
BACHELOR THESIS
Malte Behrmann

Szenarienbasierte
Evaluation von Zeitreihen-
Datenbanksystemen

FAKULTÄT TECHNIK UND INFORMATIK
Department Informatik

Faculty of Engineering and Computer Science
Department Computer Science

HOCHSCHULE FÜR ANGEWANDTE
WISSENSCHAFTEN HAMBURG
Hamburg University of Applied Sciences

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung
im Studiengang Bachelor of Science Angewandte Informatik
am Department Informatik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Olaf Zukunft
Zweitgutachter: Prof. Dr. Stefan Sarstedt

Eingereicht am: 21. März 2025

Malte Behrmann

Szenarienbasierte Evaluation von
Zeitreihen-Datenbanksystemen

Malte Behrmann

Thema der Arbeit

Szenarienbasierte Evaluation von Zeitreihen-Datenbanksystemen

Stichworte

Zeitreihen-Datenbanksysteme, Vergleich, Evaluation, InfluxDB, TimescaleDB, MongoDB

Kurzzusammenfassung

Die effiziente Speicherung und Verarbeitung von Zeitreihendaten spielt eine wichtige Rol-
le in vielen Anwendungsbereichen. Aufgrund der besonderen Anforderungen von Zeitrei-
hendaten, wurden in den letzten Jahren viele spezialisierte Zeitreihen-Datenbanksysteme
entwickelt – darunter kommerzielle, aber auch auch freie open-source Varianten. Diese
Arbeit vergleicht InfluxDB, TimescaleDB und MongoDB als Repräsentanten dreier Ka-
tegorien von open-source Zeitreihen-Datenbanksystemen – zunächst konzeptionell und
anschließend experimentell anhand von drei realitätsnahen Szenarios. Für den experi-
mentellen Vergleich wurde ein modulares und erweiterbares Testsystem entwickelt, das
die Versuche automatisiert durchführt. Die Ergebnisse zeigen, dass spezialisierte Daten-
banksysteme in vielen Fällen klare Vorteile bieten, jedoch kein einzelnes System universell
empfohlen werden kann. Daher wurden auf Basis der Ergebnisse Nutzungsempfehlungen
für verschiedene Anwendungsfälle abgeleitet.

iii

Malte Behrmann

Title of Thesis

Scenario-based evaluation of Time Series Database Systems

Keywords

Time Series Database Systems, Comparison, Evaluation, InfluxDB, TimescaleDB,
MongoDB

Abstract

The efficient storage and processing of time series data plays a crucial role in many app-
lication areas. Due to the specific requirements of time series data, numerous specialized
time series database systems have been developed in recent years – both commercial
and open-source variants. This thesis compares InfluxDB, TimescaleDB, and MongoDB
as representatives of three categories of open-source time series database systems – first
conceptually and then experimentally, using three realistic scenarios. For the experimen-
tal comparison, a modular and extendable testing system was developed to automate
the evaluation of the databases. The results show that specialized database systems offer
clear advantages in many cases; however, no single system can be universally recommen-
ded. Based on these findings, usage recommendations for various application scenarios
were derived.

iv

Inhaltsverzeichnis

Abbildungsverzeichnis viii

Tabellenverzeichnis x

Abkürzungen xi

1 Einleitung 1

2 Grundlagen 3
2.1 Zeitreihen . 3
2.2 Zeitreihenanalysen . 5
2.3 Relationale Datenbanksysteme . 6

2.3.1 Relationenmodell . 6
2.3.2 Relationale Algebra . 7
2.3.3 Transaktionen und ACID . 8

2.4 NoSQL-Datenbanksysteme . 9
2.4.1 BASE / CAP-Theorem . 9
2.4.2 Kategorien von NoSQL-Datenbanksystemen 11

3 Zeitreihen-Datenbanksysteme 13
3.1 Kategorisierung und Auswahl von Repräsentanten 13
3.2 Reine Zeitreihen-Datenbanksysteme: InfluxDB 15

3.2.1 Datenmodell . 16
3.2.2 Time-Structured Merge-Tree . 17
3.2.3 Shards . 18
3.2.4 Time Series Index . 18

3.3 Erweiterung von relationalen DBS: TimescaleDB 19
3.3.1 Datenmodell . 19
3.3.2 Wide-/ Narrow-Table-Modell . 19
3.3.3 Kompression von Chunks . 20

v

Inhaltsverzeichnis

3.4 Erweiterung von NoSQL DBS: MongoDB 21
3.4.1 Datenmodell . 21
3.4.2 Buckets . 22
3.4.3 Granularität . 23

3.5 Zusammenfassung . 23
3.6 Verwandte Arbeiten . 25

4 Szenarios 26
4.1 Auswahl der Szenarios . 26
4.2 Szenario A: Smart Home . 27

4.2.1 Analysen Szenario A . 29
4.2.2 Rahmenbedingungen Szenario A 29

4.3 Szenario B: Taxis in New York City . 30
4.3.1 Analysen Szenario B . 30
4.3.2 Rahmenbedingungen Szenario B 31

4.4 Szenario C: Monitoring kurzlebiger Dienste 31
4.4.1 Analysen Szenario C . 33
4.4.2 Rahmenbedingungen Szenario C 34

5 Konzeptioneller Vergleich 35
5.1 Strukturanforderungen der Zeitreihen . 35
5.2 Anfragesprachen . 36
5.3 Verknüpfung von Zeitreihen (Joins) . 37
5.4 Zeitreihenoperationen . 37
5.5 Konsistenz und Transaktionen . 38
5.6 Programmierschnittstellen . 39

6 Experimenteller Vergleich 41
6.1 Metriken . 41

6.1.1 Klassische Systemmetriken . 42
6.1.2 Green-IT und Strommessung . 42

6.2 Testsystem . 43
6.2.1 Aufbau . 43
6.2.2 Testumgebung (TU) . 44
6.2.3 Testsystem-Verwaltung (TSV) . 47
6.2.4 Architektur . 49

vi

Inhaltsverzeichnis

6.3 Implementierung der Szenarios . 52
6.3.1 Aufbau der Szenarios . 52
6.3.2 Szenarioablauf . 53
6.3.3 Implementierung der Generatoren 56
6.3.4 Einfügen der Testdaten . 57
6.3.5 Anfragen . 58

6.4 Datensätze . 60
6.5 Ergebnisse . 61

6.5.1 Szenario A . 62
6.5.2 Szenario B . 71
6.5.3 Szenario C . 79

7 Diskussion und Empfehlungen 85
7.1 Beobachtungen während der Experimente 85
7.2 Diskussion der Ergebnisse . 85

7.2.1 Szenario A . 86
7.2.2 Szenario B . 87
7.2.3 Szenario C . 88

7.3 Empfehlungen . 88

8 Fazit 91
8.1 Zusammenfassung . 91
8.2 Ausblick . 92

Literaturverzeichnis 93

A Anhang 103
A.1 Verwendete Hilfsmittel . 103
A.2 Einrichtung des Testsystems . 103

Selbstständigkeitserklärung 106

vii

Abbildungsverzeichnis

2.1 DAX-Kurs vom 06.11.2024 (Daten aus [14]) 3
2.2 Visuelle Darstellung des CAP-Theorems, wobei die gemusterten Bereiche

jeweils die möglichen Kombinationen der CAP-Eigenschaften zeigen 10

3.1 Ranking von ausgewählten Zeitreihen-Datenbanksystemen – gemessen an-
hand ihrer Popularität seit Beginn der Erfassung (Daten aus [71]) 14

3.2 Visualisierung des Speicherorts und der typischen Größenverhaltnisse von
C0- und C1-Baum im Log-Structured Merge Tree ([68] nachempfunden) . 17

3.3 Aufteilung einer regulären Tabelle in einen Hypertable mit einer Chunk-
Größe von einem Tag ([96] nachempfunden) 20

3.4 Beispieldokument mit Wetterdaten einer Time Series Collection in MongoDB
(timeField = time und metaField = sensorInfo) 22

4.1 Visualisierung des Aufbaus und der Stauchung der Maxima der Tempera-
turfunktion T (t) . 28

4.2 Nach dem in Kapitel 4.4 beschriebenen Verfahren generierte Prozessor-
und Arbeitsspeicherauslastungen . 33

6.1 Schematische Übersicht des Aufbaus des Testsystems (für UML-Kompo-
nentendiagramm siehe Kapitel 6.2.4) . 43

6.2 Schicht 1 des UML-Komponentendiagramms bzw. Verteilungssicht 50
6.3 Schicht 2 des UML-Komponentendiagramms der Komponente vm 51
6.4 Schicht 2 des UML-Komponentendiagramms der Komponente scenario 51
6.5 Schicht 2 des UML-Komponentendiagramms der Komponente metics . . 52
6.6 UML-Diagramm der Schnittstelle Scenario und des Enum Database . 53
6.7 Ablauf eines Szenarios als UML-Sequenzdiagramm 55
6.8 Vierte Anfrage von Szenario B in Flux für InfluxDB 58
6.9 Vierte Anfrage von Szenario B in erweitertem Structured Query Language

(SQL) für TimescaleDB . 59

viii

Abbildungsverzeichnis

6.10 Vierte Anfrage von Szenario B als MongoDB Query Language (MQL)-
Pipeline für Mongodb . 60

6.11 Vierte Anfrage von Szenario B in SQL für PostgreSQL 60
6.12 Einfügelatenzen der DBS mit jeweiligen Systemkonfigurationen für Szena-

rio A . 64
6.13 Latenzen der ersten Anfrage von Szenario A (K =̂ Prozessorkerne) 65
6.14 System- und Energiemetriken der ersten Anfrage von Szenario A (I =̂

InfluxDB, T =̂ TimescaleDB, M =̂ MongoDB, P =̂ PostgreSQL) 66
6.15 Latenzen der zweiten Anfrage von Szenario A (K =̂ Prozessorkerne) . . . 67
6.16 System- und Energiemetriken der zweiten Anfrage von Szenario A (I =̂

InfluxDB, T =̂ TimescaleDB, M =̂ MongoDB, P =̂ PostgreSQL) 68
6.17 Latenzen der dritten Anfrage von Szenario A (K =̂ Prozessorkerne) 69
6.18 System- und Energiemetriken der dritten Anfrage von Szenario A (I =̂

InfluxDB, T =̂ TimescaleDB, M =̂ MongoDB, P =̂ PostgreSQL) 70
6.19 Latenzen der ersten Anfrage von Szenario B (K =̂ Prozessorkerne) 71
6.20 System- und Energiemetriken der ersten Anfrage von Szenario B (I =̂

InfluxDB, T =̂ TimescaleDB, M =̂ MongoDB, P =̂ PostgreSQL) 72
6.21 Latenzen der zweiten Anfrage von Szenario B (K =̂ Prozessorkerne) . . . 73
6.22 System- und Energiemetriken der zweiten Anfrage von Szenario B (I =̂

InfluxDB, T =̂ TimescaleDB, M =̂ MongoDB, P =̂ PostgreSQL) 74
6.23 Latenzen der dritten Anfrage von Szenario B (K =̂ Prozessorkerne) 75
6.24 System- und Energiemetriken der dritten Anfrage von Szenario B (I =̂

InfluxDB, T =̂ TimescaleDB, M =̂ MongoDB, P =̂ PostgreSQL) 76
6.25 Latenzen der vierten Anfrage von Szenario B (K =̂ Prozessorkerne) 77
6.26 System- und Energiemetriken der vierten Anfrage von Szenario B (I =̂

InfluxDB, T =̂ TimescaleDB, M =̂ MongoDB, P =̂ PostgreSQL) 78
6.27 Latenzen der ersten Anfrage von Szenario C (K =̂ Prozessorkerne) 79
6.28 System- und Energiemetriken der ersten Anfrage von Szenario C (I =̂

InfluxDB, T =̂ TimescaleDB, M =̂ MongoDB, P =̂ PostgreSQL) 80
6.29 Latenzen der zweiten Anfrage von Szenario C (K =̂ Prozessorkerne) . . . 81
6.30 System- und Energiemetriken der zweiten Anfrage von Szenario C (I =̂

InfluxDB, T =̂ TimescaleDB, M =̂ MongoDB, P =̂ PostgreSQL) 82
6.31 Latenzen der dritten Anfrage von Szenario C (K =̂ Prozessorkerne) 83
6.32 System- und Energiemetriken der dritten Anfrage von Szenario C (I =̂

InfluxDB, T =̂ TimescaleDB, M =̂ MongoDB, P =̂ PostgreSQL) 84

ix

Tabellenverzeichnis

2.1 Beispiel einer Tabelle im Relationenmodell (angelehnt an [82]) 7

3.1 Beispieldaten wie sie in einem InfluxDB Bucket gespeichert werden 16
3.2 Übersicht der in Kapitel 3 gezeigten DBS 24

4.1 Übersicht der Szenarios . 34

5.1 Funktionen und Eigenschaften der Datenbanksystem (DBS) 40

6.1 Übersicht der Datensätze . 61
6.2 Genutzte Festplattenkapazitäten pro DBS 62
6.3 Genutzte Festplattenkapazitäten pro DBS 71
6.4 Genutzte Festplattenkapazitäten pro DBS 79

A.1 Verwendete Hilfsmittel und Werkzeuge . 103

x

Abkürzungen

DBMS Datenbankmanagementsystem

DBS Datenbanksystem

HTTP Hypertext Transfer Protocol

LSMT Log-Structured Merge-Tree

MA Metrikaufzeichnung

MQL MongoDB Query Language

RDBS relationale Datenbanksysteme

SME Systemmetrikerfassung

SQL Structured Query Language

TSC Time Series Collection

TSDBS Zeitreihen-Datenbanksystem (engl. Time Series Database System)

TSI Time Series Index

TSMT Time-Structured Merge-Tree

TSV Testsystem-Verwaltung

TU Testumgebung

VM virtuelle Maschine

WAL Write Ahead Log

xi

1 Einleitung

Zeitreihen spielen eine zentrale Rolle in zahlreichen Anwendungsbereichen, da sie Da-
tenpunkte in Abhängigkeit der Zeit erfassen können und diese analysierbar machen. Ob
beispielsweise in der Finanzwelt zur Überwachung von Aktienkursen, in der Industrie für
Sensor- und Maschinendaten oder in der Wissenschaft zur Klimaforschung [15, 45] – die
effiziente Speicherung und Verarbeitung von Zeitreihendaten ist essenziell. Aufgrund der
besonderen Anforderungen von Zeitreihendaten, wie hohen Schreibraten und der effizien-
ten Durchführung von Zeitreihenanalysen, sind spezialisierte Zeitreihen-Datenbanksys-
teme erforderlich, die gezielt dafür optimiert sind.

Da es eine Vielzahl von Zeitreihen-Datenbanksystemen mit unterschiedlichen Eigenschaf-
ten und Konzepten gibt, wird in dieser Arbeit zunächst eine Kategorisierung vorgenom-
men, um die verschiedene Systeme zu analysieren. Auf Basis ihrer Architektur und ihres
Funktionsumfangs werden Zeitreihen-Datenbanksysteme in drei Kategorien eingeteilt:

1. reine Zeitreihen-Datenbanksysteme

2. Erweiterungen von relationalen Datenbanksystemen

3. Erweiterungen von NoSQL-Datenbanksystemen

Für jede dieser Kategorien wird ein Repräsentant ausgewählt, der detailliert untersucht
und mit den anderen Systemen verglichen wird. Die Repräsentanten InfluxDB, Time-
scaleDB und MongoDB dienen dabei als Beispiele für die Kategorien und werden hin-
sichtlich ihrer Leistungsfähigkeit in drei verschiedenen Szenarios gegenübergestellt.

Der Vergleich erfolgt sowohl konzeptionell als auch experimentell. Zunächst werden die
theoretischen Grundlagen von Zeitreihen und Zeitreihenanalysen sowie die Eigenschaften
relationaler und NoSQL-Datenbanksysteme erläutert. Anschließend folgt eine detaillierte

1

1 Einleitung

Erklärung der internen Funktionsweise der ausgewählten Repräsentanten. Im konzeptio-
nellen Vergleich werden die Zeitreihen-Datenbanksysteme hinsichtlich ihrer Strukturan-
forderungen der Zeitreihen, Abfragesprachen und weiterer funktionaler Aspekte analy-
siert, um ihre Eignung für verschiedene Anwendungsfälle zu bewerten.

Im experimentellen Teil der Arbeit werden die Systeme anhand realitätsnaher Szenarios
untersucht, darunter die Verarbeitung von Sensordaten in einem Smart-Home-Umfeld,
die Analyse großer Zeitreihen aus dem Taxiverkehr sowie das Monitoring kurzlebiger
Dienste. Durch eine systematische Evaluierung in einer dynamisch konfigurierbaren Test-
umgebung lassen sich Aussagen über Eignung der verschiedenen Systeme für spezifische
Anwendungsbereiche treffen.

Für den experimentellen Vergleich wird ein modulares und erweiterbares Testsystem ent-
wickelt, das die Datenbanksysteme unter realistischen Bedingungen automatisiert ana-
lysiert. Es führt die Szenarios aus und erfasst Anfragelatenzen, zentrale Systemmetriken
und den Stromverbrauch, wodurch eine Bewertung der Systeme möglich wird.

Diese Untersuchung soll einen Überblick über die Leistungsfähigkeit und Eignung ver-
schiedener Zeitreihen-Datenbanksysteme bieten. Die Ergebnisse dienen als Entscheidungs-
hilfe für die gezielte Auswahl eines geeigneten Systems für den jeweiligen Anwendungs-
fall.

2

2 Grundlagen

2.1 Zeitreihen

Zeitreihen spielen in unserer zunehmend vernetzten und digitalisierten Welt eine zentra-
le Rolle und begegnen uns in vielen Bereichen des Alltags – z. B. bei Wetterberichten,
Aktienkursen wie dem DAX (siehe Abb. 2.1) oder den monatlichen Arbeitslosenzahlen.
Auch in der Industrie sind Zeitreihen unverzichtbar, etwa um Maschinen zu überwachen
und frühzeitig Anzeichen für Verschleiß zu erkennen. Ebenso werden Zeitreihen in der
Wissenschaft angewendet, um Analysen und Auswertungen durchzuführen. In Rechen-
zentren werden Zeitreihen häufig zur Überwachung von Servern eingesetzt und stellen
einen weit verbreiteten Anwendungsfall dar [15, 45].

10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00

19 000

19 250

19 500

Uhrzeit

P
un

kt
e

DAX-Kurs

Abbildung 2.1: DAX-Kurs vom 06.11.2024 (Daten aus [14])

3

2 Grundlagen

In der Statistik werden Zeitreihen wie folgt definiert: Eine Zeitreihe ist eine geordnete
Folge (xt)t∈T , die aus Werten einer gewissen Größe besteht, wobei sich die Werte in der
Menge der reellen Zahlen (R) befinden. In der Regel sind dabei die zeitlichen Abstände
identisch. Die Parametermenge T = N stellt die Zeitpunkte dar, die häufig aber auch mit
negativen Zahlen (also T = Z) genutzt wird, da so statistische Verfahren einfacher zu
definieren sind, weil keine Sonderfälle für die Werte nahe dem Nullpunkt beachtet werden
müssen [78, 45]. In dieser Arbeit wird die vereinfachte Definition von Chatfield [9] für
Zeitreihen genutzt, da hier nicht im Detail auf die statistischen Verfahren zur Zeitreihen-
analyse eingegangen wird.

Nach Chatfield [9] wird eine Zeitreihe als eine Folge von Beobachtungen eines bestimmten
Merkmals definiert, die entweder kontinuierlich oder in regelmäßigen Abständen über die
Zeit hinweg erfasst werden. Diese Definition wird ebenfalls von Brockwell und Davis [7]
genutzt.

Zeitreihen können auf verschiedene Weisen klassifiziert werden. Zum einen unterscheidet
man zwischen kontinuierlichen (engl. continuous) und diskreten (engl. discrete) Zeitrei-
hen [9, 7]. Kontinuierliche Zeitreihen treten dort auf, wo Werte laufend entstehen. Ein
Beispiel dafür ist ein Temperatursensor, dessen Ausgangsspannung sich durchgängig ent-
sprechend der Temperatur ändert. Diskrete Zeitreihen bestehen hingegen aus Beobach-
tungen, die nur zu bestimmten, meist gleichmäßigen Zeitpunkten erhoben werden. Die
Art der Werte spielt dabei keine Rolle: Kontinuierliche Zeitreihen können diskrete Wer-
te speichern (z. B. Tür auf/zu) und diskrete Zeitreihen können kontinuierliche Werte
beinhalten (z. B. stündliche Temperatur). In der Praxis entsteht laut Shumway und Ro-
bert [79] aus nahezu jeder eigentlich kontinuierlichen Zeitreihe eine diskrete Zeitreihe,
wenn die Daten gespeichert werden müssen. Dies liegt inhärent an der Art und Weise,
wie die Daten erfasst und von Rechnern verarbeitet werden können.

Eine weitere Möglichkeit Zeitreihen zu klassifizieren ist die Unterscheidung in statio-
näre und nicht-stationäre Zeitreihen. Stationär bedeutet dabei, dass sich stochastische
Eigenschaften nicht über die Zeit hinweg ändern, wodurch Prognosen zukünftiger Werte
möglich werden [45, 7]. Zudem gibt es viele weitere Eigenschaften, anhand derer Zeitrei-
hen ebenfalls klassifiziert werden können – diese sind jedoch vor allem im Bereich der
Statistik relevant.

4

2 Grundlagen

2.2 Zeitreihenanalysen

Zeitreihen und deren Analysen sind keineswegs eine moderne Erfindung. Bereits im 19.
Jahrhundert wurden Logbücher von Schiffen ausgewertet, um mithilfe von Daten wie Ge-
schwindigkeit, Standort und Windverhältnissen die Routen der Schiffe zu optimieren [15].
Zeitreihen werden auch eingesetzt, um Trends in Daten zu identifizieren. Ein Beispiel da-
für ist die Arbeit von Keeling, der 1958 auf Hawaii begann, die CO2-Konzentration in
der Atmosphäre zu messen und diese in der bislang längsten kontinuierlichen Zeitrei-
he dieser Art aufzuzeichnen. Seine Messungen konnten dazu beitragen, den menschlichen
Einfluss auf den Klimawandel nachzuweisen. Aufgrund ihrer hohen Bedeutung wurde die-
ser Zeitreihe der Name „Keeling-Kurve“ gegeben [15, 63]. Auch in der Luftfahrt werden
Zeitreihen genutzt, um das Verhalten von Flugzeugen zu analysieren [15]. Flugdaten-
schreiber, umgangssprachlich oft als „Black Box“ bezeichnet, zeichnen die wichtigsten
Flugdaten auf, um im Fall eines Unglücks den Hergang rekonstruieren zu können.

Die Zeitreihenanalyse ist ein Teilbereich der Statistik, der sich nach Chatfield [9] in
die Beschreibung, Erklärung, Vorhersage und Regelung von Zeitreihendaten unterteilen
lässt:

• Beschreibung : In der beschreibenden Analyse werden die Struktur und grundle-
gende Eigenschaften einer Zeitreihe untersucht. Beispielsweise können Trends oder
gewisse Muster erkannt werden. Hierzu ist es u. a. sinnvoll, die Daten zuerst in
einem Diagramm visuell darzustellen. Zudem gibt es weitere fortgeschrittene Tech-
niken für die Modellierung und Analyse, die z. B. Ausreißer erkennen können.

• Erklärung : Die erklärende Analyse soll die Ursachen und Zusammenhänge aufzei-
gen, die zu den zu analysierenden Daten geführt haben. Daraus können im An-
schluss Kausalitäten in den Daten erkannt werden. Beispiele für Methoden, die
dieser Kategorie zuzuordnen sind, sind die Korrelations- und Regressionsanalyse.

• Vorhersage: Die vorhersagende bzw. prognostizierende Zeitreihenanalyse befasst
sich mit der Schätzung zukünftiger Werte auf Basis der vorliegenden Daten. Hierzu
werden statistische Verfahren, wie z. B. ARMA (engl. für Autoregressive Moving
Average), genutzt, die auf den Einsatz in Zeitreihen spezialisiert sind.

• Regelung : Die Regelung bezieht sich auf die Anwendung der Zeitreihenanalyse zur
Steuerung von Entscheidungen, wie z. B. in der Finanzwirtschaft. Hier kann die

5

2 Grundlagen

Analyse von Zeitreihendaten genutzt werden, um über den Kauf oder Verkauf von
Aktien basierend auf prognostizierten Kursverläufen zu entscheiden.

Um die immer größer werdenden Mengen an Zeitreihen zu speichern, zu verwalten und
zu analysieren, wurde über die Jahre eine Vielzahl an verschiedenen Zeitreihen-Daten-
banksystemen auf den Markt gebracht. Dabei gibt es kommerzielle Angebote, aber auch
viele open-source Datenbanksysteme, die miteinander konkurrieren. Die Notwendigkeit,
spezialisierte Datenbanken für Zeitreihen zu entwickeln besteht u. a. darin, dass die Ana-
lyse von Zeitreihendaten besondere Anforderungen hat. In Kapitel 3 wird dies weiter
diskutiert.

Diese Arbeit beschäftigt sich jedoch nicht mit den Details der Zeitreihenanalyse, son-
dern mit Datenbanksystemen, die besonders auf Zeitreihen und deren Speicherung und
Verarbeitung spezialisiert sind. Grundlage dafür sind häufig sowohl relationale als auch
NoSQL-Datenbanksysteme, die deswegen in den nächsten beiden Abschnitten genauer
beleuchtet werden sollen.

2.3 Relationale Datenbanksysteme

Relationale Datenbanksysteme (RDBS) basieren auf dem Relationenmodell, das von
Codd [11] im Jahr 1970 vorgestellt wurde, sowie der relationalen Algebra, die Codd [12]
im Jahr 1972 entwickelte. Ein grundlegendes Prinzip von RDBS ist, dass die gespeicher-
ten Daten in einer wohldefinierten Form, dem sogenannten Schema, stets korrekt und
konsistent sind. Im Folgenden werden wichtige Aspekte relationaler Datenbanksysteme
beschrieben.

2.3.1 Relationenmodell

Die grundlegende Idee des Relationenmodells besteht darin, Daten mithilfe von Relatio-
nen zu modellieren [47, 82]. Dadurch wird es unter anderem möglich, die Operationen auf
den Daten durch mathematische Beweise auf Vollständigkeit und Korrektheit zu über-
prüfen. Eine weit verbreitete Darstellung der Relationen sind Tabellen mit Spalten und
Zeilen, wie sie auch von SQL (engl. für Structured Query Language) genutzt wird. Bevor
auf die Struktur der Relationen eingegangen werden kann, werden einige grundlegende
Begriffe anhand der Beispieltabelle 2.1 erklärt.

6

2 Grundlagen

Tabelle 2.1: Beispiel einer Tabelle im Relationenmodell (angelehnt an [82])
Autos
AutoNr Marke Farbe

1 Opel silber
2 VW rot
3 Opel schwarz
4 Audi rot

• Attribute bzw. Merkmale sind die Spalten einer Tabelle (im Beispiel „AutoNr“, „Mar-
ke“ und „Farbe“).

• Tupel sind die Zeilen der Tabelle, welche auch Datensatz genannt werden. Ein
wichtiger Aspekt ist, dass die Tupel innerhalb einer Tabelle einmalig sind.

• Identifikationsschlüssel bestehen aus einem oder mehreren Attributen, die zusätz-
lich zwei Eigenschaften erfüllen müssen: Sie müssen jedes Tupel eindeutig identi-
fizieren, und es darf keinen anderen Schlüssel mit weniger Attributen geben. Im
Beispiel ist das Attribut „AutoNr“ ein Identifikationsschlüssel.

• Datenwerte sind die Zellen der Tabelle bzw. die einzelnen Werte der Tupel.

Im Relationenmodell wird eine Tabelle durch eine Relation von Tupeln dargestellt, die
aus einer Teilmenge des kartesischen Produkts über den Wertebereichen der Attribute –
den Domänen – bestehen:

R ⊆ D1 ×D2 × · · · ×Dn (2.1)

wobei Di die Domäne des Attributs i ist.

2.3.2 Relationale Algebra

Die relationale Algebra definiert verschiedene Grundoperationen auf den Relationen des
Relationenmodells (siehe Abschnitt 2.3.1) [82, 77], die im Folgenden kurz erläutert wer-
den:

• Projektion: Die Projektion πA1,...,An wählt die A1, . . . , An Attribute (Spalten) aus
der Eingaberelation aus, die in der Ergebnisrelation enthalten sein sollen. Attribute,
die nicht in A1, . . . , An enthalten sind, werden nicht übernommen.

7

2 Grundlagen

• Selektion: Die Selektion σΘ übernimmt nur die Tupel (Zeilen) aus der Eingabere-
lation in die Ergebnisrelation, die das Prädikat Θ erfüllen.

• Umbenennung : Die Umbenennung ρA1,...,An gibt den Attributen (Spalten) A1, . . . , An

einen neuen Namen.

Zu den Grundoperationen zählen ebenfalls das kartesische Produkt, die Mengenvereini-
gung und -differenz, die wie in der klassischen Mengenlehre angewendet werden.

Außerdem gibt es weitere Operationen, die aus Kombinationen der oben genannten Grun-
doperationen entstehen. Diese sollen in dieser Arbeit jedoch nicht näher beleuchtet wer-
den und lassen sich in [82] nachlesen.

2.3.3 Transaktionen und ACID

Die meisten relationalen Datenbanken bieten die Funktionalität von Transaktionen [82,
47, 77] an, die dafür sorgen, dass mehrere Operationen auf dem Datenbankmanagement-
system (DBMS) als eine Einheit gruppiert werden können. Anwendungen, die das DBMS
nutzen, können Transaktionen starten (BEGIN) und diese entweder durch Übernahme
der Änderungen (COMMIT) abschließen oder durch Rückgängigmachen der Änderungen
(ROLLBACK) wieder beenden. Transaktionen erfüllen dabei die ACID-Eigenschaften, die
von Haerder und Reuter [22] erdacht wurden. ACID steht dabei für die folgenden Begrif-
fe:

• Atomicity (Atomarität): Die Eigenschaft der Atomarität gibt an, dass alle Transak-
tionen entweder vollständig mit allen Änderungen übernommen werden oder dass
im Falle eines Fehlers bzw. eines Zurückrollens (ROLLBACK) keine der Änderungen
gespeichert werden.

• Consistency (Konsistenz): Die Konsistenz beschreibt, dass die Datenbank zu jedem
Zeitpunkt einen gültigen (konsistenten) Zustand hat. Das heißt, dass eine Anwen-
dung, die das DBMS nutzt, nicht darauf ausgelegt sein muss, mit inkonsistenten
Daten zu arbeiten.

• Isolation (Isolation): Die Isolation von Transaktionen garantiert, dass Anwendun-
gen, die das DBMS nutzen, ihre Anfragen ungestört von anderen, möglicherweise
parallel laufenden Anwendungen durchführen können.

8

2 Grundlagen

• Durability (Dauerhaftigkeit): Nachdem eine Transaktion abgeschlossen und gespei-
chert wurde, bleibt diese dauerhaft erhalten. Auch im Falle eines Systemfehlers
gehen keine Daten verloren.

Durch die Garantie der Isolation müssen Transaktionen in einigen Fällen auf andere
warten. Da dies zu einem Performanz-Problem führen kann und diese Eigenschaft nicht
in allen Fällen benötigt wird, wurden verschiedene Isolationsstufen (engl. isolation level)
eingeführt, die je nach Stufe nur gewisse Isolationseigenschaften erhalten. Die Stufen sind
zwar in SQL angegeben, variieren jedoch leicht in den verschiedenen Implementationen
der Datenbanksysteme (siehe z. B. PostgreSQL [87]).

2.4 NoSQL-Datenbanksysteme

NoSQL-Datenbanksysteme [76, 16] können als eine Antwort auf das starre Datenmodell
relationaler Datenbanksysteme gesehen werden, die um das Jahr 2009 vermehrt aufka-
men. Ihre Kernkompetenz liegt in der Flexibilität und Skalierbarkeit, die in der Regel
durch nicht fest definierte Schemata und die Nutzung verteilter Systeme erreicht werden.
NoSQL soll dabei nicht beschreiben, dass diese DBS kein SQL unterstützen, sondern
vielmehr, dass sie nicht nur SQL (Not only SQL) nutzen.

2.4.1 BASE / CAP-Theorem

Einige NoSQL-Datenbanksysteme nutzen BASE als Konsistenzmodell [76, 47, 17], wel-
ches im Gegensatz zu ACID (siehe Abschnitt 2.3.3) geringere Anforderungen an die
Konsistenz des DBS stellt und stattdessen die Verfügbarkeit in den Fokus rückt. Die Ab-
kürzung wurde dabei bewusst so gewählt, dass sie den Kontrast zu ACID zeigt. BASE
steht für Basicly Available, Soft State und Eventually Consistent und sagt aus, dass
die Knoten eines verteilten Systems fast immer verfügbar (Basicly Available) sind. Die
Konsistenz der Daten wird jedoch nur dann garantiert, wenn auf dem System keine
Änderungen mehr vorgenommen werden und die Knoten auf einen gemeinsamen Stand
konvergiert sind. Man spricht hierbei von einem System, das „Eventually Consistent“ ist.
Der Systemzustand in dem Zeitraum, bevor die Konsistenz eintritt, wird als „Soft State“
bezeichnet.

9

2 Grundlagen

Consistency

Availability Partition
Tolerance

Abbildung 2.2: Visuelle Darstellung des CAP-Theorems, wobei die gemusterten Bereiche
jeweils die möglichen Kombinationen der CAP-Eigenschaften zeigen

Eng mit BASE verwandt ist das CAP-Theorem, welches von Brewer [5] entwickelt und
von Gilbert und Lynch [19] bewiesen wurde, und besagt, dass verteilte Rechnersysteme
nur jeweils zwei der drei CAP-Eigenschaften Konsistenz (Consistency), Verfügbarkeit
(Availability) und Partitionierungstoleranz (Partition Tolerance) erfüllen können (siehe
Abb. 2.2), wodurch folgende Kombinationen entstehen [47, 16, 17]:

• CA: Das System soll immer konsistent und verfügbar sein, somit darf es nicht zu
einer Teilung bzw. Partitionierung des Systems kommen. Beispiele für CA-Systeme
sind die DBS, die ACID (siehe Abschnitt 2.3.3) nutzen.

• CP : Systeme, die konsistent und partitionierungstolerant sind, reduzieren im Fal-
le einer Teilung die Verfügbarkeit, um keine Inkonsistenzen zu erzeugen. Manche
NoSQL DBS nutzen dieses Modell bzw. lassen sich entsprechend konfigurieren.

• AP : Im Gegensatz zu CP-Systemen können AP-Systeme während einer Partitio-
nierung inkonsistent werden – sie bleiben jedoch jederzeit verfügbar. Dieses Modell
wird ebenfalls von manchen NoSQL DBS genutzt.

Jedoch gibt es auch Kritik am CAP-Theorem, da sich die wenigsten Systeme hart in eine
der Kategorien einteilen lassen. NoSQL-Systeme lassen sich oft feingranular bezüglich der
Konsistenz oder Verfügbarkeit im Partitionierungsfall konfigurieren – teils ist dies sogar
pro einzelner Anfrage möglich (siehe [62]). Zudem ist das CAP-Theorem lediglich im Falle
einer Partitionierung relevant, welche in der Regel nur selten auftritt. Solange ein System
nicht partitioniert ist, können Konsistenz und Verfügbarkeit gleichermaßen garantiert
werden. Um dies zu adressieren, wurde von Abadi [1] PACELC (engl. für If Partition,

10

2 Grundlagen

Availability and Consistency, Else, Latency and Consistency) als Verbesserung von CAP
vorgestellt, auf das hier jedoch nicht weiter eingegangen werden soll. Details hierzu lassen
sich in [18] nachlesen.

2.4.2 Kategorien von NoSQL-Datenbanksystemen

NoSQL-Datenbanksysteme lassen sich in vier Kategorien gruppieren [76, 16]:

• Key-Value-orientiert : Diese Datenbanksysteme speichern ihre Daten in Form von
Schlüssel-Wert-Paaren, wobei die Schlüssel den Index der Datenbank darstellen.
Die Werte können aus einfachen Zeichenketten (engl. Strings) oder auch komplexe-
ren Typen wie Listen bestehen. Ein Kernaspekt, warum Key-Value-DBS in vielen
Fällen im Einsatz sind, ist die hohe Performanz, die sich durch das einfache Da-
tenmodell dieser Systeme erzielen lässt. Das Datenbanksystem Redis ist ein häufig
verwendeter Vertreter von Key-Value-DBS [74].

• Dokumentenorientiert : Datenbanksysteme, die dieses Modell nutzen, speichern Da-
ten als Dokument. Mit Dokumenten werden dabei Datenstrukturen beschrieben, die
entweder skalare Daten, Listen oder weitere Dokumente enthalten. Innerhalb eines
Dokuments werden die einzelnen enthaltenen Daten als Felder bezeichnet. Meis-
tens werden Dokumente im JSON-Format gespeichert, wobei XML aber auch teils
möglich ist. Dokumentenorientierte Datenbanksysteme sind in der Regel schemaf-
rei, das heißt, die Struktur der Dokumente muss nicht vorher angegeben werden.
Ein gängiges Beispiel für diese Kategorie ist MongoDB [61], auf das in Kapitel 3.4
im Kontext von Zeitreihen-Datenbanksystemen genauer eingegangen wird.

• Spaltenorientiert : Spaltenorientierte Datenbanksysteme funktionieren ähnlich wie
relationale DBS (siehe Abschnitt 2.3), jedoch werden die Daten hier nicht in Form
von Tupeln (Zeilen) sondern spaltenweise gespeichert. Dies kann bei gewissen Ope-
rationen, wie z. B. „Summe über alle Datenwerte einer Spalte“, die Performanz er-
heblich verbessern, da die Daten weitestgehend sequenziell aus dem Speicher gelesen
werden können. Ein weiterer Unterschied zu relationalen DBS besteht darin, dass
das Schema der Datenbank deutlich flexibler ist: Es können jederzeit beliebig vie-
le Spalten hinzugefügt oder entfernt werden. Ein verbreitetes Open-Source-System
hierfür ist Apache Cassandra [83].

11

2 Grundlagen

• Graphorientiert : Speichert und verarbeitet ein DBS seine Daten als Graph mit
Knoten und Kanten, so spricht man von einem graphorientierten Datenbanksys-
tem. Dieses Datenmodell ermöglicht es, direkt in dem DBMS Graphalgorithmen
zu nutzen, wie z. B. die Berechnung des kürzesten Wegs von Knoten A nach Kno-
ten B. Die höhere Komplexität dieses Modells im Vergleich zu anderen Modellen
wirkt sich jedoch negativ auf die Performanz aus. Neo4J [65] ist diesbezüglich ein
bekanntes Graphdatenbanksystem.

12

3 Zeitreihen-Datenbanksysteme

In diesem Kapitel werden Zeitreihen-Datenbanksysteme kategorisiert und für jede der
Kategorien ein Repräsentant gewählt, auf dessen interne Funktionsweise zusätzlich einge-
gangen wird. Die Repräsentanten werden in den Kapiteln 5 und 6 zunächst konzeptionell
und anschließend experimentell verglichen. In Kapitel 5 wird auf den genauen Funktions-
umfang der jeweiligen DBS weiter eingegangen. Am Ende des Kapitels wird außerdem
auf verwandte Arbeiten verwiesen.

3.1 Kategorisierung und Auswahl von Repräsentanten

Die Initiative DB-Engines [71] führt 61 verschiedene Datenbanksysteme mit Zeitreihen-
funktionalität auf. Aufgrund der Vielzahl verschiedener Systeme wurde in dieser Arbeit
entschieden, die Systeme zu kategorisieren und jeweils einen Repräsentanten pro Ka-
tegorie auszuwählen. Die Kategorien wurden ähnlich wie bei Bader [3] primär anhand
des verwendeten Datenmodells gewählt. Somit wurden die Kategorien reine Zeitreihen-
Datenbanksysteme, Erweiterungen von relationalen DBS und Erweiterungen von NoSQL
DBS definiert. Bader [3] hat zudem eine Kategorie für proprietäre DBS eingeführt, die
hier jedoch nicht genutzt wird, da in dieser Arbeit ausschließlich open-source DBS mit-
einander verglichen werden.

Die Repräsentanten wurden u. a. anhand ihrer Popularität, gemessen von DB-Engi-
nes [71], ausgewählt (siehe Abb. 3.1). Zudem wurde auf die Aktivität der Entwicklung
sowie die freie Verfügbarkeit der Software und des Quellcodes (Open-Source) geachtet.

13

3 Zeitreihen-Datenbanksysteme

11
.20

12

03
.20

14

07
.20

15

12
.20

16

04
.20

18

09
.20

19

01
.20

21

06
.20

22

10
.20

23
10−2

10−1

100

101

102

103

P
un

kt
e

(l
og

ar
it

hm
is

ch
e

Sk
al

a)
DB-Engines Ranking von Zeitreihen-Datenbanksystemen

Graphite
InfluxDB
MongoDB
Prometheus
QuestDB
TimescaleDB

Abbildung 3.1: Ranking von ausgewählten Zeitreihen-Datenbanksystemen – gemessen
anhand ihrer Popularität seit Beginn der Erfassung (Daten aus [71])

Die Kategorien sind wie folgt aufgebaut:

• reine Zeitreihen-Datenbanksysteme: Zu dieser Kategorie zählen Datenbanksysteme,
die von Grund auf als Zeitreihendatenbank entwickelt wurden.

Repräsentant dieser Kategorie: InfluxDB [42]
Andere DBS, die auch dieser Kategorie angehören: Prometheus [70], Graphite [21]
und OpenTSDB [84]

• Erweiterung von relationalen DBS: Hierbei handelt es sich um Datenbanksysteme,
die entweder auf einem relationalen DBS aufbauen, bzw. ein solches um Zeitreihen-
funktionalität erweitern.

Repräsentant dieser Kategorie: TimescaleDB [95]
Andere DBS, die auch dieser Kategorie angehören: Clickhouse [10], IBM Infor-
mix [25] und SingleStore [80]

14

3 Zeitreihen-Datenbanksysteme

• Erweiterung von NoSQL DBS: Systeme in dieser Kategorie sind jene, die als Basis
ein NoSQL DBS nutzen.

Repräsentant dieser Kategorie: MongoDB [61]
Andere DBS, die auch dieser Kategorie angehören: Redis [74], Couchbase [13] und
RavenDB[24]

Als Baseline wurde zudem ein klassisches relationales Datenbanksystem gewählt, um
später vergleichen zu können, wie sich die spezialisierten Zeitreihen-Datenbanksysteme
gegenüber zu regulären DBS unterscheiden. Repräsentant hierfür ist das DBS Postgre-
SQL [88], welches aus zwei Gründen ausgesucht wurde: Zum einen führt DB-Engines [71]
PostgreSQL als zweitpopulärstes RDBS auf, und zum anderen ergibt sich durch diese
Wahl die Möglichkeit, festzustellen, inwiefern sich das DBS TimescaleDB, das selbst eine
Erweiterung von PostgreSQL ist, von seinem zugrundeliegenden DBS unterscheidet.

3.2 Reine Zeitreihen-Datenbanksysteme: InfluxDB

Für die Kategorie von reinen Zeitreihen-Datenbanksystemen wurde InfluxDB [42] als Re-
präsentant gewählt, da dieses System laut DB-Engines [71] die größte Popularität unter
den Zeitreihen-Datenbanksystemen hat. InfluxDB wird seit 2013 kontinuierlich weiter-
entwickelt – derzeit von der Firma InfluxData, die speziell hierfür gegründet wurde. Das
System wird in verschiedenen Varianten angeboten: Zum einen gibt es eine open-source
Version (InfluxDB OSS), die frei verfügbar ist, aber einen eingeschränkten Funktionsum-
fang besitzt. Zum anderen gibt es verschiedene kommerzielle, proprietäre Produkte, die
zusätzliche Funktionen wie beispielsweise die Verteilung der Daten auf mehrere Rechner
unterstützen und entweder auf eigenen Rechnern oder über einen von InfluxData ange-
botenen Cloud-Dienst ausgeführt werden können. In dieser Arbeit wird die quelloffene
Variante InfluxDB OSS betrachtet, die nachfolgend InfluxDB genannt wird.

InfluxDB nutzt die Anfragesprachen InfluxQL und Flux, um Daten aus der Datenbank
zu lesen [39], wobei die Weiterentwicklung für Flux mit der derzeit in Entwicklung be-
findlichen Version 3 von InfluxDB eingestellt wurde [40]. InfluxQL ist eine SQL-ähnliche
Sprache, die auf die Anfrage von Zeitreihendaten spezialisiert ist.

15

3 Zeitreihen-Datenbanksysteme

3.2.1 Datenmodell

Als von Grund auf entwickeltes Zeitreihendatenbanksystem nutzt InfluxDB ein eigenes
Datenmodell, das für die Speicherung von Zeitreihendaten optimiert ist [41].

InfluxDB speichert die Daten einer Anwendung in Buckets, die mit Datenbanken in an-
deren DBS zu vergleichen sind. Jedem Bucket kann eine so genannte Retention Policy
zugewiesen werden, die dafür sorgt, dass alte Daten nach der eingestellten Zeit auto-
matisch entfernt werden. Dies ist insbesondere nützlich, um Speicherplatz zu sparen.
Tabelle 3.1 zeigt fiktive Daten, wie sie in einem Bucket gespeichert werden. Anhand
dieser Tabelle werden nachfolgend die restlichen Begriffe des Datenmodells erklärt.

Jedem Datenpunkt wird in InfluxDB ein Zeitstempel (_time) zugewiesen, der Uhrzeit
und Datum in Nanosekundenauflösung speichern kann. Zudem lassen sich verschiedene
Daten in so genannten Measurements (_measurement) gruppieren. In der Beispiel-
tabelle 3.1 werden vier verschiedene Messwerte unter dem Measurement „weather“ zu-
sammengefasst. Jeder Datenpunkt, der in der Datenbank gespeichert wird, kann dabei
verschiedene Felder (_field) und dazugehörige Werte (_value) besitzen. Somit kön-
nen mehrere Werte verschiedener Zeitreihen durch einen einzelnen Datenpunkt in die
Datenbank eingefügt werden. Zusätzlich können Werten weitere Eigenschaften zugewie-
sen werden, die Tags genannt werden – diese sind zudem indexiert, wodurch Anfragen
beschleunigt werden. Das Beispiel zeigt die Tags „city“ und „location“, die z. B. dafür
genutzt werden können, um alle Messwerte von einem gewissen Standort abzurufen.

Eine Zeitreihe, wie sie in Kapitel 2.1 definiert wurde, ergibt sich somit aus den Werten,
die einer eindeutigen Measurement-Field-Tag-Kombination zugeordnet sind. InfluxDB
nennt diese eindeutige Kombination „Series Key“ (ab hier Zeitreihenschlüssel genannt).
Im Beispiel gibt es zwei verschiedene Zeitreihenschlüssel und somit auch zwei Zeitrei-
hen:

1. [weather, city=HH, location=outside, temperature]

2. [weather, city=HB, location=inside, humidity]

Tabelle 3.1: Beispieldaten wie sie in einem InfluxDB Bucket gespeichert werden
_time _measurement city location _field _value

2024-01-01T00:00:00Z weather HH outside temperature -1.0
2024-01-01T00:00:00Z weather HB inside humidity 0.7
2024-01-01T12:00:00Z weather HH outside temperature 5.2
2024-01-01T12:00:00Z weather HB inside humidity 0.6

16

3 Zeitreihen-Datenbanksysteme

3.2.2 Time-Structured Merge-Tree

Um Zeitreihendaten effizient zu speichern, nutzt InfluxDB einen so genannten „Time-
Structured Merge-Tree“ (TSMT), der ähnlich wie Log-Structured Merge-Trees (LSMT)
arbeitet [28]. LSMTs wurden von O’Neil et al. [68] entwickelt und werden in vielen DBS
wie z. B. Apache Cassandra [83] genutzt. Durch eine Kombination von Datenstrukturen
im Arbeitsspeicher und im persistentem Speicher werden Lese- und Schreiboperationen
optimiert. LSMTs bestehen aus zwei sortierten Bäumen (siehe Abb. 3.2) – dem C0-Baum,
der im Arbeitsspeicher meistens als AVL- oder Rot-Schwarz-Baum aufgebaut ist, und
dem C1-Baum, der im persistenten Speicher die Form eines leicht angepassten B-Baums
besitzt. Wenn Daten in einen LSMT geschrieben werden, werden sie zunächst in den
C0-Baum geschrieben. Dort verbleiben sie solange, bis der C0-Baum, eine gewisse Größe
überschritten hat oder eine gewisse Zeit vergangen ist. Wenn eine dieser Bedingungen
eintritt, werden die Daten in den C1-Baum mit dem so genannten „rolling merge“-Verfah-
ren überführt. Der C1-Baum wird in mehreren Dateien gespeichert, die anschließend nur
lesbar sind. Das heißt, dass eine Datei nur einmal geschrieben wird und später nicht wie-
der geändert werden kann. Sollen Daten aus dem LSMT gelöscht oder geändert werden,
müssen die entsprechenden Dateien vollständig neu geschrieben werden. Dieses Prinzip
verbessert die Lese- und Schreibperformanz, da große Blöcke von Daten am Stück gelesen
bzw. geschrieben werden können, wodurch insgesamt weniger Lese-Schreib-Operationen
pro Sekunde (engl. Input/Output Operations per Second, bzw. IOPS) ausgeführt werden.
Um im Falle eines Systemfehlers die Daten des C0-Baums wiederherstellen zu können,
wird zusätzlich ein Write Ahead Log (WAL) geführt, der jede noch nicht persistente
Schreiboperation auf der Datenbank beinhaltet. Weitere Details zu LSMTs lassen sich
in [68] nachlesen.

C0-Baum

C1-Baum

persistenter
Speicher

transienter
Speicher

Abbildung 3.2: Visualisierung des Speicherorts und der typischen Größenverhaltnisse von
C0- und C1-Baum im Log-Structured Merge Tree ([68] nachempfunden)

17

3 Zeitreihen-Datenbanksysteme

In den in InfluxDB verwendeten TSMTs gibt es ebenfalls einen WAL und einen C0-Baum,
der hier jedoch Cache genannt wird [28]. Aus dem Cache werden die Daten entweder nach
einer gewissen Zeit oder einer bestimmten Datenmenge in den C1-Baum übernommen.
Dieser wird in mehreren verschiedenen TSM-Dateien gespeichert, die jeweils Blöcke von
Zeitreihendaten enthalten, welche mit einem für den jeweiligen Datentyp optimierten
Verfahren komprimiert werden. Die TSM-Dateien werden mit wachsendem Alter über
die Zeit in vier Stufen, so genannten Levels, miteinander kombiniert, um die Anzahl von
Dateien im Dateisystem möglichst klein zu halten. Somit werden jüngere Zeitreihendaten
in kleinen TSM-Dateien und ältere Zeitreihendaten in größeren TSM-Dateien gespeichert.
Dies hat insbesondere Relevanz, da wie in LSMTs die Dateien nur lesbar sind. Laut
Hersteller sollte möglichst vermieden werden, ältere Daten zu ändern oder Daten in
nicht-zeitlicher Reihenfolge in die Datenbank einzufügen, da sonst große Dateien neu
geschrieben werden müssen.

3.2.3 Shards

Um alte Daten nach Ablauf der Retention Policy schneller löschen zu können, speichert
InfluxDB die Zeitreihendaten in Shards [28], die entweder der Dauer der Retention Policy
entsprechen oder – falls keine Retention Policy festgelegt ist – sieben Tage umfassen. Jeder
Shard stellt dabei eine für sich abgeschlossene Einheit dar, die alle Komponenten, die im
vorherigen Abschnitt 3.2.2 besprochen wurden, beinhaltet. Wenn alte Daten gelöscht
werden sollen, können so komplette Shards entfernt werden, ohne die Datenstrukturen
in den anderen Shards zu ändern.

3.2.4 Time Series Index

Für jeden Shard wird in InfluxDB ein Time Series Index (TSI) gepflegt [37, 36]. Dabei
handelt es sich um eine Metadatenbank in Form eines Inverted Index, die Metadaten zu
den im Shard befindlichen Zeitreihendaten speichert. Inverted Indexes sind Datenstruk-
turen, die speichern, in welchen Dokumenten ein gewisser Eintrag vorhanden ist [44].
Die Verwendung eines Inverted Index beschleunigt somit Anfragen, die beispielsweise die
Daten für einen bestimmten Tag abfragen wollen. Der TSI wird in InfluxDB in einem
Log-Structured Merge-Tree (siehe Abschnitt 3.2.2) gespeichert und wurde eingeführt, da
es zuvor zu Performanzproblemen bei großen Mengen verschiedener Zeitreihen kam.

18

3 Zeitreihen-Datenbanksysteme

3.3 Erweiterung von relationalen DBS: TimescaleDB

TimescaleDB [95] wird seit 2018 als Erweiterung des relationalen open-source DBS
PostgreSQL [88] vom gleichnamigen Unternehmen Timescale entwickelt. Laut DB-Engi-
nes [71] ist TimescaleDB das populärste Zeitreihen-Datenbanksystem, welches ein DBS
mit relationalem Datenmodell erweitert. Durch die Entscheidung, TimescaleDB als Post-
greSQL-Erweiterung aufzubauen, bleibt neben der Möglichkeit, Zeitreihendaten zu spei-
chern, auch die Funktionalität von PostgreSQL erhalten. Ebenso wird es ermöglicht, Ope-
rationen (z. B. JOIN) auszuführen, die gleichzeitig sowohl Zeitreihendaten als auch regu-
läre relationale Daten nutzen. Als Anfragesprache nutzt TimescaleDB eine mit Zeitrei-
henfunktionalität erweiterte Form von SQL. Die in PostgreSQL vorhandene Transakti-
onsfunktionalität inkl. ACID (siehe Kapitel 2.3.3) wird durch die hinzugefügten Opera-
tionen nicht beeinträchtigt.

3.3.1 Datenmodell

Das Datenmodell von TimescaleDB ist in den Grundzügen identisch zu dem von Postgre-
SQL, jedoch wurden zusätzlich so genannte Hypertables eingeführt [96, 94], die zur Spei-
cherung von Zeitreihendaten optimiert sind. Hypertables sind Tabellen, die ihre Daten
in einstellbaren Zeiteinheiten und optional in einer weiteren Dimension in Untertabellen
partitionieren (siehe Abb. 3.3) – diese Untertabellen werden Chunks genannt. Durch die
Aufteilung der Daten entstehen viele kleinere Tabellen, wovon beim Einfügen neuer Werte
jeweils nur der letzte Chunk bearbeitet werden muss. Ziel der Chunks ist es, ihre Grö-
ße so zu wählen, dass sie im Arbeitsspeicher in einem Cache zwischengespeichert werden
können, wodurch der Zugriff auf Festplatten/SSDs vermieden wird. Da auf ältere Chunks
seltener zugegriffen werden muss, können diese somit die meiste Zeit ausschließlich im
persistenten Speicher liegen. Für Anwendungen, die Daten in Hypertables schreiben bzw.
diese lesen, wird die Aufteilung in Chunks durch TimescaleDB transparent abstrahiert,
sodass keine spezielle Anwendungslogik notwendig ist.

3.3.2 Wide-/ Narrow-Table-Modell

Im Gegensatz zu anderen Zeitreihen-Datenbanksystemen, wie z. B. InfluxDB (siehe Ab-
schnitt 3.2) können Zeitreihen in TimescaleDB auch mehrere Werte pro Zeitpunkt be-
sitzen [93] – dies wird „Wide-Table“-Modell genannt. Wenn hingegen nur ein Wert pro

19

3 Zeitreihen-Datenbanksysteme

Hypertable
Zeit
Chunk ID 1

01.02.2024 00:00:00
01.02.2024 06:00:00
01.02.2024 12:00:00
Chunk ID 2

02.02.2024 00:00:00
02.02.2024 06:00:00
02.02.2024 12:00:00
Chunk ID 3

03.02.2024 00:00:00
03.02.2024 06:00:00
03.02.2024 12:00:00

Wert

4
750
86

13
0

57

27
94
6

reguläre Tabelle
Zeit

01.02.2024 00:00:00
01.02.2024 06:00:00
01.02.2024 12:00:00

02.02.2024 00:00:00
02.02.2024 06:00:00
02.02.2024 12:00:00

03.02.2024 00:00:00
03.02.2024 06:00:00
03.02.2024 12:00:00

Wert

4
750
86

13
0

57

27
94
6

Abbildung 3.3: Aufteilung einer regulären Tabelle in einen Hypertable mit einer Chunk-
Größe von einem Tag ([96] nachempfunden)

Zeitreihe pro Zeitpunkt gespeichert wird, spricht man von einem „Narrow-Table“-Modell.
Durch die Speicherung als Wide-Table müssen für Anfragen über mehrere Zeitreihen kei-
ne JOIN-Operationen ausgeführt werden.

3.3.3 Kompression von Chunks

TimescaleDB bietet zudem an, dass die Daten innerhalb eines Chunks komprimiert wer-
den können [89, 90]. Auf Wunsch kann dies entweder für alle Chunks, nur für manuell
gewählte Chunks oder für Chunks, die ein gewisses Alter überschritten haben, gesche-
hen. Bei der Kompression werden mehrere Zeilen des Chunks anhand des Attributes
segmentby in einer Zeile kombiniert. Dies geschieht, indem die Werte der Zeilen spal-
tenweise in Listen umgewandelt und in dem entsprechenden Datenwert der neu entste-
henden Zeile gespeichert werden. Durch diese Art der Datenspeicherung entfällt zum
einen der Overhead, der bei der Speicherung jeder einzelnen Zeile entsteht, und zum
anderen können auf den kontinuierlich im Speicher befindlichen Daten weitere Kompres-
sionsalgorithmen angewendet werden. Die Sortierung der Daten innerhalb der Listen lässt
sich durch das Attribut orderby beeinflussen, welches eine Spalte angibt, nach der die
Daten aufsteigend sortiert werden. Um den Zugriff auf die Daten zu beschleunigen, spei-
chert TimescaleDB in der kombinierten Zeile den minimalen und den maximalen Wert

20

3 Zeitreihen-Datenbanksysteme

des Sortierkriteriums. Die Standardeinstellung für das Attribut orderby ist die Spalte,
die die Zeitpunkte der Zeitreihe speichert. Jedoch lassen sich je nach Anwendungsfall
oft bessere Einstellungen für segmentby und orderby finden. Details hierzu lasen
sich in der Dokumentation von TimescaleDB nachlesen. Zu beachten ist dabei, dass eine
Kompression über Zeilen mehrerer Chunks nicht möglich ist. Zudem lassen sich bis auf
die Spezialindizes der Attribute segmentby und orderby keine Indizes in der Tabelle
erstellen.

3.4 Erweiterung von NoSQL DBS: MongoDB

Bei MongoDB handelt es sich um ein NoSQL DBS, welches ein dokumentenorientiertes
Datenmodell (siehe Kapitel 2.4.2) nutzt. MongoDB [61] wird seit 2009 von der Frima
MongoDB Inc. entwickelt und ist mittlerweile in Version 8.0 verfügbar. Im Gegensatz
zu TimescaleDB (siehe Abschnitt 3.3) ist die Zeitreihenfunktionalität hier kein Zusatz-
modul, das nachträglich installiert werden kann, sondern eine Erweiterung, die von der
Herstellerfirma mit Version 5.0 direkt in das DBS integriert wurde. MongoDB wurde
u. a. als Repräsentant dieser Kategorie gewählt, da DB-Engines [71] dieses als populärs-
tes NoSQL DBS aufführt.

3.4.1 Datenmodell

In MongoDB werden Dokumente einer Datenbank in so genannten Collections gespei-
chert, die mit Tabellen in relationalen DBS verglichen werden können [58, 50]. Um Zeitrei-
hendaten besser zu unterstützen, wurde eine neue Art von Collections hinzugefügt, die
Time Series Collections (TSC) genannt werden. Diese TSCs sind auf auf Zeitreihen spe-
zialisiert und optimiert bzgl. Speicherung und Abfrage der Daten.

In einer TSC lassen sich mehrere Zeitreihen speichern. Aufgrund dessen muss bei Erstel-
lung einer TSC angegeben werden, in welchem Feld der Dokumente sich die Metadaten
befinden, die die verschiedenen Zeitreihen identifizieren [57, 51]. Dieses Feld lässt sich
durch das Attribut metaField bestimmen. Zusätzlich muss angegeben werden, in wel-
chem Feld der Dokumente die Zeitpunkte der Zeitreihen gespeichert werden sollen. Dies
geschieht über das Attribut timeField. Die Namen der beiden Felder sind dabei an-
fangs frei wählbar, lassen sich jedoch nach Erstellung der TSC nicht mehr ändern. Eine
wichtige Eigenschaft des Metadatenfeldes ist dabei, dass in diesem auch geschachtelte

21

3 Zeitreihen-Datenbanksysteme

Dokumente oder Listen abgelegt werden können. Somit können Zeitreihen durch ver-
schiedene Attribute identifiziert werden. Abbildung 3.4 zeigt ein beispielhaftes Dokument
einer TSC.

{
time: ISODate("2024-01-01T12:00:00Z"),
sensorInfo: {

city: "Hamburg",
location: "outside",

}
temperature: 5,
humidity: 0.75,

}

Abbildung 3.4: Beispieldokument mit Wetterdaten einer Time Series Collection in
MongoDB (timeField = time und metaField = sensorInfo)

Ähnlich wie bei TimescaleDB lassen sich in MongoDB mehrere Werte pro Zeitreihe
und Zeitpunkt speichern, wodurch man hier auch von einem Wide-Table-Modell spre-
chen kann (siehe Abschnitt 3.3.2). Im Beispieldokument lassen sich die beiden Werte
temperature und humidity erkennen, die demselben Zeitpunkt zugeordnet sind.

3.4.2 Buckets

MongoDB speichert die Zeitreihen einer TSC in Blöcken von Dokumenten [50], die
Buckets genannt werden und anhand der folgenden Kriterien gebildet werden:

• Einerseits werden die Metadatenfelder der Dokumente genutzt, um verschiedene
Zeitreihen voneinander zu separieren.

• Zusätzlich werden die Dokumente einer Zeitreihe in gewisse Zeitintervalle gruppiert,
auf deren Bestimmung im folgenden Abschnitt weiter eingegangen wird.

Durch die Aufteilung der Daten in Buckets können Abfragen einzelner Zeitreihen be-
schleunigt werden, da die Daten in kontinuierlichen Speicherbereichen liegen. Zudem
gibt es in MongoDB einen In-Memory-Cache, der die Metadaten der in Benutzung be-
findlichen Buckets speichert. Dieser Cache soll u. a. dazu dienen, Latenzen zu verringern
und parallele Schreiboperationen zu koordinieren.

22

3 Zeitreihen-Datenbanksysteme

Neue Buckets werden immer dann erstellt, wenn ein Dokument geschrieben wird, das
ein bisher noch nicht bekanntes Metadatenfeld besitzt oder einen Zeitpunkt hat, der in
keinem Intervall der bisherigen Buckets liegt. Zudem wird ein neuer Bucket angelegt,
wenn die Maximalgröße des zu beschreibenden Buckets durch das neue Dokument über-
schritten wird.

3.4.3 Granularität

MongoDB berechnet das Zeitintervall, in dem ein Dokument gespeichert wird, anhand des
Attributes granularity, das für jede TSC gesetzt werden muss [56, 57]. Diese Granu-
larität kann dabei auf zwei verschiedene Arten angegeben werden. Zum einen kann sie auf
seconds, minutes oder hours eingestellt werden, wodurch entsprechend Zeitintervalle
von einer Stunde, einem Tag oder einem Monat entstehen. Wenn Dokumente in eine TSC
eingefügt werden sollen, wird deren Zeitstempel jeweils anhand der eingestellten Granu-
larität abgerundet und, basierend auf diesem Wert, das entsprechende Intervall gesucht.
Die zweite Möglichkeit, die Granularität anzugeben, besteht darin, die Intervallgröße
(bucketMaxSpanSeconds) und den Rundungsbereich (bucketRoundingSeconds)
manuell anzugeben. MongoDB empfiehlt bei der Nutzung dieser Variante, die beiden
Attribute auf den gleichen Wert zu setzen.

3.5 Zusammenfassung

Tabelle 3.2 dient als Übersicht der in diesem Kapitel vorgestellten Datenbanksysteme.

23

3
Zeitreihen-D

atenbanksystem
e

Tabelle 3.2: Übersicht der in Kapitel 3 gezeigten DBS
InfluxDB TimescaleDB MongoDB

Kategorie reines Zeitreihen-
Datenbanksystem

Erweiterung von
RDBS

Erweiterung von NoSQL DBS

Zugrundeliegende
Datenstruktur

Shards, bestehend aus Time-
Structured Merge Trees

Hypertables,
bestehend aus

Chunks

Time Series Collections, bestehend aus
Buckets

Wide-Table-Modell ✗ ✓ ✓

automatisches
Löschen alter Daten

✓ ✓ ✓

Kompression ✓ ✓ ✓

Einfügen von nicht
zeitlich geordneten

Daten

✓ / ✗

nur empfohlen, solange sich
Datenbereich in C0-Baum

befindet

✓ ✓ / ✗

nur empfohlen, solange Datenbereich
im selben Granularitätsintervall liegt

Ändern alter Daten nicht empfohlen ✓ nicht empfohlen
Einfügen von Daten

in Blöcken
✓

sehr empfohlen
✓ ✓

Verteilbar auf
mehrere Knoten

✓

kommerzielle Version
✓ / ✗

nur Replikation
✓

kommerzielle Version
Lizenz MIT / Apache 2.0 Apache 2.0 / TSL

(Timescale
License)

SSPL
(ähnlich zu GPLv3)

24

3 Zeitreihen-Datenbanksysteme

3.6 Verwandte Arbeiten

In den letzten Jahren wurden verschiedene Untersuchungen und Benchmarks von Zeitrei-
hen-Datenbanksystemen durchgeführt. Bader [3] verglich bereits 2016 zehn Systeme und
stellte den Benchmark TSDBBench vor. Dabei kamen zwei Szenarios zum Einsatz, die je-
doch keine realen Anwendungen repräsentierten. Manche der getesteten Systeme werden
inzwischen nicht mehr weiterentwickelt.

Hao et al. [23] führten mit TS-Benchmark eine weitere Evaluierung durch, bei der Sens-
ordaten von Windkraftanlagen genutzt wurden, die mithilfe neuronaler Netze synthetisch
erzeugt wurden. Untersucht wurden – wie in dieser Arbeit – InfluxDB und TimescaleDB
sowie zusätzlich Druid und OpenTSDB. Eine klassische relationale Datenbank als Base-
line wurde nicht berücksichtigt.

Praschl et al. [69] analysierten sechs Zeitreihen-Datenbanksysteme, darunter auch die in
dieser Arbeit betrachteten Repräsentanten. Ihre Methodik ähnelt dem experimentellen
Vergleich dieser Arbeit, jedoch wurde lediglich ein einziges Szenario untersucht, wodurch
nur ein spezifisches Anwendungsgebiet abgedeckt werden konnte. Zudem wurde kein kon-
zeptioneller Vergleich des Funktionsumfangs der Systeme durchgeführt.

Ein Unterschied zu den bisherigen Untersuchungen besteht darin, dass keiner dieser Ver-
gleiche den Energieverbrauch der Datenbanksysteme berücksichtigt hat. Zudem wurden
in diesen Arbeiten mittlerweile veraltete Versionen der Datenbanksysteme getestet, die
durch neuere Versionen abgelöst wurden und eine verbesserte Leistung versprechen.

25

4 Szenarios

In diesem Kapitel werden die Entscheidungsgrundlagen erläutert, die zur Auswahl der
Szenarios geführt haben. Zudem werden die einzelnen Szenarios detailliert beschrieben.
In den folgenden drei Abschnitten werden jeweils die für das entsprechende Szenario
durchzuführenden Zeitreihenanalysen sowie die Rahmenbedingungen und der Kontext,
in dem das Szenario ausgeführt wird, näher erläutert.

4.1 Auswahl der Szenarios

Die in diesem Kapitel vorgestellten Szenarios wurden so ausgewählt, dass sie realisti-
sche Einsatzgebiete von Zeitreihen-Datenbanksystemen darstellen. Dabei wurden jeweils
folgende Punkte beachtet:

Szenario A wurde so gewählt, dass es einem typischen Anwendungsfall von Zeitreihen-
Datenbanksystemen entspricht – nämlich der Überwachung von Sensoren. Der Fokus liegt
auf einem Heimanwendungskontext, woraus sich folgende Anforderungen ergeben:

• Ressourcennutzung : In diesem Kontext müssen DBS häufig auf Rechnern mit ge-
ringer Leistung laufen. Hieraus entstehen weitere Punkte, die im nachfolgenden
Abschnitt 4.2.2 genauer erläutert werden.

• einfache Bedienbarkeit : Für private Anwender ist es besonders wichtig, dass die
Einrichtung, Nutzung und der Betrieb des DBS einfach ist, da diese meistens nicht
die Erfahrung besitzen, die im industriellen Kontext vorhanden ist.

Szenario B soll eine Grundlage bieten, um zu testen, wie sich die Zeitreihen-Datenbank-
systeme bei einer geringen Anzahl von Zeitreihen verhalten, die sich über einen langen
Zeitraum erstrecken und viele Datenpunkte enthalten. Dies ist insbesondere interessant,
da so analysiert werden kann, wie sich die in Kapitel 6.1 beschriebenen Metriken verhal-
ten, wenn Operationen auf großen Zeitreihen durchgeführt werden.

26

4 Szenarios

Als Gegenstück zu Szenario B soll Szenario C testen, wie sich die DBS bei großen Anzah-
len von kurzlebigen Zeitreihen verhalten. Insbesondere kann so der Overhead verdeutlicht
werden, der für die Speicherung, aber auch Verarbeitung jeder Zeitreihe anfällt.

4.2 Szenario A: Smart Home

Dieses Szenario simuliert ein Wohngebäude (Smart Home) mit einer einstellbaren An-
zahl an Sensoren bzw. Geräten, die Datenpunkte generieren. Dazu müssen die in diesem
Szenario genutzten Testdaten nicht zwingend sinnvolle Zusammenhänge untereinander
abbilden, jedoch ist es wichtig, dass ihre Struktur echten Daten ähnelt. Dies liegt daran,
dass alle zu testenden Zeitreihen-Datenbanksysteme eine Form der Datenkompression
unterstützen. Das Kompressionsverhältnis, also das Verhältnis zwischen der Größe der
komprimierten und der unkomprimierten Daten, hängt dabei stark von deren Struktur
ab. Lange Folgen von sich wiederholenden Werten lassen sich so besser komprimieren als
zufällige Werte.

Um die Testdaten für dieses Szenario zu generieren, werden zwei Kategorien von Ge-
neratoren verwendet: Die erste Kategorie umfasst zeitintervallgesteuerte Verfahren, die
Datenpunkte in regelmäßigen Abständen erzeugen, während die zweite Kategorie nur
Werte bei Eintritt eines Ereignisses generiert. Da bei der Recherche keine Generatoren
gefunden wurden, die den hier gestellten Anforderungen entsprechen, wurden die folgen-
den Generatoren entworfen:

• Zeitintervallgesteuert

– elektrische Verbraucher : Für die Generierung der Verbrauchsdaten werden
zufällige Ein- und Ausschaltzeiten bestimmt, die jeweils in einstellbaren In-
tervallen liegen. Für die Zeiträume, in denen ein Verbraucher eingeschaltet
ist, werden Leistungswerte um einen Sollwert mit einem zufälligen Rauschen
kombiniert, um leichte Schwankungen im Verbrauch des Geräts zu simulieren.
Die restliche Zeit ist der Verbrauch null.

– Temperatur : Zur Simulation von Temperaturen an verschiedenen Orten im Ge-
bäude wird eine Sinus-Funktion, die durch eine hyperbolische Tangensfunktion
an den Maxima gestaucht wird, mit einem zufälligen Rauschen kombiniert. Die

27

4 Szenarios

so resultierende Funktion soll Schwankungen zwischen Tag- und Nachttempe-
raturen sowie Messungenauigkeiten der Sensoren darstellen:

T (t) =
v

2
·
(
tanh

(
sin

(
2π · t
p

+ s

)
· d · p

2π

)
+ 1

)
+ o+ rand(−n, n)

(4.1)
wobei v den Temperaturunterschied zwischen Tag und Nacht, p die Periode
und s die Verschiebung der Funktion darstellt. d gibt an, wie stark die Si-
nus-Funktion gestaucht wird und o ist die Nachttemperatur. Die Funktion
rand(−n, n) generiert zufällige Werte im Intervall [−n, n)

Abbildung 4.1 zeigt, wie T (t) zusammengesetzt ist.

p

o

o+ v

Zeit t

T
em

pe
ra

tu
r

Zusammensetzung der Temperaturfunktion T (t)

grundlegende Sinus-Funktion
skalierte Sinus-Funktion
T (t)

Abbildung 4.1: Visualisierung des Aufbaus und der Stauchung der Maxima der Tempe-
raturfunktion T (t)

• Ereignisgesteuert

– Fenster und Türen: Dieser Generator erzeugt zufällig, nach einer einstellbaren
Wahrscheinlichkeit, Öffnungs- und Schließereignisse für jedes Fenster und jede
Tür.

– Beleuchtung : Im Gegensatz zur Generierung von Fenster- und Türereignissen,
die nur zwei Werte – auf und zu – besitzen, werden hier prozentuale Hellig-
keitswerte simuliert. Die Art und Weise dieser Simulation ist dabei ähnlich zu
der zuvor genannten. Hier wird jedoch für jedes Ereignis eine neue zufällige
Helligkeit erzeugt.

Die Parameter der Generatoren lassen sich in Kapitel 6.3.3 nachlesen.

28

4 Szenarios

4.2.1 Analysen Szenario A

Folgende Analysen werden bei diesem Szenario durchgeführt:

• Abfrage der Anzahl von Öffnungen von Fenstern und Türen: Mit dieser Abfrage
soll getestet werden, wie sich die DBS bei Zähloperationen auf Zeitreihen mit un-
regelmäßigen Abständen von Datenpunkten verhalten.

• Abfrage des Gesamtstromverbrauchs: Diese Anfrage prüft, welchen Einfluss Aggre-
gationsoperationen auf die Zeitreihen-Datenbanksysteme haben.

• Abfrage der minütlichen Durchschnittstemperatur : Ähnlich zu der vorherigen Ab-
frage wird hier das Verhalten von Aggregationen geprüft. Jedoch werden die Daten
hier zusätzlich in Zeitfenster gruppiert.

4.2.2 Rahmenbedingungen Szenario A

Da dieses Szenario im Heimanwendungskontext stattfindet, werden hier Systemkonfigu-
rationen getestet, die geringe Ressourcenkapazitäten im Vergleich zu Servern in Rechen-
zentren besitzen. Somit werden Systeme getestet, die einen oder zwei Prozessorkerne
besitzen und 512 MB oder 1 GB Arbeitsspeicher installiert haben. Dabei werden alle
Kombinationen beider Parameter genutzt. Es entstehen somit vier verschiedene Konfi-
gurationen.

In diesem Szenario soll dabei nur indirekt geprüft werden, wie groß die verarbeitba-
ren Daten werden können. Vielmehr ist das Ziel, herauszufinden, mit wie wenigen Sys-
temressourcen ein DBS in einem realistischen Haushalt auskommen kann. Dazu wird im
Experiment die Anzahl von Sensoren bzw. Datenquellen kontinuierlich vergrößert, bis
eine Anzahl von insgesamt 400 erreicht wird. Anhand der gemessenen Latenzen kann
so abgelesen werden, wie viele Generatoren das jeweilige DBS verarbeiten kann. Diese
maximale Menge wurde so gewählt, dass bei einer Hinzufügerate von ca. einem Genera-
tor alle 3 Sekunden der gesamte Vorgang etwa 20 Minuten dauert. Das bedeutet auch,
dass der Einfügeprozess im Gegensatz zu den Analysen in diesem Szenario die größere
Rolle spielt, da Einfügeoperationen nahezu kontinuierlich und Abfrageoperationen nur
sporadisch auftreten.

Zu beachten ist bei diesem Szenario, dass jeder Sensor über eine eigene Sitzung mit
dem DBS kommuniziert, da in einem echten Gebäude die Sensoren verteilt angebracht

29

4 Szenarios

sind und jeweils z. B. über eine eigene WLAN-Verbindung mit dem DBS kommunizieren
müssen.

Die in diesem Szenario auszuführenden Anfragen werden zudem 1000 mal pro Experiment
wiederholt, da sie nur auf einem kleinen Datenbestand arbeiten können und eine genaue
Messung sonst aufgrund der kurzen Anfragedauer schwierig möglich wäre.

4.3 Szenario B: Taxis in New York City

Im Gegensatz zu Szenario A (siehe Kapitel 4.2), in dem die Daten synthetisch generiert
werden, wird hier ein Datensatz verwendet, der aus realen Daten von Taxifahrten in
New York City (NYC) besteht. Der Datensatz wird von der NYC Taxi & Limousine
Commission (TLC) zur Verfügung gestellt [66] und umfasst dabei fast alle Taxifahrten,
die seit Anfang 2009 stattgefunden haben.

Die TLC teilt den Datensatz in vier Teile, die anhand des Taxityps gebildet werden. In
diesem Szenario werden nur die Daten der gelben Taxen (engl. yellow cab) genutzt, da die-
se den größten Zeitraum, der sich von Januar 2009 bis Oktober 2024 erstreckt, abdecken.
Dieser Teildatensatz umfasst ca. 30 GB an Rohdaten im Apache Parquet-Format – dies
entspricht ungefähr 1,8 Milliarden Datenpunkten. Für dieses Szenario wurde der Da-
tensatz weiter bereinigt, da er mehrfach vorkommende Zeitpunkte enthielt. In der hier
verwendeten Version wurden diese Duplikate entfernt. Zudem lagen die Daten vor Januar
2011 in einem Format vor, das mit dem restlichen Datensatz nicht kompatibel war, wes-
halb nur Daten ab diesem Zeitpunkt berücksichtigt wurden. Darüber hinaus wurde die
Anzahl der Spalten auf die für die Anfragen relevanten Attribute – Abfahrzeitpunkt,
Strecke, Passagiere und Fahrpreis – reduziert.

4.3.1 Analysen Szenario B

Folgende Analysen werden bei diesem Szenario durchgeführt:

• durchschnittlicher Fahrpreis pro Monat : Diese Anfrage testet, wie sich die DBS bei
der Aggregation von Daten verhalten, die nach bestimmten Zeitfenstern gruppiert
sind.

30

4 Szenarios

• Abfrage aller Fahrgastzahlen der ersten Jahreshälfte von 2023 : Hier soll prüft wer-
den, wie schnell alle Daten einer Zeitreihe in einem gewissen Zeitraum abgefragt
werden können.

• Abfrage aller Fahrten, deren Strecke größer als x sind : Diese Analyse soll testen,
welchen Einfluss Filteroperationen auf die DBS haben.

• Stunde mit den meisten Fahrten: Bei dieser Operation wird untersucht, ob und wie
gut sich komplexe Operationen, d. h. Kombinationen verschiedener Grundopera-
tionen, durchführen lassen.

4.3.2 Rahmenbedingungen Szenario B

In diesem Szenario werden Rechner mit zwei, vier, acht oder 16 Prozessorkernen und
16 GB Arbeitsspeicher simuliert, die Server in Rechenzentren oder bei Cloud-Providern
darstellen sollen. Die Größe des Arbeitsspeichers wird hier nicht variiert, da hier im
Gegensatz zu Szenario A getestet werden soll, wie viel des Arbeitsspeichers genutzt wird
und nicht, mit wie wenig Arbeitsspeicher das DBS lauffähig ist.

4.4 Szenario C: Monitoring kurzlebiger Dienste

Szenario C soll ein Rechenzentrum darstellen, welches Metriken von Diensten aufzeich-
net und auswertet. Die Dienste werden hier mithilfe von mehreren Instanzen gehostet,
die jeweils bis zu 10 Minuten lang laufen. Dies könnte in der Realität z. B. durch die
Verwendung eines Autoscalers der Fall sein, der entsprechend der Last mehr oder we-
niger Ressourcen zur Verfügung stellt. Hierdurch entstehen somit viele kurze kurzlebige
Zeitreihen, die im Zeitreihen-Datenbanksystem gespeichert und verarbeitet werden müs-
sen.

Wie auch in Szenario A werden hier synthetische Testdaten verwendet, die realen Da-
ten ähneln sollen. Dazu wird für eine einstellbare Anzahl von Instanzen Prozessor- und
Arbeitsspeicherauslastung wie folgt erzeugt:

• Prozessorauslastung : Zur Generierung der Prozessorlast L wird eine Grundlast G,
die zufällig um einen angestrebten Wert schwankt, mit Lastspitzen S kombiniert,
die an zufällig verteilten Zeitpunkten erzeugt werden. So soll ein Dienst darge-
stellt werden, der größtenteils kleine und teilweise größere Anfragen bearbeitet.

31

4 Szenarios

Lastspitzen besitzen dabei zwei Parameter – Höhe h und Dauer d. Beide werden
dabei anhand zweier normalverteilten Zufallsfunktionen generiert, die den Erwar-
tungswert µ und die Standardabweichung σ besitzen. Durch die Normalverteilung
werden so mit höherer Wahrscheinlichkeit Höhen und Dauern um µ und seltener
weit entfernte Werte generiert.

Die Grundlast G für einen Zeitpunkt t ∈ N wird wie folgt definiert:

G(t) =

g t = 0

(L(t− 1) + rand(−v, v)) · (1− x) + g · x sonst
(4.2)

wobei g die angestrebte Grundlast darstellt und x ∈ [0,1] ein Faktor ist, der angibt,
wie stark die Werte in Richtung der angestrebten Grundlast korrigiert werden.
Während einer Lastspitze wird statt x der Faktor x′ > x genutzt, um schneller auf
die Spitzenlast zu gelangen. Die Funktion rand(−v, v) erzeugt gleichmäßig verteilte
Werte ∈ R im Intervall [−v, v).

Kombiniert ergibt sich so die Prozessorlast L:

L(t) = min(0,max(1, G(t) + S(t)) (4.3)

wobei S(t) = h wenn zum Zeitpunkt t eine Lastspitze der Höhe h auftritt und
S(t) = 0 falls nicht.

• Arbeitsspeicherauslastung : Die Arbeitsspeicherauslastung A wird ähnlich zu Prozes-
sorauslastung berechnet, jedoch schwankt diese weniger und besitzt keine Spitzen.
Sie wird wie folgt definiert:

A(t) =

a t = 0

(A(t− 1) + rand(−v, v)) · (1− x) + a · x sonst
(4.4)

wobei a der angestrebte genutzte Speicher ist, der einmalig zufällig berechnet wird.
Die restlichen Parameter sind analog zu denen bei der Prozessorgrundlast G.

Diese Verfahren wurden ebenfalls, wie in Szenario A, entwickelt, da keine bereits existie-
renden Generatoren verfügbar waren, die für diesen Anwendungsfall passend sind.

Die im experimentellen Vergleich genutzten Parameter der hier gezeigten Generatoren
sind in Kapitel 6.3.3 zu finden. Abbildung 4.2 zeigt nach dem hier beschriebenen Verfah-
ren generierten Zeitreihen.

32

4 Szenarios

0 GB

0,4 GB

0,8 GB

1,2 GB

1,6 GB

2 GB

0
50
0

1
00
0

1
50
0

2
00
0

2
50
0

3
00
0

3
50
0

4
00
0

4
50
0

5
00
0

0

0,2

0,4

0,6

0,8

1

R
A

M

Zeit t

C
P

U
Synthetisch generierte Prozessor- und Arbeitsspeicherauslastungen

Prozessorauslastung
Arbeitsspeicher-
auslastung

Abbildung 4.2: Nach dem in Kapitel 4.4 beschriebenen Verfahren generierte Prozessor-
und Arbeitsspeicherauslastungen

4.4.1 Analysen Szenario C

Es wurde bei diesen Anfragen darauf geachtet, dass die Struktur ähnlich zu den Anfragen
von Szenario B (siehe Abschnitt 4.3) ist, um einen Vergleich zwischen Szenario B und C
zu ermöglichen. Für dieses Szenario werden somit die folgenden Analysen durchgeführt:

• kombinierte Prozessorlast pro Minute der zu dem jeweiligen Zeitpunkt laufenden
Instanzen: Mit dieser Anfrage wird geprüft, wie sich die DBS bei Rechenoperationen
auf großen Anzahlen von Zeitreihen verhalten.

• Abfrage aller Instanzmetriken in einer bestimmten Stunde: Hier wird geprüft, wie
schnell sämtliche Daten aller Zeitreihen in einem gewissen Intervall abgefragt wer-
den können.

• Abfrage der Instanzen, bei denen Prozessorauslastung größer x und Arbeitsspeicher-
auslastung größer y sind : Diese Anfrage soll feststellen, mit welcher Geschwindigkeit
Filteroperationen auf den Zeitreihen durchgeführt werden können.

33

4 Szenarios

4.4.2 Rahmenbedingungen Szenario C

In diesem Szenario werden die gleichen Rahmenbedingungen wie in Szenario B (siehe
Abschnitt 4.3.2) verwendet, um, wie bereits im vorherigen Abschnitt erwähnt, einen
Vergleich zwischen den beiden Szenarios zu ermöglichen.

Die folgende Tabelle 4.1 zeigt eine Übersicht der Szenarios im Vergleich.

Tabelle 4.1: Übersicht der Szenarios
Szenario A Szenario B Szenario C

Kontext Heimanwender Analyse von
Taxifahrten

Rechen-
zentrum

Anzahl der Zeitreihen mittel klein groß
Menge der

Datenpunkte
klein groß groß

Größe der Anfragen klein groß groß

34

5 Konzeptioneller Vergleich

In diesem Kapitel werden die drei Zeitreihendatenbanksysteme konzeptionell miteinander
verglichen. Dazu wird auf Gemeinsamkeiten bzw. Unterschiede der Systeme bezüglich des
Funktionsumfangs eingegangen.

5.1 Strukturanforderungen der Zeitreihen

Die zu vergleichenden Zeitreihen-Datenbanksysteme sind unterschiedlich flexibel bezüg-
lich der Datenstruktur der Zeitreihen. Datenbanksysteme, die fest strukturierte Daten
halten, nennt man dabei schemabehaftet. DBS ohne feste Struktur nennt man hingegen
schemafrei.

InfluxDB gehört zur Kategorie der schemafreien DBS, da hier – abgesehen von der De-
finition von Buckets (siehe Kapitel 3.2.1) – keine feste Erstellung eines Schemas möglich
ist. Jedoch ist zu beachten, dass das generelle Datenmodell mit Measurements, Tags und
Fields eingehalten werden muss.

Da TimescaleDB eine Erweiterung des relationalen DBS PostgreSQL ist, übernimmt es
dessen Struktureigenschaften (siehe Kapitel 2.3). Somit kann TimescaleDB als schemabe-
haftet eingestuft werden. Die Struktur der Zeitreihen muss hier also bei bereits Erstellung
der entsprechenden Tabelle angegeben werden.

MongoDB kann wiederum als schemafrei kategorisiert werden, da die Dokumente keine
fest definierte Struktur haben müssen. Lediglich die in der Time Series Collection kon-
figurierten Felder metaField und timeField müssen in den Dokumenten vorhanden
sein. Falls jedoch ein Schema gewünscht wird, das vom DBS geprüft wird, ist es bei
MongoDB optional möglich, ein solches Schema zu definieren.

35

5 Konzeptioneller Vergleich

5.2 Anfragesprachen

Die DBS nutzen jeweils unterschiedliche Anfragesprachen mit verschiedenen Eigenschaf-
ten, die nachfolgend beschrieben werden.

InfluxDB bietet, wie bereits in Kapitel 3.2 erwähnt, zwei Anfragesprachen an:

• Zum einen wird die vom Hersteller entwickelte Sprache Flux angeboten, mit der
Skripte zu Anfrage und Verarbeitung der gespeicherten Daten geschrieben wer-
den können. Die Idee besteht darin, die Daten als Strom zu verarbeiten, auf dem
Funktionen zur Filterung, Manipulation oder Aggregation ausgeführt werden. In
Flux-Skripten ist es zudem u. a. möglich, if-else-Strukturen zu nutzen und eige-
ne Funktionen zu definieren. Die genaue unterstützte Syntax lässt sich in der Flux
Dokumentation [27] nachlesen.

• Die zweite von InfluxDB unterstützte Sprache ist InfluxQL [35]. Diese Sprache
wurde mit einer ähnlichen Syntax zu SQL entworfen, die jedoch einen geringeren
Funktionsumfang besitzt.

Beide Sprachen bieten zudem spezielle Funktionen, die für Zeitreihenanalysen genutzt
werden können. Auf diese wird u. a. in Abschnitt 5.4 eingegangen.

TimescaleDB verwendet, wie auch PostgreSQL, SQL als Anfragesprache, die jedoch durch
spezielle Funktionen für Zeitreihenoperationen erweitert wurde. Hierdurch ist es häufig
möglich, dieselben Anfragen wie bei einem regulären relationalen DBS zu nutzen, wobei
durch die Verwendung von spezialisierten Funktionen teilweise eine bessere Performanz
erzielt werden kann. Wie auch bei SQL ist es möglich, mehrere Ausdrücke ineinander zu
Schachteln, um komplexere Anfragen zu erstellen.

Die von MongoDB genutzte Anfragesprache MQL orientiert sich an der dokumentenori-
entierten Struktur ihrer Daten. Jede Anfrage in MQL ist aus geschachtelten JSON- bzw.
BSON-Dokumenten aufgebaut, bei denen die Schlüssel die auszuführenden Operationen
darstellen und die Werte die Parameter der Funktionen sind. Dabei beginnen Operatio-
nen immer mit einem Dollar-Symbol ($). Ebenso wie bei InfluxDB und TimescaleDB
ist es möglich, mehrere Anfragen zu kombinieren. Dies wird bei MongoDB „Pipeline“
genannt. Das Konzept ist hier ähnlich zu dem von Flux, da hier die Dokumente jeweils
Funktionen durchlaufen, die Dokumente filtern, verändern oder aggregieren. Syntaktisch
wird dies als JSON-Array dargestellt.

Beispiele der hier gezeigten Sprachen werden in Kapitel 6.3.5 aufgeführt.

36

5 Konzeptioneller Vergleich

5.3 Verknüpfung von Zeitreihen (Joins)

Bei manchen Anfragen ist es notwendig, Informationen aus mehreren Zeitreihen bzw. Da-
tenquellen zu verknüpfen. Dies wird in klassischen relationalen DBS „Join“ genannt. Die
DBS in diesem Vergleich unterstützen alle verschiedene Varianten von Join-Operationen,
die folgend beschrieben werden.

Von den beiden von InfluxDB unterstützten Sprachen kann nur Flux Joins durchfüh-
ren – in InfluxQL ist dies nicht möglich.Des Weiteren muss für die Verwendung von
Joins in Flux das join-Modul [32] geladen werden, welches neben den vier regulären
Join-Operationen – inner, left outer, right outer und full outer – auch
einen zeitbasierten Join unterstützt. Zu beachten ist jedoch, dass die Funktionen union

und pivot laut Hersteller häufig schneller sind, wobei diese nicht in allen Fällen ange-
wendet werden können. Die Funktion union [38] vereint dabei zwei Datenströme von
Zeitreihen, sodass die Werte beider Datenströme im Ergebnisstrom ausgegeben werden.
Bei der pivot-Funktion [34] werden die Daten hingegen anhand eines anzugebenden
Feldes gruppiert.

TimescaleDB unterstützt die vollen Join-Operationen zwischen Hypertables, die von
PostgreSQL zwischen regulären Tabellen unterstützt werden. Zudem ist es möglich, Joins
zwischen Hypertables und Nicht-Hypertables durchzuführen, um so z. B. zusätzliche In-
formationen zu Zeitreihen hinzuzufügen.

Im Gegensatz zu den bereits gezeigten DBS unterstützt MongoDB nur eine Left-Outer-
Join-Operation, die durch die $lookup-Funktion [53] bereitgestellt wird. Dabei wird
den Dokumenten der Grundmenge eine Liste hinzugefügt, in der sich die dazugehörigen
Dokumente der zu vereinigenden Dokumentmenge befinden.

5.4 Zeitreihenoperationen

Zeitreihen-Datenbanksysteme bieten teils Funktionen an, um Zeitreihenanalysen (siehe
Kapitel 2.2) direkt im DBS durchzuführen. Hierbei gibt es jedoch wiederum Unterschiede
zwischen den DBS, die in diesem Abschnitt beschrieben werden.

InfluxDB bietet über die Sprache Flux Funktionen an, die statistische Berechnungen,
gleitende Durchschnitte mit verschiedenen Verfahren, Operationen auf Zeitfenstern und
Vorhersagen, z. B. über die Holt-Winters-Methode [97], durchführen können. Die genaue

37

5 Konzeptioneller Vergleich

Liste der unterstützten Funktionen ist in der Dokumentation [26] näher beschrieben.
Zudem ist es möglich, Flux-Skripte zu erstellen, die weitere nicht standardmäßig unter-
stützte Verfahren implementieren, die direkt auf dem DBS ausgeführt werden.

TimescaleDB unterstützt standardmäßig eine kleinere Anzahl von spezialisierten Opera-
tionen auf Zeitreihen als InfluxDB. Diese Zeitreihenoperationen werden in TimescaleDB
„Hyperfunctions“ genannt und unterstützen u. a. die Verarbeitung von Zeitreihen in Fens-
tern, die Erstellung von Histogrammen und das Füllen von Lücken in den Daten durch
Interpolation. Für weitere Zeitreihen- und Statistikoperationen kann das „Timescale Tool-
kit“ als zusätzliche Erweiterung in PostgreSQL installiert werden. Auf die dadurch hin-
zukommenden unterstützten Funktionen soll hier jedoch nicht eingegangen werden, da
sich dieser Vergleich nur auf TimescaleDB beschränkt. Sie lassen sind jedoch in der Do-
kumentation [91] der Erweiterung ersichtlich.

Das DBS MongoDB unterstützt hingegen keine speziell für Zeitreihen gedachten Funk-
tionen. Jedoch können teilweise die regulären MQL-Operationen genutzt werden, um
Funktionen wie die Verarbeitung von Daten in Zeitfenstern nachzubilden.

5.5 Konsistenz und Transaktionen

Wie in Kapitel 2.3.3 beschrieben, legen manche Systeme besonderen Wert auf die Kon-
sistenz der gespeicherten Daten, wohingegen andere mehr Wert auf Verfügbarkeit legen
(siehe Kapitel 2.4.1).

InfluxDB gehört dabei zu der letzteren Kategorie und setzt auf „eventual consistency“
(siehe Kapitel 2.4.1). Daten, die in das DBS geschrieben werden, sind somit bereits vor
dem Zeitpunkt, an dem sie persistent gespeichert wurden, zum Lesen verfügbar [29].
Zudem bietet InfluxDB keine Unterstützung von Transaktionen (siehe Kapitel 2.3.3)
über mehrere Anfragen, wobei dafür gesorgt wird, dass während einer Anfrage keine
Änderungen der zugrundeliegenden Daten durchgeführt werden.

TimescaleDB übernimmt als PostgreSQL-Erweiterung die ACID-Eigenschaften (siehe
Kapitel 2.3.3) des grundlegenden relationalen DBS und ermöglicht ebenfalls die Nut-
zung von Transaktionen [92]. Wie bereits in Kapitel 2.3.3 erwähnt, lässt sich auch hier
die Isolationsstufe pro Transaktion Einstellen um ggf. bessere Performanz zu erzielen.

Bei MongoDB lässt sich hingegen die Konsistenz pro Sitzung oder Anfrage in verschiede-
nen Stufen konfigurieren [59], die in der Dokumentation [60, 55] genau beschrieben sind.

38

5 Konzeptioneller Vergleich

Dazu muss das so genannte „read concern“ bzw. „write concern“ entsprechend für Lese-
bzw. Schreib-Operationen auf die gewünschte Stufe eingestellt werden. Es ist zu beachten,
dass das Schreiben und Ändern von Dokumenten immer atomar erfolgt. Das bedeutet,
dass niemals teilweise geschriebene Dokumente gelesen werden. Transaktionen werden in
MongoDB auf Time Series Collections nur für lesende Operationen unterstützt [58].

5.6 Programmierschnittstellen

Um mit den Datenbanksystemen mit Anwendungssoftware zu interagieren, bieten diese
Programmierschnittstellen und dazugehörige Bibliotheken an. Dieser Abschnitt erläutert,
wie sich diese im Detail unterscheiden.

InfluxDB nutzt als Schnittstelle eine RESTful HTTP API an, welche auf Port 8086 er-
reichbar ist [31]. Über die Endpunkte dieser Schnittstelle ist es möglich, Daten in das
DBS einzufügen und diese wieder mit Flux oder InfluxQL abzufragen. Des Weiteren lässt
sich das DBS hierüber konfigurieren. Aufgrund der Verwendung von HTTP als grundle-
gendes Protokoll kann jede Programmiersprache, die HTTP-Anfragen durchführen kann,
mit dem DBS interagieren. Der Hersteller stellt für gängige Sprachen Bibliotheken be-
reit, die die Nutzung der API abstrahieren. Zudem ist die Schnittstelle zustandslos, was
bedeutet, dass keine dauerhafte Sitzung mit dem DBS erforderlich ist.

Im Gegensatz zu InfluxDB nutzt TimescaleDB ein binäres Protokoll, das entweder auf
Grundlage von TCP/IP (Port 5432) oder UNIX-Sockets verwendet werden kann [85]. Da
es sich hierbei um dasselbe Protokoll wie bei PostgreSQL handelt, gibt es von diversen
Anbietern Bibliotheken zur Verwendung der Schnittstelle. Ein Beispiel für eine solche
Bibliothek ist sqlx [46], die auch im nachfolgenden experimentellen Vergleich verwendet
wurde.

Wie auf TimescaleDB wird bei MongoDB ein binäres Protokoll – das so genannte „Wire
Protocol“ – eingesetzt [54], das über TCP/IP (Port 27017) oder UNIX-Sockets genutzt
werden kann. Dieses ist jedoch mit dem von TimescaleDB bzw. PostgreSQL inkompa-
tibel. Der Hersteller bietet hier wie bei InfluxDB Treiber an, mit denen das DBS an
eine Anwendung angebunden werden kann, wobei die MongoDB Bibliotheken für mehr
Programmiersprachen verfügbar sind.

Tabelle 5.1 fasst die in diesem Kapitel vorgestellten Funktionen und Eigenschaften des
DBS zusammen.

39

5
K

onzeptioneller
V

ergleich

Tabelle 5.1: Funktionen und Eigenschaften der DBS
InfluxDB TimescaleDB MongoDB

Strukturanforderung schemafrei schemabehaftet schemafrei
Anfragesprache InfluxQl / Flux

(ab v3.0 veraltet)
erweitertes SQL MQL

Joins ✓ ✓ eingeschränkt möglich
durch $lookup

Zeitreihenoperationen Statistik, gleitende
Durchschnitte,

Fensteroperationen,
Vorhersagen

Fensteroperationen, Histogramme,
Füllen von Lücken

(erweiterbar durch Timescale
Toolkit)

keine spezialisierten
Operationen

Konsistenz eventual stark einstellbar
Transaktionen ✗ ✓ ✓ / ✗

(nur lesend)
Programmier-
schnittstellen

RESTful HTTP API binäres Protokoll, basierend auf
TCP/IP oder UNIX-Sockets

binäres Protokoll,
basierend auf TCP/IP

oder UNIX-Sockets

40

6 Experimenteller Vergleich

In diesem Kapitel wird erläutert, wie der experimentelle Vergleich der Zeitreihen-Da-
tenbanksysteme aufgebaut und durchgeführt wird. Die Experimente und das Testsys-
tem, welche in diesem Kapitel beschrieben werden, wurden auf folgendem System ausge-
führt:

• Prozessor: AMD Ryzen 9 3900x (12 Kerne à 3,8 GHz, mit Hyperthreading)

• Arbeitsspeicher: 48 GB DDR4 (4 Riegel à 3000 MHz)

• Speicher: 1 TiB Western Digital NVME SSD

• Kernel: Linux 6.13.3

Die Datenbanksysteme wurden dabei in folgenden Versionen getestet:

• InfluxDB : 2.7.11

• TimescaleDB : 2.18.2

• MongoDB : 8.0.4

• PostgreSQL: 17.4

6.1 Metriken

Der experimentelle Vergleich in diesem Kapitel wird anhand von Metriken durchgeführt,
die vom Testsystem aufgezeichnet werden. Die Metriken lassen sich dabei in zwei Kate-
gorien unterteilen: Zum einen die klassischen Systemmetriken, die innerhalb der Testum-
gebung des DBS (mehr dazu in Abschnitt 6.2.2) ermittelt werden. Zum anderen wird
im Kontext von Green-IT der Energieverbrauch ermittelt. Beide Kategorien werden in
den nächsten Abschnitten genauer beschrieben. Zudem wird für jede Anfrage die Latenz
gemessen, wobei diese Messungen von den Szenarios selbst getätigt werden.

41

6 Experimenteller Vergleich

6.1.1 Klassische Systemmetriken

Angelehnt an [23], [69] und [43] werden die folgenden Metriken der Testumgebung für
die Experimente erhoben:

• Prozessorlast (Durchschnitt in Prozent über alle Kerne)

• genutzter Arbeitsspeicher (in Byte)

• gesamter Arbeitsspeicher (in Byte)

• genutzte Festplattenkapazität (in Byte)

• gesamte Festplattenkapazität (in Byte)

• Festplatten Lese-/Schreibzugriffe (in Byte/s)

• Netzwerk Lese-/Schreibzugriffe (in Byte/s)

Diese Metriken wurden gewählt, da sie es ermöglichen, die Ressourcennutzung des Sys-
tems abzulesen. Dies ist besonders relevant für die Dimensionierung der Hardwarekom-
ponenten der Rechner, auf denen die DBS in echten Anwendungsfällen eingesetzt werden
sollen. Anhand der Testergebnisse des experimentellen Vergleichs können somit Schlüsse
gezogen werden, welche DBS auf welchen Systemen für welche Anwendungsfälle beson-
ders geeignet sind.

6.1.2 Green-IT und Strommessung

Der Begriff Green-IT beschreibt Bestrebungen, IT-Systeme, wie z. B. Rechenzentren,
aber auch Rechner im privaten Umfeld, umweltfreundlicher zu gestalten [64]. Ziel ist
es dabei, größtenteils den Stromverbrauch zu senken und damit den CO2-Ausstoß zu
minimieren. Auch Aspekte wie die Senkung von Kosten sind jedoch relevant. Vermehrt
aufgekommen ist dieser Begriff um das Jahr 2008, wobei es auch bereits vorher vereinzelte
Projekte in diesem Bereich gegeben hat.

In den hier durchgeführten Experimenten soll Aufgrund der Relevanz von Green-IT zu-
sätzlich zu den Metriken, die oben genannt wurden (siehe Abschnitt 6.1), der Energie-
verbrauch der Zeitreihen-Datenbanksysteme gemessen werden. Mehr zur Art und Weise
der Messungen wird in Abschnitt 6.2.3 beschrieben.

42

6 Experimenteller Vergleich

6.2 Testsystem

Für die nachfolgenden Experimente wurde ein Testsystem entwickelt, das die Ausfüh-
rung dieser weitestgehend automatisiert. Dazu wird u. a. die Testumgebung eingerichtet,
das Zeitreihen-Datenbanksystem installiert und das entsprechende Szenario gestartet.
Zudem werden die oben genannten Metriken (siehe Abschnitt 6.1) vollautomatisch vom
Testsystem erfasst und dem jeweiligen Experiment zugeordnet.

6.2.1 Aufbau

Das Testsystem ist in zwei Teile aufgeteilt (siehe Abb. 6.1): Zum einen gibt es den Teil,
der die Verwaltung der Experimente, die Ausführung der Szenarien und das Aufzeich-
nen der Metriken übernimmt. Dieser Teil wird Testsystem-Verwaltung (TSV) genannt.
Den zweiten Teil stellt die Testumgebung (TU) dar, in der das Zeitreihen-Datenbanksys-
tem (engl. Time Series Database System bzw. TSDBS) und die Erfassung der Metriken
ausgeführt wird.

Die TSV und Metrikerfassung wurden in der Programmiersprache Rust [75] entwickelt.
Diese Sprache wurde hier gewählt, da sie zum einen eine effiziente ressourcenschonen-
de Programmierung ermöglicht. Dies ist insbesondere für die Metrikerfassung wichtig,
da so das Testergebnis so wenig wie möglich verfälscht wird. Zum anderen bietet Rust
ein statisches Typsystem und garantiert Speichersicherheit, wodurch Programmierfehler
reduziert werden können.

TSDBS

Systemmetrik-
erfassung

Experimentverwaltung

Szenarioausführung

Metrikaufzeichnung

Netzwerk-
verbindung

virtio-
Channel

Testsystem-Verwaltung (TSV) Testumgebung (TU)

Verwaltung durch
KVM/libvirt

Abbildung 6.1: Schematische Übersicht des Aufbaus des Testsystems (für UML-Kompo-
nentendiagramm siehe Kapitel 6.2.4)

43

6 Experimenteller Vergleich

In den folgenden Abschnitten wird genauer auf den Aufbau der beiden Teile des Testsys-
tems eingegangen. Details zur Einrichtung des Testsystems lassen sich im Anhang A.2
nachlesen.

6.2.2 Testumgebung (TU)

Es gibt verschiedene Möglichkeiten, die Testumgebung auszuführen, die jeweils eigene
Vor- und Nachteile haben. Nachfolgend werden diese beschrieben und die endgültige
Wahl begründet.

• direkt auf dem Wirtsystem (engl. Host): Vorteilhaft ist hier, dass die Komplexität
des Aufbaus niedrig ist und direkt über die Loopback-Netzwerkschnittstelle mit
dem DBS kommuniziert werden kann. Es treten jedoch auch folgende Probleme
auf: Zum einen stören die auf dem Wirtsystem laufenden fremden Prozesse und
das Testsystem selbst die Messergebnisse. Zum anderen ist es schwierig, zwischen
den verschiedenen DBS zu wechseln, da entweder alle DBS parallel installiert sein
müssen oder jedes DBS vor dem jeweiligen Experiment dynamisch installiert und
anschließend wieder deinstalliert werden muss.

• in einem Container : Der Container sorgt dafür, dass sich Prozesse, die darin aus-
geführt werden, in einer getrennten Gruppe zu den restlichen Prozessen des Wirtes
befinden. Weitere Details dazu lassen sich in der Linux-Kernel-Dokumentation [48]
nachlesen. Hierdurch ergibt sich der Vorteil, dass für jedes Experiment ein eigener
neuer Container erzeugt werden kann, in dem nur das jeweilige DBS installiert ist.
Durch diese Trennung stören andere Prozesse des Wirtes hier zudem weniger als die
zuvor genannte Variante. Jedoch besteht hierbei das Problem, dass bei Containern
der Kernel des Wirtsystems mitgenutzt wird, wodurch so wiederum Störeinflüsse
entstehen.

• in einer virtuellen Maschine (VM): Im Gegensatz zu Containern wird bei vir-
tuellen Maschinen ein gesamter virtueller Rechner (Gast) inklusive Prozessoren,
Arbeitsspeicher, Festplatten, Netzwerkschnittstellen etc. erstellt, wodurch die Res-
sourcen des Wirtes ineffizienter genutzt werden. Hier läuft somit ein eigenes Be-
triebssystem, welches größtenteils getrennt vom Wirt ausgeführt wird. Solange der
Wirt nicht überlastet wird, sind die Störeinflüsse auf den Gast jedoch minimal.
Zudem lassen sich in einer VM Parameter wie die Anzahl der Prozessorkerne oder
die Größe des Arbeitsspeichers frei konfigurieren.

44

6 Experimenteller Vergleich

• auf einem separaten Rechner : Bezüglich der Störungen durch andere Prozesse wäre
es optimal, die Testumgebung auf einem eigenen Rechner mit separater Hardware
zu betreiben. Allerdings ist der Aufwand hierfür deutlich größer als bei den anderen
Varianten, da die Kommunikation zum restlichen Testsystem sichergestellt werden
muss und auch hier die Installationsprobleme auftreten, die bereits in der ersten
Variante beschrieben wurden. Darüber hinaus müssen zur Testung verschiedener
Hardwarekonfigurationen manuelle Änderungen am System vorgenommen werden.

Aufgrund dieser Überlegungen wurde entschieden, die Testumgebung in einer virtuellen
Maschine (VM) auszuführen, da die reduzierte Performanz im Vergleich zu Containern
in diesem Anwendungsfall nicht relevant ist. Zudem wurde von einem separaten Rechner
abgesehen, da einerseits die benötigte Hardware nicht zur Verfügung stand und ande-
rerseits der entstehende Aufwand den Nutzen nicht gerechtfertigt hätte. Das Testsystem
wurde jedoch so entwickelt, dass mit nur geringen Änderungen die Experimente auf einem
anderen Rechner ausgeführt werden können.

Zur Virtualisierung wurde hier KVM [72] in Kombination mit libvirt [73] genutzt. KVM
ist die in den Linux-Kernel integrierte Virtualisierungssoftware, die es ermöglicht auf
Linux-Systemen virtuelle Maschinen auszuführen. Zudem bietet KVM eine Reihe an pa-
ravirtualisierten Komponenten wie z. B. Festplatten, Netzwerkkarten etc. an, für die
bereits Treiber im Linux-Kernel vorinstalliert sind, wodurch der Einrichtungsaufwand
des Gastes verringert wird. libvirt bietet eine Programmierschnittelle an, mit der die
Verwaltung von KVM automatisiert werden kann. Im Testsystem werden so automatisch
virtuelle Maschinen konfiguriert, gestartet und am Ende des Experimentes wieder ge-
stoppt. KVM und libvirt werden von der Firma RedHat entwickelt. Es wurde sich gegen
andere Virtualisierungslösungen wie Oracle VirtualBox [67] oder VMware Workstati-
on [6] entschieden, da die automatische Konfiguration bei diesen Produkten aufwändig
ist. Zudem war VMware Workstation zur Zeit dieser Entscheidung kostenpflichtig. Nach
der Übernahme von VMWare durch Broadcom wurde dies wurde jedoch mittlerweile
geändert.

45

6 Experimenteller Vergleich

Für das in der VM ausgeführte Betriebssystem gibt es zwei Anforderungen:

1. Das System soll eine realistische Umgebung für das DBS darstellen und

2. es sollen hier wie oben erwähnt die Störeinflüsse minimal sein.

Anhand dieser Anforderungen wurde sich für eine minimale Installation der Linux-Distri-
bution Debian [81] entschieden, welche bereits vorkonfiguriert als Festplattenabbild von
der Website des Projektes heruntergeladen werden kann. Gegen die Distribution Alpi-
ne [2], die auch häufig als minimales System genutzt wird, wurde sich hier entschieden, da
hier Inkompatibilitäten zu manchen DBS bestehen, weil Alpine nicht die Linux-Standard-
C-Bibliothek glibc nutzt, sondern auf die eigene Implementation musl setzt. Microsoft
Windows [49] wurde hier aufgrund der mangelnden Konfigurierbarkeit bzgl. installierten
und ausgeführten Komponenten, der hohen Ressourcennutzung im Vergleich zu Debian
und wegen nicht vorhandenen Lizenzen ebenfalls nicht genutzt.

Um das Betriebssystem nach Start der VM zu konfigurieren und das Zeitreihen-Daten-
banksystem zu installieren, wird die Automatisierungssoftware cloud-init [8] genutzt, die
von der Firma Canonical entwickelt wird. Die Software wurde für die Einrichtung von
VMs bei Cloud-Providern konzeptioniert, kann aber auch im Nicht-Cloud-Kontext ein-
gesetzt werden. Zudem ist cloud-init bereits in dem vom Debian-Projekt bereitgestellten
Festplattenabbild vorinstalliert, wodurch keine manuelle Konfiguration nötig ist. Dies
ist auch der Grund, warum diese Software genutzt wurde. Wenn die VM startet, fragt
cloud-init über HTTP bei der Konfigurationsverwaltung des Testsystems an, wie das
System eingerichtet werden muss. Die dabei entstehende Konfigurationsdatei wird vom
Testsystem im yaml-Format automatisch generiert.

In der Testumgebung wird neben dem Zeitreihen-Datenbanksystem die Systemmetri-
kerfassung ausgeführt. Diese zeichnet die Systemmetriken der Testumgebung (siehe Ab-
schnitt 6.1.1) mithilfe der Bibliothek sysinfo [20] auf und sendet sie über einen virtio-
Channel an die TSV. Virtio-Channels sind bidirektionale Übertragungskanäle, die von
KVM bereitgestellt werden und für die bereits Treiber im Linux-Kernel verfügbar sind.
Sie stellen einen Weg dar, um zwischen Wirt und Gast zu kommunizieren. Ein solcher
Kanal wurde genutzt, um sicherzustellen, dass die Messergebnisse nicht beeinträchtigt
werden. Im Gegensatz zur Alternative, bei der die Daten über die Netzwerkschnittstelle
übertragen werden – von der ebenfalls Messwerte erfasst werden – wird die Messung so
nicht gestört.

46

6 Experimenteller Vergleich

6.2.3 Testsystem-Verwaltung (TSV)

Die Testsystem-Verwaltung besteht im Kern aus vier Komponenten, die jeweils folgende
Aufgaben besitzen:

1. Szenarioausführung : Ausführung der Szenarios inkl. Durchführung der Anfragen

2. Metrikaufzeichnung und Strommessung : Aufzeichnung der Metriken, die von der
Systemmetrikerfassung und der Strommessung gemessen wurden. Zusätzlich Spei-
cherung der Latenzen der Anfragen

3. VM-Verwaltung : Einrichtung der VMs inkl. Konfiguration von Ressourcen und
Kommunikation mit libvirt

4. Experimentverwaltung : Steuerung des Ablaufs der Experimente bzw. Koordination
der anderen Komponenten

In den folgenden Abschnitten wird die Funktionsweise der Komponenten genauer be-
schrieben.

Szenarioausführung

Diese Komponente stellt die Ausführung der Szenarios im Testsystem dar. Szenarios
sind dabei immer in zwei Schritte geteilt: Der erste Teil – die Initialisierung – erstellt das
Schema des DBS, falls es nicht schemafrei ist, und befüllt das DBS je nach Szenario mit
den entsprechenden Testdaten. Der zweite Teil des Szenarios befasst sich mit der Aus-
führung der Anfragen. Dabei wird jeweils die Latenz der Anfragen in dieser Komponente
gemessen und an die Metrikerfassungskomponente übertragen.

Die derzeitige Implementation des Testsystems sieht vor, dass Szenarios in Rust geschrie-
ben werden können, wobei es durchaus möglich ist, ein externes Programm wie Python
als Szenario zu nutzen. In diesem Fall könnte die Mitteilung der Latenz-Werte über die
Standard-Ausgabe (stdout) des Python Prozesses erfolgen.

47

6 Experimenteller Vergleich

Metrikaufzeichnung und Strommessung

Die Metrikaufzeichnung (MA) stellt das Gegenstück zu der Systemmetrikerfassung (SME)
dar. Die Kommunikation mit der SME geschieht, wie bereits in Abschnitt 6.2.2 beschrie-
ben, über einen virtio-Channel, der auf der Seite des Hosts durch einen UNIX-Socket
repräsentiert wird.

Um den Stromverbrauch der DBS zu messen, wird die Bibliothek „scaphandre“ [4] ge-
nutzt, die die in Linux integrierte intel-rapl-Schnittstelle verwendet. Diese Schnittstelle
ist dabei nicht nur mit Prozessoren der Firma Intel, sondern auch mit AMD-Prozessoren
kompatibel. Diese Schnittstelle ermöglicht es, den Energieverbrauch der CPU in µJ (mi-
kro Joule) abzufragen, dieser wird jedoch in µW (mikro Watt) umgerechnet, um einen
zeitunabhängigen Wert zu erhalten. Zu beachten ist dabei, dass lediglich der Verbrauch
des Prozessors gemessen wird. Andere Verbraucher wie Hauptplatine, Festplatten, etc.
werden nicht gemessen, da es für diese keine bzw. keine einheitliche Schnittstelle gibt.
Zudem müsste hier aus dem Gesamtverbrauch der Verbrauch der VM extrahiert werden.
Dies wäre jedoch nur schwer möglich, da die hierfür benötigten Nutzungswerte nicht
verfügbar sind.

Wenn Metriken von der MA empfangen werden, werden sie zunächst bis zum Abschluss
des jeweiligen Experimentes in einer Datenstruktur im Arbeitsspeicher abgelegt, die die
drei Metrikkategorien – Systemmetriken, Stromverbrauch und Latenzen – jeweils in einer
eigenen Liste speichert. Anschließend werden die Daten in ihrer Rohform in eine CSV-
Datei pro Metrikkategorie geschrieben. Zusätzlich werden statistische Kennzahlen wie das
arithmetische Mittel, die Standardabweichung, der Median etc. von der Metrikerfassung
berechnet und gespeichert.

VM-Verwaltung

Diese Komponente übernimmt die Konfiguration und Steuerung der VMs, für die libvirt
und cloud-init genutzt werden, die bereits im Abschnitt 6.2.2 kurz erwähnt wurden.

Eine virtuelle Maschine basiert in libvirt auf einer XML-Datei, die eine Beschreibung
ihrer Eigenschaften enthält, wie z. B. Name, Prozessoranzahl, Arbeitsspeicher und an-
geschlossene (virtuelle) Geräte. Zudem wird in diesem XML-Dokument die Adresse des
cloud-init-Konfigurationsendpunktes angegeben, über den das Betriebssystem der VM
eingerichtet wird. Wenn eine VM vom Testsystem erstellt werden soll, wird eine neue

48

6 Experimenteller Vergleich

XML-Datei anhand einer Vorlage mit den gewünschten Parametern gefüllt und an lib-
virt übergeben. Danach wird die so neu erstellte VM automatisch gestartet.

Damit neue VMs immer mit einem neu installierten Betriebssystem starten können, wird
vor Erstellung der VMs ein so genannter „linked clone“ (verknüpfte Kopie) vom Grund-
Festplattenabbild erstellt, der lediglich die vorgenommenen Änderungen speichert. Nach-
dem eine VM nicht mehr benötigt wird, kann diese Kopie gelöscht werden.

Experimentverwaltung

Die Experimentverwaltung ist der Teil des TSV, der alle anderen Komponenten steuert.
Ihr Ziel ist es, für jedes Szenario jede Kombination von Systemkonfiguration und Anfra-
ge durchzuführen. Zudem wird jede Anfrage zehnmal ausgeführt, damit Schwankungen
zwischen den einzelnen Durchläufen berücksichtigt werden können.

Für die Ausführung der Experimente eines Szenarios auf einem DBS werden die folgenden
Schritte durchgeführt:

1. Zunächst wird eine VM gestartet, in der das jeweilige DBS installiert und im An-
schluss das Szenario initialisiert wird. Das durch diesen Vorgang entstandene Fest-
plattenabbild mit installiertem DBS und eingefügten Daten wird bei der Durch-
führung der Experimente als Grundlage genutzt. Hierdurch wird vor allem Zeit
gespart, da jedes Szenario pro DBS nur ein Mal initialisiert werden muss.

2. Im zweiten Schritt wird jede Anfrage für jede in den Rahmenbedingungen des Sze-
narios erwähnte Systemkonfiguration zehnmal in einer eigenen VM ausgeführt. So
wird sichergestellt, dass sich die Anfragen untereinander nicht beeinflussen können.

6.2.4 Architektur

In diesem Abschnitt wird die Architektur der Komponenten des Testsystems beschrie-
ben. Dabei werden die Bezeichnungen der Komponenten genutzt, die auch im Quelltext
verwendet wurden. Auf die Klassen der Komponenten wurde hier verzichtet, da hier die
Struktur der Komponenten betrachtet werden soll.

Abbbildung 6.2 zeigt eine Kombination der ersten Schicht des UML-Komponentendia-
gramms und der Verteilungssicht der Komponenten auf die beiden Teile des System-
sytems – der Testverwaltung (databasesystem_tester) und der Metrikerfassung

49

6 Experimenteller Vergleich

(instrumentation_gatherer). Die Bezeichnungen und Funktionen der Komponen-
ten hier entsprechen denen aus Abschnitt 6.2.3 wie folgt:

• testcase: Experimentverwaltung

• vm: VM-Verwaltung

• scenario: Szenarioausführung

• metrics: Metrikaufzeichnung und Strommessung

Bis auf die Komponente testcase bestehen alle Komponenten wiederum aus weiteren
Komponenten, die im Folgenden beschrieben werden.

databasesystem_tester

«Component»
scenario

«Component»
testcase

«Component»
metrics

«Component»
vm

instrumentation_gatherer

«Component»
metrics

Abbildung 6.2: Schicht 1 des UML-Komponentendiagramms bzw. Verteilungssicht

50

6 Experimenteller Vergleich

Komponente „vm“

«Component»
vm

«Component»
vm_manager

«Component»
vm_config

«Component»
cloudinit

Abbildung 6.3: Schicht 2 des UML-Komponentendiagramms der Komponente vm

Die Komponente vm (Abb. 6.3) besteht aus drei Unterkomponenten: Der vm_manager
kommuniziert zum libvirt und verwaltet den Lebenszyklus und die Konfiguration der
VMs. Die Komponente vm_config liest eine Konfigurationsdatei ein, die unter ande-
rem Skripte zur Installation der Datenbanksysteme sowie allgemeine Einstellungen für
die Testumgebung, wie etwa die Netzwerkkonfiguration, enthält. Diese so eingelesene
Konfiguration wir vom vm_manager an die Komponente cloudinit weitergereicht,
die diese im entsprechenden yaml-Format für die VM anbietet (siehe Abschnitt 6.2.2).

Komponente „scenario“

«Component»
scenario

«Component»
scenario_a

«Component»
scenario_b

«Component»
scenario_c

Abbildung 6.4: Schicht 2 des UML-Komponentendiagramms der Komponente scenario

In der Komponente scenario (Abb. 6.4) gibt es für jedes Szenario wiederum eine Un-
terkomponente. Der Aufbau dieser Unterkomponenten hängt dabei von den Szenarios
ab. Szenario A und C besitzen jeweils eine Generatorkomponente, die die jeweiligen
Testdaten erzeugt. Szenario B hat diese Komponente nicht, da hier lediglich aus den
parquet-Dateien des Datensatzes gelesen werden muss. Des Weiteren haben alle Szena-
rios eine Komponente, die die Verbindungen zu den verschiedenen Datenbanksystemen
abstrahiert. Weitere Details zur Implementierung der Szenarios befinden sich im Ab-
schnitt 6.3

51

6 Experimenteller Vergleich

Komponente „metrics“

«Component»
metrics

«Component»
energy

«Component»
receiver

Abbildung 6.5: Schicht 2 des UML-Komponentendiagramms der Komponente metics

Die Komponente metrics (Abb. 6.5) besteht aus zwei Teilen. Zum einen der energy-
Komponente, die den Stromverbrauch der VM misst und der receiver-Komponente,
die die Gegenstelle zur Systemmetrikerfassung in der Testumgebung darstellt.

6.3 Implementierung der Szenarios

Die folgenden Unterabschnitte zeigen, wie die Szenarios im Testsystem aufgebaut und
implementiert sind. Zudem wird auf die Anfragen an die Zeitreihen-Datenbanksysteme
eingegangen.

6.3.1 Aufbau der Szenarios

Wie bereits in Abschnitt 6.2.3 erwähnt, bestehen die Szenarios aus zwei Stufen – Initia-
lisierung und Ausführung der Anfragen. Diese Struktur wird im Quelltext durch eine
Schnittstelle (siehe Abb. 6.6) abgebildet, die zwei entsprechende Methoden besitzt. Zu-
sätzlich hat diese Schnittstelle Methoden, über die der Name, die möglichen Anfragen
und die zu testenden Systemkonfigurationen des Szenarios abgefragt werden können. Je-
des der Szenarios implementiert diese Schnittstelle, wodurch die Experimentverwaltung
(bzw. die Komponente testcase) keine szenariospezifische Logik benötigt.

Den Methoden run() und init() wird über deren Parameter das zu verwendende
DBS in Form eines Enums inkl. der Adresse und den Zugangsdaten übergeben. Anhand
dieser Informationen stellen die Szenarios eine Verbindung zum DBS her, wobei in Sze-
nario A mehrere Verbindungen aufgebaut werden. Bei der Methode run() wird zudem

52

6 Experimenteller Vergleich

die auszuführende Anfrage und ein Bezeichner des aktuellen Durchlaufs in Form einer
Zeichenkette über zwei Parameter mitgeteilt.

«Interface»
Scenario

+ init(Database, IpAddr, Option<String>): Result<()>

+ run(Database, String, String, IpAddr, Option<String>):
Result<()>

+ get_name(): String

+ get_queries(): List<String>

+ get_system_configurations(): List<SystemConfiguration>

+ get_system_init_configurations():
List<SystemConfiguration>

<<Enumeration>>
Database

InfluxDB

TimescaleDB

MongoDB

PostgreSQL

Abbildung 6.6: UML-Diagramm der Schnittstelle Scenario und des Enum Database

Um auch die Szenario-Implementierungen möglichst generisch bezüglich der Datenbank-
systeme zu halten, hat jedes Szenario eine eigene Datenbank-Schicht, die pro DBS jeweils
jede Anfrage implementiert. Hier wird ebenfalls eine Schnittstelle genutzt, in der für jede
Anfrage eine entsprechende Methode definiert ist.

6.3.2 Szenarioablauf

Das UML-Sequenzdiagramm in Abbildung 6.7 stellt den vereinfachten Ablauf eines Sze-
narios dar.

53

6 Experimenteller Vergleich

TSDBSTestfall Szenario

VM konfi-
gurieren und

starten

TSV

Testfall starten

Metrik-
aufzeichnung

Schema
initialisieren

optional

Testdaten
importieren

Messwerte aggregieren und als
CSV-Datei speichern

Messung startenoptional

Messung stoppenoptional

wiederhole für
jedes DBS

warte 10 s

VM stoppen

KVM/libvirt
(VM)

Szenario initialisieren

Metrikaufzeichnung initialisieren

prüfe Verbindungwiederhole
bis Antwort

Metrikaufzeichnung stoppen

(a) Teil 1/2 (Fortsetzung auf der folgenden Seite)

54

6 Experimenteller Vergleich

VM konfigu-
rieren und
starten mit

Festplattenklon
von

Initialisierungs-
VM

Metrikaufzeichnung initialisieren

warte 10 s

Anfrage
durchführen

VM stoppen

TSDBSTestfall SzenarioTSV Metrik-
aufzeichnung

KVM/libvirt
(VM)

wiederhole
für jede
Anfrage

wiederhole
10 Mal

Messung starten

Messung stoppen

Messwerte aggregieren und als
CSV-Datei speichern

Metrikaufzeichnung stoppen

Szenario mit Anfrage X starten

prüfe Verbindungwiederhole
bis

Antwort

(b) Teil 2/2

Abbildung 6.7: Ablauf eines Szenarios als UML-Sequenzdiagramm

55

6 Experimenteller Vergleich

6.3.3 Implementierung der Generatoren

Die Generatoren aus Szenario A und C sind alle als Iterator implementiert. Iteratoren in
der Programmiersprache Rust besitzen im Kern die next()-Methode. Sie liefert jeweils
das nächste Element des Generators, wenn der Generator nicht bereits alle zu generie-
rende Elemente ausgegeben hat. Für die Generatoren wurde in dieser Methode jeweils
das in Kapitel 4 beschriebene Verfahren implementiert. Da Iteratoren ein grundlegendes
Konzept in der Sprache sind, sind sie gut darin integriert und können so flexibel genutzt
werden.

Damit die Experimente reproduzierbar sind, wurde für die Zufallszahlengeneratoren je-
weils ein so genannter Seedwert gesetzt, der dafür sorgt, dass immer die gleiche zufälligen
Werte erzeugt werden. Zu beachten ist dabei jedoch, dass in zukünftigen Versionen der
Zufallszahlen-Bibliothek andere Zahlenfolgen generiert werden könnten.

Die Parameter der Generatoren für die Szenarios A und C wurden experimentell so
bestimmt, dass sie möglichst realistisch anmutende Daten erzeugen. In folgenden beiden
Unterabschnitten werden die ermittelten Werte der Generatoren genannt.

Parameter der Generatoren von Szenario A

• Generator-Erzeugungsrate: 3 s

• Maximale Generatoranzahl: 400

• Generierungsintervalle der Generatoren:

– elektrische Verbraucher: 1 s

– Temperatur: 2 s

– Fenster und Türen: ≈ 50 s

– Beleuchtung: ≈ 50 s

• Parameter der Temperaturgeneratoren:

– Periode: p = 86400

– Temperaturunterschied zwischen Tag und Nacht: v = 4

56

6 Experimenteller Vergleich

– Verschiebung: s = 0

– Nachttemperatur: o = 17

– Stauchung: d = 0,05

Parameter der Generatoren von Szenario C

• Generator Prozessorauslastung:

– angestrebte Grundlast: g = 0,2

– Lastrauschen: v = 0,01

– Korrekturfaktor: x = 0,005

– Spitzenwahrscheinlichkeit: ps = 0,001

– Spitzenhöhe: µh = 0,8 σh = 0,15

– Spitzendauer: µd = 200 σd = 500

– Spitzenkorrekturfaktor: x′ = 0,02

• Generator Arbeitsspeicherauslastung:

– angestrebte Speichernutzung: µa = 2 000 000 σa = 500 000

– Lastrauschen: v = 2000

– Korrekturfaktor: x = 0,00005

6.3.4 Einfügen der Testdaten

Zu Beginn jedes Szenarios müssen zunächst die Testdaten für das jeweilige Szenario in
das DBS einfügt werden. Bei Szenario A geschieht dies wie in Kapitel 4.2.2 beschrieben,
indem pro simuliertem Gerät eine Verbindung zum DBS aufgebaut wird und die Daten
im Anschluss in Echtzeit übertragen werden. Da bei Szenario B und C nur der Anfrage-
prozess betrachtet wird, können die Daten hier so schnell eingefügt werden, wie es das
DBS ermöglicht. Dazu werden die einzelnen Datenpunkte in Blöcken zusammengefasst
und jeweils am Stück übertragen. Bei InfluxDB wird das so genannte „Line protocol“ [33]

57

6 Experimenteller Vergleich

genutzt, bei dem jeder Datenpunkt als eine Zeile einer Zeichenkette an eine HTTP-
Schnittstelle übertragen wird. In MongoDB wird die Funktion insertMany() [52] des
Treibers genutzt, mit der mehrere Dokumente über einen Aufruf eingefügt werden kön-
nen. Bei TimescaleDB und PostgreSQL wird die COPY FROM STDIN Funktionalität [86]
von SQL genutzt, die es erlaubt, CSV-Daten direkt an die Datenbank zu senden.

6.3.5 Anfragen

Dieser Abschnitt zeigt die Syntax und Komplexität der Anfragen beispielhaft anhand der
vierten Anfrage von Szenario B (siehe Abschnitt 4.3.1), die die Stunde mit den meisten
Taxifahrten berechnen soll. Diese Anfrage wurde für dieses Beispiel gewählt, da sie die
komplexeste Anfrage aller Szenarios darstellt.

InfluxDB

import "date"

from(bucket: "bucket")
|> range(start: 0)
|> filter(fn: (r) => r["_measurement"] == "trips")
|> filter(fn: (r) => r["_field"] == "passenger_count")
|> aggregateWindow(every: 1h, fn: sum, createEmpty: false)
|> drop(columns: ["_start", "_stop"])
|> map(fn: (r) => ({r with hour: date.hour(t: r._time)}))
|> group(columns: ["hour"], mode: "by")
|> sum(column: "_value")
|> group()
|> sort(columns: ["hour"], desc: true)
|> limit(n: 1)
|> yield(name: "count")

Abbildung 6.8: Vierte Anfrage von Szenario B in Flux für InfluxDB

In der in Abbildung 6.8 gezeigten Anfrage wird die Anfragesprache Flux verwendet. Diese
wird zwar, wie in Abschnitt 3.2 erwähnt, mit der kommenden Version von InfluxDB nicht
mehr weiterentwickelt, jedoch ist sie für InfluxDB v2 derzeit die empfohlene Variante.

In der Anfrage werden mit range(start: 0) zunächst alle Datenpunkte ab dem Start-
zeitpunkt angefragt – dies ist notwendig, da InfluxDB sonst einen Fehler ausgeben würde.

58

6 Experimenteller Vergleich

Anschließend werden mittels der zwei filter()-Funktionen nur die Datenpunkte der
Zeitreihe mit den Fahrgastzahlen ausgewählt, welche dann in Ein-Stunden-Intervallen
aufaddiert werden. Die folgenden Zeilen extrahieren die Uhrzeit, addieren alle Werte der
jeweiligen Stunde und geben die Stunde mit den meisten Fahrgästen aus.

TimescaleDB

SELECT EXTRACT(HOUR FROM bucket_hour) as hour,
SUM(bucket_count) as count

FROM (
SELECT time_bucket(’1 hour’, tpep_pickup_datetime)

as bucket_hour,
SUM(*) as bucket_count

FROM nyc_taxi_trips
GROUP BY bucket_hour

)
GROUP BY hour
ORDER BY count DESC
LIMIT 1;

Abbildung 6.9: Vierte Anfrage von Szenario B in erweitertem SQL für TimescaleDB

Abbildung 6.9 zeigt die Anfrage in erweitertem SQL für TimescaleDB. Sie besteht dabei
aus zwei ineinander geschachtelten SQL-Ausdrücken. Der innere Teil gruppiert die Daten
in Ein-Stunden-Intervalle mithilfe der time_bucket()-Funktion und aggregiert sie,
indem sie addiert werden. Die resultierenden Daten werden dann durch den äußeren
Ausdruck nach ihrer zugehörigen Stunde gruppiert und summiert. Schlussendlich wird
die Stunde mit den meisten Fahrgästen zurückgegeben.

MongoDB

Für die Anfrage bei MongoDB (siehe Abb. 6.10) wird hier eine MQL-Pipeline (siehe
Kapitel 5.2), die aus vier Schritten besteht, genutzt. Der erste Schritt gruppiert und
addiert die Daten anhand der jeweiligen Stunde. Danach werden durch die $project-
Stufe die gewünschten Felder der Dokumente ausgewählt. In den letzten beiden Stufen
werden die Ergebnisse absteigend sortiert und das größte Ergebnis ausgegeben.

59

6 Experimenteller Vergleich

[{ $group: {
_id: {

hour: {
$hour: { date: "$tpep_pickup_datetime" }

}
},
group_count: { $sum: "$passenger_count" }

} },
{ $project: {

_id: 0,
hour: "$_id.hour",
group_count: 1

} },
{ $sort: { hour: -1 } },
{ $limit: 1 }]

Abbildung 6.10: Vierte Anfrage von Szenario B als MQL-Pipeline für Mongodb

Postgresql

SELECT EXTRACT(HOUR FROM tpep_pickup_datetime) as hour,
SUM(*) as count

FROM nyc_taxi_trips
GROUP BY hour
ORDER BY count DESC
LIMIT 1;

Abbildung 6.11: Vierte Anfrage von Szenario B in SQL für PostgreSQL

Die Anfrage des Baseline-DBS PostgreSQL (siehe Abb. 6.11) ist die kürzeste der vier
Anfragen. Sie extrahiert für jede Zeile der Tabelle die jeweilige Stunde, gruppiert die
Daten anschließend nach dieser, addiert sie und gibt das größte Ergebnis aus.

6.4 Datensätze

Die drei Szenarios nutzen jeweils unterschiedliche Datensätze. Szenario B verwendet da-
bei einen Datensatz, bestehend aus realen Daten von Taxis aus New York City (siehe
Kapitel 4.3), wohingegen Szenario A und C mit synthetisch generierten Daten arbeiten.
Diese werden mithilfe der Generatoren, die in den jeweiligen Kapiteln beschrieben sind,

60

6 Experimenteller Vergleich

erzeugt (siehe Kapitel 4.2 und 4.4). Die Parameter der Generatoren lassen sich dabei in
Kapitel 6.3.3 ersichtlich.

n Szenario A werden Generatoren erzeugt, deren Anzahl bis zu 400 steigt und die gleich-
mäßig über die verschiedenen Kategorien verteilt sind. Hierbei wird sichergestellt, dass
die Menge der generierten Daten immer gleich groß ist. Die Simulation der Geräte und
Sensoren wird hier in Echtzeit ausgeführt.

In Szenario C wird bei jedem Zeitschritt (100 ms) mit einer Wahrscheinlichkeit von 0,05

eine neue Instanz bzw. ein Generator, der diese simuliert, erzeugt. Mit dieser Wahrschein-
lichkeit kann dabei die Anzahl der Instanzen und damit auch die Anzahl der Zeitreihen
bestimmt werden. Die gesamte simulierte Zeit beträgt dabei einen Tag, die jedoch so
schnell wie möglich ausgeführt wird.

Die folgende Tabelle 6.1 zeigt u. a. die Anzahl der Datenpunkte und der Zeitreihen der
Datensätze:

Tabelle 6.1: Übersicht der Datensätze
Szenario Datenpunkte Zeitreihen Art der Daten

A ≈ 100 Tsd. 400 snythetisch
B ≈ 337 Mio. 3 real
C ≈ 170 Mio. ≈ 100 Tsd. synthetisch

6.5 Ergebnisse

Die folgenden Abschnitte stellen die Ergebnisse der Experimente pro Szenario dar und
beschreiben diese. Am Anfang jedes Szenarioabschnitts befindet sich eine Tabelle, die
die genutzte Festplattenkapazität pro DBS zeigt. Zudem werden für jede Anfrage ein
Boxplot der Latenzen und sechs Diagramme dargestellt, die die Systemmetriken (siehe
Abschnitt 6.1.1) und die Energienutzung der Testumgebung beinhalten. Letztere Dia-
gramme werden im Folgenden nur erwähnt und nicht genau beschrieben, da ihr Aufbau
immer gleich ist: In einem Zwei-mal-Drei-Raster zeigen die Diagramme in der Reihen-
folge von links nach rechts und von oben nach unten die durchschnittliche Prozesso-
rauslastung, die durchschnittliche Arbeitsspeichernutzung, die Summe der von der Fest-
platte gelesenen Daten, die Summe auf die Festplatte geschriebenen Daten, die Sum-
me der Datenmenge der Netzwerk Ein- und Ausgabe und die Summe des Energie-
verbrauchs der DBS. Aus Platzgründen wurden die Bezeichnungen der DBS wie folgt

61

6 Experimenteller Vergleich

abgekürzt: I =̂ InfluxDB, T =̂ TimescaleDB, M =̂ MongoDB und P =̂ PostgreSQL.
Des Weiteren werden in den Beschreibungen der Latenzdiagramme die Mediane angege-
ben. Für Szenario A werden außerdem die Latenzen des Einfügeprozesses gezeigt. Alle
Diagramme zeigen dabei die getesteten Systemkonfigurationen in Gruppen von vier für
Szenario A und in Gruppen von drei für Szenario B und C. Zudem wird für Szenario B
und C nur die Anzahl der Prozessorkerne dargestellt, da sich die Größe des Arbeitsspei-
chers hier nicht ändert.

Die Rohdaten aus denen die folgenden Diagramme erzeugt wurden, sind zum einen auf
der beigefügten CD und unter der im Anhang A.2 genannten Internet-Adresse im CSV-
Format verfügbar.

6.5.1 Szenario A

Tabelle 6.2 zeigt die genutzte Festplattenkapazität der DBS:

Tabelle 6.2: Genutzte Festplattenkapazitäten pro DBS
InfluxDB TimescaleDB MongoDB PostgreSQL

Festplattennutzung 5,09 GB 5,37 GB 5,79 GB 5,26 GB

Einfügen der Daten

Die Diagramme in Abbildung 6.12 zeigen die Einfügelatenzen der Zeitreihen-Datenbank-
systeme mit den jeweiligen Systemkonfigurationen. Dabei ist zu beachten, dass die Dia-
gramme teils keine Werte bis zu einer Anzahl von 400 Generatoren darstellen, da in den
entsprechenden Fällen das DBS vor Erreichen dieser Generatoranzahl abgestürzt ist. Dies
ist insbesondere bei allen TimescaleDB-Experimenten und bei den PostgreSQL-Experi-
menten der Fall, die 0,5 GB Arbeitsspeicher nutzen. Des Weiteren wurde für MongoDB
eine Skala von null bis zehn Millisekunden verwendet, da die Ergebnisse so besser sicht-
bar werden. Alle anderen Diagramme nutzen im Gegensatz dazu Skalen, die von null bis
300 reichen.

62

6 Experimenteller Vergleich

0 100 200 300 400
0

100

200

300

La
te

nz
[m

s]
InfluxDB 1 Kern 0.5 GB RAM

0 100 200 300 400
0

100

200

300
InfluxDB 1 Kern 1 GB RAM

0 100 200 300 400
0

100

200

300

La
te

nz
[m

s]

InfluxDB 2 Kerne 0.5 GB RAM

0 100 200 300 400
0

100

200

300
InfluxDB 2 Kerne 1 GB RAM

0 100 200 300 400
0

100

200

300

La
te

nz
[m

s]

TimescaleDB 1 Kern 0.5 GB RAM

0 100 200 300 400
0

100

200

300
TimescaleDB 1 Kern 1 GB RAM

0 100 200 300 400
0

100

200

300

Generatoren

La
te

nz
[m

s]

TimescaleDB 2 Kerne 0.5 GB RAM

0 100 200 300 400
0

100

200

300

Generatoren

TimescaleDB 2 Kerne 1 GB RAM

(a) Teil 1/2 (Fortsetzung auf der folgenden Seite)

63

6 Experimenteller Vergleich

0 100 200 300 400
0

2

4

6

8

10

La
te

nz
[m

s]
MongoDB 1 Kern 0.5 GB RAM

0 100 200 300 400
0

2

4

6

8

10

MongoDB 1 Kern 1 GB RAM

0 100 200 300 400
0

2

4

6

8

10

La
te

nz
[m

s]

MongoDB 2 Kerne 0.5 GB RAM

0 100 200 300 400
0

2

4

6

8

10

MongoDB 2 Kerne 1 GB RAM

0 100 200 300 400
0

100

200

300

La
te

nz
[m

s]

PostgreSQL 1 Kern 0.5 GB RAM

0 100 200 300 400
0

100

200

300

PostgreSQL 1 Kern 1 GB RAM

0 100 200 300 400
0

100

200

300

Generatoren

La
te

nz
[m

s]

PostgreSQL 2 Kerne 0.5 GB RAM

0 100 200 300 400
0

100

200

300

Generatoren

PostgreSQL 2 Kerne 1 GB RAM

(b) Teil 2/2

Abbildung 6.12: Einfügelatenzen der DBS mit jeweiligen Systemkonfigurationen für Sze-
nario A

64

6 Experimenteller Vergleich

Anfrage 1 – Abfrage der Anzahl von Öffnungen von Fenstern und Türen

1
K

0,
5

G
B

1
K

1
G

B

2
K

0,
5

G
B

2
K

1
G

B

1
K

0,
5

G
B

1
K

1
G

B

2
K

0,
5

G
B

2
K

1
G

B

1
K

0,
5

G
B

1
K

1
G

B

2
K

0,
5

G
B

2
K

1
G

B

1
K

0,
5

G
B

1
K

1
G

B

2
K

0,
5

G
B

2
K

1
G

B0

1

2

3

4

5

InfluxDB TimescaleDB MongoDB PostgreSQL

La
te

nz
[m

s]

Abbildung 6.13: Latenzen der ersten Anfrage von Szenario A (K =̂ Prozessorkerne)

Abbildung 6.13 zeigt die Latenzen der ersten Anfrage von Szenario A in Abhängigkeit
vom jeweiligen DBS und der entsprechenden Systemkonfiguration. Die aufsteigend sor-
tierten Medianwerte der Latenzen sind dabei wie folgt:

1. TimescaleDB : ca. 0,11 Millisekunden

2. PostgreSQL: ca. 0,12 Millisekunden

3. MongoDB : ca. 0,61 Millisekunden

4. InfluxDB : ca. 3,13 bis 3,20 Millisekunden

Abbildung 6.14 stellt wie eingangs beschrieben (siehe Abschnitt 6.5) die System- und
Energiemetriken der Testumgebung dar.

65

6 Experimenteller Vergleich

I T M P
0

20

40

60

80

100

∅
C

P
U

-L
as

t
[%

]
CPU-Last

I T M P
0

0 1

0 2

0 3

∅
R

A
M

-N
ut

zu
ng

[G
iB

]

RAM-Nutzung

I T M P
0

20

40

60

80

G
el

es
en

e
D

at
en

[M
iB

]

Gelesene Daten

I T M P
0

0 5

1

1 5
G

es
ch

ri
eb

en
e

D
at

en
[M

iB
]

Geschriebene Daten

I T M P
0

200

400

600

N
et

zw
er

k
E

in
-/

A
us

ga
be

[K
iB

]

Netzwerk Ein-/Ausgabe

I T M P
0

20

40

60

80

E
ne

rg
ie

[J
]

Energie

1 Kern 0,5 GB RAM 1 Kern 1 GB RAM
2 Kerne 0,5 GB RAM 2 Kerne 1 GB RAM

Abbildung 6.14: System- und Energiemetriken der ersten Anfrage von Szenario A
(I =̂ InfluxDB, T =̂ TimescaleDB, M =̂ MongoDB, P =̂ PostgreSQL)

66

6 Experimenteller Vergleich

Anfrage 2 – Abfrage des Gesamtstromverbrauchs

1
K

0,
5

G
B

1
K

1
G

B

2
K

0,
5

G
B

2
K

1
G

B

1
K

0,
5

G
B

1
K

1
G

B

2
K

0,
5

G
B

2
K

1
G

B

1
K

0,
5

G
B

1
K

1
G

B

2
K

0,
5

G
B

2
K

1
G

B

1
K

0,
5

G
B

1
K

1
G

B

2
K

0,
5

G
B

2
K

1
G

B0

2

4

6

8

InfluxDB TimescaleDB MongoDB PostgreSQL

La
te

nz
[m

s]

Abbildung 6.15: Latenzen der zweiten Anfrage von Szenario A (K =̂ Prozessorkerne)

Abbildung 6.15 zeigt die Latenzen der zweiten Anfrage von Szenario A in Abhängig-
keit vom jeweiligen DBS und der entsprechenden Systemkonfiguration. Die aufsteigend
sortierten Medianwerte der Latenzen sind dabei wie folgt:

1. MongoDB : ca. 1,74 Millisekunden

2. PostgreSQL: ca. 3,18 bis 3,20 Millisekunden

3. TimescaleDB : ca. 3,48 bis 3,51 Millisekunden

4. InfluxDB : ca. 5,82 bis 6,32 Millisekunden

Abbildung 6.16 stellt wie eingangs beschrieben (siehe Abschnitt 6.5) die System- und
Energiemetriken der Testumgebung dar.

67

6 Experimenteller Vergleich

I T M P
0

20

40

60

80

100

∅
C

P
U

-L
as

t
[%

]
CPU-Last

I T M P
0

0,1

0,2

0,3

∅
R

A
M

-N
ut

zu
ng

[G
iB

]

RAM-Nutzung

I T M P
0

20

40

60

80

100

G
el

es
en

e
D

at
en

[M
iB

]

Gelesene Daten

I T M P
0

0,5

1

1,5

2
G

es
ch

ri
eb

en
e

D
at

en
[M

iB
]

Geschriebene Daten

I T M P
0

1 000

2 000

N
et

zw
er

k
E

in
-/

A
us

ga
be

[K
iB

]

Netzwerk Ein-/Ausgabe

I T M P
0

50

100

150

E
ne

rg
ie

[J
]

Energie

1 Kern 0,5 GB RAM 1 Kern 1 GB RAM
2 Kerne 0,5 GB RAM 2 Kerne 1 GB RAM

Abbildung 6.16: System- und Energiemetriken der zweiten Anfrage von Szenario A
(I =̂ InfluxDB, T =̂ TimescaleDB, M =̂ MongoDB, P =̂ PostgreSQL)

68

6 Experimenteller Vergleich

Anfrage 3 – Abfrage der minütlichen Durchschnittstemperatur

1
K

0,
5

G
B

1
K

1
G

B

2
K

0,
5

G
B

2
K

1
G

B

1
K

0,
5

G
B

1
K

1
G

B

2
K

0,
5

G
B

2
K

1
G

B

1
K

0,
5

G
B

1
K

1
G

B

2
K

0,
5

G
B

2
K

1
G

B

1
K

0,
5

G
B

1
K

1
G

B

2
K

0,
5

G
B

2
K

1
G

B0

5

10

15

20

InfluxDB TimescaleDB MongoDB PostgreSQL

La
te

nz
[m

s]

Abbildung 6.17: Latenzen der dritten Anfrage von Szenario A (K =̂ Prozessorkerne)

Abbildung 6.17 zeigt die Latenzen der dritten Anfrage von Szenario A in Abhängig-
keit vom jeweiligen DBS und der entsprechenden Systemkonfiguration. Die aufsteigend
sortierten Medianwerte der Latenzen sind dabei wie folgt:

1. MongoDB : ca. 4,72 und 4,76 Millisekunden

2. InfluxDB : ca. 10,67 bis 11,17 Millisekunden

3. TimescaleDB : ca. 17,67 bis 18,07 Millisekunden

4. PostgreSQL: ca. 18,14 bis 18,68 Millisekunden

Abbildung 6.18 stellt wie eingangs beschrieben (siehe Abschnitt 6.5) die System- und
Energiemetriken der Testumgebung dar.

69

6 Experimenteller Vergleich

I T M P
0

50

100

∅
C

P
U

-L
as

t
[%

]
CPU-Last

I T M P
0

0,1

0,2

0,3

∅
R

A
M

-N
ut

zu
ng

[G
iB

]

RAM-Nutzung

I T M P
0

50

100

G
el

es
en

e
D

at
en

[M
iB

]

Gelesene Daten

I T M P
0

1

2

G
es

ch
ri

eb
en

e
D

at
en

[M
iB

]

Geschriebene Daten

I T M P
0

2

4

6

8

·105

N
et

zw
er

k
E

in
-/

A
us

ga
be

[K
iB

]

Netzwerk Ein-/Ausgabe

I T M P
0

200

400

600

E
ne

rg
ie

[J
]

Energie

1 Kern 0,5 GB RAM 1 Kern 1 GB RAM
2 Kerne 0,5 GB RAM 2 Kerne 1 GB RAM

Abbildung 6.18: System- und Energiemetriken der dritten Anfrage von Szenario A
(I =̂ InfluxDB, T =̂ TimescaleDB, M =̂ MongoDB, P =̂ PostgreSQL)

70

6 Experimenteller Vergleich

6.5.2 Szenario B

Tabelle 6.3 zeigt die genutzte Festplattenkapazität der DBS:

Tabelle 6.3: Genutzte Festplattenkapazitäten pro DBS
InfluxDB TimescaleDB MongoDB PostgreSQL

Festplattennutzung 8,50 GB 34,93 GB 8,27 GB 25,11 GB

Anfrage 1 – durchschnittlicher Fahrpreis pro Monat

4
K

8
K

16
K

4
K

8
K

16
K

4
K

8
K

16
K

4
K

8
K

16
K

0

20

40

60

80

100

120

InfluxDB TimescaleDB MongoDB PostgreSQL

La
te

nz
[s

]

Abbildung 6.19: Latenzen der ersten Anfrage von Szenario B (K =̂ Prozessorkerne)

Abbildung 6.19 zeigt die Latenzen der ersten Anfrage von Szenario B in Abhängigkeit vom
jeweiligen DBS und der entsprechenden Systemkonfiguration. Die aufsteigend sortierten
Medianwerte der Latenzen sind dabei wie folgt:

1. InfluxDB : ca. 19,1 und 22,2 Sekunden

2. TimescaleDB : ca. 20,6 bis 26,3 Sekunden

3. MongoDB : ca. 29,9 bis 30,6 Sekunden

4. PostgreSQL: ca. 118,0 bis 127,5 Sekunden

Abbildung 6.20 stellt wie eingangs beschrieben (siehe Abschnitt 6.5) die System- und
Energiemetriken der Testumgebung dar.

71

6 Experimenteller Vergleich

I T M P
0

200

400

∅
C

P
U

-L
as

t
[%

]
CPU-Last

I T M P
0

2

4

6

∅
R

A
M

-N
ut

zu
ng

[G
iB

]

RAM-Nutzung

I T M P
0

5

10

15

20

G
el

es
en

e
D

at
en

[G
iB

]

Gelesene Daten

I T M P
0

5

10

G
es

ch
ri

eb
en

e
D

at
en

[G
iB

]
Geschriebene Daten

I T M P
0

5

10

15

20

N
et

zw
er

k
E

in
-/

A
us

ga
be

[K
iB

]

Netzwerk Ein-/Ausgabe

I T M P
0

1

2

3

E
ne

rg
ie

[k
J]

Energie

4 Kerne 16 GB RAM 8 Kerne 16 GB RAM 16 Kerne 16 GB RAM

Abbildung 6.20: System- und Energiemetriken der ersten Anfrage von Szenario B
(I =̂ InfluxDB, T =̂ TimescaleDB, M =̂ MongoDB, P =̂ PostgreSQL)

72

6 Experimenteller Vergleich

Anfrage 2 – Abfrage aller Fahrgastzahlen der ersten Jahreshälfte von 2023

4
K

8
K

16
K

4
K

8
K

16
K

4
K

8
K

16
K

4
K

8
K

16
K

0

5

10

15

20

25

30

InfluxDB TimescaleDB MongoDB PostgreSQL

La
te

nz
[s

]

Abbildung 6.21: Latenzen der zweiten Anfrage von Szenario B (K =̂ Prozessorkerne)

Abbildung 6.21 zeigt die Latenzen der zweiten Anfrage von Szenario B in Abhängig-
keit vom jeweiligen DBS und der entsprechenden Systemkonfiguration. Die aufsteigend
sortierten Medianwerte der Latenzen sind dabei wie folgt:

1. TimescaleDB : ca. 4,3 Sekunden

2. InfluxDB : ca. 8,6 bis 8,8 Sekunden

3. MongoDB : ca. 21,3 bis 21,9 Sekunden

4. PostgreSQL: ca. 29,6 bis 31,6 Sekunden

Abbildung 6.22 stellt wie eingangs beschrieben (siehe Abschnitt 6.5) die System- und
Energiemetriken der Testumgebung dar.

73

6 Experimenteller Vergleich

I T M P
0

50

100

150

∅
C

P
U

-L
as

t
[%

]
CPU-Last

I T M P
0

2

4

6

∅
R

A
M

-N
ut

zu
ng

[G
iB

]

RAM-Nutzung

I T M P
0

5

10

15

20

G
el

es
en

e
D

at
en

[G
iB

]

Gelesene Daten

I T M P
0

5

10
G

es
ch

ri
eb

en
e

D
at

en
[G

iB
]

Geschriebene Daten

I T M P
0

100

200

300

N
et

zw
er

k
E

in
-/

A
us

ga
be

[M
iB

]

Netzwerk Ein-/Ausgabe

I T M P
0

1

2

E
ne

rg
ie

[k
J]

Energie

4 Kerne 16 GB RAM 8 Kerne 16 GB RAM 16 Kerne 16 GB RAM

Abbildung 6.22: System- und Energiemetriken der zweiten Anfrage von Szenario B
(I =̂ InfluxDB, T =̂ TimescaleDB, M =̂ MongoDB, P =̂ PostgreSQL)

74

6 Experimenteller Vergleich

Anfrage 3 – Abfrage aller Fahrten, deren Strecke größer als x ist

4
K

8
K

16
K

4
K

8
K

16
K

4
K

8
K

16
K

4
K

8
K

16
K

0

20

40

60

80

100

120

InfluxDB TimescaleDB MongoDB PostgreSQL

La
te

nz
[s

]

Abbildung 6.23: Latenzen der dritten Anfrage von Szenario B (K =̂ Prozessorkerne)

Abbildung 6.23 zeigt die Latenzen der dritten Anfrage von Szenario B in Abhängig-
keit vom jeweiligen DBS und der entsprechenden Systemkonfiguration. Die aufsteigend
sortierten Medianwerte der Latenzen sind dabei wie folgt:

1. TimescaleDB : ca. 10,6 bis 13,1 Sekunden

2. PostgreSQL: ca. 28,9 bis 32,3 Sekunden

3. InfluxDB : ca. 32,6 bis 39,6 Sekunden

4. MongoDB : ca. 126,9 Sekunden

Abbildung 6.24 stellt wie eingangs beschrieben (siehe Abschnitt 6.5) die System- und
Energiemetriken der Testumgebung dar.

75

6 Experimenteller Vergleich

I T M P
0

200

400

∅
C

P
U

-L
as

t
[%

]
CPU-Last

I T M P
0

2

4

6

∅
R

A
M

-N
ut

zu
ng

[G
iB

]

RAM-Nutzung

I T M P
0

5

10

15

20

G
el

es
en

e
D

at
en

[G
iB

]

Gelesene Daten

I T M P
0

2

4

6

8

G
es

ch
ri

eb
en

e
D

at
en

[G
iB

]
Geschriebene Daten

I T M P
0

100

200

N
et

zw
er

k
E

in
-/

A
us

ga
be

[M
iB

]

Netzwerk Ein-/Ausgabe

I T M P
0

1

2

E
ne

rg
ie

[k
J]

Energie

4 Kerne 16 GB RAM 8 Kerne 16 GB RAM 16 Kerne 16 GB RAM

Abbildung 6.24: System- und Energiemetriken der dritten Anfrage von Szenario B
(I =̂ InfluxDB, T =̂ TimescaleDB, M =̂ MongoDB, P =̂ PostgreSQL)

76

6 Experimenteller Vergleich

Anfrage 4 – Stunde mit den meisten Fahrten

4
K

8
K

16
K

4
K

8
K

16
K

4
K

8
K

16
K

4
K

8
K

16
K

0

20

40

60

80

100

120

140

160

InfluxDB TimescaleDB MongoDB PostgreSQL

La
te

nz
[s

]

Abbildung 6.25: Latenzen der vierten Anfrage von Szenario B (K =̂ Prozessorkerne)

Abbildung 6.25 zeigt die Latenzen der vierten Anfrage von Szenario B in Abhängig-
keit vom jeweiligen DBS und der entsprechenden Systemkonfiguration. Die aufsteigend
sortierten Medianwerte der Latenzen sind dabei wie folgt:

1. TimescaleDB : ca. 16,8 und 21,1 Sekunden

2. InfluxDB : ca. 19,5 bis 23,0 Sekunden

3. MongoDB : ca. 64,7 bis 65,5 Sekunden

4. PostgreSQL: ca. 129,7 bis 151,9 Sekunden

Abbildung 6.26 stellt wie eingangs beschrieben (siehe Abschnitt 6.5) die System- und
Energiemetriken der Testumgebung dar.

77

6 Experimenteller Vergleich

I T M P
0

200

400

∅
C

P
U

-L
as

t
[%

]
CPU-Last

I T M P
0

2

4

6

∅
R

A
M

-N
ut

zu
ng

[G
iB

]

RAM-Nutzung

I T M P
0

5

10

15

20

G
el

es
en

e
D

at
en

[G
iB

]

Gelesene Daten

I T M P
0

5

10

G
es

ch
ri

eb
en

e
D

at
en

[G
iB

]
Geschriebene Daten

I T M P
0

5

10

N
et

zw
er

k
E

in
-/

A
us

ga
be

[K
iB

]

Netzwerk Ein-/Ausgabe

I T M P
0

1

2

3

E
ne

rg
ie

[k
J]

Energie

4 Kerne 16 GB RAM 8 Kerne 16 GB RAM 16 Kerne 16 GB RAM

Abbildung 6.26: System- und Energiemetriken der vierten Anfrage von Szenario B
(I =̂ InfluxDB, T =̂ TimescaleDB, M =̂ MongoDB, P =̂ PostgreSQL)

78

6 Experimenteller Vergleich

6.5.3 Szenario C

Tabelle 6.4 zeigt die genutzte Festplattenkapazität der DBS:

Tabelle 6.4: Genutzte Festplattenkapazitäten pro DBS
InfluxDB TimescaleDB MongoDB PostgreSQL

Festplattennutzung 6,34 GB 15,94 GB 7,20 GB 14,19 GB

Anfrage 1 – kombinierte Prozessorlast pro Minute der zu dem jeweiligen
Zeitpunkt laufenden Instanzen

4
K

8
K

16
K

4
K

8
K

16
K

4
K

8
K

16
K

4
K

8
K

16
K

0

10

20

30

40

50

InfluxDB TimescaleDB MongoDB PostgreSQL

La
te

nz
[s

]

Abbildung 6.27: Latenzen der ersten Anfrage von Szenario C (K =̂ Prozessorkerne)

Abbildung 6.27 zeigt die Latenzen der ersten Anfrage von Szenario C in Abhängigkeit vom
jeweiligen DBS und der entsprechenden Systemkonfiguration. Die aufsteigend sortierten
Medianwerte der Latenzen sind dabei wie folgt:

1. TimescaleDB : ca. 16,5 bis 20,3 Sekunden

2. PostgreSQL: ca. 32,8 bis 35,3 Sekunden

3. MongoDB : ca. 44,1 bis 44,5 Sekunden

4. InfluxDB : ca. 48,2 bis 48,8 Sekunden

Abbildung 6.28 stellt wie eingangs beschrieben (siehe Abschnitt 6.5) die System- und
Energiemetriken der Testumgebung dar.

79

6 Experimenteller Vergleich

I T M P
0

100

200

300

∅
C

P
U

-L
as

t
[%

]
CPU-Last

I T M P
0

1

2

∅
R

A
M

-N
ut

zu
ng

[G
iB

]

RAM-Nutzung

I T M P
0

2

4

6

8

G
el

es
en

e
D

at
en

[G
iB

]

Gelesene Daten

I T M P
0

2

4

6

8

10
G

es
ch

ri
eb

en
e

D
at

en
[G

iB
]

Geschriebene Daten

I T M P
0

20

40

60

80

N
et

zw
er

k
E

in
-/

A
us

ga
be

[M
iB

]

Netzwerk Ein-/Ausgabe

I T M P
0

1

2

3

E
ne

rg
ie

[k
J]

Energie

4 Kerne 16 GB RAM 8 Kerne 16 GB RAM 16 Kerne 16 GB RAM

Abbildung 6.28: System- und Energiemetriken der ersten Anfrage von Szenario C
(I =̂ InfluxDB, T =̂ TimescaleDB, M =̂ MongoDB, P =̂ PostgreSQL)

80

6 Experimenteller Vergleich

Anfrage 2 – Abfrage aller Instanzmetriken in einer bestimmten Stunde

4
K

8
K

16
K

4
K

8
K

16
K

4
K

8
K

16
K

4
K

8
K

16
K

0

5

10

15

20

25

InfluxDB TimescaleDB MongoDB PostgreSQL

La
te

nz
[s

]

Abbildung 6.29: Latenzen der zweiten Anfrage von Szenario C (K =̂ Prozessorkerne)

Abbildung 6.29 zeigt die Latenzen der zweiten Anfrage von Szenario C in Abhängig-
keit vom jeweiligen DBS und der entsprechenden Systemkonfiguration. Die aufsteigend
sortierten Medianwerte der Latenzen sind dabei wie folgt:

1. TimescaleDB : ca. 3,4 Sekunden

2. MongoDB : ca. 8,1 bis 8,3 Sekunden

3. PostgreSQL: ca. 13,8 bis 15,3 Sekunden

4. InfluxDB : ca. 25,2 bis 25,4 Sekunden

Abbildung 6.30 stellt wie eingangs beschrieben (siehe Abschnitt 6.5) die System- und
Energiemetriken der Testumgebung dar.

81

6 Experimenteller Vergleich

I T M P
0

50

100

150

∅
C

P
U

-L
as

t
[%

]
CPU-Last

I T M P
0

1

2

3

∅
R

A
M

-N
ut

zu
ng

[G
iB

]

RAM-Nutzung

I T M P
0

2

4

6

8

G
el

es
en

e
D

at
en

[G
iB

]

Gelesene Daten

I T M P
0

2

4

G
es

ch
ri

eb
en

e
D

at
en

[G
iB

]
Geschriebene Daten

I T M P
0

200

400

N
et

zw
er

k
E

in
-/

A
us

ga
be

[M
iB

]

Netzwerk Ein-/Ausgabe

I T M P
0

0,5

1

1,5

2

E
ne

rg
ie

[k
J]

Energie

4 Kerne 16 GB RAM 8 Kerne 16 GB RAM 16 Kerne 16 GB RAM

Abbildung 6.30: System- und Energiemetriken der zweiten Anfrage von Szenario C
(I =̂ InfluxDB, T =̂ TimescaleDB, M =̂ MongoDB, P =̂ PostgreSQL)

82

6 Experimenteller Vergleich

Anfrage 3 – Abfrage der Instanzen, bei denen Prozessorauslastung größer x
und Arbeitsspeicherauslastung größer y sind

4
K

8
K

16
K

4
K

8
K

16
K

4
K

8
K

16
K

4
K

8
K

16
K

0

10

20

30

InfluxDB TimescaleDB MongoDB PostgreSQL

La
te

nz
[s

]

Abbildung 6.31: Latenzen der dritten Anfrage von Szenario C (K =̂ Prozessorkerne)

Abbildung 6.31 zeigt die Latenzen der dritten Anfrage von Szenario C in Abhängig-
keit vom jeweiligen DBS und der entsprechenden Systemkonfiguration. Die aufsteigend
sortierten Medianwerte der Latenzen sind dabei wie folgt:

1. TimescaleDB : ca. 5,3 bis 6,8 Sekunden

2. MongoDB : ca. 6,8 Sekunden

3. PostgreSQL: ca. 10,8 bis 11,6 Sekunden

4. InfluxDB : ca. 36,2 bis 37,3 Sekunden

Abbildung 6.32 stellt wie eingangs beschrieben (siehe Abschnitt 6.5) die System- und
Energiemetriken der Testumgebung dar.

83

6 Experimenteller Vergleich

I T M P
0

100

200

300

400

∅
C

P
U

-L
as

t
[%

]
CPU-Last

I T M P
0

1

2

3

∅
R

A
M

-N
ut

zu
ng

[G
iB

]

RAM-Nutzung

I T M P
0

2

4

6

8

G
el

es
en

e
D

at
en

[G
iB

]

Gelesene Daten

I T M P
0

1

2

3

G
es

ch
ri

eb
en

e
D

at
en

[G
iB

]
Geschriebene Daten

I T M P
0

2

4

N
et

zw
er

k
E

in
-/

A
us

ga
be

[K
iB

]

Netzwerk Ein-/Ausgabe

I T M P
0

0,5

1

1,5

E
ne

rg
ie

[k
J]

Energie

4 Kerne 16 GB RAM 8 Kerne 16 GB RAM 16 Kerne 16 GB RAM

Abbildung 6.32: System- und Energiemetriken der dritten Anfrage von Szenario C
(I =̂ InfluxDB, T =̂ TimescaleDB, M =̂ MongoDB, P =̂ PostgreSQL)

84

7 Diskussion und Empfehlungen

Dieses Kapitel geht zunächst auf Beobachtungen ein, die während der Ausführung der
Experimente getätigt wurden, und diskutiert danach die Ergebnisse des konzeptionellen
(Kapitel 5) und des experimentellen Vergleichs (Kapitel 6). Im Anschluss werden aus den
Ergebnissen dieser Arbeit Nutzungsempfehlungen abgeleitet.

7.1 Beobachtungen während der Experimente

Es wurde beobachtet, dass InfluxDB häufig so viel Arbeitsspeicher genutzt hat, dass
das Betriebssystem der Testumgebung das DBS aufgrund von Speicherknappheit been-
det hat. Dies geschah reproduzierbar bei der Initialisierung der Szenarios, bei der VMs
mit 16 GB Arbeitsspeicher verwendet wurden, und teilweise bei der Durchführung der
Anfragen. Die Lösung für dieses Problem, die sich in der Dokumentation von Version
1 von InfluxDB [30] befindet, liegt darin, die Konfigurationsoption storage-cache-

snapshot-write-cold-duration auf 2 Sekunden zu setzten, wodurch kürzlich er-
stellte Shards (siehe Abschnitt 3.2.3) nach dieser Zeit auf die Festplatte geschrieben
werden und somit wieder Arbeitsspeicher freigegeben wird.

Des Weiteren ist aufgefallen, dass PostgreSQL während der Ausführung der Anfragen von
Szenario B und C große Datenmengen geschrieben hat (siehe entsprechende Diagramme
in Kapitel 6.5.2 und 6.5.3), obwohl diese Operationen nur lesende Zugriffe durchgeführt
haben. Bei den anderen DBS war ein solches Verhalten hingegen nicht zu beobachten.

7.2 Diskussion der Ergebnisse

Nachfolgend werden die Ergebnisse der Vergleiche diskutiert. Dabei ist zu beachten, dass
es nur schwer möglich ist, die DBS szenarioübergreifend zu bewerten, da sich diese in

85

7 Diskussion und Empfehlungen

den Szenarios unterschiedlich verhalten haben und somit jeweils andere Schlüsse gezogen
werden müssen. Generell kann jedoch festgestellt werden, dass die Anzahl der Prozessoren
nur geringe Auswirkungen auf die Latenzen der Anfragen haben.

7.2.1 Szenario A

Anhand der Diagramme der Einfügelatenzen (siehe Abb. 6.12) lässt sich erkennen, dass
die Werte InfluxDB und MongoDB nahezu linear mit der Anzahl der Generatoren anstei-
gen. Zudem ist hier zu sehen, dass mehr Prozessorkerne und/oder mehr Arbeitsspeicher
jeweils zu geringeren Latenzen führt. Bei TimescaleDB und PostgreSQL kann dieses
Verhalten nicht beobachtet werden. Hier lässt sich jedoch feststellen, dass bei steigenden
Größe des Arbeitsspeichers eine größere Anzahl von Verbindungen möglich ist. Bei der ge-
nutzten Festplattenkapazität sind im Gegensatz dazu nur vernachlässigbare Unterschiede
zwischen den DBS zu erkennen (siehe Tabelle 6.2).

Bei den Anfragen aus Szenario A wird deutlich, dass für einfache Abfragen wie Zähl-
operationen (Anfrage 1) nicht zwingend ein Zeitreihen-Datenbanksystem erforderlich ist.
PostgreSQL als reguläres Datenbanksystem weist hier nur geringfügig höhere Laten-
zen sowie minimale Unterschiede bei System- und Energiemetriken im Vergleich zum
besten Zeitreihen-Datenbanksystem TimescaleDB auf. Je komplexer die Anfragen zu
Zeitreihenoperationen werden, desto sinnvoller ist der Einsatz eines Datenbanksystems
mit expliziter Zeitreihenunterstützung. Dies zeigt sich deutlich bei Anfrage 3 (Aggre-
gationsoperation über Zeitfenster), wo die Zeitreihen-Datenbanksysteme MongoDB und
InfluxDB erheblich geringere Latenzen als PostgreSQL aufweisen und bei vergleichba-
rer Prozessor- und Arbeitsspeicherauslastung weniger Energie verbrauchen. Anfrage 2
(Aggregation über alle Datenpunkte einer Zeitreihenkategorie) stellt eine Zwischenstufe
zwischen den Anfragen 1 und 3 dar.

Wie bereits in Kapitel 4.1 erwähnt, sind eine einfache Installation und Bedienung der DBS
für den Heimanwendungskontext besonders wichtig. Daher wurde bei der Einrichtung
der Testumgebung besonderes Augenmerk auf diese Aspekte gelegt. Die Installation al-
ler DBS verlief problemlos gemäß den jeweiligen Anleitungen. Lediglich bei TimescaleDB
und PostgreSQL musste die maximale Anzahl an Verbindungen durch die Konfigurati-
onsoption max_connections erhöht werden.

Die Anfragesprachen der DBS unterscheiden sich hingegen deutlich, wie aus Kapitel 5.2
und 6.3.5 ersichtlich wird. Nutzer mit SQL-Erfahrung können TimescaleDB problemlos

86

7 Diskussion und Empfehlungen

verwenden, da sich lediglich die Funktionen für Zeitreihenoperationen vom SQL-Standard
unterscheiden. InfluxQL weist zwar Ähnlichkeiten zu SQL auf, unterscheidet sich jedoch
leicht in der Syntax und bietet einen stark eingeschränkten Funktionsumfang, sodass
vorhandene SQL-Kenntnisse nur begrenzt hilfreich sind. Die Anfragesprachen Flux und
MQL hingegen weichen grundsätzlich von SQL ab, lassen sich aber für lernwillige An-
wender dennoch leicht erlernen.

7.2.2 Szenario B

In Szenario B wird deutlich, dass sich die Effizienz bei der Datenspeicherung in den DBS
stark unterscheidet. MongoDB und InfluxDB nutzen dabei etwa gleich viel Festplatten-
kapazität. Im Gegensatz dazu benötigen TimescaleDB und PostgreSQL deutlich mehr
Speicherplatz. Während PostgreSQL etwa das Dreifache der Kapazität von InfluxDB und
MongoDB beansprucht, liegt der Speicherverbrauch von TimescaleDB beim Vierfachen
(siehe Tabelle 6.3).

Anhand der Anfragen lässt sich erkennen, dass Zeitreihen-Datenbanksysteme stets bes-
sere Latenzen erzielen als das Nicht-Zeitreihen-Datenbanksystem PostgreSQL – mit Aus-
nahme von Anfrage 3 (Filteroperation), bei der PostgreSQL besser abschneidet als Influx-
DB und MongoDB. TimescaleDB ist jedoch weiterhin etwa dreimal schneller, verursacht
aber doppelt so viel Prozessorauslastung. Hinsichtlich des Energieverbrauchs lässt sich bei
Anfrage 3 kein signifikanter Unterschied zwischen den Datenbanksystemen feststellen. Bei
Anfrage 1 (Aggregationsoperation über Zeitfenster) und Anfrage 4 (komplexe Operatio-
nen, d. h. Kombinationen verschiedener Grundoperationen) zeigen InfluxDB und Time-
scaleDB in Bezug auf die Latenzen sehr ähnliche Ergebnisse. Allerdings hat InfluxDB
bei Systemkonfigurationen mit acht oder mehr Prozessorkernen mehr Arbeitsspeicher
genutzt als TimescaleDB. Im Gegensatz dazu führt TimescaleDB zu einer doppelt so
hohen Prozessorauslastung und einem höheren Energieverbrauch. Bei Anfrage 2 schnei-
det TimescaleDB deutlich besser ab als die anderen Datenbanksysteme, da es die nied-
rigsten Latenzen aufweist. Zudem verursacht es eine geringere Prozessorauslastung und
verbraucht weniger Arbeitsspeicher als InfluxDB, das die zweitbesten Latenzen hat. Wie
bei Anfrage 3 ist auch hier kein wesentlicher Unterschied im Energieverbrauch zu beob-
achten.

Zudem wurde festgestellt, dass InfluxDB mit einer steigenden Anzahl an Prozessorkernen
sowohl deren Auslastung als auch die Arbeitsspeicherauslastung erhöht, ohne dass sich

87

7 Diskussion und Empfehlungen

die Latenzen signifikant verbessern. Darüber hinaus zeigt sich, dass PostgreSQL stets die
geringste Menge an Arbeitsspeicher nutzt.

7.2.3 Szenario C

Ähnlich wie bei Szenario B gibt es auch hier einen Unterschied in der Speichereffizienz
der DBS: So nutzen TimescaleDB und PostgreSQL etwa doppelt so viel Speicherplatz
wie InfluxDB und MongoDB (siehe Tabelle 6.4).

In den Anfragen von Szenario C zeigt TimescaleDB durchgehend die niedrigsten Laten-
zen, während InfluxDB die höchsten aufweist und somit stets schlechter als das Baseline-
DBS PostgreSQL ist. Dies deutet darauf hin, dass InfluxDB weniger gut für Anwendun-
gen mit einer großen Anzahl von Zeitreihen geeignet ist – obwohl laut Hersteller durch
die Einführung des Time Series Index (siehe Kapitel 3.2.4) bereits Verbesserungen in die-
sem Bereich vorgenommen wurden. MongoDB zeigt bei den Anfragen unterschiedliches
Verhalten: Bei Anfrage 1 (Aggregationsoperation über Zeitfenster) ähnelt es InfluxDB
hinsichtlich Latenzen sowie System- und Energie-Metriken. Bei Anfrage 2 (Abfrage aller
Daten) und Anfrage 3 (Filteroperation) verhält es sich hingegen eher wie TimescaleDB,
jedoch mit einer geringeren Prozessorauslastung und einem niedrigeren Energieverbrauch.
Wie auch bei Szenario B nutzt PostgreSQL stets am wenigsten Arbeitsspeicher.

Das oben bereits erwähnte Verhalten von InfluxDB, bei dem die Anzahl der Prozessorker-
ne Auswirkungen auf die System- und Energienutzung, jedoch nur geringe Auswirkungen
auf die Latenzen hat, lässt sich hier ebenfalls beobachten, wobei sich in diesem Fall aus-
schließlich die Nutzung des Arbeitsspeichers vergrößert.

7.3 Empfehlungen

Aus den Ergebnissen der Vergleiche werden im Folgenden spezifische Nutzungsempfeh-
lungen für die in dieser Arbeit verglichenen Datenbanksysteme abgeleitet. Es ist jedoch zu
beachten, dass keine allgemeingültige Empfehlung für ein bestimmtes DBS ausgesprochen
werden kann, da die Wahl des optimalen Systems maßgeblich von den individuellen An-
forderungen und dem jeweiligen Anwendungsfall abhängt. Der experimentelle Vergleich
hat allerdings gezeigt, dass es durchaus sinnvoll ist, ein Datenbanksystem mit expliziter
Zeitreihenunterstützung zu wählen, wenn Zeitreihen gespeichert und verarbeitet werden

88

7 Diskussion und Empfehlungen

sollen. Lediglich bei simplen Operationen auf einem kleinen Bestand von Zeitreihendaten
kann es vorteilhaft sein, auf ein klassisches DBS zurückzugreifen, da dieses in der Regel
weniger Systemressourcen beansprucht. Die nachfolgenden Empfehlungen berücksichti-
gen daher relevante Faktoren, die eine fundierte und individuelle Entscheidungsfindung
unterstützen:

• Anzahl der Zeitreihen: Wenn eine große Anzahl von Zeitreihen gespeichert und
verarbeitet werden soll, liefert TimescaleDB hier konsistent gute Ergebnisse, wobei
MongoDB in den häufig ebenfalls eine solide Leistung zeigt. Die Verwendung von
InfluxDB hier hingegen nicht empfehlenswert.

• Speichereffizienz : Für Anwendungen, bei denen Speicherplatz eine entscheidende
Rolle spielt, sind InfluxDB und MongoDB die besseren Optionen, da sie deutlich
weniger Speicherplatz benötigen als TimescaleDB und PostgreSQL. Wenn jedoch
nur eine geringe Menge an Daten gespeichert werden muss, ist der Unterschied in
der Speichereffizienz weniger relevant.

• Komplexität der Anfragen: Die Experimente haben gezeigt, dass mit zunehmen-
der Komplexität der Zeitreihenoperationen InfluxDB und TimescaleDB die besten
Ergebnisse erzielen. MongoDB schnitt in diesen Fällen weniger gut ab und Post-
greSQL zeigte häufig die schwächste Performance.

• Zeitreihenanalysen: Falls Zeitreihenanalysen bereits im DBS ausgeführt werden sol-
len, bietet InfluxDB den größten Funktionsumfang mit der Sprache Flux an. Jedoch
muss hier berücksichtigt werden, dass die Entwicklung dieser Sprache mit der kom-
menden Version 3 von InfluxDB eingestellt wird. Auch TimescaleDB bietet spezielle
Funktionen zur Verarbeitung von Zeitreihen an. Insbesondere der Funktionsumfang
kann hier durch das Timescale Toolkit erweitert werden.

• Energieverbrauch: Für Anwendungen, bei denen der Energieverbrauch eine ent-
scheidende Rolle spielt, zeigt sich, dass MongoDB tendenziell den geringsten Ener-
gieverbrauch aufweist. Allerdings muss berücksichtigt werden, dass MongoDB häu-
fig deutlich längere Verarbeitungszeiten für Anfragen benötigt. Bei InfluxDB und
TimescaleDB variiert der Energieverbrauch hingegen stark je nach Art der Anfrage.
Daher ist es bei der Wahl dieser DBS ratsam, individuelle Tests durchzuführen.

• Integration in bereits bestehende DBS : Wenn bereits PostgreSQL im Einsatz ist
und im selben DBS auch Zeitreihendaten gespeichert werden sollen, bietet sich an,

89

7 Diskussion und Empfehlungen

die Erweiterung TimescaleDB zu nutzen. Diese ermöglicht zudem die Durchfüh-
rung von Abfragen über Zeitreihen- und Nicht-Zeitreihendaten innerhalb dessel-
ben Systems, ohne dass der Administrationsaufwand erheblich steigt. Allerdings
muss beachtet werden, dass die Systemanforderungen durch die Verwendung von
TimescaleDB zunehmen. Alternativ kann auch ein existierendes MongoDB mit sei-
ner integrierten Zeitreihenfunktionalität genutzt werden. Die Performance ist hier
im Vergleich zu anderen Zeitreihen-Datenbanksystemen teilweise jedoch deutlich
schlechter.

• Hardwarespezifikationen: Für Anwendungen mit geringen Anforderungen, wie etwa
in einem Smart-Home-Umfeld, sind Systeme mit ein bis zwei Prozessorkernen und
1 GB Arbeitsspeicher in der Regel ausreichend. Für größere Installationen sollten
nicht weniger als vier Prozessorkerne genutzt werden, wobei acht Kerne empfohlen
werden. Der Arbeitsspeicher sollte mindestens 8 GB betragen – allerdings können
größere Kapazitäten insbesondere durch Cachingmechanismen von Vorteil sein.

Generell sollten vor der endgültigen Wahl eines Systems immer Tests der auszuführenden
Abfragen durchgeführt werden. Dies wird insbesondere durch die teils stark abweichenden
Ergebnisse der Experimente verdeutlicht.

90

8 Fazit

Dieses Kapitel fasst den Inhalt dieser Arbeit zusammen und gibt einen Ausblick auf
zukünftige Forschungen.

8.1 Zusammenfassung

In dieser Arbeit wurden vier Datenbanksysteme sowohl konzeptionell als auch experi-
mentell miteinander verglichen – darunter drei Zeitreihen-Datenbanksysteme (InfluxDB,
TimescaleDB und MongoDB) und ein klassisches relationales DBS (PostgreSQL), das
als Baseline diente. Zunächst wurden in Kapitel 2 die grundlegenden Konzepte im Be-
reich der Zeitreihen und Datenbanksysteme erläutert. Anschließend wurde in Kapitel 3
eine Kategorisierung von Zeitreihen-Datenbanksystemen in drei Gruppen vorgenommen.
Darauf basierend wurden repräsentative Systeme für den Test ausgewählt und deren
interne Funktionsweise erläutert. Für den experimentellen Vergleich wurden daraufhin
drei Szenarios mit jeweils spezifischen Anfragen entwickelt (siehe Kapitel 4), die typische
Anwendungsfälle von Zeitreihen-Datenbanksystemen abbilden. In Kapitel 5 wurden die
gewählten DBS anschließend anhand ihres Funktionsumfangs konzeptionell gegenüber-
gestellt. Zur Durchführung des experimentellen Vergleichs wurde in Kapitel 6 ein Test-
system entwickelt, das eine automatisierte Testumgebung für die definierten Szenarios
einrichtet. Innerhalb dieser Umgebung wurden die entsprechenden Anfragen vollauto-
matisch ausgeführt, während gleichzeitig Latenzen sowie System- und Energiemetriken
(siehe Kapitel 6.1) vom Testsystem erfasst wurden. Zum Schluss wurden in Kapitel 7
die Ergebnisse der Vergleiche diskutiert und davon ausgehend Nutzungsempfehlungen
abgeleitet. Dabei wurde festgestellt, dass auf Zeitreihen optimierte Datenbanksysteme
in in den meisten Fällen klare Vorteile bieten, jedoch kein einzelnes System universell
empfohlen werden kann.

91

8 Fazit

8.2 Ausblick

Die durchgeführten Vergleiche liefern zahlreiche Erkenntnisse über die Leistungsfähigkeit
und Eignung der getesteten Zeitreihen-Datenbanksysteme. Dennoch bleiben einige offene
Forschungsfragen, die in zukünftigen Arbeiten betrachtet werden können.

Die ausgewählten Szenarien decken bereits große Teile der typischen Einsatzgebiete von
Zeitreihen-Datenbanksystemen ab. Dennoch gibt es sicherlich weitere Anwendungsfälle,
die bislang nicht berücksichtigt wurden und deren Untersuchung weitere Erkenntnisse
liefern könnte. Zukünftige Arbeiten könnten daher das bestehende Testsystem erweitern,
indem neue Szenarios entwickelt und getestet werden, um die Leistungsfähigkeit der
Systeme unter weiteren realistischen Bedingungen zu evaluieren.

In den durchgeführten Experimenten wurde primär die sequenzielle Verarbeitung einzel-
ner großer Anfragen untersucht. In realen Anwendungsgebieten treten jedoch auch häu-
fig parallele, dafür aber kleinere Anfragen auf, insbesondere in Anwendungen mit hoher
Nutzerzahl. Zukünftige Untersuchungen könnten daher die Skalierbarkeit der getesteten
Systeme unter Lastbedingungen mit mehreren gleichzeitigen Anfragen analysieren. Da-
bei wäre es interessant zu untersuchen, wie sich die Latenzen verändern und ob es zu
Ressourcenengpässen bei der Parallelverarbeitung kommt.

92

Literaturverzeichnis

[1] Abadi, Daniel: Consistency Tradeoffs in Modern Distributed Database System
Design: CAP is Only Part of the Story. In: Computer 45 (2012), Februar, Nr. 2,
S. 37–42. – URL http://ieeexplore.ieee.org/document/6127847/. –
ISSN 0018-9162

[2] Alpine Linux Development Team: index | Alpine Linux. – URL https:

//www.alpinelinux.org/. – Zugriffsdatum: 2025-02-17

[3] Bader, Andreas: Comparison of Time Series Databases. Januar 2016. – URL
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCST

RL_view.pl?id=DIP-3729&engl=0. – Diplomarbeit

[4] Benoit, Petit: scaphandre. Februar 2025. – URL https://github.com/hub

blo-org/scaphandre/. – Zugriffsdatum: 2025-02-27

[5] Brewer, Eric: Towards Robust Distributed Systems. Proceedings of the Annual
ACM Symposium on Principles of Distributed Computing. Juli 2000. – URL http

s://people.eecs.berkeley.edu/~brewer/cs262b-2004/PODC-keyno

te.pdf

[6] Broadcom: Desktop Hypervisor Solutions | VMware. – URL https://www.vm

ware.com/products/desktop-hypervisor/workstation-and-fusion.
– Zugriffsdatum: 2025-02-17

[7] Brockwell, Peter J. ; Davis, Richard A.: Introduction to Time Series and Forecas-
ting. Cham : Springer International Publishing, 2016 (Springer Texts in Statistics).
– URL http://link.springer.com/10.1007/978-3-319-29854-2. –
ISBN 978-3-319-29854-2

[8] Canonical: cloud-init - The standard for customising cloud instances. – URL
https://cloud-init.io/. – Zugriffsdatum: 2025-02-17

93

http://ieeexplore.ieee.org/document/6127847/
https://www.alpinelinux.org/
https://www.alpinelinux.org/
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3729&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3729&engl=0
https://github.com/hubblo-org/scaphandre/
https://github.com/hubblo-org/scaphandre/
https://people.eecs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
https://people.eecs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
https://people.eecs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
https://www.vmware.com/products/desktop-hypervisor/workstation-and-fusion
https://www.vmware.com/products/desktop-hypervisor/workstation-and-fusion
http://link.springer.com/10.1007/978-3-319-29854-2
https://cloud-init.io/

Literaturverzeichnis

[9] Chatfield, C.: The Analysis of Time Series: Theory and Practice. Boston, MA :
Springer US, 1975. – URL http://link.springer.com/10.1007/978-1-4

899-2925-9. – ISBN 978-1-4899-2925-9

[10] ClickHouse, Inc.: Fast Open-Source OLAP DBMS - ClickHouse. – URL https:

//clickhouse.com/. – Zugriffsdatum: 2024-12-17

[11] Codd, E. F.: A relational model of data for large shared data banks. In: Com-
munications of the ACM 13 (1970), Juni, Nr. 6, S. 377–387. – URL https:

//dl.acm.org/doi/10.1145/362384.362685. – ISSN 0001-0782, 1557-7317

[12] Codd, E. F.: Relational Completeness of Data Base Sublanguages. In: Research
Report / RJ / IBM / San Jose, California RJ987 (1972), März. – URL https:

//citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6a0

48dc38250ffce49c5e6a5040b4c91ca05e83d

[13] Couchbase, Inc.: Couchbase: Best Free NoSQL Cloud Database Platform. – URL
https://www.couchbase.com/. – Zugriffsdatum: 2024-12-17

[14] Deutsche Börse: DAX Index | Kurs | Charts | DE0008469008 | Börse Frankfurt.
November 2024. – URL https://www.boerse-frankfurt.de/index/dax/

charts. – Zugriffsdatum: 2024-11-09

[15] Dunning, Ted ; Friedman, B. E.: Time Series Databases: New Ways to Store and
Access data. 1. Sebastopol, CA : O’Reilly Media, Inc, 2014. – OCLC: ocn896860337.
– ISBN 978-1-4919-1472-4

[16] Edlich, Stefan ; Friedland, Achim ; Hampel, Jens ; Brauer, Benjamin: NoSQL:
Einstieg in die Welt nichtrelationaler Web 2.0 Datenbanken. München : Hanser, 2010.
– ISBN 978-3-446-42355-8

[17] Fasel, Daniel ; Meier, Andreas (Hrsg.): Big Data: Grundlagen, Systeme und
Nutzungspotenziale. Wiesbaden : Springer Fachmedien Wiesbaden, 2016 (Editi-
on HMD). – URL http://link.springer.com/10.1007/978-3-658-115

89-0. – ISBN 978-3-658-11589-0

[18] Gessert, Felix ; Wingerath, Wolfram ; Ritter, Norbert: Schnelles und skalier-
bares Cloud-Datenmanagement. Cham : Springer International Publishing, 2024. –
URL https://link.springer.com/10.1007/978-3-031-54388-3. –
ISBN 978-3-031-54388-3

94

http://link.springer.com/10.1007/978-1-4899-2925-9
http://link.springer.com/10.1007/978-1-4899-2925-9
https://clickhouse.com/
https://clickhouse.com/
https://dl.acm.org/doi/10.1145/362384.362685
https://dl.acm.org/doi/10.1145/362384.362685
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6a048dc38250ffce49c5e6a5040b4c91ca05e83d
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6a048dc38250ffce49c5e6a5040b4c91ca05e83d
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6a048dc38250ffce49c5e6a5040b4c91ca05e83d
https://www.couchbase.com/
https://www.boerse-frankfurt.de/index/dax/charts
https://www.boerse-frankfurt.de/index/dax/charts
http://link.springer.com/10.1007/978-3-658-11589-0
http://link.springer.com/10.1007/978-3-658-11589-0
https://link.springer.com/10.1007/978-3-031-54388-3

Literaturverzeichnis

[19] Gilbert, Seth ; Lynch, Nancy: Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. In: ACM SIGACT News 33 (2002), Juni,
Nr. 2, S. 51–59. – URL https://dl.acm.org/doi/10.1145/564585.5646

01. – ISSN 0163-5700

[20] Gomez, Guillaume: sysinfo. Dezember 2024. – URL https://github.com/G

uillaumeGomez/sysinfo. – Zugriffsdatum: 2025-01-08

[21] Graphite Project: Graphite. – URL https://graphiteapp.org/. – Zu-
griffsdatum: 2024-12-17

[22] Haerder, Theo ; Reuter, Andreas: Principles of transaction-oriented database
recovery. In: ACM Computing Surveys 15 (1983), Dezember, Nr. 4, S. 287–317.
– URL https://dl.acm.org/doi/10.1145/289.291. – ISSN 0360-0300,
1557-7341

[23] Hao, Yuanzhe ; Qin, Xiongpai ; Chen, Yueguo ; Li, Yaru ; Sun, Xiaoguang ;
Tao, Yu ; Zhang, Xiao ; Du, Xiaoyong: TS-Benchmark: A Benchmark for Time
Series Databases. In: 2021 IEEE 37th International Conference on Data Engineering
(ICDE). Chania, Greece : IEEE, April 2021, S. 588–599. – URL https://ieee

xplore.ieee.org/document/9458659/. – ISBN 978-1-7281-9184-3

[24] Hibernating Rhinos: Life is an Adventure — Your Database Shouldn’t Be -
RavenDB NoSQL Database. – URL https://ravendb.net/. – Zugriffsdatum:
2024-12-17

[25] IBM: IBM Informix. – URL https://www.ibm.com/products/informix. –
Zugriffsdatum: 2024-12-17

[26] InfluxData Inc.: Complete list of Flux functions | Flux Documentation. – URL
https://docs.influxdata.com/flux/v0/stdlib/all-functions/. –
Zugriffsdatum: 2025-03-08

[27] InfluxData Inc.: Flux language specification | Flux Documentation. – URL http

s://docs.influxdata.com/flux/v0/spec/. – Zugriffsdatum: 2025-03-01

[28] InfluxData Inc.: In-memory indexing and the Time-Structured Merge Tree (TSM)
| InfluxDB OSS v1 Documentation. – URL https://docs.influxdata.com/

influxdb/v1/concepts/storage_engine/. – Zugriffsdatum: 2024-11-22

95

https://dl.acm.org/doi/10.1145/564585.564601
https://dl.acm.org/doi/10.1145/564585.564601
https://github.com/GuillaumeGomez/sysinfo
https://github.com/GuillaumeGomez/sysinfo
https://graphiteapp.org/
https://dl.acm.org/doi/10.1145/289.291
https://ieeexplore.ieee.org/document/9458659/
https://ieeexplore.ieee.org/document/9458659/
https://ravendb.net/
https://www.ibm.com/products/informix
https://docs.influxdata.com/flux/v0/stdlib/all-functions/
https://docs.influxdata.com/flux/v0/spec/
https://docs.influxdata.com/flux/v0/spec/
https://docs.influxdata.com/influxdb/v1/concepts/storage_engine/
https://docs.influxdata.com/influxdb/v1/concepts/storage_engine/

Literaturverzeichnis

[29] InfluxData Inc.: InfluxDB design principles | InfluxDB OSS v2 Documentation.
– URL https://docs.influxdata.com/influxdb/v2/reference/ke

y-concepts/design-principles/. – Zugriffsdatum: 2025-03-08

[30] InfluxData Inc.: InfluxDB frequently asked questions | InfluxDB OSS v1 Docu-
mentation. – URL https://docs.influxdata.com/influxdb/v1/troubl

eshooting/frequently-asked-questions/#what-are-the-configu

ration-recommendations-and-schema-guidelines-for-writing-s

parse-historical-data. – Zugriffsdatum: 2025-02-26

[31] InfluxData Inc.: InfluxDB HTTP API | InfluxDB OSS v2 Documentation. –
URL https://docs.influxdata.com/influxdb/v2/reference/api/. –
Zugriffsdatum: 2025-03-09

[32] InfluxData Inc.: Join data in InfluxDB with Flux | InfluxDB OSS v2 Documen-
tation. – URL https://docs.influxdata.com/influxdb/v2/query-dat

a/flux/join/. – Zugriffsdatum: 2025-03-09

[33] InfluxData Inc.: Line protocol | InfluxDB OSS v2 Documentation. – URL https:

//docs.influxdata.com/influxdb/v2/reference/syntax/line-pro

tocol/. – Zugriffsdatum: 2025-02-28

[34] InfluxData Inc.: pivot() function | Flux Documentation. – URL https://docs

.influxdata.com/flux/v0/stdlib/universe/pivot/. – Zugriffsdatum:
2025-03-09

[35] InfluxData Inc.: Query data with InfluxQL | InfluxDB OSS v2 Documentation.
– URL https://docs.influxdata.com/influxdb/v2/query-data/in

fluxql/. – Zugriffsdatum: 2025-03-01

[36] InfluxData Inc.: Time Series Index (TSI) details | InfluxDB OSS v1 Documen-
tation. – URL https://docs.influxdata.com/influxdb/v1/concepts

/tsi-details/. – Zugriffsdatum: 2024-12-09

[37] InfluxData Inc.: Time Series Index (TSI) overview | InfluxDB OSS v1 Docu-
mentation. – URL https://docs.influxdata.com/influxdb/v1/concep

ts/time-series-index/. – Zugriffsdatum: 2024-12-09

[38] InfluxData Inc.: union() function | Flux Documentation. – URL https://docs

.influxdata.com/flux/v0/stdlib/universe/union/. – Zugriffsdatum:
2025-03-09

96

https://docs.influxdata.com/influxdb/v2/reference/key-concepts/design-principles/
https://docs.influxdata.com/influxdb/v2/reference/key-concepts/design-principles/
https://docs.influxdata.com/influxdb/v1/troubleshooting/frequently-asked-questions/#what-are-the-configuration-recommendations-and-schema-guidelines-for-writing-sparse-historical-data
https://docs.influxdata.com/influxdb/v1/troubleshooting/frequently-asked-questions/#what-are-the-configuration-recommendations-and-schema-guidelines-for-writing-sparse-historical-data
https://docs.influxdata.com/influxdb/v1/troubleshooting/frequently-asked-questions/#what-are-the-configuration-recommendations-and-schema-guidelines-for-writing-sparse-historical-data
https://docs.influxdata.com/influxdb/v1/troubleshooting/frequently-asked-questions/#what-are-the-configuration-recommendations-and-schema-guidelines-for-writing-sparse-historical-data
https://docs.influxdata.com/influxdb/v2/reference/api/
https://docs.influxdata.com/influxdb/v2/query-data/flux/join/
https://docs.influxdata.com/influxdb/v2/query-data/flux/join/
https://docs.influxdata.com/influxdb/v2/reference/syntax/line-protocol/
https://docs.influxdata.com/influxdb/v2/reference/syntax/line-protocol/
https://docs.influxdata.com/influxdb/v2/reference/syntax/line-protocol/
https://docs.influxdata.com/flux/v0/stdlib/universe/pivot/
https://docs.influxdata.com/flux/v0/stdlib/universe/pivot/
https://docs.influxdata.com/influxdb/v2/query-data/influxql/
https://docs.influxdata.com/influxdb/v2/query-data/influxql/
https://docs.influxdata.com/influxdb/v1/concepts/tsi-details/
https://docs.influxdata.com/influxdb/v1/concepts/tsi-details/
https://docs.influxdata.com/influxdb/v1/concepts/time-series-index/
https://docs.influxdata.com/influxdb/v1/concepts/time-series-index/
https://docs.influxdata.com/flux/v0/stdlib/universe/union/
https://docs.influxdata.com/flux/v0/stdlib/universe/union/

Literaturverzeichnis

[39] InfluxData Inc.: Flux vs InfluxQL | InfluxDB OSS v2 Documentation. 2024. –
URL https://docs.influxdata.com/influxdb/v2/reference/syntax

/flux/flux-vs-influxql/. – Zugriffsdatum: 2024-11-24

[40] InfluxData Inc.: The future of Flux | Flux Documentation. 2024. – URL https:

//docs.influxdata.com/flux/v0/future-of-flux/. – Zugriffsdatum:
2024-11-24

[41] InfluxData Inc.: InfluxDB data elements | InfluxDB OSS v2 Documentation.
2024. – URL https://docs.influxdata.com/influxdb/v2/reference/

key-concepts/data-elements/. – Zugriffsdatum: 2024-11-24

[42] InfluxData Inc.: InfluxDB Open Source | InfluxData. 2024. – URL https:

//www.influxdata.com/products/influxdb/. – Zugriffsdatum: 2024-11-21

[43] Khelifati, Abdelouahab ; Khayati, Mourad ; Dignös, Anton ; Difallah, Djellel ;
Cudré-Mauroux, Philippe: TSM-Bench: Benchmarking Time Series Database
Systems for Monitoring Applications. In: Proceedings of the VLDB Endowment 16
(2023), Juli, Nr. 11, S. 3363–3376. – URL https://dl.acm.org/doi/10.14

778/3611479.3611532. – ISSN 2150-8097

[44] Knuth, Donald E.: The art of computer programming. Bd. 3. 2. Reading (Mass.)
London Manila [etc.] : Addison-Wesley publ, 1997. – ISBN 0-201-89685-0

[45] Kreiß, Jens-Peter ; Neuhaus, Georg: Einführung in die Zeitreihenanalyse. Ber-
lin/Heidelberg : Springer-Verlag, 2006 (Statistik und ihre Anwendungen). – URL
http://link.springer.com/10.1007/3-540-33571-4. – ISBN 978-3-
540-25628-1

[46] launchbadge: SQLx - The Rust SQL Toolkit. Januar 2025. – URL https:

//github.com/launchbadge/sqlx. – Zugriffsdatum: 2025-03-05

[47] Meier, Andreas ; Kaufmann, Michael: SQL- & NoSQL-Datenbanken. Berlin,
Heidelberg : Springer Berlin Heidelberg, 2016 (eXamen.press). – URL http:

//link.springer.com/10.1007/978-3-662-47664-2. – ISBN 978-3-662-
47664-2

[48] Menage, Paul ; Jackson, Paul ; Lameter, Christoph: Control Groups — The
Linux Kernel documentation. – URL https://docs.kernel.org/admin-gui

de/cgroup-v1/cgroups.html. – Zugriffsdatum: 2025-01-07

97

https://docs.influxdata.com/influxdb/v2/reference/syntax/flux/flux-vs-influxql/
https://docs.influxdata.com/influxdb/v2/reference/syntax/flux/flux-vs-influxql/
https://docs.influxdata.com/flux/v0/future-of-flux/
https://docs.influxdata.com/flux/v0/future-of-flux/
https://docs.influxdata.com/influxdb/v2/reference/key-concepts/data-elements/
https://docs.influxdata.com/influxdb/v2/reference/key-concepts/data-elements/
https://www.influxdata.com/products/influxdb/
https://www.influxdata.com/products/influxdb/
https://dl.acm.org/doi/10.14778/3611479.3611532
https://dl.acm.org/doi/10.14778/3611479.3611532
http://link.springer.com/10.1007/3-540-33571-4
https://github.com/launchbadge/sqlx
https://github.com/launchbadge/sqlx
http://link.springer.com/10.1007/978-3-662-47664-2
http://link.springer.com/10.1007/978-3-662-47664-2
https://docs.kernel.org/admin-guide/cgroup-v1/cgroups.html
https://docs.kernel.org/admin-guide/cgroup-v1/cgroups.html

Literaturverzeichnis

[49] Microsoft: Entdecken Sie die Leistungsfähigkeit der KI mit dem Betriebssystem
Windows 11, Computern und Apps | Microsoft. – URL https://www.microsof

t.com/de-de/windows. – Zugriffsdatum: 2025-02-17

[50] MongoDB, Inc.: About Time Series Data - MongoDB Manual v8.0. – URL
https://www.mongodb.com/docs/manual/core/timeseries/timeseri

es-bucketing/. – Zugriffsdatum: 2024-12-12

[51] MongoDB, Inc.: Create and Query a Time Series Collection - MongoDB Manual
v8.0. – URL https://www.mongodb.com/docs/manual/core/timeserie

s/timeseries-procedures/. – Zugriffsdatum: 2024-12-12

[52] MongoDB, Inc.: Insert Documents - Rust Driver v3.2. – URL https://www.

mongodb.com/docs/drivers/rust/current/fundamentals/crud/writ

e-operations/insert/. – Zugriffsdatum: 2025-02-28

[53] MongoDB, Inc.: $lookup (aggregation) - MongoDB Manual v8.0 - MongoDB Docs.
– URL https://www.mongodb.com/docs/manual/reference/operator

/aggregation/lookup/. – Zugriffsdatum: 2025-03-09

[54] MongoDB, Inc.: MongoDB Wire Protocol - MongoDB Manual v8.0 - MongoDB
Docs. – URL https://www.mongodb.com/docs/manual/reference/mong

odb-wire-protocol/. – Zugriffsdatum: 2025-03-09

[55] MongoDB, Inc.: Read Concern - MongoDB Manual v8.0 - MongoDB Docs. – URL
https://www.mongodb.com/docs/manual/reference/read-concern/.
– Zugriffsdatum: 2025-03-09

[56] MongoDB, Inc.: Set Granularity for Time Series Data - MongoDB Manual v8.0.
– URL https://www.mongodb.com/docs/manual/core/timeseries/ti

meseries-granularity/. – Zugriffsdatum: 2024-12-13

[57] MongoDB, Inc.: Time Series - MongoDB Manual v8.0. – URL https://ww

w.mongodb.com/docs/manual/core/timeseries-collections/. –
Zugriffsdatum: 2024-12-12

[58] MongoDB, Inc.: Time Series Collections Considerations - MongoDB Manual v8.0.
– URL https://www.mongodb.com/docs/manual/core/timeseries/ti

meseries-considerations/. – Zugriffsdatum: 2024-12-12

98

https://www.microsoft.com/de-de/windows
https://www.microsoft.com/de-de/windows
https://www.mongodb.com/docs/manual/core/timeseries/timeseries-bucketing/
https://www.mongodb.com/docs/manual/core/timeseries/timeseries-bucketing/
https://www.mongodb.com/docs/manual/core/timeseries/timeseries-procedures/
https://www.mongodb.com/docs/manual/core/timeseries/timeseries-procedures/
https://www.mongodb.com/docs/drivers/rust/current/fundamentals/crud/write-operations/insert/
https://www.mongodb.com/docs/drivers/rust/current/fundamentals/crud/write-operations/insert/
https://www.mongodb.com/docs/drivers/rust/current/fundamentals/crud/write-operations/insert/
https://www.mongodb.com/docs/manual/reference/operator/aggregation/lookup/
https://www.mongodb.com/docs/manual/reference/operator/aggregation/lookup/
https://www.mongodb.com/docs/manual/reference/mongodb-wire-protocol/
https://www.mongodb.com/docs/manual/reference/mongodb-wire-protocol/
https://www.mongodb.com/docs/manual/reference/read-concern/
https://www.mongodb.com/docs/manual/core/timeseries/timeseries-granularity/
https://www.mongodb.com/docs/manual/core/timeseries/timeseries-granularity/
https://www.mongodb.com/docs/manual/core/timeseries-collections/
https://www.mongodb.com/docs/manual/core/timeseries-collections/
https://www.mongodb.com/docs/manual/core/timeseries/timeseries-considerations/
https://www.mongodb.com/docs/manual/core/timeseries/timeseries-considerations/

Literaturverzeichnis

[59] MongoDB, Inc.: Transactions - MongoDB Manual v8.0 - MongoDB Docs. – URL
https://www.mongodb.com/docs/manual/core/transactions/. –
Zugriffsdatum: 2025-03-09

[60] MongoDB, Inc.: Write Concern - MongoDB Manual v8.0 - MongoDB Docs. –
URL https://www.mongodb.com/docs/manual/reference/write-con

cern/. – Zugriffsdatum: 2025-03-09

[61] MongoDB, Inc.: MongoDB: Die Datenplattform für Entwickler | MongoDB. 2024.
– URL https://www.mongodb.com/de-de. – Zugriffsdatum: 2024-11-16

[62] MongoDB, Inc.: Read Concern - MongoDB Manual v8.0. 2024. – URL http

s://www.mongodb.com/docs/manual/reference/read-concern/. –
Zugriffsdatum: 2024-11-14

[63] Monroe, Robert: American Chemical Society Honors Keeling Curve and NOAA
Observatory. April 2015. – URL https://scripps.ucsd.edu/news/americ

an-chemical-society-honors-keeling-curve-and-noaa-observato

ry. – Zugriffsdatum: 2024-10-07

[64] Murugesan, San: Harnessing Green IT: Principles and Practices. In: IT Profes-
sional 10 (2008), Nr. 1, S. 24–33. – URL http://ieeexplore.ieee.org/do

cument/4446673/. – ISSN 1520-9202

[65] Neo4j, Inc.: Neo4j Graph Database & Analytics | Graph Database Management
System. 2024. – URL https://neo4j.com/. – Zugriffsdatum: 2024-11-16

[66] NYC Taxi & Limousine Commission: TLC Trip Record Data - TLC. – URL ht

tps://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page. –
Zugriffsdatum: 2025-01-10

[67] Oracle: Oracle VirtualBox. – URL https://www.virtualbox.org/. –
Zugriffsdatum: 2025-02-17

[68] O’Neil, Patrick ; Cheng, Edward ; Gawlick, Dieter ; O’Neil, Elizabeth: The
log-structured merge-tree (LSM-tree). In: Acta Informatica 33 (1996), Juni, Nr. 4,
S. 351–385. – URL http://link.springer.com/10.1007/s002360050048.
– ISSN 0001-5903, 1432-0525

[69] Praschl, Christoph ; Pritz, Sebastian ; Krauss, Oliver ; Harrer, Martin: A
Comparison Of Relational, NoSQL and NewSQL Database Management Systems
For The Persistence Of Time Series Data. In: 2022 International Conference on

99

https://www.mongodb.com/docs/manual/core/transactions/
https://www.mongodb.com/docs/manual/reference/write-concern/
https://www.mongodb.com/docs/manual/reference/write-concern/
https://www.mongodb.com/de-de
https://www.mongodb.com/docs/manual/reference/read-concern/
https://www.mongodb.com/docs/manual/reference/read-concern/
https://scripps.ucsd.edu/news/american-chemical-society-honors-keeling-curve-and-noaa-observatory
https://scripps.ucsd.edu/news/american-chemical-society-honors-keeling-curve-and-noaa-observatory
https://scripps.ucsd.edu/news/american-chemical-society-honors-keeling-curve-and-noaa-observatory
http://ieeexplore.ieee.org/document/4446673/
http://ieeexplore.ieee.org/document/4446673/
https://neo4j.com/
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.virtualbox.org/
http://link.springer.com/10.1007/s002360050048

Literaturverzeichnis

Electrical, Computer, Communications and Mechatronics Engineering (ICECCME).
Maldives, Maldives : IEEE, November 2022, S. 1–6. – URL https://ieeexplo

re.ieee.org/document/9988333/. – ISBN 978-1-6654-7095-7

[70] Prometheus Authors: Prometheus - Monitoring system & time series database.
– URL https://prometheus.io/. – Zugriffsdatum: 2024-12-17

[71] Red Gate Software Ltd: DB-Engines Ranking - die Rangliste der populärsten
Time Series DBMS. November 2024. – URL https://db-engines.com/de/

ranking/time+series+dbms/all. – Zugriffsdatum: 2024-11-19

[72] Red Hat: KVM. – URL https://linux-kvm.org/page/Main_Page. –
Zugriffsdatum: 2025-02-17

[73] Red Hat: libvirt: The virtualization API. – URL https://libvirt.org/. –
Zugriffsdatum: 2025-02-17

[74] Redis Ltd.: Redis - The Real-time Data Platform. – URL https://redis.io/.
– Zugriffsdatum: 2024-11-15

[75] Rust Team: Rust Programming Language. – URL https://www.rust-lang.

org/. – Zugriffsdatum: 2025-02-17

[76] Sadalage, Pramod J. ; Fowler, Martin: NoSQL distilled: a brief guide to the
emerging world of polyglot persistence. Upper Saddle River, NJ : Addison-Wesley,
2013. – OCLC: 1065788907. – ISBN 978-0-13-301800-4

[77] Schicker, Edwin: Datenbanken und SQL. Wiesbaden : Springer Fachmedien Wies-
baden, 2017 (Informatik & Praxis). – URL http://link.springer.com/10

.1007/978-3-658-16129-3. – ISBN 978-3-658-16129-3

[78] Schlittgen, Rainer ; Streitberg, Bernd H. J.: Zeitreihenanalyse. 9., unwe-
sentlich veränd. Aufl. München : Oldenbourg, 2001 (Lehr- und Handbücher der
Statistik). – ISBN 978-3-486-71096-0

[79] Shumway, Robert H. ; Stoffer, David S.: Time Series Analysis and Its Applica-
tions: With R Examples. Cham : Springer International Publishing, 2017 (Springer
Texts in Statistics). – URL https://link.springer.com/10.1007/978-3

-319-52452-8. – ISBN 978-3-319-52452-8

100

https://ieeexplore.ieee.org/document/9988333/
https://ieeexplore.ieee.org/document/9988333/
https://prometheus.io/
https://db-engines.com/de/ranking/time+series+dbms/all
https://db-engines.com/de/ranking/time+series+dbms/all
https://linux-kvm.org/page/Main_Page
https://libvirt.org/
https://redis.io/
https://www.rust-lang.org/
https://www.rust-lang.org/
http://link.springer.com/10.1007/978-3-658-16129-3
http://link.springer.com/10.1007/978-3-658-16129-3
https://link.springer.com/10.1007/978-3-319-52452-8
https://link.springer.com/10.1007/978-3-319-52452-8

Literaturverzeichnis

[80] SingleStore, Inc.: SingleStore | The Real-Time Data Platform for Intelligent
Applications. – URL https://www.singlestore.com/. – Zugriffsdatum:
2024-12-17

[81] Software in the Public Interest, Inc.: Debian – Das universelle Betriebs-
system. – URL https://www.debian.org/index.de.html. – Zugriffsdatum:
2025-02-17

[82] Studer, Thomas: Relationale Datenbanken: Von den theoretischen Grundlagen
zu Anwendungen mit PostgreSQL. Berlin, Heidelberg : Springer Berlin Heidelberg,
2019. – URL http://link.springer.com/10.1007/978-3-662-58976-2.
– ISBN 978-3-662-58976-2

[83] The Apache Software Foundation: Apache Cassandra | Apache Cassandra
Documentation. 2024. – URL https://cassandra.apache.org/_/index.h

tml. – Zugriffsdatum: 2024-11-16

[84] The OpenTSDB Authors: OpenTSDB - A Distributed, Scalable Monitoring Sys-
tem. – URL https://opentsdb.net/. – Zugriffsdatum: 2024-12-17

[85] The PostgreSQL Global Development Group: PostgreSQL: Documentati-
on: 17: Chapter 53. Frontend/Backend Protocol. – URL https://www.postgr

esql.org/docs/17/protocol.html. – Zugriffsdatum: 2025-03-09

[86] The PostgreSQL Global Development Group: PostgreSQL: Documentati-
on: 17: COPY. – URL https://www.postgresql.org/docs/17/sql-cop

y.html. – Zugriffsdatum: 2025-02-28

[87] The PostgreSQL Global Development Group: PostgreSQL: Documentati-
on: 17: 13.2. Transaction Isolation. September 2024. – URL https://www.post

gresql.org/docs/17/transaction-iso.html. – Zugriffsdatum: 2024-11-08

[88] The PostgreSQL Global Development Group: PostgreSQL: The world’s
most advanced open source database. 2024. – URL https://www.postgresql

.org/

[89] Timescale Inc.: Timescale Documentation | About compression. – URL https:

//docs.timescale.com/use-timescale/latest/compression/abou

t-compression/. – Zugriffsdatum: 2024-12-06

101

https://www.singlestore.com/
https://www.debian.org/index.de.html
http://link.springer.com/10.1007/978-3-662-58976-2
https://cassandra.apache.org/_/index.html
https://cassandra.apache.org/_/index.html
https://opentsdb.net/
https://www.postgresql.org/docs/17/protocol.html
https://www.postgresql.org/docs/17/protocol.html
https://www.postgresql.org/docs/17/sql-copy.html
https://www.postgresql.org/docs/17/sql-copy.html
https://www.postgresql.org/docs/17/transaction-iso.html
https://www.postgresql.org/docs/17/transaction-iso.html
https://www.postgresql.org/
https://www.postgresql.org/
https://docs.timescale.com/use-timescale/latest/compression/about-compression/
https://docs.timescale.com/use-timescale/latest/compression/about-compression/
https://docs.timescale.com/use-timescale/latest/compression/about-compression/

Literaturverzeichnis

[90] Timescale Inc.: Timescale Documentation | Designing your database for compres-
sion. – URL https://docs.timescale.com/use-timescale/latest/co

mpression/compression-design/. – Zugriffsdatum: 2024-12-06

[91] Timescale Inc.: Timescale Documentation | Hyperfunctions. – URL https:

//docs.timescale.com/api/latest/hyperfunctions/. – Zugriffsdatum:
2025-03-08

[92] Timescale Inc.: Understanding ACID Compliance in PostgreSQL | Timescale. –
URL https://www.timescale.com/learn/understanding-acid-compl

iance. – Zugriffsdatum: 2025-03-09

[93] Timescale Inc.: Data Model. Januar 2020. – URL https://github.com/tim

escale/docs.timescale.com-content/blob/master/introduction/

data-model.md. – Zugriffsdatum: 2024-11-24

[94] Timescale Inc.: Architecture & Concepts. Februar 2021. – URL https://gith

ub.com/timescale/docs.timescale.com-content/blob/master/int

roduction/architecture.md. – Zugriffsdatum: 2024-11-24

[95] Timescale Inc.: PostgreSQL ++ for time series and events | Timescale. 2024. –
URL https://www.timescale.com/. – Zugriffsdatum: 2024-11-21

[96] Timescale Inc.: Timescale Documentation | About hypertables. 2024. – URL
https://docs.timescale.com/use-timescale/latest/hypertables/

about-hypertables/. – Zugriffsdatum: 2024-11-24

[97] Winters, Peter R.: Forecasting Sales by Exponentially Weighted Moving Averages.
In: Management Science 6 (1960), April, Nr. 3, S. 324–342. – URL https://pu

bsonline.informs.org/doi/10.1287/mnsc.6.3.324. – ISSN 0025-1909,
1526-5501

102

https://docs.timescale.com/use-timescale/latest/compression/compression-design/
https://docs.timescale.com/use-timescale/latest/compression/compression-design/
https://docs.timescale.com/api/latest/hyperfunctions/
https://docs.timescale.com/api/latest/hyperfunctions/
https://www.timescale.com/learn/understanding-acid-compliance
https://www.timescale.com/learn/understanding-acid-compliance
https://github.com/timescale/docs.timescale.com-content/blob/master/introduction/data-model.md
https://github.com/timescale/docs.timescale.com-content/blob/master/introduction/data-model.md
https://github.com/timescale/docs.timescale.com-content/blob/master/introduction/data-model.md
https://github.com/timescale/docs.timescale.com-content/blob/master/introduction/architecture.md
https://github.com/timescale/docs.timescale.com-content/blob/master/introduction/architecture.md
https://github.com/timescale/docs.timescale.com-content/blob/master/introduction/architecture.md
https://www.timescale.com/
https://docs.timescale.com/use-timescale/latest/hypertables/about-hypertables/
https://docs.timescale.com/use-timescale/latest/hypertables/about-hypertables/
https://pubsonline.informs.org/doi/10.1287/mnsc.6.3.324
https://pubsonline.informs.org/doi/10.1287/mnsc.6.3.324

A Anhang

A.1 Verwendete Hilfsmittel

In der Tabelle A.1 sind die im Rahmen der Bearbeitung des Themas der Bachelorar-
beit verwendeten Werkzeuge und Hilfsmittel aufgelistet.

Tabelle A.1: Verwendete Hilfsmittel und Werkzeuge
Tool Verwendung
LATEX Textsatz- und Layout-Werkzeug verwendet zur Erstellung dieses

Dokuments
ChatGPT Sprachmodell (LLM) teilweise genutzt als Formulierungshilfe
IntelliJ
IDEA

Programmierumgebung verwendet für die Entwicklung des
Testsystems

A.2 Einrichtung des Testsystems

Zur Einrichtung des Testsystems müssen die folgenden Schritte durchgeführt werden:

1. Abhängigkeiten installieren:

Für die Ausführung des Testsystems müssen folgende Pakete installiert werden1:

• libvirt

• qemu-full

• rust

• python-pandas

1Zur Ausführung des Testsystems wurde in dieser Arbeit Arch Linux genutzt. Auf anderen Distribu-
tionen können die Paketnamen abweichen.

103

A Anhang

• python-pyarrow

• virt-manager (optional)

Außerdem muss entweder das kvm_amd oder kvm_intel Kernelmodul entspre-
chend des genutzten Prozessors geladen werden.

2. Projekt herunterladen:

Die Projektdateien und auch die Rohdaten der Ergebnisse können über Git unter
der Adresse https://github.com/Malex14/time-series-database-s
ystem-tester heruntergeladen werden:
git clone https://github.com/Malex14/time-series-database-

system-tester.git

Alternativ befinden sich die Dateien auch auf der beigefügten CD.

3. Datensatz für Szenario B herunterladen:

Für Szenario B muss der verwendete Datensatz bei [66] im parquet-Format her-
untergeladen2 und mit dem Python-Skript convert_dataset_scenario_b.py
vorverarbeitet werden. Das Skript nutzt dabei die Dateien im anzugebenden Ordner
und schreibt die verarbeiteten Dateien in den Ordner ./dataset/scenario_b.

4. Debian Festplattenabbild herunterladen:

Von der Debian Internetseite muss im Anschluss das grundlegende Festplattenab-
bild unter der Adresse https://cloud.debian.org/images/cloud/book
w o r m / l a t e s t/ heruntergeladen werden. Der Dateiname lautet dabei
debian-12-genericcloud-amd64.qcow2

Alternativ befindet sich die für die Experimente verwendete Datei auch auf der
beigefügten CD.

5. Projekt konfigurieren:

In den Projektdateien befindet sich die Konfigurationsdatei vm_config.toml, in
der die Option temp_dir auf einen existierenden Ordner gesetzt werden muss – in
diesem Ordner werden temporäre Dateien des Testsystems abgelegt. Der Ordner

2Für die in dieser Arbeit durchgeführten Experimente wurden die Daten von Januar 2011 bis November
2024 genutzt.

104

https://github.com/Malex14/time-series-database-system-tester
https://github.com/Malex14/time-series-database-system-tester
https://cloud.debian.org/images/cloud/bookworm/latest/
https://cloud.debian.org/images/cloud/bookworm/latest/

A Anhang

sollte sich dabei auf einem schnellen Speichermedium befinden, da u. a. die Festplat-
tenabbilder der VMs dort abgelegt werden. Zudem muss die Option
base_disk_image auf den Pfad des zuvor heruntergeladenen Debian-Abbilds
zeigen.

6. Projekt kompilieren:

Mit dem folgenden Befehl kann das Projekt kompiliert werden:
cargo build --release --workspace

Danach wird sich im Ordner ./target/release die ausführbare Datei
instrumentation_gatherer befinden. Diese stellt die Metrikerfassung in der
Testumgebung dar und muss in den bin-Ordner des Projektverzeichnis kopiert
werden.

7. Dateiberechtigungen korrigieren:

Für die Energiemessung müssen die folgenden Befehle ausgeführt werden, die die
Berechtigungen der entsprechenden Dateien anpassen:
sudo chmod +r /sys/class/powercap/intel-rapl:0/energy_uj

sudo chmod +r /sys/class/powercap/intel-rapl:0:0/energy_uj

8. Testsystem ausführen

Um das Testsystem zu starten, muss folgendes Programm ausgeführt werden:
./target/release/database_tester -t [Anzahl von

Ausführungen jeder Anfrage] -s [Szenario]

Beispiel:
./target/release/database_tester -t 10 -s ScenarioB

Im Ordner out befinden sich im Anschluss die Ergebnis-CSV-Dateien.

105

Erklärung zur selbständigen Bearbeitung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig
verfasst und nur die angegebenen Hilfsmittel benutzt habe. Wörtlich oder dem Sinn
nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich
gemacht.

Ort Datum Unterschrift im Original

106

	Abbildungsverzeichnis
	Tabellenverzeichnis
	Abkürzungen
	Einleitung
	Grundlagen
	Zeitreihen
	Zeitreihenanalysen
	Relationale Datenbanksysteme
	Relationenmodell
	Relationale Algebra
	Transaktionen und ACID

	NoSQL-Datenbanksysteme
	BASE / CAP-Theorem
	Kategorien von NoSQL-Datenbanksystemen

	Zeitreihen-Datenbanksysteme
	Kategorisierung und Auswahl von Repräsentanten
	Reine Zeitreihen-Datenbanksysteme: InfluxDB
	Datenmodell
	Time-Structured Merge-Tree
	Shards
	Time Series Index

	Erweiterung von relationalen DBS: TimescaleDB
	Datenmodell
	Wide-/ Narrow-Table-Modell
	Kompression von Chunks

	Erweiterung von NoSQL DBS: MongoDB
	Datenmodell
	Buckets
	Granularität

	Zusammenfassung
	Verwandte Arbeiten

	Szenarios
	Auswahl der Szenarios
	Szenario A: Smart Home
	Analysen Szenario A
	Rahmenbedingungen Szenario A

	Szenario B: Taxis in New York City
	Analysen Szenario B
	Rahmenbedingungen Szenario B

	Szenario C: Monitoring kurzlebiger Dienste
	Analysen Szenario C
	Rahmenbedingungen Szenario C

	Konzeptioneller Vergleich
	Strukturanforderungen der Zeitreihen
	Anfragesprachen
	Verknüpfung von Zeitreihen (Joins)
	Zeitreihenoperationen
	Konsistenz und Transaktionen
	Programmierschnittstellen

	Experimenteller Vergleich
	Metriken
	Klassische Systemmetriken
	Green-IT und Strommessung

	Testsystem
	Aufbau
	Testumgebung (TU)
	Testsystem-Verwaltung (TSV)
	Architektur

	Implementierung der Szenarios
	Aufbau der Szenarios
	Szenarioablauf
	Implementierung der Generatoren
	Einfügen der Testdaten
	Anfragen

	Datensätze
	Ergebnisse
	Szenario A
	Szenario B
	Szenario C

	Diskussion und Empfehlungen
	Beobachtungen während der Experimente
	Diskussion der Ergebnisse
	Szenario A
	Szenario B
	Szenario C

	Empfehlungen

	Fazit
	Zusammenfassung
	Ausblick

	Literaturverzeichnis
	Anhang
	Verwendete Hilfsmittel
	Einrichtung des Testsystems

	Selbstständigkeitserklärung

