
Masterarbeit
Finn V. Dohrn

Adaptives maschinelles Lernen mit Mixture of Experts

Fakultät Technik und Informatik
Studiendepartment Informatik

Faculty of Engineering and Computer Science
Department of Computer Science

Finn V. Dohrn

Adaptives maschinelles Lernen mit Mixture of Experts

Masterarbeit eingereicht im Rahmen der Masterprüfung

im Studiengang Master of Science Informatik

am Department Informatik

der Fakultät Technik und Informatik

der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr.-Ing. Marina Tropmann-Frick

Zweitgutachter: Prof. Dr.-Ing. Olaf Zukunft

Eingereicht am: 28. März 2025

Finn V. Dohrn

Thema der Arbeit
Adaptives maschinelles Lernen mit Mixture of Experts

Stichworte
Kontinuierliches adaptives Lernen, Online Maschinelles Lernen, Streamingdaten, Dynamische

Umgebung, Mixture of Experts

Kurzzusammenfassung
Bis 2025 werden 41,6 Milliarden IoT-Geräte erwartet. Dadurch wächst die Menge an konti-

nuierlich generierten Daten rasant. Klassische maschinelle Lernverfahren, die auf statischen

Datensätzen trainiert werden, sind nicht in der Lage, sich kontinuierlich an dynamische Umge-

bungen anzupassen. Problematisch ist dabei der Konzeptdrift, der dazu führt, dass Modelle im

Laufe der Zeit an Genauigkeit verlieren.

Zur Steigerung der Robustheit und Genauigkeit des kontinuierlichen Lernens stellt diese

Arbeit einen neuartigen Ansatz vor, der auf den Erkenntnissen einer systematischen Literatur-

recherche basiert. Dieser Ansatz kombiniert Online Maschinelles Lernen (OML) mit Mixture

of Experts (MoE) in einer neuartigen inkrementellen MoE-Architektur. Zur Evaluierung dieser

hybriden Architektur werden verschiedene Experimente zur Regression und Klassifikation

vorgestellt, die durch geeignete Methoden bewertet werden.

Diese Arbeit präsentiert die Implementierung des Frameworks riverMoE, welches die
konzipierte hybride Architektur als Erweiterung eines bestehenden OML-Frameworks rea-

lisiert. Die Ergebnisse der durchgeführten Experimente zeigen, dass die gezielte gewichtete

Kombination von Einzelprognosen auch mit inkrementellen Lernalgorithmen zu präziseren

Gesamtprognosen führen kann. Erwartungsgemäß erfordert die Nutzung neuronaler Kom-

ponenten einen erhöhten Rechen- und Speicheraufwand. Zudem zeigen die Experimente in

adaptiven Umgebungen eine höhere Stabilität gegenüber Konzeptdrift, die jedoch von der

Initialisierung abhängt.

Auf Grundlage der Ergebnisse wird empfohlen, die bisher umgesetzten inkrementellen

MoE-Varianten um zusätzliche Ansätze zu erweitern und weitere Experimente durchzuführen.

Darüber hinaus sollte die Erklärbarkeit des Gates in der Kombination der einzelnen Experten

eingehender untersucht werden.

Finn V. Dohrn

Title of the paper
Adaptive Machine Learning with Mixture of Experts

Keywords
Continual adaptive Learning, Online Machine Learning, Streaming data, Dynamic Environ-

ments, Mixture of Experts

Abstract
41.6 billion IoT devices are expected by 2025. As a result, the amount of continuously generated

data is growing rapidly. Traditional machine learning methods that are trained on static data

sets and are not able to continuously adapt to dynamic environments. The problem here is

concept drift, which leads to models losing accuracy over time.

In order to make continuous learning more robust and accurate, this paper presents a

novel approach based on the findings of a systematic literature review. This approach com-

bines Online Machine Learning (OML) with Mixture of Experts (MoE) in a novel incremental

MoE architecture. To evaluate this hybrid architecture, various regression and classification

experiments are presented and evaluated using appropriate methods.

This paper presents the implementation of the framework riverMoE, which realizes the

designed hybrid architecture as an extension of an existing OML framework. The results of the

experiments show that the targeted weighted combination of individual forecasts can also lead

to more precise overall forecasts when using incremental learning algorithms. As expected the

use of neural components requires increased computing and memory resources. Furthermore,

the experiments in adaptive environments show a higher stability against concept drift which

depends on the initialization.

Based on the results, it is recommended to extend the existing implementedMoE variants and

to conduct further experiments. In addition, the explainability of the gate in the combination

of the individual experts should be examined in more detail.

Inhaltsverzeichnis

Tabellenverzeichnis viii

Abbildungsverzeichnis x

Listing xi

Abkürzungsverzeichnis xii

1. Einleitung 1
1.1. Problemstellung und Motivation . 1

1.2. Zielsetzung . 3

1.3. Aufbau der Arbeit . 4

2. Grundlagen 5
2.1. Adaptivität . 5

2.2. Big Data . 6

2.2.1. Eigenschaften nach dem V-Modell . 7

2.2.2. Datenströme . 7

2.3. Online Maschinelles Lernen . 9

2.3.1. Maschinelle Lernverfahren . 9

2.3.2. Inkrementelles- und Batch-Lernen . 11

2.3.3. Evaluationsmethoden . 12

2.3.4. Drifterkennung und -behandlung . 16

2.4. Expertenmischung . 19

2.4.1. Neuronale Netze . 19

2.4.2. Experten mit Gating-Netzwerk . 21

2.4.3. Variationen von Gating-Netzwerken 22

2.4.4. Verkettung von MoE . 24

2.4.5. Einsatz in Transformern . 26

3. Verwandte Arbeiten 28
3.1. Systematische Literaturrecherche . 28

3.2. Qualitative Analyse . 30

3.2.1. Gating-Ansätze . 31

3.2.2. Umsetzung von Multi-Task Experten 34

3.2.3. Adaptives Verhalten mit MoE . 38

3.3. Identifizierung von Forschungslücken . 40

v

Inhaltsverzeichnis

4. Methodik 41
4.1. Mischung adaptiver Experten . 41

4.1.1. Inkrementelle MoE-Architektur . 43

4.1.2. Auswahl des Basis-Frameworks . 45

4.1.3. Umsetzung einer Framework-Erweiterung 46

4.2. Experimente . 46

4.2.1. Auswahl inkrementeller Algorithmen 46

4.2.2. Eingesetzte Datensätze . 49

4.2.3. Experimentelle Umgebung . 52

4.2.4. Übersicht der Experimente . 52

4.2.5. Evaluationsmethoden . 54

5. Ergebnisse und Diskussion 57
5.1. Prototypische Implementierung . 57

5.1.1. Framework-Architektur . 57

5.1.2. Simulation der Experimente . 63

5.2. Evaluation der Experimente . 64

5.2.1. Experimente für Regression . 64

5.2.2. Experimente für Klassifikation . 69

5.2.3. Experimente zu katastrophalem Vergessen 73

5.3. Limitationen . 77

6. Schlussfolgerung 78
6.1. Zusammenfassung . 78

6.2. Fazit . 79

6.3. Ausblick . 80

Literaturverzeichnis 81

A. Ergebnisse 88
A.1. Klassendiagramm . 88

A.2. Aktivitätsdiagramm . 89

A.3. Modellparameter . 90

A.4. Ergebnisse der Evaluationen . 92

B. Hilfsmittel 98

vi

Tabellenverzeichnis

2.1. Auswahl gängiger Evaluationsmetriken für Regressionen unter Verwendung

des tatsächlichen Wertes y und des errechneten Wertes ŷ. 14

2.2. Übersicht der Driftarten und deren Bedingungen. 17

2.3. Gating-Architekturen mit Vor- und Nachteilen. 22

3.1. Übersicht der Kategorien aus der qualitativen Literraturrecherche. 31

4.1. Mögliche Kombination verschiedener ML-Lernarten für das Gating und Ex-

perten in MoE. ✓= Möglich, (✓) = Mit Transformation möglich, – = Nicht

möglich. 42

4.2. Übersicht der eingesetzten OML-Algorithmen für diese Arbeit. 47

4.3. Verwendete Hardware für die Experimente. 52

4.4. Verwendete adaptive NN-Architekturen für verschiedene neuronale Lernarten. 52

4.5. Übersicht der Experimente der Gruppe Regression (R). 53

4.6. Übersicht der Experimente der Gruppe Klassifikation (C). 53

4.7. Übersicht der Experimente der Gruppe Drift (D). 54

5.1. Übersicht Metriken aller Modelle (Experiment R.1). Beste Ergebnisse markiert. 65

5.2. Detaillierte Metriken für das Soft-MoE (Experiment R.1). 65

5.3. Metriken des Sparse-MoE (Experiment R.2). Beste Ergebnisse markiert. . . . 67

5.4. Detaillierte Metriken für das Sparse-MoE Top(k = 3) (Experiment R.2). 68

5.5. Detaillierte Metriken für das Sparse-MoE Top(k = 1) (Experiment R.2). 68

5.6. Detaillierte Metriken für das Soft-MoE (Experiment C.1). 69

5.7. Übersicht Metriken aller Modelle (Experiment C.1). Beste Ergebnisse markiert. 70

5.8. Metriken des Sparse-MoE (Experiment C.2). Beste Ergebnisse markiert. . . . 72

5.9. Metriken aller Modelle (Experiment D.1). Beste Ergebnisse markiert. 75

5.10. DurchschnittlicheModellmetriken proAufgabe und InstanzbereichA ∈ [0, 5000]
und B ∈ [5001, 10000] (Experiment D.2). Beste Ergebnisse markiert. 75

A.1. Parameter für die Klassifikationsmodelle. 90

A.2. Parameter für die Regressionsmodelle. 91

A.3. Ergebnisse des Regressions-Experiments R.1, Modell: LinR. 92

A.4. Ergebnisse des Regressions-Experiments R.1, Modell: HTR. 92

A.5. Ergebnisse des Regressions-Experiments R.1, Modell: BaseR. 93

A.6. Ergebnisse des Regressions-Experiments R.1, Modell: SoftMoE. 93

A.7. Ergebnisse des Regressions-Experiments R.2, Modell: SparseMoE Top(k = 1). . 93

A.8. Ergebnisse des Regressions-Experiments R.2, Modell: SparseMoE Top(k = 2). . 94

vii

Tabellenverzeichnis

A.9. Ergebnisse des Regressions-Experiments R.2, Modell: SparseMoE Top(k = 3). . 94

A.10. Ergebnisse des Klassifikations-Experiments C.1, Modell: LogR. 94

A.11. Ergebnisse des Klassifikations-Experiments C.1, Modell: HTC. 95

A.12. Ergebnisse des Klassifikations-Experiments C.1, Modell: BaseC. 95

A.13. Ergebnisse des Klassifikations-Experiments C.1, Modell: SoftMoE. 95

A.14. Ergebnisse des Klassifikations-Experiments C.2, Modell: SparseMoE Top(k = 1). 96

A.15. Ergebnisse des Klassifikations-Experiments C.2, Modell: SparseMoE Top(k = 2). 96

A.16. Ergebnisse des Klassifikations-Experiments C.2, Modell: SparseMoE Top(k = 3). 96

A.17. Ergebnisse des Drift-Experiments D.1, Modell: DeepR. 97

A.18. Ergebnisse des Drift-Experiments D.1, Modell: HATR. 97

A.19. Ergebnisse des Drift-Experiments D.1, Modell: SoftMoE. 97

B.1. Übersicht der eingesetzten Hilfsmittel in dieser Arbeit 98

viii

Abbildungsverzeichnis

1.1. Weltweiter Speicherplatzbedarf insgesamt und für Echtzeitdaten von 2010 bis

2025 in Zettabyte. Die Daten von 2024 bis 2025 sind geschätzt. 2

2.1. Konzept der Adaptivität als Interaktion zwischen Umgebung und System. . . . 6

2.2. FIFO-Queue mit Streamingdaten über einen zeitlichen Verlauf. 8

2.3. Übersicht und Einordnung von ML für verschiedene Problemstellungen. . . . 10

2.4. Schematischer Aufbau beider ML-Lernstrategien. 11

2.5. Auswahl gängiger Metriken für Klassifizierung mit zusammenhängender Kon-

fusionsmatrix. 14

2.6. Konzept der Progressiven Validierung mit einem Datensatz der Größe 4. . . . 16

2.7. Architektur von Detektoren zur Erkennung von Veränderungen mit einer

beispielhaften Speicherverwaltung von Kolmogorov-Smirnov Windowing. . . 18

2.8. Aufbau eines mehrschichtigen künstlichen neuronalen Netzwerks. 20

2.9. Generelle Architektur eines Mixture of Experts Ansatzes. 21

2.10. Architektur eines Hierarchischen MoE als binärer Baum mit vier Ebenen. . . . 24

2.11. Verkettung von MoE in Deep-MoE. 25

2.12. Transformer mit FNN (kursiv) ersetzt durch MoE. Hier: Sparse-MoE mit k = 1. 26

3.1. Ergebnisse der systematischen Literaturrecherche. 30

3.2. Multi-Gate Mixture of Experts mit zwei Gates für Multi-Task Aufgaben. 34

4.1. Generelle Architektur des inkrementellen MoE. Mit Drift-Detektor bei SAMoE. 43

4.2. Adaptives MLP mit variablen Eingangs- und Ausgangsneuronen als Gating. . 44

4.3. Durchschnittlicher Strompreis (Cents/kWh) pro Tag im Elec2-Datensatz. . . . 50

4.4. t-SNE-Plot der Bildsegmentierungsdaten. 50

4.5. Verschiedene Driftarten (a), (b) und (c) im Vergleich zu Ausreißern (d). 51

5.1. Basis-Klasse als Ausschnitt aus dem Klassendiagramm zu riverMoE 58

5.2. Generierte Architekturskizze eines MoE mithilfe der draw()-Methode. . . . 59

5.3. Modellleistung ist bei Single-MoE identisch zur Expertenleistung ohne MoE. . 60

5.4. Modellmetriken, Zeit- und Speicherbedarf pro Modell (Experiment R.1). 64

5.5. Normierte Entropie der Soft-MoE Gategewichte (Experiment R.1). 66

5.6. Modellmetriken, Zeit- und Speicherbedarf pro Modell (Experiment R.2). 67

5.7. Detaillierte Metriken für das Soft-MoE (Experiment C.1). 69

5.8. HTC als exportierter Binärbaum als erklärbares Modell (Experiment C.1). . . . 71

5.9. Normierte Entropie der Soft-MoE Gategewichte (Experiment C.1). 71

5.10. Modellmetriken, Zeit- und Speicherbedarf pro Modell (Experiment C.2). 72

ix

Abbildungsverzeichnis

5.11. Übersicht Metriken aller Modelle (Experiment D.1). GRA-Drift an den Stellen

5000 und 7500. Beste Ergebnisse markiert. 74

5.12. Accuracy für Modelle mit Label-Shift nach 5000 Instanzen (Experiment D.2). . 76

A.1. Vereinfachtes Klassendiagramm des riverMoE-Framework. 88

A.2. riverMoE Aktivitätsdiagramm des Inferenz- und Trainingsschritts. 89

x

Listings

5.1. Dynamisches hinzufügen eines neuen Experten bei Drift-Erkennung. 62

5.2. Generierung eines inkrementellen Klassifikators mit einer versteckten Schicht

aus 10 ReLU-aktivierten Neuronen und variablen Eingangs- und Ausgangs-

neuronen (ohne Aktivierung). Optimiert wird nach Cross Entropy (CE) mit

SGD. 62

5.3. Einfaches Beispiel zur Erstellung eines inkrementellen MoE mit neuronalen

SoftMax-Gate und zwei nicht neuronalen river-Experten. 63

xi

Abkürzungsverzeichnis

ADWIN Adaptive Windowing. 17, 48

API Application Programming Interface. 45

ARIMA Autoregressive Integrated Moving Average. 37

BCE Binary Cross Entropy. 20, 45

BML Batch maschinelles Lernen. 1, 11, 73

CART Classificiation And Regression Tree. 12

CE Cross Entropy. xi, 20, 45, 62

CMA Cumulative Moving Average. 16, 55, 65

CNN Convolutional Neural Network. 21

DMoE Deep Mixture-of-Experts. 25

DOP Dynamisches Optimierungs-Problem. 6, 40, 46, 63

EM Erwartungs-Maximierung. 24

EWMA Exponentially Weighted Moving Average. 16

FIFO First-In-First-Out. 7

FN False Negative. 14

FNN Feedforward Neural Network. 20, 32

FP False Positive. 14

GBM Gradient Boosting Machines. 37

GCN Graph Convolutional Network. 37

HAT Hoeffding Adaptive Tree. 47

xii

Abkürzungsverzeichnis

HME Hierarchisches Mixture of Experts. 24

HPO Hyperparameteroptimierung. 13, 73

HT Hoeffding Tree. 47

IDC International Data Corporation. 2

IoT Internet of Things. 2, 78

KI Künstliche Intelligenz. 1, 5

KNN Künstliches Neuronales Netz. 19, 32

KS Kolmogorov-Smirnov. 18

KSWIN Kolmogorov-Smirnov Windowing. ix, 18

LLM Large Language Model. 26

LSTM Long Short Term Memory. 32

MAE Mean Absolute Error. 13

Mini-BML Mini-Batch maschinelles Lernen. 11

ML Maschinelles Lernen. 1, 9

MLP Mehrschichtiges Perzeptron. 19

MMoE Multi-Mixture-of-Experts. 30, 34

MoE Mixture of Experts. 1, 19, 78

MSLE Mean Squared Logarithmic Error. 13

MSE Mean Squared Error. 20, 45

MTL Multi-Task-Lernen. 10, 21, 30, 34, 80

NAS Neural Architecture Search. 35

NTG Negative Transfer Gap. 35

OML Online maschinelles Lernen. 1, 5, 9, 31, 78

PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses. 28

xiii

Abkürzungsverzeichnis

RMSLE Root Mean Squared Logarithmic Error. 13

RMSE Root Mean Squared Error. 13

RNN Recurrent Neural Network. 20, 32

ROC-AUC Receiver Operating Characteristic - Area under Curve. 15

SAMoE Streaming Adaptive Mixtures of Experts. 44

SGD Stochastic Gradient Descent. 20, 41, 45, 47

SVM Support Vector Machines. 37

TN True Negative. 14

TP True Positive. 14

WCMA Weighted Cumulative Moving Average. 16

xiv

1. Einleitung

Künstliche Intelligenz (KI) und besondersMaschinelles Lernen (ML) hat sich in den vergangenen

Jahren rasant weiterentwickelt und findet Anwendung in einer Vielzahl von Bereichen, darunter

automatisierte Entscheidungsfindung, natürliche Sprachverarbeitung und Bildverarbeitung

(Fritz, 2022, S. 3f.). Viele klassische Lernverfahren basieren jedoch auf dem sogenannten Batch
maschinelles Lernen (BML), bei dem das Modell mit einem festen Datensatz trainiert wird

und anschließend statisch bleibt. In dynamischen Umgebungen, in denen kontinuierlich neue

Daten verfügbar sind, führt dies zu Herausforderungen: Neue Informationen können nicht

effizient integriert werden, und das erneute Training mit einer wachsenden Datenmenge ist

rechenintensiv und teuer (Bartz-Beielstein und Bartz, 2023, S. 10f.).

Ein vielversprechender Lösungsansatz ist Online maschinelles Lernen (OML), dass es Model-

len ermöglicht, sich fortlaufend an neue Daten anzupassen, ohne die gesamte Modellarchitektur

neu trainieren zu müssen. Dieses inkrementelle Lernen ist insbesondere in Szenarien mit ver-

änderlichen Datenverteilungen von Vorteil, da Modelle kontinuierlich an neue Gegebenheiten

angepasst werden können (Bartz-Beielstein und Bartz, 2023, S. 11ff.). Ein weiteres aktuelles und

relevantes Forschungsfeld ist der Ansatz Mixture of Experts (MoE), der sich bereits in großen

Sprachmodellen von beispielsweise Google etabliert hat (N. Du et al., 2022). Diese Architektur

kombiniert mehrere spezialisierte Expertenmodelle, die durch einen Gating-Mechanismus

dynamisch für verschiedene Eingaben aktiviert werden (Jacobs et al., 1991). Dadurch können

komplexe Probleme modularisiert und effizienter gelöst werden. Obwohl beide Methoden –

OML als inkrementelles Lernen und MoE – unabhängig voneinander erforscht werden, gibt es

bisher nur wenige Arbeiten, die eine Kombination dieser Ansätze untersuchen.

1.1. Problemstellung und Motivation

Eine solche Verbindung könnte erhebliche Vorteile bringen: Während das inkrementelle Lernen

die kontinuierliche Anpassung an neue Daten ermöglicht, kannMoE dazu beitragen, das Lernen

gezielter zu strukturieren und unterschiedliche Experten für verschiedene Datensegmente oder

Aufgaben zu spezialisieren. Dadurch könnte ein Modell entstehen, das sowohl flexibel als auch

1

1. Einleitung

Das Training mit diesen Daten muss teilweise in Echtzeit erfolgen, um die wachsenden

Datenmengen zu bewältigen. Im klassischen BML ist dies nicht möglich, da das Modell nach

dem Training nicht mehr verändert werden kann. Beim Eintreffen von neuen Daten muss das

Modell neu trainiert werden (Bartz-Beielstein und Bartz, 2023, S. 8.). Dies erzeugt einen hohen

Rechenaufwand, dauert sehr lange und kostet viel Energie. Inkrementelles Lernen ist daher

eine Lösung, um die Modelle kontinuierlich an neue Daten anzupassen. Das Hauptproblem

klassischer inkrementeller Lernansätze ist, dass neue Daten das Modell oft zu stark beeinflussen

können. Gleichzeitig können inkrementelle Modelle Schwierigkeiten haben, neue Konzepte

effizient zu integrieren, ohne an Stabilität zu verlieren (Bartz-Beielstein und Bartz, 2023, S.

41ff.).

MoE bietet eine mögliche Lösung für dieses Problem, indem es verschiedene Experten

für unterschiedliche Datenbereiche oder Lernaufgaben trainiert. Ein Gating-Mechanismus

entscheidet dynamisch, welcher Experte für eine bestimmte Eingabe zuständig ist, wodurch das

Modell insgesamt robuster und genauer sein kann. Allerdings bringen klassische MoE-Modelle

ebenfalls Herausforderungen mit sich, darunter ein gut funktionierender Gating-Mechanismus

(Jacobs et al., 1991). Zudem wurde MoE bislang überwiegend in statischen Umgebungen

erforscht und selten mit OML kombiniert.

1.2. Zielsetzung

Die Kombination dieser beiden Methoden könnte daher neue Möglichkeiten für adaptive,

spezialisierte und kontinuierlich lernende Modelle eröffnen. Durch eine gezielte Einbindung

von MoE in ein inkrementelles Lernsystem könnte die Spezialisierung von Experten dazu

beitragen, den Einfluss neuer Daten besser zu steuern und das Risiko des Wissensverlusts

zu reduzieren. Gleichzeitig könnte das Gating-Netzwerk so gestaltet werden, dass es neue

Konzepte erkennt und entscheidet, ob bestehende Experten angepasst oder neue Experten

hinzugefügt werden sollten.

Das Ziel dieser Arbeit ist daher die Entwicklung und Evaluierung eines kombinierten

Ansatzes aus inkrementellem Lernen und Mixture of Experts, um die jeweiligen Stärken beider

Methoden zu vereinen und ihre individuellen Schwächen zu adressieren. Konkret verfolgt

diese Arbeit folgende Ziele:

1. Entwicklung eines hybriden Frameworks, das kontinuierlich neue Daten integriert und

dabei Experten spezialisiert.

2. Optimierung des Gating-Mechanismus, sodass dieser sich dynamisch an veränderte

Datenverteilungen anpasst.

3

1. Einleitung

3. Experimentelle Evaluierung, um zu prüfen, inwiefern der entwickelte Ansatz beste-

hende inkrementelle Lernverfahren hinsichtlich Genauigkeit, Effizienz und Adaptivität

übertrifft.

Die Forschungsfragen, passend zu den gesetzten Zielen dieser Arbeit, werden im Abschnitt

3.3 konkret formuliert. Diese Arbeit trägt damit bei, eine Forschungslücke an der Schnittstelle

von kontinuierlichem Lernen und modularen, spezialisierten Expertenmodellen zu schließen.

Die gewonnenen Erkenntnisse sollen nicht nur zur theoretischen Weiterentwicklung dieser

Ansätze beitragen, sondern auch praktische Anwendungen für reale Datenszenarien aufzeigen.

Demzufolge ist die Implementierung eines produktiv nutzbaren Frameworks ein Teil dieser

Arbeit.

1.3. Aufbau der Arbeit

Diese Arbeit gliedert sich in mehrere zentrale Kapitel. Zunächst werden in Kapitel 2 die

theoretischen Grundlagen erörtert, darunter Adaptivität, Big Data und Online-Maschinelles

Lernen. Ein besonderer Fokus liegt auf der Drifterkennung und -behandlung sowie der Exper-

tenmischung als Kernkonzept des adaptiven maschinellen Lernens mit Mixture of Experts.

Der Stand der Forschung wird in Kapitel 3 durch eine systematische Literaturrecherche

erfasst, gefolgt von einer qualitativen Analyse relevanter Arbeiten zu Gating-Mechanismen,

Multi-Task-Experten und adaptivem Verhalten innerhalb MoE-Architekturen. Daraus resultie-

rend werden bestehende Forschungslücken identifiziert.

DieMethodik inKapitel 4 beschreibt die Entwicklung einer inkrementellenMoE-Architektur,

die in einem neuartigen Framework umgesetzt wurde. Das Framework kann als Erweiterung

eines Basis-Frameworks genutzt werden. Eine Beschreibung von Experimenten zur Evaluie-

rung von Regressions-, Klassifikations- und Driftproblemen wird ebenfalls zusammengestellt.

Für die Experimente werden ausgewählte Lernalgorithmen, Parameter, Datensätze und Eva-

luationsmethoden vorgestellt.

In dem Kapitel 5 wird zunächst die prototypische Implementierung des Frameworks sowie

dessen Architektur genauer beschrieben. Anschließend werden die Ergebnisse der durchge-

führten Experimente präsentiert und diskutiert. Für die Evaluierung wurde das neue Verfahren

mit anderen OML-Verfahren verglichen und bewertet. Am Ende des Kapitels werden die

Limitationen dieser Arbeit aufgezeigt.

Abschließend fasst Kapitel 6 die gewonnenen Erkenntnisse zusammen, zieht ein Fazit der

vorliegenden Arbeit und gibt einen Ausblick auf zukünftige Forschungsrichtungen.

4

2. Grundlagen

Ausgehend von dem Thema „Adaptives maschinelles Lernen mit Mixture of Experts“ beginnt

diese Arbeit mit den theoretischen Grundlagen, die zur Beantwortung der Forschungsfragen

notwendig sind. Zunächst wird der Begriff der Adaptivität eingeführt. Im Anschluss werden

Datenströme und deren Eigenschaften aus dem „Big Data“-Umfeld erklärt. Zusammen mit der

Adaptivität ergeben sie die Grundlage für den Einsatz von Online maschinelles Lernen. Dabei

findet auch die Einordnung und Abgrenzung zum offline maschinellem Lernen statt. Am Ende

dieses Kapitels wird das Architekturprinzip der Expertenmischung beschrieben.

2.1. Adaptivität

Das Konzept der Adaptivität gewinnt in verschiedenen Forschungsbereichen zunehmend an

Bedeutung. Immer mehr Informationssysteme sind adaptiv und werden in den verschiedensten

Disziplinen eingesetzt. Dazu zählen Anwendungen wie KI, Robotik für dynamische Umgebun-

gen, Netzwerke oder Betriebssysteme, um eine effektive Ressourcennutzung in der Informatik

zu ermöglichen (Raibulet, 2008, S. 343). Der Einsatz von personalisierter Lehrsoftware für

Schüler:innen und Lehrer:innen zur Steigerung der Effizienz in der Pädagogik (Miller, 2005) ist

ebenfalls eine mögliche Anwendung. Adaptivität beschreibt in der Informatik die Fähigkeit

von Systemen, sich dynamisch an veränderte Bedingungen, Benutzerpräferenzen oder neue

Informationen anzupassen. Eine generelle Definition von Adaptivität ist schwer abzuleiten,

da sie je nach Anwendung unterschiedlich verstanden wird. Es können aber drei generelle

Kriterien benannt werden (Raibulet, 2008, S. 344ff):

• Reaktion auf Änderungen innerhalb oder außerhalb des Systems,

• Autonome und reflektierende Anpassungen durch das System selbst,

• Anpassungen zur Laufzeit

Bry und Henze (2005) unterscheiden zwischen adaptiver und adaptierbarer Software. Der
Unterschiedwird durch die Abbildung 2.1 deutlich. Der Anwender interagiert beispielsweisemit

5

2. Grundlagen

seiner Umgebung, etwa einem Musik-Streaming-Dienst, in dem Musik gehört wird. Dadurch

entstehen neue Informationen, welche die Empfehlungen für eine Playlist automatisch erzeugen

und als Ergebnis zurückliefern. Die Playlist wird wieder vom Nutzer konsumiert, was neue

Daten erzeugt. Bei Adaptivität sollen die veränderten Bedingungen selbstständig mit den

neuen Daten ohne Nutzerintervention erlernt und geeignete Anpassungen, unter anderem

die Empfehlungen innerhalb der Playlist, durchgeführt werden. Wenn die Sortierung der Titel

als Einstellung durch den Nutzer initiiert wird, werden die Parameter des adaptiven Systems

angepasst. Damit wird die Darstellung der Titel-Auflistung verändert. Das entspricht der

Adaptierbarkeit eines Systems.

Informationen
Umgebung

Einstellungen

Anwender
Ergebnisse

Adaptives

System

Parameter

Abbildung 2.1.: Konzept der Adaptivität als Interaktion zwischen Umgebung und System.

Ein möglicher Einsatz von Adaptivität im Kontext des maschinellen Lernens wäre das adap-

tive Lernen. Durch den Einsatz von adaptiven Methoden soll sich ein maschinell trainiertes

Modell flexibel und individuell an neue Trends in den zugrunde liegenden Daten einer neuen

Situation anpassen (Bartz-Beielstein und Bartz, 2023, S. 11). Ziel ist, eine mögliche kontext-

abhängige Lösung für die gegebenen dynamischen Daten zu finden. Das zu lösende Problem

wird daher als Dynamisches Optimierungs-Problem (DOP) definiert. Das adaptive Lernen wird

durch kontinuierliches Lernen ermöglicht, dessen Trainingsdaten aus Datenströmen kommen.

2.2. Big Data

Der abstrakte Oberbegriff „Big Data“ wird mit dem Bestand und dem Wachstum großer ge-

speicherter Datenmengen assoziiert. Das heißt „Big Data“ bezeichnet Datenmengen, die so

groß oder komplex sind, dass sie mit traditionellen Analyseverfahren wie SQL in relationa-

len Datenbanken nicht mehr bearbeitet werden können. Diese Daten erfordern den Einsatz

neuer Techniken und Technologien zur Verarbeitung und Analyse (Warren, 2015, S. 2ff). Eine

einheitliche Definition für diesen Begriff gibt es in der vorherrschenden Literatur nicht.

6

2. Grundlagen

2.2.1. Eigenschaften nach dem V-Modell

Konkreter definiert sind jedoch die Eigenschaften nach dem „3V“-Modell von Big Data, die

von Laney (2001) in einem Forschungsbericht definiert wurden und die Herausforderungen

des Datenwachstums beschreiben:

• Volume: definiert die Anforderung, mit immensen Mengen von Daten, die in solchen Big

Data Anwendungen üblicherweise generiert werden, umzugehen. Dies können Terabyte

an Videomaterial sein, das von einer Kamera aufgenommen und dann gespeichert wurde.

• Velocity: bezeichnet die hohe Geschwindigkeit, in der diese Daten generiert, analysiert

und verarbeitet werden können. Daten können in einem Datenstrom kontinuierlich

generiert werden. Beispielsweise entsteht pro Flugstunde ein Terabyte an Sensordaten.

• Variety: Die letzte Eigenschaft steht für die Vielfalt der Datentypen und Quellen. Struk-

turierte Daten wie Tabellen oder unstrukturierte Daten wie Fotos aus unterschiedlichs-

ten Quellen können gemeinsam abgespeichert werden. Die meisten Daten, die heute

vorkommen, sind unstrukturiert, unterliegen also keinem bestimmten Schema. Die Her-

ausforderung ist hier, mit geeigneten Algorithmen die Daten strukturiert einordnen zu

können.

Daneben gibt es noch viele weitere „V“-Eigenschaften in der Literatur, die in dieser Arbeit

nicht näher betrachtet werden, unter anderem: Volatility (Volatilität), Variability (Veränder-

lichkeit), Veracity (Korrektheit), Viability (Viabilität), Visualization (Visualisierung), Virality
(Viralität), Viscosity (Viskosität) oder Validity (Gültigkeit). Diese Eigenschaften bringen eben-

falls Probleme und Herausforderungen für Big Data Systeme mit. Beispielsweise ist bei der

Volatility die Lebensdauer der Daten gemeint. Bei medizinischen Daten sollten die Daten

immer vorhanden sein, bei Echtzeitdaten von sozialen Medien ist dies nicht notwendig. Für

die Variability sind mögliche Inkonsistenzen in den variierenden Strukturen der Daten ein

Problem (Khan et al., 2018; Fritz, 2022; Rahul, Banyal und Arora, 2023).

2.2.2. Datenströme

Als Datenstrom wird in der Informatik ein kontinuierlicher Fluss von Daten bezeichnet. In

der Abbildung 2.2 wird schematisch der Aufbau eines Datenstroms gezeigt. Ein Datenstrom

ist üblicherweise eine First-In-First-Out (FIFO)-Queue. Ein Datenstrom-Datensatz D besteht

aus mehreren geordneten Dateninstanzen d. Die Dateninstanzen innerhalb des Stroms sind

Streamingdaten. Zum Zeitpunkt t wird der Datensatz dt verarbeitet. Jeder Datenpunkt dt kann

7

2. Grundlagen

Strom gelaufen, während um 10:00 Uhr nur 50 Instanzen vorhanden waren, ergibt sich mit der

Formel 2.1 eine durchschnittliche Geschwindigkeit von 25 Dateninstanzen pro Stunde zwischen

diesen Zeitpunkten. Eine fortlaufende Datenrate {vi}Ni=1 lässt sich mit der Betrachtung der

einzelnen Datenrate zwischen den einzelnen Dateninstanzen ableiten. Diese individuelle

Datenrate kann gleichbleibend sein, dann gilt v1 = · · · = vN . Wenn die Dateninstanzen, wie

in Abbildung 2.2, unterschiedliche Abstände haben, variiert die Datenrate.

Streamingdaten setzen voraus, spezielle Analysemethoden anzuwenden, die in Echtzeit

oder nahezu Echtzeit funktionieren. Das Abspeichern der Daten ist aufgrund der Menge

meistens nicht möglich oder nicht sinnvoll. Mithilfe von intelligenten Algorithmen können

etwa Erkenntnisse aus Video-Streamingdaten abgeleitet werden, um den Zustand einer Straße

für eine mögliche Wartung zu ermitteln.

2.3. Online Maschinelles Lernen

Online maschinelles Lernen ist eine Methode, die es ermöglicht, Modelle fortlaufend mit neuen

Daten aus einem Datenstrom zu aktualisieren, anstatt auf statischen Datensätzen zu basieren.

Statische Daten sind Daten, die zu einem bestimmten Zeitpunkt erfasst wurden und nicht mehr

verändert werden. Sie können beliebig oft abgerufen werden und liegen häufig in Tabellenform

vor. (Bartz-Beielstein und Bartz, 2023, S. 3). Bei der folgenden Betrachtung wird der Fokus auf

Streamingdaten gelegt. Durch eine Serialisierung, also die datenstromartige Aneinanderreihung

der Daten, können statische Daten in einen endlichen Datenstrom umgeformt werden. In den

folgenden Erläuterungen wird der Fokus auf Streamingdaten mit zeitlicher Ordnung gelegt,

daher wird der Zeit-Index t verwendet.

2.3.1. Maschinelle Lernverfahren

Maschinelles Lernen bietet eine Möglichkeit, Muster in großen und komplexen Datenmengen

zu erkennen. Dabei verbessern Algorithmen ihre Leistung durch Training, indem sie große

Datenmengen analysieren und eigenständige Optimierungen vornehmen. Zwei wesentliche

Lerntypen sind das überwachte und das unüberwachte Lernen, die aus der Abbildung 2.3

entnommen werden können (Fritz, 2022, S. 142f).

Beim überwachten Lernen bestehen die Datenpunkte dt aus Datenpaaren dt = (xt, yt(xt)).

Das xt steht für die Eingangsdaten. Das kann ein einzelner Wert oder ein Vektor aus n-

Merkmalen sein: xt = (xt,1, xt,2, . . . , xt,n). Merkmale werden auch als Attribute, Features oder
unabhängige Variablen bezeichnet. Es gilt damit xt ∈ Rm

. Bei dem yt(xt) ∈ R handelt es sich

um die zugehörige, korrekte Ausgabe und wird als Label, Zielvariable oder auch abhängige

9

2. Grundlagen

Durch das Training mit BML gibt es Probleme. Wenn die Größe des gesamten Datensatzes

die Größe der verfügbaren Menge an Arbeitsspeicher überschreitet, können die Algorithmen

nicht mehr lernen. Eine mögliche Lösung gibt es durch Optimierung von Datentypen oder

die Dimensionsreduktion auf Kosten von Modellgüte. Ein weiteres Problem, das beim BML

auftreten kann, sind dynamische Strukturveränderungen. Merkmale und Zielgrößen können

sich über die Zeit verändern, was zu verschiedenen „Drifts“ führt, die Leistungsminimierungen

von Modellen verursachen. BML-Modelle können nicht aus neuen Daten mit unbekannten

Attributen lernen. Das Modell muss mit einem neuen statischen Datensatz lernen (Bartz-

Beielstein und Bartz, 2023, S. 3ff).

Einemögliche Lösung für diese Probleme ist das inkrementelle Lernenmit einemDatenstrom,

siehe dazu Abbildung 2.4b. Es wird elementweise ein Datenpunkt aus den Streamingdaten im

Training verwendet. Mit diesem Datenpunkt wird eine Inferenz mit dem bisherigen Modell

berechnet. Für das überwachte Lernenwird der tatsächlicheWert zusammenmit der Vorhersage

genutzt, um die Metriken des zu diesem Zeitpunkt existierendenModells direkt zu aktualisieren.

Nach der Aktualisierung wird durch eine marginale Anpassung eine neue Modellversion

erzeugt. Dieser Trainingsablauf wiederholt sich inkrementell für jede neu eintreffende Instanz

und kann damit adaptiv auf dynamische Veränderungen reagieren. Die einzelnen Instanzen

können damit nur einmal verwendet werden (Bartz-Beielstein und Bartz, 2023, S. 10f). Für das

OML werden Lernalgorithmen benötigt, die einzelne Instanzen verarbeiten können, ohne diese

erneut abrufen zu können. So funktioniert der klassische Entscheidungsbaum Classificiation
And Regression Tree (CART) nicht. Seine OML-Alternative ist der Hoeffding-Baum-Algorithmus

(Bartz-Beielstein und Bartz, 2023, S. 16ff).

2.3.3. Evaluationsmethoden

Nachdem die Vorteile von OML für adaptives Lernen im Vergleich zu BML herausgestellt

wurden, liegt der Fokus im Folgenden auf OML sowie seiner speziellen Evaluationsstrategie.

Modell Das Ziel beider Lernstrategien ist das Training eines maschinellen Modells unter

Verwendung eines Algorithmus, der aus den Eingangsdaten lernt. Das Modell ft : Rn×m → Rn

mit xt ∈ Rm ∧ ŷt ∈ R wird generell als Funktion mit einer Konfiguration ρ als Vektor

parametrisiert und gemäß Formel 2.2 definiert (Raschka, Mirjalili und Lorenzen, 2018, S. 26ff.):

ft(xt; ρ) = ŷt (2.2)

Der Wert ŷt steht für die vom Modell ft berechnete Vorhersage für den Datenpunkt xt zum

Zeitpunkt t mit der Modellkonfiguration ρ. Das generelle Ziel beim überwachten Lernen ist,

12

2. Grundlagen

eine optimale Hyper-Parametrisierung ρ∗ aus der Menge der möglichen Kombinationen von

Hyperparameter zu erlangen, sodass das Modell die bestmöglichen Evaluationsmetriken erzielt.

Das Durchlaufen verschiedener Kombinationen als sogenanntes Grid-Search von Hyperpara-

metern und Evaluationsmetriken ermöglicht im überwachten Lernen eine Suche nach den

bestmöglichen Parametern. Dieser Vorgang wird Hyperparameteroptimierung (HPO) genannt
(Raschka, Mirjalili und Lorenzen, 2018, S. 216ff.). Beim unüberwachten Lernen gibt es keine

Vorgabe für richtig oder falsch. Aber es gibt Parameter, die optimiert werden können, wie

die Anzahl der Cluster. Mithilfe der Elbow-Methode nach Formel 2.3 lässt sich die optimale

Anzahl von Clustern darstellen. Sie untersucht die Summe der quadratischen Abweichung

innerhalb der Cluster für verschiedene Clusteranzahlen K (Raschka, Mirjalili und Lorenzen,

2018, S. 362ff).

Inertia =
K∑
i=1

∑
x∈Ci

∥x− µi∥2 mit K ∈ N (2.3)

Wobei x für den einzelnen Datenpunkt und µi für den Schwerpunkt des Clusters Ci steht.

∥x − µi∥2 ist die euklidische Distanz des Punktes zum Clusterschwerpunkt. Der Punkt, an

dem die Inertia signifikant weniger stark abnimmt, ist der „Knick“ und wird als optimale

Clusteranzahl betrachtet. Dies ist eine effektive Optimierungsmethode zur Clusterbildung.

Evaluationsmetriken Je nach Lernverfahren und Problemstellung gibt es unterschiedliche

Evaluationsmetriken, die angewendet werden können, um die Güte des Modells zu bewerten. In

der Tabelle 2.1 wird eine Auswahl von populären Metriken aufgelistet. Bei der Regression wird

die Differenz zwischen dem tatsächlichen Wert y und der Vorhersage ŷ der Zielvariable (Label)

berechnet, um einen Fehler, auch Residuum genannt, zu ermitteln. Diese Residuen werden

verwendet, um verschiedene Metriken zu ermitteln, die eine Aussage über die Genauigkeit des

Modells geben. Die Metriken R2 undMean Absolute Error (MAE) sind leicht interpretierbar, aber

spiegeln nicht immer ideal die Modellleistung wider. MSE und Root Mean Squared Error (RMSE)

bestrafen größere Fehler mehr, was vorteilhaft ist, wenn große Fehler problematisch sind.

Ein Nachteil ist jedoch ihre geringere Interpretierbarkeit sowie ihre höhere Empfindlichkeit

gegenüber Ausreißern. Durch die Substitution von y = log(1 + y) bei MSE und RMSE wird

der Logarithmus eingesetzt, der den Effekt von Ausreißern mildert. Daraus resultieren neue

Metriken wie der RMSLE oder MSLE. Dieser Wert lässt sich ebenfalls schwer interpretieren

und ist nicht für negative oder Nullwerte geeignet, da der Logarithmus für diese Werte nicht

definiert ist. Je nach Zielgruppe ist die richtige Kombination von Metriken wichtig (Raschka,

Mirjalili und Lorenzen, 2018, S. 335ff.).

13

2. Grundlagen

Abkürzung Name Formel Ziel

MSE Mittlerer quadratischer Fehler
1
n

∑n
t=1(yt − ŷt)

2
minimieren

RMSE Standardfehler der Regression

√
1
n

∑n
t=1(yt − ŷt)2 minimieren

MAE Mittlerer absoluter Fehler
1
n

∑n
t=1 |yt − ŷt| minimieren

R
2
(auch „R2“) Bestimmtheitsmaß 1−

∑n
i=1(yi−ŷi)

2∑n
i=1(yi−ȳ)2

möglichst 1

Tabelle 2.1.: Auswahl gängiger Evaluationsmetriken für Regressionen unter Verwendung des

tatsächlichen Wertes y und des errechneten Wertes ŷ.

Bei den Klassifikationen wird eine Konfusionsmatrix als Kontingenztabelle verwendet, um

die Häufigkeit der vorhersagten und tatsächlichen Klassen gegenüberzustellen. Für die binäre

Klassifizierung mit zwei Klassen sieht die Matrix aus wie in Abbildung 2.5a. Dabei können

Vorhersagen „True“ oder „False“ sein. Bei zwei Klassen „Positive“ und „Negative“ ergeben sich

damit vier mögliche Zustände: True Positive (TP), False Positive (FP), True Negative (TN), False
Negative (FN). Der Zustand TP steht für eine korrekte Vorhersage der, hier, positiven Klasse,

wohingegen FP für eine fälschlicherweise positiv zugeordnete Klasse steht. Aus der Tabelle

2.5b werden die Metriken zur Bewertung eines Klassifizierungsmodells aufgelistet.

TP

FP

FN

TN

Ta
ts

äc
hl

ic
he

 K
la

ss
e

Vorhersagte Klasse

Positive
(P)

Negative

(N)

Positive Negative
Σ = |P| + |N|

(a) Konfusionsmatrix

Name Formel

Accuracy
TP + TN

TP + TN + FP +FN

Precision
TP

TP+FP

Recall
TP

TP+FN

Specificity
TN

TN+FP

F1-Score 2 · Precision·Recall
Precision+Recall

ROC-AUC

∫ 1
0

TP
TP+FN d(1− TN

TN+FP)

(b) Auswahl an Klassifikationsmetriken

Abbildung 2.5.: Auswahl gängiger Metriken für Klassifizierung mit zusammenhängender Kon-

fusionsmatrix.

Die Accuracy lässt sich einfach interpretieren und ist geeignet, wenn Klassen gleichmäßig

verteilt sind. Precision (Präzision) ist geeignet, um die Leistung für FP-Fälle und Recall (Sensiti-
vität) um TP-Fälle aufzuzeigen. Eine Metrik alleine wird zur Beurteilung des Modells nicht

empfohlen. Besser ist der F1-Score, der das harmonische Mittel aus Precision und Recall bildet.

14

2. Grundlagen

Der F1-Score ist aufgrund der Gewichtung schwer interpretierbar. Die Receiver Operating Cha-
racteristic - Area under Curve (ROC-AUC) ist der Flächeninhalt unter der ROC-Kurve, die die
True-Positive-Rate (Recall) und False-Positive-Rate (1 - Specificity) darstellt. Der Wert ist gut

geeignet für Modelle mit unausgewogenen Klassenverhältnissen, ist aber schwer zu interpretie-

ren und liefert nur eine relative Qualität. Die bisherigen Bewertungskriterien bezogen sich auf

binäre Klassifizierungen mit nur zwei Klassen. Mithilfe einer One-vs.-All Mittelwertbildung

lassen sich die Metriken auch auf Problemstellungen mit mehreren Klassen erweitern (Raschka,

Mirjalili und Lorenzen, 2018, S. 220ff.).

Das unüberwachte Lernen hat kein Label in ihren Datensätzen. Daher werden andere

Metriken zur Beurteilung der Clustergüte eingesetzt. Eine gängige Metrik ist der Silhouette-
Koeffizient sC . Dieser bewertet die Qualität der Clusterbildung für verschiedene Anzahlen von

Clustern. Das Bewertungskriterium lässt sich leicht berechnen und wird in Formel 2.4 definiert

(Raschka, Mirjalili und Lorenzen, 2018, S. 363).

sC =
1

nC

∑
o∈C

s(o) =
1

nC

∑
o∈C

dist(B, o)− dist(A, o)

max(dist(B, o), dist(A, o))
sC , s(o) ∈ [−1; 1] (2.4)

Dabei wird dist(A, o) als mittlerer Abstand zu allen anderen Objekten des Clusters A und

dist(B, o) als mittlerer Abstand zu den Objekten des nächstgelegenen Clusters verwendet. Die

Differenz wird durch den größeren Abstand der beiden Abstände normiert, sodass der Wert

der Silhouette s zwischen -1 und 1 liegt. Der Koeffizient entspricht dem arithmetischen Mittel

aller nC Silhouetten s des Clusters C . Der Wertebereich ist daher identisch zur Silhouette. Das

Kriterium ist einfach zu interpretieren, da der Wert 1 einem gut getrennten Cluster entspricht.

Die Berechnung kann bei größeren Daten aufwendig sein, da paarweise Distanzen ermittelt

werden müssen (Raschka, Mirjalili und Lorenzen, 2018, S. 362ff).

Evaluationsmethodik Alle vorgestellten Metriken aus dem überwachten und unüberwach-

ten Lernen können im BML, aber auch im OML angewendet werden. Nur die Berechnung der

Metriken unterscheidet sich. Beim BML werden die Metriken auf dem gesamten Datensatz

berechnet. Beim OML wird die progressive Validierung verwendet, die beispielhaft in Abbildung

2.6a dargestellt ist und schematisch in Abbildung 2.4b erklärt wird. Zunächst wird für einen

ankommenden Datenpunkt die Vorhersage mit dem Modell ŷ = f(x) berechnet. Im nächsten

Zeitschritt wird die Grundwahrheit y herangezogen. Mit dem tatsächlichen Wert y und der

Vorhersage ŷ wird dann die Metrik und das Modell aktualisiert. In Abbildung 2.6b wird dieser

Vorgang der verzögerten progressiven Validierung dargestellt. Das Eintreffen der tatsächlichen

15

2. Grundlagen

Driftarten wird in Tabelle 2.2 aufgezeigt. Die Beziehung zwischen X und Y entspricht einem

Konzept: Pt(X ∩ Y) = Pt(Y |X) · Pt(X) = Pt(X|Y) · Pt(Y). Die A-posteriori Wahrschein-

lichkeit Pt(Y |X) entspricht der Verteilung der Zielwerte Y für die gegebenen Merkmale X

zum Zeitpunkt t. Das P (X|Y) steht für das Auftreten der Merkmale X unter der Bedingung

des Zielwertes Y . P (X) steht für die Evidenz der Merkmale und P (Y) für die A-priori Wahr-

scheinlichkeit der Zielwerte. Ein Feature-Drift beschreibt die Veränderung der unabhängigen
Variable X bei gleichbleibendem Konzept. Für ein Label-Drift verhält es sich gleich, nur dass

es die abhängige Variable Y betrifft. Verändert sich die A-posteriori Wahrscheinlichkeit, kann

das Modell keine zuverlässigen Vorhersagen zu den Beziehungen machen, was Konzeptdrift
genannt wird. Ein Drift kann zwischen zwei Zeitpunkten t und t+ 1 oder einer Zeitperiode

t[t1,t2] und t[t2+1,t3] auftreten (Moreno-Torres et al., 2012).

Dirftart Bedingungen

Feature-Drift Pt(X) ̸= Pt+1(X) ∧ Pt(Y |X) = Pt+1(Y |X)
Label-Drift Pt(Y) ̸= Pt+1(Y) ∧ Pt(Y |X) = Pt+1(Y |X)
Konzeptdrift Pt(Y |X) ̸= Pt+1(Y |X) =⇒ Pt(Y ∩X) ̸= Pt+1(Y ∩X)

Tabelle 2.2.: Übersicht der Driftarten und deren Bedingungen.

Zur Veranschaulichung der verschiedenen Driftarten kann die Wohnflächenberechnung

genutzt werden. Feature-Drift tritt auf, wenn die Berechnung der Wohnfläche verändert wird,

die Einfluss auf die Verteilung des gleichnamigen Merkmals hat. Steigt der durchschnittliche

Verkaufspreis, der vorhergesagt werden soll, und zwar unabhängig von denMerkmalen, handelt

es sich um Label-Drift. Exemplarisch dafür wäre eine Gesetzesänderung, die den Einbau von

Wärmepumpen in Neubauten vorschreibt, was Einfluss auf das bestehende trainierte ML-

Modell zur Vorhersage von Wärmepumpenanfragen hätte und damit zu Konzeptdrift führt.

Die Erkennung von Drift kann in zwei Kategorien eingeteilt werden: explizite und implizite
Verfahren. Die explizite Drifterkennung ermittelt mithilfe des Labels Modellmetriken, die durch

das Verfahren im Laufe der Zeit überwacht werden. Dieses Verfahren kann gut im überwachten

Lernen eingesetzt werden. Bei der impliziten Drifterkennung verlassen sich die Algorithmen

auf die Eigenschaften der Merkmalswerte, da die Daten nicht gelabelt sind. Dadurch erzeugen

sie häufiger Fehlalarme, sind aber nützlich für Anwendungen im unüberwachten Lernen

(Bartz-Beielstein und Bartz, 2023, S. 27ff).

Drifterkennung kann in BML und OML durch statistische Tests umgesetzt werden. Das

Adaptive Windowing (ADWIN) wird für explizite Drifterkennung angewendet und verwaltet

ein gleitendes Fenster Ψ konfigurierbarer Länge. Innerhalb des Fensters werden kürzlich

beobachtete Datenpunkte gespeichert. Das Verfahren teilt das Fenster in zwei Teilfenster

17

2. Grundlagen

Ψ0 und Ψ1 und vergleicht ihre Mittelwerte. Ein statistischer Hypothesentest prüft, ob die

Differenz zwischen den Mittelwerten signifikant ist. Falls ja, wird davon ausgegangen, dass

ein Konzeptdrift aufgetreten ist, und das ältere Fensterteil wird entfernt. Der Parameter von

ADWIN dafür ist die Konfidenzgrenze δ, die angibt, wie viel Vertrauen in die Ausgabe des

Algorithmus gegebenwerden soll. Das Verfahren kann gut bei abrupten Änderungen verwendet

werden (Bifet, 2017).

Speicher

d'tSchätzerdt

AlarmDetektor

(a) Generelle Drift-Detektor Architektur

1 2 ... n-r n-r+1 ... n

Gleitendes Fenster Ψ

W

Drift prüfen

R

Referenzwerte

Eintritt

Zeitpunkt t

Austritt

Zeitpunkt t+n

(b) Speicherstrategie des KSWIN-Verfahren

Abbildung 2.7.: Architektur von Detektoren zur Erkennung von Veränderungen mit einer

beispielhaften Speicherverwaltung von Kolmogorov-Smirnov Windowing.

DieKolmogorov-SmirnovWindowing (KSWIN)Methode basiert auf demnicht-parametrischen

statistischen Kolmogorov-Smirnov (KS) Test, der die Ähnlichkeit zweier Verteilungen vergleicht,

indem er den maximalen Unterschied zwischen ihren kumulativen Verteilungsfunktionen

misst. Das KSWIN nutzt ein gleitendes FensterΨ der Größe nwie in Abbildung 2.7b dargestellt.

Die letzten r ∈ Ψ Stichproben des gleitenden Fensters repräsentieren die kumulative Vertei-

lungsfunktion der Referenz-Stichproben aus dem älteren Fensterfragment FR. Das neuere

Fragment FW beinhaltet die kumulative Verteilungsfunktion der Stichproben bis n− r, die

auf Drift getestet werden sollen. Ein Konzeptdrift ist in den Daten gegeben, wenn folgende

Bedingungen aus Formel 2.6 gegeben sind (Raab, Heusinger und Schleif, 2020):

dist(R,W) >

√
− ln(α)

r
mit dist(R,W) = sup

x
|FW (x)− FR(x)| (2.6)

dist(R,W) steht für den maximalen Abstand beider Verteilungsfunktionen FW (x) und

FR(x). Der Parameter α steht für den Schwellenwert des statistischen KS-Tests. Je größer das

Fenster ist, desto besser eignet es sich für inkrementelle Drifts mit schwankenden Änderungen

und vice versa (Raab, Heusinger und Schleif, 2020).

Die Architektur von Drifterkennungsmethoden wie ADWIN und KSWIN ist in 2.7a dar-

gestellt. Er besteht aus einem Speicher, wo Stichproben und relevante statistische Daten zwi-

schengespeichert werden. Der Schätzer berechnet die benötigten Statistiken wie Mittelwert

oder Verteilungen. Der Drift-Detektor prüft die Bedingung, ob eine Veränderung vorliegt oder

18

2. Grundlagen

nicht. Dafür verwendet er die Ausgaben des Schätzers und kann zusätzlich auf den Speicher

zurückgreifen (Bifet, 2017). Erkennt der Algorithmus eine signifikante Änderung in der Vertei-

lung der Daten aus dem Datenstrom oder in einer Modellmetrik, dann lösen er einen Alarm

aus, um eine Modifikation der Algorithmen zu initiieren. Bei einer abrupten Änderung muss

ein neues Modell trainiert werden. Bei schrittweisen Änderungen können die Parameter θ

auch angepasst werden (Bartz-Beielstein und Bartz, 2023, S. 25f).

Die größte Herausforderung bei OML-basierten Verfahren ist das mögliche katastrophale
Vergessen. Es entspricht dem Phänomen, dass ein Modell beim inkrementellen Lernen neuer

Daten seine Fähigkeit verliert, vorher gelernte Informationen korrekt zu nutzen. Das OML bietet

Möglichkeiten, um dem Problem entgegenzuwirken: Frühere Daten werden gespeichert und

später in das Training einbezogen (Replay Memory) oder es werden Regulierungen eingeführt,

um drastische Änderungen (Drift) durch Gewichte zu minimieren (Bartz-Beielstein und Bartz,

2023, S. 41f). Möglich wäre auch verschiedene OML-Experten zu trainieren.

2.4. Expertenmischung

Die Mixture of Experts-Architektur wurde erstmals von Jacobs et al. (1991) in der Arbeit

„Adaptive Mixture of Local Experts“ eingeführt. MoE verfolgt das Prinzip des Teile- und Herrsche
(engl. Divide and Conquer). Bei dieser Strategie wird ein Problem in Teilprobleme zerlegt,

diese einzeln gelöst und anschließend zu einer Gesamtlösung zusammengesetzt (Ernst, 2000, S.

435f.). Jacobs et al. haben ein neues überwachtes Lernverfahren für Systeme vorgestellt, das

aus vielen unterschiedlichen neuronalen Netzen besteht. Jedes dieser Expertennetzwerke lernt
dabei eine Teilmenge der gesamten Menge an Eingangsdaten in Trainingsfällen zu verarbeiten

(Jacobs et al., 1991).

2.4.1. Neuronale Netze

EinMehrschichtiges Perzeptron (MLP) ist ein (tiefes) Künstliches Neuronales Netz (KNN), das aus
mehreren Schichten von künstlichen Neuronen besteht und zur Lösung von Klassifikations-

und Regressionsaufgaben verwendet wird. Die Architektur besteht grundlegend, wie in Ab-

bildung 2.8 gezeigt, aus einer Eingabeschicht, optionalen verborgenen Schichten und einer

Ausgabeschicht. In jeder Schicht befinden sich ein oder mehrere künstliche Neuronen. Die

Eingabeschicht enthält die Merkmale und Zielwerte aus dem DatensatzDS. Die Ausgabeschicht

die berechneten Prognosen ŷt. Dazwischen befindet sich eine oder mehrere Schichten, in denen

jedes Neuron alle Neuronen der vorherigen Schicht über gewichtete Verbindungen wij ∈ R
und mit einem Bias-Wert bj ∈ R verbindet (Raschka, Mirjalili und Lorenzen, 2018, S. 385ff).

19

2. Grundlagen

w(x)i =
egi(x)∑N
j=1 e

gj(x)
=

eϕix+bgi∑N
j=1 e

ϕjx+bgj
= für i = 1, 2, . . . , N (2.7)

Dabei repräsentiert jedes wi ∈ [0, 1] den anteiligen Beitrag des i-ten Experten als Gewicht.

Die Summe aller Gewichte muss eins ergeben: ΣN
i=1wi(x) = 1. Am Ende werden die Ausgaben

der einzelnen Experten mit den Gewichten der dazugehörigen Experten aus dem Gating-

Netzwerk multipliziert. Zusammengesetzt ergibt sich die Gesamtprognose y für die Eingabe x

der Mixture of Experts Netzwerk aus Formel 2.8:

y(x) =

N∑
i=1

Ei(x) · wi(x) =

N∑
i=1

(θix+ bi) ·
eϕix+bgi∑N
j=1 e

ϕjx+bgj
(2.8)

Anhand des überwachten Lernens wird im Training mit der Ausgabe des Netzwerks und dem

tatsächlichen Wert trainiert. Dabei kann sowohl das Gating-Netzwerk als auch die Experten

mit gradientenbasierten Optimierungsmethoden trainiert werden, wie SGD. Die Verlustfunk-

tion L kann etwa der mittlere quadratische Fehler MSE bei Regressionen oder einer der

Kreuzentropien bei Klassifizierung sein. Es sind auch andere Verlustfunktionen möglich. Das

Experten-Netzwerk kann ein beliebiges KNN sein. Das Gating-Netzwerk entscheidet durch den

gewichteten Beitrag und mithilfe der Verlustfunktion in der Backpropagation, wie stark ein

Experte genutzt wird. Damit spezialisieren sich die Experten mit der Zeit. Ein MoE wird durch

die Hyperparameter, Größe sowie Anzahl der Experten- und Gating-Netzwerke charakterisiert.

2.4.3. Variationen von Gating-Netzwerken

Es gibt verschiedenste Ansätze zur Auswahl von Experten, die im Gate umgesetzt werden

können. In der Tabelle 2.3 werden die bekanntesten Gating-Ansätze mit ihren Vorteilen und

Nachteilen aufgeführt.

Name Anz. Experten Vorteil Nachteil

Hard-MoE 1 Geringer Aufwand Schlechtere Leistung

Soft-MoE 1..N Hohe Flexibilität Hoher Aufwand

Dense-MoE N Genaue Vorhersage Mögliche Redundanz

Sparse-MoE Top(k) Effizient, Skalierbar Komplex, Überanpassung

Adaptive-MoE xt → nt Effektiv, Flexibel Komplex, Latenz

Tabelle 2.3.: Gating-Architekturen mit Vor- und Nachteilen.

22

2. Grundlagen

Ein möglicher Ansatz ist Hard-MoE. Im Hard MoE-Ansatz wird nur eine begrenzte Anzahl

(häufig lediglich einen) der verfügbaren Experten für die Verarbeitung eines Inputs aktiviert.

Das Gate wählt basierend auf den Eingaben einen spezifischen Experten aus und deaktiviert

die anderen. Dafür wird das Gating-Netzwerk als One-Hot-Encoding-Vektor trainiert, der den
passenden Experten auswählt. Der Rechenaufwand ist gering, da hier nur ein Experte für

eine Aufgabe aktiviert wird. Dadurch ist es auch möglich, einfach auf eine höhere Anzahl an

Experten zu skalieren. Ein Nachteil könnte darin bestehen, dass die Leistung und Konvergenz

darunter leidet, wenn nur ein einzelner Experte ausgewählt wird (Jacobs et al., 1991).

Eine alternative Gating-Architektur dazu ist Soft-MoE. Dort werden mehrere Experten

gleichzeitig aktiviert und genutzt. Das Gate verteilt dabei Gewichtungen auf alle Experten

mithilfe der Softmax-Funktion, sodass jede Experteneinheit einen Anteil an der Verarbeitung

eines Inputs hat. Da mehrere Experten aktiviert werden, kann das Modell durch eine breitere

Wissensbasis oft präzisere Vorhersagen treffen. Die gleichzeitige Aktivierung und Gewich-

tung aller Experten führt zu einem höheren Rechenaufwand und erhöhter Speichernutzung

(M. I. Jordan und R. A. Jacobs, 1994). Bei den Dense-MoE werden alle Experten aktiviert. Das

ermöglicht das Training von mehreren spezialisierten Modellen, mündet aber gleichzeitig,

ähnlich wie bei Soft-MoE, in hohen Rechenaufwand und Speicherbedarf. Zusätzlich besteht

die Gefahr der Redundanz, wenn immer alle Experten trainiert werden.

Eine Mischung aus beiden Architekturen sind die Sparsley Activate MoE (kurz: Sparse-MoE).

Sparse-MoE aktiviert nur eine geringe Anzahl der verfügbaren Experten pro Eingabe, um

Rechenaufwand zu sparen. Diese Architektur trainiert mit Rauschen ein sparsames Routing,

wobei eine geringe Anzahl von den besten k-Experten abhängig von der Eingabe aktiv bleibt.

Die verbliebenen Experten werden dann mit Softmax, wie in Soft-MoE, gewichtet. Diese

Architektur hat eine hohe Effizienz, da nur ein kleiner Teil der Experten aktiv ist, was die

Rechenkapazität und den Speicherbedarf reduziert. Außerdem können große Modelle mit

einer Vielzahl von Experten ohne hohe Kosten betrieben werden. Eine Herausforderung ist die

Komplexität eines effizienten Routings des Gating-Netzwerks. Außerdem gibt es bei zu klein

gewählten k das Risiko, dass einige Experten zu stark trainiert werden (Shazeer et al., 2017).

Bei dem Adaptive-MoE passt sich die Anzahl aktivierten Experten dynamisch basierend

auf den Anforderungen einer Eingabe an, ohne eine konstante Vorgabe k. Dies bedeutet,

dass einfache Eingaben nur wenige Experten nutzen, während komplexe Eingaben mehrere

Experten aktivieren. Dies schafft eine gute Mischung aus Effizienz und Genauigkeit. Ressourcen

werden nur dann intensiv genutzt, wenn die Eingabe es erfordert. Adaptive MoE-Modelle sind

flexibler und können Ressourcen entsprechend der Eingabe anpassen. Ein Nachteil ist das

komplexe Design sowie das Training des adaptiven Gating-Netwerks. Ein weiterer Nachteil

23

2. Grundlagen

W verrechnet. Zwischen den Zeilen von K und den transponierten Spalten von Q wird das

Skalarprodukt angewendet. Der Softmax-Wert wird dann mit V multipliziert (Formel 2.10).

AttentionScore(Q,K, V) = Softmax
(
Q ·K⊤
√
dK

)
V (2.10)

dK steht für die Dimension der Schlüssel (K). Ein anschauliches Beispiel ist der Satz „Katzen

lieben Fisch“, bei dem errechnet wird, wie stark „Katze“ (Q) zu allen anderen Wörtern (K) passt

(z.B. „Fisch“ ist relevanter als „lieben“). Diese Relevanz beeinflusst dann, welche Informationen

(V) an „Katze“ weitergegeben werden. In der Multi-Head Attention Ebene, werden mehrere

parallele Attention verwendet, um verschiedene Arten von Beziehungen zwischen Wörtern zu

lernen. In einem traditionellen Transformer würde auf diesen Ebenen ein FNN folgen. In den

MoE-Transformern werden die FNN durch MoE ersetzt. Die Ergebnisse aller Ebenen werden

mit ihren jeweiligen ursprünglichen Eingabedaten über die Sprungverbindung addiert und

normalisiert. Das stabilisiert den Gradientenfluss durch das tiefe Netzwerk und verbessert die

Konvergenz des Trainings. Am Ende des Decoders ist es noch möglich, durch eine Softmax-

Ebene, die Prognosen ŷ als Wahrscheinlichkeitsverteilung auszugeben. (Vaswani et al., 2017;

Fedus, Zoph und Shazeer, 2022).

In der Abbildung 2.12 wird ein Switch Transformer nach Fedus, Zoph und Shazeer (2022) mit

einem Switch Routing verwendet. Diese sind eine Vereinfachung der Sparse-MoE von Shazeer

et al. (2017), da nur ein Experte (k = 1) pro Token gewählt wird. Damit kann der Rechen-

aufwand für das Gating und den Speicherplatz für Experten bei gleichbleibender Modellgüte

reduziert werden. Die verschiedenen Experten der Transformer-MoE konzentrieren sich jeweils

beispielsweise auf Satzzeichen, Verben, visuelle Beschreibungen und weiteres. Mit den redu-

ziert aktivierten MoE kann die Anzahl der Parameter durch neue Experten-Netzwerke stark

erhöht werden, ohne den linearen Anstieg der Berechnungskosten. Diese Experten-Netzwerke

können damit spezielle Aufgaben effektiver lösen, da sie unterschiedliche Teile des Modells für

unterschiedliche Aufgaben verwenden. Kleinere Transformer-MoE erzielen damit genauere

Ergebnisse als vergleichbare oder größere Transformer Modelle ohne MoE (A. Q. Jiang et al.,

2024). Transformer-MoE nutzen Parameter der trainierten Experten-Netzwerke PE und ge-

meinsame Parameter Pgeteilt, die immer genutzt werden, wie in den Attention-Ebenen. Mit der

Anzahl der aktiven Experten |E| ergibt sich die Gesamtanzahl: PGesamt = Pgeteilt + |E| · PE .

27

3. Verwandte Arbeiten

Zunächst wurden die verwandten Arbeiten aus aktueller Forschung betrachtet. Dafür wurde

eine systematische Literaturrecherche nach dem PRISMA-Schema von Page et al. (2021) durch-

geführt. Das Ziel der Literaturrecherche ist es, einen Überblick über die aktuelle Forschung von

MoE im Kontext adaptiver ML-Verfahren zu erhalten. Dabei soll untersucht werden, wie Gating-

Verfahren in MoE eingesetzt werden können, um in adaptiven und aufgaben-agnostischen

Umgebungen angewendet zu werden. Aus diesen Erkenntnissen sollen offene Probleme, Her-

ausforderungen und Chancen abgeleitet werden, die näher in dieser Arbeit beleuchtet werden.

3.1. Systematische Literaturrecherche

Um die besten Ergebnisse während der Recherche mit relevanten Veröffentlichungen zu

erhalten, wurden indizierte Literaturverzeichnisse verwendet. Diese Quellen ermöglichen

eine breite Suche nach veröffentlichten Arbeiten, die andernfalls übersehen werden würden.

Bei der Veröffentlichung wurden nur peer-reviewed Artikel berücksichtigt, weswegen nur

die Verzeichnisse IEEE Explore (IEEE), SpringerLink (SL), Elsevier Science Direct (SD) und
ACM Digital Library (ACM) durchsucht wurden. Für ACM wurde auch die Literatur der

erweiterten Datenbank berücksichtigt. Für die Suche in den Datenbanken wurde einheitlich

die gleiche Suchanfrage verwendet und ist in englischer Sprache erfolgt, um eine möglichst

breite Literaturauswahl zu erhalten:

("Mixture of Experts" OR "MoE") AND ("Machine Learning"
OR "ML") AND ("Gating Network") AND ("Adaptive" OR "Task
agnostic")

Zunächst wurden die Begriffe „Mixture of Experts“ und „Machine Learning“ zur Suchanfrage

hinzugefügt, um Ergebnisse im Kontext des maschinellem Lernens und der Expertenmischung

zu erhalten. In vielen Arbeiten werden häufig Abkürzungen verwendet. Angesichts dessen wur-

de „MoE“ für Mixture of Experts und „ML“ für Machine Learning ergänzt. Zusätzlich wurden

noch die Begriffe „Adaptive“ und „Task agnostic“ im Suchtext hinzugefügt, um Veröffentli-

28

3. Verwandte Arbeiten

chungen zu erhalten, die sich mit adaptiven oder aufgaben-unspezifischen Problemstellungen

beschäftigt haben. Ein zusätzlicher Fokus auf Gating-Netzwerke wird durch das Hinzufügen

des Begriffs „Gating Network“ gelegt.

Die einzelnen Begriffe wurden mit den boolschen Operatoren verknüpft. Der Operator

für Disjunktion OR wird verwendet, um Begriffe und ihre Abkürzungen gleichermaßen im

Einschluss zu berücksichtigen. Die verknüpfte Konjunktion AND verringert als Schnittmenge

der Teilsuchergebnisse das gesamte Suchergebnis. Damit die Reihenfolge der Wörter innerhalb

der Begriffe richtig interpretiert wird, wurdemithilfe der Anführungszeichen eine Phrasensuche

durchgeführt. Der Zeitraum für die Veröffentlichung wurde auf vier Jahre festgelegt: 2021

bis 2024, um alle aktuellen Veröffentlichungen zu erhalten. Die Suche wurde im August 2024

durchgeführt.

Während der Screening-Phase wurden Leitlinien auf Titel, Schlagwörter und Zusammen-

fassung angewendet, um irrelevante Veröffentlichungen auszuschließen. Ergebnisse wurden

nicht weiter berücksichtigt wenn:

1. Adaptives Lernen nicht im Sinne von künstlicher Intelligenz gemeint ist.

2. Reinforcement Learning eingesetzt wird.

3. Der Schwerpunkt nicht auf MoE liegt.

Suchergebnisse aus Proceedings wurden nicht explizit berücksichtigt, da die veröffentlichten

Arbeiten bereits in den Suchergebnissen angezeigt werden. Diese Kriterien konnten verwendet

werden, um die Anzahl der Volltextarbeiten für die spätere Evaluierung zu reduzieren. Damit

ist ein Fokus auf potenziell relevante Arbeiten in der Phase Eligibility möglich.

In Abbildung 3.1a wird die systematische Literaturrecherche schematisch dargestellt. Die

initiale Suche mit der Suchanfrage ergab 178 Veröffentlichungen, wovon 90 aus derACMDigital
Library, keine aus IEEE Explore sowie 63 aus Elsevier Science Direct und 25 von SpringerLink
kamen. Nach der ersten Sichtung der Titel, Schlagwörter und Zusammenfassung konnten 141

Suchergebnisse entfernt werden. Davon waren 35 Duplikate, die als Redundanz in mehreren

Datenbanken auftauchten. In der nächsten Eignungsprüfung wurden 22 irrelevante Arbeiten

aus den Suchergebnissen entfernt. In der finalen qualitativen und quantitativen Betrachtung

wurde die Auswahl auf 15 Artikel beschränkt, um den Rahmen der Arbeit nicht zu sprengen.

Wie in der Abbildung 3.1b zu erkennen, ist ein klarer Trend an MoE für adaptive und

aufgaben-agnostische Problemstellungen in den vergangenen vier Jahren zu erkennen. Vor

allem in den Jahren 2023 und 2024 ist die Anzahl der Veröffentlichungen stark gestiegen.

Im nächsten Abschnitt werden die ausgewählten Artikel für die qualitative Analyse näher

betrachtet.

29

3. Verwandte Arbeiten

Id
en

ti
fic

at
io

n

ACM = 90

IEEE = 0

SD = 63

SL = 25

n = 178

Sc
re

en
in

g

Titel, Zusammenfassung
und Schlüsselwörter

(n = 178)

Entfernt nach Einschluss-

und Ausschlusskriterien

(n = 141)

E
lig

ib
ili

ty Volltext bewertet nach
Einschluss- und

Ausschlusskriterien
(n = 37)

Nicht zugängliche Arbeiten
entfernt (n = 0)

Irrelevante Studien entfernt
(n = 22)

In
cl

ud
ed Einbezogene Artikel für die

qualitative und quantitative Analyse

(n = 15)

(a) PRISMA-Flussdiagramm

20
21

20
22

20
23

20
24

Jahr der Veröffentlichung

0

10

20

30

40

50

60

70

A
n

za
h

l
E

rg
eb

n
is

se

ACM

IEEE

SD

SL

(b) Häufigkeit nach Jahr (N = 178)

Abbildung 3.1.: Ergebnisse der systematischen Literaturrecherche.

3.2. Qualitative Analyse

Die ausgewählten 15 Veröffentlichungen wurden nach ihrem MoE-Schwerpunkt in die drei

Kategorien „Gating-Ansätze“, „Multi-Task“ und „Adaptives Verhalten“ eindeutig zugeordnet.

Die Kategorien wurden aus den Schlagwörtern Gating Network, Adaptive und Task
agnostic (für Multi-Task-Lernen) der oberen Suchanfrage abgeleitet. Eine Übersicht der

Zuordnung nach Quelle zeigt Tabelle 3.1. Zuerkennen ist, dass viele Ansätze sich hauptsächlich

auf neue oder spezielle Gating-Ansätze konzentrieren. Mit einem speziellen Ansatz, demMulti-
Mixture-of-Experts (MMoE) Ansatz, lassen sich Aufgaben des Multi-Task-Lernen lösen. Am

wenigsten wird sich mit Ansätzen beschäftigt, die sich in adaptiven Szenarien bewegen.

Alle Arbeiten haben die Gemeinsamkeit der grundlegend verwendeten MoE-Architektur.

In der ersten Kategorie „Gating-Ansätze“ geht es um Veröffentlichungen, die sich auf MoE-

oder Gating-Mechanismen konzentrieren. Diese Mechanismen ermöglichen eine dynamische

Auswahl vonModellkomponenten und verbessern die Leistung bei komplexen Aufgaben, indem

sie sich auf relevante Merkmale oder Experten konzentrieren. Mit der „Multi-Task“-Kategorie

sind Beiträge ausgewählt, die MoE nutzen, um mehrere Aufgaben gleichzeitig bewältigen zu

können oder so konzipiert sind, dass sie nicht an bestimmte Aufgaben gebunden sind. Sie

30

3. Verwandte Arbeiten

Kategorie Anzahl Referenz

Gating-Ansätze 7 Huang et al. (2024); Z. Chen et al. (2024); Hihn und Braun

(2024); Hihn und Braun (2023); Chen, Yue und Shi (2023);

Wang et al. (2021); Kobayashi und Shirayama (2021)

Multi-Task 5 Hu et al. (2024); Park et al. (2024); S. Jiang et al. (2024);

Rahman et al. (2024); J. Du et al. (2022)

Adaptives Verhalten 3 C. Chen et al. (2024); Sharma, Henderson und Ghosh (2023);

W. Chen et al. (2023)

Tabelle 3.1.: Übersicht der Kategorien aus der qualitativen Literraturrecherche.

zielen darauf ab, die Effizienz und Leistung durch die Nutzung von gemeinsamem Wissen über

Aufgaben hinweg zu verbessern. Die Kategorie „Adaptives Verhalten“ umfasst Arbeiten, die sich

auf MoE-Modelle konzentrieren, die sich an veränderte Datenverteilungen oder Umgebungen

anpassen. Sie betonen das Lernen aus neuen Daten unter Beibehaltung des zuvor erworbenen

Wissens, was in dynamischen Umgebungen, wie OML, von entscheidender Bedeutung ist.

3.2.1. Gating-Ansätze

MoE vs. CNN In dem Paper von Z. Chen et al. (2024) wurde untersucht, wie Router lernen

Daten effektiv den richtigen Experten zuzuweisen und welche Vorteile das Divide-and-Conquer-
Prinzip der MoE gegenüber CNN bringt. Nach der Einführung in die theoretischen Grundlagen

wird eine Datenverteilung mit Clusterstrukturen eingeführt, welche die Vorteile der MoE-

Architektur verdeutlichen kann. Empirisch wurde dies durch Experimente auf synthetischen

und realen Datensätzen (CIFAR-10 und CIFAR-10-Rotate) evaluiert. Verglichen wurde ein

klassisches CNN mit zwei Schichten, mit einem Sparse-MoE Top(k = 1). Auf synthetischen

Datensätzen erreicht MoE mit nicht linearen Experten eine Genauigkeit von > 99%, während

lineare MoE-Modelle und das CNN deutlich schlechter abschneiden. In den realen Daten

hängt es von der Clusterstruktur der Daten ab. In dem modifizierten realen CIFAR-10-Rotate

Datensatz zeigt MoE klare Verbesserungen gegenüber dem CNN. Die Entropie, die die Daten-

verteilung über die nicht linearen Experten beschreibt, ist fast null. Das deutet auf eine klare

Spezialisierung hin.

Bayesian-Gating Die Forscher Kobayashi und Shirayama (2021) haben eine Methode mit

Bayesschen Netzwerken entwickelt, die dem MoE-Ansatz ähnelt. Ziel war eine möglichst

robuste und genaue Vorhersage, ob die Rendite des Nikkei 225 Börsenindex in der nächsten

Periode über oder unter dem Durchschnitt liegt (binäre Klassifikation). Dafür wurden die

31

3. Verwandte Arbeiten

Trainingsdaten aus sechs Börsenindizes mit K-means, ähnlich wie in vorherigen Arbeiten,

für sieben Experimente in ein dynamisches und zwei bis sieben normale Cluster aufgeteilt.

Das Bayessches-Netzwerk wurde für jedes KNN (FNN, RNN und LSTM) trainiert, damit es

die Beziehung zwischen Eingabedaten und dem KNN bestmöglich darstellt. Dieser Gating-

Mechanismus wählt das beste KNN für die Vorhersage aus, indem er die Wahrscheinlichkeit

berechnet, mit der ein Datenpunkt zu einem bestimmten Cluster und somit zu einem KNN

gehört. Verglichen wurden die Ergebnisse mit einfachen und mehrfachen KNN, einem Deep-

MoE und Hard-MoE sowie einem früheren Ansatz der Autoren mit Naive-Bayes-Klassifikator.

Das Bayesian-Gating erreicht beiK = 6 Clustern die besten Ergebnisse (Accuracy: 68,36 %;

F1-Score: 66,89 %) und ist damit besser als alle anderen Ansätze. Das probabilistische Gating

ermöglicht zudem stabile Vorhersagen.

WEKT Das Option-Weighting-Enhanced Mixture-of-Experts Knowledge Tracing (WEKT)-

Modell wird von Huang et al. (2024) vorgestellt. Ziel ist es, die Wissenszustände von Lernenden

genauer zumodellieren, indem sowohl die Korrektheit der Antworten als auch dieWahl von Op-

tionen bei Multiple-Choice-Fragen aus Aufgaben berücksichtigt wird. In der Methodik werden

mehrere Ansätze kombiniert. Das WEKT-Framework nutzt gewichtete Bewertungen der Ant-

wortoptionen, die Teilleistungen und Fehlerarten berücksichtigen. Ein Gating-Mechanismus

des MoE filtert und kombiniert die Outputs der aufgabenspezifischen Experten dynamisch.

Dabei werden zwei Aufgaben simultan gelöst: Vorhersage der Antwortkorrektheit und der ge-

wählten Option. Als Expertennetzwerke werden LSTMs und Multi-Head-Attention-Schichten

genutzt, um die insgesamt 34,45 Millionen Daten der Lernhistorie von Studierenden zu analyi-

sieren. WEKT übertraff zehn Referenzmodelle in allen Metriken (Accuracy, AUC und RMSE).

Zusätzlich ist das Modell effizienter als die vergleichenden Modelle, was auf den Einsatz

von MoE zurückzuführen ist. WEKT erzielt präzisere Vorhersagen der Lernendenleistung,

indem es als neuen Ansatz die Teilleistungen durch Options-Gewichtung berücksichtigt und

Fehlerursachen analysiert.

MoVE Die Forscher Hihn und Braun beschäftigen sich in zwei Veröffentlichungen von

2023 und 2024 mit dem Problem des katastrophalen Vergessens in MoE. Dieses Problem ist

insbesondere in kontinuierlichen Lernumgebungen, wie der untersuchten OML-Umgebung

problematisch. Beide Studien zielen darauf ab, task-agnostische Ansätze zu entwickeln, die

ohne explizite Aufgabeninformationen funktionieren undWissen nachhaltig bewahren. Im Jahr

2023 wurde ein hierarchischer Ansatz mit Mixture-of-Variational-Experts (MoVE)-Schichten

eingeführt, die spezialisierte Sub-Netze durch eine Gating-Policy aktivieren und Diversität

sowie Spezialisierung fördern. Der Mechanismus nutzt die Kullback-Leibler-Divergenz (KL-

32

3. Verwandte Arbeiten

Divergenz) nach Kullback und Leibler (1951), um die Abweichung zwischen posterioren und

prioren Verteilungen der Expertenparameter zu minimieren und so ein Gleichgewicht zwischen

Lernen und Vergessen zu schaffen. Die Arbeit von 2024 erweitert diesen Ansatz, indem sie

Mutual Information einführt, um Experten effizient zu spezialisieren, und Dirichlet-Prozesse zur

dynamischen Erweiterung der Experten nutzt. DieseMethode verzichtet auf generativeModelle

und Replay-Mechanismen, was ihre Flexibilität erhöht. Beide Arbeiten führten Experimente

auf Standard-Datensätzen wie Split-MNIST und Split-CIFAR-10/100 sowie auf Reinforcement

Learning-Aufgaben durch. Die Ergebnisse zeigen, dass beide Ansätze effektiv das Vergessen

reduzieren und spezialisierte Experten für verschiedene Aufgaben schaffen. Während die

Arbeit von 2023 durch eine hierarchische Struktur und gezielte Diversitätsziele überzeugt,

liefert die Arbeit von 2024 eine flexiblere, online-fähige Lösung für dynamische und komplexe

CL-Szenarien (Hihn und Braun, 2023; Hihn und Braun, 2024).

LTMoE Space-Time Video Super-Resolution (STVSR) dient dazu, Videos mit niedriger Auf-

lösung und niedriger Bildrate in hochauflösende Videos mit hoher Bildrate zu transformie-

ren. Chen, Yue und Shi (2023) führen das Long-Term Temporal Feature Aggregation Network
(LTFA-Net) ein, das für die Feature-Interpolation ein neuartiges LTMoE nutzen. Long-Term
Mixture-of-Experts kombiniert mehrere Experten mit Convolutional-Schichten (u.a. ConvNext

von Liu et al., 2022), um räumlich-zeitliche Features aus mehreren benachbarten Frames zu

extrahieren und mit einem Soft-Gating-Netz zu gewichten. In Phase zwei und drei werden

Convolutional-Schichten genutzt, um lokale und globale Bewegungen zu verbessern. In der

letzten Phase wird die räumliche Auflösung durch ConvNext-Blöcke erhöht. Mit dem Da-

tensatz Vimeo-90K wurde das Netzwerk trainiert. Evaluiert wurde mit einem Adobe- und

GoPro-Datensatz. Alle Videos wurden vorab durch bikubische Interpolation in der Auflösung

verringert. Mithilfe des Signal-Rausch-Verhältnisses und der wahrgenommenen Ähnlichkeit

zwischen zwei Bildern hinsichtlich Helligkeit, Kontrast und Struktur wurden die Ergebnisse be-

wertet. Quantitativ erzielte das LTFA-Net bessere Ergebnisse als vergleichbare Ansätze und mit

einer Inferenzgeschwindigkeit von 14,53 Bilder pro Sekunde bei 12,41 Millionen Parametern.

Eine Leistungssteigerung wurde vor allem bei Gating-Netzen bemerkt, die Experten disjunkt

gewichten.

GNN Das Paper von Wang et al. (2021) stellt ein Framework für die interaktive Steuerung

virtueller Charaktere in Echtzeit vor. Als Grundlage wird ein Gated Neural Network (GNN) als

Gating-Ansatz in der MoE-Architektur eingeführt. Ziel ist es, eine hohe Bewegungsrealität

und Anpassungsfähigkeit an verschiedene Eingaben und Umgebungen zu erreichen, während

gleichzeitig die Effizienz der Berechnungen optimiert wird. In der Architektur kommt ein

33

3. Verwandte Arbeiten

der Aufgabe zu entkoppeln. Die Gesamtausgabe für eine Aufgabe k ergibt sich damit aus

Formel 3.1.

yk = hk

(
n∑

i=1

gki (xt)fi(xt)

)
(3.1)

Anhand von Experimenten zeigten die Autoren, dass die MMoE-Architektur die Basisme-

thoden übertrifft, insbesondere wenn die Korrelation zwischen den Aufgaben gering ist. Diese

Architektur ermöglicht es, Experten je nach Anforderung unterschiedlich stark zu nutzen.

Trotz zusätzlicher Gating-Netzwerken, bleibt die Parameterzahl überschaubar.

ACMoE DieMMoEwurden von Park et al. (2024) für ein Empfehlungssystemmit zwei Haupt-

ansätzen verwendet: Single-Domain Sequential Recommendation (SDSR) und Cross-Domain
Sequential Recommendation (CDSR). Beim Ersteren handelt es sich um Empfehlungen, basie-

rend auf Interaktionen mit einer einzigen Domäne. Beim Zweiteren basieren die Empfehlungen

auf mehreren Domänen. Die Herausforderung ist der negative Transfer zwischen schwach

korrelierten Domänen, der die Leistung von CDSR beeinträchtigt. Der Negative Transfer Gap
(NTG) ist der Leistungsunterschied, hier zwischen SDSR und CDSR. Ziel der Forscher war

die Entwicklung eines Frameworks, das den NTG in CDSR minimiert und die Leistung aller

Domänen stetig verbessert. So wurde das Asymmetric Cooperative Network mit Mixture-of-
Sequential Experts (ACMoE) entwickelt. Genutzt wird ein MTL-Szenario, das SDSR und CDSR

gleichzeitig behandelt. Der Gating-Mechanismus verteilt die Eingaben auf die Experten für

SDSR und CDSR. Für die Experimente wurden fünf Domänen aus einem Amazon- und einem

Telco-Datensatz verwendet. Das ACMoE-Modell wurde mit 25 state-of-the-art Modellen und

domänenspezifischen Metriken wie Klickrate der besten fünf Produkte verglichen. Das entwi-

ckelte Modell übertraf die Referenzmodelle um 38,81 % in der Klickrate der Telco-Domäne. In

der produktiven Umsetzung wurde eine 21,4 % Steigerung der Klickrate gemessen. Insgesamt

hat sich der NTG reduziert und eine Verbesserung in allen Domänen entwickelt.

AutoMTL Eine weitere Forschung beschäftigt sich mit der Reduzierung des negativen Trans-

fers, um die Leistung aufgabenspezifischer Anpassungen zu verbessern. Dafür haben die

Forscher S. Jiang et al. (2024) ihr Framework AutoMTL vorgestellt, das mithilfe von Neural
Architecture Search (NAS) automatisch optimale Architekturen und „Expert-Sharing-Modi“ mit

MMoE für MTL-Modelle entwirft. Das AutoMTL sucht in einem zwei-ebenen Suchraum, um

zum einen die geteilte und zum anderen die spezifischen Expertennetzwerke auszuwählen.

Damit können verschiedenen MoE-basierte Modelle kombiniert werden. Für die Suche wird der

35

3. Verwandte Arbeiten

Algorithmus Progressively Discretizing Differentiable Architecture Search (PD-DARTS) verwen-

det. Während der Suche wird das Supernetzwerk schrittweise diskretisiert, indem unwichtige

Architekturkomponenten basierend auf Entropie-Metriken eliminiert werden, was die Effizienz

steigert und die Notwendigkeit eines vollständigen Neutrainings vermeidet. Der Suchraum

des AutoMTL umfasst auch Mechanismen zur Auswahl relevanter Attribute, um sie für die

verschiedenen Experten zu optimieren. Die Evaluierung erfolgte auf fünf öffentlich zugängli-

chen Datensätzen: UserBehavior-2017, IJCAI-2015, KuaiRand-Pure, QB-Video und AliCCP mit

unterschiedlichen MTL-Aufgaben und der AUC-Metrik. Diese decken verschiedene Szenarien

ab, darunter Benutzerverhalten und Videobewertungen. AutoMTL übertrifft vergleichbare

MTL-Modelle wie klassische MMoE oder AdaTT von D. Li et al. (2023) und PLE von Tang et al.

(2020) in allen Datensätzen. Der flexible Suchprozess ermöglicht das Finden idealer MMoE-

Netzwerke und benötigt ähnlich viel Rechenzeit wie das Training. Das hebt, laut Autoren, die

Praxistauglichkeit hervor.

HTMN Die Generalisierungsfähigkeit in MTL-Modellen bei schwach korrelierenden Daten

haben auch die Forscher J. Du et al. (2022) untersucht. Dafür stellen sie den neuen Ansatz

Hierarchical Task-aware Multi-Head Attention Network (HTMN) vor, um globale (Aufgaben-

übergreifende) und lokale (aufgabenspezifische) Merkmale effizient zu extrahieren und adaptiv

zu integrieren zu können. Es besteht aus zwei Komponenten. Das Multi-Level Task-aware
Netzwerk extrahiert globale und lokale Merkmale durch spezialisierte MoE, die mit mehreren

Gates pro Aufgabe gewichtet werden. Im Anschluss wird der Self-Attention Mechanismus

im Hierachischem Multi-Head Attention Netzwerk angewendet, um lokale Merkmale für jede

Aufgabe zu erfassen. Das Endergebnis wird, wie im MMoE, durch separate Aufgaben-Türme

generiert. Für die Experimente wurden Einkommensdaten und Filmbewertungen verwendet. Es

wurden insgesamt drei Gruppen mit schwach korrelierenden Vorhersage-Aufgaben verglichen

– wie Einkommen und Familienstand (Pearson-Korrelationskoeffizient: 0,176). Das HTMN

wurde mit zehn anderen Modellen und Metriken wie ROC-AUC, F1-Score, MSE und MAE

verglichen. Das HTMN übertrifft die anderen Modelle in nahezu allen Aufgaben und Metriken,

insbesondere bei den schwach korrelierten kombinierten Attributen. Zudem konvergiert das

Modell schneller. Der hierarchische Attention-Mechnismus bietet Potenzial für zukünftige

Forschungen in ressourcenschonenden MTL-Szenarien.

STGT Die Forscher Hu et al. (2024) haben eine kurzfristige Vorhersage von Ein- und Aus-

stiegspassagierströmen in städtischen Schienenverkehrssystemen mit MMoE vorhergesagt. Die

Herausforderung liegt in der Modellierung der komplexen raumzeitlichen Abhängigkeiten und

der intrinsischen Beziehungen zwischen Ein- und Ausströmen, um die Genauigkeit und Ro-

36

3. Verwandte Arbeiten

bustheit der Vorhersagen zu erhöhen. Für die Lösung des Problems wurde ein Spatio-Temporal
Graph Transformer (STGT) Modell in ein MTL-Framework integriert. Der Graph-Transformer

nutzt Attention-Mechanismen, um die raumzeitlichen Merkmale zu extrahieren. Mithilfe des

MMoE wird die Beziehung zwischen Ein- und Ausströmen durch dynamische Gewichtung

der Expertennetzwerke modelliert. Bei der Lösung werden auch externe Merkmale wie das

Wetter, Zugfahrpläne oder die Zugänglichkeit von Busstationen berücksichtigt. Als Datensatz

wurde ein realer Datensatz des Pekinger U-Bahn-Systems aus einem Jahr verwendet. Die

Daten umfassen Ein- und Ausstiegszeiten, Stationsnamen sowie externe Faktoren wie Wetter

und Busanbindung. Verglichen wurde der neue Ansatz mit traditionellen Methodiken für

Zeitreihen wie Autoregressive Integrated Moving Average (ARIMA), mithilfe von maschinellem

Lernen wie Support Vector Machines (SVM) und graph-basierte neuronale Netze wie Graph
Convolutional Network (GCN). Das STGT-MMoE-Modell übertraf alle Vergleichsmodelle mit

geringeren Fehlern. Der MAE wurde um 11,2 % reduziert, der RMSE um 10,7 %. Der R2-Wert

liegt bei 0,88. Die Kombination von Multi-Task-Learning und den dynamischen Fähigkeiten

von Graph Transformer und MMoE erwies sich als besonders effektiv. Zukünftige Forschung

sollte sich auf Vorhersagen unter außergewöhnlichen Bedingungen (unter anderem extreme

Wetterereignisse) konzentrieren.

GESME Eine weitere Arbeit, die sich mit MTL befasst, ist von Rahman et al. (2024). Das

Paper befasst sich mit der Entwicklung eines Vorhersagemodells für eine Plattform, auf der

Transport-Dienstleistungen in Echtzeit gebucht werden können. Das Ziel war die simultane

Prognose für verschiedene Aufgaben wie Nachfrage- und Angebotslücken mit einer MTL-

Architektur zu lösen, statt für jede einzelne Aufgabe und Stadt ein eigenes Modell zu trainieren.

Dafür entwickelten die Forscher das Gated Ensemble of Spatio-Temporal Mixture of Experts
(kurz GESME-Net). Es kombiniert durch Gating-Netzwerke dynamisch verschiedene MoE

untereinander. Jedes MoE besitzt spezialisierte Experten-Netzwerke wie CNN, RNN oder Conv-

RNN, um räumliche und zeitliche Abhängigkeiten besser zu berücksichtigen. Eine von den

Aufgaben unabhängige Ebene passt die Gewichtung an, um wichtige Attribute für jede Aufgabe

hervorzuheben. Es wurden insgesamt 25 Millionen Datensätze für die Experimente verwendet.

Verglichen wurde die Leistung des GESME-Net mit Standard-Modellen wie XGBoost, Gradient
Boosting Machines (GBM) oder Deep-Learning-Ansätzen wie GCN, die auch von Hu et al. (2024)

verwendet wurden. Zusätzlich wurde die Bedeutung der einzelnen Komponenten und das

Hyperparameter-Tuning untersucht. Das GESME-Net übertrifft alle Benchmarks in Bezug

auf Fehlermetriken. Städte-übergreifend zeigten die Prognosen mit MTL-Architektur bessere

Generalisierung. Der MoE mit CNN (Conv-MoE) trug am stärksten zur Modellleistung bei, in

37

3. Verwandte Arbeiten

dem räumliche Abhängigkeiten effektiv erfasst wurden. Daneben konnte eine Effizienzsteige-

rung erzielt werden, da ein Modell für mehrere Aufgaben Wartungs- und Berechnungskosten

reduziert.

3.2.3. Adaptives Verhalten mit MoE

LLL Eine weitere Forschung, die sich mit dem katastrophalen Vergessen im Kontext von NLP

beschäftigt, kommt von W. Chen et al. (2023). Das Pre-Training von LLM ist ein Ansatz, um

starke allgemeine Sprachrepräsentation zu entwickeln. Jedoch entstehen Herausforderungen,

wenn neue Datenverteilungen sequenziell, wie im Streaming, verarbeitet werden müssen. Das

klassische Fine-Tuning von LLM führt oft zu katastrophalem Vergessen. Als Ansatz wählen

die Autoren den Lifelong Learning (LLL)-Ansatz. Dabei wird die Anzahl der Experten im

MoE progressiv erweitert, um neue Datenverteilungen zu modellieren. Die Destillation alter

Modellausgaben und das Sperren alter Experten werden als Regularisierung verwendet, um

altes Wissen vor dem Überschreiben zu schützen. Der Gating-Mechanismus wählt dann aus

gesperrten und aktiven Experten eine geringe, aber relevante Anzahl aus. Es wurden drei

Textdatensätze (A = Wikipedia und Webseiten; B = Internationale Inhalte; C = Informelle

Dialoge aus sozialen Medien) verwendet, die sprachlich unterschiedlich sind und damit auch

eine disjunkte Verteilung haben. Die Modelle werden sequenziell trainiert: A→ B → C , um

das Vergessen zu messen. In den Experimenten wurden die Modelle auf 21 NLP-Aufgaben

getestet. Verglichen wurde der Lifelong-MoE-Ansatz mit traditionellen Methoden wie Memory
Replay, bei dem bereits verwendete Informationen erneut zum Training verwendet werden,

um dem katastrophalen Vergessen entgegenzuwirken. Die Forscher kamen zu den Ergebnissen,

dass der Verlust von Wissen aus früheren Verteilungen stark reduziert wurde. Dabei erreicht

das Lifelong-MoE-Modell vergleichbare Ergebnisse zu den Referenzergebnissen. Dieser Ansatz

bietet eine Grundlage für Sprachmodelle, die in dynamisch ändernden Szenarien eingesetzt

werden können.

BP-MoE In der Arbeit von C. Chen et al. (2024) geht es um eine adaptive Zuordnung

von MoE-Experten basierend auf Verhalten. Das Paper behandelt die Herausforderung der

temporalen Graphen, deren Knoten, Kanten und Attribute sich im Laufe der Zeit ändern und

dabei unterschiedliche evolutionäre Präferenzen aufweisen. Ziel war die verbesserte Vorhersage

von Knoten- und Kantenattributen. Das wollten die Forscher durch ein Behavior Pattern-aware
Mixture-of-Experts (BP-MoE)-Modell erreichen. Dabei betrachtet das Framework, ähnlich wie

in der Arbeit über MoVE, drei Perspektiven, die durch spezifische KNN abgebildet werden:

langfristige, räumliche und kurzfristige Verhaltensmuster. Das Gating-Netzwerk aktiviert

38

3. Verwandte Arbeiten

adaptiv Experten, basierend auf den Verhaltensdaten. Neben der Haupttrainingsfunktion

(Binary Cross-Entropy) werden zusätzliche Importance Loss und Load Loss eingeführt, um ein

ausgewogenes Training der Experten zu gewährleisten. Verschiedene reale Datensätze aus dem

Internet wie Wikipedia, Reddit oder LastFM wurden in den Experimenten genutzt, um etwa die

Verbindung zwischen Knoten vorherzusagen oder die Klassifizierung von Knotenattributen,

die aus den Datensätzen kommen. Das BP-MoE übertraf in der durchschnittlichen Genauigkeit

(Precision) alle vergleichbaren Modelle in allen Datensätzen und Szenarien. Der kurzfristige

Verhaltensexperte hatte den größten Einfluss auf die Modellleistung. Das BP-MoE zeigte

auch eine stabile Leistung bei wenigen Trainingsdaten, was auf die adaptive Eigenschaft

zurückzuführen ist.

FEAMoE Der Ansatz Fair, Explainable and Adaptive Mixture of Experts (FEAMoE) der For-

scher Sharma, Henderson und Ghosh (2023) vereint drei Schlüsselmerkmale im Einsatz von

MoE in sensiblen Umgebungen: Fairness, Erklärbarkeit und Anpassungsfähigkeit. Es sollen Fair-

nessverluste und Genauigkeitsverluste durch Konzeptdrifts minimiert und gleichzeitig schnelle

und interpretierbare Erklärungen ermöglicht werden. Trainiert wird das FEAMoE mit einem

Soft-MoE in einer inkrementellen OML-Umgebung. Dabei werden neue Experten hinzugefügt,

um Drift entgegenzuwirken. Eingesetzt werden logistische Regressionsmodelle als Experten.

Damit ist eine schnelle Trainings- und Inferenzzeit gegeben, was in einem Online-Learning

Szenario entscheidend ist. Ein FNNmit Softmax-Aktivierung wählt die relevanten Experten aus.

Die Fairness wird umgesetzt, indem drei gängige Fairness-Metriken in die Verlustfunktion der

logistischen Regression integriert werden: demografische Parität, Gleichheit der Chancen und

belastungsbasierte Fairness. Die Erklärbarkeit wird durch Shapley-Werte nach Shapley (1988)

in den einzelnen linearen Expertenmodellen effizient errechnet. Die Experimente wurden mit

drei Datensätzen aus Einkommen, Strafjustiz und Kreditvergabe trainiert, die demografische

Daten und Labels enthalten, die zum Zweck der Fairness-Evaluierung genutzt werden. Der

Home Mortgage Disclosure Act (HMDA) Datensatz hat zusätzlich noch ein Drift in den Daten.

Die ausgeführten Experimente zeigten, dass die Fairness-Metriken durch die eingesetzte Ver-

lustfunktion gegenüber klassischen MoE verbessert wurden. FEAMoE konnte sich dynamisch

an den Drift anpassen und erzielte bessere Ergebnisse als neural-basierte Modelle in einer

kontinuierlichen OML-Umgebung.

39

3. Verwandte Arbeiten

3.3. Identifizierung von Forschungslücken

Die Literaturrecherche zeigt, dass viele neue Verfahren für MoE entwickelt werden, um An-

wendungsfälle des Offline-Lernens für Single- oder Multi-Task-Aufgaben zu lösen. Das Ziel

einer Untersuchung von adaptivem Verhalten im MoE-Kontext konnte am wenigsten in den

Veröffentlichungen festgestellt werden. Interessant ist der Ansatz FEAMoE von Sharma, Hen-

derson und Ghosh (2023), die MoE in einer inkrementellen OML-Umgebung untersucht haben.

Der Fokus lag bei der Arbeit auf Erklärbarkeit und Fairness. Demzufolge wurden einfache

Algorithmen wie die logistische Regression gewählt.

Im Rahmen dieser Arbeit wird der Ansatz aufgegriffen und die Zielsetzung aus Abschnitt 1.2

bearbeitet. Die Zielsetzung umfasst eine Kombination von OML und MoE in einem Framework.

Das Lösen eines Dynamisches Optimierungs-Problem wird damit möglich gemacht. Daher stellt

sich die folgende Forschungsfrage RQ1:

RQ1. Wie kann ein MoE-Ansatz mit Online-Lern-Mechanismen für dynamische Umgebungen

unter Verwendung von Streamingdaten umgesetzt werden?

Der Einsatz einer dynamischen Expertenmenge kam in allen drei Forschungen zu adaptiven

MoE vor. Interessant ist, wie in der Arbeit von C. Chen et al. (2024), der Einsatz von aktiven und

inaktiven Experten, die abhängig vom Verhalten ausgewählt werden. Eine ressourcensparende

Auswahl von Experten ist für eine Echtzeit-Verarbeitung mit Streamingdaten notwendig. Als

weitere Frage ergibt sich die Forschungsfrage RQ2:

RQ2. In welchem Maße können dynamisch hinzugefügte Experten, basierend auf Drifterken-

nung, die Anpassungsfähigkeit in dynamischen Umgebungen verbessern?

In dem Einsatz von MoE in progressiv wachsenden Datensätzen aus Datenströmen sind

verschiedene Metriken interessant, die gegebenenfalls von offline Modellen abweichen. Die

Evaluierung der Methode und die dafür notwendigen Definitionen der verschiedenen Metriken

sind Teil dieser Arbeit und werden durch die Forschungsfrage RQ3 betrachtet:

RQ3. Welche Metriken sind erforderlich, um die Leistung von Mixture of Experts bei progres-

siv steigenden Streamingdaten sinnvoll zu bewerten?

Anhand der Kombination von OML und der MoE-Architektur sollte ein Verfahren entstehen,

das mit Datenströmen analytisch arbeiten kann, die auch eine hohe Datenrate besitzen. Das

GrundprinzipDivide and Conquer vonMoE kann dazu beitragen, gezielt und ressourcensparend

auf neue und veränderte Daten zu reagieren. Das ermöglicht den Einsatz von komplexeren

Lernverfahren für inkrementelle Daten, die etwa aus IoT-Geräten stammen.

40

4. Methodik

In diesem Kapitel wird das Vorgehen beschrieben, das zur Beantwortung der Forschungsfragen

herangeführt wird. Ziel ist es, dieMoE-Architektur mit Online-LearningMechanismen desOML
zu einem inkrementellen MoE in Form eines Frameworks zu vereinen (RQ1). Zu diesem Zweck

wird das Konzept einer neuen MoE-Architektur vorgestellt, die adaptiv in Streamingszenarien

agieren kann (RQ2). Die neue Architektur wird durch verschiedene Experimente und passende

Metriken evaluiert (RQ3), die in diesem Kapitel aufgeführt werden.

4.1. Mischung adaptiver Experten

Die grundlegende Architektur eines klassischen MoE besteht aus einem neuronalen Gate G

und mehreren (verschiedenen) neuronalen Experten E = {E1, E2, ..., EN |N ∈ N \ {0}}. Die
wichtigste Komponente eines MoE ist das Gate, dass für eine Eingabe d = (x, y) ∧ d ∈ D die

besten Gewichte der Experten wählt, um die Vorhersagen zu dem besten Gesamtergebnis zu

kombinieren. Bei einer Expertenanzahl von |E| = 1 entfällt das Gating und die Prognose kann

direkt aus dem einzigen Expertenmodell, ohne Gewichtung, erzeugt werden ŷ = E1(x) (Jacobs

et al., 1991). Das Gating-Problem kann für den Datensatz D, mit n-Zeilen undm-Attributen,

formal wie in Formel 4.1 zusammengefasst werden:

G(x) =

Rn×m → N|E|
, wenn |E| > 1

Rn×m → 1 , wenn |E| = 1
(4.1)

Zu den klassischen BML-Algorithmen gibt es häufig (adaptive) OML-Alternativen, die im

Streaming-Kontext inkrementell lernen. Beispielsweise ist derHoeffding Tree ein inkrementelles

Lernverfahren, dass für Klassifikation und Regression statt des Decision Tree eingesetzt werden
kann (Domingos und Hulten, 2000). Andere Verfahren wie Lineare Regression oder Logarith-
mische Regression können mithilfe von SGD inkrementell trainiert werden (Bartz-Beielstein

und Bartz, 2023, S. 12). Da OML-Verfahren mit Streamingdaten arbeiten können und in der

Regel schneller als BML-Verfahren sind, eignen sich die Verfahren für die Umsetzung eines

inkrementellen MoE.

41

4. Methodik

Zunächst wird betrachtet, welche Kombinationen von Experten und Gating-Methoden

möglich sind. Die Kombinationen sind in der Regel durch die Art des Skalenniveaus der Daten

mit der Ausgabe des Gating-Modells und der Expertenmodelle beschränkt. In Tabelle 4.1 sind

die möglichen Kombinationen gelistet. Die Kombinationen sind in vier Kategorien unterteilt:

Regressor, Klassifikator, Neuronales Netz und Clustering. Die Kombinationen sind entweder

direkt möglich oder durch eine Transformation der Daten, um sie als Gating zu verwenden,

möglich. Einige Kombinationen sind gar nicht möglich, da die Lernart dies nicht zulässt.

Experte(n)

Gate

Regressor Klassifikator Neuronales Netz Clustering

Regressor (✓) (✓) ✓ –

Klassifikator (✓) ✓ ✓ –

Neuronales Netz (✓) ✓ ✓ –

Clustering (✓) ✓ ✓ ✓

Tabelle 4.1.: Mögliche Kombination verschiedener ML-Lernarten für das Gating und Experten

in MoE. ✓= Möglich, (✓) = Mit Transformation möglich, – = Nicht möglich.

Wird ein Regressor als Gate herangezogen, besteht die Herausforderung, dass die vorlie-

genden Labels skalar sind und nicht direkt als Klassen interpretiert werden können. Eine

Möglichkeit ist die Transformation der Labels in Klassen, um ein Klassifikationsproblem zu

lösen. Eine andere Möglichkeit ist die manuelle Festlegung von Klassen, die auf den Features

oder Labels basieren. Ein Klassifikator als Gate kann direkt verwendet werden, wenn die

Anzahl der Klassen der Anzahl der Experten entspricht. Damit ergibt sich zeitgleich eine Ein-

schränkung, da die Expertenanzahl an die (adaptive) Anzahl Klassen gebunden ist: |E| = |K|.
Vor dem Training der Regressor-Experten müssen die nominalen oder ordinalen Klassen

in skalare Werte transformiert werden. Das ist beispielsweise mit LabelEncoding oder

OneHotEncoding undMulti-Output-Regressionmöglich. Ein neuronales Netz als Gate kann

flexibel im Eingang und Ausgang sein, sodass die Anzahl der Eingangsneuronen den Attributen

und die Anzahl der Ausgangsneuronen den Experten entspricht. Ein Clustering-Verfahren kann

für eine beliebige Datenmenge eine vorgegebene Clustermenge zurückgeben, sodass die Anzahl

der Cluster den Experten entspricht. Damit wäre dieser Algorithmus als Gating geeignet, da

die Cluster durch den Silhouetten-Koeffizienten gut evaluiert und erweitert werden könnten.

Das Clustering entspricht aber dem unüberwachten Lernen und beinhaltet keine Labels. Ein

Training von Experten mit überwachtem Lernen ist damit nicht möglich. Der Einsatz von nicht

neuronalen Gating-Verfahren ist möglich, jedoch nicht empfohlen, da zusätzlicher (manueller)

Aufwand berücksichtigt werden muss und Einschränkungen vorliegen. Die höchste Flexibilität

für das Gating, bietet das neuronale Netz, da hier die Struktur des Netzwerks beliebig verändert

42

4. Methodik

und zurückgegeben und damit die progressive Metrik aktualisiert. Danach wird das MoE mit

einem Datensatz trainiert, was das Gating-Modell und die Experten sukzessiv aktualisiert.

Ergänzend wird die neue Streaming Adaptive Mixtures of Experts (SAMoE) Variante eingeführt,

die zusätzlich einen Drift-Detektor enthält, um neue Experten, wie in FEAMoE von Sharma,

Henderson und Ghosh (2023), dynamisch hinzuzufügen. Wird durch Verfahren wie ADWIN in

den Eingangsdaten ein Drift erkannt, wird ein Experte adaptiv zum Experten-Pool hinzugefügt.
Wie in einem MoE, gibt das Gating-Modell, für einen einzelnen eingegangenen Datensatz

dt aus dem Datenstrom, eine Wahrscheinlichkeitsverteilung als Gewichte zurück: G(xt) =

w1,t, w2,t, ..., wn,t. Die Gewichte werden für die Experten E = E1, E2, ..., En verwendet, um

die Prognose zu einer skalaren Gesamtprognose zu kombinieren (Formel 4.2):

ŷt =

|E|∑
i=1

wi,t · Ei(xt) (4.2)

Es wird die neue Streaming Adaptive Mixtures of Experts (SAMoE) Variante eingeführt, die

zusätzlich einen Drift-Detektor enthält, um bei Drift neue Experten dynamisch hinzuzufügen.

Das Gating ist ein MLP, das flexibel seine Eingangsneuronen und Ausgangsneuronen an die

inkrementellen Daten anpasst. Wie in Abbildung 4.2 dargestellt, entspricht die Anzahl der

Eingangsneuronen der Anzahl der Attribute im Datensatz xt = {xt,1, xt,2, ..., xt,m}. Die Aus-
gangsneuronen entsprechen immer der Anzahl der Experten im MoE. Das adaptive Anpassen

der Architektur ist damit möglich.

Verborgene SchichtenEingabeschicht Ausgabeschicht

xt,1

xt,m

E2

E1

EN

A
nz

ah
l A

tt
ri

bu
te

A
nzahl E

xperten im
 M

oE

Abbildung 4.2.: Adaptives MLP mit variablen Eingangs- und Ausgangsneuronen als Gating.

Damit die initiale Auswahl der Experten nicht durch einen zufälligen Bias vorbestimmt wird,

wird der Bias vor dem Training für das Gate auf 0 und die Gewichte auf eine Konstante c ̸= 0

44

4. Methodik

gesetzt. Wären alle Gewichte 0, könnte das Netzwerk nicht lernen. Diese Null-Initialisierung

ist üblich in MoE (Z. Chen et al., 2024, S. 5). Das neuronale Netz des Gates wird, klassisch, mit

Optimierungs- und Verlustfunktionen nach der Inferenz trainiert. Als Optimierungsfunktion

kann beispielsweise SGD gewählt werden. Bei der Verlustfunktion LGate(ŷt, yt) beispielsweise
CE oder BCE für Klassifikation oder MSE für Regression. Das trainierte Gating-Modell wählt

dann für eine Eingabe xt die bestmöglichen Experten.

4.1.2. Auswahl des Basis-Frameworks

Derzeit gibt es viele Bibliotheken für den Einsatz von inkrementellem, maschinellem Lernen.

Darunter sind MOA (Massive Online Analysis), implementiert in Java, oder RMOA, das in der

Programmiersprache R umgesetzt ist. river ist ein Framework, das in Python implementiert

ist. Von allen Frameworks ist es am breitesten aufgestellt und enthält aus jedem Bereich die

wichtigsten Methoden für Anomalie, Regression, Klassifikation, Clustering und verstärkendes

Lernen. Es enthält außerdem viele zusätzliche und aktuellere Methoden, welche in den R-

Paketen nicht verfügbar sind (Bartz-Beielstein und Bartz, 2023, S. 93ff.). Aufgrund des breiten

Funktionsumfangs und der gewählten Programmiersprache Python wird sich für river als

Basis-Bibliothek entschieden.

river wurde von Montiel, Halford et al. (2021) umgesetzt und entstand aus gesammelten

Erfahrungen der Pakete creme (Halford et al., 2020) und scikit-multiflow (Montiel,

Read et al., 2018). In einem untersuchten Experiment konnte river seine zwei Vorgänger

in Geschwindigkeit übertreffen. Die Modellgüte war erwartungsgemäß ähnlich gut. Das Fra-

mework ist auf dynamische Datenströme und kontinuierliches Lernen spezialisiert. Dabei

wird ein Datensatz pro Zeitpunkt als Schlüssel-Wert-Datenstruktur (dictonary in Python)

verarbeitet. Der auf Hash-Tabellen aufgebaute Datentyp hat eine effiziente Lese-, Anpassungs-

und Löschkomplexität von O(1). Das Framework bietet mehrere hochmoderne Lernmetho-

den, Datengeneratoren/-transformatoren, Leistungsmetriken und Evaluationsmethoden an,

die im Kern durch Cython (Behnel et al., 2011) umgesetzt sind. Dadurch ist eine effiziente

Verarbeitung möglich.

Die in der Abbildung 2.4b der OML-Strategie vorgestellten Schritte Vorhersagen, Eva-
luieren und Lernen sind in der Bibliothek als einheitliche Application Programming Inter-
face (API) umgesetzt, damit eine möglichst hohe Kompatibilität (beispielsweise bei einer

Erweiterung) innerhalb der Bibliothek gewährleistet ist. Alle Vorhersagemodelle können mit

learn_one(x,y) trainiert werden. Je nach Lernaufgabe liefern die Modelle Vorhersagen

y_pred über die Methoden predict_one(x) (Klassifizierung, Regression und Cluste-

ring), predict_proba_one(x) (Wahrscheinlichkeitsverteilung der Klassifizierung) und

45

4. Methodik

score_one(x) (Anomalieerkennung). Das Suffix „*_one“ zeigt an, dass es sich bei der

Eingabe um eine einzelne Datenprobe handelt. Die Metriken für die Evaluation können mit

update(y, y_pred) aktualisiert werden.

4.1.3. Umsetzung einer Framework-Erweiterung

Die in Abschnitt 4.1 vorgestellte Architektur ist eine adaptive und inkrementelle Ergänzung der

MoE-Architektur. Wie in den Grundlagen bereits beschrieben, setzen die MoE üblicherweise

neuronale Funktionen voraus, die durch die Basis-Bibliothek, bis auf ein einfaches MLP für

Regressionen, nicht abgedeckt werden. Diese Funktionen werden in dieser Arbeit für das

Gating und für neuronale Experten vorausgesetzt. Eine neuronale Erweiterung von river
auf Basis von PyTorch bietet das Framework deep-river von Kulbach et al. (2025). Die

neuronalen Modelle verwenden die gleiche API wie river, ergänzen den Umfang um den

Einsatz von unterschiedlichsten NN-Architekturen wie FNN, RNN oder LSTM. Zusätzlich

können Eingabedaten (Features) und Ausgabedaten (Labels) dynamisch angepasst werden.

Mithilfe von deep-river und der Basis-Bibliothek wurde das Framework riverMoE
entwickelt, das MoE für dynamische Datenströme und kontinuierliches Lernen umsetzt. Ziel

war es dabei, die Strategie der zwei vorherigen Bibliotheken zu berücksichtigen. Das heißt, es

wurde die gleiche Programmierschnittstelle verwendet, damit bereits umgesetzte Komponenten

für Datensätze, Algorithmen und Evaluierungsmethoden hier wiederverwendet und gegebe-

nenfalls erweitert werden können. Die SAMoE-Variante soll möglichst sparsam sein, weswegen

sie auf Sparse-MoE, eine Erweiterung von Soft-MoE, mit Top-K(k = 1) aufbaut. Deswegen
sind die Varianten Soft-MoE und Sparse-MoE notwendige Teile des riverMoE-Prototyps
und können verwendet werden, um ein Dynamisches Optimierungs-Problem zu lösen.

4.2. Experimente

In diesem Abschnitt werden die Experimente vorgestellt, die zur Beantwortung der Forschungs-

fragen durchgeführt werden. Zunächst werden die verwendeten Algorithmen und Datensätze

vorgestellt. Zur Bewertung der Ergebnisse werden Evaluationsmethoden herangezogen, die hier

näher erläutert werden. Anschließend wird die experimentelle Umgebung und die Experimente

tabellarisch mit den gewählten Parametern aufgelistet.

4.2.1. Auswahl inkrementeller Algorithmen

Es gibt viele inkrementelle Lernverfahren, die bereits in river umgesetzt sind und in dieser

Arbeit zum Einsatz kommen (Bartz-Beielstein und Bartz, 2023, S. 93ff.). Innerhalb dieser Arbeit

46

4. Methodik

wird der Fokus nur auf die Problemstellungen Regression und Klassifikation gelegt. Eine

Übersicht aller ausgewählten Algorithmen ist in Tabelle 4.2 dargestellt.

Aufgabe Klasse in river/deep-river Abkürzung

Regression HoeffingTreeRegressor HTR

HoeffingAdaptiveTreeRegressor HATR

LinearRegression LinR

DeepRegressor (aus deep-river) DeepR

StatisticalRegressor (Durchschnitt) BaseR

Klassifikation HoeffingTreeClassifier HTC

HoeffingAdaptiveTreeClassifier HATC

LogisticRegression LogR

DeepClassifier (aus deep-river) DeepC

NoChangeClassifier (Letzte Klasse) BaseC

Drift ADWIN ADWIN

KSWIN KSWIN

Tabelle 4.2.: Übersicht der eingesetzten OML-Algorithmen für diese Arbeit.

H(A)TR/H(A)TC Der Hoeffding Tree (HT) ist ein inkrementeller Entscheidungsbaum spe-

ziell für das Online-Lernen und die Verarbeitung von Datenströmen. Er basiert auf dem

Hoeffding-Bound, der bestimmt, wie viele Datenpunkte erforderlich sind, um mit hoher Wahr-

scheinlichkeit die beste Attributaufteilung zu erkennen. Dies ermöglicht es dem Algorithmus,

Entscheidungen auf Basis einer Teilmenge der Daten zu treffen, was bei großen oder kontinu-

ierlichen Datenströmen entscheidend ist. Der Hoeffding Adaptive Tree (HAT) erweitert den
Hoeffding Tree um Concept Drift-Erkennung. Bei Erkennung von Drift durch etwa ADWIN,

wird eine neue Verzweigung hinzugefügt. In dynamischen Umgebungen, in denen sich die

Datenverteilung im Laufe der Zeit ändert, ist ein statisches Modell wie der HT oft unzureichend.

LinR Die Lineare Regression ist ein inkrementelles Lernmodell zur Vorhersage kontinu-

ierlicher Zielwerte. Sie basiert auf der Annahme einer linearen Beziehung zwischen den

Eingangsmerkmalen und dem Zielwert. Das Modell berechnet Vorhersagen, indem es die

Merkmale mit gelernten Gewichten multipliziert und summiert. Diese Gewichte werden, in

der inkrementellen Variante, schrittweise mit jedem eingehenden Datenpunkt aktualisiert,

häufig mithilfe von SGD. Bei nicht linearen Beziehungen oder starken Ausreißern kann die

Leistung der linearen Regression jedoch beeinträchtigt werden.

47

4. Methodik

LogR Die Logistische Regression ist ein Klassifikationsmodell, das Wahrscheinlichkeiten

für Klassen vorhersagt. Sie eignet sich sowohl für binäre als auch für multi-klassige Probleme.

Das Modell nutzt eine lineare Kombination der Eingangsmerkmale, deren Ergebnis durch die

Sigmoid-Funktion (bei binärer Klassifikation) oder Softmax-Funktion (bei mehreren Klassen) in

Wahrscheinlichkeiten umgewandelt wird. Wie die lineare Regression wird auch die logistische

Regression, in der inkrementellen Variante, mit Methoden wie SGD schrittweise aktualisiert,

was sie für Datenströme prädestiniert.

BaseR/BaseC Die Baseline-Modelle werden als Referenzpunkte in der Modellbewertung

angewendet. Sie bieten eine einfache, schnelle und oft naive Lösung für ein Vorhersagepro-

blem. Die anderen leistungsfähigeren Modelle sollten diese Baseline deutlich übertreffen.

Gelingt dies nicht, ist der Einsatz eines aufwendigeren Verfahrens nicht gerechtfertigt. Für

die Regression wird der StatisticalRegressor mit der Aggregtation „Durchschnitt“

verwendet, der den Durchschnitt der Zielwerte berechnet (BaseR). Für die Klassifikation wird

der NoChangeClassifier eingesetzt, der immer die letzte Klasse vorhersagt (BaseC).

Drift Die Drifterkennungs-Algorithmen kommen zum einen in der adaptiven Version des

HAT vor, werden aber auch für den Drift-Detektor in der SAMoE-Variante verwendet. Für
diese Ausarbeitung wird das bereits vorgestellte Adaptive Windowing (ADWIN) genutzt. Das

Verfahren ist in der Lage, Drifts in Datenströmen zu erkennen.

DeepR/DeepC Mit der Bibliothek deep-river können Regressionen, Klassifikationen

und Anomalieerkennungen unter Einsatz von neuronalen Netzen mit Streamingdaten durch-

geführt werden. In die Wrapper können nahezu beliebige neuronale Netzwerkarchitekturen

als Pytorch-Module eingefügt werden. Die neuronalen Modelle sind in der Lage, komplexe,

nicht lineare Beziehungen in den Daten zu modellieren und können durch die Anpassung der

Ein- und Ausgangsneuronen an verschiedene Probleme zur Laufzeit angepasst werden. Der

Nachteil ist, dass die Modelle aufgrund der hohen Anzahl an Parametern und der komplexen

Struktur mehr Rechenleistung und Speicherplatz benötigen. Initiiert werden die neuronalen

Netze mit einem Zufallsstartwert.

Alle ausgewählten Lernverfahren haben den Vorteil, dass sie in adaptiven Umgebungen

funktionieren und dabei, je nach Einstellung, schnell sind und mit wenig Speicherplatz auskom-

men. Zudem haben nicht neuronale Algorithmen eine gute Interpretierbarkeit. Für HAT ergibt

sich noch der Vorteil, dass er auf Drift reagieren kann und damit Konzeptdrift entgegenwirkt.

48

4. Methodik

4.2.2. Eingesetzte Datensätze

Der Fokus dieser Arbeit liegt in der Evaluierung des umgesetzten inkrementellen MoE. Im

Rahmen dieser Grundlagenforschung wird bei den Datensätzen kein spezifisches Domänenpro-

blem festgelegt. Die unterschiedliche Auswahl der Datensätze soll den vielseitigen Einsatz von

riverMoE verdeutlichen. Das Training erfolgte ausschließlich mit metrischen Attributen,

die vorab durch Standardisierung vereinheitlicht wurden.

Bikes Der Bikes-Sharing-Datensatz ist im Rahmen eines privaten Projektes „OpenBikes“ von

Halford (2016) entstanden. Dieser reale Datensatz beinhaltet neben dem Datum und der Uhrzeit

noch sieben weitere Attribute sowie die Anzahl ausgeliehener Fahrräder für fünf verschiedene

Fahrradstationen in Toulouse, Frankreich. Es gibt 182470 Einträge in dem Datensatz. Die

Zielvariable ist die Anzahl der Fahrräder, die an einem bestimmten Tag und einer bestimmten

Uhrzeit ausgeliehen werden. In dieser Arbeit werden nur die numerischen Wetterattribute

Temperatur in Grad, Luftfeuchtigkeit in Prozent, Wolkenbedeckung in Prozent, Luftdruck in

hPa undWindgeschwindigkeit in m
s verwendet, um die Anzahl der ausgeliehenen Fahrräder

vorherzusagen. Der Datensatz wird in dieser Arbeit verwendet, um die Leistung der Modelle

bei einem Regressionsproblem zu testen.

Elec2 Der Elec2-Datensatz stammt von Harries, Wales et al. (1999) und wurde bereits in der

Veröffentlichung von Montiel, Halford et al. (2021) für river zur Evaluierung verwendet.

Diese Daten wurden alle 30 Minuten aus dem australischen Strommarkt von „New South

Wales“ (NSW) zwischen 1996 und 1998 erhoben. In der Abbildung 4.3 ist der durchschnittliche

Strompreis pro Tag dargestellt. Auf diesem Markt waren die Preise nicht festgeschrieben und

werden von Angebot und Nachfrage auf dem Markt beeinflusst. Am 4. Mai 1997 wurde der

Strommarkt im benachbarten Bundesstaat „Victoria“ mit dem NSW verbunden, dadurch kamen

weitere Anbieter und Preise auf den Markt, die ebenfalls mit erhoben wurden und Einfluss

auf den NWS-Preis hatten. Der Ausreißer aus der Abbildung 4.3, von November 1997, lässt

sich auf eine unterbrochene Stromverbindung zwischen NWS/Victoria und damit verbundenes

geringeres Angebot zurückführen.

Die Daten enthalten 8 numerische Attribute und 45312 Zeilen. Die Zielvariable ist die

Klassifizierung von Elektrizitätsverbrauchsmustern in 2 Klassen („Preis aufwärts“ TRUE oder

„Preis abwärts“ FALSE). Die Attribute enthalten eine Reihe von tatsächlichen Nachfragezahlen.
Dies ist problematisch, da die tatsächliche Nachfrage nicht direkt vor der Zeit zur Verfügung

stehen würde. Die Attribute werden von den Autoren als Projektion für die Attributnachfrage

verwendet.

49

4. Methodik

„Zement“ gehört zur Aufgabe 1, die restlichen Klassen zur Aufgabe 2. In Abbildung 4.4b ist die

Verteilung für die beiden Aufgaben dargestellt.

Friedman-Drift Der Friedman-Drift-Datensatz ist ein synthetischer Datensatz, der von

Friedman (1991) erstellt wurde. Er besteht aus zehn numerischen Attributen. Bei jeder Beob-

achtung werden die zehn Ziffern zufällig aus einer Gleichverteilung gewählt: xj ∼ U(0, 1).
Die Zielvariable ist eine lineare Kombination der relevanten Attribute und wird in river wie

in Formel 4.3 ermittelt:

f(x) = 10 sin(πx0x1) + 20(x2 −
1

2
)2 + 10x3 + 5x4 + ϵ mit ϵ ∼ N (µ = 0, σ2 = 1) (4.3)

Nur die ersten fünf Merkmale x0, x1, ..., x4 sind relevant für die Zielvariable. Das ϵ ist ein

normalverteilter Fehlerterm mit einem Mittelwert von 0 und einer Standardabweichung von

1. Ein Wechsel der aktiven Variablen führt zu einer Veränderung, wodurch ein Konzeptdrift

umgesetzt wird (Bartz-Beielstein und Bartz, 2023, S. 6ff.). Es gibt drei verschiedene Driftarten.

Die verschiedenen Driftarten, die für diesen Datensatz in river implementiert sind, sind

in Abbildung 4.5 dargestellt (Gulcan und Can, 2023). Ein Drift unterscheidet sich von einem

Ausreißer, wie bei der Stromstörung im Elec2-Datensatz aus Abbildung 4.3.

(a) Local Expanding Abrupt (LEA) (b) Global Recurring Abrupt (GRA)

(a) Global and Slow Gradual (GSG) (d) Ausreißer

Abbildung 4.5.: Verschiedene Driftarten (a), (b) und (c) im Vergleich zu Ausreißern (d).

LEA beschreibt einen zunächst lokalen Konzeptwechsel, der sich ausdehnt und dann zum

Ursprung zurückkehrt. GRA bewirkt eine abrupte, globale Veränderung mit späterer Rückkehr.

GSG hingegen entwickelt sich schrittweise und stabilisiert sich über die Zeit. Für diese Arbeit

werden 12500 synthetische Datensätze mit Zufallsstartwert 42 aus dem Friedman-Datensatz

mit dem Drift GRA (Abbildung 4.5b) an den Stellen 5000 und 7500 erzeugt. Der Datensatz wird

in dieser Arbeit verwendet, um die Leistung bei einem Konzeptdrift zu testen.

51

4. Methodik

4.2.3. Experimentelle Umgebung

Alle Experimente werden auf einem MacBook Pro in der Jupyter Notebook-Umgebung durch-

geführt. Die genauen Spezifikationen des genutzten Gerätes werden in Tabelle 4.3 beschrieben.

Betriebssystem Prozessor Arbeitsspeicher
Name Version Modell Architektur Kerne Threads RAM

Darwin 24.3.0 Apple M1 Pro arm64 10 10 32 GB

Tabelle 4.3.: Verwendete Hardware für die Experimente.

Es wird die Programmiersprache Python in der Version 3.11.7 genutzt. Die river Bibliothek

wird in der Version 0.22.0 und die Erweiterung deep-river in Version 0.2.8 verwendet.

Das implementierte riverMoE-Framework wurde als Prototyp in der Version 0.1.0 für die

Experimente evaluiert. Die Experimente werden auf der CPU ausgeführt. Alle Algorithmen in

den Experimenten werden mit einem festen Zufallsstartwert von 42 verwendet. Damit sind

die Experimente reproduzierbar und die Ergebnisse vergleichbar.

4.2.4. Übersicht der Experimente

Die Experimente sind in drei Gruppen unterteilt: Regression (R), Klassifikation (C) und Drift (D),
die in diesem Abschnitt kurz vorgestellt werden. Es werden für die Experimente die gleichen

Parameter und NN-Architekturen für Modelle genommen, damit die Ergebnisse vergleichbar

sind. Zur Minimierung der Rechenzeit und des Speicherbedarfs kommen einfache neuronale

Architekturen zum Einsatz, die in Tabelle 4.4 dargestellt werden.

Lernart Typ Architektur L Optim. Lernrate

Regression Gating m-ReLU-10-ReLU-|E| MSE SGD 0,001

DeepR m-ReLU-10-ReLU-1 MSE SGD 0,001

Klassifikation Gating m-ReLU-10-ReLU-|E| CE SGD 0,01

DeepC m-ReLU-10-ReLU-|y|-Softmax CE SGD 0,01

Tabelle 4.4.: Verwendete adaptive NN-Architekturen für verschiedene neuronale Lernarten.

Die Eingangsneuronen sind von der Anzahl der Attribute m des jeweiligen Datensatzes

abhängig. Für das Gating bestimmt die Anzahl der Experten |E| die Anzahl der Ausgangsneu-
ronen. Das Softmax im Gating wird durch das MoE implizit umgesetzt. Für die Regression ist

die Anzahl der Ausgangsneuronen immer 1, für die Klassifikation entspricht die Anzahl der

Ausgangsneuronen der Anzahl der Klassen |y|. Die ReLU -Funktion σ(z) = max(0, z) lässt

52

4. Methodik

sich effizient berechnen und unterstützt bei der Generalisierbarkeit des NN, da Neuronen

sparsamer aktiviert werden. Als Parameter für die neuronalen Modelle werden die bereits

vorgestellten Verlustfunktionen und Optimierungsfunktionen verwendet. SGD wird vor al-

lem für inkrementelles Lernen eingesetzt, da es mit einer kleinen Anzahl von Beispielen gut

konvergiert. Für die Regression wird eine kleinere Lernrate verwendet als für Klassifikation,

da zu hohe quadratische Fehler des MSE zur Instabilität führen können. Auch wenn das Gate

der Regression ein Klassifikationsproblem ist, wird dennoch der MSE als Verlustfunktion

genommen, da der tatsächliche Wert und die vorhersagten Werte der Experten skalar sind.

Typ Attribut Experiment R.1 Experiment R.2

Allg. Datensatz Bikes Bikes

Modelle LinR, HTR, DeepR, MoE, BaseR Top-K(k ∈ [1, 2, 3])
MoE Anzahl Experten 3 3

MoE OML-Experten LinR, HTR, BaseR LinR, HTR, BaseR

MoE Strategie Soft-MoE Sparse-MoE

Drifterkennung – –

Tabelle 4.5.: Übersicht der Experimente der Gruppe Regression (R).

In der Gruppe der Regression werden zwei Experimente betrachtet, die in Tabelle 4.5 aufge-

listet werden. Im ersten Experiment R.1 werden die Modelle LinR, HTR, DeepR, SoftMoE
und BaseR auf dem Bikes-Datensatz miteinander verglichen. Das zweite Experiment R.2

fokussiert sich auf das sparsame MoE „Sparse-MoE“ und untersucht die Auswirkung der

Top-K-Strategie auf die Anzahl der drei Experten. Die MoE OML-Experten sind in beiden

Experimenten LinR, HTR und BaseR. Die Drifterkennung wird in beiden Experimenten

nicht verwendet.

Typ Attribut Experiment C.1 Experiment C.2

Allg. Datensatz Elec2 Elec2

Modelle LogR, HTC, DeepC, MoE, BaseC Top-K(k ∈ [1, 2, 3])
MoE Anzahl Experten 3 3

MoE OML-Experten LogR, HTC, BaseC LogR, HTC, BaseC

MoE Strategie Soft-MoE Sparse-MoE

Drifterkennung – –

Tabelle 4.6.: Übersicht der Experimente der Gruppe Klassifikation (C).

In der Gruppe der Klassifikation, aus Tabelle 4.6, werden ebenfalls zwei Experimente be-

trachtet. Im ersten Experiment C.1 werden die Modelle LogR, HTC, DeepC, SoftMoE und

53

4. Methodik

BaseC auf dem Elec2-Datensatz trainiert und verglichen. Das zweite Experiment C.2 fokus-

siert sich, analog zur Regression, auf das Sparse-MoE-Modell und untersucht die Auswirkung

des gewählten k der drei Experten. Die MoE OML-Experten sind in beiden Experimenten

LogR, HTC und BaseC. Die Drifterkennung wird in beiden Experimenten nicht verwendet.

Typ Attribut Experiment D.1 Experiment D.2

Allg. Datensatz Friedman ImageSegmention

Driftstrategie GRA (Feature-Drift) Label-Shift

Modelle DeepR, HATR(ADWIN), MoE DeepC, HATC, MoE

Problemklasse Regression Multi-Klassifikation

MoE Anzahl Experten 3 1 (initial)

MoE OML-Experten LinR, HTR, BaseR HTC

MoE Strategie Soft-MoE SAMoE

Drifterkennung – ADWIN

Tabelle 4.7.: Übersicht der Experimente der Gruppe Drift (D).

In der Drift-Gruppe, aus Tabelle 4.7, werden zwei Experimente betrachtet, bei denen die Drif-

terkennung der neuen inkrementellen MoE-Architektur evaluiert wird. In beiden Experimenten

wird ADWIN mit einer Konfidenzgrenze von δ = 0,001 verwendet. Im ersten Experiment D.1

werden die Modelle DeepR, HATR und SoftMoE auf der Friedman-Aufgabenstellung ver-

glichen. Dabei soll untersucht werden, inwiefern der Drift bei dynamischem Gating von Nicht-

Drift-Experten, gegenüber Algorithmen mit Drift-Verfahren oder neuronalen Netzen die Leis-

tung über die Laufzeit beeinflusst. Im zweiten Drift-Experiment D.2 wird die SAMoE-Variante

evaluiert. Dabei ändert sich die Multi-Klassifikationsaufgabe zur Laufzeit – im Testdatensatz

wird auf beide Aufgaben geprüft. Initial wird in dieser Variante mit einem HTC-Experten

gestartet. Bei der Drifterkennung sollte ein neuer Experte hinzugefügt werden.

Zur Begrenzung der Komplexität und Größe der HT- und HAT-Bäume wird die maximale

Tiefe max_depth auf 3 gesetzt. Alle anderen Verfahren werden mit ihren Standardparame-

tern verwendet. Eine Übersicht aller gesetzten Parameter für Klassifikation ist im Anhang in

Tabelle A.1 und für Regression in Tabelle A.2.

4.2.5. Evaluationsmethoden

Zur Bewertung der Ergebnisse der durchgeführten Experimente werden verschiedene Metriken

und Evaluationsmethoden herangezogen. Die verwendeten Metriken sind in der Bibliothek

river implementiert und können direkt für die Evaluierung verwendet werden. Zunächst

54

4. Methodik

einmal werden die bereits vorgestellten Modellmetriken herangezogen, um die Modellgüte zu

bewerten.

Modellgüte Für die Regression wird der MAE, RMSE und R2-Wert, wie in Tabelle 2.1 be-

schrieben, verwendet. Der MAE lässt sich leicht interpretieren und ist unempfindlich gegenüber

Ausreißern. Da zusätzlich auch die Bewertung größerer Fehler berücksichtigt werden soll,

wird ebenfalls der RMSE herangezogen. Der R2-Wert wird berechnet, um die Varianz der

Zielvariablen zu erklären. Dies ermöglicht eine intuitive Gesamtbewertung der Modellgüte.

Für die Klassifikation wird eine Auswahl an Metriken der Tabelle 2.5b verwendet. Dazu

zählt die Accuracy, die Precision, der Recall. Die Accuracy ist eine häufig eingesetzte Gesamtein-

schätzung der Modellleistung, ist aber problematisch bei unausgeglichenen Klassen. Daher

wird auch die Precision und der Recall herangezogen, um die Leistung des Modells besser

zu bewerten. Der F1-Score ist das harmonische Mittel aus Precision und Recall und spiegelt

eine zweite Gesamtbewertung der Modellleistung wider. Bei der Multi-Klassifizierung des

Datensatzes Image Segmentation wird die Micro-Betrachtung der Metriken herangezogen, um

die Gesamtleistung des Modells zu bewerten. Beim Mikro-Durchschnitt werden die Metriken

über alle Klassen hinweg aggregiert, bevor die Berechnungen durchgeführt werden.

Die genannten Metriken werden häufig in der Literatur eingesetzt und werden für diese

Arbeit gewählt, damit die Ergebnisse mit anderen Arbeiten vergleichbar sind. Alle Metriken

werden als Progressive Validierung ohne Delay (d = 0) berechnet, wie bereits in den Grundlagen

durch Abbildung 2.6a vorgestellt. Das heißt, es wird zuerst die Vorhersage berechnet, dann

evaluiert und zum Schluss das Modell aktualisiert. Die Metriken werden in jeder Iteration als

kumulierter gleitender Durchschnitt, wie in Formel 2.5 berechnet. Die Gewichtung wird mit

wt = 1 ausgeklammert und entspricht dem Cumulative Moving Average (CMA). Damit ist ein

Vergleich der Leistung von verschiedenen OML-Methoden mit dem Framework riverMoE
möglich, die in Liniendiagrammen über den zeitlichen Verlauf dargestellt werden.

Hardware Der Einsatz von OML-Algorithmen ist besonders in Streamingszenarien inter-

essant. Eine verhältnismäßig schnelle Rechenzeit und möglichst geringer Speicherplatzver-

brauch sind dabei entscheidend. Deswegen wird durch eine externe Evaluierungsmethode in

jeder Iteration die kumulierte Rechenzeit und der verwendete Speicherplatz gemessen und als

Liniendiagramm ausgegeben. Die Division der gesamten Laufzeit durch die Anzahl der Instan-

zen ergibt die durchschnittliche Laufzeit pro Instanz („Zeit/Instanz“) und wird als Trainings-
und Inferenzzeit angegeben. Die Messung für die Rechenzeit in der Einheit Sekunden (s) und

Mebibyte (MiB) für den Speicherbedarf. Die Trainings- und Inferenzzeit pro Datensatz wird in

55

4. Methodik

Millisekunden (ms) angegeben. Bei MoE wird noch die jeweilige Speichergröße der Experten

tabellarisch transparent dargestellt.

MoE-Evaluation Für die Evaluierung der MoE-Komponenten bedarf es spezieller Metriken

für Gating und Expertenauswahl. Bei jeder Trainingsinstanz kann das vom Gate berechnete

Gewicht gemessen werden. Zunächst wird erhoben, wie häufig ein Experte j ∈ E nach den

N -Durchläufen absolut ausgewählt wurde. Dafür wird die Indikatorfunktion 1 verwendet, um

alle Experten, deren Gewichte w in einem Durchlauf größer als 0 sind, zu zählen. Mithilfe der

absoluten Häufigkeit wird die relative Häufigkeit pro Experte j in Formel 4.4 ermittelt. Die

individuellen Beiträge, die die Experten zu den Vorhersagen beitragen, werden in Formel 4.5

als Durchschnitt zusammengefasst.

Rel. Häufigkeit(j) =
1

N

N∑
i=1

1{wj,i>0} (4.4) Beitrag(j) =
1

N

N∑
i=1

|wj,i| (4.5)

Beide Metriken sind Prozentwerte. Die Entropie der Gate-Gewichte für eine Instanz xt wird

verwendet, um die Spezialisierung der Experten eines Durchlaufs zu bewerten. Damit die

Entropie-Werte vergleichbar sind, wird der Kehrwert der maximalen Entropie log(|E|) als
Skalierungsfaktor verwendet, um die Werte zwischen 0 und 1 in der Formel 4.6 zu normieren.

Normierte Entropie(xt) = −
1

log(|E|) ·
|E|∑
i=1

wi log(wi) ∈ [0, 1] (4.6)

Die Spezialisierung ist ein Maß für die Diversität der Experten und ähnelt der Evaluations-

methodik Router Dispatch Entropy von Z. Chen et al. (2024, S. 9). Je höher der Wert ist, desto

gleichverteilter sind die Gewichte und vice versa. Bei einem Wert von 1 sind die Gewichte

perfekt gleichverteilt, bei 0 ist nur ein Experte aktiv.

Alle Metriken werden für ein Modell berechnet und pro Durchlauf gemessen und mit

den anderen Modellen verglichen. Dabei wird die Genauigkeit der Metriken auf drei Nach-

kommastellen gesetzt. Generell gilt, dass die Reihenfolge der Daten, also die Eintreffzeit der

Dateninstanzen aus dem Datenstrom, einen Einfluss auf die Ergebnisse hat. Es handelt sich da-

her um eine Prequential Validation. Daher ist es üblich für die Gesamtbeurteilung, die Werte der

letzten Iteration zu betrachten. Dies entspricht im produktiven Szenario dann der Leistung des

Modells für neue eintreffende Dateninstanzen. Eine ausführliche Übersicht der Zwischenwerte

mit gleichen Abständen wird im Anhang A.4 in Tabellen festgehalten.

56

5. Ergebnisse und Diskussion

Bevor die Ergebnisse der Experimente präsentiert werden, wird zunächst die prototypische

Implementierung des riverMoE-Frameworks vorgestellt. Dabei wird die entwickelte Archi-

tektur erklärt. Dies beantwortet die erste Forschungsfrage, ob ein Framework zur Generierung

von MoE-Systemen für dynamische Umgebungen möglich ist (RQ1). Im zweiten Abschnitt

dieses Kapitels werden die Evaluationsergebnisse der einzelnen Experimente vorgestellt und

diskutiert. Dabei wird die zweite und dritte Forschungsfrage betrachtet, wie die Leistung

gemessen werden kann (RQ3) und ob sich die Leistung in dynamischen Umgebungen durch

die Architektur steigert (RQ2).

5.1. Prototypische Implementierung

Die Idee von riverMoE wurde als FrameworkriverMoE1
in Python umgesetzt und auf Github

veröffentlicht. Es dient als Erweiterung zu dem Basis-Framework river. Das Framework

ermöglicht die Generierung von MoE-Systemen für dynamische Umgebungen. Dabei kön-

nen verschiedene MoE-Varianten umgesetzt werden, die auf unterschiedlichen Gating- und

Experten-Modellen basieren. Die Funktionsweise und der Aufbau der Software werden in den

nächsten Abschnitten näher erläutert.

5.1.1. Framework-Architektur

Für die prototypische Umsetzung wurden 15 Python-Klassen implementiert, die in der Ab-

bildung A.1 als Klassendiagramm im Anhang aufgelistet werden. Damit die grundlegende

API aus dem Basis-Framework river und deep-river wiederverwendet werden kann,

wurde primär mit Vererbungen von deren Klassen gearbeitet.

Basis MoE Zunächst wurde eine Basis-MoE Klasse BaseMixtureOfExperts erstellt,

die die grundlegenden Funktionen von dem Standard-Estimator aus river erbt. Damit

1

Github: https://github.com/bitnulleins/rivermoe

57

5. Ergebnisse und Diskussion

besitzt das MoE die gleichen Eigenschaften und Methoden wie alle Schätzer der river-
Bibliothek. Jede MoE-Variante hat zusätzlich die Attribute und Methoden, wie sie in Abbildung

5.1 beschrieben sind.

BaseMixtureOfExperts
+ gate: deep_river.Classifier
+ experts: List[river.base.Estimator]
+ seed: int = config.random_seed
– _name: str
– _moe_initialized: bool
– _abs_freq: dict
– _rel_freq: dict
– _gate_weights: dict
– _n_experts: int
– _memory_usage: str
– _raw_memory_usage_per_component: dict

+ initalize_moe(x: dict)
+ update_stats(weights: list)
+ draw()
– _loss(y_pred, y)
– _adapt_gate_output_dim(y)

Abbildung 5.1.: Basis-Klasse als Ausschnitt aus dem Klassendiagramm zu riverMoE

Jede MoE-Art besteht aus einem Gate-Objekt und einem oder mehreren Experten-Objekten,

die bei der Initialisierung des Objektes mitgegeben werden. Die Classifier-Klasse aus
deep-riverwird als Schätzer für das Gate erwartet. Bei den Experten kann es ein beliebiger

Schätzer sein. Beides wird bei der Initialisierung geprüft, um die Funktionalität sicherzustellen.

Der Zufallsstartwert des MoE wird auf 42 als Standardwert gesetzt. Alle anderen Attribute

sind privat und werden intern verwendet. Die Anzahl der Experten kann aus _n_experts
entnommen werden, das dynamisch durch einen Eigenschaftsdekorator erzeugt wird. Für das

Gate wird ein neuronales Netz erwartet, wie bereits durch den Methodikteil der Tabelle 4.1

dieser Arbeit begründet. Die Experten hingegen können beliebige OML-Verfahren sein. Das

Namen-Attribut soll bei der Identifizierung der MoE-Art unterstützen und wird im Standard

durch den Klassennamen gefüllt. Diese Methode kann auch durch parameterabhängige Namen,

wie k bei einem Sparse-MoE, überschrieben werden. Der Name wird dann unter dem Gate als

MoE-Strategie in der Architekturskizze angezeigt, wenn die draw()-Methode aufgerufen

wird. Eine erzeugte Skizze ist in Abbildung 5.2 zu sehen.

Bei dem Aufruf von update_stats werden jegliche Statistiken des MoE aktualisiert.

Das ist im Standard der Nutzungszähler der aktiven Experten (wi > 0) aus _abs_freq. In

58

5. Ergebnisse und Diskussion

Input

Gate: deep_river.Classifier

rivermoe.SparseMoEClassifier(k=2)

Expert 0:
river.LogisticRegression

Expert 1:
river.HoeffdingTreeClassifier

Expert 2:
river.NoChangeClassifier ×

×

× Σ Output

Abbildung 5.2.: Generierte Architekturskizze eines MoE mithilfe der draw()-Methode.

dem Attribut _rel_freqwerden die relativen Häufigkeiten der Experten, für die Metrik aus

Formel 4.4, als Eigenschaftsdekorator aus den absoluten Häufigkeiten berechnet. Die letzten

Gating-Gewichte werden in _gate_weights gespeichert, um später die Beitragsmetrik

(Formel 4.5) und normierte Entropie (Formel 4.6) berechnen zu können. Über die Speicherplatz-

werte können Informationen zur Speicherung der Experten, des Gates – und in summierter

Form – für das gesamte MoE abgerufen werden. Die adaptiven Eigenschaften des neuronalen

Gates, die deep-river bereits umgesetzt hat, werden aktiviert. Damit können zur Lautzeit

Eingangsdaten, das Label und die Anzahl an Experten im Gate verändert werden. Die Adapti-

vität entspricht einer der wichtigsten Eigenschaften von OML-Verfahren. Initialisiert werden

die neuronalen Komponenten mithilfe von _moe_initalize. Dabei wird die Anzahl der

Ausgangsneuronen, wenn nicht bereits gegeben, auf die Anzahl der Experten angepasst. Für

das erste Training wird im Gate-Netzwerk der Bias b0 auf 0 und die Startgewichte θ0 auf einen

konstanten Wert
1
|E| gesetzt, damit nicht, je nach Expertenreihenfolge, ein Experte bevorzugt

wird. Die Experten aus den einzelnen MoE der Experimente wurden dafür experimentell

variiert. Jede Reihenfolge führte korrekterweise zur gleichen Modellleistung.

Die grundlegenden Methoden der Basis-Regressoren und Basis-Klassifikatoren eines OML-

Verfahrens sind die Methoden learn_one und predict_one. Dafür wurde zunächst
von der Basis-MoE-Klasse geerbt und ein Basis-Regressor sowie ein Basis-Klassifikator imple-

mentiert. Diese wurden in den beiden Subklassen MoEClassifier und MoERegressor
implementiert. Letztere Methode gibt die Vorhersage für einen Datensatz xt zurück. Für

Klassifikationen wird noch die predict_proba_one benötigt, die pro Klasse die Wahr-

scheinlichkeiten zurückgibt. Bei der Vorhersage der endgültigen Klassifikation wird die Klasse

mit der höchsten Wahrscheinlichkeit zurückgegeben. Die Lernmethode learn_one trainiert

59

5. Ergebnisse und Diskussion

mit dem Wertepaar dt = (xt, yt) ein oder mehrere Experten und aktualisiert die Gewichte des

Gates. Diese Methoden geben, wie in river, die grundlegende Funktionalität des Modells

vor. In jedem Inferenz- und Trainingsschritt kann die Attributmenge durch neue, vorher unge-

sehene Attribute ergänzt werden. In der Klassifikation werden noch zusätzlich die eindeutigen

Labels in jedem Schritt adaptiv aktualisiert. Bei der Umsetzung wurde auch die Eigenschaft

berücksichtigt, dass ein Experte direkt ausgewählt wird, wenn im MoE nur ein Experte vor-

handen ist. Dies lässt sich durch Abbildung 5.3 veranschaulichen. Hier sind die Leistungen des

Experten und des Single-Expert-MoE identisch. Der generelle MoE-Klassen-Wrapper sorgt für

etwas höheren Speicherbedarf und minimal höhere Laufzeiten.

4

5

M
A

E

HTR Single-MoE (Soft-MoE)

0.040

0.060

Z
ei

t/
In

st
an

z
(m

s)

0 25000 50000 75000 100000 125000 150000 175000
Dateninstanzen (Bikes)

0.025

0.050

0.075

S
p

ei
ch

er
(M

iB
)

Abbildung 5.3.: Modellleistung ist bei Single-MoE identisch zur Expertenleistung ohne MoE.

MoE-Varianten Die grundlegenden MoE-Varianten, die in dieser Arbeit implementiert

wurden, sind Soft-Moe nach Jacobs et al. (1991) und Sparse-MoE mit Top-K-Routing nach

Shazeer et al. (2017). Für die Implementierung wird pro Problemart von dem MoE- und der

Varianten-Klasse geerbt. Das generelle Vorhersage- und Lernverhalten einer MoE-Variante wird

durch die Implementierung der abstrakten Methoden _learn und _predict bestimmt.

Die wesentliche Gating-Logik der Variante wird durch die Implementierung der abstrakten

gating(x)-Methode aus der BaseVariant-Klasse festgelegt.

60

5. Ergebnisse und Diskussion

Die Gating-Gewichte des Soft-Max entspricht dem Softmax
2
der Rohwerte Z(xt) = θi · xt

der Ausgabeneuronen: G(xt) = Softmax(Z(xt)). Für die Gesamtvorhersage werden die

Vorhersagen aller Experten berechnet und durch die Gating-Gewichte gewichtet. Im Training

wird die Gesamtvorhersage ebenfalls berechnet und dient neben dem tatsächlichen Wert als

Eingabe für die Verlustfunktion, um das Gate sukzessiv zu verbessern.

Für das Sparse-MoE, bei dem nur die besten k-Experten aktiv sind, wurde zusätzlich der

Parameter k eingeführt, der bei der Erstellung der MoE-Variante verlangt wird. Mit diesem

Parameter werden immer die k-höchsten Gating-Gewichte wi, mit einem Rauschen nach

Shazeer et al. (2017) aus Formel 5.1 ausgewählt. Die besten Experten e werden über das

Argument des Maximums abgeleitet: ei = argmax
i∈TopK(k)

wi.

G(xt) = Softmax(KeepTopK(Z(xt), k))

Z(xt)i = (θ · xt)i +N (0, 1) · Softplus((θRauschen · xt)i)

KeepTopK(W,k)i =

wi, wenn wi in den besten k-Experte von W

0, sonst.

(5.1)

Durch das Rauschen und der Softplus
3
-Funktion wird die Diversität der Experten erhöht.

Die sparsame Auswahl an Experten reduziert Rechenaufwände im Training und erhöht die

Inferenzgeschwindigkeit, da nicht alle Experten pro Durchlauf aktiv sind. Die Implementie-

rung beider Varianten wurde mit PyTorch-Methoden umgesetzt, um die Kompatibilität

zum bestehenden deep-river zu halten. Der generelle Ablauf für die Inferenz und das

Lernen ist grundsätzlich für jeweils Regression und Klassifikation identisch. Ein passendes

Aktivitätsdiagramm lässt sich aus dem Anhang A.2 entnehmen.

SAMoE Das Sparse-MoE stellt die Grundlage für SAMoE, eine adaptive MoE-Variante. Es wur-

de für die Klassifikation implementiert und erbt von der SparseMoEClassifier-Klasse.
Der k-Wert wurde auf 1 gesetzt, damit immer nur ein Experte pro Durchlauf ausgewählt wird.

Wie in der Architektur aus Abbildung 4.1 vorgestellt, ist das Novum der Variante die progressi-

ve Erweiterung des Expertenpools bei Drifterkennung. Deswegen wird ein Drift-Verfahren

als Drift-Detektor bei der Initialisierung des Objektes erwartet. Die übergebenen (untrainier-

ten) Experten-Algorithmen aus experts werden in einen Katalog experts_catalog
geklont.

2Softmax(z) = ezi∑
j=1 e

zj

3Softplus(z) = ln(1 + ez)

61

5. Ergebnisse und Diskussion

Der Ablauf des dynamischen Hinzufügens von Experten wird durch das Listing aus 5.1

deutlich. Der Drift-Detektor wird in einem Trainingsschritt mit einem binären Fehlerwert yt ̸=
ŷt aktualisiert. Tritt ein Drift auf, ändert sich die Fehlerquote und der Drift-Detektor erkennt

den Drift. Wird ein Drift erkannt, wird mithilfe von Modulo der letzte Experte aus dem Katalog

zyklisch ausgewählt und zum Experten-Pool hinzugefügt. Dafür wird die add_expert-
Methode aufgerufen. Dort wird die letzte Schicht im Gating um ein Ausgangsneuron adaptiv

ergänzt und die Gewichte nach N (0, 1) normalverteilt initialisiert.

1 y_pred = self.predict_one(x)
2 error = 1 if y != y_pred else 0
3 self.drift_detector.update(error)
4 if self.drift_detector.drift_detected:
5 expert_index = (self._n_experts-1) % len(self.expert_catalog)
6 selected_expert = experts_catalog[expert_index]
7 self.add_expert(selected_expert)

Listing 5.1: Dynamisches hinzufügen eines neuen Experten bei Drift-Erkennung.

NN-Generator Die neuronalen Gates und Experten können mithilfe eines entwickelten

neuronalen Generators aus einer beliebigen Konfiguration erzeugt werden. Durch Angabe der

Eingangs- und Ausgangsdimension, Aktivierungsfunktion und Ebenenkonfiguration erzeugt

die GenericNNArchitecture-Klasse ein Pytorch nn.Module. Es werden linear ver-

bundene Ebenen, aber auch LSTM-Schichten unterstützt. Bei den Aktivierungsfunktionen

können bekannte Verfahren wie ReLU gewählt werden. Die generische NN-Architektur wird als

Modul in der GenericNN-Klasse verwendet und stellt damit eine Aggregations-Beziehung

im Klassendiagramm dar. Die entsprechenden Regressoren und Klassifikatoren erben die Ei-

genschaften von GenericNN. Das Anlegen eines neuronalen Schätzers für das Gate, wie in

Tabelle 4.4 („m-ReLU-10-ReLU-|E|“), ist das durch Listing 5.2 möglich.

1 gate = GenericNNClassifier(
2 layer_configs=[10,],
3 activation_fn="relu",
4 loss_fn="cross_entropy",
5 output_activation=None,
6 optimizer_fn="sgd"
7)

Listing 5.2: Generierung eines inkrementellen Klassifikators mit einer versteckten Schicht aus

10 ReLU-aktivierten Neuronen und variablen Eingangs- und Ausgangsneuronen

(ohne Aktivierung). Optimiert wird nach Cross Entropy (CE) mit SGD.

62

5. Ergebnisse und Diskussion

Die Verwendung des riverMoE ist voll kompatibel mit river und deep-river und

wird mit der NNGenerator-Hilfsklasse vereinfacht. Damit lässt sich in wenigen Zeilen

(Listing 5.3) ein inkrementelles MoE-Modell erstellen:

1 soft_moe = Soft-MoERegressor(
2 gate = gate,
3 experts = [LogisticRegression(), HoeffdingTreeClassifier()]
4)

Listing 5.3: Einfaches Beispiel zur Erstellung eines inkrementellen MoE mit neuronalen

SoftMax-Gate und zwei nicht neuronalen river-Experten.

Die Umsetzung eines Systems, das den MoE-Ansatz mit Online-Learning-Verfahren und in

dynamischen Umgebungen ermöglicht, ist durch das riverMoE-Framework erreicht. Damit

ist die Umsetzung und Kombination beider Ansätze erfolgt, was zur teilweisen Beantwor-

tung der ersten Forschungsfrage (RQ1) führt. Die Evaluation des Frameworks erfolgt durch

Simulation von Experimenten.

5.1.2. Simulation der Experimente

Alle Experimente aus Abschnitt 4.2.4 werden durch einen simulierten endlichen Datenstrom als

produktives Szenario durchgeführt. Dabei fließen, anders als häufig in der Realität, die Daten

mit einer gleichbleibenden Datenrate vkonst., ohne Verzögerung, in das MoE-System. Durch die

Verarbeitung einzelner Instanzen wird es möglich, auch theoretisch große Datenmengen ohne

zusätzlichen Speicherplatz zu bearbeiten. Die Simulation spiegelt das Konzept der Adaptivität

aus Abbildung 2.1 wider. Datensätze im Big Data können sich nach jedem Inferenz- und

Trainingsschritt verändern und das MoE-System muss auf das Dynamisches Optimierungs-
Problem reagieren.

Für die Evaluation wurde die experiment-Methode in der experimentellen Umgebung,

dem Jupyter-Notebook, implementiert, die für die Simulation zuständig ist. Zur visuellen

Darstellung der Ergebnisse erstellt diese Methode Grafiken und Tabellen zu den berechneten

Metriken pro Modell und Experiment. Sinnvolle Metriken zur Evaluation wurden bereits im

Abschnitt 4.2.5 vorgestellt. Durch das Hinzufügen neuer Merkmale zum Speicher- und Leis-

tungsverhalten der Experten und des Gates konnten die MoE spezifischen Metriken realisiert

werden. Beides trägt zur Beantwortung der dritten Forschungsfrage bei (RQ3). Wie effektiv

die MoE-Architektur in dynamischen Umgebungen ist (RQ2), wird durch die Experimente

evaluiert. Die Ergebnisse werden in den folgenden Abschnitten präsentiert und diskutiert.

63

5. Ergebnisse und Diskussion

5.2. Evaluation der Experimente

Es wurden insgesamt sechs Experimente durchgeführt, die in drei Kategorien unterteilt sind.

Die erste Kategorie umfasst die Regressionsexperimente, die zweite Kategorie die Klassifikati-

onsexperimente und die dritte Kategorie die Experimente zum katastrophalen Vergessen. Die

Ergebnisse der Experimente werden in den folgenden Abschnitten präsentiert. Die Diskussion

der Ergebnisse erfolgt in Bezug auf die Forschungsfragen.

5.2.1. Experimente für Regression

Experiment R.1 Im ersten Regressionsexperiment ging es um die Evaluation des MoE-

Systems gegenüber LinR, HTR und DeepR. Werden die Liniendiagramme aus Abbildung 5.4

betrachtet, kann erkannt werden, dass die lineare Regression (LinR) besonders am Anfang eine

sehr starke Abweichung im MAE hatte. Die anderen Modelle haben bereits anfangs einen recht

niedrigen Fehlerwert. Im Verlauf ist es sichtbar, dass nicht neuronalen Modelle wie BaseR,

HTR oder LinR am weningsten Zeit benötigt haben. Dieses Verhalten war zu erwarten, da

aufwendigere Forward und Backward-Propragierungen bei neuronalen Netzen genutzt werden.

0

200

M
A

E

LinR HTR DeepR BaseR SoftMoE

0.100

0.200

0.300

Z
ei

t/
In

st
an

z
(m

s)

0 25000 50000 75000 100000 125000 150000 175000
Dateninstanzen (Bikes)

0.000

0.100

S
p

ei
ch

er
(M

iB
)

Abbildung 5.4.: Modellmetriken, Zeit- und Speicherbedarf pro Modell (Experiment R.1).

Eine bessere Übersicht der endgültigen Modellleistung zeigt Tabelle 5.1. Das Soft-MoE erzielt

die besten Ergebnisse in MAE, RMSE und R2. Die Laufzeit ist jedoch am längsten und der

Speicherbedarf am höchsten. Das Soft-MoE konnte nur sehr knapp bessere Ergebnisse als

64

5. Ergebnisse und Diskussion

das HTR erzielen. Dabei war das HTR-Modell, ohne neuronale Gating-Komponente, achtmal

früher fertig und verbraucht nur die Hälfte des Speichers. Soft-MoE und HTR konnten beide

das neuronale Netz DeepR übertreffen. Die lineare Regression schnitt in der progressiven

Validierung schlechter als das Baseline-Modell ab und ist daher für das vorliegende Setting

nicht geeignet.

Modell Zeit Speicher Zeit/Instanz MAE RMSE R2

LinR 5,262s 0,005MiB 0,029ms 7,646 271,008 -919,481

HTR 6,333s 0,036MiB 0,035ms 5,597 7,369 0,32

DeepR 40,712s 0,034MiB 0,223ms 5,783 7,667 0,263

BaseR 4,136s 0,004MiB 0,023ms 7,247 8,933 -0

SoftMoE 56,855s 0,071MiB 0,312ms 5,589 7,349 0,323

Tabelle 5.1.: Übersicht Metriken aller Modelle (Experiment R.1). Beste Ergebnisse markiert.

Ein Ergebnis ist, dass der Speicherverbrauch vom Soft-MoE identisch verläuft wie der von

HTR, bloß nach oben verschoben. Am Anfang steigt der Speicherbedarf, nach ungefähr 35000

Instanzen sinkt der Bedarf und bleibt konstant. Dieses Verhalten ist zu erwarten, da die anderen

beiden MoE-Experten (LinR, BaseR) kaum Speicher benötigen und der Verbrauch daher primär

von HTR getrieben wird. DeepR und HTR konvergieren zu einem gleichen Speicherverbrauch.

Der Speicherverbrauch von Soft-MoE ist am höchsten. Das ist insofern nachvollziehbar, als

ein MoE speichertechnisch aus einem neuronalen Gate und den einzelnen Experten besteht.

Die detaillierten MoE-Metriken aus Tabelle 5.2 der letzten Instanz bestätigen diese Vermutung.

Die Addition der Gewichte von DeepR, einem architektonisch ähnlichen Netzwerk zum Gate,

zum Speicherbedarf der drei nicht neuronalen Experten, ergibt einen Gesamtwert von 0,081

MiB. Das Soft-MoE ist in der Realität mit 0,074 MiB etwas sparsamer. Dennoch lässt sich

der größte Speicherbedarf des MoE dadurch erklären. Das schnellste und speichertechnisch

leichteste Modell ist das Base-Modell, was darauf zurückzuführen ist, dass es sich lediglich um

den Cumulative Moving Average handelt – also die Berechnung eines skalaren Werts.

Häufigkeit Speicherbedarf

Modell Beitrag Relativ Absolut Relativ Absolut Relativ

StatisticRegressor 0,00 % 182470 33,30 % 490 B 0,70 %

HoeffdingTreeRegressor 35,00 % 182470 33,30 % 33,1 KiB 47,40 %

LinearRegression 65,00 % 182470 33,30 % 2,23 KiB 3,20 %

Gate 33,96 KiB 48,70 %

Tabelle 5.2.: Detaillierte Metriken für das Soft-MoE (Experiment R.1).

65

5. Ergebnisse und Diskussion

Die Tabelle 5.2 zeigt einen detaillierten Einblick in das Soft-MoE-Modell. Im Soft-MoEwurden

alle Experten mit 33,3 % gleich häufig verwendet. Bemerkenswert ist, dass die schlechtere

Lineare Regression mit 65 % durchschnittlich den größten Beitrag an der Leistung hat, während

sie beim HTR, mit besserer Modellgüte, nur 35 % beiträgt. Das Gating-Routing führt dennoch

gewichtet zum Ergebnis (MAE: 5,589). Wie im oberen Absatz bereits beschrieben, hat das Gate

mit 34 KiB die gleiche Größe wie das neuronale Netz in DeepR. Der HTR benötigt aber weniger

Speicherplatz als das alleinstehende Modell. Das kann damit zusammenhängen, dass durch

die geringere Nutzung ein kleinerer Entscheidungsbaum entstanden ist. Einen Einblick in die

Gategewicht-Verteilung gibt die Abbildung 5.5.

0 25000 50000 75000 100000 125000 150000 175000
Dateninstanzen (Bikes)

0.0

0.5

1.0

N
or

m
.

E
n
tr

op
ie

d
er

G
at

eg
ew

ic
h
te

Abbildung 5.5.: Normierte Entropie der Soft-MoE Gategewichte (Experiment R.1).

Die normierte Entropie der Gategewichte über den zeitlichen Verlauf zeigt eine starke

Tendenz von 0. Das spricht deutlich dafür, dass das Gate primär einzelne Experten gewichtet

hat. Das Gate hat sich damit häufig spezialisiert.

Experiment R.2 Im zweiten Experiment wurden die Sparse-MoE Modelle untersucht. Zu

diesem Zweck wurden jeweils die Top k 1, 2 oder 3 der drei Experten gewählt, um die Gesamt-

prognose zu berechnen. In der Abbildung 5.6 sind die Ergebnisse über den zeitlichen Verlauf

dargestellt. Zu Beginn ist zu erkennen, dass anfangs primär der Entscheidungsbaum von HTR

aufgebaut wurde, was die Geschwindigkeit und Modellleistung etwas negativ beeinflusst hat.

Weiterhin ist erkennbar, dass die Modellleistung sinkt, je weniger Experten verwendet werden.

Da Experten in der Regel unterschiedliche Stärken und Schwächen haben, erzielen sie oft

kombiniert bessere Ergebnisse.

Die zeitlichen und speicherbedingten Vorteile der verschiedenen k-Einstellungen, werden

durch die Ergebnistabelle 5.3 deutlicher. Das Sparse-MoE-Modell (k = 1), das Training und

Inferenz mit nur einem Experten ausführt, arbeitete am schnellsten. Zeitgleich hat es die

stabilsten Ergebnisse erzielt. Der RMSE, der größere Fehler bestraft, ist hier am niedrigsten.

Zusätzlich konnte das Modell die Daten am genauesten beschreiben (R2 = 0,188). Der mittlere

66

5. Ergebnisse und Diskussion

10

20

30

M
A

E
Top(k=1) Top(k=2) Top(k=3)

0.500

0.550

Z
ei

t/
In

st
an

z
(m

s)

0 25000 50000 75000 100000 125000 150000 175000
Dateninstanzen (Bikes)

0.075

0.100

0.125

S
p

ei
ch

er
(M

iB
)

Abbildung 5.6.: Modellmetriken, Zeit- und Speicherbedarf pro Modell (Experiment R.2).

Fehler ist, wenn mehr Experten herangezogen werden (k = 2 oder k = 3), niedriger. Gut zu

erkennen ist, dass die Anzahl und Auswahl der Experten einen Einfluss auf die Laufzeit und den

Speicherbedarf haben. So verbraucht das Sparse-MoE mit zwei Experten (k = 2) am geringsten

Speicher, hat aber länger gebraucht als das Sparse-MoE mit nur einem Experten (k = 1). Eine

identische Leistung zwischen Soft-MoE und Sparse-MoE bei Nutzung aller Experten (k = 3)

ist durch die unterschiedliche Umsetzung nicht gegeben.

Modell Zeit Speicher Zeit/Instanz MAE RMSE R2

Top(k=1) 89,788s 0,074MiB 0,492ms 6,267 8,049 0,188
Top(k=2) 93,331s 0,063MiB 0,511ms 5,728 21,515 -4,802

Top(k=3) 92,15s 0,074MiB 0,505ms 5,917 79,232 -77,677

Tabelle 5.3.: Metriken des Sparse-MoE (Experiment R.2). Beste Ergebnisse markiert.

Das Soft-MoE schneidet insgesamt besser ab als das Sparse-MoE. Eine mögliche Erklärung

gibt das Sparse-MoE (k = 3) der Tabelle 5.4. Anders als bei dem Soft-MoE ist die relative

Häufigkeit der Experten im Sparse-MoE sehr unterschiedlich, obwohl alle Experten ausgewählt

wurden. In der Häufigkeit werden nur aktive Experten berücksichtigt, deren Gewicht größer 0

ist. Vermutlich wurde im Sparse-MoE durch das hinzugefügte Rauschen vor der Top-K-Auswahl

eine klare Spezialisierung unter den Experten gefördert. Angesichts dessen wurde vermehrt

67

5. Ergebnisse und Diskussion

HTR gewählt, der auch mit 86 % den größten Beitrag hatte. Der HTR hatte bereits ohne MoE

die besten Ergebnisse für MAE, RMSE und R2 (Abbildung 5.4).

Häufigkeit Speicherbedarf

Modell Beitrag Relativ Absolut Relativ Absolut Relativ

LinearRegression 11,20 % 33160 14,92 % 2,23 KiB 3,20 %

StatisticRegressor 2,80 % 33040 14,87 % 490 B 0,70 %

HoeffdingTreeRegressor 86,00 % 155977 70,20 % 33,1 KiB 47,50 %

Gate 33,95 KiB 48,70 %

Tabelle 5.4.: Detaillierte Metriken für das Sparse-MoE Top(k = 3) (Experiment R.2).

Im Kontrast zum Sparse-MoE (k = 3) lässt sich beim Sparse-MoE (k = 1) aus Tabelle 5.5

erkennen, dass die relative Häufigkeit und der durchschnittliche Beitrag gleich verteilt sind und

dem Soft-MoE sehr ähneln. Das könnte daran liegen, dass das Gate mit der zu kleinen Lernrate

nicht gelernt hat, gut zwischen den Experten zu differenzieren. Es muss darauf hingewiesen

werden, dass Experten in diesem Modell eine geringere Wahrscheinlichkeit haben, trainiert zu

werden, als bei k = 3, wo alle Experten eine gleichmäßige Wahrscheinlichkeit besitzen. Diese

durchschnittliche Trainingshäufigkeit liegt demnach bei
k
|E| . Daraus könnte folgen, dass der

HTR nicht zwingend die gleiche Trainingsmöglichkeit hatte wie im Soft-MoE und dadurch

seltener als Experte dominierte.

Häufigkeit Speicherbedarf

Modell Beitrag Relativ Absolut Relativ Absolut Relativ

LinearRegression 30,00 % 60889 33,40 % 2,23 KiB 3,20 %

StatisticRegressor 31,00 % 61054 33,50 % 490 B 0,70 %

HoeffdingTreeRegressor 39,00 % 60527 33,20 % 33,14 KiB 47,50 %

Gate 33,95 KiB 48,60 %

Tabelle 5.5.: Detaillierte Metriken für das Sparse-MoE Top(k = 1) (Experiment R.2).

Der Vorteil der Sparsamkeit des Sparse-MoE wurde in diesen Experimenten nur bedingt

deutlich, da die eingesetzten nicht neuronalen Modelle als Experten bereits grundsätzlich

schnell und sparsam sind. Der Effekt wird deutlicher, wenn neuronale Experten zum Einsatz

kommen, die im Einzelnen eine hohe Trainings- und Inferenzzeit haben. Für das vorliegende

Regressionsproblem konnte das MoE mit nicht neuronalen Experten teilweise bessere Ergeb-

nisse erzielen als vergleichbare Modelle ohne MoE. Die Ergebnisse hängen aber auch von der

Wahl der Parameter ab, die hier für den Vergleich identisch gesetzt wurden.

68

5. Ergebnisse und Diskussion

5.2.2. Experimente für Klassifikation

Experiment C.1 Im ersten Experiment zum Klassifikationsproblem wurde, analog zur Re-

gression, das Soft-MoE mit anderen Modellen verglichen. Die Ergebnisse dazu finden sich in

der Abbildung 5.7 wieder.

0.0

0.5

1.0

A
cc

u
ra

cy

LogR HTC DeepC BaseC SoftMoE

0.200

0.400

Z
ei

t/
In

st
an

z
(m

s)

0 10000 20000 30000 40000
Dateninstanzen (Elec2)

0.000

0.200

S
p

ei
ch

er
(M

iB
)

Abbildung 5.7.: Detaillierte Metriken für das Soft-MoE (Experiment C.1).

Über den gesamten Trainings- und Inferenzzeitraum bewegen sich die erfasstenMetrikenmit

einigen Ausnahmen recht konstant. So ist der Speicherbedarf des MoE und des HTC am Anfang

ähnlich hoch wie in den Regressionsexperimenten. Nach nur wenigen Hundert Durchläufen

reduziert sich der Bedarf aber wieder. Der Anstieg und Abstieg des Speicherbedarfs verhält

sich beim Soft-MoE und HTC wieder identisch, obwohl der Soft-MoE insgesamt mehr Speicher

benötigt. Die Gründe dazu wurden bereits bei der Regression erörtert und treffen auch hier zu.

Häufigkeit Speicherbedarf

Modell Beitrag Relativ Absolut Relativ Absolut Relativ

LogisticRegression 41,80 % 45312 33,30 % 2,54 KiB 1,70 %

NoChangeClassifier 36,40 % 45312 33,30 % 531 B 0,40 %

HoeffdingTreeClassifier 21,80 % 45312 33,30 % 105,91 KiB 72,60 %

Gate 36,96 KiB 25,30 %

Tabelle 5.6.: Detaillierte Metriken für das Soft-MoE (Experiment C.1).

69

5. Ergebnisse und Diskussion

Interessant zu beobachten ist, dass der HTC über die Zeit an Accuracy verliert, obwohl der

Soft-MoE seine Leistung hält. Das könnte daran liegen, dass der HTC-Algorithmus nicht in der

Lage ist, die Datenstruktur zu adaptieren. Das Soft-MoE hingegen kann durch das dynamische

Gate und die Experten besser auf die Daten reagieren. Die genauen Ergebnisse der letzten

Instanz lassen sich in der Tabelle 5.7 ablesen.

Modell Zeit Speicher Zeit/Instanz Accuracy Precision Recall F1

LogR 1,411s 0,005MiB 0,031ms 0,837 0,84 0,762 0,799

HTC 1,471s 0,106MiB 0,032ms 0,747 0,742 0,619 0,675

DeepC 12,634s 0,037MiB 0,279ms 0,575 0,5 0 0

BaseC 0,996s 0,003MiB 0,022ms 0,853 0,827 0,827 0,827

SoftMoE 16,008s 0,146MiB 0,353ms 0,876 0,867 0,836 0,852

Tabelle 5.7.: Übersicht Metriken aller Modelle (Experiment C.1). Beste Ergebnisse markiert.

Für alle Modellmetriken hat das Soft-MoE die besten Werte erreicht. Erstaunlich ist, dass

DeepC für die vorliegende Datenverteilung deutlich schlechter abschneidet als die anderen Mo-

delle. Besonders im Recall hat DeepC keine Ergebnisse erhalten. Grund dafür könnte sein, dass

das neuronale Netz für diese Problemstellung zu einfach ist. Das Baseline-Modell, das die letzte

Klasse als Prognose zurückliefert, scheint auf diesem Datensatz besser zu funktionieren. In der

Implementierung der Klassifikations-Varianten wurde auf die korrekte OML-Lernreihenfolge

geachtet, dass zuerst vorhergesagt und dann gelernt wird. Andernfalls würde das Baseline-

Modell (letzte Klasse) immer die richtige Klasse vorab lernen. Besonders im Bereich des Recalls

und F1-Scores konnte das Soft-MoE mit HTC deutlich bessere Ergebnisse erzielen als HTC

alleine.

Ein wichtiger Vorteil von MoE, mit Einsatz von nicht neuronalen Experten, ist ihre Erklärbar-

keit, die auch schon von Sharma, Henderson und Ghosh (2023) in FEAMoE untersucht wurde.

Die zugrundeliegenden Modelle, wie die logistische Regression oder der Entscheidungsbaum

aus HTC, lassen sich einfach interpretieren. Die logistische Regression lässt sich als einfaches

Wahrscheinlichkeitsmodell darstellen. Der trainierte Entscheidungsbaum aus dem HTC-Modell

des Soft-MoE aus Abbildung 5.8 konnte einfach exportiert werden.

Eine weitere Möglichkeit, die zur Erklärbarkeit bei MoE beiträgt, sind die Gategewichte.

Diese entscheiden über die Gesamtprognose aus den Teilprognosen. Die Metrik der normierten

Entropie gibt Aufschluss darüber, wie das Gate die Experten gewichtet hat. In Abbildung 5.9

ist zu erkennen, dass die Entropie über den gesamten Zeitraum sehr hoch ist, es dennoch

immer wieder auch zu Schwankungen kommt. Das spricht dafür, dass das Gate grundsätzlich

eher unsicher ist und gleichverteilter gewichtet. Das kann auch daran liegen, dass alle der

70

5. Ergebnisse und Diskussion

nswprice

nswprice

≤ 0.8398

nswprice

> 0.8398

nswprice

≤ -0.1936

date

> -0.1936

Class False:
P(False) = 0.8
P(True) = 0.2

samples: 22221

≤ -0.5233

Class False:
P(False) = 0.6
P(True) = 0.4

samples: 6264

> -0.5233

Class True:
P(False) = 0.3
P(True) = 0.7

samples: 10790

≤ 2.1582

Class True:
P(False) = 0.3
P(True) = 0.7

samples: 1664

> 2.1582

Class True:
P(False) = 0.1
P(True) = 0.9

samples: 2735

≤ 3.3512

Class True:
P(False) = 0.0
P(True) = 1.0

samples: 1034

> 3.3512

Abbildung 5.8.: HTC als exportierter Binärbaum als erklärbares Modell (Experiment C.1).

nicht neuronalen Experten ähnlich gut sind und tatsächlich die Kombination der gewichteten

Wahrscheinlichkeiten zu den besten Ergebnissen führt. Das lässt sich ebenfalls durch den

relativ gleichverteilten durchschnittlichen Beitrag aus Tabelle 5.6 ablesen.

0 10000 20000 30000 40000
Dateninstanzen (Elec2)

0.0

0.5

1.0

N
or

m
.

E
n
tr

op
ie

d
er

G
at

eg
ew

ic
h
te

Abbildung 5.9.: Normierte Entropie der Soft-MoE Gategewichte (Experiment C.1).

Experiment C.2 Im zweiten Experiment zum Klassifikationsproblem, wurde das Sparse-

MoE-Modell mit unterschiedlichen k-Werten untersucht. Der Ablauf des Experiments dazu

findet sich in der Abbildung 5.10 wieder.

Zu erkennen ist, dass die Leistungen der einzelnen Sparse-Modelle fast identisch hoch und

stabil sind. Ähnlich wie bei der Regression sinkt die Modellleistung, umso weniger Experten

verwendet werden. Das lässt sich durch die tabellarischen Ergebnisse der letzten Instanz aus

Tabelle 5.8 erkennen. Das schnellste und kleinste Modell war das Sparse-MoE Top(k = 1),

das nur einen Experten pro Instanz verwendet. Die Unterschiede zwischen den Sparse-MoE

in der Laufzeit und Speicherverbrauch sind nur marginal. Die Komplexität der eingesetzten

71

5. Ergebnisse und Diskussion

0.0

0.5

1.0

A
cc

u
ra

cy
Top(k=1) Top(k=2) Top(k=3)

0.600

0.650

Z
ei

t/
In

st
an

z
(m

s)

0 10000 20000 30000 40000
Dateninstanzen (Elec2)

0.150

0.200

S
p

ei
ch

er
(M

iB
)

Abbildung 5.10.: Modellmetriken, Zeit- und Speicherbedarf pro Modell (Experiment C.2).

Experten-Modelle spielt eine Rolle, um den Vorteil von sparsamen Sparse-MoE deutlicher

hervorzubringen. Der Speicherbedarf war am Anfang am stärksten, hat sich aber je schneller

reduziert, umsomehr Experten im Einsatz waren. Das könnte wieder mit der durchschnittlichen

Trainingshäufigkeit zusammenhängen, also dass das dominierende HTC-Modell bei k =

3 am ehesten vollständig trainiert war. Die Modellgüte mit den meisten Experten ist am

höchsten, aber ebenfalls schlechter als beim Soft-MoE. Die Gründe dafür sind analog zum

Regressionsproblem.

Modell Zeit Speicher Zeit/Instanz Accuracy Precision Recall F1

Top(k=1) 25,596s 0,112MiB 0,565ms 0,777 0,776 0,667 0,718

Top(k=2) 26,52s 0,112MiB 0,585ms 0,813 0,801 0,746 0,772

Top(k=3) 27,605s 0,146MiB 0,609ms 0,84 0,838 0,773 0,804

Tabelle 5.8.: Metriken des Sparse-MoE (Experiment C.2). Beste Ergebnisse markiert.

Eine mögliche Lösung wäre das Einführen von Temperature Scaling nach Nguyen, Akbarian

und Ho (2024). Dabei handelt es sich um einen stetig sinkenden Temperaturparameter τ , in

der Softmax-Funktion: Softmax(ziτ). Damit ließe sich die Entropie der Gategewichtsvertei-

lung steuern. Ein höherer Temperaturwert führt anfangs zu einer gleichmäßigeren Verteilung,

sodass Experten häufiger trainiert werden können. Durch das stetige Sinken des Temperaturs-

72

5. Ergebnisse und Diskussion

kalierungsfaktors spezialisiert sich das MoE allmählich. Die Herausforderung im OML-Kontext

ist die Strategie zur Senkung des Temperaturwerts, da Streamingdaten kein festes Ende haben.

Insgesamt konnte riverMoE in den Klassifikationsexperimenten die Ergebnisse von Mon-

tiel, Halford et al. (2021) übertreffen. Die Entwickler von dem Basis-Framework river erziel-

ten mit der logistischen Regression für Experimente mit dem Elec2-Datensatz eine Accuracy
von 67,97 % und für HTC einen Wert von 75,55 %. Die genauen Parameter wurden dabei nicht

genannt. Die durchgeführten Experimente dieser Arbeit führten mit gleichem Datensatz zu

einer Accuracy von 83,73 % für die logistische Regression und 74,70 % für das HTC-Modell.

Das Soft-MoE-Modell hat die höchste Accuracy von 87,62 % erreicht. In dieser Arbeit ist das

eine Verbesserung von 4,66 % für LogR und 17,27 % für HTC.

Die Ergebnisse der bisherigen Experimente zu Regressions- und Klassifikationsproblemen

realer Datensätze zeigen, dass eine gewichtete Kombination von (nicht-)neuronalen Experten

zu besseren Ergebnissen führen kann, auch wenn der Speicher- und Rechenaufwand nachvoll-

ziehbar höher ist. Eine Rechengeschwindigkeit von durchschnittlich weniger als 0,5ms für die

Inferenz- und Trainingszeit ist gegenüber Batch maschinelles Lernen, trotz der recht komple-

xen Struktur, ein Vorteil. Das MoE-System arbeitet dabei ähnlich wie die Ensemble-Methode

VotingClassifier von Dietterich (2000), die Ergebnisse verschiedener ML-Algorithmen

gewichtet zusammenfasst. Der Unterschied liegt lediglich darin, dass die Gewichte statisch

festgelegt werden müssen oder zeitaufwendig durch Hyperparameteroptimierung optimiert

werden müssen. Ein neuronales Gate in riverMoE kann dagegen gezielt auf Eingangsdaten

trainiert werden, um effektiv die besten Gewichte zu ermitteln.

Die Resultate bestätigen noch einmal, dass eine Umsetzung der MoE-Architektur und seiner

Varianten im Streaming-Kontext funktioniert und zu vergleichbaren oder besseren Ergebnissen

führen kann. Damit wird die erste Forschungsfrage (RQ1), die auf die Machbarkeit zielte,

beantwortet. Die ausgewählten Metriken und Evaluationsmethodik haben sich als sinnvoll

erwiesen, um dieModelle zu vergleichen und zu bewerten. Der Einsatz von grafischen Verläufen

hilft dabei, die Veränderungen über die Zeit zu visualisieren und zu interpretieren. Durch

aggregierte Kennzahlen wie normierte Entropie der Gategewichte oder durchschnittlicher Beitrag
der Experten konnten zusätzliche Einblicke in das Verhalten der MoE-Modelle geben. Die dritte

Forschungsfrage zur Evaluationsmethodik (RQ3) ist damit beantwortet.

5.2.3. Experimente zu katastrophalem Vergessen

Die zweite Forschungsfrage (RQ2) hatte den Fokus auf die Anpassungsfähigkeit in dynami-

schen Umgebungen mit Drift. Dafür wurde das riverMoE so implementiert, dass es bei

73

5. Ergebnisse und Diskussion

Drift die Expertenanzahl dynamisch progressiv erhöht. Zur Untersuchung des Verhaltens bei

„Katastrophalem Vergessen“ wurden folgende zwei Experimente durchgeführt.

Experiment D.1 Im ersten Experiment wurden künstliche Daten mit wiederkehrendem

Konzept durch die Friedman-Formel generiert. Die resultierenden Ergebnisse des Experiments

D.1 lassen sich aus Abbildung 5.11 entnehmen. Im gesamten Konzept 1 konnte DeepR schnell

die höchste Genauigkeit erreichen. Beim Übergang zum Konzept 2 (Drift) verschlechtert sich

die Genauigkeit von DeepR und HATR deutlich gegenüber Soft-MoE. Das ist überraschend,

da HATR einen expliziten ADWIN Drift-Detektor verwendet, um gezielt auf Drift reagieren

zu können. Das Soft-MoE-Modell konnte am schnellsten die Genauigkeit aus Konzept 1 wie-

derherstellen. Nach Rückkehr zum ersten Konzept konnten alle Modelle nach kurzer Zeit

auf das vorherige MAE zurückkehren. Die Ergebnisse der letzten Instanz sind in Tabelle 5.9

zusammengefasst.

0

2

4

M
A

E

Konzept 1 Konzept 2 Konzept 1

DeepR HATR SoftMoE

0.250

0.500

Z
ei

t/
In

st
an

z
(m

s)

0 2000 4000 6000 8000 10000 12000
Dateninstanzen (FriedmanDrift)

0.000

1.000

S
p

ei
ch

er
(M

iB
)

Abbildung 5.11.: Übersicht Metriken aller Modelle (Experiment D.1). GRA-Drift an den Stellen

5000 und 7500. Beste Ergebnisse markiert.

Durch die Grafik und Tabelle kann erkannt werden, dass der HATR deutlich schneller als

die beiden anderen OML-Verfahren war. Dennoch ist der Speicherbedarf bei der Rückkehr zu

Konzept 1 zwischenzeitlich sehr hoch. Das liegt vermutlich an den adaptiven Komponenten

von HATR. Der Bedarf sinkt zwar wieder, aber die Größe der anderen Modelle ist deutlich

kleiner. Auffällig ist, dass der Bedarf in der letzten Instanz für DeepR am geringsten ist, der in

74

5. Ergebnisse und Diskussion

den anderen Experimenten höher war. Der Drift hat keine signifikante Auswirkung auf die

Trainings- und Inferenzzeit gehabt.

Modell Zeit Speicher Zeit/Instanz MAE RMSE R2

DeepR 2,974s 0,037MiB 0,238ms 1,707 2,32 0,803
HATR 1,651s 0,203MiB 0,132ms 2,408 3,066 0,655

SoftMoE 4,409s 0,074MiB 0,353ms 2,015 2,606 0,751

Tabelle 5.9.: Metriken aller Modelle (Experiment D.1). Beste Ergebnisse markiert.

Bei der endgültigen Modellgüte lässt sich das MoE zwischen DeepR und HATR einordnen.

Am schlechtesten schnitt HATR ab, was überrascht. Insgesamt konnte das Soft-MoE-Modell

mit einem MAE von 2,015 und einem RMSE von 2,606 ein deutlich besseres Ergebnis für

das synthetische Problem erzielen als das nicht neuronale Modell. Dennoch hat in dieser

Konstellation das DeepR-Modell die höchste Modellgüte. Alle untersuchten Verfahren konnten,

mit den gewählten Parametern, recht schnell auf das wiederkehrende Konzept zurückfallen.

Dabei kam es nicht zum katastrophalen Vergessen.

Experiment D.2 Im zweiten Drift-Experiment wurde das Label-Shift für Multiklassifizierung

mit der neuartigen SAMoE-Variante mit Drift-Detektor aus Abbildung 4.1 untersucht. Nach

5000 Instanzen wurden die Trainingsdaten gewechselt – bei Vorhersagen wurde aber weiterhin

nach allen Klassen gefragt. Die gemessenen Accuracy-Werte pro Modell können aus Abbildung

5.12 grafisch entnommen werden. Die durchschnittlichen Werte für Accuracy, Micro-Precision,

Micro-Recall und Micro-F1-Score pro Modell vor und nach Anpassung der Aufgabe sind in

Tabelle 5.10 zusammengefasst.

Metrik Accuracy Micro-Precision Micro-Recall Micro-F1-Score

Aufgabe Modell A B A B A B A B

Aufgabe 1 DeepC 0,515 0,125 0,505 0,086 0,515 0,125 0,423 0,084

HATC 0,243 0,104 0,250 0,235 0,243 0,104 0,236 0,134
SAMoE 0,248 0,002 0,257 0,005 0,248 0,002 0,239 0,003

Aufgabe 2 DeepC 0,000 0,179 0,000 0,228 0,000 0,179 0,000 0,090

HATC 0,000 0,150 0,000 0,298 0,000 0,150 0,000 0,168

SAMoE 0,000 0,340 0,000 0,330 0,000 0,340 0,000 0,261

Tabelle 5.10.: Durchschnittliche Modellmetriken pro Aufgabe und InstanzbereichA ∈ [0, 5000]
und B ∈ [5001, 10000] (Experiment D.2). Beste Ergebnisse markiert.

75

5. Ergebnisse und Diskussion

Nach dem Label-Shift hat das neuronale Netz die erste Aufgabe noch gut gelöst und dabei

leicht angefangen, die zweite Aufgabe zu lernen. Ab ungefähr 6500 Instanzen hat das neuronale

Netz verlernt, die erste Aufgabe zu lösen und konnte die zweite Aufgabe besser lösen. Dieses

katastrophale Vergessen lässt sich auch bei der SAMoE-Variante beobachten. Der Driftdetektor

von SAMoE hat korrekt die einzige Änderung bei Instanz 5152 erkannt, also 152 Instanzen nach

dem Label-Shift. Die Erkennung der Änderung hat damit zuverlässig funktioniert. Dennoch

hat das adaptive Hinzufügen des neuen Experten dazu geführt, dass der erste Experte komplett

deaktiviert wurde. Dadurch konnte der neue HTC-Experte die neue Aufgabe deutlich besser

lernen als die anderen Modelle, Aufgabe 1 konnte aber nicht mehr gelöst werden.

0.0

0.5

A
cc

u
ra

cy
D

ee
p

C

Aufgabe 1 Aufgabe 2 Änderung der Aufgabe

0.0

0.5

A
cc

u
ra

cy
H

A
T

C

0 2000 4000 6000 8000 10000
Instanzen

0.0

0.5

A
cc

u
ra

cy
S

A
M

oE

Abbildung 5.12.: Accuracy für Modelle mit Label-Shift nach 5000 Instanzen (Experiment D.2).

Mit dem Label-Shift ging der HATCmit ADWIN-Drift-Detektor am besten um. Die Änderun-

gen in den Klassen wurden schneller als bei SAMoE erkannt und haben den Entscheidungsbaum

adaptiv um eine Abzweigung ergänzt. Damit bleibt der Zugriff zum bereits gelernten bestehen.

Durchschnittlich schneidet DeepC am besten für Aufgabe 1 im Instanzbereich ab. Bei Aufgabe

2 konnte das SAMoE durch das fälschlicherweise gezielte Lernen die höchsten Genauigkei-

76

5. Ergebnisse und Diskussion

ten erreichen. Langfristig wird das HATC-Modell die durchschnittlich besseren Leistungen

erhalten, da kein katastrophales Vergessen eingetreten ist.

Die zweite Forschungsfrage dieser Arbeit, zum Thema der Anpassungsfähigkeit in dynami-

schen Umgebungen (RQ2), wurde durch die beiden Experimente unterschiedlich beantwortet.

Ein normales Soft-MoE konnte, mit vorliegenden Parametern, stabiler mit dem wechseln-

den und wiederkehrenden Konzept umgehen als HATC oder dem neuronalen Netz. Ändert

sich in der Multi-Klassifikation das Trainingsmaterial durch Label-Shift kann die neu ein-

geführte SAMoE-Variante den Drift gut erkennen. Dennoch wurden beim Hinzufügen des

neuen Experten die Ausgangsneuronen schlecht initialisiert. Das bereits Gelernte vom ers-

ten Experten ist damit nicht vergessen, sondern wird nur nicht abgerufen. Eine verbesserte

Initialisierungsmethode kann diesem Problem entgegenwirken.

5.3. Limitationen

Die durchgeführten Experimente haben einige Limitationen, die in zukünftigen Arbeiten

berücksichtigt werden sollten. Zunächst wurde nur eine sehr spezifische Parameterauswahl

der einzelnen und äußerst unterschiedlichen Verfahren getroffen. Diese können, besonders bei

komplexen Komponenten wie neuronalen Netzen, einen großen Einfluss auf die Leistung haben.

Ein Vergleich kann damit sehr unterschiedlich ausfallen. Die durchgeführten Experimente

wurden alle nur einmalig mit festem Zufallsstartwert (Prequential Validation) statt variierendem
Zufallsstartwert durchgeführt. Bei nicht deterministischen Verfahren, wie sie in dieser Arbeit

zum Einsatz kamen, hat das ebenfalls einen Einfluss auf die Modellleistung. Damit sind die

Ergebnisse nur schwer generalisierbar.

Weiterhin wurde sich mit Soft-MoE und Sparse-MoE in dieser Arbeit auf grundlegende

MoE-Architekturen konzentriert. Viele andere Variationen wurden nicht weiter untersucht.

Diese können aber Einfluss im OML-Kontext haben. Der Fokus der Arbeit lag auf der grund-

legenden, inkrementellen MoE-Architektur. Daher wurde die neuartige Variante SAMoE nur

mit einem Experiment evaluiert, obwohl die dynamische Erweiterung des MoE-Systems ein

vielversprechender Ansatz ist.

Der hier durchgeführte Umfang ist nicht ausreichend, um eine vollständige Beurteilung der

Leistung von inkrementellenMoE-Systemenwiderzuspiegeln.Weitere Untersuchungen und Ex-

perimente sind notwendig, um ein tieferes Verständnis der Potenziale und Herausforderungen

solcher Systeme zu erlangen.

77

6. Schlussfolgerung

Im abschließenden Kapitel werden die wichtigsten Erkenntnisse zusammengefasst und kritisch

reflektiert. Zudem wird ein Ausblick auf zukünftige Forschungsperspektiven und mögliche

Weiterentwicklungen gegeben, um die Einsatzmöglichkeiten von MoE in dynamischen Umge-

bungen weiter zu optimieren.

6.1. Zusammenfassung

Die vorliegende Arbeit untersuchte den Einsatz von Mixture of Experts (MoE) im Kontext

des Online maschinelles Lernen (OML) zur kontinuierlichen Verarbeitung von Streamingdaten.

Durch den stetigenAnstieg an Internet of Things (IoT) Gerätenwächst dieMenge an generierten

Daten exponentiell, sodass effiziente Methoden zur Echtzeitverarbeitung erforderlich sind.

Die theoretischen Grundlagen zeigen, dass Online Machine Learning hierbei eine Lösung

bietet, da es kontinuierlich neue Daten verarbeitet, ohne dass eine vollständige Speicherung

notwendig ist. Eine weitere mögliche Lösung zur Verbesserung der Vorhersagegenauigkeit und

Modellrobustheit ist der Einsatz von MoE, dessen Konzept ebenfalls theoretisch eingeführt

wurde. Die systematische Literaturrecherche hat gezeigt, dass an verschiedenen (adaptiven)

MoE-Variationen geforscht wird, jedoch bisher nur wenige Arbeiten die Kombination von MoE

und OML untersuchen. Daraus wurden spezifische Forschungsfragen abgeleitet, die in der

Arbeit beantwortet wurden.

Die Kombination von OML und MoE war die erste Forschungsfrage und wurde in die-

ser Arbeit durch das implementierte riverMoE-Framework, das die Grundlage für MoE-

Architekturen mit inkrementellem Lernen bereitstellt, beantwortet. Dabei wurde die einfache

Schnittstelle des Basis-Framework river übernommen, um die Wiederverwendbarkeit beizu-

behalten. In durchgeführten Experimenten wurden unter gleichen Bedingungen verschiedene

Datensätze für die Regression und Klassifikation genutzt, um die Modellgüte und Leistung mit

anderen inkrementellen Verfahren zu vergleichen. In der Regression konnten marginal bessere

Ergebnisse mit MoE gegenüber Modellen ohne MoE erzielt werden, während in der Klassifika-

tion die Genauigkeit des Modells durch die Expertenmischung signifikant verbessert wurde.

78

6. Schlussfolgerung

Die Experimente zeigen, dass die inkrementellen MoE-Modelle in der Lage sind, kontinuierlich

neue Daten zu integrieren und dabei die Vorhersagegenauigkeit zu verbessern (RQ1).

Ein zentraler Aspekt dieser Arbeit war die Frage, inwiefern sich die Modellanpassung durch

das dynamische Hinzufügen neuer Experten verbessern lässt. Die durchgeführten Experimente

belegen, dass die Leistung des Modells durch eine dynamische Expertenselektion des Gates

gesteigert werden kann. In Szenarien mit Konzeptdrift zeigte sich, dass die adaptive Exper-

tenmischung robust auf Veränderungen reagieren kann. Die neu eingeführte SAMoE-Variante
mit Drift-Detektor konnte den Drift schnell erkennen und einen Experten hinzufügen. Dabei

wurde aber der bisherige Experte deaktiviert (RQ2).

Um die Leistung von MoE im Kontext kontinuierlich wachsender Streamingdaten angemes-

sen zu bewerten, wurden verschiedene Evaluationsmetriken eingesetzt. Neben klassischen

Fehlerraten wurde besonderes Augenmerk auf Gating-Diversität (Entropie), Rechengeschwin-

digkeit und Speicherverbrauch gelegt. Die Ergebnisse zeigen, dass offline-basierte Metriken

alleine nicht ausreichen, um die Performance von MoE in einer Streaming-Umgebung um-

fassend zu bewerten. Stattdessen sind spezifische Methoden zur progressiven Validierung

erforderlich, um die tatsächliche Güte des Modells realistisch abzubilden (RQ3).

6.2. Fazit

Zusammenfassend konnten die Forschungsfragen beantwortet werden. Die Kombination von

MoE und OML ist ein vielversprechender Ansatz, um adaptive MoE-Modelle zu entwickeln,

die kontinuierlich neue Daten integrieren können. Die durchgeführte systematische Literatur-

recherche zeigt ebenfalls, wie aktuell und relevant die Expertenmischung für die Forschung

ist. Die Forschung hat sich bisher größtenteils nur auf Offline-Verfahren konzentriert, obwohl

inkrementelle Verfahren in der Praxis immer wichtiger werden.

Das umgesetzte Framework riverMoE bietet eine flexible und modulare Basis für die

Implementierung von MoE-Architekturen, die einfach um neue Varianten erweitert werden

können. Die durchgeführten Experimente zeigen, dass die adaptive Expertenmischung die

Vorhersagegenauigkeit und Modellrobustheit verbessern kann. Dabei wurden nur lineare

Experten verwendet, obwohl möglicherweise noch mehr Potenzial in der Wahl von neuronalen

Experten steckt. In Szenarien mit Konzeptdrift zeigten die MoE-Modelle ein schlechteres

Verhalten als erwartet. Auch wenn die Drifterkennung zuverlässig funktionierte, führt der

deaktivierte Experte zu katastrophalen Vergessen – ein Kernproblem von inkrementellen

Lernverfahren. Gerade durch die Nutzung von disjunkten Experten wurde erwartet, dass dieses

Problem nicht auftritt.

79

6. Schlussfolgerung

Zusätzlich sind die entstandenen Verbesserungen in der Genauigkeit auf Kosten der höheren

Rechenzeit und Speichernutzung entstanden. Aufgrund der komplexen neuronalen Komponen-

te wird es schwierig werden, diesen Trade-Off zu verbessern. Die aufgelisteten Limitationen

und Herausforderungen zeigen, dass es noch viel Forschungsbedarf gibt, um MoE-Modelle in

dynamischen Umgebungen weiter zu etablieren. Der nächste Abschnitt gibt einen möglichen

Ausblick auf zukünftige Forschungsperspektiven und Weiterentwicklungen.

6.3. Ausblick

Die vorliegende Arbeit bietet viel Potenzial für weitere Forschungsarbeiten. Zunächst sind

weitere Experimente mit anderen Datensätzen, Gating- und Expertenkonfigurationen sinnvoll,

um die Leistungsfähigkeit von MoE weiter zu untersuchen. Interessant sind dabei besonders

spezielle Streaming-Datensätze für OML, die sich dynamisch verändern und Drift erzeugen.

Das könnte den Vorteil der Kombination von MoE und OML verdeutlichen. Üblicherweise

werden neuronale Experten für MoE verwendet, das wurde in dieser Arbeit nicht betrachtet.

Die Verwendung von vortrainierten Experten könnte ebenfalls interessant sein, da das Gate

möglicherweise schneller das optimale Routing ermittelt.

Durch die theoretischen Grundlagen und systematische Literaturrecherche wurde die Viel-

zahl der Variationen von MoE deutlich. Daher ist es naheliegend, das modulare riverMoE-
Framework um weitere MoE-Varianten wie Adaptive-MoE, hierarchische MoE oder Deep-MoE

zu erweitern. Interessant wäre auch die Ergänzung umMulti-Gate MoE, um Multi-Task-Lernen

für kontinuierliches Lernen zu erforschen.

Die bereits vorgestellte SAMoE könnte erweitert werden, um das katastrophale Vergessen zu

vermeiden. Dazu kann die Initialisierung der Ausgangsneuronen bei neuen Experten optimiert

und mit dem vorgestellten Temperature Scaling kombiniert werden. Eine weitere mögliche

Lösung wäre die Replay Memory Methode. Gleichzeitig könnte betrachtet werden, ob beste-

hende Experten, die nicht benötigt werden, auch entfernt werden können. Das würde den

Speicherplatzbedarf reduzieren. Um SAMoE besser zu evaluieren, könnten weitere Experimente

mit verschiedenen Driftszenarien durchgeführt werden.

Durch den Einsatz der vorgestellten MoE-Metriken und der nicht neuronalen Experten, wie

den inkrementellen Entscheidungsbäumen, konnte in dieser Arbeit die Erklärbarkeit von inkre-

mentellen MoE-Modellen gefördert werden. Im Rahmen der verantwortungsvollen Künstlichen

Intelligenz ist es wichtig, die Gating- und Expertenentscheidungen von inkrementellen MoE-

Modellen transparenter zu machen. Daher ist es sinnvoll, wie bereits in der FEAMoE-Arbeit,

die Erklärbarkeit von MoE-Modellen weiterzuerforschen.

80

Literaturverzeichnis

Akidau, Tyler, Slava Chernyak und Reuven Lax (2018). Streaming systems: the what, where,
when, and how of large-scale data processing. First edition. OCLC: ocn975362965. Sebastopol,
CA: O‚Reilly. isbn: 978-1-4919-8387-4.

Bartz-Beielstein, Thomas und Eva Bartz, Hrsg. (2023). Online Machine Learning: Eine praxis-
orientiere Einführung. ger. 1. Auflage 2023. Wiesbaden: Springer Fachmedien Wiesbaden

GmbH. isbn: 978-3-658-42504-3.

Behnel, Stefan et al. (März 2011). “Cython: The Best of Both Worlds”. In: Comput. Sci. Eng. 13.2,
S. 31–39. issn: 1521-9615. doi: 10.1109/MCSE.2010.118.

Bifet, Albert (2017). “Classifier Concept Drift Detection and the Illusion of Progress”. en. In:

Artificial Intelligence and Soft Computing. Hrsg. von Leszek Rutkowski et al. Bd. 10246. Series

Title: Lecture Notes in Computer Science. Cham: Springer International Publishing, S. 715–

725. isbn: 978-3-319-59060-8. doi: 10.1007/978-3-319-59060-8_64.

Bry, François und Nicola Henze (Juni 2005). “Personalisierung”. de. In: Informatik Spektrum
28.3, S. 230–233. issn: 0170-6012, 1432-122X. doi: 10.1007/s00287-005-0489-y.

Chen, Chonghao et al. (Sep. 2024). “BP-MoE: Behavior Pattern-aware Mixture-of-Experts for

Temporal Graph Representation Learning”. en. In: Knowledge-Based Systems 299, S. 112056.
issn: 09507051. doi: 10.1016/j.knosys.2024.112056.

Chen, Kuanhao, Zijie Yue und Miaojing Shi (Juni 2023). “Space-time video super-resolution

using long-term temporal feature aggregation”. en. In: Auton. Intell. Syst. 3.1, S. 5. issn:
2730-616X. doi: 10.1007/s43684-023-00051-9.

Chen, Wuyang et al. (2023). “Lifelong language pretraining with distribution-specialized ex-

perts”. In: Proceedings of the 40th International Conference on Machine Learning. ICML‘ 23.

Place: Honolulu, Hawaii, USA. JMLR.org, S. 5383–5395. doi: 10.5555/3618408.

81

Literaturverzeichnis

Chen, Zixiang et al. (2024). “Towards understanding the mixture-of-experts layer in deep

learning”. In: Proceedings of the 36th International Conference on Neural Information Processing
Systems. NIPS ‚22. event-place: NewOrleans, LA, USA. RedHook, NY, USA: CurranAssociates

Inc. isbn: 978-1-71387-108-8.

Dietterich, Thomas G. (2000). “Ensemble Methods in Machine Learning”. In: Multiple Classifier
Systems. Hrsg. von Gerhard Goos, Juris Hartmanis und Jan Van Leeuwen. Bd. 1857. Series

Title: Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg,

S. 1–15. isbn: 978-3-540-67704-8. doi: 10.1007/3-540-45014-9_1.

Domingos, Pedro und Geoff Hulten (Aug. 2000). “Mining high-speed data streams”. en. In:

Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and
data mining. Boston Massachusetts USA: ACM, S. 71–80. isbn: 978-1-58113-233-5. doi:

10.1145/347090.347107.

Du, Jing et al. (Juli 2022). “Hierarchical Task-aware Multi-Head Attention Network”. en. In:

Proceedings of the 45th International ACM SIGIR Conference on Research and Development
in Information Retrieval. Madrid Spain: ACM, S. 1933–1937. isbn: 978-1-4503-8732-3. doi:

10.1145/3477495.3531781.

Du, Nan et al. (Juli 2022). “GLaM: Efficient Scaling of LanguageModels withMixture-of-Experts”.

In: Proceedings of the 39th International Conference on Machine Learning. Hrsg. von Kamalika

Chaudhuri et al. Bd. 162. Proceedings of Machine Learning Research. PMLR, S. 5547–5569.

Eigen, David, Marc‘ Aurelio Ranzato und Ilya Sutskever (März 2014). Learning Factored Re-
presentations in a Deep Mixture of Experts. arXiv:1312.4314 [cs]. doi: 10.48550/arXiv.
1312.4314.

Ernst, Hartmut (2000). Grundlagen und Konzepte der Informatik: Eine Einführung in die Infor-
matik ausgehend von den fundamentalen Grundlagen. ger. 2., überarbeitete und verbesserte

Auflage. Springer eBook Collection Computer Science and Engineering. Wiesbaden s.l: View-

eg+Teubner Verlag. isbn: 978-3-663-10229-8. doi: 10.1007/978-3-663-10229-8.

Fedus, William, Barret Zoph und Noam Shazeer (Jan. 2022). “Switch transformers: scaling to

trillion parameter models with simple and efficient sparsity”. In: J. Mach. Learn. Res. 23.1.
Publisher: JMLR.org. issn: 1532-4435.

Finch, Tony (2009). “Incremental calculation of weighted mean and variance”. In: University of
Cambridge 4.11-5. Publisher: Citeseer, S. 41–42.

82

Literaturverzeichnis

Friedman, Jerome H. (März 1991). “Multivariate Adaptive Regression Splines”. In: Ann. Statist.
19.1. issn: 0090-5364. doi: 10.1214/aos/1176347963.

Fritz, Jürgen (2022). Datenbasierte Optimierung des Business Management Systems: Geschäftspro-
zesse verbessern mit Data Analytics, Industrie 4.0, KI, Chatbots und Co. ger. Hanser eLibrary.
München: Hanser. isbn: 978-3-446-47131-3. doi: 10.3139/9783446472549.

Gulcan, Ege Berkay und Fazli Can (März 2023). “Unsupervised concept drift detection for multi-

label data streams”. en. In: Artif Intell Rev 56.3, S. 2401–2434. issn: 0269-2821, 1573-7462. doi:

10.1007/s10462-022-10232-2.

Gumm, Heinz-Peter, Manfred Sommer und Wolfgang Hesse (2011). Einführung in die Infor-
matik. ger. 9., vollst. überarb. Aufl. München: Oldenbourg. isbn: 978-3-486-59711-0. doi:

10.1524/9783486704587.

Halford, Max (2016). OpenBikes Challenge - A benchmark for online machine learning on bike
sharing data.

Halford, Max et al. (Juni 2020). creme, a Python library for online machine learning.

Harries, Michael, New South Wales et al. (1999). “Splice-2 comparative evaluation: Electricity

pricing”. In: Publisher: University of New South Wales, School of Computer Science and

Engineering.

Hihn, Heinke und Daniel A. Braun (Feb. 2023). “Hierarchically structured task-agnostic con-

tinual learning”. en. In: Mach Learn 112.2, S. 655–686. issn: 0885-6125, 1573-0565. doi:

10.1007/s10994-022-06283-9.

Hihn, Heinke undDaniel A. Braun (Apr. 2024). “Online continual learning through unsupervised

mutual information maximization”. en. In: Neurocomputing 578, S. 127422. issn: 09252312.

doi: 10.1016/j.neucom.2024.127422.

Hu, Songhua et al. (Sep. 2024). “Graph transformer embedded deep learning for short-term

passenger flow prediction in urban rail transit systems: A multi-gate mixture-of-experts

model”. en. In: Information Sciences 679, S. 121095. issn: 00200255. doi: 10.1016/j.ins.
2024.121095.

Huang, Tao et al. (Aug. 2024). “Pull together: Option-weighting-enhanced mixture-of-experts

knowledge tracing”. en. In: Expert Systems with Applications 248, S. 123419. issn: 09574174.
doi: 10.1016/j.eswa.2024.123419.

83

Literaturverzeichnis

Jacobs, Robert A. et al. (Feb. 1991). “Adaptive Mixtures of Local Experts”. en. In: Neural Compu-
tation 3.1, S. 79–87. issn: 0899-7667, 1530-888X. doi: 10.1162/neco.1991.3.1.79.

Jiang, Albert Q. et al. (Jan. 2024). Mixtral of Experts. arXiv:2401.04088 [cs].

Jiang, Shen et al. (Aug. 2024). “Automatic Multi-Task Learning Framework with Neural Archi-

tecture Search in Recommendations”. en. In: Proceedings of the 30th ACM SIGKDD Confe-
rence on Knowledge Discovery and Data Mining. Barcelona Spain: ACM, S. 1290–1300. doi:

10.1145/3637528.3671715.

Jordan, Michael und Robert Jacobs (1991). “Hierarchies of adaptive experts”. In: Advances in
Neural Information Processing Systems. Hrsg. von J. Moody, S. Hanson und R. P. Lippmann.

Bd. 4. Morgan-Kaufmann, S. 985–992. doi: 10.5555/2986916.2987037.

Jordan, Michael I. und Robert A. Jacobs (März 1994). “Hierarchical Mixtures of Experts and the

EM Algorithm”. en. In: Neural Computation 6.2, S. 181–214. issn: 0899-7667, 1530-888X. doi:

10.1162/neco.1994.6.2.181.

Khan, Nawsher et al. (März 2018). “The 10 Vs, Issues and Challenges of Big Data”. en. In:

Proceedings of the 2018 International Conference on Big Data and Education. Honolulu HI

USA: ACM, S. 52–56. isbn: 978-1-4503-6358-7. doi: 10.1145/3206157.3206166.

Kobayashi, Shusuke und Susumu Shirayama (Mai 2021). “Selecting data adaptive learner from

multiple deep learners using Bayesian networks”. en. In: Neural Comput & Applic 33.9,

S. 4229–4241. issn: 0941-0643, 1433-3058. doi: 10.1007/s00521-020-05234-6.

Kulbach, Cedric et al. (2025). “DeepRiver: A Deep Learning Library for Data Streams”. In:

Journal of Open Source Software 10.105. Publisher: The Open Journal, S. 7226. doi: 10.
21105/joss.07226.

Kullback, S. und R. A. Leibler (März 1951). “On Information and Sufficiency”. en. In: Ann. Math.
Statist. 22.1, S. 79–86. issn: 0003-4851. doi: 10.1214/aoms/1177729694.

Laney, Douglas (Feb. 2001). “3D Data Management: Controlling Data Volume, Velocity, and

Variety”. In: Application Delivery Strategies. Techn. Ber. META Group, S. 1–4.

Li, Danwei et al. (Aug. 2023). “AdaTT: Adaptive Task-to-Task Fusion Network for Multitask

Learning in Recommendations”. en. In: Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining. Long Beach CA USA: ACM, S. 4370–4379. doi:

10.1145/3580305.3599769.

84

Literaturverzeichnis

Li, Jiamin et al. (2023). “Adaptive Gating in Mixture-of-Experts based Language Models”. en.

In: Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing.
Singapore: Association for Computational Linguistics, S. 3577–3587. doi: 10.18653/v1/
2023.emnlp-main.217.

Liu, Zhuang et al. (Juni 2022). “A ConvNet for the 2020s”. In: 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). New Orleans, LA, USA: IEEE, S. 11966–

11976. isbn: 978-1-66546-946-3. doi: 10.1109/CVPR52688.2022.01167.

Ma, Jiaqi et al. (Juli 2018). “Modeling Task Relationships in Multi-task Learning with Multi-gate

Mixture-of-Experts”. en. In: Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. London United Kingdom: ACM, S. 1930–1939. isbn:

978-1-4503-5552-0. doi: 10.1145/3219819.3220007.

Miller, Damian, Hrsg. (2005). E-Learning: eine multiperspektivische Standortbestimmung. ger.
Bern: Haupt. isbn: 978-3-258-06898-5.

Montiel, Jacob, Max Halford et al. (2021). “River: machine learning for streaming data in

Python”. In: Journal of Machine Learning Research 22.110, S. 1–8.

Montiel, Jacob, Jesse Read et al. (2018). “Scikit-Multiflow: AMulti-output Streaming Framework”.

In: Journal of Machine Learning Research 19.72, S. 1–5.

Moreno-Torres, Jose G. et al. (Jan. 2012). “A unifying view on dataset shift in classification”.

en. In: Pattern Recognition 45.1, S. 521–530. issn: 00313203. doi: 10.1016/j.patcog.
2011.06.019.

Nguyen, Huy, Pedram Akbarian und Nhat Ho (2024). “Is temperature sample efficient for

softmax gaussian mixture of experts?” In: Proceedings of the 41st International Conference on
Machine Learning. ICML‚24. Place: Vienna, Austria. JMLR.org.

Page, Matthew J et al. (März 2021). “PRISMA 2020 explanation and elaboration: updated

guidance and exemplars for reporting systematic reviews”. en. In: BMJ, n160. issn: 1756-1833.
doi: 10.1136/bmj.n160.

Park, Chung et al. (Juli 2024). “Pacer and Runner: Cooperative Learning Framework between

Single- and Cross-Domain Sequential Recommendation”. en. In: Proceedings of the 47th
International ACM SIGIR Conference on Research and Development in Information Retrieval.
Washington DC USA: ACM, S. 2071–2080. doi: 10.1145/3626772.3657710.

85

Literaturverzeichnis

Raab, Christoph, Moritz Heusinger und Frank-Michael Schleif (Nov. 2020). “Reactive Soft

Prototype Computing for Concept Drift Streams”. en. In: Neurocomputing 416, S. 340–351.

issn: 09252312. doi: 10.1016/j.neucom.2019.11.111.

Rahman, Md Hishamur et al. (Dez. 2024). “Gated ensemble of spatio-temporal mixture of

experts for multi-task learning in ride-hailing system”. en. In: Multimodal Transportation 3.4,

S. 100166. issn: 27725863. doi: 10.1016/j.multra.2024.100166.

Rahul, Kumar, Rohitash Kumar Banyal und Neeraj Arora (Aug. 2023). “A systematic review on

big data applications and scope for industrial processing and healthcare sectors”. en. In: J
Big Data 10.1, S. 133. issn: 2196-1115. doi: 10.1186/s40537-023-00808-2.

Raibulet, Claudia (2008). “Facets of Adaptivity”. en. In: Software Architecture. Hrsg. von David

Hutchison et al. Bd. 5292. Series Title: Lecture Notes in Computer Science. Berlin, Heidelberg:

Springer Berlin Heidelberg, S. 342–345. isbn: 978-3-540-88029-5. doi: 10.1007/978-3-
540-88030-1_33.

Raschka, Sebastian, Vahid Mirjalili und Knut Lorenzen (2018).Machine Learning mit Python und
Scikit-learn und TensorFlow: das umfassende Praxis-Handbuch für Data Science, Deep Learning
und Predictive Analytics. ger. 2., aktualisierte und erweiterte Auflage. mitp Professional.

Frechen: mitp. isbn: 978-3-95845-733-1.

Reinsel, David, John Gantz und John Rydning (Nov. 2018). “The Digitization of the World

From Edge to Core”. en. In: Framingham: International Data Corporation 16. Publisher: IDC

Corporate Framingham, MA, USA, S. 1–28.

Shapley, Lloyd S. (Okt. 1988). “A value for n -person games”. In: The Shapley Value. Hrsg. von
Alvin E. Roth. 1. Aufl. Cambridge University Press, S. 31–40. isbn: 978-0-521-36177-4. doi:

10.1017/CBO9780511528446.003.

Sharma, Shubham, Jette Henderson und Joydeep Ghosh (Aug. 2023). “FEAMOE: Fair, Explaina-

ble and Adaptive Mixture of Experts”. en. In: Proceedings of the Thirty-Second International
Joint Conference on Artificial Intelligence. Macau, SAR China: International Joint Confe-

rences on Artificial Intelligence Organization, S. 492–500. isbn: 978-1-956792-03-4. doi:

10.24963/ijcai.2023/55.

Shazeer, Noam et al. (2017). Outrageously Large Neural Networks: The Sparsely-Gated Mixture-
of-Experts Layer. Version Number: 1. doi: 10.48550/ARXIV.1701.06538.

86

Literaturverzeichnis

Statlog (Image Segmentation) (1990). doi: 10.24432/C5P01G.

Tang, Hongyan et al. (Sep. 2020). “Progressive Layered Extraction (PLE): A Novel Multi-

Task Learning (MTL) Model for Personalized Recommendations”. en. In: Fourteenth ACM
Conference on Recommender Systems. Virtual Event Brazil: ACM, S. 269–278. isbn: 978-1-

4503-7583-2. doi: 10.1145/3383313.3412236.

Team, NLLB et al. (Aug. 2022). No Language Left Behind: Scaling Human-Centered Machine
Translation. arXiv:2207.04672 [cs].

Vaswani, Ashish et al. (2017). “Attention is all you need”. In: Proceedings of the 31st International
Conference on Neural Information Processing Systems. NIPS‘ 17. event-place: Long Beach,

California, USA. Red Hook, NY, USA: Curran Associates Inc., S. 6000–6010. isbn: 978-1-5108-

6096-4.

Wang, Xin et al. (Mai 2021). “Gated neural network framework for interactive character

control”. en. In: Multimed Tools Appl 80.11, S. 16229–16246. issn: 1380-7501, 1573-7721. doi:
10.1007/s11042-020-08792-y.

Warren, James (2015). Big Data: Principles and Best Practices of Scalable Realtime Data Systems.
eng. New York: Manning Publications Co. LLC. isbn: 978-1-61729-034-3.

Wright, Adam (Mai 2024).Worldwide IDC Global DataSphere Forecast, 2024–2028: AI Everywhere,
But Upsurge in Data Will Take Time. en. Tech Supplier US52076424. International Data

Corporation.

Zhao, Zhe et al. (Sep. 2019). “Recommending what video to watch next: a multitask ranking

system”. en. In: Proceedings of the 13th ACMConference on Recommender Systems. Copenhagen
Denmark: ACM, S. 43–51. isbn: 978-1-4503-6243-6. doi:10.1145/3298689.3346997.

87

A. Ergebnisse

A.2. Aktivitätsdiagramm

Start

Lade nächsten
Experten

Datensatz

(xt,yt) laden

Nein

Ja

Letzter Experte? Vorhersage von

Experte

Gategewichte

laden

Vorhersage
zurückgeben

Gewichtete Vorhersage
berechnen

Statistiken

aktualisieren

Ja

Nein

Nur 1 Experte?
Vorhersage

von Experte
zurückgeben

Ja

Nein

Nur 1 Experte?

Lade nächsten
Experten

NeinLetzter Experte?

Vorhersage von

Experte

Gategewichte

laden

Gewichtete Vorhersage
berechnen

Verlustwert berechnen

Gate Backpropagation
Experte

trainieren

Tatsächliches

Label laden

Ende

Metriken
aktualisieren

Abbildung A.2.: riverMoE Aktivitätsdiagramm des Inferenz- und Trainingsschritts.

89

A. Ergebnisse

A.3. Modellparameter

Modell Parameter Standardwert Aktueller Wert

DeepC/MoE loss_fn binary_cross_entropy cross_entropy

optimizer_fn sgd sgd

lr 0,001 0,01

output_is_logit True True

device cpu cpu

LogR optimizer SGD

loss Log

l2 0,0 0,0

l1 0,0 0,0

intercept_init 0,0 0,0

intercept_lr 0,01 Constant

clip_gradient 1000000000000,0 1000000000000,0

initializer Zeros

HTC grace_period 200 200

max_depth 3

split_criterion info_gain info_gain

delta 1e-07 1e-07

tau 0,05 0,05

leaf_prediction nba nba

nb_threshold 0 0

nominal_attributes

splitter GaussianSplitter

binary_split False False

min_branch_fraction 0,01 0,01

max_share_to_split 0,99 0,99

max_size 100,0 100,0

memory_estimate_period 1000000 1000000

stop_mem_management False False

remove_poor_attrs False False

merit_preprune True True

+ HATC drift_window_threshold 300 300

drift_detector ADWIN

HATC/MoE/DeepC seed 42

Tabelle A.1.: Parameter für die Klassifikationsmodelle.

90

A. Ergebnisse

Modell Parameter Standardwert Aktueller Wert

MoE Gate loss_fn binary_cross_entropy mse

DeepR loss_fn mse mse

DeepR/ optimizer_fn sgd sgd

MoE Gate lr 0,001 0,001

output_is_logit True True

device cpu cpu

LogR optimizer SGD

loss Squared

l2 0,0 0,0

l1 0,0 0,0

intercept_init 0,0 0,0

intercept_lr 0,01 Constant

clip_gradient 1000000000000,0 1000000000000,0

initializer Zeros

HTR grace_period 200 200

max_depth 3

delta 1e-07 1e-07

tau 0,05 0,05

leaf_prediction adaptive adaptive

leaf_model LinearRegression

model_selector_decay 0,95 0,95

nominal_attributes

splitter TEBSTSplitter

min_samples_split 5 5

binary_split False False

max_size 500,0 500,0

memory_estimate_period 1000000 1000000

stop_mem_management False False

remove_poor_attrs False False

merit_preprune True True

+ HATR drift_window_threshold 300 300

drift_detector ADWIN

BaseR statistic Mean

HATR/MoE/DeepR seed 42

Tabelle A.2.: Parameter für die Regressionsmodelle.

91

A. Ergebnisse

A.4. Ergebnisse der Evaluationen

Instanz Zeit Speicher Zeit/Instanz MAE RMSE R2

1825 0,051s 0,005MiB 0,028ms 210,19 2708,872 -216065,538

21900 0,626s 0,005MiB 0,029ms 22,363 782,014 -8443,816

41975 1,243s 0,005MiB 0,03ms 14,409 564,883 -4180,359

62050 1,818s 0,005MiB 0,029ms 11,472 464,621 -2830,396

82125 2,389s 0,005MiB 0,029ms 10,031 403,878 -2112,995

102200 2,961s 0,005MiB 0,029ms 9,171 362,059 -1693,292

122275 3,537s 0,005MiB 0,029ms 8,656 331,021 -1392,648

142350 4,113s 0,005MiB 0,029ms 8,316 306,808 -1181,444

162425 4,687s 0,005MiB 0,029ms 7,978 287,235 -1030,817

182470 5,262s 0,005MiB 0,029ms 7,646 271,008 -919,481

Tabelle A.3.: Ergebnisse des Regressions-Experiments R.1, Modell: LinR.

Instanz Zeit Speicher Zeit/Instanz MAE RMSE R2

1825 0,116s 0,044MiB 0,063ms 4,075 5,179 0,21

21900 0,845s 0,057MiB 0,039ms 5,205 7,013 0,321

41975 1,533s 0,036MiB 0,037ms 5,469 7,183 0,324

62050 2,208s 0,036MiB 0,036ms 5,421 7,136 0,332

82125 2,888s 0,036MiB 0,035ms 5,471 7,207 0,327

102200 3,567s 0,036MiB 0,035ms 5,51 7,246 0,321

122275 4,245s 0,036MiB 0,035ms 5,596 7,323 0,318

142350 4,926s 0,036MiB 0,035ms 5,689 7,42 0,308

162425 5,605s 0,036MiB 0,035ms 5,675 7,425 0,31

182470 6,333s 0,036MiB 0,035ms 5,597 7,369 0,32

Tabelle A.4.: Ergebnisse des Regressions-Experiments R.1, Modell: HTR.

92

A. Ergebnisse

Instanz Zeit Speicher Zeit/Instanz MAE RMSE R2

1825 0,042s 0,004MiB 0,023ms 4,565 5,834 -0,002

21900 0,49s 0,004MiB 0,022ms 6,519 8,511 -0

41975 0,98s 0,004MiB 0,023ms 6,839 8,736 -0

62050 1,427s 0,004MiB 0,023ms 6,926 8,732 -0

82125 1,886s 0,004MiB 0,023ms 7,011 8,784 -0

102200 2,375s 0,004MiB 0,023ms 7,039 8,796 -0

122275 2,814s 0,004MiB 0,023ms 7,116 8,867 -0

142350 3,257s 0,004MiB 0,023ms 7,184 8,922 -0

162425 3,697s 0,004MiB 0,023ms 7,222 8,942 -0

182470 4,136s 0,004MiB 0,023ms 7,247 8,933 -0

Tabelle A.5.: Ergebnisse des Regressions-Experiments R.1, Modell: BaseR.

Instanz Zeit Speicher Zeit/Instanz MAE RMSE R2

1825 0,632s 0,079MiB 0,346ms 4,06 5,19 0,207

21900 6,973s 0,092MiB 0,318ms 5,203 7,014 0,321

41975 13,161s 0,071MiB 0,314ms 5,468 7,183 0,324

62050 19,313s 0,071MiB 0,311ms 5,42 7,137 0,332

82125 25,564s 0,071MiB 0,311ms 5,46 7,195 0,329

102200 31,785s 0,071MiB 0,311ms 5,499 7,228 0,325

122275 37,882s 0,071MiB 0,31ms 5,586 7,304 0,322

142350 44,219s 0,071MiB 0,311ms 5,679 7,397 0,313

162425 50,553s 0,071MiB 0,311ms 5,666 7,406 0,314

182470 56,855s 0,071MiB 0,312ms 5,589 7,349 0,323

Tabelle A.6.: Ergebnisse des Regressions-Experiments R.1, Modell: SoftMoE.

Instanz Zeit Speicher Zeit/Instanz MAE RMSE R2

1825 0,992s 0,127MiB 0,544ms 4,643 7,262 -0,553

21900 10,952s 0,098MiB 0,5ms 5,715 7,731 0,175

41975 20,541s 0,071MiB 0,489ms 5,991 7,869 0,188

62050 30,518s 0,071MiB 0,492ms 5,997 7,827 0,196

82125 40,754s 0,071MiB 0,496ms 6,064 7,885 0,194

102200 50,415s 0,071MiB 0,493ms 6,118 7,92 0,189

122275 60,418s 0,071MiB 0,494ms 6,207 7,996 0,187

142350 70,53s 0,071MiB 0,495ms 6,295 8,075 0,181

162425 80,123s 0,071MiB 0,493ms 6,303 8,086 0,182

182470 89,837s 0,071MiB 0,492ms 6,267 8,049 0,188

Tabelle A.7.: Ergebnisse des Regressions-Experiments R.2, Modell: SparseMoE Top(k = 1).

93

A. Ergebnisse

Instanz Zeit Speicher Zeit/Instanz MAE RMSE R2

1825 0,935s 0,1MiB 0,512ms 11,516 202,016 -1200,659

21900 11,235s 0,061MiB 0,513ms 5,814 58,718 -46,61

41975 21,394s 0,061MiB 0,51ms 5,801 42,72 -22,914

62050 31,932s 0,061MiB 0,515ms 5,672 35,368 -15,407

82125 42,263s 0,061MiB 0,515ms 5,671 30,963 -11,425

102200 52,746s 0,061MiB 0,516ms 5,681 27,951 -9,098

122275 63,16s 0,061MiB 0,517ms 5,75 25,746 -7,431

142350 73,249s 0,061MiB 0,515ms 5,827 24,05 -6,266

162425 83,529s 0,061MiB 0,514ms 5,81 22,672 -5,428

182470 94,356s 0,061MiB 0,517ms 5,728 21,515 -4,802

Tabelle A.8.: Ergebnisse des Regressions-Experiments R.2, Modell: SparseMoE Top(k = 2).

Instanz Zeit Speicher Zeit/Instanz MAE RMSE R2

1825 1,09s 0,079MiB 0,597ms 32,284 788,809 -18320,206

21900 11,295s 0,093MiB 0,516ms 7,596 227,814 -715,672

41975 21,494s 0,071MiB 0,512ms 6,737 164,633 -354,167

62050 31,833s 0,071MiB 0,513ms 6,293 135,467 -239,695

82125 41,566s 0,071MiB 0,506ms 6,137 117,809 -178,87

102200 51,386s 0,071MiB 0,503ms 6,051 105,658 -143,288

122275 61,532s 0,071MiB 0,503ms 6,053 96,647 -117,799

142350 71,835s 0,071MiB 0,505ms 6,084 89,623 -99,899

162425 82,031s 0,071MiB 0,505ms 6,028 83,943 -87,126

182470 92,114s 0,071MiB 0,505ms 5,917 79,232 -77,677

Tabelle A.9.: Ergebnisse des Regressions-Experiments R.2, Modell: SparseMoE Top(k = 3).

Instanz Zeit Speicher Zeit/Instanz Accuracy Precision Recall F1

453 0.013s 0.005MiB 0.029ms 0.79 0.786 0.744 0.764

5436 0.163s 0.005MiB 0.03ms 0.841 0.847 0.729 0.784

10419 0.313s 0.005MiB 0.03ms 0.853 0.857 0.799 0.827

15402 0.466s 0.005MiB 0.03ms 0.86 0.865 0.813 0.838

20385 0.615s 0.005MiB 0.03ms 0.856 0.867 0.794 0.829

25368 0.765s 0.005MiB 0.03ms 0.845 0.851 0.771 0.809

30351 0.915s 0.005MiB 0.03ms 0.84 0.844 0.762 0.801

35334 1.063s 0.005MiB 0.03ms 0.831 0.834 0.747 0.788

40317 1.261s 0.005MiB 0.031ms 0.834 0.834 0.754 0.792

45312 1.411s 0.005MiB 0.031ms 0.837 0.84 0.762 0.799

Tabelle A.10.: Ergebnisse des Klassifikations-Experiments C.1, Modell: LogR.

94

A. Ergebnisse

Instanz Zeit Speicher Zeit/Instanz Accuracy Precision Recall F1

453 0,025s 0,127MiB 0,055ms 0,834 0,802 0,845 0,823

5436 0,207s 0,072MiB 0,038ms 0,826 0,792 0,758 0,775

10419 0,368s 0,072MiB 0,035ms 0,826 0,777 0,847 0,811

15402 0,53s 0,072MiB 0,034ms 0,819 0,764 0,861 0,809

20385 0,685s 0,072MiB 0,034ms 0,803 0,78 0,766 0,773

25368 0,838s 0,072MiB 0,033ms 0,784 0,787 0,678 0,729

30351 0,988s 0,072MiB 0,033ms 0,767 0,793 0,607 0,688

35334 1,139s 0,072MiB 0,032ms 0,75 0,797 0,543 0,646

40317 1,309s 0,073MiB 0,032ms 0,745 0,754 0,584 0,658

45312 1,471s 0,106MiB 0,032ms 0,747 0,742 0,619 0,675

Tabelle A.11.: Ergebnisse des Klassifikations-Experiments C.1, Modell: HTC.

Instanz Zeit Speicher Zeit/Instanz Accuracy Precision Recall F1

453 0,01s 0,003MiB 0,022ms 0,874 0,86 0,864 0,862

5436 0,119s 0,003MiB 0,022ms 0,841 0,8 0,8 0,8

10419 0,227s 0,003MiB 0,022ms 0,838 0,815 0,815 0,815

15402 0,335s 0,003MiB 0,022ms 0,846 0,827 0,827 0,827

20385 0,444s 0,003MiB 0,022ms 0,847 0,825 0,825 0,825

25368 0,553s 0,003MiB 0,022ms 0,846 0,82 0,82 0,82

30351 0,663s 0,003MiB 0,022ms 0,854 0,827 0,827 0,827

35334 0,774s 0,003MiB 0,022ms 0,856 0,828 0,828 0,828

40317 0,884s 0,003MiB 0,022ms 0,855 0,827 0,827 0,827

45312 0,996s 0,003MiB 0,022ms 0,853 0,827 0,827 0,827

Tabelle A.12.: Ergebnisse des Klassifikations-Experiments C.1, Modell: BaseC.

Instanz Zeit Speicher Zeit/Instanz Accuracy Precision Recall F1

453 0,178s 0,166MiB 0,393ms 0,885 0,838 0,928 0,881

5436 1,986s 0,111MiB 0,365ms 0,88 0,888 0,796 0,84

10419 3,761s 0,111MiB 0,361ms 0,885 0,891 0,842 0,866

15402 5,504s 0,111MiB 0,357ms 0,89 0,895 0,852 0,873

20385 7,245s 0,111MiB 0,355ms 0,885 0,895 0,836 0,864

25368 8,981s 0,111MiB 0,354ms 0,879 0,888 0,82 0,853

30351 10,77s 0,111MiB 0,355ms 0,881 0,886 0,825 0,855

35334 12,501s 0,111MiB 0,354ms 0,879 0,879 0,827 0,852

40317 14,216s 0,113MiB 0,353ms 0,876 0,871 0,829 0,849

45312 16,008s 0,146MiB 0,353ms 0,876 0,867 0,836 0,852

Tabelle A.13.: Ergebnisse des Klassifikations-Experiments C.1, Modell: SoftMoE.

95

A. Ergebnisse

Instanz Zeit Speicher Zeit/Instanz Accuracy Precision Recall F1

453 0,295s 0,106MiB 0,65ms 0,766 0,726 0,783 0,753

5436 3,201s 0,226MiB 0,589ms 0,806 0,776 0,719 0,746

10419 6,092s 0,169MiB 0,585ms 0,81 0,801 0,755 0,777

15402 8,936s 0,169MiB 0,58ms 0,812 0,813 0,749 0,78

20385 11,723s 0,169MiB 0,575ms 0,797 0,809 0,704 0,753

25368 14,542s 0,112MiB 0,573ms 0,786 0,8 0,666 0,727

30351 17,371s 0,112MiB 0,572ms 0,784 0,798 0,655 0,719

35334 20,207s 0,112MiB 0,572ms 0,776 0,793 0,633 0,704

40317 22,88s 0,112MiB 0,568ms 0,773 0,771 0,653 0,707

45312 25,596s 0,112MiB 0,565ms 0,777 0,776 0,667 0,718

Tabelle A.14.: Ergebnisse des Klassifikations-Experiments C.2, Modell: SparseMoE Top(k = 1).

Instanz Zeit Speicher Zeit/Instanz Accuracy Precision Recall F1

453 0,263s 0,14MiB 0,581ms 0,828 0,782 0,865 0,821

5436 3,131s 0,169MiB 0,576ms 0,829 0,8 0,757 0,778

10419 5,979s 0,169MiB 0,574ms 0,831 0,806 0,812 0,809

15402 8,773s 0,111MiB 0,57ms 0,835 0,809 0,825 0,817

20385 11,846s 0,112MiB 0,581ms 0,829 0,814 0,791 0,802

25368 14,859s 0,112MiB 0,586ms 0,819 0,809 0,754 0,781

30351 17,831s 0,112MiB 0,587ms 0,816 0,811 0,737 0,772

35334 20,688s 0,112MiB 0,585ms 0,81 0,808 0,719 0,761

40317 23,568s 0,112MiB 0,585ms 0,811 0,801 0,732 0,765

45312 26,52s 0,112MiB 0,585ms 0,813 0,801 0,746 0,772

Tabelle A.15.: Ergebnisse des Klassifikations-Experiments C.2, Modell: SparseMoE Top(k = 2).

Instanz Zeit Speicher Zeit/Instanz Accuracy Precision Recall F1

453 0,275s 0,166MiB 0,607ms 0,857 0,826 0,87 0,847

5436 3,256s 0,111MiB 0,599ms 0,85 0,83 0,779 0,804

10419 6,409s 0,111MiB 0,615ms 0,857 0,841 0,831 0,836

15402 9,354s 0,111MiB 0,607ms 0,86 0,844 0,842 0,843

20385 12,266s 0,112MiB 0,602ms 0,851 0,847 0,806 0,826

25368 15,454s 0,112MiB 0,609ms 0,842 0,844 0,773 0,807

30351 18,548s 0,112MiB 0,611ms 0,842 0,847 0,763 0,803

35334 21,419s 0,112MiB 0,606ms 0,837 0,845 0,752 0,796

40317 24,529s 0,113MiB 0,608ms 0,838 0,838 0,762 0,798

45312 27,605s 0,146MiB 0,609ms 0,84 0,838 0,773 0,804

Tabelle A.16.: Ergebnisse des Klassifikations-Experiments C.2, Modell: SparseMoE Top(k = 3).

96

A. Ergebnisse

Instanz Zeit Speicher Zeit/Instanz MAE RMSE R2

125 0,033s 0,036MiB 0,268ms 9,824 10,948 -4,692

1500 0,352s 0,037MiB 0,235ms 2,164 2,747 0,721

2875 0,668s 0,037MiB 0,232ms 1,949 2,565 0,734

4250 0,991s 0,037MiB 0,233ms 1,827 2,394 0,77

5625 1,322s 0,037MiB 0,235ms 2,296 2,977 0,652

7000 1,682s 0,037MiB 0,24ms 2,219 2,871 0,625

8375 1,998s 0,037MiB 0,239ms 2,042 2,635 0,686

9750 2,313s 0,037MiB 0,237ms 1,735 2,347 0,782

11125 2,65s 0,037MiB 0,238ms 1,639 2,083 0,826

12500 2,974s 0,037MiB 0,238ms 1,707 2,32 0,803

Tabelle A.17.: Ergebnisse des Drift-Experiments D.1, Modell: DeepR.

Instanz Zeit Speicher Zeit/Instanz MAE RMSE R2

125 0,008s 0,211MiB 0,062ms 3,515 4,516 0,031

1500 0,214s 0,498MiB 0,143ms 2,008 2,536 0,762

2875 0,393s 0,522MiB 0,137ms 2,136 2,726 0,7

4250 0,545s 0,506MiB 0,128ms 1,978 2,563 0,737

5625 0,713s 0,342MiB 0,127ms 2,326 2,985 0,65

7000 0,919s 0,594MiB 0,131ms 2,249 2,905 0,616

8375 1,15s 0,659MiB 0,137ms 2,313 3,021 0,587

9750 1,358s 0,517MiB 0,139ms 1,991 2,588 0,735

11125 1,517s 0,481MiB 0,136ms 2,084 2,649 0,719

12500 1,651s 0,203MiB 0,132ms 2,408 3,066 0,655

Tabelle A.18.: Ergebnisse des Drift-Experiments D.1, Modell: HATR.

Instanz Zeit Speicher Zeit/Instanz MAE RMSE R2

125 0,077s 0,241MiB 0,615ms 3,623 4,539 0,021

1500 0,65s 0,367MiB 0,433ms 2,2 2,758 0,718

2875 1,199s 0,402MiB 0,417ms 2,174 2,75 0,694

4250 1,709s 0,238MiB 0,402ms 1,988 2,526 0,744

5625 2,168s 0,074MiB 0,385ms 2,183 2,788 0,695

7000 2,616s 0,074MiB 0,374ms 1,841 2,419 0,734

8375 3,064s 0,074MiB 0,366ms 2,078 2,683 0,675

9750 3,513s 0,074MiB 0,36ms 1,918 2,51 0,75

11125 3,961s 0,074MiB 0,356ms 1,921 2,448 0,76

12500 4,409s 0,074MiB 0,353ms 2,015 2,606 0,751

Tabelle A.19.: Ergebnisse des Drift-Experiments D.1, Modell: SoftMoE.

97

B. Hilfsmittel

Name Beschreibung

Draw.io Zeichnenprogramm, genutzt zur Erstellung aller Grafiken

LanguageTool Prüfung von Rechtschreibung und Grammatik

Github Copilot KI-Unterstützung für das Schreiben von Code (zum Beispiel Kommentare)

Tabelle B.1.: Übersicht der eingesetzten Hilfsmittel in dieser Arbeit

98

Erklärung zur selbstständigen Bearbeitung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig verfasst und
nur die angegebenen Hilfsmittel benutzt habe. Wörtlich oder dem Sinn nach aus anderen Werken
entnommene Stellen sind unter Angabe der Quellen kenntlich gemacht.

Hamburg, 28. März 2025 Finn V. Dohrn

