, die nicht direkt in den
einzelnen Strategien enthalten sind. Der Schwerpunkt dieser zusétzlichen Details liegt in
der Nutzung eines stochastischen L-Systems zur prozeduralen Flussgenerierung sowie in

der nachgelagerten Bildverarbeitung, welche die finale Asthetik der Karte beeinflusst.

Nach der initialen Generierung der Zellinhalte wird {iber den iibergeordneten MapGe-—
nerationService die Landschaft um Fliisse ergénzt. Hierbei wird ein stochastisches
L-System verwendet, um organisch wirkende Flussmuster zu erzeugen. Folgende Schritte

charakterisieren diesen Prozess:

e Definition der Regeln: Fiir das L-System werden Produktionsregeln mit Gewich-

tungen definiert, die den Ausbau und die Verzweigung des Flussverlaufs bestimmen.

50

5 Umsetzung

Fiir die einzelnen Symbole werden mehrere mogliche Produktionen hinterlegt, aus
denen anhand eines Zufallsmechanismus und der jeweiligen Gewichtung jeweils ei-
ne Regel ausgewéhlt wird. Dadurch entsteht bei jedem Durchlauf eine individuelle

und variantenreiche Flussgeometrie.

e Generierung des Strings: Ausgehend von einem Axiom wird iiber eine festge-
legte Anzahl von Iterationen ein String generiert, der die Anweisungen fiir den

Flussverlauf enthalt.

e Rendering: Der generierte String wird durch die RiverTurtleRenderer Klas-
se interpretiert. Dieser bewegt sich von einem zuféilligen Startpunkt am Rand in

Richtung Mitte der Karte, wobei er folgende Besonderheiten aufweist:

— Die Breite des Flusses wird dynamisch angepasst. Mit zunehmender Entfer-
nung vom Ursprung reduziert sich die Linienbreite, was einen natiirlichen Ef-

fekt erzeugt und dem Flussverlauf eine realistische Variation verleiht.

— Zusatzlich werden Kollisionspriifungen durchgefiihrt, um zu verhindern, dass

der Fluss in als Gebirge markierte Bereiche verlduft.

— Fiir jeden Pixel, der im Rahmen des Renderings gesetzt wird, wird die Distanz
zur Kiistenlinie ermittelt. Diese Distanz dient als Basis fiir eine interpolierte
Farbzuweisung, wodurch ein sanfter Ubergang von flachem zu tiefem Wasser
entlang der Flussrdnder erreicht wird. Aufterdem wird beim Setzen der Pixel

verhindert, dass innerhalb eines Sees gezeichnet wird.

Nachdem alle Landschaftselemente in das GeneratedMapModel integriert wurden, er-

folgt eine abschliefende Nachbearbeitung des Kartenbildes:

e Rauschfilterung: Ein gezielt eingesetzter Noise-Filter fiigt dem finalen Bild einen
subtilen Rauschanteil hinzu. Dies dient dazu, dem Kartenbild eine texturierte Optik

zu verleihen und eventuelle Artefakte der prozeduralen Generierung zu kaschieren.

e Farb- und Textureffekte: Dem Bild werden Farbnuancen wie ein leichter Gelb-
stich, Entsattigung und Aufhellung hinzugefiigt, um das Bild optisch zu harmonisie-

ren. Zusatzlich wird eine Pergament-Textur mit dem eigentlichen Bild verblendet.

e Vignettierung: Ein Vignette-Effekt sorgt an den Réndern fiir einen dunkleren

Ubergang. Dieser Effekt verstiarkt den Fokus auf die zentralen Kartenelemente.

51

6 Evaluation

In diesem Kapitel wird die Evaluation des entwickelten Systems dargestellt. Ziel der
Evaluation ist es, sowohl die Qualitdt und Performance des Systems, als auch den an-
gewendeten Entwicklungsprozess kritisch zu iiberpriifen. Dabei werden die im Konzept
definierten funktionalen und nicht-funktionalen Anforderungen als Bezugsrahmen heran-

gezogen.

Diese duale Betrachtungsweise — die Bewertung sowohl des finalen Systems als auch
des Entwicklungsprozesses — erméglicht eine ganzheitliche Beurteilung des Projekts und
liefert wichtige Erkenntnisse fiir zukiinftige Arbeiten in diesem Bereich. Insbesondere wird
dabei iiberpriift, ob sich eine strategische Kombination algorithmisch unterschiedlicher
Verfahren so gestalten lasst, dass trotz ihrer strukturellen Divergenz eine visuell koharente
und intuitiv steuerbare sketch-basierte Generierung fiktionaler Landkarten ermdglicht

wird.

6.1 Methodik

Die Evaluierung des Entwicklungsprozesses basiert auf einem agilen, iterativen und kom-
ponentenbasierten Vorgehen. Ziel war es, durch klar abgegrenzte Module und definierte
Epics friihzeitig funktionsfahige Systemteile bereitzustellen, die unabhéngig voneinander
getestet werden konnten. Im Folgenden wird der Vergleich zwischen geplanter Methodik

und praktischer Umsetzung dargestellt.

Umsetzung der Entwicklungsphasen und Modularitat
Die geplanten Phasen — vom Aufbau eines responsiven Applikationsgeriists mit Sketch-

Eingabe {iber die Optimierung und icon-basierte Segmentierung bis hin zur prozeduralen

Generierung von Landschaftstypen und deren Integration — wurden nahezu vollstindig

52

6 Evaluation

und ohne wesentliche Abweichungen realisiert. Die von Anfang an festgelegten modularen
Grenzen ermoglichten es, Anderungen gezielt auf einzelne Komponenten zu beschrinken.
Dadurch konnten die fachlichen Komponenten unabhéngig voneinander entwickelt und

direkt getestet werden.

Architektur und Flexibilitat

Die modulare Architektur mit klar definierten Controllern, Services und Models wur-
de erfolgreich umgesetzt. Dank des gewahlten Technologiestacks entstand ein stabiles
Grundgeriist, das insbesondere in der Kartengenerierung durch den Einsatz des Strategie-
Musters flexible Erweiterungen der Landschaftsalgorithmen ermoglichte. Zwar waren
Bereiche wie die Skizzenerstellung und Regionenorganisation weniger flexibel, dennoch
konnten spétere Erweiterungen — beispielsweise die Zusammenfiihrung benachbarter Voronoi-
Polygone — ohne grofere Umstrukturierungen integriert werden, was sich positiv auf die

visuelle Darstellung auswirkte.

Kontinuierliches Feedback und Testbarkeit

Um die Qualitdt der Implementierung zu sichern, wurde ein strukturiertes Testkonzept
entwickelt, das auf der modularen Architektur des Systems aufbaut und einen komponen-

tenorientierten Testansatz verfolgt. Die Tests wurden in drei Hauptebenen organisiert:

Komponententests: Jede Komponente wurde isoliert getestet, um ihre korrekte Funk-

tionalitdt unabhéngig von anderen Systemteilen zu validieren:

e Skizzenerstellung: Fiir diese Komponente wurde ein spezieller Visualisierungs-
modus implementiert, der die Ergebnisse der Algorithmen zur Umrisserkennung
und Formenkorrektur unmittelbar nach dem Zeichenvorgang darstellt. Dies ermd&g-
lichte eine direkte visuelle Validierung des Algorithmus und eine zeitnahe Anpas-

sung der Parameter zur Optimierung der Genauigkeit.

¢ Regionenorganisation: Um diese Komponente unabhéngig zu testen, wurden
vordefinierte Skizzen als Eingabe verwendet, womit der Einstiegspunkt direkt auf
die Regionenorganisation gesetzt werden konnte. Ein implementierter Visualisie-

rungsmodus stellte die erzeugten Voronoi-Zellen mit farblicher Differenzierung dar,

53

6 Evaluation

was eine effiziente Uberpriifung der korrekten Zellenbildung ermdglichte. Diese Vi-
sualisierung erwies sich als so wertvoll, dass sie grofitenteils in die finale Implemen-

tierung iibernommen wurde.

¢ Kartengenerierung: Dank des eingesetzten Strategie-Musters konnten die einzel-
nen Landschaftsalgorithmen isoliert getestet werden, ohne Seiteneffekte auf andere

Systemteile befiirchten zu miissen.

Integrationstest: Nach der erfolgreichen Validierung der Einzelkomponenten wurden
Integrationstests durchgefiihrt, um das Zusammenspiel der Komponenten zu iiberpriifen.

Hierbei lag der Fokus besonders auf den Schnittstellen:

e Skizze zu Polygon: Tests zur Validierung der korrekten Umwandlung von Skizzen

in geometrische Strukturen.

¢ Regionen zu Landschaft: Tests zur Sicherstellung der korrekten Anwendung der
Landschaftsalgorithmen auf die entsprechenden Regionen mit besonderer Beach-

tung der Ubergangsbereiche.

Systemtests: Abschliefend wurden Systemtests durchgefiihrt, die den gesamten Ablauf
von der Skizzeneingabe bis zur fertigen Karte umfassten. Dabei wurden verschiedene

Komplexitatsgrade getestet:

e Einfache Karten: Test mit wenigen, klar abgegrenzten Regionen.

e Komplexe Karten: Test mit vielen, teilweise kleinen Regionen und unterschied-

lichen Landschaftstypen.

o Grenzfille: Gezieltes Testen von Extremsituationen, wie sehr detaillierte Umrisse

oder besonders hohe Regionendichte.

Der iterative Entwicklungsansatz ermoglichte es, nach jedem Testzyklus unmittelbare
Anpassungen vorzunehmen und die Ergebnisse in den néchsten Zyklus einfliefen zu las-
sen. Fiir zukiinftige Weiterentwicklungen wurde ein spezieller Testmodus als sinnvolle
Erweiterung identifiziert, der den direkten Zugriff auf relevante Systemteile erméglichen

und so aufwindige Berechnungen fiir Testzwecke umgehen wiirde.

54

6 Evaluation

Fazit

Der agile, iterative und komponentenbasierte Ansatz hat nicht nur die Umsetzung der
geplanten Entwicklungsphasen erleichtert, sondern auch eine flexible und robuste Archi-
tektur geschaffen, die Erweiterungen und Anpassungen erméglicht. Die klare Modularisie-
rung und frithe Testbarkeit der Komponenten haben den gesamten Entwicklungsprozess

entscheidend positiv beeinflusst.

6.2 Qualitative und Asthetische Bewertung

Umriss

Die Abbildung 6.1 zeigt, dass der entwickelte Algorithmus auch detaillierte Formen abbil-
den kann. Allerdings bleibt die urspriingliche Form nicht vollsténdig erhalten. An einigen
scharfen Kanten der Zeichnung sind Gléttungen erkennbar, die fiir diesen Anwendungsfall

jedoch noch im akzeptablen Rahmen liegen.

Abbildung 6.2 verdeutlicht, dass ungenaue Formen korrigiert werden kénnen. Sind die
Liicken jedoch zu grof, fiihrt dies zu Fehlverhalten des Algorithmus, wie in Abbildung
6.3 zu sehen ist. Das negative Beispiel lasst sich auf die Parametrisierung sowie das

Zusammenspiel von Formerkennung und Clustering zuriickfiihren.

In Abbildung 6.4 ist zu erkennen, dass der Clustering-Algorithmus zuverléssig arbeitet
und auch nah beieinanderliegende Umrisse individuell behandelt. Dennoch gibt es eine

zentrale Herausforderung:

e Schwierige Parametrisierung des DBSCAN-Algorithmus: Eine der groften
Herausforderungen ist die Wahl der Parameter fiir den DBSCAN-Algorithmus. Ein
zu kleiner e-Wert fiihrt dazu, dass zusammengehorige Strukturen félschlicherwei-
se nicht verbunden werden, wéahrend ein zu groffer Wert zu einer unerwiinschten

Zusammenfassung verschiedener Umrisse fithren kann.

Eine adaptive oder heuristisch gesteuerte Parametrisierung kénnte helfen, die Qualitét

der Umrisse weiter zu verbessern und die Robustheit des Algorithmus zu erhhen.

55

6 Evaluation

Polygon

Polygone werden mit hoher Genauigkeit generiert und ndhern sich dem urspriinglichen
Umriss gut an. Allerdings sind in Abbildung 6.5 einige Artefakte sichtbar, die darauf

hinweisen, dass das Polygon den Umriss nicht perfekt abbilden kann.

Ozean

Die Darstellung des Ozeans in Abbildung 6.6 zeigt zwar ein realistisches Wechselspiel

zwischen tiefem und flachem Wasser, weist jedoch einige Schwéchen auf:

e Geringe Varianz: Die erzeugte Struktur des Ozeans zeigt nur eine begrenzte Va-
riation in Tiefe und Farbgebung. Dies fiihrt zu einer eher monotonen Darstellung,
die nicht die Vielfalt realer Meereslandschaften widerspiegelt. Eine gezielte Anpas-

sung der Parameter kénnte hier fiir mehr visuelle Abwechslung sorgen.

e Verlust von Details durch Filter: Die durch Noise Verfahren erzeugten Muster
gehen insbesondere nach der Anwendung von Filtern teilweise verloren. Dies kann
dazu fithren, dass feinere Strukturen, die zur realistischen Darstellung beitragen,
nicht mehr deutlich sichtbar sind. Eine Verbesserung konnte durch eine kontrast-

reichere Farbgestaltung oder eine gezielte Anpassung der Schwellenwerte erfolgen.

e Fehlende kleinere Details: Der Ozean wirkt aktuell eher statisch, da kleinere
Merkmale wie Wellen oder subtile Oberflachenstrukturen fehlen. Die Integration
solcher Details konnte die visuelle Qualitit weiter verbessern und die Karte leben-

diger erscheinen lassen.

Zusammenfassend bietet die aktuelle Ozean-Darstellung eine solide Grundlage, profitiert
jedoch von gezielter Nachbearbeitung und einer feineren Abstimmung der Parameter, um

sowohl Varianz als auch Detailgrad zu erhéhen.

Gebirge

Die Gebirge in Abbildung 6.7 erinnern stilistisch an handgezeichnete Karten und weisen
durch Verteilung, Grofle und Rotation organische Variationen auf. Dank der speziellen
Eigenschaften von Perlin Noise wirkt die Verteilung nicht zu zuféllig. Allerdings gibt es

einige Einschrankungen:

56

6 Evaluation

e Begrenzte Variation durch einzelnes Asset: Da nur ein einziges Asset fiir
die Gebirgsdarstellung verwendet wurde, féllt die visuelle Vielfalt eingeschrankt
aus. Mehrere unterschiedliche Bergformen oder Variationen desselben Grunddesigns

kénnten hier fiir eine abwechslungsreichere und natiirlichere Darstellung sorgen.

e Parametrisierungsproblem bei kleinen Zellen: Aktuell ist die Parametrisie-
rung der Bergplatzierung teilweise linear von der Grofe der jeweiligen Zelle abhén-
gig. Dies fiihrt dazu, dass in sehr kleinen Zellen kaum Berge generiert werden. Eine
alternative Skalierungsstrategie oder eine nicht-lineare Abhéngigkeit konnte helfen,

auch bei kleineren Zellen eine angemessene Bergverteilung zu gewéhrleisten.

Wihrend die aktuelle Gebirgsdarstellung bereits eine ansprechende, handgezeichnete As-
thetik aufweist, konnte eine iiberarbeitete Parametrisierung sowie eine grofere Asset-

Vielfalt die visuelle Qualitat weiter steigern.

Seen

Seen variieren in Gréfe und Form. Wie in Abbildung 6.8 zu sehen ist, sind organische
Ubergéinge zur Seemitte und zum Seerand sichtbar. Es gibt jedoch einige Schwéichen in

der aktuellen Umsetzung:

e Geringe Formvariation: Die Seen zeigen eine relativ einheitliche und kreisférmige
Struktur, wodurch die visuelle Vielfalt eingeschrankt ist. Eine grofsere Variation in

der Formgebung konnte die Natiirlichkeit der Gewésser erhShen.

e Unzureichende Anpassung an Zellgeometrie: Der Algorithmus zur Seegene-
rierung berticksichtigt derzeit nicht ausreichend die Form der umgebenden Zelle. Bei
lénglichen Zellen wird der See nicht entsprechend gestreckt, sondern begrenzt sei-
nen Radius auf die Entfernung vom Mittelpunkt zum néchsten Zellrand. Dies kann
dazu fithren, dass grofie Zellen dennoch nur kleine Seen enthalten, was inkonsistent
wirken kann. Eine Anpassung der Generierungslogik, die stirker die Zellgeometrie

einbezieht, konnte hier fir eine natiirlichere Platzierung sorgen.

Zusammenfassend bietet die aktuelle Seengenerierung zwar eine solide Basis, wiirde aber
von einer verbesserten Formvielfalt und einer stirkeren Anpassung an die Zellstruktur

profitieren.

57

6 Evaluation

Walder

Die Wilder weisen eine hohe Variation und eine natiirliche Verteilung der Bdume auf, wie
in Abbildung 6.9 ersichtlich ist. Dennoch gibt es einige Aspekte, die verbessert werden

koénnten:

e Pixelartige Darstellung der Bidume: Aufgrund der Arbeitsweise des WFC Al-
gorithmus wirken die einzelnen Baume etwas pixeliger im Vergleich zu anderen
Landschaftsdetails. Dies kann zu einem Stilbruch innerhalb der Karte fiihren. Eine
Nachbearbeitung oder Glattung der Baumdarstellung kénnte helfen, diesen Effekt

abzuschwéchen.

e Wiederholungsmuster bei grofsen Waldflichen: Um die Performance zu opti-
mieren, wird der generierte Wald-Output wiederverwendet. Dies kann jedoch dazu
fiihren, dass bei sehr grofen Baumzellen sichtbare Wiederholungsmuster entste-
hen. Eine mogliche Losung wére eine adaptive Variation innerhalb des wiederholten

Musters, um die erkennbaren Muster zu reduzieren.

Insgesamt bietet die aktuelle Waldgenerierung eine iiberzeugende visuelle Vielfalt, kénnte
jedoch durch eine verfeinerte Darstellung der Ba&ume und eine gezieltere Vermeidung von

Wiederholungsmustern weiter verbessert werden.

Dorfer

Abbildung 6.10 zeigt Dorfer sowie deren Verbindungen, die den Eindruck einer pragma-
tisch gezeichneten Landkarte vermitteln. Dennoch gibt es einige Verbesserungsmoglich-

keiten:

e Probleme bei kleinen oder ungewohnlich geformten Zellen: In sehr kleinen
oder ungewohnlich geformten Zellen kann es vorkommen, dass eine Zelle nur aus
einem einzelnen Punkt besteht. Dies wirkt unausgewogen und koénnte durch eine
iiberarbeitete Parametrisierung verbessert werden, dhnlich wie bei der Gebirgsge-

nerierung.

e Optimierung der Punktverteilung: Die Platzierung der Dorfer erfolgt derzeit
zuféallig, was zu unregelméfigen oder unharmonischen Anordnungen fithren kann.

Eine alternative Methode wie die Verwendung von "Blue-Noise"— &hnlich wie es

58

6 Evaluation

Mapgend fiir die Berggenerierung nutzt — konnte hier eine gleichméfigere und

gleichzeitig natiirliche Verteilung ermoglichen.

e Fehlende Details fiir eine lebendigere Darstellung: Aktuell bestehen die
Dorfer nur aus grundlegenden Strukturen, ohne weitere visuelle Details. Zusétzliche
Elemente wie Hauser, Tiirme oder andere charakteristische Gebaude konnten dazu

beitragen, die Karte lebendiger und atmosphérischer wirken zu lassen.

Zusammenfassend bieten die Dérfer eine funktionale und stilistisch passende Darstellung,
profitieren jedoch von einer optimierten Parametrisierung, einer verbesserten Punktver-

teilung und einer héheren Detailtiefe.

Fliisse

Die Fliisse in Abbildung 6.11 wirken zwar zuféllig, fiigen sich jedoch organisch in die
Landschaft ein und zeigen Strukturen, wie man sie aus der Natur kennt. Dennoch gibt

es einige Verbesserungsmoglichkeiten:

e Unnatiirliche Anhiufung von Flussquellen: Da die Verteilung der Flussquel-
len aktuell zufillig erfolgt, kann es gelegentlich zu unnatiirlich wirkenden Anhé&u-
fungen kommen. Dies kann dazu fiihren, dass mehrere Fliisse sehr nah beieinander
entspringen. Eine Verbesserung ware die Nutzung von Heuristiken zur Platzierung
der Quellen, beispielsweise basierend auf Hohenkarten oder Niederschlagsmodellen,

um eine natiirlichere Verteilung zu erreichen.

e Keine Nutzerkontrolle iiber die Flussgenerierung: Der Nutzer hat aktuell
keine Moglichkeit, Einfluss auf die Flussgenerierung zu nehmen. Eine anpassbare
Parametrisierung, etwa zur Steuerung der Flusslange, Kriimmung oder Verzwei-
gungshédufigkeit, konnte hilfreich sein, um die Generierung besser an individuelle

Bediirfnisse oder gewiinschte Kartentypen anzupassen.

Durch eine heuristisch gesteuerte Quellplatzierung und eine flexiblere Parametrisierung

konnte die Flussgenerierung weiter verbessert werden.

59

6 Evaluation

Integration

Abbildung 6.12 illustriert den gesamten Generierungsprozess und das Zusammenspiel
aller Landschaftselemente sowie deren Ubergéinge. Die Evaluation zeigt, dass die Integra-
tion der verschiedenen algorithmischen Verfahren trotz ihrer strukturellen Unterschiede
erfolgreich umgesetzt wurde. Die Kombination aus geometrischen Algorithmen, unter-
schiedlichen regelbasierten Verfahren und noise-basierten Methoden erzeugt visuell ko-
hérente Ergebnisse. Die intuitive Steuerbarkeit wird durch die sketch-basierte Eingabe

gewdhrleistet, wie die Beispiele der Umrisserkennung und des Clusterings belegen.

Besonders hervorzuheben ist das Zusammenspiel der unterschiedlichen Verfahren bei den
Landschaftsiibergéngen. Die Fliisse integrieren sich gezielt in ausgewéhlte Zellen und
verlaufen mit weichen Ubergingen zu Seen und Kiisten. Zwar durchschneiden sie verein-
zelt Baume in Waldregionen, doch féllt dies aufgrund der hohen Baumdichte kaum auf.

Insgesamt sind die Ubergéinge gelungen.

Die Gesamtqualitat der generierten Karten zeigt, dass die gewéhlte Strategie zur Integra-
tion der verschiedenen Algorithmen grundsétzlich funktioniert. Dies wird besonders in
Abbildung 6.12 deutlich, die das Zusammenwirken aller Komponenten anschaulich dar-
stellt. Die Farbgebung des Gesamtbildes ist stimmig, insbesondere nach Anwendung der

Filter, sodass eine harmonische Darstellung der Landschaftselemente erreicht wird.

Dennoch gibt es einige kritische Punkte, die noch verbessert werden kénnen:

e Abgehackte Fliisse: Selten, aber manchmal sind die Fliisse in bestimmten Berei-
chen etwas abgehackt und unterbrechen die fliefsende Struktur. Dies kénnte durch

eine bessere Parametrisierung der Quell- und Flussgenerierung verbessert werden.

e Polygonstrukturen bei kleinen Zellen: Wenn viele kleine Zellen generiert wer-
den, kénnen Polygonstrukturen mit scharfen Kanten sichtbar werden, was zu einer
weniger natiirlichen Darstellung fithrt. Eine "globale Ubergangslogik" zwischen den
Zellen konnte hier Abhilfe schaffen.

e Leere Karten bei kleinen Zellen: Insbesondere bei der Generierung vieler klei-
ner Zellen, etwa bei einem Wechsel zwischen Bergen und Doérfern, kann die Karte
sehr leer wirken, da die Zellen zu klein sind, um ausreichend Inhalte zu generie-
ren. Dies kénnte durch eine feinere Anpassung der Zellenparameter oder durch das

Hinzufiigen zusétzlicher Landschaftsstrukturen behoben werden.

60

6 Evaluation

¢ Optimierung der Uberginge von Waldregionen: Es besteht Optimierungspo-
tenzial, insbesondere zwischen Waldregionen und anderen Landschaftselementen,

da hier lediglich ein Weichzeichnungs-Effekt verwendet wurde.

e Abgeschnittene Assets: Stellenweise erscheinen Berge an Kiisten abgeschnitten.
Dies konnte durch eine genauere Priifung der Polygonrander und eine verbesserte

Anpassung an angrenzende Landschaftselemente optimiert werden.

Durch die Verbesserung dieser Punkte kénnte die Gesamtqualitét der generierten Karten

weiter optimiert und das visuelle Erlebnis noch realistischer gestaltet werden.

Abbildung 6.1: Links ist die urspriingliche Eingabe, rechts der verarbeitete Umriss.

61

6 Evaluation

Abbildung 6.2: Links ist die ungenaue Eingabe, rechts der korrigierte Umriss

Abbildung 6.3: Links ist die ungenaue Eingabe, rechts der fehlerhafte Umriss.

62

6 Evaluation

Abbildung 6.4: Links ist die Eingabe, rechts die individuellen Umrisse.

Abbildung 6.5: Links ist der verarbeitete Umriss, rechts das Polygon.

63

6 Evaluation

Abbildung 6.6: Links eine generierte Ozeanregion ohne Filter, rechts mit Filter

Abbildung 6.7: Links ein generiertes Gebirge ohne Filter, rechts mit Filter

Abbildung 6.8: Links ein generierter See ohne Filter, rechts mit Filter

64

6 Evaluation

Abbildung 6.9: Links ein generierter Wald ohne Filter, rechts mit Filter

Abbildung 6.10: Links ein generiertes Dorf ohne Filter, rechts mit Filter

Abbildung 6.11: Links generierte Fliisse ohne Filter, rechts mit Filter

65

6 Evaluation

Abbildung 6.12: Zeigt den gesamten Prozess vom Zeichnen iiber die Verarbeitung bis
zur generierten Karte, wobei auf Grundlage derselben Polygone zweimal
generiert wurde, um die Unterschiede der Ergebnisse hervorzuheben.

66

6 Evaluation

6.3 Performance-Analyse

Das System konnte wihrend der Entwicklung an einigen Stellen hinsichtlich der Per-
formance optimiert werden, vor allem durch die Ersetzung anfénglicher primitiver Da-
tenstrukturen durch besser geeignete. Ein besonders effektiver Optimierungsschritt war
die Implementierung von PreparedGeometries fiir die Polygon-Berechnungen. Den-
noch ldsst sich vorwegnehmen, dass das System und die zugrundeliegenden Berechnungen
nicht die Laufzeiten erreichen, die fiir eine Echtzeitanwendung erforderlich gewesen wéren

— was jedoch auch kein gesetztes Ziel war.

Im Folgenden sind die durchschnittlichen Berechnungszeiten fiir einzelne Schritte und
Algorithmen angegeben, wobei die Zeitangaben fiir Karten mit einer Gréfe von 800x600
Pixeln gelten und das System auf einem M1 MacBook Air ausgefiihrt wurde. Die un-
terschiedlichen Zellen haben fiir die Tests eine typische und gleiche Grofe angenommen.
Die Tabelle (6.1) zeigt dabei Messungen einer naiven Implementierung im Vergleich zu

einer optimierten Version, bei der PreparedGeometries zum Einsatz kamen.

Schritt /Algorithmus Naiv | Optimiert
Umriss aus Skizze bilden 190 190
Polygone berechnen (bei 20 platzierten Icons) 180 10
Voronoi-Polygone zeichnen (bei 20 platzierten Icons) | 7610 210
Dorf berechnen und zeichnen 112 3
Gebirge berechnen und zeichnen 135 58
Wald berechnen und zeichnen 1110 918
See berechnen und zeichnen 292 35
Ozean berechnen und zeichnen 62 62
Fliisse berechnen und zeichnen 24 24

Tabelle 6.1: Vergleich der Messungen zwischen naiver und optimierter Implementierung
(PreparedGeometries)

Die Optimierung durch PreparedGeometries zeigt beeindruckende Verbesserungen in
mehreren Bereichen. Besonders deutlich wird dies beim Zeichnen der Voronoi-Polygone,
wo die Ausfithrungszeit von 7610 ms auf 210 ms reduziert werden konnte - eine Verbes-

serung um den Faktor 36.

Ein wesentlicher Grund fiir die urspriinglich schlechte Performance lag in der hdufigen
Verwendung der contains ()-Methode direkt auf die Polygon Objekte. Diese Operation
ist rechenintensiv, da sie fiir jeden zu priifenden Punkt komplexe geometrische Berech-

nungen durchfithren muss. Durch die Verwendung von PreparedGeometries konnte

67

6 Evaluation

diese Operation erheblich beschleunigt werden, da diese eine optimierte interne Daten-

struktur bereitstellen.

Dank der Performance-Verbesserungen ist es nun moglich, das Canvas nach jeder Plat-
zierung eines Icons zu aktualisieren. Dadurch erhélt der Nutzer sofortiges und schnelles

visuelles Feedback, was die Anwendung deutlich interaktiver macht.

Trotz dieser signifikanten Optimierungen bleiben einige Performance-Engpésse bestehen.
Das Zeichnen der Voronoi-Polygone benétigt immer noch mehr Zeit als die eigentliche
Berechnung, da iiber alle Zellen iteriert werden muss. Innerhalb dieser Schleife wird erneut
iiber die Pixelkoordinaten innerhalb der Bounding Box der jeweiligen Zelle iteriert. Die
Waldgenerierung bleibt mit 918 ms weiterhin der zeitaufwéndigste Algorithmus unter

den Landschaftselementen.

Zusammenfassend lasst sich sagen, dass durch den Einsatz von PreparedGeometries
erhebliche Performance-Verbesserungen erzielt werden konnten. Fiir moderate Karten-
grofben sind die Wartezeiten nun deutlich akzeptabler, wenn auch weiterhin keine Echt-
zeitanwendung erreicht werden kann. Die verbleibenden Performance-Einschrénkungen
sind hauptséichlich auf die grundlegende Komplexitdt der verwendeten Algorithmen zu-

ruckzufiithren.

6.4 Erfiillungsgrad der Anforderungen

In diesem Abschnitt wird der Erfiillungsgrad der definierten funktionalen und nicht-
funktionalen Anforderungen bewertet. Tabelle 6.2 zeigt der Vollstdndigkeit halber noch-
mals alle konkreten Anforderungen auf und gibt an, ob diese erfiillt wurden. Wie be-
reits gezeigt, wurden sdmtliche Anforderungen erfolgreich umgesetzt, wobei einige Punk-
te nicht optimal umgesetzt wurden, ohne jedoch die Erfiillung der Mindestanforderungen

zu beeintrachtigen. Diese Punkte bieten Potenzial fiir zukiinftige Verbesserungen.

68

6 Evaluation

| Anforderung Erfiillt | Nicht erfiillt
1 | Pixelgenaues Einlesen von Zeichnungen v
2 | Zeichnungen sind korrigierbar v
3 | Automatische Verbindung von Linien mit kleinen Unter- v
brechungen
4 | Details bleiben nach Verarbeitung erhalten (max. 5px v
Abweichung)
5 | Individuelle Behandlung von Inselstrukturen v
6 | Validierung der Icons v
7 | Icons unterteilen die Fliche in Regionen v
8 | Generierung stilisierter Landschaften basierend auf Icons v
9 | Realistische Uberginge zwischen Landschaften v
10 | Bekannte Kartendetails (Fliisse, Pergament-Optik, Dorf- v
namen)
11 | Einzigartige Ergebnisse auch bei identischen Eingaben v
12 | Gesamte Generierung als einzelnes Bild gerendert v
13 | Export als PNG oder JPG v
14 | Echtzeitanzeige der Skizze v
15 | Segmentierung in max. 1 Sekunde v
16 | Landschaftsgenerierung in max. 5 Sekunden v
17 | Keine Uberlastung bei Karten mit bis zu 20 Icons v
18 | Modularer Aufbau fiir einfache Erweiterungen v
19 | Jedes Modul erfiillt eine klar abgegrenzte Aufgabe v
20 | Geringe Kopplung fiir bessere Wartbarkeit v
21 | Flexible Anpassung durch Abstraktionen und Schnitt- v
stellen
22 | Steuerung iiber Parameter ohne Codednderung v
23 | Gut dokumentierter Code fiir langfristige Verstandlich- v

keit

Tabelle 6.2: Ubersicht der Anforderungen und deren Erfiillung

69

6 Evaluation

6.5 Zukunftsperspektiven und Erweiterungsmoglichkeiten

Wihrend der qualitativen und dsthetischen Bewertung des Systems wurden bereits be-
stehende Verbesserungspotenziale des Systems aufgezeigt. In diesem Abschnitt werden
nun weiterfiithrende Erweiterungen behandelt, die mit der zukiinftigen Weiterentwicklung

des Systems verbunden sind.

Das System bietet in verschiedenen Bereichen Potenzial fiir Erweiterungen und Anpas-
sungen. Dank seiner Modularitét kann an vielen Stellen neuer Code hinzugefiigt werden,
ohne bestehende Implementierungen zu verandern. Es lassen sich beliebig viele Land-
schaftstypen integrieren oder die Algorithmen bestehender Typen anpassen. Beispiels-
weise konnte eine alternative Implementierung fiir Dorfer eingefiihrt werden, welche wie
die Wald Generierung den WFC-Algorithmus nutzt. In diesem Fall miisste lediglich die

zentrale Generierungsklasse angepasst werden.

Im Kapitel “Stand der Technik” wurden verschiedene bestehende Systeme untersucht,
die unterschiedliche Herangehensweisen zur Landschaftsgenerierung bieten. Im Vergleich
dazu weist das hier vorgestellte System einige Gemeinsamkeiten, aber auch Herausforde-

rungen auf, die durch Erweiterungen adressiert werden koénnten.

Diese Systeme nutzen Noise-Algorithmen, um Hohenkarten zu generieren. Diese Hohen-
karten konnen als Grundlage fiir eine 3D-Visualisierung der Landschaft dienen, indem
die generierten Hohenwerte zur Modellierung eines dreidimensionalen Terrains verwen-
det werden. Eine &hnliche Erweiterung kénnte in das hier vorgestellte System integriert

werden, um eine interaktive 3D-Ansicht zu ermoglichen.

Sketch2Map nutzt Generative Adversarial Networks, um aus Skizzen topografische Kar-
ten zu generieren. Dies konnte als Inspiration dienen, um das aktuelle System um maschi-
nelles Lernen zu erweitern. Beispielsweise konnte ein neuronales Netz trainiert werden,
um skizzierte Elemente wie Berge oder Fliisse automatisch zu erkennen und in die Ge-
nerierung einflieken zu lassen. Dies wiirde eine noch intuitivere Bedienung ermdoglichen

und die Icon-Platzierung ersetzen.

Ein weiterer Ansatz zur Verbesserung des Systems wére, die Performance ndher an die
Anforderungen einer Echtzeitanwendung heranzufithren. Diese Anpassungen sind zwar
komplexer als Landschaftserweiterungen, kénnen jedoch gezielt fiir einzelne Komponen-

ten vorgenommen werden.

70

6 Evaluation

Aktuell werden die Polygone der Zellen grofstenteils einzeln verarbeitet. Hier konnte ein
Multithreading-Ansatz verwendet werden, um die Landschaftsgenerierung zu paralleli-
sieren. Dazu miisste jedoch die Datenstruktur iiberarbeitet werden, um Konflikte beim

gleichzeitigen Lesen und Schreiben durch mehrere Threads zu vermeiden.

Die individuelle Betrachtung der Zellpolygone hat den Nachteil, dass es wahrend der
Generierungsphase schwierig ist, globale Informationen, wie Nachbarschaftsbeziehungen,
in den Prozess einzubeziehen. Um dies zu ermoglichen, miisste entweder die zugrunde-
liegende Datenstruktur gedndert oder die Architektur, die die Zellen strikt voneinander

trennt, angepasst werden.

71

7 Fazit

Die vorliegende Arbeit préasentiert ein prototypisches System zur sketch-basierten Gene-
rierung fiktionaler Landkarten, das geometrische Algorithmen und prozedurale Methoden

kombiniert, um intuitiv gestaltbare und visuell iiberzeugende Ergebnisse zu erzielen.

Die zentrale Frage, ob eine strategische Kombination unterschiedlicher algorithmischer
Verfahren eine visuell kohdrente und intuitiv steuerbare, sketch-basierte Generierung fik-
tionaler Landkarten ermdglicht, konnte beantwortet werden. Es wurde gezeigt, dass diese

Kombination prinzipiell moglich ist und zu iiberzeugenden Ergebnissen fiihrt.

Die Arbeit demonstriert zudem, wie die Kombination aus Benutzerinteraktion und algo-
rithmischer Verarbeitung einen effizienten Mittelweg zwischen kreativer Gestaltung und
technischer Automatisierung bietet. Dies ermdglicht die Erstellung von fiktiven Karten,
die sowohl stilisierte Asthetik als auch geografische Plausibilitit vereinen. Das System
besitzt die Fahigkeit natiirliche Ubergéinge zwischen Biomen zu erzeugen und durch sto-
chastische Elemente einzigartige Ergebnisse auch bei identischen Eingaben zu gewahr-

leisten.

Gleichzeitig wurden jedoch auch Schwéchen des Systems identifiziert, die in zukiinftigen
Arbeiten adressiert werden konnen. Insbesondere zeigte sich Optimierungsbedarf bei der
Handhabung ungenauer Eingaben sowie in der Echtzeitperformance des Systems, vor al-
lem bei grofen Bildern. Zudem koénnten fortgeschrittene Verfahren zur Formerkennung
und zur semantischen Interpretation von Skizzen die Benutzerfreundlichkeit weiter ver-
bessern. Ein weiterer potenzieller Verbesserungsbereich liegt in der Verwendung globaler
Ubergangstechniken, die zu einer harmonischeren Integration der verschiedenen Land-
schaftstypen fithren konnten. Ihre Implementierung ist jedoch aufgrund der derzeit stark
modularisierten Architektur nicht trivial und wiirde eine umfassendere Anpassung des

Systemaufbaus erfordern.

Diese Limitationen bieten spannende Ansatzpunkte fiir weiterfithrende Forschungspro-

jekte. Durch den Einsatz zusétzlicher Optimierungsstrategien, den Ausbau der algorith-

72

7 Fazit

mischen Pipeline sowie die Integration neuer Interaktionsmethoden konnte die Effizienz
und Préazision der Kartengenerierung noch weiter gesteigert werden. Auch die Erweite-
rung des Systems um neue prozedurale Techniken oder maschinelle Lernverfahren kénnte

die Qualitdt der generierten Karten weiter erhéhen.

Insgesamt eroffnet die vorliegende Arbeit nicht nur neue Perspektiven fiir die prozedurale
Generierung fiktionaler Landkarten, sondern legt auch die Basis fiir zukiinftige Verbesse-

rungen, die das System robuster, flexibler und benutzerfreundlicher machen kénnten.

73

Literaturverzeichnis

1]

2]

13

[4]

15]

[6]

7]

18]

BOwYER, A.: Computing Dirichlet tessellations. In: The Computer Journal 24
(1981), Nr. 2, S. 162-166

BRESENHAM, J. E.: Algorithm for computer control of a digital plotter. In: IBM
Systems Journal 4 (1965), Nr. 1, S. 25-30

DELAUNAY, B.: Sur la sphére vide. A la mémoire de Georges Voronoi. In: Izvestiya
Akademii Nauk SSSR, Seriya Matematicheskaya (1934), S. 793-800

DUSTLER, M. ; BAKIC, P. ; PETERSSON, H. ; TIMBERG, P. ; TINGBERG, A. ; ZACK-
RISSON, S.: Application of the fractal Perlin noise algorithm for the generation of

simulated breast tissue. In: Progress in Biomedical Optics and Imaging - Proceedings
of SPIE 9412 (2015)

EDELSBRUNNER, H. ; KIRKPATRICK, D. ; SEIDEL, R.: On the shape of a set of
points in the plane. In: IEEE Transactions on Information Theory 29 (1983), Nr. 4,
S. 551-559

ELSHAKHS, Y. S. ; DELIPARASCHOS, K. M. ; CHARALAMBOUS, T. ; OLIVA, G. ;
ZoLOTAS, A.: A Comprehensive Survey on Delaunay Triangulation: Applications,
Algorithms, and Implementations Over CPUs, GPUs, and FPGAs. In: IEEE Access
12 (2024), S. 12562-12585

ESTER, M. ; KRIEGEL, H.-P. ; SANDER, J. ; XU, X.: A density-based algorithm
for discovering clusters in large spatial databases with noise. In: Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining, AAAI
Press, 1996 (KDD’96), S. 226-231

GAIN, J. ; MARAIS, P. ; STRASSER, W.: Terrain sketching. In: Proceedings of the
2009 Symposium on Interactive 3D Graphics and Games, Association for Computing
Machinery, 2009 (I3D ’09), S. 31-38. — ISBN 9781605584294

74

Literaturverzeichnis

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

GAMMA, E. ; HELM, R. ; JOHNSON, R. ; VLISSIDES, J.: Design patterns: elements

of reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.,
1995. — ISBN 0201633612

GUSTAVSON, S.: Simplex noise demystified. (2005)

KaArTH, 1. ; SMITH, A. M.: WaveFunctionCollapse is constraint solving in the
wild. In: Proceedings of the 12th International Conference on the Foundations of
Digital Games, Association for Computing Machinery, 2017 (FDG ’17). — ISBN
9781450353199

LEE, D. ; SCHACHTER, B.: Two Algorithms for Constructing a Delaunay Triangu-
lation. In: International Journal of Parallel Programming 9 (1980), 06, S. 219-242

LIEBLING, T. ; POURNIN, L.: Voronoi diagrams and Delaunay triangulations: ubi-

quitous siamese twins. In: Documenta Mathematica 16 (2012)

PERLIN, K.: An image synthesizer. In: Proceedings of the 12th Annual Conference

on Computer Graphics and Interactive Techniques, Association for Computing Ma-

chinery, 1985 (SIGGRAPH ’85), S. 287—296. — ISBN 0897911660
PERLIN, K.: Improving noise. In: ACM Trans. Graph. 21 (2002), Nr. 3, S. 681682

PriM, R. C.: Shortest connection networks and some generalizations. In: The Bell
System Technical Journal 36 (1957), Nr. 6, S. 13891401

PRUSINKIEWICZ, P. ; LINDENMAYER, A.: Graphical modeling using L-systems. S. 1—
50. In: The Algorithmic Beauty of Plants, Springer New York, 1990. — ISBN 978-1-
4613-8476-2

SHAKER, N. ; TOGELIUS, J. ; NELSON, M. J.: Procedural Content Generation in
Games. 1. Springer Cham, 2016 (Computational Synthesis and Creative Systems).
— 237 S. — ISBN 978-3-319-42714-0

TALGORN, F.-X. ; BELHADJ, F.: Real-Time Sketch-Based Terrain Generation. In:

Proceedings of Computer Graphics International 2018, Association for Computing
Machinery, 2018 (CGI 2018), S. 13—-18. — ISBN 9781450364010

ULICHNEY, R. A.: Dithering with blue noise. In: Proceedings of the IEEE 76 (1988),
Nr. 1, S. 56-79

75

Literaturverzeichnis

[21] VALENCIA-ROSADO, L. ; GUZMAN-ZAVALETA, Z. ; STAROSTENKO, O.: A Modular
Generative Approach for Realistic River Deltas: When L-Systems and cGANs Meet.
In: IEEE Access PP (2022), S. 1

[22] Voronol, G.: Nouvelles applications des paramétres continus a la théorie des formes
quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques
positives parfaites. In: Journal fir die reine und angewandte Mathematik (Crelles
Journal) 1908 (1908), Nr. 133, S. 97-102

[23] WANG, T. ; KURABAYASHI, S.: Sketch2Map: A Game Map Design Support System
Allowing Quick Hand Sketch Prototyping. In: 2020 IEEE Conference on Games
(CoG), 2020, S. 596-599

76

A Anhang

A.1 Verwendete Hilfsmittel

In der Tabelle A.1 sind die im Rahmen der Bearbeitung des Themas der Bachelorar-

beit verwendeten Werkzeuge und Hilfsmittel aufgelistet.

Tabelle A.1: Verwendete Hilfsmittel und Werkzeuge

Tool Verwendung

KITRX Textsatz- und Layout-Werkzeug verwendet zur Erstellung dieses
Dokuments

GIMP Bearbeitung und Erstellung von Bildern, insbesondere Assets und
Abbildungen

DALL-E Entwurf von Assets, wie beispielsweise der Parchment-Textur

GitHub Copilot | Code Completion fiir weniger komplexe Hilfsmethoden

ChatGPT Fiir Rechtschreib- und Grammatikpriifung genutzt (Prompt:
,Uberpriife Rechtschreibung und Grammatik: ...)

HAW GitLab Versionsverwaltung

77

Erklarung zur selbstiandigen Bearbeitung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbsténdig
verfasst und nur die angegebenen Hilfsmittel benutzt habe. Wortlich oder dem Sinn

nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich

gemacht.

Ort Datum Unterschrift im Original

78

