L I

> >

MBURG

BACHELOR THESIS
Malte Behrmann

Szenarienbasierte
Evaluation von Zeitreihen-
Datenbanksystemen

FAKULTAT TECHNIK UND INFORMATIK
Department Informatik

Faculty of Engineering and Computer Science
Department Computer Science

HOCHSCHULE FUR ANGEWANDTE
WISSENSCHAFTEN HAMBURG

Hamburg University of Applied Sciences



Malte Behrmann

Szenarienbasierte Evaluation von
Zeitreihen-Datenbanksystemen

Bachelorarbeit eingereicht im Rahmen der Bachelorpriifung
im Studiengang Bachelor of Science Angewandte Informatik
am Department Informatik

der Fakultdt Technik und Informatik

der Hochschule fiir Angewandte Wissenschaften Hamburg

Betreuender Prifer: Prof. Dr. Olaf Zukunft
Zweitgutachter: Prof. Dr. Stefan Sarstedt

Eingereicht am: 21. Méarz 2025



Malte Behrmann

Thema der Arbeit

Szenarienbasierte Evaluation von Zeitreihen-Datenbanksystemen

Stichworte

Zeitreihen-Datenbanksysteme, Vergleich, Evaluation, InfluxDB, TimescaleDB, MongoDB

Kurzzusammenfassung

Die effiziente Speicherung und Verarbeitung von Zeitreihendaten spielt eine wichtige Rol-
le in vielen Anwendungsbereichen. Aufgrund der besonderen Anforderungen von Zeitrei-
hendaten, wurden in den letzten Jahren viele spezialisierte Zeitreihen-Datenbanksysteme
entwickelt — darunter kommerzielle, aber auch auch freie open-source Varianten. Diese
Arbeit vergleicht InfluxDB, TimescaleDB und MongoDB als Repréasentanten dreier Ka-
tegorien von open-source Zeitreihen-Datenbanksystemen — zunéchst konzeptionell und
anschlieftend experimentell anhand von drei realitdtsnahen Szenarios. Fiir den experi-
mentellen Vergleich wurde ein modulares und erweiterbares Testsystem entwickelt, das
die Versuche automatisiert durchfiihrt. Die Ergebnisse zeigen, dass spezialisierte Daten-
banksysteme in vielen Féllen klare Vorteile bieten, jedoch kein einzelnes System universell
empfohlen werden kann. Daher wurden auf Basis der Ergebnisse Nutzungsempfehlungen

flir verschiedene Anwendungsfille abgeleitet.
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Abstract

The efficient storage and processing of time series data plays a crucial role in many app-
lication areas. Due to the specific requirements of time series data, numerous specialized
time series database systems have been developed in recent years — both commercial
and open-source variants. This thesis compares InfluxDB, TimescaleDB, and MongoDB
as representatives of three categories of open-source time series database systems — first
conceptually and then experimentally, using three realistic scenarios. For the experimen-
tal comparison, a modular and extendable testing system was developed to automate
the evaluation of the databases. The results show that specialized database systems offer
clear advantages in many cases; however, no single system can be universally recommen-
ded. Based on these findings, usage recommendations for various application scenarios

were derived.
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1 Einleitung

Zeitreihen spielen eine zentrale Rolle in zahlreichen Anwendungsbereichen, da sie Da-
tenpunkte in Abhéngigkeit der Zeit erfassen kénnen und diese analysierbar machen. Ob
beispielsweise in der Finanzwelt zur Uberwachung von Aktienkursen, in der Industrie fiir
Sensor- und Maschinendaten oder in der Wissenschaft zur Klimaforschung [15, 45] — die
effiziente Speicherung und Verarbeitung von Zeitreihendaten ist essenziell. Aufgrund der
besonderen Anforderungen von Zeitreihendaten, wie hohen Schreibraten und der effizien-
ten Durchfithrung von Zeitreihenanalysen, sind spezialisierte Zeitreihen-Datenbanksys-

teme erforderlich, die gezielt dafiir optimiert sind.

Da es eine Vielzahl von Zeitreihen-Datenbanksystemen mit unterschiedlichen Eigenschaf-
ten und Konzepten gibt, wird in dieser Arbeit zunéchst eine Kategorisierung vorgenom-
men, um die verschiedene Systeme zu analysieren. Auf Basis ihrer Architektur und ihres

Funktionsumfangs werden Zeitreihen-Datenbanksysteme in drei Kategorien eingeteilt:
1. reine Zeitreihen-Datenbanksysteme
2. Erweiterungen von relationalen Datenbanksystemen
3. Erweiterungen von NoSQL-Datenbanksystemen

Fiir jede dieser Kategorien wird ein Reprasentant ausgewahlt, der detailliert untersucht
und mit den anderen Systemen verglichen wird. Die Reprisentanten InfluxDB, Time-
scaleDB und MongoDB dienen dabei als Beispiele fiir die Kategorien und werden hin-

sichtlich ihrer Leistungsfidhigkeit in drei verschiedenen Szenarios gegeniibergestellt.

Der Vergleich erfolgt sowohl konzeptionell als auch experimentell. Zunachst werden die
theoretischen Grundlagen von Zeitreihen und Zeitreihenanalysen sowie die Eigenschaften

relationaler und NoSQL-Datenbanksysteme erldutert. Anschlieftend folgt eine detaillierte
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Erklarung der internen Funktionsweise der ausgewahlten Reprasentanten. Im konzeptio-
nellen Vergleich werden die Zeitreihen-Datenbanksysteme hinsichtlich ihrer Strukturan-
forderungen der Zeitreihen, Abfragesprachen und weiterer funktionaler Aspekte analy-

siert, um ihre Eignung fiir verschiedene Anwendungsfélle zu bewerten.

Im experimentellen Teil der Arbeit werden die Systeme anhand realitdtsnaher Szenarios
untersucht, darunter die Verarbeitung von Sensordaten in einem Smart-Home-Umfeld,
die Analyse groker Zeitreihen aus dem Taxiverkehr sowie das Monitoring kurzlebiger
Dienste. Durch eine systematische Evaluierung in einer dynamisch konfigurierbaren Test-
umgebung lassen sich Aussagen iiber Eignung der verschiedenen Systeme fiir spezifische

Anwendungsbereiche treffen.

Fiir den experimentellen Vergleich wird ein modulares und erweiterbares Testsystem ent-
wickelt, das die Datenbanksysteme unter realistischen Bedingungen automatisiert ana-
lysiert. Es fithrt die Szenarios aus und erfasst Anfragelatenzen, zentrale Systemmetriken

und den Stromverbrauch, wodurch eine Bewertung der Systeme méoglich wird.

Diese Untersuchung soll einen Uberblick iiber die Leistungsfihigkeit und Eignung ver-
schiedener Zeitreihen-Datenbanksysteme bieten. Die Ergebnisse dienen als Entscheidungs-
hilfe fiir die gezielte Auswahl eines geeigneten Systems fiir den jeweiligen Anwendungs-

fall.



2 Grundlagen

2.1 Zeitreihen

Zeitreihen spielen in unserer zunehmend vernetzten und digitalisierten Welt eine zentra-
le Rolle und begegnen uns in vielen Bereichen des Alltags — z. B. bei Wetterberichten,
Aktienkursen wie dem DAX (siehe Abb. 2.1) oder den monatlichen Arbeitslosenzahlen.
Auch in der Industrie sind Zeitreihen unverzichtbar, etwa um Maschinen zu {iberwachen
und friihzeitig Anzeichen fiir Verschleifs zu erkennen. Ebenso werden Zeitreihen in der
Wissenschaft angewendet, um Analysen und Auswertungen durchzufiihren. In Rechen-
zentren werden Zeitreihen hiufig zur Uberwachung von Servern eingesetzt und stellen

einen weit verbreiteten Anwendungsfall dar [15, 45].

DAX-Kurs

19 500

19 250

Punkte

19 000

| | | | | | | |
10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00
Uhrzeit

Abbildung 2.1: DAX-Kurs vom 06.11.2024 (Daten aus [14])
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In der Statistik werden Zeitreihen wie folgt definiert: Eine Zeitreihe ist eine geordnete
Folge (xt)ier, die aus Werten einer gewissen Grofe besteht, wobei sich die Werte in der
Menge der reellen Zahlen (R) befinden. In der Regel sind dabei die zeitlichen Absténde
identisch. Die Parametermenge T' = N stellt die Zeitpunkte dar, die hdufig aber auch mit
negativen Zahlen (also 7" = 7Z) genutzt wird, da so statistische Verfahren einfacher zu
definieren sind, weil keine Sonderfille fiir die Werte nahe dem Nullpunkt beachtet werden
miissen |78, 45]. In dieser Arbeit wird die vereinfachte Definition von Chatfield [9] fiir
Zeitreihen genutzt, da hier nicht im Detail auf die statistischen Verfahren zur Zeitreihen-

analyse eingegangen wird.

Nach Chatfield [9] wird eine Zeitreihe als eine Folge von Beobachtungen eines bestimmten
Merkmals definiert, die entweder kontinuierlich oder in regelméfigen Abstédnden iiber die
Zeit hinweg erfasst werden. Diese Definition wird ebenfalls von Brockwell und Davis |7]

genutzt.

Zeitreihen konnen auf verschiedene Weisen klassifiziert werden. Zum einen unterscheidet
man zwischen kontinuierlichen (engl. continuous) und diskreten (engl. discrete) Zeitrei-
hen |9, 7|. Kontinuierliche Zeitreihen treten dort auf, wo Werte laufend entstehen. Ein
Beispiel dafiir ist ein Temperatursensor, dessen Ausgangsspannung sich durchgéngig ent-
sprechend der Temperatur dndert. Diskrete Zeitreihen bestehen hingegen aus Beobach-
tungen, die nur zu bestimmten, meist gleichméfigen Zeitpunkten erhoben werden. Die
Art der Werte spielt dabei keine Rolle: Kontinuierliche Zeitreihen kénnen diskrete Wer-
te speichern (z. B. Tiir auf/zu) und diskrete Zeitreihen konnen kontinuierliche Werte
beinhalten (z. B. stiindliche Temperatur). In der Praxis entsteht laut Shumway und Ro-
bert [79] aus nahezu jeder eigentlich kontinuierlichen Zeitreihe eine diskrete Zeitreihe,
wenn die Daten gespeichert werden miissen. Dies liegt inhdrent an der Art und Weise,

wie die Daten erfasst und von Rechnern verarbeitet werden konnen.

Eine weitere Moglichkeit Zeitreihen zu klassifizieren ist die Unterscheidung in statio-
ndre und nicht-stationére Zeitreihen. Stationédr bedeutet dabei, dass sich stochastische
Eigenschaften nicht iiber die Zeit hinweg &ndern, wodurch Prognosen zukiinftiger Werte
moglich werden [45, 7]. Zudem gibt es viele weitere Eigenschaften, anhand derer Zeitrei-
hen ebenfalls klassifiziert werden kénnen — diese sind jedoch vor allem im Bereich der

Statistik relevant.
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2.2 Zeitreihenanalysen

Zeitreihen und deren Analysen sind keineswegs eine moderne Erfindung. Bereits im 19.
Jahrhundert wurden Logbiicher von Schiffen ausgewertet, um mithilfe von Daten wie Ge-
schwindigkeit, Standort und Windverhéltnissen die Routen der Schiffe zu optimieren [15].
Zeitreihen werden auch eingesetzt, um Trends in Daten zu identifizieren. Ein Beispiel da-
flir ist die Arbeit von Keeling, der 1958 auf Hawaii begann, die COs-Konzentration in
der Atmosphére zu messen und diese in der bislang langsten kontinuierlichen Zeitrei-
he dieser Art aufzuzeichnen. Seine Messungen konnten dazu beitragen, den menschlichen
Einfluss auf den Klimawandel nachzuweisen. Aufgrund ihrer hohen Bedeutung wurde die-
ser Zeitreihe der Name ,Keeling-Kurve* gegeben [15, 63]. Auch in der Luftfahrt werden
Zeitreihen genutzt, um das Verhalten von Flugzeugen zu analysieren [15]. Flugdaten-
schreiber, umgangssprachlich oft als ,Black Box“ bezeichnet, zeichnen die wichtigsten

Flugdaten auf, um im Fall eines Ungliicks den Hergang rekonstruieren zu kénnen.

Die Zeitreihenanalyse ist ein Teilbereich der Statistik, der sich nach Chatfield [9] in
die Beschreibung, Erklarung, Vorhersage und Regelung von Zeitreihendaten unterteilen

lasst:

e Beschreibung: In der beschreibenden Analyse werden die Struktur und grundle-
gende Eigenschaften einer Zeitreihe untersucht. Beispielsweise konnen Trends oder
gewisse Muster erkannt werden. Hierzu ist es u. a. sinnvoll, die Daten zuerst in
einem Diagramm visuell darzustellen. Zudem gibt es weitere fortgeschrittene Tech-

niken fiir die Modellierung und Analyse, die z. B. Ausreiffer erkennen koénnen.

e FErklirung: Die erkldrende Analyse soll die Ursachen und Zusammenhénge aufzei-
gen, die zu den zu analysierenden Daten gefiihrt haben. Daraus kénnen im An-
schluss Kausalitdten in den Daten erkannt werden. Beispiele fiir Methoden, die

dieser Kategorie zuzuordnen sind, sind die Korrelations- und Regressionsanalyse.

e Vorhersage: Die vorhersagende bzw. prognostizierende Zeitreihenanalyse befasst
sich mit der Schatzung zukiinftiger Werte auf Basis der vorliegenden Daten. Hierzu
werden statistische Verfahren, wie z. B. ARMA (engl. fiir Autoregressive Moving

Average), genutzt, die auf den Einsatz in Zeitreihen spezialisiert sind.

o Regelung: Die Regelung bezieht sich auf die Anwendung der Zeitreihenanalyse zur

Steuerung von Entscheidungen, wie z. B. in der Finanzwirtschaft. Hier kann die
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Analyse von Zeitreihendaten genutzt werden, um iiber den Kauf oder Verkauf von

Aktien basierend auf prognostizierten Kursverldufen zu entscheiden.

Um die immer grofter werdenden Mengen an Zeitreihen zu speichern, zu verwalten und
zu analysieren, wurde iiber die Jahre eine Vielzahl an verschiedenen Zeitreihen-Daten-
banksystemen auf den Markt gebracht. Dabei gibt es kommerzielle Angebote, aber auch
viele open-source Datenbanksysteme, die miteinander konkurrieren. Die Notwendigkeit,
spezialisierte Datenbanken fiir Zeitreihen zu entwickeln besteht u. a. darin, dass die Ana-
lyse von Zeitreihendaten besondere Anforderungen hat. In Kapitel 3 wird dies weiter
diskutiert.

Diese Arbeit beschéftigt sich jedoch nicht mit den Details der Zeitreihenanalyse, son-
dern mit Datenbanksystemen, die besonders auf Zeitreihen und deren Speicherung und
Verarbeitung spezialisiert sind. Grundlage dafiir sind haufig sowohl relationale als auch
NoSQL-Datenbanksysteme, die deswegen in den néchsten beiden Abschnitten genauer

beleuchtet werden sollen.

2.3 Relationale Datenbanksysteme

Relationale Datenbanksysteme (RDBS) basieren auf dem Relationenmodell, das von
Codd [11] im Jahr 1970 vorgestellt wurde, sowie der relationalen Algebra, die Codd [12]
im Jahr 1972 entwickelte. Ein grundlegendes Prinzip von RDBS ist, dass die gespeicher-
ten Daten in einer wohldefinierten Form, dem sogenannten Schema, stets korrekt und
konsistent sind. Im Folgenden werden wichtige Aspekte relationaler Datenbanksysteme

beschrieben.

2.3.1 Relationenmodell

Die grundlegende Idee des Relationenmodells besteht darin, Daten mithilfe von Relatio-
nen zu modellieren [47, 82]. Dadurch wird es unter anderem moglich, die Operationen auf
den Daten durch mathematische Beweise auf Vollstandigkeit und Korrektheit zu iiber-
priifen. Eine weit verbreitete Darstellung der Relationen sind Tabellen mit Spalten und
Zeilen, wie sie auch von SQL (engl. fiir Structured Query Language) genutzt wird. Bevor
auf die Struktur der Relationen eingegangen werden kann, werden einige grundlegende
Begriffe anhand der Beispieltabelle 2.1 erklért.
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Tabelle 2.1: Beispiel einer Tabelle im Relationenmodell (angelehnt an [82])

Autos

AutoNr | Marke  Farbe
1 Opel silber
2 VW rot
3 Opel  schwarz
4 Audi rot

o Attribute bzw. Merkmale sind die Spalten einer Tabelle (im Beispiel ,AutoNr*, ,Mar-
ke und ,Farbe®).

e Tupel sind die Zeilen der Tabelle, welche auch Datensatz genannt werden. Ein

wichtiger Aspekt ist, dass die Tupel innerhalb einer Tabelle einmalig sind.

o [dentifikationsschliissel bestehen aus einem oder mehreren Attributen, die zusétz-
lich zwei Eigenschaften erfiillen miissen: Sie miissen jedes Tupel eindeutig identi-
fizieren, und es darf keinen anderen Schliissel mit weniger Attributen geben. Im
Beispiel ist das Attribut ,,AutoNr* ein Identifikationsschliissel.

o Datenwerte sind die Zellen der Tabelle bzw. die einzelnen Werte der Tupel.

Im Relationenmodell wird eine Tabelle durch eine Relation von Tupeln dargestellt, die
aus einer Teilmenge des kartesischen Produkts iiber den Wertebereichen der Attribute —
den Doménen — bestehen:

RC Dy xDyx---x D, (2.1)

wobei D; die Domé&ne des Attributs ¢ ist.

2.3.2 Relationale Algebra

Die relationale Algebra definiert verschiedene Grundoperationen auf den Relationen des
Relationenmodells (siehe Abschnitt 2.3.1) [82, 77], die im Folgenden kurz erldutert wer-

den:

A, wahlt die Ay, ..., A, Attribute (Spalten) aus

der Eingaberelation aus, die in der Ergebnisrelation enthalten sein sollen. Attribute,

e Projektion: Die Projektion 4,

-----

die nicht in A4,..., A, enthalten sind, werden nicht iibernommen.
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o Selektion: Die Selektion g iibernimmt nur die Tupel (Zeilen) aus der Eingabere-

lation in die Ergebnisrelation, die das Pradikat © erfiillen.

e Umbenennung: Die Umbenennung p4,,... a, gibt den Attributen (Spalten) Ay,..., A,

einen neuen Namen.

Zu den Grundoperationen zéhlen ebenfalls das kartesische Produkt, die Mengenvereini-

gung und -differenz, die wie in der klassischen Mengenlehre angewendet werden.

Auflerdem gibt es weitere Operationen, die aus Kombinationen der oben genannten Grun-
doperationen entstehen. Diese sollen in dieser Arbeit jedoch nicht ndher beleuchtet wer-

den und lassen sich in [82] nachlesen.

2.3.3 Transaktionen und ACID

Die meisten relationalen Datenbanken bieten die Funktionalitét von Transaktionen [82,
47, 77] an, die dafiir sorgen, dass mehrere Operationen auf dem Datenbankmanagement-
system (DBMS) als eine Einheit gruppiert werden kénnen. Anwendungen, die das DBMS
nutzen, konnen Transaktionen starten (BEGIN) und diese entweder durch Ubernahme
der Anderungen (COMMIT) abschlieken oder durch Riickgéingigmachen der Anderungen
(ROLLBACK) wieder beenden. Transaktionen erfiillen dabei die ACID-Eigenschaften, die
von Haerder und Reuter [22] erdacht wurden. ACID steht dabei fiir die folgenden Begrif-
fe:

o Atomicity (Atomaritat): Die Eigenschaft der Atomaritit gibt an, dass alle Transak-
tionen entweder vollstindig mit allen Anderungen iibernommen werden oder dass
im Falle eines Fehlers bzw. eines Zuriickrollens (ROLLBACK) keine der Anderungen

gespeichert werden.

o Consistency (Konsistenz): Die Konsistenz beschreibt, dass die Datenbank zu jedem
Zeitpunkt einen giiltigen (konsistenten) Zustand hat. Das heift, dass eine Anwen-
dung, die das DBMS nutzt, nicht darauf ausgelegt sein muss, mit inkonsistenten

Daten zu arbeiten.

e Isolation (Isolation): Die Isolation von Transaktionen garantiert, dass Anwendun-
gen, die das DBMS nutzen, ihre Anfragen ungestort von anderen, moéglicherweise

parallel laufenden Anwendungen durchfiithren kénnen.
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e Durability (Dauerhaftigkeit): Nachdem eine Transaktion abgeschlossen und gespei-
chert wurde, bleibt diese dauerhaft erhalten. Auch im Falle eines Systemfehlers

gehen keine Daten verloren.

Durch die Garantie der Isolation miissen Transaktionen in einigen Féllen auf andere
warten. Da dies zu einem Performanz-Problem fiihren kann und diese Eigenschaft nicht
in allen Féllen benotigt wird, wurden verschiedene Isolationsstufen (engl. isolation level)
eingefiihrt, die je nach Stufe nur gewisse Isolationseigenschaften erhalten. Die Stufen sind
zwar in SQL angegeben, variieren jedoch leicht in den verschiedenen Implementationen
der Datenbanksysteme (siche z. B. PostgreSQL [87]).

2.4 NoSQL-Datenbanksysteme

NoSQL-Datenbanksysteme [76, 16| konnen als eine Antwort auf das starre Datenmodell
relationaler Datenbanksysteme gesehen werden, die um das Jahr 2009 vermehrt aufka-
men. Thre Kernkompetenz liegt in der Flexibilitdt und Skalierbarkeit, die in der Regel
durch nicht fest definierte Schemata und die Nutzung verteilter Systeme erreicht werden.
NoSQL soll dabei nicht beschreiben, dass diese DBS kein SQL unterstiitzen, sondern
vielmehr, dass sie nicht nur SQL (Not only SQL) nutzen.

2.4.1 BASE / CAP-Theorem

Einige NoSQL-Datenbanksysteme nutzen BASE als Konsistenzmodell [76, 47, 17|, wel-
ches im Gegensatz zu ACID (siehe Abschnitt 2.3.3) geringere Anforderungen an die
Konsistenz des DBS stellt und stattdessen die Verfiigbarkeit in den Fokus riickt. Die Ab-
kiirzung wurde dabei bewusst so gewéhlt, dass sie den Kontrast zu ACID zeigt. BASE
steht flir Basicly Awvailable, Soft State und FEventually Consistent und sagt aus, dass
die Knoten eines verteilten Systems fast immer verfiighar (Basicly Available) sind. Die
Konsistenz der Daten wird jedoch nur dann garantiert, wenn auf dem System keine
Anderungen mehr vorgenommen werden und die Knoten auf einen gemeinsamen Stand
konvergiert sind. Man spricht hierbei von einem System, das ,Eventually Consistent® ist.
Der Systemzustand in dem Zeitraum, bevor die Konsistenz eintritt, wird als ,Soft State"

bezeichnet.
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Partition
Tolerance

Availability

Abbildung 2.2: Visuelle Darstellung des CAP-Theorems, wobei die gemusterten Bereiche
jeweils die moglichen Kombinationen der CAP-Eigenschaften zeigen

Eng mit BASE verwandt ist das CAP-Theorem, welches von Brewer |5| entwickelt und
von Gilbert und Lynch [19] bewiesen wurde, und besagt, dass verteilte Rechnersysteme
nur jeweils zwei der drei CAP-Eigenschaften Konsistenz (Consistency), Verfiigbarkeit
(Availability) und Partitionierungstoleranz (Partition Tolerance) erfiillen kénnen (siehe
Abb. 2.2), wodurch folgende Kombinationen entstehen [47, 16, 17]:

e (A: Das System soll immer konsistent und verfiighar sein, somit darf es nicht zu
einer Teilung bzw. Partitionierung des Systems kommen. Beispiele fiir CA-Systeme
sind die DBS, die ACID (siche Abschnitt 2.3.3) nutzen.

e (P: Systeme, die konsistent und partitionierungstolerant sind, reduzieren im Fal-
le einer Teilung die Verfiigharkeit, um keine Inkonsistenzen zu erzeugen. Manche

NoSQL DBS nutzen dieses Modell bzw. lassen sich entsprechend konfigurieren.

e AP: Im Gegensatz zu CP-Systemen kénnen AP-Systeme wéhrend einer Partitio-
nierung inkonsistent werden — sie bleiben jedoch jederzeit verfiigbar. Dieses Modell
wird ebenfalls von manchen NoSQL DBS genutzt.

Jedoch gibt es auch Kritik am CAP-Theorem, da sich die wenigsten Systeme hart in eine
der Kategorien einteilen lassen. NoSQL-Systeme lassen sich oft feingranular beziiglich der
Konsistenz oder Verfiigbarkeit im Partitionierungsfall konfigurieren — teils ist dies sogar
pro einzelner Anfrage moglich (siehe [62]). Zudem ist das CAP-Theorem lediglich im Falle
einer Partitionierung relevant, welche in der Regel nur selten auftritt. Solange ein System
nicht partitioniert ist, konnen Konsistenz und Verfiigbarkeit gleichermafen garantiert
werden. Um dies zu adressieren, wurde von Abadi [1] PACELC (engl. fiir If Partition,

10
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Availability and Consistency, Else, Latency and Consistency) als Verbesserung von CAP
vorgestellt, auf das hier jedoch nicht weiter eingegangen werden soll. Details hierzu lassen

sich in [18] nachlesen.

2.4.2 Kategorien von NoSQL-Datenbanksystemen

NoSQL-Datenbanksysteme lassen sich in vier Kategorien gruppieren |76, 16]:

o Key-Value-orientiert: Diese Datenbanksysteme speichern ihre Daten in Form von
Schliissel-Wert-Paaren, wobei die Schliissel den Index der Datenbank darstellen.
Die Werte konnen aus einfachen Zeichenketten (engl. Strings) oder auch komplexe-
ren Typen wie Listen bestehen. Ein Kernaspekt, warum Key-Value-DBS in vielen
Fallen im Einsatz sind, ist die hohe Performanz, die sich durch das einfache Da-
tenmodell dieser Systeme erzielen lésst. Das Datenbanksystem Redis ist ein haufig
verwendeter Vertreter von Key-Value-DBS [74].

o Dokumentenorientiert: Datenbanksysteme, die dieses Modell nutzen, speichern Da-
ten als Dokument. Mit Dokumenten werden dabei Datenstrukturen beschrieben, die
entweder skalare Daten, Listen oder weitere Dokumente enthalten. Innerhalb eines
Dokuments werden die einzelnen enthaltenen Daten als Felder bezeichnet. Meis-
tens werden Dokumente im JSON-Format gespeichert, wobei XML aber auch teils
moglich ist. Dokumentenorientierte Datenbanksysteme sind in der Regel schemaf-
rei, das heifst, die Struktur der Dokumente muss nicht vorher angegeben werden.
Ein géngiges Beispiel fiir diese Kategorie ist MongoDB [61], auf das in Kapitel 3.4

im Kontext von Zeitreihen-Datenbanksystemen genauer eingegangen wird.

e Spaltenorientiert: Spaltenorientierte Datenbanksysteme funktionieren &hnlich wie
relationale DBS (siehe Abschnitt 2.3), jedoch werden die Daten hier nicht in Form
von Tupeln (Zeilen) sondern spaltenweise gespeichert. Dies kann bei gewissen Ope-
rationen, wie z. B. ,,.Summe {iber alle Datenwerte einer Spalte”, die Performanz er-
heblich verbessern, da die Daten weitestgehend sequenziell aus dem Speicher gelesen
werden konnen. Ein weiterer Unterschied zu relationalen DBS besteht darin, dass
das Schema der Datenbank deutlich flexibler ist: Es konnen jederzeit beliebig vie-
le Spalten hinzugefiigt oder entfernt werden. Ein verbreitetes Open-Source-System
hierfiir ist Apache Cassandra [83].

11
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o Graphorientiert: Speichert und verarbeitet ein DBS seine Daten als Graph mit
Knoten und Kanten, so spricht man von einem graphorientierten Datenbanksys-
tem. Dieses Datenmodell ermdéglicht es, direkt in dem DBMS Graphalgorithmen
zu nutzen, wie z. B. die Berechnung des kiirzesten Wegs von Knoten A nach Kno-
ten B. Die hohere Komplexitat dieses Modells im Vergleich zu anderen Modellen
wirkt sich jedoch negativ auf die Performanz aus. Neo4J [65] ist diesbeziiglich ein

bekanntes Graphdatenbanksystem.

12
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In diesem Kapitel werden Zeitreihen-Datenbanksysteme kategorisiert und fiir jede der
Kategorien ein Repréasentant gewahlt, auf dessen interne Funktionsweise zusétzlich einge-
gangen wird. Die Représentanten werden in den Kapiteln 5 und 6 zunéchst konzeptionell
und anschliefend experimentell verglichen. In Kapitel 5 wird auf den genauen Funktions-
umfang der jeweiligen DBS weiter eingegangen. Am Ende des Kapitels wird aufserdem

auf verwandte Arbeiten verwiesen.

3.1 Kategorisierung und Auswahl von Reprasentanten

Die Initiative DB-Engines [71] fithrt 61 verschiedene Datenbanksysteme mit Zeitreihen-
funktionalitdt auf. Aufgrund der Vielzahl verschiedener Systeme wurde in dieser Arbeit
entschieden, die Systeme zu kategorisieren und jeweils einen Reprisentanten pro Ka-
tegorie auszuwéhlen. Die Kategorien wurden dhnlich wie bei Bader [3] primér anhand
des verwendeten Datenmodells gewéhlt. Somit wurden die Kategorien reine Zeitreihen-
Datenbanksysteme, Erweiterungen von relationalen DBS und Erweiterungen von NoSQL
DBS definiert. Bader [3| hat zudem eine Kategorie fiir proprietdre DBS eingefiihrt, die
hier jedoch nicht genutzt wird, da in dieser Arbeit ausschlieklich open-source DBS mit-

einander verglichen werden.

Die Reprisentanten wurden u. a. anhand ihrer Popularitit, gemessen von DB-Engi-
nes [71], ausgewéhlt (siche Abb. 3.1). Zudem wurde auf die Aktivitdt der Entwicklung

sowie die freie Verfiigbarkeit der Software und des Quellcodes (Open-Source) geachtet.

13
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DB-Engines Ranking von Zeitreihen-Datenbanksystemen
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Abbildung 3.1: Ranking von ausgewéhlten Zeitreihen-Datenbanksystemen — gemessen
anhand ihrer Popularitit seit Beginn der Erfassung (Daten aus [71])

Die Kategorien sind wie folgt aufgebaut:

e reine Zeitreihen-Datenbanksysteme: Zu dieser Kategorie zéhlen Datenbanksysteme,

die von Grund auf als Zeitreihendatenbank entwickelt wurden.

Représentant dieser Kategorie: InfluxDB [42]
Andere DBS, die auch dieser Kategorie angehoren: Prometheus |70], Graphite [21]
und OpenTSDB [84]

e Frweiterung von relationalen DBS: Hierbei handelt es sich um Datenbanksysteme,
die entweder auf einem relationalen DBS aufbauen, bzw. ein solches um Zeitreihen-

funktionalitat erweitern.

Reprisentant dieser Kategorie: TimescaleDB [95]
Andere DBS, die auch dieser Kategorie angehoren: Clickhouse [10], IBM Infor-
mix [25] und SingleStore [80]

14
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o Frweiterung von NoSQL DBS: Systeme in dieser Kategorie sind jene, die als Basis
ein NoSQL DBS nutzen.

Représentant dieser Kategorie: MongoDB [61]
Andere DBS, die auch dieser Kategorie angehoren: Redis [74], Couchbase [13] und
RavenDB|[24]

Als Baseline wurde zudem ein klassisches relationales Datenbanksystem gewéhlt, um
spater vergleichen zu konnen, wie sich die spezialisierten Zeitreihen-Datenbanksysteme
gegeniiber zu reguldren DBS unterscheiden. Représentant hierfiir ist das DBS Postgre-
SQL [88], welches aus zwei Griinden ausgesucht wurde: Zum einen fithrt DB-Engines [71]
PostgreSQL als zweitpopulédrstes RDBS auf, und zum anderen ergibt sich durch diese
Wahl die Moglichkeit, festzustellen, inwiefern sich das DBS TimescaleDB, das selbst eine

Erweiterung von PostgreSQL ist, von seinem zugrundeliegenden DBS unterscheidet.

3.2 Reine Zeitreihen-Datenbanksysteme: InfluxDB

Fiir die Kategorie von reinen Zeitreihen-Datenbanksystemen wurde InfluxDB [42] als Re-
prasentant gewahlt, da dieses System laut DB-Engines [71] die grofste Popularitiat unter
den Zeitreihen-Datenbanksystemen hat. InfluxDB wird seit 2013 kontinuierlich weiter-
entwickelt — derzeit von der Firma InfluxData, die speziell hierfiir gegriindet wurde. Das
System wird in verschiedenen Varianten angeboten: Zum einen gibt es eine open-source
Version (InfluxDB OSS), die frei verfiigbar ist, aber einen eingeschréankten Funktionsum-
fang besitzt. Zum anderen gibt es verschiedene kommerzielle, proprietdre Produkte, die
zusétzliche Funktionen wie beispielsweise die Verteilung der Daten auf mehrere Rechner
unterstiitzen und entweder auf eigenen Rechnern oder iiber einen von InfluxData ange-
botenen Cloud-Dienst ausgefiihrt werden kénnen. In dieser Arbeit wird die quelloffene
Variante InfluxDB OSS betrachtet, die nachfolgend InfluxDB genannt wird.

InfluxDB nutzt die Anfragesprachen InfluxQL und Flux, um Daten aus der Datenbank
zu lesen [39], wobei die Weiterentwicklung fiir Flux mit der derzeit in Entwicklung be-
findlichen Version 3 von InfluxDB eingestellt wurde [40]. InfluxQL ist eine SQL-&hnliche

Sprache, die auf die Anfrage von Zeitreihendaten spezialisiert ist.
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3.2.1 Datenmodell

Als von Grund auf entwickeltes Zeitreihendatenbanksystem nutzt InfluxDB ein eigenes

Datenmodell, das fiir die Speicherung von Zeitreihendaten optimiert ist [41].

InfluxDB speichert die Daten einer Anwendung in Buckets, die mit Datenbanken in an-
deren DBS zu vergleichen sind. Jedem Bucket kann eine so genannte Retention Policy
zugewiesen werden, die dafiir sorgt, dass alte Daten nach der eingestellten Zeit auto-
matisch entfernt werden. Dies ist insbesondere niitzlich, um Speicherplatz zu sparen.
Tabelle 3.1 zeigt fiktive Daten, wie sie in einem Bucket gespeichert werden. Anhand

dieser Tabelle werden nachfolgend die restlichen Begriffe des Datenmodells erklért.

Jedem Datenpunkt wird in InfluxDB ein Zeitstempel (_time) zugewiesen, der Uhrzeit
und Datum in Nanosekundenauflésung speichern kann. Zudem lassen sich verschiedene
Daten in so genannten Measurements (_measurement) gruppieren. In der Beispiel-
tabelle 3.1 werden vier verschiedene Messwerte unter dem Measurement ,weather zu-
sammengefasst. Jeder Datenpunkt, der in der Datenbank gespeichert wird, kann dabei
verschiedene Felder (_field) und dazugehorige Werte (_value) besitzen. Somit kon-
nen mehrere Werte verschiedener Zeitreihen durch einen einzelnen Datenpunkt in die
Datenbank eingefiigt werden. Zusétzlich kénnen Werten weitere Eigenschaften zugewie-
sen werden, die Tags genannt werden — diese sind zudem indexiert, wodurch Anfragen
beschleunigt werden. Das Beispiel zeigt die Tags ,city”* und ,location”, die z. B. dafiir

genutzt werden konnen, um alle Messwerte von einem gewissen Standort abzurufen.

Eine Zeitreihe, wie sie in Kapitel 2.1 definiert wurde, ergibt sich somit aus den Werten,
die einer eindeutigen Measurement-Field-Tag-Kombination zugeordnet sind. InfluxDB
nennt diese eindeutige Kombination ,Series Key* (ab hier Zeitreihenschliissel genannt).
Im Beispiel gibt es zwei verschiedene Zeitreihenschliissel und somit auch zwei Zeitrei-

hen:
1. [weather, city=HH, location=outside, temperature]

2. [weather, city=HB, location=inside, humidity]

Tabelle 3.1: Beispieldaten wie sie in einem InfluxDB Bucket gespeichert werden

__time __measurement city location _field _value
2024-01-01T00:00:00Z weather HH outside temperature -1.0
2024-01-01T00:00:00Z weather HB  inside humidity 0.7
2024-01-01T12:00:00Z weather HH outside temperature 5.2
2024-01-01T12:00:00Z weather HB inside humidity 0.6
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3.2.2 Time-Structured Merge-Tree

Um Zeitreihendaten effizient zu speichern, nutzt InfluxDB einen so genannten ,, Time-
Structured Merge-Tree (TSMT), der dhnlich wie Log-Structured Merge-Trees (LSMT)
arbeitet [28]. LSMTs wurden von O’Neil et al. [68] entwickelt und werden in vielen DBS
wie z. B. Apache Cassandra [83] genutzt. Durch eine Kombination von Datenstrukturen
im Arbeitsspeicher und im persistentem Speicher werden Lese- und Schreiboperationen
optimiert. LSMTs bestehen aus zwei sortierten Baumen (siehe Abb. 3.2) — dem Cp-Baum,
der im Arbeitsspeicher meistens als AVL- oder Rot-Schwarz-Baum aufgebaut ist, und
dem C1-Baum, der im persistenten Speicher die Form eines leicht angepassten B-Baums
besitzt. Wenn Daten in einen LSMT geschrieben werden, werden sie zunéchst in den
Co-Baum geschrieben. Dort verbleiben sie solange, bis der Cp-Baum, eine gewisse Grofe
iiberschritten hat oder eine gewisse Zeit vergangen ist. Wenn eine dieser Bedingungen
eintritt, werden die Daten in den C1-Baum mit dem so genannten ,rolling merge“-Verfah-
ren iiberfiihrt. Der C1-Baum wird in mehreren Dateien gespeichert, die anschlieffend nur
lesbar sind. Das heifst, dass eine Datei nur einmal geschrieben wird und spéter nicht wie-
der geéndert werden kann. Sollen Daten aus dem LSMT gel6scht oder gedndert werden,
miissen die entsprechenden Dateien vollstdndig neu geschrieben werden. Dieses Prinzip
verbessert die Lese- und Schreibperformanz, da grofe Blocke von Daten am Stiick gelesen
bzw. geschrieben werden kénnen, wodurch insgesamt weniger Lese-Schreib-Operationen
pro Sekunde (engl. Input/Output Operations per Second, bzw. IOPS) ausgefiihrt werden.
Um im Falle eines Systemfehlers die Daten des Cp-Baums wiederherstellen zu koénnen,
wird zusétzlich ein Write Ahead Log (WAL) gefiihrt, der jede noch nicht persistente
Schreiboperation auf der Datenbank beinhaltet. Weitere Details zu LSMTs lassen sich

in [68] nachlesen.

C1-Baum
Co-Baum
persistenter transienter
Speicher Speicher

Abbildung 3.2: Visualisierung des Speicherorts und der typischen Gréfenverhaltnisse von
Co- und C1-Baum im Log-Structured Merge Tree (|68] nachempfunden)
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In den in InfluxDB verwendeten TSMTs gibt es ebenfalls einen WAL und einen Cy-Baum,
der hier jedoch Cache genannt wird [28|. Aus dem Cache werden die Daten entweder nach
einer gewissen Zeit oder einer bestimmten Datenmenge in den Ci-Baum iibernommen.
Dieser wird in mehreren verschiedenen TSM-Dateien gespeichert, die jeweils Blocke von
Zeitreihendaten enthalten, welche mit einem fiir den jeweiligen Datentyp optimierten
Verfahren komprimiert werden. Die TSM-Dateien werden mit wachsendem Alter tiber
die Zeit in vier Stufen, so genannten Levels, miteinander kombiniert, um die Anzahl von
Dateien im Dateisystem moglichst klein zu halten. Somit werden jiingere Zeitreihendaten
in kleinen TSM-Dateien und dltere Zeitreihendaten in grofseren TSM-Dateien gespeichert.
Dies hat insbesondere Relevanz, da wie in LSMTs die Dateien nur lesbar sind. Laut
Hersteller sollte moglichst vermieden werden, altere Daten zu dndern oder Daten in
nicht-zeitlicher Reihenfolge in die Datenbank einzufiigen, da sonst grofse Dateien neu

geschrieben werden miissen.

3.2.3 Shards

Um alte Daten nach Ablauf der Retention Policy schneller 16schen zu kénnen, speichert
InfluxDB die Zeitreihendaten in Shards [28], die entweder der Dauer der Retention Policy
entsprechen oder — falls keine Retention Policy festgelegt ist — sieben Tage umfassen. Jeder
Shard stellt dabei eine fiir sich abgeschlossene Einheit dar, die alle Komponenten, die im
vorherigen Abschnitt 3.2.2 besprochen wurden, beinhaltet. Wenn alte Daten geléscht
werden sollen, konnen so komplette Shards entfernt werden, ohne die Datenstrukturen

in den anderen Shards zu dndern.

3.2.4 Time Series Index

Fiir jeden Shard wird in InfluxDB ein Time Series Index (TSI) gepflegt [37, 36]. Dabei
handelt es sich um eine Metadatenbank in Form eines Inverted Index, die Metadaten zu
den im Shard befindlichen Zeitreihendaten speichert. Inverted Indexes sind Datenstruk-
turen, die speichern, in welchen Dokumenten ein gewisser Eintrag vorhanden ist [44].
Die Verwendung eines Inverted Index beschleunigt somit Anfragen, die beispielsweise die
Daten fiir einen bestimmten Tag abfragen wollen. Der TSI wird in InfluxDB in einem
Log-Structured Merge-Tree (siehe Abschnitt 3.2.2) gespeichert und wurde eingefiihrt, da

es zuvor zu Performanzproblemen bei groffen Mengen verschiedener Zeitreihen kam.
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3 Zeitreihen-Datenbanksysteme

3.3 Erweiterung von relationalen DBS: TimescaleDB

TimescaleDB [95] wird seit 2018 als Erweiterung des relationalen open-source DBS
PostgreSQL [88] vom gleichnamigen Unternehmen Timescale entwickelt. Laut DB-Engi-
nes |71] ist TimescaleDB das populérste Zeitreihen-Datenbanksystem, welches ein DBS
mit relationalem Datenmodell erweitert. Durch die Entscheidung, TimescaleDB als Post-
greSQL-Erweiterung aufzubauen, bleibt neben der Mdéglichkeit, Zeitreihendaten zu spei-
chern, auch die Funktionalitat von PostgreSQL erhalten. Ebenso wird es erméglicht, Ope-
rationen (z. B. JOIN) auszufiihren, die gleichzeitig sowohl Zeitreihendaten als auch regu-
lare relationale Daten nutzen. Als Anfragesprache nutzt TimescaleDB eine mit Zeitrei-
henfunktionalitdt erweiterte Form von SQL. Die in PostgreSQL vorhandene Transakti-
onsfunktionalitéat inkl. ACID (siehe Kapitel 2.3.3) wird durch die hinzugefiigten Opera-

tionen nicht beeintrachtigt.

3.3.1 Datenmodell

Das Datenmodell von TimescaleDB ist in den Grundziigen identisch zu dem von Postgre-
SQL, jedoch wurden zusétzlich so genannte Hypertables eingefiihrt [96, 94|, die zur Spei-
cherung von Zeitreihendaten optimiert sind. Hypertables sind Tabellen, die ihre Daten
in einstellbaren Zeiteinheiten und optional in einer weiteren Dimension in Untertabellen
partitionieren (sieche Abb. 3.3) — diese Untertabellen werden Chunks genannt. Durch die
Aufteilung der Daten entstehen viele kleinere Tabellen, wovon beim Einfiigen neuer Werte
jeweils nur der letzte Chunk bearbeitet werden muss. Ziel der Chunks ist es, ihre Gro-
Re so zu wahlen, dass sie im Arbeitsspeicher in einem Cache zwischengespeichert werden
konnen, wodurch der Zugriff auf Festplatten/SSDs vermieden wird. Da auf dltere Chunks
seltener zugegriffen werden muss, konnen diese somit die meiste Zeit ausschlieflich im
persistenten Speicher liegen. Fiir Anwendungen, die Daten in Hypertables schreiben bzw.
diese lesen, wird die Aufteilung in Chunks durch TimescaleDB transparent abstrahiert,

sodass keine spezielle Anwendungslogik notwendig ist.

3.3.2 Wide-/ Narrow-Table-Modell

Im Gegensatz zu anderen Zeitreihen-Datenbanksystemen, wie z. B. InfluxDB (siehe Ab-
schnitt 3.2) konnen Zeitreihen in TimescaleDB auch mehrere Werte pro Zeitpunkt be-

sitzen [93] — dies wird ,Wide-Table“-Modell genannt. Wenn hingegen nur ein Wert pro
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regulare Tabelle Hypertable
Zeit Wert Zeit Wert
Chunk ID 1
01.02.2024 00:00:00 4 01.02.2024 00:00:00 4
01.02.2024 06:00:00 750 | — || 01.02.2024 06:00:00 750
01.02.2024 12:00:00 86 01.02.2024 12:00:00 86
Chunk 1D 2
02.02.2024 00:00:00 13 02.02.2024 00:00:00 13
02.02.2024 06:00:00 0 | — || 02.02.2024 06:00:00 0
02.02.2024 12:00:00 57 02.02.2024 12:00:00 57
Chunk ID 3
03.02.2024 00:00:00 27 03.02.2024 00:00:00 27
03.02.2024 06:00:00 94 | — || 03.02.2024 06:00:00 94
03.02.2024 12:00:00 6 03.02.2024 12:00:00 6

Abbildung 3.3: Aufteilung einer reguléren Tabelle in einen Hypertable mit einer Chunk-
Grofe von einem Tag ([96] nachempfunden)

Zeitreihe pro Zeitpunkt gespeichert wird, spricht man von einem ,Narrow-Table~-Modell.
Durch die Speicherung als Wide-Table miissen fiir Anfragen tiber mehrere Zeitreihen kei-

ne JOIN-Operationen ausgefiihrt werden.

3.3.3 Kompression von Chunks

TimescaleDB bietet zudem an, dass die Daten innerhalb eines Chunks komprimiert wer-
den konnen [89, 90]. Auf Wunsch kann dies entweder fiir alle Chunks, nur fiir manuell
gewdhlte Chunks oder fiir Chunks, die ein gewisses Alter iiberschritten haben, gesche-
hen. Bei der Kompression werden mehrere Zeilen des Chunks anhand des Attributes
segmentby in einer Zeile kombiniert. Dies geschieht, indem die Werte der Zeilen spal-
tenweise in Listen umgewandelt und in dem entsprechenden Datenwert der neu entste-
henden Zeile gespeichert werden. Durch diese Art der Datenspeicherung entféllt zum
einen der Overhead, der bei der Speicherung jeder einzelnen Zeile entsteht, und zum
anderen konnen auf den kontinuierlich im Speicher befindlichen Daten weitere Kompres-
sionsalgorithmen angewendet werden. Die Sortierung der Daten innerhalb der Listen ldsst
sich durch das Attribut orderby beeinflussen, welches eine Spalte angibt, nach der die
Daten aufsteigend sortiert werden. Um den Zugriff auf die Daten zu beschleunigen, spei-

chert TimescaleDB in der kombinierten Zeile den minimalen und den maximalen Wert
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des Sortierkriteriums. Die Standardeinstellung fiir das Attribut orderby ist die Spalte,
die die Zeitpunkte der Zeitreihe speichert. Jedoch lassen sich je nach Anwendungsfall
oft bessere Einstellungen fiir segmentby und orderby finden. Details hierzu lasen
sich in der Dokumentation von TimescaleDB nachlesen. Zu beachten ist dabei, dass eine
Kompression iiber Zeilen mehrerer Chunks nicht méglich ist. Zudem lassen sich bis auf
die Spezialindizes der Attribute segmentby und orderby keine Indizes in der Tabelle

erstellen.

3.4 Erweiterung von NoSQL DBS: MongoDB

Bei MongoDB handelt es sich um ein NoSQL DBS, welches ein dokumentenorientiertes
Datenmodell (siche Kapitel 2.4.2) nutzt. MongoDB [61] wird seit 2009 von der Frima
MongoDB Inc. entwickelt und ist mittlerweile in Version 8.0 verfiighar. Im Gegensatz
zu TimescaleDB (siche Abschnitt 3.3) ist die Zeitreihenfunktionalitdt hier kein Zusatz-
modul, das nachtriglich installiert werden kann, sondern eine Erweiterung, die von der
Herstellerfirma mit Version 5.0 direkt in das DBS integriert wurde. MongoDB wurde
u. a. als Repréisentant dieser Kategorie gewéhlt, da DB-Engines [71] dieses als populérs-
tes NoSQL DBS auffiihrt.

3.4.1 Datenmodell

In MongoDB werden Dokumente einer Datenbank in so genannten Collections gespei-
chert, die mit Tabellen in relationalen DBS verglichen werden kénnen [58, 50|. Um Zeitrei-
hendaten besser zu unterstiitzen, wurde eine neue Art von Collections hinzugefiigt, die
Time Series Collections (TSC) genannt werden. Diese TSCs sind auf auf Zeitreihen spe-

zialisiert und optimiert bzgl. Speicherung und Abfrage der Daten.

In einer TSC lassen sich mehrere Zeitreihen speichern. Aufgrund dessen muss bei Erstel-
lung einer TSC angegeben werden, in welchem Feld der Dokumente sich die Metadaten
befinden, die die verschiedenen Zeitreihen identifizieren [57, 51|. Dieses Feld ldsst sich
durch das Attribut metaField bestimmen. Zusétzlich muss angegeben werden, in wel-
chem Feld der Dokumente die Zeitpunkte der Zeitreihen gespeichert werden sollen. Dies
geschieht iiber das Attribut timeField. Die Namen der beiden Felder sind dabei an-
fangs frei wahlbar, lassen sich jedoch nach Erstellung der TSC nicht mehr &ndern. Eine

wichtige Eigenschaft des Metadatenfeldes ist dabei, dass in diesem auch geschachtelte
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Dokumente oder Listen abgelegt werden konnen. Somit koénnen Zeitreihen durch ver-
schiedene Attribute identifiziert werden. Abbildung 3.4 zeigt ein beispielhaftes Dokument
einer TSC.

time: ISODate("2024-01-01T12:00:00z"),
sensorInfo: {

city: "Hamburg",

location: "outside",

}

temperature: 5,
humidity: 0.75,

Abbildung 3.4: Beispieldokument mit Wetterdaten einer Time Series Collection in
MongoDB (timeField = time und metaField = sensorInfo)

Ahnlich wie bei TimescaleDB lassen sich in MongoDB mehrere Werte pro Zeitreihe
und Zeitpunkt speichern, wodurch man hier auch von einem Wide-Table-Modell spre-
chen kann (siehe Abschnitt 3.3.2). Im Beispieldokument lassen sich die beiden Werte

temperature und humidity erkennen, die demselben Zeitpunkt zugeordnet sind.

3.4.2 Buckets

MongoDB speichert die Zeitreihen einer TSC in Blocken von Dokumenten [50], die

Buckets genannt werden und anhand der folgenden Kriterien gebildet werden:

e Einerseits werden die Metadatenfelder der Dokumente genutzt, um verschiedene

Zeitreihen voneinander zu separieren.

e Zusitzlich werden die Dokumente einer Zeitreihe in gewisse Zeitintervalle gruppiert,

auf deren Bestimmung im folgenden Abschnitt weiter eingegangen wird.

Durch die Aufteilung der Daten in Buckets konnen Abfragen einzelner Zeitreihen be-
schleunigt werden, da die Daten in kontinuierlichen Speicherbereichen liegen. Zudem
gibt es in MongoDB einen In-Memory-Cache, der die Metadaten der in Benutzung be-
findlichen Buckets speichert. Dieser Cache soll u. a. dazu dienen, Latenzen zu verringern

und parallele Schreiboperationen zu koordinieren.
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Neue Buckets werden immer dann erstellt, wenn ein Dokument geschrieben wird, das
ein bisher noch nicht bekanntes Metadatenfeld besitzt oder einen Zeitpunkt hat, der in
keinem Intervall der bisherigen Buckets liegt. Zudem wird ein neuer Bucket angelegt,
wenn die Maximalgrofe des zu beschreibenden Buckets durch das neue Dokument iiber-

schritten wird.

3.4.3 Granularitat

MongoDB berechnet das Zeitintervall, in dem ein Dokument gespeichert wird, anhand des
Attributes granularity, das fiir jede TSC gesetzt werden muss [56, 57]. Diese Granu-
laritét kann dabei auf zwei verschiedene Arten angegeben werden. Zum einen kann sie auf
seconds, minutes oder hours eingestellt werden, wodurch entsprechend Zeitintervalle
von einer Stunde, einem Tag oder einem Monat entstehen. Wenn Dokumente in eine TSC
eingefiligt werden sollen, wird deren Zeitstempel jeweils anhand der eingestellten Granu-
laritdt abgerundet und, basierend auf diesem Wert, das entsprechende Intervall gesucht.
Die zweite Moglichkeit, die Granularitdt anzugeben, besteht darin, die Intervallgrofe
(bucketMaxSpanSeconds) und den Rundungsbereich (bucketRoundingSeconds)
manuell anzugeben. MongoDB empfiehlt bei der Nutzung dieser Variante, die beiden

Attribute auf den gleichen Wert zu setzen.

3.5 Zusammenfassung

Tabelle 3.2 dient als Ubersicht der in diesem Kapitel vorgestellten Datenbanksysteme.
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Tabelle 3.2: Ubersicht der in Kapitel 3 gezeigten DBS

InfluxDB TimescaleDB MongoDB
Kategorie reines Zeitreihen- Erweiterung von Erweiterung von NoSQL DBS
Datenbanksystem RDBS
Zugrundeliegende Shards, bestehend aus Time- Hypertables, Time Series Collections, bestehend aus
Datenstruktur Structured Merge Trees bestehend aus Buckets
Chunks
Wide-Table-Modell X v v
automatisches v v v
Loschen alter Daten
Kompression v v v
Einfiigen von nicht /X 4 /X
zeitlich geordneten nur empfohlen, solange sich nur empfohlen, solange Datenbereich
Daten Datenbereich in Cp-Baum im selben Granularititsintervall liegt
befindet
Andern alter Daten nicht empfohlen v nicht empfohlen
Einfiigen von Daten v v v
in Blocken sehr empfohlen
Verteilbar auf v v/ X v
mehrere Knoten kommerzielle Version nur Replikation kommerzielle Version
Lizenz MIT / Apache 2.0 Apache 2.0 / TSL SSPL
(Timescale (dhnlich zu GPLv3)
License)

owogsAsyueqUale(J-UsyIoI}Oy &



3 Zeitreihen-Datenbanksysteme

3.6 Verwandte Arbeiten

In den letzten Jahren wurden verschiedene Untersuchungen und Benchmarks von Zeitrei-
hen-Datenbanksystemen durchgefiihrt. Bader [3] verglich bereits 2016 zehn Systeme und
stellte den Benchmark T'SDBBench vor. Dabei kamen zwei Szenarios zum Einsatz, die je-
doch keine realen Anwendungen représentierten. Manche der getesteten Systeme werden

inzwischen nicht mehr weiterentwickelt.

Hao et al. [23] fithrten mit T'S-Benchmark eine weitere Evaluierung durch, bei der Sens-
ordaten von Windkraftanlagen genutzt wurden, die mithilfe neuronaler Netze synthetisch
erzeugt wurden. Untersucht wurden — wie in dieser Arbeit — InfluxDB und TimescaleDB
sowie zuséatzlich Druid und OpenTSDB. Eine klassische relationale Datenbank als Base-

line wurde nicht berticksichtigt.

Praschl et al. [69] analysierten sechs Zeitreihen-Datenbanksysteme, darunter auch die in
dieser Arbeit betrachteten Représentanten. Thre Methodik &hnelt dem experimentellen
Vergleich dieser Arbeit, jedoch wurde lediglich ein einziges Szenario untersucht, wodurch
nur ein spezifisches Anwendungsgebiet abgedeckt werden konnte. Zudem wurde kein kon-

zeptioneller Vergleich des Funktionsumfangs der Systeme durchgefiihrt.

Ein Unterschied zu den bisherigen Untersuchungen besteht darin, dass keiner dieser Ver-
gleiche den Energieverbrauch der Datenbanksysteme berticksichtigt hat. Zudem wurden
in diesen Arbeiten mittlerweile veraltete Versionen der Datenbanksysteme getestet, die

durch neuere Versionen abgelost wurden und eine verbesserte Leistung versprechen.
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In diesem Kapitel werden die Entscheidungsgrundlagen erldutert, die zur Auswahl der
Szenarios gefithrt haben. Zudem werden die einzelnen Szenarios detailliert beschrieben.
In den folgenden drei Abschnitten werden jeweils die fiir das entsprechende Szenario
durchzufiithrenden Zeitreihenanalysen sowie die Rahmenbedingungen und der Kontext,

in dem das Szenario ausgefiihrt wird, néher erldutert.

4.1 Auswahl der Szenarios

Die in diesem Kapitel vorgestellten Szenarios wurden so ausgewéhlt, dass sie realisti-
sche Einsatzgebiete von Zeitreihen-Datenbanksystemen darstellen. Dabei wurden jeweils
folgende Punkte beachtet:

Szenario A wurde so gewéahlt, dass es einem typischen Anwendungsfall von Zeitreihen-
Datenbanksystemen entspricht — namlich der Uberwachung von Sensoren. Der Fokus liegt

auf einem Heimanwendungskontext, woraus sich folgende Anforderungen ergeben:

o Ressourcennutzung: In diesem Kontext miissen DBS héufig auf Rechnern mit ge-
ringer Leistung laufen. Hieraus entstehen weitere Punkte, die im nachfolgenden

Abschnitt 4.2.2 genauer erldutert werden.

o cinfache Bedienbarkeit: Fiir private Anwender ist es besonders wichtig, dass die
Einrichtung, Nutzung und der Betrieb des DBS einfach ist, da diese meistens nicht

die Erfahrung besitzen, die im industriellen Kontext vorhanden ist.

Szenario B soll eine Grundlage bieten, um zu testen, wie sich die Zeitreihen-Datenbank-
systeme bei einer geringen Anzahl von Zeitreihen verhalten, die sich iiber einen langen
Zeitraum erstrecken und viele Datenpunkte enthalten. Dies ist insbesondere interessant,
da so analysiert werden kann, wie sich die in Kapitel 6.1 beschriebenen Metriken verhal-

ten, wenn Operationen auf grofsen Zeitreihen durchgefiihrt werden.
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Als Gegenstiick zu Szenario B soll Szenario C testen, wie sich die DBS bei grofen Anzah-
len von kurzlebigen Zeitreihen verhalten. Insbesondere kann so der Overhead verdeutlicht

werden, der fiir die Speicherung, aber auch Verarbeitung jeder Zeitreihe anfallt.

4.2 Szenario A: Smart Home

Dieses Szenario simuliert ein Wohngebédude (Smart Home) mit einer einstellbaren An-
zahl an Sensoren bzw. Geréten, die Datenpunkte generieren. Dazu miissen die in diesem
Szenario genutzten Testdaten nicht zwingend sinnvolle Zusammenhénge untereinander
abbilden, jedoch ist es wichtig, dass ihre Struktur echten Daten &hnelt. Dies liegt daran,
dass alle zu testenden Zeitreihen-Datenbanksysteme eine Form der Datenkompression
unterstiitzen. Das Kompressionsverhéltnis, also das Verhéltnis zwischen der Gréfse der
komprimierten und der unkomprimierten Daten, hédngt dabei stark von deren Struktur
ab. Lange Folgen von sich wiederholenden Werten lassen sich so besser komprimieren als

zuféllige Werte.

Um die Testdaten fiir dieses Szenario zu generieren, werden zwei Kategorien von Ge-
neratoren verwendet: Die erste Kategorie umfasst zeitintervallgesteuerte Verfahren, die
Datenpunkte in regelméffigen Abstdnden erzeugen, wiahrend die zweite Kategorie nur
Werte bei Eintritt eines Ereignisses generiert. Da bei der Recherche keine Generatoren
gefunden wurden, die den hier gestellten Anforderungen entsprechen, wurden die folgen-

den Generatoren entworfen:
e Zeitintervallgesteuert

— elektrische Verbraucher: Filir die Generierung der Verbrauchsdaten werden
zuféllige Ein- und Ausschaltzeiten bestimmt, die jeweils in einstellbaren In-
tervallen liegen. Fiir die Zeitrdume, in denen ein Verbraucher eingeschaltet
ist, werden Leistungswerte um einen Sollwert mit einem zufélligen Rauschen
kombiniert, um leichte Schwankungen im Verbrauch des Geréts zu simulieren.
Die restliche Zeit ist der Verbrauch null.

— Temperatur: Zur Simulation von Temperaturen an verschiedenen Orten im Ge-
béude wird eine Sinus-Funktion, die durch eine hyperbolische Tangensfunktion

an den Maxima gestaucht wird, mit einem zufélligen Rauschen kombiniert. Die
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Temperatur

so resultierende Funktion soll Schwankungen zwischen Tag- und Nachttempe-

raturen sowie Messungenauigkeiten der Sensoren darstellen:

T(t) = g : (tanh <sin (T + s) d- 2’;) + 1) + o+ rand(—n,n)
(4.1)

wobei v den Temperaturunterschied zwischen Tag und Nacht, p die Periode
und s die Verschiebung der Funktion darstellt. d gibt an, wie stark die Si-
nus-Funktion gestaucht wird und o ist die Nachttemperatur. Die Funktion

rand(—n,n) generiert zuféllige Werte im Intervall [—n,n)
Abbildung 4.1 zeigt, wie T'(t) zusammengesetzt ist.

Zusammensetzung der Temperaturfunktion 7'(¢)

—e— grundlegende Sinus-Funktion
—m— skalierte Sinus-Funktion
—o—T(t)

Zeit t

Abbildung 4.1: Visualisierung des Aufbaus und der Stauchung der Maxima der Tempe-

raturfunktion 7'(¢)

e Ereignisgesteuert

— Fenster und Tiren: Dieser Generator erzeugt zuféllig, nach einer einstellbaren

Wahrscheinlichkeit, Offnungs- und SchlieRereignisse fiir jedes Fenster und jede
Tiir.

— Beleuchtung: Im Gegensatz zur Generierung von Fenster- und Tiirereignissen,

die nur zwei Werte — auf und zu — besitzen, werden hier prozentuale Hellig-
keitswerte simuliert. Die Art und Weise dieser Simulation ist dabei &hnlich zu
der zuvor genannten. Hier wird jedoch fiir jedes Ereignis eine neue zufallige

Helligkeit erzeugt.

Die Parameter der Generatoren lassen sich in Kapitel 6.3.3 nachlesen.

28



4 Szenarios

4.2.1 Analysen Szenario A

Folgende Analysen werden bei diesem Szenario durchgefiihrt:

o Abfrage der Anzahl von Offnungen von Fenstern und Tiren: Mit dieser Abfrage
soll getestet werden, wie sich die DBS bei Zahloperationen auf Zeitreihen mit un-

regelméfigen Abstédnden von Datenpunkten verhalten.

o Abfrage des Gesamtstromverbrauchs: Diese Anfrage priift, welchen Einfluss Aggre-

gationsoperationen auf die Zeitreihen-Datenbanksysteme haben.

o Abfrage der miniitlichen Durchschnittstemperatur: Ahnlich zu der vorherigen Ab-
frage wird hier das Verhalten von Aggregationen gepriift. Jedoch werden die Daten

hier zusétzlich in Zeitfenster gruppiert.

4.2.2 Rahmenbedingungen Szenario A

Da dieses Szenario im Heimanwendungskontext stattfindet, werden hier Systemkonfigu-
rationen getestet, die geringe Ressourcenkapazititen im Vergleich zu Servern in Rechen-
zentren besitzen. Somit werden Systeme getestet, die einen oder zwei Prozessorkerne
besitzen und 512 MB oder 1 GB Arbeitsspeicher installiert haben. Dabei werden alle
Kombinationen beider Parameter genutzt. Es entstehen somit vier verschiedene Konfi-

gurationen.

In diesem Szenario soll dabei nur indirekt gepriift werden, wie grof die verarbeitba-
ren Daten werden koénnen. Vielmehr ist das Ziel, herauszufinden, mit wie wenigen Sys-
temressourcen ein DBS in einem realistischen Haushalt auskommen kann. Dazu wird im
Experiment die Anzahl von Sensoren bzw. Datenquellen kontinuierlich vergréfsert, bis
eine Anzahl von insgesamt 400 erreicht wird. Anhand der gemessenen Latenzen kann
so abgelesen werden, wie viele Generatoren das jeweilige DBS verarbeiten kann. Diese
maximale Menge wurde so gewahlt, dass bei einer Hinzufiigerate von ca. einem Genera-
tor alle 3 Sekunden der gesamte Vorgang etwa 20 Minuten dauert. Das bedeutet auch,
dass der Einfiigeprozess im Gegensatz zu den Analysen in diesem Szenario die grofere
Rolle spielt, da Einfligeoperationen nahezu kontinuierlich und Abfrageoperationen nur

sporadisch auftreten.

Zu beachten ist bei diesem Szenario, dass jeder Sensor iiber eine eigene Sitzung mit

dem DBS kommuniziert, da in einem echten Gebadude die Sensoren verteilt angebracht
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sind und jeweils z. B. iiber eine eigene WLAN-Verbindung mit dem DBS kommunizieren

mussen.

Die in diesem Szenario auszufithrenden Anfragen werden zudem 1000 mal pro Experiment
wiederholt, da sie nur auf einem kleinen Datenbestand arbeiten kénnen und eine genaue

Messung sonst aufgrund der kurzen Anfragedauer schwierig moglich wére.

4.3 Szenario B: Taxis in New York City

Im Gegensatz zu Szenario A (siehe Kapitel 4.2), in dem die Daten synthetisch generiert
werden, wird hier ein Datensatz verwendet, der aus realen Daten von Taxifahrten in
New York City (NYC) besteht. Der Datensatz wird von der NYC Taxi & Limousine
Commission (TLC) zur Verfiigung gestellt [66] und umfasst dabei fast alle Taxifahrten,
die seit Anfang 2009 stattgefunden haben.

Die TLC teilt den Datensatz in vier Teile, die anhand des Taxityps gebildet werden. In
diesem Szenario werden nur die Daten der gelben Taxen (engl. yellow cab) genutzt, da die-
se den groften Zeitraum, der sich von Januar 2009 bis Oktober 2024 erstreckt, abdecken.
Dieser Teildatensatz umfasst ca. 30 GB an Rohdaten im Apache Parquet-Format — dies
entspricht ungefdhr 1,8 Milliarden Datenpunkten. Fiir dieses Szenario wurde der Da-
tensatz weiter bereinigt, da er mehrfach vorkommende Zeitpunkte enthielt. In der hier
verwendeten Version wurden diese Duplikate entfernt. Zudem lagen die Daten vor Januar
2011 in einem Format vor, das mit dem restlichen Datensatz nicht kompatibel war, wes-
halb nur Daten ab diesem Zeitpunkt beriicksichtigt wurden. Dariiber hinaus wurde die
Anzahl der Spalten auf die fiir die Anfragen relevanten Attribute — Abfahrzeitpunkt,

Strecke, Passagiere und Fahrpreis — reduziert.

4.3.1 Analysen Szenario B

Folgende Analysen werden bei diesem Szenario durchgefiihrt:

o durchschnittlicher Fahrpreis pro Monat: Diese Anfrage testet, wie sich die DBS bei
der Aggregation von Daten verhalten, die nach bestimmten Zeitfenstern gruppiert

sind.
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o Abfrage aller Fahrgastzahlen der ersten Jahreshdlfte von 2023: Hier soll priift wer-
den, wie schnell alle Daten einer Zeitreihe in einem gewissen Zeitraum abgefragt

werden konnen.

o Abfrage aller Fahrten, deren Strecke grifer als x sind: Diese Analyse soll testen,

welchen Einfluss Filteroperationen auf die DBS haben.

e Stunde mit den meisten Fahrten: Bei dieser Operation wird untersucht, ob und wie
gut sich komplexe Operationen, d. h. Kombinationen verschiedener Grundopera-

tionen, durchfithren lassen.

4.3.2 Rahmenbedingungen Szenario B

In diesem Szenario werden Rechner mit zwei, vier, acht oder 16 Prozessorkernen und
16 GB Arbeitsspeicher simuliert, die Server in Rechenzentren oder bei Cloud-Providern
darstellen sollen. Die Grofie des Arbeitsspeichers wird hier nicht variiert, da hier im
Gegensatz zu Szenario A getestet werden soll, wie viel des Arbeitsspeichers genutzt wird

und nicht, mit wie wenig Arbeitsspeicher das DBS lauffahig ist.

4.4 Szenario C: Monitoring kurzlebiger Dienste

Szenario C soll ein Rechenzentrum darstellen, welches Metriken von Diensten aufzeich-
net und auswertet. Die Dienste werden hier mithilfe von mehreren Instanzen gehostet,
die jeweils bis zu 10 Minuten lang laufen. Dies kénnte in der Realitdt z. B. durch die
Verwendung eines Autoscalers der Fall sein, der entsprechend der Last mehr oder we-
niger Ressourcen zur Verfiigung stellt. Hierdurch entstehen somit viele kurze kurzlebige
Zeitreihen, die im Zeitreihen-Datenbanksystem gespeichert und verarbeitet werden miis-

Sell.

Wie auch in Szenario A werden hier synthetische Testdaten verwendet, die realen Da-
ten dhneln sollen. Dazu wird fiir eine einstellbare Anzahl von Instanzen Prozessor- und

Arbeitsspeicherauslastung wie folgt erzeugt:

e Prozessorauslastung: Zur Generierung der Prozessorlast L wird eine Grundlast G,
die zuféllig um einen angestrebten Wert schwankt, mit Lastspitzen S kombiniert,
die an zufillig verteilten Zeitpunkten erzeugt werden. So soll ein Dienst darge-

stellt werden, der grofitenteils kleine und teilweise grofere Anfragen bearbeitet.
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4 Szenarios

Lastspitzen besitzen dabei zwei Parameter — Hohe h und Dauer d. Beide werden
dabei anhand zweier normalverteilten Zufallsfunktionen generiert, die den Erwar-
tungswert p und die Standardabweichung o besitzen. Durch die Normalverteilung
werden so mit hoherer Wahrscheinlichkeit Héhen und Dauern um g und seltener

weit entfernte Werte generiert.

Die Grundlast G fiir einen Zeitpunkt ¢ € N wird wie folgt definiert:

9 t=20
G(t) = (4.2)
(L(t — 1) 4+ rand(—v,v))- (1 —x) + g-x sonst

wobei g die angestrebte Grundlast darstellt und 2 € [0,1] ein Faktor ist, der angibt,
wie stark die Werte in Richtung der angestrebten Grundlast korrigiert werden.
Wihrend einer Lastspitze wird statt x der Faktor 2’ > z genutzt, um schneller auf
die Spitzenlast zu gelangen. Die Funktion rand(—wv,v) erzeugt gleichméfig verteilte
Werte € R im Intervall [—v, v).

Kombiniert ergibt sich so die Prozessorlast L:
L(t) = min(0, max(1, G(t) + S(t)) (4.3)

wobei S(t) = h wenn zum Zeitpunkt ¢ eine Lastspitze der Hohe h auftritt und
S(t) = 0 falls nicht.

o Arbeitsspeicherauslastung: Die Arbeitsspeicherauslastung A wird d&hnlich zu Prozes-
sorauslastung berechnet, jedoch schwankt diese weniger und besitzt keine Spitzen.

Sie wird wie folgt definiert:

A =14" =0 (4.4)
(A(t —1) + rand(—v,v)) - (1 —z) +a-z sonst

wobei a der angestrebte genutzte Speicher ist, der einmalig zufillig berechnet wird.

Die restlichen Parameter sind analog zu denen bei der Prozessorgrundlast G.

Diese Verfahren wurden ebenfalls, wie in Szenario A, entwickelt, da keine bereits existie-

renden Generatoren verfliighbar waren, die fiir diesen Anwendungsfall passend sind.

Die im experimentellen Vergleich genutzten Parameter der hier gezeigten Generatoren
sind in Kapitel 6.3.3 zu finden. Abbildung 4.2 zeigt nach dem hier beschriebenen Verfah-

ren generierten Zeitreihen.
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4 Szenarios

Synthetisch generierte Prozessor- und Arbeitsspeicherauslastungen
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Abbildung 4.2: Nach dem in Kapitel 4.4 beschriebenen Verfahren generierte Prozessor-
und Arbeitsspeicherauslastungen

4.4.1 Analysen Szenario C

Es wurde bei diesen Anfragen darauf geachtet, dass die Struktur &hnlich zu den Anfragen
von Szenario B (siehe Abschnitt 4.3) ist, um einen Vergleich zwischen Szenario B und C

zu ermoglichen. Fiir dieses Szenario werden somit die folgenden Analysen durchgefiihrt:

e kombinierte Prozessorlast pro Minute der zu dem jeweiligen Zeitpunkt laufenden
Instanzen: Mit dieser Anfrage wird gepriift, wie sich die DBS bei Rechenoperationen

auf groften Anzahlen von Zeitreihen verhalten.

o Abfrage aller Instanzmetriken in einer bestimmten Stunde: Hier wird gepriift, wie
schnell sémtliche Daten aller Zeitreihen in einem gewissen Intervall abgefragt wer-

den konnen.

o Abfrage der Instanzen, bei denen Prozessorauslastung gréfier x und Arbeitsspeicher-
auslastung gréflery sind: Diese Anfrage soll feststellen, mit welcher Geschwindigkeit

Filteroperationen auf den Zeitreihen durchgefiihrt werden kénnen.
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4 Szenarios

4.4.2 Rahmenbedingungen Szenario C

In diesem Szenario werden die gleichen Rahmenbedingungen wie in Szenario B (siehe
Abschnitt 4.3.2) verwendet, um, wie bereits im vorherigen Abschnitt erwdhnt, einen

Vergleich zwischen den beiden Szenarios zu ermoglichen.

Die folgende Tabelle 4.1 zeigt eine Ubersicht der Szenarios im Vergleich.

Tabelle 4.1: Ubersicht der Szenarios

Szenario A Szenario B Szenario C
Kontext | Heimanwender Analyse von Rechen-
Taxifahrten zentrum
Anzahl der Zeitreihen mittel klein grof
Menge der klein grof grof
Datenpunkte
Grofse der Anfragen klein grofs grof
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5 Konzeptioneller Vergleich

In diesem Kapitel werden die drei Zeitreihendatenbanksysteme konzeptionell miteinander
verglichen. Dazu wird auf Gemeinsamkeiten bzw. Unterschiede der Systeme beziiglich des

Funktionsumfangs eingegangen.

5.1 Strukturanforderungen der Zeitreihen

Die zu vergleichenden Zeitreihen-Datenbanksysteme sind unterschiedlich flexibel beziig-
lich der Datenstruktur der Zeitreihen. Datenbanksysteme, die fest strukturierte Daten
halten, nennt man dabei schemabehaftet. DBS ohne feste Struktur nennt man hingegen

schemalfrei.

InfluxDB gehort zur Kategorie der schemafreien DBS, da hier — abgesehen von der De-
finition von Buckets (siehe Kapitel 3.2.1) — keine feste Erstellung eines Schemas moglich
ist. Jedoch ist zu beachten, dass das generelle Datenmodell mit Measurements, Tags und

Fields eingehalten werden muss.

Da TimescaleDB eine Erweiterung des relationalen DBS PostgreSQL ist, {ibernimmt es
dessen Struktureigenschaften (siehe Kapitel 2.3). Somit kann TimescaleDB als schemabe-
haftet eingestuft werden. Die Struktur der Zeitreihen muss hier also bei bereits Erstellung

der entsprechenden Tabelle angegeben werden.

MongoDB kann wiederum als schemafrei kategorisiert werden, da die Dokumente keine
fest definierte Struktur haben miissen. Lediglich die in der Time Series Collection kon-
figurierten Felder metaField und timeField miissen in den Dokumenten vorhanden
sein. Falls jedoch ein Schema gewiinscht wird, das vom DBS gepriift wird, ist es bei

MongoDB optional méglich, ein solches Schema zu definieren.
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5 Konzeptioneller Vergleich

5.2 Anfragesprachen

Die DBS nutzen jeweils unterschiedliche Anfragesprachen mit verschiedenen Eigenschaf-

ten, die nachfolgend beschrieben werden.
InfluxDB bietet, wie bereits in Kapitel 3.2 erwéhnt, zwei Anfragesprachen an:

e Zum einen wird die vom Hersteller entwickelte Sprache Flux angeboten, mit der
Skripte zu Anfrage und Verarbeitung der gespeicherten Daten geschrieben wer-
den konnen. Die Idee besteht darin, die Daten als Strom zu verarbeiten, auf dem
Funktionen zur Filterung, Manipulation oder Aggregation ausgefiihrt werden. In
Flux-Skripten ist es zudem u. a. méglich, i f-else-Strukturen zu nutzen und eige-
ne Funktionen zu definieren. Die genaue unterstiitzte Syntax lasst sich in der Flux

Dokumentation 27| nachlesen.

e Die zweite von InfluxDB unterstiitzte Sprache ist InfluxQL [35]|. Diese Sprache
wurde mit einer dhnlichen Syntax zu SQL entworfen, die jedoch einen geringeren

Funktionsumfang besitzt.

Beide Sprachen bieten zudem spezielle Funktionen, die fiir Zeitreihenanalysen genutzt

werden konnen. Auf diese wird u. a. in Abschnitt 5.4 eingegangen.

TimescaleDB verwendet, wie auch PostgreSQL, SQL als Anfragesprache, die jedoch durch
spezielle Funktionen fiir Zeitreihenoperationen erweitert wurde. Hierdurch ist es haufig
moglich, dieselben Anfragen wie bei einem reguléren relationalen DBS zu nutzen, wobei
durch die Verwendung von spezialisierten Funktionen teilweise eine bessere Performanz
erzielt werden kann. Wie auch bei SQL ist es moglich, mehrere Ausdriicke ineinander zu

Schachteln, um komplexere Anfragen zu erstellen.

Die von MongoDB genutzte Anfragesprache MQL orientiert sich an der dokumentenori-
entierten Struktur ihrer Daten. Jede Anfrage in MQL ist aus geschachtelten JSON- bzw.
BSON-Dokumenten aufgebaut, bei denen die Schliissel die auszufiihrenden Operationen
darstellen und die Werte die Parameter der Funktionen sind. Dabei beginnen Operatio-
nen immer mit einem Dollar-Symbol ($). Ebenso wie bei InfluxDB und TimescaleDB
ist es moglich, mehrere Anfragen zu kombinieren. Dies wird bei MongoDB ,Pipeline®
genannt. Das Konzept ist hier dhnlich zu dem von Flux, da hier die Dokumente jeweils
Funktionen durchlaufen, die Dokumente filtern, verindern oder aggregieren. Syntaktisch
wird dies als JSON-Array dargestellt.

Beispiele der hier gezeigten Sprachen werden in Kapitel 6.3.5 aufgefiihrt.
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5 Konzeptioneller Vergleich

5.3 Verkniipfung von Zeitreihen (Joins)

Bei manchen Anfragen ist es notwendig, Informationen aus mehreren Zeitreihen bzw. Da-
tenquellen zu verkniipfen. Dies wird in klassischen relationalen DBS | Join* genannt. Die
DBS in diesem Vergleich unterstiitzen alle verschiedene Varianten von Join-Operationen,

die folgend beschrieben werden.

Von den beiden von InfluxDB unterstiitzten Sprachen kann nur Flux Joins durchfiih-
ren — in InfluxQL ist dies nicht moglich.Des Weiteren muss fiir die Verwendung von
Joins in Flux das join-Modul [32] geladen werden, welches neben den vier reguldren
Join-Operationen — inner, left outer, right outer und full outer — auch
einen zeitbasierten Join unterstiitzt. Zu beachten ist jedoch, dass die Funktionen union
und pivot laut Hersteller haufig schneller sind, wobei diese nicht in allen Féllen ange-
wendet werden kénnen. Die Funktion union [38] vereint dabei zwei Datenstréme von
Zeitreihen, sodass die Werte beider Datenstrome im Ergebnisstrom ausgegeben werden.
Bei der pivot-Funktion [34] werden die Daten hingegen anhand eines anzugebenden

Feldes gruppiert.

TimescaleDB unterstiitzt die vollen Join-Operationen zwischen Hypertables, die von
PostgreSQL zwischen reguléren Tabellen unterstiitzt werden. Zudem ist es moglich, Joins
zwischen Hypertables und Nicht-Hypertables durchzufiihren, um so z. B. zusétzliche In-

formationen zu Zeitreihen hinzuzufiigen.

Im Gegensatz zu den bereits gezeigten DBS unterstiitzt MongoDB nur eine Left-Outer-
Join-Operation, die durch die $lookup-Funktion [53| bereitgestellt wird. Dabei wird
den Dokumenten der Grundmenge eine Liste hinzugefiigt, in der sich die dazugehorigen

Dokumente der zu vereinigenden Dokumentmenge befinden.

5.4 Zeitreihenoperationen

Zeitreihen-Datenbanksysteme bieten teils Funktionen an, um Zeitreihenanalysen (siche
Kapitel 2.2) direkt im DBS durchzufiihren. Hierbei gibt es jedoch wiederum Unterschiede

zwischen den DBS, die in diesem Abschnitt beschrieben werden.

InfluxDB bietet tiber die Sprache Flux Funktionen an, die statistische Berechnungen,
gleitende Durchschnitte mit verschiedenen Verfahren, Operationen auf Zeitfenstern und

Vorhersagen, z. B. tiber die Holt-Winters-Methode [97|, durchfiihren kénnen. Die genaue
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Liste der unterstiitzten Funktionen ist in der Dokumentation [26] ndher beschrieben.
Zudem ist es moglich, Flux-Skripte zu erstellen, die weitere nicht standardmaéifig unter-

stiitzte Verfahren implementieren, die direkt auf dem DBS ausgefiihrt werden.

TimescaleDB unterstiitzt standardméfig eine kleinere Anzahl von spezialisierten Opera-
tionen auf Zeitreihen als InfluxDB. Diese Zeitreihenoperationen werden in TimescaleDB
,Hyperfunctions“ genannt und unterstiitzen u. a. die Verarbeitung von Zeitreihen in Fens-
tern, die Erstellung von Histogrammen und das Fiillen von Liicken in den Daten durch
Interpolation. Fiir weitere Zeitreihen- und Statistikoperationen kann das ,,Timescale Tool-
kit“ als zusétzliche Erweiterung in PostgreSQL installiert werden. Auf die dadurch hin-
zukommenden unterstiitzten Funktionen soll hier jedoch nicht eingegangen werden, da
sich dieser Vergleich nur auf TimescaleDB beschrénkt. Sie lassen sind jedoch in der Do-

kumentation [91] der Erweiterung ersichtlich.

Das DBS MongoDB unterstiitzt hingegen keine speziell fiir Zeitreihen gedachten Funk-
tionen. Jedoch konnen teilweise die reguldren MQL-Operationen genutzt werden, um

Funktionen wie die Verarbeitung von Daten in Zeitfenstern nachzubilden.

5.5 Konsistenz und Transaktionen

Wie in Kapitel 2.3.3 beschrieben, legen manche Systeme besonderen Wert auf die Kon-
sistenz der gespeicherten Daten, wohingegen andere mehr Wert auf Verfiigbarkeit legen
(siehe Kapitel 2.4.1).

InfluxDB gehort dabei zu der letzteren Kategorie und setzt auf eventual consistency
(siche Kapitel 2.4.1). Daten, die in das DBS geschrieben werden, sind somit bereits vor
dem Zeitpunkt, an dem sie persistent gespeichert wurden, zum Lesen verfiighar [29].
Zudem bietet InfluxDB keine Unterstiitzung von Transaktionen (siehe Kapitel 2.3.3)
iiber mehrere Anfragen, wobei dafiir gesorgt wird, dass wihrend einer Anfrage keine

Anderungen der zugrundeliegenden Daten durchgefiihrt werden.

TimescaleDB iibernimmt als PostgreSQL-Erweiterung die ACID-Eigenschaften (siehe
Kapitel 2.3.3) des grundlegenden relationalen DBS und ermdglicht ebenfalls die Nut-
zung von Transaktionen [92]. Wie bereits in Kapitel 2.3.3 erwdhnt, lasst sich auch hier

die Isolationsstufe pro Transaktion Einstellen um ggf. bessere Performanz zu erzielen.

Bei MongoDB lasst sich hingegen die Konsistenz pro Sitzung oder Anfrage in verschiede-

nen Stufen konfigurieren [59], die in der Dokumentation [60, 55] genau beschrieben sind.
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Dazu muss das so genannte ,read concern bzw. ,write concern“ entsprechend fiir Lese-
bzw. Schreib-Operationen auf die gewiinschte Stufe eingestellt werden. Es ist zu beachten,
dass das Schreiben und Andern von Dokumenten immer atomar erfolgt. Das bedeutet,
dass niemals teilweise geschriebene Dokumente gelesen werden. Transaktionen werden in

MongoDB auf Time Series Collections nur fiir lesende Operationen unterstiitzt [58].

5.6 Programmierschnittstellen

Um mit den Datenbanksystemen mit Anwendungssoftware zu interagieren, bieten diese
Programmierschnittstellen und dazugehérige Bibliotheken an. Dieser Abschnitt erlautert,

wie sich diese im Detail unterscheiden.

InfluxDB nutzt als Schnittstelle eine RESTful HTTP API an, welche auf Port 8086 er-
reichbar ist [31]. Uber die Endpunkte dieser Schnittstelle ist es moglich, Daten in das
DBS einzufiigen und diese wieder mit Flux oder InfluxQL abzufragen. Des Weiteren ldsst
sich das DBS hieriiber konfigurieren. Aufgrund der Verwendung von HTTP als grundle-
gendes Protokoll kann jede Programmiersprache, die HT'TP-Anfragen durchfiithren kann,
mit dem DBS interagieren. Der Hersteller stellt fiir gdngige Sprachen Bibliotheken be-
reit, die die Nutzung der API abstrahieren. Zudem ist die Schnittstelle zustandslos, was

bedeutet, dass keine dauerhafte Sitzung mit dem DBS erforderlich ist.

Im Gegensatz zu InfluxDB nutzt TimescaleDB ein binéres Protokoll, das entweder auf
Grundlage von TCP/IP (Port 5432) oder UNIX-Sockets verwendet werden kann [85]. Da
es sich hierbei um dasselbe Protokoll wie bei PostgreSQL handelt, gibt es von diversen
Anbietern Bibliotheken zur Verwendung der Schnittstelle. Ein Beispiel fiir eine solche
Bibliothek ist sqlx [46], die auch im nachfolgenden experimentellen Vergleich verwendet

wurde.

Wie auf TimescaleDB wird bei MongoDB ein binéres Protokoll — das so genannte ,Wire
Protocol“ — eingesetzt 54|, das tiber TCP/IP (Port 27017) oder UNIX-Sockets genutzt
werden kann. Dieses ist jedoch mit dem von TimescaleDB bzw. PostgreSQL inkompa-
tibel. Der Hersteller bietet hier wie bei InfluxDB Treiber an, mit denen das DBS an
eine Anwendung angebunden werden kann, wobei die MongoDB Bibliotheken fiir mehr

Programmiersprachen verfiighar sind.

Tabelle 5.1 fasst die in diesem Kapitel vorgestellten Funktionen und Eigenschaften des

DBS zusammen.
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Tabelle 5.1: Funktionen und FEigenschaften der DBS

InfluxDB TimescaleDB MongoDB
Strukturanforderung schemafrei schemabehaftet schemafrei
Anfragesprache InfluxQl / Flux erweitertes SQL MQL
(ab v3.0 veraltet)
Joins v v eingeschréankt moglich

durch $lookup

Zeitreihenoperationen

Statistik, gleitende

Fensteroperationen, Histogramme,

keine spezialisierten

Durchschnitte, Fiillen von Liicken Operationen
Fensteroperationen, (erweiterbar durch Timescale
Vorhersagen Toolkit)
Konsistenz eventual stark einstellbar
Transaktionen X v X
(nur lesend)
Programmier- RESTful HTTP API binéres Protokoll, basierend auf bindres Protokoll,
schnittstellen TCP/IP oder UNIX-Sockets basierend auf TCP/IP

oder UNIX-Sockets

o1o[3IoA JIo[fouorydozuoy] ¢



6 Experimenteller Vergleich

In diesem Kapitel wird erlautert, wie der experimentelle Vergleich der Zeitreihen-Da-
tenbanksysteme aufgebaut und durchgefithrt wird. Die Experimente und das Testsys-
tem, welche in diesem Kapitel beschrieben werden, wurden auf folgendem System ausge-
flihrt:

e Prozessor: AMD Ryzen 9 3900x (12 Kerne & 3,8 GHz, mit Hyperthreading)
o Arbeitsspeicher: 48 GB DDRA4 (4 Riegel a 3000 MHz)
e Speicher: 1 TiB Western Digital NVME SSD
e Kernel: Linux 6.13.3
Die Datenbanksysteme wurden dabei in folgenden Versionen getestet:
o InfluxDB: 2.7.11
e TimescaleDB: 2.18.2
e MongoDB: 8.0.4

e PostgreSQL: 17.4

6.1 Metriken

Der experimentelle Vergleich in diesem Kapitel wird anhand von Metriken durchgefiihrt,
die vom Testsystem aufgezeichnet werden. Die Metriken lassen sich dabei in zwei Kate-
gorien unterteilen: Zum einen die klassischen Systemmetriken, die innerhalb der Testum-
gebung des DBS (mehr dazu in Abschnitt 6.2.2) ermittelt werden. Zum anderen wird
im Kontext von Green-IT der Energieverbrauch ermittelt. Beide Kategorien werden in
den néchsten Abschnitten genauer beschrieben. Zudem wird fiir jede Anfrage die Latenz

gemessen, wobei diese Messungen von den Szenarios selbst getédtigt werden.
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6.1.1 Klassische Systemmetriken

Angelehnt an [23], [69] und [43] werden die folgenden Metriken der Testumgebung fiir

die Experimente erhoben:

e Prozessorlast (Durchschnitt in Prozent iiber alle Kerne)

genutzter Arbeitsspeicher (in Byte)

gesamter Arbeitsspeicher (in Byte)

genutzte Festplattenkapazitéit (in Byte)

gesamte Festplattenkapazitét (in Byte)

Festplatten Lese-/Schreibzugriffe (in Byte/s)

o Netzwerk Lese-/Schreibzugriffe (in Byte/s)

Diese Metriken wurden gewéhlt, da sie es ermoglichen, die Ressourcennutzung des Sys-
tems abzulesen. Dies ist besonders relevant fiir die Dimensionierung der Hardwarekom-
ponenten der Rechner, auf denen die DBS in echten Anwendungsféllen eingesetzt werden
sollen. Anhand der Testergebnisse des experimentellen Vergleichs kénnen somit Schliisse
gezogen werden, welche DBS auf welchen Systemen fiir welche Anwendungsfille beson-

ders geeignet sind.

6.1.2 Green-IT und Strommessung

Der Begriff Green-IT beschreibt Bestrebungen, IT-Systeme, wie z. B. Rechenzentren,
aber auch Rechner im privaten Umfeld, umweltfreundlicher zu gestalten [64]. Ziel ist
es dabei, grofitenteils den Stromverbrauch zu senken und damit den CO2-Ausstofs zu
minimieren. Auch Aspekte wie die Senkung von Kosten sind jedoch relevant. Vermehrt
aufgekommen ist dieser Begriff um das Jahr 2008, wobei es auch bereits vorher vereinzelte

Projekte in diesem Bereich gegeben hat.

In den hier durchgefiihrten Experimenten soll Aufgrund der Relevanz von Green-IT zu-
satzlich zu den Metriken, die oben genannt wurden (siehe Abschnitt 6.1), der Energie-
verbrauch der Zeitreihen-Datenbanksysteme gemessen werden. Mehr zur Art und Weise

der Messungen wird in Abschnitt 6.2.3 beschrieben.
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6.2 Testsystem

Fiir die nachfolgenden Experimente wurde ein Testsystem entwickelt, das die Ausfiih-
rung dieser weitestgehend automatisiert. Dazu wird u. a. die Testumgebung eingerichtet,
das Zeitreihen-Datenbanksystem installiert und das entsprechende Szenario gestartet.
Zudem werden die oben genannten Metriken (siehe Abschnitt 6.1) vollautomatisch vom

Testsystem erfasst und dem jeweiligen Experiment zugeordnet.

6.2.1 Aufbau

Das Testsystem ist in zwei Teile aufgeteilt (siehe Abb. 6.1): Zum einen gibt es den Teil,
der die Verwaltung der Experimente, die Ausfiilhrung der Szenarien und das Aufzeich-
nen der Metriken tibernimmt. Dieser Teil wird Testsystem-Verwaltung (TSV) genannt.
Den zweiten Teil stellt die Testumgebung (TU) dar, in der das Zeitreihen-Datenbanksys-
tem (engl. Time Series Database System bzw. TSDBS) und die Erfassung der Metriken

ausgefiihrt wird.

Die TSV und Metrikerfassung wurden in der Programmiersprache Rust [75]| entwickelt.
Diese Sprache wurde hier gewéhlt, da sie zum einen eine effiziente ressourcenschonen-
de Programmierung ermoglicht. Dies ist insbesondere fiir die Metrikerfassung wichtig,
da so das Testergebnis so wenig wie moglich verfalscht wird. Zum anderen bietet Rust
ein statisches Typsystem und garantiert Speichersicherheit, wodurch Programmierfehler

reduziert werden konnen.

Testsystem-Verwaltung (TSV) Testumgebung (TU)

Experimentverwaltung

Netzwerk- |
verbindung
Szenarioausfithrung
Metrikaufzeichnung
virtio- Systemmetrik-
" Channel erfassung

Verwaltung durch
KVM/libvirt

Abbildung 6.1: Schematische Ubersicht des Aufbaus des Testsystems (fiir UML-Kompo-
nentendiagramm siehe Kapitel 6.2.4)
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In den folgenden Abschnitten wird genauer auf den Aufbau der beiden Teile des Testsys-
tems eingegangen. Details zur Einrichtung des Testsystems lassen sich im Anhang A.2

nachlesen.

6.2.2 Testumgebung (TU)

Es gibt verschiedene Moglichkeiten, die Testumgebung auszufiithren, die jeweils eigene
Vor- und Nachteile haben. Nachfolgend werden diese beschrieben und die endgiiltige
Wahl begriindet.

o direkt auf dem Wirtsystem (engl. Host): Vorteilhaft ist hier, dass die Komplexitét
des Aufbaus niedrig ist und direkt iiber die Loopback-Netzwerkschnittstelle mit
dem DBS kommuniziert werden kann. Es treten jedoch auch folgende Probleme
auf: Zum einen storen die auf dem Wirtsystem laufenden fremden Prozesse und
das Testsystem selbst die Messergebnisse. Zum anderen ist es schwierig, zwischen
den verschiedenen DBS zu wechseln, da entweder alle DBS parallel installiert sein
miissen oder jedes DBS vor dem jeweiligen Experiment dynamisch installiert und

anschliefend wieder deinstalliert werden muss.

e in einem Container: Der Container sorgt dafiir, dass sich Prozesse, die darin aus-
gefiihrt werden, in einer getrennten Gruppe zu den restlichen Prozessen des Wirtes
befinden. Weitere Details dazu lassen sich in der Linux-Kernel-Dokumentation [48]
nachlesen. Hierdurch ergibt sich der Vorteil, dass fiir jedes Experiment ein eigener
neuer Container erzeugt werden kann, in dem nur das jeweilige DBS installiert ist.
Durch diese Trennung storen andere Prozesse des Wirtes hier zudem weniger als die
zuvor genannte Variante. Jedoch besteht hierbei das Problem, dass bei Containern
der Kernel des Wirtsystems mitgenutzt wird, wodurch so wiederum Storeinfliisse

entstehen.

e in einer virtuellen Maschine (VM): Im Gegensatz zu Containern wird bei vir-
tuellen Maschinen ein gesamter virtueller Rechner (Gast) inklusive Prozessoren,
Arbeitsspeicher, Festplatten, Netzwerkschnittstellen etc. erstellt, wodurch die Res-
sourcen des Wirtes ineffizienter genutzt werden. Hier lauft somit ein eigenes Be-
triebssystem, welches grofstenteils getrennt vom Wirt ausgefithrt wird. Solange der
Wirt nicht iiberlastet wird, sind die Storeinfliisse auf den Gast jedoch minimal.
Zudem lassen sich in einer VM Parameter wie die Anzahl der Prozessorkerne oder

die Grofse des Arbeitsspeichers frei konfigurieren.
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e auf einem separaten Rechner: Beziiglich der Storungen durch andere Prozesse ware
es optimal, die Testumgebung auf einem eigenen Rechner mit separater Hardware
zu betreiben. Allerdings ist der Aufwand hierfiir deutlich grofer als bei den anderen
Varianten, da die Kommunikation zum restlichen Testsystem sichergestellt werden
muss und auch hier die Installationsprobleme auftreten, die bereits in der ersten
Variante beschrieben wurden. Dariiber hinaus miissen zur Testung verschiedener

Hardwarekonfigurationen manuelle Anderungen am System vorgenommen werden.

Aufgrund dieser Uberlegungen wurde entschieden, die Testumgebung in einer virtuellen
Maschine (VM) auszufiihren, da die reduzierte Performanz im Vergleich zu Containern
in diesem Anwendungsfall nicht relevant ist. Zudem wurde von einem separaten Rechner
abgesehen, da einerseits die benotigte Hardware nicht zur Verfiigung stand und ande-
rerseits der entstehende Aufwand den Nutzen nicht gerechtfertigt hitte. Das Testsystem
wurde jedoch so entwickelt, dass mit nur geringen Anderungen die Experimente auf einem

anderen Rechner ausgefiihrt werden kénnen.

Zur Virtualisierung wurde hier KVM [72] in Kombination mit libvirt [73] genutzt. KVM
ist die in den Linux-Kernel integrierte Virtualisierungssoftware, die es ermdglicht auf
Linux-Systemen virtuelle Maschinen auszufithren. Zudem bietet KVM eine Reihe an pa-
ravirtualisierten Komponenten wie z. B. Festplatten, Netzwerkkarten etc. an, fiir die
bereits Treiber im Linux-Kernel vorinstalliert sind, wodurch der Einrichtungsaufwand
des Gastes verringert wird. libvirt bietet eine Programmierschnittelle an, mit der die
Verwaltung von KVM automatisiert werden kann. Im Testsystem werden so automatisch
virtuelle Maschinen konfiguriert, gestartet und am Ende des Experimentes wieder ge-
stoppt. KVM und libvirt werden von der Firma RedHat entwickelt. Es wurde sich gegen
andere Virtualisierungslésungen wie Oracle VirtualBox [67] oder VMware Workstati-
on [6] entschieden, da die automatische Konfiguration bei diesen Produkten aufwéndig
ist. Zudem war VMware Workstation zur Zeit dieser Entscheidung kostenpflichtig. Nach
der Ubernahme von VMWare durch Broadcom wurde dies wurde jedoch mittlerweile

gedndert.
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Fiir das in der VM ausgefiihrte Betriebssystem gibt es zwei Anforderungen:
1. Das System soll eine realistische Umgebung fiir das DBS darstellen und
2. es sollen hier wie oben erwahnt die Storeinfliisse minimal sein.

Anhand dieser Anforderungen wurde sich fiir eine minimale Installation der Linux-Distri-
bution Debian [81] entschieden, welche bereits vorkonfiguriert als Festplattenabbild von
der Website des Projektes heruntergeladen werden kann. Gegen die Distribution Alpi-
ne [2], die auch haufig als minimales System genutzt wird, wurde sich hier entschieden, da
hier Inkompatibilitéten zu manchen DBS bestehen, weil Alpine nicht die Linux-Standard-
C-Bibliothek glibc nutzt, sondern auf die eigene Implementation musl setzt. Microsoft
Windows [49] wurde hier aufgrund der mangelnden Konfigurierbarkeit bzgl. installierten
und ausgefiihrten Komponenten, der hohen Ressourcennutzung im Vergleich zu Debian

und wegen nicht vorhandenen Lizenzen ebenfalls nicht genutzt.

Um das Betriebssystem nach Start der VM zu konfigurieren und das Zeitreihen-Daten-
banksystem zu installieren, wird die Automatisierungssoftware cloud-init [8] genutzt, die
von der Firma Canonical entwickelt wird. Die Software wurde fiir die Einrichtung von
VMs bei Cloud-Providern konzeptioniert, kann aber auch im Nicht-Cloud-Kontext ein-
gesetzt werden. Zudem ist cloud-init bereits in dem vom Debian-Projekt bereitgestellten
Festplattenabbild vorinstalliert, wodurch keine manuelle Konfiguration notig ist. Dies
ist auch der Grund, warum diese Software genutzt wurde. Wenn die VM startet, fragt
cloud-init iiber HTTP bei der Konfigurationsverwaltung des Testsystems an, wie das
System eingerichtet werden muss. Die dabei entstehende Konfigurationsdatei wird vom

Testsystem im yaml-Format automatisch generiert.

In der Testumgebung wird neben dem Zeitreihen-Datenbanksystem die Systemmetri-
kerfassung ausgefiihrt. Diese zeichnet die Systemmetriken der Testumgebung (siehe Ab-
schnitt 6.1.1) mithilfe der Bibliothek sysinfo [20] auf und sendet sie iiber einen virtio-
Channel an die TSV. Virtio-Channels sind bidirektionale Ubertragungskanéle, die von
KVM bereitgestellt werden und fiir die bereits Treiber im Linux-Kernel verfiigbar sind.
Sie stellen einen Weg dar, um zwischen Wirt und Gast zu kommunizieren. Ein solcher
Kanal wurde genutzt, um sicherzustellen, dass die Messergebnisse nicht beeintrachtigt
werden. Im Gegensatz zur Alternative, bei der die Daten iiber die Netzwerkschnittstelle
iibertragen werden — von der ebenfalls Messwerte erfasst werden — wird die Messung so

nicht gestort.
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6.2.3 Testsystem-Verwaltung (TSV)

Die Testsystem-Verwaltung besteht im Kern aus vier Komponenten, die jeweils folgende

Aufgaben besitzen:
1. Szenarioausfithrung: Ausfiithrung der Szenarios inkl. Durchfithrung der Anfragen

2. Metrikaufzeichnung und Strommessung: Aufzeichnung der Metriken, die von der
Systemmetrikerfassung und der Strommessung gemessen wurden. Zusétzlich Spei-

cherung der Latenzen der Anfragen

3. VM-Verwaltung: Einrichtung der VMs inkl. Konfiguration von Ressourcen und

Kommunikation mit libvirt

4. Ezperimentverwaltung: Steuerung des Ablaufs der Experimente bzw. Koordination

der anderen Komponenten

In den folgenden Abschnitten wird die Funktionsweise der Komponenten genauer be-

schrieben.

Szenarioausfiihrung

Diese Komponente stellt die Ausfithrung der Szenarios im Testsystem dar. Szenarios
sind dabei immer in zwei Schritte geteilt: Der erste Teil — die Initialisierung — erstellt das
Schema des DBS, falls es nicht schemafrei ist, und befiillt das DBS je nach Szenario mit
den entsprechenden Testdaten. Der zweite Teil des Szenarios befasst sich mit der Aus-
fiihrung der Anfragen. Dabei wird jeweils die Latenz der Anfragen in dieser Komponente

gemessen und an die Metrikerfassungskomponente iibertragen.

Die derzeitige Implementation des Testsystems sieht vor, dass Szenarios in Rust geschrie-
ben werden konnen, wobei es durchaus méglich ist, ein externes Programm wie Python
als Szenario zu nutzen. In diesem Fall kdnnte die Mitteilung der Latenz-Werte iiber die

Standard-Ausgabe (stdout) des Python Prozesses erfolgen.
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Metrikaufzeichnung und Strommessung

Die Metrikaufzeichnung (MA) stellt das Gegenstiick zu der Systemmetrikerfassung (SME)
dar. Die Kommunikation mit der SME geschieht, wie bereits in Abschnitt 6.2.2 beschrie-
ben, iiber einen virtio-Channel, der auf der Seite des Hosts durch einen UNIX-Socket

reprasentiert wird.

Um den Stromverbrauch der DBS zu messen, wird die Bibliothek ,scaphandre® [4] ge-
nutzt, die die in Linux integrierte intel-rapl-Schnittstelle verwendet. Diese Schnittstelle
ist dabei nicht nur mit Prozessoren der Firma Intel, sondern auch mit AMD-Prozessoren
kompatibel. Diese Schnittstelle ermoglicht es, den Energieverbrauch der CPU in pJ (mi-
kro Joule) abzufragen, dieser wird jedoch in W (mikro Watt) umgerechnet, um einen
zeitunabhangigen Wert zu erhalten. Zu beachten ist dabei, dass lediglich der Verbrauch
des Prozessors gemessen wird. Andere Verbraucher wie Hauptplatine, Festplatten, etc.
werden nicht gemessen, da es fiir diese keine bzw. keine einheitliche Schnittstelle gibt.
Zudem miisste hier aus dem Gesamtverbrauch der Verbrauch der VM extrahiert werden.
Dies wére jedoch nur schwer moglich, da die hierfiir benétigten Nutzungswerte nicht

verfligbar sind.

Wenn Metriken von der MA empfangen werden, werden sie zunéchst bis zum Abschluss
des jeweiligen Experimentes in einer Datenstruktur im Arbeitsspeicher abgelegt, die die
drei Metrikkategorien — Systemmetriken, Stromverbrauch und Latenzen — jeweils in einer
eigenen Liste speichert. Anschliefend werden die Daten in ihrer Rohform in eine CSV-
Datei pro Metrikkategorie geschrieben. Zusétzlich werden statistische Kennzahlen wie das
arithmetische Mittel, die Standardabweichung, der Median etc. von der Metrikerfassung

berechnet und gespeichert.

VM-Verwaltung

Diese Komponente iibernimmt die Konfiguration und Steuerung der VMs, fiir die libvirt

und cloud-init genutzt werden, die bereits im Abschnitt 6.2.2 kurz erwéhnt wurden.

Eine virtuelle Maschine basiert in libvirt auf einer XML-Datei, die eine Beschreibung
ihrer Eigenschaften enthélt, wie z. B. Name, Prozessoranzahl, Arbeitsspeicher und an-
geschlossene (virtuelle) Geridte. Zudem wird in diesem XML-Dokument die Adresse des
cloud-init-Konfigurationsendpunktes angegeben, iiber den das Betriebssystem der VM

eingerichtet wird. Wenn eine VM vom Testsystem erstellt werden soll, wird eine neue
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XML-Datei anhand einer Vorlage mit den gewiinschten Parametern gefiillt und an lib-

virt iibergeben. Danach wird die so neu erstellte VM automatisch gestartet.

Damit neue VMs immer mit einem neu installierten Betriebssystem starten konnen, wird
vor Erstellung der VMs ein so genannter ,linked clone (verkniipfte Kopie) vom Grund-
Festplattenabbild erstellt, der lediglich die vorgenommenen Anderungen speichert. Nach-

dem eine VM nicht mehr benétigt wird, kann diese Kopie geloscht werden.

Experimentverwaltung

Die Experimentverwaltung ist der Teil des TSV, der alle anderen Komponenten steuert.
Ihr Ziel ist es, fiir jedes Szenario jede Kombination von Systemkonfiguration und Anfra-
ge durchzufiihren. Zudem wird jede Anfrage zehnmal ausgefiihrt, damit Schwankungen

zwischen den einzelnen Durchldufen beriicksichtigt werden kénnen.

Fiir die Ausfithrung der Experimente eines Szenarios auf einem DBS werden die folgenden
Schritte durchgefiihrt:

1. Zunéchst wird eine VM gestartet, in der das jeweilige DBS installiert und im An-
schluss das Szenario initialisiert wird. Das durch diesen Vorgang entstandene Fest-
plattenabbild mit installiertem DBS und eingefiigten Daten wird bei der Durch-
fiihrung der Experimente als Grundlage genutzt. Hierdurch wird vor allem Zeit

gespart, da jedes Szenario pro DBS nur ein Mal initialisiert werden muss.

2. Im zweiten Schritt wird jede Anfrage fiir jede in den Rahmenbedingungen des Sze-
narios erwahnte Systemkonfiguration zehnmal in einer eigenen VM ausgefiihrt. So

wird sichergestellt, dass sich die Anfragen untereinander nicht beeinflussen kénnen.

6.2.4 Architektur

In diesem Abschnitt wird die Architektur der Komponenten des Testsystems beschrie-
ben. Dabei werden die Bezeichnungen der Komponenten genutzt, die auch im Quelltext
verwendet wurden. Auf die Klassen der Komponenten wurde hier verzichtet, da hier die

Struktur der Komponenten betrachtet werden soll.

Abbbildung 6.2 zeigt eine Kombination der ersten Schicht des UML-Komponentendia-
gramms und der Verteilungssicht der Komponenten auf die beiden Teile des System-

sytems — der Testverwaltung (databasesystem tester) und der Metrikerfassung
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(instrumentation_gatherer). Die Bezeichnungen und Funktionen der Komponen-

ten hier entsprechen denen aus Abschnitt 6.2.3 wie folgt:

e testcase: Experimentverwaltung
o vm: VM-Verwaltung

e scenario: Szenarioausfithrung

e metrics: Metrikaufzeichnung und Strommessung

Bis auf die Komponente testcase bestehen alle Komponenten wiederum aus weiteren

Komponenten, die im Folgenden beschrieben werden.

databasesystem_tester )

z ]

«Component» SN «Component»
testcase vm

«Componenty SN «Component
scenario metrics

instrumentation_gatherer )

«Component»
metrics

3]

Abbildung 6.2: Schicht 1 des UML-Komponentendiagramms bzw. Verteilungssicht
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Komponente ,ym*

«Component» @

vm

| | |

«Component» «Component» «Component»
cloudinit vm_manager vm_config

Abbildung 6.3: Schicht 2 des UML-Komponentendiagramms der Komponente vm

Die Komponente vm (Abb. 6.3) besteht aus drei Unterkomponenten: Der vim_manager
kommuniziert zum libvirt und verwaltet den Lebenszyklus und die Konfiguration der
VMs. Die Komponente vin_config liest eine Konfigurationsdatei ein, die unter ande-
rem Skripte zur Installation der Datenbanksysteme sowie allgemeine Einstellungen fiir
die Testumgebung, wie etwa die Netzwerkkonfiguration, enthélt. Diese so eingelesene
Konfiguration wir vom vm_manager an die Komponente cloudinit weitergereicht,
die diese im entsprechenden yaml-Format fiir die VM anbietet (siche Abschnitt 6.2.2).

Komponente ,,;scenario*

«Component» E

scenario

% | % | % |

«Component» «Component» «Component»
scenario_a scenario_b scenario_c

Abbildung 6.4: Schicht 2 des UML-Komponentendiagramms der Komponente scenario

In der Komponente scenario (Abb. 6.4) gibt es fiir jedes Szenario wiederum eine Un-
terkomponente. Der Aufbau dieser Unterkomponenten héngt dabei von den Szenarios
ab. Szenario A und C besitzen jeweils eine Generatorkomponente, die die jeweiligen
Testdaten erzeugt. Szenario B hat diese Komponente nicht, da hier lediglich aus den
parquet-Dateien des Datensatzes gelesen werden muss. Des Weiteren haben alle Szena-
rios eine Komponente, die die Verbindungen zu den verschiedenen Datenbanksystemen
abstrahiert. Weitere Details zur Implementierung der Szenarios befinden sich im Ab-
schnitt 6.3
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Komponente ,,metrics*

«Component» @

metrics

5] 5]

«Component» «Component»
energy receiver

Abbildung 6.5: Schicht 2 des UML-Komponentendiagramms der Komponente metics

Die Komponente metrics (Abb. 6.5) besteht aus zwei Teilen. Zum einen der energy-
Komponente, die den Stromverbrauch der VM misst und der receiver-Komponente,

die die Gegenstelle zur Systemmetrikerfassung in der Testumgebung darstellt.

6.3 Implementierung der Szenarios

Die folgenden Unterabschnitte zeigen, wie die Szenarios im Testsystem aufgebaut und
implementiert sind. Zudem wird auf die Anfragen an die Zeitreihen-Datenbanksysteme

eingegangen.

6.3.1 Aufbau der Szenarios

Wie bereits in Abschnitt 6.2.3 erwahnt, bestehen die Szenarios aus zwei Stufen — Initia-
lisierung und Ausfiihrung der Anfragen. Diese Struktur wird im Quelltext durch eine
Schnittstelle (sieche Abb. 6.6) abgebildet, die zwei entsprechende Methoden besitzt. Zu-
sétzlich hat diese Schnittstelle Methoden, iiber die der Name, die moglichen Anfragen
und die zu testenden Systemkonfigurationen des Szenarios abgefragt werden kénnen. Je-
des der Szenarios implementiert diese Schnittstelle, wodurch die Experimentverwaltung

(bzw. die Komponente testcase) keine szenariospezifische Logik benétigt.

Den Methoden run () und init () wird iber deren Parameter das zu verwendende
DBS in Form eines Enums inkl. der Adresse und den Zugangsdaten iibergeben. Anhand
dieser Informationen stellen die Szenarios eine Verbindung zum DBS her, wobei in Sze-

nario A mehrere Verbindungen aufgebaut werden. Bei der Methode run () wird zudem
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die auszufiihrende Anfrage und ein Bezeichner des aktuellen Durchlaufs in Form einer

Zeichenkette iiber zwei Parameter mitgeteilt.

«Interface» <<Enumeration>>
Scenario Database
+ init(Database, IpAddr, Option<String>): Result<()>
InfluxDB
+ run(Database, String, String, IpAddr, Option<String>):
Result<()>
. TimescaleDB
+ get_name(): String
+ get_queries(): List<String>
gt € MongoDB
+ get_system_configurations(): List<SystemConfiguration>
+ get_system_init_configurations(): PostgreSQL
List<SystemConfiguration>

Abbildung 6.6: UML-Diagramm der Schnittstelle Scenario und des Enum Database

Um auch die Szenario-Implementierungen moglichst generisch beziiglich der Datenbank-
systeme zu halten, hat jedes Szenario eine eigene Datenbank-Schicht, die pro DBS jeweils
jede Anfrage implementiert. Hier wird ebenfalls eine Schnittstelle genutzt, in der fiir jede

Anfrage eine entsprechende Methode definiert ist.

6.3.2 Szenarioablauf

Das UML-Sequenzdiagramm in Abbildung 6.7 stellt den vereinfachten Ablauf eines Sze-

narios dar.
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KVM/libvirt . Metrik-
TSV Testfall (VM) Szenario TSDBS aufzeichnung

[7] Testfall starten‘i '
wiederhole fiir VM konfi-
jedes DBS gurieren und
starten
wiederhole ‘ priife Verbindung i

bis Antwort i 'D

Metrikaufzeichnung initialisieren

Szenario initialisieren

optional /

Schema
initialisieren

optional / Messung starten
Testdaten
importieren
< ..........................
optional / Messung stoppen

Messwerte aggregieren und als

CSV-Datei speichern

v

Metrikaufzeicinung stoppen

VM stoppen

(a) Teil 1/2 (Fortsetzung auf der folgenden Seite)
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KVM/libvirt . Metrik-
TSV Testfall (VM) Szenario TSDBS aufzeichnung
wiederhole
fiir jede Metrikaufzeichniing initialisieren i
Anfrage
w VM konfigu-
10 Mal rieren und
starten mit |
Festplattenklon |
von
Initialisierungs-
VM i :
wiederhole priife Verbindung ;
bis
Antwort e R A i
j warte 10 s 5
Szenario mit Anfrage X starten L Mes sung starten
Anfrage
durchfiihren
Messung stoppen
VM stoppen T
Messwerte aggregieren und als
CSV-Datei speichern N
S — T ——— -
Metrikaufzeichnung stoppen

(b) Teil 2/2

Abbildung 6.7: Ablauf eines Szenarios als UML-Sequenzdiagramm

55



6 Experimenteller Vergleich

6.3.3 Implementierung der Generatoren

Die Generatoren aus Szenario A und C sind alle als Iterator implementiert. Iteratoren in
der Programmiersprache Rust besitzen im Kern die next ()-Methode. Sie liefert jeweils
das néchste Element des Generators, wenn der Generator nicht bereits alle zu generie-
rende Elemente ausgegeben hat. Fiir die Generatoren wurde in dieser Methode jeweils
das in Kapitel 4 beschriebene Verfahren implementiert. Da Iteratoren ein grundlegendes
Konzept in der Sprache sind, sind sie gut darin integriert und kénnen so flexibel genutzt

werden.

Damit die Experimente reproduzierbar sind, wurde fiir die Zufallszahlengeneratoren je-
weils ein so genannter Seedwert gesetzt, der dafiir sorgt, dass immer die gleiche zufélligen
Werte erzeugt werden. Zu beachten ist dabei jedoch, dass in zukiinftigen Versionen der

Zufallszahlen-Bibliothek andere Zahlenfolgen generiert werden kénnten.

Die Parameter der Generatoren fiir die Szenarios A und C wurden experimentell so
bestimmt, dass sie moglichst realistisch anmutende Daten erzeugen. In folgenden beiden

Unterabschnitten werden die ermittelten Werte der Generatoren genannt.

Parameter der Generatoren von Szenario A

e Generator-Erzeugungsrate: 3 s

e Maximale Generatoranzahl: 400

e Generierungsintervalle der Generatoren:
— elektrische Verbraucher: 1 s
— Temperatur: 2 s

Fenster und Tiiren: ~ 50 s

Beleuchtung: ~ 50 s
e Parameter der Temperaturgeneratoren:
— Periode: p = 86400

— Temperaturunterschied zwischen Tag und Nacht: v =4
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— Verschiebung: s =0
— Nachttemperatur: o = 17

— Stauchung: d = 0,05

Parameter der Generatoren von Szenario C

e Generator Prozessorauslastung:

— angestrebte Grundlast: g = 0,2

Lastrauschen: v = 0,01

Korrekturfaktor: z = 0,005
— Spitzenwahrscheinlichkeit: ps = 0,001
— Spitzenhohe: up = 0,8 o = 0,15
— Spitzendauer: pg = 200 o4 = 500
— Spitzenkorrekturfaktor: z’ = 0,02
e Generator Arbeitsspeicherauslastung:
— angestrebte Speichernutzung: u, = 2 000 000 o, = 500 000
— Lastrauschen: v = 2000

— Korrekturfaktor: = 0,00005

6.3.4 Einfiigen der Testdaten

Zu Beginn jedes Szenarios miissen zunéchst die Testdaten fiir das jeweilige Szenario in
das DBS einfiigt werden. Bei Szenario A geschieht dies wie in Kapitel 4.2.2 beschrieben,
indem pro simuliertem Gerat eine Verbindung zum DBS aufgebaut wird und die Daten
im Anschluss in Echtzeit iibertragen werden. Da bei Szenario B und C nur der Anfrage-
prozess betrachtet wird, konnen die Daten hier so schnell eingefiigt werden, wie es das
DBS ermoglicht. Dazu werden die einzelnen Datenpunkte in Blocken zusammengefasst

und jeweils am Stiick iibertragen. Bei InfluxDB wird das so genannte ,Line protocol“ [33]
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genutzt, bei dem jeder Datenpunkt als eine Zeile einer Zeichenkette an eine HTTP-
Schnittstelle iibertragen wird. In MongoDB wird die Funktion insertMany () [52] des
Treibers genutzt, mit der mehrere Dokumente iiber einen Aufruf eingefiigt werden kon-
nen. Bei TimescaleDB und PostgreSQL wird die COPY FROM STDIN Funktionalitit [86]
von SQL genutzt, die es erlaubt, CSV-Daten direkt an die Datenbank zu senden.

6.3.5 Anfragen

Dieser Abschnitt zeigt die Syntax und Komplexitdt der Anfragen beispielhaft anhand der
vierten Anfrage von Szenario B (siche Abschnitt 4.3.1), die die Stunde mit den meisten
Taxifahrten berechnen soll. Diese Anfrage wurde fiir dieses Beispiel gewéhlt, da sie die

komplexeste Anfrage aller Szenarios darstellt.

InfluxDB
import "date"

from(bucket: "bucket")
| > range (start: 0)

|> filter(fn: (r) => r["_measurement"] == "trips")

|> filter(fn: (r) => r["_field"] == "passenger_count")

| > aggregateWindow (every: 1lh, fn: sum, createEmpty: false)
|> drop(columns: ["_start", "_stop"])

|> map (fn: (r) => ({r with hour: date.hour(t: r._time)}))
|> group (columns: ["hour"], mode: "by")

|> sum(column: "_value")

| > group ()

|> sort (columns: ["hour"], desc: true)

[> limit (n: 1)

|> yield(name: "count")

Abbildung 6.8: Vierte Anfrage von Szenario B in Flux fiir InfluxDB

In der in Abbildung 6.8 gezeigten Anfrage wird die Anfragesprache Flux verwendet. Diese
wird zwar, wie in Abschnitt 3.2 erwahnt, mit der kommenden Version von InfluxDB nicht

mehr weiterentwickelt, jedoch ist sie fiir InfluxDB v2 derzeit die empfohlene Variante.

In der Anfrage werden mit range (start: 0) zunéchst alle Datenpunkte ab dem Start-

zeitpunkt angefragt — dies ist notwendig, da InfluxDB sonst einen Fehler ausgeben wiirde.
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Anschliefsend werden mittels der zwei filter ()-Funktionen nur die Datenpunkte der
Zeitreihe mit den Fahrgastzahlen ausgewéhlt, welche dann in Ein-Stunden-Intervallen
aufaddiert werden. Die folgenden Zeilen extrahieren die Uhrzeit, addieren alle Werte der

jeweiligen Stunde und geben die Stunde mit den meisten Fahrgésten aus.

TimescaleDB

SELECT EXTRACT (HOUR FROM bucket_hour) as hour,
SUM (bucket_count) as count
FROM (
SELECT time_bucket (1 hour’, tpep_pickup_datetime)
as bucket_hour,
SUM(*) as bucket_count
FROM nyc_taxi_trips
GROUP BY bucket_hour

)
GROUP BY hour

ORDER BY count DESC
LIMIT 1;

Abbildung 6.9: Vierte Anfrage von Szenario B in erweitertem SQL fiir TimescaleDB

Abbildung 6.9 zeigt die Anfrage in erweitertem SQL fiir TimescaleDB. Sie besteht dabei
aus zwei ineinander geschachtelten SQL-Ausdriicken. Der innere Teil gruppiert die Daten
in Ein-Stunden-Intervalle mithilfe der time_bucket ()-Funktion und aggregiert sie,
indem sie addiert werden. Die resultierenden Daten werden dann durch den &ufieren
Ausdruck nach ihrer zugehorigen Stunde gruppiert und summiert. Schlussendlich wird

die Stunde mit den meisten Fahrgésten zuriickgegeben.

MongoDB

Fiir die Anfrage bei MongoDB (siehe Abb. 6.10) wird hier eine MQL-Pipeline (siehe
Kapitel 5.2), die aus vier Schritten besteht, genutzt. Der erste Schritt gruppiert und
addiert die Daten anhand der jeweiligen Stunde. Danach werden durch die $project-
Stufe die gewlinschten Felder der Dokumente ausgewéhlt. In den letzten beiden Stufen

werden die Ergebnisse absteigend sortiert und das grofte Ergebnis ausgegeben.
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[ { $group: {
_id: |
hour: {
Shour: { date: "Stpep_pickup_datetime" }
}
bo

group_count: { $sum: "Spassenger_count" }

Pty

{ Sproject: {
_id: 0,
hour: "$_id.hour",
group_count: 1

by
{ $sort: { hour: -1 } },

{ $limit: 1 } ]

Abbildung 6.10: Vierte Anfrage von Szenario B als MQL-Pipeline fiir Mongodb

Postgresql

SELECT EXTRACT (HOUR FROM tpep_pickup_datetime) as hour,
SUM(*) as count

FROM nyc_taxi_trips

GROUP BY hour

ORDER BY count DESC

LIMIT 1;

Abbildung 6.11: Vierte Anfrage von Szenario B in SQL fiir PostgreSQL

Die Anfrage des Baseline-DBS PostgreSQL (sieche Abb. 6.11) ist die kiirzeste der vier
Anfragen. Sie extrahiert fiir jede Zeile der Tabelle die jeweilige Stunde, gruppiert die

Daten anschliefend nach dieser, addiert sie und gibt das grofite Ergebnis aus.

6.4 Datensatze

Die drei Szenarios nutzen jeweils unterschiedliche Datensétze. Szenario B verwendet da-
bei einen Datensatz, bestehend aus realen Daten von Taxis aus New York City (siehe
Kapitel 4.3), wohingegen Szenario A und C mit synthetisch generierten Daten arbeiten.

Diese werden mithilfe der Generatoren, die in den jeweiligen Kapiteln beschrieben sind,
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erzeugt (siehe Kapitel 4.2 und 4.4). Die Parameter der Generatoren lassen sich dabei in
Kapitel 6.3.3 ersichtlich.

n Szenario A werden Generatoren erzeugt, deren Anzahl bis zu 400 steigt und die gleich-
méfig iiber die verschiedenen Kategorien verteilt sind. Hierbei wird sichergestellt, dass
die Menge der generierten Daten immer gleich grofs ist. Die Simulation der Geréte und

Sensoren wird hier in Echtzeit ausgefiihrt.

In Szenario C wird bei jedem Zeitschritt (100 ms) mit einer Wahrscheinlichkeit von 0,05
eine neue Instanz bzw. ein Generator, der diese simuliert, erzeugt. Mit dieser Wahrschein-
lichkeit kann dabei die Anzahl der Instanzen und damit auch die Anzahl der Zeitreihen
bestimmt werden. Die gesamte simulierte Zeit betrdgt dabei einen Tag, die jedoch so

schnell wie moglich ausgefithrt wird.

Die folgende Tabelle 6.1 zeigt u. a. die Anzahl der Datenpunkte und der Zeitreihen der

Datensétze:

Tabelle 6.1: Ubersicht der Datensétze
Szenario ‘ Datenpunkte Zeitreihen Art der Daten

A ~ 100 Tsd. 400 snythetisch
B ~ 337 Mio. 3 real
C ~ 170 Mio. =~ 100 Tsd. synthetisch

6.5 Ergebnisse

Die folgenden Abschnitte stellen die Ergebnisse der Experimente pro Szenario dar und
beschreiben diese. Am Anfang jedes Szenarioabschnitts befindet sich eine Tabelle, die
die genutzte Festplattenkapazitit pro DBS zeigt. Zudem werden fiir jede Anfrage ein
Boxplot der Latenzen und sechs Diagramme dargestellt, die die Systemmetriken (siehe
Abschnitt 6.1.1) und die Energienutzung der Testumgebung beinhalten. Letztere Dia-
gramme werden im Folgenden nur erwdhnt und nicht genau beschrieben, da ihr Aufbau
immer gleich ist: In einem Zwei-mal-Drei-Raster zeigen die Diagramme in der Reihen-
folge von links nach rechts und von oben nach unten die durchschnittliche Prozesso-
rauslastung, die durchschnittliche Arbeitsspeichernutzung, die Summe der von der Fest-
platte gelesenen Daten, die Summe auf die Festplatte geschriebenen Daten, die Sum-
me der Datenmenge der Netzwerk Ein- und Ausgabe und die Summe des Energie-

verbrauchs der DBS. Aus Platzgriinden wurden die Bezeichnungen der DBS wie folgt
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abgekiirzt: I = InfluxDB, T = TimescaleDB, M = MongoDB und P = PostgreSQL.
Des Weiteren werden in den Beschreibungen der Latenzdiagramme die Mediane angege-
ben. Fiir Szenario A werden auflerdem die Latenzen des Einfiigeprozesses gezeigt. Alle
Diagramme zeigen dabei die getesteten Systemkonfigurationen in Gruppen von vier fiir
Szenario A und in Gruppen von drei fiir Szenario B und C. Zudem wird fiir Szenario B
und C nur die Anzahl der Prozessorkerne dargestellt, da sich die Grofe des Arbeitsspei-

chers hier nicht dndert.

Die Rohdaten aus denen die folgenden Diagramme erzeugt wurden, sind zum einen auf
der beigefiigten CD und unter der im Anhang A.2 genannten Internet-Adresse im CSV-

Format verfiigbar.

6.5.1 Szenario A

Tabelle 6.2 zeigt die genutzte Festplattenkapazitat der DBS:

Tabelle 6.2: Genutzte Festplattenkapazitdten pro DBS
‘ InfluxDB  TimescaleDB MongoDB PostgreSQL
Festplattennutzung ‘ 5,09 GB 5,37 GB 5,79 GB 5,26 GB

Einfiigen der Daten

Die Diagramme in Abbildung 6.12 zeigen die Einfiigelatenzen der Zeitreihen-Datenbank-
systeme mit den jeweiligen Systemkonfigurationen. Dabei ist zu beachten, dass die Dia-
gramme teils keine Werte bis zu einer Anzahl von 400 Generatoren darstellen, da in den
entsprechenden Féllen das DBS vor Erreichen dieser Generatoranzahl abgestiirzt ist. Dies
ist insbesondere bei allen TimescaleDB-Experimenten und bei den PostgreSQL-Experi-
menten der Fall, die 0,5 GB Arbeitsspeicher nutzen. Des Weiteren wurde fiir MongoDB
eine Skala von null bis zehn Millisekunden verwendet, da die Ergebnisse so besser sicht-
bar werden. Alle anderen Diagramme nutzen im Gegensatz dazu Skalen, die von null bis
300 reichen.
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Abbildung 6.12: Einfiigelatenzen der DBS mit jeweiligen Systemkonfigurationen fiir Sze-

nario A
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Anfrage 1 — Abfrage der Anzahl von Offnungen von Fenstern und Tiiren
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Abbildung 6.13: Latenzen der ersten Anfrage von Szenario A (K = Prozessorkerne)

Abbildung 6.13 zeigt die Latenzen der ersten Anfrage von Szenario A in Abhéngigkeit
vom jeweiligen DBS und der entsprechenden Systemkonfiguration. Die aufsteigend sor-

tierten Medianwerte der Latenzen sind dabei wie folgt:
1. TimescaleDB: ca. 0,11 Millisekunden
2. PostgreSQL: ca. 0,12 Millisekunden
3. MongoDB: ca. 0,61 Millisekunden
4. InflurDB: ca. 3,13 bis 3,20 Millisekunden

Abbildung 6.14 stellt wie eingangs beschrieben (siehe Abschnitt 6.5) die System- und
Energiemetriken der Testumgebung dar.
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Anfrage 2 — Abfrage des Gesamtstromverbrauchs
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Abbildung 6.15: Latenzen der zweiten Anfrage von Szenario A (K = Prozessorkerne)

Abbildung 6.15 zeigt die Latenzen der zweiten Anfrage von Szenario A in Abhéngig-
keit vom jeweiligen DBS und der entsprechenden Systemkonfiguration. Die aufsteigend

sortierten Medianwerte der Latenzen sind dabei wie folgt:
1. MongoDB: ca. 1,74 Millisekunden
2. PostgreSQL: ca. 3,18 bis 3,20 Millisekunden
3. TimescaleDB: ca. 3,48 bis 3,51 Millisekunden
4. InflurDB: ca. 5,82 bis 6,32 Millisekunden

Abbildung 6.16 stellt wie eingangs beschrieben (siehe Abschnitt 6.5) die System- und
Energiemetriken der Testumgebung dar.
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Anfrage 3 — Abfrage der miniitlichen Durchschnittstemperatur
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Abbildung 6.17: Latenzen der dritten Anfrage von Szenario A (K = Prozessorkerne)

Abbildung 6.17 zeigt die Latenzen der dritten Anfrage von Szenario A in Abhéngig-
keit vom jeweiligen DBS und der entsprechenden Systemkonfiguration. Die aufsteigend
sortierten Medianwerte der Latenzen sind dabei wie folgt:

1. MongoDB: ca. 4,72 und 4,76 Millisekunden

2. InflurDB: ca. 10,67 bis 11,17 Millisekunden

3. TimescaleDB: ca. 17,67 bis 18,07 Millisekunden
4. PostgreSQL: ca. 18,14 bis 18,68 Millisekunden

Abbildung 6.18 stellt wie eingangs beschrieben (siehe Abschnitt 6.5) die System- und
Energiemetriken der Testumgebung dar.
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6.5.2 Szenario B

Tabelle 6.3 zeigt die genutzte Festplattenkapazitit der DBS:

Tabelle 6.3: Genutzte Festplattenkapazitdten pro DBS
‘ InfluxDB  TimescaleDB MongoDB PostgreSQL
Festplattennutzung | 8,50 GB 34,93 GB 827 GB 25,11 GB

Anfrage 1 — durchschnittlicher Fahrpreis pro Monat
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Abbildung 6.19: Latenzen der ersten Anfrage von Szenario B (K = Prozessorkerne)

Abbildung 6.19 zeigt die Latenzen der ersten Anfrage von Szenario B in Abhéngigkeit vom
jeweiligen DBS und der entsprechenden Systemkonfiguration. Die aufsteigend sortierten

Medianwerte der Latenzen sind dabei wie folgt:
1. InfluxrDB: ca. 19,1 und 22,2 Sekunden
2. TimescaleDB: ca. 20,6 bis 26,3 Sekunden
3. MongoDB: ca. 29,9 bis 30,6 Sekunden
4. PostgreSQL: ca. 118,0 bis 127,5 Sekunden

Abbildung 6.20 stellt wie eingangs beschrieben (siehe Abschnitt 6.5) die System- und

Energiemetriken der Testumgebung dar.
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Anfrage 2 — Abfrage aller Fahrgastzahlen der ersten Jahreshilfte von 2023
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Abbildung 6.21: Latenzen der zweiten Anfrage von Szenario B (K = Prozessorkerne)

Abbildung 6.21 zeigt die Latenzen der zweiten Anfrage von Szenario B in Abhéngig-
keit vom jeweiligen DBS und der entsprechenden Systemkonfiguration. Die aufsteigend

sortierten Medianwerte der Latenzen sind dabei wie folgt:
1. TimescaleDB: ca. 4,3 Sekunden
2. InfluxDB: ca. 8,6 bis 8,8 Sekunden
3. MongoDB: ca. 21,3 bis 21,9 Sekunden
4. PostgreSQL: ca. 29,6 bis 31,6 Sekunden

Abbildung 6.22 stellt wie eingangs beschrieben (siche Abschnitt 6.5) die System- und

Energiemetriken der Testumgebung dar.
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Anfrage 3 — Abfrage aller Fahrten, deren Strecke grofier als x ist
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Abbildung 6.23: Latenzen der dritten Anfrage von Szenario B (K = Prozessorkerne)

Abbildung 6.23 zeigt die Latenzen der dritten Anfrage von Szenario B in Abhéngig-
keit vom jeweiligen DBS und der entsprechenden Systemkonfiguration. Die aufsteigend

sortierten Medianwerte der Latenzen sind dabei wie folgt:
1. TimescaleDB: ca. 10,6 bis 13,1 Sekunden
2. PostgreSQL: ca. 28,9 bis 32,3 Sekunden
3. InflurDB: ca. 32,6 bis 39,6 Sekunden
4. MongoDB: ca. 126,9 Sekunden

Abbildung 6.24 stellt wie eingangs beschrieben (siche Abschnitt 6.5) die System- und

Energiemetriken der Testumgebung dar.
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6 Experimenteller Vergleich

Anfrage 4 — Stunde mit den meisten Fahrten
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Abbildung 6.25: Latenzen der vierten Anfrage von Szenario B (K = Prozessorkerne)

Abbildung 6.25 zeigt die Latenzen der vierten Anfrage von Szenario B in Abh#ngig-
keit vom jeweiligen DBS und der entsprechenden Systemkonfiguration. Die aufsteigend

sortierten Medianwerte der Latenzen sind dabei wie folgt:
1. TimescaleDB: ca. 16,8 und 21,1 Sekunden
2. InflurDB: ca. 19,5 bis 23,0 Sekunden
3. MongoDB: ca. 64,7 bis 65,5 Sekunden
4. PostgreSQL: ca. 129,7 bis 151,9 Sekunden

Abbildung 6.26 stellt wie eingangs beschrieben (siche Abschnitt 6.5) die System- und

Energiemetriken der Testumgebung dar.
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6.5.3 Szenario C

Tabelle 6.4 zeigt die genutzte Festplattenkapazitit der DBS:

Tabelle 6.4: Genutzte Festplattenkapazitdten pro DBS
‘ InfluxDB  TimescaleDB MongoDB PostgreSQL
Festplattennutzung ‘ 6,34 GB 15,94 GB 7,20 GB 14,19 GB

Anfrage 1 — kombinierte Prozessorlast pro Minute der zu dem jeweiligen

Zeitpunkt laufenden Instanzen
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Abbildung 6.27: Latenzen der ersten Anfrage von Szenario C (K = Prozessorkerne)

Abbildung 6.27 zeigt die Latenzen der ersten Anfrage von Szenario C in Abhéngigkeit vom
jeweiligen DBS und der entsprechenden Systemkonfiguration. Die aufsteigend sortierten

Medianwerte der Latenzen sind dabei wie folgt:
1. TimescaleDB: ca. 16,5 bis 20,3 Sekunden
2. PostgreSQL: ca. 32,8 bis 35,3 Sekunden
3. MongoDB: ca. 44,1 bis 44,5 Sekunden
4. InfluzDB: ca. 48,2 bis 48,8 Sekunden

Abbildung 6.28 stellt wie eingangs beschrieben (siehe Abschnitt 6.5) die System- und

Energiemetriken der Testumgebung dar.
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Anfrage 2 — Abfrage aller Instanzmetriken in einer bestimmten Stunde
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Abbildung 6.29: Latenzen der zweiten Anfrage von Szenario C (K = Prozessorkerne)

Abbildung 6.29 zeigt die Latenzen der zweiten Anfrage von Szenario C in Abhéngig-
keit vom jeweiligen DBS und der entsprechenden Systemkonfiguration. Die aufsteigend

sortierten Medianwerte der Latenzen sind dabei wie folgt:
1. TimescaleDB: ca. 3,4 Sekunden
2. MongoDB: ca. 8,1 bis 8,3 Sekunden
3. PostgreSQL: ca. 13,8 bis 15,3 Sekunden
4. InflurDB: ca. 25,2 bis 25,4 Sekunden

Abbildung 6.30 stellt wie eingangs beschrieben (siche Abschnitt 6.5) die System- und

Energiemetriken der Testumgebung dar.
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6 Experimenteller Vergleich

Anfrage 3 — Abfrage der Instanzen, bei denen Prozessorauslastung grofier x

und Arbeitsspeicherauslastung grofier y sind
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Abbildung 6.31: Latenzen der dritten Anfrage von Szenario C (K = Prozessorkerne)

Abbildung 6.31 zeigt die Latenzen der dritten Anfrage von Szenario C in Abhéngig-

keit vom jeweiligen DBS und der entsprechenden Systemkonfiguration. Die aufsteigend

sortierten Medianwerte der Latenzen sind dabei wie folgt:

1. TimescaleDB: ca. 5,3 bis 6,8 Sekunden

2. MongoDB: ca. 6,8 Sekunden

3. PostgreSQL: ca. 10,8 bis 11,6 Sekunden

4. InfluzxDB: ca. 36,2 bis 37,3 Sekunden

Abbildung 6.32 stellt wie eingangs beschrieben (siehe Abschnitt 6.5) die System- und

Energiemetriken der Testumgebung dar.
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7 Diskussion und Empfehlungen

Dieses Kapitel geht zunéchst auf Beobachtungen ein, die wahrend der Ausfithrung der
Experimente getatigt wurden, und diskutiert danach die Ergebnisse des konzeptionellen
(Kapitel 5) und des experimentellen Vergleichs (Kapitel 6). Im Anschluss werden aus den

Ergebnissen dieser Arbeit Nutzungsempfehlungen abgeleitet.

7.1 Beobachtungen wihrend der Experimente

Es wurde beobachtet, dass InfluxDB h&ufig so viel Arbeitsspeicher genutzt hat, dass
das Betriebssystem der Testumgebung das DBS aufgrund von Speicherknappheit been-
det hat. Dies geschah reproduzierbar bei der Initialisierung der Szenarios, bei der VMs
mit 16 GB Arbeitsspeicher verwendet wurden, und teilweise bei der Durchfiihrung der
Anfragen. Die Losung fiir dieses Problem, die sich in der Dokumentation von Version
1 von InfluxDB [30] befindet, liegt darin, die Konfigurationsoption storage—cache-
snapshot-write—-cold-duration auf 2 Sekunden zu setzten, wodurch kiirzlich er-
stellte Shards (siehe Abschnitt 3.2.3) nach dieser Zeit auf die Festplatte geschrieben

werden und somit wieder Arbeitsspeicher freigegeben wird.

Des Weiteren ist aufgefallen, dass PostgreSQL wahrend der Ausfiihrung der Anfragen von
Szenario B und C grofe Datenmengen geschrieben hat (siche entsprechende Diagramme
in Kapitel 6.5.2 und 6.5.3), obwohl diese Operationen nur lesende Zugriffe durchgefiihrt

haben. Bei den anderen DBS war ein solches Verhalten hingegen nicht zu beobachten.

7.2 Diskussion der Ergebnisse

Nachfolgend werden die Ergebnisse der Vergleiche diskutiert. Dabei ist zu beachten, dass

es nur schwer moglich ist, die DBS szenarioiibergreifend zu bewerten, da sich diese in
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den Szenarios unterschiedlich verhalten haben und somit jeweils andere Schliisse gezogen
werden miissen. Generell kann jedoch festgestellt werden, dass die Anzahl der Prozessoren

nur geringe Auswirkungen auf die Latenzen der Anfragen haben.

7.2.1 Szenario A

Anhand der Diagramme der Einfiigelatenzen (siche Abb. 6.12) ldsst sich erkennen, dass
die Werte InfluxDB und MongoDB nahezu linear mit der Anzahl der Generatoren anstei-
gen. Zudem ist hier zu sehen, dass mehr Prozessorkerne und/oder mehr Arbeitsspeicher
jeweils zu geringeren Latenzen fiihrt. Bei TimescaleDB und PostgreSQL kann dieses
Verhalten nicht beobachtet werden. Hier lsst sich jedoch feststellen, dass bei steigenden
Grofse des Arbeitsspeichers eine grofsere Anzahl von Verbindungen méglich ist. Bei der ge-
nutzten Festplattenkapazitit sind im Gegensatz dazu nur vernachléssigbare Unterschiede
zwischen den DBS zu erkennen (siehe Tabelle 6.2).

Bei den Anfragen aus Szenario A wird deutlich, dass fiir einfache Abfragen wie Zahl-
operationen (Anfrage 1) nicht zwingend ein Zeitreihen-Datenbanksystem erforderlich ist.
PostgreSQL als reguldres Datenbanksystem weist hier nur geringfiigig hohere Laten-
zen sowie minimale Unterschiede bei System- und Energiemetriken im Vergleich zum
besten Zeitreihen-Datenbanksystem TimescaleDB auf. Je komplexer die Anfragen zu
Zeitreihenoperationen werden, desto sinnvoller ist der Einsatz eines Datenbanksystems
mit expliziter Zeitreihenunterstiitzung. Dies zeigt sich deutlich bei Anfrage 3 (Aggre-
gationsoperation iiber Zeitfenster), wo die Zeitreihen-Datenbanksysteme MongoDB und
InfluxDB erheblich geringere Latenzen als PostgreSQL aufweisen und bei vergleichba-
rer Prozessor- und Arbeitsspeicherauslastung weniger Energie verbrauchen. Anfrage 2
(Aggregation iiber alle Datenpunkte einer Zeitreihenkategorie) stellt eine Zwischenstufe

zwischen den Anfragen 1 und 3 dar.

Wie bereits in Kapitel 4.1 erwéhnt, sind eine einfache Installation und Bedienung der DBS
flir den Heimanwendungskontext besonders wichtig. Daher wurde bei der Einrichtung
der Testumgebung besonderes Augenmerk auf diese Aspekte gelegt. Die Installation al-
ler DBS verlief problemlos geméf den jeweiligen Anleitungen. Lediglich bei TimescaleDB
und PostgreSQL musste die maximale Anzahl an Verbindungen durch die Konfigurati-

onsoption max_connections erhéht werden.

Die Anfragesprachen der DBS unterscheiden sich hingegen deutlich, wie aus Kapitel 5.2
und 6.3.5 ersichtlich wird. Nutzer mit SQL-Erfahrung kénnen TimescaleDB problemlos
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verwenden, da sich lediglich die Funktionen fiir Zeitreihenoperationen vom SQL-Standard
unterscheiden. InfluxQL weist zwar Ahnlichkeiten zu SQL auf, unterscheidet sich jedoch
leicht in der Syntax und bietet einen stark eingeschrinkten Funktionsumfang, sodass
vorhandene SQL-Kenntnisse nur begrenzt hilfreich sind. Die Anfragesprachen Flux und
MQL hingegen weichen grundsétzlich von SQL ab, lassen sich aber fiir lernwillige An-

wender dennoch leicht erlernen.

7.2.2 Szenario B

In Szenario B wird deutlich, dass sich die Effizienz bei der Datenspeicherung in den DBS
stark unterscheidet. MongoDB und InfluxDB nutzen dabei etwa gleich viel Festplatten-
kapazitdt. Im Gegensatz dazu bendtigen TimescaleDB und PostgreSQL deutlich mehr
Speicherplatz. Wiahrend PostgreSQL etwa das Dreifache der Kapazitét von InfluxDB und
MongoDB beansprucht, liegt der Speicherverbrauch von TimescaleDB beim Vierfachen
(siche Tabelle 6.3).

Anhand der Anfragen lasst sich erkennen, dass Zeitreihen-Datenbanksysteme stets bes-
sere Latenzen erzielen als das Nicht-Zeitreihen-Datenbanksystem PostgreSQL — mit Aus-
nahme von Anfrage 3 (Filteroperation), bei der PostgreSQL besser abschneidet als Influx-
DB und MongoDB. TimescaleDB ist jedoch weiterhin etwa dreimal schneller, verursacht
aber doppelt so viel Prozessorauslastung. Hinsichtlich des Energieverbrauchs lasst sich bei
Anfrage 3 kein signifikanter Unterschied zwischen den Datenbanksystemen feststellen. Bei
Anfrage 1 (Aggregationsoperation iiber Zeitfenster) und Anfrage 4 (komplexe Operatio-
nen, d. h. Kombinationen verschiedener Grundoperationen) zeigen InfluxDB und Time-
scaleDB in Bezug auf die Latenzen sehr &hnliche Ergebnisse. Allerdings hat InfluxDB
bei Systemkonfigurationen mit acht oder mehr Prozessorkernen mehr Arbeitsspeicher
genutzt als TimescaleDB. Im Gegensatz dazu fiihrt TimescaleDB zu einer doppelt so
hohen Prozessorauslastung und einem hoheren Energieverbrauch. Bei Anfrage 2 schnei-
det TimescaleDB deutlich besser ab als die anderen Datenbanksysteme, da es die nied-
rigsten Latenzen aufweist. Zudem verursacht es eine geringere Prozessorauslastung und
verbraucht weniger Arbeitsspeicher als InfluxDB, das die zweitbesten Latenzen hat. Wie
bei Anfrage 3 ist auch hier kein wesentlicher Unterschied im Energieverbrauch zu beob-

achten.

Zudem wurde festgestellt, dass InfluxDB mit einer steigenden Anzahl an Prozessorkernen

sowohl deren Auslastung als auch die Arbeitsspeicherauslastung erhéht, ohne dass sich
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die Latenzen signifikant verbessern. Dariiber hinaus zeigt sich, dass PostgreSQL stets die

geringste Menge an Arbeitsspeicher nutzt.

7.2.3 Szenario C

Ahnlich wie bei Szenario B gibt es auch hier einen Unterschied in der Speichereffizienz
der DBS: So nutzen TimescaleDB und PostgreSQL etwa doppelt so viel Speicherplatz
wie InfluxDB und MongoDB (siche Tabelle 6.4).

In den Anfragen von Szenario C zeigt TimescaleDB durchgehend die niedrigsten Laten-
zen, wahrend InfluxDB die héchsten aufweist und somit stets schlechter als das Baseline-
DBS PostgreSQL ist. Dies deutet darauf hin, dass InfluxDB weniger gut fiir Anwendun-
gen mit einer grofsen Anzahl von Zeitreihen geeignet ist — obwohl laut Hersteller durch
die Einfithrung des Time Series Index (siehe Kapitel 3.2.4) bereits Verbesserungen in die-
sem Bereich vorgenommen wurden. MongoDB zeigt bei den Anfragen unterschiedliches
Verhalten: Bei Anfrage 1 (Aggregationsoperation iiber Zeitfenster) dhnelt es InfluxDB
hinsichtlich Latenzen sowie System- und Energie-Metriken. Bei Anfrage 2 (Abfrage aller
Daten) und Anfrage 3 (Filteroperation) verhélt es sich hingegen eher wie TimescaleDB,
jedoch mit einer geringeren Prozessorauslastung und einem niedrigeren Energieverbrauch.

Wie auch bei Szenario B nutzt PostgreSQL stets am wenigsten Arbeitsspeicher.

Das oben bereits erwihnte Verhalten von InfluxDB, bei dem die Anzahl der Prozessorker-
ne Auswirkungen auf die System- und Energienutzung, jedoch nur geringe Auswirkungen
auf die Latenzen hat, 14sst sich hier ebenfalls beobachten, wobei sich in diesem Fall aus-

schlieklich die Nutzung des Arbeitsspeichers vergrofiert.

7.3 Empfehlungen

Aus den Ergebnissen der Vergleiche werden im Folgenden spezifische Nutzungsempfeh-
lungen fiir die in dieser Arbeit verglichenen Datenbanksysteme abgeleitet. Es ist jedoch zu
beachten, dass keine allgemeingiiltige Empfehlung fiir ein bestimmtes DBS ausgesprochen
werden kann, da die Wahl des optimalen Systems mafgeblich von den individuellen An-
forderungen und dem jeweiligen Anwendungsfall abhéngt. Der experimentelle Vergleich
hat allerdings gezeigt, dass es durchaus sinnvoll ist, ein Datenbanksystem mit expliziter

Zeitreihenunterstiitzung zu wahlen, wenn Zeitreihen gespeichert und verarbeitet werden
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sollen. Lediglich bei simplen Operationen auf einem kleinen Bestand von Zeitreihendaten
kann es vorteilhaft sein, auf ein klassisches DBS zuriickzugreifen, da dieses in der Regel
weniger Systemressourcen beansprucht. Die nachfolgenden Empfehlungen berticksichti-
gen daher relevante Faktoren, die eine fundierte und individuelle Entscheidungsfindung

unterstiitzen:

o Anzahl der Zeitreihen: Wenn eine grofse Anzahl von Zeitreihen gespeichert und
verarbeitet werden soll, liefert TimescaleDB hier konsistent gute Ergebnisse, wobei
MongoDB in den héufig ebenfalls eine solide Leistung zeigt. Die Verwendung von

InfluxDB hier hingegen nicht empfehlenswert.

e Speichereffizienz: Fiir Anwendungen, bei denen Speicherplatz eine entscheidende
Rolle spielt, sind InfluxDB und MongoDB die besseren Optionen, da sie deutlich
weniger Speicherplatz bendtigen als TimescaleDB und PostgreSQL. Wenn jedoch
nur eine geringe Menge an Daten gespeichert werden muss, ist der Unterschied in

der Speichereffizienz weniger relevant.

o Komplexitit der Anfragen: Die Experimente haben gezeigt, dass mit zunehmen-
der Komplexitat der Zeitreihenoperationen InfluxDB und TimescaleDB die besten
Ergebnisse erzielen. MongoDB schnitt in diesen Féllen weniger gut ab und Post-

greSQL zeigte hdufig die schwéchste Performance.

o Zeitreihenanalysen: Falls Zeitreihenanalysen bereits im DBS ausgefiihrt werden sol-
len, bietet InfluxDB den groften Funktionsumfang mit der Sprache Flux an. Jedoch
muss hier beriicksichtigt werden, dass die Entwicklung dieser Sprache mit der kom-
menden Version 3 von InfluxDB eingestellt wird. Auch TimescaleDB bietet spezielle
Funktionen zur Verarbeitung von Zeitreihen an. Insbesondere der Funktionsumfang

kann hier durch das Timescale Toolkit erweitert werden.

o FEnergieverbrauch: Fir Anwendungen, bei denen der Energieverbrauch eine ent-
scheidende Rolle spielt, zeigt sich, dass MongoDB tendenziell den geringsten Ener-
gieverbrauch aufweist. Allerdings muss beriicksichtigt werden, dass MongoDB héu-
fig deutlich ldngere Verarbeitungszeiten fiir Anfragen benétigt. Bei InfluxDB und
TimescaleDB variiert der Energieverbrauch hingegen stark je nach Art der Anfrage.
Daher ist es bei der Wahl dieser DBS ratsam, individuelle Tests durchzufiihren.

o Integration in bereits bestehende DBS: Wenn bereits PostgreSQL im Einsatz ist

und im selben DBS auch Zeitreihendaten gespeichert werden sollen, bietet sich an,
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7 Diskussion und Empfehlungen

die Erweiterung TimescaleDB zu nutzen. Diese erméglicht zudem die Durchfiih-
rung von Abfragen iiber Zeitreihen- und Nicht-Zeitreihendaten innerhalb dessel-
ben Systems, ohne dass der Administrationsaufwand erheblich steigt. Allerdings
muss beachtet werden, dass die Systemanforderungen durch die Verwendung von
TimescaleDB zunehmen. Alternativ kann auch ein existierendes MongoDB mit sei-
ner integrierten Zeitreihenfunktionalitdt genutzt werden. Die Performance ist hier
im Vergleich zu anderen Zeitreihen-Datenbanksystemen teilweise jedoch deutlich
schlechter.

e Hardwarespezifikationen: Fiir Anwendungen mit geringen Anforderungen, wie etwa
in einem Smart-Home-Umfeld, sind Systeme mit ein bis zwei Prozessorkernen und
1 GB Arbeitsspeicher in der Regel ausreichend. Fiir grofsere Installationen sollten
nicht weniger als vier Prozessorkerne genutzt werden, wobei acht Kerne empfohlen
werden. Der Arbeitsspeicher sollte mindestens 8 GB betragen — allerdings kénnen

grokere Kapazitaten insbesondere durch Cachingmechanismen von Vorteil sein.

Generell sollten vor der endgiiltigen Wahl eines Systems immer Tests der auszufiihrenden
Abfragen durchgefiihrt werden. Dies wird insbesondere durch die teils stark abweichenden

Ergebnisse der Experimente verdeutlicht.
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8 Fazit

Dieses Kapitel fasst den Inhalt dieser Arbeit zusammen und gibt einen Ausblick auf

zukiinftige Forschungen.

8.1 Zusammenfassung

In dieser Arbeit wurden vier Datenbanksysteme sowohl konzeptionell als auch experi-
mentell miteinander verglichen — darunter drei Zeitreihen-Datenbanksysteme (InfluxDB,
TimescaleDB und MongoDB) und ein klassisches relationales DBS (PostgreSQL), das
als Baseline diente. Zunéchst wurden in Kapitel 2 die grundlegenden Konzepte im Be-
reich der Zeitreihen und Datenbanksysteme erldutert. Anschlieffend wurde in Kapitel 3
eine Kategorisierung von Zeitreihen-Datenbanksystemen in drei Gruppen vorgenommen.
Darauf basierend wurden représentative Systeme fiir den Test ausgewdhlt und deren
interne Funktionsweise erlautert. Fiir den experimentellen Vergleich wurden daraufhin
drei Szenarios mit jeweils spezifischen Anfragen entwickelt (siehe Kapitel 4), die typische
Anwendungsfélle von Zeitreihen-Datenbanksystemen abbilden. In Kapitel 5 wurden die
gewdhlten DBS anschlieffend anhand ihres Funktionsumfangs konzeptionell gegeniiber-
gestellt. Zur Durchfithrung des experimentellen Vergleichs wurde in Kapitel 6 ein Test-
system entwickelt, das eine automatisierte Testumgebung fiir die definierten Szenarios
einrichtet. Innerhalb dieser Umgebung wurden die entsprechenden Anfragen vollauto-
matisch ausgefiihrt, wihrend gleichzeitig Latenzen sowie System- und Energiemetriken
(siehe Kapitel 6.1) vom Testsystem erfasst wurden. Zum Schluss wurden in Kapitel 7
die Ergebnisse der Vergleiche diskutiert und davon ausgehend Nutzungsempfehlungen
abgeleitet. Dabei wurde festgestellt, dass auf Zeitreihen optimierte Datenbanksysteme
in in den meisten Féllen klare Vorteile bieten, jedoch kein einzelnes System universell

empfohlen werden kann.
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8 Fazit

8.2 Ausblick

Die durchgefiihrten Vergleiche liefern zahlreiche Erkenntnisse iiber die Leistungsfahigkeit
und Eignung der getesteten Zeitreihen-Datenbanksysteme. Dennoch bleiben einige offene

Forschungsfragen, die in zukiinftigen Arbeiten betrachtet werden kénnen.

Die ausgewéhlten Szenarien decken bereits grofse Teile der typischen Einsatzgebiete von
Zeitreihen-Datenbanksystemen ab. Dennoch gibt es sicherlich weitere Anwendungsfille,
die bislang nicht beriicksichtigt wurden und deren Untersuchung weitere Erkenntnisse
liefern konnte. Zukiinftige Arbeiten kdnnten daher das bestehende Testsystem erweitern,
indem neue Szenarios entwickelt und getestet werden, um die Leistungsfahigkeit der

Systeme unter weiteren realistischen Bedingungen zu evaluieren.

In den durchgefiihrten Experimenten wurde primér die sequenzielle Verarbeitung einzel-
ner grofser Anfragen untersucht. In realen Anwendungsgebieten treten jedoch auch héu-
fig parallele, dafiir aber kleinere Anfragen auf, insbesondere in Anwendungen mit hoher
Nutzerzahl. Zukiinftige Untersuchungen kénnten daher die Skalierbarkeit der getesteten
Systeme unter Lastbedingungen mit mehreren gleichzeitigen Anfragen analysieren. Da-
bei wire es interessant zu untersuchen, wie sich die Latenzen verdndern und ob es zu

Ressourcenengpéssen bei der Parallelverarbeitung kommt.
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A Anhang

A.1 Verwendete Hilfsmittel

In der Tabelle A.1 sind die im Rahmen der Bearbeitung des Themas der Bachelorar-

beit verwendeten Werkzeuge und Hilfsmittel aufgelistet.

Tabelle A.1: Verwendete Hilfsmittel und Werkzeuge

Tool Verwendung
KTEX Textsatz- und Layout-Werkzeug verwendet zur Erstellung dieses
Dokuments
ChatGPT | Sprachmodell (LLM) teilweise genutzt als Formulierungshilfe
IntelliJ Programmierumgebung verwendet fiir die Entwicklung des
IDEA Testsystems

A.2 Einrichtung des Testsystems

Zur Einrichtung des Testsystems miissen die folgenden Schritte durchgefiihrt werden:
1. Abhdngigkeiten installieren:
Fiir die Ausfithrung des Testsystems miissen folgende Pakete installiert werden!:
e libvirt
e gemu—full
e rust

e python-pandas

1Zur Ausfithrung des Testsystems wurde in dieser Arbeit Arch Linux genutzt. Auf anderen Distribu-
tionen konnen die Paketnamen abweichen.
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e python-pyarrow
e virt-manager (optional)

Aufkerdem muss entweder das kvm_amd oder kvm_intel Kernelmodul entspre-

chend des genutzten Prozessors geladen werden.
2. Projekt herunterladen:

Die Projektdateien und auch die Rohdaten der Ergebnisse kénnen iiber Git unter
der Adresse https://github.com/Malexl4/time-series—database-s
ystem-tester heruntergeladen werden:

git clone https://github.com/Malexl4d/time-series—-database-

system-tester.git
Alternativ befinden sich die Dateien auch auf der beigefiigten CD.
3. Datensatz fiir Szenario B herunterladen:

Fiir Szenario B muss der verwendete Datensatz bei [66] im parquet-Format her-
untergeladen2 und mit dem Python-Skript convert_dataset_scenario_b.py
vorverarbeitet werden. Das Skript nutzt dabei die Dateien im anzugebenden Ordner

und schreibt die verarbeiteten Dateien in den Ordner ./dataset/scenario_b.
4. Debian Festplattenabbild herunterladen:

Von der Debian Internetseite muss im Anschluss das grundlegende Festplattenab-
bild unter der Adresse https://cloud.debian.org/images/cloud/book
worm/latest/ heruntergeladen werden. Der Dateiname lautet dabei

debian-12-genericcloud—-amdé64.gcow?2

Alternativ befindet sich die fiir die Experimente verwendete Datei auch auf der
beigefiigten CD.

5. Projekt konfigurieren:

In den Projektdateien befindet sich die Konfigurationsdatei vimn_config.toml, in
der die Option temp_dir auf einen existierenden Ordner gesetzt werden muss — in

diesem Ordner werden temporire Dateien des Testsystems abgelegt. Der Ordner

2Fiir die in dieser Arbeit durchgefiihrten Experimente wurden die Daten von Januar 2011 bis November
2024 genutzt.
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sollte sich dabei auf einem schnellen Speichermedium befinden, da u. a. die Festplat-
tenabbilder der VMs dort abgelegt werden. Zudem muss die Option
base_disk_image auf den Pfad des zuvor heruntergeladenen Debian-Abbilds

zeigen.
6. Projekt kompilieren:

Mit dem folgenden Befehl kann das Projekt kompiliert werden:

cargo build --release —--workspace

Danach wird sich im Ordner ./target/release die ausfiihrbare Datei
instrumentation_gatherer befinden. Diese stellt die Metrikerfassung in der
Testumgebung dar und muss in den bin-Ordner des Projektverzeichnis kopiert

werden.
7. Dateiberechtigungen korrigieren:

Fiir die Energiemessung miissen die folgenden Befehle ausgefiihrt werden, die die
Berechtigungen der entsprechenden Dateien anpassen:

sudo chmod +r /sys/class/powercap/intel-rapl:0/energy_uj
sudo chmod +r /sys/class/powercap/intel-rapl:0:0/energy_uj

8. Testsystem ausfihren

Um das Testsystem zu starten, muss folgendes Programm ausgefiihrt werden:
./target/release/database_tester -t [Anzahl von

Ausfiihrungen jeder Anfrage] -s [Szenario]

Beispiel:

./target/release/database_tester -t 10 —-s ScenarioB

Im Ordner out befinden sich im Anschluss die Ergebnis-CSV-Dateien.
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