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Kurzzusammenfassung

Neben den Fortschritten in der Robotiksteuerung durch Reinforcement Learning spielen Large
Language Modelle (LLMs) eine zunehmend wichtige Rolle bei der Verbesserung der Interaktion
zwischen Robotern und Nutzern. Die Aufgabe der LLMs hier besteht darin, eine ausführbare
Liste von Anweisungen auszugeben, die die Absichten des Nutzers für den Roboter repräsentieren.
Diese Anweisungen werden im Robotik-Steuerungssystem ausgeführt, sodass Nutzer Roboter
über natürliche Sprache steuern können. Diese Arbeit schlägt ein Event-Basiertes Transaktion-
ssystem vor, in dem Anweisungen an die Roboter in Form von Transaktionen ausgeführt werden.
Diese integrieren Priorisierung und Ressourcen-Leasing, um eine sichere und parallelisierbare
Ausführung zu ermöglichen. Das System umfasst eine benutzerzentrierte Oberfläche über einen
Chatbot, wo der Nutzer zunächst generierte Anweisungen auswählt. Diese werden auf einem
digitalen Zwilling evaluiert und getestet, um eine sichere Ausführung zu gewährleisten, wodurch
sich das System besonders für den Einsatz von LLMs eignet.
Der Hauptbeitrag dieser Arbeit ist ein verallgemeinerter Integrationsprozess zur Einbindung
von LLMs in ein solches Robotik-Kontrollsystem. Die Leistung dieses Ansatzes wird anhand
mehrerer LLMs evaluiert, darunter Google’s Gemma2, Meta’s Llama3.1, Mistral’s Nemo und
Microsoft’s Phi3. Der Prozess beginnt mit der Definition des Evaluationssets und der Evaluation-
smetriken, gefolgt von der Definition und Bewertung von Systemprompts sowie der Verbesserung
der Token-Generierung. Anschließend erfolgt das Feintuning der LLMs mittels Low-Rank Adap-
tation (LoRA), die Einführung eines Few-Shot-Prompting-Ansatzes sowie die abschließende Be-
wertung der Generierung mehrerer Antworten.
Die Ergebnisse zeigen, dass dieser neuartige Ansatz zu einer erfolgreichen Integration der genan-
nten LLMs führt. Die durchschnittliche Bewertung aller Modelle auf dem gesamten Evaluation-
sset, einschließlich komplexer Aufgaben, konnte von 36% auf 70% des Maximalwerts gesteigert
werden. In der Kategorie der grundlegenden Nutzung, die die typische Anwendung durch Nutzer
widerspiegelt, wurde eine Verbesserung von 45% auf 86% erreicht.
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Abstract

Next to the advancements in robotics control through reinforcement learning, Large
Language Models (LLMs) start to play an important role in improving robot-user inter-
actions. The task for LLMs here is to output a parsable list of instructions, representing
the user’s intention for the robot, that will be executed in the robotics control system,
allowing users to control robots through natural language. This thesis proposes an event-
driven transaction system, where instructions to the robots are executed in the form of
transactions that incorporate priority and resource acquisition to enable safe and con-
current access. It features a user-centric frontend over a chatbot, where the user must
first choose translated instructions, which are evaluated and tested on a digital twin to
ensure safe execution, making it suitable for the use of LLMs.

This thesis’s main contribution is a novel and generalized integration process for inte-
grating LLMs in such a robotics control system and evaluates the performance of this
approach using multiple LLMs, including Google’s Gemma2, Meta’s LLama3.1, Mistral’s
Nemo, and Microsoft’s Phi3. The process starts with defining the evaluation set and eval-
uation metric, defining and evaluating system prompts, and improving token generation,
followed by fine-tuning the LLMs using Low Rank Adaptation (LoRA), proposing a
few-shot prompting approach, and finishing with the evaluation of multi-response gener-
ation.

The findings show that this novel approach results in a successful integration of the
mentioned LLMs, going from 36% to 70% of the maximum score averaged across all
LLMs on the total evaluation set, including complex tasks, with an improvement from
45% to 86% on the basic usage category, which resembles the user’s basic usage of the
system.
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1 Introduction

AI in robotics is a rapidly growing field, with research in the direction of autonomous
robots, sensor improvements, and predictions through reinforcement learning. These
directions tackle the sense and act paradigms in the traditional robotic architecture
sense-plan-act [39], where the planning is done through task scheduling with given goals
for the robot. For robotics in the home assistant and personal service fields, the user
interacts with the robot to provide goals. This user-robot interaction is the main topic in
said field. With the major growth of natural language processing through large language
models (LLMs), research has been initiated in the direction of using LLMs as the interface
for interacting with the robot by translating user intents into instructions.

In this work, an event-driven robotics control system is presented with an interface for
controlling it over LLMs. The robot control problem is viewed as an automatization
problem, where robot behavior is created through concatenating instructions. These
instructions are managed through a transaction system, which allocates needed resources
for them and manages their state and execution based on priority and attributes. A
transaction abstracts the robot itself as a resource, leasing it for execution and then
freeing it afterward. A trigger system allows for reactive behavior, making the robot
react to environmental signals. The proposed robotics control system allows for parallel
user interaction without interference, making it suitable for controlling robots over LLMs.
A digital twin is included to validate instructions and test them based on the current
state of the environment before execution in the real world.

A chat interface is provided in which the user can ask an LLM to perform a task, which
takes the role of the robot and outputs selectable instruction lists. If one is accepted by
the user, it is sent to the robotics control system, where transactions are derived from
the instructions and executed.

A generalized integration guideline is provided for optimizing LLMs for the translation
task, ensuring statistical soundness and reproducibility. This integration process can be
easily replicated and used to evaluate other LLMs.
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1 Introduction

As a proof of concept, multiple LLMs from different vendors are evaluated. Microsoft’s
latest model, Phi3, Meta’s LLaMA 3.1, Google’s Gemma2, and Mistral’s Nemo are as-
sessed on the task of translating user intent to instructions for the robotics control system.
These models are selected based on their performance in the Hugging Face Open LLM
Leaderboards and their popularity [12].

Structure

The thesis is structured as follows:

Current research is presented in chapter 2, followed by an explanation of how it is ex-
tended with this approach. In chapter 3, the robotics control system is introduced,
followed by an explanation of the approaches for the robotics control system and inte-
gration process in chapter 4. Chapter 5 presents the experiments, each containing their
goal, an expectation, their structure, their execution containing the results, a discussion,
and the conclusion. The experiments involve following the integration approach steps by
identifying a system prompt, optimizing the models, developing and evaluating few-shot
prompts, and conducting a multi-response temperature analysis. With this final result,
the feasibility of the integration process for improving LLMs for user-robot interaction
in a robotics control system is concluded in chapter 6.
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2 Related Work

The rapid growth of LLMs results in increased usage of them for human interaction.
While popular benchmark suits are used for evaluating their performance, work has to
be done to measure their performance in user-centric human-AI collaboration tasks, as
presented in [45].

Robot task planning is also the subject of extensive research. [25] uses ChatGPT-3.5
Turbo for real-time path planning in complex environments and parses the LLM’s output
as tasks to be allocated and executed.

[52] discusses the applicability of LLMs in generating goals from natural language by gen-
erating a planning domain definition language (PDDL [13]). A PDDL planning problem
contains a domain that includes the environment, object relations, constraints, available
actions, and the problem to be solved. The PDDL is then used by algorithms like Fast
Downward [16] to generate an executable plan.

[21] uses LLMs for a multi-robot task allocation system, where the users instructions are
decomposed into tasks that are then distributed through coalition formations of multiple
robot groups and allocated to them.

[20] creates behavior trees for robotic tasks using LLMs. The generated behavior trees
are validated in their XML format and executed on the robot, with a main focus on
navigation and exploration tasks combined with an arm on the robot for picking up and
transporting objects.

[27] presents a planning framework, where an LLM generates a sequence of executable
actions for a robot to follow. They do so by making the LLM generate a full action
sequence, which is checked given the environment state for validity. If the plan is valid,
it gets executed. If not, they fall back to a step-by-step plan, where the LLM generates
multiple possible actions for one step, and the most suitable by their environment model
is executed. After that, they repeat the process until reaching the goal.

3



2 Related Work

[50] proposes a safe and efficient task planning framework for generating constrained
plans in a given environment using LLMs. While translating natural language into a
plan, they make the LLM generate multiple explanations and translate each one into a
semantic task plan. With their generated set of plans, they check for equality of them.
They choose the most frequently repeated plan for execution. While creating each plan,
a constrained algorithm checks the validity of the plan and corrects it so that each one
is applicable to the current environment.

[46] considers task planning through constrained LLM prompt schemes that generate
executable action sequences to deal with LLM hallucinations. They also propose an
exception-handling module that checks that LLM-generated action sequences are admis-
sible in the current environment. In contrast to the here presented approach, which
requires the user’s acceptance, this approach directly executes the user’s request.

Other research also directly addresses the topic of hallucinations in LLM-powered code
generation [28]. Their study gives five primary categories of hallucinations in LLM code
generation and proposes a benchmark including hallucination recognition and mitigation
tests. Their conclusion indicates the need for further research in this area and the cur-
rent challenges faced by LLMs in detecting and mitigating hallucinations during code
generation.

With this work, an expansion on previous research is aimed for by utilizing a robotics
control system that incorporates reaction-based instructions and a digital twin. The
list of tested LLMs is expanded, and their performance in creating instructions based
on user input is compared using a multi-response chat platform that allows the user to
accept or reject generated instructions. A structured integration guideline is provided
to evaluate and improve LLMs, particularly by examining them in both their finetuned
and non-finetuned states, with the goal of evaluating the integration effectiveness and
the performance in translating user intent into robot instructions.
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3 Robotics Control System

In this section, a general overview is presented of how LLMs interact with robots, with a
particular focus on the papers from chapter 2 in which the generated plans are executed
on robots to categorize their approaches and identify the problems associated with these
approaches.

The robotics control system is then presented, along with a description of how these
problems are addressed. The usage of LLMs is subsequently introduced in chapter 4.

3.1 Overview

[22] provides an overview of LLM usage in robotics. It groups these usages in 4 major
categories:

• Communication, where the two tasks are converting natural language into semantic
representations for the robots to process and language generation to communicate
with the user.

• Perception, about building a perception of the environment for the robot to act in.

• Planning, about generating plans for the robot to execute.

• Control, where LLMs directly control the robots.

The main focus of this work is combining the planning and communication aspect to gen-
erate plans for the robot to execute through natural language from a user. While com-
munication is about creating semantic representations, planning often integrates robot
systems that handle the execution of these plans [22].

[21] has a simple task executor that sends commands to a simulation named ai2thor [23],
which is created mainly for research.

5



3 Robotics Control System

[50] runs the generated plans step by step in the PyBullet simulation [8], which is a
physics engine created mainly for research.

[25] uses the Robotic Operating System (ROS) [34] to execute the plan by the used LLM,
using the ROS navigation stack.

[24] and [46] also use the ROS navigation stack. For [24], the generated path is converted
to waypoints, which are checked in the ROS map for validity and then executed. [46]
translates the user’s input from the LLM into smaller tasks, which are functions that
call ROS services. Their exceptional handling module to combat LLM hallucinations is
called when translated tasks are not found in their task dictionary, and the LLM gets
prompted with that hint to correct the output.

[27] executes their planned actions on a simulation of the Franka Panda robot, where
its actions are implemented in ROS. Their validation checking is done by a geometric
algorithm that, e.g., checks if the robot can reach another object that is included in the
plan.

[20] executes actions with the BehaviorTree.CPP [5] library. The behavior tree contains
sequential actions, state-dependent branching, fallbacks, parallel branches, and more.
The actions are executed in ROS2 [29], the later version of ROS.

These ROS implementations concentrate on the operation of a single robot and build on
the ROS navigation stack to validate their plans. The specific purpose of these approaches
limits their scope, focusing either on only driving or only grabbing objects. As the output
from the LLM is directly executed, they do not have a feedback loop or safety guards
that check if the translated plan matches the user’s intent and only rely on the validity
of the plan by either geometric algorithms [27] or by checking if the plan has a valid path
for navigation tasks using the ROS map.

Behavior trees add a layer of abstraction to allow building complex behavior out of
smaller, simpler behaviors. But they are not suited for parallel executions of multiple
trees for the same agent or controlling multiple robots, as it is designed for specifying
the behavior of one agent [6].

Problems:

These are the identified challenges of the mentioned approaches:

6



3 Robotics Control System

• The plans are validated only logically, which may not fully capture environmental
dynamics.

• The generated plan execution can not be done concurrently or changed while exe-
cuting.

• The execution of translated plans is done directly after translation on the robot.

The first challenge is addressed by using a digital twin of the robot or robots that runs
the generated plan fully in a simulation. Available resources needed for the execution are
checked, and the plan is initially run in the simulation, capturing environment dynamics.
Upon successful execution in the simulation, the plan is executed on the real robot.

The second challenge, concerning the execution of a plan, is approached by modeling
the task execution problem in the form of a transaction system. This system allows
for the same depth in creating complex behaviors from simpler ones but also manages
the extension of behavior and resources in a concurrent and distributed environment, as
opposed to the previously mentioned behavior trees.

To address the last challenge, a multi-response user interaction is proposed, which re-
quires the user to select one choice specifically. In this way, a safety guard is provided to
prevent unintended actions caused by LLM mistranslations. More on that is discussed
in chapter 4.

3.2 Transaction System

In this section, the transaction system is presented, the core of this work’s robotics control
system. It is designed to manage shared resources in concurrent and distributed envi-
ronments. It provides a flexible interface for resource access, such as for robots, allowing
coordinated interaction among multiple programs, and is inspired by the automatization
system Simatic S7 [15] in resource handling, resource access, and task execution.

On ROS, multiple programs can publish commands directly to a robot or other actors,
but as more use cases arise, especially those requiring prioritization, this approach results
in hard-coded, complex state machines. E.g., if one program navigates the robot to a
destination while another prompts it to approach and greet a person, the robot would
receive conflicting movement instructions, leading to unintended behavior. This system
manages resource control to address these issues.

7



3 Robotics Control System

3.2.1 System Design

Each executable action is called a task. A task defines what resources it needs for
execution, as in [15]. Driving to a location or rotating, e.g., are tasks that expect the
availability of a robot base, or talking would need to use the audio playback. A resource
system manages the available resources and their states, as well as providing a way to
lease and free them for managing concurrent access.

In this proof of work, a resource is defined as the smallest unit that is used to create a
behavior. For a robot that can drive and talk, e.g., the robot base and audio playback are
resources. Resources themselves define if they can be shared or are exclusive. Resources
from one robot are grouped as one robot, and when multiple parts are needed, the ones
from one group are preferred. This design allows for two tasks to use both parts of a
robot in parallel.

Tasks can be chained into a task list, which gets executed sequentially, passing through
the state of the last task in the form of events.

Tasks are executed through transactions. A transaction contains lists of task lists, which
are executed concurrently. A transaction can either be queued or running, visualized in

Figure 3.1: Transaction Lifetime.

fig. 3.1. Outside requests can remove a queued transaction, or the transaction system
can start it automatically when enough resources are available. A running transaction
can be aborted or removed, either internally if a task aborts its execution or when the

8



3 Robotics Control System

transaction system stops it for taking over resources for a higher priority one. It can also
finish cleanly if all tasks in each task list succeed. Transactions are aborted automatically
when a leased resource becomes offline, meaning that a heartbeat was not received for too
long a duration. To manage that, the transaction system caches the state of the resource
system and subscribes to updates of it. It then sets abort signals to transactions that
depend on a now offline resource. It also checks if a resource is leased by a transaction
that is no longer available when, e.g., the communication of freeing a lease failed.

The transaction system manages the execution of transactions based on their priority.

Figure 3.2: Transaction Queue.

Figure 3.2 shows how registered transactions are executed in the transaction queue.
Queue ticks run only when no transaction is in an aborted or removed state; otherwise,
the cleanup is awaited.

Transactions are sorted by their priority. The highest-prioritized transaction is then
checked to see if its needed resources are currently online. If they are not, the next
transaction is looked at. If some needed resources are leased, it is checked if they can be
taken over and calculates the outcome of taking them over with the following priorities:

• Least amount of dangling resources.

• Lowest priorities.

• Least weight per attribute if set. An attribute for driving to a location, e.g., is the
shortest path for each resource applicable to that distance.

This means that a cross product of transactions is made so that resources can be allocated
to cover needs in a way that maximizes their utilization. If matching combinations are
found, their priorities are checked, and if these priorities match, an attribute is checked
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if it is set. Otherwise, the first option is selected. When all required resources for a
transaction are available and free, they are simply taken. A set attribute is used to
decide between multiple choices.

A trigger system is implemented to build reactive behavior. Triggers are defined as
functions that are called on specified events to initiate or manage transactions.

Figure 3.3: Trigger States.

Figure 3.3 shows how triggers work. They are registered to react to an event of a wanted
type. The event serves as their input, and they have the option to return a transaction,
which the transaction system will automatically register. It gets, after sending a transac-
tion, removed from the trigger system but can be registered to be repeated any amount
of times or stay permanently active.

As in [15], with the combination of transaction and trigger, tasks can run in a cycle,
periodically, event-driven, and priority based.

The transaction system is designed for easy extensions of new tasks and resources in
multiple programming languages using the Thrift IDL [2].

Figure 3.4 shows the structure of the system.

The whole system communicates over an internal publish and subscribe event bus. The
parameter server handles setting and getting shared parameters. The resource system
has an interface for leasing and freeing resources, as well as managing the registration
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Figure 3.4: Robotic System Overview.

and connection to resources over a heartbeat. The trigger system manages the registra-
tion, deregistration, and execution of triggers. The transaction system does the same
for transactions. The evaluation system has an interface for evaluating the validity of
transactions and triggers through a simulation. The server is the entry point for outside
access, implementing a REST API for accessing public functionalities of the other nodes
and a publish-subscribe broker for events over a websocket. The communication client
implements the counterpart of the server’s API and is written in Rust and Python but
can be implemented in each language that is supported by Thrift. The LLM interface
and chatbot server will be presented in chapter 4.

The architecture of the system components ensures modularity, scalability, and asyn-
chronous interaction between subsystems over the internal event bus. It allows for asyn-
chronous execution, enabling decoupled components to react dynamically to new events.
The resource system enforces structured access to resources, preventing conflicts and
allowing safe concurrent operations for our transactions.

The transaction and trigger system allows for complex behavior out of small behaviors like
the behavior tree but also allows for concurrent extension and usage of behaviors managed
by the transaction system. When combined with the safety of execution provided by the
evaluation system, it creates a system that is well-suited for use with LLMs.
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3.2.2 Proof of Concept

In this section, the used robot in this work is shown with a visual example of how to
create complex behaviors out of the building blocks, the tasks, and triggers.

Robot

Figure 3.5: Picture of the Loomo Segway.

The robot used in this work is the Loomo Segway, as seen in fig. 3.5. It is a two-legged
self-stabilizing Segway that can drive, rotate, talk, move its head, and has a touchscreen
on its head. It also has multiple sensors, like an RGBD camera, a face cam, a fish eye
cam, an IMU, and more [37].

In this proof of concept of the robotics control system, the Loomo provides the following
resources for the resource system:

• LoomoBase: An exclusive resource for driving and rotating.

• LoomoVoice: An exclusive resource for talking.

• LoomoHead: An exclusive resource for rotating the head.

• LoomoSensors: A shared resource for using the sensors.
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• LoomoDisplay: An exclusive resource for using the touchscreen.

This separation is mainly based on different API access points of the Loomo SDK [37],
abstracting each part of the robot as a resource. Since sensors are published instead of
used, these are abstracted as a shared resource. The last resource, the LoomoDisplay,
abstracts the use of a touchscreen interface on the Loomo’s head, which is implemented
for user interaction.

The following tasks are implemented for the Loomo to be used in the transaction system
again based on the Loomo SDK:

• LoomoDrive(Coordinate): Making the Loomo drive to a coordinate, either a named
one, a local one or a global one. Needs the LoomoBase resource.

• LoomoRotate(Degree): Making the Loomo rotate a specific degree. Needs the
LoomoBase resource.

• LoomoTalk(Text): Making the Loomo talk a specific text. Needs the LoomoVoice
resource.

• LoomoRotateHead(pitch, yaw): Making the Loomo rotate his head to a specific
pitch and yaw. Needs the LoomoHead resource.

• LoomoWaitingForUserResponse(AwaitedResponse): Making the Loomo wait on his
touchscreen for user input. Needs the LoomoDisplay resource.

The behavior of the last task, waiting for a user input, is again based on a custom
implementation of having buttons on the touchscreen of the Loomo head display for user
interaction.

For each task, a ROS launch file is implemented, which defines a group of processes
executed together. The transaction system then starts and closes these launch files for
each task while executing a transaction.

Example

Here, an example use case is shown with added tasks of making the Loomo call for help
and a fall-detection camera.
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Figure 3.6: Example automatization using the Transaction System.

Figure 3.6 shows an example behavior built with the transaction system. The Loomo
starts on ’Rt’ and sees a person through his face cam, which publishes a ’PersonDetected’
event. A registered trigger responds to this event, initiating a transaction to greet the
person. The robot itself is instructed to drive to the locations on ’T1’, ’T2’, and ’T3’
in order in a repeating transaction. A camera running a fall detection sees a person
falling in the kitchen and publishes a ’PersonFell’ event containing the position of the fell
person. The Loomo, now on ’Rte’, reacts to that event with a high priority. Transaction
to drive to that position, talk with the person, and wait for a response. If the person
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doesn’t respond in time or signals help, a ’BadUserResponse’ event instructs the Loomo
to dial for help.
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In this chapter, the multi-response approach is presented in detail and how it is used
with the LLMs to control the robotics control system.

In this approach, the LLM generates one or multiple responses to a user query, on which
he can choose one, addressing the challenge found in section 3.1 of directly executing
LLM responses.

Figure 4.1: Robotics Control System Interface. The user’s intent is translated into robot
instructions through an LLM. If the user accepts a response, it gets sent to
a simulation to test if it is executable. If it is, it gets executed on the real
robot.

This feedback system, visualized in fig. 4.1, reduces the problem of having LLM hallu-
cinations for the robotics control system since the user accepts a sequence instead of it
being executed directly. To further address security concerns, the execution is first done
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in a simulation with a digital twin of the robot to check if it gets executed correctly, to
take environment dynamics into account.

At the end of this section, what needs to be evaluated for this thesis to reason about the
multi-response pattern will be listed, and an overview of the evaluation approach will be
shown. The evaluation will be done in chapter 5.

4.1 LLM Interface

The task of the LLMs is to generate a list of instructions in the form of a JSON list to
be executed by the robotics control system. JSON is used due to its support of the used
programming language Rust [1] and the ease of parsing, generating, and reading it. The
LLM Interface, seen in fig. 3.4, is the entry point for the LLM’s text and handles the
conversion from the JSON into trigger and transactions. It filters out non-valid JSON
and checks if the instructions and trigger are applicable in the current environment.

An intermediate vocabulary is used for the LLM interface, which the LLMs need to
generate JSON from, instead of generating transactions or triggers directly. This is done
to keep a separation between the instructions that the LLMs generate and the tasks that
the robotics control system uses. It allows creating instructions that do not map to only
one task but to multiple tasks and enables extending or modifying the functions of the
robotics control system without the need to modify the LLM inference.

The LLM interface also derives a more readable sentence from the parsed instructions
for the user, from which he can choose, e.g.:

[ {" EventBased " :{" event " :" PersonDetected " ,
" i n s t r u c t i o n s " : [ { " LoomoDrivesTo " :{" NamedLocation " :" k i t chen "}} ] } } ]

to:

If a person was detected: Loomo reaches the kitchen

The second functionality of the LLM interface is to execute a chosen generated sequence,
which first gets evaluated by the evaluation system, and on success on the real robot.

4.2 Chatbot
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Figure 4.2: Chatbot Behavior
Diagram.

The chatbot is a user interface for translating user
requests into transactions and triggers.

For the website, the Chainlit framework is used [7], al-
lowing for a user-friendly UI with a simple implemen-
tation. Here, the backend only needs to implement an
optional on-start function and an on-message callback
while having one state possible per user or chat. Mul-
tiple users can chat simultaneously with the chatbot
and send instructions to the transaction system.

The chatbot can be configured with an environment
containing information about the system prompt and
a matched evaluation function, for example, evaluat-
ing the translated instructions on a digital twin or
allowing them to be published directly to the trans-
action system.

The default environment uses a digital twin of two
Loomo Segways in the living room apartment, as seen
in fig. 3.6. The LLM takes the role of the Loomo Seg-
way and converts user instructions to a list of event-
based or direct instruction lists.

The chatbot server can be configured with a specific
LLM, a local one, or an external one like ChatGPT.

It runs a simple state machine in the backend, using
the LLM interface to communicate with the trans-
action system, seen in section 4.2. The initial state
prints a simple message telling the user to give an in-
struction to the robot. The user input is then sent to
the LLM multiple times with a configurable temper-
ature variable to create multiple possible responses.
The results are sent to the LLM interface to filter out
inapplicable ones. When there are no valid LLM re-
sponses left, an error message will be printed out, and the state is set to the initial state.
If there are choices, the user is instructed to pick one or go back to the initial state by

18



4 Approach

interrupting with the ’q’ choice. Wrong inputs will result in a short message that the
input was false, followed by staying in the choosing state. When the user picks a choice,
the result is sent to the LLM interface, which handles the evaluation and execution.

4.2.1 Chatbot Interaction

In this section, an interaction example with the chatbot is provided.

Preriquisites

The transaction system and all its components are running.

The two Loomo Segways are also started, and a node runs that registers them to the
transaction system and sends a heartbeat for the active robots. For the map and navi-
gation, a navigation stack is run for the two Loomos in the living room apartment. In
this example, simulated Loomos are used, but the navigation map is a 1 to 1 mapping
of the real apartment.

The chatbot is also started with a dual Loomo environment for evaluating the instructions
on the digital twin and runs the LLM Llama 3.1 for translating the users requests in the
8B parameter version [11].

Experiment

The chatbot website is open, and the robot gets instructed to drive forward and, on
seeing a person, to greet them.

This first instruction is visualized in fig. 4.3. On the left side, the chat UI is shown,
and on the right side, the resulting visualized view of the robots states in the navigation
map.

Here, a list of choices is generated to pick from. After choosing the first choice, it gets
evaluated and executed, as seen by the green line in the navigation view. He drove a
meter forward.

Another example is shown in fig. 4.4. Here, the chat was continued with asking him to
go to the kitchen. The LLM now has only one distinct choice generated, which is picked.
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Figure 4.3: Chatbot interaction example, first instruction.

Figure 4.4: Chatbot interaction example, second instruction.

Now, the Loomo on the right drives to the kitchen, since he is closer to the location than
the left one.
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4.3 Integration Process

With the approach of using LLMs to generate instructions for robots, the three major
problems found in section 3.1 are addressed, with the security concern of directly exe-
cuting LLM-generated responses being addressed by the user-response pattern over the
chat.

In this section, this workj’s main contribution is presented, and the necessity of each
process step is explained. LLMs have been shown to have great promise in understanding
and responding to natural language, but the challenge of integrating them into structured
robotics control systems remains. Current approaches are focused simply on translation
and evaluate its correctness based on the LLM’s output as it is, as discussed in chapter 2.
However, a structured method for incorporating LLMs into a robotics control system is
lacking.

Two main research points are addressed in this thesis:

• Defining a structured setup for integrating LLMs into a transactional robotics con-
trol system. There is no established approach that ensures deterministic, reliable,
and logically sound translation of user instructions into executable transactions.
This work aims to fill this gap by presenting a process that enables LLMs to func-
tion effectively within such a system in a generalized and reproducible way.

• Given this work’s approach with using the transaction system for execution safety
and security, another layer of safety is added by making the user choose between
transactions generated by the LLM instead of the direct execution of the LLM
output. The integrated LLMs will be evaluated by scaling the number of generated
responses, evaluating their impact on quality, and reasoning about the effectiveness
of this approach.

The effectiveness of these two research points is the research questions, which are eval-
uated through the experiments. It demonstrates both the necessity of a well-defined
generalized integration process of LLMs for a robotics control system and the effective-
ness of the proposed multi-response pattern in improving the reliability of the usage of
LLMs in such systems.

The experiments evaluate the proposed process steps of creating a dataset and evalua-
tion metric in the setup, followed by system prompt development, fine-tuning, few-shot
prompting, and a multi-response research.
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Process Steps

Here, the process steps for answering the main research questions are shown. The goal is
to provide a generalized, structured guideline and evaluate it, finding out how to optimize
LLMs in general for the translation and integration task and to show the impact of scaling
to multiple choices.

Figure 4.5: Approach Overview.

In fig. 4.5, a visual representation of the approach that will be followed in the experiments
is provided.

In the first step, it presents the setup. Here, the first question is what to evalu-
ate—meaning what LLMs to choose, followed by how to evaluate them. This section
requires an evaluation dataset and an evaluation metric. The dataset needs to represent
the task that LLMs are tested to solve on, and the metric must be able to give a score
on how well the LLM performs on the dataset.

The next step begins with the evaluation dataset, metric, and selected LLMs. Example
system prompts are developed here, providing the LLM with the necessary context and
guidance to generate a response that solves the wanted task. After creating the exam-
ple system prompts, the question is which one to use or if one is already good enough.
To answer that, they need to be evaluated on the evaluation dataset using the metric.
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Upon evaluation, an iterative process starts, improving the system prompts and evalu-
ating them again until the results are satisfactory. To keep the generalizable approach,
it is especially important to find a stable prompt for each LLM to generate parsable
instructions.

Adding the best system prompt to the setup, the guide follows up with the fine-tuning
step to optimize the LLMs for the task. Since fine-tuning the LLMs needs to be done with
a system prompt to associate the data with the task, this section follows after choosing
a system prompt. Starting with the section, training data needs to be created that
resembles a broad range of possible user inputs and the corresponding wanted output
labels. Since full-model fine-tuning is very expensive, Low Rank Adaptation (LoRA) is
used [18] to add weights to the LLMs, and only these are fine-tuned on the training data.
This leads to the question of what rank size, a parameter determining the number of
weights to fine-tune in LoRA, to choose. Rank sizes are largely dependent on the task
and training data, so a rank study is proposed to find the optimal size. Since fine-tuning
is a process that introduces noise, a sample study is conducted to find the optimal number
of samples required per rank size and fine-tune all LLMs with the found sample size. The
proposal is that the run-to-run variance for fine-tuning LLMs with LoRA is so small that
one LLM with one rank size is suitable to find a sample size for each LLM on each rank
size. Continuing with the fine-tuning for all LLMs in their different rank configurations,
it is tested that the sample size stays valid given the statistical assumptions; otherwise,
another sample study is needed. The best models for the optimal rank size are chosen
to be the fine-tuned LLMs for the following sections.

Since having fine-tuning training data is a time-consuming process, this work keeps the
base LLMs and the fine-tuned LLMs separate to show that the continued integration
improvements are also feasible for the base LLMs.

In the next step, given the base and fine-tuned LLMs, each LLM’s evaluation score on
the dataset is further improved by updating the system prompt with examples. This
process is called few-shot prompting, where examples added to the prompt are used to
guide the LLM to generate better responses without changing the model weights. Since
each LLM performs differently, there is no general solution for all LLMs, meaning that
this section has to be done after having the base and fine-tuned LLMs ready. Examples
are first created for categories in the evaluation dataset that most LLMs struggled with.
With the differences in performance per LLM, an algorithm is proposed to find good
example sets for each one by first evaluating each example on their own on the LLM
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and putting them into a descending sorted list, ranked by their performance. A broader
search space of combinations is then explored using that sorted list, e.g., by taking the
first, the third, and the fifth-best examples, and these combinations are evaluated. The
search space includes 24 different variations. The best combination is then chosen to be
the few-shot prompt for that LLM.

Now that the LLMs have undergone all these improvements, the second research question
can be addressed. How well the LLMs scale with multiple responses for the task, espe-
cially when used in the proposed chatbot approach, is answered. For that, a temperature
study is conducted. The randomness of LLMs is controlled by the temperature, and
how it affects the quality of the generated responses is examined by two metrics: how
does it improve the evaluation score on the evaluation dataset when multiple responses
are generated and only the best one is chosen, and how does it score when averaging
the results? Meaning that, if the user sees multiple responses, do they contain a good
response, and what is the quality on average? Since temperature adds randomness to the
evaluation, another sample study is suggested. This time, again one LLM is chosen, with
the highest temperature that will be tested. It is argued that the variance between the
LLMs’ scores on those metrics is similar enough and that this variance decreases as the
temperature is lowered. Following this, a temperature analysis is conducted, the validity
of the sample size is ensured based on the statistical assumptions, and the research is
concluded.

The integration process is evaluated in chapter 5 by following the steps to answer the
research questions.
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In this chapter, the experiments are presented to analyze the performance of large lan-
guage models (LLMs) in translating user intent to goals for the robotics control system
following the integration process. The LLM’s task is to generate a specified format that
will be parsed in the robotics control system to execute the given instructions.

The first process is the setup, as seen in section 4.3, to define which LLMs to integrate
and create an evaluation dataset and metric.

The experiments start by creating and optimizing a system prompt, included at the top
of each prompt. A fine-tuning analysis of the LLMs is followed up on using the dataset
and chosen prompt, and the system prompt is updated with a few-shot examples for
the base models and fine-tuned ones. The experiments are concluded by providing a
temperature analysis for the LLMs, analyzing the trade-off between determinism and
creativity for controlling the robotics control system.

The created dataset represents popular benchmark tasks and specific tasks for controlling
the robotics system. The goal of the experiments is to provide a structured approach
in optimizing the performance of arbitrary LLMs for the robotics control system and to
analyze and improve their performance.

For the experiments, the goals, expectations, structure, and execution containing the
results and discussion, and a conclusion for each part of the experiments are presented.

5.1 Setup

A maximum evaluation time of two weeks is aimed for all setup steps over the chosen
LLMs, and a 24GB VRAM GPU with BFloat16 support is used. For inferring the LLMs,
the transformers library [49] is used to download and utilize models wrapped in a custom
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library to provide a unified interface for all LLMs, as well as to easily configure inference
parameters such as the temperature, system prompt, and token generation.

Figure 5.1: Step one of the Experiment Approach from fig. 4.5.

As in fig. 5.1, the first question by the proposed approach is what LLMs to evaluate.

5.1.1 Large Language Models

This study evaluates Microsoft’s latest model, Phi3; Meta’s LLama3.1; Google’s Gemma2;
and Mistral’s Nemo on the task of translating user intent to goals for the robotics control
system. The 8B parameter version of LLaMA 3.1 is used. For Phi3, the 14B model is
used; for Mistral Nemo, the 12B model; and for Gemma2, the 27B model. To fit the ones
over 10B parameters into the GPU VRAM, 4-bit quantization is used. These choices are
made based on their performance in the Hugging Face Open LLM Leaderboards and their
popularity [12]. A clear structure for the experiments with our diverse set of LLMs from
different vendors is provided. The experiments can be easily replicated and extended to
other LLMs.

LLama3.1 is currently one of the best-performing LLMs for code generation [51] and
is also at the top of LLM benchmarks with its 70B parameter version. Phi3 fits into
the same space and presented a 1.3B version of its model, which still holds up to the
mentioned LLM’s [30]. Mistral’s new Nemo model improves upon the older versions and
compares itself to the LLama model favorably, [3]. Gemma2 is Google’s new state-of-the-
art model. They claim its smaller models outperform Mistral, LLaMA, and Phi3, and
the 27B model comes close to LLaMA’s 70B model and GPT-4 [42]. For said models,
their instruct version is chosen. Instruct models are fine-tuned to follow instructions and
answer questions, typically used for chatting [33]. The instruction templates are parsed
in the custom library from this thesis.

These models will be evaluated after fine-tuning and in their non-fine-tuned state to see
their in-context performance.
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5.1.2 Evaluation Dataset

Following with on what to evaluate the chosen LLMs from fig. 5.1, the goal is to create
a set of evaluation data suitable to evaluate the performance in translating user intent
into robotics control goals.

This work inspects the benchmark datasets from the open LLM Huggingface leaderboard,
the most popular platform for benchmarking open source models [12] and evaluate the
tasks included in them to find applicable ones for the robotics control system. It in-
cludes IFEval [54], an instruction-following evaluation dataset, BBH [41] benchmarking
mathematics, reasoning, and question answering, MATH LvL 5 [17], containing textbook
math problems, GPQA [35], multiple choice tasks about biology, physics, and chemistry,
MMLU-PRO [47], similar questions about more fields including psychology, law, and
more, and MUSR [38], solving textbook questions with multiple steps of reasoning re-
quired.

For this work, only the IFEval and BBH are applicable, since the rest is about textbook
questions and answers, which are not suitable for the here-presented use case. The first
two contain direct reasoning and instruction tasks, the main task for the robotics control
system.

From IFEval, the following task categories for the evaluation dataset are chosen:

• Include Keywords, where the output has to include a specific keyword.

• Keyword Frequency, where the output has to include a specific keyword multiple
times.

• Two Responses, where the LLM needs to respond twice.

• JSON Format. This category is implicitly included in the dataset since JSON is
the expected format.

Other categories are about the number of words and sentences, language, Markdown
formats, and similar text-based manipulation tasks that would alter the wanted JSON
format.

From BBH, the following task categories are chosen:

• Geometric Shapes, reasoning about geometric shapes.
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• Logical Deduction, reasoning about the environment.

• Navigation, reasoning about the position.

• Temporal Sequencing, reasoning about the order of actions.

• Word Sorting, sorting words alphabetically.

These task categories are used for this work’s own benchmark, keeping their logic but
adapting them to the robotics control system and context. Multiple task categories are
added to cover multiple aspects of the system and to evaluate the reasoning capabilities
of the LLMs.

The whole vocabulary of the system needs to be covered, based on the proof of concept
with the Loomo Segway, to test if the LLM understands the transaction system logic, if it
can infer and recognize patterns, if it can infer instructions and events, if it can logically
deduce information from context provided by the user, if it can recognize text-based
patterns, if it can handle abstract requests, and if it can handle multilingual tasks.

For that, top-level categories are created to group specific behavior, each containing
multiple subcategories:

• Basic Evaluation

– Basic evaluation prompts covering the whole vocabulary of the system.

– Values for Event Topics, extending the tasks before with a focus on events.

• Multilingual Test

– German Basic Evaluation, where the LLM gets prompted in German.

• Transaction System Logic

– Event Sequencing, where the LLM has to reason about the order of actions.
E.g., changing the order of reaching wanted locations in comparison to the
text input, like going to place B after A, expecting to go to A first.

– Multiple Events to react to, where the task contains multiple events to react
to.

– Parallel Instructions, where the LLM has to create parallel instruction lists.

• Inferring and Pattern Recognition
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– Referring to and Repeating things already done, where the LLM needs the
robot to repeat actions.

– Inferring tasks to do after calling them out, where the robot needs to say
something and then do it.

– User Interaction Logic, where the LLM has to reason about the users in the
environment.

• Inferring Instructions and Events

– Inferring User Responses, where the LLM has to infer user responses.

– Inferring Danger Events, where the LLM has to infer reacting to a dangerous
state.

• Logical Deduction

– Environment Deduction. In this context, the deduction capabilities of the
LLM are tested by providing it with information about the environment. For
example, directing it to identify the coldest place.

– Navigation Deduction, where the LLM has to reason about its position. E.g.,
if it ends up in a position after multiple driving instructions, it has to act
based on that state.

• Text Based Patterns

– Include Keywords. The LLM has to append keywords before locations or text
output, e.g., appending the keyword ‘LIVING-PLACE’ when instructed to
navigate to a position.

– Keyword Frequency. The LLM has to repeat instructions multiple times.

– Two Responses. The LLM has to provide two responses to the wanted request,
making it a parallel instruction to, e.g., control two robots at the same time.

– Word Sorting, driving to locations sorted alphabetically or making multiple
movements in a sorted order.

• Abstraction of Movement
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– Geometrics. In this context, the LLM is instructed to create geometric move-
ments for the robot, such as driving in a triangle.

– Head Movements, where the LLM has to abstract the movement of the robot’s
head, e.g., answering by nodding.

For the basic evaluation, a set of 25 labels are created and for the rest of the tasks 6,
resulting in a total of 133 handwritten prompts for evaluating the LLM’s performance.

5.1.3 Evaluation Metric

For the basic evaluation, a set of 25 labels is created, and for the rest of the tasks, 6,
resulting in a total of 133 handwritten prompts for evaluating the LLM’s performance.

The goal is to satisfy the following criteria:

• Having a normalized score of 0 to 1, 0 meaning no similarity and 1 meaning full
logical similarity.

• Independence of order between the lists, since instruction lists are executed in
parallel.

• Loose Comparisons. In this context, instructions are given to the robot that convey
meaning rather than exact values, such as directing it to drive a tick forward.

• Independence of where bad instructions lie, e.g., if the robot is instructed to say
hello and drive forwards, but the LLM-generated say hello, say hello again, and
drive forwards, a result of 1 - 1/3 is expected, since 2/3rds of the logic are correct
to the label.

• Punish generating more than needed instructions or parallel instruction lists.

Given a set of instructions and events:
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Let I = {StartingEmergencyStop,

LoomoSetsHeadRotationPitchYaw(pitch, yaw),

LoomoDrivesTo(position),

LoomoRotates(rotation),

LoomoSpeaks(text),

LoomoWaitsForUserResponse(yes|no)}.

Let E = {DangerousStateDetected,

PersonDetected(pitch, yaw),

LoomoBadUserResponseReceived(position),

Topic(text)}.

Each instruction and event has a type(a) and optionally associated parameters (specified
in the brackets next to the type).

Instruction Similarity:

The instruction similarity is based on how closely two instructions of the same type match
each other. For example, for geometric instructions, the instructions are similar if their
target uses the same sign and is within a similar distance. The similarity is defined as
being within 50 degrees for angles and 0.5 meters for positions. These values are chosen
by observing the outputs of the used LLMs when tasking them with indirect wordings,
e.g., drive a bit forward or rotate a bit to the right, as well as the reasoning that the
robot’s navigation stops being precise at under half a meter or smaller angles.

Comparing two instructions:

S(a, b) =


0 if type(a) ̸= type(b),

SmatchedType(a, b) if type(a) = type(b).
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SmatchedType(a, b) =



1 if τ = StartingEmergencyStop,

1 if τ = LoomoSetsHeadRotationPitchYaw

∧ |pitch(a)− pitch(b)| ≤ 50◦

∧ |yaw(a)− yaw(b)| ≤ 50◦

∧ (sign(pitch(a)) = sign(pitch(b)))

∧ (sign(yaw(a)) = sign(yaw(b))),

1 if τ = LoomoDrivesTo

∧ ∥pos(a)− pos(b)∥ ≤ 0.5 m,

1 if τ = LoomoRotates

∧ |rotation(a)− rotation(b)| ≤ 50◦

∧ (sign(rotation(a)) = sign(rotation(b))),

SDL(w(a), w(b)) if τ = LoomoSpeaks,

1 if τ = LoomoWaitsForUserResponse

∧ (label(a) = label(b)),

0 otherwise.

For τ = LoomoSpeaks, let w(a), w(b) be the text parameters and dDL the Dam-
erau–Levenshtein distance to measure the similarity of words:

Sspeaks(a, b) = 1− dDL(w(a), w(b))

max(|w(a)|, |w(b)|)
.

Instruction List Similarity:

Since the output of the LLM contains multiple instruction lists that are either direct or
event-based, first, how to compare two arbitrary ones is defined.

Consider two instruction lists A and B:

32



5 Experiments

A = {a1, . . . , am}, B = {b1, . . . , bn},

where m = |A| and n = |B|.
Each ai ∈ I and each bj ∈ I.

Each list can be either direct or event-based(e) with an event type e ∈ E . Defining
a type-compatibility function C(A,B):

C(A,B) =


1 if listType(A) = direct ∧ listType(B) = direct,

1 if listType(A) = event-based(eA) ∧ listType(B) = event-based(eB) ∧ eA = eB,

0 otherwise.

Given this, the similarity between two instruction lists A and B is:

SA,B = C(A,B) · S′
A,B.

To define S′
A,B, first consider a set Σ of mappings from the indices of A to the indices of

B:
σ : {1, . . . ,m} → {1, . . . , n} ∪ {none}.

These mappings must satisfy:

1. (Ascending)

∀i < j : σ(i) ̸= none, σ(j) ̸= none =⇒ σ(i) < σ(j).

2. (Injective)
∀i ̸= j : σ(i) ̸= none, σ(j) ̸= none =⇒ σ(i) ̸= σ(j).

3. (Optional Unmatched) Elements of {1, . . . ,m} that cannot be matched injectively
and in ascending order are assigned none:

∃i : σ(i) = none allowed.
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Define:

S′
A,B = max

σ∈Σ

(∑m
i=1 S(ai, bσ(i))

m
·min

(
1,

m

n

))
,

where S(ai, bσ(i)) is the similarity between individual instructions ai and bσ(i).

Set-of-lists similarity:

Multiple instruction lists are expected, since these can run in parallel. So, considering
two lists of instruction lists to compare a label and generated lists:

A = {A1, . . . , Ap}, B = {B1, . . . , Bq},

where p = |A| and q = |B|.

Defining a set T of mappings:

τ : {1, . . . , p} → {1, . . . , q} ∪ {none}

such that:

1. (Injective)

∀k1 ̸= k2 : τ(k1) ̸= none, τ(k2) ̸= none =⇒ τ(k1) ̸= τ(k2).

2. (Optional Unmatched)
∃k : τ(k) = none allowed.

Define:

SA,B = max
τ∈T

(∑p
k=1 SAk,Bτ(k)

p
·min

(
1,

p

q

))
.

Here, the order does not matter, since the instruction lists are executed in parallel.

This final function is used to compare the lists of instruction lists, with finding the
optimal projection from the generated list to the label list.
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Evaluation Examples

To illustrate the various evaluation metric scenarios, examples are presented where the
label corresponds to the desired label and the generated output serves as a benchmark
for comparison. For readability, abstract code is used.

The metric is associative for instruction lists, since they are executed in parallel:

l a b e l :
− [ LoomoRotates ( 9 0 ) ]
− [ LoomoSpeaks ( " He l lo " ) ]

r eve r s ed :
− [ LoomoSpeaks ( " He l lo " ) ]
− [ I n s t r u c t i o n : : LoomoRotates ( 9 0 ) ]

s i m i l a r i t y == 1.0

The metric is order-sensitive for instructions when comparing lists, since the order of
instructions matters:

l a b e l :
− [ LoomoRotates (90 ) , LoomoSpeaks ( " He l lo " ) ]

r eve r s ed :
− [ LoomoSpeaks ( " He l lo " ) , LoomoRotates ( 9 0 ) ]

s i m i l a r i t y == 0.0

Adding one bad instruction results in a decrease in the similarity:

l a b e l :
− [ LoomoRotates (90 ) , LoomoSpeaks ( " He l lo " ) ]

generated :
− [ LoomoSpeaks ( "beep" ) , LoomoRotates ( 90 ) ,

LoomoSpeaks ( " He l lo " ) ]
s i m i l a r i t y == 1.0 − (1 . 0 / 3 . 0 )

The same applies to missing an instruction. Here, the similarity is 0.5, meaning that
only 50% of the logic is correct:

l a b e l :
− [ LoomoRotates (90 ) , LoomoSpeaks ( " He l lo " ) ]
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generated :
− [ LoomoSpeaks ( " He l lo " ) ]

s i m i l a r i t y == 0.50

The metric allows for subtle differences in matched instructions, since indirect wordings
are expected for some instructions, e.g., drive a bit forwards:

l a b e l :
− [ LoomoRotates (90 ) ,

LoomoDrivesTo ( LocalCoordinateInCm (x=100 , y=0)) ,
LoomoDrivesTo ( NamedLocation ( "Bedroom" ) ) ,
LoomoSpeaks ( " He l lo " ) ]

generated :
− [ LoomoRotates (70 ) ,

LoomoDrivesTo ( LocalCoordinateInCm (x=80, y=0)) ,
LoomoDrivesTo ( NamedLocation ( "bedroom" ) ) ,
LoomoSpeaks ( " h e l l o " ) ]

s i m i l a r i t y == 1.0

If the instructions differ too much, the similarity is 0:

l a b e l :
− [ LoomoRotates ( 9 0 ) ]

generated :
− [ LoomoRotates ( −90)]

s i m i l a r i t y == 0.0
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5.2 Experiments

In this section, the following approach steps, as seen in fig. 4.5, are presented, to conclude
the thesis.

5.2.1 System Prompt

Figure 5.2: Step two of the Experiment Approach from fig. 4.5.

Following the next guideline step, as seen in fig. 5.2, the created evaluation dataset,
the similarity score as the evaluation metric, and the picked LLMs Gemma2, Llama3.1,
Mistral Nemo, and Phi3 are added for this experiment.

A system prompt is used to guide the output of the LLMs by being appended to each
input [36]. A template structures the instruction prompts, filling in the placeholders
with user input and system context. [36]. For the used instruction models, model-specific
instruction templates are used per model that contain a specific header tag for user input
and assistant output. If the instruction template does not contain a separate system tag,
where the system prompt resides, it is appended to the user tag and separated with a
Context:’ and Request’ block.

The goal for this section is to create a system prompt that first results in valid output for
each LLM and secondly has a higher than 0.5 evaluation score for the basic evaluation
set.

The expectation is that the first system prompts will have difficulties providing a valid
output format for some models but can be fixed by improving them in an iterative
process. It is also expected that the evaluation goal for the basic evaluation set will be
reached, since it is a simple set of instructions. For the more complex tasks, a lower score
is expected.
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First, two baseline system prompts are defined, and each LLM is evaluated using those.
Iteratively, the prompts are improved until a conclusion is reached based on the goal by
analyzing the outputs of the LLMs.

OpenAI’s prompting guide [32] provides the following strategies. They are presented
here and shown how they are integrated into this work’s prompts:

• Ask the model to adopt a persona: The model is asked to take the role of the robot.

You are a robot named eoomo and respond to requests from a user

in the form of an instruction system. Instructions can be based

on events. These instructions form the goal for the robot. The

data layouts are in JSON format. Variables are highlighted with

a $ symbol before them, following their type.

• Provide reference text for its vocabulary: A list of words that the system prompt
uses is provided.

The different types of events are:

- "DangerousStateDetected"

- An event that indicates a dangerous state.

- "LoomoBadUserResponseReceived"

- An event that indicates that the robot named Loomo

received a wrong user response or a timeout waiting on

a user response occurred.

- "PersonDetected"

- An event that indicates that a person was detected.

- {"Topic": $STRING}

- An event that indicates that an event occurred on the

topic named by the value string.

The different types of instructions are:

- "StartingEmergencyStop"

- An instruction to start an emergency stop.

- {"LoomoDrivesTo":{"LocalCoordinateInCm":{"x":$int,"y":$int}}}

- An instruction for the robot named Loomo to drive to a local

coordinate (x, y) in centimeters in front of the robot.

- {"LoomoDrivesTo":{"GlobalCoordinateInCm":{"x":$int,"y":$int}}}

- An instruction for the robot named Loomo to drive to a global

coordinate (x, y) in centimeters on the map.

- {"LoomoDrivesTo":{"NamedLocation": $STRING}}

- An instruction for the robot named Loomo to drive to a

globally named location, represented by the argument.
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- {"LoomoRotates": $int}

- An instruction for the robot named Loomo to rotate, in degrees.

Positive means rotating to the left, negative to the right.

- {"LoomoSetsHeadRotationPitchYaw":{"pitch": $int,"yaw": $int}}

- An instruction for the robot named Loomo to rotate his head to a

specified position. (pitch,yaw) in degrees. Negative pitch means

moving the head down, positive pitch means moving the head up.

Negative yaw means moving the head to the right, positive yaw

means moving the head to the left.

- {"LoomoSpeaks": $String}

- An instruction for the robot named Loomo to say the text given as

a value.

- {"LoomoWaitsForUserResponse": $"yes|no"}

- An instruction for the robot named Loomo to wait on a user input

and expect the given answer. Can either be "yes" or "no". If the

Loomo awaits a "yes", but a "no" answer is given or a timeout

occurs, then an event of the type LoomoBadUserResponseReceived

will be automatically thrown.

• Write clear instructions of what the model needs to do: Clear instructions of how
it needs to respond are provided.

• Specify the output: The output format is directly specified in the system prompt.

Your task is to return a response in the following JSON format,

returning a list containing direct and/or event-based instruction

lists. You have to translate the user’s intention into instructions.

A direct entry looks like this:

{"Direct":{"instructions":[$Instruction...]}}

- If the user wants something to happen that is not based

on external events.

An event based entry looks like this:

{"EventBased":{"event":$EventType,"instructions":[$Instruction...]}}

- If the user wants something to happen based on an external event.

The event argument can only be of the types given in the

events list. The second value is an instruction list.

You need to respond ONLY (no extra text, and as a one liner) with a list

containing either of them:

[$Direct|$EventBased ...]

Meaning that if you only need to return one Direct Instructionlist, you
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still return it in a list.

ONLY use the types provided and ONLY Change variables with a Dollar sign

before them.

• Test changes systematically: The system prompt is iteratively improved.

• Use delimiters: Instruct models are used, and delimiter tokens are directly added
into the text.

• Providing examples: A short example of the output structure is provided. Few-shot
examples are added later in section 5.2.3.

To have a second baseline prompt, ChatGPT is used to generate an improved system
prompt out of the first one. The final version was slightly altered, and mistakes were fixed
to align with the correct vocabulary and structure. It mainly separated each section by a
markdown block, added markdown enumerations, and added headers for each section.

The sections are about the context, event types, instruction types, response requirements,
and rules to follow.

Results:

First, the percentage of parsable outputs is calculated for each model for the whole
evaluation set. For these benchmarks, the temperature value for each LLM is set to 0,
meaning that it behaves deterministically and always picks the most likely token.

As seen in fig. 5.3, both prompts failed to get the LLMs to output valid JSON. The
default prompt did slightly better on average, since phi3 and llama3.1 had a higher
percentage of valid outputs using it, while the markdown prompt achieved the highest
score for gemma2 but was worse for the other models. Mistral Nemo failed to output
correct JSON on either prompt.

With these results, an analysis is first conducted on the failed outputs for both prompts:

• Mistral Nemo, Llama 3.1, and Phi 3 failed to produce correctly formatted JSON,
often with missing brackets or wrong characters at the beginning of the JSON.

• Gemma2 sometimes added markdown JSON symbols, more often in the default
prompt.

40



5 Experiments

Figure 5.3: Parsability of the LLM’s outputs for the evaluation set with the first system
prompts.

To fix these issues, an iterative improvement is made, as seen in the approach in fig. 5.2,
updating both prompts by adding the JSON schema to the prompt. A JSON schema
represents a structural contract for the JSON output; following it ensures that the out-
put is correctly formatted. Also, the following text after the added JSON schema is
appended:

ONLY give a response in the mentioned JSON format, no additional text and only

exactly one response. Do NOT add ‘‘‘json and ‘‘‘ around the response.

Figure 5.4: Parsability of the LLMs outputs for the evaluation set with the updated
prompts.

Figure 5.4 shows the updated prompt’s parsability score. This update improved the
default prompt by a lot, going from an average of 37.75% correct parsing of the LLM’s
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outputs to 72.25%. The markdown prompt only improved by about 16%, but still had
under 20% performance for Mistral Nemo and Phi3.

These were the issues with the updated prompts:

• On the updated default prompt, Phi3 hallucinated types into the JSON output
that were not contained in the JSON schema and sometimes still had bad bracket
placements. On the updated Markdown prompt, JSON markdown symbols were
still often added.

• Mistral Nemo had only in the updated Markdown prompt the same issues as before,
adding bad characters or wrong brackets.

Concluding the results, although the updated prompts improved the parsability of the
LLM’s outputs, the issues still appear to be too variable between the models and not
suitable for the experiment structure. This is particularly true since a generally applicable
guideline is desired for use on any LLM.

Guided LLM Generation:

With this conclusion, the next iteration of improvement from the approach in fig. 5.2 is
started by adding a structured text generation tool. Structured text generation means
that the LLM’s output tokens are constrained to a specific format.

For LLMs, the next token is sampled from a categorical distribution over each token in
the vocabulary. In guided generation, before the token is sampled, a mask is applied to
only allow certain tokens to be sampled.

Most implementations create a mask after each new token by re-evaluating the whole
vocabulary, which adds huge computational overhead for generating tokens [48].

Outlines the guided LLM generation tool used in this work [48], converting the schema
into a Finite State Machine that is used to mask the vocabulary. This approach means
that for each token, the mask is already included in the current state and can be applied
directly.

With the JSON schema enforced by the tool, a parsability of 100% is achieved for each
model, except when it generates too much output, which is restricted to a set maximum.
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With that, the LLMs are evaluated on the evaluation dataset using the evaluation metric
defined in section 5.1.3.

Figure 5.5: Evaluation Score of the LLMs outputs for the evaluation set with the first
system prompts, using guided LLM generation to enforce the JSON schema.

Figure 5.6 shows the evaluation score for each LLM using the guided LLM generation,
meaning that each output was valid JSON. Both prompts achieved very similar results,
with the default prompt averaging slightly higher due to better performance with Phi3.
For this work, the default prompt is chosen. Looking at the results, Gemma2 already
achieved a slightly above 0.5 evaluation score for the evaluation set, with Mistral Nemo
being close behind it with 0.46. Phi3 and LLama3.1 share the same score of around
0.23.

Looking at fig. 5.6, the evaluation score for each LLM per category is seen, using the
default prompt with guided LLM generation. The ’Basic Evaluation’ and ’Multilingual
Test’ categories have the highest scores, as the tasks are basic and simply test vocabulary.
The other, more complex tasks have lower scores, with the ’Abstraction of Movement’
only reaching around 0.19 on average.

Conclusion

Concluding this section, two system prompts were provided for the LLMs, following the
strategies from OpenAI’s prompting guide [32]. Looking at the expectations with a focus
on iteratively improving the prompts, it is seen that for the use case of needing a specific
JSON format, updating the prompts alone did not fully work for all LLMs. For this
reason, it is concluded that guided LLM generation is needed to have a stable output
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Figure 5.6: Evaluation Score of each LLM per Category using the Default Prompt with
guided LLM generation.

and build a pipeline that works for arbitrary LLMs. The LLM choices have different
performances, with Gemma2 already achieving around a 0.5 evaluation score for the
evaluation set, while Mistral Nemo is close behind it with 0.46. Phi3 and LLama3.1 share
the same score of around 0.23. The expectation of achieving more than a 0.5 evaluation
score for the basic category was only met for Gemma2 and Mistral Nemo, with only
Mistral Nemo achieving more than 0.5 in two of the other complex categories.

5.2.2 Finetuning

Figure 5.7: Step three of the Experiment Approach from fig. 4.5.
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Here, the experimental approach continues with the next step, as seen in fig. 5.7, by
adding the system prompt with the guided LLM generation to the LLMs and fine-tuning
them to improve their performance on the evaluation set.

An LLM is trained on a specific
dataset during fine-tuning to enhance
its performance for that set. Since
full-model finetuning is very costly and
time-consuming [18], LoRA, Low-Rank
Adaptation, is used, as shown in
fig. 5.8. LoRA adds extra weights to
the LLM layers and freezes the rest of
it so that it can be fine-tuned. This
means that only the new weights are
trained, and their sizes are determined
by the rank size A’. A’ is given a
random Gaussian initialization, and B’
is set to 0.r’. B’ are the weights of
these two layers, where The output of
one layer with an added LoRA adapter
is simply the addition of the old
weights and the LoRA weights.

Figure 5.8: LoRA reparametrization,
image from [18].

The goal here, next to improving the LLM’s performance, is to measure how much of an
impact the fine-tuning has, as well as give a systematic approach to choosing the size of
the added weights.

It is expected that each LLM will be improved after being fine-tuned, especially Llama
3.1 and Phi 3, which shared the worst performance, and expect the size of the added
weights to not matter much for fine-tuning, since the vocabulary is small.

First, the training data is presented, followed by a LoRA rank analysis to find out what
rank size to choose as seen in fig. 5.7. The LLM’s finetuning and evaluation losses while
finetuning are shown and analyzed, followed by an evaluation of the finetuned LLMs.

Training Data Generation:

In this section, the training data used to fine-tune the LLMs is presented as a simple
proof of concept to provide examples over the whole vocabulary. First, parts of a sentence
indicating a specific instruction or event are created.
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Examples for the instruction ‘LoomoSpeaks’:

Hey Loomo , say h e l l o .
Greet me, Loomo !

For each flat instruction and event, a list of 100 examples is provided. Around 10–25
examples per instruction and event were written by us, and the rest were generated
by ChatGPT 4.0, ChatGPT 3.5 Turbo, and Microsoft Copilot. A program is created
that reads in the example sentences and concatenates them, creating random sentence
combinations. The resulting concatenation is then cleaned up with random connection
words and saved with the paired instruction and event values as a training data prompt.

A full example:

Input Text :
Loomo , go to the bedroom , then p l e a s e nav igate to the kitchen , and

r e t r i e v e a yes re sponse .
Upon i d e n t i f y i n g a dangerous scenar io , say a l e r t .

Label :
[ {

" Di rec t " : {
" i n s t r u c t i o n s " : [

{
"LoomoDrivesTo " : {

"NamedLocation " : "bedroom"
}

} ,
{

"LoomoDrivesTo " : {
"NamedLocation " : " k i t chen "

}
} ,
{

"LoomoWaitsForUserResponse " : "Yes"
}

]
}

} ,
{

"EventBased " : {
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" event " : "DangerousStateDetected " ,
" i n s t r u c t i o n s " : [

{
"LoomoSpeaks " : " a l e r t "

}
]

}
} ]

Human readab le t ex t f o r LLM in t e r a c t i o n :
Loomo reaches the bedroom −> Loomo reaches the k i t chen −> Loomo

awaits a yes from the user
I f a dangerous event happened : Loomo says a l e r t

The input text is an example of randomly chosen sentences. The LLM gets it as an input,
and the label is the expected output. The human-readable text for LLM interaction is
what the user sees after sending his request to the LLM and what he can choose to accept
or not on the Chatbot front end.

A total of around 700 training prompts are created this way. For validating the generated
dataset, to test if it has enough distinct samples and no duplicates, [4] is used, a data
profiling tool. The size is rather on the smaller side according to [44], but it is argued
that, with the small vocabulary, it is sufficient.

LoRA Rank Analysis:

For fine-tuning with LoRA, the rank size ‘r’ needs to be chosen, the main parameter to
tune from the authors of LoRA [18], meaning the size of the added weight matrices to
the LLM’s layers.

The fine-tuning library used is the Supervised Fine-tuning trainer from Hugging Face with
the default settings from LoRA [19]. Only the rank size is varied for this experiment,
and the models are trained for one full episode.

The goal here is to find out if one rank size performs best for all models or if each model
needs a different optimal rank size.
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Since fine-tuning depends on many random variables, such as the randomized initial-
ization of the LoRA weights [18], the random sampling of the training data, and the
randomness in the optimizer, a suitable sample size needs to be determined first.

For that, the following assumptions are made to save computational resources:

• The variance in performance of 50 fine-tuned Llama 3.1 with rank size 16 is smaller
or within Levene’s test for homogeneity of variances of the same or other models
of varying ranks. The Levene test measures if multiple samples have the same
variance [26].

• To determine the required sample size for comparing different LLMs and ranks,
collecting 50 samples from Llama 3.1 with rank size 16 is sufficient. Using these
samples, a sample size analysis is made to estimate the number of observations
needed for detecting a performance difference of 1% (Cohen’s d = 0.1 [9]) with
90% statistical power and a significance level of 0.05. These values are commonly
used in statistical analysis [31]. This means that only 50 runs of fine-tuning and
evaluating Llama 3.1 with rank size 16 are needed to find out the sample size.
As long as the variance of each LLM and rank size variation is not significantly
different from Llama 3.1 with rank size 16, according to Levene’s test, the sample
size can be used for comparing LLMs in their rank sizes.

Following the above two points, t-tests [40] can be conducted for each model with their
different rank sizes with the same sample size to find significant differences in perfor-
mance, given the presented statistical power and significance level.

Sample Size Analysis:

Here, 50 separate fine-tuning and evaluation runs are conducted for Llama 3.1 with rank
size 16 to calculate an appropriate sample size for further fine-tuning experiments.

The results after 50 runs, shown in fig. 5.9, show an average evaluation score of the fine-
tuned models of 0.52, with q1, the 25th percentile at 0.515, and q3, the 75th percentile
at 0.525. There is only a small variance, with 50% of the results being within 1% of the
performance difference.
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Figure 5.9: Box Plot for fine-tuning Llama 3.1 50 times and evaluating its performance
with rank size 16.

Calculating the sample size needed for detecting a performance difference of 1% with
90% statistical power and a significance level of 0.05, a sample size of 7 is calculated,
since the variance is very low for the fine-tuned models.

LoRA Rank Results:

The sample size of 7 is now used to find the optimal rank size for each LLM, meaning
that each LLM is fine-tuned with rank sizes 8, 16, and 32 and evaluated on the evaluation
set 7 times. Note that a higher rank size was not used, as it did not fit on the GPU’s
VRAM for the 27B Gemma2 model.

For each following run, the variances of the evaluation scores were tested using Levene’s
test, and each one passed, making the sample size of 7 sufficient for the given assump-
tions.

Figure 5.10 shows the results for fine-tuning gemma2 with different rank configurations.
In the t-test, no significant difference in performance was observed between the rank
sizes. The average performance was highest for rank size 8, with the highest single value
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Figure 5.10: Box Plot for fine-tuning Gemma2 7 times and evaluating its performance
with different rank sizes.

being an outlier for rank size 32. The conclusion for this model is that each of the chosen
rank sizes is applicable.

For Llama 3.1, shown in fig. 5.11, the mean for rank size 16 is almost identical for the
sample size of 7 compared to the sample size of 50 in fig. 5.9. Conducting the t-test, a
significant difference was found for rank size 8 compared to 16 and 32, with 16 and 32
having the highest average and maximum scores. The conclusion for this model is that
rank size 8 is the best choice.

For Mistral Nemo, shown in fig. 5.12, the t-test also showed a significant difference for
rank size 8 compared to 16 and 32, with it also having the highest average and maximum
score, also concluding that rank size 8 is the best choice.

The same goes for Phi3, shown in fig. 5.13, where the t-test also showed a significant
difference for rank size 8 compared to 16 and 32, with rank size 8 performing the best.

The overall result is that the rank size 8 is the best choice for all tested models given this
works dataset, showing a significant difference in performance for all models but Gemma2,
with the highest average score for all models based on the statistical assumptions and
samples.
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Figure 5.11: Box Plot for fine-tuning Llama3.1 7 times and evaluating its performance
with different rank sizes.

Figure 5.12: Box Plot for fine-tuning Mistral Nemo 7 times and evaluating its perfor-
mance with different rank sizes.
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Figure 5.13: Box Plot for fine-tuning Phi3 7 times and evaluating its performance with
different rank sizes.

Fine-Tuning Loss:

Here, the stability while training the LLMs with the chosen rank size of 8 is shown.

Figure 5.14: Training Loss for each LLM while finetuning on rank 8. Average of 7 runs.
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Figure 5.15: Evaluation Loss for each LLM while finetuning on rank 8. Average of 7 runs.

Figure 5.14 shows the training loss for each LLM while fine-tuning on rank 8. The average
of 7 runs is shown per LLM. The y-axis shows the loss, and the x-axis the training step.
fig. 5.15 shows the evaluation set loss sampled 5 times across the full training episode,
with 0 representing the start of the training and 1 the end. Each LLM converges in their
training and evaluation loss, with Gemma2 converging on a similar rate with Mistral
Nemo, closely followed by Llama3.1. Phi3 takes the longest to converge.

These results show that each LLM converges in their training and evaluation loss, result-
ing in a stable fine-tuning process.

Fine-Tuned Models:

For the rest of this work, the highest-performing trained model for each LLM is selected
based on the given rank size of 8.

Figure 5.16 shows the evaluation score for each LLM before and after fine-tuning. Gemma2
improved the least by 16.70%, but still has the highest score of 0.595, closely followed by
Mistral Nemo with an improvement of 27.17% and a score of 0.585. Phi3 improved a lot
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Figure 5.16: Evaluation Score of the LLM’s outputs for the evaluation set before and
after finetuning.

more by 52.17%, but still has the lowest score of 0.35. Llama3.1 improved the most by
136.50% and achieves a score of 0.544, closely behind Mistral Nemo and Gemma2.

Figure 5.17 shows the evaluation score for each LLM per category of the fine-tuned
models, denoted by the ’ft’ appendix. In fig. 5.18, the difference in evaluation score of
the fine-tuned models to the base models per category can be seen.

The training data seems not to cover the logical deduction category well, with an average
regression of around -0.03 for all models, with Phi3 and Mistral Nemo being impacted
here by around -0.1. Gemma2 was impacted negatively in the abstraction of movement
section, with around -0.166, and in the Multilingual Test section by -0.105. Mistral Nemo
was also impacted here by -0.216. The category that resembles the training data the most,
the Basic Evaluation set that includes the vocabulary, grew the most on average, with
all models except Phi3 reaching above 0.85. This means that for simple requests, which
are assumed to be the norm when the system is used, the models are performing well.
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Figure 5.17: Evaluation Score of each Fine-Tuned LLM per Category using the Default
Prompt with guided LLM generation.

Conclusion

In this experiment, the training data for fine-tuning the LLMs and a structure for choos-
ing the rank size for LoRA were presented. A stochastic approach was used to reduce
computational resources by finding a suitable sample size for the statistical assumptions.
With the assumption of being 95% confident in the results, with 90% statistical power in
finding a 1% performance difference, it was determined that a sample size of 7 is sufficient
for the needs. Levene’s test confirmed the homogeneity of variances between LLM and
rank size variations for the samples. Based on these assumptions, rank size 8 was found
to be the best choice for all tested models, with a significant difference in performance
for all models except Gemma2, which performed well on each rank setting. The fact
that a higher rank size performed worse indicates that the models were quick in learning
the training data and tended to overfit, leading to worse performance on the evaluation
set.
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Figure 5.18: Evaluation Score Difference of each Fine-Tuned LLM to the Base LLM per
Category using the Default Prompt with guided LLM generation.

The expectation of each LLM being improved after fine-tuning was met, with the worst
models in the benchmark, Phi3 and Llama3.1, showing the most improvement. Sur-
prisingly, Llama3.1 improved by more than 100%, while Phi3, the larger model, only
improved by around 50%, despite both having almost the same evaluation score before
fine-tuning. Mistral Nemo, the model with the same parameter size as Phi3, is now only
1% behind Gemma2, the largest model in the benchmark.

What was found by analyzing the results per category is that the training dataset caused
small regressions for some models in the Multilingual Test, Abstraction of Movement, and
Logical Deduction categories. This indicates that the training data, which is based on
providing basic examples, does not adequately cover these advanced tasks. A follow-up
will focus on further improving the models in the next section.

For the best integration advice for LLMs to robotics control systems, it is concluded that
fine-tuning gives a beneficial impact on the performance of the LLMs.
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Figure 5.19: Step four of the Experiment Approach from fig. 4.5.

5.2.3 Few-Shot Examples

Few-shot examples mean that examples are appended to the system prompt. In this
section, the fine-tuned models are added to the experiment process, examples are created,
and their impact on the LLM’s performance is evaluated, following the next step, as seen
in fig. 5.19.

Given the fine-tuned and base LLMs, the goal is to further improve their performance by
adding examples to the system prompt, as mentioned in the OpenAI prompting guide
[32]. It is also important to determine whether LLMs need different examples or if one
set works best for all.

The performance of each LLM is expected to improve by adding a few-shot examples, with
more examples leading to more performance. It is also expected that each example has
a different impact on each LLM, based on their individual performance in the evaluation
categories.

First, the examples are presented, followed by a structural analysis of their impact in a
single-shot and multi-shot setting, to determine if the goal and expectations were met.

Single-Shot Examples:

For each category, except the two best-performing ones, the basic evaluation and multi-
lingual set, one example per subcategory is created, resulting in 16 examples. These are
the more complex tasks that need improvement.

The examples are indexed for each main category, based on the sub-category in the
itemization on section 5.1.2.
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Single-Shot Analysis:

The experiment begins with analyzing the impact of each single-shot example on the
fine-tuned and base LLMs. Each model is evaluated on the evaluation set in its base and
fine-tuned state, with the system prompt containing the example at the end.

Figure A.1 in the appendix chapter in appendix A.1 shows the difference in the evaluation
score for each model using each single-shot example in the system prompt. Only the
Abstraction of Movement 0 example, meaning the driving in geometric forms, had a
positive impact on all models, which was the worst performing category for the fine-
tuned and base models. It still was not the most impactful example for all models, with
each model having a different best-performing example.

These were the best performing examples for each model with fig. 5.20 showing the
performance increase:

gemma2 llama3_1 mistral_nemo phi3
Base Transaction

System Logic 1
Inferring and
Pattern Recog-
nition 0

Inferring In-
structions and
Events 0

Inferring In-
structions and
Events 0

Finetuned Abstraction of
Movement 1

Inferring and
Pattern Recog-
nition 0

Abstraction of
Movement 0

Inferring In-
structions and
Events 1

Based on these results, it is concluded that each model requires different examples to
increase its performance, and no single example fits all models.

Multi-Shot Analysis:

Since the goal is to improve the performance of the LLMs in general, the multi-shot case
is now tested, with each model being evaluated with up to five examples for their system
prompt. Five shots are considered a reasonable amount, often used in few-shot analysis
[14]. This is also set as the maximum to reduce the search space.

One problem faced, as highlighted in [53], is that the selection of examples does not
perform equally on all models, as discovered in section section 5.2.3. Additionally, when
extending to multiple examples, issues like recency bias or majority bias arise. This
means that when multiple examples share a lot of similarity, they are more likely to
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Figure 5.20: Performance increase with the best performing example for each model.

impact the model, but the position of the example—whether it is the first or last—can
also influence the outcome. This further complicates the search for suitable example
combinations.

A simplified approach to this problem is proposed to reduce the search space:

For each model, the examples are sorted by impact,

meaning that the best-performing example is placed

at index 0. The following few-shot example sets are

run for each model based on their sorted examples:

[0,1], [0,1,2], [0,1,2,3], and [0,1,2,3,4].

These examples are then re-run in multiple variations

to reduce the impact of recency bias and majority bias:

with an index offset of one, with an index offset of two,

and with every combination in reverse. For example,

the fifth best example, the third best example, and

the best example are combined, resulting in [4,2,0].

This gives a total of 24 multi-shot sets of examples per model, based on their individual
results in the single-shot benchmark.
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Figure 5.21: Box Plot Evaluation Scores of all Few-Shot Example Sets for each LLM.

Figure 5.21 shows the evaluation score in a box plot for each model in their base and
fine-tuned state using each example set. The results show that the performance differs
a lot for each model per example set with differences of up to 0.143 in evaluation score
between the best and worst performing set. While the difference between fine-tuned
and base models is very large, for Llama 3.1 and Mistral Nemo, Gemma2 and Phi3 had
very similar results between the base and fine-tuned models. With such big performance
impacts, it makes sense to have a broad search space for finding suitable example sets.

Figure 5.22 shows the evaluation score averages per few-shot example set size for each
LLM. It shows that each LLM’s results averaged perform better with more examples.
When examining individual results, it is observed that this applies directly only to
Gemma2. For other models, the performance has slight variations in what example
size fits the best. This scenario further shows that a variation in example size needs to
be included for the search space.
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Figure 5.22: Evaluation Score Averages per Few-Shot Set Length for each LLM.

Looking at fig. 5.23, the evaluation score of the ascending minus the descending few-
shot example sets for each LLM is shown. For example, the score for Gemma2 with the
example set [0,1,2] is compared to the score with the example set [2,1,0]. The results
show an impact of up to 0.05 in the evaluation score just by changing the order of the
examples, indicating a recency bias in the models. Since the results show that there is
no consistent trend for each model, it is concluded that including this type of variation
in the search space makes sense.

Figure 5.24 shows the evaluation score for the best found few-shot example set for each
LLM. The blue bar shows the evaluation score with the example set under it. The orange
bar shows the base performance without examples in the system prompt, and the green
bar demonstrates the difference. As the fine-tuning already improved the models, the
few-shot examples added gave a smaller improvement on these models in comparison
to the base models. As previously stated, it is observed that no single order of sorted
examples fits all models, with each model having a different best-performing set. For
some models, the base models with examples performed even better than the fine-tuned
models without examples, e.g., for Gemma2, Mistral Nemo, and Phi3. For Phi3, it is
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Figure 5.23: Evaluation Score of the Ascending minus Descending Few-Shot Example
Sets for each LLM showing the Recency Bias.

even observed that the base model performed slightly better than the fine-tuned model
with examples, although the difference is only around 0.05.

Figure 5.25 shows the evaluation score per category for each model with their best found
few-shot example set to the base prompt without examples. Only Phi3 shows regres-
sions in ’Logical Deduction’. The fine-tuned and base Mistral Nemo and the fine-tuned
and base Gemma2 also show regressions in ’Multilingual Test’. Finally, the fine-tuned
Llama3.1 and Mistral Nemo show a small regression in ’Basic Evaluation’. The later two
categories were already performing well with the base prompt and were excluded in the
search space, with only the ’Multilingual Test’ showing concerning regressions. Since this
category is not crucial for the robotics control system, no further optimization is made
to improve these regressions. It is concluded that adding examples in one language may
negatively impact performance when prompting in another language, as observed in the
fine-tuning to base category regressions in fig. 5.18. The other categories improved a
lot for each model, especially the worst-performing ones from before, like Abstraction of
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Figure 5.24: Evaluation Score of the best found Few-Shot Example Set for each LLM.
The blue bar shows the evaluation score with the example set under it. The
orange bar shows the base performance without examples in the system
prompt, and the green bar the difference.

Movement. Having few-shot examples for bad-performing contexts helps a lot with the
LLMs to improve in these areas.

Conclusion

Concluding this experiment, it was observed that few-shot examples improved the per-
formance of all tested LLMs. The degree of improvement varied significantly depending
on the model, the type of example, and the order in which examples were presented. The
results met the expectations: more examples generally led to better performance, each
example impacted each model differently, and the models were influenced by the order
of the examples.

Base models benefit more from the examples than fine-tuned models, with the fine-tuned
models having a smaller improvement but still achieving a higher score in the end, except
Phi 3, where the base model slightly outperformed the fine-tuned version.
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Figure 5.25: Evaluation Score Differences per Category for the best found Few-Shot Ex-
ample Set for each LLM to the Base Prompt without Examples.

Additionally, this experiment highlights challenges associated with optimizing few-shot
prompts. The regressions here, even though there are only a few, are bigger than the
regressions found after the fine-tuning, especially in the Multilingual Test.

Overall, the proposed approach of sorting examples based on their impact and testing
them in different orders and combinations provides an efficient way to optimize few-
shot prompting while reducing the search space. Finally, each model surpasses the 0.5
evaluation score, with Gemma2 reaching 0.7, closely followed by fine-tuned Mistral Nemo
with 0.699. Surprisingly, the fine-tuned Llama3.1 comes close to the larger models with
0.648, even though it has only 8B parameters.
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When comparing the performance gains from fine-tuning, it was found that adding exam-
ples to the system prompt had an even greater impact on overall LLM performance than
fine-tuning alone. The result suggests that few-shot prompting is a more efficient way to
improve model performance for this use case, particularly for larger models. However,
the best results were achieved by combining both fine-tuning and few-shot examples,
showing the significance of combining the approaches.

Looking at the research questions from section 4.3, a novel systematic approach to in-
tegrate LLMs into a robotics control system was successfully presented. The following
section concludes the second part of this work’s contribution.

5.2.4 Multi-Response Analysis

Figure 5.26: Step five of the Experiment Approach from fig. 4.5.

Figure 5.26 shows the final step of the integration approach, conducting the multi-
response analysis. Here, the best-found few-shot example set is added to each LLM
and used as their new system prompts.

The impact of the temperature parameter for the integrated LLMs is analyzed to further
improve their performance and to reason about the use of the multiple-choice pattern
in a robotics control system. The temperature parameter is a hyperparameter that
controls the randomness of the LLM’s output. A higher temperature leads to more
random responses, while a lower temperature leads to more deterministic responses [10],
with 0 being deterministic and 1 being a common balance between randomness and
determinism.

As another basic condition, the number of multiple responses per LLM is set to three to
further save resources. It is also argued that the number of responses should not grow
too big, as a user should not be overwhelmed with too many choices.

The goal of this experiment is to analyze the impact of the temperature parameter on
the performance of the LLMs to answer the second research question, how well the LLMs
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scale with multiple responses, and to answer how suitable that approach is for controlling
robotic control systems. Two metrics are looked at:

• How good is the best response? Reasoning that the user will pick the best response
when faced with multiple choices generated by the LLM in the chatbot.

• How good is the average response? Reasoning what the user will get on average.

Another goal is to determine if there is a suitable temperature setting for each LLM or
if each one needs a different one.

The expectation is that the temperature parameter has a significant impact on the LLM’s
performance, with a growing temperature leading to possibly better answers while per-
forming worse on average since the randomness increases.

This experiment starts with a sample size study to find a suitable sample size for each
LLM and temperature combination, followed by the temperature analysis to conclude
this work.

Sample Size Analysis:

Since the temperature parameter introduces additional randomness to the outputs of the
LLMs, similar to the fine-tuning process, a sample size analysis is again proposed to de-
termine a suitable sample size for the analysis, thereby saving computational resources.

In the following assumptions, the evaluation score is calculated by taking the best re-
sponse of the three responses per LLM, as the variance is larger in this case compared
to averaging the three responses:

• The variance in performance of 50 Llama 3.1 with temperature setting 1.0 and 3
responses is smaller or within Levene’s test for homogeneity of variances of the same
or other models with the same or lower temperature. The Levene test measures if
multiple samples have the same variance [26].

• To determine the required sample size for comparing different LLMs and tempera-
ture configurations, collecting 50 samples from Llama 3.1 with the temperature set
to 1.0 is sufficient. Using these samples, a sample size analysis is made to estimate
the number of observations needed for detecting a performance difference of 2.5%
(Cohen’s d = 0.25 [9]) with 90% statistical power and a significance level of 0.05.
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These values are commonly used in statistical analysis [31], with the detection size
being chosen as a trade-off between significant performance differences and com-
putational resources. This means that only 50 runs of evaluating Llama 3.1 with
the temperature set to 1.0 are needed to find out the sample size. As long as the
variance of each LLM and temperature variation is not significantly different from
Llama 3.1 with temperature 1.0, according to Levene’s test, the same sample size
can be used for comparing LLMs in different temperature settings.

Figure 5.27: Box Plot for evaluating Llama 3.1 50 times on the temperature setting 1.0
by looking at the best response out of 3 and the average out of 3.

The results after 50 runs, shown in fig. 5.27, show for the best response of 3 an average
evaluation score of 0.57, with q1, the 25th percentile at 0.562, and q3, the 75th percentile
at 0.578. The variance is a bit higher than for the fine-tuning, with 50% of the results
being within 1.6% of the performance difference and a minimum score of 0.531 and a
maximum score of 0.61. For the average of 3, the average evaluation score is 0.421,
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with q1 at 0.412 and q3 at 0.428. 50% of the results here are also within 1.6% of the
performance difference, with a minimum score of 0.393 and a maximum score of 0.455.

When the sample size needed to detect a performance difference of 2.5% with 90% sta-
tistical power and a significance level of 0.05 is calculated, a sample size of 10 is found
to be required.

Temperature Analysis:

Here, the sample size of 10 is used to evaluate each LLM with different temperature
settings. To further save computational resources, only the temperature settings 0.4, 0.7,
and 1.0 are considered, with 1.0 being the trade-off between randomness and determinism,
0.7 being the common default value for LLMs like Chat-GPT [43], and 0.4 representing
another step of the same size towards determinism.

For each following experiment, the variances of the evaluation scores were tested using
Levene’s test for both the average of 3 responses and the maximum of 3 responses. Each
test passed, confirming that the sample size of 10 is sufficient for the given assumptions.

The box plots for all LLM results are added to the appendix in appendix A.2. They
show the average per 3 answers in fig. A.2 and fig. A.3, and the maximum per 3 answers
in fig. A.4 and fig. A.5. The resulting t-tests show a significant difference for the models
between the 0.4 and 1.0 temperature, often also with the 0.7 temperature setting.

fig. 5.29 shows the results for the temperature analysis for each LLM, in their base
and fine-tuned state, with the average of 3 responses and the maximum of 3 responses,
averaged over all 10 samples per LLM and temperature setting. The title of each sub-
figure shows the LLM name, with the lines showing the maximum and average score
for the base and fine-tuned model, denoted by the ’ft’ appendix. The x-axis shows the
temperature setting, and the y-axis the evaluation score.

Looking at the total average of all models, the average score gets worse per answer with
a higher temperature, while the maximum score per answer does not improve after the
temperature value of 0.7. Since Gemma2 performed better with a temperature of 1.0
than with 0.7, it is concluded that it may be worthwhile to test the temperature setting
for each LLM individually. For the total performance, the fine-tuned models performed
better than the base models after the full integration process.
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Figure 5.28: Improvement in the evaluation score for each LLM with their best perform-
ing temperature setting averaged over 10 samples, looking at the maximum
score of 3 responses.

Looking at the average scores for the top three responses from all ten samples in 5.28, it
is clear that this method improved all models, with scores ranging from 0.038 to 0.093
and an average improvement of 0.06225.
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Figure 5.29: Temperature Analysis Results for each LLM. The Y-axis shows the evalua-
tion score of an average of all 10 samples, and the X-axis the temperature.
The evaluation contains the results for the average of 3 responses and the
maximum value of 3 responses.
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Conclusion

In this experiment, the impact of the temperature parameter on the performance of the
integrated LLMs was analyzed, with the goal of determining how well the LLMs scale
with multiple responses. The objective was to assess how suitable this approach is for
controlling robotics systems via a chatbot interface.

Meeting the expectations, it was found that a higher temperature leads to a worse av-
erage response, while the maximum response also improves. However, this improvement
stopped for almost all models after the temperature setting of 0.7, with only Gemma2
performing better with 1.0.

Concluding the multi-response analysis, which answers the second research question, it
is proposed that the temperature setting of 0.7 be used, with the first generated response
produced with the deterministic setting of 0.0, ensuring that the user always receives a
good first response, while the following responses, though on average worse, are likely to
contain a better one.

Looking at the full integration, the fine-tuned models performed better than the base
models after the full integration process, which further shows that the combination of all
steps is beneficial for the performance of the LLMs.
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In this work, the task of translating user intent into robotic goals was tackled by using
large language models (LLMs). Problems were found with current approaches in the
usage of LLMs for translation in the domain of robotics control systems, as well as issues
with the robotics control systems themselves. The proposed robotics control system
is based on a transaction system with a digital twin for validating and simulating the
execution of instructions, allowing for concurrent user interaction without interference
while providing an important safety layer. Current approaches directly execute the LLM
output, which is found to be problematic due to the hallucinations of LLMs. A chat
interface was presented for the user to interact with the LLM to control the robotics
control system, where the user can choose between multiple LLM responses to their
request instead of executing the LLM output directly. To validate this approach, the
main contribution is a novel generalized process for integrating LLMs into robotics control
systems, as seen in fig. 6.1.

This process is evaluated on multiple LLMs from different vendors, including Microsoft’s
Phi3, Meta’s LLaMA 3.1, Google’s Gemma2, and Mistral’s Nemo. Following the integra-
tion process steps, it was found that, to make LLMs work in general, a guided generation
approach is needed to always obtain valid output from the LLMs for the robotics control
system. With that setup, along with the creation of an evaluation dataset and metric,
the LLMs were evaluated after each integration step to determine how they improved
over this baseline.

In fig. 6.3, the LLM evaluation score over the integration process steps is shown. It can
be seen that the LLMs improved significantly over the integration process steps, with
an average improvement of 95.2%. Gemma2 improved from 0.51 to 0.752, LLaMA 3.1
from 0.23 to 0.692, Mistral Nemo from 0.46 to 0.737, and Phi3 from 0.23 to 0.61. It is
concluded that this work’s novel integration process is suitable for integrating LLMs into
a robotics control system, with very high scores for the LLMs. Especially when looking
at the base usage category in fig. 6.2, where a user would simply type simple sentences,
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Figure 6.1: Approach Overview.

Figure 6.2: LLM Evaluation Score of the Basic Evaluation Set over Integration Process
Steps.
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Figure 6.3: LLM Evaluation Score over Integration Process Steps.

it is observed that the LLMs all reached very high scores, with an average of around
0.86.

These results show that for basic usage, around 86% of the LLMs average output is valid,
with Mistral Nemo reaching 90.4%, while for more complex usage, on average, the LLMs
still reached around 70%, with Gemma2 reaching around 75% of answer correctness.

Based on these great results, it is concluded that the presented approach is suitable for
integrating LLMs into a robotics control system, demonstrating a generalized process
for multiple LLMs, all achieving high performance in translating user intent into robotic
goals.
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A Appendix

A.1 Single Shot Results

A.2 Temperature Analysis Box Plots
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A Appendix

Figure A.1: Single Shot Result Difference between Single Shot Prompt and Base Prompt
per Model.
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A Appendix

Figure A.2: Box Plot of multiple LLMs with 10 runs each generating 3 responses on the
temperatures 0.4, 0.7 and 1.0, calculating the average of the responses.
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A Appendix

Figure A.3: Box Plot of multiple LLMs with 10 runs each generating 3 responses on the
temperatures 0.4, 0.7 and 1.0, calculating the average of the responses.
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A Appendix

Figure A.4: Box Plot of multiple LLMs with 10 runs each generating 3 responses on the
temperatures 0.4, 0.7 and 1.0, calculating the max value of the responses.
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A Appendix

Figure A.5: Box Plot of multiple LLMs with 10 runs each generating 3 responses on the
temperatures 0.4, 0.7 and 1.0, calculating the max value of the responses.
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