HA
HAMBURG

BACHELOR THESIS
Elina Juliane Eickstadt

Impacts of the Java Security
Manager Removal: An
Analysis of it Features,
Limitations, and Prototypical
Alternatives Implementations

Faculty of Engineering and Computer Science
Department Computer Science

HOCHSCHULE FUR ANGEWANDTE
WISSENSCHAFTEN HAMBURG

Hamburg University of Applied Sciences

Elina Juliane Eickstadt

Impacts of the Java Security Manager Removal: An
Analysis of it Features, Limitations, and Prototypical
Alternatives Implementations

Bachelor thesis submitted for examination in Bachelor s degree
in the study course Bachelor of Science Angewandte Informatik
at the Department Computer Science

at the Faculty of Engineering and Computer Science

at University of Applied Science Hamburg

Supervisor: Prof. Dr. Stefan Sarstedt
Supervisor: Prof. Dr. Klaus Peter Kossakowski

Submitted on: 6. Dezember 2024

Elina Juliane Eickstadt

Title of Thesis

Impacts of the Java Security Manager Removal: An Analysis of it Features, Limitations,

and Prototypical Alternatives Implementations

Keywords

Java Security, JVM, Client Side Security

Abstract

This thesis delivers a detailed impact analysis of the Java Security Manager’s removal,
focusing on alternative approaches and prototypical example development to close the

resulting gap of relevant security features.

It provides a thorough examination of the Java Security Manager, delving into its layers
of security, assessing its applicability while providing an overview of its practical and
academic critique. This includes a detailed analysis of the irreplaceable components of the
Security Manager, the relevancy in modern server applications and historically exploited

attack vectors, that could be integrated into a streamlined version of the JVM.

An essential contribution is the evaluation and example implementation of certain fea-

tures previously provided by the Java Security Manager.

Note of Thanks
Thanks to Alexander for answering all my questions regarding the use of the Security
Manager in practice. And a big thanks to Simon for being my rubber duck whenenver

the project went sideways.

iii

Elina Juliane Eickstadt

Thema der Arbeit

Auswirkungen der Entfernung des Java Security Manager: Eine Analyse seiner Funktio-

nen, Einschrinkungen und prototypischen alternativen Implementierungen

Stichworte

Java, I'T-Sicherheit, JVM

Kurzzusammenfassung

Diese Arbeit liefert eine detaillierte Analyse der Auswirkungen der Entfernung des Java
Security Managers und konzentriert sich dabei auf alternative Ansétze und die Entwick-
lung prototypischer Beispiele, um die daraus resultierende Liicke relevanter Sicherheits-
funktionen zu schlieffen.

Sie bietet eine griindliche Untersuchung des Java Security Managers, die sich mit der
Architektur und seine Anwendbarkeit befasst. Die Arbeit liefert eine detaillierte Analyse
der wichtigsten Komponenten des Security Managers sowie eine Bewertung der Relevanz
fiir modernen Serveranwendungen und der historisch ausgenutzten Angriffsvektoren, die
in eine abgespeckte Version der JVM integriert werden konnten.

Ein wesentlicher Beitrag ist die Evaluierung und Beispielimplementierung bestimmter

Funktionen, die bisher vom Java Security Manager bereitgestellt wurden.

v

Contents

List of Figures
List of Tables

1 Introduction
1.1 Motivation and Goal of This Thesis
1.2 Overview of the Java Security Architecture and existing Security tools . .
1.2.1 Java Architecture
1.2.2 Security Architecture
1.2.3 Static Analysis

1.3 Overview of this thesis structure

2 Foundation of the Java Security Manager
2.1 Architecture and concepts
2.1.1 Enforcement of Policies and Permissions
2.1.2 Application examples L
2.2 Security Manager integration complexity and critique
2.2.1 Reasons forremoval oL
2.2.2 Systematic Analysis of academic critique of the sandbox

2.2.3 Conclusion

3 Applicability and impact of the Security Manager
3.1 Common weaknesses of server-side applications
3.1.1 Applicability of the Security Manager
3.2 Case Study: LogdShell
3.2.1 CVE-2021-44228: Log4Shell Description and Proof of Concept . .
3.2.2 Dataset
3.2.3 Methodology
324 Study Result

viii

ix

10
10
11
11
13
13
15
18

19
19
20
23
23
23
24
25

Contents

4 Development of alternatives to the Java Security Manager
4.1 Scope . ..
4.1.1 Use of the Security Manager in practice
4.1.2 Requirements L
4.2 Alternative Tools
4.2 1 Seccompo
4.2.2 ePBF . . .
4.2.3 GraalVM
424 Summary
4.3 Architecture
4.3.1 CoreModule
4.3.2 Agents
4.3.3 Class Transformation
4.3.4 Bootstrap Module oo
4.3.5 Access Control
4.4 Testing e
4.4.1 Agent Matilda
4.4.2 Matilda Access Control
4.5 Usage of the Prototype
4.5.1 Use of Prototype with tomcat
4.6 File System Access - Architecture Proposal
4.6.1 Filesystem Access and the JVM
4.6.2 Architecture Proposal L.
5 Evaluation
5.1 Objectives and Scope
5.2 Theoretical Analysis
5.2.1 Theoretical Applicability L.
5.2.2 Improvements Lo
5.2.3 Performance.
5.3 Practical Analysis
53.1 Testsetup
5.3.2 Evaluation.

6 Conclusion and future work

6.1 Conclusion

26
26
27
28
29
29
29
29
30
30
32
32
33
35
36
38
38
39
39
40
41
41
42

43
43
43
43
45
46
46
46
48

49
49

vi

Contents

6.2 Future Work 50
Bibliography 51
A Appendix 56

A.1 Top Security and operating System conferences 56

A2 tomcat example 56

A3 gradle test setup L 57

A4 Bytecode Example 58

A.5 Transformer Example 59

Declaration of Autorship 61

vii

List of Figures

1.1
1.2
1.3

21

4.1
4.2
4.3
4.4
4.5
4.6

JVM Architecture adapted from the JVM Specification 4
Class Loader Hirachy 6
Java Security Architectureo 0oL 7
Java Sandboxo 12
Matilda Agent - JVM Interaction, 31
Class Diagram - Matilda Core Module 32
Class Diagram - Matilda Bootstrap Module 36
Call Stack Example 37
Server Error 41
Class Diagram: MatildaFileSystemprovider 42

viii

List of Tables

3.1 Identified relevant vulnerabilities

3.2 Security Manager Log4Shell impact Dataset

1X

1 Introduction

1.1 Motivation and Goal of This Thesis

The current software landscape is driven by dependencies, which allow developers to build
on existing projects and reuse code that solves common problems. While using depen-
dencies was once a complex endeavor, nowadays, dependency managers like Maven|32]
for Java make it easy to use even small libraries. [20] With this ease, the risks introduced
by unknown software are often overlooked. Installing and using libraries without testing,
analyzing, or monitoring them assumes that the library developer properly maintains
and secures their project. However, every library will have security vulnerabilities, be
deprecated at some point, or even implement functionalities that are unknown to the
user and can be exploited. 8]

A bandwidth of tools focuses on dependency management, ranging from detecting, mon-
itoring, and patching. Mirhosseini and Parnin studied the use of dependency analysis
tools by software developers. The authors quantitatively analyzed whether tools that
supply automated pull requests lead to better update circles for dependencies. They
found that even though automated pull requests led to better-update circles, developers
did not perform almost two-thirds of the updates due to fear of breaking changes and not
understanding the implications of changes or migration efforts. This quantitative study
shows that even though automated tooling exists, developers often neglect updates due
to a lack of knowledge of the used dependencies.

There are fewer concepts and strategies that focus on avoiding unwanted behavior of
used dependencies. However, the unwanted behavior of dependencies has proven to be
the origin of exploits like LogdShell [29]. Ensuring that only the intended functionalities
of a dependency is being used requires developers to thoroughly analyze and verify the
functionalities of each dependency. This would be an extensive and complicated task,
therefore the problem of running untrusted and unknown code remains. Additionally

the general practice of running untrusted code at runtime is still a valid case. Every

1 Introduction

application that allows users to run dynamic scripts for customized usage allow running
untrusted code. While offering this kind of customization is a standard feature it is also a
potential attack vector, making it a strong need for isolating those kind of scripts.[37] An
early solution to the problem was put forward in 1993 by Wahbe et al., called sandbox-
ing. The concept of a sandbox is based on encapsulating untrusted code and enforcing
security policies via the sandbox. Instead of thoroughly analyzing used libraries, only

the sandbox needs to be verified and trusted.

The Java 2 Platform Standard Edition (J2SE) implements the concept of sandboxing
with the Security Manager. Allowing developers to block specific calls during runtime.
Because of its complexity, it is hardly used by any project and was marked for removal
and is deprecated in Java 17 [25]. Moreover, it will be blocked in Java 18 unless explicitly
allowed by its user. In releases after Java 18, it will be fully degraded with limited to
no functionalities. The problem of controlling the execution of critical functions on the

run-time level remains.

In response, this thesis aims to develop prototypical alternatives to the Security Man-
agers sandboxing capabilities controlling the execution of critical functions during run-
time. The goal is to develop a prototype that delivers key functionalities like network,
file level access, and process execution blocking while reducing the complexity by leaving
fine grained object access control and thread model security out of scope. The proto-
type’s design is based on an analysis of the Security Manager’s critique and applicability.
It analyzes practical and academic critique to derive usability requirements and better
understand what led to its deprecation. Furthermore, it examines the Security Man-
ager’s applicability to the security requirements of modern server-side applications and
historically exploited attack vectors to identify features that deliver an important layer

of security that can not be covered otherwise.

1 Introduction

1.2 Overview of the Java Security Architecture and existing

Security tools

The Java Security Developer’s Guide divides the Java Security Architecture into two
areas: functionalities provided by the platform to run Java applications securely as well
as security tools and services implemented in the Java programming language that allows

the development of security-sensitive applications.|6]

Java was designed to be type-safe and offers automatic memory management, garbage
collection, range checking on strings and arrays, and many other features that enable
more secure coding. Furthermore, the compiler and the bytecode verifyer ensure that
only legitimate bytecode can be executed in the Java Virtual Machine (JVM). With the
JVM mediating access to critical system resources and the Java Security Manager as an

option to check access in advance, restricting it to the bare minimum.

Since JDK 1.0, the Java Security Architecture has evolved significantly. Initially, it was
based on a sandbox model, dividing code into trusted (local) and untrusted (remote)
code. The sandbox provides a heavily restricted environment for running untrusted
code, a necessity when shipping code as applets. With JDK 2.0, a first version of a
more fine-grained access control model based on policies and permissions extending the
sandbox model was introduced. This architecture was constantly developed with every
JDK. Over time a, namespace-specific and highly granular permission model has been
established.

1.2.1 Java Architecture

In order to understand the Java Security Architecture the general architecture of Java
must be understood. It contains three main components: The Java Development Kit
(JDK), the Java Run-Time Enviroment, and the Java Virtual Machine. While the JDK
provides the compiler, standard libraries, and programs, needed to develop and build
a Java application; the JRE links all runtime components together and initiates the
Java Virtual Machine (JVM). The Java Virtual Machine is the key component of the
Java Platform, enabling hardware and operating system independence. It performs the
loading, verification, and execution and provides a runtime environment.|28] Thus, most

security features are closely connected to the JVM.

1 Introduction

Java Virtual Machine

The JVM is entirely detached from the Java programming language and solely operates as
an platform independent execution engine that transforms Java byte code into executable
code at runtime. Java byte code acts as an intermediate representation produced by the
JDKs Java compiler allowing the Java Language to evolve over time implementing new
language features. The following description is based on "The Java Virtual Machine
Specification Java SE 22 Edition"[28|.

Figure 1.1: JVM Architecture adapted from the JVM Specification

Memory
The JVM has various areas of memory also called run-time areas. Some of them exist
from start-up until exit of the JVM, others are created per thread and are destroyed

subsequently.

Program Counter (PC) Register
The program counter in general stores the current execution instructions. As the JVM
supports multi threading the PC register holds one PC per thread. One thread always

executes the code of a single method.

Java Virtual Machine Stacks
In general, stacks store local variables and partial results. In the JVM, each thread has
a private stack which is created when the thread is started, the stack is never directly

manipulated and can be either of a fixed size or dynamically extended.

Heap
The memory of all class instances is allocated from the heap which is shared by all

threads. The heap is created during the JVM start-up. The heap storage of objects is

1 Introduction

automatically reclaimed by the garbage collector. If a program requires more heap than

available a QutOfMemoryError is thrown.

Method Area
The Method Area has functionalities similar to the compiled code storage area in other
programming languages. It stores the run-time constant pool, field and method data,

and the code for methods and constructors.

Run-Time Constant Pool
The run-time constant pool functions like a symbol table with a much wider range of
data. It is allocated from the Method area and created when the JVM creates a class or

interface.

Native Method Stack
The Native Method Stack stores method information per thread. It is created when a

new thread is created.

Class Loader
The class loader is responsible for loading class information, linking them, and initial-
izing accordingly. Understanding class loaders and their hierarchy will be important to

understand the Security Manager and the developed prototype.

The Java run-time contains different types of class loaders, which are divided into JVM
and user supplied class loaders. They can be used to load classes dynamically from
custom sources and allow for class isolation within the JVM runtime. Classloaders use
the delegation model. Thus, each class loader instance has a parent loader, when loading
a Class, one first delegates the class lookup to its parent before loading to prevent loading

classes multiple times within one hierarchy.

The built-in JVM class loaders are the Bootstrap class loader,which loads the basic
runtime classes provided by the JVM. It has no parent class loaders and is set to null. The
platform class lloader which is responsible for loading all platform classes including J2SE
platform APIs. The System/Application classl oaderL. which loads from the application
class path and loads everything else by delegating it to the platform class lloader. User
defined class loader enables users to change the way the JVM loads and thus creates
classes. This can be used to load classes from different sources, or change the behavior
of certain classes. (This is were the JSM (Java Security Manager, Glossar add link) as

well as the later presented prototypical solution comes in.)

1 Introduction

Figure 1.2: Class Loader Hirachy

Classloading

During the JVM startup, it creates an initial class using the bootstrap class loader. It
starts by linking, initializing, and invoking the public class method void main(String|]).
The invocation of this class drives all further execution. Subsequently, the loading,
linking, and initialization of all other classes start in the same manner. In the loading
process, the class loaders are used according to the hierarchy described above. During
the loading process, the fully qualified class name, parent classes, and any relations to
Class, Interfaces, and Method information are saved to the method area. An object of the
type Class is also created and saved to the heap memory. In practice, those steps enable
developers to get all information (class, parent name, method, and variable information)
with the getClass() method.

Linking, Resolving, Initalizing

During the linking process, the bytecode verifier ensures that the .class file and, thus,
the binary representation of a class or interface are structurally correct. If an error is
detected, a VerifyError is thrown. After the loading process, the linking process starts.
First, the bytecode verifier checks if the .class file is properly generated. If an error occurs,
a run-time exception is thrown. Afterwards, the preparation process starts. During this
process, memory for static class variables is allocated and initialized using default values.
Until this step, the JVM only works with symbolic references, which contain just enough
information to uniquely identify the class or interface. During the linking process, those
references are resolved, which means identifying the class and determining the concrete

values from the run-time pool. Following the linking comes the initialization process,

1 Introduction

which executes the classes or the interface’s initialization method. In this phase, all

static variables are assigned to the defined values.

1.2.2 Security Architecture

The main goal of security architectures is to avoid security issues and limit damange
in the case of an unexpected event, a software bug or unintended behavior. The Java
Security Architecture is based on the sandbox model[6]. In earlier Java versions, only
untrusted code was run in the sandbox, which provided a limited environment with no
access to critical resources like network or file system access. The main driver for this
separation was the widespread use of applets, a technology that downloaded code execut-
ing it on the local machine instead of running solely in the browser. With new browser
technologies, applets became obsolete, and Java applications were deployed differently.
Yet, the sandbox model is still used in the evolved Java Security Architecture; however,
it no longer uses the concept of trusted and untrusted code, instead establishes a domain-
specific and highly granular permission model. The following description is based on the

current JDK version 22.0 and its security architecture specification. [6]

Figure 1.3: Java Security Architecture

1 Introduction

1.2.3 Static Analysis

Compile time describes the process of translating a programm from source code to
machine-readable code. In the case of the JVM, code is compiled into bytecode readable
by the JVM. The compiler checks the source code for syntax, type-checking, and se-
mantic errors. If no errors are detected, a bytecode (.class) file is generated; otherwise, a
compile-time error is thrown. In addition to the Java compiler, third-party static analysis
tools can be used to enforce code style or check for common bug patterns. Mainly, they
are not used as a compiler extension but rather built into the build process using Gradle,
Maven, or other CI/CD tools. For example, Error Prone|[12] delivers a framework to spot
common programing errors. It’s an open-source project built and maintained by Google,
maintaining a library of common programming mistakes like missing or wrong imple-
mentation of ArrayToString methods, serialization issues, or wrongfully configured tests
that are never run. In addition to common programming mistakes, the use of dangerous
or outdated APIs is a significant source of vulnerabilities in software development. For-
bidden APIs|15] is a static analysis tool that addresses this issue by allowing developers
to detect and prevent the usage of risky or deprecated APIs at compile time. Integrated
with build tools such as Maven and Gradle, Forbidden APIs scans the bytecode of com-
piled class files to match against predefined or custom API lists, ensuring that insecure,

outdated, or ineflicient methods are not used in the codebase.

Runtime

After compilation, the JVM loads and executeds the generated bytecode. Security fea-
tures enforced while runtime follow the architecture of the JVM and build up a sandbox
by granular setting the permissions. The Security Manager is the instance that enforces
and controls all set permissions and policies. In order to set a security context and thus
define a sandbox environment, the class loader first defines the code cource. The code
cource partitions the program into different components by security levels defined in the
Protection Domain Class. The access to system resources (permissions) is defined via
the Permissions Class. All other permissions to resources are defined with the Policy
Class. With all permissions/policies defined, each access request to a resource is checked,

managed, and enforced by the Security Manager.

1 Introduction

1.3 Overview of this thesis structure

Chapter 2: Foundation of the Java Security Manager The goal of this chapter is
to gain an understanding of the different capabilities of the Security Manager as well as
the critique to derive key functionalities that a prototypical alternative should implement
to function as a modern run-time level sandbox. This chapter describes the architecture
of the Security Manager in detail and gives application examples regarding it’s sandbox
capabilities. Furthermore, it analyzes the integration complexity and critique put forward
by the language developers and academic research. In order to understand architectural
and conceptually problems of the Security Manager, it identifies issues that should be

considered when designing an alternative solution.

Chapter 3: Security requirements in the J2SE This chapter aims to identify
features of the Security Manager that defend against common attacks on server-side
applications. It derives a baseline of vulnerabilities and attack paths from common
security frameworks and analyzes the Security Manager’s applicability. Furthermore, it
examines how the Security Manager is used in practice by studying open-source projects

interaction with the Security Manager and the impact of Log4Shell.

Chapter 4: Development of alternatives to the Java Security Manager This
chapter describes the architecture of the alternative prototype using the thorough analysis
of the previous chapters. It describes the prototypes intended scope, its architecture,
and its functionalities. Furthermore, it evaluates tools like seccomp, ePBF and GraalVM
that might be suited to cover functionalities that were previously covered by the Security

Manager.

Chapter 5: Evaluation The Evaluation Chapter analyzes the developed prototype
with regards to its practical effectiveness and theoretical applicability. It includes a

detailed argumentative analysis comparing the prototype with the Security Manager.

Chapter 6: Conclusion and future work The final chapter concludes the analysis
and implementation, summarizing key findings and contributions. It also outlines addi-
tional features and potential future research based on the prototype and findings of the

thesis.

2 Foundation of the Java Security

Manager

The goal of this chapter is to gain an understanding of the different capabilities of the
Security Manager as well as its critique in order to derive key functionalities that a
prototypical alternative should implement in order to function as a modern run-time level
sandbox. This chapter describes the architecture of the Security Manager in detail and
gives application examples regarding it’s sandbox capabilities. Furthermore, it analyzes
the integration complexity and critique put forward by the language developers and
academic research. In order to understand architectural and conceptually problems of
the Security Manager, it identifies issues that should be considered when designing an

alternative solution.

2.1 Architecture and concepts

The Security Manager has existed since the release of JDK 1.0 [42]|. It is part of the
initial Java sandbox model and was built as a security mechanism for controlling un-
trusted code by restricting access to critical system resources. In Java 1.2, the Security
Manager was redesigned to enforce the least privilege principle. It’s architecture evolved
constantly with every JDK version until the removal of Java applets in JDK version 9.0
[22], rendering the initial use case of the Security Manager obsolete. However, the se-
curity architecture of a domain-specific and highly granular permission model remained
and was developed around the Security Manager. The following description of the ar-
chitecture and permission model is based on the long-term support version of the JDK,

JDK 21, security developers’ guide. [6].

The Security Manager is based on the principle of least privilege enforced through pro-
tection domains, permissions, and policies. It is deeply embedded into the JVM and

loads once the JVM is started. During runtime a class loader assigns a code source to

10

2 Foundation of the Java Security Manager

every loaded class, specifying the class’ origin. Each code source is subsequently linked
to a protection domain via its defined permissions. Permissions are user-defined via a
provided .policy file or programmatically at runtime. Depending on the architecture, a
policy file is created for the application and each dependency. The Security Manager’s
configuration is a whitelisting model; each permission is granted per method and lazily
evaluated (when the method is called) during runtime. In practice, implementing the
Security Manager requires not only testing the code but fully exercising it with all de-
pendencies. Using the Security Manager can often expose unknown code paths that need

to be considered to ensure that all permissions are correctly granted.

2.1.1 Enforcement of Policies and Permissions

When the Security Manager is enabled, the call of any method triggers its checkPermis-
sion method which ensures that the caller of the method has the correct permissions.
In order to identify the caller and its permissions, the Security Manager checks if every
method on the current call stack has permission to execute the called method. This
mechanism ensures that less privileged domains cannot gain additional permission by
calling or being called by a more privileged domain. However, the Security Manager
offers the flexibility to avoid this behavior in order to enable developers to grant per-
mission to a specific method or code base exclusively by "cutting off" the call stack and
therefore, avoiding extensive permission checks by the Security Manager. This can be
done using the doPrivilidged method which is part of the java.security. AccessController
API .

2.1.2 Application examples

While the Security Manager can be used for a wide range of granular permissions, a key
functionality is managing access to critical resources. Therefore, this application example

uses only a subset of features to illustrate a possible Security Manager application:
e write/read access to files, which could lead to the corruption of files

e opening a network connection, which could be used to contact command and control

sServers

e calling System.exec and therefore being able to spawn a System process

11

2 Foundation of the Java Security Manager

e Calling System.exit. This is specific to the JVM and is called when unrecoverable
errors occur. If System.exit() is called due to an error in dependencies, it terminates

the entire JVM, thus quitting the whole application.

This example uses elasticsearch and methods used in the context of elasticsearch as it is
the most prominent project that extensively uses the Security Manager in production.
Elasticsearch is a widely adopted distributed search engine built on Apache Lucene [10].
The examples and figures are adapted from the blog post "elasticsearch - Securing A
Search Engine While Maintaining Usability" [40].

Figure 2.1: Java Sandbox

2.1 shows an example of different application methods that the Security Manager handles.
Initially, the application tries to open(’/etc/passwd’) in the context of elasticsearch, there
is never a need to open any files in /etc/ except its own configuration. For that reason,
a policy file would only set permission for reading its config file; therefore, the Security
Manager would block the call. Subsequently, the application tries to initiate a network
connection to gopher://bit.coin/miner.tgz; while initiating a network connection is com-
mon to the use of elasticsearch due to its distributed nature, connecting to a potential
bitcoin miner is not a valid action. Thus, permissions in the policy file should be set only
for connecting to other elasticsearch nodes but not randomly initializing connections.
(Note: In practice, elastic’s netty jar is allowed to connect everywhere as Clusters/IP ad-
dresses change during runtime) The application calls unlink /var/lib/elasticearch, which
would clean out all of elasticsearch data. Thus, permissions in the Security Manager

would prevent that, too.

12

2 Foundation of the Java Security Manager

2.2 Security Manager integration complexity and critique

This section discusses the integration complexity and ongoing critique of the Security
Manager. It discusses the elaborate critique put forward in the JDK Enhancement Pro-
posal related to the Security Managers request for removal [25] and its sequential per-
manent disablement [24] as well as additional technical critique put forward in Java Blog
posts regarding the Security Manager. Furthermore, it evaluates the scientific landscape

regarding the Security Manager and elaborates on the current state of research.

2.2.1 Reasons for removal

The deprecation of the Security Manager was formally proposed in JEP 411 [25], with
initial steps for its deprecation beginning in Java 17. As of Java 18, dynamic installation
of the Security Manager is prohibited unless explicitly permitted. In conclusion, the
request for removal argued that the Security Manager should be removed due to its lack

of adoption, its complexity, and the high maintenance costs.

High Maintenance Costs

The Security Manager works with a highly granular permission model, which requires
that the relevant permissions are not only granted to the called method but also the
entire caller stacks leading to it’s invocation. The request for removal argues that with the
growth of the java.* and javax.* packages hundreds of permissions need to be checked and
maintained throughout the JDK. Furthermore, every new package must be tested against
the Security Manager for the access control model to work as intended, explicitly ensuring

that additional permission cannot be gained by wrongful interaction of permissions.

Complexity

JEP 411 [25] criticizes the complex permission model, the implementation, and the Secu-
rity Manager’s poor performance. In order to take advantage of the Security Managers
permission model, developers must carefully grant permission that an application or de-
pendencies requires to run.

Due to the way permission checks of the Security Manager work, permissions must be

13

2 Foundation of the Java Security Manager

not only granted to the method that is executed but also to all the operations on the
call stack when calling it; thus, in-depth knowledge of all functionalities that require

permissions to security sensitive operation of the Java class library is needed.

While from a security perspective, in-depth knowledge of dependencies’ interaction with
security-sensitive operations of the Java class library might be desirable, the broad ex-
ploitation of such functionalities reveals that this isn’t the case in reality.

The implementation of the Security Manager requires significant additional effort when
writing new libraries as well when integrating dependencies into existing applications.
A developer who wants to create a project that can be used with the Security Manager
needs to document all permissions their code might need. The developer integrating the
library into their application must grant all permissions accordingly. Granting permis-
sions to the whole application that are only meant to be granted to a specific library
would violate the principle of least privilege. This behavior can be avoided using the
java.security. AccessController API specifically the method doPrivilidged. This enables a
developer to grant permission to a specific method exclusively by cutting off the call stack
and therefore avoiding escalated permission checks by the Security Manager. However,
this approach assumes that library developers are willing to structure their applications
to work with the Security Manager and that developers using these libraries are open to
incorporating doPriviliged blocks as necessary. In reality, this is almost never the case,
and developers frequently resort to granting universal permissions with AllPermissions,
rendering the Security Manager as obsolete. Furthermore, the functionality of this API
is not widely known among developers nor taught in an academic context. In addition
to the Security manager’s usability, performance plays a significant role for developers
when considering implementing security tooling into their projects. JEP 411 argues that
due to the complex access-control algorithm, the Security Manager can impose an unac-
ceptable lack of performance. It further states that the lack of performance is a primary

reason the Security Manager is disabled by default.

Lack of adoption

JEP 411 argues that the adoption of the Security Manager has been low. Only one
project, elasticsearch, has fully implemented the Security Manager and ships with a cos-
tume version of the Security Manager in combination with a set of customized and highly

specific permissions. Besides elasticsearch, only a few projects, e.g., Tomcat, NetBeans,

14

2 Foundation of the Java Security Manager

and Lucene, ship with either a policy file, thus using the standard or customized Secu-
rity Manager. A paper published in 2014 strongly supports this argument [5]|. The pa-
per quantitatively examines the implementation of the Security Manager in open-source
projects. For that purpose, a Dataset of 112 popular open-source Java applications was
analyzed, and only 24 of those interacted with the Security Manager; the authors iden-
tified 12 additional repositories interacting with the Security Manager. However, further
analysis showed that only a fraction of the identified projects used the Security Manager
as intended. Which clearly shows that even when the Security Manager was a default
feature, it was still rarely used. In addition to the mentioned reasons that led to a lack
of adoption the lack of adjusting the permissions to modern development practices like

supporting permissions for cloud storage, might play a significant role.

2.2.2 Systematic Analysis of academic critique of the sandbox

To evaluate the academic critique of the Security Manager, a systematic review of papers
published in six top security and operating system conferences from 2014-2024 [16](see
full list A.1) regarding containing analysis of the Security Manager was conducted. Two
papers whose abstracts contained the term Java Sandbox or Security Manager were
identified. The first identified paper [5] focuses on using the Security Manager as a
sandboxing tool, quantitatively examining its implementation and use in open-source
projects, and putting forward a proposal for improvements of the sandbox model based on
the identified usability issues. The second identified paper presents an in-depth study of
Java exploits [21] and analyzes the inner workings of Java exploits and the vulnerabilities
used to exploit them. The paper systematically analyzes a set of 87 publicly available
Java exploits to identify their root cause, targeting to propose countermeasures to address
those causes. Both papers were published between 2014 and 2016 using data from the
previous 10 years, 2004-2014, analyzing Java applications and vulnerabilities that were
still focused on the applet model. Therefore, some of the critiques presented are no
longer applicable to the current Java version. This section summarizes the critique and

identifies valid points that can be used to develop an alternative prototype.

Security Manager as an instrument for running untrusted Code

The paper "Evaluating the Flexibility of the Java Sandbox" [5] analyzes the Security

Manager in the context of the original use case of the Security Manager, running un-

15

2 Foundation of the Java Security Manager

trusted code in a sandbox environment. The paper hypothesizes that the Security Man-
ager offers more flexibility than developers need or use, leading to increased complexity
without offering additional functionalities. The authors conducted a quantitative study
of open-source projects’ interactions with the Security Manager. The data provided by
the study proves the lack of adoption of the Security Manager; out of 112 open-source
projects, only 24 interacted with it. As a result of the study, the authors found that half
of the projects interacted with the Security Manager in a non-security way, either using
it for unit testing or to cover functionalities that Java does not provide otherwise. Their
study confirms that developers either do not know how to interact with the Security
Manager at all or a deep misunderstandings regarding configuring policy files and per-
missions being present. The study’s authors derived two rules that, according to their
findings, could lead to a more secure use of the Security Manager. The authors used
JVM Tool interfaces (JVMTI) to enforce the identified rules. JVMTI allows developers
to create dynamic analysis tools called agents that can be used to intercept and react to

events like the creation of classes and threads.

Privilege escalation rule The authors define privilege escalation as follows "This rule
is violated when the protection domain of a loaded class implies a permission that is not
implied in the protection domain that loaded it."|5] The proposed solution enforces priv-
ilege escalation by only allowing the JRE to load restricted-access packages, meaning
packages that belong to the restricted-access sun package like java.lang.reflect. But pre-
vent application classes from loading such packages. This prevents payloading attacks as

they use application-level classes.

Security Manager rule The authors hypothesize that a benign use of the Security
Manager would never change the Security Manager once it has been set up '. This rule
is intended to catch so-called confusion attacks that target the manipulation of Security
Managers’ behavior. In order to enforce this behavior, they use an agent to monitor, read,
and write in the Security Manager’s system class field. It compares the settings with a

shadow copy of the most recent security settings and checks for insecure settings.

The proposed changes were tested against Java 7 exploits from Metasploit 4.10.0 and
proved to be a valid defense against the tested exploit. This strongly indicates that the
Security Manager can be used as a line of defense against a broad set of vulnerabilities

if configured correctly.

10 The Security Manager cannot be changed if a self-protecting Security Manager has been set by the
application." [5]

16

2 Foundation of the Java Security Manager

Overall, the paper finds that a usable/impactful sandbox solution should be simplified,
supply more insightful error messages, and deliver a more extensive documentation with
examples of use. The suggested additional features of the Security Manager demon-
strate that an adjusted Security Manager is an effective line of defense against common
vulnerabilities. Generally the suggested permissions are not applicable to the current
state of the security architecture. The kind of privilege escalation described is not pos-
sible anymore and manipulation of the Security Manager is not often appearing due to
its lack of adoption and can be prevented if a custom Security Manager is set during

bootstrapping.

Security Manager as Source of vulnerabilities

The paper "An In-Depth Study of More Than Ten Years of Java Exploitation"|21] ana-
lyzed and categorized 87 publicly available Java exploits. The exploits were reduced to
61 minimal code implements by removing exploits that were not reproducible and merg-
ing similar exploits. The authors derived a set of 9 weaknesses directly connected to the
Java platform’s features, like unauthorized use of restricted classes, arbitrary class load-
ing, caller sensitivity, and MethodHandles. They conclude that many weaknesses result
from the Java architecture, which should be redesigned according to the authors. They
propose the redesign by introducing narrow permissions checks for sensitive functionali-
ties in restricted classes, removing caller sensitivity, or replacing the functionalities with
methods requiring extensive permission checks. The study shows that the Java Sandbox
mechanism has been a source of vulnerabilities due to its complex nature, with several
security mechanisms coming together to achieve the goal of sandboxing. In the current
JDK Version (22), parts of the proposed redesign options have been implemented. Caller
sensitivity still exists; however, features like CallerSensitive annotation and enhanced
JVM checks for caller sensitivity have been introduced to ensure more secure use. Over-
all, this paper’s results give valuable insights into the weaknesses of the Java Security
Architecture. However, the vulnerabilities identified are highly specific to previous JDK
versions. Thus, only the high-level issues identified (vulnerabilities due to complexity)

are of interest to derive requirements for a high-level prototype.

17

2 Foundation of the Java Security Manager

2.2.3 Conclusion

The analysis of the Security Mangers critique shows that while there is a broad bandwidth
of opinions from practitioners specifically from the Java Development team itself. There’s
a lack of research in the academic context in the last ten years potentially due to the lack
of relevance of the Security Manager in practice. Overall, both practical and academic
critique come to the conclusion that the Security Manager is to complex to implement and
maintain. The evidence collected by the studies [5][21] conducted show that the extensive
flexibility of the Security Manager leads to insecure or unintended use. And shows that
there already was a lack of wide spread adoption when the Security Manager was still used
in its original use case securing Java Applets. However, the proposals for the improvement
of the Security Manager show that it can be a valuable tool reducing the impact of
severe vulnerabilities. In conclusion, an alternative solution should significantly reduce
its implementation and configuration complexity. This could potentially be achieved
through reducing the flexibility and the functionalities of the Security Manager to a set
of functionalities that only cover key features that enable sandbox capabilities. The next
chapter will analyze which functionalities are crucial to using the Security Manager as

line of defense against common vulnerabilities.

18

3 Applicability and impact of the Security

Manager

This chapter aims to identify features of the Security Manager that defend against com-
mon attacks on server-side applications. It derives a baseline of vulnerabilities and attack
paths from common security frameworks and analyzes the Security Manager’s applicabil-
ity. Furthermore, it examines how the Security Manager is used in practice by studying
open-source projects interaction with the Security Manager and the impact of Log4Shell

29].

3.1 Common weaknesses of server-side applications

Identifying a baseline of security requirements for server-side applications is quite chal-
lenging, as the requirements differ depending on the application. While the failure of
some applications might endanger human life other applications’ failure might not be
noticed at all. However the goal remains: a system should be build in a way that it re-
mains dependable even if vulnerabilities are being exploited or programmatic errors have
been made. Common security requirements are often focused around the information
security triad (confidentiality, integrity, and availability). Complemented with awareness
documents/frameworks like the OWASP Top Ten [36] or MITRE 25[34]. While those
frameworks deliver insights into the most critical security risks of web applications, they
don not focus on general impact mitigation during run-time. The Security Manager
as well as the prototype that this thesis aims to develop acts as a layer of security at
runtime. However the applicability of the Security Manager as run-time level defense
against common attacks offers insights into general use cases. Therefore this thesis uses
selected vulnerabilities of the MITRE [34]! most dangerously rated software weaknesses

and analyzes whether the Security Manager is applicable. The MITRE top 25 delivers a

!The vulnerabilities where selected according to their relevance to Java based server-side applications

19

3 Applicability and impact of the Security Manager

list of the 25 most common vulnerabilities, which, according to MITRE , are potentially
easy to find and can lead to data breaches, system takeovers, and rendering applica-
tions unusable.|34] For a better overview, they are grouped into three categories: access

control, input validation/data processing, and memory safety.

H Category Weakness

Input Validation Data Processing

Improper Input Validation

Unrestricted Upload of File with Dangerous Type

Deserialization of Untrusted Data

Improper Neutralization of Input
During Web Page Generation ('Cross-site Scripting’)

Improper Neutralization of Special Elements
used in an SQL Command (’SQL Injection’)

Improper Neutralization of Special Elements
used in an OS Command ("OS Command Injection’)

Improper Control of Generation of Code
("Code Injection’)

Access Control

Missing Authorization

Improper Authentication

Missing Authentication for Critical Function

Use of Hard-Coded Credentials

Incorrect Authorization

Server-Side Request Forgery (SSRF)

Memory Safety

Improper Restriction of Operations within the Bounds
of a Memory Buffer

Table 3.1: Identified relevant vulnerabilities

3.1.1 Applicability of the Security Manager
The Security Manager was intended to function as a layer of security that catches un-

intended vulnerabilities and malicious code, thus reducing the impact of vulnerabilities

without the needed of extended security awareness by developers. However, it is also

20

3 Applicability and impact of the Security Manager

suited to mitigate vulnerabilities before or while being exploited. Therefore, this evalua-

tion evaluates both use cases of the Security Manager in order to analyze its applicabil-

ity.

Access Control

The section of Access Control related weaknesses contains a bandwidth of weaknesses
that can be exploited due to misconfiguration regarding user authorization and authen-
tication when accessing an application or it systems’ resources. In the context of the
Security Manager access control is based around an application context, caller code ori-
gin, and methods. The Security Manager is not applicable to general authentication and
authorization requirements. However, when it comes to accessing of critical functions like
modifying sensitive data, system or administrative permissions or hardcoded credentials
with the Security Manager unwanted behavior can be avoided. For example read ac-
cess to ’/etc/passwd’ and thus access to hard coded credentials should never be allowed
for server-side applications or through API calls and can be blocked by the Security

Manager.

Input Validation/Data Processing

Improper input Validation

Improper input validation occurs when an application does not validate or incorrectly
validates input that is processed by the application. This can lead to various ways of
exploitation, such as SQL injection or privilege escalation attacks. The Security Manager
is generally not designed for input validation as it does not provide any semantic or
syntactic checks. In case of exploitation of improper input validation, it may minimize
the impact of input that tries to read or write files or execute critical functionalities,

which would be caught by the Security Manager’s permission model.

Unrestricted Upload of File with Dangerous Type

This vulnerability describes an application that allows the upload of file types that are
automatically processed or executed by the application. It can lead to exploits that
perform arbitrary code execution. The Security Manager can be a suitable measure
against those kinds of vulnerabilities. However, it depends on the specific permission
model of the application that is being exploited. For example, if permissions are granted

per dependency, an exploit in a dependency could be caught.

21

3 Applicability and impact of the Security Manager

Deserialization of Untrusted Data

An application that insufficiently verifies deserialized data can be vulnerable to manip-
ulation through serialization. The Security Manager cannot be used to avoid wrongful
deserialization. However, it can be used to reduce the impact of exploitation depending

on the permission model.

Improper Neutralization of Input

Improper Neutralization of input can lead to a range of attacks, including cross-site
scripting, SQL injections, and OS command injections. The Security Manager is not
applicable in this case as it has no built-in neutralization features. Furthermore, in most
cases, exploitation is possible due to the architecture allowing specific commands, which
would imply that they are permitted through the Security Manager as well. In case
of managing SQL access control, the Security Manager comes with build-in features to
build a set of permissions, however, it has to be assumed that the permissions would be

granted accordingly.

Memory Safety

Exploits regarding Memory safety result in read and write operations outside the buffer’s
memory which can lead to overwriting critical data or control execution. Java is designed
as a memory safe language with automatic memory management. Therefore the Security

Manager was not build to protect against this kind of vulnerabilities.

Conclusion

The Security Manager’s applicability is limited to managing resource permissions rather
than directly preventing or resolving vulnerabilities. While effective in controlling access
to critical functions and sensitive data, such as file access, it is not intended for general
authentication, authorization, or input validation. Although it can reduce the impact of
improper input handling by restricting resource access, its effectiveness against attacks
using deserealization or exploiting improper input neutralization highly depends on the

permission model and structure of the project.

22

3 Applicability and impact of the Security Manager

3.2 Case Study: Log4Shell

This section describes the structure and methodology of the case study on the Security
Managers as a defense line against attacks based on the example of Log4Shell [29]. The
research question is: Does the Java Security Manager reduce the impact of vulnerable
3rd party dependencies like Log4Shell? The answer to the research question not only
provides insights into the Security Managers features that form a robust layer of security
against vulnerable dependencies but also offers practical insights for the architecture of

an alternative solution.

3.2.1 CVE-2021-44228: Log4Shell Description and Proof of Concept

The Log4Shell vulnerability was publicly disclosed on December 10th, 2021. It was
the first of a set of vulnerabilities in the popular logging library Log4j. Log4Shell was
similarly widespread as vulnerabilities such as Heartblead[19], Rowhammer([|26]|, and
Spectre(2021)[27|. Log4Shell is described by the National Vulnerability Data Base as
follows [29]: "Apache Log4j2 2.0-beta9 through 2.15.0 (excluding security releases 2.12.2,
2.12.3, and 2.3.1) JNDI features used in configuration, log messages, and parameters
do not protect against attacker controlled LDAP and other JNDI related endpoints. An
attacker who can control log messages or log message parameters can execute arbitrary

code loaded from LDAP servers when message lookup substitution is enabled.”
logger . error ("${jndi:ldap://127.0.0.1: " + port +"/matilda—poc}")

Listing 1: Log4Shell exploit example

3.2.2 Dataset

In the absence of an existing data set that maps the impact of Log4Shell on applications
that use the Security Manager, I updated the data set from the Paper "Fvaluating the
Flexibility of the Java Sandbox" 5] which presents a data set on the usage of the Se-
curity Manager in Open-Source projects. The paper combined the relevant open-source
projects from the Qualitas Corpus version [39] 20130901 with 12 additional projects that
interact with the Security Manager found by the researchers on GitHub. As the Paper

was published ten years ago, | updated it by removing inactive repositories, checking for

23

3 Applicability and impact of the Security Manager

App Name Category Uses LogdJ Impacted by Log4Shell
Apache Batik non-security context No No
Apache Lucene Removed Yes Yes
Apache MyFaces Removed No No
Apache Tomcat Removed No No
Apache Xalan Uses Sandboxing No No
AspectJ Java Extension Uses Sanboxing Yes No
elasticsearch Uses Sanboxing Yes No
IntelliJ IDE Community Edition Uses Sandboxing Yes No
JRuby Ruby Interpreter Uses Sandboxing Yes No
Netbeans IDE Uses Sanboxing Yes No
Spring Boot Removed No No

Table 3.2: Security Manager Log4Shell impact Dataset

any releases/commits in the last year and reduced it to applications that are hosted on
GitHub to have one point of truth regarding Issues. I identified relevant applications
by searching for the keywords SecurityManager, System.setSecurityManager in the ap-
plications source code. I added elasticsearch to the dataset as I identified it as the only
open-source project that uses the Security Manager extensively. Additionally, I analyzed
the repositories regarding their use of LogjJ by searching the repositories for the keyword
Log4J. 1 identified all repositories that were impacted by Log4Shell by searching through

the repositories issues and their documentation.

3.2.3 Methodology

I performed a manual inspection of the applications in the dataset by grouping them
by their interaction with the Security Manager. If an application comes with a policy
file or a custom implementation of the Security Manager, I categorized them as wuses
Sandboxing. If Security Manager was removed but used until 2021, I categorized them
as removed. When an application uses the Security Manager in a non-security context,
I categorized them as mnon-security context. In addition to the analysis regarding the
general interaction with the Security Manager, I identified which projects use Log4J
and whether they were impacted by Log4Shell[29] in order to analyze the role of the
Security Managers effectiveness in defending against vulnerabilities introduced through

dependencies.

24

3 Applicability and impact of the Security Manager

3.2.4 Study Result

In general, the data shows the lack of adoption of the Security Manager. In order to
analyze the Security Managers effectiveness against supply chain attacks like Log4Shell,
the usage of the Security Manager was mapped to whether the projects where impacted
by Log4Shell. Out of the 10 repositories that interact with the Security Manager, six
fall in the category "uses sandboxing" and three in the category of "removed". All
nine projects used the Security Manager when Log4Shell appeared. However, the three
projects that later removed the Security Manager never used Log4J and therefore were
not impacted by LogdShell. Out of the six projects using the Security Manager for
sandboxing five used Log4J. However, none of them were impacted by Log4Shell[29].
That proposes that the Security Manager could play a role in the protection against
Log4Shell. Out of those projects only elasticsearch officially stated that "Supported
versions of Elasticsearch (6.8.9+, 7.8+) used with recent versions of the JDK (JDK9+)
are not susceptible to either remote code execution or information leakage. This is due
to elasticsearch’s usage of the Java Security Manager."[11] This shows that the Security
Manager is used in practice to defend against Remote Code Execution. Furthermore, the
analysis of elasticsearch’s use of the Security Manager could deliver insights into which

features are valuable and should be implemented into an alternative prototype.

25

4 Development of alternatives to the Java

Security Manager

This chapter describes the alternative prototypes architecture based on the thorough
analysis of the previous chapters. It describes the prototypes intended scope, its archi-
tecture and its functionalities. Furthermore, it evaluates tools like seccomp, ePBF and
GraalVM that might be suited to cover functionalities that were previously covered by

the Security Manager.

4.1 Scope

The analysis of the academic and practical critique showed, that the lack of adoption
of the Security Manager is primarily due to its maintenance and implementation com-
plexity as well as its extensive flexibility. As a result of this analysis the prototypes
scope is limited to sandboxing capabilities that allow controlling critical functionalities
at runtime. The goal is to provide a solution that is easier to configure and to implement
without the need of extensive testing or patching. Fine grained object access control and
Java threading model security is generally out of scope. The analysis revealed that the
Security Manager is theoretically suited to reduce the impact of common vulnerabilities
but does not serve as first line of defense which is still the responsibility of the application
developer. In turn, it implements a protection mechanism for impact minimization in the
case of a programming error in the application itself or a 3rd party dependency (3.1.1).
The case study found that elasticsearch’s use of the Security Manager can be used to
derive a set of functionalities that should be implemented in an alternative prototype
since it has proved to protect the application from significant programming flaws even in

3rd party dependencies.

26

4 Development of alternatives to the Java Security Manager

4.1.1 Use of the Security Manager in practice

Elasticsearch makes extensive use of the Security Manager using it as an effective measure
against common vulnerabilities, while avoiding several problems that where identified in
the previous chapters. The most prominent use case of the Security Manager is securing
untrusted code in form of dynamic scripting that offers the user a great flexibility but
also opens the application up to be vulnerable to executing arbitrary code. In the case of
Log4Shell the use of the SocketPermission blocked the exploitation of the vulnerabilities

Generally, Elasticsearch uses the following functions of the Security Manager [40]:
e FilePermission (read, write)
e SocketPermission (connect, listen, accept)
e block System.exit (via java.lang.Runtime)
e block System.exec (via java.lang.ProcessBuilder)

Primarily the Security Manager cannot be used if a project is not properly encapsulated
packing all dependencies in one jar. With this practices, all permissions must be granted
to all classes in the project or setting of doPrivileged in multiple places which can become
complex and error prone fast. Elasticsearch circumvented this issue early on by building
their own module architecture which encapsulates not just 3rd party dependencies but
also its own domains like network access properly in order to allow granular permission
setting for every dependency and internal module. This practice requires a lot of en-
gineering effort, building an architecture around a security tool. Such an effort seems
unlikely to be deployed in homegrown applications or even in the most available open
source applications. In addition to the Security Manager elasticsearch uses seccomp due
to the assumption that the Security Manager could fail. seccomp works as second layer

of security blocking forking of any processes.

Summary

Elasticsearch uses the Security Manager to block System.exit, System.exec, Network
Connection and read/write access to files outside of its home directory. Elasticsearch’s
Security model heavily relies on the Security Manager. Due to the Security Managers
removal it can be assumed that they will build an alternative which will be tailored to

their project and thus not usable for other projects. However, as this thesis shows there

27

4 Development of alternatives to the Java Security Manager

is a valid need for an alternative that is usable for projects in general. The prototype de-
livers a sandboxing solution with the ability to block System.exit, System.exec, Network
Connection and propose an architecture for controlling read/write access. This is due
to the reason, that control over file access can be achieved by implementing a custom
filesystem via the Filesystem API. This approach is well known, while the implementa-
tion of the other sandboxing capabilities needs a more complex solutions that make use

of relatively new JDK APIs closely working on a lower JVM level.

4.1.2 Requirements

From the analysis of the previous chapter, the following requirements were derived:
1. Prototype should be configurable only at JVM startup
2. Prototype should be easy to implement, no changes in the projects using it needed

3. Prototype should implement Sandboxing features for: System.exit, System.exec

and Network Connection

4. Prototype should be simple, focused and minimize flexibility to enforce safety and

misconfiguration

In addition to the requirements derived from the analysis, security requirements must be
considered as the solution operates on a deep technical level in the JVM and manipulates
loaded classes at runtime. Therefore, the architecture and coding adhere to the Java
Secure Coding guidelines [44], were ever possible. Not all guidelines are applicable since

the prototype operates on a low technical level. Heavy use of ClassFile API [24]

28

4 Development of alternatives to the Java Security Manager

4.2 Alternative Tools

Before developing the prototype from scratch, tools that provide sandbox capabilities for

Java applications were evaluated.

4.2.1 Seccomp

The secure computing mode (seccomp) is a security feature of the Linux kernel that
can be used to restrict system calls of processes interacting with the operating system.
Even though seccomp provides sandboxing capabilities, it does not provide the level of
granularity of the Security Manager as well as its platform independence. However, it can
be used as a layer of the security for the case that the Security Manager or an alternative
fails to block system calls equal to elasticsearch’s use of seccomp [40]. Similar tools exist

to implement such capabilities in macOS [43] and on Windows|1].

4.2.2 ePBF

The extended Berkley Packetfilter (ePBF) provides sandboxing capabilities that allow
running application in a privileged context without the need of changing kernel source
code or load kernel modules.[9] While eBPF allows running applications on a privileged
level, it does not come with the functionalities to granular grant permissions to the
sandboxed application but rather operates as an observability tool. It can be used to

monitor system performance, application behavior as well as anomaly detection.

4.2.3 GraalVM

GraalVM is a virtual machine solution developed by Oracle. It is intended to improve
application performance as well as compatibility with other programming languages.[17]
While GraalVM generally provides sandboxing capabilities for scripting languages like
Javascript, it does not provide capabilities to sandbox untrusted Java code at runtime. [18|

Thus, it is not a suitable alternative for the security manager.

29

4 Development of alternatives to the Java Security Manager

4.2.4 Summary

Existing tools that provide sandbox capabilities operate on the OS level and are therefore
not suited as an alternative of the Security Manager. Additionally, there are partially
depended on Operating Systems which contradicts the idea of running Java everywhere
independent from the platform. Additionally, their deployment overhead makes it ex-
tremely difficult to package them with an application. However, they can be used to
reinforce the Security Manager to catch malicious system calls if the Security Manager

fails in addition to the applications build-in security measures.

4.3 Architecture

This description of the architecture refers to release 0.1 of the prototype [31]. The archi-
tectural design of the prototype is based on the so called interceptor pattern. Generally,
architecture patterns describe successful solutions to common software problems. Ac-
cording to Avgeriou and Zdun [2| the use of architectural patterns offer "well-established
solutions to architectural problems, help to document the architectural design decisions,
facilitate communication between stakeholders through a common vocabulary, and de-
scribe the quality attributes of a software system as forces.”

This is essential in order to ensure a solution that will be maintainable without too much
complexity. Avgeriou and Zdun define interceptor pattern as a mechanism that allows
augmenting of an existing service in response to incoming events by using reflection in
order to retrieve necessary information for processing. Implementing sandboxing capa-
bilities on JVM level works with this mechanism. Classes that are being executed need
to be intercepted, the caller need to be checked for permission and be either blocked or
forwarded accordingly. In the prototype, the logic of the interceptor is implemented via
the MathildaAgent, the "service" that is augmented is the class that is currently loaded.
(Figure 4.1)

The technical implementation of the interceptor pattern is based on java modularization.
Modules provide two guarantees at runtime that are crucial for the maintainability and
security of an application. First, reliable configuration which guarantees that only one
instance of each class exists and that they are the same as those that are used during
build-time. This is important due to the way the VM scans the classpath which can

easily lead to confusing behavior when having similar jars in different versions on the

30

4 Development of alternatives to the Java Security Manager

Figure 4.1: Matilda Agent - JVM Interaction

classpath as the VM uses the jar that occurs first during scanning. [38] The second
and more security critical guarantee is strong encapsulation for classes and interfaces.
Therefore code can only be accessed directly or through reflections if explicitly declared
in the module definition. [38] This guarantees that classes and interfaces are only used
via their defined API. Furthermore, using modules is generally recommended by the
Java Secure Coding Guidelines [44]. In practices, most projects can be modularized
easily, however for big old code bases it might be an issue. This is an disadvantage that
is consciously accepted in order to get the advantages of security, maintainability, and

reduced complexity.

The core module implements the interceptor and its underlying logic. The bootstrap.module
provides access control configuration capabilities. These two modules are completely sep-
arated from one another and have no internal dependencies, this implements the concept

of separation of concerns.

31

4 Development of alternatives to the Java Security Manager

4.3.1 Core Module

The matilda.core module implements the Java Agent and the logic of the class transfor-
mation that is used to allow blocking of System.exit, System.exec and Network connec-

tion.

Figure 4.2: Class Diagram - Matilda Core Module

4.3.2 Agents

The prototype should provide sandboxing capabilities that allow critical functionalities to
be controlled. It needs to work on a level between the application and the JVM to build
this functionality. This is achieved by using the java.lang.instrument package, specifically
the Agent class. A Java Agent allows a developer to either attach to the JVM before
the application starts via the premain method or attaches the Agent after the JVM has
started to run via the Agent.main() method. The prototype uses the first option as it
targets to transform every class once it is loaded. The premain method takes the Agent
as a string argument and allows to pass an instance of Instrumentation additionally.
This instance provides an interface to low-level JVM functionalities. Control over the
loaded classes is needed to control critical functionalities. In the case of the Security
Manager, every class needs to check if the Security Manager was enabled and then run
SecurityManager.checkPermission() before any restricted logic is executed, wit checks
if the caller has permission to call the method or access certain internal functionality.

This design leads to complexity as every class needs to be adjusted to use the Security

32

4 Development of alternatives to the Java Security Manager

Manager. To prevent this flaw from being reintroduced, the prototype manipulates the
target classes during class loading so they check the permission of their caller every time
they are being called. Setting up the agent with the premain method allows accessing
even JDK internal classes before the application is started and implements methods
that manipulate classes while they are loaded. The ClassFile Transformer class which is
triggered for every class being loaded provides the capability to process or even replace
the loaded bytecode with an altered bytecode before any application code can utilize
it.

4.3.3 Class Transformation

The prototype needs to be able to adjust the behavior of all classes being loaded in
order to enforce permissions accordingly. With the ClassFile Transformer providing the
bytecode representation of every class a tool to manipulate this code is needed. In
addition, it needs to be decided when and how the permission check is being conducted

and enforced.

Bytecode manipulation

A few libraries can be used to do bytecode manipulation, most prominently the ASM
library. During early stages of the prototype development, ASM seemed to be the most
promising way to do bytecode manipulation. Developing the first iteration, it became
clear that using ASM and its visitor pattern quickly leads to a complexity that is hard
to maintain. Furthermore, considering the robustness that is needed to create a security-
related prototype is endangered by using non-jdk libraries, as those libraries are always
behind the newest JDK release because they can only be updated to the newest version
once the JDK is released. Furthermore, according to JEP 484 [23]

"[..Ja significant problem for class-file libraries is that the class-file format is evolving
more quickly than in the past, due to the six-month release cadence of the JDK. In recent
years, the class-file format has evolved to support Java language features such as sealed
classes and to expose JVM features such as dynamic constants and nestmates. This trend
will continue with forthcoming features such as value classes and generic method special-
1zation. "

Therefore, the prototype uses the new JDK Class-File API, it is still a preview fea-
ture on JDK 23 but will be finalized with JDK 24. In addition to solving the above

33

4 Development of alternatives to the Java Security Manager

mentioned issues, this decision also leads to improved security model. Only using JDK
API makes the application independent from external dependencies and thus reduces
the risk of supply chain attacks. The next step following the requirements would be the
class transformation provided by the ClassFile Transformer. As stated above, different
classes need to be transformed depending on what method needs to be blocked. For
this purpose, the prototype offers a customized interface called MatildaCodeTransformer
with two methods getTransformPredicate and getTransform, which are implemented in

customized transformers for the methods that should be blocked.

Identifying classes that should be modified

Before manipulating a method, the right piece of code needs to be identified. Manipulat-
ing methods into the desired behavior can be achieved on different levels but also comes

with some pitfalls.

Rewriting the invoking method

One possibility is to identify the invoking method (the caller of the API matilda tries do
protect) and transform it. However, this leaves the actual executed method untouched,
making the prototype vulnerable to attacks using the java reflection API. A malicious
caller could still access code via the reflection API and execute methods that are sup-
posed to be protected. Additionally, it would require a significant amount of byte code

manipulation even if the majority of the calling code is never executed.

Rewriting the method itself

In order to rewrite the protected method itself, the method body needs to be identified
and transformed. The prototype achieves this by using the getTransformPredicate. It
matches MethodModel against characteristics specific to the method that needs to be
blocked and can be used to test to identify the method that needs to be transformed.
A MethodModel generally models a method’s characteristics and can be traversed with
a stream. The getTransformPredicate checks if the method has the correct parent class

and matches against the method name and type.

Transformation

getTransform implements the customized transformer to transform the class (Example
Code A.5). This transformer does decide the final behavior of the method; it manipulates
the class, so it invokes the MatildaAccessControll when it is being called. It first checks

via the getTransformPredicate if the method needs to be transformed. If not, it returns

34

4 Development of alternatives to the Java Security Manager

public void exit(int status) {
SecurityManager security = System.getSecurityManager();
if (security != null) {
security .checkExit(status);
}

Shutdown.exit(status);

Listing 2: Runtime.exit Before Transformation

the CodeFElement. Otherwise, it transforms and returns the transformed class accordingly.

See A.4 for a bytecode example before and after the transformation.

public void exit(int status) {
MatildaAccessControl.checkPermission("System.exit");
SecurityManager security = System.getSecurityManager();
if (security != null) {
security .checkExit(status);
}

Shutdown.exit(status);

Listing 3: Runtime.exit After Transformation

4.3.4 Bootstrap Module

The Bootstrap Module implements the access controller that checks each method call
for its permissions and implements the configuration logic. The module is build as a
separate jar which is added to the bootstrap class path. It is only loaded once called by
the manipulated class. It is not only packaged separately in its own jar for security reasons
but also to prevent class loading issues since matilda mainly manipulates JDK internal
classes like java.lang. Runtime. For this to operate correctly MatildaAccessControl and
all its dependencies must be available to the platform classloader hence it needs to be

available on the bootstrap classpath.

35

4 Development of alternatives to the Java Security Manager

Figure 4.3: Class Diagram - Matilda Bootstrap Module

4.3.5 Access Control

The MatildaAgent transforms each class that should be protected such that that it calls
MatildaAccessControl before the critical section of the code is accessed, which checks
the permission and decides the final permission of the methods behavior. The Matil-
daAccessControl class uses a singleton pattern to ensure that only one instance of the
access controller exists in the JVM. Singletons are instantiated exactly once and are
often used to represent system components like file systems.[3|. Similar to the Secu-
rity Manager the MatildaAccessControl uses a whitelisting approach. The access control
(MatildaAccessControl) uses a module-based whitelisting approach. Every module that
should be allowed to execute System.ezit, System.exec, and Network connection needs to
be whitelisted.

Configuration of Permissions

As stated in the scope the prototype should be configurable but not offer a brought
flexibility like the Security Manager. In order to make the prototype configurable it uses
system properties which can be easily passed via the command line. Those properties are
represented as a simple key-value store (like a hash table), so their values can be accessed
through their keys. In case of the MatildaAccessControl the key value pair follow the

scheme:

matilda.<function>.allow:module <module name>[,module <module name>|

Listing 4: Property Format

36

4 Development of alternatives to the Java Security Manager

The configuration will be checked for spelling and syntax errors by the MatildaAccess-
Control and throw an error accordingly. Afterwards the properties will be added to
sets (systemExitAllowPermissions, systemEzecAllowPermissions, networkConnectAllow-

Permissions) which will be used for permission checking.

Identification of Caller Class

In order to identify the caller and its permissions the Security Manager checks if every
method on the current call stack has permission to execute the called method. This
mechanism ensures that less privileged domains cannot gain additional permission by
calling or being called by a more privileged domain. The prototype implements a similar
approach. Before checking if the calling class belongs to a module with the necessary
permission, the calling class needs to be identified. The call stack is a stack of program
counters representing instructions that are being executed. In order to find the calling
class the implementation optimized away the first few elements since they are known to
be part of the prototypes architecture, however it is depended of the architecture of the
solution. If an additional method is implemented into the prototype the frames to skip

need to be adjusted

Figure 4.4: Call Stack Example

Enforcement of Permission
The permissions are enforced once the access control has identified the first class in the

call stack that does not belong to the platform core module or in other words the first

class that is not part of the java core class library and checks if the module (caller module)

37

4 Development of alternatives to the Java Security Manager

it belongs to is in the allowed set of modules. If the caller module is not allowed to access
this particular protected method a RuntimeFxception is thrown. Otherwise the code

executes the actual code of the transformed method.

4.4 Testing

A number of unit and integration tests were implemented to ensure the correctness of the
prototype and the proper interaction of the developed modules. Due to the architecture,
tests were conducted per module. While unit testing could be achieved by a standard test

setup, the integration tests needed additional helper classes to reach full test coverage.

4.4.1 Agent Matilda

The goal of testing the Agent Matilda module is to generally check if the transforma-
tion of classes works correctly by checking if it calls for System.exit, System.ezxec, and
Socket.connect are correctly blocked. Per default the prototype blocks System.exit, Sys-
tem.ezec, and Socket.connect which is expected behavior but lead to the issue that the
gradle module will not be able to end the testing process once testing is finished due to
its purposeful call to System.exit. Therefore the module gradle.worker requires specific
permission to run System.exit. A.3 While this is an implementation detail of the testing
used, it serves as a real-world integration test for the agents capabilities. Taking this con-
figuration steps into account, unit test covering the case of successfully blocking method
calls can be run. Additionally, this configuration is a test cased as well as it inherently
tests if the access controller properly works by granting the the gradle worker sufficient
permission. In addition to this unit-level testing, the capability of the module to protect
against reflection attacks needs to be considered as well. In the past, the reflection API
has been used to bypass Security Manager controls [41]; therefore, testing the prototype
for its robustness against reflection is a significant concern. The use of reflection can be
done by calling the method that should be blocked by using the getClass and getMethod
methods of the reflection API and invoking it. In the first iteration, this test yielded a
negative result as the prototype transformed just the invoking method, not the method
body itself. Due to this test, the prototype was adjusted so that the method body is cor-
rectly rewritten and the application is protected against such attacks. Yet, the prototype

also needs to verify that the the actual protected or transformed code is still working

38

4 Development of alternatives to the Java Security Manager

correctly. In order to do that tests deploy a self-contained server that listens to a random
port while the test with sufficient permission tries to communicate with it. This should
trigger the blocking of the Socket.connect() method, which is called every time a socket

is opened.

Integration testing

To test if the Matilda Agent and the Access Control module work together properly the
case of setting permission for a specific module via the command line needs to be covered
as well. For this reason a proxy object that belongs to another module is necessary
whether the test can grant permission to execute specific calls. For this purpose the
ModuleProzy class was created within the matilda.core module. It proxies the invocation
of a method and returns object accordingly or the initialization of an object by invoking a
certain method or a constructor within the context of the matilda.core module. In future
iterations of this prototype, this should be moved out into its own module to keep any
non-production code outside of the core module. As a workaround, this class will not be
packaged into the jar files that are used to run the agent and therefore are only available
to the testing infrastructure. In the integration tests the ModuleProxy class is used to call
the methods protected by the Matilda Agent. In order for this test to be successful, the

permissions for the module need to be set in accompanying gradle configuration A.3

4.4.2 Matilda Access Control

The testing of the Matilda Access Control covers standard unit tests. Testing both:

successful blocking as well as successful setting of permissions.

4.5 Usage of the Prototype

In order to use the prototype, developers need to either download or build two jars. First
the matilda-agent.jar and secondly the matilda-bootstrap.jar . The jars need to be passed
via the command line when starting the application that should use the project. The
matilda-agent.jar contains the matilda core module with the code relating to the agent it
needs to be passed with the java agent parameter. In addition the matilda.bootstrap.jar

needs to be added to the bootstrap path to avoid class loading conflicts. Furthermore

39

4 Development of alternatives to the Java Security Manager

permission can be configured for System.exit, System.exec and Socket.connect. As the
prototype makes use of a preview features, preview features need to be enable via the

commandline.

4.5.1 Use of Prototype with tomcat

In order to demonstrate the easy integration of the prototype it was implemented into
a tomcat server in order to run the server with the prototype the matilda-agent.jar and
matilda-bootstrap.jar need to be added to the project and passed through the command
line this can be done exporting the CATALINA OPTS ' with the following configura-

tion.

export CATALINA OPTS="——enable—preview
—javaagent:. /path /matilda—agent—1.0—-SNAPSHOT jar
—Dmatilda.bootstrap.jar=. /path /matilda—bootstrap—1.0—-SNAPSHOT .jar"

Listing 5: Configuration tomcat

As well as adding the enable-preview to avoid any warnings related to the usage of the
ClassFile API.

In order to test if blocking the critical functions works properly a test servlet was created

that calls System.ezec.(see code example A.2)

The server output shows that System.ezec has been blocked successfully. Also note that
this simple servlet does not have a module name which is the case if Java Code does
not use modularization. Calls from an unnamed module will always be blocked by the

agent.

!command line options that are used by the tomcat server and directly passed to the JVM in addition
to it’s own used parameters

40

4 Development of alternatives to the Java Security Manager

Figure 4.5: Server Error
4.6 File System Access - Architecture Proposal

While controls over the filesystem access like read, write, and delete could be achieved
through the developed prototype, using the existing filesystem abstraction provided by
the JDK is more suitable. In general, the usage of Java Agents and bytecode manipu-
lation should be a last resort in order to achieve customization as it is provided by the

prototype.

4.6.1 Filesystem Access and the JVM

The Java Virtual Machines (JVM) access to the filesystem is managed by a FileSystem-
Provider[14]. If no FilesystemProvider is defined, access to the filesystem will be provided
by a system-default provider that creates a default filesystem.[4] The FileSystems API
allows the creation of custom filesystems that can be used to manage the JVMs access
to the underlying OS dependent file system. This API is better suited to control read,
write, and delete actions as it already provides the necessary abstractions to manage

such actions.

41

4 Development of alternatives to the Java Security Manager

Figure 4.6: Class Diagram: MatildaFileSystemprovider

4.6.2 Architecture Proposal

In order to implement controls over read, write, and delete operations on the filesys-
tem a customized FilesystemProvider is needed. In order to identify which method
needs additional checks through the MatildaAccessController, a review of the FileSys-
temProvider class has been conducted, identifying all methods that contain permissions
checks by the Security Manager. The Documentation of the FilesSystemProvider also
gives insight whether a read, write, or delete check is needed. 4.6 shows a simplified class
diagram with all methods that need to be overwritten. In order to properly implement
a custom FileSystemProvider [14] the classes Path, FileSystem [4], FileStore 13|, Di-
rectoryStream< Path> [7] needs to be overwritten as well due to internal dependencies.
Additionally the MatildaAccessController needs to be extended with.

42

5 Evaluation

5.1 Objectives and Scope

The objective of this evaluation is a detailed and nuanced analysis of the developed
prototype with regards to its effectiveness as an defense tool that is similar to the Security
Manager. The analysis is bisected into two distinct approaches: a theoretical analysis
focusing on the prototypes applicability, its improvements compared to the Security
Manager, and general considerations regarding performance implications. Followed by
a practical analysis focusing on the prototype’s effectiveness as a defense tool against
common vulnerabilities. The scope of this evaluation encompasses a comprehensive study
of the prototype’s general effectiveness and applicability. Specifically by delving into
the prototypes effectiveness of protecting against vulnerabilities similar to Log4Shell
[29]. However, the evaluation will not extend to a broader study of effectiveness with
regards to the wide field of vulnerabilities as long term studies in widely used projects
would be necessary. Furthermore, the practical performance or usability is out of scope.
This focused approach ensures that the evaluation remains aligned with the primary

capabilities of the prototype and stays in scope with this thesis.

5.2 Theoretical Analysis

5.2.1 Theoretical Applicability

The prototype is partially based on the security manager’s applicability analysis, and its

theoretical applicability is very similar to that of the Security Manager.

43

5 FEvaluation

Access Control

The prototype’s access control capabilities are based on the modularization! of the ap-

plication.

It is not applicable to general authentication and authorization requirements. Due to
its missing implementation of controlling file system access it currently holds no capa-
bilities to block critical functions like modifying sensitive data, system or administrative

permissions or hard-coded credentials

Input Validation/Data Processing

The prototype is generally not designed for input validation and in its current version
does not support the granular control of filesystem access. Therefore, its applicability to
exploit which is based on insufficient input validation is limited. However, it comes with
the capability of blocking any execution of spawning new process (System.exe), exiting
the process (System.exit), opening a network connection (Socket.connect) and actively

preventing attacks like Log4Shell by mitigating Socket.connect.

Memory Safety

Memory Safety can be disregarded as Java is designed as a memory safe language with
automatic memory management. Therefore, protection against memory safety exploits

is not in scope of the prototype.

Conclusion

The prototype’s applicability is limited to managing resource permissions rather than
directly preventing or resolving vulnerabilities. Compared to the Security Manager, it
currently allows only managing a reduced set of resource permissions: (System.ezec,
System.exit, Socket.connect). However, the architecture allows the extension of these
functionalities if needed. This comes with the trade-off of possibly creating a more

complex application. Similar to the Security Manager, the prototype’s effectiveness is

'Ron Pressler of the Java team at Oracle defines Java Modules as " a set of packages that declares

which of them form an API accessible to other modules and which are internal and encapsulated —
sitmilar to how a class defines the visibility of its members."[38]

44

5 FEvaluation

based on the permission model and structure of the project. However, the dependency
is reduced by employing a less granular permission model and enforcing modularization
which eliminates the issue of granting all permissions but rather adjusting to secure

architecture guidelines.

5.2.2 Improvements

The Security Manager was deprecated due to its high maintenance costs and integration
complexity which led to a lack of adoption. However, studies have shown that it can
be used as an effective second line of defense. The prototype is already reduced in
complexity due to its focus on sandboxing capabilities with a limited set of functionalities.
The Security Manager’s high maintenance cost is rooted in the extensive code path
and additional checks that had to be implemented in order to use it. The prototype
uses a different approach while the Security Manager needs adding in checkPermission
methods into every class that should be used with the Security Manager. The prototype
adds permission checks during class loading by manipulations the bytecode of the class
directly. The only user interaction that is needed for usage is the attachment of the
MatildaAgent and the loading of the MatildaBootstrap.jar. This not only reduces the
maintenance costs but also the integration complexity. The only constraint is the proper
use of modules which is a security best practice recommended by the Java Secure Coding
Guideline [44].

Critique regarding use Java Agents and Bytecode manipulation

The prototype is based on Java Agents making heavy use of Bytecode manipulation
using the ClassFile API while this is the only way to currently implement those kind
of sandboxing capabilities aside of changing the JDK code itself. The usage of Java
Agents and bytecode manipulation comes with imminent risk as it is present root kit like
functionalities and the potential risk of missing implementation details of certain JVMs
like method overrides not taken into consideration. Building a sandboxing solution that
is based on a similar level of abstraction as building a filesystem would be preferable.
However, this solution would come with the extensive need of overriding and adjusting
code which could present a similar integration complexity and challenges as the Security

Manager revealed in the past.

45

5 FEvaluation

5.2.3 Performance

When evaluating security tools, its performance is often a major concern as it can impact
the tools abilities to detect and mitigate attacks. However, this is primarily true when
it comes to real-time threat detection tools. Even though the prototype serves as a
security tool at runtime its performance is not linked to its effectiveness. Firstly, the
prototype is intended as a second line of defense reducing the impact of errors that
have been made during the development process. Secondly, the transformation of the
class, which would be intentionally identified as a root of performance issues, happens
during class loading which takes place before the application is even started. Therefore,
it has no implication for the applications performance. However, the prototype allows
run time checking of permissions which could lead to performance issues. Therefore, the
permission checking itself needs to be considered for any performance evaluation. The
frequency in which the permission checks are conducted is highly dependent of the specific
application using the prototype. Only excessive calling of permission checks could lead
to some performance implication. Compared to the time needed to execute System.exe
or performing a network connect via Socket.connect, these checks merely add noise then
anything else. Unless a method is considered "hot" and therefore considered eligible for
JIT compilation permissions checks are not expected to contribute to the execution time
of a method in any significant way. The methods that perform these checks today are
not expected to be called repeatedly or in a context where those checks could impact

performance.

5.3 Practical Analysis

To make this analysis comparable, it will test the prototype’s effectiveness against the
Log4Shell vulnerability, as the case study showed that the Security Manager can be
used as an effective measure of this kind of attack. Log4Shell is still a representative
vulnerability, according to Sonatype’s latest "State of the Software Supply Chain" report,
13% of the Log4J downloads remain vulnerable to Log4Shell.[30].

5.3.1 Test setup

Initially, the testing was planned as part of the regular integration testing. However, test-

ing Log4Shell within the unit test showed some class loading issues. Therefore, the pro-

46

5 FEvaluation

totype repository contains a separate project that demonstrates the effective use against
the Log4Shell. 1t is described by the National Vulnerability Data Base as follows:
"Apache Log4j2 2.0-beta9 through 2.15.0 (excluding security releases 2.12.2, 2.12.3, and
2.8.1) JNDI features used in configuration, log messages, and parameters do not protect
against attacker controlled LDAP and other JNDI related endpoints. An attacker who
can control log messages or log message parameters can execute arbitrary code loaded
from LDAP servers when message lookup substitution is enabled."|29]

The first step of the exploit is to call a server through an LDAP instruction, which can

be done via log messages, configuration, or parameter passing.
logger . error ("${jndi:ldap://127.0.0.1: " + port +"/matilda—poc}")
Listing 6: Log4Shell expoloit example

If this call is successful, the exploit works, and the application is vulnerable. In order to
prove that the prototype is effective against such an attack, it needs to be demonstrated
that it successfully blocks such a call. The test setup consists of a simple socket server
and a logger that uses a vulnerable version of LogjJ (2.14.1)[29]. While the server listens
for any input, the logger subsequently tries to inject an LDAP instruction to connect
to the server via a log4j logging statement. If the call succeeds, this method will fail
with an exception (see listing: 8); otherwise, it logs that the LDAP call was successfully
blocked. The test setup offers to run the POC with and without the prototype in order
to show that the application would be otherwise vulnerable. It can be run with gradle

run or gradle runNoAgent.

> Task :runNoAgent FAILED

14:06:22.372 |Thread—0] ERROR org.matilda.ServerLog — start server on port
57074 address: 127.0.0.1

14:06:22.372 |Thread—0] ERROR org.matilda.ServerLog — starting to listen

14:06:22.378 | Thread—0] ERROR org.matilda.ServerLog — accept

14:06:22.372 |[main] ERROR org.matilda.ServerLog — ${jndi:ldap
://127.0.0.1:57074 /matilda—poc}

Exception in thread "main" org.opentest4j.AssertionFailedError: LogForShell was
not blocked by matilda ==> expected: <false> but was: <true>

Listing 7: Output Test without Matilda Agent

47

5 FEvaluation

> Task :run

12:14:00.930 |Thread—0] ERROR org.matilda.ServerLog — start server on port
49563 address: 127.0.0.1

12:14:00.931 |Thread—0] ERROR org.matilda.ServerLog — starting to listen

12:14:00.931 [main] ERROR org.matilda.ServerLog — ${jndi:ldap
://127.0.0.1:49563 /matilda—poc}

12:14:00.948 |[main|] ERROR org.matilda.ServerLog — Matilda has successfully
blocked log4shell

Listing 8: Output Test with Matilda Agent

5.3.2 Evaluation

Testing the prototype with the test setup showed that the prototype effectively prevents
an application from being vulnerable to the Log4Shell vulnerability. The test setup
allowed the application to run with and without the prototype. When the prototype is
activated, malicious LDAP instructions are prevented from being executed by blocking
any network connection. While the prototype was deactivated, the vulnerability was
exploited. This underlines the prototype’s efficiency in mitigating the attack, similar to

capabilities of the the Security Manager.

48

6 Conclusion and future work

6.1 Conclusion

Through this thesis considerable progress has been achieved in creating alternative so-
lutions for the security manager. Key achievements include, a systematic analysis of
the Security Manager’s critique both in a practical dimension and on an academic level
to identify what features and improvements need to be implemented in an alternative
prototype. Based on the analysis is the development of an alternative to the Security
Manager that implements sandboxing capabilities at runtime. The thorough analysis of
the Security Manager is crucial for several reasons. The case study conducted showed
that the Security Manager can be used as an effective measure reducing the impact of
common vulnerabilities. However, the analyzed critiqued shows that the adoption and
secure use of the Security Manager is almost non-existent as well as the high maintenance
and implementation costs which finally led to the deprecation of the Security Manager.
The module and simple nature of the prototype delivers an easy to implement robust
security solution that allows blocking of critical functionalities at runtime. This solution
delivers another line of defense against the currently rising supply chain attacks. Fur-
thermore, it exists and operates entirely on top of an existing application and is opaque
to the application developer. It allows to secure and sandbox 3rd party applications
without any code modification as long as relevant parts of the application use modular-
ization. This allows individuals and organizations to deploy an extra layer of defense

against unknown software bugs, supply chain attacks and malicious code maintainers.

49

6 Conclusion and future work

6.2 Future Work

Building upon the analysis and the prototype developed in this thesis, several possibilities

for further research and development have been identified:

1. Evaluation of the impact of language Level Sandboxing The thesis already
delivers a thorough analysis of Java language-based sandboxing and a systematic
analysis of the academic discourse. However, a full-picture analysis is needed to
determine whether language-level sandboxing increases security protection against
supply chain attacks and other common vulnerabilities. The implementation of a
language-level sandbox by node.js proposes that there is a practical need for such

concepts. [35]

2. Validation Framework A challenge identified both by the practical and academic
analysis is the use of the Security Manager and the prototype to set the correct
permissions and validate them to avoid false use of the solution. An additional
feature to the prototype is a solution that first analyzes which configuration is

needed and validates any insecure configuration once set.

3. Implementation of Filesystem Access The thesis puts forward an architectural
proposal to implement sandbox capabilities for Filesystem access that could be

implemented in another iteration of the prototype.

4. Improvements Regarding Usability The main reason for the lack of adoption
of the Security Manager was its complexity accompanied by poor usability. In order
to present an improved prototype, it should be scrutinized against usability best

practices.

50

Bibliography

1]

2]

3]

4]

[5]

[6]

7]

8]

19]

Active Process — Limit. https://learn.microsoft.com/en-us/
windows/win32/api/winnt/ns-winnt-jobobject_basic_limit_

informationredirectedfrom=MSDN. — Acessed: 25.11.2024

AVGERIOU, Paris ; ZDUN, Uwe: Architectural Patterns Revisited - A Pattern Lan-
guage. In: EuroPLoP’ 2005, Tenth European Conference on Pattern Languages of
Programs, Irsee, Germany, July 6-10, 2005 Bd. 81, 01 2005, S. 431-470

BrocH, Joshua: Effective Java Programming Language Guide. Addison-Wesley,
2001

FileSystem Class. https://download. java.net/java/early_access/
valhalla/docs/api/java.base/Jjava/nio/file/FileSystem.html. —
Accessed: 01.10.2024

COKER, Zack ; MAASS, Michael ; DING, Tianyuan ; LE GOUES, Claire ; SUNSHINE,
Joshua: Evaluating the Flexibility of the Java Sandbox. In: Proceedings of the 31st
Annual Computer Security Applications Conference. New York, NY, USA : Associa-
tion for Computing Machinery, 2015 (ACSAC ’15), S. 1-10. — ISBN 9781450336826

Java Platform, Standard Edition,Security Developer’s Guide. https:
//docs.oracle.com/en/java/javase/21/security/java-security-
overviewl.html. 2024. — Accessed: 07.06.2024)

DirectoryStream. https://docs.oracle.com/javase/8/docs/api/java/
nio/file/DirectoryStream.html. — Accessed: 01.10.2024

DUsING, Johannes ; HERMANN, Ben: Analyzing the Direct and Transitive Impact
of Vulnerabilities onto Different Artifact Repositories. In: Digital Threats 3 (2022),
feb, Nr. 4

eBPF Documentation. https://ebpf.io/what—-is—-ebpf/. 2024. — Accessed:
01.11.2024

51

Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

The heart of the free and open FElastic Stack. https://www.elastic.co/
elasticsearch. 2024. — Accessed: 19.09.2024)

Subject: Apache Logjj2 Vulnerability - CVE-2021-44228, CVE-2021-
45046, CVE-2021-45105, CVE-2021-44832 - ESA-2021-31. https:
//discuss.elastic.co/t/apache-log4j2-remote-code—execution-—
rce-vulnerability-cve-2021-44228-esa-2021-31/2914762ultron=
logd4js—exploit&blade=announcement&hulk=emailé&mkt_tok=
ODEzLU1BTS0zOTIAAAGBUSN1ZQOB1VujslJEMOCzxtagO0JMHHD 7tRaNba——
TzhstpotlftO0x7E5zeQYNYg9cQFrY37aUlhmbyI6BTYpaRzsuK4b_7Z_
GJUxTCux1bZF23HS-RI. 2021. — Accessed: 30.08.2024)

ErrorProne. https://errorprone.info. — Accessed: 28.11.2024

FileSystem Class. https://download. java.net/java/early_access/
valhalla/docs/api/java.base/Jjava/nio/file/FileStore.html. -
Accessed: 01.10.2024

Class FileSystem Provider. https://docs.oracle.com/en/java/javase/
23/docs/api/java.base/java/nio/file/spi/FileSystemProvider.
html. — Accessed: 29.11.2024

Policeman’s Forbidden API checker. https://github.com/policeman-—
tools/forbidden—apis/wiki.— Accessed: 28.11.2024

Google scholar top publications. https://scholar.google.co.in/
citationsview_op=top_venues&hl=en&vg=eng. 2024. - Accessed:
19.09.2024)

Introduction to GraalVM. https://www.graalvm.org/latest/

introduction/. 2024. — Accessed: 01.11.2024

GraalVM Security Guide. https://www.graalvm.org/latest/security-
guide/. 2024. — Accessed: 01.11.2024

CVE-2014-0160 Detail. https://nvd.nist.gov/vuln/detail/cve—-2014-
0160. 2014. — Accessed: 11.11.2024

HEINEMANN, Lars ; DEISSENBOECK, Florian ; GLEIRSCHER, Mario ; HUMMEL,
Benjamin ; IRLBECK, Maximilian: On the extent and nature of software reuse in

open source Java projects. In: Proceedings of the 12th International Conference on

52

Bibliography

21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

Top Productivity through Software Reuse. Berlin, Heidelberg : Springer-Verlag, 2011
(ICSR’11), S. 207-222. — ISBN 9783642213465

HOLZINGER, Philipp ; TRILLER, Stefan ; BARTEL, Alexandre ; BODDEN, Eric: An
In-Depth Study of More Than Ten Years of Java Exploitation. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security. New
York, NY, USA : Association for Computing Machinery, 2016 (CCS ’16), S. 779-790.
— ISBN 9781450341394

JDK 9 Release Notes - Deprecated APIs, Features, and Options. https:
//www.oracle.com/java/technologies/javase/9-deprecated-
features.html. 2017. — Accessed: 30.05.2024

JEP }84: Class-File API. https://openjdk.org/jeps/484. 2024. — Accessed:
01.10.2024)

JEP 486: Permanently Disable the Security Manager. https://openijdk.org/
jeps/486. 2022. — Accessed: 30.08.2024)

JEP /11: Deprecate the Security Manager for Removal. https://openijdk.org/
jeps/411. 2022. — Accessed: 24.06.2024)

KM, Yoongu ; DALY, Ross ; KiMm, Jeremie ; FALLIN, Chris ; LEE, Ji H. ; LEE,
Donghyuk ; WILKERSON, Chris ; LAIl, Konrad ; MUTLU, Onur: Flipping bits in
memory without accessing them: An experimental study of DRAM disturbance er-
rors. In: 2014 ACM/IEEE J1st International Symposium on Computer Architecture
(ISCA), 2014, S. 361-372

KOCHER, Paul ; HORN, Jann ; FOGH, Anders ; ; GENKIN, Daniel ; GRUSS, Daniel ;
Haas, Werner ; HAMBURG, Mike ; LipP, Moritz ; MANGARD, Stefan ; PRESCHER,
Thomas ; SCHWARZ, Michael ; YAROM, Yuval: Spectre Attacks: Exploiting Spec-
ulative Execution. In: /0th IEEE Symposium on Security and Privacy (S€P’19),
2019

LinpaoLM, Tim ; YELLIN, Frank ; BRACHA, Gilad ; BUCKLEY, Alex ; SMITH,
Daniel: The Java®) Virtual Machine Specification Java SE 22 Edition. https:
//docs.oracle.com/javase/specs/jvms/se22/jvms22 .pdf. 2024. — Ac-
cessed: 07.06.2024)

CVE-2021-44228 Detail. https://nvd.nist.gov/vuln/detail/CVE-2021-
44228. 2021. — Accessed: 30.08.2024)

53

Bibliography

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

State of the Software Supply Chain. https://www.sonatype.com/state-of-
the-software-supply—-chain/introduction. 2024. — Accessed: 11.11.2024

Matilda Release 0.1. https://github.com/khaleesicodes/Matilda/
tree/branch_v0.1. — Accessed; 29.11.2024

Maven - Introduction. https://maven.apache.org/what-is-maven.html.
2024. — Accessed: 30.09.2024

MIRHOSSEINI, Samim ; PARNIN, Chris: Can automated pull requests encourage soft-
ware developers to upgrade out-of-date dependencies? In: 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE), 2017, S. 84-94

2023 CWE Top 25 Most Dangerous Software Weaknesses. https://cwe.mitre.
org/top25/archive/2023/2023_top25_list.html. 2023. — Accessed:
30.05.2024)

Process-based permissions. https://nodejs.org/api/permissions.html#

process—based-permissions. — Accessed: 20.11.2024

OWASP Top Ten. https://owasp.org/www—project—top-ten/. — Ac-
cessed: 28.11.2024

https://www.elastic.co/blog/painless—a-new-scripting-
language. — Accessed: 29.11.2024

PRESSLER, Ron: What Modules Are About. https://inside. java/2021/09/
10/what—-are-modules—about/. 2021. — Accessed: 28.11.2024

Qualitas Corpus. http://qualitascorpus.com. — Accessed; 10.8.2024

REELSEN, Alexander: 2020 Flasticsearch - Securing A Search Engine While
Maintaining Usability. https://spinscale.de/posts/2020-04-07—-
elasticsearch-securing-a-search-engine-while-maintaining-
usability.htmll. 2020. — Accessed: 30.05.2024)

CVE-2013-0422. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2013-0422. — Accessed: 25.10.2024

12 Rewvision History. https://docs.oracle.com/javase/8/docs/
technotes/guides/security/spec/security—-spec.docl2.html.
2002. — Accessed: 11.06.2024)

54

Bibliography

[43] OSX Sandboxring Design. https://www.chromium.org/developers/
design-documents/sandbox/osx-sandboxing-design/. - Acessed:
25.11.2024

[44] Secure Coding Guidelines for Java SE. https://www.oracle.com/java/
technologies/javase/seccodeguide.html. 2023. — Accessed: 01.09.2024

[45] WAHBE, Robert ; Lucco, Steven ; ANDERSON, Thomas E. ; GRAHAM, Susan L.:
Efficient software-based fault isolation. In: ACM SIGOPS Operating Systems Review
27 (1993), dec, Nr. 5, S. 203-216. - URL https://doi.org/10.1145/173668.
168635. — ISSN 0163-5980

55

A Appendix

A.1 Top Security and operating System conferences

1. IEEE Symposium on Security and Privacy (Oakland)

2. Usenix Security

3. ACM Conference on Computer and Communications Security (CCS)

4. ACM Symposium on Operating System Principles (SOSP)

5. Usenix Symposium on Operating System Design and Implementation (OSDI)

6. Annual Computer Security Applications Conference (ACSAC)

A.2 tomcat example

@WebServlet (name = "helloServlet", value = "/demo-servlet")
public class MatildaDemoServlet extends HttpServlet {
public void doGet (HttpServletRequest request,
— HttpServletResponse response) throws IOException {
//testing matilda

Runtime.getRuntime () .exec ("echo demo");

56

A Appendix

A.3 gradle test setup

test {

jvmArgs += |

"——enable—preview"," —javaagent:${project.rootDir} /build /libs /matilda—agent
—0.1.jar", "Dmatilda.bootstrap.jar=${project.rootDir} /build/libs /matilda—
bootstrap—0.1.jar",

// needs to be allowed so gradle worker can exit and negative Test cases work

"—Dmatilda.runtime.exit.allow=module gradle.worker",

"—Dmatilda.system.exec.allow=module matilda.core",

"—Dmatilda.network.connect.allow=module matilda.core"|

useJ UnitPlatform()

testLogging {
exceptionFormat = 'full’

}

Listing 9: gradle test setup

o7

A Appendix

A.4 Bytecode Example

Load|[OP=ALOAD 0, slot=0]

Load|[OP=ALOAD 1, slot=1]|

UnboundIntrinsicConstantInstruction[op=ICONST 0]

Invoke|OP=INVOKEVIRTUAL, m=java/net/Socket.connect(Ljava/net/Socket Address
V]

Return[OP=RETURN]

Listing 10: Class Bytecode before transformation

Invoke|OP=INVOKESTATIC, m=org/matilda/bootstrap /MatildaAccessControl.
checkPermission(Ljava/lang/String;) V]|

Load[OP=ALOAD _0, slot=0]

Load|OP=ALOAD 1, slot=1]|

UnboundIntrinsicConstantInstruction[op=ICONST 0]

Invoke[OP=INVOKEVIRTUAL, m=java/net/Socket.connect(Ljava/net /Socket Address
DV

Return[OP=RETURN]

Listing 11: Class Bytecode after transformation

58

A Appendix

A.5 Transformer Example

@SuppressWarnings("preview")

public class NetworkSocketTransformer implements MatildaCodeTransformer{
private final AtomicBoolean hasRun = new AtomicBoolean(false);

@Override
public CodeTransform getTransform() {
return (codeBuilder, codeElement) —> {
if ('hasRun.getAndSet(true)) { // this must only be run / added once on
top of the method
var accessControl = ClassDesc.of("org.matilda.bootstrap.
MatildaAccessControl");
var methodTypeDesc = MethodTypeDesc.ofDescriptor("(Ljava/lang/
String;)V");
codeBuilder
// Needs to be hard coded in order to not run into classpath
issues when using MatildaAccessControl, as it is not
loaded yet
1dc("Socket.connect")
. invokestatic (accessControl, "checkPermission",
methodTypeDesc)
.with(codeElement);

} else {

codeBuilder.with(codeElement);

@Override
public Predicate<MethodModel> getModelPredicate() {
return methodElements —> {

// Get class method is an element of

59

A Appendix

String internalName = methodElements.parent().get().thisClass().
asInternalName();
// Check if its parent is the Socket Class
return internalName.equals("java/net/Socket")
// Matches Methode
&& "connect".equals(methodElements.methodName().stringValue
0)
// Matches Method Type
&& "(Ljava/net /Socket Address;)V".equals(method Elements.
method Type().stringValue());

60

Erklarung zur selbststandigen Bearbeitung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbstéindig
verfasst und nur die angegebenen Hilfsmittel benutzt habe. Wortlich oder dem Sinn

nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich

gemacht.

Ort Datum Unterschrift im Original

61

