
BACHELOR THESIS
Flemming Grabowski

Sketch-basierte Generierung
von fiktionalen Landkarten

FAKULTÄT TECHNIK UND INFORMATIK
Department Informatik

Faculty of Engineering and Computer Science
Department Computer Science

HOCHSCHULE FÜR ANGEWANDTE
WISSENSCHAFTEN HAMBURG
Hamburg University of Applied Sciences

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung
im Studiengang Bachelor of Science Angewandte Informatik
am Department Informatik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Philipp Jenke
Zweitgutachter: Prof. Dr. Peer Stelldinger

Eingereicht am: 06. März 2025

Flemming Grabowski

Sketch-basierte Generierung von fiktionalen
Landkarten

Flemming Grabowski

Thema der Arbeit

Sketch-basierte Generierung von fiktionalen Landkarten

Stichworte

Prozedurale Content Generierung, Fiktionale Landkarten, Sketch-basierte Generierung,
Geometrische Algorithmen, Regelbasierte Verfahren, Noise-basierte Verfahren

Kurzzusammenfassung

Diese Arbeit stellt die Entwicklung eines prototypischen Systems zur sketch-basierten
Generierung fiktionaler Landkarten vor, bei dem geometrische Algorithmen wie die
Delaunay-Triangulation mit prozeduralen Methoden kombiniert werden. Basierend auf
Skizzen werden Landmassen segmentiert, Regionen durch Icons definiert und mittels
Noise-basierter sowie regelbasierter Verfahren detaillierte Landschaften erzeugt. Die Eva-
luation zeigt, dass durch die gezielte Kombination dieser Methoden eine kohärente und
intuitiv steuerbare Kartengenerierung möglich ist. Gleichzeitig wurden Herausforderun-
gen identifiziert, insbesondere in der Handhabung ungenauer Eingaben und der Echtzeit-
performance. Das System ermöglicht modular erweiterbare Generierungsstrategien und
sorgt für natürliche Übergänge zwischen Biomen.

Flemming Grabowski

Title of Thesis

Sketch-based Generation of Fictional Maps

Keywords

Procedural Content Generation, Fictional Maps, Sketch-based Generation, Geometric
Algorithms, Rule-based Methods, Noise-based Methods

Abstract

This thesis presents the development of a prototype system for sketch-based generation
of fictional maps, combining geometric algorithms such as Delaunay triangulation with

iii

procedural methods. Based on sketches, landmasses are segmented, regions are defined
through icons, and detailed landscapes are generated using noise-based and rule-based
techniques. The evaluation demonstrates that a targeted combination of these methods
enables coherent and intuitively controllable map generation. At the same time, chal-
lenges were identified, particularly in handling imprecise inputs and ensuring real-time
performance. The system allows for modularly extensible generation strategies and en-
sures natural transitions between biomes.

iv

Inhaltsverzeichnis

Abbildungsverzeichnis viii

1 Einleitung 1
1.1 Motivation . 1
1.2 Ziele . 2
1.3 Aufbau der Arbeit . 2

2 Grundlagen 4
2.1 Geometrische Algorithmen . 4

2.1.1 Bresenham . 4
2.1.2 Delaunay-Triangulation . 6
2.1.3 Voronoi-Diagramme . 8

2.2 Clustering und Formerkennung . 9
2.2.1 Density-Based Spatial Clustering of Applications with Noise 9
2.2.2 Alpha Shape . 10

2.3 Prozedurale Content Generierung . 12
2.3.1 Regel-basiert . 13
2.3.2 Noise-basiert . 16

3 Stand der Technik 19
3.1 Relevanz . 19
3.2 Ansätze und Systeme . 20

3.2.1 Sketch2Map . 20
3.2.2 Mapgen4 . 21
3.2.3 Terrain Sketching . 22

3.3 Vergleich und Synthese . 23

v

Inhaltsverzeichnis

4 Konzept 25
4.1 Funktionale Anforderungen . 25

4.1.1 Sketch-Eingabe und Segmentierung der Regionen 25
4.1.2 Landschafts Generierung . 27
4.1.3 Ausgabe . 28

4.2 Nicht-funktionale Anforderungen . 28
4.2.1 Performance . 29
4.2.2 Erweiterbarkeit . 30

4.3 Von der Skizze zur Karte . 30
4.4 Methodisches Vorgehen . 32

5 Umsetzung 34
5.1 Technologie . 34
5.2 Systemarchitektur . 36

5.2.1 Technische Bausteine . 36
5.2.2 MVC-Architektur mit JavaFX . 37
5.2.3 Fachliche Bausteine . 39
5.2.4 Modulare Strategieimplementierung 40
5.2.5 Datenfluss . 43

5.3 Vorverarbeitung . 44
5.4 Generierung der Kartenelemente . 46

5.4.1 Gebirge . 46
5.4.2 Ozean . 47
5.4.3 Seen . 47
5.4.4 Wälder . 48
5.4.5 Dörfer . 49
5.4.6 Details . 50

6 Evaluation 52
6.1 Methodik . 52
6.2 Qualitative und Ästhetische Bewertung . 55
6.3 Performance-Analyse . 67
6.4 Erfüllungsgrad der Anforderungen . 68
6.5 Zukunftsperspektiven und Erweiterungsmöglichkeiten 70

7 Fazit 72

vi

Inhaltsverzeichnis

Literaturverzeichnis 74

A Anhang 77
A.1 Verwendete Hilfsmittel . 77

Selbstständigkeitserklärung 78

vii

Abbildungsverzeichnis

2.1 Visualisierung der Delaunay-Triangulation einer Punktmenge. 7
2.2 Visualisierung des Voronoi-Diagramms für eine Punktmenge. 8
2.3 Voronoi-Diagramm (oben links), Delaunay-Triangulation (oben rechts) und

Alpha-Shape (unten) mit Parameter α zur Steuerung des Detailgrads. . . 12
2.4 Schematische Darstellung des Perlin Noise Algorithmus. Links: Rasterun-

terteilung des Raums. Mitte: Ein Punkt innerhalb einer Rasterzelle sowie
zufällig zugewiesene Gradienten an den Rasterpunkten. Rechts: Vektoren
von den Rasterpunkten zum betrachteten Punkt. 17

4.1 Pipeline unterteilt in die Phasen Skizzenverarbeitung, Regionsegmentie-
rung, Regiongenerierung und Integration. 32

5.1 Bausteinsicht zeigt die drei Hauptkomponenten und stellt das MVC-Muster
innerhalb jeder Komponente dar. 40

5.2 Klassendiagramm, das die Implementierung des Strategie-Musters in der
Anwendung zeigt. 41

5.3 Sequenzdiagramm, das den beschriebenen Datenfluss veranschaulicht . . . 44
5.4 Eingabebild für den WFC-Algorithmus mit einem 3x3-Raster zur besseren

Erkennbarkeit der Struktur . 49

6.1 Links ist die ursprüngliche Eingabe, rechts der verarbeitete Umriss. 61
6.2 Links ist die ungenaue Eingabe, rechts der korrigierte Umriss 62
6.3 Links ist die ungenaue Eingabe, rechts der fehlerhafte Umriss. 62
6.4 Links ist die Eingabe, rechts die individuellen Umrisse. 63
6.5 Links ist der verarbeitete Umriss, rechts das Polygon. 63
6.6 Links eine generierte Ozeanregion ohne Filter, rechts mit Filter 64
6.7 Links ein generiertes Gebirge ohne Filter, rechts mit Filter 64
6.8 Links ein generierter See ohne Filter, rechts mit Filter 64
6.9 Links ein generierter Wald ohne Filter, rechts mit Filter 65

viii

Abbildungsverzeichnis

6.10 Links ein generiertes Dorf ohne Filter, rechts mit Filter 65
6.11 Links generierte Flüsse ohne Filter, rechts mit Filter 65
6.12 Zeigt den gesamten Prozess vom Zeichnen über die Verarbeitung bis zur

generierten Karte, wobei auf Grundlage derselben Polygone zweimal ge-
neriert wurde, um die Unterschiede der Ergebnisse hervorzuheben. 66

ix

1 Einleitung

1.1 Motivation

Die Erstellung fiktionaler Landkarten spielt eine zentrale Rolle in vielen kreativen Berei-
chen, darunter Videospiele, Pen-and-Paper-Rollenspiele und Fantasy-Literatur. Traditio-
nell erfordert die Gestaltung solcher Karten viel künstlerisches Geschick und Zeitaufwand.
Insbesondere für Personen ohne zeichnerische Vorerfahrung kann dies eine erhebliche Hür-
de darstellen.

Eine Möglichkeit, diesen Prozess zu erleichtern, liegt in der Verwendung von prozedura-
len Algorithmen, die auf Grundlage bestimmter Eingaben eine detailreiche und kohärente
Karte generieren. Bisher existierende Systeme zur automatisierten Kartenerstellung bie-
ten jedoch oft wenig interaktive Gestaltungsmöglichkeiten oder sind stark an bestimmte
Darstellungsstile gebunden.

Diese Arbeit untersucht den Ansatz der sketch-basierten Generierung fiktionaler Land-
karten. Dabei können Nutzer durch einfache Skizzen und Markierungen den grundle-
genden Aufbau ihrer Karte definieren, während Algorithmen die Skizze analysieren und
weiterverarbeiten, um eine detailreiche, kohärente und optisch ansprechende Karte zu
erzeugen.

Die zentrale Forschungsfrage lautet dabei: Lässt sich eine strategische Kombination algo-
rithmisch unterschiedlicher Verfahren so gestalten, dass trotz ihrer strukturellen Diver-
genz eine visuell kohärente und intuitiv steuerbare sketch-basierte Generierung fiktionaler
Landkarten ermöglicht wird?

1

1 Einleitung

1.2 Ziele

Ziel dieser Arbeit ist die Entwicklung eines prototypischen Systems zur sketch-basierten
Generierung von fiktionalen Landkarten. Das System soll es ermöglichen, durch einfache
Strichzeichnungen und Markierungen geografische Strukturen wie Küstenlinien, Gebirge
oder Wälder intuitiv zu definieren. Diese Eingaben werden anschließend durch eine Kom-
bination aus geometrischen Algorithmen, regelbasierten Verfahren und noise-basierten
Methoden weiterverarbeitet.

Die zentralen Teilziele sind:

• Benutzerfreundlichkeit: Das System soll eine intuitive Zeicheneingabe ermögli-
chen und auch ungenaue Skizzen zuverlässig interpretieren.

• Modulare Generierungsstrategien: Unterschiedliche algorithmische Verfahren
sollen trotz ihrer strukturellen Divergenz zu einem kohärenten System integriert
und flexibel kombiniert werden können, um eine hohe Anpassungsfähigkeit zu ge-
währleisten.

• Natürlich wirkende Ergebnisse: Die generierten Karten sollen visuell anspre-
chend sein und organische Übergänge zwischen Landschaftstypen enthalten.

• Effizienz: Die Generierung soll in einer angemessenen Zeit erfolgen, um eine inter-
aktive Nutzung zu ermöglichen.

1.3 Aufbau der Arbeit

Die vorliegende Arbeit ist in mehrere Kapitel unterteilt, die schrittweise von den theo-
retischen Grundlagen bis zur praktischen Umsetzung und Evaluation des entwickelten
Systems führen.

Kapitel 2 beschreibt die theoretischen Grundlagen der verwendeten Algorithmen und
Methoden. Dazu gehören geometrische Verfahren wie die Delaunay-Triangulation und
Voronoi-Diagramme sowie verschiedene Ansätze der prozeduralen Content Generierung.

2

1 Einleitung

Kapitel 3 gibt einen Überblick über bestehende Systeme zur Generierung von Landkarten
mit einem Fokus auf sketch-basierte und prozedurale Ansätze. Dazu werden verschiede-
ne Methoden analysiert und miteinander verglichen, um deren Stärken und Schwächen
herauszuarbeiten.

Kapitel 4 entwickelt darauf aufbauend ein Konzept für das eigene System. Hier wer-
den die funktionalen und nicht-funktionalen Anforderungen definiert, der grundlegende
Verarbeitungsprozess skizziert und das methodische Vorgehen beschrieben.

Kapitel 5 behandelt die technische Umsetzung, einschließlich der verwendeten Technolo-
gien, der Systemarchitektur und der Implementierung der einzelnen Komponenten.

Kapitel 6 bewertet die verwendete Methodik, evaluiert die Qualität der generierten Kar-
ten anhand von visuellen und technischen Kriterien, reflektiert die Herausforderungen
des Systems und gibt einen Ausblick auf mögliche Erweiterungen.

Abschließend fasst Kapitel 7 die Ergebnisse zusammen.

3

2 Grundlagen

2.1 Geometrische Algorithmen

Im Kontext der sketch-basierten Generierung spielen geometrische Algorithmen eine
wichtige Rolle. Sie ermöglichen es, die Benutzereingabe wie vom Nutzer beabsichtigt
einzulesen und in geeigneten Datenstrukturen zu halten. Somit können einfache Benut-
zereingaben wie das Gedrückthalten einer Maustaste und das gleichzeitige Bewegen der
Maus zu einer komplexen Struktur wie einem Dreiecksnetz umgewandelt werden, welches
dann wiederum genutzt werden kann, um effizient mit der Eingabe zu arbeiten.

In diesem Abschnitt werden drei wesentliche geometrische Algorithmen vorgestellt, die
in der Computergrafik und der algorithmischen Geometrie weit verbreitet sind:

• Der Bresenham-Algorithmus, der eine effiziente Methode zur rasterbasierten Lini-
enzeichnung bereitstellt und dabei nur Ganzzahloperationen verwendet.

• Die Delaunay-Triangulation, die eine optimale Zerlegung einer Menge von Punkten
in Dreiecke ermöglicht, dabei aber spitze Winkel vermeidet.

• Das Voronoi-Diagramm, welches eine Ebene in mehrere Regionen unterteilt.

2.1.1 Bresenham

Wenn zwei Punkte, die irgendwo auf einem Computerbildschirm gesetzt werden, ver-
bunden werden sollen, indem eine Linie gezeichnet wird, dann muss diese durch die
Auswahl der nächstgelegenen Pixel möglichst präzise und effizient dargestellt werden.
Der Bresenham-Algorithmus löst dieses Problem, indem er entscheidet, welcher Pixel
dem idealen Linienverlauf am nächsten liegt, und dabei nur Ganzzahlen sowie einfache
Additionen, Subtraktionen und Vergleiche verwendet [2]. Der Algorithmus funktioniert
wie folgt:

4

2 Grundlagen

Als Erstes werden die Differenzen in x- und y-Richtung zwischen Startpunkt und End-
punkt berechnet (dx und dy). Anschließend wird die „schnelle Richtung“ bestimmt – also
die Achse, entlang derer die Linie am stärksten ansteigt. Der Algorithmus schreitet dann
Pixel für Pixel in dieser schnellen Richtung voran und entscheidet bei jedem Schritt an-
hand einer Fehlervariable D, ob ein zusätzlicher Schritt in der langsamen Richtung nötig
ist, um die ideale Linie möglichst exakt nachzuziehen. Der initiale Fehler wird als

D = 2 · dy − dx

berechnet. In der Hauptschleife wird dann für jeden Pixel folgendes durchgeführt:

• Der aktuelle Pixel wird gezeichnet.

• Es wird überprüft, ob der Zielpunkt erreicht wurde.

• D wird um 2 · dy inkrementiert.

• Falls D ≥ 0, wird zusätzlich ein Schritt in der langsamen Richtung ausgeführt und
D um 2 · dx dekrementiert.

Der Algorithmus ist sehr effizient, da:

• Er nur ganzzahlige Operationen verwendet.

• Nur einfache Additionen, Subtraktionen, Vergleiche und konstante Multiplikationen
benötigt.

• Die Laufzeit O(max(dx, dy)) beträgt, die Schleife also nur so oft durchlaufen wird,
wie die längste Achsendifferenz vorgibt.

Der Algorithmus lässt sich aufgrund der genannten Aspekte hervorragend in jegliche
Systeme implementieren, in denen per Hand Linien gezeichnet werden und in denen für
ein möglichst natürliches Ergebnis interpoliert werden muss.

5

2 Grundlagen

2.1.2 Delaunay-Triangulation

Die Delaunay-Triangulation ist ein fundamentales Konzept im Bereich der algorithmi-
schen Geometrie. Sie wurde ursprünglich von Boris Delone eingeführt [3] und ermöglicht
eine effiziente Zerlegung einer Punktmenge P in eine Dreiecksmenge T . Die Menge T

zeichnet sich durch die Eigenschaft aus, dass der Umkreis jedes Dreiecks keine weiteren
Punkte aus P enthält. Somit entsteht eine Triangulation, die die kleinsten Innenwinkel
über alle Dreiecke aus T maximiert, es werden also sehr spitze Winkel vermieden [12].

Es gibt unterschiedliche Ansätze für das Erstellen einer solchen Triangulation. Ein ite-
rativer Ansatz wäre der Bowyer-Watson-Algorithmus, welcher über die Punktmenge P

iteriert und dabei die Punkte sukzessive zur Triangulation hinzufügt, aber dabei die
genannte Eigenschaft beibehält [1].

Die Delaunay-Triangulation lässt sich in den folgenden Schritten zusammenfassen:

• Initialisierung: Ein Dreieck wird erstellt, das alle Punkte aus P umfasst.

• Überprüfung der Delaunay-Eigenschaft:

– Für jeden Punkt pi aus P wird überprüft, welche Dreiecke aus der Triangula-
tion die Delaunay-Eigenschaft verletzen.

– Falls ein Dreieck die Delaunay-Eigenschaft verletzt, wird es markiert.

• Entfernung der Kanten: Die Kanten der markierten Dreiecke werden entfernt,
was zu einem "Loch"führt.

• Verschließen des Lochs: Das Loch wird durch das Verbinden von pi mit den
Eckpunkten der entfernten Dreiecke geschlossen.

• Entfernung des Initialisierungs-Dreiecks: Das Initialisierungs-Dreieck wird
entfernt, und die Delaunay-Triangulation ist vollständig.

6

2 Grundlagen

Abbildung 2.1: Visualisierung der Delaunay-Triangulation einer Punktmenge.
1

Heutzutage findet man Delaunay-Triangulationen in einer Vielzahl von Anwendungsge-
bieten. Darunter fallen beispielsweise die Analyse medizinischer Bilder zur Hautkrebser-
kennung sowie die Erzeugung realistischer 3D-Modelle [6].

1Eigene Abbildung, nachempfunden basierend auf der Quelle: https://www.gorillasun.de/blog
/bowyer-watson-algorithm-for-delaunay-triangulation/.

7

2 Grundlagen

2.1.3 Voronoi-Diagramme

Ein Voronoi-Diagramm, ursprünglich eingeführt von Georgy Voronoi [22], ist ein grund-
legendes geometrisches Konstrukt, welches eine Ebene in Regionen unterteilt. Diese Un-
terteilung entsteht durch die geografische Lage von Punkten aus einer Punktmenge P .
Jede Region, auch Voronoi-Zelle genannt, enthält genau einen Punkt p aus P und um-
fasst alle Punkte der Ebene, die näher an p liegen als an allen anderen Punkten aus P .
Somit besitzt jeder Punkt, der auf einer Kante zweier Voronoi-Zellen liegt, den gleichen
Abstand zu den beiden erzeugenden Punkten.

Das Voronoi-Diagramm ist dual zur bereits vorgestellten Delaunay-Triangulierung, was
bedeutet, dass sich aus der einen Struktur immer die jeweils andere ableiten lässt. Die
Dualität zeigt sich darin, dass zwei Punkte genau dann durch eine Delaunay-Kante
verbunden sind, wenn ihre zugehörigen Voronoi-Regionen eine gemeinsame Kante tei-
len [13].

Voronoi-Diagramme können genutzt werden, um möglichst natürliche Grenzen innerhalb
eines Bereiches, wie dem Umriss einer Landmasse, zu generieren, um diese in distinkte
Regionen zu unterteilen. Die Voronoi-Zellen erzeugen organisch wirkende Grenzverläufe,
die den natürlichen Gegebenheiten einer Landkarte ähneln.

Abbildung 2.2: Visualisierung des Voronoi-Diagramms für eine Punktmenge.
2

2Eigene Abbildung, nachempfunden basierend auf der Quelle: https://de.wikipedia.org/wiki/
Voronoi-Diagramm.

8

2 Grundlagen

2.2 Clustering und Formerkennung

Die Grundlagen des Clusterings und der Formerkennung, auf die im Folgenden eingegan-
gen wird, können nützlich sein, um zugrundeliegende Datenstrukturen zu analysieren, zu
gruppieren und anzupassen. So macht es Clustering im Kontext von Skizzen beispiels-
weise möglich, lokale Eigenschaften der jeweiligen Skizze getrennt zu behandeln. Die
Formerkennung bietet die Möglichkeit, eine Skizze parametrisierbar zu analysieren und
zu verfeinern.

2.2.1 Density-Based Spatial Clustering of Applications with Noise

Der Density-Based Spatial Clustering of Applications with Noise (DBSCAN) Algorith-
mus, entwickelt von Ester et al., ist ein weit verbreiteter Algorithmus für Data-Mining-
Zwecke [7]. Im Bereich des Data Minings müssen Datenpunkte oft kategorisiert bezie-
hungsweise gruppiert werden. Die Anforderungen an einen solchen Algorithmus sind
meistens: Effizienz, die Bedingung, dass dieser trotz wenig Vorwissen über die Domäne
funktioniert, und vor allem die Fähigkeit, Cluster unterschiedlichster Formen zu erken-
nen. Der DBSCAN-Algorithmus erfüllt diese Bedingungen, indem er dichtebasiert arbei-
tet. Dabei werden zwei zentrale Parameter genutzt: ϵ und MinPts. Hierbei definiert ϵ

einen Radius um jeden Datenpunkt, während MinPts die Mindestanzahl an Punkten
beschreibt, die sich innerhalb des Radius ϵ befinden müssen, damit der jeweilige Punkt
als Kernpunkt angesehen wird.

Der DBSCAN-Algorithmus lässt sich in den folgenden Schritten zusammenfassen:

• Punkte prüfen: Ist der Punkt schon Teil eines Clusters? Falls nicht, wird versucht,
um ihn herum ein neues Cluster zu bilden.

• Cluster-Bildung:

– Es wird gezählt, wie viele Nachbarn sich in einem bestimmten Radius ϵ befin-
den.

– Falls es genug Nachbarn (MinPts) gibt, wird ein neues Cluster erstellt und
der Punkt als Kernpunkt markiert.

9

2 Grundlagen

– Alle direkt und indirekt verbundenen Punkte werden dem Cluster hinzuge-
fügt. Dabei können auch Punkte, die selbst nicht die MinPts-Bedingung er-
füllen, Teil des Clusters werden, solange sie von einem Kernpunkt aus dichte-
erreichbar sind.

• Erweiterung: Der Prozess wiederholt sich für neu hinzugefügte Punkte, bis keine
weiteren dazugehören.

• Rauschen: Punkte, die kein Cluster bilden können, werden als Rauschen markiert.

• Ergebnis: Alle Punkte sind entweder Teil eines Clusters oder als Rauschen klassi-
fiziert.

Der Algorithmus erkennt Rauschen, also Datenpunkte, die weder Kernpunkte sind noch
in der ϵ-Nachbarschaft eines Kernpunktes liegen, also Randpunkte sind. Im Vergleich
zu vielen anderen Clustering-Algorithmen benötigt DBSCAN kein Vorwissen über die
Anzahl der zu findenden Cluster und ist außerdem in der Lage, auch nicht konvexe
Strukturen zu gruppieren.

Der Algorithmus arbeitet effizient und hat eine Laufzeitkomplexität von O(n · log n) bei
n Datenpunkten.

Auch in der Computergrafik findet der Algorithmus seine Anwendung und kann als es-
sentielles Werkzeug zur Analyse von Skizzen dienen. Im Kontext von Landkarten kann
DBSCAN also eingesetzt werden, um einzelne Landmassen oder Inseln als eigenständige
Einheiten zu erkennen und dementsprechend in nachfolgenden Verarbeitungsschritten zu
behandeln.

2.2.2 Alpha Shape

Um α-Shapes verstehen zu können, muss zunächst ein Blick auf die verwandten konve-
xen Hüllen geworfen werden. Eine konvexe Hülle für eine Punktmenge S beschreibt den
Schnitt aller geschlossenen Halbräume, die alle Punkte aus S enthalten. Sie ist somit die
kleinste konvexe Menge, die alle Punkte aus S enthält [5].

Eine konvexe Hülle ist allerdings nicht in der Lage, die Form einer Punktmenge genau
zu beschreiben und lässt im Extremfall sogar keinerlei Aussagen über diese treffen. Um
also die Form genauer beschreiben zu können, können α-Shapes verwendet werden. Ein

10

2 Grundlagen

α-Shape ist eine Verallgemeinerung der konvexen Hülle, bei der die Form durch die
Verwendung von Kreisen mit einem parametrisierbaren Radius beeinflusst wird.

Je nach Wahl dieses Radius wird die Hülle enger an die Punkte angepasst oder bleibt
gröber. Mit größerem Radius werden nur die „wesentlichen“ Punkte berücksichtigt, wäh-
rend mit kleinerem Radius die Details der Punktmenge immer feiner erfasst werden. Für
α = 0 entspricht die α-Shape der konvexen Hülle.

Ein zentraler Aspekt bei der Konstruktion von α-Shapes ist ihr Zusammenhang mit der
Delaunay-Triangulation. Je nach Wahl von α basiert die α-Shape entweder auf einer Va-
riante der Delaunay-Triangulation oder der konvexen Hülle. Diese Verbindung ermöglicht
eine effiziente Berechnung, da die α-Shape direkt aus der zugrunde liegenden Triangula-
tion abgeleitet werden kann.

Für ein gegebenes α wird geprüft, ob zwei Punkte α-Nachbarn sind. Dafür muss es einen
Kreis mit Radius 1/α geben, der:

• beide Punkte auf seinem Rand hat,

• alle anderen Punkte der Punktmenge entweder enthält (für α > 0) oder nicht
enthält (für α < 0).

Ein Punkt ist α-extrem, wenn es einen Kreis mit Radius 1/α gibt, der:

• den Punkt auf seinem Rand hat,

• alle anderen Punkte der Punktmenge entweder enthält (für α > 0) oder nicht
enthält (für α < 0).

Die α-Shape ist nun der Graph aus:

• allen α-extremen Punkten und den Kanten zwischen Punkten, die α-Nachbarn sind.

α-Shapes können verwendet werden, um aus einer Zeichnung, also einer Menge von Punk-
ten, eine geschlossene Form zu gewinnen. Da die Umrisse von Landmassen auf Landkarten
immer geschlossen vorkommen, also zyklisch sind, bietet sich die Nutzung eines solchen
Algorithmus an.

11

2 Grundlagen

Abbildung 2.3: Voronoi-Diagramm (oben links), Delaunay-Triangulation (oben rechts)
und Alpha-Shape (unten) mit Parameter α zur Steuerung des Detail-
grads.

3

2.3 Prozedurale Content Generierung

Prozedurale Content-Generierung (PCG) bezeichnet die algorithmische Erstellung von
Inhalten mit begrenzter oder indirekter Benutzerinteraktion. Sie umfasst die automati-
sierte Generierung verschiedenster Elemente wie Landschaften, Karten oder Texturen.
PCG findet in verschiedenen Bereichen Anwendung, wobei ein häufig genanntes Beispiel
die Spieleentwicklung ist. Die Motivation zur Verwendung von PCG ist vielfältig. Neben
der Reduktion von Entwicklungszeit und Kosten ermöglicht sie die Schaffung endloser
Variationen, adaptiver Spielerfahrungen sowie die Unterstützung von Designern im Ent-
wicklungsprozess. Während PCG bereits seit den 1980er Jahren in kommerziellen Spielen
zum Einsatz kommt, gewinnt sie durch neue Forschungsansätze und technologische Mög-
lichkeiten zunehmend an Bedeutung [18]. Die verschiedenen Ansätze zur PCG, die im
Rahmen dieser Arbeit betrachtet werden, lassen sich dabei grundsätzlich in regelbasierte
und noise-basierte Verfahren unterteilen, die jeweils eigene Stärken und Charakteristika
aufweisen.

3Eigene Abbildung, nachempfunden basierend auf der Quelle: Zhou, W. und Yan, H. (2012). Alpha
shape and Delaunay triangulation in studies of protein-related interactions.

12

2 Grundlagen

2.3.1 Regel-basiert

Regelbasierte Verfahren sind ein zentraler Ansatz in der PCG. Sie beruhen auf der Defi-
nition von klaren Regeln und Constraints, die den Aufbau und die Struktur von Inhalten
steuern. Durch die systematische Anwendung dieser Regeln können komplexe und konsis-
tente Strukturen erzeugt werden, die oft sowohl ästhetisch ansprechend als auch logisch
kohärent sind. Zu bekannten Vertretern zählen L-Systeme und der Wave Function Col-
lapse Algorithmus, die jeweils unterschiedliche Ansätze verfolgen, um Inhalte prozedural
und effizient zu generieren.

L-Systeme

L-Systeme wurden ursprünglich 1968 von dem Biologen Astrid Lindenmayer entwickelt,
um das Wachstum von Pflanzen zu modellieren [17]. Sie sind ein formales System zur
Beschreibung der Entwicklung von verzweigten Strukturen durch regelbasierte Ersetzun-
gen.

Ein L-System besteht dabei aus folgenden Komponenten:

• dem Alphabet V

• einem Axiom ω

• und Regeln P

Das Alphabet V wird hierbei durch eine Menge von Symbolen repräsentiert, die ersetzt
werden können (Variablen) oder nicht ersetzbar sind (Konstanten). Das Axiom ω ist
ein Ausgangszustand (Startstring) und besteht aus Symbolen des Alphabets. P ist eine
Tabelle von Regeln, wobei der Schlüssel ein bestimmtes Symbol des Alphabets ist und
der Wert ebenfalls ein Symbol oder eine Symbolkette ist, durch welches der Schlüssel
ersetzt wird.

Ein System kann also anhand der zuvor vorgestellten Werte parametrisiert werden. Ein
weiterer Parameter ist die Anzahl der Iterationen, also wie oft der gesamte Regelsatz
auf die Zeichenkette angewendet werden soll. Hierbei werden die Regeln in der ersten
Iteration nur auf das Axiom angewendet, während die Regeln in der nächsten Iteration
auf das Resultat der vorherigen Iteration angewendet werden. Wenn also x[n] den Zustand

13

2 Grundlagen

nach n Iterationen darstellt mit x[0] = ω, dann ist x[n+1] = P (x[n]), wobei P (x[n]) die
Anwendung der Regeln P auf den Zustand x[n] bedeutet.

Für die grafische Interpretation von L-Systemen wird oft eine sogenannte “Turtle” ver-
wendet. Eine Turtle ist an spezifische Symbole gebunden, wobei d eine variable Länge
und δ einen Rotationswinkel bezeichnet. Konventionell ist die Turtle wie folgt definiert:

• F : Zeichnet eine Linie in aktuelle Richtung mit Länge d

• f : Bewegt sich in aktuelle Richtung mit Schrittweite d

• +: Rotiert nach links um Winkel δ

• −: Rotiert nach rechts um Winkel δ

• [: Speichert aktuellen Zustand der Turtle (Grundlegend die Position und Orientie-
rung)

•]: Stellt den zuletzt gespeicherten Zustand der Turtle wieder her und entfernt diesen
aus dem Speicher.

Eine solche Definition reicht aus, um erstaunlich organisch wirkende Strukturen zu mo-
dellieren. Besonders für Landkarten gibt es diverse Anwendungsfälle, um L-Systeme dort
einsetzen zu können. Ein Beispiel wäre die dynamische Generierung von Flussstrukturen,
die auf natürlichen Prozessen wie Sedimentierung und Fließbewegungen basieren. Um Va-
riabilität und Realismus dieser Strukturen zu fördern, können L-Systeme stochastisch er-
weitert werden, indem unterschiedliche Regeln und Parameter angewendet werden. Diese
stochastischen Erweiterungen erlauben es, Flussverzweigungen mit variierenden Winkeln,
Längen und Verzweigungsmustern zu erzeugen, wodurch die resultierenden Strukturen
natürlicher wirken. Die stochastische Komponente sorgt zudem dafür, dass selbst mit
denselben Ausgangsparametern unterschiedliche Flussnetze entstehen können [21].

WFC

Der Wave Function Collapse Algorithmus (WFC), entwickelt von Maxim Gumin, ist eine
Methode zur prozeduralen Generierung von Inhalten4. Ursprünglich stammt der Begriff
aus der Quantenmechanik, wurde jedoch für den von Gumin entwickelten Algorithmus

4Maxim Gumin, "Wave Function Collapse", GitHub Repository, https://github.com/mxgmn/Wav
eFunctionCollapse

14

2 Grundlagen

zur Generierung von Texturen und Leveldesigns in Computerspielen genutzt. Der Anwen-
dungsbereich entfaltet sich jedoch weiter, sodass eine abgewandelte Form des Algorith-
mus sogar für die Generierung von Gedichten verwendet wird. Der Algorithmus arbeitet
beispielbasiert und erzeugt neue Inhalte, die den lokalen Mustern eines vorgegebenen
Beispiels entsprechen [11].

In der ursprünglichen Implementierung existieren zwei Hauptvarianten: Der Simple

Tiled Ansatz, der mit diskreten Kacheln und festen Nachbarschaftsregeln arbeitet,
sowie der Overlapping Ansatz, der überlappende Nachbarschaften von Pixeln oder
Elementen betrachtet. Beide Varianten folgen denselben Grundprinzipien, unterscheiden
sich jedoch in der Definition und Anwendung ihrer Constraints.

Der Algorithmus zerlegt eine Eingabedatei, typischerweise ein Bild, in eine Menge lokaler
Muster, die durch überlappende Bereiche kleiner „Unterbilder“ definiert werden. Diese
Muster werden als Constraints interpretiert, die die möglichen Anordnungen der Muster
in der Ausgabe beschränken.

Im Vergleich zu herkömmlichen Textursyntheseverfahren, bei denen Pixelwerte interpo-
liert werden, arbeitet der WFC Algorithmus ausschließlich mit diskreten Mustern. Dies
macht den Algorithmus besonders geeignet für Anwendungen, bei denen semantische
Konsistenz entscheidend ist, wie beispielsweise bei der Generierung von Spielumgebun-
gen.

Der WFC Algorithmus verwendet Techniken zur Lösung von Constraints, wobei jedem
Gitterpunkt eine begrenzte Menge an Mustern zugewiesen wird. Durch die Anwendung
einer Heuristik wird der Algorithmus dazu gebracht, zunächst die Bereiche mit der größ-
ten Einschränkung zu bearbeiten, was zu einem effizienten Algorithmus führt.

Die Arbeitsweise des WFC Algorithmus lässt sich in vier zentrale Schritte unterteilen:

• Musterextraktion: Die lokalen Muster werden aus der Eingabedatei extrahiert
und katalogisiert.

• Constraint-Erstellung: Eine Datenstruktur wird aufgebaut, die die zulässigen
Überlappungen der Muster speichert.

• Iterative Generierung: Das Ausgabegitter wird schrittweise gefüllt, indem für
jeden Punkt ein Muster gewählt wird, das den Constraints entspricht und mit den
bereits platzierten Mustern kompatibel ist.

15

2 Grundlagen

• Ausgabe: Das generierte Ergebnis wird als vollständige Konfiguration zurückge-
geben.

Die Eigenschaften des Wave Function Collapse Algorithmus eröffnen zahlreiche Möglich-
keiten, ihn im Kontext der Generierung von fiktionalen Landkarten einzusetzen. Bei-
spielsweise könnten aus einer groben Skizze detaillierte Hintergrundelemente der Karte
generiert werden, indem der WFC Algorithmus lokal konsistente Muster aus vorgegebe-
nen Beispieltexturen anwendet. Die stochastische Natur des Algorithmus fördert dabei
die Variabilität.

2.3.2 Noise-basiert

Noise-basierte Verfahren bilden ebenfalls einen fundamentalen Baustein in der PCG. Sie
basieren auf der Erzeugung und Manipulation verschiedener Rauschfunktionen, die kon-
trollierte Zufälligkeit und natürlich wirkende Variationen erzeugen. Durch die geschickte
Parametrisierung dieser Funktionen können organische Strukturen und Muster generiert
werden, die sowohl visuell überzeugend als auch flexibel anpassbar sind.

Perlin Noise

Perlin Noise ist eine Methode zur Erzeugung von glattem, pseudo-zufälligem Rauschen,
die von Ken Perlin eingeführt wurde [14]. Heute ist sie ein grundlegendes Werkzeug
in der Computergrafik und wird häufig für prozedurale Textur- und Terraingenerierung
verwendet.

Perlin Noise wurde entwickelt, um die Einschränkungen von klassischen, vollständigen
Rauschmethoden zu überwinden, die oft zu harten Übergängen und visuellen Artefakten
führen. Im Gegensatz dazu weist Perlin Noise die folgenden Eigenschaften auf:

• Kontinuität: Perlin Noise erzeugt glatte Übergänge zwischen benachbarten Wer-
ten, wodurch organische und natürlich wirkende Muster entstehen.

• Zufälligkeit: Die erzeugten Werte wirken zufällig, sind aber deterministisch, sodass
sie reproduzierbar sind, wenn der gleiche Startwert verwendet wird.

• Variabilität: Durch die Kombination von Perlin Noise auf unterschiedlichen Skalen
können komplexere Muster wie Fraktale erzeugt werden [4].

16

2 Grundlagen

Der ursprüngliche Algorithmus beruht auf einem Punktraster und der Interpolation zwi-
schen den Punkten. Die wichtigsten Schritte sind folgende [14]:

• Rastererzeugung: Der Raum wird in ein regelmäßiges Raster unterteilt, wobei
jedem Punkt in diesem Raster eine zufällige Gradientenrichtung zugewiesen wird.

• Skalarprodukt: Für jeden Punkt im Raum wird das Skalarprodukt zwischen dem
Gradienten der Rasterpunkte, in dem der jeweilige Punkt liegt, und dem Vektor
der Rasterpunkte zum aktuellen Punkt berechnet. In 2D würden dabei also vier
skalare Werte herauskommen.

• Interpolation: Die Werte der umliegenden Rasterpunkte werden mithilfe einer
glatten Interpolationsfunktion kombiniert. Diese Funktion sorgt für die glatten
Übergänge, die für Perlin Noise charakteristisch sind.

Abbildung 2.4: Schematische Darstellung des Perlin Noise Algorithmus.
Links: Rasterunterteilung des Raums.
Mitte: Ein Punkt innerhalb einer Rasterzelle sowie zufällig zugewiesene
Gradienten an den Rasterpunkten.
Rechts: Vektoren von den Rasterpunkten zum betrachteten Punkt.

5

Perlin Noise findet zahlreiche Anwendungen in der Computergrafik, insbesondere in der
Generierung von natürlich wirkenden Strukturen. Der Algorithmus kann beispielsweise
eingesetzt werden, um realistische Texturen für Wasseroberflächen zu erzeugen. Durch die
Kombination von Perlin Noise auf verschiedenen Skalen können realistische Landschaften
erstellt werden, indem die Noise-Werte als Höhenkarte interpretiert werden.

5Eigene Darstellung.

17

2 Grundlagen

Simplex Noise

Simplex Noise ist eine Weiterentwicklung der Perlin Noise Methode und wurde ebenfalls
von Ken Perlin vorgestellt [15]. Diese Methode verbessert vor allem die Performance in
höheren Dimensionen und bei größeren Datenmengen. Während die Komplexität von
Perlin Noise bei O(2n) für n Dimensionen liegt, arbeitet der Simplex Noise Algorithmus
in O(n2) [10].

Der Hauptunterschied liegt in der Art, wie das Gitter zur Berechnung des Rauschens auf-
gebaut ist. Während Perlin Noise ein reguläres, orthogonales Raster nutzt, das aus gleich-
mäßig verteilten Rasterpunkten besteht, basiert Simplex Noise auf dem sogenannten
Simplex-Gitter. Ein Simplex ist die einfachste geometrische Form, die einen n-dimensionalen
Raum aufspannen kann. In 2D ist dies beispielsweise ein gleichseitiges Dreieck. Diese
Simplexformen haben den Vorteil, dass sie die minimale Anzahl an Eckpunkten für die
jeweilige Dimension besitzen. Während ein Quadrat in 2D vier Eckpunkte hat, kommt
ein Dreieck mit drei Eckpunkten aus. Dies reduziert die Anzahl der notwendigen Berech-
nungen erheblich.

Der Algorithmus von Simplex Noise arbeitet in mehreren Schritten [10]:

• Transformation des Eingaberaums: Der Raum wird entlang der Hauptdiago-
nalen verzerrt, sodass die Simplexzellen zu regulären, achsenausgerichteten Hyper-
würfeln werden.

• Bestimmung der Simplexzelle: Durch Betrachtung der ganzzahligen Koordina-
tenanteile wird ermittelt, in welcher Zelle sich der zu berechnende Punkt befindet.

• Traversierung der Rasterpunkte: Die Rasterpunkte des Simplex werden in
einer bestimmten Reihenfolge durchlaufen, die sich aus der Größenordnung der
Koordinaten ergibt.

• Berechnung der Beiträge: Für jeden Rasterpunkt wird dessen Beitrag zum Rau-
schen berechnet und aufsummiert, wobei eine Abschwächungsfunktion zum Einsatz
kommt.

Diese Methode führt zu effizienterem und qualitativ hochwertigerem Rauschen, das be-
sonders für Anwendungen in höheren Dimensionen geeignet ist, aber ansonsten genau
wie Perlin Noise verwendet werden kann.

18

3 Stand der Technik

In diesem Kapitel werden bestehende Systeme und Methoden vorgestellt, die sich auf
die sketch-basierte Generierung von Landschaften und Karten spezialisiert haben. Der
Fokus liegt dabei darauf, zu untersuchen, wie diese Ansätze funktionieren, welche Tech-
nologien und Algorithmen sie verwenden und wie sie zur Lösung spezifischer Probleme
beitragen.

Zunächst wird die Relevanz der sketch-basierten Generierung von Landschaften erläu-
tert, um den praktischen und wissenschaftlichen Wert dieser Techniken zu verdeutlichen.
Anschließend werden ausgewählte Projekte und Systeme detailliert beschrieben. Der Ver-
gleich und die Synthese der betrachteten Arbeiten geben schließlich Aufschluss darüber,
wie diese Ansätze in den Kontext der vorliegenden Arbeit eingeordnet werden können.

3.1 Relevanz

Die Beschäftigung mit sketch-basierten Methoden in der Generierung von Landschaften
ist von großer Bedeutung, da sie eine intuitive und benutzerfreundliche Herangehensweise
an ein komplexes Problem bietet, besonders in der Unterhaltungsindustrie, die oft nicht
nur realistische, sondern auch stilisierte Darstellungen von Landschaften erfordert.

Ein Vorteil von sketch-basierten Ansätzen liegt in ihrer Fähigkeit, die Komplexität der
Generierung zu abstrahieren. Sie bieten dem Nutzer eine direkte Einflussnahme auf die
entstehenden Topologien, was bei der Entwicklung von virtuellen Landschaften zugute-
kommt, da somit eine feingranulare Kontrolle über visuelle Aspekte geschaffen werden
kann.

Im Designprozess von Spielen – als Beispiel für viele mögliche Anwendungsgebiete – kann
es hilfreich sein, dass die Skizze eines Designers direkt in die virtuelle Welt übertragen
werden kann, um darauf aufbauend zu testen und weiterzuentwickeln. Dieser automati-
sierte Prozess kann somit Zeit und Kosten sparen [19].

19

3 Stand der Technik

3.2 Ansätze und Systeme

3.2.1 Sketch2Map

Eine interessante Herangehensweise wird in der Arbeit Sketch2Map vorgestellt [23], in
der das beschriebene System folgendermaßen arbeitet:

Der Nutzer gibt eine handgezeichnete Skizze als Input in das System, welche wichtige
Merkmale wie Küstenlinien, Flüsse und andere Geländeformen in einfachen Konturen
darstellt. Nun verarbeitet das System die Skizze stufenweise, wobei zuerst ein Condi-
tional Generative Adversarial Network (cGAN) eingesetzt wird, um die Skizze zu einer
Art topografischer Karte umzuwandeln. Dabei werden Konturen und Höhenmerkmale
basierend auf der Skizze realistisch interpretiert. Anschließend wird die Karte, die In-
formationen über die Oberflächentopologie des Geländes enthält, als Eingabe für einen
deterministischen Algorithmus genutzt. Dieser Algorithmus wandelt die Eingabe in ein
konkretes Asset um, welches im weiteren Prozess als 2D- oder 3D-Modell verwendet
werden kann.

Da hier Generative Adversarial Networks (GAN) genutzt werden, sind Trainingsdaten
erforderlich, die auf unterschiedliche Weise generiert werden:

Einerseits durch prozedural erstellte Welten, bei denen systematisch Höhenkarten erzeugt
werden, aus denen sich dann Küstenlinien, Flüsse und andere geografische Merkmale ab-
leiten lassen. Diese Höhenkarten werden durch mehrere Perlin Noise Ebenen generiert.
Die so erzeugten Karten werden dann in mehrdimensionale 2D-Bitmap-Darstellungen
umgewandelt. Um aus diesen Karten die entsprechenden Trainingsskizzen zu erzeugen,
wird eine Interpolation mit verschiedenen Glättungsparametern angewendet, wodurch
drei unterschiedliche Stile entstehen. Neben den prozedural generierten Daten werden
auch echte Höhendaten der Erde als Trainingsgrundlage verwendet. Mit diesen Trainings-
paaren aus Skizzen und entsprechenden Karten wird dann das zweistufige GAN-System
trainiert, wobei die erste Stufe die grobe Land-Meer-Segmentierung lernt und die zweite
Stufe die detaillierte Höhenkartengeneration innerhalb dieser Segmente übernimmt.

20

3 Stand der Technik

3.2.2 Mapgen4

Eine weitere interessante Herangehensweise findet sich im Projekt Mapgen4 von Amit
Patel, das für die interaktive Erstellung von Landkarten entwickelt wurde1. Dieses System
ermöglicht es dem Nutzer, durch Skizzen direkt Einfluss auf die Gestaltung der Karte zu
nehmen. Dabei können gezielt Landschaftsformen wie Berge, Täler oder Gewässer an den
gewünschten Stellen gezeichnet werden. Das Besondere ist, dass das System automatisch
Flüsse generiert und Biome auf Grundlage einer physikalischen Simulation von Faktoren
wie Wind, Verdunstung und Niederschlag berechnet. Das System arbeitet hauptsächlich
prozedural. Der zugrunde liegende Algorithmus basiert auf einer Delaunay-Triangulation
und ihrer dualen Voronoi-Diagramm-Struktur, die eine effiziente Verarbeitung und Dar-
stellung geografischer Merkmale ermöglicht. Die erzeugten Karten werden in Echtzeit
gerendert, was dem Nutzer ein unmittelbares visuelles Feedback bietet und iteratives
Arbeiten erleichtert.

Ein zentraler Bestandteil ist die Berechnung der Höhenwerte für die Landkarte2. Hierbei
greift das Projekt auf unterschiedliche Methoden zurück und kombiniert diese. Dafür
wird Simplex Noise verwendet, um grobe Landmassen und Wasserstrukturen vorab aus
einem Startwert zu generieren. Durch diese Technik entstehen natürlich wirkende Küs-
tenlinien, die als Basis für die weitere Bearbeitung dienen. Die Veränderungen durch den
Nutzer werden vom System erneut durch Simplex Noise verfeinert, sodass die Übergän-
ge zwischen Land und Wasser natürlicher wirken und kleinräumige Details wie Buchten
oder Küstenlinien hinzugefügt werden. Gebirgsketten werden ebenfalls durch Simplex
Noise generiert, das die Verteilung und Ausrichtung dieser bestimmt. Die Verfeinerung
geschieht allerdings durch die Einbeziehung von sogenannten Distanzfeldern, die ebenfalls
als Grundlage für die Höhenverteilung dienen. Distanzfelder messen den Abstand von je-
dem Punkt auf der Karte zu bestimmten Merkmalen, wie beispielsweise den Abstand zur
Küstenlinie. Diese Werte werden dann genutzt, um die Höhe der Punkte realistisch zu
interpolieren. Für die Verteilung von individuellen Bergen wird ebenfalls eine spezielle
Art von Noise, nämlich “Blue-Noise”, verwendet, was dafür sorgt, dass die Berge relativ
gleichmäßig, aber nicht regelmäßig angeordnet sind [20].

Der Renderer arbeitet auf einer Delaunay-Triangulation, wobei jedes Dreieck mit einem
der vier Typen assoziiert werden kann: Ozean, Flussquelle, Flussbiegung, Flussgabelung.
Je nach Typ wird eine unterschiedliche Strömung simuliert und eine davon abhängige

1Amit Patel, "Mapgen4", https://simblob.blogspot.com/search/label/mapgen4
2Amit Patel, "Mapgen4: elevation", https://simblob.blogspot.com/2018/08/mapgen4-elevation.html

21

3 Stand der Technik

Textur gewählt3. Um die Flüsse an den Biegungen nicht zu kantig zu gestalten, da das
Eintreten des Flusses auf einer Seite des Dreiecks und das Austreten auf einer anderen
Seite mit einer trivialen Methodik dazu führen könnte, werden Bézier-Kurven genutzt.
Zur Darstellung des Flusssystems wird ein binärer Baum konstruiert, wobei für jeden
Fluss ein Baum entsteht. Von der Küstenlinie ausgehend werden die Flüsse stromaufwärts
aufgebaut. Regen wird simuliert, indem das Wasser von den Blättern des aufgebauten
Baumes stromabwärts, also zu den Elternknoten, fließt. Während dieses Prozesses wird
für jeden Knoten der Niederschlag berechnet, die Flussmenge des aktuellen Knotens um
den Regen erhöht und die Flussmenge dem Elternknoten hinzugefügt.

Anstatt die herkömmlichen Perspektiven wie eine reine Draufsicht oder Seitenansicht zu
verwenden, werden hier diese beiden Methoden zu einer einzigen Darstellung kombiniert.
Dadurch entstehen Karten, bei denen Eigenschaften der Draufsicht wie Flüsse und Küs-
tenlinien zusammen mit Seitenansichten von Bergen dargestellt werden. Dafür werden
die Informationen, die in der z-Koordinate der Punkte enthalten sind, in die y-Koordinate
des jeweiligen Punktes übertragen. Wenn also Informationen in der z-Koordinate enthal-
ten sind, wie es durch die Höhenkarte bei Bergen der Fall ist, dann wird diese Information
durch eine Abbildung auf die y-Achse übertragen, also „nach oben“.

Durch eine Kombination aus geometrischen Algorithmen und physikalischen Simulatio-
nen stellt Mapgen4 ein leistungsstarkes Werkzeug für die prozedurale Kartenerstellung
bereit. Es bietet eine wertvolle Perspektive auf Ansätze, die auch für diese Arbeit relevant
sein können.

3.2.3 Terrain Sketching

In der Arbeit Terrain Sketching wird ebenfalls ein sketch-basierter Ansatz präsentiert, der
in der Lage ist, Gelände zu generieren [8]. Das System ermöglicht es Nutzern, Landschafts-
formen intuitiv durch Striche zu definieren, die dann anschließend in dreidimensionales
Terrain umgewandelt werden. Das System arbeitet mit drei verschiedenen Interaktions-
modi:

Im Silhouetten-Modus zeichnen Nutzer Höhenprofile von Landschaftsformen, die auf ei-
ne vertikale Ebene projiziert werden. Der Aerial-Modus ermöglicht das Zeichnen aus
der Vogelperspektive, was besonders für einschneidende Landschaftsformen wie Canyons

3Amit Patel, "Mapgen4: river appearance", https://simblob.blogspot.com/2018/09/mapgen4-river-
appearance.html

22

3 Stand der Technik

geeignet ist. Im Region-Modus können Gebiete markiert werden, um deren Oberflächen-
beschaffenheit zu modifizieren. Ein zentraler Aspekt des Systems ist die Verarbeitung der
Benutzerstriche. Aus einer gezeichneten Silhouette wird automatisch eine Schattenkurve
durch Schnitt mit dem existierenden Terrain erzeugt. Zusätzlich wird eine Begrenzungs-
kurve generiert, die die seitliche Ausdehnung der Landschaftsform definiert. Diese wird
basierend auf den “Schulterregionen” der Silhouette berechnet, also den Bereichen, die
zu lokalen Maxima oder Minima führen. Die Form dieser Begrenzungskurve passt sich
automatisch an. Bei einzelnen Gipfeln wird sie kreisförmig, bei Bergketten länglich.

Die finale Generierung basiert auf einer Oberflächendeformation auf mehreren Auflö-
sungsebenen. Für jede Auflösungsebene wird das Gelände innerhalb der Begrenzungs-
kurve durch eine Kombination aus “Wavelet Noise” und Deformation angepasst. Die
Varianz des Rauschens wird dabei aus der Analyse der Silhouettenkurve abgeleitet. Die
Deformation selbst erfolgt durch eine kurvenbasierte räumliche Verformung.

Durch diese Kombination aus intuitiver sketch-basierter Eingabe und komplexer algorith-
mischer Verarbeitung ermöglicht das vorgestellte System die effiziente Erstellung realis-
tischer Landschaftsformen, wobei hier ein ganz klarer Fokus auf die Darstellung von
Höhenmerkmalen gelegt wird.

3.3 Vergleich und Synthese

Die analysierten Systeme demonstrieren unterschiedliche Herangehensweisen an die sketch-
basierte Generierung von Landschaften, die sowohl auf algorithmischer Komplexität als
auch auf Nutzerfreundlichkeit abzielen. Trotz ihrer Unterschiede lassen sich Gemeinsam-
keiten sowie komplementäre Ansätze identifizieren, die wichtige Erkenntnisse für eine
eigene Implementierung bieten.

Alle betrachteten Systeme verfolgen das Ziel, dem Nutzer eine intuitive und interaktive
Möglichkeit zu bieten, Landschaften durch einfache Skizzen oder Eingaben zu erstellen.
Dabei werden grundlegende Geometrien und topografische Merkmale wie Berge, Flüsse
und Küstenlinien aus den Skizzen extrahiert und durch algorithmische Prozesse verfei-
nert.

Die Systeme setzen außerdem auf verschiedene Methoden zur Höhenerzeugung und zur
Strukturierung geografischer Merkmale. Sowohl Sketch2Map als auch Mapgen4 und Ter-

23

3 Stand der Technik

rain Sketching nutzen Noise-Algorithmen, um natürliche Übergänge und realistische De-
tails zu generieren.

Die Unterschiede der Systeme liegen vor allem in den eingesetzten Algorithmen und der
Zielsetzung der jeweiligen Ansätze. Sketch2Map setzt auf ein zweistufiges GAN-System,
das insbesondere für eine variable Stilisierung des Ergebnisses geeignet ist, während Map-
gen4 und Terrain Sketching mit einer stärker prozeduralen Herangehensweise arbeiten,
die physikalische Simulationen und geometrische Algorithmen kombiniert. Dieser Fokus
macht Mapgen4 und Terrain Sketching zu interaktiven Werkzeugen, die besonders für
kreative Anwendungen wie die Erstellung von Karten in Spielen oder für “Storytelling”
geeignet sind.

Terrain Sketching bietet durch seine drei Interaktionsmodi eine hohe Flexibilität in der
sketch-basierten Benutzereingabe und legt dabei besonderen Wert auf die intuitive Defi-
nition von Höhenmerkmalen. Hier steht die detaillierte Verarbeitung einzelner Striche im
Vordergrund, wodurch Nutzern eine präzise Kontrolle über die erzeugten Landschafts-
formen ermöglicht wird.

Die Stärken der analysierten Ansätze bieten wertvolle Hinweise für eine eigene Imple-
mentierung. Insbesondere die Integration von physikalischen Simulationen und geometri-
schen Algorithmen könnte helfen, realistische und anpassbare Landschaften zu generieren.
Gleichzeitig bietet die GAN-basierte Methode von Sketch2Map Potenzial, um realistische
topografische Details automatisch aus groben Skizzen abzuleiten.

Die Synthese dieser Ansätze könnte ein System hervorbringen, das sowohl künstlerischen
als auch funktionalen Anforderungen gerecht wird. Ein solches System könnte eine fle-
xible Skizzeneingabe mit prozeduralen und datenbasierten Techniken kombinieren, um
sowohl stilisierte als auch realistische Landschaften zu erstellen. Besondere Aufmerksam-
keit sollte dabei auf die Benutzerfreundlichkeit und das unmittelbare visuelle Feedback
während der Eingabe gelegt werden, um iterative Designprozesse zu fördern.

24

4 Konzept

Dieses Kapitel bildet die Brücke zwischen der bisher behandelten theoretischen Basis und
einer konkreten Lösungsimplementierung der einleitend skizzierten Herausforderungen.
Es beschreibt den zentralen Ansatz zur Umsetzung der sketch-basierten Generierung von
fiktionalen Landkarten. Ziel ist es, die funktionalen und nicht-funktionalen Anforderun-
gen an das System klar zu definieren und ein methodisches Vorgehen zu entwickeln, das
die Grundlagen für die praktische Implementierung bildet.

Im Folgenden werden zunächst die gewünschten Funktionen und Eigenschaften des Sys-
tems beschrieben, bevor auf übergeordnete Qualitätsmerkmale eingegangen wird. Dar-
auf aufbauend wird der grundlegende Lösungsansatz skizziert, der beschreibt, wie die
einzelnen Verarbeitungsschritte von der Skizzeneingabe bis zur fertigen Karte ineinan-
dergreifen. Abschließend wird das methodische Vorgehen erläutert, das den iterativen
Entwicklungsprozess der Umsetzung beschreibt.

4.1 Funktionale Anforderungen

Im Folgenden wird darauf eingegangen, was das System mindestens leisten soll, und es
werden die funktionalen Anforderungen spezifiziert. Die Anforderungen orientieren sich
an der erwarteten Interaktion des Nutzers mit dem System und bilden eine wichtige
Grundlage für die Systemarchitektur und Implementierung.

4.1.1 Sketch-Eingabe und Segmentierung der Regionen

Ein zentraler Bestandteil des Systems ist die intuitive Sketch-Eingabe durch den Nutzer.
Der Nutzer hat hierbei die Möglichkeit, auf einer Zeichenfläche mit der Maus beliebig und
freihand zu zeichnen und gegebenenfalls Korrekturen vorzunehmen. In diesem Schritt des
Prozesses geht es also nur um den Umriss einer Landkarte. Ist der Nutzer zufrieden mit

25

4 Konzept

dem Ergebnis seiner Skizze, dann kann dieser die Sketch-Eingabe beenden. Diese Skiz-
ze dient als Grundlage für die weitere Verarbeitung und stellt einen Ausgangspunkt für
die Generierung der Karte dar. Es ist essentiell, dass das System auch ungenaue Einga-
ben zuverlässig interpretiert. Da eine Landkarte aus einem oder mehreren geschlossenen
Umrissen besteht, müssen gezeichnete Konturen zu vollständigen Polygonen verarbeitet
werden. Das System ist also auch in der Lage, mit Insel-artigen Umrissen umzugehen und
kann somit mehrere Umrisse gleichzeitig behandeln. Somit generiert das System geschlos-
sene Formen, die den ursprünglichen Umriss bestmöglich approximieren und gleichzeitig
die gewünschte natürliche Ästhetik beibehalten.

Der Nutzer wird, nachdem die Skizze geschlossen wurde, die Umrisse der Landkarte in
Regionen unterteilen können. Hierfür ist ein Icon-Platzierungs-Mechanismus vorgesehen.
Der Nutzer kann dabei zwischen unterschiedlichen Icons wie dem Berg-Icon, Wald-Icon,
See-Icon oder Dorf-Icon wählen und diese beliebig auf der Zeichenfläche platzieren. Das
System prüft daraufhin, ob sich die platzierten Icons innerhalb eines Umrisses befinden
oder ob sie ignoriert werden. Die validen Icons bilden dann zusammen mit dem geschlosse-
nen Umriss die Grundlage für die Unterteilung in Regionen beziehungsweise geografische
Zonen, welche jeweils mit einer Landschaftsart assoziiert werden können.

Die konkreten Anforderungen an das System für diesen Schritt sind also:

• Zeichnungen können Pixelgenau eingelesen werden.

• Zeichnungen sind korrigierbar.

• Linien mit Unterbrechungen von bis zu 5 Pixeln werden automatisch verbunden
und unvollständig geschlossene Formen werden dabei erkannt.

• Details von Sketch-Eingaben bleiben auch nach der Verarbeitung erhalten. Dabei
wird durch Stichproben an mindestens 20 charakteristischen Punkten (wie Ecken,
Einbuchtungen und Ausbuchtungen) überprüft, ob die Pixel höchstens um 5 Pixel
von ihrer ursprünglichen Position abweichen.

• Inselstrukturen werden korrekt, also individuell, behandelt.

• Icons werden validiert.

• Icons unterteilen die Fläche in Teilmengen, die mit Landschaftstypen assoziiert
werden.

26

4 Konzept

4.1.2 Landschafts Generierung

Nach der Vorverarbeitung der Landkarte in geografische Zonen ist der nächste Schritt die
Generierung der Landschaften, die den definierten Regionen zugewiesen werden. Dieser
Prozess stellt den Kern der Anwendung dar und sorgt dafür, dass die Landkarte mit Land-
schaftsdetails versehen wird, die zusammen eine typische Darstellung von Fantasy-Karten
ergeben. Diese Karten zeichnen sich durch stilisierte, aber dennoch plausible geografische
Merkmale aus, die in fiktionalen und oft magischen Welten Verwendung finden. Zu diesen
Merkmalen gehören beispielsweise Gebirge, Wälder, Seen, Flüsse und Dörfer. Diese Ele-
mente sind klar voneinander abgegrenzt, gehen jedoch in ihren Übergängen harmonisch
ineinander über.

Die Landschaftsmodellierung zielt darauf ab, eine Karte zu erzeugen, die sowohl den
spezifischen visuellen Anforderungen von Fantasy-Karten entspricht, als auch geogra-
fisch konsistent bleibt. Übergänge von Gebirgsregionen zu Wäldern müssen beispiels-
weise sanft und organisch wirken, um ein glaubhaftes visuelles Erlebnis zu schaffen. Die
generierten Landschaften sollen nicht nur die ästhetischen Merkmale einer Fantasy-Karte
widerspiegeln, sondern auch eine gewisse Authentizität und Kohärenz in den geografi-
schen Beziehungen der Zonen bieten.

Ein weiteres Ziel ist die Einzigartigkeit der generierten Karten: Auch bei gleichen Einga-
ben sollen leicht abweichende Ergebnisse erzielt werden, um die Individualität der Karten
zu gewährleisten.

Zusammengefasst ergeben sich die folgenden Anforderungen:

• Stilisierte Landschaften werden auf Basis der jeweiligen Icons der Regionen gene-
riert.

• Übergänge zwischen Landschaften werden so gestaltet, dass sie realistisch und flie-
ßend wirken.

• Die Karte wird mit bekannten Details ausgestattet, wie organisch wirkenden Fluss-
verläufen, Pergament-Optik und Namen für Dörfer.

• Die Generierung liefert einzigartige Ergebnisse, selbst bei identischen Eingaben.

27

4 Konzept

4.1.3 Ausgabe

Nachdem die Landkarte erfolgreich generiert wurde, muss das System das Resultat als
Bild ausgeben. Der Fokus liegt dabei auf der Bereitstellung einer einfachen und effizi-
enten Möglichkeit, die fertige Landkarte als Bilddatei zu speichern. Der Export als Bild
ermöglicht es den Nutzern, ihre generierte Karte in einem gängigen Format zu speichern
und weiterzuverwenden.

Das System muss die erzeugte Landkarte als Bild rendern. Dabei wird der gesamte Kar-
tenausschnitt, einschließlich der generierten Landschaftstypen, in einem Bild zusammen-
geführt. Die generierte Karte sollte alle visuellen Elemente wie Farben, Texturen und
Übergänge berücksichtigen, um das gewünschte ästhetische Ergebnis zu liefern. Für die
Erstellung des Bildes wird ein Rendering-Mechanismus eingesetzt, der die einzelnen Kar-
tenelemente basierend auf den festgelegten Parametern kombiniert und in ein pixelba-
siertes Format überführt.

Der Nutzer kann die Landkarte direkt nach der Generierung in ein übliches Bildformat
exportieren. Eine benutzerfreundliche Oberfläche wird bereitgestellt, die es ermöglicht,
die Bilddatei mit einem Klick zu speichern.

Zusammengefasst ergeben sich die folgenden Anforderungen:

• Die gesamten zuvor generierten Informationen werden in einem einzigen Bild ge-
rendert.

• Das Bild ist beispielsweise als png oder jpg exportierbar.

4.2 Nicht-funktionale Anforderungen

Neben den funktionalen Anforderungen spielen auch die nicht-funktionalen Anforde-
rungen eine wesentliche Rolle bei der Entwicklung des Systems. Diese Anforderungen
definieren qualitative Eigenschaften des Systems, die für die Nutzererfahrung und die
langfristige Nutzbarkeit entscheidend sind. Sie betreffen Aspekte wie Effizienz, Benutzer-
freundlichkeit und Anpassungsfähigkeit. Folgende nicht-funktionale Anforderungen sind
essentiell, um sicherzustellen, dass das System den gewünschten Qualitätsstandards ent-
spricht und langfristig genutzt werden kann.

28

4 Konzept

4.2.1 Performance

Die Performance des Systems ist ein entscheidender Faktor für eine positive Nutzerer-
fahrung. Insbesondere bei der Generierung und Darstellung komplexer Karten muss das
System schnell und effizient arbeiten. Die Berechnung der Landkarte, einschließlich der
Verarbeitung der Sketch-Eingabe und der Landschaftszuordnung, sollte innerhalb eines
angemessenen Zeitrahmens erfolgen, um eine flüssige Interaktion zu ermöglichen. Auch
der Export der Landkarte als Bild muss zügig ablaufen, damit Nutzer nicht unnötig war-
ten müssen. In Bezug auf die Performance bedeutet dies, dass das System die Eingaben
der Nutzer innerhalb von wenigen Sekunden verarbeiten und die fertige Karte erstellen
können sollte.

Hierbei gibt es jedoch eine Ausnahme: Das Modul, das für das Einlesen der Zeichnung
zuständig ist, muss die Ergebnisse in Echtzeit anzeigen, so wie man es von üblichen
Zeichenprogrammen kennt. In dieser Arbeit bezieht sich der Begriff Echtzeit auf eine
Nutzerinteraktion ohne wahrnehmbare Verzögerung. Dies bedeutet, dass das System so
schnell auf Benutzereingaben reagiert, dass die Reaktionszeit für den Menschen als unmit-
telbar empfunden wird. Für alle weiteren Schritte, wie der Approximierung des Umrisses,
wird eine gewisse Berechnungszeit eingeplant.

Durch die Sicherstellung einer guten Performance wird gewährleistet, dass Nutzer das
System effektiv und ohne Frustration verwenden können.

Das System garantiert:

• Eine Echtzeitanzeige der gezeichneten Skizze.

• Der Berechnungsschritt, der für die Segmentierung der Regionen sorgt, braucht
maximal eine Sekunde.

• Die Landschaftsgenerierung erfolgt in weniger als fünf Sekunden.

• Keine Überlastung des Systems durch Karten mit bis zu 20 Icons, sodass alle An-
forderungen weiterhin erfüllt werden.

29

4 Konzept

4.2.2 Erweiterbarkeit

Die Erweiterbarkeit des Systems ist von entscheidender Bedeutung, um sicherzustellen,
dass es auch in Zukunft an neue Anforderungen oder Nutzungsgewohnheiten angepasst
und erweitert werden kann. Das System wird so entwickelt, dass mit minimalem Aufwand
neue Funktionen oder Komponenten integriert werden können.

Die Erweiterbarkeit des Systems wird durch folgende Merkmale gewährleistet:

• Der modulare Aufbau ermöglicht eine einfache Integration neuer Funktionen, da
jede Komponente klar abgegrenzt ist.

• Jedes Modul erfüllt eine spezifische Aufgabe, die in sich abgeschlossen ist, was die
Wartbarkeit erhöht.

• Eine geringe Kopplung erleichtert die Austauschbarkeit von Komponenten und mi-
nimiert unerwartete Seiteneffekte an anderen Stellen im System.

• Abstraktionen und Schnittstellen machen das System flexibler, da Anpassungen
vorgenommen werden können, ohne die interne Logik im Detail ändern zu müssen.

• Eine Steuerung durch Parameter ermöglicht Anpassungen am System, ohne tief in
den Quellcode eingreifen zu müssen.

• Gut dokumentierter Code sorgt dafür, dass das System auch bei zukünftigen Wei-
terentwicklungen leicht verständlich bleibt.

Durch die Schaffung einer robusten und erweiterbaren Architektur wird das System zu-
kunftssicher gestaltet und bleibt in der Lage, flexibel auf neue Anforderungen zu reagie-
ren.

4.3 Von der Skizze zur Karte

Zur systematischen Transformation von Skizzen in detaillierte Landkarten wird eine
mehrstufige Verarbeitungspipeline implementiert, die folgende Schlüsselkomponenten um-
fasst:

1. Skizzenverarbeitung

30

4 Konzept

• Bresenham-Algorithmus: Gewährleistet ein natürliches Gefühl beim Zeich-
nen der Umrisse.

• DBSCAN-Clustering: Gruppiert die Pixel und stellt sicher, dass mehrere
Landmassen korrekt gezeichnet werden können.

• Delaunay-Triangulation: Dient als Grundlage für die Berechnung der Alpha
Shapes und der Voronoi-Diagramme.

• Alpha Shape: Schließt mögliche Lücken in den Umrissen und korrigiert Feh-
ler in der Skizze.

2. Regionsegmentierung

• Voronoi-Diagramm: Unterteilt die Landmasse basierend auf platzierten Icons
in Zellen.

3. Regiongenerierung

• Perlin Noise und Simplex Noise: Erzeugen organische Verteilungen für
Berge und Ozeane.

• Wave Function Collapse (WFC): Generiert strukturierte Wälder, die aus
einzelnen Bäumen bestehen.

4. Integration

• L-System: Erzeugt organische Flussstrukturen über die gesamte Karte hin-
weg.

• Filter: Harmonisieren die Übergänge und fügen Texturen hinzu.

Die einzelnen Phasen bauen aufeinander auf. Die Ausgabe eines Schrittes dient dabei als
Eingabe für den nächsten.

31

4 Konzept

Abbildung 4.1: Pipeline unterteilt in die Phasen Skizzenverarbeitung, Regionsegmentie-
rung, Regiongenerierung und Integration.

4.4 Methodisches Vorgehen

Die Entwicklung des Systems folgt einem agilen, iterativen und komponentenbasierten
Ansatz, bei dem zunächst grundlegende Funktionalitäten implementiert und dann schritt-
weise erweitert werden. Das Vorgehen gliedert sich in mehrere aufeinander aufbauende
Phasen.

Die erste Phase widmet sich der Entwicklung des grundlegenden Applikationsgerüsts mit
Fokus auf die Sketch-Eingabe. Es wird ein Framework geschaffen, das Basisinteraktionen
ermöglicht und eine robuste Routing-Struktur zwischen verschiedenen Anwendungszu-
ständen bereitstellt. Die zentrale Herausforderung besteht in der Implementierung einer
interaktiven Zeichenfläche, die präzise Benutzereingaben erfassen kann.

In der zweiten Phase liegt der Fokus auf der Analyse und Optimierung der Sketch-
Eingabe. Es werden Methoden entwickelt, die die Freihandzeichnung des Nutzers ana-
lysieren und in eine strukturierte Form überführen. Dies umfasst die Identifikation und
Bereinigung von Ungenauigkeiten sowie die Generierung geschlossener Polygone.

Die dritte Phase behandelt die Icon-basierte Segmentierung der Karte. Auf Basis des
generierten Polygons wird ein System entwickelt, das die Platzierung von Icons ermöglicht

32

4 Konzept

und diese zur Unterteilung der Fläche in distinkte Regionen nutzt. Die Entwicklung
effizienter Algorithmen zur räumlichen Analyse spielt hierbei eine zentrale Rolle.

Die vierte Phase konzentriert sich auf die prozedurale Generierung der verschiedenen
Landschaftstypen. Für jeden Landschaftstyp werden spezifische Generierungsstrategien
entwickelt, die charakteristische Merkmale der jeweiligen Landschaft erzeugen. Aufgrund
der modularen Struktur können diese unabhängig voneinander betrachtet werden.

In der abschließenden Phase geht es um die Zusammenführung der Informationen zu
einem Gesamtbild, sowie die Ergänzung kleiner Details. Besondere Aufmerksamkeit gilt
dabei der Entwicklung von Methoden für überzeugende Übergänge zwischen den ver-
schiedenen Landschaftstypen.

Die Phasen bauen logisch aufeinander auf, wobei jede Phase die Grundlage für die nach-
folgende bildet. Dadurch können grundlegende Funktionalitäten frühzeitig getestet und
schrittweise erweitert werden, während die Gesamtarchitektur des Systems konsistent
bleibt. Dies wird vor allem durch die erste Phase ermöglicht, da hier durch den Auf-
bau einer modularen Anwendungsstruktur mit klar definierten Verantwortlichkeiten die
Grundlage für erweiterbare und wartbare Komponenten geschaffen wird. Die gewählte
Architektur erlaubt es, neue Funktionalitäten schrittweise zu integrieren, ohne bestehen-
de Komponenten grundlegend überarbeiten zu müssen.

Die beschriebenen Phasen können im Kontext agiler Entwicklung als Epics betrachtet
werden, die sich in konkrete User Stories und Tasks untergliedern lassen. Dieser An-
satz ermöglicht eine flexible und iterative Entwicklung, bei der einzelne Funktionalitä-
ten schrittweise implementiert und verfeinert werden können. So kann beispielsweise die
Sketch-Eingabe zunächst mit grundlegenden Zeichenfunktionen umgesetzt und in spä-
teren Iterationen um Features wie Korrekturmöglichkeiten erweitert werden. Diese agile
Herangehensweise erlaubt es, frühzeitig Feedback zu einzelnen Komponenten einzuholen
und potenzielle Probleme rechtzeitig zu erkennen und zu beheben, während die überge-
ordnete Struktur der Entwicklungsphasen als Orientierungsrahmen bestehen bleibt.

33

5 Umsetzung

Die Umsetzung der sketch-basierten Generierung fiktionaler Landkarten erforderte einen
ganzheitlichen Ansatz, der theoretische Konzepte, softwaretechnische Lösungen und krea-
tive Algorithmen vereint. In den folgenden Abschnitten wird der Weg von der initialen
Idee bis zur funktionsfähigen Anwendung detailliert beschrieben. Der Fokus liegt dabei
auf den technologischen Entscheidungen, der Architektur des Systems und den spezifi-
schen Implementierungsstrategien, die entwickelt wurden, um aus einer einfachen Skizze
eine komplexe und lebendige Landkarte zu generieren.

5.1 Technologie

Die praktische Umsetzung basiert auf einem speziell zusammengestellten Technologie-
stack, der die zentralen Anforderungen an die prozedurale Generierung und die Verar-
beitung benutzerdefinierter Skizzen adressiert. Die verwendeten Technologien lassen sich
in Programmiersprachen, Bibliotheken und Werkzeuge gliedern:

Programmiersprache

Die wichtigste Entscheidung ist hierbei wahrscheinlich die Wahl der Programmiersprache,
da alle anderen genannten Technologien davon abhängig sind.

Java mit JDK 171 : Java dient als Kerntechnologie für die Implementierung der An-
wendung. Die Wahl fiel auf Java aufgrund seiner Plattformunabhängigkeit und seiner
umfangreichen Bibliotheken. Diese spielen insbesondere bei der Verarbeitung geometri-
scher Strukturen und bei rechenintensiven Algorithmen für die prozedurale Generierung
eine zentrale Rolle.

1Java, https://docs.oracle.com/en/java/javase/17/

34

5 Umsetzung

Frameworks und Bibliotheken

JavaFX2 : Für die Benutzerinteraktion und Visualisierung kommt JavaFX zum Ein-
satz. Es ermöglicht eine intuitive und interaktive Benutzeroberfläche, die für die Ein-
gabe und Bearbeitung von Skizzen optimiert ist. Darüber hinaus wird JavaFX genutzt,
um die generierten fiktionalen Landkarten in einer ansprechenden grafischen Darstellung
auszugeben. JavaFX erleichtert außerdem die Umsetzung eines Model-View-Controller-
Paradigmas durch Eigenschaften wie die Trennung von FXML-Dateien zur Gestaltung
der Benutzeroberfläche und die Verwendung von Java-Klassen für die Steuerung der
Views und Models.

Java Topology Suite (JTS)3 : Diese Bibliothek ist essenziell für die geometrische
Verarbeitung und Analyse der eingegebenen Skizzen. Sie stellt Funktionen zur Verfügung,
um komplexe Algorithmen wie Delaunay-Triangulationen, Voronoi-Diagramme oder die
Erkennung geometrischer Formen effizient zu implementieren. JTS ermöglicht es, aus den
skizzierten Eingaben präzise Regionen und Grenzen abzuleiten.

Auburn FastNoiseLite4 : Für die prozedurale Generierung wird Auburn FastNoiseLite
verwendet. Die Bibliothek bietet eine schnelle und vielseitige Implementierung von Noise-
Algorithmen wie Perlin oder Simplex Noise, die zur Generierung von realistisch wirkenden
Landschaftsmerkmalen wie Höhenkarten oder Gebirgszügen genutzt werden.

Allison Casey WaveFunctionCollapse5 : Diese Java-Adaption des WFC Algorithmus
wird genutzt, um strukturierte und kohärente Kartenbereiche aus vorgegebenen Mustern
zu generieren.

Apache Commons6 : Diese vielseitige Bibliothek unterstützt die Entwicklung durch
grundlegende Hilfsfunktionen, etwa für mathematische Operationen oder Datenverarbei-
tung.

2JavaFX, https://openjfx.io/
3Java Topology Suite (JTS), https://github.com/locationtech/jts
4Auburn FastNoiseLite, https://github.com/Auburn/FastNoiseLite
5Allison Casey WaveFunctionCollapse, https://github.com/allison-casey/wavefunctioncollapse
6Apache Commons, https://commons.apache.org/

35

5 Umsetzung

Werkzeuge

IntelliJ IDEA7 : Die Entwicklung der Anwendung erfolgt in IntelliJ IDEA, einer leis-
tungsstarken Entwicklungsumgebung, die speziell für große, komplexe Projekte geeignet
ist. Sie bietet Funktionen wie automatische Codeanalyse, Debugging-Tools und Codesu-
che, wodurch die Effizienz bei der Implementierung erheblich gesteigert wird.

Gradle8 : Gradle dient als Build-Tool und unterstützt die Automatisierung von Build-
Prozessen, die Verwaltung von Abhängigkeiten und die Integration der eingesetzten Bi-
bliotheken.

Git9 : Für die Versionskontrolle wird Git verwendet. Es ermöglicht die Nachverfolgung
von Änderungen während der Entwicklung und bietet Sicherheit bei der Arbeit an ver-
schiedenen Aspekten der Anwendung.

5.2 Systemarchitektur

Die Systemarchitektur bildet das Grundgerüst der Anwendung und definiert, wie die
einzelnen Komponenten miteinander interagieren und welche Entwurfsprinzipien bei der
Entwicklung verfolgt wurden. Ziel war es, eine modulare, erweiterbare und wartbare Soft-
warearchitektur zu schaffen, die die Anforderungen der sketch-basierten Generierung fik-
tionaler Landkarten effizient abbilden kann. Dabei orientierte sich die Architektur an be-
währten Entwurfsmustern, wie sie von Gamma et al. [9] beschrieben sind, und nutzt diese
zur Gestaltung einer flexiblen und skalierbaren Lösung. Die nachfolgenden Abschnitte er-
läutern die technischen und fachlichen Bausteine sowie zentrale Entwurfsmuster, die bei
der Implementierung zum Einsatz kamen.

5.2.1 Technische Bausteine

Die technische Architektur des Systems basiert auf einem modularen und flexiblen De-
sign, das auf den Prinzipien von Skalierbarkeit, Erweiterbarkeit und einer klaren Tren-
nung der Verantwortlichkeiten aufgebaut ist. Das System folgt einer modifizierten Model-

7IntelliJ IDEA, https://www.jetbrains.com/idea/
8Gradle, https://gradle.org/
9Git, https://git-scm.com/

36

5 Umsetzung

View-Controller-Architektur (MVC), um die Kernlogik, die Benutzeroberfläche und die
Steuerung der Anwendung klar voneinander zu trennen.

Die Anwendung gliedert sich in folgende technische Hauptkomponenten:

• Controller: Verarbeitet Benutzerinteraktionen und koordiniert die Daten zwischen
Model und View.

• View: Stellt die Benutzerschnittstelle dar und visualisiert die vom Controller ge-
lieferten Daten, während sie Benutzereingaben erfasst und an den Controller wei-
tergibt.

• Model: Repräsentiert die Daten und enthält nur simple Geschäftslogik. Daher kann
das Model auch als sogenanntes Data Transfer Object (DTO) betrachtet werden.

• Service: Kapselt komplexere Geschäftslogik, die auf Models angewendet wird.

• Util: Bietet eigenständige Hilfsfunktionen und Werkzeuge.

Diese klare Trennung gewährleistet, dass Änderungen oder Erweiterungen in einer Kom-
ponente minimale Auswirkungen auf andere Komponenten haben.

5.2.2 MVC-Architektur mit JavaFX

Das MVC-Architekturmuster der Anwendung wird durch das JavaFX-Framework un-
terstützt. Die Views werden durch FXML-Dateien definiert, die eine deklarative Be-
schreibung der Benutzeroberfläche ermöglichen. So definiert beispielsweise die Main-

View.fxml den Einstiegspunkt der Anwendung. Durch das Attribut fx:controller
werden die Views mit dem entsprechenden Controller verknüpft. Nach dem gleichen Prin-
zip lassen sich mit dem Attribut fx:id Objektvariablen oder Methoden mit bestimmten
grafischen Elementen verbinden.

Die Kommunikation zwischen View und Controller wird durch FXML-Annotationen un-
terstützt. Mit @FXML annotierte Felder und Methoden werden automatisch mit den ent-
sprechenden FXML-Elementen verbunden.

Der Startpunkt der Anwendung ist die MainApp-Klasse, die von der JavaFX-Application-
Klasse erbt. In der start()-Methode wird die erste View geladen und der grundlegende
Aufbau der Anwendung initialisiert.

37

5 Umsetzung

Die Navigation zwischen verschiedenen Views wird durch ein zentrales Routing-System
gesteuert. Der NavigationController fungiert dabei als Router und ermöglicht den
Wechsel zwischen den Views. Alle spezifischen Controller erben von einem Abstract-

Controller, wodurch sie Zugriff auf die Navigationsfunktionalität erhalten, indem ei-
ne Methode bereitgestellt wird, die den NavigationController für eine beliebige
Instanz setzt, die AbstractController implementiert.

Der NavigationController implementiert zwei Varianten der switchView()-Methode:

• Die erste Variante nimmt nur den Pfad der View entgegen, auf die gewechselt
werden soll.

• Die zweite Variante ermöglicht zusätzlich die Übergabe von Daten an die Ziel-View.

Der Navigationsprozess läuft dabei wie folgt ab:

1. Die neue View wird über den FXMLLoader geladen.

2. Der zugehörige Controller wird extrahiert.

3. Der NavigationController wird für den neuen Controller gesetzt, falls dieser
von AbstractController erbt.

4. Falls Daten übergeben wurden und der Controller das DataReceiver-Interface
implementiert, werden diese über die receiveData()-Methode weitergereicht.

5. Die neue Szene wird in der Stage gesetzt.

Die Pfade zu den Views sind zentral in der ViewRoutes-Klasse als Konstanten de-
finiert. Dies gewährleistet eine typsichere Navigation und vereinfacht die Wartung der
Routenpfade.

Die eigentliche Geschäftslogik ist in Service-Klassen ausgelagert, die von den Controllern
verwendet werden. Dies ermöglicht eine klare Trennung zwischen der UI-Logik und der
Datenverarbeitung.

Diese Architektur ermöglicht eine modulare Erweiterung der Anwendung. Neue Funktio-
nalitäten können durch das Hinzufügen von FXML-Views, zugehörigen Controllern und
entsprechenden Services implementiert werden, ohne bestehende Komponenten zu beein-
flussen. Die lose Kopplung zwischen den Komponenten wird durch das Routing-System
und die Service-Abstraktion gewährleistet.

38

5 Umsetzung

5.2.3 Fachliche Bausteine

Um die fachlichen Funktionalitäten der Anwendung klar voneinander abzugrenzen und
die Modularität des Systems zu fördern, wurden logische Einheiten definiert. Diese fach-
lichen Komponenten (im Folgenden vereinfacht als „Komponenten“ bezeichnet) bündeln
jeweils eine spezifische Funktionalität, bestehen aus Teilen mehrerer technischer Kom-
ponenten und arbeiten unabhängig von anderen Komponenten, wobei definierte Schnitt-
stellen zur Interaktion genutzt werden. Nachfolgend werden die Hauptkomponenten der
Anwendung und deren Zusammenspiel erläutert.

Skizzenerstellung

• Funktion: Dient der Erstellung und Bearbeitung des Skizzenmodells.

• Bestandteile: DrawView, DrawController, SketchService und SketchMo-
del.

• Interaktion: Nimmt eine Skizze vom Nutzer entgegen und liefert Daten für die
Regionorganisation.

Regionorganisation

• Funktion: Organisiert die Platzierung von Icons und teilt die Karte in Regionen
auf.

• Bestandteile: IconPlacementView, IconPlacementController, Region-
PartitioningService und CellModel / CellModelCollection.

• Interaktion: Nutzt die Ergebnisse der Skizzenerstellung und stellt strukturierte
Daten für die Kartengenerierung bereit.

Kartengenerierung

• Funktion: Generiert die finale Karte und stellt diese dar.

• Bestandteile: ResultView, ResultController, MapGenerationService
und GeneratedMapModel.

39

5 Umsetzung

• Interaktion: Nutzt Daten von der Regionorganisation.

Abbildung 5.1: Bausteinsicht zeigt die drei Hauptkomponenten und stellt das MVC-
Muster innerhalb jeder Komponente dar.

5.2.4 Modulare Strategieimplementierung

Das Strategie-Entwurfsmuster gehört zu den Verhaltensmustern und bietet die Möglich-
keit, Algorithmen zu kategorisieren, diese innerhalb einer Kategorie während der Laufzeit
auszutauschen und sie kontextunabhängig zu nutzen. In der Softwareentwicklung stellt

40

5 Umsetzung

dieses Muster eine elegante Lösung dar, um verschiedene Implementierungen eines Algo-
rithmus zu kapseln und sie dynamisch austauschbar zu machen.

Für dieses Projekt wird das Entwurfsmuster genutzt, um die Logik für die Generierung
einzelner Kartenregionen zu modularisieren. Die einzelnen Regionen, die jeweils mit ei-
nem Icon assoziiert werden, besitzen unterschiedliche Eigenschaften. Jede dieser Eigen-
schaften erfordert eine spezifische Logik zur Generierung der Karteninhalte, die flexibel
und erweiterbar sein muss.

Die Strategie-Schnittstelle MapCellGenerationStrategy definiert einen einheitli-
chen Vertrag für alle Generierungsstrategien.

Für jede Region wird eine separate Logik in den folgenden Klassen implementiert:

• MountainMapCellGenerator

• ForestMapCellGenerator

• VillageMapCellGenerator

• LakeMapCellGenerator

• OceanMapCellGenerator

Die konkreten Implementierungsdetails werden im Abschnitt „Generierung der Kartenele-
mente“ detailliert beschrieben. Der zentrale Generierungs-Service MapGenerationSer-
vice verwendet eine Zuordnung (strategyMap), um die passende Generierungsstrate-
gie für jedes Kartenelement dynamisch auszuwählen. Dies geschieht in der Hauptmethode
der Klasse generateMap().

Abbildung 5.2: Klassendiagramm, das die Implementierung des Strategie-Musters in der
Anwendung zeigt.

41

5 Umsetzung

Ablauf der Generierung

Die Methode durchläuft folgende Schritte:

1. Erstellung des finalen Modells: Das Modell, das später zur Ausgabe des Er-
gebnisses genutzt wird, wird instanziiert.

2. Strategiebasierte Generierung:

• Iteration über alle Regionen.

• Auswahl der passenden Generierungsstrategie.

• Aufruf der jeweiligen Generierungsmethode.

Vorteile des Ansatzes

Die Vorteile dieses Ansatzes für den Anwendungsfall sind:

• Erweiterbarkeit: Neue Landschaftstypen können einfach durch das Hinzufügen
einer neuen Strategie-Klasse und eines neuen Icons implementiert werden.

• Lose Kopplung: Der Generierungs-Service ist unabhängig von spezifischen Gene-
rierungsimplementierungen.

• Wartbarkeit: Jede Strategie kann separat entwickelt und getestet werden.

• Laufzeitflexibilität: Strategien können dynamisch ausgetauscht oder hinzugefügt
werden.

Alternativ wurde ebenfalls ein weiterer Ansatz implementiert, in dem die Generierung
selektiv für einzelne Symboltypen erfolgt. Dies geschieht über die überladene genera-
teMap(Icon icon)-Methode, die nur für ein bestimmtes Icon die entsprechende Ge-
nerierungsstrategie anwendet. Ein entscheidender Vorteil dieses Ansatzes besteht darin,
dass der Controller die Kartenelemente nun einzeln laden und direkt anzeigen kann. Da-
durch entsteht ein interaktiveres Erlebnis für den Nutzer, da sich die Karte schrittweise
aufbaut, anstatt erst nach vollständiger Generierung sichtbar zu werden. Der zentra-
le Nachteil dieses Ansatzes ist die erhöhte Kopplung zwischen Controller und Generie-
rungslogik. Der Controller muss nun aktiv steuern, welche Elemente wann generiert und
angezeigt werden, was die Architektur weniger flexibel macht.

42

5 Umsetzung

5.2.5 Datenfluss

Das MVC-Muster macht es leicht, Daten innerhalb der technischen Komponenten wei-
terzureichen. Ein Controller kann somit das zugrundeliegende Model einfach anpassen,
wodurch dieses wiederum die View verändert. Es wurde bewusst die Entscheidung ge-
troffen, nur triviale Logik in die Model-Klassen aufzunehmen und die Hauptlogik in die
Services auszulagern, damit ein Model als Transportmedium für Daten zwischen den
fachlichen Komponenten dienen kann, also als Data Transfer Object. Dies verhindert
eine unnötig enge Kopplung zwischen Komponenten.

Um Daten zwischen den fachlichen Komponenten zu übertragen, wird ein zusätzliches
Konzept eingeführt, das die Kommunikation innerhalb der verschiedenen Systemkompo-
nenten ermöglicht.

Beim Wechsel der Views ruft der zugehörige Controller, sofern er das Interface DataRe-
ceiver implementiert, automatisch die Methode receiveData() auf. Dies ermöglicht
eine saubere Trennung der Verantwortung zwischen der View und dem Controller, wäh-
rend gleichzeitig der Controller die Flexibilität behält, auf die übergebenen Daten zu
reagieren.

Das Vorgehen lässt sich folgendermaßen beschreiben:

1. View-Wechsel: Wenn der Benutzer eine Aktion ausführt, die den Wechsel der
aktuellen View auslöst, wird die neue View geladen. Diese View ist mit einem
Controller verknüpft, der als DataReceiver fungiert.

2. Datenübergabe: Sobald die neue View angezeigt wird, werden eventuell vorhan-
dene Daten an den Controller weitergereicht. Dies geschieht durch den Aufruf der
Methode receiveData().

3. Verarbeitung im Controller: Der Controller, der das DataReceiver-Interface
implementiert, empfängt die übergebenen Daten und kann sie gemäß den spezifi-
schen Anforderungen der Anwendung verarbeiten. Dies könnte die Aktualisierung
von Zuständen, das Füllen von Modellen oder das Auslösen weiterer logischer Pro-
zesse innerhalb der Anwendung umfassen.

Diese Implementierung fördert die Entkopplung zwischen View und Controller, da der
Controller lediglich das Interface DataReceiver implementiert und nicht direkt von

43

5 Umsetzung

Abbildung 5.3: Sequenzdiagramm, das den beschriebenen Datenfluss veranschaulicht

der View abhängig ist. Die Verantwortung für die Datenverarbeitung liegt klar beim
Controller und nicht bei der View.

5.3 Vorverarbeitung

Erstellung der Skizze

Die Erstellung der Skizze bildet den ersten interaktiven Schritt in der Generierungslo-
gik. Entsprechend den Anforderungen wurde eine Lösung entwickelt, die eine intuitive
und flexible Zeicheneingabe ermöglicht und gleichzeitig die Komplexität ungenauer oder
skizzenhafter Eingaben bewältigt.

Die Sketch-Eingabe wurde als Canvas-Oberfläche implementiert, die dem Nutzer zwei
primäre Interaktionsmöglichkeiten bietet: Zeichnen und Radieren.

Der SketchService kümmert sich um die Verarbeitung der Skizze, indem er während
der Eingabe die gezeichneten Pixel speichert und verwaltet. Dafür interpoliert der Service
die Mauspositionen, die er vom Controller erhält, indem er den Bresenham-Algorithmus
anwendet. Dieses Vorgehen gewährleistet ein flüssiges Verhalten beim Zeichnen.

Das SketchModel repräsentiert die interne Datenstruktur der Skizze. Es speichert ge-
setzte Pixel als ClusterableCoordinate in einer Menge. Die Utility-Klasse Clus-
terableCoordinate erbt von einer Koordinatenrepräsentation aus der Java Topology
Suite und implementiert das Clusterable-Interface aus Apache Commons.

44

5 Umsetzung

Wenn der Nutzer mit der Eingabe fertig ist, kann er über die Oberfläche die Verarbeitung
der Skizze anstoßen. Dies führt zu folgenden Berechnungen in der Service-Klasse:

1. Clustering: Gruppierung zusammenhängender Pixelcluster mit dem DBSCAN-
Algorithmus.

2. Berechnung der Alpha Shape: Approximation des gezeichneten Umrisses für
jedes identifizierte Cluster und gleichzeitige Schließung.

Das erzeugte SketchModel wird daraufhin vom aktuellen Controller an den Controller
der nächsten View weitergereicht

Segmentierung der Regionen

Ausgehend von der verarbeiteten Skizze wird ein Verfahren benötigt, das die Landkarte
in sinnvolle, zusammenhängende Bereiche unterteilt.

Die Segmentierung basiert auf dem SketchModel und den Icons, die vom Nutzer be-
liebig platziert werden können.

Der RegionPartitioningService erhält beim Platzieren eines Icons die Koordina-
ten und das jeweilige Icon vom Controller übergeben und speichert diese.

Nach einer Platzierung wird der Hauptprozess angestoßen:

1. Voronoi-Diagramm-Generierung: Auf Grundlage der Icon-Positionen wird zu-
nächst ein Voronoi-Diagramm generiert. Dies erfolgt unter Verwendung einer Delaunay-
Triangulation. Anschließend erfolgt das Beschneiden der Zellen anhand des gezeich-
neten und verarbeiteten Umrisses der Skizze.

2. CellModel-Erstellung: Assoziierung einer Zelle mit einem Icon, wobei der ge-
samte Bereich, der nicht zu einer geschlossenen Fläche der Skizze gehört, dem
Ozean-Icon zugeordnet wird.

3. Hinzufügen zur CellModelCollection: Die einzelnen CellModel werden einer
Collection-Klasse hinzugefügt, wobei angrenzende Zellen mit gleichen Icons zusam-
mengefasst werden.

45

5 Umsetzung

Die entstehende CellModelCollection, die eine Sammlung an CellModel reprä-
sentiert, wird dem Controller der nächsten View übergeben. Ein CellModel besteht aus
einem Polygon, einer Farbe für die Visualisierung dieses Zwischenschrittes, einem Icon
und der Koordinate des geometrischen Schwerpunkts.

5.4 Generierung der Kartenelemente

Die Implementierungen der MapCellGenerationStrategy erhalten über den Map-

GenerationService jeweils ein CellModel, das die zu generierende Region reprä-
sentiert, sowie ein GeneratedMapModel. Letzteres dient als übergreifendes Model, in
dem alle generierten Kartenelemente zusammengeführt werden, um das finale Karten-
bild zu erstellen. Das GeneratedMapModel besteht hauptsächlich aus einem JavaFX
WritableImage, das als zentrale Datenstruktur für die kumulierte Kartengenerierung
dient. Es speichert sämtliche erzeugten Pixelwerte und Assets, die durch die verschie-
denen Strategien der MapCellGenerationStrategy hinzugefügt werden, und bringt
die generierten Inhalte somit zurück auf die Pixelebene. Dabei funktioniert es ähnlich
wie ein Array, das Farbwerte für jede Pixelposition speichert, ist jedoch durch die bereit-
gestellten Methoden leichter zu handhaben.

5.4.1 Gebirge

Die Generierung von Gebirgsregionen erfolgt unter Verwendung der MountainMap-

CellGenerator-Klasse. Diese Implementierung nutzt ein Perlin Noise Verfahren zur
Platzierung von Berg-Assets innerhalb der definierten Zellen. Hierfür durchläuft die Im-
plementierung folgende Schritte:

• Initialisierung der Parameter: Faktoren wie die Berggröße, die Rauschschwelle
und der minimale Abstand zwischen den Bergen werden definiert.

• Noise-Generator konfigurieren: Mit der FastNoiseLite-Bibliothek wird ein
Perlin Noise Algorithmus genutzt, um natürliche Höhenstrukturen für die Gebirge
zu simulieren.

• Noise-basierte Bergplatzierung: Basierend auf den Noise-Werten und dem Schwell-
wert werden Berge nur an geeigneten Stellen platziert, wobei ein Mindestabstand
zu bereits gesetzten Bergen eingehalten wird.

46

5 Umsetzung

• Visualisierung der Berge: Je nach berechnetem Noise-Wert wird die Berggröße
dynamisch angepasst, um eine realistische Darstellung zu erzielen. Zufällige Spie-
gelungen und Rotationen erhöhen dabei die optische Variation.

5.4.2 Ozean

Die Generierung der Ozeanregion erfolgt durch die OceanMapCellGenerator-Klasse,
die einen Simplex Noise Algorithmus nutzt, um organische Tiefenverläufe und sanfte
Übergänge zwischen flachen Regionen und tiefem Ozean zu erzeugen. Dabei wird ein ab-
gestufter Farbverlauf verwendet, um die verschiedenen Wassertiefen visuell darzustellen.
Die Implementierung folgt diesen Schritten:

• Initialisierung des Noise-Generators: Mit der FastNoiseLite-Bibliothek
wird dieses Mal ein Simplex Noise Algorithmus genutzt.

• Sanfte Übergänge zu Landmassen: Ein Distanzfaktor von allen Punkten zur
Zellgrenze wird berechnet, um weiche Übergänge zwischen Wasser- und Landbe-
reichen zu schaffen. Dieser Faktor wird mit dem berechneten Noise-Wert kombi-
niert, um den finalen Höhenwert zu beeinflussen. Dadurch entstehen an den Rän-
dern flachere Küstenregionen, die durch die Kombination von Distanz und Noise-
Interpolation erzielt werden.

• Farbzuweisung anhand der Höhe: Der finale Höhenwert wird in eine passende
Farbe umgewandelt. Durch Interpolation zwischen verschiedenen Blautönen ent-
steht ein natürlicher Farbverlauf.

5.4.3 Seen

Die Generierung der Seen erfolgt durch die LakeMapCellGenerator-Klasse, die eine
organische Form für den See innerhalb der gegebenen Zellen erzeugt. Dies geschieht durch
die Verwendung einer Kombination aus geometrischen Berechnungen und stochastischen
Methoden, um den natürlichen Verlauf eines Sees zu simulieren. Die Implementierung
folgt dabei den folgenden Schritten:

• Maximalen Radius berechnen: Der maximal erlaubte Radius des Sees wird
berechnet, indem der Abstand vom Zentrum der Zelle zu der nächsten Kante des

47

5 Umsetzung

Polygons ermittelt wird. Dies hilft dabei, die Größe an die Zellform anzupassen und
sicherzustellen, dass der See innerhalb der Zelle bleibt.

• Organische Form erzeugen: Eine organische Seeform wird generiert, die eine
unregelmäßige und natürliche Kontur aufweist. Der See erhält eine variable Form,
die durch eine zufällige Variation des Radius an jedem Punkt entlang des Randes
des Sees erzeugt wird.

• Rendering des Sees: Die Farbe jedes Pixels wird basierend auf seiner Entfernung
zum Zentrum des Sees und zum Rand des Sees berechnet. Diese Entfernung wird
verwendet, um einen sanften Farbverlauf zwischen tiefem Wasser und Wasserober-
fläche zu erzeugen.

5.4.4 Wälder

Die Generierung von Waldregionen erfolgt mithilfe der ForestMapCellGenerator-
Klasse, die durch den Einsatz des Wave Function Collapse Algorithmus eine realistische
und organische Verteilung von Baumtexturen innerhalb der definierten Zellen realisiert.
Dabei kommen sowohl deterministische als auch stochastische Elemente zum Einsatz, um
eine natürliche Optik zu gewährleisten. Die Implementierung folgt dabei den folgenden
Schritten:

• Initialisierung des Input-Tile-Assets: Zu Beginn wird ein vorgefertigtes Asset
geladen, welches als Grundlage für das spätere Texturmuster dient.

• Konfiguration des WFC-Models: Mit Hilfe der OverlappingModel-Klasse
aus der WFC-Bibliothek von Allison Casey wird aus dem Input-Asset ein Textur-
muster generiert. Dabei spielt die Parametrisierung eine entscheidende Rolle, damit
es nicht zu Fehlern kommt.

• Texturierung der Zellregion: Wurde die Methode des WFC-Models erfolgreich
ausgeführt, wird das daraus resultierende Muster in ein TexturePaint-Objekt
überführt, um dann die gesamte Fläche der Zellregion kachelartig zu texturieren.
Die Textur wird hier also aus Performancegründen gegebenenfalls mehrfach ver-
wendet, anstatt direkt ein größeres Ausgabebild mit dem WFC-Algorithmus zu
generieren.

48

5 Umsetzung

Abbildung 5.4: Eingabebild für den WFC-Algorithmus mit einem 3x3-Raster zur besse-
ren Erkennbarkeit der Struktur

• Weichzeichnen des Randes: Bevor die Pixel dem GeneratedMapModel hin-
zugefügt werden, wird zunächst die Entfernung dieses Pixels zur Zellgrenze berech-
net. Anhand dieser Distanz wird ein weicher Übergang zwischen der intensiveren
Waldtextur im Zellinneren und angrenzenden Regionen erzeugt. Hierbei wird ein
Noise-Faktor hinzugefügt, der für eine dynamische Variation und ein natürlicheres
Erscheinungsbild sorgt.

5.4.5 Dörfer

Die Generierung der Dorfregionen erfolgt durch die Implementierung der VillageMap-
CellGenerator-Klasse. Hier werden Straßennetze als infrastrukturelles Rückgrat sowie
Markierungspunkte mit zufällig generierten Dorfnamen integriert. Der Algorithmus folgt
dabei diesen Schritten:

• Erzeugung eines Straßennetzwerks: Um die strukturelle Grundlage der Dörfer
zu bilden, wird ein Straßennetzwerk in Abhängigkeit von der Größe des Polygons
generiert. Hierbei kommen mehrere Teilschritte zum Einsatz:

– Seed-Punkt-Generierung: Eine Anzahl an Seed-Punkten wird relativ zur
Fläche des Polygons ermittelt. Diese Seed-Punkte, die zufällig innerhalb des

49

5 Umsetzung

Polygons platziert werden, fungieren als Knotenpunkte, die später als Anker
für das Straßennetz dienen.

– Berechnung des minimalen Spannbaums (MST): Mithilfe von Prim’s
Algorithmus wird aus den generierten Seed-Punkten ein MST berechnet. Die-
ser stellt die effizienteste Verbindung zwischen den Punkten dar und bildet
somit ein organisch wirkendes Straßennetz [16].

– Zeichnen der Straßen: Die ermittelten Liniensegmente werden pixelweise
auf das Model übertragen. Dabei sorgt eine teilweise randomisierte Zeichen-
technik dafür, dass die Straßen nicht nur als dünne Linien, sondern mit aus-
gefransten Kanten und variabler Breite dargestellt werden.

• Platzierung von Markierungspunkten und Dorfnamen: Die Knotenpunkte
werden als Standorte für Dörfer genutzt und durch leicht versetzte Markierungs-
punkte visualisiert. Um genug Abstand zwischen den Namen zu gewährleisten, wird
geprüft, ob bereits ein Namensschild in der Nähe platziert wurde, bevor ein neuer
Name hinzugefügt wird.

• Zufällige Namensgenerierung: Zur Beschriftung der Dörfer wird ein Name gene-
riert, der durch die zufällige Kombination von Präfixen, Wortstämmen und Suffixen
entsteht.

5.4.6 Details

Neben den bereits beschriebenen Implementierungen der MapCellGenerationStrat-
egy umfasst die Kartengenerierung weitere Verarbeitungsschritte, die nicht direkt in den
einzelnen Strategien enthalten sind. Der Schwerpunkt dieser zusätzlichen Details liegt in
der Nutzung eines stochastischen L-Systems zur prozeduralen Flussgenerierung sowie in
der nachgelagerten Bildverarbeitung, welche die finale Ästhetik der Karte beeinflusst.

Nach der initialen Generierung der Zellinhalte wird über den übergeordneten MapGe-

nerationService die Landschaft um Flüsse ergänzt. Hierbei wird ein stochastisches
L-System verwendet, um organisch wirkende Flussmuster zu erzeugen. Folgende Schritte
charakterisieren diesen Prozess:

• Definition der Regeln: Für das L-System werden Produktionsregeln mit Gewich-
tungen definiert, die den Ausbau und die Verzweigung des Flussverlaufs bestimmen.

50

5 Umsetzung

Für die einzelnen Symbole werden mehrere mögliche Produktionen hinterlegt, aus
denen anhand eines Zufallsmechanismus und der jeweiligen Gewichtung jeweils ei-
ne Regel ausgewählt wird. Dadurch entsteht bei jedem Durchlauf eine individuelle
und variantenreiche Flussgeometrie.

• Generierung des Strings: Ausgehend von einem Axiom wird über eine festge-
legte Anzahl von Iterationen ein String generiert, der die Anweisungen für den
Flussverlauf enthält.

• Rendering: Der generierte String wird durch die RiverTurtleRenderer Klas-
se interpretiert. Dieser bewegt sich von einem zufälligen Startpunkt am Rand in
Richtung Mitte der Karte, wobei er folgende Besonderheiten aufweist:

– Die Breite des Flusses wird dynamisch angepasst. Mit zunehmender Entfer-
nung vom Ursprung reduziert sich die Linienbreite, was einen natürlichen Ef-
fekt erzeugt und dem Flussverlauf eine realistische Variation verleiht.

– Zusätzlich werden Kollisionsprüfungen durchgeführt, um zu verhindern, dass
der Fluss in als Gebirge markierte Bereiche verläuft.

– Für jeden Pixel, der im Rahmen des Renderings gesetzt wird, wird die Distanz
zur Küstenlinie ermittelt. Diese Distanz dient als Basis für eine interpolierte
Farbzuweisung, wodurch ein sanfter Übergang von flachem zu tiefem Wasser
entlang der Flussränder erreicht wird. Außerdem wird beim Setzen der Pixel
verhindert, dass innerhalb eines Sees gezeichnet wird.

Nachdem alle Landschaftselemente in das GeneratedMapModel integriert wurden, er-
folgt eine abschließende Nachbearbeitung des Kartenbildes:

• Rauschfilterung: Ein gezielt eingesetzter Noise-Filter fügt dem finalen Bild einen
subtilen Rauschanteil hinzu. Dies dient dazu, dem Kartenbild eine texturierte Optik
zu verleihen und eventuelle Artefakte der prozeduralen Generierung zu kaschieren.

• Farb- und Textureffekte: Dem Bild werden Farbnuancen wie ein leichter Gelb-
stich, Entsättigung und Aufhellung hinzugefügt, um das Bild optisch zu harmonisie-
ren. Zusätzlich wird eine Pergament-Textur mit dem eigentlichen Bild verblendet.

• Vignettierung: Ein Vignette-Effekt sorgt an den Rändern für einen dunkleren
Übergang. Dieser Effekt verstärkt den Fokus auf die zentralen Kartenelemente.

51

6 Evaluation

In diesem Kapitel wird die Evaluation des entwickelten Systems dargestellt. Ziel der
Evaluation ist es, sowohl die Qualität und Performance des Systems, als auch den an-
gewendeten Entwicklungsprozess kritisch zu überprüfen. Dabei werden die im Konzept
definierten funktionalen und nicht-funktionalen Anforderungen als Bezugsrahmen heran-
gezogen.

Diese duale Betrachtungsweise – die Bewertung sowohl des finalen Systems als auch
des Entwicklungsprozesses – ermöglicht eine ganzheitliche Beurteilung des Projekts und
liefert wichtige Erkenntnisse für zukünftige Arbeiten in diesem Bereich. Insbesondere wird
dabei überprüft, ob sich eine strategische Kombination algorithmisch unterschiedlicher
Verfahren so gestalten lässt, dass trotz ihrer strukturellen Divergenz eine visuell kohärente
und intuitiv steuerbare sketch-basierte Generierung fiktionaler Landkarten ermöglicht
wird.

6.1 Methodik

Die Evaluierung des Entwicklungsprozesses basiert auf einem agilen, iterativen und kom-
ponentenbasierten Vorgehen. Ziel war es, durch klar abgegrenzte Module und definierte
Epics frühzeitig funktionsfähige Systemteile bereitzustellen, die unabhängig voneinander
getestet werden konnten. Im Folgenden wird der Vergleich zwischen geplanter Methodik
und praktischer Umsetzung dargestellt.

Umsetzung der Entwicklungsphasen und Modularität

Die geplanten Phasen – vom Aufbau eines responsiven Applikationsgerüsts mit Sketch-
Eingabe über die Optimierung und icon-basierte Segmentierung bis hin zur prozeduralen
Generierung von Landschaftstypen und deren Integration – wurden nahezu vollständig

52

6 Evaluation

und ohne wesentliche Abweichungen realisiert. Die von Anfang an festgelegten modularen
Grenzen ermöglichten es, Änderungen gezielt auf einzelne Komponenten zu beschränken.
Dadurch konnten die fachlichen Komponenten unabhängig voneinander entwickelt und
direkt getestet werden.

Architektur und Flexibilität

Die modulare Architektur mit klar definierten Controllern, Services und Models wur-
de erfolgreich umgesetzt. Dank des gewählten Technologiestacks entstand ein stabiles
Grundgerüst, das insbesondere in der Kartengenerierung durch den Einsatz des Strategie-
Musters flexible Erweiterungen der Landschaftsalgorithmen ermöglichte. Zwar waren
Bereiche wie die Skizzenerstellung und Regionenorganisation weniger flexibel, dennoch
konnten spätere Erweiterungen – beispielsweise die Zusammenführung benachbarter Voronoi-
Polygone – ohne größere Umstrukturierungen integriert werden, was sich positiv auf die
visuelle Darstellung auswirkte.

Kontinuierliches Feedback und Testbarkeit

Um die Qualität der Implementierung zu sichern, wurde ein strukturiertes Testkonzept
entwickelt, das auf der modularen Architektur des Systems aufbaut und einen komponen-
tenorientierten Testansatz verfolgt. Die Tests wurden in drei Hauptebenen organisiert:

Komponententests: Jede Komponente wurde isoliert getestet, um ihre korrekte Funk-
tionalität unabhängig von anderen Systemteilen zu validieren:

• Skizzenerstellung: Für diese Komponente wurde ein spezieller Visualisierungs-
modus implementiert, der die Ergebnisse der Algorithmen zur Umrisserkennung
und Formenkorrektur unmittelbar nach dem Zeichenvorgang darstellt. Dies ermög-
lichte eine direkte visuelle Validierung des Algorithmus und eine zeitnahe Anpas-
sung der Parameter zur Optimierung der Genauigkeit.

• Regionenorganisation: Um diese Komponente unabhängig zu testen, wurden
vordefinierte Skizzen als Eingabe verwendet, womit der Einstiegspunkt direkt auf
die Regionenorganisation gesetzt werden konnte. Ein implementierter Visualisie-
rungsmodus stellte die erzeugten Voronoi-Zellen mit farblicher Differenzierung dar,

53

6 Evaluation

was eine effiziente Überprüfung der korrekten Zellenbildung ermöglichte. Diese Vi-
sualisierung erwies sich als so wertvoll, dass sie größtenteils in die finale Implemen-
tierung übernommen wurde.

• Kartengenerierung: Dank des eingesetzten Strategie-Musters konnten die einzel-
nen Landschaftsalgorithmen isoliert getestet werden, ohne Seiteneffekte auf andere
Systemteile befürchten zu müssen.

Integrationstest: Nach der erfolgreichen Validierung der Einzelkomponenten wurden
Integrationstests durchgeführt, um das Zusammenspiel der Komponenten zu überprüfen.
Hierbei lag der Fokus besonders auf den Schnittstellen:

• Skizze zu Polygon: Tests zur Validierung der korrekten Umwandlung von Skizzen
in geometrische Strukturen.

• Regionen zu Landschaft: Tests zur Sicherstellung der korrekten Anwendung der
Landschaftsalgorithmen auf die entsprechenden Regionen mit besonderer Beach-
tung der Übergangsbereiche.

Systemtests: Abschließend wurden Systemtests durchgeführt, die den gesamten Ablauf
von der Skizzeneingabe bis zur fertigen Karte umfassten. Dabei wurden verschiedene
Komplexitätsgrade getestet:

• Einfache Karten: Test mit wenigen, klar abgegrenzten Regionen.

• Komplexe Karten: Test mit vielen, teilweise kleinen Regionen und unterschied-
lichen Landschaftstypen.

• Grenzfälle: Gezieltes Testen von Extremsituationen, wie sehr detaillierte Umrisse
oder besonders hohe Regionendichte.

Der iterative Entwicklungsansatz ermöglichte es, nach jedem Testzyklus unmittelbare
Anpassungen vorzunehmen und die Ergebnisse in den nächsten Zyklus einfließen zu las-
sen. Für zukünftige Weiterentwicklungen wurde ein spezieller Testmodus als sinnvolle
Erweiterung identifiziert, der den direkten Zugriff auf relevante Systemteile ermöglichen
und so aufwändige Berechnungen für Testzwecke umgehen würde.

54

6 Evaluation

Fazit

Der agile, iterative und komponentenbasierte Ansatz hat nicht nur die Umsetzung der
geplanten Entwicklungsphasen erleichtert, sondern auch eine flexible und robuste Archi-
tektur geschaffen, die Erweiterungen und Anpassungen ermöglicht. Die klare Modularisie-
rung und frühe Testbarkeit der Komponenten haben den gesamten Entwicklungsprozess
entscheidend positiv beeinflusst.

6.2 Qualitative und Ästhetische Bewertung

Umriss

Die Abbildung 6.1 zeigt, dass der entwickelte Algorithmus auch detaillierte Formen abbil-
den kann. Allerdings bleibt die ursprüngliche Form nicht vollständig erhalten. An einigen
scharfen Kanten der Zeichnung sind Glättungen erkennbar, die für diesen Anwendungsfall
jedoch noch im akzeptablen Rahmen liegen.

Abbildung 6.2 verdeutlicht, dass ungenaue Formen korrigiert werden können. Sind die
Lücken jedoch zu groß, führt dies zu Fehlverhalten des Algorithmus, wie in Abbildung
6.3 zu sehen ist. Das negative Beispiel lässt sich auf die Parametrisierung sowie das
Zusammenspiel von Formerkennung und Clustering zurückführen.

In Abbildung 6.4 ist zu erkennen, dass der Clustering-Algorithmus zuverlässig arbeitet
und auch nah beieinanderliegende Umrisse individuell behandelt. Dennoch gibt es eine
zentrale Herausforderung:

• Schwierige Parametrisierung des DBSCAN-Algorithmus: Eine der größten
Herausforderungen ist die Wahl der Parameter für den DBSCAN-Algorithmus. Ein
zu kleiner ϵ-Wert führt dazu, dass zusammengehörige Strukturen fälschlicherwei-
se nicht verbunden werden, während ein zu großer Wert zu einer unerwünschten
Zusammenfassung verschiedener Umrisse führen kann.

Eine adaptive oder heuristisch gesteuerte Parametrisierung könnte helfen, die Qualität
der Umrisse weiter zu verbessern und die Robustheit des Algorithmus zu erhöhen.

55

6 Evaluation

Polygon

Polygone werden mit hoher Genauigkeit generiert und nähern sich dem ursprünglichen
Umriss gut an. Allerdings sind in Abbildung 6.5 einige Artefakte sichtbar, die darauf
hinweisen, dass das Polygon den Umriss nicht perfekt abbilden kann.

Ozean

Die Darstellung des Ozeans in Abbildung 6.6 zeigt zwar ein realistisches Wechselspiel
zwischen tiefem und flachem Wasser, weist jedoch einige Schwächen auf:

• Geringe Varianz: Die erzeugte Struktur des Ozeans zeigt nur eine begrenzte Va-
riation in Tiefe und Farbgebung. Dies führt zu einer eher monotonen Darstellung,
die nicht die Vielfalt realer Meereslandschaften widerspiegelt. Eine gezielte Anpas-
sung der Parameter könnte hier für mehr visuelle Abwechslung sorgen.

• Verlust von Details durch Filter: Die durch Noise Verfahren erzeugten Muster
gehen insbesondere nach der Anwendung von Filtern teilweise verloren. Dies kann
dazu führen, dass feinere Strukturen, die zur realistischen Darstellung beitragen,
nicht mehr deutlich sichtbar sind. Eine Verbesserung könnte durch eine kontrast-
reichere Farbgestaltung oder eine gezielte Anpassung der Schwellenwerte erfolgen.

• Fehlende kleinere Details: Der Ozean wirkt aktuell eher statisch, da kleinere
Merkmale wie Wellen oder subtile Oberflächenstrukturen fehlen. Die Integration
solcher Details könnte die visuelle Qualität weiter verbessern und die Karte leben-
diger erscheinen lassen.

Zusammenfassend bietet die aktuelle Ozean-Darstellung eine solide Grundlage, profitiert
jedoch von gezielter Nachbearbeitung und einer feineren Abstimmung der Parameter, um
sowohl Varianz als auch Detailgrad zu erhöhen.

Gebirge

Die Gebirge in Abbildung 6.7 erinnern stilistisch an handgezeichnete Karten und weisen
durch Verteilung, Größe und Rotation organische Variationen auf. Dank der speziellen
Eigenschaften von Perlin Noise wirkt die Verteilung nicht zu zufällig. Allerdings gibt es
einige Einschränkungen:

56

6 Evaluation

• Begrenzte Variation durch einzelnes Asset: Da nur ein einziges Asset für
die Gebirgsdarstellung verwendet wurde, fällt die visuelle Vielfalt eingeschränkt
aus. Mehrere unterschiedliche Bergformen oder Variationen desselben Grunddesigns
könnten hier für eine abwechslungsreichere und natürlichere Darstellung sorgen.

• Parametrisierungsproblem bei kleinen Zellen: Aktuell ist die Parametrisie-
rung der Bergplatzierung teilweise linear von der Größe der jeweiligen Zelle abhän-
gig. Dies führt dazu, dass in sehr kleinen Zellen kaum Berge generiert werden. Eine
alternative Skalierungsstrategie oder eine nicht-lineare Abhängigkeit könnte helfen,
auch bei kleineren Zellen eine angemessene Bergverteilung zu gewährleisten.

Während die aktuelle Gebirgsdarstellung bereits eine ansprechende, handgezeichnete Äs-
thetik aufweist, könnte eine überarbeitete Parametrisierung sowie eine größere Asset-
Vielfalt die visuelle Qualität weiter steigern.

Seen

Seen variieren in Größe und Form. Wie in Abbildung 6.8 zu sehen ist, sind organische
Übergänge zur Seemitte und zum Seerand sichtbar. Es gibt jedoch einige Schwächen in
der aktuellen Umsetzung:

• Geringe Formvariation: Die Seen zeigen eine relativ einheitliche und kreisförmige
Struktur, wodurch die visuelle Vielfalt eingeschränkt ist. Eine größere Variation in
der Formgebung könnte die Natürlichkeit der Gewässer erhöhen.

• Unzureichende Anpassung an Zellgeometrie: Der Algorithmus zur Seegene-
rierung berücksichtigt derzeit nicht ausreichend die Form der umgebenden Zelle. Bei
länglichen Zellen wird der See nicht entsprechend gestreckt, sondern begrenzt sei-
nen Radius auf die Entfernung vom Mittelpunkt zum nächsten Zellrand. Dies kann
dazu führen, dass große Zellen dennoch nur kleine Seen enthalten, was inkonsistent
wirken kann. Eine Anpassung der Generierungslogik, die stärker die Zellgeometrie
einbezieht, könnte hier für eine natürlichere Platzierung sorgen.

Zusammenfassend bietet die aktuelle Seengenerierung zwar eine solide Basis, würde aber
von einer verbesserten Formvielfalt und einer stärkeren Anpassung an die Zellstruktur
profitieren.

57

6 Evaluation

Wälder

Die Wälder weisen eine hohe Variation und eine natürliche Verteilung der Bäume auf, wie
in Abbildung 6.9 ersichtlich ist. Dennoch gibt es einige Aspekte, die verbessert werden
könnten:

• Pixelartige Darstellung der Bäume: Aufgrund der Arbeitsweise des WFC Al-
gorithmus wirken die einzelnen Bäume etwas pixeliger im Vergleich zu anderen
Landschaftsdetails. Dies kann zu einem Stilbruch innerhalb der Karte führen. Eine
Nachbearbeitung oder Glättung der Baumdarstellung könnte helfen, diesen Effekt
abzuschwächen.

• Wiederholungsmuster bei großen Waldflächen: Um die Performance zu opti-
mieren, wird der generierte Wald-Output wiederverwendet. Dies kann jedoch dazu
führen, dass bei sehr großen Baumzellen sichtbare Wiederholungsmuster entste-
hen. Eine mögliche Lösung wäre eine adaptive Variation innerhalb des wiederholten
Musters, um die erkennbaren Muster zu reduzieren.

Insgesamt bietet die aktuelle Waldgenerierung eine überzeugende visuelle Vielfalt, könnte
jedoch durch eine verfeinerte Darstellung der Bäume und eine gezieltere Vermeidung von
Wiederholungsmustern weiter verbessert werden.

Dörfer

Abbildung 6.10 zeigt Dörfer sowie deren Verbindungen, die den Eindruck einer pragma-
tisch gezeichneten Landkarte vermitteln. Dennoch gibt es einige Verbesserungsmöglich-
keiten:

• Probleme bei kleinen oder ungewöhnlich geformten Zellen: In sehr kleinen
oder ungewöhnlich geformten Zellen kann es vorkommen, dass eine Zelle nur aus
einem einzelnen Punkt besteht. Dies wirkt unausgewogen und könnte durch eine
überarbeitete Parametrisierung verbessert werden, ähnlich wie bei der Gebirgsge-
nerierung.

• Optimierung der Punktverteilung: Die Platzierung der Dörfer erfolgt derzeit
zufällig, was zu unregelmäßigen oder unharmonischen Anordnungen führen kann.
Eine alternative Methode wie die Verwendung von "Blue-Noise"– ähnlich wie es

58

6 Evaluation

Mapgen4 für die Berggenerierung nutzt – könnte hier eine gleichmäßigere und
gleichzeitig natürliche Verteilung ermöglichen.

• Fehlende Details für eine lebendigere Darstellung: Aktuell bestehen die
Dörfer nur aus grundlegenden Strukturen, ohne weitere visuelle Details. Zusätzliche
Elemente wie Häuser, Türme oder andere charakteristische Gebäude könnten dazu
beitragen, die Karte lebendiger und atmosphärischer wirken zu lassen.

Zusammenfassend bieten die Dörfer eine funktionale und stilistisch passende Darstellung,
profitieren jedoch von einer optimierten Parametrisierung, einer verbesserten Punktver-
teilung und einer höheren Detailtiefe.

Flüsse

Die Flüsse in Abbildung 6.11 wirken zwar zufällig, fügen sich jedoch organisch in die
Landschaft ein und zeigen Strukturen, wie man sie aus der Natur kennt. Dennoch gibt
es einige Verbesserungsmöglichkeiten:

• Unnatürliche Anhäufung von Flussquellen: Da die Verteilung der Flussquel-
len aktuell zufällig erfolgt, kann es gelegentlich zu unnatürlich wirkenden Anhäu-
fungen kommen. Dies kann dazu führen, dass mehrere Flüsse sehr nah beieinander
entspringen. Eine Verbesserung wäre die Nutzung von Heuristiken zur Platzierung
der Quellen, beispielsweise basierend auf Höhenkarten oder Niederschlagsmodellen,
um eine natürlichere Verteilung zu erreichen.

• Keine Nutzerkontrolle über die Flussgenerierung: Der Nutzer hat aktuell
keine Möglichkeit, Einfluss auf die Flussgenerierung zu nehmen. Eine anpassbare
Parametrisierung, etwa zur Steuerung der Flusslänge, Krümmung oder Verzwei-
gungshäufigkeit, könnte hilfreich sein, um die Generierung besser an individuelle
Bedürfnisse oder gewünschte Kartentypen anzupassen.

Durch eine heuristisch gesteuerte Quellplatzierung und eine flexiblere Parametrisierung
könnte die Flussgenerierung weiter verbessert werden.

59

6 Evaluation

Integration

Abbildung 6.12 illustriert den gesamten Generierungsprozess und das Zusammenspiel
aller Landschaftselemente sowie deren Übergänge. Die Evaluation zeigt, dass die Integra-
tion der verschiedenen algorithmischen Verfahren trotz ihrer strukturellen Unterschiede
erfolgreich umgesetzt wurde. Die Kombination aus geometrischen Algorithmen, unter-
schiedlichen regelbasierten Verfahren und noise-basierten Methoden erzeugt visuell ko-
härente Ergebnisse. Die intuitive Steuerbarkeit wird durch die sketch-basierte Eingabe
gewährleistet, wie die Beispiele der Umrisserkennung und des Clusterings belegen.

Besonders hervorzuheben ist das Zusammenspiel der unterschiedlichen Verfahren bei den
Landschaftsübergängen. Die Flüsse integrieren sich gezielt in ausgewählte Zellen und
verlaufen mit weichen Übergängen zu Seen und Küsten. Zwar durchschneiden sie verein-
zelt Bäume in Waldregionen, doch fällt dies aufgrund der hohen Baumdichte kaum auf.
Insgesamt sind die Übergänge gelungen.

Die Gesamtqualität der generierten Karten zeigt, dass die gewählte Strategie zur Integra-
tion der verschiedenen Algorithmen grundsätzlich funktioniert. Dies wird besonders in
Abbildung 6.12 deutlich, die das Zusammenwirken aller Komponenten anschaulich dar-
stellt. Die Farbgebung des Gesamtbildes ist stimmig, insbesondere nach Anwendung der
Filter, sodass eine harmonische Darstellung der Landschaftselemente erreicht wird.

Dennoch gibt es einige kritische Punkte, die noch verbessert werden können:

• Abgehackte Flüsse: Selten, aber manchmal sind die Flüsse in bestimmten Berei-
chen etwas abgehackt und unterbrechen die fließende Struktur. Dies könnte durch
eine bessere Parametrisierung der Quell- und Flussgenerierung verbessert werden.

• Polygonstrukturen bei kleinen Zellen: Wenn viele kleine Zellen generiert wer-
den, können Polygonstrukturen mit scharfen Kanten sichtbar werden, was zu einer
weniger natürlichen Darstellung führt. Eine "globale Übergangslogik" zwischen den
Zellen könnte hier Abhilfe schaffen.

• Leere Karten bei kleinen Zellen: Insbesondere bei der Generierung vieler klei-
ner Zellen, etwa bei einem Wechsel zwischen Bergen und Dörfern, kann die Karte
sehr leer wirken, da die Zellen zu klein sind, um ausreichend Inhalte zu generie-
ren. Dies könnte durch eine feinere Anpassung der Zellenparameter oder durch das
Hinzufügen zusätzlicher Landschaftsstrukturen behoben werden.

60

6 Evaluation

• Optimierung der Übergänge von Waldregionen: Es besteht Optimierungspo-
tenzial, insbesondere zwischen Waldregionen und anderen Landschaftselementen,
da hier lediglich ein Weichzeichnungs-Effekt verwendet wurde.

• Abgeschnittene Assets: Stellenweise erscheinen Berge an Küsten abgeschnitten.
Dies könnte durch eine genauere Prüfung der Polygonränder und eine verbesserte
Anpassung an angrenzende Landschaftselemente optimiert werden.

Durch die Verbesserung dieser Punkte könnte die Gesamtqualität der generierten Karten
weiter optimiert und das visuelle Erlebnis noch realistischer gestaltet werden.

Abbildung 6.1: Links ist die ursprüngliche Eingabe, rechts der verarbeitete Umriss.

61

6 Evaluation

Abbildung 6.2: Links ist die ungenaue Eingabe, rechts der korrigierte Umriss

Abbildung 6.3: Links ist die ungenaue Eingabe, rechts der fehlerhafte Umriss.

62

6 Evaluation

Abbildung 6.4: Links ist die Eingabe, rechts die individuellen Umrisse.

Abbildung 6.5: Links ist der verarbeitete Umriss, rechts das Polygon.

63

6 Evaluation

Abbildung 6.6: Links eine generierte Ozeanregion ohne Filter, rechts mit Filter

Abbildung 6.7: Links ein generiertes Gebirge ohne Filter, rechts mit Filter

Abbildung 6.8: Links ein generierter See ohne Filter, rechts mit Filter

64

6 Evaluation

Abbildung 6.9: Links ein generierter Wald ohne Filter, rechts mit Filter

Abbildung 6.10: Links ein generiertes Dorf ohne Filter, rechts mit Filter

Abbildung 6.11: Links generierte Flüsse ohne Filter, rechts mit Filter

65

6 Evaluation

Abbildung 6.12: Zeigt den gesamten Prozess vom Zeichnen über die Verarbeitung bis
zur generierten Karte, wobei auf Grundlage derselben Polygone zweimal
generiert wurde, um die Unterschiede der Ergebnisse hervorzuheben.

66

6 Evaluation

6.3 Performance-Analyse

Das System konnte während der Entwicklung an einigen Stellen hinsichtlich der Per-
formance optimiert werden, vor allem durch die Ersetzung anfänglicher primitiver Da-
tenstrukturen durch besser geeignete. Ein besonders effektiver Optimierungsschritt war
die Implementierung von PreparedGeometries für die Polygon-Berechnungen. Den-
noch lässt sich vorwegnehmen, dass das System und die zugrundeliegenden Berechnungen
nicht die Laufzeiten erreichen, die für eine Echtzeitanwendung erforderlich gewesen wären
– was jedoch auch kein gesetztes Ziel war.

Im Folgenden sind die durchschnittlichen Berechnungszeiten für einzelne Schritte und
Algorithmen angegeben, wobei die Zeitangaben für Karten mit einer Größe von 800x600
Pixeln gelten und das System auf einem M1 MacBook Air ausgeführt wurde. Die un-
terschiedlichen Zellen haben für die Tests eine typische und gleiche Größe angenommen.
Die Tabelle (6.1) zeigt dabei Messungen einer naiven Implementierung im Vergleich zu
einer optimierten Version, bei der PreparedGeometries zum Einsatz kamen.

Schritt/Algorithmus Naiv Optimiert
Umriss aus Skizze bilden 190 190
Polygone berechnen (bei 20 platzierten Icons) 180 10
Voronoi-Polygone zeichnen (bei 20 platzierten Icons) 7610 210
Dorf berechnen und zeichnen 112 3
Gebirge berechnen und zeichnen 135 58
Wald berechnen und zeichnen 1110 918
See berechnen und zeichnen 292 35
Ozean berechnen und zeichnen 62 62
Flüsse berechnen und zeichnen 24 24

Tabelle 6.1: Vergleich der Messungen zwischen naiver und optimierter Implementierung
(PreparedGeometries)

Die Optimierung durch PreparedGeometries zeigt beeindruckende Verbesserungen in
mehreren Bereichen. Besonders deutlich wird dies beim Zeichnen der Voronoi-Polygone,
wo die Ausführungszeit von 7610 ms auf 210 ms reduziert werden konnte - eine Verbes-
serung um den Faktor 36.

Ein wesentlicher Grund für die ursprünglich schlechte Performance lag in der häufigen
Verwendung der contains()-Methode direkt auf die Polygon Objekte. Diese Operation
ist rechenintensiv, da sie für jeden zu prüfenden Punkt komplexe geometrische Berech-
nungen durchführen muss. Durch die Verwendung von PreparedGeometries konnte

67

6 Evaluation

diese Operation erheblich beschleunigt werden, da diese eine optimierte interne Daten-
struktur bereitstellen.

Dank der Performance-Verbesserungen ist es nun möglich, das Canvas nach jeder Plat-
zierung eines Icons zu aktualisieren. Dadurch erhält der Nutzer sofortiges und schnelles
visuelles Feedback, was die Anwendung deutlich interaktiver macht.

Trotz dieser signifikanten Optimierungen bleiben einige Performance-Engpässe bestehen.
Das Zeichnen der Voronoi-Polygone benötigt immer noch mehr Zeit als die eigentliche
Berechnung, da über alle Zellen iteriert werden muss. Innerhalb dieser Schleife wird erneut
über die Pixelkoordinaten innerhalb der Bounding Box der jeweiligen Zelle iteriert. Die
Waldgenerierung bleibt mit 918 ms weiterhin der zeitaufwändigste Algorithmus unter
den Landschaftselementen.

Zusammenfassend lässt sich sagen, dass durch den Einsatz von PreparedGeometries

erhebliche Performance-Verbesserungen erzielt werden konnten. Für moderate Karten-
größen sind die Wartezeiten nun deutlich akzeptabler, wenn auch weiterhin keine Echt-
zeitanwendung erreicht werden kann. Die verbleibenden Performance-Einschränkungen
sind hauptsächlich auf die grundlegende Komplexität der verwendeten Algorithmen zu-
rückzuführen.

6.4 Erfüllungsgrad der Anforderungen

In diesem Abschnitt wird der Erfüllungsgrad der definierten funktionalen und nicht-
funktionalen Anforderungen bewertet. Tabelle 6.2 zeigt der Vollständigkeit halber noch-
mals alle konkreten Anforderungen auf und gibt an, ob diese erfüllt wurden. Wie be-
reits gezeigt, wurden sämtliche Anforderungen erfolgreich umgesetzt, wobei einige Punk-
te nicht optimal umgesetzt wurden, ohne jedoch die Erfüllung der Mindestanforderungen
zu beeinträchtigen. Diese Punkte bieten Potenzial für zukünftige Verbesserungen.

68

6 Evaluation

Anforderung Erfüllt Nicht erfüllt

1 Pixelgenaues Einlesen von Zeichnungen ✓

2 Zeichnungen sind korrigierbar ✓

3 Automatische Verbindung von Linien mit kleinen Unter-
brechungen

✓

4 Details bleiben nach Verarbeitung erhalten (max. 5px
Abweichung)

✓

5 Individuelle Behandlung von Inselstrukturen ✓

6 Validierung der Icons ✓

7 Icons unterteilen die Fläche in Regionen ✓

8 Generierung stilisierter Landschaften basierend auf Icons ✓

9 Realistische Übergänge zwischen Landschaften ✓

10 Bekannte Kartendetails (Flüsse, Pergament-Optik, Dorf-
namen)

✓

11 Einzigartige Ergebnisse auch bei identischen Eingaben ✓

12 Gesamte Generierung als einzelnes Bild gerendert ✓

13 Export als PNG oder JPG ✓

14 Echtzeitanzeige der Skizze ✓

15 Segmentierung in max. 1 Sekunde ✓

16 Landschaftsgenerierung in max. 5 Sekunden ✓

17 Keine Überlastung bei Karten mit bis zu 20 Icons ✓

18 Modularer Aufbau für einfache Erweiterungen ✓

19 Jedes Modul erfüllt eine klar abgegrenzte Aufgabe ✓

20 Geringe Kopplung für bessere Wartbarkeit ✓

21 Flexible Anpassung durch Abstraktionen und Schnitt-
stellen

✓

22 Steuerung über Parameter ohne Codeänderung ✓

23 Gut dokumentierter Code für langfristige Verständlich-
keit

✓

Tabelle 6.2: Übersicht der Anforderungen und deren Erfüllung

69

6 Evaluation

6.5 Zukunftsperspektiven und Erweiterungsmöglichkeiten

Während der qualitativen und ästhetischen Bewertung des Systems wurden bereits be-
stehende Verbesserungspotenziale des Systems aufgezeigt. In diesem Abschnitt werden
nun weiterführende Erweiterungen behandelt, die mit der zukünftigen Weiterentwicklung
des Systems verbunden sind.

Das System bietet in verschiedenen Bereichen Potenzial für Erweiterungen und Anpas-
sungen. Dank seiner Modularität kann an vielen Stellen neuer Code hinzugefügt werden,
ohne bestehende Implementierungen zu verändern. Es lassen sich beliebig viele Land-
schaftstypen integrieren oder die Algorithmen bestehender Typen anpassen. Beispiels-
weise könnte eine alternative Implementierung für Dörfer eingeführt werden, welche wie
die Wald Generierung den WFC-Algorithmus nutzt. In diesem Fall müsste lediglich die
zentrale Generierungsklasse angepasst werden.

Im Kapitel “Stand der Technik” wurden verschiedene bestehende Systeme untersucht,
die unterschiedliche Herangehensweisen zur Landschaftsgenerierung bieten. Im Vergleich
dazu weist das hier vorgestellte System einige Gemeinsamkeiten, aber auch Herausforde-
rungen auf, die durch Erweiterungen adressiert werden könnten.

Diese Systeme nutzen Noise-Algorithmen, um Höhenkarten zu generieren. Diese Höhen-
karten können als Grundlage für eine 3D-Visualisierung der Landschaft dienen, indem
die generierten Höhenwerte zur Modellierung eines dreidimensionalen Terrains verwen-
det werden. Eine ähnliche Erweiterung könnte in das hier vorgestellte System integriert
werden, um eine interaktive 3D-Ansicht zu ermöglichen.

Sketch2Map nutzt Generative Adversarial Networks, um aus Skizzen topografische Kar-
ten zu generieren. Dies könnte als Inspiration dienen, um das aktuelle System um maschi-
nelles Lernen zu erweitern. Beispielsweise könnte ein neuronales Netz trainiert werden,
um skizzierte Elemente wie Berge oder Flüsse automatisch zu erkennen und in die Ge-
nerierung einfließen zu lassen. Dies würde eine noch intuitivere Bedienung ermöglichen
und die Icon-Platzierung ersetzen.

Ein weiterer Ansatz zur Verbesserung des Systems wäre, die Performance näher an die
Anforderungen einer Echtzeitanwendung heranzuführen. Diese Anpassungen sind zwar
komplexer als Landschaftserweiterungen, können jedoch gezielt für einzelne Komponen-
ten vorgenommen werden.

70

6 Evaluation

Aktuell werden die Polygone der Zellen größtenteils einzeln verarbeitet. Hier könnte ein
Multithreading-Ansatz verwendet werden, um die Landschaftsgenerierung zu paralleli-
sieren. Dazu müsste jedoch die Datenstruktur überarbeitet werden, um Konflikte beim
gleichzeitigen Lesen und Schreiben durch mehrere Threads zu vermeiden.

Die individuelle Betrachtung der Zellpolygone hat den Nachteil, dass es während der
Generierungsphase schwierig ist, globale Informationen, wie Nachbarschaftsbeziehungen,
in den Prozess einzubeziehen. Um dies zu ermöglichen, müsste entweder die zugrunde-
liegende Datenstruktur geändert oder die Architektur, die die Zellen strikt voneinander
trennt, angepasst werden.

71

7 Fazit

Die vorliegende Arbeit präsentiert ein prototypisches System zur sketch-basierten Gene-
rierung fiktionaler Landkarten, das geometrische Algorithmen und prozedurale Methoden
kombiniert, um intuitiv gestaltbare und visuell überzeugende Ergebnisse zu erzielen.

Die zentrale Frage, ob eine strategische Kombination unterschiedlicher algorithmischer
Verfahren eine visuell kohärente und intuitiv steuerbare, sketch-basierte Generierung fik-
tionaler Landkarten ermöglicht, konnte beantwortet werden. Es wurde gezeigt, dass diese
Kombination prinzipiell möglich ist und zu überzeugenden Ergebnissen führt.

Die Arbeit demonstriert zudem, wie die Kombination aus Benutzerinteraktion und algo-
rithmischer Verarbeitung einen effizienten Mittelweg zwischen kreativer Gestaltung und
technischer Automatisierung bietet. Dies ermöglicht die Erstellung von fiktiven Karten,
die sowohl stilisierte Ästhetik als auch geografische Plausibilität vereinen. Das System
besitzt die Fähigkeit natürliche Übergänge zwischen Biomen zu erzeugen und durch sto-
chastische Elemente einzigartige Ergebnisse auch bei identischen Eingaben zu gewähr-
leisten.

Gleichzeitig wurden jedoch auch Schwächen des Systems identifiziert, die in zukünftigen
Arbeiten adressiert werden können. Insbesondere zeigte sich Optimierungsbedarf bei der
Handhabung ungenauer Eingaben sowie in der Echtzeitperformance des Systems, vor al-
lem bei großen Bildern. Zudem könnten fortgeschrittene Verfahren zur Formerkennung
und zur semantischen Interpretation von Skizzen die Benutzerfreundlichkeit weiter ver-
bessern. Ein weiterer potenzieller Verbesserungsbereich liegt in der Verwendung globaler
Übergangstechniken, die zu einer harmonischeren Integration der verschiedenen Land-
schaftstypen führen könnten. Ihre Implementierung ist jedoch aufgrund der derzeit stark
modularisierten Architektur nicht trivial und würde eine umfassendere Anpassung des
Systemaufbaus erfordern.

Diese Limitationen bieten spannende Ansatzpunkte für weiterführende Forschungspro-
jekte. Durch den Einsatz zusätzlicher Optimierungsstrategien, den Ausbau der algorith-

72

7 Fazit

mischen Pipeline sowie die Integration neuer Interaktionsmethoden könnte die Effizienz
und Präzision der Kartengenerierung noch weiter gesteigert werden. Auch die Erweite-
rung des Systems um neue prozedurale Techniken oder maschinelle Lernverfahren könnte
die Qualität der generierten Karten weiter erhöhen.

Insgesamt eröffnet die vorliegende Arbeit nicht nur neue Perspektiven für die prozedurale
Generierung fiktionaler Landkarten, sondern legt auch die Basis für zukünftige Verbesse-
rungen, die das System robuster, flexibler und benutzerfreundlicher machen könnten.

73

Literaturverzeichnis

[1] Bowyer, A.: Computing Dirichlet tessellations. In: The Computer Journal 24
(1981), Nr. 2, S. 162–166

[2] Bresenham, J. E.: Algorithm for computer control of a digital plotter. In: IBM
Systems Journal 4 (1965), Nr. 1, S. 25–30

[3] Delaunay, B.: Sur la sphère vide. À la mémoire de Georges Voronoï. In: Izvestiya
Akademii Nauk SSSR, Seriya Matematicheskaya (1934), S. 793–800

[4] Dustler, M. ; Bakic, P. ; Petersson, H. ; Timberg, P. ; Tingberg, A. ; Zack-

risson, S.: Application of the fractal Perlin noise algorithm for the generation of
simulated breast tissue. In: Progress in Biomedical Optics and Imaging - Proceedings
of SPIE 9412 (2015)

[5] Edelsbrunner, H. ; Kirkpatrick, D. ; Seidel, R.: On the shape of a set of
points in the plane. In: IEEE Transactions on Information Theory 29 (1983), Nr. 4,
S. 551–559

[6] Elshakhs, Y. S. ; Deliparaschos, K. M. ; Charalambous, T. ; Oliva, G. ;
Zolotas, A.: A Comprehensive Survey on Delaunay Triangulation: Applications,
Algorithms, and Implementations Over CPUs, GPUs, and FPGAs. In: IEEE Access
12 (2024), S. 12562–12585

[7] Ester, M. ; Kriegel, H.-P. ; Sander, J. ; Xu, X.: A density-based algorithm
for discovering clusters in large spatial databases with noise. In: Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining, AAAI
Press, 1996 (KDD’96), S. 226–231

[8] Gain, J. ; Marais, P. ; Straßer, W.: Terrain sketching. In: Proceedings of the
2009 Symposium on Interactive 3D Graphics and Games, Association for Computing
Machinery, 2009 (I3D ’09), S. 31–38. – ISBN 9781605584294

74

Literaturverzeichnis

[9] Gamma, E. ; Helm, R. ; Johnson, R. ; Vlissides, J.: Design patterns: elements
of reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.,
1995. – ISBN 0201633612

[10] Gustavson, S.: Simplex noise demystified. (2005)

[11] Karth, I. ; Smith, A. M.: WaveFunctionCollapse is constraint solving in the
wild. In: Proceedings of the 12th International Conference on the Foundations of
Digital Games, Association for Computing Machinery, 2017 (FDG ’17). – ISBN
9781450353199

[12] Lee, D. ; Schachter, B.: Two Algorithms for Constructing a Delaunay Triangu-
lation. In: International Journal of Parallel Programming 9 (1980), 06, S. 219–242

[13] Liebling, T. ; Pournin, L.: Voronoi diagrams and Delaunay triangulations: ubi-
quitous siamese twins. In: Documenta Mathematica 16 (2012)

[14] Perlin, K.: An image synthesizer. In: Proceedings of the 12th Annual Conference
on Computer Graphics and Interactive Techniques, Association for Computing Ma-
chinery, 1985 (SIGGRAPH ’85), S. 287—-296. – ISBN 0897911660

[15] Perlin, K.: Improving noise. In: ACM Trans. Graph. 21 (2002), Nr. 3, S. 681–682

[16] Prim, R. C.: Shortest connection networks and some generalizations. In: The Bell
System Technical Journal 36 (1957), Nr. 6, S. 1389–1401

[17] Prusinkiewicz, P. ; Lindenmayer, A.: Graphical modeling using L-systems. S. 1–
50. In: The Algorithmic Beauty of Plants, Springer New York, 1990. – ISBN 978-1-
4613-8476-2

[18] Shaker, N. ; Togelius, J. ; Nelson, M. J.: Procedural Content Generation in
Games. 1. Springer Cham, 2016 (Computational Synthesis and Creative Systems).
– 237 S. – ISBN 978-3-319-42714-0

[19] Talgorn, F.-X. ; Belhadj, F.: Real-Time Sketch-Based Terrain Generation. In:
Proceedings of Computer Graphics International 2018, Association for Computing
Machinery, 2018 (CGI 2018), S. 13—-18. – ISBN 9781450364010

[20] Ulichney, R. A.: Dithering with blue noise. In: Proceedings of the IEEE 76 (1988),
Nr. 1, S. 56–79

75

Literaturverzeichnis

[21] Valencia-Rosado, L. ; Guzman-Zavaleta, Z. ; Starostenko, O.: A Modular
Generative Approach for Realistic River Deltas: When L-Systems and cGANs Meet.
In: IEEE Access PP (2022), S. 1

[22] Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes
quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques
positives parfaites. In: Journal für die reine und angewandte Mathematik (Crelles
Journal) 1908 (1908), Nr. 133, S. 97–102

[23] Wang, T. ; Kurabayashi, S.: Sketch2Map: A Game Map Design Support System
Allowing Quick Hand Sketch Prototyping. In: 2020 IEEE Conference on Games
(CoG), 2020, S. 596–599

76

A Anhang

A.1 Verwendete Hilfsmittel

In der Tabelle A.1 sind die im Rahmen der Bearbeitung des Themas der Bachelorar-
beit verwendeten Werkzeuge und Hilfsmittel aufgelistet.

Tabelle A.1: Verwendete Hilfsmittel und Werkzeuge
Tool Verwendung
LATEX Textsatz- und Layout-Werkzeug verwendet zur Erstellung dieses

Dokuments
GIMP Bearbeitung und Erstellung von Bildern, insbesondere Assets und

Abbildungen
DALL·E Entwurf von Assets, wie beispielsweise der Parchment-Textur
GitHub Copilot Code Completion für weniger komplexe Hilfsmethoden
ChatGPT Für Rechtschreib- und Grammatikprüfung genutzt (Prompt:

„Überprüfe Rechtschreibung und Grammatik: . . . “)
HAW GitLab Versionsverwaltung

77

Erklärung zur selbständigen Bearbeitung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig
verfasst und nur die angegebenen Hilfsmittel benutzt habe. Wörtlich oder dem Sinn
nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich
gemacht.

Ort Datum Unterschrift im Original

78

