

HOCHSCHULE FÜR ANGEWANDTE
WISSENSCHAFTEN HAMBURG

Hamburg University of Applied Sciences

BACHELORTHESIS

Kosai Alzaeim

Quarkus vs. Spring Boot:
Effizienz und Ressourcen-
verbrauch bei nativen
Builds, Containerisierung
und Skalierbarkeit

FAKULTÄT TECHNIK UND INFORMATIK

Department Informatik

Faculty of Computer Science and Engineering

Department Computer Science

Kosai Alzaeim

Vergleich von Quarkus und Spring Boot hinsicht-

lich Effizienz und Ressourcenverbrauch bei nati-

ven Builds, Containerisierung und Skalierbarkeit

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung

im Studiengang Bachelor of Science Angewandte Informatik

am Department Informatik

der Fakultät Technik und Informatik

der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Stefan Sarstedt

Zweitgutachter: Prof. Dr. Lars Hamann

Eingereicht am: 23. April 2025

iii

Kosai Alzaeim

Thema der Arbeit

Vergleich von Quarkus und Spring Boot im Kontext eines Promotion-Management-Systems

Stichworte

Java, Quarkus, Spring Boot, Microservices, Performance, Skalierbarkeit, Ressourcenver-

brauch, Cloudanwendung, Deployment, DevOps

Kurzzusammenfassung

Im Rahmen dieser Bachelorarbeit werden die Java-Frameworks Quarkus und Spring Boot an-

hand eines eigens entwickelten Microservice-basierten Promotion-Management-Systems sys-

tematisch miteinander verglichen. Ziel ist es, Unterschiede hinsichtlich Performance, Ressour-

cenverbrauch und Skalierbarkeit unter realitätsnahen Lastbedingungen zu identifizieren. Die

Evaluation erfolgt mithilfe von Docker-Containern, Prometheus und Grafana sowie Lasttests

mit Apache JMeter. Die Ergebnisse zeigen, dass Quarkus insbesondere in Bezug auf Startzeit,

CPU- und RAM-Verbrauch Vorteile gegenüber Spring Boot aufweist, während Spring Boot

unter extremer Last eine etwas höhere Stabilität zeigt. Die Arbeit bietet somit eine praxisori-

entierte Entscheidungsgrundlage für die Wahl des geeigneten Frameworks in modernen Cloud-

nativen Anwendungen.

iv

Kosai Alzaeim

Title of Thesis

Comparison of Quarkus and Spring Boot in the Context of a Promotion Management System

Keywords

Quarkus, Spring Boot, Microservices, Performance, Scalability, Resource Usage, Cloud-Ser-

vices, Deployment, DevOps

Abstract

This bachelor thesis presents a systematic comparison of the Java frameworks Quarkus and

Spring Boot using a self-developed microservice-based promotion management system. The

goal is to analyze differences in performance, resource consumption, and scalability under re-

alistic load conditions. The evaluation was conducted using Docker containers, Prometheus

and Grafana monitoring, as well as load testing with Apache JMeter. The results indicate that

Quarkus provides advantages in startup time, CPU and RAM usage, whereas Spring Boot

demonstrates slightly higher stability under extreme load. This work offers a practice-oriented

basis for selecting a suitable framework for modern cloud-native applications.

v

Inhaltsverzeichnis

Inhaltsverzeichnis .. v

Abbildungsverzeichnis ... viii

Tabellenverzeichnis ... x

1 Einleitung ... 1

1.1 Motivation und Hintergrund .. 1

1.2 Zielsetzung und Forschungsfrage .. 3

1.3 Aufbau ... 4

2 Theoretischer Hintergrund .. 6

2.1 Spring ... 6

2.1.1 Historie und Entwicklung .. 6

2.1.2 Architektur und Kernkomponenten ... 7

2.1.3 Dependency Injection (DI) in Spring .. 8

2.1.4 Spring MVC – Webentwicklung mit Spring ... 9

2.2 Spring Boot .. 10

2.1.1 Historie und Entwicklung .. 10

2.1.2 Hauptfunktionen von Spring Boot .. 11

2.1.3 Vergleich: Spring vs. Spring Boot .. 12

2.1.4 Einsatz ... 13

2.2 Quarkus .. 14

2.2.1 Historie und Entwicklung .. 14

2.2.2 Architektur und Kernkomponenten ... 15

2.2.3 Hauptmerkmale von Quarkus .. 17

2.3 Empirische Vergleichsstudien zu Quarkus und Spring Boot 18

3 Methodik .. 21

Fehler! Kein Text mit angegebener Formatvorlage im Dokument.

vi

3.1 Zielsetzung des Vergleichs .. 21

3.2 Vergleichskriterien und Metriken .. 22

3.2.1 Buildzeit .. 22

3.2.2 Startzeit ... 22

3.2.3 Imagegröße .. 22

3.2.4 Antwortzeit (Latenz) ... 23

3.2.5 Durchsatz (Requests pro Sekunde) ... 23

3.2.6 Ressourcenverbrauch .. 24

3.2.7 Skalierbarkeit .. 24

3.3 Versuchsaufbau (Testumgebung) .. 24

3.4 Testdurchführung (Testplan) ... 27

4 Implementierung ... 29

4.1 Beschreibung des Promotion-Management-Systems .. 29

4.1.1 Kurze Einführung in die Domäne: .. 29

4.1.2 Begründung für die Auswahl als Vergleichssystem:....................................... 30

4.2 Kontextsicht des Systems .. 31

4.2.1 Fachliche Kontextsicht: ... 31

4.2.2 Technische Kontextsicht: .. 32

4.3 Bausteinsicht .. 32

4.4 Laufzeitsicht .. 34

5 Analyse, Vergleich und Bewertung der Ergebnisse ... 35

5.1 Vergleich grundlegender Metriken (Store-Service) ... 35

5.1.1 Buildzeit-Vergleich ... 35

5.1.2 Startzeit-Vergleich .. 36

5.1.3 Imagegröße-Vergleich ... 37

5.2 Performanzvergleich .. 38

5.2.1 Anzahl der Samples ... 39

5.2.2 Antwortzeit (Response Time) ... 39

5.2.3 Durchsatz und Stabilität .. 41

5.3 Ressourcenverbrauch ... 43

5.3.1 CPU-Verbrauch ... 43

Fehler! Kein Text mit angegebener Formatvorlage im Dokument.

vii

5.3.2 Speicherverbrauch ... 45

5.4 Skalierung .. 46

5.4.1 Anzahl der Samples nach der Skalierung .. 47

5.4.2 Antwortzeit nach der Skalierung ... 48

5.4.3 Durchsatz und Fehlerquote nach der Skalierung ... 50

5.4.4 Ressourcenverbrauch nach der Skalierung .. 52

6 Zusammenfassung und Ausblick ... 55

Literaturverzeichnis .. 57

viii

Abbildungsverzeichnis

Abbildung 1: Kernkomponenten von Spring-Framework (Spring, 2025) 8

Abbildung 2: Spring IoC Container als Object Factory (Geeksforgeeks, 2025) 9

Abbildung 3: MVC in Spring (Spring, 2025) ... 10

Abbildung 4: Das Spring Boot-Ökosystem auf einen Blick (Mitropolitsky, et al., 2019) 12

Abbildung 5: Quarkus Architektur und Kernkomponenten (Štefanko & Martiška, 2025) 17

Abbildung 6: Container-First Ansatz von Quarkus (Quarkus, 2025)...................................... 18

Abbildung 7: Spring Boot vs. Quarkus vs. Micronaut (Ter, 2024) ... 19

Abbildung 8: Vergleichskriterien und Metriken ... 23

Abbildung 9: Software und Hardware der Testumgebung .. 26

Abbildung 10: Promotion-Management-System Workflow ... 30

Abbildung 11: Fachliche Kontextsicht .. 31

Abbildung 12: Technische Kontextsicht ... 32

Abbildung 13: Bausteinsicht des Promotion-Management-Systems 33

Abbildung 14: Laufzeitsicht Beispielprozess (Angebot hinzufügen) 34

Abbildung 15: Buildzeit-Vergleich (Store-Service).. 36

Abbildung 16: Startzeit-Vergleich (Store-Service) ... 37

Abbildung 17: Imagegröße-Vergleich (Store-Service) ... 38

Abbildung 18: Vergleich typischer Antwortzeiten zwischen Quarkus und Spring Boot 40

Abbildung 19: Minimale und maximale Antwortzeiten (ms) unter Last 41

Abbildung 20: Durchsatzvergleich unter Lastbedingungen .. 42

Abbildung 21: JMeter - Summary-Report Testplan 3 Quarkus .. 43

Abbildungsverzeichnis

ix

Abbildung 22: CPU-Verbrauchsvergleich .. 44

Abbildung 23: RAM-Verbrauch ... 46

Abbildung 24: Anzahl der Samples nach der Skalierung.. 48

Abbildung 25: Speedup der Antwortzeiten nach der Skalierung .. 49

Abbildung 26: Durchsatz- und Fehlerquotevergleich nach der Skalierung 51

Abbildung 27: Relative Änderung des Ressourcenverbrauchs nach Skalierung 53

x

Tabellenverzeichnis

Tabelle 1: Spring Boot Version-Übersicht .. 11

Tabelle 2: Vergleich Spring Boot vs. Spring .. 14

Tabelle 3: Übersicht der Testpläne für die Lasttests ... 28

Tabelle 4: Anzahl der verarbeiteten Anfragen .. 39

1

1 Einleitung

1.1 Motivation und Hintergrund

Die fortschreitende Digitalisierung und die steigenden Anforderungen an moderne Software-

anwendungen haben zu einem Wandel in der Softwareentwicklung geführt. Monolithische Ar-

chitekturen weichen zunehmend Microservice-Architekturen, die eine höhere Flexibilität, Ska-

lierbarkeit und Wartbarkeit bieten. In diesem Kontext spielen Java-basierte Frameworks eine

entscheidende Rolle, da Java nach wie vor eine der meistgenutzten Programmiersprachen in

der Unternehmenswelt ist.

Spring Boot hat sich in den letzten Jahren als De-facto-Standard für die Entwicklung von

Microservices etabliert und bietet eine umfassende Infrastruktur sowie ein reichhaltiges Öko-

system, das Entwicklern ermöglicht, schnell produktionsreife Anwendungen zu erstellen. Den-

noch stehen Spring-Boot-Anwendungen häufig vor Herausforderungen wie langen Startzeiten

und hohem Ressourcenverbrauch, insbesondere in Cloud- und Container-Umgebungen, in de-

nen Effizienz und Skalierbarkeit entscheidend sind.

Mit dem Aufkommen von Cloud-nativen Technologien und der zunehmenden Bedeutung von

Containern und orchestrierten Umgebungen wie Kubernetes wächst der Bedarf an leistungsfä-

higeren und ressourcenschonenderen Alternativen. Quarkus wurde speziell für Cloud-native

Anwendungen entwickelt und verspricht durch seine schnelle Startzeit und den geringen Spei-

cherverbrauch deutliche Vorteile gegenüber Spring Boot. Durch die Unterstützung der nativen

Kompilierung mit GraalVM können Anwendungen als native Executables bereitgestellt wer-

den, was die Performance weiter optimiert und den Ressourcenbedarf minimiert.

Einleitung

2

Die Wahl des richtigen Frameworks hat erhebliche Auswirkungen auf die Effizienz, Skalier-

barkeit und Kosten von Anwendungen im Produktivbetrieb. Während Spring Boot eine ausge-

reifte und bewährte Plattform bietet, könnten die Performance-Vorteile von Quarkus in be-

stimmten Szenarien zu erheblichen Verbesserungen führen. Entwickler und Unternehmen ste-

hen daher vor der Herausforderung, abzuwägen, welches Framework besser zu ihren spezifi-

schen Anforderungen passt.

Obwohl die theoretischen Unterschiede zwischen Quarkus und Spring Boot bekannt sind, feh-

len bislang umfassende praxisnahe Studien, die einen direkten Vergleich unter realen Bedin-

gungen ermöglichen. Insbesondere gibt es nur wenige Analysen, die Startzeit, Ressourcenver-

brauch, Container-Größe und Skalierbarkeit systematisch untersuchen.

Vor diesem Hintergrund ist es von besonderem Interesse, eine RESTful Microservice-Anwen-

dung für das Promotion-Management-System zu implementieren und beide Frameworks an-

hand praxisrelevanter Kriterien zu evaluieren. Dieses Fallbeispiel bildet typische Anforderun-

gen moderner Anwendungen ab und bietet ausreichend Komplexität für aussagekräftige Mes-

sungen. Ziel dieser Arbeit ist es, eine fundierte Entscheidungsgrundlage für Entwickler und

Unternehmen bereitzustellen, um die Stärken und Schwächen von Quarkus und Spring Boot in

Cloud-nativen Szenarien objektiv bewerten zu können.

3

1.2 Zielsetzung und Forschungsfrage

Diese Arbeit verfolgt das Ziel, die beiden Java-basierten Frameworks Quarkus und Spring Boot

hinsichtlich ihrer Effizienz und ihres Ressourcenverbrauchs zu vergleichen. Dabei sollen pra-

xisnahe Erkenntnisse gewonnen werden, die Entwicklern und Unternehmen eine fundierte Ent-

scheidungsgrundlage für die Auswahl des passenden Frameworks bieten. Der Fokus liegt auf

der Bewertung der Performance in Cloud-nativen Umgebungen, insbesondere in Bezug auf

schnelle Startzeiten, geringen Ressourcenverbrauch und effiziente Skalierbarkeit.

Zur Untersuchung dieser Aspekte wird eine RESTful Microservice-Anwendung für das Pro-

motion-Management-System entwickelt. Diese dient als Testfall, um beide Frameworks unter

realistischen Bedingungen zu vergleichen. Die Analyse konzentriert sich auf Startup-Zeit, Res-

sourcenverbrauch, Container-Größe, Skalierbarkeit und Entwicklererfahrung, um ein umfas-

sendes Bild der jeweiligen Stärken und Schwächen zu zeichnen. Ziel ist es, herauszufinden, in

welchen Szenarien Quarkus signifikante Vorteile gegenüber Spring Boot bietet und ob es An-

wendungsfälle gibt, in denen Spring Boot die bessere Wahl ist.

Die zentrale Forschungsfrage dieser Arbeit lautet: "In welchen Bereichen zeigt Quarkus im

Vergleich zu Spring Boot signifikante Vorteile hinsichtlich Effizienz und Ressourcenver-

brauch, insbesondere in Bezug auf den nativen Build-Prozess, die Containerisierung

und die Skalierbarkeit in Containerumgebungen?"

Diese Frage wird anhand folgender Kernaspekte analysiert:

• Nativen Build-Prozess: Untersuchung der Effizienz nativer Images hinsichtlich Start-

zeit, Ressourcenverbrauch und Anwendungsleistung.

• Containerisierung: Bewertung der Eignung beider Frameworks für containerisierte

Umgebungen, insbesondere hinsichtlich Container-Größe und Ressourcennutzung.

• Skalierbarkeit: Analyse der Performance unter Last und der Effizienz der horizonta-

len Skalierung.

Einleitung

4

Durch die systematische Analyse dieser Kriterien sollen praxisrelevante Erkenntnisse gewon-

nen werden, die Entwickler und Unternehmen bei der Wahl des optimalen Frameworks unter-

stützen. Die Ergebnisse bieten eine objektive Grundlage für den Einsatz von Quarkus oder

Spring Boot in modernen Cloud- und Container-Umgebungen.

1.3 Aufbau

Kapitel 1 – Einleitung:

Dieses Kapitel führt in die Problemstellung ein, beschreibt die Zielsetzung der Arbeit und for-

muliert die zentrale Forschungsfrage. Zudem wird ein Überblick über den weiteren Aufbau der

Arbeit gegeben.

Kapitel 2 – Theoretischer Hintergrund:

In diesem Kapitel erfolgt eine detaillierte Vorstellung der beiden Frameworks:

• Spring & Spring Boot: Architektur und Kernfeatures – Analyse der grundlegenden

Konzepte und Funktionsweise von Spring Boot.

• Quarkus: Architektur und Kernfeatures – Vorstellung der wesentlichen Eigenschaften

und Designprinzipien von Quarkus.

• Empirische Vergleichsstudien zu Quarkus und Spring Boot – Überblick über be-

stehende Forschungsarbeiten und vergleichende Analysen der beiden Frameworks.

Kapitel 3 – Methodik:

Hier wird das methodische Vorgehen beschrieben, das zur Beantwortung der Forschungsfrage

herangezogen wird. Es werden die Kriterien für den Vergleich definiert und die Testmethoden

erläutert. Zudem wird auf die Entwicklung und Testanforderungen eingegangen, die für die

praktische Umsetzung der Experimente relevant sind.

Kapitel 4 – Implementierung:

Einleitung

5

In diesem Kapitel wird die Umsetzung der RESTful Microservice-Anwendung für das Promo-

tion-Management-System beschrieben. Der Aufbau der Testanwendungen in beiden Frame-

works wird detailliert erläutert, einschließlich der Architektur und der verwendeten Technolo-

gien.

Kapitel 5 – Analyse, Vergleich und Bewertung der Ergebnisse:

Hier werden die Testergebnisse systematisch analysiert und verglichen. Der Fokus liegt auf

den zentralen Leistungsmerkmalen:

• Performance: Messung der Startzeiten, Buildzeiten und Laufzeiteffizienz.

• Ressourcennutzung: Untersuchung des Speicher- und CPU-Verbrauchs.

• Skalierbarkeit: Bewertung der Frameworks unter Lastbedingungen und ihre Eignung

für dynamische Skalierung.

Die gewonnenen Ergebnisse werden entlang der definierten Metriken analysiert, gegenüberge-

stellt und im Hinblick auf die Leistungsfähigkeit beider Frameworks eingeordnet.

Kapitel 6 – Zusammenfassung und Ausblick:

Das abschließende Kapitel fasst die wichtigsten Erkenntnisse zusammen und gibt einen Aus-

blick auf zukünftige Forschungsmöglichkeiten.

Theoretischer Hintergrund

6

2 Theoretischer Hintergrund

Dieses Kapitel widmet sich der detaillierten Vorstellung der beiden Java-basierten Frameworks

Quarkus und Spring Boot, die im Rahmen dieser Arbeit miteinander verglichen werden. Dabei

werden jeweils die zugrunde liegenden Architekturansätze, charakteristischen Eigenschaften

sowie zentrale Designprinzipien erläutert. Darüber hinaus bietet das Kapitel einen Überblick

über bestehende empirische Studien und vergleichende Analysen, die sich mit der Leistungs-

fähigkeit und Ressourcennutzung beider Frameworks beschäftigen und somit die Basis für die

eigene experimentelle Untersuchung bilden.

2.1 Spring

2.1.1 Historie und Entwicklung

Das Spring-Framework ist eines der bedeutendsten und am weitesten verbreiteten Frameworks

in der Java-Welt. Entwickelt wurde es Anfang der 2000er Jahre von Rod Johnson, der seine

Ideen erstmals 2002 in seinem Buch "Expert One-on-One J2EE Design and Development"

vorstellte (Spring, kein Datum). Ziel war es, eine leichtgewichtige Alternative zu Java EE

(heute Jakarta EE) zu schaffen, da Enterprise JavaBeans (EJB) als zu komplex und schwerge-

wichtig empfunden wurden.

Die erste stabile Version von Spring (1.0) erschien 2004 unter der Apache-2.0-Lizenz. Durch

seine modulare Architektur, die flexible Integration mit verschiedenen Technologien und die

Möglichkeit, plattformunabhängige Anwendungen zu entwickeln, gewann Spring schnell an

Beliebtheit. In den folgenden Jahren wurde das Framework kontinuierlich weiterentwickelt. Es

fand breite Unterstützung in der Open-Source-Community und wurde von verschiedenen Un-

ternehmen in großem Umfang eingesetzt. 2009 wurde das Unternehmen hinter Spring

(SpringSource) von VMware übernommen, und heute wird es als Teil der VMware Tanzu-

Initiative weitergeführt.

Theoretischer Hintergrund

7

2.1.2 Architektur und Kernkomponenten

Spring basiert auf einer modularen Architektur, die es Entwicklern ermöglicht, nur die

benötigten Komponenten einzusetzen. Die wichtigsten Module des Spring-Frame-

works sind:

1. Core Container: Enthält grundlegende Module wie Spring-Core, Spring-Beans und

Spring-Context, die für Dependency Injection (DI) und das ApplicationContext-Ma-

nagement verantwortlich sind.

2. Datenzugriff und Integration: Beinhaltet Spring-JDBC, Spring-ORM (Integration

mit Hibernate, JPA), Spring-TX für Transaktionsmanagement und Spring-Data für

eine vereinfachte Datenbankanbindung.

3. Web-Modul: Besteht aus Spring-Web und Spring-MVC, die den Aufbau von Weban-

wendungen und RESTful-Services erleichtern.

4. AOP (Aspect-Oriented Programming): Ermöglicht die Trennung von Querschnitts-

belangen wie Logging oder Security durch das Spring-AOP-Modul.

5. Messaging und Events: Bietet Unterstützung für asynchrone Kommunikation über

Spring-Messaging (z. B. RabbitMQ, Kafka) und WebSockets.

Theoretischer Hintergrund

8

6. Testing: Stellt Module für Unit-Tests und Integrationstests bereit, z. B. mit JUnit und

Mockito.

2.1.3 Dependency Injection (DI) in Spring

Ein zentrales Konzept von Spring ist die Inversion of Control (IoC), die über Dependency In-

jection realisiert wird. Dadurch wird die Erstellung und Verwaltung von Objekten an den

Spring-Container delegiert.

Es gibt zwei Haupttypen des Spring Containers:

BeanFactory: Eine grundlegende Implementierung für einfache Anwendungen.

Application-

Context:

Eine leistungsfähigere Variante mit erweiterten Funktionen wie

Event-Handling und Internationalisierung.

Die Konfiguration kann über XML, Java-Config oder Annotations (@Component, @Service,

@Repository) erfolgen. DI fördert lose Kopplung und erleichtert das Testen.

Abbildung 1: Kernkomponenten von Spring-Framework (Spring, 2025)

Theoretischer Hintergrund

9

Abbildung 2: Spring IoC Container als Object Factory (Geeksforgeeks, 2025)

2.1.4 Spring MVC – Webentwicklung mit Spring

Spring MVC ist ein flexibles Web-Framework zur Erstellung von Webanwendungen und

REST-APIs. Es basiert auf dem Model-View-Controller (MVC)-Prinzip und verwendet einen

zentralen DispatcherServlet. Hauptkomponenten sind:

• Controller (@RestController): Verarbeiten HTTP-Anfragen.

• Model: Daten, die an die View weitergegeben werden.

• View: Präsentationsschicht (z. B. Thymeleaf, JSP, JSON-Ausgabe für APIs).

Spring MVC unterstützt verschiedene View-Technologien und bietet eine integrierte Validi-

erung, Form-Handling und Internationalisierung.

Theoretischer Hintergrund

10

 Abbildung 3: MVC in Spring (Spring, 2025)

2.2 Spring Boot

2.1.1 Historie und Entwicklung

Spring Boot ist eine Weiterentwicklung des Spring-Ökosystems, die darauf abzielt, die Ent-

wicklung und Konfiguration von Spring-Anwendungen erheblich zu vereinfachen. Es bietet

zahlreiche Funktionen, die Entwicklern helfen, produktive und skalierbare Anwendungen mit

minimalem Konfigurationsaufwand zu erstellen. Anstatt zahlreiche XML- oder Java-Konfigu-

rationsdateien manuell zu definieren, übernimmt Spring Boot viele dieser Aufgaben automa-

tisch, was die Entwicklungszeit verkürzt und den Einstieg erleichtert.

Spring Boot wurde erstmals im April 2014 veröffentlicht und hat sich seitdem kontinuierlich

weiterentwickelt. Die folgende Tabelle gibt einen Überblick über die Hauptversionen und ihre

Veröffentlichungsdaten (Minh, n.d.) :

Theoretischer Hintergrund

11

2.1.2 Hauptfunktionen von Spring Boot

Spring Boot vereinfacht die Entwicklung von Spring-Anwendungen durch mehrere zentrale

Funktionen:

Auto-Configuration: Spring Boot erkennt automatisch, welche Bibliotheken und Abhängig-

keiten im Projekt vorhanden sind, und konfiguriert diese entsprechend. Dadurch entfällt der

Aufwand, viele Einstellungen manuell vornehmen zu müssen.

Standalone-Anwendungen: Anwendungen können eigenständig ausgeführt werden, ohne

dass ein separater Webserver installiert werden muss. Spring Boot nutzt eingebettete Server

wie Tomcat, Jetty oder Undertow, sodass die Anwendung als ausführbare JAR-Datei gestartet

werden kann.

Meinungsbasierte Defaults: Spring Boot stellt eine Reihe von Standardkonfigurationen be-

reit, die für viele Anwendungen geeignet sind. Entwickler können diese Vorgaben übernehmen

oder bei Bedarf anpassen.

Spring Boot Actuator: Ermöglicht das Monitoring und die Verwaltung von Anwendungen

durch vorkonfigurierte Endpunkte, die Informationen zur Systemgesundheit, Metriken und lau-

fenden Prozessen liefern.

Die Grafik “Abbildung 4: Das Spring Boot-Ökosystem auf einen Blick” veranschaulicht die

Kernkomponenten und den Nutzen von Spring Boot innerhalb des Spring-Ökosystems. Spring

Boot baut auf Spring Core, Spring Data und Spring MVC auf und erleichtert die Entwicklung

Version Veröffentlichungsdatum Spring Framework Version

1.0.0 April 2014 4.0.3

2.0.0 März 2018 5.0.4

3.0.0 November 2022 6.0.2

3.4.2 23. Januar 2025 6.2.2

Tabelle 1: Spring Boot Version-Übersicht

Theoretischer Hintergrund

12

durch Funktionen wie Auto-Configuration, eingebettete Server und Actuator-Endpunkte zur

Überwachung.

Zusätzlich integriert Spring Boot externe Dienste wie Datenbanken, Logging- und Messaging-

Systeme sowie Cloud-Provider, was eine flexible und skalierbare Entwicklung ermöglicht.

Entwickler profitieren von einer optimierten Konfiguration, schnelleren Entwicklungszyklen

und einer nahtlosen Bereitstellung über Container-Technologien.

Abbildung 4: Das Spring Boot-Ökosystem auf einen Blick (Mitropolitsky, et al., 2019)

2.1.3 Vergleich: Spring vs. Spring Boot

Spring und Spring Boot sind eng miteinander verbunden, unterscheiden sich jedoch in mehre-

ren wichtigen Aspekten:

Theoretischer Hintergrund

13

• Konfiguration: Während das klassische Spring-Framework eine manuelle Konfigu-

ration erfordert, übernimmt Spring Boot viele Konfigurationsaufgaben automatisch,

wodurch Entwickler sich mehr auf die Geschäftslogik konzentrieren können.

• Projektsetup: Die Einrichtung eines Spring-Projekts kann aufwendig sein, da viele

Abhängigkeiten manuell verwaltet werden müssen. Spring Boot bietet hingegen mit

Spring Initializr ein Tool, das das Erstellen neuer Projekte mit vorkonfigurierten Ab-

hängigkeiten erleichtert.

• Flexibilität vs. Konvention: Spring bietet eine hohe Flexibilität und kann genau an

spezifische Anforderungen angepasst werden. Spring Boot hingegen setzt auf Konven-

tionen und vordefinierte Standards, was die Entwicklung beschleunigt, aber gleichzei-

tig weniger Kontrolle bietet. (Lagnada), 2024)

2.1.4 Einsatz

Spring Boot Spring

Ideal für Microservices, die eigenständig

und skalierbar sein müssen

Geeignet für monolithische Anwendungen

mit individuellen Konfigurationen

Schnellere Entwicklung durch Auto-

Configuration

Mehr Kontrolle über Konfiguration und

Architektur

Eingebettete Server ermöglichen

Standalone-Betrieb

Erfordert externen Application Server

Vorkonfigurierte Defaults für häufige

Anwendungsfälle

Vollständige Anpassungsfähigkeit an spez-

ielle Anforderungen

Theoretischer Hintergrund

14

Beste Wahl für Cloud-native und con-

tainerisierte Anwendungen

Gut für Unternehmensanwendungen mit

komplexen Integrationen

Tabelle 2: Vergleich Spring Boot vs. Spring

2.2 Quarkus

2.2.1 Historie und Entwicklung

Quarkus entstand aus dem Bestreben, Java für moderne Cloud- und Container-Umgebungen

zu optimieren. Das Framework wurde maßgeblich von Red Hat-Ingenieuren entwickelt und

im März 2019 der Öffentlichkeit vorgestellt. Ziel war es, eine Antwort auf die Herausforder-

ungen zu liefern, mit denen klassische Java-Anwendungen in hochskalierbaren und dyna-

mischen Umgebungen häufig konfrontiert waren – insbesondere in Bezug auf Startzeit und

Ressourcenverbrauch. (Quarkus, n.d.)

• Ursprünge und Motivation:

Schon in der frühen Planungsphase identifizierten die Quarkus-Entwickler die Not-

wendigkeit, den klassischen „Java-Stack“ auf seine Essenz zu reduzieren und alle

Teile zu entfernen oder zu ersetzen, die in einer Cloud-native-Welt für Performance-

Bottlenecks sorgen. Traditionelle Java EE- oder Spring-Anwendungen wiesen oft

langsame Startzeiten und relativ hohen Speicherverbrauch auf. In Umgebungen, in

denen Microservices skalieren und schnell gestartet werden müssen, war das ein wes-

entlicher Nachteil.

• Bedeutende Meilensteine:

o Erste Veröffentlichung (März 2019): Vorstellung des Frameworks und

Fokus auf schnelle Startzeiten sowie geringe Speicheranforderungen.

o Version 1.0 (November 2019): Stabilisierung des Kerns, umfangreichere

Dokumentation und Erweiterung der Community.

o Version 2.0 (Juni 2021): Neue Features wie verbesserte Dev-Mode-Unter-

stützung, optimierte reaktive Programmiermodelle (u.a. mit Mutiny) und

verbesserte Zusammenarbeit mit GraalVM.

Theoretischer Hintergrund

15

• Community und Open-Source:

Quarkus ist als Open-Source-Projekt auf GitHub verfügbar und profitiert von einer

wachsenden Community aus Entwicklern, Unternehmen und Enthusiasten. Das ak-

tive Feedback und die rege Beteiligung führen zu einer kontinuierlichen

Weiterentwicklung und Anpassung an aktuelle Anforderungen – sei es im Bereich

Serverless, Microservices oder Container-Orchestrierung. (Quarkus, n.d.)

2.2.2 Architektur und Kernkomponenten

Die Architektur von Quarkus basiert auf dem sogenannten „Container-First“-Ansatz und ver-

sucht, möglichst viele Verarbeitungs- und Initialisierungsprozesse bereits in der Build-Zeit

durchzuführen. Dadurch werden Laufzeit-Overheads minimiert, was zu schnelleren

Startzeiten und geringerem Speicherverbrauch führt. (Quarkus, 2025)

• Build-Time-Verarbeitung

o Ahead-of-Time (AOT) Kompilierung: Ein wesentlicher Faktor für die Perfor-

mance ist, dass Quarkus so viel wie möglich bereits beim Kompilieren der An-

wendung erledigt. Klassen werden analysiert, Proxies werden generiert, Reflek-

tionsinformationen werden gesammelt – alles vor dem eigentlichen Anwen-

dungsstart.

o Extension- und Plug-in-Mechanismus: In Quarkus gibt es zahlreiche „Exten-

sions“, die bestimmte Funktionalitäten oder Bibliotheken integrieren (z.B. Hiber-

nate, RESTEasy, Kafka, Camel, Vert.x). Jede Extension nutzt die Build-Time-

Verarbeitung, um Initialisierungsschritte vorzuziehen und die Laufzeit zu entlas-

ten. (Štefanko & Martiška, 2025)

• Native Kompilierung mit GraalVM

o Native Images: Mithilfe von GraalVM lassen sich Quarkus-Anwendungen in

sogenannte Native Images kompilieren, also eigenständige Maschinencode-Bina-

ries, die ohne eine klassische JVM starten. Dieses Vorgehen reduziert sowohl die

Startzeit auf wenige Millisekunden als auch den Speicherbedarf.

o Reflektion und Substitution: Da GraalVM besondere Anforderungen an Re-

flektionsaufrufe, dynamische Klassenladungen und Proxy-Erzeugung stellt,

Theoretischer Hintergrund

16

kümmert sich Quarkus während der Build-Phase darum, alle benötigten Meta-

daten zu erzeugen. Das verhindert Laufzeitfehler und macht Native Images über-

haupt erst praktikabel.

• Reactive Programming

o Reaktive Kernbibliotheken: Quarkus unterstützt reaktives Programmieren über

Bibliotheken wie Mutiny. Dies erlaubt die Entwicklung nicht-blockierender und

skalierbarer Anwendungen, die besonders gut in Cloud- und Microservice-

Umgebungen funktionieren.

o Event-Driven-Ansatz: Durch die Reaktivität können Anwendungen eingehende

Ereignisse (z.B. HTTP-Requests, Messaging-Events) effizient verarbeiten, ohne

blockierende Threads oder lange Wartezeiten.

• Dependency Injection (DI) und CDI

o Quarkus und CDI (Contexts and Dependency Injection): Das DI-Framework

in Quarkus basiert auf dem Jakarta EE-Standard (CDI). Mit „Arc“ als Implemen-

tierung wird sichergestellt, dass das Dependency Injection-Konzept

leichtgewichtig und modular bleibt.

o Lebenszyklus- und Scope-Management: CDI ermöglicht eine flexible Verwal-

tung von Beans, deren Lebenszyklus und Kontext (z.B. Request- oder Session-

Scopes), was besonders für lose gekoppelte Microservices von Vorteil ist.

Theoretischer Hintergrund

17

2.2.3 Hauptmerkmale von Quarkus

Quarkus bietet eine Vielzahl von Funktionen, die es von traditionellen Java-Frameworks ab-

heben (Quarkus, n.d.):

• Schnelle Startzeiten und geringer Speicherverbrauch: Durch die Vorverlagerung

von Verarbeitungsaufgaben in die Build-Phase und die Möglichkeit, native Images mit

GraalVM zu erstellen, starten Quarkus-Anwendungen in Millisekunden und benötigen

weniger Speicher.

Abbildung 5: Quarkus Architektur und Kernkomponenten

(Štefanko & Martiška, 2025)

Theoretischer Hintergrund

18

• Entwicklerfreundlichkeit: Funktionen wie Live Coding ermöglichen es Entwicklern,

Änderungen im Code sofort zu sehen, ohne die Anwendung neu starten zu müssen.

Dies beschleunigt den Entwicklungszyklus erheblich.

• Reaktive Programmierung: Quarkus unterstützt sowohl imperative als auch reaktive

Programmiermodelle, was Entwicklern Flexibilität bei der Gestaltung ihrer Anwen-

dungen bietet.

• Nahtlose Integration mit Kubernetes: Dank optimierter Container-Bereitstellung

und Kubernetes-Nativität lassen sich Quarkus-Anwendungen effizient in Cloud-

Umgebungen betreiben.

• Umfassende Erweiterbarkeit: Mit über 50 Erweiterungen können Entwickler die

Funktionalität von Quarkus leicht an ihre spezifischen Bedürfnisse anpassen.

Abbildung 6: Container-First Ansatz von Quarkus (Quarkus, 2025)

2.3 Empirische Vergleichsstudien zu Quarkus und Spring Boot

In der Fachliteratur und in technischen Blogs gibt es zahlreiche Vergleichsstudien zwischen

Quarkus und Spring Boot, die sich hauptsächlich mit Performance-Aspekten befassen. Diese

Studien liefern wertvolle Einblicke in zentrale Leistungsmerkmale wie Startzeiten,

Theoretischer Hintergrund

19

Speicherverbrauch und Durchsatz, die gerade in modernen Cloud- und Microservice-Umge-

bungen eine wichtige Rolle spielen.

Ein häufig zitierter Vergleich ist Spring Boot vs. Quarkus: Performance Comparison for Hello

World Case (C, 2023). Hier wurde eine einfache REST-API mit einem Hello-World-Endpoint

in beiden Frameworks implementiert und hinsichtlich ihrer Startzeit und Antwortzeiten unter-

sucht. Die Ergebnisse zeigen, dass Quarkus insbesondere im nativen Modus eine deutlich

schnellere Startzeit aufweist und weniger Speicher benötigt. Im Gegensatz dazu bietet Spring

Boot im JVM-Modus eine stabilere Laufzeitperformance und kann je nach Szenario Vorteile

bei der Durchsatzrate haben.

Ein weiterer relevanter Artikel ist Quarkus vs. Micronaut vs. Spring Boot: A Comparative

Guide for Java Developers (Ter, 2024). Hier wird Quarkus mit zwei anderen populären Java-

Frameworks verglichen, wobei der Fokus auf der Startzeit, der Ressourcennutzung und der

Entwicklererfahrung liegt. Auch hier zeigt sich, dass Quarkus im nativen Modus beeindru-

ckend geringe Startzeiten erreicht, während Spring Boot durch seine breite Unterstützung von

Bibliotheken und Tooling punkten kann.

Ein dritter relevanter Vergleich, Spring Boot and Quarkus: Comparing Performance and U-

sage (Zanetti, 2024), bestätigt viele der zuvor genannten Erkenntnisse. Hier wurde ebenfalls

Abbildung 7: Spring Boot vs. Quarkus vs. Micronaut

(Ter, 2024)

Theoretischer Hintergrund

20

die Startgeschwindigkeit und Speicherverbrauch untersucht, wobei Quarkus insbesondere bei

geringem Speicherbedarf überzeugt. Spring Boot bleibt weiterhin eine bewährte Wahl für viele

Entwickler aufgrund der großen Community und der ausgereiften Infrastruktur.

Die bestehenden empirischen Vergleiche liefern interessante Einblicke in die Stärken und

Schwächen beider Frameworks. Während Quarkus durch schnelle Startzeiten und geringe Res-

sourcennutzung überzeugt, bietet Spring Boot eine ausgereifte Umgebung mit vielen Erweite-

rungsmöglichkeiten. Viele dieser Tests basieren auf einfachen Beispielanwendungen, was eine

erste Orientierung bietet, aber nicht alle Einsatzszenarien vollständig abbildet. Dennoch sind

diese Vergleiche hilfreich, um zu verstehen, in welchen Bereichen Quarkus oder Spring Boot

ihre jeweiligen Vorteile haben und wie sich diese in einer CRUD-Anwendung auswirken kön-

nen.

Methodik

21

3 Methodik

In diesem Kapitel wird das methodische Vorgehen zur Durchführung des Framework-Ver-

gleichs zwischen Quarkus und Spring Boot beschrieben. Im Mittelpunkt steht die Entwicklung

und der gezielte Einsatz eines Microservice-basierten Anwendungssystems, anhand dessen

beide Frameworks unter kontrollierten Bedingungen getestet werden. Es werden die Zielset-

zung des Vergleichs, die verwendeten Metriken und Bewertungskriterien sowie der Aufbau der

Testumgebung detailliert erläutert. Abschließend werden die einzelnen Testverfahren beschrie-

ben, mit denen die Leistungsfähigkeit, Ressourcennutzung und Skalierbarkeit der Frameworks

praxisnah untersucht werden.

3.1 Zielsetzung des Vergleichs

Ziel dieser Arbeit ist es, die beiden weit verbreiteten Frameworks Quarkus und Spring Boot im

Kontext einer Microservice-basierten, cloudnativen Anwendung miteinander zu vergleichen.

Dazu wird ein praxisnahes Anwendungsszenario – ein Promotion-Management-System – im-

plementiert, welches als Grundlage für den technischen Vergleich dient.

Im Fokus des Vergleichs stehen vor allem die Performance, der Ressourcenverbrauch sowie

die Skalierbarkeit der beiden Frameworks. Dabei sollen nicht nur theoretische Aspekte be-

leuchtet, sondern auch empirische Messwerte anhand realer Tests gesammelt und ausgewertet

werden.

Die zentrale Forschungsfrage lautet:

Inwiefern unterscheiden sich Quarkus und Spring Boot hinsichtlich Performance, Ressour-

ceneffizienz und Skalierbarkeit in einer containerisierten Microservice-Anwendung?

Um diese Fragestellung zu beantworten, werden identische Microservices mit Quarkus und

Spring Boot implementiert. Die Services erfüllen dieselbe Funktionalität (z. B. Benutzerver-

waltung, Angebotsverwaltung, Store-Verwaltung) und werden unter vergleichbaren Bedingun-

gen getestet. Die so gewonnenen Ergebnisse sollen dabei helfen, die jeweiligen Stärken und

Methodik

22

Schwächen der Frameworks praxisnah zu bewerten und Empfehlungen für deren Einsatz in

cloudnativen Architekturen abzuleiten.

3.2 Vergleichskriterien und Metriken

Für eine fundierte Bewertung der beiden Frameworks Quarkus und Spring Boot werden ver-

schiedene technische Metriken herangezogen, die sowohl die Entwicklungs- als auch die Lauf-

zeiteigenschaften der Systeme abbilden. Der Vergleich erfolgt auf Basis objektiv messbarer

Kriterien in mehreren Kategorien:

3.2.1 Buildzeit

Die Buildzeit beschreibt die Dauer, die benötigt wird, um aus dem Quellcode ein lauffähiges

Artefakt zu erzeugen (z. B. JAR-Datei oder natives Binary bei Quarkus). Dabei werden sowohl

die JVM-Buildzeit als auch – im Fall von Quarkus – die Native-Image-Buildzeit betrachtet.

Ziel: Bewertung der Effizienz im Entwicklungsprozess und der CI/CD-Tauglichkeit.

3.2.2 Startzeit

Die Startzeit misst die Dauer vom Start des Containers (z. B. via docker run) bis zur vollstän-

digen Einsatzbereitschaft des jeweiligen Services. Diese Metrik ist besonders relevant für ska-

lierende und kurzlebige Dienste in Cloud-Umgebungen (z. B. beim Serverless Computing oder

Auto-Scaling).

Ziel: Analyse des Potenzials für schnelle Bereitstellung und elastisches Skalieren.

3.2.3 Imagegröße

Hier wird die Größe des finalen Container-Images gemessen. Kleinere Images sind vorteilhaft

beim Deployment, insbesondere in CI/CD-Pipelines und bei der Übertragung über Netzwerke.

Ziel: Bewertung der Portabilität und Deployment-Effizienz.

Methodik

23

 Abbildung 8: Vergleichskriterien und Metriken

3.2.4 Antwortzeit (Latenz)

Die Antwortzeit gibt an, wie lange ein Service benötigt, um eine HTTP-Anfrage zu verarbeiten

und eine Antwort zurückzugeben. Diese wird unter kontrollierter Last gemessen und spiegelt

die Reaktionsfähigkeit der Anwendung wider.

Ziel: Beurteilung der Interaktivität und Benutzerfreundlichkeit unter realistischen Bedingun-

gen.

3.2.5 Durchsatz (Requests pro Sekunde)

Der Durchsatz zeigt, wie viele Anfragen ein Service pro Sekunde verarbeiten kann. Je höher

der Wert, desto leistungsfähiger ist die Anwendung unter hoher Last.

Ziel: Bewertung der Effizienz bei gleichzeitigen Zugriffen und im Dauerbetrieb.

Methodik

24

3.2.6 Ressourcenverbrauch

Hier werden der CPU-Verbrauch und der RAM-Verbrauch sowohl im Leerlauf als auch unter

Last betrachtet. Diese Werte werden mithilfe von Monitoring-Tools wie Docker Stats oder

Prometheus erhoben.

Ziel: Vergleich der Ressourceneffizienz beider Frameworks bei gleichem Anwendungsum-

fang.

3.2.7 Skalierbarkeit

Die Skalierbarkeit beschreibt, wie gut die Frameworks auf horizontale Skalierung reagieren,

d. h. wie sie sich verhalten, wenn mehrere Instanzen gestartet und Last verteilt wird. Dabei wird

insbesondere auf die Anwortzeit-, Durchsatz- und Ressourcennutzungsentwicklung bei stei-

gender Instanzzahl geachtet.

Ziel: Einschätzung der Eignung für dynamische Cloud-Umgebungen.

3.3 Versuchsaufbau (Testumgebung)

Zur Durchführung der vergleichenden Analyse von Quarkus und Spring Boot wurde eine stan-

dardisierte Testumgebung auf einem dedizierten Entwicklungssystem eingerichtet. Ziel war es,

eine kontrollierte und reproduzierbare Umgebung zu schaffen, in der beide Frameworks unter

identischen Bedingungen evaluiert werden können.

Die Experimente wurden auf einem lokalen Rechner mit folgenden Hardware- und Software-

konfigurationen durchgeführt:

• Betriebssystem: Microsoft Windows 10 Pro (Version 10.0.19045, Build 19045)

• Prozessor: Intel® Core™ i5-6600K CPU @ 3.50 GHz

• Arbeitsspeicher: 16 GB RAM

• Systemtyp: x64-basierter PC

Methodik

25

• Java-Version: JDK 23, ergänzt um GraalVM 23.0 für native Builds mit Quarkus

• Build-Werkzeug: Apache Maven (Projektverwaltung und Abhängigkeitsmanage-

ment)

Zur Containerisierung der Microservices wurde Docker Desktop (Version 4.38.0) eingesetzt.

Jeder Service – also der Offer-, Store- und User-Service – wurde als eigenständiger Docker-

Container mit eigenem Image ausgeführt. Die zugehörigen SQLite-Datenbanken wurden direkt

über Maven-Abhängigkeiten eingebunden und pro Service lokal instanziiert.

Für die Orchestrierung der Container sowie das Service-Routing kam Docker Compose in

Kombination mit Traefik als Reverse Proxy zum Einsatz. Um die horizontale Skalierbarkeit

in realistischen Bedingungen zu simulieren, wurde zusätzlich Docker Swarm zur Steuerung

mehrerer Service-Instanzen verwendet.

Die Überwachung und Analyse des Ressourcenverbrauchs (RAM, CPU) erfolgte über die

Kombination von Prometheus, Grafana und cAdvisor, wobei alle drei Tools als Docker-Con-

tainer (jeweils mit dem latest-Tag) betrieben wurden.

Zur Durchführung der Lasttests wurde das Tool Apache JMeter (Version 5.6.3) auf dem Host-

System ausgeführt, um gezielt HTTP-Anfragen an die jeweiligen Microservices zu senden und

deren Antwortzeiten sowie Durchsatz zu messen.

Methodik

26

Die gesamte Testinfrastruktur wurde so konzipiert, dass sie vollständig isoliert und unabhängig

vom Entwicklungssystem operieren kann, wodurch eine hohe Aussagekraft und Reproduzier-

barkeit der Ergebnisse gewährleistet ist.

Abbildung 9: Software und Hardware der Testumgebung

Methodik

27

3.4 Testdurchführung (Testplan)

Die Durchführung der Lasttests erfolgte anhand dreier unterschiedlicher Testpläne, die mit

Apache JMeter realisiert wurden. Die Testpläne variieren hinsichtlich der Anzahl paralleler

Nutzer (Threads), der verwendeten Request-Typen (GET- und POST-Anfragen), sowie der In-

tensität und Dauer der Belastung.

Im ersten Testplan wurden insgesamt 105 parallele Threads eingesetzt, bestehend aus 100

GET-Anfragen auf die Ressource /offers (6000 Requests pro Minute) und 5 parallelen POST-

Anfragen auf /stores (300 Requests pro Minute). Die Dauer dieses Szenarios betrug 300 Se-

kunden bei einer Ramp-up-Zeit von 10 Sekunden.

Der zweite Testplan umfasste insgesamt 806 parallele Threads, verteilt auf vier Thread-Grup-

pen mit unterschiedlichen Anfragetypen und Durchsatzraten (GET /offers und /stores je 24.000

Requests pro Minute, POST /stores 60 Requests pro Minute, POST /offers 300 Requests pro

Minute). Der Test wurde über einen Zeitraum von 300 Sekunden durchgeführt, mit einer

Ramp-up-Zeit von 10 Sekunden. Zudem wurde dieser Test nach einer horizontalen Skalierung

auf je drei Instanzen der Microservices ausgeführt.

Im dritten Testplan wurden 2070 parallele Threads verwendet, ebenfalls aufgeteilt in vier

Thread-Gruppen mit deutlich höherer Last (GET-Anfragen je 60.000 Requests pro Minute,

POST /stores 1.200 Requests pro Minute, POST /offers 3.000 Requests pro Minute). Die Test-

dauer betrug erneut 300 Sekunden mit einer Ramp-up-Zeit von 10 Sekunden. Wie beim zwei-

ten Testplan erfolgte die Durchführung nach horizontaler Skalierung auf jeweils drei Replikate

der Offer- und Store-Services, um das Verhalten der Frameworks bei intensiver Belastung und

mehreren Service-Instanzen realistisch abzubilden.

Die detaillierte Übersicht zu den verwendeten Testplänen und deren spezifischen Konfigurati-

onen ist in Tabelle 3 dargestellt.

Methodik

28

Test-

plan

Beschreibung der Testszenarien Gleichzeitige

Nutzer

(Threads)

Dauer Ramp-

up

Skalierung

1 Gruppe 1: 100 Threads, GET-Anfragen

auf /offers, Durchsatz: 6.000 Requests pro

Minute

Gruppe 2: 5 Threads, POST-Anfragen

auf /stores, Durchsatz: 300 Requests pro

Minute

105 Threads

insgesamt

(100 GET + 5

POST)

300 s 10 s Nein

2 Gruppe 1: 400 Threads, GET /offers,

24.000 req/min

Gruppe 2: 400 Threads, GET /stores,

24.000 req/min

Gruppe 3: 1 Thread, POST /stores, 60

req/min

Gruppe 4: 5 Threads, POST /offers, 300

req/min

806 Threads

insgesamt

(400 GET +

400 GET + 1

POST + 5

POST)

300 s 10 s Ja (je 3 In-

stanzen von

Offer &

Store)

3 Gruppe 1: 1000 Threads, GET /offers,

60.000 req/min

Gruppe 2: 1000 Threads, GET /stores,

60.000 req/min

Gruppe 3: 20 Threads, POST /stores,

1.200 req/min

Gruppe 4: 50 Threads, POST /offers,

3.000 req/min

2070 Threads

insgesamt

(1000 GET +

1000 GET + 20

POST + 50

POST)

300 s 10 s Ja (je 3 In-

stanzen von

Offer &

Store)

Tabelle 3: Übersicht der Testpläne für die Lasttests

Implementierung

29

4 Implementierung

In diesem Kapitel wird die konkrete Umsetzung der Beispielanwendung für das Promotion-

Management-System vorgestellt, welche als Grundlage für den Vergleich zwischen Quarkus

und Spring Boot dient. Die Anwendung besteht aus mehreren Microservices, die typische

Funktionen wie Angebotsverwaltung, Store-Management und Benutzerverwaltung abbilden.

Ziel war es, eine identische fachliche Funktionalität mit beiden Frameworks zu realisieren, um

eine objektive Vergleichbarkeit zu ermöglichen. Es wird zunächst auf den fachlichen und tech-

nischen Kontext eingegangen, anschließend die Architektur der Anwendung beschrieben und

abschließend exemplarisch ein Prozessablauf zur Nutzung des Systems erläutert.

4.1 Beschreibung des Promotion-Management-Systems

4.1.1 Kurze Einführung in die Domäne:

• Das entwickelte Promotion-Management-System dient zur Verwaltung und Anzeige

von Angeboten in verschiedenen Läden.

• Benutzer können aktuelle Aktionen einsehen, während Ladenbesitzer neue Angebote

erstellen und verwalten.

Implementierung

30

• Administratoren wiederum sind in der Lage, neue Stores hinzuzufügen oder beste-

hende zu pflegen.

4.1.2 Begründung für die Auswahl als Vergleichssystem:

Die Anwendung eignet sich ideal für die Forschungsfrage, da sie typische Merkmale einer

Microservice-Architektur aufweist:

• mehrere eigenständige Services (User, Store, Offer),

• REST-Schnittstellen,

• Datenpersistenz mit eigenen Datenbanken,

• realistische Geschäftsprozesse

Abbildung 10: Promotion-Management-System Workflow

Implementierung

31

4.2 Kontextsicht des Systems

4.2.1 Fachliche Kontextsicht:

Abbildung 11: Fachliche Kontextsicht

Implementierung

32

4.2.2 Technische Kontextsicht:

4.3 Bausteinsicht

Die Abbildung 13 zeigt die Bausteinsicht des entwickelten Promotion-Management-Systems.

Dabei handelt es sich um eine klassische mehrschichtige Architektur, die in allen drei Micro-

services – Store, Offer und User – einheitlich umgesetzt wurde, sowohl in der Quarkus- als

auch in der Spring Boot-Variante.

Die Architektur gliedert sich in vier vertikale Säulen (je Service) und vier horizontale Schich-

ten:

• Die Controller-Schicht bildet die REST-Schnittstelle nach außen und verarbeitet

HTTP-Anfragen.

• Die Service-Schicht enthält die Geschäftslogik und dient als Vermittler zwischen

Controller und Datenzugriff.

• Die Repository-Schicht kapselt den Datenzugriff auf die persistente SQLite-Daten-

bank unter Verwendung von Panache (Quarkus) bzw. Spring Data JPA.

Abbildung 12: Technische Kontextsicht

Implementierung

33

• Die unterste Schicht besteht aus separaten SQLite-Datenbanken, die jedem Micro-

service exklusiv zugeordnet sind.

Abbildung 13: Bausteinsicht des Promotion-Management-Systems

Implementierung

34

4.4 Laufzeitsicht

Die Abbildung 14 stellt eine Laufzeitsicht des Promotion-Management-Systems dar und ver-

anschaulicht den Ablauf des Prozesses „Angebot hinzufügen“ aus Sicht eines Ladenbesitzers.

Der Ablauf beginnt mit einer POST-Anfrage an den API-Gateway, die ein neues Angebot mit

Store-ID, Produkt und Preis enthält. Der Offer-Service leitet die Anfrage weiter, ruft jedoch

zunächst den Store-Service auf, um die Gültigkeit der angegebenen Store-ID zu prüfen. Dazu

erfolgt eine GET-Anfrage an den Store-Service, der wiederum per SQL-Query die zugehörige

Store-DB befragt.

Wenn die Store-ID gültig ist, antwortet der Store-Service mit HTTP 200, woraufhin der Offer-

Service das Angebot in der eigenen Datenbank speichert (INSERT). Bei Erfolg wird HTTP

201 Created zurückgegeben, andernfalls – wenn der Store nicht gefunden wurde – ein HTTP

400 Bad Request.

Begleitend wird der Ablauf von Prometheus überwacht, insbesondere im Hinblick auf CPU-

und RAM-Verbrauch.

Abbildung 14: Laufzeitsicht Beispielprozess (Angebot hinzufügen)

35

5 Analyse, Vergleich und Bewertung der Er-

gebnisse

In diesem Kapitel werden die im Rahmen der Tests gewonnenen Ergebnisse systematisch dar-

gestellt, verglichen und bewertet. Der Fokus liegt dabei auf zentralen Leistungsaspekten wie

Startzeit, Antwortzeit, Durchsatz, Ressourcenverbrauch und Skalierbarkeit der beiden Frame-

works Quarkus und Spring Boot. Anhand praxisnaher Testpläne wurden die Services in ver-

schiedenen Lastszenarien analysiert – sowohl im Einzelbetrieb als auch in skalierter Ausfüh-

rung. Die Messergebnisse werden in Form von Tabellen und Diagrammen aufbereitet und kri-

tisch hinsichtlich ihrer Aussagekraft und Relevanz für reale Anwendungsszenarien reflektiert.

Ziel ist es, fundierte Aussagen über die Effizienz und Eignung beider Frameworks für Cloud-

native Microservice-Architekturen zu treffen.

5.1 Vergleich grundlegender Metriken (Store-Service)

In diesem Abschnitt wird der Store-Service exemplarisch herangezogen, um zentrale Basis-

metriken zwischen den Frameworks Quarkus und Spring Boot zu vergleichen. Der Store-Ser-

vice stellt in beiden Varianten die identischen Funktionen zur Verfügung und eignet sich daher

ideal für eine objektive Gegenüberstellung. Im Fokus stehen die Buildzeit, die Startzeit sowie

die Größe des resultierenden Docker-Images im JVM- und Native-Modus. Die folgenden Dia-

gramme veranschaulichen die jeweiligen Unterschiede.

5.1.1 Buildzeit-Vergleich

Die Abbildung 15 zeigt deutlich, dass der Buildprozess im Native-Modus bei beiden Frame-

works deutlich mehr Zeit beansprucht als im JVM-Modus. Spring Boot (Native) benötigt mit

333,6 Sekunden am längsten, während Quarkus (Native) mit 204 Sekunden etwas schneller

Analyse, Vergleich und Bewertung der Ergebnisse

36

abschneidet. Im JVM-Modus liegen beide Frameworks eng beieinander (Quarkus: 14,68 s,

Spring Boot: 17,55 s).

Die Native-Builds sind wesentlich zeitintensiver – Quarkus jedoch tendenziell effizienter als

Spring Boot.

5.1.2 Startzeit-Vergleich

Beim Vergleich der Startzeiten in Abbildung 16 zeigt sich der größte Unterschied: Quarkus

(Native) startet mit nur 0,26 Sekunden extrem schnell, Spring Boot (Native) braucht mit 1,88

Sekunden vergleichsweise mehr Zeit. Im JVM-Modus fällt Spring Boot (22,37 s) deutlich zu-

rück gegenüber Quarkus (5,85 s).

Abbildung 15: Buildzeit-Vergleich (Store-Service)

Analyse, Vergleich und Bewertung der Ergebnisse

37

 Abbildung 16: Startzeit-Vergleich (Store-Service)

Quarkus überzeugt vor allem durch extrem schnelle Startzeiten im Native-Modus, was beson-

ders für Cloud-Umgebungen (z. B. Serverless) relevant ist.

5.1.3 Imagegröße-Vergleich

Beim Vergleich der Docker-Image-Größen in Abbdilung 17 zeigt sich, dass beide Frameworks

im Native-Modus erheblich kleinere Images erzeugen (Quarkus: 188 MB, Spring Boot: 196,25

MB) im Vergleich zum JVM-Modus (Quarkus: 477,31 MB, Spring Boot: 515,96 MB).

Analyse, Vergleich und Bewertung der Ergebnisse

38

 Abbildung 17: Imagegröße-Vergleich (Store-Service)

Native-Images sind erheblich kompakter. Quarkus (Native) erzielt hier den besten Wert und

spart gegenüber Spring Boot (JVM) mehr als 60 %.

5.2 Performanzvergleich

In diesem Unterkapitel werden die Ergebnisse der durch Apache JMeter simulierten Lasttests

für Quarkus und Spring Boot im Native-Modus systematisch analysiert. Ziel ist es, die Lauf-

zeiteffizienz beider Frameworks unter realitätsnahen Belastungsszenarien zu bewerten. Die

Testpläne wurden so konzipiert, dass typische Anwendungsmuster eines Promotion-Manage-

ment-Systems mit verschiedenen Anfragearten und -frequenzen abgebildet werden. Neben der

reinen Antwortzeit (Response Time) werden auch Metriken wie Durchsatz (Throughput) und

Fehlerquote betrachtet. Die Ergebnisse bieten eine Grundlage zur Beurteilung, wie beide

Frameworks auf steigende Nutzerlast reagieren und welche Leistungsreserven sie unter hoher

Auslastung aufweisen.

Analyse, Vergleich und Bewertung der Ergebnisse

39

5.2.1 Anzahl der Samples

Die Anzahl der verarbeiteten Requests, auch als Samples bezeichnet, liefert einen wichtigen

Anhaltspunkt für die tatsächliche Last, die während der Tests auf das System ausgeübt wurde.

In Tabelle 4 ist die Gesamtzahl der HTTP-Anfragen aufgeführt, die im Rahmen der drei defi-

nierten Testpläne durch die Microservices verarbeitet wurden. Dabei wurden jeweils sowohl

der Spring-Boot- als auch der Quarkus-Dienst im Native-Modus ausgeführt. Jeder Testplan

hatte eine feste Dauer von fünf Minuten, sodass die Anzahl der Samples im Wesentlichen durch

die jeweilige Konfiguration der gleichzeitigen Benutzer, die Anfragetypen sowie die festge-

legte Anfragerate bestimmt wurde.

Testplan Spring Boot Quarkus

1 31.591 31.605

2 190.986 195.359

3 116.784 127.962

Tabelle 4: Anzahl der verarbeiteten Anfragen

Wie die Tabelle zeigt, sind die Abweichungen zwischen den beiden Frameworks in den Test-

plänen jeweils gering, was auf eine vergleichbare Testkonfiguration und stabile Antwortverar-

beitung in beiden Fällen schließen lässt. Besonders in Testplan 2 und 3, die eine höhere paral-

lele Last aufwiesen, konnte Quarkus insgesamt mehr Anfragen bedienen, was auf eine leicht

bessere Durchsatzfähigkeit hindeuten könnte.

5.2.2 Antwortzeit (Response Time)

Die Abbildung 18 zeigt die durchschnittliche Antwortzeit (Average), den Median sowie die

95%-Line für drei aufeinander aufbauende Lastszenarien (Testpläne 1–3). Die grünen Balken

Analyse, Vergleich und Bewertung der Ergebnisse

40

repräsentieren Spring Boot (Native-Modus), während die blauen Balken die entsprechenden

Metriken für Quarkus (Native-Modus) abbilden.

Abbildung 18: Vergleich typischer Antwortzeiten zwischen Quarkus und Spring Boot

Bereits im ersten Testplan mit moderater Last ist ein geringer Vorteil für Quarkus zu erkennen.

Dieser Trend verstärkt sich unter zunehmender Belastung (Testpläne 2 und 3): Sowohl Median

als auch 95%-Perzentil fallen bei Quarkus deutlich geringer aus, was auf eine stabilere Ant-

wortzeit selbst bei hoher Last schließen lässt. Besonders auffällig ist, dass Quarkus im dritten

Testplan – trotz mehr als 127.000 verarbeiteter Anfragen – konsistent niedrigere Werte auf-

weist.

Die logarithmische Skalierung der Y-Achse verdeutlicht die Unterschiede im höheren Bereich

der Antwortzeiten. Insgesamt deuten die Ergebnisse darauf hin, dass Quarkus im Native-Mo-

dus insbesondere bei hoher Last reaktionsschneller bleibt und geringere Ausreißer aufweist als

Spring Boot.

Analyse, Vergleich und Bewertung der Ergebnisse

41

Abbildung 19: Minimale und maximale Antwortzeiten (ms) unter Last

Das Diagramm in der Abbildung 19 veranschaulicht die minimale und maximale Antwortzeit

(in Millisekunden) der getesteten Microservices unter den drei definierten Lastszenarien

Auffällig ist, dass die minimalen Antwortzeiten bei beiden Frameworks konstant sehr niedrig

bleiben – im Bereich von 1 bis 3 Millisekunden. Bei der maximalen Antwortzeit hingegen

zeigen sich deutliche Unterschiede: Während Quarkus in allen Testplänen leicht geringere Ma-

ximalwerte erzielt, steigt insbesondere bei Spring Boot unter starker Last (Testplan 3) die ma-

ximale Antwortzeit auf über 25 Sekunden an. Dies weist auf eine geringere Stabilität unter

extremer Last hin.

Die Ergebnisse unterstreichen somit die höhere Konstanz von Quarkus bei gleichzeitigem Last-

anstieg und belegen ein robusteres Antwortverhalten in Bezug auf Ausreißer.

5.2.3 Durchsatz und Stabilität

Ein zentraler Aspekt bei der Bewertung der Performance eines Frameworks unter Lastbedin-

gungen ist der erzielte Durchsatz, gemessen in Anfragen pro Sekunde (req/s).

Analyse, Vergleich und Bewertung der Ergebnisse

42

In Abbildung 20 ist der Vergleich der maximal erzielten Durchsatzwerte für Quarkus und

Spring Boot zu sehen. Dabei wird deutlich, dass beide Frameworks bei niedriger Last (Testplan

1) nahezu identische Werte von etwa 105 req/s erreichen. Mit zunehmender Last (Testpläne 2

und 3) zeigt sich, dass Quarkus in Testplan 2 leicht geringere Durchsatzwerte als Spring Boot

erreicht (629,9 vs. 645 req/s), während es in Testplan 3 mit 369,4 req/s etwas hinter dem Wert

von Spring Boot (405,1 req/s) liegt.

Abbildung 20: Durchsatzvergleich unter Lastbedingungen

Trotz dieser Abweichungen bleibt der Gesamtdurchsatz bei beiden Frameworks in einem ver-

gleichbaren Bereich. Hinsichtlich der Stabilität zeigen sich insgesamt sehr geringe Fehlerraten.

In den meisten Testdurchläufen lag die Fehlerquote bei 0 %, was auf eine robuste Verarbeitung

der Anfragen hinweist. Eine Ausnahme bildet Testplan 3 mit Quarkus, wo eine Fehlerquote

von 0,21 % verzeichnet wurde (vgl. Abbildung 21 – JMeter Summary Report). Diese Abwei-

chung kann auf die höhere gleichzeitige Last und die Post-Anfragen zurückgeführt werden,

welche in diesem Szenario besonders ressourcenintensiv sind.

Der minimale Unterschied in der Fehlerrate bei Quarkus im dritten Testplan bleibt im akzep-

tablen Bereich und mindert die Gesamtstabilität der Anwendung nicht wesentlich.

Analyse, Vergleich und Bewertung der Ergebnisse

43

Abbildung 21: JMeter - Summary-Report Testplan 3 Quarkus

5.3 Ressourcenverbrauch

Zur ganzheitlichen Bewertung der Frameworks unter Lastbedingungen wird im Folgenden der

Ressourcenverbrauch analysiert. Dabei liegt der Fokus auf der CPU-Auslastung und dem Spei-

cherbedarf der Microservices im Native‑Modus über die drei definierten Lastszenarien (Test-

pläne 1–3). Die Daten wurden mit cAdvisor und Grafana erhoben; für jede Testlaufdauer von

fünf Minuten sind der durchschnittliche (Mean) sowie der maximale (Max) Verbrauch ermittelt

worden. Diese Kennzahlen geben Aufschluss darüber, wie effizient Quarkus und Spring Boot

ihre Rechen- und Speicherressourcen nutzen und wie stabil sie unter zunehmender Last ope-

rieren.

5.3.1 CPU-Verbrauch

Abbildung 22 zeigt die gemessene CPU‑Auslastung der beiden Microservices (Offer‑Service

und Store‑Service) in den drei Testplänen. Die grünen Balken repräsentieren jeweils die Er-

gebnisse von Spring Boot (Native‑Modus), die blauen Balken die von Quarkus (Native‑Mo-

dus). Pro Testplan ist jeweils der Mean‑Wert (mittlere Auslastung über die 300‑Sekunden‑Pe-

riode) sowie der Max‑Wert (Spitzenlast) dargestellt.

➢ Testplan 1 (leichte Last):

Spring Boot erreicht im Offer‑Service eine mittlere CPU‑Auslastung von 5,45 % und eine ma-

ximale von 11,30 %, während Quarkus mit 4,64 % (Mean) bzw. 7,44 % (Max) noch etwas

sparsamer agiert. Im Store‑Service liegen beide Frameworks sehr niedrig (Spring Boot:

0,86 %/0,90 %; Quarkus: 0,54 %/0,45 %).

Analyse, Vergleich und Bewertung der Ergebnisse

44

➢ Testplan 2 (mittlere Last):

Unter erhöhter Belastung klettert die Auslastung deutlich: Beim Offer‑Service erreicht

Spring Boot im Mittel 59,5 % CPU mit Spitzen von 130 %, Quarkus liegt hier bei 69,5 % Mean

und 126 % Max. Der Store‑Service beansprucht im Testplan 2 im Mittel 31,6 % (Spring Boot)

bzw. 38,9 % (Quarkus) mit Maximalwerten von 90,3 % bzw. 64 %.

➢ Testplan 3 (hohe Last):

Auch im stärksten Szenario bleibt die Skalierung beider Frameworks funktionsfähig: Die mitt-

lere CPU‑Last im Offer‑Service beträgt 56,4 % (Spring Boot) und 65,3 % (Quarkus), mit Spit-

zen von 123 % bzw. 121 %. Beim Store‑Service sind es 56,2 %/61,3 % (Mean) und

116 %/113 % (Max) für Spring Boot bzw. Quarkus.

Abbildung 22: CPU-Verbrauchsvergleich

Quarkus zeigt bei leichter Last eine geringere CPU‑Bindung, schlägt sich aber auch in an-

spruchsvolleren Szenarien gut und bleibt nahe am Verhalten von Spring Boot. Insbesondere

die etwas niedrigeren Maximalwerte im Offer‑Service deuten auf eine stabile Ressourcenver-

waltung hin. Insgesamt lassen sich keine dramatischen Vorteile eines Frameworks gegenüber

Analyse, Vergleich und Bewertung der Ergebnisse

45

dem anderen in Bezug auf CPU‑Effizienz ausmachen, jedoch demonstriert Quarkus in Test-

plan 1 eine leicht bessere Sparsamkeit.

5.3.2 Speicherverbrauch

Abbildung X zeigt den RAM‑Verbrauch (Mean & Max) der beiden Microservices (Offer‑Ser-

vice und Store‑Service) unter den drei definierten Lastszenarien. Die grünen Balken stehen für

Spring Boot (Native‑Modus), die blauen Balken für Quarkus (Native‑Modus).

➢ Testplan 1 (leichte Last):

Im Offer‑Service liegt der durchschnittliche RAM‑Verbrauch bei etwa 76 MiB (Spring Boot)

gegenüber 68 MiB (Quarkus). Die Maximalwerte betragen 110 MiB für Spring Boot und

95 MiB für Quarkus.

Im Store‑Service ist der Mittelwert deutlich niedriger: 106 MiB (Spring Boot) versus 56 MiB

(Quarkus), mit Spitzen von 109 MiB beziehungsweise 66 MiB.

➢ Testplan 2 (mittlere Last):

Unter moderater Belastung erhöht sich der RAM‑Bedarf: Im Offer‑Service verbraucht

Spring Boot durchschnittlich 488 MiB und erreicht Maxima von 654 MiB, Quarkus liegt mit

394 MiB (Mean) und 488 MiB (Max) etwas darunter.

Im Store‑Service steigen die Werte auf 187 MiB (Mean) und 349 MiB (Max) für Spring Boot

sowie 158 MiB (Mean) und 301 MiB (Max) für Quarkus.

➢ Testplan 3 (hohe Last):

Bei maximaler Auslastung erreicht der Offer‑Service Spitzenverbräuche von 783 MiB (Mean)

und 790 MiB (Max) mit Spring Boot. Quarkus weist mit 506 MiB (Mean) und 521 MiB (Max)

einen leicht höheren Durchschnittsverbrauch, aber vergleichbare Maximalwerte auf.

Der Store‑Service konsolidiert sich auf 476 MiB/689 MiB (Mean/Max) für Spring Boot und

bleibt bei 400 MiB für beide Kennzahlen mit Quarkus.

Analyse, Vergleich und Bewertung der Ergebnisse

46

Abbildung 23: RAM-Verbrauch

Der RAM‑Verbrauch steigt mit zunehmender Last erwartungsgemäß kontinuierlich an. In allen

Szenarien verwendet Quarkus im Mittel und bei Spitzenlasten weniger Arbeitsspeicher als

Spring Boot, mit Ausnahme des Offer‑Services im Testplan 3, wo Quarkus einen geringfügig

höheren mittleren Verbrauch aufweist. Insgesamt demonstriert Quarkus eine tendenziell spar-

samere Speicherverwaltung, was insbesondere für Umgebungen mit begrenzten Ressourcen

von Vorteil sein kann.

5.4 Skalierung

Zur Untersuchung der Skalierbarkeit wurden die Services im Native-Modus sowohl mit Quar-

kus als auch mit Spring Boot in einem Docker-Swarm-Cluster betrieben. Dabei wurde Testplan

2 und Testplan 3 jeweils auf drei Replikate des Store-Service und des Offer-Service hochge-

fahren. Im Folgenden wird die Effizienz dieser Skalierung sowie der resultierende Ressourcen-

verbrauch beurteilt.

Analyse, Vergleich und Bewertung der Ergebnisse

47

5.4.1 Anzahl der Samples nach der Skalierung

Abbildung 24 vergleicht die Gesamtzahl der verarbeiteten Anfragen („Samples“) in Testplan 2

und Testplan 3, jeweils einmal mit einem einzelnen Service-Replikat und einmal mit drei

gleichzeitigen Repliken im Docker-Swarm. Die grünen Balken repräsentieren dabei die Ergeb-

nisse für Spring Boot, die blauen Balken für Quarkus; jeder Testlauf hatte eine feste Dauer von

fünf Minuten.

➢ Testplan 2:

• Mit einem Replikat wurden 190 986 (Spring Boot) respektive 195 359 (Quarkus)

Samples verarbeitet.

• Nach Skalierung auf drei Rep­likate stieg die Anzahl auf 233 572 (Spring Boot) bzw.

239 025 (Quarkus).

• Die Speedup-Kennzahl (Samples-Ratio) beträgt 1,22× für beide Frameworks und zeigt

damit eine nahezu lineare Erhöhung des verarbeiteten Anfragevolumens.

➢ Testplan 3:

• Einzeln schafften die Dienste 116 784 (Spring Boot) bzw. 127 962 (Quarkus) Samples.

• Mit drei Repliken erhöhte sich das Volumen auf 178 695 (Spring Boot) und 208 397

(Quarkus).

• Hier ergeben sich Speedups von 1,53× für Spring Boot und 1,63× für Quarkus, was

auf eine etwas bessere Skalierungseffizienz von Quarkus unter extrem hoher Last hin-

weist.

Analyse, Vergleich und Bewertung der Ergebnisse

48

Abbildung 24: Anzahl der Samples nach der Skalierung

Diese Ergebnisse belegen, dass beide Frameworks in der Lage sind, durch horizontale Repli-

kation die verarbeitete Anfragezahl signifikant zu steigern. Quarkus zeigt dabei in Testplan 3

einen leicht höheren Skalierungsgewinn.

5.4.2 Antwortzeit nach der Skalierung

In Abbildung 25 sind die Speedup-Faktoren dargestellt, die sich durch den Betrieb mit drei

Replikaten im Vergleich zu einem einzelnen Service-Pod ergeben. Als Kennzahl wurde jeweils

das Verhältnis

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
Antwortzeit bei 1 Replica

Antwortzeit bei 3 Replicas

berechnet.

Ergebnisse im Detail:

➢ Durchschnittliche Antwortzeit (Average):

• Testplan 2 erreicht Spring Boot einen Speedup von ≈ 3,66×, Quarkus sogar ≈ 6,85×.

• Testplan 3 liegen die Faktoren bei ≈ 1,62× (Spring Boot) und ≈ 1,80× (Quarkus).

Analyse, Vergleich und Bewertung der Ergebnisse

49

• Dieser Rückgang des Speedups in Testplan 3 illustriert, dass die Skalierung bei sehr

hoher Last weniger lineare Gewinne liefert.

➢ Median der Antwortzeit:

• Testplan 2: Speedup von 5,36× (Spring Boot) und 2,71× (Quarkus).

• Testplan 3: Speedup von 2,31× (Spring Boot) und 3,04× (Quarkus).

• Quarkus erzielt im Median bei extremer Last (Testplan 3) einen höheren Skalierungs-

gewinn, während Spring Boot im moderaten Szenario (Testplan 2) stärker profitiert.

➢ 95%-Perzentil:

• Testplan 2: 2,46× für Spring Boot versus 8,23× für Quarkus – deutliche Verbesserung

der Worst-Case-Antwortzeiten bei Quarkus.

• Testplan 3: beide Frameworks liegen knapp über 1×, was zeigt, dass Ausreißerzeiten

nur geringfügig durch Replikation reduziert werden.

➢ Min und Max:

• Die Speedup-Faktoren für Min und Max sind jeweils 1×, da sich die extremsten ein-

zelnen Antwortzeitwerte durch horizontale Skalierung nicht verändern.

Abbildung 25: Speedup der Antwortzeiten nach der Skalierung

Analyse, Vergleich und Bewertung der Ergebnisse

50

Die Ergebnisse zeigen, dass horizontale Skalierung die mittleren und besonders die perzentilen

Antwortzeiten merklich verbessert. Quarkus zeigt in Testplan 2 einen besonders hohen Gewinn

im Durchschnitt und im 95%-Perzentil, während Spring Boot im Median des moderaten Sze-

narios leicht stärker skaliert. In Testplan 3 – der im Vergleich zu Testplan 2 deutlich mehr

Schreib­operationen (POST-Anfragen) enthält – fällt der Skalierungs­gewinn beider Frame-

works spürbar ab und nähert sich wieder einem Speedup von 1× an. Diese Abschwächung ist

vor allem auf die erhöhten Datenbank-Synchronisationskosten und Schreib-Overheads zurück-

zuführen. Quarkus erreicht jedoch auch in diesem Szenario etwas konsistentere Verbesserun-

gen der Antwortzeiten durch zusätzliche Replikate als Spring Boot.

5.4.3 Durchsatz und Fehlerquote nach der Skalierung

Abbildung X vergleicht für Testplan 2 und 3 jeweils den Durchsatz (req/s), den Speedup sowie

die relative Änderung der Fehlerquote, wenn die Anzahl der Service-Replikate von einem auf

drei erhöht wird. Die hellen Balken stehen für Testplan 2, die dunklen Balken für Testplan 3;

jeweils in Grün für Spring Boot und Blau für Quarkus.

➢ Durchsatz (req/s):

• Testplan 2: Spring Boot wächst von 630 req/s auf 773,8 req/s (Speedup 1,23×), Quar-

kus von 507 req/s auf 792 req/s (ebenfalls 1,23×).

• Testplan 3: Spring Boot steigert sich von 369,4 req/s auf 580,8 req/s (1,57×), Quarkus

von 405,1 req/s auf 674,7 req/s (1,67×).

Dies zeigt, dass beide Frameworks durch Drittelung der Replikate einen deutlich höheren Ge-

samtdurchsatz erzielen, wobei Quarkus in beiden Szenarien bessere Skalierungsgewinne bietet.

➢ Speedup (req/s):

Die Speedup-Faktoren liegen zwischen 1,23× und 1,67× und fallen in Testplan 3 höher aus als

in Testplan 2, da hier mehr POST-Anfragen (Schreib­operationen) abgewickelt werden und

zusätzliche Replikate die Schreib­last effizienter verteilen.

➢ Fehlerquote (relative Änderung):

Analyse, Vergleich und Bewertung der Ergebnisse

51

Für Spring Boot bleibt die Fehlerquote nach Skalierung in beiden Testplänen unverändert auf

0 (Speedup 1×).

Quarkus weist in Testplan 2 ebenfalls keine Veränderung auf (1×), zeigt jedoch in Testplan 3

eine 8,6-fache Zunahme der Fehlerquote (von 0,21% auf 1,81%), was auf erhöhten Synchroni-

sations- und Schreib­overhead unter maximaler Belastung hindeutet.

Abbildung 26: Durchsatz- und Fehlerquotevergleich nach der Skalierung

Die horizontale Skalierung auf drei Replikate führt zu einem signifikanten Durchsatzgewinn

bei beiden Frameworks, mit einem leichten Vorteil für Quarkus in puncto Skalierungseffizienz.

Allerdings zeigt sich bei Quarkus unter extremer Last (Testplan 3) eine deutliche Erhöhung der

Fehlerquote, während Spring Boot hier stabiler bleibt. Dies unterstreicht den Trade-off zwi-

schen maximaler Performance-Steigerung und Ausfallsicherheit unter Höchstlast.

Analyse, Vergleich und Bewertung der Ergebnisse

52

5.4.4 Ressourcenverbrauch nach der Skalierung

Um zu beurteilen, ob sich die horizontale Verteilung der Last auch ressourcenseitig lohnt, wur-

den die mittleren und maximalen CPU- sowie RAM-Verbrauchswerte sämtlicher Replikate pro

Service aufsummiert und mit den Ausgangswerten eines Ein-Replica-Betriebs verglichen.

Die absolute Differenz ergibt sich als

𝛥𝑎𝑏𝑠 = 𝑉1 𝑅𝑒𝑝𝑙𝑖𝑐𝑎 − ∑ 𝑉𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑖

3

𝑖=1
,

die relative Abweichung (in %) als

𝛥𝑟𝑒𝑙 =
𝛥𝑎𝑏𝑠

𝑉1 𝑅𝑒𝑝𝑙𝑖𝑐𝑎
 .

Die folgende Abbildung 27 zeigt die relative Veränderung des Ressourcenverbrauchs (CPU-

und RAM-Nutzung) nach der Skalierung der Dienste auf drei Replikate. Positive Prozent-

werte deuten auf eine Einsparung hin – also eine bessere Ressourcennutzung trotz

Mehrinstanzen. Negative Werte hingegen zeigen einen Mehraufwand, bei dem der Gesamt-

konsum über den des Einzel-Deployments hinausgeht.

Analyse, Vergleich und Bewertung der Ergebnisse

53

Abbildung 27: Relative Änderung des Ressourcenverbrauchs nach Skalierung

➢ CPU-Verbrauch

• Mean CPU % (Offer-Service):

Quarkus erreicht hier in Testplan 2 mit +29,35 % eine deutlich höhere Einsparung als

Spring Boot mit nur +5,55 %.

Auch in Testplan 3 liegt Quarkus mit +9,34 % leicht vor Spring Boot (+21,99 %), wo-

bei die Einsparung bei beiden sinkt.

Analyse, Vergleich und Bewertung der Ergebnisse

54

• Max CPU % (Offer-Service):

Bei den Maximalwerten ist der Unterschied weniger stark ausgeprägt. Spring Boot

schneidet etwas besser ab (bis −6,78 % Mehraufwand bei Quarkus), aber der Unter-

schied bleibt gering.

• Mean CPU % (Store-Service):

In beiden Testplänen zeigt Quarkus eine überlegene Einsparung: +45 % (TP2) und

+9,1 % (TP3), während Spring Boot hier nur +26,3 % (TP2) und +19 % (TP3) erreicht.

• Max CPU % (Store-Service):

Auch hier dominiert Quarkus mit +34 % (TP2) gegenüber +22,26 % bei Spring Boot.

Quarkus nutzt die CPU-Ressourcen nach der Skalierung deutlich effizienter als Spring Boot,

insbesondere bei moderater Last (Testplan 2). In hochbelasteten Szenarien (Testplan 3) sinkt

der Vorteil, bleibt aber messbar.

➢ RAM-Verbrauch

• Mean & Max RAM (Offer-Service und Store-Service):

In allen RAM-Metriken ist ein starker Mehraufwand nach der Skalierung zu beobach-

ten – bei beiden Frameworks.

Besonders auffällig ist jedoch, dass Spring Boot in Testplan 3 im Max RAM Store-

Service eine extrem negative Bilanz aufweist (−166 %), während Quarkus mit −71 %

weniger RAM verschwendet.

Beide Frameworks leiden unter stark erhöhtem Speicherverbrauch bei der Skalierung. Dennoch

ist Quarkus hier minimal effizienter, insbesondere im Vergleich der Maximalwerte. Der Un-

terschied bleibt aber moderat.

Zusammenfassung und Ausblick

55

6 Zusammenfassung und Ausblick

Diese Arbeit hatte das Ziel, die beiden Java-Frameworks Quarkus und Spring Boot im Kontext

einer cloudnativen Microservice-Anwendung vergleichend zu analysieren. Mithilfe eines pra-

xisorientierten Prototyps – dem Promotion-Management-System – wurden zentrale Leistungs-

merkmale wie Startzeit, Buildzeit, Image-Größe, Antwortzeit, Durchsatz, Fehlerquote, Res-

sourcenverbrauch sowie Skalierbarkeit systematisch untersucht. Die Durchführung unter rea-

litätsnahen Lastbedingungen im Native-Modus, ergänzt durch Skalierungsszenarien mittels

Docker Swarm, lieferte dabei aussagekräftige empirische Ergebnisse.

Im Vergleich zeigt sich, dass Quarkus in vielen zentralen Aspekten effizienter arbeitet als

Spring Boot. Besonders bei Startzeit, Image-Größe und Speicherverbrauch konnte Quarkus

durch seine native Kompilierung mit GraalVM signifikante Vorteile erzielen. Auch bei der

horizontalen Skalierung erwies sich Quarkus als tendenziell performanter, wenngleich unter

hoher Last synchronisationsbedingte Fehlerzunahmen beobachtet wurden. Spring Boot hinge-

gen bewährte sich als stabil und zuverlässig, insbesondere in stark belasteten Szenarien mit

komplexeren Schreiboperationen.

Die Ergebnisse legen nahe, dass Quarkus insbesondere für schlanke, cloudnative Anwendun-

gen mit Fokus auf Performance und Skalierbarkeit geeignet ist, während Spring Boot weiterhin

als robuste Allzwecklösung überzeugt, besonders wenn Stabilität und Entwicklerfreundlichkeit

im Vordergrund stehen.

Ausblick

Die durchgeführten Analysen liefern eine fundierte Vergleichsbasis, lassen jedoch auch Raum

für weiterführende Untersuchungen. In zukünftigen Arbeiten könnten beispielsweise weitere

Aspekte wie Entwicklungsaufwand, Fehlertoleranz unter Netzausfallbedingungen, oder die In-

tegration externer Dienste betrachtet werden. Auch eine Langzeitanalyse im produktiven Dau-

erbetrieb sowie der Einsatz in Serverless-Architekturen oder auf Kubernetes bieten Potenzial

für weiterführende Forschung. Zudem wäre ein Vergleich mit anderen modernen Frameworks

Zusammenfassung und Ausblick

56

wie Micronaut oder Helidon denkbar, um die Positionierung von Quarkus und Spring Boot

im weiteren Java-Ökosystem zu schärfen.

Insgesamt trägt diese Arbeit dazu bei, die Wahl geeigneter Frameworks im Cloud-Zeitalter

evidenzbasiert zu unterstützen – ein Aspekt, der angesichts wachsender Systemkomplexität

und gestiegener Anforderungen an Effizienz und Skalierbarkeit zunehmend an Bedeutung ge-

winnt.

57

Literaturverzeichnis

C, M., 2023. Spring Boot vs Quarkus: Performance comparison for hello world case. [Online]

Available at: https://medium.com/deno-the-complete-reference/spring-boot-vs-quarkus-

performance-comparison-for-hello-world-case-e466d3630329

[Zugriff am 13 Februar 2025].

Geeksforgeeks, 2025. Spring - Setter Injection vs Constructor Injection. [Online]

Available at: https://www.geeksforgeeks.org/spring-setter-injection-vs-constructor-injection/

[Zugriff am 22 Januar 2025].

Lagnada), K. (., 2024. Spring vs. Spring Boot: Choosing the Best Java Framework for Your

Project. [Online]

Available at: https://www.kapresoft.com/java/2024/03/06/spring-vs-spring-boot.html

[Zugriff am 02 Febraur 2025].

Minh, N. H., kein Datum Spring Boot version history. [Online]

Available at: https://www.codejava.net/frameworks/spring-boot/spring-boot-version-history

[Zugriff am 01 Feburar 2025].

Mitropolitsky, M., Simion-Constantinescu, A., Kutsarova, V. & Sellik, H., kein Datum Spring

Boot - production-grade Spring-based Applications that you can “just run”. [Online]

Available at: https://se.ewi.tudelft.nl/desosa2019/chapters/spring-boot/

[Zugriff am 02 Februar 2025].

Quarkus, kein Datum Container First. [Online]

Available at: https://quarkus.io/container-first/

[Zugriff am 04 Febraur 2025].

Literaturverzeichnis

58

Quarkus, kein Datum Quarkus Key Features. [Online]

Available at: https://quarkus.io/

[Zugriff am 13 Febraur 2025].

Quarkus, kein Datum Quarkus Releases. [Online]

Available at: https://github.com/quarkusio/quarkus/releases

[Zugriff am 03 Februar 2025].

Spring, kein Datum Web MVC framework. [Online]

Available at: https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-

reference/html/mvc.html

[Zugriff am 22 Januar 2025].

Spring, kein Datum Introduction to the Spring Framework. [Online]

Available at: https://docs.spring.io/spring-framework/docs/4.3.x/spring-framework-

reference/html/overview.html

[Zugriff am 22 Januar 2025].

Spring, kein Datum Spring Framework 1.0 Final Released. [Online]

Available at: https://spring.io/blog/2004/03/24/spring-framework-1-0-final-released

[Zugriff am 20 Januar 2025].

Štefanko, M. & Martiška, J., 2025. Quarkus in Action. s.l.:Red Hat Developer.

Ter, M. S., 2024. Quarkus vs. Micronaut vs. Spring Boot: A Comparative Guide for Java

Developers. [Online]

Available at: https://master-spring-ter.medium.com/quarkus-vs-micronaut-vs-spring-boot-a-

comparative-guide-for-java-developers-8ece4538b883

[Zugriff am 13 Febrauar 2025].

Victor, J., 2023. Spring Framework, History, and Its Structure. [Online]

Available at: https://dev.to/jeanv0/spring-framework-history-and-its-structure-361

[Zugriff am 21 Januar 2025].

Zanetti, E., 2024. Spring Boot and Quarkus: Comparing Performance and Usage. [Online]

Available at: https://medium.com/%40erickzanetti/spring-boot-and-quarkus-comparing-

Literaturverzeichnis

59

performance-and-usage-3610f3dd9719

[Zugriff am 13 Februar 2025].

60

Erklärung zur selbstständigen Bearbeitung einer Abschlussarbeit

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig verfasst

und nur die angegebenen Hilfsmittel benutzt habe. Wörtlich oder dem Sinn nach aus anderen

Werken entnommene Stellen sind unter Angabe der Quellen kenntlich gemacht.

___________________ __________________ _________________________________

Ort Datum Unterschrift im Original

