BACHELORTHESIS
Kosai Alzaeim

Quarkus vs. Spring Boot:
Effizienz und Ressourcen-
verbrauch bei nativen
Builds, Containerisierung
und Skalierbarkeit

FAKULTAT TECHNIK UND INFORMATIK
Department Informatik

Faculty of Computer Science and Engineering
Department Computer Science

HOCHSCHULE FUR ANGEWANDTE
WISSENSCHAFTEN HAMBURG

Hamburg University of Applied Sciences

Kosai Alzaeim

Vergleich von Quarkus und Spring Boot hinsicht-
lich Effizienz und Ressourcenverbrauch bei nati-

ven Builds, Containerisierung und Skalierbarkeit

Bachelorarbeit eingereicht im Rahmen der Bachelorpriifung
im Studiengang Bachelor of Science Angewandte Informatik
am Department Informatik

der Fakultat Technik und Informatik

der Hochschule fir Angewandte Wissenschaften Hamburg

Betreuender Prifer: Prof. Dr. Stefan Sarstedt
Zweitgutachter: Prof. Dr. Lars Hamann

Eingereicht am: 23. April 2025

Kosai Alzaeim

Thema der Arbeit

Vergleich von Quarkus und Spring Boot im Kontext eines Promotion-Management-Systems
Stichworte

Java, Quarkus, Spring Boot, Microservices, Performance, Skalierbarkeit, Ressourcenver-

brauch, Cloudanwendung, Deployment, DevOps
Kurzzusammenfassung

Im Rahmen dieser Bachelorarbeit werden die Java-Frameworks Quarkus und Spring Boot an-
hand eines eigens entwickelten Microservice-basierten Promotion-Management-Systems sys-
tematisch miteinander verglichen. Ziel ist es, Unterschiede hinsichtlich Performance, Ressour-
cenverbrauch und Skalierbarkeit unter realitdtsnahen Lastbedingungen zu identifizieren. Die
Evaluation erfolgt mithilfe von Docker-Containern, Prometheus und Grafana sowie Lasttests
mit Apache JMeter. Die Ergebnisse zeigen, dass Quarkus insbesondere in Bezug auf Startzeit,
CPU- und RAM-Verbrauch Vorteile gegeniiber Spring Boot aufweist, wahrend Spring Boot
unter extremer Last eine etwas hohere Stabilitat zeigt. Die Arbeit bietet somit eine praxisori-
entierte Entscheidungsgrundlage fur die Wahl des geeigneten Frameworks in modernen Cloud-

nativen Anwendungen.

Kosai Alzaeim

Title of Thesis

Comparison of Quarkus and Spring Boot in the Context of a Promotion Management System
Keywords

Quarkus, Spring Boot, Microservices, Performance, Scalability, Resource Usage, Cloud-Ser-

vices, Deployment, DevOps
Abstract

This bachelor thesis presents a systematic comparison of the Java frameworks Quarkus and
Spring Boot using a self-developed microservice-based promotion management system. The
goal is to analyze differences in performance, resource consumption, and scalability under re-
alistic load conditions. The evaluation was conducted using Docker containers, Prometheus
and Grafana monitoring, as well as load testing with Apache JMeter. The results indicate that
Quarkus provides advantages in startup time, CPU and RAM usage, whereas Spring Boot
demonstrates slightly higher stability under extreme load. This work offers a practice-oriented
basis for selecting a suitable framework for modern cloud-native applications.

Inhaltsverzeichnis

INNAITSVEIZEICHNIS. ...c.ei e sttt eesteerae e \
FAN o] o1 [o 18T 0o Sy V/=] @4=] [o] o] - OSSR ROR viii
TabEHENVEIZEICNNIS ..ottt re e X
1 EINIEITUNG .ottt ettt sttt e e nne s 1
11 Motivation und HINTErgrundcceovviiiiiiiieieieeees e 1
1.2 Zielsetzung und FOrSChUNGSTTAGEcveieiiiiiiiieiie e 3
1.3 AUTDAU .o nes 4

2 TheoretisCher HINTErgrundc.ooiiiiiiiieeees e 6
2.1 Yo 720 TSRS 6
211 Historie und ENtWICKIUNG........c.cooviieiiiecc e 6
2.1.2 Architektur und Kernkomponenten..........cccoceeveieieeiieie s 7
2.1.3 Dependency Injection (DI) in SPringccccovveviiiiieiiiece e 8
2.14 Spring MVC — Webentwicklung mit Spring.........ccccevvveviiiiieiesiece e 9

2.2 SPIING BOOL ... e e 10
211 Historie und ENtWICKIUNG..........ccoviiiieiicc e 10
2.1.2 Hauptfunktionen von Spring BOOLcccoceeviiiiiiiieic e 11
213 Vergleich: Spring vs. SPring BOOT ..o 12
214] ST ST 13

2.2 QUATKUS ...ttt st ettt et et e s te e s e besneeaenteeneeneas 14
221 Historie und ENtWICKIUNG.........ccoviiiiiiiiiee e 14
2.2.2 Architektur und Kernkomponenten ..o 15
2.2.3 Hauptmerkmale VON QUAIKUS............cooviiriiieiiieieise s 17

2.3 Empirische Vergleichsstudien zu Quarkus und Spring Boot.............c.ccecevviiennne 18

3 MELNOIK ..o e 21

Fehler! Kein Text mit angegebener Formatvorlage im Dokument.

3.1 Zielsetzung des VErgleiChscvciv e 21
3.2 Vergleichskriterien und MEtHKEN..........cccoviieii i 22
3.2.1 BUITAZEIT ... e 22
3.2.2 SEAMZEIT ... et 22
3.2.3 IMAGEGIOBE ...ttt 22
3.24 ANTWOITZEIE (LAENZ) ..ot 23
3.25 Durchsatz (Requests pro SEKUNTE)ccovieierieiiciieiiise e 23
3.2.6 RESSOUICENVEIDIAUCH ..o s 24
3.2.7 SKalIEIDAIKEIT ... 24
3.3 Versuchsaufbau (TeStUMQGEDUNG)cvvviiiiiiiiie e 24
34 Testdurchflihrung (TeSIPIAN)ccveiviiieicece e 27
O 1101 0] LT 0 =T oY =T U oo SR 29
4.1 Beschreibung des Promotion-Management-SyStemscccccevvevivereniesviesesiennens 29
4.1.1 Kurze Einflhrung in die DOMANE:cccciviiiieiecee e 29
4.1.2 Begrundung fur die Auswahl als Vergleichssystem:........c.coocevevevveveiecinenn. 30
4.2 KONtEXISICNE 0ES SYSIEMSecviiveciic et st ra e 31
421 Fachliche KONEXISICNL:cocoiiiieecc e 31
4.2.2 Technische KONEXESICNL:ocveiiiiiiiice e 32
4.3 BaUSTEINSICNL......c.iieieicce s 32
4.4 I 0 745 1 ([) USRS 34
5 Analyse, Vergleich und Bewertung der Ergebnisseccccooviiiiinenenencncisine 35
51 Vergleich grundlegender Metriken (StOre-Service).......cccoovvvveververesvsiesnseennenns 35
5.11 BUIldZEIt-VergleiChcc.oiviiec e 35
5.1.2 SEArtZeit-VergleiCh ..o 36
5.1.3 IMagegroRe-VergleiCh. ... 37
5.2 PerformanzvergleiCh ... 38
521 ANZahl der SAMPIES......c.ooviiic e s 39
5.2.2 Antwortzeit (RESPONSE TIME) ...ovviuieiiieieie et 39
5.2.3 Durchsatz und Stabilitatoocoieiiiiee e 41
5.3 RESSOUICENVEIDIAUCH ... 43
531 CPU-VErBraUCh ... 43

Vi

Fehler! Kein Text mit angegebener Formatvorlage im Dokument.

5.3.2 SPEICEIVEIDIAUCK ... s 45

5.4 3]G LT (g PSS 46
54.1 Anzahl der Samples nach der SKalierung...........cccccocvevveviiniiiicve e 47
5.4.2 Antwortzeit nach der SKalierung........cocoveieiieieieeie e 48
543 Durchsatz und Fehlerquote nach der Skalierung............ccoocoovviiniiciciniinnnns 50
5.4.4 Ressourcenverbrauch nach der SKalierung..........ccceoeivviiineninenececens 52

6 Zusammenfassung und AUSDIICKcccoiiiiiiiie e 55
LiteraturVerZeIiCRNIS.o e 57

vii

Abbildungsverzeichnis

Abbildung 1: Kernkomponenten von Spring-Framework (Spring, 2025)cc.ccooveeiviiviinnnn. 8
Abbildung 2: Spring loC Container als Object Factory (Geeksforgeeks, 2025)............ccccon.... 9
Abbildung 3: MVC in Spring (SPring, 2025)cccciieiiieiiiiisie et s 10
Abbildung 4: Das Spring Boot-Okosystem auf einen Blick (Mitropolitsky, et al., 2019)....... 12
Abbildung 5: Quarkus Architektur und Kernkomponenten (Stefanko & Martiska, 2025)..... 17
Abbildung 6: Container-First Ansatz von Quarkus (Quarkus, 2025)..........ccccevvvviierinncinnnnns 18
Abbildung 7: Spring Boot vs. Quarkus vs. Micronaut (Ter, 2024).........cccccvvveveieiieieaieenens 19
Abbildung 8: Vergleichskriterien und MEtriKENccooviiiiiieieiecie e 23
Abbildung 9: Software und Hardware der Testumgebung...........cccooviiininiincncicceen, 26
Abbildung 10: Promotion-Management-System WOrkflowcccccovviniiinenenciciennn, 30
Abbildung 11: Fachliche KONtEXISICOL...........c.cciiiiiiiiccce e e 31
Abbildung 12: Technische KONEXISICNLcccciieiiiiicicci e 32
Abbildung 13: Bausteinsicht des Promotion-Management-SyStemscccccveverereinninninns 33
Abbildung 14: Laufzeitsicht Beispielprozess (Angebot hinzuflgen)ccoceveveieicirnnnnnne 34
Abbildung 15: Buildzeit-Vergleich (StOre-Service)........ccocuvviieneiiiiiiesse e 36
Abbildung 16: Startzeit-Vergleich (StOre-SErviCe)........cooviiiiiiiiieie e 37
Abbildung 17: Imagegrofe-Vergleich (StOre-Service)ccovevviveieiieciieie e 38
Abbildung 18: Vergleich typischer Antwortzeiten zwischen Quarkus und Spring Boot........ 40
Abbildung 19: Minimale und maximale Antwortzeiten (ms) unter Last...........ccccoovvreivrinnne 41
Abbildung 20: Durchsatzvergleich unter Lastbedingungen..........cccccoooeeiiiiiiennniie e 42
Abbildung 21: JMeter - Summary-Report Testplan 3 QUarkuscccccooovioiervniiiiciieaene 43

viii

Abbildungsverzeichnis

Abbildung 22: CPU-VerbrauChsVergleiChcccoovivee i 44
ADbbIldung 23: RAM-VEIDraUChooiiiiicce s 46
Abbildung 24: Anzahl der Samples nach der SKalierung...........cccooeeveinieiiinnnceeee 48
Abbildung 25: Speedup der Antwortzeiten nach der SKalierung.........ccoccevevvevevvniiieniesiennnns 49
Abbildung 26: Durchsatz- und Fehlerquotevergleich nach der Skalierungc.ccccoveneee. 51
Abbildung 27: Relative Anderung des Ressourcenverbrauchs nach Skalierung 53

Tabellenverzeichnis

Tabelle 1: Spring Boot Version-UDErsiCht.............ccccceveeueveeieeeecceee et 11
Tabelle 2: Vergleich Spring BOOt VS. SPriNgcccooveiiiiiiiiiiiereeeses e 14
Tabelle 3: Ubersicht der Testplane fir die LaStestSccovevvvevevceeeeeesiieeeceeeeseseseeeeeenas 28
Tabelle 4: Anzahl der verarbeiteten Anfragencccocvee i 39

1 Einleitung

1.1 Motivation und Hintergrund

Die fortschreitende Digitalisierung und die steigenden Anforderungen an moderne Software-
anwendungen haben zu einem Wandel in der Softwareentwicklung gefuihrt. Monolithische Ar-
chitekturen weichen zunehmend Microservice-Architekturen, die eine hohere Flexibilitat, Ska-
lierbarkeit und Wartbarkeit bieten. In diesem Kontext spielen Java-basierte Frameworks eine
entscheidende Rolle, da Java nach wie vor eine der meistgenutzten Programmiersprachen in

der Unternehmenswelt ist.

Spring Boot hat sich in den letzten Jahren als De-facto-Standard fur die Entwicklung von
Microservices etabliert und bietet eine umfassende Infrastruktur sowie ein reichhaltiges Oko-
system, das Entwicklern ermdglicht, schnell produktionsreife Anwendungen zu erstellen. Den-
noch stehen Spring-Boot-Anwendungen haufig vor Herausforderungen wie langen Startzeiten
und hohem Ressourcenverbrauch, insbesondere in Cloud- und Container-Umgebungen, in de-

nen Effizienz und Skalierbarkeit entscheidend sind.

Mit dem Aufkommen von Cloud-nativen Technologien und der zunehmenden Bedeutung von
Containern und orchestrierten Umgebungen wie Kubernetes wéchst der Bedarf an leistungsfé-
higeren und ressourcenschonenderen Alternativen. Quarkus wurde speziell fiur Cloud-native
Anwendungen entwickelt und verspricht durch seine schnelle Startzeit und den geringen Spei-
cherverbrauch deutliche Vorteile gegeniiber Spring Boot. Durch die Unterstiitzung der nativen
Kompilierung mit GraalVM konnen Anwendungen als native Executables bereitgestellt wer-

den, was die Performance weiter optimiert und den Ressourcenbedarf minimiert.

Einleitung

Die Wahl des richtigen Frameworks hat erhebliche Auswirkungen auf die Effizienz, Skalier-
barkeit und Kosten von Anwendungen im Produktivbetrieb. W&hrend Spring Boot eine ausge-
reifte und bewahrte Plattform bietet, konnten die Performance-Vorteile von Quarkus in be-
stimmten Szenarien zu erheblichen Verbesserungen fuhren. Entwickler und Unternehmen ste-
hen daher vor der Herausforderung, abzuwégen, welches Framework besser zu ihren spezifi-

schen Anforderungen passt.

Obwonhl die theoretischen Unterschiede zwischen Quarkus und Spring Boot bekannt sind, feh-
len bislang umfassende praxisnahe Studien, die einen direkten Vergleich unter realen Bedin-
gungen ermdglichen. Insbesondere gibt es nur wenige Analysen, die Startzeit, Ressourcenver-
brauch, Container-Grolie und Skalierbarkeit systematisch untersuchen.

Vor diesem Hintergrund ist es von besonderem Interesse, eine RESTful Microservice-Anwen-
dung fiir das Promotion-Management-System zu implementieren und beide Frameworks an-
hand praxisrelevanter Kriterien zu evaluieren. Dieses Fallbeispiel bildet typische Anforderun-
gen moderner Anwendungen ab und bietet ausreichend Komplexitat flir aussagekraftige Mes-
sungen. Ziel dieser Arbeit ist es, eine fundierte Entscheidungsgrundlage fiir Entwickler und
Unternehmen bereitzustellen, um die Starken und Schwéchen von Quarkus und Spring Boot in

Cloud-nativen Szenarien objektiv bewerten zu kénnen.

1.2 Zielsetzung und Forschungsfrage

Diese Arbeit verfolgt das Ziel, die beiden Java-basierten Frameworks Quarkus und Spring Boot
hinsichtlich ihrer Effizienz und ihres Ressourcenverbrauchs zu vergleichen. Dabei sollen pra-
xisnahe Erkenntnisse gewonnen werden, die Entwicklern und Unternehmen eine fundierte Ent-
scheidungsgrundlage fir die Auswahl des passenden Frameworks bieten. Der Fokus liegt auf
der Bewertung der Performance in Cloud-nativen Umgebungen, insbesondere in Bezug auf

schnelle Startzeiten, geringen Ressourcenverbrauch und effiziente Skalierbarkeit.

Zur Untersuchung dieser Aspekte wird eine RESTful Microservice-Anwendung fiir das Pro-
motion-Management-System entwickelt. Diese dient als Testfall, um beide Frameworks unter
realistischen Bedingungen zu vergleichen. Die Analyse konzentriert sich auf Startup-Zeit, Res-
sourcenverbrauch, Container-GréRe, Skalierbarkeit und Entwicklererfahrung, um ein umfas-
sendes Bild der jeweiligen Starken und Schwéchen zu zeichnen. Ziel ist es, herauszufinden, in
welchen Szenarien Quarkus signifikante Vorteile gegeniiber Spring Boot bietet und ob es An-

wendungsfalle gibt, in denen Spring Boot die bessere Wahl ist.

Die zentrale Forschungsfrage dieser Arbeit lautet: "In welchen Bereichen zeigt Quarkus im
Vergleich zu Spring Boot signifikante Vorteile hinsichtlich Effizienz und Ressourcenver-
brauch, insbesondere in Bezug auf den nativen Build-Prozess, die Containerisierung

und die Skalierbarkeit in Containerumgebungen?"
Diese Frage wird anhand folgender Kernaspekte analysiert:

e Nativen Build-Prozess: Untersuchung der Effizienz nativer Images hinsichtlich Start-
zeit, Ressourcenverbrauch und Anwendungsleistung.

e Containerisierung: Bewertung der Eignung beider Frameworks fir containerisierte
Umgebungen, insbesondere hinsichtlich Container-GréRe und Ressourcennutzung.

o Skalierbarkeit: Analyse der Performance unter Last und der Effizienz der horizonta-

len Skalierung.

Einleitung

Durch die systematische Analyse dieser Kriterien sollen praxisrelevante Erkenntnisse gewon-
nen werden, die Entwickler und Unternehmen bei der Wahl des optimalen Frameworks unter-
stutzen. Die Ergebnisse bieten eine objektive Grundlage fiir den Einsatz von Quarkus oder

Spring Boot in modernen Cloud- und Container-Umgebungen.

1.3 Aufbau

Kapitel 1 — Einleitung:

Dieses Kapitel flhrt in die Problemstellung ein, beschreibt die Zielsetzung der Arbeit und for-
muliert die zentrale Forschungsfrage. Zudem wird ein Uberblick tber den weiteren Aufbau der
Arbeit gegeben.

Kapitel 2 — Theoretischer Hintergrund:

In diesem Kapitel erfolgt eine detaillierte Vorstellung der beiden Frameworks:

e Spring & Spring Boot: Architektur und Kernfeatures — Analyse der grundlegenden
Konzepte und Funktionsweise von Spring Boot.

e Quarkus: Architektur und Kernfeatures — VVorstellung der wesentlichen Eigenschaften
und Designprinzipien von Quarkus.

o Empirische Vergleichsstudien zu Quarkus und Spring Boot — Uberblick tber be-

stehende Forschungsarbeiten und vergleichende Analysen der beiden Frameworks.

Kapitel 3 — Methodik:

Hier wird das methodische VVorgehen beschrieben, das zur Beantwortung der Forschungsfrage
herangezogen wird. Es werden die Kriterien fiir den Vergleich definiert und die Testmethoden
erlautert. Zudem wird auf die Entwicklung und Testanforderungen eingegangen, die fir die

praktische Umsetzung der Experimente relevant sind.

Kapitel 4 — Implementierung:

Einleitung

In diesem Kapitel wird die Umsetzung der RESTful Microservice-Anwendung fur das Promo-
tion-Management-System beschrieben. Der Aufbau der Testanwendungen in beiden Frame-
works wird detailliert erlautert, einschlieBlich der Architektur und der verwendeten Technolo-

gien.

Kapitel 5 — Analyse, Vergleich und Bewertung der Ergebnisse:

Hier werden die Testergebnisse systematisch analysiert und verglichen. Der Fokus liegt auf

den zentralen Leistungsmerkmalen:

o Performance: Messung der Startzeiten, Buildzeiten und Laufzeiteffizienz.
e Ressourcennutzung: Untersuchung des Speicher- und CPU-Verbrauchs.
o Skalierbarkeit: Bewertung der Frameworks unter Lastbedingungen und ihre Eignung

fiir dynamische Skalierung.

Die gewonnenen Ergebnisse werden entlang der definierten Metriken analysiert, gegeniiberge-
stellt und im Hinblick auf die Leistungsfahigkeit beider Frameworks eingeordnet.
Kapitel 6 — Zusammenfassung und Ausblick:

Das abschlieRende Kapitel fasst die wichtigsten Erkenntnisse zusammen und gibt einen Aus-

blick auf zukiinftige Forschungsmaglichkeiten.

Theoretischer Hintergrund

2 Theoretischer Hintergrund

Dieses Kapitel widmet sich der detaillierten Vorstellung der beiden Java-basierten Frameworks
Quarkus und Spring Boot, die im Rahmen dieser Arbeit miteinander verglichen werden. Dabei
werden jeweils die zugrunde liegenden Architekturansatze, charakteristischen Eigenschaften
sowie zentrale Designprinzipien erlautert. Dariiber hinaus bietet das Kapitel einen Uberblick
tber bestehende empirische Studien und vergleichende Analysen, die sich mit der Leistungs-
fahigkeit und Ressourcennutzung beider Frameworks beschéftigen und somit die Basis fir die
eigene experimentelle Untersuchung bilden.

2.1 Spring
2.1.1 Historie und Entwicklung

Das Spring-Framework ist eines der bedeutendsten und am weitesten verbreiteten Frameworks
in der Java-Welt. Entwickelt wurde es Anfang der 2000er Jahre von Rod Johnson, der seine
Ideen erstmals 2002 in seinem Buch "Expert One-on-One J2EE Design and Development"
vorstellte (Spring, kein Datum). Ziel war es, eine leichtgewichtige Alternative zu Java EE
(heute Jakarta EE) zu schaffen, da Enterprise JavaBeans (EJB) als zu komplex und schwerge-

wichtig empfunden wurden.

Die erste stabile Version von Spring (1.0) erschien 2004 unter der Apache-2.0-Lizenz. Durch
seine modulare Architektur, die flexible Integration mit verschiedenen Technologien und die
Maoglichkeit, plattformunabhéngige Anwendungen zu entwickeln, gewann Spring schnell an
Beliebtheit. In den folgenden Jahren wurde das Framework kontinuierlich weiterentwickelt. Es
fand breite Unterstuitzung in der Open-Source-Community und wurde von verschiedenen Un-
ternehmen in groBem Umfang eingesetzt. 2009 wurde das Unternehmen hinter Spring
(SpringSource) von VMware Ubernommen, und heute wird es als Teil der VMware Tanzu-

Initiative weitergefihrt.

Theoretischer Hintergrund

2.1.2 Architektur und Kernkomponenten

Spring basiert auf einer modularen Architektur, die es Entwicklern ermdéglicht, nur die
bendtigten Komponenten einzusetzen. Die wichtigsten Module des Spring-Frame-

works sind:

1. Core Container: Enthalt grundlegende Module wie Spring-Core, Spring-Beans und
Spring-Context, die fir Dependency Injection (DI) und das ApplicationContext-Ma-
nagement verantwortlich sind.

2. Datenzugriff und Integration: Beinhaltet Spring-JDBC, Spring-ORM (Integration
mit Hibernate, JPA), Spring-TX fur Transaktionsmanagement und Spring-Data fur
eine vereinfachte Datenbankanbindung.

3. Web-Modul: Besteht aus Spring-Web und Spring-MVC, die den Aufbau von Weban-
wendungen und RESTful-Services erleichtern.

4. AOP (Aspect-Oriented Programming): Ermdglicht die Trennung von Querschnitts-
belangen wie Logging oder Security durch das Spring-AOP-Modul.

5. Messaging und Events: Bietet Unterstiitzung fur asynchrone Kommunikation tber
Spring-Messaging (z. B. RabbitMQ, Kafka) und WebSockets.

Theoretischer Hintergrund

6. Testing: Stellt Module fur Unit-Tests und Integrationstests bereit, z. B. mit JUnit und
Mockito.

fgx Spring Framework Runtime

Data Access/Integration Web

JDBC ORM WebSocket Serviet
OXM JMS

Transactions

Core Container

Core Context

Abbildung 1: Kernkomponenten von Spring-Framework (Spring, 2025)

2.1.3 Dependency Injection (DI) in Spring

Ein zentrales Konzept von Spring ist die Inversion of Control (10C), die iber Dependency In-
jection realisiert wird. Dadurch wird die Erstellung und Verwaltung von Objekten an den
Spring-Container delegiert.

Es gibt zwei Haupttypen des Spring Containers:

BeanFactory: Eine grundlegende Implementierung fur einfache Anwendungen.
Application- Eine leistungsfahigere Variante mit erweiterten Funktionen wie
Context: Event-Handling und Internationalisierung.

Die Konfiguration kann iber XML, Java-Config oder Annotations (@Component, @Service,
@Repository) erfolgen. DI fordert lose Kopplung und erleichtert das Testen.

Theoretischer Hintergrund

SPRING Container

Give me “Smart Phone” Object >
€ - ,
Return an object based on requirements

Configuration

Abbildung 2: Spring loC Container als Object Factory (Geeksforgeeks, 2025)

2.1.4 Spring MVC — Webentwicklung mit Spring

Spring MVC ist ein flexibles Web-Framework zur Erstellung von Webanwendungen und
REST-APIs. Es basiert auf dem Model-View-Controller (MVC)-Prinzip und verwendet einen
zentralen DispatcherServlet. Hauptkomponenten sind:

e Controller (@RestController): Verarbeiten HTTP-Anfragen.
e Model: Daten, die an die View weitergegeben werden.
e View: Prasentationsschicht (z. B. Thymeleaf, JSP, JSON-Ausgabe fir APIs).

Spring MVC unterstitzt verschiedene View-Technologien und bietet eine integrierte Validi-

erung, Form-Handling und Internationalisierung.

Theoretischer Hintergrund

Delegate Handle
Incoming request request
request —
Front
Z controller | “@={model j=
Return Delegate Create
response rendering model
of response
Return
control Render

response

Servlet engine
(e.g. Tomcat)

Abbildung 3: MVC in Spring (Spring, 2025)

2.2 Spring Boot

2.1.1 Historie und Entwicklung

Spring Boot ist eine Weiterentwicklung des Spring-Okosystems, die darauf abzielt, die Ent-
wicklung und Konfiguration von Spring-Anwendungen erheblich zu vereinfachen. Es bietet
zahlreiche Funktionen, die Entwicklern helfen, produktive und skalierbare Anwendungen mit
minimalem Konfigurationsaufwand zu erstellen. Anstatt zahlreiche XML- oder Java-Konfigu-
rationsdateien manuell zu definieren, Gbernimmt Spring Boot viele dieser Aufgaben automa-

tisch, was die Entwicklungszeit verkirzt und den Einstieg erleichtert.

Spring Boot wurde erstmals im April 2014 verdffentlicht und hat sich seitdem kontinuierlich
weiterentwickelt. Die folgende Tabelle gibt einen Uberblick tiber die Hauptversionen und ihre
Veroffentlichungsdaten (Minh, n.d.) :

10

Theoretischer Hintergrund

Version Veroffentlichungsdatum Spring Framework Version
1.0.0 April 2014 4.0.3
2.0.0 Mérz 2018 5.04
3.0.0 November 2022 6.0.2
3.4.2 23. Januar 2025 6.2.2

Tabelle 1: Spring Boot Version-Ubersicht

2.1.2 Hauptfunktionen von Spring Boot

Spring Boot vereinfacht die Entwicklung von Spring-Anwendungen durch mehrere zentrale

Funktionen:

Auto-Configuration: Spring Boot erkennt automatisch, welche Bibliotheken und Abhéngig-
keiten im Projekt vorhanden sind, und konfiguriert diese entsprechend. Dadurch entféllt der

Aufwand, viele Einstellungen manuell vornehmen zu mussen.

Standalone-Anwendungen: Anwendungen konnen eigenstindig ausgefuhrt werden, ohne
dass ein separater Webserver installiert werden muss. Spring Boot nutzt eingebettete Server
wie Tomcat, Jetty oder Undertow, sodass die Anwendung als ausfiihrbare JAR-Datei gestartet

werden kann.

Meinungsbasierte Defaults: Spring Boot stellt eine Reihe von Standardkonfigurationen be-
reit, die fir viele Anwendungen geeignet sind. Entwickler kbnnen diese VVorgaben ibernehmen

oder bei Bedarf anpassen.

Spring Boot Actuator: Ermoglicht das Monitoring und die Verwaltung von Anwendungen
durch vorkonfigurierte Endpunkte, die Informationen zur Systemgesundheit, Metriken und lau-

fenden Prozessen liefern.

Die Grafik “Abbildung 4: Das Spring Boot-Okosystem auf einen Blick” veranschaulicht die
Kernkomponenten und den Nutzen von Spring Boot innerhalb des Spring-Okosystems. Spring

Boot baut auf Spring Core, Spring Data und Spring MVC auf und erleichtert die Entwicklung

11

Theoretischer Hintergrund

durch Funktionen wie Auto-Configuration, eingebettete Server und Actuator-Endpunkte zur

Uberwachung.

Zusatzlich integriert Spring Boot externe Dienste wie Datenbanken, Logging- und Messaging-

Systeme sowie Cloud-Provider, was eine flexible und skalierbare Entwicklung ermdglicht.

Entwickler profitieren von einer optimierten Konfiguration, schnelleren Entwicklungszyklen

und einer nahtlosen Bereitstellung tiber Container-Technologien.

(soring ecosystem)

Spring ecosystem

Spring
Core

DB Ahﬁlmmg_ Spring
providers Data

Other Works Other
Rl — ith Spring

Providers Projects

Logging
providers

JMS Abstracts
Providers

Autoconfig Ry

<+ - +—

Embedded

- \
Actuator

Endpoints '\Uw’ standalone)

Monitors
and audits

Provides
opinionated [Dl‘\ﬂﬂ\\‘
Makes development"___' -
Boot CLI e q“‘d‘e’/'

Framework
Provides hot replace User

Dependency
Descriptor
bundles

Boot
DevTools

Abbildung 4: Das Spring Boot-Okosystem auf einen Blick (Mitropolitsky, et al., 2019)

2.1.3 Vergleich: Spring vs. Spring Boot

Spring und Spring Boot sind eng miteinander verbunden, unterscheiden sich jedoch in mehre-

ren wichtigen Aspekten:

12

Theoretischer Hintergrund

e Konfiguration: Wahrend das klassische Spring-Framework eine manuelle Konfigu-

ration erfordert, Ubernimmt Spring Boot viele Konfigurationsaufgaben automatisch,

wodurch Entwickler sich mehr auf die Geschéftslogik konzentrieren kénnen.

e Projektsetup: Die Einrichtung eines Spring-Projekts kann aufwendig sein, da viele

Abhangigkeiten manuell verwaltet werden missen. Spring Boot bietet hingegen mit

Spring Initializr ein Tool, das das Erstellen neuer Projekte mit vorkonfigurierten Ab-

héngigkeiten erleichtert.

o Flexibilitat vs. Konvention: Spring bietet eine hohe Flexibilitdt und kann genau an

spezifische Anforderungen angepasst werden. Spring Boot hingegen setzt auf Konven-

tionen und vordefinierte Standards, was die Entwicklung beschleunigt, aber gleichzei-

tig weniger Kontrolle bietet. (Lagnada), 2024)

2.1.4 Einsatz

Spring Boot

Spring

Ideal fir Microservices, die eigenstandig

und skalierbar sein mussen

Geeignet flir monolithische Anwendungen

mit individuellen Konfigurationen

Schnellere Entwicklung durch Auto-

Configuration

Mehr Kontrolle Gber Konfiguration und
Architektur

Eingebettete Server ermoglichen

Standalone-Betrieb

Erfordert externen Application Server

Vorkonfigurierte Defaults fur haufige

Anwendungsfélle

Volistandige Anpassungsfahigkeit an spez-

ielle Anforderungen

13

Theoretischer Hintergrund

Beste Wahl fur Cloud-native und con-

tainerisierte Anwendungen

Gut fiur Unternehmensanwendungen mit

komplexen Integrationen

Tabelle 2: Vergleich Spring Boot vs. Spring

2.2 Quarkus

2.2.1 Historie und Entwicklung

Quarkus entstand aus dem Bestreben, Java fir moderne Cloud- und Container-Umgebungen

zu optimieren. Das Framework wurde mafgeblich von Red Hat-Ingenieuren entwickelt und

im Marz 2019 der Offentlichkeit vorgestellt. Ziel war es, eine Antwort auf die Herausforder-

ungen zu liefern, mit denen klassische Java-Anwendungen in hochskalierbaren und dyna-

mischen Umgebungen haufig konfrontiert waren — insbesondere in Bezug auf Startzeit und

Ressourcenverbrauch. (Quarkus, n.d.)

e Urspriinge und Motivation:

Schon in der friihen Planungsphase identifizierten die Quarkus-Entwickler die Not-

wendigkeit, den klassischen ,,Java-Stack* auf seine Essenz zu reduzieren und alle

Teile zu entfernen oder zu ersetzen, die in einer Cloud-native-Welt fiir Performance-

Bottlenecks sorgen. Traditionelle Java EE- oder Spring-Anwendungen wiesen oft

langsame Startzeiten und relativ hohen Speicherverbrauch auf. In Umgebungen, in

denen Microservices skalieren und schnell gestartet werden missen, war das ein wes-

entlicher Nachteil.

o Bedeutende Meilensteine:

o Erste Veroéffentlichung (Marz 2019): Vorstellung des Frameworks und

Fokus auf schnelle Startzeiten sowie geringe Speicheranforderungen.

o Version 1.0 (November 2019): Stabilisierung des Kerns, umfangreichere

Dokumentation und Erweiterung der Community.

o Version 2.0 (Juni 2021): Neue Features wie verbesserte Dev-Mode-Unter-

stutzung, optimierte reaktive Programmiermodelle (u.a. mit Mutiny) und

verbesserte Zusammenarbeit mit GraalVM.

14

Theoretischer Hintergrund

e Community und Open-Source:

Quarkus ist als Open-Source-Projekt auf GitHub verfligbar und profitiert von einer

wachsenden Community aus Entwicklern, Unternehmen und Enthusiasten. Das ak-

tive Feedback und die rege Beteiligung fiihren zu einer kontinuierlichen

Weiterentwicklung und Anpassung an aktuelle Anforderungen — sei es im Bereich

Serverless, Microservices oder Container-Orchestrierung. (Quarkus, n.d.)

2.2.2 Architektur und Kernkomponenten

Die Architektur von Quarkus basiert auf dem sogenannten ,,Container-First*“-Ansatz und ver-

sucht, moglichst viele Verarbeitungs- und Initialisierungsprozesse bereits in der Build-Zeit

durchzufiihren. Dadurch werden Laufzeit-Overheads minimiert, was zu schnelleren

Startzeiten und geringerem Speicherverbrauch fuhrt. (Quarkus, 2025)

Build-Time-Verarbeitung

@)

Ahead-of-Time (AOT) Kompilierung: Ein wesentlicher Faktor fir die Perfor-
mance ist, dass Quarkus so viel wie méglich bereits beim Kompilieren der An-
wendung erledigt. Klassen werden analysiert, Proxies werden generiert, Reflek-
tionsinformationen werden gesammelt — alles vor dem eigentlichen Anwen-
dungsstart.

Extension- und Plug-in-Mechanismus: In Quarkus gibt es zahlreiche ,,Exten-
sions®, die bestimmte Funktionalititen oder Bibliotheken integrieren (z.B. Hiber-
nate, RESTEasy, Kafka, Camel, Vert.x). Jede Extension nutzt die Build-Time-
Verarbeitung, um Initialisierungsschritte vorzuziehen und die Laufzeit zu entlas-
ten. (Stefanko & Martiska, 2025)

Native Kompilierung mit GraalVM

o

Native Images: Mithilfe von GraalVM lassen sich Quarkus-Anwendungen in
sogenannte Native Images kompilieren, also eigenstandige Maschinencode-Bina-
ries, die ohne eine klassische JVM starten. Dieses Vorgehen reduziert sowohl die
Startzeit auf wenige Millisekunden als auch den Speicherbedarf.

Reflektion und Substitution: Da GraalVM besondere Anforderungen an Re-

flektionsaufrufe, dynamische Klassenladungen und Proxy-Erzeugung stellt,

15

Theoretischer Hintergrund

kiimmert sich Quarkus wahrend der Build-Phase darum, alle benétigten Meta-
daten zu erzeugen. Das verhindert Laufzeitfehler und macht Native Images Uber-

haupt erst praktikabel.

e Reactive Programming

o

Reaktive Kernbibliotheken: Quarkus unterstiitzt reaktives Programmieren tiber
Bibliotheken wie Mutiny. Dies erlaubt die Entwicklung nicht-blockierender und
skalierbarer Anwendungen, die besonders gut in Cloud- und Microservice-
Umgebungen funktionieren.

Event-Driven-Ansatz: Durch die Reaktivitat kénnen Anwendungen eingehende
Ereignisse (z.B. HTTP-Requests, Messaging-Events) effizient verarbeiten, ohne
blockierende Threads oder lange Wartezeiten.

e Dependency Injection (DI) und CDI

o

Quarkus und CDI (Contexts and Dependency Injection): Das DI-Framework
in Quarkus basiert auf dem Jakarta EE-Standard (CDI). Mit ,,Arc* als Implemen-
tierung wird sichergestellt, dass das Dependency Injection-Konzept
leichtgewichtig und modular bleibt.

Lebenszyklus- und Scope-Management: CDI ermdglicht eine flexible Verwal-
tung von Beans, deren Lebenszyklus und Kontext (z.B. Request- oder Session-

Scopes), was besonders fir lose gekoppelte Microservices von Vorteil ist.

16

Theoretischer Hintergrund

]
4[Quarkus)

{ Quarkus Extensions]_

RESTEasy Hibernate Validator J [Keycloak

Netty Hibernate ORM

J ()
J ())
Eclipse Vert.X J [Narayana JTA] [Apache Camel J
J ()]

Infinispan

N Y Y

Reactive Messaging Agroal Connection Pool Spring Compatibility

[Quarkus Core L

build tooling

(e | [oamo | [craaso |

[Execution environment

[JIT / Hot Spot] (AOT / GraalVM Native Image J

Abbildung 5: anrkus Architektur und Kernkomponenten
(Stefanko & Martiska, 2025)

2.2.3 Hauptmerkmale von Quarkus

Quarkus bietet eine Vielzahl von Funktionen, die es von traditionellen Java-Frameworks ab-
heben (Quarkus, n.d.):

e Schnelle Startzeiten und geringer Speicherverbrauch: Durch die Vorverlagerung
von Verarbeitungsaufgaben in die Build-Phase und die Mdglichkeit, native Images mit
GraalVM zu erstellen, starten Quarkus-Anwendungen in Millisekunden und benétigen

weniger Speicher.

17

Theoretischer Hintergrund

o Entwicklerfreundlichkeit: Funktionen wie Live Coding ermdglichen es Entwicklern,
Anderungen im Code sofort zu sehen, ohne die Anwendung neu starten zu miissen.

Dies beschleunigt den Entwicklungszyklus erheblich.

e Reaktive Programmierung: Quarkus unterstiitzt sowohl imperative als auch reaktive
Programmiermodelle, was Entwicklern Flexibilitat bei der Gestaltung ihrer Anwen-
dungen bietet.

o Nahtlose Integration mit Kubernetes: Dank optimierter Container-Bereitstellung
und Kubernetes-Nativitat lassen sich Quarkus-Anwendungen effizient in Cloud-

Umgebungen betreiben.

o Umfassende Erweiterbarkeit: Mit tUber 50 Erweiterungen kénnen Entwickler die
Funktionalitat von Quarkus leicht an ihre spezifischen Bedirfnisse anpassen.

Traditional Frameworks

Build Time Runtime

Quarkus Build Time Runtime

T S

Abbildung 6: Container-First Ansatz von Quarkus (Quarkus, 2025)

2.3 Empirische Vergleichsstudien zu Quarkus und Spring Boot

In der Fachliteratur und in technischen Blogs gibt es zahlreiche Vergleichsstudien zwischen
Quarkus und Spring Boot, die sich hauptséchlich mit Performance-Aspekten befassen. Diese

Studien liefern wertvolle Einblicke in zentrale Leistungsmerkmale wie Startzeiten,

18

Theoretischer Hintergrund

Speicherverbrauch und Durchsatz, die gerade in modernen Cloud- und Microservice-Umge-

bungen eine wichtige Rolle spielen.

Ein h&ufig zitierter Vergleich ist Spring Boot vs. Quarkus: Performance Comparison for Hello
World Case (C, 2023). Hier wurde eine einfache REST-API mit einem Hello-World-Endpoint
in beiden Frameworks implementiert und hinsichtlich ihrer Startzeit und Antwortzeiten unter-
sucht. Die Ergebnisse zeigen, dass Quarkus insbesondere im nativen Modus eine deutlich
schnellere Startzeit aufweist und weniger Speicher bendtigt. Im Gegensatz dazu bietet Spring
Boot im JVM-Modus eine stabilere Laufzeitperformance und kann je nach Szenario Vorteile

bei der Durchsatzrate haben.

Ein weiterer relevanter Artikel ist Quarkus vs. Micronaut vs. Spring Boot: A Comparative
Guide for Java Developers (Ter, 2024). Hier wird Quarkus mit zwei anderen populéren Java-
Frameworks verglichen, wobei der Fokus auf der Startzeit, der Ressourcennutzung und der
Entwicklererfahrung liegt. Auch hier zeigt sich, dass Quarkus im nativen Modus beeindru-
ckend geringe Startzeiten erreicht, wahrend Spring Boot durch seine breite Unterstiitzung von
Bibliotheken und Tooling punkten kann.

Cloud-Native & -
Kubernetes Support Spring Boot
Quarkus
Micronaut

Performance &
Resource Usage

Community &
Ecosystem

Learning Curve &
Developer Experience

Abbildung 7: Spring Boot vs. Quarkus vs. Micronaut
(Ter, 2024)

Ein dritter relevanter Vergleich, Spring Boot and Quarkus: Comparing Performance and U-

sage (Zanetti, 2024), bestatigt viele der zuvor genannten Erkenntnisse. Hier wurde ebenfalls

19

Theoretischer Hintergrund

die Startgeschwindigkeit und Speicherverbrauch untersucht, wobei Quarkus insbesondere bei
geringem Speicherbedarf Uberzeugt. Spring Boot bleibt weiterhin eine bewéhrte Wahl fir viele

Entwickler aufgrund der groBen Community und der ausgereiften Infrastruktur.

Die bestehenden empirischen Vergleiche liefern interessante Einblicke in die Starken und
Schwaéchen beider Frameworks. Wahrend Quarkus durch schnelle Startzeiten und geringe Res-
sourcennutzung Uberzeugt, bietet Spring Boot eine ausgereifte Umgebung mit vielen Erweite-
rungsmoglichkeiten. Viele dieser Tests basieren auf einfachen Beispielanwendungen, was eine
erste Orientierung bietet, aber nicht alle Einsatzszenarien vollstandig abbildet. Dennoch sind
diese Vergleiche hilfreich, um zu verstehen, in welchen Bereichen Quarkus oder Spring Boot
ihre jeweiligen Vorteile haben und wie sich diese in einer CRUD-Anwendung auswirken kon-

nen.

20

Methodik

3 Methodik

In diesem Kapitel wird das methodische Vorgehen zur Durchflihrung des Framework-Ver-
gleichs zwischen Quarkus und Spring Boot beschrieben. Im Mittelpunkt steht die Entwicklung
und der gezielte Einsatz eines Microservice-basierten Anwendungssystems, anhand dessen
beide Frameworks unter kontrollierten Bedingungen getestet werden. Es werden die Zielset-
zung des Vergleichs, die verwendeten Metriken und Bewertungskriterien sowie der Aufbau der
Testumgebung detailliert erlautert. AbschlieRend werden die einzelnen Testverfahren beschrie-
ben, mit denen die Leistungsfahigkeit, Ressourcennutzung und Skalierbarkeit der Frameworks

praxisnah untersucht werden.
3.1 Zielsetzung des Vergleichs

Ziel dieser Arbeit ist es, die beiden weit verbreiteten Frameworks Quarkus und Spring Boot im
Kontext einer Microservice-basierten, cloudnativen Anwendung miteinander zu vergleichen.
Dazu wird ein praxisnahes Anwendungsszenario — ein Promotion-Management-System — im-

plementiert, welches als Grundlage fiir den technischen Vergleich dient.

Im Fokus des Vergleichs stehen vor allem die Performance, der Ressourcenverbrauch sowie
die Skalierbarkeit der beiden Frameworks. Dabei sollen nicht nur theoretische Aspekte be-
leuchtet, sondern auch empirische Messwerte anhand realer Tests gesammelt und ausgewertet

werden.
Die zentrale Forschungsfrage lautet:

Inwiefern unterscheiden sich Quarkus und Spring Boot hinsichtlich Performance, Ressour-

ceneffizienz und Skalierbarkeit in einer containerisierten Microservice-Anwendung?

Um diese Fragestellung zu beantworten, werden identische Microservices mit Quarkus und
Spring Boot implementiert. Die Services erfiillen dieselbe Funktionalitit (z. B. Benutzerver-
waltung, Angebotsverwaltung, Store-Verwaltung) und werden unter vergleichbaren Bedingun-

gen getestet. Die so gewonnenen Ergebnisse sollen dabei helfen, die jeweiligen Starken und

21

Methodik

Schwachen der Frameworks praxisnah zu bewerten und Empfehlungen fur deren Einsatz in

cloudnativen Architekturen abzuleiten.
3.2 Vergleichskriterien und Metriken

Fur eine fundierte Bewertung der beiden Frameworks Quarkus und Spring Boot werden ver-
schiedene technische Metriken herangezogen, die sowohl die Entwicklungs- als auch die Lauf-
zeiteigenschaften der Systeme abbilden. Der Vergleich erfolgt auf Basis objektiv messbarer

Kriterien in mehreren Kategorien:
3.2.1 Buildzeit

Die Buildzeit beschreibt die Dauer, die bendtigt wird, um aus dem Quellcode ein lauffahiges
Artefakt zu erzeugen (z. B. JAR-Datei oder natives Binary bei Quarkus). Dabei werden sowohl
die JVM-Buildzeit als auch — im Fall von Quarkus — die Native-Image-Buildzeit betrachtet.

Ziel: Bewertung der Effizienz im Entwicklungsprozess und der CI/CD-Tauglichkeit.

3.2.2 Startzeit

Die Startzeit misst die Dauer vom Start des Containers (z. B. via docker run) bis zur vollstdn-
digen Einsatzbereitschaft des jeweiligen Services. Diese Metrik ist besonders relevant fiir ska-
lierende und kurzlebige Dienste in Cloud-Umgebungen (z. B. beim Serverless Computing oder

Auto-Scaling).
Ziel: Analyse des Potenzials fur schnelle Bereitstellung und elastisches Skalieren.
3.2.3 ImagegrolRe

Hier wird die Grolie des finalen Container-Images gemessen. Kleinere Images sind vorteilhaft

beim Deployment, insbesondere in CI/CD-Pipelines und bei der Ubertragung tiber Netzwerke.

Ziel: Bewertung der Portabilitat und Deployment-Effizienz.

22

Methodik

Containergrofle Buildzeit
Skalierbarkeit % Startzeit
Ressourcenverbrauch Antwortzeit
Durchsatz

Abbildung 8: Vergleichskriterien und Metriken

3.2.4 Antwortzeit (Latenz)

Die Antwortzeit gibt an, wie lange ein Service bendtigt, um eine HTTP-Anfrage zu verarbeiten
und eine Antwort zurlickzugeben. Diese wird unter kontrollierter Last gemessen und spiegelt

die Reaktionsfahigkeit der Anwendung wider.

Ziel: Beurteilung der Interaktivitit und Benutzerfreundlichkeit unter realistischen Bedingun-
gen.

3.2.5 Durchsatz (Requests pro Sekunde)

Der Durchsatz zeigt, wie viele Anfragen ein Service pro Sekunde verarbeiten kann. Je héher

der Wert, desto leistungsfahiger ist die Anwendung unter hoher Last.

Ziel: Bewertung der Effizienz bei gleichzeitigen Zugriffen und im Dauerbetrieb.

23

Methodik

3.2.6 Ressourcenverbrauch

Hier werden der CPU-Verbrauch und der RAM-Verbrauch sowohl im Leerlauf als auch unter
Last betrachtet. Diese Werte werden mithilfe von Monitoring-Tools wie Docker Stats oder
Prometheus erhoben.

Ziel: Vergleich der Ressourceneffizienz beider Frameworks bei gleichem Anwendungsum-

fang.
3.2.7 Skalierbarkeit

Die Skalierbarkeit beschreibt, wie gut die Frameworks auf horizontale Skalierung reagieren,
d. h. wie sie sich verhalten, wenn mehrere Instanzen gestartet und Last verteilt wird. Dabei wird
insbesondere auf die Anwortzeit-, Durchsatz- und Ressourcennutzungsentwicklung bei stei-

gender Instanzzahl geachtet.

Ziel: Einschatzung der Eignung fur dynamische Cloud-Umgebungen.

3.3 Versuchsaufbau (Testumgebung)

Zur Durchfuhrung der vergleichenden Analyse von Quarkus und Spring Boot wurde eine stan-
dardisierte Testumgebung auf einem dedizierten Entwicklungssystem eingerichtet. Ziel war es,
eine kontrollierte und reproduzierbare Umgebung zu schaffen, in der beide Frameworks unter

identischen Bedingungen evaluiert werden kdnnen.

Die Experimente wurden auf einem lokalen Rechner mit folgenden Hardware- und Software-

konfigurationen durchgefuhrt:
e Betriebssystem: Microsoft Windows 10 Pro (Version 10.0.19045, Build 19045)
e Prozessor: Intel® Core™ i5-6600K CPU @ 3.50 GHz
e Arbeitsspeicher: 16 GB RAM

e Systemtyp: x64-basierter PC

24

Methodik

e Java-Version: JDK 23, ergéanzt um GraalVM 23.0 fiir native Builds mit Quarkus

e Build-Werkzeug: Apache Maven (Projektverwaltung und Abhédngigkeitsmanage-

ment)

Zur Containerisierung der Microservices wurde Docker Desktop (Version 4.38.0) eingesetzt.
Jeder Service — also der Offer-, Store- und User-Service — wurde als eigenstandiger Docker-
Container mit eigenem Image ausgefihrt. Die zugehdrigen SQL.ite-Datenbanken wurden direkt

Uber Maven-Abhangigkeiten eingebunden und pro Service lokal instanziiert.

Fir die Orchestrierung der Container sowie das Service-Routing kam Docker Compose in
Kombination mit Traefik als Reverse Proxy zum Einsatz. Um die horizontale Skalierbarkeit
in realistischen Bedingungen zu simulieren, wurde zusétzlich Docker Swarm zur Steuerung

mehrerer Service-Instanzen verwendet.

Die Uberwachung und Analyse des Ressourcenverbrauchs (RAM, CPU) erfolgte (iber die
Kombination von Prometheus, Grafana und cAdvisor, wobei alle drei Tools als Docker-Con-

tainer (jeweils mit dem latest-Tag) betrieben wurden.

Zur Durchfiihrung der Lasttests wurde das Tool Apache JMeter (Version 5.6.3) auf dem Host-
System ausgefiihrt, um gezielt HTTP-Anfragen an die jeweiligen Microservices zu senden und

deren Antwortzeiten sowie Durchsatz zu messen.

25

Methodik

Die gesamte Testinfrastruktur wurde so konzipiert, dass sie vollstandig isoliert und unabhéngig

vom Entwicklungssystem operieren kann, wodurch eine hohe Aussagekraft und Reproduzier-

barkeit der Ergebnisse gewahrleistet ist.

{} ceu

16 GB

JDK 23 [Graalvin 23.0 |
Java. Development Kit and
GraalV version.

Intel Core iS-6600K

RAM

Windows 10 Pro (x64) |
Operating System installed is
Windows.

| l‘?’_, Containerization

Prometheus, Grafana,
cAdvisor | Monitoring tools
used are Prometheus,
Grafana, cAdvisor.

Docker Desktop 4.38.0 |
Docker Desktop version for
container management.

Monitoring

@ Testing Tool

SQLite pro Service | SQLite
pro Service database in use.

Apache JMeter 5.6.3 | Apache
JIMeter version for
performance testing.

Abbildung 9: Software und Hardware der Testumgebung

26

Methodik

3.4 Testdurchfihrung (Testplan)

Die Durchfiihrung der Lasttests erfolgte anhand dreier unterschiedlicher Testplane, die mit
Apache JMeter realisiert wurden. Die Testplane variieren hinsichtlich der Anzahl paralleler
Nutzer (Threads), der verwendeten Request-Typen (GET- und POST-Anfragen), sowie der In-

tensitat und Dauer der Belastung.

Im ersten Testplan wurden insgesamt 105 parallele Threads eingesetzt, bestehend aus 100
GET-Anfragen auf die Ressource /offers (6000 Requests pro Minute) und 5 parallelen POST-
Anfragen auf /stores (300 Requests pro Minute). Die Dauer dieses Szenarios betrug 300 Se-
kunden bei einer Ramp-up-Zeit von 10 Sekunden.

Der zweite Testplan umfasste insgesamt 806 parallele Threads, verteilt auf vier Thread-Grup-
pen mit unterschiedlichen Anfragetypen und Durchsatzraten (GET /offers und /stores je 24.000
Requests pro Minute, POST /stores 60 Requests pro Minute, POST /offers 300 Requests pro
Minute). Der Test wurde Uber einen Zeitraum von 300 Sekunden durchgefihrt, mit einer
Ramp-up-Zeit von 10 Sekunden. Zudem wurde dieser Test nach einer horizontalen Skalierung

auf je drei Instanzen der Microservices ausgefihrt.

Im dritten Testplan wurden 2070 parallele Threads verwendet, ebenfalls aufgeteilt in vier
Thread-Gruppen mit deutlich héherer Last (GET-Anfragen je 60.000 Requests pro Minute,
POST /stores 1.200 Requests pro Minute, POST /offers 3.000 Requests pro Minute). Die Test-
dauer betrug erneut 300 Sekunden mit einer Ramp-up-Zeit von 10 Sekunden. Wie beim zwei-
ten Testplan erfolgte die Durchfuhrung nach horizontaler Skalierung auf jeweils drei Replikate
der Offer- und Store-Services, um das Verhalten der Frameworks bei intensiver Belastung und

mehreren Service-Instanzen realistisch abzubilden.

Die detaillierte Ubersicht zu den verwendeten Testplanen und deren spezifischen Konfigurati-

onen ist in Tabelle 3 dargestellt.

27

Methodik

Test-

plan

Beschreibung der Testszenarien Gleichzeitige Dauer Ramp- Skalierung
Nutzer up
(Threads)
Gruppe 1: 100 Threads, GET-Anfragen 105 Threads 300s 10s Nein
auf /offers, Durchsatz: 6.000 Requests pro insgesamt
Minute (100 GET +5
POST)

Gruppe 2: 5 Threads, POST-Anfragen
auf /stores, Durchsatz: 300 Requests pro

Minute
Gruppe 1: 400 Threads, GET /offers, 806 Threads 300s 10s Ja (je 3 In-
24.000 reg/min insgesamt stanzen von
(400 GET + Offer &
Gruppe 2: 400 Threads, GET /stores, 400 GET +1 Store)
24.000 reg/min POST + 5
POST)
Gruppe 3: 1 Thread, POST /stores, 60
reg/min
Gruppe 4: 5 Threads, POST /offers, 300
reg/min
Gruppe 1: 1000 Threads, GET /offers, 2070 Threads 300s 10s Ja (je 3 In-
60.000 reg/min insgesamt stanzen von
(1000 GET + Offer &
Gruppe 2: 1000 Threads, GET /stores, 1000 GET + 20 Store)
60.000 reg/min POST + 50
POST)

Gruppe 3: 20 Threads, POST /stores,
1.200 reg/min

Gruppe 4: 50 Threads, POST /offers,
3.000 reg/min

Tabelle 3: Ubersicht der Testpléne fir die Lasttests

28

Implementierung

4 Implementierung

In diesem Kapitel wird die konkrete Umsetzung der Beispielanwendung fiir das Promotion-
Management-System vorgestellt, welche als Grundlage flr den Vergleich zwischen Quarkus
und Spring Boot dient. Die Anwendung besteht aus mehreren Microservices, die typische
Funktionen wie Angebotsverwaltung, Store-Management und Benutzerverwaltung abbilden.
Ziel war es, eine identische fachliche Funktionalitat mit beiden Frameworks zu realisieren, um
eine objektive Vergleichbarkeit zu ermdglichen. Es wird zundchst auf den fachlichen und tech-
nischen Kontext eingegangen, anschlieBend die Architektur der Anwendung beschrieben und
abschlieRend exemplarisch ein Prozessablauf zur Nutzung des Systems erldutert.

4.1 Beschreibung des Promotion-Management-Systems

4.1.1 Kurze Einfuhrung in die Domane:

o Das entwickelte Promotion-Management-System dient zur Verwaltung und Anzeige
von Angeboten in verschiedenen Laden.
e Benutzer kdnnen aktuelle Aktionen einsehen, wahrend Ladenbesitzer neue Angebote

erstellen und verwalten.

29

Implementierung

e Administratoren wiederum sind in der Lage, neue Stores hinzuzufligen oder beste-

hende zu pflegen.

Ladenbesitzer erstellen
neue Aktionen

Benutzer greifen auf
das System zu

Benutzer melden sich an, um
Aktionen anzuzeigen

)

Ladenbesitzer fiigen neue
Angebote hinzu

oo

P i

®

Benutzer sehen
aktuelle Aktionen

.-.—'

Benutzer durchsuchen
verfiigbare Angebote

Ladenbesitzer
verwalten Aktionen

Ladenbesitzer aktualisieren
oder loschen Angebote

Administratoren fiigen
neue Laden hinzu

Administratoren erweitern das
System

P i

P

Administratoren
pflegen Laden

Administratoren verwalten
bestehende Laden

Abbildung 10: Promotion-Management-System Workflow

4.1.2 Begrundung fir die Auswahl als VVergleichssystem:

Die Anwendung eignet sich ideal fiir die Forschungsfrage, da sie typische Merkmale einer

Microservice-Architektur aufweist:

e mehrere eigenstandige Services (User, Store, Offer),

e REST-Schnittstellen,

e Datenpersistenz mit eigenen Datenbanken,

o realistische Geschaftsprozesse

30

Implementierung

4.2 Kontextsicht des

Systems

4.2.1 Fachliche Kontextsicht:

y—

Benutzer

Ladenbesitzer

System

Angebote durchsuchen

eigene Stores & Angebote verwalten

Stores anlegen

t —

Admins

Abbildung 11: Fachliche Kontextsicht

31

Implementierung

4.2.2 Technische Kontextsicht:

i HTTP(S)-Request Microservices \

Routing

E ’

User
HTTP(S)-Lasttests API| Gateway (Traefik) Routing 1 User-Service
= / >

JMeter (Lasttests) N

/metrics

Store-Service

g1

/metrics

Offer-Service

]

1] Abfrage von Metriken €1
Grafana Prometheus

7

/metrics

Abbildung 12: Technische Kontextsicht

4.3 Bausteinsicht

Die Abbildung 13 zeigt die Bausteinsicht des entwickelten Promotion-Management-Systems.
Dabei handelt es sich um eine klassische mehrschichtige Architektur, die in allen drei Micro-
services — Store, Offer und User — einheitlich umgesetzt wurde, sowohl in der Quarkus- als

auch in der Spring Boot-Variante.

Die Architektur gliedert sich in vier vertikale Saulen (je Service) und vier horizontale Schich-

ten:

e Die Controller-Schicht bildet die REST-Schnittstelle nach auBen und verarbeitet
HTTP-Anfragen.

o Die Service-Schicht enthélt die Geschaftslogik und dient als Vermittler zwischen
Controller und Datenzugriff.

o Die Repository-Schicht kapselt den Datenzugriff auf die persistente SQLite-Daten-

bank unter Verwendung von Panache (Quarkus) bzw. Spring Data JPA.

32

Implementierung

Die unterste Schicht besteht aus separaten SQL.ite-Datenbanken, die jedem Micro-

service exklusiv zugeordnet sind.

Microservices Architektur Promotion-Management-System

Controller-Schicht
OfferController

Abbildung 13: Bausteinsicht des Promotion-Management-Systems

33

| POST /offers {storeld, produkt, preis, ...} | |

Ladenbesitzer |AP"Ga'ean | |Oh(er's‘e”’i°e | Store-DB (SQLite) ~ Offer-DB

Implementierung

4.4 Laufzeitsicht

Die Abbildung 14 stellt eine Laufzeitsicht des Promotion-Management-Systems dar und ver-

anschaulicht den Ablauf des Prozesses ,,Angebot hinzufiigen* aus Sicht eines Ladenbesitzers.

Der Ablauf beginnt mit einer POST-Anfrage an den API-Gateway, die ein neues Angebot mit
Store-1D, Produkt und Preis enthalt. Der Offer-Service leitet die Anfrage weiter, ruft jedoch
zunachst den Store-Service auf, um die Giltigkeit der angegebenen Store-ID zu prifen. Dazu
erfolgt eine GET-Anfrage an den Store-Service, der wiederum per SQL-Query die zugehérige
Store-DB befragt.

Wenn die Store-ID giltig ist, antwortet der Store-Service mit HTTP 200, woraufhin der Offer-
Service das Angebot in der eigenen Datenbank speichert (INSERT). Bei Erfolg wird HTTP
201 Created zuriickgegeben, andernfalls — wenn der Store nicht gefunden wurde — ein HTTP
400 Bad Request.

Begleitend wird der Ablauf von Prometheus Uberwacht, insbesondere im Hinblick auf CPU-
und RAM-Verbrauch.

| POST /offers |

—_——>

I | GET Istores/{storeld}
|

I

I I I
| Store found
I I g
I
;

SELECT * FROM stores WHERE id = ?

(
I
|
|
|
|
1
|
|

|, 200 OK (storeld existiert) |

{-------4D

I | INSERT Angebot
|

|
| Monitoring (CPU/RAM)
!

201 Created

|

|

f

|

I |

[Storeld nicht gefunden] | 1 [
|

|

|

|

| |
| |
f f
| |
| |
1 [
| |
| |
| |
| |

400 Bad Request

Abbildung 14: Laufzeitsicht Beispielprozess (Angebot hinzufiigen)

34

5 Analyse, Vergleich und Bewertung der Er-

gebnisse

In diesem Kapitel werden die im Rahmen der Tests gewonnenen Ergebnisse systematisch dar-
gestellt, verglichen und bewertet. Der Fokus liegt dabei auf zentralen Leistungsaspekten wie
Startzeit, Antwortzeit, Durchsatz, Ressourcenverbrauch und Skalierbarkeit der beiden Frame-
works Quarkus und Spring Boot. Anhand praxisnaher Testplane wurden die Services in ver-
schiedenen Lastszenarien analysiert — sowohl im Einzelbetrieb als auch in skalierter Ausfiih-
rung. Die Messergebnisse werden in Form von Tabellen und Diagrammen aufbereitet und kri-
tisch hinsichtlich ihrer Aussagekraft und Relevanz fiir reale Anwendungsszenarien reflektiert.
Ziel ist es, fundierte Aussagen uber die Effizienz und Eignung beider Frameworks fiir Cloud-

native Microservice-Architekturen zu treffen.
5.1 Vergleich grundlegender Metriken (Store-Service)

In diesem Abschnitt wird der Store-Service exemplarisch herangezogen, um zentrale Basis-
metriken zwischen den Frameworks Quarkus und Spring Boot zu vergleichen. Der Store-Ser-
vice stellt in beiden Varianten die identischen Funktionen zur Verfiigung und eignet sich daher
ideal flr eine objektive Gegeniiberstellung. Im Fokus stehen die Buildzeit, die Startzeit sowie
die GroRe des resultierenden Docker-Images im JVM- und Native-Modus. Die folgenden Dia-

gramme veranschaulichen die jeweiligen Unterschiede.
5.1.1 Buildzeit-Vergleich

Die Abbildung 15 zeigt deutlich, dass der Buildprozess im Native-Modus bei beiden Frame-
works deutlich mehr Zeit beansprucht als im JVM-Modus. Spring Boot (Native) bendtigt mit

333,6 Sekunden am langsten, wéhrend Quarkus (Native) mit 204 Sekunden etwas schneller

35

Analyse, Vergleich und Bewertung der Ergebnisse

Buildzeit-Vergleich

7
£
=
[5F)
N
Q
=
-
@

14,68 17,55

Quarkus (JVM) Quarkus (Native) Spring Boot (JVM) M Spring Boot (Native)

FRAMEWORK

Abbildung 15: Buildzeit-Vergleich (Store-Service)
abschneidet. Im JVM-Modus liegen beide Frameworks eng beieinander (Quarkus: 14,68 s,

Spring Boot: 17,55 s).
Die Native-Builds sind wesentlich zeitintensiver — Quarkus jedoch tendenziell effizienter als
Spring Boot.

5.1.2 Startzeit-Vergleich

Beim Vergleich der Startzeiten in Abbildung 16 zeigt sich der gréf3te Unterschied: Quarkus
(Native) startet mit nur 0,26 Sekunden extrem schnell, Spring Boot (Native) braucht mit 1,88
Sekunden vergleichsweise mehr Zeit. Im JVM-Modus féllt Spring Boot (22,37 s) deutlich zu-
riick gegenuber Quarkus (5,85 s).

36

Analyse, Vergleich und Bewertung der Ergebnisse

Startzeit-Vergleich

[
o

72]
=
=
i
N
[
o
<
—
(72]

[

0,26

Quarkus (JVM) Quarkus (Native) Spring Boot (JVM) ® Spring Boot (Native)

FRAMEWORK

Abbildung 16: Startzeit-Vergleich (Store-Service)

Quarkus tiberzeugt vor allem durch extrem schnelle Startzeiten im Native-Modus, was beson-

ders fur Cloud-Umgebungen (z. B. Serverless) relevant ist.
5.1.3 ImagegroRe-Vergleich

Beim Vergleich der Docker-Image-GroRen in Abbdilung 17 zeigt sich, dass beide Frameworks
im Native-Modus erheblich kleinere Images erzeugen (Quarkus: 188 MB, Spring Boot: 196,25
MB) im Vergleich zum JVM-Modus (Quarkus: 477,31 MB, Spring Boot: 515,96 MB).

37

Analyse, Vergleich und Bewertung der Ergebnisse

ImagegroBe-Vergleich

515,96

[=2]
=
=
[T}
@
:Q
o
o
i}
Q
<<
b

Quarkus (JVM) Quarkus (Native) Spring Boot (JVM) M Spring Boot (Native)

FRAMEWORK

Abbildung 17: ImagegrofRe-Vergleich (Store-Service)

Native-Images sind erheblich kompakter. Quarkus (Native) erzielt hier den besten Wert und
spart gegeniiber Spring Boot (JVM) mehr als 60 %.

5.2 Performanzvergleich

In diesem Unterkapitel werden die Ergebnisse der durch Apache JMeter simulierten Lasttests
fiir Quarkus und Spring Boot im Native-Modus systematisch analysiert. Ziel ist es, die Lauf-
zeiteffizienz beider Frameworks unter realitdtsnahen Belastungsszenarien zu bewerten. Die
Testplédne wurden so konzipiert, dass typische Anwendungsmuster eines Promotion-Manage-
ment-Systems mit verschiedenen Anfragearten und -frequenzen abgebildet werden. Neben der
reinen Antwortzeit (Response Time) werden auch Metriken wie Durchsatz (Throughput) und
Fehlerquote betrachtet. Die Ergebnisse bieten eine Grundlage zur Beurteilung, wie beide
Frameworks auf steigende Nutzerlast reagieren und welche Leistungsreserven sie unter hoher
Auslastung aufweisen.

38

Analyse, Vergleich und Bewertung der Ergebnisse

5.2.1 Anzahl der Samples

Die Anzahl der verarbeiteten Requests, auch als Samples bezeichnet, liefert einen wichtigen
Anhaltspunkt fiir die tatséchliche Last, die wéhrend der Tests auf das System ausgetibt wurde.
In Tabelle 4 ist die Gesamtzahl der HTTP-Anfragen aufgefiihrt, die im Rahmen der drei defi-
nierten Testplane durch die Microservices verarbeitet wurden. Dabei wurden jeweils sowohl
der Spring-Boot- als auch der Quarkus-Dienst im Native-Modus ausgefiihrt. Jeder Testplan
hatte eine feste Dauer von fiinf Minuten, sodass die Anzahl der Samples im Wesentlichen durch
die jeweilige Konfiguration der gleichzeitigen Benutzer, die Anfragetypen sowie die festge-

legte Anfragerate bestimmt wurde.

Testplan Spring Boot Quarkus
1 31.591 31.605

2 190.986 195.359
3 116.784 127.962

Tabelle 4: Anzahl der verarbeiteten Anfragen

Wie die Tabelle zeigt, sind die Abweichungen zwischen den beiden Frameworks in den Test-
planen jeweils gering, was auf eine vergleichbare Testkonfiguration und stabile Antwortverar-
beitung in beiden Fallen schlieRen lasst. Besonders in Testplan 2 und 3, die eine héhere paral-
lele Last aufwiesen, konnte Quarkus insgesamt mehr Anfragen bedienen, was auf eine leicht

bessere Durchsatzfahigkeit hindeuten kénnte.
5.2.2 Antwortzeit (Response Time)

Die Abbildung 18 zeigt die durchschnittliche Antwortzeit (Average), den Median sowie die

95%-L.ine fur drei aufeinander aufbauende Lastszenarien (Testplane 1-3). Die griinen Balken

39

Analyse, Vergleich und Bewertung der Ergebnisse

reprasentieren Spring Boot (Native-Modus), wéhrend die blauen Balken die entsprechenden
Metriken fur Quarkus (Native-Modus) abbilden.

Vergleich typischer Antwortzeiten zwischen Quarkus und Spring Boot (3 Testplane)
100000

10649 10447
10000

5358 5135 4880 ga7
2665 2699
1000
630 so7
118
18 19
15
° 4
2 2
1

Testplan

o
o
=

Antwortzeit in Millisekunden (ms)

Average m Median ®95% Line Average M Median m95% Line

Abbildung 18: Vergleich typischer Antwortzeiten zwischen Quarkus und Spring Boot

Bereits im ersten Testplan mit moderater Last ist ein geringer Vorteil fir Quarkus zu erkennen.
Dieser Trend verstérkt sich unter zunehmender Belastung (Testpléane 2 und 3): Sowohl Median
als auch 95%-Perzentil fallen bei Quarkus deutlich geringer aus, was auf eine stabilere Ant-
wortzeit selbst bei hoher Last schlieen I&sst. Besonders auffallig ist, dass Quarkus im dritten
Testplan — trotz mehr als 127.000 verarbeiteter Anfragen — konsistent niedrigere Werte auf-

weist.

Die logarithmische Skalierung der Y-Achse verdeutlicht die Unterschiede im hoheren Bereich
der Antwortzeiten. Insgesamt deuten die Ergebnisse darauf hin, dass Quarkus im Native-Mo-
dus insbesondere bei hoher Last reaktionsschneller bleibt und geringere Ausreiler aufweist als

Spring Boot.

40

Analyse, Vergleich und Bewertung der Ergebnisse

Minimale und maximale Antwortzeiten (ms) unter Last

24739

25449

w
w
S

6204

Testplan

4767

257

620

Antwortzeit in Millisekunden (ms)

mMax = Min mMax m Min

Abbildung 19: Minimale und maximale Antwortzeiten (ms) unter Last

Das Diagramm in der Abbildung 19 veranschaulicht die minimale und maximale Antwortzeit
(in Millisekunden) der getesteten Microservices unter den drei definierten Lastszenarien

Auffallig ist, dass die minimalen Antwortzeiten bei beiden Frameworks konstant sehr niedrig
bleiben — im Bereich von 1 bis 3 Millisekunden. Bei der maximalen Antwortzeit hingegen
zeigen sich deutliche Unterschiede: Wéhrend Quarkus in allen Testplanen leicht geringere Ma-
ximalwerte erzielt, steigt insbesondere bei Spring Boot unter starker Last (Testplan 3) die ma-
ximale Antwortzeit auf tber 25 Sekunden an. Dies weist auf eine geringere Stabilitat unter

extremer Last hin.

Die Ergebnisse unterstreichen somit die hdhere Konstanz von Quarkus bei gleichzeitigem Last-

anstieg und belegen ein robusteres Antwortverhalten in Bezug auf Ausreil3er.
5.2.3 Durchsatz und Stabilitat

Ein zentraler Aspekt bei der Bewertung der Performance eines Frameworks unter Lastbedin-

gungen ist der erzielte Durchsatz, gemessen in Anfragen pro Sekunde (req/s).

41

Analyse, Vergleich und Bewertung der Ergebnisse

In Abbildung 20 ist der Vergleich der maximal erzielten Durchsatzwerte fur Quarkus und
Spring Boot zu sehen. Dabei wird deutlich, dass beide Frameworks bei niedriger Last (Testplan
1) nahezu identische Werte von etwa 105 req/s erreichen. Mit zunehmender Last (Testpléne 2
und 3) zeigt sich, dass Quarkus in Testplan 2 leicht geringere Durchsatzwerte als Spring Boot
erreicht (629,9 vs. 645 reg/s), wahrend es in Testplan 3 mit 369,4 req/s etwas hinter dem Wert
von Spring Boot (405,1 reg/s) liegt.

Durchsatzvergleich unter Lastbedingungen (Requests pro Sekunde)

N
-

Testplan

1053

=y

1053

Messwertin req/s

m Durchsatz /sec Durchsatz /sec

Abbildung 20: Durchsatzvergleich unter Lastbedingungen

Trotz dieser Abweichungen bleibt der Gesamtdurchsatz bei beiden Frameworks in einem ver-
gleichbaren Bereich. Hinsichtlich der Stabilitét zeigen sich insgesamt sehr geringe Fehlerraten.
In den meisten Testdurchldufen lag die Fehlerquote bei 0 %, was auf eine robuste VVerarbeitung
der Anfragen hinweist. Eine Ausnahme bildet Testplan 3 mit Quarkus, wo eine Fehlerquote
von 0,21 % verzeichnet wurde (vgl. Abbildung 21 — JMeter Summary Report). Diese Abwei-
chung kann auf die hohere gleichzeitige Last und die Post-Anfragen zuruickgefuhrt werden,

welche in diesem Szenario besonders ressourcenintensiv sind.

Der minimale Unterschied in der Fehlerrate bei Quarkus im dritten Testplan bleibt im akzep-
tablen Bereich und mindert die Gesamtstabilitat der Anwendung nicht wesentlich.

42

Analyse, Vergleich und Bewertung der Ergebnisse

Abbildung 21: JMeter - Summary-Report Testplan 3 Quarkus

5.3 Ressourcenverbrauch

Zur ganzheitlichen Bewertung der Frameworks unter Lastbedingungen wird im Folgenden der
Ressourcenverbrauch analysiert. Dabei liegt der Fokus auf der CPU-Auslastung und dem Spei-
cherbedarf der Microservices im Native-Modus iiber die drei definierten Lastszenarien (Test-
plane 1-3). Die Daten wurden mit cAdvisor und Grafana erhoben; fur jede Testlaufdauer von
flinf Minuten sind der durchschnittliche (Mean) sowie der maximale (Max) Verbrauch ermittelt
worden. Diese Kennzahlen geben Aufschluss dartiber, wie effizient Quarkus und Spring Boot
ihre Rechen- und Speicherressourcen nutzen und wie stabil sie unter zunehmender Last ope-

rieren.

5.3.1 CPU-Verbrauch

Abbildung 22 zeigt die gemessene CPU-Auslastung der beiden Microservices (Offer-Service
und Store-Service) in den drei Testpldnen. Die griinen Balken reprasentieren jeweils die Er-
gebnisse von Spring Boot (Native-Modus), die blauen Balken die von Quarkus (Native-Mo-
dus). Pro Testplan ist jeweils der Mean-Wert (mittlere Auslastung iiber die 300-Sekunden-Pe-
riode) sowie der Max-Wert (Spitzenlast) dargestellt.

» Testplan 1 (leichte Last):

Spring Boot erreicht im Offer-Service eine mittlere CPU-Auslastung von 5,45 % und eine ma-
ximale von 11,30 %, wéahrend Quarkus mit 4,64 % (Mean) bzw. 7,44 % (Max) noch etwas
sparsamer agiert. Im Store-Service liegen beide Frameworks sehr niedrig (Spring Boot:

0,86 %/0,90 %; Quarkus: 0,54 %/0,45 %).

43

Analyse, Vergleich und Bewertung der Ergebnisse

» Testplan 2 (mittlere Last):

Unter erhohter Belastung klettert die Auslastung deutlich: Beim Offer-Service erreicht
Spring Boot im Mittel 59,5 % CPU mit Spitzen von 130 %, Quarkus liegt hier bei 69,5 % Mean
und 126 % Max. Der Store-Service beansprucht im Testplan 2 im Mittel 31,6 % (Spring Boot)
bzw. 38,9 % (Quarkus) mit Maximalwerten von 90,3 % bzw. 64 %.

» Testplan 3 (hohe Last):

Auch im stérksten Szenario bleibt die Skalierung beider Frameworks funktionsféhig: Die mitt-
lere CPU-Last im Offer-Service betrigt 56,4 % (Spring Boot) und 65,3 % (Quarkus), mit Spit-
zen von 123 % bzw. 121 %. Beim Store-Service sind es 56,2 %/61,3 % (Mean) und
116 %/113 % (Max) fur Spring Boot bzw. Quarkus.

CPU-Nutzung (Mean & Max)

140,00% Max Offer-Service

130% Max Offer-Service
126%

123% o1 Max Store-Service

120,00% 116%
113%

100,00% Max Store-Service
90,30%

80,00% Offer-Service

69,500 Offer-Service.

4% 65,30% Store-Service
5 61.3%
501
60,00% 40! 5,2
lean Store-Service
8,9%
40,00%
B1.6%
20,00% Max Offer-Service
11.30% Mean Offer-Service
7.44% . Max Store-Service
5.45% 4.64% Mean Store-Serviee
.90% 0,86% 0,45% 0,54%
0,00% - e’
1 2 3

Quarkus zeigt bei leichter Last eine geringere CPU-Bindung, schldgt sich aber auch in an-

CPU VERBRAUCH IN %

TESTPLAN

Abbildung 22: CPU-Verbrauchsvergleich

spruchsvolleren Szenarien gut und bleibt nahe am Verhalten von Spring Boot. Insbesondere
die etwas niedrigeren Maximalwerte im Offer-Service deuten auf eine stabile Ressourcenver-

waltung hin. Insgesamt lassen sich keine dramatischen Vorteile eines Frameworks gegentber

44

Analyse, Vergleich und Bewertung der Ergebnisse

dem anderen in Bezug auf CPU-Effizienz ausmachen, jedoch demonstriert Quarkus in Test-

plan 1 eine leicht bessere Sparsamkeit.
5.3.2 Speicherverbrauch

Abbildung X zeigt den RAM-Verbrauch (Mean & Max) der beiden Microservices (Offer-Ser-
vice und Store-Service) unter den drei definierten Lastszenarien. Die griinen Balken stehen fiir

Spring Boot (Native-Modus), die blauen Balken fiir Quarkus (Native-Modus).
» Testplan 1 (leichte Last):

Im Offer-Service liegt der durchschnittliche RAM-Verbrauch bei etwa 76 MiB (Spring Boot)
gegeniiber 68 MiB (Quarkus). Die Maximalwerte betragen 110 MiB fir Spring Boot und
95 MiB fur Quarkus.

Im Store-Service ist der Mittelwert deutlich niedriger: 106 MiB (Spring Boot) versus 56 MiB
(Quarkus), mit Spitzen von 109 MiB beziehungsweise 66 MiB.

» Testplan 2 (mittlere Last):

Unter moderater Belastung erhoht sich der RAM-Bedarf: Im Offer-Service verbraucht
Spring Boot durchschnittlich 488 MiB und erreicht Maxima von 654 MiB, Quarkus liegt mit
394 MiB (Mean) und 488 MiB (Max) etwas darunter.

Im Store-Service steigen die Werte auf 187 MiB (Mean) und 349 MiB (Max) flir Spring Boot
sowie 158 MiB (Mean) und 301 MiB (Max) fur Quarkus.

» Testplan 3 (hohe Last):

Bei maximaler Auslastung erreicht der Offer-Service Spitzenverbrduche von 783 MiB (Mean)
und 790 MiB (Max) mit Spring Boot. Quarkus weist mit 506 MiB (Mean) und 521 MiB (Max)

einen leicht héheren Durchschnittsverbrauch, aber vergleichbare Maximalwerte auf.

Der Store-Service konsolidiert sich auf 476 MiB/689 MiB (Mean/Max) fiir Spring Boot und
bleibt bei 400 MiB fiir beide Kennzahlen mit Quarkus.

45

Analyse, Vergleich und Bewertung der Ergebnisse

RAM-Nutzung (Mean & Max)
900

800

700

@
=1
=]

o
=}
1=}

an Offer-Service

394 Max Stare-Service
349

RAM VERBRAUCH IN MIB
'
o
o

(%)
1=}
1=}

Mean Store-Service

200 Max Offer-Service

" Max St
1o eaug(;':ers:rwce 10
100 781 g 4 66.2

"IC® Mo an Store-Service
106

559

TESTPLAN

Abbildung 23: RAM-Verbrauch

Der RAM-Verbrauch steigt mit zunehmender Last erwartungsgemaf kontinuierlich an. In allen
Szenarien verwendet Quarkus im Mittel und bei Spitzenlasten weniger Arbeitsspeicher als
Spring Boot, mit Ausnahme des Offer-Services im Testplan 3, wo Quarkus einen geringfligig
héheren mittleren Verbrauch aufweist. Insgesamt demonstriert Quarkus eine tendenziell spar-
samere Speicherverwaltung, was insbesondere fir Umgebungen mit begrenzten Ressourcen

von Vorteil sein kann.
5.4 Skalierung

Zur Untersuchung der Skalierbarkeit wurden die Services im Native-Modus sowohl mit Quar-
kus als auch mit Spring Boot in einem Docker-Swarm-Cluster betrieben. Dabei wurde Testplan
2 und Testplan 3 jeweils auf drei Replikate des Store-Service und des Offer-Service hochge-
fahren. Im Folgenden wird die Effizienz dieser Skalierung sowie der resultierende Ressourcen-

verbrauch beurteilt.

46

Analyse, Vergleich und Bewertung der Ergebnisse

5.4.1 Anzahl der Samples nach der Skalierung

Abbildung 24 vergleicht die Gesamtzahl der verarbeiteten Anfragen (,,Samples®) in Testplan 2

und Testplan 3, jeweils einmal mit einem einzelnen Service-Replikat und einmal mit drei

gleichzeitigen Repliken im Docker-Swarm. Die griinen Balken reprasentieren dabei die Ergeb-

nisse fur Spring Boot, die blauen Balken fur Quarkus; jeder Testlauf hatte eine feste Dauer von

funf Minuten.

» Testplan 2:

Mit einem Replikat wurden 190 986 (Spring Boot) respektive 195 359 (Quarkus)
Samples verarbeitet.

Nach Skalierung auf drei Rep-likate stieg die Anzahl auf 233 572 (Spring Boot) bzw.
239 025 (Quarkus).

Die Speedup-Kennzahl (Samples-Ratio) betrdgt 1,22x fiir beide Frameworks und zeigt

damit eine nahezu lineare Erhéhung des verarbeiteten Anfragevolumens.

» Testplan 3:

Einzeln schafften die Dienste 116 784 (Spring Boot) bzw. 127 962 (Quarkus) Samples.
Mit drei Repliken erhohte sich das Volumen auf 178 695 (Spring Boot) und 208 397
(Quarkus).

Hier ergeben sich Speedups von 1,53x flir Spring Boot und 1,63x fiir Quarkus, was
auf eine etwas bessere Skalierungseffizienz von Quarkus unter extrem hoher Last hin-

weist.

47

Analyse, Vergleich und Bewertung der Ergebnisse

Anzahlder Samples nach der Skalierung

208397

_ IR
Samples Samples (x3 Replicas) Speedup (Samples-Ratio)
™ 2 Spring Boot 190986 233572 122
® 2 Quarkus 195359 239025 1,22
3 Spring Boot 116784 178695 1,53
m 3 Quarkus 127962 208397 1,63

W 2SpringBoot ™ 2 Quarkus 3SpringBoot M 3 Quarkus

Abbildung 24: Anzahl der Samples nach der Skalierung

Diese Ergebnisse belegen, dass beide Frameworks in der Lage sind, durch horizontale Repli-
kation die verarbeitete Anfragezahl signifikant zu steigern. Quarkus zeigt dabei in Testplan 3
einen leicht hoheren Skalierungsgewinn.

5.4.2 Antwortzeit nach der Skalierung

In Abbildung 25 sind die Speedup-Faktoren dargestellt, die sich durch den Betrieb mit drei
Replikaten im Vergleich zu einem einzelnen Service-Pod ergeben. Als Kennzahl wurde jeweils

das Verhéltnis

Antwortzeit bei 1 Replica

Speedup =

Antwortzeit bei 3 Replicas
berechnet.
Ergebnisse im Detail:

» Durchschnittliche Antwortzeit (Average):
e Testplan 2 erreicht Spring Boot einen Speedup von = 3,66, Quarkus sogar ~ 6,85x.
e Testplan 3 liegen die Faktoren bei =~ 1,62x (Spring Boot) und = 1,80% (Quarkus).

48

Analyse, Vergleich und Bewertung der Ergebnisse

o Dieser Rickgang des Speedups in Testplan 3 illustriert, dass die Skalierung bei sehr
hoher Last weniger lineare Gewinne liefert.
» Median der Antwortzeit:
e Testplan 2: Speedup von 5,36x (Spring Boot) und 2,71x (Quarkus).
e Testplan 3: Speedup von 2,31x (Spring Boot) und 3,04x (Quarkus).
e Quarkus erzielt im Median bei extremer Last (Testplan 3) einen héheren Skalierungs-
gewinn, wahrend Spring Boot im moderaten Szenario (Testplan 2) starker profitiert.
» 95%-Perzentil:
o Testplan 2: 2,46x fiir Spring Boot versus 8,23x fiir Quarkus — deutliche VVerbesserung
der Worst-Case-Antwortzeiten bei Quarkus.
e Testplan 3: beide Frameworks liegen knapp tber 1x, was zeigt, dass Ausreillerzeiten
nur geringflgig durch Replikation reduziert werden.
» Min und Max:
o Die Speedup-Faktoren fur Min und Max sind jeweils 1%, da sich die extremsten ein-

zelnen Antwortzeitwerte durch horizontale Skalierung nicht verandern.

SPEEDUP DER ANTWORTZEITEN DURCH HORIZONTALE
SKALIERUNG

2Spring Boot M2 Quarkus M 3 Spring Boot 3 Quarkus

-
- S
[
& . d
o -
s = -
I II . . m . .

AVERAGE (SPEEDUP) MEDIAN (SPEEDUP) 95% LINE (SPEEDUP) MIN (SPEEDUP) MAX (SPEEDUP)

Abbildung 25: Speedup der Antwortzeiten nach der Skalierung

49

Analyse, Vergleich und Bewertung der Ergebnisse

Die Ergebnisse zeigen, dass horizontale Skalierung die mittleren und besonders die perzentilen
Antwortzeiten merklich verbessert. Quarkus zeigt in Testplan 2 einen besonders hohen Gewinn
im Durchschnitt und im 95%-Perzentil, wahrend Spring Boot im Median des moderaten Sze-
narios leicht starker skaliert. In Testplan 3 — der im Vergleich zu Testplan 2 deutlich mehr
Schreib-operationen (POST-Anfragen) enthalt — fallt der Skalierungs-gewinn beider Frame-
works spurbar ab und nahert sich wieder einem Speedup von 1x an. Diese Abschwéachung ist
vor allem auf die erhdhten Datenbank-Synchronisationskosten und Schreib-Overheads zurtick-
zufuhren. Quarkus erreicht jedoch auch in diesem Szenario etwas konsistentere Verbesserun-

gen der Antwortzeiten durch zusatzliche Replikate als Spring Boot.
5.4.3 Durchsatz und Fehlerquote nach der Skalierung

Abbildung X vergleicht fur Testplan 2 und 3 jeweils den Durchsatz (reg/s), den Speedup sowie
die relative Anderung der Fehlerquote, wenn die Anzahl der Service-Replikate von einem auf
drei erhoht wird. Die hellen Balken stehen flir Testplan 2, die dunklen Balken fur Testplan 3;

jeweils in Grun fur Spring Boot und Blau fiir Quarkus.

» Durchsatz (req/s):
e Testplan 2: Spring Boot wachst von 630 req/s auf 773,8 reg/s (Speedup 1,23x), Quar-
kus von 507 req/s auf 792 req/s (ebenfalls 1,23x).
e Testplan 3: Spring Boot steigert sich von 369,4 req/s auf 580,8 req/s (1,57x), Quarkus
von 405,1 req/s auf 674,7 req/s (1,67x%).

Dies zeigt, dass beide Frameworks durch Drittelung der Replikate einen deutlich héheren Ge-

samtdurchsatz erzielen, wobei Quarkus in beiden Szenarien bessere Skalierungsgewinne bietet.
» Speedup (reg/s):

Die Speedup-Faktoren liegen zwischen 1,23x und 1,67% und fallen in Testplan 3 hoher aus als
in Testplan 2, da hier mehr POST-Anfragen (Schreib-operationen) abgewickelt werden und

zusétzliche Replikate die Schreib-last effizienter verteilen.

> Fehlerquote (relative Anderung):

50

Analyse, Vergleich und Bewertung der Ergebnisse

Fir Spring Boot bleibt die Fehlerquote nach Skalierung in beiden Testplanen unverandert auf
0 (Speedup 1x).

Quarkus weist in Testplan 2 ebenfalls keine Veranderung auf (1x), zeigt jedoch in Testplan 3
eine 8,6-fache Zunahme der Fehlerquote (von 0,21% auf 1,81%), was auf erhohten Synchroni-
sations- und Schreib-overhead unter maximaler Belastung hindeutet.

Durchsatzsteigerung und Fehlerquoten nach horizontaler Skalierung (1 >> 3 Replikate)

1000 7738 792
674,7

6299 645 580,8
369,4 405,1
10
1 8.6
157 167
1,23 1,23
o= S

: Durchsatz /sec Durchsatz fsec (x3 Replicas) Durchsatz /sec (Speedup) Error % (Speedup)
2 Spring Boot 6299 7738 123 1
W2 Quarkus 645 792 1,23 1
m35pring Boot 369,4 580,8 1,57 1
B 3 Quarkus 405,1 674,7 1,67 86

Achsentitel

=1

Anfragen/Sekunde und Fehlerquote %, log-Skala

28pringBoot W2Quarkus mM3SpringBoot W3 Quarkus

Abbildung 26: Durchsatz- und Fehlerquotevergleich nach der Skalierung

Die horizontale Skalierung auf drei Replikate fiihrt zu einem signifikanten Durchsatzgewinn
bei beiden Frameworks, mit einem leichten Vorteil fiir Quarkus in puncto Skalierungseffizienz.
Allerdings zeigt sich bei Quarkus unter extremer Last (Testplan 3) eine deutliche Erhéhung der
Fehlerquote, wahrend Spring Boot hier stabiler bleibt. Dies unterstreicht den Trade-off zwi-

schen maximaler Performance-Steigerung und Ausfallsicherheit unter Hochstlast.

51

Analyse, Vergleich und Bewertung der Ergebnisse

5.4.4 Ressourcenverbrauch nach der Skalierung

Um zu beurteilen, ob sich die horizontale Verteilung der Last auch ressourcenseitig lohnt, wur-
den die mittleren und maximalen CPU- sowie RAM-Verbrauchswerte sémtlicher Replikate pro

Service aufsummiert und mit den Ausgangswerten eines Ein-Replica-Betriebs verglichen.

Die absolute Differenz ergibt sich als

3
Aaps = V1 Replica — Z L VReplicai ,
1=
die relative Abweichung (in %) als

A _ Aabs
rel —

Vl Replica .

Die folgende Abbildung 27 zeigt die relative Veranderung des Ressourcenverbrauchs (CPU-
und RAM-Nutzung) nach der Skalierung der Dienste auf drei Replikate. Positive Prozent-
werte deuten auf eine Einsparung hin — also eine bessere Ressourcennutzung trotz
Mehrinstanzen. Negative Werte hingegen zeigen einen Mehraufwand, bei dem der Gesamt-

konsum dber den des Einzel-Deployments hinausgeht.

52

Analyse, Vergleich und Bewertung der Ergebnisse

Relative Anderung des Ressourcenverbrauchs nach Skalierung auf drei Replikate
W 2 Spring Boot 3 Spring Boot ™ 2 Quarkus 3 Quarkus

166% - -94% - A% MaxRAM (Store-Service)
100% - 76% _ A% Mean RAM (Store-Service)
-820 - 117% - A% Max RAM (Offer-Service)
-70% -.: -70% - A% Mean RAM (Offer-Service)
A% Max CPU (Store-Service) -7% -e%_
A% Mean CPU (Store-Service) - 26,3% _,1%

-6,78% -6,02% - A% Max CPU (Offer-Service)
A% Mean CPU (Offer-Service) I 21,99% _ 9,34%

-100% -50% 0% 50% 100%

Abbildung 27: Relative Anderung des Ressourcenverbrauchs nach Skalierung

» CPU-Verbrauch
e Mean CPU % (Offer-Service):

Quarkus erreicht hier in Testplan 2 mit +29,35 % eine deutlich hohere Einsparung als

Spring Boot mit nur +5,55 %.

Auch in Testplan 3 liegt Quarkus mit +9,34 % leicht vor Spring Boot (+21,99 %), wo-
bei die Einsparung bei beiden sinkt.

53

Analyse, Vergleich und Bewertung der Ergebnisse

Max CPU % (Offer-Service):

Bei den Maximalwerten ist der Unterschied weniger stark ausgepréagt. Spring Boot
schneidet etwas besser ab (bis —6,78 % Mehraufwand bei Quarkus), aber der Unter-

schied bleibt gering.
Mean CPU % (Store-Service):

In beiden Testplidnen zeigt Quarkus eine iiberlegene Einsparung: +45 % (TP2) und
+9,1 % (TP3), wihrend Spring Boot hier nur +26,3 % (TP2) und +19 % (TP3) erreicht.

Max CPU % (Store-Service):

Auch hier dominiert Quarkus mit +34 % (TP2) gegeniiber +22,26 % bei Spring Boot.

Quarkus nutzt die CPU-Ressourcen nach der Skalierung deutlich effizienter als Spring Boot,

insbesondere bei moderater Last (Testplan 2). In hochbelasteten Szenarien (Testplan 3) sinkt

der Vorteil, bleibt aber messbar.

> RAM-Verbrauch

Mean & Max RAM (Offer-Service und Store-Service):

In allen RAM-Metriken ist ein starker Mehraufwand nach der Skalierung zu beobach-

ten — bei beiden Frameworks.

Besonders aufféllig ist jedoch, dass Spring Boot in Testplan 3 im Max RAM Store-
Service eine extrem negative Bilanz aufweist (—166 %), wihrend Quarkus mit —71 %

weniger RAM verschwendet.

Beide Frameworks leiden unter stark erhthtem Speicherverbrauch bei der Skalierung. Dennoch

ist Quarkus hier minimal effizienter, insbesondere im Vergleich der Maximalwerte. Der Un-

terschied bleibt aber moderat.

54

Zusammenfassung und Ausblick

6 Zusammenfassung und Ausblick

Diese Arbeit hatte das Ziel, die beiden Java-Frameworks Quarkus und Spring Boot im Kontext
einer cloudnativen Microservice-Anwendung vergleichend zu analysieren. Mithilfe eines pra-
xisorientierten Prototyps — dem Promotion-Management-System — wurden zentrale Leistungs-
merkmale wie Startzeit, Buildzeit, Image-Grolie, Antwortzeit, Durchsatz, Fehlerquote, Res-
sourcenverbrauch sowie Skalierbarkeit systematisch untersucht. Die Durchfiihrung unter rea-
litatsnahen Lastbedingungen im Native-Modus, erganzt durch Skalierungsszenarien mittels
Docker Swarm, lieferte dabei aussagekréftige empirische Ergebnisse.

Im Vergleich zeigt sich, dass Quarkus in vielen zentralen Aspekten effizienter arbeitet als
Spring Boot. Besonders bei Startzeit, Image-GroRe und Speicherverbrauch konnte Quarkus
durch seine native Kompilierung mit GraalVM signifikante Vorteile erzielen. Auch bei der
horizontalen Skalierung erwies sich Quarkus als tendenziell performanter, wenngleich unter
hoher Last synchronisationsbedingte Fehlerzunahmen beobachtet wurden. Spring Boot hinge-
gen bewdhrte sich als stabil und zuverlassig, insbesondere in stark belasteten Szenarien mit

komplexeren Schreiboperationen.

Die Ergebnisse legen nahe, dass Quarkus insbesondere fiir schlanke, cloudnative Anwendun-
gen mit Fokus auf Performance und Skalierbarkeit geeignet ist, wahrend Spring Boot weiterhin
als robuste Allzweckldsung iberzeugt, besonders wenn Stabilitat und Entwicklerfreundlichkeit

im Vordergrund stehen.

Ausblick

Die durchgefiihrten Analysen liefern eine fundierte VVergleichsbasis, lassen jedoch auch Raum
fiir weiterfiihnrende Untersuchungen. In zukinftigen Arbeiten kénnten beispielsweise weitere
Aspekte wie Entwicklungsaufwand, Fehlertoleranz unter Netzausfallbedingungen, oder die In-
tegration externer Dienste betrachtet werden. Auch eine Langzeitanalyse im produktiven Dau-
erbetrieb sowie der Einsatz in Serverless-Architekturen oder auf Kubernetes bieten Potenzial

fiir weiterfiihrende Forschung. Zudem waére ein Vergleich mit anderen modernen Frameworks

55

Zusammenfassung und Ausblick

wie Micronaut oder Helidon denkbar, um die Positionierung von Quarkus und Spring Boot

im weiteren Java-Okosystem zu schirfen.

Insgesamt tragt diese Arbeit dazu bei, die Wahl geeigneter Frameworks im Cloud-Zeitalter
evidenzbasiert zu unterstutzen — ein Aspekt, der angesichts wachsender Systemkomplexitét
und gestiegener Anforderungen an Effizienz und Skalierbarkeit zunehmend an Bedeutung ge-
winnt.

56

Literaturverzeichnis

C, M., 2023. Spring Boot vs Quarkus: Performance comparison for hello world case. [Online]
Available at: https://medium.com/deno-the-complete-reference/spring-boot-vs-quarkus-

performance-comparison-for-hello-world-case-e466d3630329
[Zugriff am 13 Februar 2025].

Geeksforgeeks, 2025. Spring - Setter Injection vs Constructor Injection. [Online]
Available at: https://www.geeksforgeeks.org/spring-setter-injection-vs-constructor-injection/
[Zugriff am 22 Januar 2025].

Lagnada), K. (., 2024. Spring vs. Spring Boot: Choosing the Best Java Framework for Your
Project. [Online]
Available at: https://www.kapresoft.com/java/2024/03/06/spring-vs-spring-boot.html
[Zugriff am 02 Febraur 2025].

Minh, N. H., kein Datum Spring Boot version history. [Online]
Available at: https://www.codejava.net/frameworks/spring-boot/spring-boot-version-history
[Zugriff am 01 Feburar 2025].

Mitropolitsky, M., Simion-Constantinescu, A., Kutsarova, V. & Sellik, H., kein Datum Spring
Boot - production-grade Spring-based Applications that you can ‘just run”. [Onling]
Available at: https://se.ewi.tudelft.nl/desosa2019/chapters/spring-boot/
[Zugriff am 02 Februar 2025].

Quarkus, kein Datum Container First. [Online]
Available at: https://quarkus.io/container-first/
[Zugriff am 04 Febraur 2025].

57

Literaturverzeichnis

Quarkus, kein Datum Quarkus Key Features. [Online]
Available at: https://quarkus.io/
[Zugriff am 13 Febraur 2025].

Quarkus, kein Datum Quarkus Releases. [Online]
Available at: https://github.com/quarkusio/quarkus/releases
[Zugriff am 03 Februar 2025].

Spring, kein Datum Web MVC framework. [Online]

Available at: https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-

reference/html/mvc.html
[Zugriff am 22 Januar 2025].

Spring, kein Datum Introduction to the Spring Framework. [Online]
Available at: https://docs.spring.io/spring-framework/docs/4.3.x/spring-framework-

reference/html/overview.html
[Zugriff am 22 Januar 2025].

Spring, kein Datum Spring Framework 1.0 Final Released. [Online]
Available at: https://spring.io/blog/2004/03/24/spring-framework-1-0-final-released
[Zugriff am 20 Januar 2025].

Stefanko, M. & Martiska, J., 2025. Quarkus in Action. s.I.:Red Hat Developer.

Ter, M. S., 2024. Quarkus vs. Micronaut vs. Spring Boot: A Comparative Guide for Java
Developers. [Online]

Available at: https://master-spring-ter.medium.com/quarkus-vs-micronaut-vs-spring-boot-a-

comparative-quide-for-java-developers-8ece4538b883
[Zugriff am 13 Febrauar 2025].

Victor, J.,, 2023. Spring Framework, History, and Its Structure. [Online]
Available at: https://dev.to/jeanv0/spring-framework-history-and-its-structure-361
[Zugriff am 21 Januar 2025].

Zanetti, E., 2024. Spring Boot and Quarkus: Comparing Performance and Usage. [Online]

Available at: https://medium.com/%40erickzanetti/spring-boot-and-quarkus-comparing-

58

Literaturverzeichnis

performance-and-usage-3610f3dd9719

[Zugriff am 13 Februar 2025].

59

Erklarung zur selbststandigen Bearbeitung einer Abschlussarbeit

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbstédndig verfasst
und nur die angegebenen Hilfsmittel benutzt habe. Wortlich oder dem Sinn nach aus anderen

Werken entnommene Stellen sind unter Angabe der Quellen kenntlich gemacht.

Ort Datum Unterschrift im Original

60

