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1 Einleitung

Im Jahr 2023 sind 902 Menschen in Deutschland innerhalb von Ortschaften bei Stra-

ÿenverkehrsunfällen ums Leben gekommen. 257 Menschen waren mit einem Fahrrad

unterwegs[17]. Im Juni desselben Jahres wurde ein 62-jähriger Fahrradfahrer durch einen

rechtsabbiegenden Sattelzug erfasst. Der Mann wurde schwer am Kopf verletzt und starb

noch am Unfallort[8].

Diese kritischen Situationen entstehen, wenn ein Kraftfahrzeug aus der Fahrt rechts ab-

biegt. Im seitlichen und rückwärtigen Bereich (toter Winkel) be�ndet sich ein Fahrrad-

fahrer, der sich geradeaus bewegt (siehe Abbildung 1.1). Der Fahrer des Kraftfahrzeugs

kann den Fahrradfahrer im Innen- und Auÿenspiegel nicht sehen. Besonders betro�en sind

Kraftfahrzeuge, bei denen es nicht möglich ist, dies durch den Schulterblick zu kompen-

sieren. Eine Wahrnehmung auf Fahrradfahrer im toten Winkel kann durch Seitenkamera-

Systeme und Sensoren als Toter-Winkel-Warner gescha�en werden.

Abbildung 1.1: Kraftfahrzeug mit Fahrradfahrer im seitlichen und rückwärtigen Bereich
(toter Winkel)

1



1 Einleitung

Die Sattelzugmaschine war laut Polizei nicht mit einem Abbiegeassistenzsystem ausge-

stattet, das den Fahrer vor Fuÿgängern und Radfahrern im toten Winkel warnt[8]. Daher

wird in dieser Arbeit eine Lösung angestrebt, die unabhängig von der Technik in den

Fahrzeugen der Verkehrsteilnehmer funktioniert. Sie soll fest an Orten installiert werden,

an denen diese Situationen häu�g auftreten. Dazu soll eine Leuchte eingesetzt werden,

die beide Verkehrsteilnehmer warnen soll, wenn die geschilderte Situation vorliegt. Um

dies umzusetzen wird Sensorik gebraucht, die die Entfernung und Bewegungsrichtung

von Objekten bestimmen und verfolgen kann. Sie sollte wartungsarm und unabhängig

von Helligkeit und Wetterverhältnissen funktionieren. Dies tri�t auf Radarsensorik zu.

In dieser Arbeit geht es um die Verarbeitung der Messgröÿen eines Radarsensors. Diese

Messgröÿen sind die Entfernung, die Geschwindigkeit und die Re�exionsstärke von Ob-

jekten. Sie werden zu aussagekräftigen Werten kombiniert, die Aufschluss über die Art

des Objekts geben. Es wird zwischen zwei Arten unterschieden: Fahrräder und Kraftfahr-

zeuge. Der Radarsensor wird in Abbildung 1.1 rechts in Richtung Westen aufgebaut. Es

wird diskutiert, ob sich diese Anwendung zur Prävention der oben genannten Problematik

eignet und ausreichend ausgearbeitet wurde.
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Radar ist eine Abkürzung und steht für radio detection and ranging. Ein Radar sendet

Radiowellen (elektromagnetische Wellen) aus und detektiert re�ektierte Wellen von Ob-

jekten. Ein einzelner Re�exionspunkt in einem Messzyklus bezeichnet man als Target

(Ziel)[6]. Ein Target besitzt 4 Messgröÿen. Die radiale Distanz zum Radarsensor R, der

Azimut Winkel α, die radiale Geschwindigkeit vR zum Radarsensor und der Amplitu-

denpegel AdB der re�ektierten Leistung.

Abbildung 2.1: Messgröÿen eines Targets: radiale Distanz zum Radarsensor R, Azimut
Winkel α und radiale Geschwindigkeit vR

Die Messdaten der Targets sind nur eine Momentaufnahme und können variieren. Es

wird ein zeitlicher Verlauf der Messgröÿen angestrebt, um Aussagen über das betrachtete

Objekt zu tre�en.
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2.1 Kalman Filter

Rudolf E. Kalman entwickelte im Jahre 1960 einen Filter, der es ermöglichte aus ver-

rauschten und teilweise sich wiederholenden Messdaten, Zustände und Parameter eines

zeitdiskreten und linearen Systems zu schätzen. Der Vorteil eines Kalman Filters ist der

iterative Aufbau des Filters, der stark für Echtzeitanwendungen geeignet ist[7].

Um den generellen Aufbau eines Kalman Filters nahezulegen, wird eine rekursiver �ie-

ÿender Tiefpass�lter erster Ordnung

y⃗k = γ · z⃗k + (1− γ) · y⃗k−1 mit 0 < γ < 1 (2.1)

mit dem Systemvektor y⃗k, den aktuellen Sensormesswerten z⃗k und einem Gewichtungs-

faktor γ angenommen (Idee für den Vergleich[5]). Der Tiefpass�lter hat die Eigenschaften

Rauschen herauszu�ltern und damit die Variation zu senken. Der Gewichtungsfaktor γ

wird mit der Kalman-Verstärkung K ersetzt,

y⃗k = Kk · z⃗k + (1−Kk) · y⃗k−1 mit 0 < Kij < 1 (2.2)

y⃗k = y⃗k−1 +Kk(z⃗k − y⃗k−1) mit 0 < Kij < 1 (2.3)

wobei die Einträge der Matrix zwischen 0 und 1 bleiben. Der Vektor der Sensormesswerte

z⃗k und der Systemvektor y⃗k müssen nicht dieselbe Dimension haben, da es sich wie oben

erwähnt um Zustände und Parameter handeln kann, die nicht die Sensormesswerte sind.

Es wird eine Messmatrix H angefügt,

y⃗k = y⃗k−1 +Kk(z⃗k −Hy⃗k−1) mit 0 < Kij < 1 (2.4)

die den physikalischen Zusammenhang von Systemvektor y⃗k und Messvektor z⃗k be-

schreibt. Um eine zeitliche Verschiebung des Ausgangs zu vermeiden (Abbildung 2.2),

wird der vergangene Systemvektor y⃗k−1 mit einer Systemvektor-Prädiktion y⃗−k

y⃗−k = Ay⃗k−1 (2.5)
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ersetzt, wobei die DynamikmatrixA den Übergang von y⃗−k zu y⃗k beschreibt. Ein einfaches

Beispiel ist der Ein�uss der Geschwindigkeit auf den Ort des Objektes

dt+1 = dt + vt ·∆t (2.6)

bei einer idealen unbeschleunigten Bewegung. Es ergibt sich die zentrale Korrekturglei-

chung des Kalman Filters,

y⃗k = y⃗−k +Kk(z⃗k −Hy⃗−k ) mit 0 < Kij < 1 (2.7)

in die Sensormesswerte z⃗k gegeben werden und der Ausgang y⃗k errechnet wird. Die

Systemvektor-Prädiktion y⃗−k und die Kalman Verstärkung K sind dynamische Werte und

werden innerhalb des Kalman Filters bis zum nächsten Eingang der Sensormesswerte z⃗k
bestimmt.

Abbildung 2.2: Vergleich zwischen einem Kalman Filter und einem rekursiven �ieÿenden
Tiefpass�lter erster Ordnung von einer gleichmäÿig beschleunigten Bewe-
gung

Der Algorithmus kann in die Prädiktions- und Korrekturphase unterteilt werden. In der

Prädiktionsphase wird die Prädiktion des Systemvektors y⃗−k , wie bereits in Gleichung 2.5

beschrieben, errechnet. Es wird eine Schätzung der Fehlerkovarianz P− errechnet,
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2 Radar

P−
k = APk−1A

T +Q (2.8)

die die Qualität der Schätzung des Systemvektors y⃗−k angibt. Die Prozessrauschmatrix

Q gibt die Abweichung zum angenommenen System an.

In der Korrekturphase wird die Kalman-Verstärkung K errechnet,

Kk = P−
k H

T (HP−
k H

T +R)−1 (2.9)

die angibt wie die Prädiktion im Vergleich zu den aktuellen Messwerten gewichtet wird.

Die Messrauschmatrix R gibt die Ungenauigkeit der Sensormesswerte an. Die Messdaten

z⃗k werden mit der Korrektur-Gleichung 2.7 verrechnet und liefern, je nach Gröÿe der

Kalman-Verstärkung K, einen Wert zwischen der Schätzung und der Messwerte. Nach

der Ausgabe vom Systemvektor y⃗k, wird Fehlerkovarianzmatrix P errechnet,

Pk = P−
k −KkHP−

k (2.10)

um seine Qualität widerzuspiegeln.

Die Werte vom Systemvektor y⃗k und die Fehlerkovarianzmatrix P werden in dem nächs-

ten Durchlauf vom Algorithmus benötigt. Sollte es der erste Durchlauf für ein neu de-

tektiertes Objekt sein, werden sie initialisiert. Die Fehlerkovarianzmatrix P sollte dabei

hohe Werte haben, da kein Vertrauen in die Prädiktion besteht.

2.2 Radarsensor

Der verwendete Radarsensor in dieser Arbeit ist der RMS2731C-636111 von der SICK

AG. Die Targetdaten die der Radarsensor liefert sind die radiale Distanz R zum Radar-

sensor, der Azimut Winkel α, die radiale Geschwindigkeit vR zum Radarsensor und der

Amplitudenpegel AdB der re�ektierten Leistung. Die Daten des Kalman Filters und ge-

gebenenfalls anderer Verarbeitungsalgorithmen sind unbekannt. Nur die Ausgangsdaten

des Systemvektors y⃗k sind bekannt und bestehen aus der Distanz dx zum Radarsensor

entlang der x-Achse, der Distanz dy zum Radarsensor entlang der y-Achse, der Geschwin-

digkeit vx zum Radarsensor entlang der x-Achse, der Geschwindigkeit vy zum Radarsensor
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entlang der y-Achse und einer ID, die der Zuordnung dient. Im weiteren Verlauf dieser

Arbeit werden diese Daten als Objektdaten bezeichnet.

In der Tabelle 2.1 sind für den weiteren Verlauf dieser Arbeit wichtige Daten aus dem

Datenblatt des Sensors aufgelistet.

Arbeitsbereich 0,4 m . . . 100 m

Ö�nungswinkel (Horizontal) ± 60°

Ö�nungswinkel (Vertikal) ± 4°

Geschwindigkeitsbereich ± 30 m
s = ± 108 km

h

Messzyklusdauer 100 ms

Schnittstellen Ethernet

Versorgungsspannung 9 V DC . . . 32 V DC

Geschwindigkeitsgenauigkeit 1 m² RCS bis 20 m -> 0,0625 m/s

1 m² RCS bis 50 m -> 0,15 m/s

Tabelle 2.1: Wichtige technische Daten vom SICK-Radarsensor RMS2731C-636111[16]

2.2.1 Berechnung des vertikalen Aufnahmebereiches

Der vertikale Aufnahmebereich h des Radarsensors wird aus der radialen Distanz R vom

Radarsensor und dem vertikalen Ö�nungswinkel β, berechnet. Die Formel zur Berechnung

wird aus Abbildung 2.3 entnommen

tan(β) =
h
2

R
(2.11)

und nach dem vertikalen Aufnahmebereich h umgestellt

h = 2 ·R · tan(β). (2.12)
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Abbildung 2.3: Darstellung des Zusammenhangs zwischen dem vertikalen Aufnahmebe-
reich h und der radialen Distanz R zum Radarsensor mit dem vertikalen
Ö�nungswinkel β

Aus der Tabelle 2.1 wird der vertikale Ö�nungswinkel β entnommen und beispielsweise

eine radiale Distanz R vom Radarsensor von 10 Metern festgelegt.

h = 2 · 10m · tan(4◦) ≈ 1, 4m (2.13)

Da ein linearer Zusammenhang zwischen dem vertikalen Aufnahmebereich h und der ra-

dialen Distanz R zum Radarsensor besteht, kann aus Abbildung 2.3 abgeleitet werden,

dass der vertikale Aufnahmebereich h um 1,4 m pro 10 m radiale Distanz R zum Radar-

sensor ansteigt. Dies könnte zufolge haben, dass Objekte mit kleiner radialen Distanz R

zum Radarsensor und groÿe Objekte nicht korrekt erkannt werden können.

2.2.2 Berechnung der zurückgelegten Distanz in 10 Messzyklen

Da sich die Objekte in Richtung des Radarsensors bewegen, ist es von Vorteil zu wissen,

wie weit sich ein Objekt in einem Messzyklus bewegt. Da die Geschwindigkeit variiert,

wird für den Stadtverkehr eine Geschwindigkeit von 50 km
h und 10 Messzyklen (1 Sekun-

de) angenommen.

d = v · t = 50

3, 6

m

s
· 1s ≈ 13, 9m (2.14)
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2.3 Zielsetzung

� Visualisierung der Daten

Das Einlesen, Verarbeiten und Visualisieren der Radarsensordaten.

� Aussagekräftige Werte errechnen

Die gegeben Daten des Radarsensors geben keine direkte Auskunft über die Art

des Objektes. Im Fokus steht die Berechnung von aussagekräftigen Werten aus den

Radarsensordaten, die Aufschluss über die Art des Objekts geben.

� Erstellung eines einfachen Klassi�kators

Die aussagekräftigen Werte (Merkmale) sollen in ein einfaches System gegeben

werden, das angibt, ob es sich um ein Fahrrad oder ein Kraftfahrzeug handelt.

� Nutzen zur Verhinderung der Problematik

Die Verwendung des Systems soll für die in der Einleitung beschriebene Problematik

untersucht und bewertet werden.
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Der Radarsensor wird über eine Ethernet-Schnittstelle an den PC angeschlossen. Mit

dem Dokument �Telegram Listing RMS2000�[15] wird die Kon�guration des Sensors und

die Analyse der Transmission Control Protocol (TCP)-Pakete vorgenommen.

Für die Zwecke dieser Arbeit werden Objekt- und Targetdaten angefordert. Dies kann

über Befehle an den Sensor geändert werden. Es muss nur einmal durchgeführt werden,

da der Radarsensor die Einstellungen speichert. Die Befehle in der Tabelle 3.1 werden zur

Kon�guration des Sensors in dieser Arbeit in der gegebenen Reihenfolge ausgeführt.

Bedeutung Befehl

Log in sMN SetAccessMode 03 F4724744

Transmit Targets sWN TransmitTargets 1

Transmit Objects sWN TransmitObjects 1

Save Parameters sMN mEEwriteall

Set to run (Log out) sMN Run

Tabelle 3.1: Kon�gurationsbefehle des Radarsensors in dieser Arbeit

Mit den Befehlen in Tabelle 3.2 wird das Senden der Daten oder der Abbruch ange-

fordert. Als Antwort auf die Befehle werden die abgebildeten Pakete vom Radarsensor

zurückgeschickt, die im weiteren Verlauf den Anfang und das Ende der Kommunikation

zwischen Sensor und Laptop markieren.

Bedeutung Befehl an Radarsensor Antwort vom Radarsensor

Daten senden = True sEN LMDradardata 1 sEA LMDradardata 1

Daten senden = False sEN LMDradardata 0 sEA LMDradardata 0

Tabelle 3.2: Befehle und Antwort zum Anfordern und Abbrechen der Datenübertragung
über die Schnittstelle
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Der Radarsensor sendet die Messdaten mit einer Messzyklusdauer von 100 ms über die

Ethernet-Schnittstelle. Diese werden nicht zusammen in einem TCP-Paket, sondern in 2

separaten Paketen versendet. Unter Verwendung von Wireshark wird beobachtet, dass

die Objektdaten zuerst versendet werden und die Targetdaten mit einem beobachteten

Abstand von 0,5 ms bis 1 ms als zweites. Der Empfänger sendet ein Acknowledgment

(ACK) an den Sensor zurück, sobald beide Pakete eingegangen sind. Im weiteren Verlauf

dieser Arbeit werden die Objekt- und Targetdaten eines Messzyklus als ein Datensatz

bezeichnet.

3.1 Einlesen

Mit Python wird die in Abbildung 3.1 gezeigte Graphical User Interface (GUI) erzeugt,

in der mit dem Button �Connect to device� eine Verbindung zu dem, über Ethernet an-

geschlossenen, Radarsensor hergestellt werden kann. Es muss ein noch nicht vorhandener

Name für eine Datei eingegeben werden, in der die Daten gespeichert werden sollen.

Wurde die Verbindung erfolgreich hergestellt, kann über den Button �Start Sensor� der

Befehl zum Empfangen von Daten an den Sensor gesendet werden. Der Button �Stop

Sensor� sendet den Stopp-Befehl an den Radarsensor und stoppt die Aufzeichnung, sobald

die Antwort von dem Sensor zurückgesendet wurde. Die Datensätze werden zeilenweise in

Textdateien gespeichert, wobei die Befehlsantworten aus Tabelle 3.2 jeweils den Anfang

und das Ende der Daten bilden.

Abbildung 3.1: Erstellte GUI zum Einlesen der Radarsensordaten
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Da Aufnahmen an befahrenen Straÿen und Fahrradwegen zu Unruhen bei Verkehrs-

teilnehmern führen könnten, werden die Daten in einem kontrollierten Umfeld an zwei

Sonntagen auf dem Ikea Parkplatz in Moor�eet aufgenommen. Die drei roten Punkte

in Abbildung 3.2 markieren die Orte an denen der Radarsensor, jeweils nach Südwes-

ten, aufgebaut wird. Die rote Linie markiert die Strecke, an der die Daten aufgenommen

werden. Die rote durchgezogene Linie ist circa 100 m lang. Die drei gestrichelten Linien

markieren Abbiege- oder Einfahrtspunkte, wobei die blaue Linie nur von Fahrrädern und

die roten Linien nur von Kraftfahrzeugen genutzt werden.

Abbildung 3.2: Parkplatz Ikea Moor�eet (53°30'42.8�N 10°05'38.2�E)[3]. Die rote Linie
markiert die Teststrecke und die roten Punkte die Orte, an denen der
Radarsensor aufgestellt wurde

Aufgrund der limitierten Verfügbarkeit der Versuchsobjekte wird das in Abbildung 3.3

gezeigte Auto für die Datenaufnahme der Kraftfahrzeuge verwendet. Der Radarsensor

wird circa 75 cm über dem Asphalt aufgebaut. Es werden zwei verschiedene Fahrräder
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verwendet. Aufgrund von Ungleichgewicht in der Anzahl der aufgenommenen Daten,

wurden einige Fahrraddaten an anderen Orten aufgenommen.

Abbildung 3.3: Verwendetes Kraftfahrzeug zur Aufnahme der Klassi�zierungsdaten

3.2 Verarbeiten

Der Aufbau der Payload der TCP-Pakete wird mit dem Dokument �Telegram Listing

RMS2000�[15] analysiert, um diese mit Python korrekt verarbeiten zu können. Die Zeit

seit dem Start des Sensors (�Time since start up in µs�) wird jeweils extrahiert und mit

der Zeit des ersten Pakets verrechnet, um die Zeit seit dem ersten gesendeten Paket

zu erhalten. Anhand der Anzahl der 16-Bit-Kanäle (�Amount of 16 bit channels�) wird

entschieden, ob es sich um Objekt- oder Targetdaten handelt. Bei Objektdaten sind es

fünf 16-Bit-Kanäle (siehe Tabelle 3.3), während es bei Targetdaten nur vier sind (siehe

Tabelle 3.4).
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Kanal

Name
Bedeutung Einheit

Bit

Kanal

Nutzen in

der Arbeit

P3DX1 Distanz in X-Richtung mm 16 Ja

P3DY1 Distanz in Y-Richtung mm 16 Ja

V3DX1 Geschwindigkeit in X-Richtung m
s 16 Ja

V3DY1 Geschwindigkeit in Y-Richtung m
s 16 Ja

OBLE1 Nur für internen Gebrauch 16 Nein

OBID1 Objekt ID 8 Ja

OBCO1 Nur für internen Gebrauch 8 Nein

Tabelle 3.3: Objekt Kanäle der gesendeten Daten des Radarsensors

Kanal

Name
Bedeutung Einheit

Bit

Kanal

Nutzen in

der Arbeit

DIST1 Radiale Distanz mm 16 Ja

AZMT1 Azimut Winkel ◦ 16 Ja

VRAD1 Radiale Geschwindigkeit m
s 16 Ja

AMPL1 Amplitude dB 16 Ja

MODE1 Nur für internen Gebrauch 8 Nein

Tabelle 3.4: Target Kanäle der gesendeten Daten des Radarsensors

Die Skalierungsfaktoren (�scale factors�) der Kanäle werden ebenfalls mit jedem Paket

vom Sensor übertragen. Um eine Umrechnung der Faktoren bei jedem Paket zu vermei-

den, werden sie im Python-Code fest gespeichert und in einem Dictionary hinterlegt. Dort

sind auch die Einheiten und die wörtliche Beschreibung der Kanäle hinterlegt, die nicht

aus den Paketen ausgelesen werden können, sondern aus dem Dokument �Telegram Lis-

ting RMS2000�[15] entnommen werden. Die Daten werden in einer Liste von Dictionaries

verwahrt und als JSON-Datei gespeichert.

3.3 Visualisieren

Die Abbildung 3.4 zeigt die gra�sche Darstellung der Radarsensordaten, wobei Kreise

für Objektdaten und Kreuze für Targetdaten stehen. Bewegte Objekte oder Targets wer-
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den farbig, gröÿer und mit zusätzlichen Daten dargestellt. Bei einem bewegten Objekt

werden sein Geschwindigkeitsvektor und seine Objekt-ID angefügt. Bei einem bewegten

Target werden sein radialer Geschwindigkeitsvektor und sein Amplitudenpegel angefügt.

Unbewegte Objekte oder Targets werden grau dargestellt.

Abbildung 3.4: Gra�sche Darstellung der Daten des Radarsensors. Bewegte Objekte:
links oben Fahrrad und rechts unten Auto

Die Abbildung 3.5 zeigt das Hauptfenster der GUI, in dem die Radarsensordaten tabel-

larisch aufgeführt werden. Es wird die vergangene Zeit seit der ersten Aufnahme dieser

Datenreihe dargestellt. Die linke Zeit gehört zu den Objektdaten und die rechte Zeit zu

den Targetdaten. Die Zeiten sollten immer gleich sein und dienen der Fehlerprüfung. Es

sind Buttons vorhanden, mit denen auf andere Daten gewechselt werden kann.
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Abbildung 3.5: Hauptfenster der GUI zur Visualisierung der Radarsensordaten

3.4 Vorüberlegungen für die Berechnung der Merkmale

Durch die Visualisierung wird deutlich, dass die Objektdaten den Verlauf der Versuchsob-

jekte gut darstellen. Daher werden sie als Basis genutzt und sollen klassi�ziert werden. Da

die Objektdaten durch den Kalman Filter geglättet wurden, müssen ihnen Targetdaten

zugeordnet werden, um aussagekräftige Merkmale errechnen zu können. In Tabelle 3.5

sind Szenarien dargestellt, die bei der Visualisierung beobachtet werden konnten. Die-

se müssen bei der Zuweisung der Targetdaten und der Errechnung von den Merkmalen

beachtet werden.
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Szenario Beschreibung

Intuitiv können den Objekten ihre Targets zuge-

ordnet werden.

In diesem Datensatz ist nur einem Objekt ein

Target zugeordnet.

Ein Ausreiÿer in den Messwerten.

Viele Targets die zu einem Objekt gehören.

Kein Target.

Kein Objekt.

Tabelle 3.5: Szenarien, die bei der Datenverarbeitung auftreten
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3.5 Targetdaten der Objekte

Aus der Tabelle 3.5 lässt sich Folgendes schlussfolgern. Je näher ein Target an einem

Objekt ist, desto wahrscheinlicher ist das Objekt aus den Targetdaten entstanden. Für

die Zuweisung der Targetdaten zu den Objekten, wird in dieser Arbeit die Gewichtung

der Daten der Targets anhand der radialen Distanz r zum Objekt genutzt.

3.5.1 Distanz zwischen Objekt und Target

Wie in Abbildung 3.6 dargestellt, werden die Target-Koordinaten in radialer Distanz R

und Azimut α relativ zum Radarsensor angegeben, während die Objektdaten in X- und

Y-Koordinaten relativ zum Radarsensor angegeben werden.

Abbildung 3.6: Koordinatensysteme der Radarsensordaten, mit Distanz in X-Richtung
dx, Distanz in Y-Richtung dy, radiale Distanz R vom Radarsensor und
Azimut α

Die Target-Daten werden gemäÿ Abbildung 3.7 in X-

dx = cos(α) ·R (3.1)

und Y-Koordinaten

dy = sin(α) ·R (3.2)
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umgewandelt.

Abbildung 3.7: Umrechnung von Kugelkoordinaten/Polarkoordinaten in kartesische Ko-
ordinaten

Die Abbildung 3.8 zeigt Beispielsweise ein Objekt und ein Target. Die Koordinaten des

Objekts werden von denen des Targets subtrahiert

rx = dxO − dxT (3.3)

ry = dyO − dyT (3.4)

und mit dem Satz des Pythagoras die Hypotenuse berechnet,

r =
√
r2x + r2y (3.5)

welche die radiale Distanz r zwischen dem Objekt und dem Target de�niert.
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Abbildung 3.8: Darstellung der verwendeten Gröÿen zur Errechnung der radialen Distanz
r zwischen dem Objekt und dem Target

3.5.2 Gewichteter Mittelwert

Die Gewichtung der Eingangsdaten g erfolgt in Abhängigkeit von der radialen Distanz

r der Targets zu dem Objekt, das klassi�ziert werden soll. Dabei wird eine inverse qua-

dratische Proportionalität angenommen, da die Daten in einer zweidimensionalen Ebene

gegeben sind

gw (⃗g, r⃗) =
1∑N

k=1
1
r2k

· (
N∑
k=1

1

r2k
· gk). (3.6)

Diese Gleichung wird an vier Stellen der Merkmalsberechnung (Kapitel 4) verwendet.

Ein theoretisches Beispiel zur Veranschaulichung der Gleichung 3.6 sind die Daten aus

Tabelle 3.6. Die radiale Distanz r zum Objekt von dem Targetdatenpunkt 2 wird vari-

iert.
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Datenwert radiale Distanz r zum Objekt

Targetdatenpunkt 1 0 [1,. . . , 1]

Targetdatenpunkt 2 1 [0,1, 0,2,. . . , 10]

Tabelle 3.6: Beispieldaten zur Veranschaulichung der Auswirkung der Gleichung 3.6

Der in Abbildung 3.9 dargestellte Graph veranschaulicht die prozentuale Einwirkung des

Targetdatenpunktes 2, auf das Endergebnis der Gleichung 3.6. Bei identischer Distanz

zum ersten Datenpunkt �ieÿt er mit einem Anteil von 50% in das Endergebnis ein. Eine

Verdoppelung der Distanz resultiert in einem Anteil von 20% am Endergebnis. Eine

Versiebenfachung der Distanz resultiert in einem Anteil von 2% am Endergebnis. Der

Graph verdeutlicht, dass der Ein�uss von Daten, die weit von dem zu klassi�zierenden

Objekt entfernt sind, abnimmt oder sogar ganz verschwindet. Der Graph zeigt auch, dass

die Gleichung das Risiko einer Überanpassung an Targets birgt, die das Objekt örtlich

sehr genau tre�en.

Abbildung 3.9: Beispielgraph zur Veranschaulichung der Auswirkung der Gleichung 3.6
unter der Verwendung von den Beispieldaten aus Tabelle 3.6
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Ein reales Beispiel zur Veranschaulichung der Gleichung 3.6 sind die Daten aus Tabel-

le 3.7, die aus dem Szenario 1 der Tabelle 3.5 entnommen wurden.

ID Objekt Amplitudenpegel r von ID 6 r von ID 33

6 Auto 10 dB 114 mm 3605 mm

33 Fahrrad 6 dB 3589 mm 168 mm

Tabelle 3.7: Reale Beispieldaten des Szenarios 1 der Tabelle 3.5 zur Veranschaulichung
der Auswirkung der Gleichung 3.6

Unter Verwendung der Gleichung 3.6, mit den Amplitudenpegeln aus Tabelle 3.7 als

Eingangsdaten g, erhält man für den gewichteten Mittelwert der Amplitude des Autos

9,996 dB und des Fahrrads 6,0087 dB.
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Es werden folgende Rahmenbedingungen zur Errechnung der Merkmale festgelegt. Es

werden jeweils die letzten 10 Datensätze ausgewertet, also die letzte Sekunde. Sollte

ein Datensatz das zu klassi�zierende Objekt nicht enthalten (Tabelle 3.5 Szenario 6),

wird dieser weggelassen und mit weniger Datensätzen gearbeitet. Es werden nur Objekte

und Targets mit einer Geschwindigkeit von 0,1 m
s oder mehr betrachtet. Der Wert 0,1

m
s beruht auf der Geschwindigkeitsgenauigkeit aus der Tabelle 2.1, da nur unter 20 m

ein kleinerer Wert für die Objekte möglich wäre. Dies kann zu Problemen bei Objekten

führen, die sich in einer Kreisbewegung um den Radarsensor bewegen, da die Targets

keine radiale Geschwindigkeit vR aufweisen. Dies sollte aber im normalen Betrieb, für die

Zwecke in dieser Arbeit, nicht vorkommen.

Die Erläuterungen der Berechnung der Merkmale werden für ein Objekt im neuesten

Datensatz erklärt. Sie werden aber für jedes Objekt im neuesten Datensatz ausgeführt.

4.1 Gewichteter Mittelwert des Radarquerschnitts

Kraftfahrzeuge haben in der Regel eine gröÿere und stärker re�ektierende Ober�äche als

Fahrräder. Dies wird durch den Radarquerschnitt σ repräsentiert, der durch die Radar-

gleichung gegeben ist.

4.1.1 Monostatische Radargleichung[6]

Bei einem monostatischen Radar be�nden sich Sender und Empfänger des Radargerätes

am selben Ort.
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4 Merkmale

Abbildung 4.1: Visualisierung eines theoretischen monostatischen Radar[6]

Von dem Sender wird eine Leistung PS isotrop abgegeben. Die Senderantenne bündelt

die Ausstrahlung in eine Richtung und erzielt somit ein Gewinn GS . Das Ziel be�ndet

sich mit einer radialen Distanz R von dem Radarsensor entfernt. Daraus ergibt sich für

die Leistungsdichte S(R) dieser elektromagnetischen Welle

S(R) =
PS

4πR2
·GS . (4.1)

Die Leistung PZ , die am Ziel eintri�t, hängt von der elektrischen Wirk�äche AZ des

Radarziels ab

PZ = S(R) ·AZ =
PS

4πR2
·GSAZ . (4.2)

Für die Leistungsdichte Sr der re�ektierten Welle gilt eine isotropische Abstrahlung, wo-

bei ein Faktor GZ hinzugefügt wird, der die Verluste und/oder die Winkelabhängigkeiten

repräsentiert

Sr(R) =
PZ

4πR2
·GZ =

PSGS

(4π)2R4
·GZAZ . (4.3)

Der Radarquerschnitt σ

σ = GZ ·AZ (4.4)
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4 Merkmale

hat die Einheit m2 und hängt von der Zielgeometrie, der Ober�ächenstruktur des Radar-

ziels, der Frequenz der elektromagnetischen Welle sowie dem Einfalls- und Ausfallswinkel

der elektromagnetischen Welle ab.

Die Empfangsleistung PE hängt von der elektrische Wirk�äche AE der Empfangsantenne

ab

PE = Sr(R) ·AE =
PSGS

(4π)2R4
· σAE . (4.5)

Für eine verlustfreie Antennenwirk�äche AE gilt folgender Zusammenhang zwischen dem

Gewinn der Empfangsantenne GE und der Wellenlänge λ

AE =
λ2

4π
·GE . (4.6)

Daraus ergibt sich die Radargleichung für das monostatische Radarverfahren

PE = PS
λ2

(4π)3R4
·GS ·GE · σ. (4.7)

4.1.2 Umformung der Radargleichung

Die Radargleichung wird nach dem Radarquerschnitt σ umgestellt

σ = PER
4 · (4π)3

PSλ2GSGE
. (4.8)

Es wird nur ein Vergleich der Endgröÿe angestrebt. Die Sendeleistung PS , der Gewinn

der Senderantenne GS , der Gewinn der Empfangsantenne GE und die Wellenlänge λ

werden zu einer Konstanten K1 zusammengefasst,

σ = PER
4 ·K1 (4.9)

da nur ein und derselbe Radarsensor verwendet wird und sie daher als konstant ange-

nommen werden können.
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4 Merkmale

Für das Verhältnis zwischen Empfangsleistung PE und dem Amplitudenpegel AdB gilt

PE ∼ 10
AdB
10dB . (4.10)

Die restlichen Gröÿen von dem Verhältnis werden mit in die Konstante gezogen

σ = 10
AdB
10dBR4 ·K2. (4.11)

Die radiale Distanz R vom Radarsensor bis zum Ziel und der Amplitudenpegel AdB sind

auslesbare Gröÿen der Targets (siehe Tabelle 3.4). Der Wert der Konstante K2 wird

festgelegt,

K2
!
= 1

1

m2
(4.12)

um die weitere Bearbeitung zu vereinfachen. Da die Gleichung 4.11 sehr groÿe Werte

ausgibt, wird stattdessen der Pegel des Radarquerschnitts

σdBm2 = 10 · log10(
σ

1m2
)dBm2 = 10 · log10(10

AdB
10dB · R4

1m4
)dBm2 (4.13)

angestrebt[6] und es ergibt sich folgende Gleichung

σdBm2 = (AdB + 40 · log10(
R

m
))dBm2. (4.14)

4.1.3 Verarbeitung der Daten zum Merkmal

Innerhalb eines Datensatzes werden von jedem Target der Pegel des Radarquerschnitts

σdBm2 mit der Gleichung 4.14 errechnet (Abbildung 4.2). Die radialen Distanzen r der

Targets zum Objekt werden errechnet. Um dem Objekt Targetdaten zuzuweisen, die am

wahrscheinlichsten zu ihm gehören, werden die Pegel des Radarquerschnitts σdBm2 der

Targets mit der radialen Distanz r zum Objekt in die Gleichung 3.6 gegeben, um einen

gewichteten Mittelwert vom Pegel des Radarquerschnitts σdBm2
w
zu erhalten. Damit wird

der Ein�uss von anderen Targets verringert (Tabelle 3.5 Szenario 1) und aus vielen Daten

ein Wert gemittelt (Tabelle 3.5 Szenario 4).
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4 Merkmale

Die radiale Distanz r zum Objekt wird mit sich selbst in die Gleichung 3.6 gegeben,

um einen gewichteten Mittelwert der radialen Distanz rw zum Objekt zu erhalten. Dies

bildet die radiale Distanz r zum Objekt für den gewichteten Mittelwert vom Pegel des

Radarquerschnitts σdBm2
w
und wird zum Gewichten zwischen den Datensätzen genutzt.

Ein Datensatz

R[i]AdB[i] r[i]

σdBm2 = (AdB + 40 · log10(Rm))dBm2

Gewichteter Mittelwert Gewichteter Mittelwert

σdBm2
w

rw
Speichern Dictionary

σdBm2 [i]

Abbildung 4.2: Flussdiagramm der Rechnungen innerhalb eines Datensatzes zur Errech-
nung des Merkmals gewichteter Mittelwert des Radarquerschnitts σw,
wobei gilt AdB[i], R[i], r[i], i = 1, . . . ,M mit M gleich der Anzahl der
Targets im Datensatz. Wenn M = 0, dann gilt Ausgänge σdBm2

w
und rw

gleich None

Von den letzten 10 Datensätzen werden die gewichteten Mittelwerte vom Pegel des Ra-

darquerschnitts σdBm2
w
und die gewichteten Mittelwerte der radialen Distanz zum Objekt

rw des Objektes herausgesucht (Abbildung 4.3). Die Werte werden mit der Gleichung 3.6

gewichtet gemittelt und man erhält das Merkmal gewichteter Mittelwert des Radarquer-

schnitts σw. Damit werden Daten der Targets aus Datensätzen, die stark abweichen (siehe

Tabelle 3.5 aus Szenario 2 und Szenario 3) unterdrückt.
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4 Merkmale

Letzte 10 Datensätze

σdBm2
w
[u] rw[u]

Gewichteter Mittelwert

σw

Feature

Abbildung 4.3: Flussdiagramm der Rechnungen über die letzten 10 Datensätze zur Er-
rechnung des Merkmals gewichteter Mittelwert des Radarquerschnitts,
wobei gilt σdBm2

w
[u], rw[u], u = 1, . . . , U mit K gleich der Anzahl der

letzten 10 Datensätze, in denen das Objekt und mindestens ein bewegtes
Target vorgekommen ist. Wenn K = 0, dann gilt Ausgang gleich None

4.2 Mittelwert der radialen Geschwindigkeitsschwankungen

Das Visualisieren der Daten zeigt, dass die radiale Geschwindigkeit vR der Targetdaten

von Fahrrädern stark schwankt. Dies ist bei Kraftfahrzeugdaten nicht der Fall (Abbil-

dung 4.4). Hierbei ist zu beachten, dass nicht der Abstand zu der radialen Geschwindig-

keit der Objektdaten gemeint ist, sondern der Unterschied von einem Target zum Target

im nächsten Datensatz.
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Abbildung 4.4: Radialer Geschwindigkeitsverlauf vR von einem Fahrrad und einem Kraft-
fahrzeug über die radiale Distanz R zum Radarsensor

4.2.1 Verarbeitung der Daten zum Merkmal

Aus dem Geschwindigkeitsvektor vom Objekt wird durch Projektion sein radialer Ge-

schwindigkeitsvektor

proj−→
d
(−→v ) =

−→
d · −→v∥∥∥−→d ∥∥∥2 ·

−→
d (4.15)

berechnet (Abbildung 4.5).
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4 Merkmale

Abbildung 4.5: Vektorprojektion v⃗ = (vx, vy)

Die errechnete radiale Geschwindigkeit vP des Objektes wird zum �ltern der Targets ver-

wendet. Es werden alle Targets wegge�ltert, die eine radiale Geschwindigkeit aufweisen,

die um 1m
s von der des Objektes abweicht

vR
′[j] = {vR ∈ vR[i] | vP − 1

m

s
≤ vR ≤ vP + 1

m

s
}. (4.16)

Damit werden Ausreiÿer (dargestellt in Tabelle 3.5 Szenario 3) aus den normalen Daten

herausge�ltert.

Von den übrigen Targets wird die radiale Geschwindigkeit vR zum Radarsensor und die

radiale Distanz r zum Objekt mit der Gleichung 3.6 verrechnet, um den gewichteten

Mittelwert der radialen Geschwindigkeit vRw zum Radarsensor zu erhalten. Damit wird

der Ein�uss von anderen Targets verringert (Tabelle 3.5 Szenario 1) und aus vielen Da-

ten ein Wert gemittelt (Tabelle 3.5 Szenario 4). Dieser Ablauf ist im Flussdiagramm in

Abbildung 4.6 verdeutlicht.
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4 Merkmale

Ein Datensatz ObjektlisteTargetliste

v⃗ d⃗r[i]vR[i]

||proj−→
d
(−→v )||vR

′[j] = {vR ∈ vR[i] | vP − 1m
s ≤ vR ≤ vP + 1m

s }

Gewichteter Mittelwert

vRw
vP

Speichern Dictionary

vP

vR
′[j] r′[j]

vP

Abbildung 4.6: Flussdiagramm der Rechnungen innerhalb eines Datensatzes zur Errech-
nung des Merkmals Mittelwert der radialen Geschwindigkeitsschwankun-
gen. Es gilt vR[i], r[i], i = 1, . . . ,M wobei M die Anzahl der Targets im
Datensatz ist. Wenn M oder len(vR′[j]) = 0, dann gilt vRw gleich None.
Es gilt v⃗ = (vx, vy) und d⃗ = (dx, dy).

Um die Geschwindigkeitsschwankungen zu erkennen, werden die Ergebnisse der 10 Da-

tensätze hochpassge�ltert

∆v[k] = [|vRw [2]− vRw [1]| , . . . , |vRw [L]− vRw [L− 1]|] (4.17)

und somit die Di�erenzen gebildet (Abbildung 4.7). Da eine beschleunigte Bewegung eines

Objektes Geschwindigkeitsdi�erenzen hervorrufen kann, die keine Schwankungen sind,

wird mit den errechneten Geschwindigkeitsprojektionsvektoren des zu klassi�zierenden

Objektes von jedem Datensatz eine Steigung mit linearer Regression errechnet, die der

Beschleunigung gleicht. Von den Beträgen der Geschwindigkeitsdi�erenzen wird jeweils

der Betrag der Beschleunigung abgezogen

∆va[k] = |∆v[k]| − |a · 1s| (4.18)

und mit einer bounded ReLU-Funktion ge�ltert,
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4 Merkmale

f(x) = min
(
max(0, x), 1

m

s

)
=


0 x ≤ 0

x 0 < x ≤ 1m
s

1m
s x > 1m

s

(4.19)

um negative Werte und Ein�üsse von extremen Werten zu verhindern.

Aus den Ergebnissen wird das Merkmal Mittelwert der radialen Geschwindigkeitsschwan-

kungen ∆v gebildet

∆v =
1

K
·

K∑
k=1

∆va[k]. (4.20)

Letzte 10 Datensätze
vRw [l] vP [q]

Hochpass�lter Lineare Regression

|∆v[k]| − |a · 1s|

f(x) = min
(
max(0, x), 1m

s

)

Mittelwert ∆v Feature

∆v[k]
a

∆va[k]

Abbildung 4.7: Flussdiagramm der Rechnungen über die letzten 10 Datensätze zur Er-
rechnung des Merkmals Mittelwert der radialen Geschwindigkeitsschwan-
kungen. Es gilt vRw [l], i = 1, . . . , L wobei L gleich der Anzahl der letz-
ten 10 Datensätze, in denen das Objekt und mindestens ein bewegtes
Target, welches die Gleichung 4.16 erfüllt, vorgekommen ist. Wenn L =
0, dann gilt ∆v gleich None. Es gilt vP [q], i = 1, . . . , Q wobei Q die
Anzahl der Datensätze ist, in denen das zu klassi�zierende Objekt vor-
kommt.
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4.3 Mittelwert der minimalen Distanz der Targets zum

Objekt

Durch die Visualisierung von Daten in Abschnitt 3.3 wurde deutlich, dass die radia-

le Distanz r zum Objekt von Targets, die zu diesem Objekt gehören, bei Fahrrädern

durchschnittlich geringer ist als bei Kraftfahrzeugen. Dies tritt vor allem bei geringer

radialen Distanz R zum Radarsensor auf. Dies könnte auf die Gröÿe von dem vertikalen

Aufnahmebereich h (Unterabschnitt 2.2.1) und die Gröÿe der Objekte zurückzuführen

sein.

4.3.1 Verarbeitung der Daten zum Merkmal

Innerhalb eines Datensatzes wird die minimale radiale Distanz rmin zum zu klassi�zie-

renden Objekt bestimmt. Sollte diese gröÿer als 2 m sein, wird dieser Datensatz nicht in

den weiteren Betrachtungen benutzt.

f(x) =


None x < 0m

min(x⃗) 0m < x ≤ 2m

None x > 2m

(4.21)

Aus den letzten 10 Datensätzen werden alle validen minimalen radialen Distanzen rmin

genommen und der Mittelwert gebildet,

rmin =
1

N
·

N∑
k=1

rmink (4.22)

um das Merkmal vom Mittelwert der minimalen Distanz der Targets zum Objekt rmin

zu erhalten.
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5 Darstellung der Ergebnisse der

berechneten Merkmale

Die Merkmale werden mit den aufgenommenen Daten aus Abschnitt 3.1 errechnet. Es er-

geben sich 6574 Datenpunkte, von denen 6362 jedes Merkmal aufweisen. Ein Datenpunkt

hat zum Beispiel keine Wert für den Mittelwert der radialen Geschwindigkeitsschwankun-

gen, wenn das Objekt in keinem der neun zuvorkommenden Datensätzen existiert.

Für Dateien, die zur Bewertung der Merkmale und zur Erstellung des Klassi�kators

genutzt werden, wird sichergestellt, dass in einer Datei immer nur eine Klasse von Objekt

vorhanden ist, um das Labeln einfacher zu gestalten.

Die errechneten Daten werden limitiert, um zu verdeutlichen, wie wichtig viele Daten

für die jeweiligen Merkmale sind und um das Vertrauen in die errechneten Werte zu

erhöhen. Das Objekt und ein Target müssen mindestens fünf Mal zusammen in den

letzten 10 Datensätzen vorhanden sein. Durch diese Limitierung sinkt die Anzahl der

Datenpunkte auf 5365. Die Anzahl der Datenpunkte der Fahrräder ist stärker beein�usst

als die der Kraftfahrzeuge (Tabelle 5.1).

Klasse Anzahl unlimitierte Datenpunkte Anzahl limitierte Datenpunkte

Fahrrad 3241 2567

Kraftfahrzeug 3121 2798

Gesamt 6362 5365

Tabelle 5.1: Verteilung der Datenpunkte

Der Radarsensor erfasst Fahrräder unter einer radialen Distanz von circa 45 m. Kraftfahr-

zeuge werden bereits ab der maximalen Reichweite des Radarsensors von 100 m erfasst

(Abbildung 5.1). Die Kraftfahrzeugdatenpunkte weisen einen Abfall an Vorkommen bei

15 m auf, dies liegt an den Abbiegestellen, die in Abbildung 3.2 dargestellt wurden. Der
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5 Darstellung der Ergebnisse der berechneten Merkmale

Abfall über 90 m liegt an den Aufbaustellen des Radarsensors, da die Teststrecke verkürzt

wurde.

Nach der Limitierung der Datenpunkte wird deutlich, dass ab 40 m bis 25 m ein anstei-

gendes Vertrauen in die errechneten Merkmalswerte der Fahrräder gelegt werden kann.

Bei den Kraftfahrzeugen sinkt die Anzahl der Vorkommnisse gleichmäÿig. Daher können

Kraftfahrzeuge unabhängig von der radialen Distanz zum Radarsensor R klassi�ziert

werden.

(a) Unlimitierte Daten

(b) Limitierte Daten

Abbildung 5.1: Häu�gkeitsverteilung der Klassen über die radiale Distanz R zum Radar-
sensor

5.1 Gewichteter Mittelwert des Radarquerschnitts

Bei der Streuung der Datenpunkte eines Merkmals erho�t man keine Veränderung der

Verteilung über die Distanz R zum Radarsensor. Dies liegt nur im Bereich über 40 m für

die Kraftfahrzeugdatenpunkte vor (Abbildung 5.2). Zwischen 20 m und 40 m beginnt der

Wert teilweise zu sinken und ab 20 m und weniger fällt er ab, wobei kaum noch zwischen
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5 Darstellung der Ergebnisse der berechneten Merkmale

Fahrrädern und Kraftfahrzeugen unterschieden werden kann. Bei den Fahrrädern lässt

sich im Bereich über 40 m eine horizontale Verteilung andeuten, aber nicht detektieren.

Zwischen 20 m und 40 m beginnt der Wert zu sinken und ab 20 m und weniger fällt er

ab.

Abbildung 5.2: Streuung vom gewichteten Mittelwert des Radarquerschnitts σw in Ab-
hängigkeit von der radialen Distanz R zum Radarsensor der limitierten
Daten

Der Abfall des Merkmals könnte an der zunehmend seitlichen Betrachtung der Versuchs-

objekte liegen, da der Azimut α in zwei von drei der Aufstellorte des Radarsensors (Ab-

bildung 3.2) mit sinkender Distanz R zum Radarsensor steigt. Bei dem dritten Aufstellort

könnten die Abbiegestellen und somit das Drehen des Autos einen Ein�uss haben. Das

Schrägpro�l der Objekte könnte ein Absinken der elektrischen Wirk�äche AZ des Radar-

ziels und/oder Verluste durch Winkelabhängigkeiten GZ hervorrufen. Bei kleiner Distanz

R zum Radarsensor könnte der vertikale Ö�nungswinkel β, in Unterabschnitt 2.2.1 be-

schrieben, ein Grund für die kleinen Werte sein. Möglicherweise wurde eine Gröÿe nicht

oder falsch betrachtet, die diesen Abfall verursacht.

Die Limitierung der Daten verändert die Struktur der Daten nicht, was der Art der

Errechnung des Merkmals zugrunde liegt.
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5.2 Mittelwert der radialen Geschwindigkeitsschwankungen

Die Streuung der Kraftfahrzeugdatenpunkte vom Mittelwert der radialen Geschwindig-

keitsschwankungen ∆v zeigt eine gleichmäÿige Verteilung im niedrigen Bereich über die

radiale Distanz R zum Radarsensor (Abbildung 5.3). Durch die Nähe an dem Radar-

sensor und dem daraus folgenden vertikalen Aufnahmebereich h (Unterabschnitt 2.2.1),

könnten die Abweichungen zwischen 0 m und 5 m entstanden sein. Die Abbiegestellen

bei der Aufnahme der Daten führen zu den Abweichungen bei 15 m.

Abbildung 5.3: Streuung vom Mittelwert der radialen Geschwindigkeitsschwankungen
∆v in Abhängigkeit von der radialen Distanz R zum Radarsensor der
limitierten Daten

Die Fahrraddatenpunkte sind über den kompletten Wertebereich des Merkmals verteilt

gegeben. Dieses Merkmal pro�tiert am meisten an der Limitierung, da mit steigender

Anzahl der vorhanden Daten zur Errechnung des Merkmals, Fahrraddatenpunkte aus

dem niedrigen Wertebereich des Merkmals verschwinden (Abbildung 5.4).
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5 Darstellung der Ergebnisse der berechneten Merkmale

(a) Unlimitierte Daten

(b) Limitierte Daten

Abbildung 5.4: Häu�gkeitsverteilung vom Mittelwert der radialen Geschwindigkeits-
schwankungen ∆v in Abhängigkeit von der radialen Distanz R zum Ra-
darsensor

5.3 Mittelwert der minimalen Distanz zwischen Targets und

Objekt

Das Merkmal zeigt eine steigende Separation der Klassen mit sinkender radialer Distanz

R zum Radarsensor (Abbildung 5.4). Die Fahrraddatenpunkte zeigen eine gleichmäÿige

Verteilung im niedrigen Bereich über die radiale Distanz R zum Radarsensor. Durch

die Nähe zu dem Radarsensor und dem daraus folgenden vertikalen Aufnahmebereich

h (Unterabschnitt 2.2.1), könnten die Abweichungen zwischen 0 m und 5 m entstanden

sein.
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5 Darstellung der Ergebnisse der berechneten Merkmale

Abbildung 5.5: Streuung vom Mittelwert der minimalen Distanz rmin zwischen Targets
und Objekt in Abhängigkeit von der radialen Distanz R zum Radarsensor

5.4 Streuung aller Merkmale

In Abbildung 5.6 ist die Streuung aller Merkmale der unlimitierten Daten im dreidimen-

sionalen Raum zu sehen. Eine Separation über den gewichteten Mittelwert des Radar-

querschnitts σw lässt sich beobachten. Für den Mittelwert der radialen Geschwindigkeits-

schwankungen ∆v lässt sich dasselbe beobachten. Der Mittelwert der minimalen Distanz

zwischen Targets und Objekt rmin hebt vereinzelnd Kraftfahrzeugdatenpunkte aus Be-

reichen, die von Fahrraddatenpunkten dominiert sind, da das Merkmal in Bereichen eine

Trennung der Klassen aufweist, in der es der gewichtete Mittelwert des Radarquerschnitts

σw nicht tut. Es lässt sich eine Trenn�äche zur Klassi�zierung andeuten.
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Abbildung 5.6: Streuung vom gewichteten Mittelwert des Radarquerschnitts σw, Mittel-
wert der radialen Geschwindigkeitsschwankungen ∆v und Mittelwert der
minimalen Distanz zwischen Targets und Objekt rmin, der limitierten
Daten
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6 Klassi�kator

Zum Erstellen des Klassi�kators wird das Open source tool scikit-learn[9] in Python

verwendet. Anhand des Diagramms �Choosing the right estimator� des User-Guides[1]

wird der passende Klassi�kator für das Klassi�kationsproblem dieser Arbeit gesucht. Da

gelabelte Daten vorliegen und die Datenanzahl unter 100000 liegt, folgt, dass eine lineare

Support Vector Machine die mögliche richtige Wahl ist. Dies unterstützt die Aussage aus

Abschnitt 5.4, dass eine lineare Entscheidungsebene möglich ist.

6.1 Lineare Support Vector Machine[4]

Bei Machine Learning wird die Grenze, die Klassen voneinander trennt, als Entschei-

dungsgrenze bezeichnet. Die Gleichung besteht aus dem reellen Vektor w⃗, dem Merk-

malsvektor x⃗, welche dieselbe Gröÿe haben, und dem Bias b

w⃗T x⃗+ b = 0. (6.1)

Das Ziel dieses Klassi�kators ist eine Entscheidungsgrenze zu �nden, welche die Klassen

am breitesten voneinander trennt.
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6 Klassi�kator

Abbildung 6.1: Beispiel der Trennung von Datenpunkten mittels einer Support Vector
Machine mit angefügten Formeln

Die sogenannten Support-Vektoren sind die Datenpunkte, die an den Margins liegen und

die Entscheidungsgrenze direkt beein�ussen. Der Ausgangsvektor wird codiert

yi =

−1 bei Klasse A

1 bei Klasse B
(6.2)

und Bedingungen für die Margins festgelegt,

yi · (w⃗T x⃗i + b) ≥ 0 (6.3)

wobei um die Breite der Margins zu maximieren

42



6 Klassi�kator

max(
2

∥w⃗∥
) ⇒ max(

1

∥w⃗∥
) ⇒ min(∥w⃗∥) ⇒ 1

2
min(∥w⃗∥2) (6.4)

die Optimierungsaufgabe

1

2
min(∥w⃗∥2), so dass yi · (w⃗T x⃗i + b) ≥ 0, i = 1, . . . , N (6.5)

gilt. Daraus bildet sich die Kostenfunktion

C · ∥w⃗∥2 + 1

N

N∑
n=1

max(0, 1− yi · (w⃗T x⃗i + b)) (6.6)

wobei der Regularisierungsparameter C ein Hyperparameter ist, der die Gröÿe der Gren-

zen beein�usst.

6.2 Anwendung

Für den unnormierten Merkmalsvektor x⃗′ gilt

x⃗′ =

 σw

∆v

rmin

 . (6.7)

Die Datenpunkte werden zu 80 % auf die Trainingsdaten und zu 20% auf die Testdaten

aufgeteilt. Aus den Trainingsdaten werden jeweils Mittelwert µ

µk =
1

P

P∑
p=1

x⃗′k (6.8)

und Standardabweichung s

sk =

√√√√ 1

P − 1

P∑
p=1

(x⃗′k − µk)2 (6.9)
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für die Merkmale errechnet und abgespeichert. Dabei ist wichtig, dass jedes Merkmal

seinen eigenen Mittelwert µ und Standardabweichung s errechnet. Die Merkmale der

Trainingsdaten und der Testdaten werden mit den Mittelwerten µ und den Standardab-

weichungen s

x⃗k =
x⃗′k − µk

sk
, mit k = σ, v, r (6.10)

normiert. Dies geschieht, um den Ein�uss von groÿen Werten zu vermindern. Den Kraft-

fahrzeugen wird die 1 und den Fahrrädern die -1 zugeordnet. Mit den normierten Trai-

ningsdaten wird der Klassi�kator errechnet und abgespeichert. Die Gleichung der Ent-

scheidungsfunktion der linearen Support Vector Machine (SVM) wird an die Zwecke

dieser Arbeit angepasst:

f(x⃗) = wσ · xσ + wv · xv + wr · xr + b. (6.11)

Für die einfache Klassi�kation gilt,

f(x⃗)

< 0 Fahrrad

> 0 Kraftfahrzeug
(6.12)

wobei für die Wahrscheinlichkeitsumwandlung eine sigmoidale Kalibrierung nach Platt[10]

P (y = 1|f(x⃗)) = 1

1 + eA·f(x⃗)+B
(6.13)

verwendet wird.

6.3 Klassi�kationsbericht

Ein Klassi�kationsbericht zeigt wichtige Metriken der Klassi�kation an. Anhand dieser

wird das Modell bewertet. Alle Metriken bis auf den Support sind Werte von 0 bis 1 und

können in Prozent angegeben werden. Die Tabelle 6.1 wird angelegt, um die folgenden

Formeln einfach zu halten.
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Anzahl Wirkliche Klasse A Wirkliche Klasse B

Klassi�ziert als Klasse A TA FA

Klassi�ziert als Klasse B FB TB

Tabelle 6.1: Konfusionsmatrix von 2 Klassen mit T = true und F = false[13]

6.3.1 Erklärung der Werte vom Klassi�kationsbericht

Es wird Klasse A als gesuchte Klasse zur Erklärung festgelegt. Der Precision-Score gibt

an wie viele Datenpunkte, die als Klasse A klassi�ziert wurden, wirklich zu dieser Klasse

gehören[13]

Precision =
TA

TA+ FA
. (6.14)

Der Recall-Score gibt an, wie viele Datenpunkte die der Klasse A angehören auch als

Klasse A klassi�ziert wurden[13]

Recall =
TA

TA+ FB
. (6.15)

Der F1-Score gibt das harmonische Mittel der Precision- und Recall-Scores für die Klasse

A an[14]

F1 = 2 · Precision ·Recall

Precision+Recall
=

2 · TA
2 · TA+ FA+ FB

. (6.16)

Der Support gibt die gesamte Anzahl der Datenpunkte der Klasse oder des gesamten

Datensatzes an.

Die Accuracy gibt die Anzahl aller korrekten Klassi�kationen über die Anzahl aller Klas-

si�kationen an[11]

Accuracy =
TA+ TB

TA+ FA+ TB + FB
. (6.17)

Der Macro-Average-Score gibt den Mittelwert eines Scores über alle Klassen N an[12][2]

MacroAvg =
1

N
·

N∑
k=1

Scorek. (6.18)
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Der Weighted-Average-Score gibt den gewichteten Mittelwert eines Scores mit der Anzahl

der Datenpunkten in den Klassen über alle Klassen N an[12]

WeightedAvg =
1∑N

k=1 Supportk
·

N∑
k=1

Scorek · Supportk. (6.19)

6.3.2 Trainings- und Testfehler

Der Precision-Score der Klasse Fahrräder und der Recall-Score der Klasse Kraftfahrzeu-

ge schneiden am schlechtesten ab (Tabelle 6.2 und Tabelle 6.3). Das heiÿt, der gröÿte

Fehler wird durch Kraftfahrzeuge, die fälschlicherweise als Fahrräder klassi�ziert wer-

den, erzeugt. Diese Fehlklassi�kationen sind zu 98,5 % unterhalb von 22 m von dem

Radarsensor entfernt (Abbildung 6.2).

Klasse Precision Recall F1-Score Support

Fahrrad 0,926 0,953 0,939 2071

Kraftfahrzeug 0,955 0,929 0,942 2221

Accuracy 0,941

Macro Avg 0,940 0,941 0,941 4292

Weighted Avg 0,941 0,941 0,941 4292

Tabelle 6.2: Klassi�kationsbericht der Trainingsdaten des LimitedF inal Modells

Klasse Precision Recall F1-Score Support

Fahrrad 0,916 0,948 0,932 496

Kraftfahrzeug 0,954 0,925 0,939 577

Accuracy 0,936

Macro Avg 0,935 0,937 0,935 1073

Weighted Avg 0,936 0,936 0,936 1073

Tabelle 6.3: Klassi�kationsbericht der Testdaten des LimitedF inal Modells
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6 Klassi�kator

Abbildung 6.2: Fehlklassi�kationen der Trainings- und Testdaten über die radiale Distanz
R zum Radarsensor

6.3.3 Validierungsdaten

Validierungsdaten sind Daten, die nicht für das Training und das Testen verwendet wer-

den. Diese Validierungsdaten werden an einem anderen Tag als die Trainings- und Test-

daten aufgenommen. Es werden die gleichen Versuchsobjekte verwendet.

Der Precision-Score der Klasse Kraftfahrzeuge und der Recall-Score der Klasse Fahrräder

schneiden unter Verwendung der unlimitierten Validierungsdaten am schlechtesten ab

(Tabelle 6.4). Das heiÿt, der gröÿte Fehler wird durch Fahrräder, die fälschlicherweise

als Kraftfahrzeuge klassi�ziert werden, erzeugt. Diese Fehlklassi�kationen sind zu 61.1 %

zwischen 30 m und 50 m von dem Radarsensor entfernt (Abbildung 6.3).

Tabelle 6.4: Klassi�kationsbericht der unlimitierten Validierungsdaten des LimitedF inal
Modells

Klasse Precision Recall F1-Score Support

Fahrrad 0,899 0,793 0,842 1626

Kraftfahrzeug 0,841 0,925 0,881 1924

Accuracy 0,864

Macro Avg 0,870 0,859 0,862 3550

Weighted Avg 0,867 0,864 0,863 3550

Die Validierungsdaten werden wie die Trainings- und Testdaten limitiert. Das Objekt

und ein Target müssen in den letzten 10 Datensätzen mindestens fünf Mal zusammen
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enthalten gewesen sein. Durch die Limitierung verbessern sich die beiden Scores um über

10 %. Der Recall-Score der Klasse Fahrräder schneidet weiterhin am schlechtesten ab

(Tabelle 6.5). Der Precision-Score der Klasse Kraftfahrzeuge sieht vermeintlich besser

aus als der Precision-Score der Fahrräder. Dies täuscht aber, da der Support der Kraft-

fahrzeuge um 46,6 % gröÿer ist und damit den Precision-Score der Klasse Kraftfahrzeuge

erhöht und den der Fahrräder senkt. Das heiÿt, der gröÿte Fehler wird weiterhin durch

Fahrräder, die fälschlicherweise als Kraftfahrzeuge klassi�ziert werden, erzeugt. Die An-

zahl ist aber im Vergleich zu vor der Limitierung gesunken, besonders im vorherigen

kritischen Bereich zwischen 30 m und 50 m von dem Radarsensor (Abbildung 6.3). Da-

her ist eine feste Klassi�kation von Fahrrädern bei einer Entfernung von über 30 m zu

dem Radarsensor fragwürdig.

Tabelle 6.5: Klassi�kationsbericht der limitierten Validierungsdaten des LimitedF inal
Modells

Klasse Precision Recall F1-Score Support

Fahrrad 0,926 0,916 0,921 921

Kraftfahrzeug 0,943 0,950 0,947 1350

Accuracy 0,937

Macro Avg 0,935 0,933 0,934 2271

Weighted Avg 0,937 0,937 0,937 2271

Die meisten Fehlklassi�kationen der Kraftfahrzeuge treten bei einer Entfernung von unter

10 m zu dem Radarsensor auf (Abbildung 6.3). Bei Fahrrädern ist dies zwar weniger

gegeben, aber auch der Fall. Eine feste Klassi�kation von Kraftfahrzeugen und Fahrrädern

ist bei einer Entfernung von unter 10 m zu dem Radarsensor fragwürdig.
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(a) Unlimitierte Validierungsdaten

(b) Limitierte Validierungsdaten

Abbildung 6.3: Fehlklassi�kationen der Validierungsdaten über die radiale DistanzR zum
Radarsensor

6.4 Daten der Entscheidungsebene

Die Mittelwerte und Standardabweichungen der Merkmale werden in Tabelle 6.6 doku-

mentiert, um zukünftige Daten zu normieren.

Merkmal Mittelwert Standardabweichung

σw 63,04086761195383 dBm2 15,661168310042221 dBm2

∆v 0,1293842574537276 m
s 0,14938309859487134 m

s

rmin 259,0598852192587 mm 180,17904409037476 mm

Tabelle 6.6: Mittelwert und Standardabweichung der limitierten Daten
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Die Vorzeichen der Gewichte aus der Tabelle 6.7 für die Gleichung 6.11 sind nachvollzieh-

bar, da hohe Werte in den Merkmalen gewichteter Mittelwert des Radarquerschnitts σw

und Mittelwert der minimalen Distanz vom einem Target zum Objekt rmin auf ein Kraft-

fahrzeug hindeuten (siehe Kapitel 5). Während ein hoher Wert im Merkmal Mittelwert

der radialen Geschwindigkeitsschwankungen ∆v auf ein Fahrrad hindeutet.

Parameter Limitiert

wσ 1,3663817916834236

wv -1,2663371970540704

wr 2,2051709250737286

b 0,28336710643731344

A -1,6478171686051961

B 0,18108483891201377

Tabelle 6.7: Angepasste Werte der Gleichung 6.11 und der Gleichung 6.13 für die limi-
tierten Daten

Die Abbildung 6.4 stellt die Wahrscheinlichkeitsverteilung der Klasse Kraftfahrzeuge über

das Ergebnis der Gleichung 6.11 dar.

−4 −3 −2 −1 1 2 3 4

0.2

0.4

0.6

0.8

1

f(x⃗)

P (y = 1|f(x⃗))

Abbildung 6.4: Sigmoid-Gleichung 6.13 der limitierten Daten aus Tabelle 6.7 für die Klas-
se der Kraftfahrzeuge

Die Abbildung 6.5 zeigt die Verteilung der limitierten Datenpunkte im dreidimensionalen

Raum mit der eingezeichneten Entscheidungsebene.
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Abbildung 6.5: Streuung der limitierten Daten mit der Entscheidungsebene aus der Glei-
chung 6.11 und der Tabelle 6.7
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7 Erweiterung der vorhandenen Python

Scripte

Die in Abschnitt 3.3 dargestellte Visualisierung wird mit den Daten der Klassi�zierung

erweitert. In der Canvas Darstellung, in Abbildung 7.1 dargestellt, wird unter den beweg-

ten Objekten die gröÿte Wahrscheinlichkeit dargestellt. Sollte die Wahrscheinlichkeit für

ein Fahrrad sprechen ist sie dunkelblau gefärbt. Sollte sie für ein Kraftfahrzeug sprechen

ist sie dunkelrot gefärbt.

Abbildung 7.1: Visualisierung mit Klassi�kation

In dem Hauptfenster der GUI werden in den Tabellen die Daten der Klassi�kation an-

gefügt. Wie in Abbildung 7.2 zu sehen ist, werden die Werte der drei Merkmale und die

Wahrscheinlichkeiten der beiden Klassen hinzugefügt.
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7 Erweiterung der vorhandenen Python Scripte

Abbildung 7.2: Hauptfenster der GUI zur Visualisierung der Radarsensordaten mit Da-
ten der Klassi�kation

Die erstellte GUI zum Einlesen von Radarsensordaten aus Abschnitt 3.1 wird mit einer

Visualisierung der Daten erweitert (siehe Abbildung 7.3). Diese verhält sich wie die in

Abbildung 7.1 dargestellte Visualisierung. Damit kann nun direkt bei der Aufnahme der

Daten die Klassi�zierung geprüft werden.

Abbildung 7.3: GUI zum Einlesen von Radarsensordaten mit gra�scher Darstellung der
bewegten Objekte und Targets
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7.1 Warnleuchte

Der GUI der Datenvisualisierung wird eine Warnleuchte hinzugefügt, die aktiv wird,

sobald ein Objekt als Kraftfahrzeug klassi�ziert ist. Sollte sich ein Objekt, das als Fahr-

rad klassi�ziert wurde, im Bereich hinter dem Kraftfahrzeug be�nden, leuchtet sie rot

auf (Abbildung 7.4). Die Werte des Radius und des Winkels des Warnbereiches können

angepasst werden.

(a) Warnleuchte aus (b) Warnleuchte an

Abbildung 7.4: GUI der Visualisierung der Daten mit Warnleuchte und Warnbereich:
Radius 10 m und Winkel ± 60 °
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8 Fazit

In dieser Arbeit wurde untersucht, ob eine Klassi�kation von Kraftfahrzeugen und Fahr-

rädern mittels Radarsensorik möglich ist. Es wurden diesbezüglich drei Merkmale er-

stellt. Der gewichtete Mittelwert des Radarquerschnitts σw, der aus den Gröÿen radiale

Distanz R vom Radarsensor und dem Amplitudenpegel AdB errechnet wird, sollte noch-

mal überdacht werden, da dieser keine horizontale Verteilung über die radiale Distanz

vom Radarsensor R ausweist. Der Mittelwert der radialen Geschwindigkeitsschwankun-

gen ∆v, der aus allen gegebenen Gröÿen des Radarsensors, auÿer der Amplitude AdB,

errechnet wird, funktioniert alleine am besten. Seine Zuverlässigkeit steigt mit der Anzahl

der Daten zum Errechnen des Merkmals. Dies ist für die anderen Merkmale nicht/wenig

gegeben. Der Mittelwert der minimalen Distanz rmin der Targets zum Objekt, der aus

allen gegebenen Distanz Gröÿen errechnet wird, dient als Unterstützung des Merkmals

gewichteter Mittelwert des Radarquerschnitts σw, da er alleine keine groÿe Aussagekraft

hat.

Aus dieser Arbeit geht hervor, dass der Radarsensor für die Merkmale in dieser Arbeit

nicht unter 5 m genutzt werden sollte. Das verwendete Kraftfahrzeug wird auf der maxi-

malen Reichweite des Radarsensors von 100 m detektiert. Verwendete Fahrräder werden

teilweise ab 60 m erfasst, dies ist aber eine Seltenheit und beginnt in der Regel ab 45

m, bis sie ab 35 m gut erfasst sind. Daher sollte der Radarsensor für die in der Ein-

leitung geschilderten Unfallsituation, im Rahmen dieser Arbeit, zum Ausnutzen dieser

Entfernungen entsprechend aufgebaut werden. Es wird zwischen 10 m und 30 m empfoh-

len. Daher geht mit der zurückgelegten Distanz in 10 Messzyklen (Unterabschnitt 2.2.2)

hervor, dass eine möglicherweise feste Klassi�kation nach einer Sekunde angeraten ist.

Des Weiteren wurde die Frage gestellt, ob dies zur Prävention von Unfällen genutzt wer-

den kann. Dies kann durch diese Arbeit nicht beantwortet werden, da zu wenig Versuchs-

objekte verwendet wurden. Daher wird empfohlen eine gröÿere Testreihe aufzustellen.

Auÿerdem ist der Prozentsatz der korrekten Klassi�kationen keine perfekte Abdeckung.

Aus zeitlichen Gründen konnte die Warnleuchte (Abschnitt 7.1) nicht in die GUI zum
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Einlesen von Radarsensordaten (Abbildung 7.3) implementiert und in Echtzeit geprüft

werden.

8.1 Ausblick

Während der Bearbeitung und der Auswertung wurden folgende Verbesserungen, An-

stöÿe zur Erweiterung und andere Herangehensweisen formuliert, welche nicht bereits

explizit erwähnt wurden.

8.1.1 Verbesserungen

In der Visualisierung der Daten aus Abschnitt 3.3 sind alle Daten in den Tabellen und

dem Canvas geladen. Dadurch können auf dem für diese Arbeit benutzten Laptop nur

7 Minuten, also circa 4200 Datensätze, geladen werden, bevor das Programm stoppt.

Die Daten von Aufnahmen, die diese Zeit überschreiten, mussten auf mehrere Dateien

aufgeteilt werden. In der Echtzeitversion ist dies durch ein festen Canvas und das Löschen

der Datenpunkte anders implementiert und könnte daher übernommen werden.

8.1.2 Anstöÿe zur Erweiterung

Es wurde keine Fahrbahnerkennung implementiert, welche Abhilfe für die nicht perfekte

Abdeckung in der Klassi�kation scha�en könnte.

Der Ein�uss des Azimut α auf die Daten des Radarsensors könnte untersucht werden.

Zum Beispiel eine sinkende Re�exionsstärke mit steigendem Azimut.

In dieser Arbeit werden Datensätze, in denen keine Targets oder Objekte vorkommen,

ignoriert. Bei der linearen Regression der radialen Geschwindigkeiten der Objekte ist

dies nicht der Fall. Ein besserer Umgang mit diesen Datensätzen könnte von Vorteil sein.

Wenn ein neues Objekt erkannt wird, gibt es in den vorangegangenen Datensätzen in

der Regel zwei Targets, die zu diesem Objekt gehören. Die Auswertung dieser könnte zu

einer schnelleren und sichereren Klassi�kation führen.

Durch die in Abschnitt 3.1 beschriebene Limitierung der Vielfalt der Versuchsobjekte

könnte eine Überanpassung an diese Objekte entstanden sein. Um sicherzustellen, dass
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beispielsweise Kinder auf Fahrrädern erkannt werden, wäre es von Vorteil eine gröÿere

Vielfalt zu verwenden.

Die Au�ösung des Radars wurde nicht beachtet. Au�ösung im Bezug auf Radar bedeutet,

dass zwei Signale getrennt werden können, wenn Sie sich im Abstand, Winkel oder der

Geschwindigkeit um das doppelte der aufgeführten Werte unterscheiden[16].

8.1.3 Herangehensweisen

Diese Arbeit zeigt nur eine Herangehensweise an dieses Problem. Daher könnten von

Grund auf andere Herangehensweisen bessere Ergebnisse liefern. In dieser Arbeit wurde

die radiale Distanz r von den Targets zu dem Objekt häu�g verwendet. Daher wäre eine

Lösung, die diese Gröÿe weniger betrachtet, interessant.

In dieser Arbeit wurde festgelegt, dass die Objekte, die der Radarsensor liefert, klassi�-

ziert werden sollen. Es könnten nur die Targetdaten betrachtet werden.
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A Anhang

A.1 Verwendete Hilfsmittel

In der Tabelle A.1 sind die im Rahmen der Bearbeitung des Themas der Bachelorar-

beit verwendeten Werkzeuge und Hilfsmittel aufgelistet.

Tabelle A.1: Verwendete Hilfsmittel und Werkzeuge
Tool Verwendung
LATEX Textsatz- und Layout-Werkzeug verwendet zur Erstellung dieses Dokuments
Python Einlesen, Verarbeiten und Visualisierung der Daten
Wireshark Beobachtung der Datenübertragung des Radarsensors
VSCode Python und Latex
Radarsensor SICK RMS2731C-636111
Powerbank 12V DC
Laptop Microsoft Surface Pro 8

A.2 Inhaltsangabe CD

Der Anhang zur Arbeit be�ndet sich auf CD und kann beim Erstgutachter eingesehen

werden. Im folgende wird der Inhalt diese CD aufgelistet und eine Beschreibung hinzu-

gefügt. Ordner werden fett und Dateien kursiv gedruckt.

� Thesis_Radar_Watzlaw.pdf

Die Bachelorarbeit in elektronischer Form.

� RadarSensor

Enthält die in Rahmen dieser Arbeit erstellten Dateien.
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� Python

Enthält die in Rahmen dieser Arbeit erstellten Python Scripte.

Der file_path in command_center.py sollte überprüft werden, da alle main

Dateien aus einem Verzeichnis über RadarSensor, mit VSCode, ausgeführt

wurden. Er ist hart als file_path = ”RadarSensor/Datafiles/” codiert.

Sollten die Scripte auf die selbe Art ausgeführt werden, kann dies ignoriert

werden.

Nur die Scripte mit main im Namen sind ausführbar. Dies gilt nicht für

cut_txt.py, speed_variation_graphic.py und alle Scripte in graphic_the-

sis.

* requirements.txt

Enthält die verwendeten Pakete und ihre Versionen.

* class_all_data.py

Erzeugt ein Objekt, in dem die Radarsensordaten aus den JSON Dateien

geladen werden und für andere Klassen abrufbar macht.

* class_canvas_dimensions.py

Klasse, die die Dimensionen der Visualisierung der Daten je nach gegebe-

ner Au�ösung errechnet.

* class_canvas_viewer_live.py

Klasse, die die Daten des Radarsensors in Echtzeit visualisiert.

* class_canvas_viewer.py

Klasse, die die Daten des Radarsensors visualisiert.

* class_classi�cator.py

Klasse, die die Merkmale aus den Radarsensordaten errechnet. Enthält

die Funktionen der Rechnungen, um sie an anderer Stelle zu verwenden.

* class_page_turner.py

Klasse, die die Buttons in der GUI, mit denen zu anderen Datensätzen

gewechselt werden kann, erzeugt.

* class_read_in_data.py

Klasse, die die GUI zum Einlesen der Radarsensordaten erstellt. Funktio-

nen zur Verarbeitung der Daten in Echtzeit.
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* class_table_viewer.py

Klasse, die in der GUI Tabellen der Objekt-, Target- und Klassi�kations-

daten erzeugt. Funktionen zur Erstellung der Tabellen.

* class_time_viewer.py

Klasse, die in der GUI Labels mit der Zeit seit der ersten Messung dar-

stellt.

* command_center_classes.py

Funktionen, die von mehreren Klassen benutzt werden.

* command_center_data.py

Funktionen, die die Namen der Trainings-, Test und Validierungsdaten

halten. Funktionen zur Verarbeitung und Darstellung dieser.

* command_center.py

Generelle Funktionen, die von vielen Scripts benutzt werden. Funktionen

zum Einlesen von Daten des Radarsensors.

* constants_and_macros.py

Konstanten und Makros für alle Programme.

* cut_txt.py

Teilt eine Textdatei, anhand von gegebenen Seitenzahlen aus der Daten-

visualisierung.

* dict_lookup_info.py

Dictionaries mit Daten, die an verschiedenen Stellen gebraucht werden.

* histograms_and_scatter_plots.py

Funktionen zum Erstellen von Histogrammen und Scatter Plots.

* main_get_data_from_sensor.py

Main Datei zum Ausführen des Programmes zum Einlesen von Daten vom

Radarsensor.

* main_make_model_and_plots.py

Main Datei, die das SVM Modelle erstellt und Gra�ken wie Histogramme

und Scatter Plots erstellt.
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* main_use_model_on_data.py

Main Datei, die das angegebene SVM Modell auf einen angegebenen Da-

tensatz verwendet. Es wird eine Gra�k mit Fehlklassi�kationen und ein

Klassi�kationsbericht erstellt.

* main_view_data.py

Main Datei zum Ausführen des Programmes zur Visualisierung der Daten.

* speed_variation_graphic.py

Erstellt zwei Gra�ken mit der radialen Geschwindigkeit über die Distanz

zum Radarsensor von den gegebenen Dateien.

* graphic_thesis

Enthält Scripte für Gra�ken, die für die Bachelorarbeit erstellt wurden.

� Data�les

Enthält die im Rahmen dieser Arbeit erstellten Files.

* CSV�les

Enthält die im Rahmen dieser Arbeit erstellten Daten des Radarsensors

in CSV Form.

* Json�les

Enthält die im Rahmen dieser Arbeit erstellten Daten des Radarsensors

in Dictionary Form.

* Modeldata�les

Enthält die im Rahmen dieser Arbeit erstellten Klassi�kationsberichte

und Daten des Modells.

* Model�les

Enthält die im Rahmen dieser Arbeit erstellten Klassi�kator Modelle aus

den Daten des Radarsensors.

* Pictures

Enthält die im Rahmen dieser Arbeit erstellten Bilder der Modelle aus

den Daten des Radarsensors. Histogramme und Scatter Plots.

* Scaler�les

Enthält die Standardabweichungen und die Mittelwerte der Klassi�kator

Modelle aus den Daten des Radarsensors.
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* Text�les

Enthält die im Rahmen dieser Arbeit erstellten Rohdaten des Radarsen-

sors.

* Text�les_cut

Enthält die im Rahmen dieser Arbeit verwendeten Rohdaten des Radar-

sensors in Textform. Sie wurden verkürzt und separiert, um die Verarbei-

tungsdauer zu senken und eine angenehmere Visualisierung zu bieten.
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Erklärung zur selbständigen Bearbeitung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig

verfasst und nur die angegebenen Hilfsmittel benutzt habe. Wörtlich oder dem Sinn

nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich

gemacht.

Ort Datum Unterschrift im Original
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