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Kurzzusammenfassung

In dieser Arbeit wird eine Klassifikation von Fahrriadern und Kraftfahrzeugen mit Radar-
sensorik durchgefiihrt. Dabei werden aus den Daten des Radarsensors Merkmale berech-
net, die die Unterschiede zwischen den Klassen darstellen. Es wird diskutiert, ob diese

Anwendung fiir die Pravention von Unfillen zwischen den Klassen geeignet ist.
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Abstract

In this thesis a classification of bicycles and motor vehicles is done with radar sensoric.
From the radar sensor data, features are calculated to display the differences in the
classes. It is discussed if this application is suitable for preventing accidents between

these classes.
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1 Einleitung

Im Jahr 2023 sind 902 Menschen in Deutschland innerhalb von Ortschaften bei Stra-
fenverkehrsunféllen ums Leben gekommen. 257 Menschen waren mit einem Fahrrad
unterwegs[17]. Im Juni desselben Jahres wurde ein 62-jihriger Fahrradfahrer durch einen
rechtsabbiegenden Sattelzug erfasst. Der Mann wurde schwer am Kopf verletzt und starb
noch am Unfallort[8].

Diese kritischen Situationen entstehen, wenn ein Kraftfahrzeug aus der Fahrt rechts ab-
biegt. Im seitlichen und riickwértigen Bereich (toter Winkel) befindet sich ein Fahrrad-
fahrer, der sich geradeaus bewegt (siehe Abbildung 1.1). Der Fahrer des Kraftfahrzeugs
kann den Fahrradfahrer im Innen- und Aufsenspiegel nicht sehen. Besonders betroffen sind
Kraftfahrzeuge, bei denen es nicht moglich ist, dies durch den Schulterblick zu kompen-
sieren. Fine Wahrnehmung auf Fahrradfahrer im toten Winkel kann durch Seitenkamera-

Systeme und Sensoren als Toter-Winkel-Warner geschaffen werden.

Abbildung 1.1: Kraftfahrzeug mit Fahrradfahrer im seitlichen und riickwértigen Bereich
(toter Winkel)



1 Einleitung

Die Sattelzugmaschine war laut Polizei nicht mit einem Abbiegeassistenzsystem ausge-
stattet, das den Fahrer vor Fufgéngern und Radfahrern im toten Winkel warnt[8]. Daher
wird in dieser Arbeit eine Lésung angestrebt, die unabhéngig von der Technik in den
Fahrzeugen der Verkehrsteilnehmer funktioniert. Sie soll fest an Orten installiert werden,
an denen diese Situationen héaufig auftreten. Dazu soll eine Leuchte eingesetzt werden,
die beide Verkehrsteilnehmer warnen soll, wenn die geschilderte Situation vorliegt. Um
dies umzusetzen wird Sensorik gebraucht, die die Entfernung und Bewegungsrichtung
von Objekten bestimmen und verfolgen kann. Sie sollte wartungsarm und unabhéngig

von Helligkeit und Wetterverhiltnissen funktionieren. Dies trifft auf Radarsensorik zu.

In dieser Arbeit geht es um die Verarbeitung der Messgrofen eines Radarsensors. Diese
Messgrofen sind die Entfernung, die Geschwindigkeit und die Reflexionsstérke von Ob-
jekten. Sie werden zu aussagekriftigen Werten kombiniert, die Aufschluss {iber die Art
des Objekts geben. Es wird zwischen zwei Arten unterschieden: Fahrrader und Kraftfahr-
zeuge. Der Radarsensor wird in Abbildung 1.1 rechts in Richtung Westen aufgebaut. Es
wird diskutiert, ob sich diese Anwendung zur Prévention der oben genannten Problematik

eignet und ausreichend ausgearbeitet wurde.



2 Radar

Radar ist eine Abkiirzung und steht fiir radio detection and ranging. Ein Radar sendet
Radiowellen (elektromagnetische Wellen) aus und detektiert reflektierte Wellen von Ob-
jekten. Ein einzelner Reflexionspunkt in einem Messzyklus bezeichnet man als Target
(Ziel)|6]. Ein Target besitzt 4 Messgrofen. Die radiale Distanz zum Radarsensor R, der
Azimut Winkel «, die radiale Geschwindigkeit vg zum Radarsensor und der Amplitu-

denpegel Ayp der reflektierten Leistung.

Abbildung 2.1: Messgrofen eines Targets: radiale Distanz zum Radarsensor R, Azimut
Winkel « und radiale Geschwindigkeit vg

Die Messdaten der Targets sind nur eine Momentaufnahme und kénnen variieren. Es
wird ein zeitlicher Verlauf der Messgrofsen angestrebt, um Aussagen iiber das betrachtete
Objekt zu treffen.



2 Radar

2.1 Kalman Filter

Rudolf E. Kalman entwickelte im Jahre 1960 einen Filter, der es ermdglichte aus ver-
rauschten und teilweise sich wiederholenden Messdaten, Zustéinde und Parameter eines
zeitdiskreten und linearen Systems zu schétzen. Der Vorteil eines Kalman Filters ist der

iterative Aufbau des Filters, der stark fiir Echtzeitanwendungen geeignet ist|7].

Um den generellen Aufbau eines Kalman Filters nahezulegen, wird eine rekursiver flie-

fiender Tiefpassfilter erster Ordnung

Jo=7 Z+(1—7) G mit 0 <~y <1 (2.1)

mit dem Systemvektor %), den aktuellen Sensormesswerten 2 und einem Gewichtungs-
faktor v angenommen (Idee fiir den Vergleich[5]). Der Tiefpassfilter hat die Eigenschaften
Rauschen herauszufiltern und damit die Variation zu senken. Der Gewichtungsfaktor

wird mit der Kalman-Verstirkung K ersetzt,

e = Kg - 2k + (1 — Kk) “_1 mit 0 < K;; <1 (2.2)

Uk = Yo—1 + Kp(Zh — yo—1) mit 0 <Kj5 <1 (2.3)

wobei die Eintrage der Matrix zwischen 0 und 1 bleiben. Der Vektor der Sensormesswerte
Zr, und der Systemvektor 4 miissen nicht dieselbe Dimension haben, da es sich wie oben
erwahnt um Zustinde und Parameter handeln kann, die nicht die Sensormesswerte sind.

Es wird eine Messmatrix H angefiigt,

ij = gkfl + Kk(Zk — H?jkfl) mit 0 < Kz'j <1 (2.4)
die den physikalischen Zusammenhang von Systemvektor g und Messvektor Zzj be-

schreibt. Um eine zeitliche Verschiebung des Ausgangs zu vermeiden (Abbildung 2.2),

wird der vergangene Systemvektor ¢j_1 mit einer Systemvektor-Pridiktion ¢,

U = Afi— (2.5)



2 Radar

ersetzt, wobei die Dynamikmatrix A den Ubergang von ¥}, zu ¥k, beschreibt. Ein einfaches
Beispiel ist der Einfluss der Geschwindigkeit auf den Ort des Objektes

div1 = dy +vg - At (26)

bei einer idealen unbeschleunigten Bewegung. Es ergibt sich die zentrale Korrekturglei-

chung des Kalman Filters,

Jr = + Kp(Z —Hj, ) mit 0 < Kij < 1 (2.7)

in die Sensormesswerte 2 gegeben werden und der Ausgang yj errechnet wird. Die
Systemvektor-Prédiktion 7, und die Kalman Verstirkung K sind dynamische Werte und
werden innerhalb des Kalman Filters bis zum néchsten Eingang der Sensormesswerte 2,

bestimmt.

Abbildung 2.2: Vergleich zwischen einem Kalman Filter und einem rekursiven fliefsenden
Tiefpassfilter erster Ordnung von einer gleichméfsig beschleunigten Bewe-

gung

Der Algorithmus kann in die Pradiktions- und Korrekturphase unterteilt werden. In der
Pradiktionsphase wird die Préadiktion des Systemvektors 7, wie bereits in Gleichung 2.5

beschrieben, errechnet. Es wird eine Schétzung der Fehlerkovarianz P~ errechnet,



2 Radar

P, =AP, AT +Q (2.8)

die die Qualitét der Schéitzung des Systemvektors ¢, angibt. Die Prozessrauschmatrix

Q gibt die Abweichung zum angenommenen System an.

In der Korrekturphase wird die Kalman-Verstarkung K errechnet,

K, =P H'(HP_ H” + R)"! (2.9)

die angibt wie die Pradiktion im Vergleich zu den aktuellen Messwerten gewichtet wird.
Die Messrauschmatrix R gibt die Ungenauigkeit der Sensormesswerte an. Die Messdaten
Zr, werden mit der Korrektur-Gleichung 2.7 verrechnet und liefern, je nach Grofke der
Kalman-Verstiarkung K, einen Wert zwischen der Schétzung und der Messwerte. Nach

der Ausgabe vom Systemvektor g, wird Fehlerkovarianzmatrix P errechnet,

P, =P, - K;HP, (2.10)

um seine Qualitit widerzuspiegeln.

Die Werte vom Systemvektor 33, und die Fehlerkovarianzmatrix P werden in dem n#chs-
ten Durchlauf vom Algorithmus benétigt. Sollte es der erste Durchlauf fiir ein neu de-
tektiertes Objekt sein, werden sie initialisiert. Die Fehlerkovarianzmatrix P sollte dabei
hohe Werte haben, da kein Vertrauen in die Prédiktion besteht.

2.2 Radarsensor

Der verwendete Radarsensor in dieser Arbeit ist der RMS2731C-636111 von der SICK
AG. Die Targetdaten die der Radarsensor liefert sind die radiale Distanz R zum Radar-
sensor, der Azimut Winkel «, die radiale Geschwindigkeit vr zum Radarsensor und der
Amplitudenpegel A;p der reflektierten Leistung. Die Daten des Kalman Filters und ge-
gebenenfalls anderer Verarbeitungsalgorithmen sind unbekannt. Nur die Ausgangsdaten
des Systemvektors ¢ sind bekannt und bestehen aus der Distanz d, zum Radarsensor
entlang der x-Achse, der Distanz d,, zum Radarsensor entlang der y-Achse, der Geschwin-

digkeit v, zum Radarsensor entlang der x-Achse, der Geschwindigkeit v, zum Radarsensor
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entlang der y-Achse und einer ID, die der Zuordnung dient. Im weiteren Verlauf dieser
Arbeit werden diese Daten als Objektdaten bezeichnet.

In der Tabelle 2.1 sind fiir den weiteren Verlauf dieser Arbeit wichtige Daten aus dem

Datenblatt des Sensors aufgelistet.

Arbeitsbereich 0,4m...100 m
Offnungswinkel (Horizontal) + 60°
Offnungswinkel (Vertikal) + 4°
Geschwindigkeitsbereich + 30 % =+ 108 kTm
Messzyklusdauer 100 ms
Schnittstellen Ethernet
Versorgungsspannung 9V DC...32V DC
Geschwindigkeitsgenauigkeit | 1 m? RCS bis 20 m -> 0,0625 m/s
1 m? RCS bis 50 m -> 0,15 m/s

Tabelle 2.1: Wichtige technische Daten vom SICK-Radarsensor RMS2731C-636111[16]

2.2.1 Berechnung des vertikalen Aufnahmebereiches

Der vertikale Aufnahmebereich i des Radarsensors wird aus der radialen Distanz R vom
Radarsensor und dem vertikalen Offnungswinkel /3, berechnet. Die Formel zur Berechnung

wird aus Abbildung 2.3 entnommen

h
t =2 2.11
an() = 2 (211)
und nach dem vertikalen Aufnahmebereich h umgestellt
h=2-R-tan(p). (2.12)
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Abbildung 2.3: Darstellung des Zusammenhangs zwischen dem vertikalen Aufnahmebe-
reich h und der radialen Distanz R zum Radarsensor mit dem vertikalen
Offnungswinkel 3

Aus der Tabelle 2.1 wird der vertikale Offnungswinkel 3 entnommen und beispielsweise

eine radiale Distanz R vom Radarsensor von 10 Metern festgelegt.

h=2-10m-tan(4°) = 1,4m (2.13)

Da ein linearer Zusammenhang zwischen dem vertikalen Aufnahmebereich h und der ra-
dialen Distanz R zum Radarsensor besteht, kann aus Abbildung 2.3 abgeleitet werden,
dass der vertikale Aufnahmebereich A um 1,4 m pro 10 m radiale Distanz R zum Radar-
sensor ansteigt. Dies kdnnte zufolge haben, dass Objekte mit kleiner radialen Distanz R

zum Radarsensor und grofie Objekte nicht korrekt erkannt werden kdénnen.

2.2.2 Berechnung der zuriickgelegten Distanz in 10 Messzyklen

Da sich die Objekte in Richtung des Radarsensors bewegen, ist es von Vorteil zu wissen,
wie weit sich ein Objekt in einem Messzyklus bewegt. Da die Geschwindigkeit variiert,
wird fiir den Stadtverkehr eine Geschwindigkeit von 50 kTm und 10 Messzyklen (1 Sekun-

de) angenommen.

™ 15~ 13,9m (2.14)
S
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2.3

Zielsetzung

Visualisierung der Daten

Das Einlesen, Verarbeiten und Visualisieren der Radarsensordaten.

Aussagekriftige Werte errechnen

Die gegeben Daten des Radarsensors geben keine direkte Auskunft iiber die Art
des Objektes. Im Fokus steht die Berechnung von aussagekriftigen Werten aus den
Radarsensordaten, die Aufschluss iiber die Art des Objekts geben.

Erstellung eines einfachen Klassifikators
Die aussagekriftigen Werte (Merkmale) sollen in ein einfaches System gegeben

werden, das angibt, ob es sich um ein Fahrrad oder ein Kraftfahrzeug handelt.

Nutzen zur Verhinderung der Problematik
Die Verwendung des Systems soll fiir die in der Einleitung beschriebene Problematik

untersucht und bewertet werden.
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Der Radarsensor wird iiber eine Ethernet-Schnittstelle an den PC angeschlossen. Mit
dem Dokument “Telegram Listing RMS20007|15| wird die Konfiguration des Sensors und

die Analyse der Transmission Control Protocol (TCP)-Pakete vorgenommen.

Fiir die Zwecke dieser Arbeit werden Objekt- und Targetdaten angefordert. Dies kann
iiber Befehle an den Sensor gedndert werden. Es muss nur einmal durchgefiihrt werden,
da der Radarsensor die Einstellungen speichert. Die Befehle in der Tabelle 3.1 werden zur

Konfiguration des Sensors in dieser Arbeit in der gegebenen Reihenfolge ausgefiihrt.

Bedeutung Befehl

Log in
Transmit Targets
Transmit Objects

Save Parameters

sMN SetAccessMode 03 F4724744
sWN TransmitTargets 1

sWN TransmitObjects 1

sMN mEEwriteall

Set to run (Log out) sMN Run

Tabelle 3.1: Konfigurationsbefehle des Radarsensors in dieser Arbeit

Mit den Befehlen in Tabelle 3.2 wird das Senden der Daten oder der Abbruch ange-
fordert. Als Antwort auf die Befehle werden die abgebildeten Pakete vom Radarsensor
zuriickgeschickt, die im weiteren Verlauf den Anfang und das Ende der Kommunikation

zwischen Sensor und Laptop markieren.

Bedeutung ‘ Befehl an Radarsensor ‘ Antwort vom Radarsensor
sEN LMDradardata 1 sEA LMDradardata 1
sEN LMDradardata 0 sEA LMDradardata 0

Daten senden = True

Daten senden — False

Tabelle 3.2: Befehle und Antwort zum Anfordern und Abbrechen der Dateniibertragung
iiber die Schnittstelle

10
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Der Radarsensor sendet die Messdaten mit einer Messzyklusdauer von 100 ms iiber die
Ethernet-Schnittstelle. Diese werden nicht zusammen in einem TCP-Paket, sondern in 2
separaten Paketen versendet. Unter Verwendung von Wireshark wird beobachtet, dass
die Objektdaten zuerst versendet werden und die Targetdaten mit einem beobachteten
Abstand von 0,5 ms bis 1 ms als zweites. Der Empfénger sendet ein Acknowledgment
(ACK) an den Sensor zuriick, sobald beide Pakete eingegangen sind. Im weiteren Verlauf
dieser Arbeit werden die Objekt- und Targetdaten eines Messzyklus als ein Datensatz

bezeichnet.

3.1 Einlesen

Mit Python wird die in Abbildung 3.1 gezeigte Graphical User Interface (GUI) erzeugt,
in der mit dem Button “Connect to device” eine Verbindung zu dem, {iber Ethernet an-
geschlossenen, Radarsensor hergestellt werden kann. Es muss ein noch nicht vorhandener

Name fiir eine Datei eingegeben werden, in der die Daten gespeichert werden sollen.

Wurde die Verbindung erfolgreich hergestellt, kann iiber den Button “Start Sensor” der
Befehl zum Empfangen von Daten an den Sensor gesendet werden. Der Button “Stop
Sensor” sendet den Stopp-Befehl an den Radarsensor und stoppt die Aufzeichnung, sobald
die Antwort von dem Sensor zuriickgesendet wurde. Die Datensétze werden zeilenweise in
Textdateien gespeichert, wobei die Befehlsantworten aus Tabelle 3.2 jeweils den Anfang
und das Ende der Daten bilden.

# Get Data From Sensor GUI — O b

Enter Mame of the File you want to save to:
Beispiel_MNamg
Start Sensor

Connect to device Stop Sensor

Connection to device successfull |v

Abbildung 3.1: Erstellte GUI zum Einlesen der Radarsensordaten

11
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Da Aufnahmen an befahrenen Strafen und Fahrradwegen zu Unruhen bei Verkehrs-
teilnehmern fiihren kénnten, werden die Daten in einem kontrollierten Umfeld an zwei
Sonntagen auf dem lkea Parkplatz in Moorfleet aufgenommen. Die drei roten Punkte
in Abbildung 3.2 markieren die Orte an denen der Radarsensor, jeweils nach Siidwes-
ten, aufgebaut wird. Die rote Linie markiert die Strecke, an der die Daten aufgenommen
werden. Die rote durchgezogene Linie ist circa 100 m lang. Die drei gestrichelten Linien
markieren Abbiege- oder Einfahrtspunkte, wobei die blaue Linie nur von Fahrrddern und

die roten Linien nur von Kraftfahrzeugen genutzt werden.

Abbildung 3.2: Parkplatz Ikea Moorfleet (53°30’42.8”N 10°05’38.2”E)[3]. Die rote Linie
markiert die Teststrecke und die roten Punkte die Orte, an denen der
Radarsensor aufgestellt wurde

Aufgrund der limitierten Verfiigbarkeit der Versuchsobjekte wird das in Abbildung 3.3
gezeigte Auto fiir die Datenaufnahme der Kraftfahrzeuge verwendet. Der Radarsensor

wird circa 75 cm iiber dem Asphalt aufgebaut. Es werden zwei verschiedene Fahrrider

12
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verwendet. Aufgrund von Ungleichgewicht in der Anzahl der aufgenommenen Daten,

wurden einige Fahrraddaten an anderen Orten aufgenommen.

Abbildung 3.3: Verwendetes Kraftfahrzeug zur Aufnahme der Klassifizierungsdaten

3.2 Verarbeiten

Der Aufbau der Payload der TCP-Pakete wird mit dem Dokument “Telegram Listing
RMS20007[15] analysiert, um diese mit Python korrekt verarbeiten zu kénnen. Die Zeit
seit dem Start des Sensors (“Time since start up in ps”’) wird jeweils extrahiert und mit
der Zeit des ersten Pakets verrechnet, um die Zeit seit dem ersten gesendeten Paket
zu erhalten. Anhand der Anzahl der 16-Bit-Kanile (“Amount of 16 bit channels”) wird
entschieden, ob es sich um Objekt- oder Targetdaten handelt. Bei Objektdaten sind es
fiinf 16-Bit-Kanéle (siehe Tabelle 3.3), wihrend es bei Targetdaten nur vier sind (siehe
Tabelle 3.4).

13
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Kanal . . Bit Nutzen in
Bedeutung | Einheit )

Name Kanal | der Arbeit
P3DX1 Distanz in X-Richtung mm 16 Ja
P3DY1 Distanz in Y-Richtung mm 16 Ja
V3DX1 | Geschwindigkeit in X-Richtung = 16 Ja
V3DY1 | Geschwindigkeit in Y-Richtung = 16 Ja
OBLE1 Nur fiir internen Gebrauch 16 Nein
OBID1 Objekt ID 8 Ja
OBCO1 Nur fiir internen Gebrauch 8 Nein

Tabelle 3.3: Objekt Kanile der gesendeten Daten des Radarsensors

Kanal Bedeutung | Einheit Bit Nutzen in
Name Kanal | der Arbeit
DIST1 Radiale Distanz mm 16 Ja
AZMT1 Azimut Winkel ° 16 Ja
VRADI1 Radiale Geschwindigkeit = 16 Ja
AMPL1 Amplitude dB 16 Ja
MODET1 | Nur fiir internen Gebrauch 8 Nein

Tabelle 3.4: Target Kanéle der gesendeten Daten des Radarsensors

Die Skalierungsfaktoren (“scale factors”) der Kanile werden ebenfalls mit jedem Paket
vom Sensor iibertragen. Um eine Umrechnung der Faktoren bei jedem Paket zu vermei-
den, werden sie im Python-Code fest gespeichert und in einem Dictionary hinterlegt. Dort
sind auch die Einheiten und die wortliche Beschreibung der Kanéle hinterlegt, die nicht
aus den Paketen ausgelesen werden konnen, sondern aus dem Dokument “Telegram Lis-
ting RMS2000”[15] entnommen werden. Die Daten werden in einer Liste von Dictionaries

verwahrt und als JSON-Datei gespeichert.

3.3 Visualisieren

Die Abbildung 3.4 zeigt die grafische Darstellung der Radarsensordaten, wobei Kreise
fiir Objektdaten und Kreuze fiir Targetdaten stehen. Bewegte Objekte oder Targets wer-

14
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den farbig, grofer und mit zusdtzlichen Daten dargestellt. Bei einem bewegten Objekt
werden sein Geschwindigkeitsvektor und seine Objekt-ID angefiigt. Bei einem bewegten
Target werden sein radialer Geschwindigkeitsvektor und sein Amplitudenpegel angefiigt.

Unbewegte Objekte oder Targets werden grau dargestellt.

Abbildung 3.4: Grafische Darstellung der Daten des Radarsensors. Bewegte Objekte:
links oben Fahrrad und rechts unten Auto

Die Abbildung 3.5 zeigt das Hauptfenster der GUI, in dem die Radarsensordaten tabel-
larisch aufgefiihrt werden. Es wird die vergangene Zeit seit der ersten Aufnahme dieser
Datenreihe dargestellt. Die linke Zeit gehort zu den Objektdaten und die rechte Zeit zu
den Targetdaten. Die Zeiten sollten immer gleich sein und dienen der Fehlerpriifung. Es

sind Buttons vorhanden, mit denen auf andere Daten gewechselt werden kann.

15
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Abbildung 3.5: Hauptfenster der GUI zur Visualisierung der Radarsensordaten

3.4 Voriiberlegungen fiir die Berechnung der Merkmale

Durch die Visualisierung wird deutlich, dass die Objektdaten den Verlauf der Versuchsob-
jekte gut darstellen. Daher werden sie als Basis genutzt und sollen klassifiziert werden. Da
die Objektdaten durch den Kalman Filter geglattet wurden, miissen ihnen Targetdaten
zugeordnet werden, um aussagekréftige Merkmale errechnen zu konnen. In Tabelle 3.5
sind Szenarien dargestellt, die bei der Visualisierung beobachtet werden konnten. Die-
se miissen bei der Zuweisung der Targetdaten und der Errechnung von den Merkmalen

beachtet werden.

16
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Szenario

Beschreibung

Intuitiv konnen den Objekten ihre Targets zuge-

ordnet werden.

In diesem Datensatz ist nur einem Objekt ein

Target zugeordnet.

Ein Ausreifler in den Messwerten.

Viele Targets die zu einem Objekt gehoren.

Kein Target.

Kein Objekt.

Tabelle 3.5: Szenarien, die bei der Datenverarbeitung auftreten

17
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3.5 Targetdaten der Objekte

Aus der Tabelle 3.5 ldsst sich Folgendes schlussfolgern. Je ndher ein Target an einem
Objekt ist, desto wahrscheinlicher ist das Objekt aus den Targetdaten entstanden. Fiir
die Zuweisung der Targetdaten zu den Objekten, wird in dieser Arbeit die Gewichtung

der Daten der Targets anhand der radialen Distanz r zum Objekt genutzt.

3.5.1 Distanz zwischen Objekt und Target

Wie in Abbildung 3.6 dargestellt, werden die Target-Koordinaten in radialer Distanz R
und Azimut o relativ zum Radarsensor angegeben, wihrend die Objektdaten in X- und

Y-Koordinaten relativ zum Radarsensor angegeben werden.

Abbildung 3.6: Koordinatensysteme der Radarsensordaten, mit Distanz in X-Richtung
dy, Distanz in Y-Richtung d,, radiale Distanz R vom Radarsensor und
Azimut «

Die Target-Daten werden geméf Abbildung 3.7 in X-

d, = cos(a) - R (3.1)

und Y-Koordinaten

dy =sin(a) - R (3.2)

18
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umgewandelt.

Abbildung 3.7: Umrechnung von Kugelkoordinaten/Polarkoordinaten in kartesische Ko-

ordinaten

Die Abbildung 3.8 zeigt Beispielsweise ein Objekt und ein Target. Die Koordinaten des

Objekts werden von denen des Targets subtrahiert

r, =dgo — dgp
ry = dyo - dyT

und mit dem Satz des Pythagoras die Hypotenuse berechnet,

— /2 2
=\ /TE Ty

welche die radiale Distanz r zwischen dem Objekt und dem Target definiert.
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Abbildung 3.8: Darstellung der verwendeten Grofen zur Errechnung der radialen Distanz
r zwischen dem Objekt und dem Target

3.5.2 Gewichteter Mittelwert

Die Gewichtung der Eingangsdaten g erfolgt in Abhéngigkeit von der radialen Distanz
r der Targets zu dem Objekt, das klassifiziert werden soll. Dabei wird eine inverse qua-
dratische Proportionalitidt angenommen, da die Daten in einer zweidimensionalen Ebene

gegeben sind

1 Sl
Zk:l 7 k=1 "k

Diese Gleichung wird an vier Stellen der Merkmalsberechnung (Kapitel 4) verwendet.

Ein theoretisches Beispiel zur Veranschaulichung der Gleichung 3.6 sind die Daten aus
Tabelle 3.6. Die radiale Distanz r zum Objekt von dem Targetdatenpunkt 2 wird vari-

lert.
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‘ Datenwert ‘ radiale Distanz r zum Objekt
0 [1,..., 1]
1 0,1, 0,2,..., 10|

Targetdatenpunkt 1
Targetdatenpunkt 2

Tabelle 3.6: Beispieldaten zur Veranschaulichung der Auswirkung der Gleichung 3.6

Der in Abbildung 3.9 dargestellte Graph veranschaulicht die prozentuale Einwirkung des
Targetdatenpunktes 2, auf das Endergebnis der Gleichung 3.6. Bei identischer Distanz
zum ersten Datenpunkt flieft er mit einem Anteil von 50 % in das Endergebnis ein. Eine
Verdoppelung der Distanz resultiert in einem Anteil von 20 % am Endergebnis. Eine
Versiebenfachung der Distanz resultiert in einem Anteil von 2% am Endergebnis. Der
Graph verdeutlicht, dass der Einfluss von Daten, die weit von dem zu klassifizierenden
Objekt entfernt sind, abnimmt oder sogar ganz verschwindet. Der Graph zeigt auch, dass
die Gleichung das Risiko einer Uberanpassung an Targets birgt, die das Objekt ortlich

sehr genau treffen.

Abbildung 3.9: Beispielgraph zur Veranschaulichung der Auswirkung der Gleichung 3.6
unter der Verwendung von den Beispieldaten aus Tabelle 3.6
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Ein reales Beispiel zur Veranschaulichung der Gleichung 3.6 sind die Daten aus Tabel-

le 3.7, die aus dem Szenario 1 der Tabelle 3.5 entnommen wurden.

ID ‘ Objekt ‘ Amplitudenpegel ‘ r von ID 6 ‘ r von 1D 33
6 Auto 10 dB 114 mm 3605 mm
33 | Fahrrad 6 dB 3589 mm 168 mm

Tabelle 3.7: Reale Beispieldaten des Szenarios 1 der Tabelle 3.5 zur Veranschaulichung
der Auswirkung der Gleichung 3.6

Unter Verwendung der Gleichung 3.6, mit den Amplitudenpegeln aus Tabelle 3.7 als
Eingangsdaten g, erhilt man fiir den gewichteten Mittelwert der Amplitude des Autos
9,996 dB und des Fahrrads 6,0087 dB.
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Es werden folgende Rahmenbedingungen zur Errechnung der Merkmale festgelegt. Es
werden jeweils die letzten 10 Datensétze ausgewertet, also die letzte Sekunde. Sollte
ein Datensatz das zu klassifizierende Objekt nicht enthalten (Tabelle 3.5 Szenario 6),
wird dieser weggelassen und mit weniger Datensidtzen gearbeitet. Es werden nur Objekte
und Targets mit einer Geschwindigkeit von 0,1 7' oder mehr betrachtet. Der Wert 0,1
=+ beruht auf der Geschwindigkeitsgenauigkeit aus der Tabelle 2.1, da nur unter 20 m
ein kleinerer Wert fiir die Objekte moglich wére. Dies kann zu Problemen bei Objekten
fiihren, die sich in einer Kreisbewegung um den Radarsensor bewegen, da die Targets
keine radiale Geschwindigkeit vr aufweisen. Dies sollte aber im normalen Betrieb, fiir die

Zwecke in dieser Arbeit, nicht vorkommen.

Die Erlduterungen der Berechnung der Merkmale werden fiir ein Objekt im neuesten

Datensatz erklért. Sie werden aber fiir jedes Objekt im neuesten Datensatz ausgefiihrt.

4.1 Gewichteter Mittelwert des Radarquerschnitts

Kraftfahrzeuge haben in der Regel eine grofsere und stirker reflektierende Oberfléche als
Fahrréder. Dies wird durch den Radarquerschnitt o reprisentiert, der durch die Radar-

gleichung gegeben ist.

4.1.1 Monostatische Radargleichung]|6]

Bei einem monostatischen Radar befinden sich Sender und Empfanger des Radargerites

am selben Ort.
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Abbildung 4.1: Visualisierung eines theoretischen monostatischen Radar|6]

Von dem Sender wird eine Leistung Pg isotrop abgegeben. Die Senderantenne biindelt
die Ausstrahlung in eine Richtung und erzielt somit ein Gewinn Gg. Das Ziel befindet
sich mit einer radialen Distanz R von dem Radarsensor entfernt. Daraus ergibt sich fiir

die Leistungsdichte S(R) dieser elektromagnetischen Welle

_ Ps
47 R?

S(R) Gs. (4.1)
Die Leistung Py, die am Ziel eintrifft, hdngt von der elektrischen Wirkfliche Az des

Radarziels ab

Ps

Pz =S(R)-Az = 1

- GgAy. (4.2)

Fiir die Leistungsdichte S, der reflektierten Welle gilt eine isotropische Abstrahlung, wo-
bei ein Faktor Gz hinzugefiigt wird, der die Verluste und/oder die Winkelabhéngigkeiten

reprasentiert

Py PsGg
. =__—=_. =" .GzAz. 4.3
Sr(R) 47 R? Gz (4m)2 R4 s (4:3)
Der Radarquerschnitt o
oc=Gz Az (4.4)
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hat die Einheit m? und hingt von der Zielgeometrie, der Oberflichenstruktur des Radar-
ziels, der Frequenz der elektromagnetischen Welle sowie dem Einfalls- und Ausfallswinkel

der elektromagnetischen Welle ab.

Die Empfangsleistung Pr héngt von der elektrische Wirkfliche Ag der Empfangsantenne
ab

PsGs
Pp=S.(R)-Ap = —5— -0Ap. 4.
r = Sr(R)-Ag mzi OAE (4.5)
Fiir eine verlustfreie Antennenwirkfliche Ag gilt folgender Zusammenhang zwischen dem

Gewinn der Empfangsantenne Gg und der Wellenldnge A

)\2

Daraus ergibt sich die Radargleichung fiir das monostatische Radarverfahren

)\2

4.1.2 Umformung der Radargleichung

Die Radargleichung wird nach dem Radarquerschnitt o umgestellt

(4m)°

— PpR'. T
O R PN GG

(4.8)

Es wird nur ein Vergleich der Endgrofe angestrebt. Die Sendeleistung Pg, der Gewinn
der Senderantenne Gg, der Gewinn der Empfangsantenne Gr und die Wellenldnge A

werden zu einer Konstanten K zusammengefasst,

o=PgR' K, (4.9)

da nur ein und derselbe Radarsensor verwendet wird und sie daher als konstant ange-

nommen werden konnen.
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Fiir das Verhéltnis zwischen Empfangsleistung Pr und dem Amplitudenpegel Agp gilt

A
Py ~ 107045 . (4.10)

Die restlichen Grofen von dem Verhéltnis werden mit in die Konstante gezogen

A
o = 10md5 R* - K. (4.11)

Die radiale Distanz R vom Radarsensor bis zum Ziel und der Amplitudenpegel Ayp sind
auslesbare Grofen der Targets (siehe Tabelle 3.4). Der Wert der Konstante Ko wird
festgelegt,

| 1
Ky=1— 4.12
L1 (412
um die weitere Bearbeitung zu vereinfachen. Da die Gleichung 4.11 sehr grofle Werte

ausgibt, wird stattdessen der Pegel des Radarquerschnitts

o AdB. R4
Oapm2 = 10 loglo(m)dBmQ =10 - log;(101045 W)dBmz (4.13)
angestrebt[6] und es ergibt sich folgende Gleichung
R 2
Tapmz = (Agp + 40 - logyo(—))dBm2. (4.14)

m
4.1.3 Verarbeitung der Daten zum Merkmal

Innerhalb eines Datensatzes werden von jedem Target der Pegel des Radarquerschnitts
OaBm2 mit der Gleichung 4.14 errechnet (Abbildung 4.2). Die radialen Distanzen r der
Targets zum Objekt werden errechnet. Um dem Objekt Targetdaten zuzuweisen, die am
wahrscheinlichsten zu ihm gehoren, werden die Pegel des Radarquerschnitts oyp,,2 der
Targets mit der radialen Distanz r zum Objekt in die Gleichung 3.6 gegeben, um einen
gewichteten Mittelwert vom Pegel des Radarquerschnitts ogp,,2 zu erhalten. Damit wird
der Einfluss von anderen Targets verringert (Tabelle 3.5 Szenario 1) und aus vielen Daten
ein Wert gemittelt (Tabelle 3.5 Szenario 4).
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4 Merkmale

Die radiale Distanz r zum Objekt wird mit sich selbst in die Gleichung 3.6 gegeben,

um einen gewichteten Mittelwert der radialen Distanz 7, zum Objekt zu erhalten. Dies

bildet die radiale Distanz r zum Objekt fiir den gewichteten Mittelwert vom Pegel des

Radarquerschnitts 0,2 und wird zum Gewichten zwischen den Datensétzen genutzt.

‘ Ein Datensatz

ey

Ogm? = (A + 40 - log o (£))dBm?

0dBm? [Z]

Gewichteter Mittelwert

‘ Speichern Dictionary

Gewichteter Mittelwert

Abbildung 4.2: Flussdiagramm der Rechnungen innerhalb eines Datensatzes zur Errech-
nung des Merkmals gewichteter Mittelwert des Radarquerschnitts o,
wobei gilt Agpli], R[i],r[i], ¢ =1,...,M mit M gleich der Anzahl der
Targets im Datensatz. Wenn M = 0, dann gilt Ausginge oyp,,2 und 7

gleich None

Von den letzten 10 Datensétzen werden die gewichteten Mittelwerte vom Pegel des Ra-

darquerschnitts 7p,,2 und die gewichteten Mittelwerte der radialen Distanz zum Objekt
7w des Objektes herausgesucht (Abbildung 4.3). Die Werte werden mit der Gleichung 3.6
gewichtet gemittelt und man erhélt das Merkmal gewichteter Mittelwert des Radarquer-

schnitts 7,,. Damit werden Daten der Targets aus Datensitzen, die stark abweichen (siehe

Tabelle 3.5 aus Szenario 2 und Szenario 3) unterdriickt.
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4 Merkmale

‘ Letzte 10 Datensétze

e
Cowid i

Gewichteter Mittelwert

|

‘ Feature ’

Abbildung 4.3: Flussdiagramm der Rechnungen iiber die letzten 10 Datensitze zur Er-
rechnung des Merkmals gewichteter Mittelwert des Radarquerschnitts,
wobei gilt Typm2 [u],Twlu], w =1,...,U mit K gleich der Anzahl der
letzten 10 Datensétze, in denen das Objekt und mindestens ein bewegtes
Target vorgekommen ist. Wenn K = 0, dann gilt Ausgang gleich None

4.2 Mittelwert der radialen Geschwindigkeitsschwankungen

Das Visualisieren der Daten zeigt, dass die radiale Geschwindigkeit v der Targetdaten
von Fahrradern stark schwankt. Dies ist bei Kraftfahrzeugdaten nicht der Fall (Abbil-
dung 4.4). Hierbei ist zu beachten, dass nicht der Abstand zu der radialen Geschwindig-
keit der Objektdaten gemeint ist, sondern der Unterschied von einem Target zum Target

im nichsten Datensatz.
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4 Merkmale

Abbildung 4.4: Radialer Geschwindigkeitsverlauf v von einem Fahrrad und einem Kraft-
fahrzeug iiber die radiale Distanz R zum Radarsensor

4.2.1 Verarbeitung der Daten zum Merkmal

Aus dem Geschwindigkeitsvektor vom Objekt wird durch Projektion sein radialer Ge-

schwindigkeitsvektor

d-v
2 7
4]

projg(?) = (4.15)

berechnet (Abbildung 4.5).
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4 Merkmale

Abbildung 4.5: Vektorprojektion ¥ = (vg, vy)

Die errechnete radiale Geschwindigkeit vp des Objektes wird zum filtern der Targets ver-
wendet. Es werden alle Targets weggefiltert, die eine radiale Geschwindigkeit aufweisen,

die um 17 von der des Objektes abweicht

v/li] = {vr € vali] | vp — 17 <vg Svp +17). (4.16)

Damit werden Ausreifer (dargestellt in Tabelle 3.5 Szenario 3) aus den normalen Daten

herausgefiltert.

Von den iibrigen Targets wird die radiale Geschwindigkeit vp zum Radarsensor und die
radiale Distanz r zum Objekt mit der Gleichung 3.6 verrechnet, um den gewichteten
Mittelwert der radialen Geschwindigkeit 7r, zum Radarsensor zu erhalten. Damit wird
der Einfluss von anderen Targets verringert (Tabelle 3.5 Szenario 1) und aus vielen Da-
ten ein Wert gemittelt (Tabelle 3.5 Szenario 4). Dieser Ablauf ist im Flussdiagramm in
Abbildung 4.6 verdeutlicht.
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4 Merkmale

‘ Targetliste Ein Datensatz }—»{ Objektliste
vR'[j] = {vr € vgl[i] | vp — 1% <wvg <vp+ 179} e Hprogj
vr'[j] | r'[J]
vp

Gewichteter Mittelwert

J e f -
Speichern Dictionary

Abbildung 4.6: Flussdiagramm der Rechnungen innerhalb eines Datensatzes zur Errech-
nung des Merkmals Mittelwert der radialen Geschwindigkeitsschwankun-
gen. Es gilt vg[i],r[é], i=1,..., M wobei M die Anzahl der Targets im
Datensatz ist. Wenn M oder len(vR [7]) = 0, dann gilt 7R, gleich None.
Es gilt ¥ = (vg,vy) und d= (dg, dy).

Um die Geschwindigkeitsschwankungen zu erkennen, werden die Ergebnisse der 10 Da-

tensétze hochpassgefiltert

Avlk] = [[or, 2] = or, (] -, [UR, [L] = Or, [L = 1]]] (4.17)

und somit die Differenzen gebildet (Abbildung 4.7). Da eine beschleunigte Bewegung eines
Objektes Geschwindigkeitsdifferenzen hervorrufen kann, die keine Schwankungen sind,
wird mit den errechneten Geschwindigkeitsprojektionsvektoren des zu klassifizierenden
Objektes von jedem Datensatz eine Steigung mit linearer Regression errechnet, die der
Beschleunigung gleicht. Von den Betrdgen der Geschwindigkeitsdifferenzen wird jeweils

der Betrag der Beschleunigung abgezogen

Avglk] = |Av[k]| — |a - 1s] (4.18)

und mit einer bounded ReLU-Funktion gefiltert,
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4 Merkmale

0 <0
f(x) = min <maX(0,x), 1%) =Jzr O<z<1m (4.19)
1% T > 1%

um negative Werte und Einfliisse von extremen Werten zu verhindern.

Aus den Ergebnissen wird das Merkmal Mittelwert der radialen Geschwindigkeitsschwan-

kungen Av gebildet

K
— 1
Av=—- > Avglk]. (4.20)
k=1
m Letzte 10 Datensétze m
Hochpassfilter Lineare Regression
|Av[k]| — |a - 15|
Avg k]

f(z) = min (max(0, z), 1)
Mittelwert 4/ Av H Feature

Abbildung 4.7: Flussdiagramm der Rechnungen iiber die letzten 10 Datensitze zur Er-
rechnung des Merkmals Mittelwert der radialen Geschwindigkeitsschwan-
kungen. Es gilt vg,[l], i=1,...,L wobei L gleich der Anzahl der letz-
ten 10 Datenséitze, in denen das Objekt und mindestens ein bewegtes
Target, welches die Gleichung 4.16 erfiillt, vorgekommen ist. Wenn L =
0, dann gilt Av gleich Nome. Es gilt vp[g], i = 1,...,Q wobei Q die
Anzahl der Datensétze ist, in denen das zu klassifizierende Objekt vor-
kommt.
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4 Merkmale

4.3 Mittelwert der minimalen Distanz der Targets zum
Objekt

Durch die Visualisierung von Daten in Abschnitt 3.3 wurde deutlich, dass die radia-
le Distanz r zum Objekt von Targets, die zu diesem Objekt gehéren, bei Fahrridern
durchschnittlich geringer ist als bei Kraftfahrzeugen. Dies tritt vor allem bei geringer
radialen Distanz R zum Radarsensor auf. Dies kénnte auf die Gréfse von dem vertikalen
Aufnahmebereich h (Unterabschnitt 2.2.1) und die Grofe der Objekte zuriickzufiithren

sein.

4.3.1 Verarbeitung der Daten zum Merkmal

Innerhalb eines Datensatzes wird die minimale radiale Distanz rpin zum zu klassifizie-
renden Objekt bestimmt. Sollte diese grofer als 2 m sein, wird dieser Datensatz nicht in

den weiteren Betrachtungen benutzt.

None x<0m
f(z) =S min(¥) 0m <z < 2m (4.21)

None x> 2m

Aus den letzten 10 Datensétzen werden alle validen minimalen radialen Distanzen 7min

genommen und der Mittelwert gebildet,

1 N
T'min = N : ;Tmink (422)

um das Merkmal vom Mittelwert der minimalen Distanz der Targets zum Objekt Tryip

zu erhalten.
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5 Darstellung der Ergebnisse der

berechneten Merkmale

Die Merkmale werden mit den aufgenommenen Daten aus Abschnitt 3.1 errechnet. Es er-
geben sich 6574 Datenpunkte, von denen 6362 jedes Merkmal aufweisen. Ein Datenpunkt
hat zum Beispiel keine Wert fiir den Mittelwert der radialen Geschwindigkeitsschwankun-

gen, wenn das Objekt in keinem der neun zuvorkommenden Datensétzen existiert.

Fiir Dateien, die zur Bewertung der Merkmale und zur Erstellung des Klassifikators
genutzt werden, wird sichergestellt, dass in einer Datei immer nur eine Klasse von Objekt

vorhanden ist, um das Labeln einfacher zu gestalten.

Die errechneten Daten werden limitiert, um zu verdeutlichen, wie wichtig viele Daten
fiir die jeweiligen Merkmale sind und um das Vertrauen in die errechneten Werte zu
erhdhen. Das Objekt und ein Target miissen mindestens fiinf Mal zusammen in den
letzten 10 Datensdtzen vorhanden sein. Durch diese Limitierung sinkt die Anzahl der
Datenpunkte auf 5365. Die Anzahl der Datenpunkte der Fahrréder ist stérker beeinflusst
als die der Kraftfahrzeuge (Tabelle 5.1).

Klasse | Anzahl unlimitierte Datenpunkte | Anzahl limitierte Datenpunkte
Fahrrad 3241 2567
Kraftfahrzeug 3121 2798
Gesamt 6362 5365

Tabelle 5.1: Verteilung der Datenpunkte

Der Radarsensor erfasst Fahrréder unter einer radialen Distanz von circa 45 m. Kraftfahr-
zeuge werden bereits ab der maximalen Reichweite des Radarsensors von 100 m erfasst
(Abbildung 5.1). Die Kraftfahrzeugdatenpunkte weisen einen Abfall an Vorkommen bei
15 m auf, dies liegt an den Abbiegestellen, die in Abbildung 3.2 dargestellt wurden. Der
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5 Darstellung der Ergebnisse der berechneten Merkmale

Abfall iiber 90 m liegt an den Aufbaustellen des Radarsensors, da die Teststrecke verkiirzt

wurde.

Nach der Limitierung der Datenpunkte wird deutlich, dass ab 40 m bis 25 m ein anstei-
gendes Vertrauen in die errechneten Merkmalswerte der Fahrrader gelegt werden kann.
Bei den Kraftfahrzeugen sinkt die Anzahl der Vorkommnisse gleichméfig. Daher kénnen
Kraftfahrzeuge unabhéngig von der radialen Distanz zum Radarsensor R klassifiziert

werden.

(a) Unlimitierte Daten

(b) Limitierte Daten

Abbildung 5.1: Héiufigkeitsverteilung der Klassen iiber die radiale Distanz R zum Radar-
Sensor

5.1 Gewichteter Mittelwert des Radarquerschnitts

Bei der Streuung der Datenpunkte eines Merkmals erhofft man keine Verdnderung der
Verteilung iiber die Distanz R zum Radarsensor. Dies liegt nur im Bereich iiber 40 m fiir
die Kraftfahrzeugdatenpunkte vor (Abbildung 5.2). Zwischen 20 m und 40 m beginnt der

Wert teilweise zu sinken und ab 20 m und weniger fillt er ab, wobei kaum noch zwischen
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5 Darstellung der Ergebnisse der berechneten Merkmale

Fahrradern und Kraftfahrzeugen unterschieden werden kann. Bei den Fahrrddern lasst
sich im Bereich iiber 40 m eine horizontale Verteilung andeuten, aber nicht detektieren.
Zwischen 20 m und 40 m beginnt der Wert zu sinken und ab 20 m und weniger fallt er
ab.

Abbildung 5.2: Streuung vom gewichteten Mittelwert des Radarquerschnitts &,, in Ab-
héngigkeit von der radialen Distanz R zum Radarsensor der limitierten
Daten

Der Abfall des Merkmals kénnte an der zunehmend seitlichen Betrachtung der Versuchs-
objekte liegen, da der Azimut « in zwei von drei der Aufstellorte des Radarsensors (Ab-
bildung 3.2) mit sinkender Distanz R zum Radarsensor steigt. Bei dem dritten Aufstellort
konnten die Abbiegestellen und somit das Drehen des Autos einen Einfluss haben. Das
Schrigprofil der Objekte konnte ein Absinken der elektrischen Wirkfliche Az des Radar-
ziels und/oder Verluste durch Winkelabhéngigkeiten Gz hervorrufen. Bei kleiner Distanz
R zum Radarsensor konnte der vertikale Offnungswinkel 3, in Unterabschnitt 2.2.1 be-
schrieben, ein Grund fiir die kleinen Werte sein. Moglicherweise wurde eine Gréfe nicht
oder falsch betrachtet, die diesen Abfall verursacht.

Die Limitierung der Daten verdndert die Struktur der Daten nicht, was der Art der

Errechnung des Merkmals zugrunde liegt.
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5 Darstellung der Ergebnisse der berechneten Merkmale

5.2 Mittelwert der radialen Geschwindigkeitsschwankungen

Die Streuung der Kraftfahrzeugdatenpunkte vom Mittelwert der radialen Geschwindig-
keitsschwankungen Av zeigt eine gleichméRige Verteilung im niedrigen Bereich iiber die
radiale Distanz R zum Radarsensor (Abbildung 5.3). Durch die Néhe an dem Radar-
sensor und dem daraus folgenden vertikalen Aufnahmebereich h (Unterabschnitt 2.2.1),
konnten die Abweichungen zwischen 0 m und 5 m entstanden sein. Die Abbiegestellen

bei der Aufnahme der Daten fithren zu den Abweichungen bei 15 m.

Abbildung 5.3: Streuung vom Mittelwert der radialen Geschwindigkeitsschwankungen
Av in Abhéngigkeit von der radialen Distanz R zum Radarsensor der
limitierten Daten

Die Fahrraddatenpunkte sind iiber den kompletten Wertebereich des Merkmals verteilt
gegeben. Dieses Merkmal profitiert am meisten an der Limitierung, da mit steigender
Anzahl der vorhanden Daten zur Errechnung des Merkmals, Fahrraddatenpunkte aus

dem niedrigen Wertebereich des Merkmals verschwinden (Abbildung 5.4).
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5 Darstellung der Ergebnisse der berechneten Merkmale

(a) Unlimitierte Daten

(b) Limitierte Daten

Abbildung 5.4: Héiufigkeitsverteilung vom Mittelwert der radialen Geschwindigkeits-
schwankungen Av in Abhéngigkeit von der radialen Distanz R zum Ra-
darsensor

5.3 Mittelwert der minimalen Distanz zwischen Targets und
Objekt

Das Merkmal zeigt eine steigende Separation der Klassen mit sinkender radialer Distanz
R zum Radarsensor (Abbildung 5.4). Die Fahrraddatenpunkte zeigen eine gleichméfige
Verteilung im niedrigen Bereich {iber die radiale Distanz R zum Radarsensor. Durch
die Ndhe zu dem Radarsensor und dem daraus folgenden vertikalen Aufnahmebereich
h (Unterabschnitt 2.2.1), kénnten die Abweichungen zwischen 0 m und 5 m entstanden

sein.

38



5 Darstellung der Ergebnisse der berechneten Merkmale

Abbildung 5.5: Streuung vom Mittelwert der minimalen Distanz 7,,;,, zwischen Targets
und Objekt in Abhéngigkeit von der radialen Distanz R zum Radarsensor

5.4 Streuung aller Merkmale

In Abbildung 5.6 ist die Streuung aller Merkmale der unlimitierten Daten im dreidimen-
sionalen Raum zu sehen. Eine Separation iiber den gewichteten Mittelwert des Radar-
querschnitts ,, lasst sich beobachten. Fiir den Mittelwert der radialen Geschwindigkeits-
schwankungen Awv lisst sich dasselbe beobachten. Der Mittelwert der minimalen Distanz
zwischen Targets und Objekt 7, hebt vereinzelnd Kraftfahrzeugdatenpunkte aus Be-
reichen, die von Fahrraddatenpunkten dominiert sind, da das Merkmal in Bereichen eine
Trennung der Klassen aufweist, in der es der gewichtete Mittelwert des Radarquerschnitts

G nicht tut. Es ldsst sich eine Trennfliche zur Klassifizierung andeuten.
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5 Darstellung der Ergebnisse der berechneten Merkmale

Abbildung 5.6: Streuung vom gewichteten Mittelwert des Radarquerschnitts &,,, Mittel-
wert der radialen Geschwindigkeitsschwankungen Av und Mittelwert der
minimalen Distanz zwischen Targets und Objekt 7y, der limitierten
Daten
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6 Klassifikator

Zum Erstellen des Klassifikators wird das Open source tool scikit-learn|[9] in Python
verwendet. Anhand des Diagramms “Choosing the right estimator” des User-Guides|1]
wird der passende Klassifikator fiir das Klassifikationsproblem dieser Arbeit gesucht. Da
gelabelte Daten vorliegen und die Datenanzahl unter 100000 liegt, folgt, dass eine lineare
Support Vector Machine die mégliche richtige Wahl ist. Dies unterstiitzt die Aussage aus

Abschnitt 5.4, dass eine lineare Entscheidungsebene moglich ist.

6.1 Lineare Support Vector Machine[4]

Bei Machine Learning wird die Grenze, die Klassen voneinander trennt, als Entschei-
dungsgrenze bezeichnet. Die Gleichung besteht aus dem reellen Vektor @, dem Merk-

malsvektor Z, welche dieselbe Gréfe haben, und dem Bias b

W E+b=0. (6.1)

Das Ziel dieses Klassifikators ist eine Entscheidungsgrenze zu finden, welche die Klassen

am breitesten voneinander trennt.
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6 Klassifikator

Abbildung 6.1: Beispiel der Trennung von Datenpunkten mittels einer Support Vector
Machine mit angefiigten Formeln

Die sogenannten Support-Vektoren sind die Datenpunkte, die an den Margins liegen und

die Entscheidungsgrenze direkt beeinflussen. Der Ausgangsvektor wird codiert

—1 bei Klasse A
Yi = (62)
1 bei Klasse B

und Bedingungen fiir die Margins festgelegt,

yi - (07T +b) >0 (6.3)

wobei um die Breite der Margins zu maximieren
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6 Klassifikator

max(—-) = max(-—-) = min(||7]|) = fmin(||7,UH2) (6.4)
die Optimierungsaufgabe

1
5 min(||@||%), so dass y; - (W Z +b) >0,i=1,...,N (6.5)

gilt. Daraus bildet sich die Kostenfunktion

N
1
C-||la)? + NZmaX(O,l —yi - (W' E + b)) (6.6)

n=1

wobei der Regularisierungsparameter C' ein Hyperparameter ist, der die Grofse der Gren-

zen beeinflusst.

6.2 Anwendung

Fiir den unnormierten Merkmalsvektor 2/ gilt

I = Av | . (6.7)

Tmin

Die Datenpunkte werden zu 80 % auf die Trainingsdaten und zu 20% auf die Testdaten

aufgeteilt. Aus den Trainingsdaten werden jeweils Mittelwert g

1 L
= > (6.8)
p=1
und Standardabweichung s
T
= o — )2
Sk F pz:;(l’ k= Hk) (6.9)
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6 Klassifikator

fiir die Merkmale errechnet und abgespeichert. Dabei ist wichtig, dass jedes Merkmal
seinen eigenen Mittelwert p und Standardabweichung s errechnet. Die Merkmale der
Trainingsdaten und der Testdaten werden mit den Mittelwerten p und den Standardab-

weichungen s

P el VS (6.10)

Sk
normiert. Dies geschieht, um den Einfluss von groffen Werten zu vermindern. Den Kraft-
fahrzeugen wird die 1 und den Fahrrddern die -1 zugeordnet. Mit den normierten Trai-
ningsdaten wird der Klassifikator errechnet und abgespeichert. Die Gleichung der Ent-
scheidungsfunktion der linearen Support Vector Machine (SVM) wird an die Zwecke

dieser Arbeit angepasst:

(&) = wo - 5 + wy - Ty + Wy - T +b. (6.11)

Fiir die einfache Klassifikation gilt,

<0 Fahrrad
f(Z) (6.12)

>0 Kraftfahrzeug

wobei fiir die Wahrscheinlichkeitsumwandlung eine sigmoidale Kalibrierung nach Platt[10]

Py =11@) = s (6.13)

verwendet wird.

6.3 Klassifikationsbericht

Ein Klassifikationsbericht zeigt wichtige Metriken der Klassifikation an. Anhand dieser
wird das Modell bewertet. Alle Metriken bis auf den Support sind Werte von 0 bis 1 und
konnen in Prozent angegeben werden. Die Tabelle 6.1 wird angelegt, um die folgenden

Formeln einfach zu halten.
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6 Klassifikator

Anzahl ‘ Wirkliche Klasse A Wirkliche Klasse B
Klassifiziert als Klasse A TA FA
Klassifiziert als Klasse B FB TB

Tabelle 6.1: Konfusionsmatrix von 2 Klassen mit T — true und F — false[13]

6.3.1 Erkliarung der Werte vom Klassifikationsbericht

Es wird Klasse A als gesuchte Klasse zur Erkldrung festgelegt. Der Precision-Score gibt
an wie viele Datenpunkte, die als Klasse A klassifiziert wurden, wirklich zu dieser Klasse

gehoren|[13]

.y TA
Precision = TALFA (6.14)

Der Recall-Score gibt an, wie viele Datenpunkte die der Klasse A angeh6ren auch als
Klasse A klassifiziert wurden|13]

TA
= —— 1
Recall TALFB (6.15)

Der F1-Score gibt das harmonische Mittel der Precision- und Recall-Scores fiir die Klasse
A an|14]
Precision - Recall 2-TA

Fl1=2. = .
Precision + Recall 2-TA+FA+ FB

(6.16)

Der Support gibt die gesamte Anzahl der Datenpunkte der Klasse oder des gesamten

Datensatzes an.

Die Accuracy gibt die Anzahl aller korrekten Klassifikationen {iber die Anzahl aller Klas-

sifikationen an|11]
TA+TB

TA+FA+TB+ FB’

Accuracy = (6.17)

Der Macro-Average-Score gibt den Mittelwert eines Scores iiber alle Klassen N an[12][2]

N
1
MacroAvg = N Z Scorey,. (6.18)
k=1
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6 Klassifikator

Der Weighted-Average-Score gibt den gewichteten Mittelwert eines Scores mit der Anzahl

der Datenpunkten in den Klassen iiber alle Klassen N an[12]

WeightedAvg =

N
1
- Y Scorey, - Supporty. (6.19)
Zszl Supporty, ;

6.3.2 Trainings- und Testfehler

Der Precision-Score der Klasse Fahrrider und der Recall-Score der Klasse Kraftfahrzeu-
ge schneiden am schlechtesten ab (Tabelle 6.2 und Tabelle 6.3). Das heift, der grofite
Fehler wird durch Kraftfahrzeuge, die filschlicherweise als Fahrrader klassifiziert wer-
den, erzeugt. Diese Fehlklassifikationen sind zu 98,5 % unterhalb von 22 m von dem
Radarsensor entfernt (Abbildung 6.2).

Klasse ‘Precision Recall F1-Score | Support

Fahrrad 0,926 0,953 0,939 2071
Kraftfahrzeug | 0,955 0,929 0,942 2221

Accuracy 0,941
Macro Avg 0,940 0,941 0,941 4292
Weighted Avg 0,941 0,941 0,941 4292

Tabelle 6.2: Klassifikationsbericht der Trainingsdaten des LimitedF'inal Modells

Klasse Precision Recall F1-Score | Support
Fahrrad 0,916 0,948 0,932 496
Kraftfahrzeug 0,954 0,925 0,939 577
Accuracy 0,936

Macro Avg 0,935 0,937 0,935 1073
Weighted Avg 0,936 0,936 0,936 1073

Tabelle 6.3: Klassifikationsbericht der Testdaten des Limited F'inal Modells
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6 Klassifikator

Abbildung 6.2: Fehlklassifikationen der Trainings- und Testdaten iiber die radiale Distanz
R 7um Radarsensor

6.3.3 Validierungsdaten

Validierungsdaten sind Daten, die nicht fiir das Training und das Testen verwendet wer-
den. Diese Validierungsdaten werden an einem anderen Tag als die Trainings- und Test-

daten aufgenommen. Es werden die gleichen Versuchsobjekte verwendet.

Der Precision-Score der Klasse Kraftfahrzeuge und der Recall-Score der Klasse Fahrréder
schneiden unter Verwendung der unlimitierten Validierungsdaten am schlechtesten ab
(Tabelle 6.4). Das heifit, der grofte Fehler wird durch Fahrrader, die félschlicherweise
als Kraftfahrzeuge klassifiziert werden, erzeugt. Diese Fehlklassifikationen sind zu 61.1 %

zwischen 30 m und 50 m von dem Radarsensor entfernt (Abbildung 6.3).

Tabelle 6.4: Klassifikationsbericht der unlimitierten Validierungsdaten des Limited F'inal

Modells
Klasse Precision Recall F1-Score | Support
Fahrrad 0,899 0,793 0,842 1626
Kraftfahrzeug 0,841 0,925 0,881 1924
Accuracy 0,864
Macro Avg 0,870 0,859 0,862 3550
Weighted Avg 0,867 0,864 0,863 3550

Die Validierungsdaten werden wie die Trainings- und Testdaten limitiert. Das Objekt

und ein Target miissen in den letzten 10 Datensdtzen mindestens fiinf Mal zusammen
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enthalten gewesen sein. Durch die Limitierung verbessern sich die beiden Scores um iiber
10 %. Der Recall-Score der Klasse Fahrrider schneidet weiterhin am schlechtesten ab
(Tabelle 6.5). Der Precision-Score der Klasse Kraftfahrzeuge sieht vermeintlich besser
aus als der Precision-Score der Fahrréder. Dies tduscht aber, da der Support der Kraft-
fahrzeuge um 46,6 % grofser ist und damit den Precision-Score der Klasse Kraftfahrzeuge
erhoht und den der Fahrrdder senkt. Das heifit, der grofite Fehler wird weiterhin durch
Fahrriader, die filschlicherweise als Kraftfahrzeuge klassifiziert werden, erzeugt. Die An-
zahl ist aber im Vergleich zu vor der Limitierung gesunken, besonders im vorherigen
kritischen Bereich zwischen 30 m und 50 m von dem Radarsensor (Abbildung 6.3). Da-
her ist eine feste Klassifikation von Fahrrddern bei einer Entfernung von iiber 30 m zu

dem Radarsensor fragwiirdig.

Tabelle 6.5: Klassifikationsbericht der limitierten Validierungsdaten des LimitedFinal

Modells
Klasse Precision Recall F1-Score | Support
Fahrrad 0,926 0,916 0,921 921

Kraftfahrzeug 0,943 0,950 0,947 1350

Accuracy 0,937
Macro Avg 0,935 0,933 0,934 2271
Weighted Avg 0,937 0,937 0,937 2271

Die meisten Fehlklassifikationen der Kraftfahrzeuge treten bei einer Entfernung von unter
10 m zu dem Radarsensor auf (Abbildung 6.3). Bei Fahrradern ist dies zwar weniger
gegeben, aber auch der Fall. Eine feste Klassifikation von Kraftfahrzeugen und Fahrradern

ist bei einer Entfernung von unter 10 m zu dem Radarsensor fragwiirdig.
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6 Klassifikator

(a) Unlimitierte Validierungsdaten

(b) Limitierte Validierungsdaten

Abbildung 6.3: Fehlklassifikationen der Validierungsdaten {iber die radiale Distanz R zum
Radarsensor

6.4 Daten der Entscheidungsebene

Die Mittelwerte und Standardabweichungen der Merkmale werden in Tabelle 6.6 doku-

mentiert, um zukiinftige Daten zu normieren.

Merkmal Mittelwert Standardabweichung
Tuw 63,04086761195383 dBm? | 15,661168310042221 dBm?
Av 0,1293842574537276 ** 0,14938309859487134 *=

259,0598852192587 mm 180,17904409037476 mm

Tmin

Tabelle 6.6: Mittelwert und Standardabweichung der limitierten Daten
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6 Klassifikator

Die Vorzeichen der Gewichte aus der Tabelle 6.7 fiir die Gleichung 6.11 sind nachvollzieh-
bar, da hohe Werte in den Merkmalen gewichteter Mittelwert des Radarquerschnitts &,
und Mittelwert der minimalen Distanz vom einem Target zum Objekt 7, auf ein Kraft-
fahrzeug hindeuten (siehe Kapitel 5). Wéhrend ein hoher Wert im Merkmal Mittelwert

der radialen Geschwindigkeitsschwankungen Av auf ein Fahrrad hindeutet.

Parameter ‘ Limitiert
Wy 1,3663817916834236
Wy -1,2663371970540704
Wy 2,2051709250737286
b 0,28336710643731344
A -1,6478171686051961
B 0,18108483891201377

Tabelle 6.7: Angepasste Werte der Gleichung 6.11 und der Gleichung 6.13 fiir die limi-
tierten Daten

Die Abbildung 6.4 stellt die Wahrscheinlichkeitsverteilung der Klasse Kraftfahrzeuge iiber
das Ergebnis der Gleichung 6.11 dar.

Py = 1]f(%))

0.8 1

0.6 |

Abbildung 6.4: Sigmoid-Gleichung 6.13 der limitierten Daten aus Tabelle 6.7 fiir die Klas-
se der Kraftfahrzeuge

Die Abbildung 6.5 zeigt die Verteilung der limitierten Datenpunkte im dreidimensionalen

Raum mit der eingezeichneten Entscheidungsebene.
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6 Klassifikator

Abbildung 6.5: Streuung der limitierten Daten mit der Entscheidungsebene aus der Glei-
chung 6.11 und der Tabelle 6.7
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7 Erweiterung der vorhandenen Python

Scripte

Die in Abschnitt 3.3 dargestellte Visualisierung wird mit den Daten der Klassifizierung
erweitert. In der Canvas Darstellung, in Abbildung 7.1 dargestellt, wird unter den beweg-
ten Objekten die grofte Wahrscheinlichkeit dargestellt. Sollte die Wahrscheinlichkeit fiir
ein Fahrrad sprechen ist sie dunkelblau geférbt. Sollte sie fiir ein Kraftfahrzeug sprechen

ist sie dunkelrot gefirbt.

Abbildung 7.1: Visualisierung mit Klassifikation

In dem Hauptfenster der GUI werden in den Tabellen die Daten der Klassifikation an-
gefiigt. Wie in Abbildung 7.2 zu sehen ist, werden die Werte der drei Merkmale und die
Wahrscheinlichkeiten der beiden Klassen hinzugefiigt.
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7 Erweiterung der vorhandenen Python Scripte

Abbildung 7.2: Hauptfenster der GUI zur Visualisierung der Radarsensordaten mit Da-
ten der Klassifikation

Die erstellte GUI zum Einlesen von Radarsensordaten aus Abschnitt 3.1 wird mit einer
Visualisierung der Daten erweitert (siehe Abbildung 7.3). Diese verhalt sich wie die in
Abbildung 7.1 dargestellte Visualisierung. Damit kann nun direkt bei der Aufnahme der

Daten die Klassifizierung gepriift werden.

Abbildung 7.3: GUI zum Einlesen von Radarsensordaten mit grafischer Darstellung der
bewegten Objekte und Targets
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7 Erweiterung der vorhandenen Python Scripte

7.1 Warnleuchte

Der GUI der Datenvisualisierung wird eine Warnleuchte hinzugefiigt, die aktiv wird,
sobald ein Objekt als Kraftfahrzeug klassifiziert ist. Sollte sich ein Objekt, das als Fahr-
rad klassifiziert wurde, im Bereich hinter dem Kraftfahrzeug befinden, leuchtet sie rot
auf (Abbildung 7.4). Die Werte des Radius und des Winkels des Warnbereiches kénnen

angepasst werden.

| 20m JE
m
a 0.8f22
95 \
10
\ i G0m
/T
(a) Warnleuchte aus (b) Warnleuchte an

Abbildung 7.4: GUI der Visualisierung der Daten mit Warnleuchte und Warnbereich:
Radius 10 m und Winkel + 60 °
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8 Fazit

In dieser Arbeit wurde untersucht, ob eine Klassifikation von Kraftfahrzeugen und Fahr-
radern mittels Radarsensorik moglich ist. Es wurden diesbeziiglich drei Merkmale er-
stellt. Der gewichtete Mittelwert des Radarquerschnitts @,,, der aus den Grofen radiale
Distanz R vom Radarsensor und dem Amplitudenpegel A;p errechnet wird, sollte noch-
mal iiberdacht werden, da dieser keine horizontale Verteilung iiber die radiale Distanz
vom Radarsensor R ausweist. Der Mittelwert der radialen Geschwindigkeitsschwankun-
gen Av, der aus allen gegebenen Groken des Radarsensors, aufer der Amplitude Ayp,
errechnet wird, funktioniert alleine am besten. Seine Zuverléssigkeit steigt mit der Anzahl
der Daten zum Errechnen des Merkmals. Dies ist fiir die anderen Merkmale nicht /wenig
gegeben. Der Mittelwert der minimalen Distanz 7,,;, der Targets zum Objekt, der aus
allen gegebenen Distanz Grofen errechnet wird, dient als Unterstiitzung des Merkmals
gewichteter Mittelwert des Radarquerschnitts @,,, da er alleine keine grofse Aussagekraft
hat.

Aus dieser Arbeit geht hervor, dass der Radarsensor fiir die Merkmale in dieser Arbeit
nicht unter 5 m genutzt werden sollte. Das verwendete Kraftfahrzeug wird auf der maxi-
malen Reichweite des Radarsensors von 100 m detektiert. Verwendete Fahrrader werden
teilweise ab 60 m erfasst, dies ist aber eine Seltenheit und beginnt in der Regel ab 45
m, bis sie ab 35 m gut erfasst sind. Daher sollte der Radarsensor fiir die in der Ein-
leitung geschilderten Unfallsituation, im Rahmen dieser Arbeit, zum Ausnutzen dieser
Entfernungen entsprechend aufgebaut werden. Es wird zwischen 10 m und 30 m empfoh-
len. Daher geht mit der zuriickgelegten Distanz in 10 Messzyklen (Unterabschnitt 2.2.2)

hervor, dass eine moglicherweise feste Klassifikation nach einer Sekunde angeraten ist.

Des Weiteren wurde die Frage gestellt, ob dies zur Pravention von Unféllen genutzt wer-
den kann. Dies kann durch diese Arbeit nicht beantwortet werden, da zu wenig Versuchs-
objekte verwendet wurden. Daher wird empfohlen eine grofere Testreihe aufzustellen.
Aufserdem ist der Prozentsatz der korrekten Klassifikationen keine perfekte Abdeckung.
Aus zeitlichen Griinden konnte die Warnleuchte (Abschnitt 7.1) nicht in die GUI zum
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8 Fazit

Einlesen von Radarsensordaten (Abbildung 7.3) implementiert und in Echtzeit gepriift

werden.

8.1 Ausblick

Wiéhrend der Bearbeitung und der Auswertung wurden folgende Verbesserungen, An-
stofse zur Erweiterung und andere Herangehensweisen formuliert, welche nicht bereits

explizit erwdhnt wurden.

8.1.1 Verbesserungen

In der Visualisierung der Daten aus Abschnitt 3.3 sind alle Daten in den Tabellen und
dem Canvas geladen. Dadurch kénnen auf dem fiir diese Arbeit benutzten Laptop nur
7 Minuten, also circa 4200 Datenséitze, geladen werden, bevor das Programm stoppt.
Die Daten von Aufnahmen, die diese Zeit iiberschreiten, mussten auf mehrere Dateien
aufgeteilt werden. In der Echtzeitversion ist dies durch ein festen Canvas und das Léschen

der Datenpunkte anders implementiert und kénnte daher {ibernommen werden.

8.1.2 Anstofie zur Erweiterung

Es wurde keine Fahrbahnerkennung implementiert, welche Abhilfe fiir die nicht perfekte

Abdeckung in der Klassifikation schaffen konnte.

Der Einfluss des Azimut « auf die Daten des Radarsensors konnte untersucht werden.

Zum Beispiel eine sinkende Reflexionsstirke mit steigendem Azimut.

In dieser Arbeit werden Datensétze, in denen keine Targets oder Objekte vorkommen,
ignoriert. Bei der linearen Regression der radialen Geschwindigkeiten der Objekte ist
dies nicht der Fall. Ein besserer Umgang mit diesen Datensdtzen konnte von Vorteil sein.
Wenn ein neues Objekt erkannt wird, gibt es in den vorangegangenen Datensitzen in
der Regel zwei Targets, die zu diesem Objekt gehoren. Die Auswertung dieser kénnte zu

einer schnelleren und sichereren Klassifikation fiithren.

Durch die in Abschnitt 3.1 beschriebene Limitierung der Vielfalt der Versuchsobjekte

konnte eine Uberanpassung an diese Objekte entstanden sein. Um sicherzustellen, dass
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8 Fazit

beispielsweise Kinder auf Fahrridern erkannt werden, wire es von Vorteil eine grofiere

Vielfalt zu verwenden.

Die Auflosung des Radars wurde nicht beachtet. Auflsung im Bezug auf Radar bedeutet,
dass zwei Signale getrennt werden konnen, wenn Sie sich im Abstand, Winkel oder der

Geschwindigkeit um das doppelte der aufgefiihrten Werte unterscheiden|16].

8.1.3 Herangehensweisen

Diese Arbeit zeigt nur eine Herangehensweise an dieses Problem. Daher koénnten von
Grund auf andere Herangehensweisen bessere Ergebnisse liefern. In dieser Arbeit wurde
die radiale Distanz r von den Targets zu dem Objekt hdufig verwendet. Daher wére eine

Losung, die diese Grofe weniger betrachtet, interessant.

In dieser Arbeit wurde festgelegt, dass die Objekte, die der Radarsensor liefert, klassifi-

ziert werden sollen. Es konnten nur die Targetdaten betrachtet werden.
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A Anhang

A.1 Verwendete Hilfsmittel

In der Tabelle A.1 sind die im Rahmen der Bearbeitung des Themas der Bachelorar-

beit verwendeten Werkzeuge und Hilfsmittel aufgelistet.

Tabelle A.1: Verwendete Hilfsmittel und Werkzeuge

Tool Verwendung

ETEX Textsatz- und Layout-Werkzeug verwendet zur Erstellung dieses Dokuments
Python Einlesen, Verarbeiten und Visualisierung der Daten

Wireshark Beobachtung der Dateniibertragung des Radarsensors

VSCode Python und Latex

Radarsensor | SICK RMS2731C-636111

Powerbank 12V DC

Laptop Microsoft Surface Pro 8

A.2 Inhaltsangabe CD

Der Anhang zur Arbeit befindet sich auf CD und kann beim Erstgutachter eingesehen
werden. Im folgende wird der Inhalt diese CD aufgelistet und eine Beschreibung hinzu-

gefiigt. Ordner werden fett und Dateien kursiv gedruckt.

o Thesis_Radar_ Watzlaw.pdf

Die Bachelorarbeit in elektronischer Form.

e RadarSensor
Enthéalt die in Rahmen dieser Arbeit erstellten Dateien.
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— Python
Enthélt die in Rahmen dieser Arbeit erstellten Python Scripte.

Der file path in command__center.py sollte iiberpriift werden, da alle main

Dateien aus einem Verzeichnis {iber RadarSensor, mit VSCode, ausgefiihrt
wurden. Er ist hart als file path = ” RadarSensor/Datafiles/” codiert.

Sollten die Scripte auf die selbe Art ausgefithrt werden, kann dies ignoriert

werden.

Nur die Scripte mit main im Namen sind ausfithrbar. Dies gilt nicht fiir

cut_txt.py, speed_variation_graphic.py und alle Scripte in graphic_the-

sis.

requirements.tzt

Enthalt die verwendeten Pakete und ihre Versionen.

class_all data.py
Erzeugt ein Objekt, in dem die Radarsensordaten aus den JSON Dateien

geladen werden und fiir andere Klassen abrufbar macht.

class canvas_dimensions.py
Klasse, die die Dimensionen der Visualisierung der Daten je nach gegebe-

ner Auflésung errechnet.

class _canvas_wviewer live.py

Klasse, die die Daten des Radarsensors in Echtzeit visualisiert.

class_canvas_viewer.py

Klasse, die die Daten des Radarsensors visualisiert.

class_ classificator.py
Klasse, die die Merkmale aus den Radarsensordaten errechnet. Enthilt

die Funktionen der Rechnungen, um sie an anderer Stelle zu verwenden.

class_page_ turner.py
Klasse, die die Buttons in der GUI, mit denen zu anderen Datensétzen

gewechselt werden kann, erzeugt.

class _read in_ data.py
Klasse, die die GUI zum Einlesen der Radarsensordaten erstellt. Funktio-

nen zur Verarbeitung der Daten in Echtzeit.
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class_table wviewer.py
Klasse, die in der GUI Tabellen der Objekt-, Target- und Klassifikations-

daten erzeugt. Funktionen zur Erstellung der Tabellen.

class _time viewer.py
Klasse, die in der GUI Labels mit der Zeit seit der ersten Messung dar-
stellt.

command_ center _classes.py

Funktionen, die von mehreren Klassen benutzt werden.

command_ center data.py
Funktionen, die die Namen der Trainings-, Test und Validierungsdaten

halten. Funktionen zur Verarbeitung und Darstellung dieser.

command__ center.py
Generelle Funktionen, die von vielen Scripts benutzt werden. Funktionen

zum Einlesen von Daten des Radarsensors.

constants_and_ macros.py

Konstanten und Makros fiir alle Programme.

cut_tzt.py
Teilt eine Textdatei, anhand von gegebenen Seitenzahlen aus der Daten-

visualisierung.

dict_lookup info.py

Dictionaries mit Daten, die an verschiedenen Stellen gebraucht werden.

histograms _and_ scatter plots.py

Funktionen zum Erstellen von Histogrammen und Scatter Plots.

main_ get data_from_ sensor.py
Main Datei zum Ausfithren des Programmes zum Einlesen von Daten vom

Radarsensor.

main_ make_model and_ plots.py
Main Datei, die das SVM Modelle erstellt und Grafiken wie Histogramme
und Scatter Plots erstellt.
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main_ use_model _on_ data.py

Main Datei, die das angegebene SVM Modell auf einen angegebenen Da-
tensatz verwendet. Es wird eine Grafik mit Fehlklassifikationen und ein
Klassifikationsbericht erstellt.

main_ view _data.py

Main Datei zum Ausfiihren des Programmes zur Visualisierung der Daten.

speed__wvariation_ graphic.py
Erstellt zwei Grafiken mit der radialen Geschwindigkeit {iber die Distanz

zum Radarsensor von den gegebenen Dateien.

graphic_thesis
Enthélt Scripte fiir Grafiken, die fiir die Bachelorarbeit erstellt wurden.

— Datafiles

Enthalt die im Rahmen dieser Arbeit erstellten Files.

CSVfiles
Enthélt die im Rahmen dieser Arbeit erstellten Daten des Radarsensors
in CSV Form.

Jsonfiles
Enthélt die im Rahmen dieser Arbeit erstellten Daten des Radarsensors

in Dictionary Form.

Modeldatafiles
Enthalt die im Rahmen dieser Arbeit erstellten Klassifikationsberichte
und Daten des Modells.

Modelfiles
Enthéalt die im Rahmen dieser Arbeit erstellten Klassifikator Modelle aus

den Daten des Radarsensors.

Pictures
Enthélt die im Rahmen dieser Arbeit erstellten Bilder der Modelle aus

den Daten des Radarsensors. Histogramme und Scatter Plots.

Scalerfiles
Enthélt die Standardabweichungen und die Mittelwerte der Klassifikator

Modelle aus den Daten des Radarsensors.
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+ Textfiles
Enthalt die im Rahmen dieser Arbeit erstellten Rohdaten des Radarsen-

SOrs.

* Textfiles cut
Enthélt die im Rahmen dieser Arbeit verwendeten Rohdaten des Radar-
sensors in Textform. Sie wurden verkiirzt und separiert, um die Verarbei-

tungsdauer zu senken und eine angenehmere Visualisierung zu bieten.
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Erkldrung zur selbstindigen Bearbeitung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbsténdig
verfasst und nur die angegebenen Hilfsmittel benutzt habe. Wértlich oder dem Sinn

nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich

gemacht.

Ort Datum Unterschrift im Original
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