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Stichworte
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Umgebung, Mixture of Experts

Kurzzusammenfassung

Bis 2025 werden 41,6 Milliarden IoT-Geréte erwartet. Dadurch wichst die Menge an konti-
nuierlich generierten Daten rasant. Klassische maschinelle Lernverfahren, die auf statischen
Datensitzen trainiert werden, sind nicht in der Lage, sich kontinuierlich an dynamische Umge-
bungen anzupassen. Problematisch ist dabei der Konzeptdrift, der dazu fithrt, dass Modelle im
Laufe der Zeit an Genauigkeit verlieren.

Zur Steigerung der Robustheit und Genauigkeit des kontinuierlichen Lernens stellt diese
Arbeit einen neuartigen Ansatz vor, der auf den Erkenntnissen einer systematischen Literatur-
recherche basiert. Dieser Ansatz kombiniert Online Maschinelles Lernen (OML) mit Mixture
of Experts (MoE) in einer neuartigen inkrementellen MoE-Architektur. Zur Evaluierung dieser
hybriden Architektur werden verschiedene Experimente zur Regression und Klassifikation
vorgestellt, die durch geeignete Methoden bewertet werden.

Diese Arbeit préasentiert die Implementierung des Frameworks riverMoE, welches die
konzipierte hybride Architektur als Erweiterung eines bestehenden OML-Frameworks rea-
lisiert. Die Ergebnisse der durchgefithrten Experimente zeigen, dass die gezielte gewichtete
Kombination von Einzelprognosen auch mit inkrementellen Lernalgorithmen zu préziseren
Gesamtprognosen fithren kann. Erwartungsgemaf} erfordert die Nutzung neuronaler Kom-
ponenten einen erhéhten Rechen- und Speicheraufwand. Zudem zeigen die Experimente in
adaptiven Umgebungen eine hohere Stabilitit gegeniiber Konzeptdrift, die jedoch von der
Initialisierung abhangt.

Auf Grundlage der Ergebnisse wird empfohlen, die bisher umgesetzten inkrementellen
MoE-Varianten um zusétzliche Ansétze zu erweitern und weitere Experimente durchzufiithren.
Dariiber hinaus sollte die Erklarbarkeit des Gates in der Kombination der einzelnen Experten

eingehender untersucht werden.
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Abstract

41.6 billion IoT devices are expected by 2025. As a result, the amount of continuously generated
data is growing rapidly. Traditional machine learning methods that are trained on static data
sets and are not able to continuously adapt to dynamic environments. The problem here is
concept drift, which leads to models losing accuracy over time.

In order to make continuous learning more robust and accurate, this paper presents a
novel approach based on the findings of a systematic literature review. This approach com-
bines Online Machine Learning (OML) with Mixture of Experts (MoE) in a novel incremental
MOoE architecture. To evaluate this hybrid architecture, various regression and classification
experiments are presented and evaluated using appropriate methods.

This paper presents the implementation of the framework riverMoE, which realizes the
designed hybrid architecture as an extension of an existing OML framework. The results of the
experiments show that the targeted weighted combination of individual forecasts can also lead
to more precise overall forecasts when using incremental learning algorithms. As expected the
use of neural components requires increased computing and memory resources. Furthermore,
the experiments in adaptive environments show a higher stability against concept drift which
depends on the initialization.

Based on the results, it is recommended to extend the existing implemented MoE variants and
to conduct further experiments. In addition, the explainability of the gate in the combination

of the individual experts should be examined in more detail.
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1. Einleitung

Kiinstliche Intelligenz (KI) und besonders Maschinelles Lernen (ML) hat sich in den vergangenen
Jahren rasant weiterentwickelt und findet Anwendung in einer Vielzahl von Bereichen, darunter
automatisierte Entscheidungsfindung, natiirliche Sprachverarbeitung und Bildverarbeitung
(Fritz, 2022, S. 3f.). Viele klassische Lernverfahren basieren jedoch auf dem sogenannten Batch
maschinelles Lernen (BML), bei dem das Modell mit einem festen Datensatz trainiert wird
und anschlieflend statisch bleibt. In dynamischen Umgebungen, in denen kontinuierlich neue
Daten verfiigbar sind, fithrt dies zu Herausforderungen: Neue Informationen kénnen nicht
effizient integriert werden, und das erneute Training mit einer wachsenden Datenmenge ist
rechenintensiv und teuer (Bartz-Beielstein und Bartz, 2023, S. 10f.).

Ein vielversprechender Losungsansatz ist Online maschinelles Lernen (OML), dass es Model-
len erméglicht, sich fortlaufend an neue Daten anzupassen, ohne die gesamte Modellarchitektur
neu trainieren zu miissen. Dieses inkrementelle Lernen ist insbesondere in Szenarien mit ver-
anderlichen Datenverteilungen von Vorteil, da Modelle kontinuierlich an neue Gegebenheiten
angepasst werden kénnen (Bartz-Beielstein und Bartz, 2023, S. 11ff.). Ein weiteres aktuelles und
relevantes Forschungsfeld ist der Ansatz Mixture of Experts (MoE), der sich bereits in grof3en
Sprachmodellen von beispielsweise Google etabliert hat (N. Du et al., 2022). Diese Architektur
kombiniert mehrere spezialisierte Expertenmodelle, die durch einen Gating-Mechanismus
dynamisch fiir verschiedene Eingaben aktiviert werden (Jacobs et al., 1991). Dadurch kénnen
komplexe Probleme modularisiert und effizienter gelost werden. Obwohl beide Methoden -
OML als inkrementelles Lernen und MoE — unabhéngig voneinander erforscht werden, gibt es

bisher nur wenige Arbeiten, die eine Kombination dieser Anséatze untersuchen.

1.1. Problemstellung und Motivation

Eine solche Verbindung kénnte erhebliche Vorteile bringen: Wahrend das inkrementelle Lernen
die kontinuierliche Anpassung an neue Daten ermoglicht, kann MoE dazu beitragen, das Lernen
gezielter zu strukturieren und unterschiedliche Experten fiir verschiedene Datensegmente oder

Aufgaben zu spezialisieren. Dadurch kénnte ein Modell entstehen, das sowohl flexibel als auch
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skalierbar ist und zugleich Probleme wie das Vergessen von bereits gelerntem (,Katastrophales
Vergessen®) oder ineffizientes Ressourcenmanagement adressiert.

Forschung in dieser Richtung ist notwendig, da die Menge an Daten in vielen Bereichen
exponentiell anwiachst. Die globale Datenmenge wird nach Reinsel, Gantz und Rydning (2018)
bis zu dem Jahr 2025 auf bis zu 175 Zettabyte (1 Zettabyte = 1-10! Bytes) geschitzt. Der Bericht
erfasst zusitzlich den Anteil von Echtzeitdaten. Ein aktuellerer Bericht, der International Data
Corporation (IDC) von Wright (2024) kommt auf 182 Zettabytes Gesamtmenge bis 2025. Die
Abbildung 1.1 zeigt die kombinierten Daten von 2010 bis 2025 in Zettabyte.
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Abbildung 1.1.: Weltweiter Speicherplatzbedarf insgesamt und fiir Echtzeitdaten von 2010 bis
2025 in Zettabyte. Die Daten von 2024 bis 2025 sind geschétzt.

Die Gesamtmengen von 2024 bis 2025 wurden in beiden Berichten geschitzt. Der Anteil der
Echtzeitdaten ist im Jahr 2025 bei 30 %. Wird die jahrliche Wachstumsrate des Verhiltnisses
der Gesamtdaten zu den Echtzeitdaten betrachtet, kann erkannt werden, dass der Anteil der
Echtzeitdaten im Verhiltnis stirker wachst. Der Bedarf an der Verarbeitung von Echtzeitdaten
konnte damit ebenfalls steigen. Das liegt zum grofien Teil daran, dass immer mehr Gerite mit
dem Internet verbunden sind. 41,6 Milliarden Internet of Things (IoT) Gerate werden bis 2025
erwartet, welche zum téglichen Wachstum von Datenmengen beitragen. In Autos, Maschinen
oder im Smarthome sind viele Sensoren verbaut, die laufend grof3e Datenmengen erzeugen.
Kameras, die beim Auto beispielsweise fiir Fahrerassistenzsysteme verwendet werden, konnen

pro Stunde bis zu drei Terabyte an Daten erzeugen und speichern (Fritz, 2022, S. 59).
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Das Training mit diesen Daten muss teilweise in Echtzeit erfolgen, um die wachsenden
Datenmengen zu bewéltigen. Im klassischen BML ist dies nicht moglich, da das Modell nach
dem Training nicht mehr verdndert werden kann. Beim Eintreffen von neuen Daten muss das
Modell neu trainiert werden (Bartz-Beielstein und Bartz, 2023, S. 8.). Dies erzeugt einen hohen
Rechenaufwand, dauert sehr lange und kostet viel Energie. Inkrementelles Lernen ist daher
eine Losung, um die Modelle kontinuierlich an neue Daten anzupassen. Das Hauptproblem
klassischer inkrementeller Lernansitze ist, dass neue Daten das Modell oft zu stark beeinflussen
konnen. Gleichzeitig konnen inkrementelle Modelle Schwierigkeiten haben, neue Konzepte
effizient zu integrieren, ohne an Stabilitat zu verlieren (Bartz-Beielstein und Bartz, 2023, S.
411f.).

MOoE bietet eine mogliche Losung fiir dieses Problem, indem es verschiedene Experten
fiir unterschiedliche Datenbereiche oder Lernaufgaben trainiert. Ein Gating-Mechanismus
entscheidet dynamisch, welcher Experte fiir eine bestimmte Eingabe zusténdig ist, wodurch das
Modell insgesamt robuster und genauer sein kann. Allerdings bringen klassische MoE-Modelle
ebenfalls Herausforderungen mit sich, darunter ein gut funktionierender Gating-Mechanismus
(Jacobs et al., 1991). Zudem wurde MoE bislang tiberwiegend in statischen Umgebungen

erforscht und selten mit OML kombiniert.

1.2. Zielsetzung

Die Kombination dieser beiden Methoden kénnte daher neue Moglichkeiten fiir adaptive,
spezialisierte und kontinuierlich lernende Modelle eréffnen. Durch eine gezielte Einbindung
von MoE in ein inkrementelles Lernsystem konnte die Spezialisierung von Experten dazu
beitragen, den Einfluss neuer Daten besser zu steuern und das Risiko des Wissensverlusts
zu reduzieren. Gleichzeitig konnte das Gating-Netzwerk so gestaltet werden, dass es neue
Konzepte erkennt und entscheidet, ob bestehende Experten angepasst oder neue Experten
hinzugefiigt werden sollten.

Das Ziel dieser Arbeit ist daher die Entwicklung und Evaluierung eines kombinierten
Ansatzes aus inkrementellem Lernen und Mixture of Experts, um die jeweiligen Starken beider
Methoden zu vereinen und ihre individuellen Schwéachen zu adressieren. Konkret verfolgt

diese Arbeit folgende Ziele:

1. Entwicklung eines hybriden Frameworks, das kontinuierlich neue Daten integriert und

dabei Experten spezialisiert.

2. Optimierung des Gating-Mechanismus, sodass dieser sich dynamisch an verénderte

Datenverteilungen anpasst.
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3. Experimentelle Evaluierung, um zu priifen, inwiefern der entwickelte Ansatz beste-
hende inkrementelle Lernverfahren hinsichtlich Genauigkeit, Effizienz und Adaptivitat
ubertrifft.

Die Forschungsfragen, passend zu den gesetzten Zielen dieser Arbeit, werden im Abschnitt
3.3 konkret formuliert. Diese Arbeit tragt damit bei, eine Forschungsliicke an der Schnittstelle
von kontinuierlichem Lernen und modularen, spezialisierten Expertenmodellen zu schliefen.
Die gewonnenen Erkenntnisse sollen nicht nur zur theoretischen Weiterentwicklung dieser
Ansatze beitragen, sondern auch praktische Anwendungen fiir reale Datenszenarien aufzeigen.
Demzufolge ist die Implementierung eines produktiv nutzbaren Frameworks ein Teil dieser
Arbeit.

1.3. Aufbau der Arbeit

Diese Arbeit gliedert sich in mehrere zentrale Kapitel. Zunachst werden in Kapitel 2 die
theoretischen Grundlagen erortert, darunter Adaptivitit, Big Data und Online-Maschinelles
Lernen. Ein besonderer Fokus liegt auf der Drifterkennung und -behandlung sowie der Exper-
tenmischung als Kernkonzept des adaptiven maschinellen Lernens mit Mixture of Experts.

Der Stand der Forschung wird in Kapitel 3 durch eine systematische Literaturrecherche
erfasst, gefolgt von einer qualitativen Analyse relevanter Arbeiten zu Gating-Mechanismen,
Multi-Task-Experten und adaptivem Verhalten innerhalb MoE-Architekturen. Daraus resultie-
rend werden bestehende Forschungsliicken identifiziert.

Die Methodik in Kapitel 4 beschreibt die Entwicklung einer inkrementellen MoE-Architektur,
die in einem neuartigen Framework umgesetzt wurde. Das Framework kann als Erweiterung
eines Basis-Frameworks genutzt werden. Eine Beschreibung von Experimenten zur Evaluie-
rung von Regressions-, Klassifikations- und Driftproblemen wird ebenfalls zusammengestellt.
Fiir die Experimente werden ausgewahlte Lernalgorithmen, Parameter, Datensitze und Eva-
luationsmethoden vorgestellt.

In dem Kapitel 5 wird zunéchst die prototypische Implementierung des Frameworks sowie
dessen Architektur genauer beschrieben. Anschlieflend werden die Ergebnisse der durchge-
fithrten Experimente prasentiert und diskutiert. Fiir die Evaluierung wurde das neue Verfahren
mit anderen OML-Verfahren verglichen und bewertet. Am Ende des Kapitels werden die
Limitationen dieser Arbeit aufgezeigt.

Abschlieflend fasst Kapitel 6 die gewonnenen Erkenntnisse zusammen, zieht ein Fazit der

vorliegenden Arbeit und gibt einen Ausblick auf zukiinftige Forschungsrichtungen.
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Ausgehend von dem Thema ,Adaptives maschinelles Lernen mit Mixture of Experts” beginnt
diese Arbeit mit den theoretischen Grundlagen, die zur Beantwortung der Forschungsfragen
notwendig sind. Zunichst wird der Begriff der Adaptivitét eingefithrt. Im Anschluss werden
Datenstrome und deren Eigenschaften aus dem ,Big Data“-Umfeld erklart. Zusammen mit der
Adaptivitat ergeben sie die Grundlage fiir den Einsatz von Online maschinelles Lernen. Dabei
findet auch die Einordnung und Abgrenzung zum offline maschinellem Lernen statt. Am Ende

dieses Kapitels wird das Architekturprinzip der Expertenmischung beschrieben.

2.1. Adaptivitat

Das Konzept der Adaptivitit gewinnt in verschiedenen Forschungsbereichen zunehmend an
Bedeutung. Immer mehr Informationssysteme sind adaptiv und werden in den verschiedensten
Disziplinen eingesetzt. Dazu zdhlen Anwendungen wie KI, Robotik fiir dynamische Umgebun-
gen, Netzwerke oder Betriebssysteme, um eine effektive Ressourcennutzung in der Informatik
zu ermoglichen (Raibulet, 2008, S. 343). Der Einsatz von personalisierter Lehrsoftware fiir
Schiiler:innen und Lehrer:innen zur Steigerung der Effizienz in der Padagogik (Miller, 2005) ist
ebenfalls eine mogliche Anwendung. Adaptivitit beschreibt in der Informatik die Fahigkeit
von Systemen, sich dynamisch an veranderte Bedingungen, Benutzerpraferenzen oder neue
Informationen anzupassen. Eine generelle Definition von Adaptivitat ist schwer abzuleiten,
da sie je nach Anwendung unterschiedlich verstanden wird. Es konnen aber drei generelle
Kriterien benannt werden (Raibulet, 2008, S. 344ff):

« Reaktion auf Anderungen innerhalb oder auflerhalb des Systems,
« Autonome und reflektierende Anpassungen durch das System selbst,

+ Anpassungen zur Laufzeit

Bry und Henze (2005) unterscheiden zwischen adaptiver und adaptierbarer Software. Der

Unterschied wird durch die Abbildung 2.1 deutlich. Der Anwender interagiert beispielsweise mit
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seiner Umgebung, etwa einem Musik-Streaming-Dienst, in dem Musik gehort wird. Dadurch
entstehen neue Informationen, welche die Empfehlungen fiir eine Playlist automatisch erzeugen
und als Ergebnis zuriickliefern. Die Playlist wird wieder vom Nutzer konsumiert, was neue
Daten erzeugt. Bei Adaptivitit sollen die verdanderten Bedingungen selbststindig mit den
neuen Daten ohne Nutzerintervention erlernt und geeignete Anpassungen, unter anderem
die Empfehlungen innerhalb der Playlist, durchgefithrt werden. Wenn die Sortierung der Titel
als Einstellung durch den Nutzer initiiert wird, werden die Parameter des adaptiven Systems
angepasst. Damit wird die Darstellung der Titel-Auflistung verdndert. Das entspricht der

Adaptierbarkeit eines Systems.

Informationen

Adaptives
System

Umgebung

Einstellungen :
.......................................... )l

Ergebnisse

Abbildung 2.1.: Konzept der Adaptivitdt als Interaktion zwischen Umgebung und System.

Ein moglicher Einsatz von Adaptivitit im Kontext des maschinellen Lernens wire das adap-
tive Lernen. Durch den Einsatz von adaptiven Methoden soll sich ein maschinell trainiertes
Modell flexibel und individuell an neue Trends in den zugrunde liegenden Daten einer neuen
Situation anpassen (Bartz-Beielstein und Bartz, 2023, S. 11). Ziel ist, eine mogliche kontext-
abhingige Losung fiir die gegebenen dynamischen Daten zu finden. Das zu 16sende Problem
wird daher als Dynamisches Optimierungs-Problem (DOP) definiert. Das adaptive Lernen wird

durch kontinuierliches Lernen erméglicht, dessen Trainingsdaten aus Datenstromen kommen.

2.2. Big Data

Der abstrakte Oberbegrifft ,Big Data“ wird mit dem Bestand und dem Wachstum grofier ge-
speicherter Datenmengen assoziiert. Das heif3t ,Big Data“ bezeichnet Datenmengen, die so
grofl oder komplex sind, dass sie mit traditionellen Analyseverfahren wie SQL in relationa-
len Datenbanken nicht mehr bearbeitet werden kénnen. Diese Daten erfordern den Einsatz
neuer Techniken und Technologien zur Verarbeitung und Analyse (Warren, 2015, S. 2ff). Eine

einheitliche Definition fiir diesen Begriff gibt es in der vorherrschenden Literatur nicht.
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2.2.1. Eigenschaften nach dem V-Modell

Konkreter definiert sind jedoch die Eigenschaften nach dem ,,3V*-Modell von Big Data, die
von Laney (2001) in einem Forschungsbericht definiert wurden und die Herausforderungen

des Datenwachstums beschreiben:

« Volume: definiert die Anforderung, mit immensen Mengen von Daten, die in solchen Big
Data Anwendungen tiblicherweise generiert werden, umzugehen. Dies konnen Terabyte

an Videomaterial sein, das von einer Kamera aufgenommen und dann gespeichert wurde.

o Velocity: bezeichnet die hohe Geschwindigkeit, in der diese Daten generiert, analysiert
und verarbeitet werden konnen. Daten konnen in einem Datenstrom kontinuierlich

generiert werden. Beispielsweise entsteht pro Flugstunde ein Terabyte an Sensordaten.

o Variety: Die letzte Eigenschaft steht fir die Vielfalt der Datentypen und Quellen. Struk-
turierte Daten wie Tabellen oder unstrukturierte Daten wie Fotos aus unterschiedlichs-
ten Quellen kénnen gemeinsam abgespeichert werden. Die meisten Daten, die heute
vorkommen, sind unstrukturiert, unterliegen also keinem bestimmten Schema. Die Her-
ausforderung ist hier, mit geeigneten Algorithmen die Daten strukturiert einordnen zu

konnen.

Daneben gibt es noch viele weitere ,V“-Eigenschaften in der Literatur, die in dieser Arbeit
nicht niher betrachtet werden, unter anderem: Volatility (Volatilitit), Variability (Verander-
lichkeit), Veracity (Korrektheit), Viability (Viabilitat), Visualization (Visualisierung), Virality
(Viralitat), Viscosity (Viskositat) oder Validity (Gultigkeit). Diese Eigenschaften bringen eben-
falls Probleme und Herausforderungen fiir Big Data Systeme mit. Beispielsweise ist bei der
Volatility die Lebensdauer der Daten gemeint. Bei medizinischen Daten sollten die Daten
immer vorhanden sein, bei Echtzeitdaten von sozialen Medien ist dies nicht notwendig. Fir
die Variability sind mégliche Inkonsistenzen in den variierenden Strukturen der Daten ein
Problem (Khan et al., 2018; Fritz, 2022; Rahul, Banyal und Arora, 2023).

2.2.2. Datenstrome

Als Datenstrom wird in der Informatik ein kontinuierlicher Fluss von Daten bezeichnet. In
der Abbildung 2.2 wird schematisch der Aufbau eines Datenstroms gezeigt. Ein Datenstrom
ist iiblicherweise eine First-In-First-Out (FIFO)-Queue. Ein Datenstrom-Datensatz D besteht
aus mehreren geordneten Dateninstanzen d. Die Dateninstanzen innerhalb des Stroms sind

Streamingdaten. Zum Zeitpunkt ¢ wird der Datensatz d; verarbeitet. Jeder Datenpunkt d; kann
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dabei ein einzelner Wert oder ein Vektor sein. Die Ordnung ist implizit durch die zeitliche
Reihenfolge der eintreffenden Daten des Datenstroms gegeben. Es gilt ¢ > ¢ — 1, daraus folgt,
dass eine Dateninstanz d;_ alter ist als d; (Bartz-Beielstein und Bartz, 2023, S. 2).

Zukunft Jetzt Vergangenheit
J J
r - - 3
v
d, d,r+ d; Hd H ... d, +—FlieRrichtung—»
X\. » T "\‘}.‘ /
Dateninstanz Zeitspanne §

Abbildung 2.2.: FIFO-Queue mit Streamingdaten {iber einen zeitlichen Verlauf.

Die Dateninstanzen in dem Datenstrom sind lose strukturiert, nur einmal verfiigbar und
beinhalten teilweise unvorhersehbare Anderungen, welche auch als ,Drift* bezeichnet werden
(Bartz-Beielstein und Bartz, 2023, S. 2). Die Kardinalitit des Datensatzes |D| beschreibt seine
Grofle. Die wichtigste Unterscheidung in der Kardinalitit liegt darin, ob ein Datensatz end-
lich oder unendlich ist. Bei einem endlichen Datensatz gibt es eine N-endliche Anzahl von
Dateninstanzen und wird als Menge wie folgt definiert: {d; }¥_,. Innerhalb eines Datenstroms
wird von einem unbegrenzten Datensatz gesprochen, wenn er unendlich viele Dateninstanzen
beinhaltet. Als Menge beschrieben, heifit das: {d; }°; (Akidau, Chernyak und Lax, 2018).

Streamingdaten sind eine Teilmenge von Big Data, denen die ,V*-Eigenschaften zugeord-
net werden konnen. Sie liegen tiblicherweise in grofien Mengen (Volumen) vor, die in hoher
Geschwindigkeit Velocity erzeugt werden. Dabei konnen die Streamingdaten in sehr unter-
schiedlichen Formaten vorliegen (Variety). Diese Eigenschaften werden als ,vertikale Vielfalt”
bezeichnet. Zusitzlich sind Daten innerhalb eines Datenstroms oft strukturlos und kénnen im
Laufe der Zeit variieren (Variability), woraus graduell oder abrupt ein Drift auftreten kann.
Diese Eigenschaft wird als ,horizontale Vielfalt® bezeichnet. Weiterhin sind Streamingdaten
nur einmal verfiigbhar (Volatilitit) (Bartz-Beielstein und Bartz, 2023).

Die Zeit zwischen zwei beliebigen Dateninstanzen wird als Zeitspanne § bezeichnet und
berechnet sich tiber die zeitliche Difterenz zweier Zeitpunkte 7": T} —T%_1. Bei der Division der
Kardinalitdt des Datensatzes, die innerhalb dieses Zeitraumes geflossen sind, mit der Zeitspanne
resultiert die durchschnittliche Datenrate v:

v= |D;“"| = lD’.;J :'g:ll De,Di 1 CDAt>t—1A5 € R (2.1)

Die durchschnittliche Datenrate entspricht der Menge von Datensitzen pro Zeitspanne, also

der FlieBgeschwindigkeit. Sind zum Zeitpunkt 12:00 Uhr bereits 100 Dateninstanzen durch den
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Strom gelaufen, wahrend um 10:00 Uhr nur 50 Instanzen vorhanden waren, ergibt sich mit der
Formel 2.1 eine durchschnittliche Geschwindigkeit von 25 Dateninstanzen pro Stunde zwischen
diesen Zeitpunkten. Eine fortlaufende Datenrate {v; }.¥, lasst sich mit der Betrachtung der
einzelnen Datenrate zwischen den einzelnen Dateninstanzen ableiten. Diese individuelle
Datenrate kann gleichbleibend sein, dann gilt v; = - - - = vy. Wenn die Dateninstanzen, wie
in Abbildung 2.2, unterschiedliche Absténde haben, variiert die Datenrate.

Streamingdaten setzen voraus, spezielle Analysemethoden anzuwenden, die in Echtzeit
oder nahezu Echtzeit funktionieren. Das Abspeichern der Daten ist aufgrund der Menge
meistens nicht moglich oder nicht sinnvoll. Mithilfe von intelligenten Algorithmen kénnen
etwa Erkenntnisse aus Video-Streamingdaten abgeleitet werden, um den Zustand einer Straf3e

fiir eine mogliche Wartung zu ermitteln.

2.3. Online Maschinelles Lernen

Online maschinelles Lernen ist eine Methode, die es ermdglicht, Modelle fortlaufend mit neuen
Daten aus einem Datenstrom zu aktualisieren, anstatt auf statischen Datensitzen zu basieren.
Statische Daten sind Daten, die zu einem bestimmten Zeitpunkt erfasst wurden und nicht mehr
verandert werden. Sie konnen beliebig oft abgerufen werden und liegen haufig in Tabellenform
vor. (Bartz-Beielstein und Bartz, 2023, S. 3). Bei der folgenden Betrachtung wird der Fokus auf
Streamingdaten gelegt. Durch eine Serialisierung, also die datenstromartige Aneinanderreihung
der Daten, kénnen statische Daten in einen endlichen Datenstrom umgeformt werden. In den
folgenden Erlauterungen wird der Fokus auf Streamingdaten mit zeitlicher Ordnung gelegt,

daher wird der Zeit-Index ¢ verwendet.

2.3.1. Maschinelle Lernverfahren

Maschinelles Lernen bietet eine Moglichkeit, Muster in grofien und komplexen Datenmengen
zu erkennen. Dabei verbessern Algorithmen ihre Leistung durch Training, indem sie grofle
Datenmengen analysieren und eigenstdndige Optimierungen vornehmen. Zwei wesentliche
Lerntypen sind das tiberwachte und das uniiberwachte Lernen, die aus der Abbildung 2.3
entnommen werden konnen (Fritz, 2022, S. 142f).

Beim iiberwachten Lernen bestehen die Datenpunkte d; aus Datenpaaren d; = (x4, y(x¢)).
Das z; steht fiir die Eingangsdaten. Das kann ein einzelner Wert oder ein Vektor aus n-
Merkmalen sein: x; = (241, 2t 2, ..., Tty ). Merkmale werden auch als Attribute, Features oder
unabhdngige Variablen bezeichnet. Es gilt damit z; € R™. Bei dem y;(x) € R handelt es sich

um die zugehorige, korrekte Ausgabe und wird als Label, Zielvariable oder auch abhdngige



2. Grundlagen
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Uniiberwachtes
: Lernen

Bestirkendes
Lernen
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Lernen Lernen

Klassifikation Regression

Abbildung 2.3.: Ubersicht und Einordnung von ML fiir verschiedene Problemstellungen.

Variable betitelt. Der endliche Datensatz fiir iiberwachtes Lernen kann als Ds = {d;}}¥ ; =
{(z4,yt(z¢) }IL, beschrieben werden. Das iiberwachte Lernen wird fiir Klassifikations- und
Regressionsprobleme eingesetzt, bei denen das Ziel darin besteht, prazise Vorhersagen fiir die
bekannten Zielvariablen zu treffen. Bei der Regressionsanalyse wird versucht, skalare Werte
vorherzusagen, wohingegen bei der Klassifikation eine kategorische Klasse den Eingangsdaten
zugeordnet wird. Der Hauptvorteil des iiberwachten Lernens liegt darin, dass die Modelle
konkret auf bekannte Label optimiert werden. Ein Beispielverfahren fiir Regression wire die
lineare Regression und fiir die Klassifikation die logistische Regression. Die Anwendung findet
sich in der Bildklassifikation oder in der Vorhersage von Verkaufszahlen (Fritz, 2022, S. 146f).
Existieren mehrere Label y € R™ mit n > 1 pro Datensatz, handelt es sich um eine Multi-
Ziel-Regression beziehungsweise Multi-Ziel-Klassifikation. Dabei werden mehrere Aufgaben
gleichzeitig trainiert. Das findet besonders im Multi-Task-Lernen (MTL) Anwendung.

Im Gegensatz dazu arbeitet das uniiberwachte Lernen ohne gelabelte Daten und konzentriert
sich auf das Erkennen verborgener Strukturen innerhalb der Daten. Der Datensatz besteht
damit aus keinem Datenpaar, sondern nur den Features: d; = vy = Dy = {xt}fil. Das
Ziel ist es, Muster und Gruppen zu identifizieren, ohne dass eine Zielvariable vorgegeben ist.
Uniiberwachtes Lernen wird oft fiir Clusteranalysen eingesetzt und findet Anwendung in Berei-
chen wie der Kundensegmentierung oder der Erkennung von Anomalien. Die Herausforderung
besteht hierbei darin, sinnvolle Strukturen aus den Daten zu extrahieren und die Ergebnisse
entsprechend zu interpretieren. Ein beispielhaftes Verfahren ist der k-Means-Algorithmus
(Fritz, 2022, S. 148f). Die kombinierte Form von iiberwachten und uniiberwachten Lernen,
dem Semiiiberwachten Lernen und auch das Lernen mit Feedback, dem bestdrkendem Lernen

werden in dieser Arbeit nicht naher betrachtet.
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2.3.2. Inkrementelles- und Batch-Lernen

Bei dem Training von ML gibt es jeweils eine Strategie fiir statische Daten und eine fiir
Streamingdaten. Bei kontinuierlichen Datenstromen wird das inkrementelle Lernen mit OML
angewendet, das auch Online-Lernen oder Stream-Lernen genannt wird. Der Begriff ,,Online-
Lernen® wird hdufig mit einer anderen Bedeutung im Kontext der Bildungsforschung verwendet,
weswegen in dieser Arbeit der Begriff Online maschinelles Lernen verwendet wird. Wenn ein
Datensatz vollstandig und statisch vorliegt, wird das stapelweise Lernen mit Batch maschinelles
Lernen (BML) verwendet. Analog zum Online-Lernen kann diese Strategie Offline-Lernen
genannt werden (Bartz-Beielstein und Bartz, 2023, S. 3ff). Durch die Abbildung 2.4 wird der

Unterschied beider Lernstrategien deutlicher.

Modell
Zeit t

(a) Batch maschinelles Lernen (BML) (b) Online maschinelles Lernen (OML)

Abbildung 2.4.: Schematischer Aufbau beider ML-Lernstrategien.

Bei dem Batch-Training aus Abbildung 2.4a wird der gesamte statische Datensatz in einen
Trainings- und Testdatensatz geteilt. Mit den Trainingsdaten werden die Algorithmen trainiert,
damit das Modell bestmogliche Vorhersagen ausgibt. Wahrend des Trainings wird ein Teil
der Daten verwendet, um eine Validierung wahrend des Trainings zu berechnen, die die Mo-
dellgiite beurteilt. Nach Fertigstellung des Trainings und der sukzessiven Validierung kénnen
andere Daten verwendet werden, um mit einer Inferenz eine Vorhersage zu berechnen. Fiir
die Evaluation des Modells werden, im Falle des iiberwachten Lernens, Metriken mithilfe
der ungesehenen Testdaten berechnet. Dies ist eine quantitative Einschitzung iiber die Giite
des trainierten Modells (Fritz, 2022, S. 146ff). Bei Eintreffen von neuen Datenpunkten ist ein
erneutes Training mit dem gesamten Datensatz notwendig. Werden Teilmengen des gesamten
Datensatzes, sogenannte Mini-Batches, zum wiederholten Erstellen eines Modells verwendet,
wird das Mini-Batch maschinelles Lernen (Mini-BML) genannt. Die einzelnen Mini-Batches wer-
den in der Regel nur einmal verwendet. Dadurch werden weniger Daten in den Hauptspeicher
geladen (Bartz-Beielstein und Bartz, 2023, S. 11).

11
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Durch das Training mit BML gibt es Probleme. Wenn die Grof3e des gesamten Datensatzes
die Grofle der verfiigbaren Menge an Arbeitsspeicher tiberschreitet, konnen die Algorithmen
nicht mehr lernen. Eine mogliche Losung gibt es durch Optimierung von Datentypen oder
die Dimensionsreduktion auf Kosten von Modellgiite. Ein weiteres Problem, das beim BML
auftreten kann, sind dynamische Strukturverdnderungen. Merkmale und Zielgréfien konnen
sich tiber die Zeit verdndern, was zu verschiedenen ,Drifts” fithrt, die Leistungsminimierungen
von Modellen verursachen. BML-Modelle kénnen nicht aus neuen Daten mit unbekannten
Attributen lernen. Das Modell muss mit einem neuen statischen Datensatz lernen (Bartz-
Beielstein und Bartz, 2023, S. 3ff).

Eine mogliche Losung fiir diese Probleme ist das inkrementelle Lernen mit einem Datenstrom,
siehe dazu Abbildung 2.4b. Es wird elementweise ein Datenpunkt aus den Streamingdaten im
Training verwendet. Mit diesem Datenpunkt wird eine Inferenz mit dem bisherigen Modell
berechnet. Fiir das iiberwachte Lernen wird der tatséchliche Wert zusammen mit der Vorhersage
genutzt, um die Metriken des zu diesem Zeitpunkt existierenden Modells direkt zu aktualisieren.
Nach der Aktualisierung wird durch eine marginale Anpassung eine neue Modellversion
erzeugt. Dieser Trainingsablauf wiederholt sich inkrementell fiir jede neu eintreffende Instanz
und kann damit adaptiv auf dynamische Veranderungen reagieren. Die einzelnen Instanzen
konnen damit nur einmal verwendet werden (Bartz-Beielstein und Bartz, 2023, S. 10f). Fiir das
OML werden Lernalgorithmen benétigt, die einzelne Instanzen verarbeiten kdnnen, ohne diese
erneut abrufen zu kénnen. So funktioniert der klassische Entscheidungsbaum Classificiation
And Regression Tree (CART) nicht. Seine OML-Alternative ist der Hoeffding-Baum-Algorithmus
(Bartz-Beielstein und Bartz, 2023, S. 16ff).

2.3.3. Evaluationsmethoden
Nachdem die Vorteile von OML fiir adaptives Lernen im Vergleich zu BML herausgestellt

wurden, liegt der Fokus im Folgenden auf OML sowie seiner speziellen Evaluationsstrategie.

Modell Das Ziel beider Lernstrategien ist das Training eines maschinellen Modells unter
Verwendung eines Algorithmus, der aus den Eingangsdaten lernt. Das Modell f; : R"*™ — R"
mit z; € R™ A ¢ € R wird generell als Funktion mit einer Konfiguration p als Vektor

parametrisiert und gemafl Formel 2.2 definiert (Raschka, Mirjalili und Lorenzen, 2018, S. 26ff.):

Je(xe;p) = Ut (2.2)

Der Wert ¢, steht fiir die vom Modell f; berechnete Vorhersage fiir den Datenpunkt z; zum

Zeitpunkt t mit der Modellkonfiguration p. Das generelle Ziel beim iiberwachten Lernen ist,
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2. Grundlagen

eine optimale Hyper-Parametrisierung p* aus der Menge der moglichen Kombinationen von
Hyperparameter zu erlangen, sodass das Modell die bestmoglichen Evaluationsmetriken erzielt.
Das Durchlaufen verschiedener Kombinationen als sogenanntes Grid-Search von Hyperpara-
metern und Evaluationsmetriken erméglicht im iiberwachten Lernen eine Suche nach den
bestmoglichen Parametern. Dieser Vorgang wird Hyperparameteroptimierung (HPO) genannt
(Raschka, Mirjalili und Lorenzen, 2018, S. 216ft.). Beim uniiberwachten Lernen gibt es keine
Vorgabe fiir richtig oder falsch. Aber es gibt Parameter, die optimiert werden kénnen, wie
die Anzahl der Cluster. Mithilfe der Elbow-Methode nach Formel 2.3 ldsst sich die optimale
Anzahl von Clustern darstellen. Sie untersucht die Summe der quadratischen Abweichung
innerhalb der Cluster fiir verschiedene Clusteranzahlen K (Raschka, Mirjalili und Lorenzen,
2018, S. 362f1).

K
Inertia = Z Z |z — pg]|* mit K € N (2.3)
=1 J}ECi

Wobei x fiir den einzelnen Datenpunkt und p; fiir den Schwerpunkt des Clusters Cj steht.

|z — pal|?
dem die Inertia signifikant weniger stark abnimmt, ist der ,Knick®” und wird als optimale

ist die euklidische Distanz des Punktes zum Clusterschwerpunkt. Der Punkt, an

Clusteranzahl betrachtet. Dies ist eine effektive Optimierungsmethode zur Clusterbildung.

Evaluationsmetriken Je nach Lernverfahren und Problemstellung gibt es unterschiedliche
Evaluationsmetriken, die angewendet werden kénnen, um die Giite des Modells zu bewerten. In
der Tabelle 2.1 wird eine Auswahl von popularen Metriken aufgelistet. Bei der Regression wird
die Differenz zwischen dem tatsachlichen Wert y und der Vorhersage ¢ der Zielvariable (Label)
berechnet, um einen Fehler, auch Residuum genannt, zu ermitteln. Diese Residuen werden
verwendet, um verschiedene Metriken zu ermitteln, die eine Aussage tiber die Genauigkeit des
Modells geben. Die Metriken R2 und Mean Absolute Error (MAE) sind leicht interpretierbar, aber
spiegeln nicht immer ideal die Modellleistung wider. MSE und Root Mean Squared Error (RMSE)
bestrafen grofiere Fehler mehr, was vorteilhaft ist, wenn grofie Fehler problematisch sind.
Ein Nachteil ist jedoch ihre geringere Interpretierbarkeit sowie ihre hohere Empfindlichkeit
gegeniiber Ausreiffern. Durch die Substitution von y = log(1 + y) bei MSE und RMSE wird
der Logarithmus eingesetzt, der den Effekt von Ausreiffern mildert. Daraus resultieren neue
Metriken wie der RMSLE oder MSLE. Dieser Wert lisst sich ebenfalls schwer interpretieren
und ist nicht fiir negative oder Nullwerte geeignet, da der Logarithmus fiir diese Werte nicht
definiert ist. Je nach Zielgruppe ist die richtige Kombination von Metriken wichtig (Raschka,
Mirjalili und Lorenzen, 2018, S. 335ff.).
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2. Grundlagen

Abkiirzung Name Formel Ziel

MSE Mittlerer quadratischer Fehler 2 >0 | (1, — §i¢)? minimieren
RMSE Standardfehler der Regression \/ % Yoy (Y — Ge)? minimieren
MAE Mittlerer absoluter Fehler LS e — B¢l minimieren
R? (auch ,R2“) Bestimmtheitsmaf} 1-— Lz iz moglichst 1

i (Yi—9)?

Tabelle 2.1.: Auswahl géngiger Evaluationsmetriken fiir Regressionen unter Verwendung des
tatsachlichen Wertes 3 und des errechneten Wertes 7.

Bei den Klassifikationen wird eine Konfusionsmatrix als Kontingenztabelle verwendet, um
die Héufigkeit der vorhersagten und tatsichlichen Klassen gegeniiberzustellen. Fiir die binare
Klassifizierung mit zwei Klassen sieht die Matrix aus wie in Abbildung 2.5a. Dabei kénnen
Vorhersagen ,True® oder ,False” sein. Bei zwei Klassen ,Positive® und ,Negative“ ergeben sich
damit vier mogliche Zusténde: True Positive (TP), False Positive (FP), True Negative (TN), False
Negative (FN). Der Zustand TP steht fiir eine korrekte Vorhersage der, hier, positiven Klasse,
wohingegen FP fiir eine falschlicherweise positiv zugeordnete Klasse steht. Aus der Tabelle

2.5b werden die Metriken zur Bewertung eines Klassifizierungsmodells aufgelistet.

Vorhersagte Klasse Name Formel
=P+ |N
PN s : AcCuracy  prx s FpN
Positive Negative AN+ EE 4
Aef TP
Precision  7p 7p
[
Z Gt TP
& | Positive TP FN Recall TP+FN
= i TN
2 Specificity 77 Fp
= . Precision-Recall
B Negative FP TN F1-Score 2: Precision+Recall
= (N) ; 1 _7p TN
E ROC-AUC 0 TPIFN d(1 7TN+FP)
(a) Konfusionsmatrix (b) Auswahl an Klassifikationsmetriken

Abbildung 2.5.: Auswahl giangiger Metriken fiir Klassifizierung mit zusammenhangender Kon-
fusionsmatrix.

Die Accuracy lasst sich einfach interpretieren und ist geeignet, wenn Klassen gleichméflig
verteilt sind. Precision (Préazision) ist geeignet, um die Leistung fiir FP-Flle und Recall (Sensiti-
vitat) um TP-Félle aufzuzeigen. Eine Metrik alleine wird zur Beurteilung des Modells nicht

empfohlen. Besser ist der F1-Score, der das harmonische Mittel aus Precision und Recall bildet.
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Der F1-Score ist aufgrund der Gewichtung schwer interpretierbar. Die Receiver Operating Cha-
racteristic - Area under Curve (ROC-AUC) ist der Flicheninhalt unter der ROC-Kurve, die die
True-Positive-Rate (Recall) und False-Positive-Rate (1 - Specificity) darstellt. Der Wert ist gut
geeignet fiir Modelle mit unausgewogenen Klassenverhiltnissen, ist aber schwer zu interpretie-
ren und liefert nur eine relative Qualitit. Die bisherigen Bewertungskriterien bezogen sich auf
binére Klassifizierungen mit nur zwei Klassen. Mithilfe einer One-vs.-All Mittelwertbildung
lassen sich die Metriken auch auf Problemstellungen mit mehreren Klassen erweitern (Raschka,
Mirjalili und Lorenzen, 2018, S. 220ff.).

Das uniiberwachte Lernen hat kein Label in ihren Datensitzen. Daher werden andere
Metriken zur Beurteilung der Clustergiite eingesetzt. Eine gingige Metrik ist der Silhouette-
Koeffizient sc. Dieser bewertet die Qualitdt der Clusterbildung fiir verschiedene Anzahlen von
Clustern. Das Bewertungskriterium lasst sich leicht berechnen und wird in Formel 2.4 definiert
(Raschka, Mirjalili und Lorenzen, 2018, S. 363).

1 ! dist(B, 0) — dist(A4, o) L
°C T ne (;S(O) " ne Z; max(dist(B, 0), dist(A, 0)) sorslo) € =] @4

Dabei wird dist(A, o) als mittlerer Abstand zu allen anderen Objekten des Clusters A und
dist(B, 0) als mittlerer Abstand zu den Objekten des nichstgelegenen Clusters verwendet. Die
Differenz wird durch den grofleren Abstand der beiden Abstinde normiert, sodass der Wert
der Silhouette s zwischen -1 und 1 liegt. Der Koeffizient entspricht dem arithmetischen Mittel
aller n¢ Silhouetten s des Clusters C'. Der Wertebereich ist daher identisch zur Silhouette. Das
Kriterium ist einfach zu interpretieren, da der Wert 1 einem gut getrennten Cluster entspricht.
Die Berechnung kann bei grofieren Daten aufwendig sein, da paarweise Distanzen ermittelt
werden missen (Raschka, Mirjalili und Lorenzen, 2018, S. 3621f).

Evaluationsmethodik Alle vorgestellten Metriken aus dem iiberwachten und uniiberwach-
ten Lernen kénnen im BML, aber auch im OML angewendet werden. Nur die Berechnung der
Metriken unterscheidet sich. Beim BML werden die Metriken auf dem gesamten Datensatz
berechnet. Beim OML wird die progressive Validierung verwendet, die beispielhaft in Abbildung
2.6a dargestellt ist und schematisch in Abbildung 2.4b erklart wird. Zunachst wird fiir einen
ankommenden Datenpunkt die Vorhersage mit dem Modell § = f(x) berechnet. Im néachsten
Zeitschritt wird die Grundwahrheit y herangezogen. Mit dem tatsachlichen Wert y und der
Vorhersage ¢ wird dann die Metrik und das Modell aktualisiert. In Abbildung 2.6b wird dieser

Vorgang der verzogerten progressiven Validierung dargestellt. Das Eintreffen der tatsichlichen
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2. Grundlagen

Werte y wird um einen Delay d verzogert. Dadurch wird zwar die Prognose berechnet, aber
erst zu einem spateren Zeitpunkt gepriift, wie gut die Vorhersagen waren (Evaluation). Da-
mit wird das Modell nicht sofort aktualisiert, was fiir einen produktiven Betrieb wichtig ist
(Bartz-Beielstein und Bartz, 2023, S. 46f).

Zeit > Zeit >
Tl || | B || B|50|5n T |\ | B |4 |H|B(4H|% |1
Y| w v ) u Y| w|uw < ) < Y @elay n=2 |
i Lﬂjﬂ urs) ny ‘kﬂ/rl) J | A o] A [ 10
Metrik Metrik
(a) Evaluation mit ¥ und  ohne Delay (b) Evaluation mit ¥ und § mit Delay = 2

Abbildung 2.6.: Konzept der Progressiven Validierung mit einem Datensatz der Grofle 4.

Die Aktualisierung der Metriken innerhalb der Progressiven Validierung berechnet sich
durch einen kumulierten Durchschnitt, dem Weighted Cumulative Moving Average (WCMA),
der in Formel 2.5 beschrieben wird:

Wt(wt) = W;i_1 +w mitwy € [0, 1]

0 fallst =1 (2.5)

se+1(Teswe) = St + i (zs — s¢)  sonst
t Wt(wt) t t

Dabei steht z; fiir die Bewertung des neuen Datenpunktes zum Zeitpunkt ¢. Mit W; werden
die Gewichte w; iiber die Zeit kumuliert. Die Differenz zwischen dem aktuellen und dem
vorherigen Wert wird mit dem Gewichtungsfaktor % multipliziert und zum alten Wert
kumuliert. Wenn alle w; = 1 sind, entspricht die Formel 2.5 dem klassischen Cumulative
Moving Average (CMA). Alternative Verfahren fiir OML sind unter anderem der Exponentially
Weighted Moving Average (EWMA) mit einer exponentiellen Glattung, ohne Kumulierung;:
s¢11(x) = a-z¢+ (1 — ) - s§. Je hoher der Wert von @ € [0;1], desto stiarker wird der
neueste Datenpunkt gewichtet. Ein Vorteil beider Ansétze ist, dass lediglich der aktuelle und
vorherige Datenpunkt benétigt wird, was Speicherplatz spart (Finch, 2009).

2.3.4. Drifterkennung und -behandlung

Mit der Zeit konnen ML-Modelle f : X — Y mit 2; € X und y; € Y unzuverlassig werden,

da die von ihnen gelernten Beziehungen sich verandern kénnen (,,Drift”). Eine Ubersicht der
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Driftarten wird in Tabelle 2.2 aufgezeigt. Die Beziehung zwischen X und Y entspricht einem
Konzept: P,(X NY) = P(Y|X) - P(X) = P,(X]Y) - P,(Y). Die A-posteriori Wahrschein-
lichkeit P,(Y'|X') entspricht der Verteilung der Zielwerte Y fiir die gegebenen Merkmale X
zum Zeitpunkt t. Das P(X|Y) steht fiir das Auftreten der Merkmale X unter der Bedingung
des Zielwertes Y. P(X) steht fiir die Evidenz der Merkmale und P(Y") fir die A-priori Wahr-
scheinlichkeit der Zielwerte. Ein Feature-Drift beschreibt die Veranderung der unabhéngigen
Variable X bei gleichbleibendem Konzept. Fiir ein Label-Drift verhélt es sich gleich, nur dass
es die abhéngige Variable Y betrifft. Verandert sich die A-posteriori Wahrscheinlichkeit, kann
das Modell keine zuverlassigen Vorhersagen zu den Beziehungen machen, was Konzeptdrift
genannt wird. Ein Drift kann zwischen zwei Zeitpunkten ¢ und ¢ + 1 oder einer Zeitperiode

Lty to) Und £, | 1] auftreten (Moreno-Torres et al., 2012).

Dirftart Bedingungen

Feature-Drift Pt(X) 75 Pt+1(X) VAN Pt(Y|X) = Pt+1(Y’X)

Label-Drift P(Y)# Pu(Y)ANP(Y|X) = P1(Y|X)

Konzeptdrift P(Y|X) # P11 (Y|X) = P(YNX)#Pp(YNX)

Tabelle 2.2.: Ubersicht der Driftarten und deren Bedingungen.

Zur Veranschaulichung der verschiedenen Driftarten kann die Wohnfldchenberechnung
genutzt werden. Feature-Drift tritt auf, wenn die Berechnung der Wohnflache verdndert wird,
die Einfluss auf die Verteilung des gleichnamigen Merkmals hat. Steigt der durchschnittliche
Verkaufspreis, der vorhergesagt werden soll, und zwar unabhangig von den Merkmalen, handelt
es sich um Label-Drift. Exemplarisch dafiir wire eine Gesetzesdnderung, die den Einbau von
Wirmepumpen in Neubauten vorschreibt, was Einfluss auf das bestehende trainierte ML-
Modell zur Vorhersage von Warmepumpenanfragen hétte und damit zu Konzeptdrift fiihrt.

Die Erkennung von Drift kann in zwei Kategorien eingeteilt werden: explizite und implizite
Verfahren. Die explizite Drifterkennung ermittelt mithilfe des Labels Modellmetriken, die durch
das Verfahren im Laufe der Zeit tiberwacht werden. Dieses Verfahren kann gut im iiberwachten
Lernen eingesetzt werden. Bei der impliziten Drifterkennung verlassen sich die Algorithmen
auf die Eigenschaften der Merkmalswerte, da die Daten nicht gelabelt sind. Dadurch erzeugen
sie haufiger Fehlalarme, sind aber niitzlich fiir Anwendungen im uniiberwachten Lernen
(Bartz-Beielstein und Bartz, 2023, S. 2711).

Drifterkennung kann in BML und OML durch statistische Tests umgesetzt werden. Das
Adaptive Windowing (ADWIN) wird fiir explizite Drifterkennung angewendet und verwaltet
ein gleitendes Fenster ¥ konfigurierbarer Lange. Innerhalb des Fensters werden kiirzlich

beobachtete Datenpunkte gespeichert. Das Verfahren teilt das Fenster in zwei Teilfenster
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Wy und ¥; und vergleicht ihre Mittelwerte. Ein statistischer Hypothesentest priift, ob die
Differenz zwischen den Mittelwerten signifikant ist. Falls ja, wird davon ausgegangen, dass
ein Konzeptdrift aufgetreten ist, und das altere Fensterteil wird entfernt. Der Parameter von
ADWIN dafiir ist die Konfidenzgrenze 4, die angibt, wie viel Vertrauen in die Ausgabe des
Algorithmus gegeben werden soll. Das Verfahren kann gut bei abrupten Anderungen verwendet
werden (Bifet, 2017).

Gleitendes Fenster W
Je

—d Schitzer d'—> r A
Austritt Eintritt
Ale . B R R
Detektor arm-> Zeitpunkt tn 1 2 ner el " <_Zeitpunkt t

C . 1 . )

Speicher W R
Drift priifen Referenzwerte
(a) Generelle Drift-Detektor Architektur (b) Speicherstrategie des KSWIN-Verfahren

Abbildung 2.7.: Architektur von Detektoren zur Erkennung von Verdnderungen mit einer
beispielhaften Speicherverwaltung von Kolmogorov-Smirnov Windowing.

Die Kolmogorov-Smirnov Windowing (KSWIN) Methode basiert auf dem nicht-parametrischen
statistischen Kolmogorov-Smirnov (KS) Test, der die Ahnlichkeit zweier Verteilungen vergleicht,
indem er den maximalen Unterschied zwischen ihren kumulativen Verteilungsfunktionen
misst. Das KSWIN nutzt ein gleitendes Fenster U der Grofle n wie in Abbildung 2.7b dargestellt.
Die letzten r € U Stichproben des gleitenden Fensters reprasentieren die kumulative Vertei-
lungsfunktion der Referenz-Stichproben aus dem é&lteren Fensterfragment Fp. Das neuere
Fragment Fy beinhaltet die kumulative Verteilungsfunktion der Stichproben bis n — r, die
auf Drift getestet werden sollen. Ein Konzeptdrift ist in den Daten gegeben, wenn folgende

Bedingungen aus Formel 2.6 gegeben sind (Raab, Heusinger und Schleif, 2020):

—In(a)

dist(R, W) > mit dist(R,W) = sup|Fy(x) — Fr(x)| (2.6)

r

dist(R, W) steht fiir den maximalen Abstand beider Verteilungsfunktionen Fyy (z) und
Fgr(x). Der Parameter « steht fiir den Schwellenwert des statistischen KS-Tests. Je grofler das
Fenster ist, desto besser eignet es sich fiir inkrementelle Drifts mit schwankenden Anderungen
und vice versa (Raab, Heusinger und Schleif, 2020).

Die Architektur von Drifterkennungsmethoden wie ADWIN und KSWIN ist in 2.7a dar-
gestellt. Er besteht aus einem Speicher, wo Stichproben und relevante statistische Daten zwi-
schengespeichert werden. Der Schdtzer berechnet die benétigten Statistiken wie Mittelwert

oder Verteilungen. Der Drift-Detektor prift die Bedingung, ob eine Veranderung vorliegt oder
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nicht. Dafiir verwendet er die Ausgaben des Schitzers und kann zusétzlich auf den Speicher
zuriickgreifen (Bifet, 2017). Erkennt der Algorithmus eine signifikante Anderung in der Vertei-
lung der Daten aus dem Datenstrom oder in einer Modellmetrik, dann l6sen er einen Alarm
aus, um eine Modifikation der Algorithmen zu initiieren. Bei einer abrupten Anderung muss
ein neues Modell trainiert werden. Bei schrittweisen Anderungen konnen die Parameter 6
auch angepasst werden (Bartz-Beielstein und Bartz, 2023, S. 25f).

Die grof3te Herausforderung bei OML-basierten Verfahren ist das mégliche katastrophale
Vergessen. Es entspricht dem Phanomen, dass ein Modell beim inkrementellen Lernen neuer
Daten seine Fahigkeit verliert, vorher gelernte Informationen korrekt zu nutzen. Das OML bietet
Moglichkeiten, um dem Problem entgegenzuwirken: Frithere Daten werden gespeichert und
spéter in das Training einbezogen (Replay Memory) oder es werden Regulierungen eingefiihrt,
um drastische Anderungen (Drift) durch Gewichte zu minimieren (Bartz-Beielstein und Bartz,

2023, S. 41f). Moglich wire auch verschiedene OML-Experten zu trainieren.

2.4. Expertenmischung

Die Mixture of Experts-Architektur wurde erstmals von Jacobs et al. (1991) in der Arbeit
~Adaptive Mixture of Local Experts” eingefiihrt. MoE verfolgt das Prinzip des Teile- und Herrsche
(engl. Divide and Conquer). Bei dieser Strategie wird ein Problem in Teilprobleme zerlegt,
diese einzeln geldst und anschlieffend zu einer Gesamtlosung zusammengesetzt (Ernst, 2000, S.
435f.). Jacobs et al. haben ein neues iiberwachtes Lernverfahren fiir Systeme vorgestellt, das
aus vielen unterschiedlichen neuronalen Netzen besteht. Jedes dieser Expertennetzwerke lernt
dabei eine Teilmenge der gesamten Menge an Eingangsdaten in Trainingsfillen zu verarbeiten
(Jacobs et al., 1991).

2.4.1. Neuronale Netze

Ein Mehrschichtiges Perzeptron (MLP) ist ein (tiefes) Kiinstliches Neuronales Netz (KNN), das aus
mehreren Schichten von kiinstlichen Neuronen besteht und zur Lésung von Klassifikations-
und Regressionsaufgaben verwendet wird. Die Architektur besteht grundlegend, wie in Ab-
bildung 2.8 gezeigt, aus einer Eingabeschicht, optionalen verborgenen Schichten und einer
Ausgabeschicht. In jeder Schicht befinden sich ein oder mehrere kiinstliche Neuronen. Die
Eingabeschicht enthalt die Merkmale und Zielwerte aus dem Datensatz Ds. Die Ausgabeschicht
die berechneten Prognosen ;. Dazwischen befindet sich eine oder mehrere Schichten, in denen
jedes Neuron alle Neuronen der vorherigen Schicht iber gewichtete Verbindungen w;; € R
und mit einem Bias-Wert b; € R verbindet (Raschka, Mirjalili und Lorenzen, 2018, S. 385ff).
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S Verbindung
Kiinstliches ‘ “ (Gewicht)

Neuron ™

\_Eingabeschicht \Verborgene Schjichten (hier: 2) ) |Ausgabeschicht

Abbildung 2.8.: Aufbau eines mehrschichtigen kiinstlichen neuronalen Netzwerks.

Das MLP lernt in mehreren Epochen und berechnet zu Beginn einer Epoche, dem Feed
Forward, alle gewichteten Summen: z; = ) - | w;;x; + b;. Fiir ein Neuron muss eine Akti-
vierungsfunktion ausgewéhlt werden, die das Ergebnis z; der gewichteten Summe verarbeitet.
Die Ausgabe der Aktivierungsfunktion o(z) entscheidet iiber die Intensitit des Neurons im
gesamten Netzwerk. Eine gingige Aktivierungsfunktion ist ReLU: o(2) = max(0, z). Nach
Durchlauf aller Schichten wird riickwiarts die Backpropagation durchgefiihrt. Dabei werden
die Gewichte w;; und der Bias-Wert b; so angepasst, dass ein Fehler einer Verlustfunktion
L(y(z), y(z)) moglichst minimiert wird. Fiir die Regression wire der Mean Squared Error (MSE)
mit 23" | (y; — §;) oder fiir die Klassifikation die Kreuzentropie — Y 1 ; Zj{:l Yij log(¥ij)
fir K-Klassen moglich. Allgemein wire das Cross Entropy (CE) fiir binédre Klassen Binary Cross

Entropy (BCE). Dafiir berechnet Stochastic Gradient Descent (SGD) die Ableitungen der Ver-
OL(y(x),9(x))
Wij

gilt. Das n steht fir die Lernrate, ein

lustfunktion £ fiir einen aktuellen Wert, womit das neue Gewicht w;; < w;; — 7

ist und fiir den neuen Bias-Term b; < b; — naﬁ(y )

Hyperparameter, der die Gréfle der Lernschritte festlegt. Dieses klassische Netzwerk, oh-
ne Riickkopplungen und Schleifen, wird auch Feedforward Neural Network (FNN) genannt
(Raschka, Mirjalili und Lorenzen, 2018, S. 385ff). Fiir das OML kann das KNN iterativ und ohne
begrenzte Speicheranforderung mit Datenstrom-Datenpaaren trainiert werden. Das Uberschrei-
ben von Gewichten in KNN fiihrt zum katastrophalen Vergessen. OML bietet Mechanismen, die
das Modell stabiler und robuster gegeniiber adaptiven Veranderungen im Datenstrom machen
(Bartz-Beielstein und Bartz, 2023, S. 41).

Neben dem FNN gibt es weitere Arten, wie RNN und CNN. Bei einem Recurrent Neural
Network (RNN) sind Schleifen in den Verbindungen enthalten, sodass es Informationen aus

fritheren Zustidnden speichern und zeitliche oder sequenzielle Daten wie Texte oder Zeitreihen
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verarbeiten kann. Ein Convolutional Neural Network (CNN) ist ein neuronales Netzwerk, das
Faltungsoperationen nutzt, um raumliche Hierarchien in Daten, insbesondere bei Bildern, zu

erfassen und Muster wie Kanten oder Formen effizient zu erkennen.

2.4.2. Experten mit Gating-Netzwerk

Das Grundprinzip von MoE wird durch Abbildung 2.9 erklart. Es existiert ein Eingabevektor
x € R™, der die Eingangsdaten fiir das MoE-Modell beinhaltet. Weiterhin gibt es eine Menge
von N Experten, die als Funktionen die Eingabedaten: { E1(z), E2(), ..., Enx(z)} bekommen.
Ein Experte erzeugt fir die Eingangsdaten z eine Ausgabe y; = E;(z). Ein Experte kann unter
anderem ein lineares Modell als neuronales Netz sein: y; = E;(z) = 6;x + b;. Dabei ist 6; die
gewichtete Matrix des i-ten Expertenmodells und b; ist der Bias.

Daneben gibt es noch Gating-Netzwerke G(x), eine Funktion, haufig auch ein neuronales
Netz, das als Ergebnis eine Menge von Gewichten fiir jeden einzelnen Experten zuriickgibt:
{wi(z), w2(z),...,wn(z)}. Der Einsatz von mehreren Gating-Netzwerken pro MoE wird

Multi-Gating genannt und wird haufig im Kontext des Multi-Task-Lernen eingesetzt.

\ &) Multiplikation
- Gating Netzwerk G(z)
: Trainingsa ]
- Traini uswahl==4-====c-f---ccegoconnnnd
. wy(z)
yI )‘ X } . P
)

YN

Abbildung 2.9.: Generelle Architektur eines Mixture of Experts Ansatzes.

Angenommen, das Gating-Netzwerk sei parametrisiert mit einer Gewichtsmatrix ¢ und
einem moglichen Bias-Term b, dann sei g; () = ¢;x+b,, die Ausgabe fiir jeden i-ten Experten.
Das Gating-Netzwerk entscheidet iiber die Hohe des Beitrags jedes Expertenergebnisses. Dies
wird in der Regel mit einer Softmax-Funktion wie aus Formel 2.7 erreicht, um sicherzustellen,
dass die Gewichte eine Wahrscheinlichkeitsverteilung bilden:

21



2. Grundlagen

e9i(x) e®ir+bg;
w(z); = = = firi=12,...,N (2.7)

Z;‘V:I e95 () Z?Ll ePittbg;

Dabei reprasentiert jedes w; € [0, 1] den anteiligen Beitrag des i-ten Experten als Gewicht.
Die Summe aller Gewichte muss eins ergeben: X w;(z) = 1. Am Ende werden die Ausgaben
der einzelnen Experten mit den Gewichten der dazugehorigen Experten aus dem Gating-
Netzwerk multipliziert. Zusammengesetzt ergibt sich die Gesamtprognose y fiir die Eingabe z

der Mixture of Experts Netzwerk aus Formel 2.8:

N N e®iT+by;
y(x) = Ei(x) wi(x) =) (Biz+1b)- SV e (2.8)

i=1 i=1 j=1

Anhand des Giberwachten Lernens wird im Training mit der Ausgabe des Netzwerks und dem
tatsachlichen Wert trainiert. Dabei kann sowohl das Gating-Netzwerk als auch die Experten
mit gradientenbasierten Optimierungsmethoden trainiert werden, wie SGD. Die Verlustfunk-
tion £ kann etwa der mittlere quadratische Fehler MSE bei Regressionen oder einer der
Kreuzentropien bei Klassifizierung sein. Es sind auch andere Verlustfunktionen méglich. Das
Experten-Netzwerk kann ein beliebiges KNN sein. Das Gating-Netzwerk entscheidet durch den
gewichteten Beitrag und mithilfe der Verlustfunktion in der Backpropagation, wie stark ein
Experte genutzt wird. Damit spezialisieren sich die Experten mit der Zeit. Ein MoE wird durch

die Hyperparameter, Grofe sowie Anzahl der Experten- und Gating-Netzwerke charakterisiert.

2.4.3. Variationen von Gating-Netzwerken

Es gibt verschiedenste Ansétze zur Auswahl von Experten, die im Gate umgesetzt werden
koénnen. In der Tabelle 2.3 werden die bekanntesten Gating-Ansitze mit ihren Vorteilen und

Nachteilen aufgefiihrt.

Name Anz. Experten Vorteil Nachteil

Hard-MoE 1 Geringer Aufwand Schlechtere Leistung
Soft-MoE 1.N Hohe Flexibilitat Hoher Aufwand
Dense-MoE N Genaue Vorhersage Mogliche Redundanz
Sparse-MoE Top(k) Effizient, Skalierbar Komplex, Uberanpassung
Adaptive-MoE  x; — n¢ Effektiv, Flexibel Komplex, Latenz

Tabelle 2.3.: Gating-Architekturen mit Vor- und Nachteilen.
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Ein moglicher Ansatz ist Hard-MoE. Im Hard MoE-Ansatz wird nur eine begrenzte Anzahl
(haufig lediglich einen) der verfiigbaren Experten fiir die Verarbeitung eines Inputs aktiviert.
Das Gate wahlt basierend auf den Eingaben einen spezifischen Experten aus und deaktiviert
die anderen. Dafiir wird das Gating-Netzwerk als One-Hot-Encoding-Vektor trainiert, der den
passenden Experten auswihlt. Der Rechenaufwand ist gering, da hier nur ein Experte fiir
eine Aufgabe aktiviert wird. Dadurch ist es auch moglich, einfach auf eine héhere Anzahl an
Experten zu skalieren. Ein Nachteil kénnte darin bestehen, dass die Leistung und Konvergenz
darunter leidet, wenn nur ein einzelner Experte ausgewahlt wird (Jacobs et al., 1991).

Eine alternative Gating-Architektur dazu ist Soft-MoE. Dort werden mehrere Experten
gleichzeitig aktiviert und genutzt. Das Gate verteilt dabei Gewichtungen auf alle Experten
mithilfe der Softmax-Funktion, sodass jede Experteneinheit einen Anteil an der Verarbeitung
eines Inputs hat. Da mehrere Experten aktiviert werden, kann das Modell durch eine breitere
Wissensbasis oft préazisere Vorhersagen treffen. Die gleichzeitige Aktivierung und Gewich-
tung aller Experten fithrt zu einem héheren Rechenaufwand und erhdhter Speichernutzung
(M. I. Jordan und R. A. Jacobs, 1994). Bei den Dense-MoE werden alle Experten aktiviert. Das
ermoglicht das Training von mehreren spezialisierten Modellen, miindet aber gleichzeitig,
ahnlich wie bei Soft-MoE, in hohen Rechenaufwand und Speicherbedarf. Zusatzlich besteht
die Gefahr der Redundanz, wenn immer alle Experten trainiert werden.

Eine Mischung aus beiden Architekturen sind die Sparsley Activate MoE (kurz: Sparse-MoE).
Sparse-MoE aktiviert nur eine geringe Anzahl der verfiigbaren Experten pro Eingabe, um
Rechenaufwand zu sparen. Diese Architektur trainiert mit Rauschen ein sparsames Routing,
wobei eine geringe Anzahl von den besten k-Experten abhingig von der Eingabe aktiv bleibt.
Die verbliebenen Experten werden dann mit Softmax, wie in Soft-MoE, gewichtet. Diese
Architektur hat eine hohe Effizienz, da nur ein kleiner Teil der Experten aktiv ist, was die
Rechenkapazitit und den Speicherbedarf reduziert. Auflerdem kénnen grofle Modelle mit
einer Vielzahl von Experten ohne hohe Kosten betrieben werden. Eine Herausforderung ist die
Komplexitit eines effizienten Routings des Gating-Netzwerks. Auflerdem gibt es bei zu klein
gewihlten k das Risiko, dass einige Experten zu stark trainiert werden (Shazeer et al., 2017).

Bei dem Adaptive-MoE passt sich die Anzahl aktivierten Experten dynamisch basierend
auf den Anforderungen einer Eingabe an, ohne eine konstante Vorgabe k. Dies bedeutet,
dass einfache Eingaben nur wenige Experten nutzen, wihrend komplexe Eingaben mehrere
Experten aktivieren. Dies schafft eine gute Mischung aus Effizienz und Genauigkeit. Ressourcen
werden nur dann intensiv genutzt, wenn die Eingabe es erfordert. Adaptive MoE-Modelle sind
flexibler und kénnen Ressourcen entsprechend der Eingabe anpassen. Ein Nachteil ist das

komplexe Design sowie das Training des adaptiven Gating-Netwerks. Ein weiterer Nachteil
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ist, dass die Berechnungsverzogerungen von der Anzahl aktiver Experten abhingen, was die
Latenz unvorhersehbar macht (J. Li et al., 2023).

2.4.4. Verkettung von MoE

Werden MoE-Modelle hierarchisch verkniipft oder verschachtelt, wird dies als Hierarchisches
Mixture of Experts (HME) betitelt. Eingefiihrt wurde diese baumartige Architektur von M. I.
Jordan und R. A. Jacobs (1994). In Abbildung 2.10 ist ein hierarchisches Mixture of Expert
Modell der Hohe h = 4 mit zwei Experten-Netzwerken pro MoE dargestellt.
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Abbildung 2.10.: Architektur eines Hierarchischen MoE als bindrer Baum mit vier Ebenen.

Aufgebaut sind die HME als binire Baume. Sie besitzen 2"—1 MoE (Rechtecke) in den Blittern

2"—1 _ 1 alleinstehende Gating-Netzwerke (Kreise) in den Knoten (Gumm, Sommer

und
und Hesse, 2011, S. 387f). Das j-Experten-Netzwerk des i-ten MoE kann {iber das Tupel E; ;
lokalisiert werden. Die Ergebnisse der MoE werden mit den alleinstehenden Gating-Netzwerken
bis zum Wurzelknoten gewichtet aufsummiert. In der obersten Ebene, dem Wurzelknoten,
wird das Endergebnis y ermittelt.

Das Training der probabilistischen Modellierung wird durch zwei Schritte der Erwartungs-
Maximierung (EM) umgesetzt. Wie in Abbildung 2.10 dargestellt, verlauft das Training bottom-
up. Jedes MoE generiert je ein Zwischenergebnis 1; mit der bedingten Wahrscheinlichkeit
p(z¢; 0), mit den Eingangsdaten x4, den tatsichlichen Werten y; und dem Parameter 6. Die
Gewichte der Gating-Netzwerke w fiihren iiber den Satz von Bayes' zum Erwartungswert
7i,; (Schritt ,E¥). Die neuen Parameter fiir §* und ¢* werden durch die Maximierung der

Log-Likelihood-Funktion (Schritt ,M“) nach Formel 2.9 abgeleitet.

'Satz von Bayes: P(A|B) = %
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k steht fiir das Gating-Netzwerk in dem Knoten und ! fiir die Ebene des biniren Baumes.
Dieser Ansatz ist effizient bei grofien Modellen, da hierarchische Strukturen erlauben, nur
relevante Experten zu aktivieren, was die Rechenleistung optimiert. Ein Vorteil ist auch,
dass Experten in verschiedenen Ebenen auf spezifische Teilaufgaben spezialisiert werden
konnen. Die Umsetzung von Hierarchischen-Gates ist komplex und zeitgleich auch schwierig
zu trainieren (M. L. Jordan und R. A. Jacobs, 1994; M. Jordan und R. Jacobs, 1991).

Ein dhnlicher Ansatz, der MoE in Ebenen einsetzt, sind die Deep Mixture-of-Experts (DMoE).
Statt einer baumartigen Struktur wird eine lineare Verkettung, wie in Abbildung 2.11, vorge-
nommen. Die Forscher Eigen, Ranzato und Sutskever (2014) verwenden die Ausgabe des ersten

MoE als Eingabedaten des nachsten MoE und so weiter. Daraus ergibt sich folgender Ansatz:

T =Yi1 = ¥i = fi(yi-1)-

7S Gate gl(z) ) —W> > -

Eingabedaten 1

» vz |—>» .. —>» Softmax(y)

e e
MoE in Ebene 1 MoE in Ebene 2

Abbildung 2.11.: Verkettung von MoE in Deep-MoE.

Jedoch fiihrt der Einsatz von SGD zu einem degenerierten lokalen Minimum, da Experten,
die in den ersten Ebenen bevorzugt werden, durch steigende Gating-Gewichte immer mehr
dominieren. Zur Minderung dieses Effekts, wird das Gating-Gewicht eines Experten i der
Ebene [ auf 0 gesetzt gf(a:t) = 0, wenn die relative Gating-Zuweisung einen Schwellenwert
m iibertritt: GL(t) — G!(t) > m. Dabei entspricht Gi(t) = 3k _, g (xw) dem aufsummierten
Gating-Gewicht bis zum Zeitpunkt ¢ des Experten i in der Ebene [ und G!(t) = % Zf; LGL(1)
dem Ebenen-Durchschnitt seiner Experten. Die DMoE bilden eine Grundlage fiir den Einsatz

von MoE in Transformern.
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2.4.5. Einsatz in Transformern

MoE werden immer haufiger in der Transformer-Architektur eingesetzt, aus denen beispiels-
weise Large Language Model (LLM) trainiert werden. Zu den bekanntesten LLM-Modellen
zdhlen GLaM von Google, NLLB- 200 von Meta AI und 8x7B von Mixtral Al Alle genannten
LLM nutzen Sparse-MoE mit £ = 2, um die besten zwei Experten fiir eine Eingabe auszuwihlen.
Das Modell von Meta nutzt zusitzlich eine hierarchische Struktur, wie in HME (N. Du et al.,
2022; Team et al., 2022; A. Q. Jiang et al., 2024). Ein Transformer besteht aus einem Encoder

und einem Decoder und wird mit der Abbildung 2.12 illustriert.
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Abbildung 2.12.: Transformer mit FNN (kursiv) ersetzt durch MoE. Hier: Sparse-MoE mit k = 1.

Der Encoder wandelt Eingabesequenzen, wie einzelne Worter eines Satzes, als Token in
einen kontinuierlichen Repréasentationsvektor um. Der Decoder wandelt diese Reprasentation
dann in eine Zielsequenz um. In der Einbettung werden die Token in numerische Vektoren
umgewandelt. Die Positionscodierung sorgt fiir die richtige Reihenfolge. In den Attention-
Ebenen wird die Beziehung zwischen dem Token zu allen anderen Token und sich selbst als
Ahnlichkeit berechnet. Dafiir wird die Abfrage (Q = XW®), der Schliissel (K = XW¥X) und
der Wert (V. = XWV) mit dem Eingangsvektor X und einer lernbaren Gewichtungsmatrix
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W verrechnet. Zwischen den Zeilen von K und den transponierten Spalten von Q wird das

Skalarprodukt angewendet. Der Softmax-Wert wird dann mit V multipliziert (Formel 2.10).

AttentionScore(Q, K, V) = Soft (Q'KT) 1% (2.10)
entionoscore s 5 =o0/tmax \ ———— .
Vdg

dy steht fur die Dimension der Schliissel (K). Ein anschauliches Beispiel ist der Satz ,Katzen
lieben Fisch®, bei dem errechnet wird, wie stark ,Katze® (Q) zu allen anderen Wortern (K) passt
(z.B. ,Fisch® ist relevanter als ,lieben®). Diese Relevanz beeinflusst dann, welche Informationen
(V) an ,Katze“ weitergegeben werden. In der Multi-Head Attention Ebene, werden mehrere
parallele Attention verwendet, um verschiedene Arten von Beziehungen zwischen Wortern zu
lernen. In einem traditionellen Transformer wiirde auf diesen Ebenen ein FNN folgen. In den
MoE-Transformern werden die FNN durch MoE ersetzt. Die Ergebnisse aller Ebenen werden
mit ihren jeweiligen urspriinglichen Eingabedaten iiber die Sprungverbindung addiert und
normalisiert. Das stabilisiert den Gradientenfluss durch das tiefe Netzwerk und verbessert die
Konvergenz des Trainings. Am Ende des Decoders ist es noch moglich, durch eine Softmax-
Ebene, die Prognosen ¢ als Wahrscheinlichkeitsverteilung auszugeben. (Vaswani et al., 2017,
Fedus, Zoph und Shazeer, 2022).

In der Abbildung 2.12 wird ein Switch Transformer nach Fedus, Zoph und Shazeer (2022) mit
einem Switch Routing verwendet. Diese sind eine Vereinfachung der Sparse-MoE von Shazeer
et al. (2017), da nur ein Experte (k = 1) pro Token gewihlt wird. Damit kann der Rechen-
aufwand fir das Gating und den Speicherplatz fiir Experten bei gleichbleibender Modellgiite
reduziert werden. Die verschiedenen Experten der Transformer-MoE konzentrieren sich jeweils
beispielsweise auf Satzzeichen, Verben, visuelle Beschreibungen und weiteres. Mit den redu-
ziert aktivierten MoE kann die Anzahl der Parameter durch neue Experten-Netzwerke stark
erhoht werden, ohne den linearen Anstieg der Berechnungskosten. Diese Experten-Netzwerke
konnen damit spezielle Aufgaben effektiver l6sen, da sie unterschiedliche Teile des Modells fiir
unterschiedliche Aufgaben verwenden. Kleinere Transformer-MoE erzielen damit genauere
Ergebnisse als vergleichbare oder grofiere Transformer Modelle ohne MoE (A. Q. Jiang et al.,
2024). Transformer-MoE nutzen Parameter der trainierten Experten-Netzwerke Pr und ge-
meinsame Parameter Pgeteilt, die immer genutzt werden, wie in den Attention-Ebenen. Mit der
Anzahl der aktiven Experten |E| ergibt sich die Gesamtanzahl: Pgesamt = Pgeteilt + | E| - PE-

27



3. Verwandte Arbeiten

Zunichst wurden die verwandten Arbeiten aus aktueller Forschung betrachtet. Dafiir wurde
eine systematische Literaturrecherche nach dem PRISMA-Schema von Page et al. (2021) durch-
gefithrt. Das Ziel der Literaturrecherche ist es, einen Uberblick iiber die aktuelle Forschung von
MoE im Kontext adaptiver ML-Verfahren zu erhalten. Dabei soll untersucht werden, wie Gating-
Verfahren in MoE eingesetzt werden konnen, um in adaptiven und aufgaben-agnostischen
Umgebungen angewendet zu werden. Aus diesen Erkenntnissen sollen offene Probleme, Her-

ausforderungen und Chancen abgeleitet werden, die niher in dieser Arbeit beleuchtet werden.

3.1. Systematische Literaturrecherche

Um die besten Ergebnisse wihrend der Recherche mit relevanten Veréffentlichungen zu
erhalten, wurden indizierte Literaturverzeichnisse verwendet. Diese Quellen erméglichen
eine breite Suche nach veroffentlichten Arbeiten, die andernfalls tibersehen werden wirden.
Bei der Veroffentlichung wurden nur peer-reviewed Artikel beriicksichtigt, weswegen nur
die Verzeichnisse IEEE Explore (IEEE), SpringerLink (SL), Elsevier Science Direct (SD) und
ACM Digital Library (ACM) durchsucht wurden. Fir ACM wurde auch die Literatur der
erweiterten Datenbank beriicksichtigt. Fur die Suche in den Datenbanken wurde einheitlich
die gleiche Suchanfrage verwendet und ist in englischer Sprache erfolgt, um eine méglichst

breite Literaturauswahl zu erhalten:

("Mixture of Experts" OR "MoE") AND ("Machine Learning"
OR "ML") AND ("Gating Network") AND ("Adaptive" OR "Task
agnostic")

Zuniachst wurden die Begriffe ,Mixture of Experts” und ,Machine Learning” zur Suchanfrage
hinzugefiigt, um Ergebnisse im Kontext des maschinellem Lernens und der Expertenmischung
zu erhalten. In vielen Arbeiten werden haufig Abkiirzungen verwendet. Angesichts dessen wur-
de ,MoE® fur Mixture of Experts und ,ML® fir Machine Learning erganzt. Zusatzlich wurden

noch die Begriffe ,Adaptive und ,Task agnostic“ im Suchtext hinzugefiigt, um Veroffentli-

28



3. Verwandte Arbeiten

chungen zu erhalten, die sich mit adaptiven oder aufgaben-unspezifischen Problemstellungen
beschéftigt haben. Ein zusétzlicher Fokus auf Gating-Netzwerke wird durch das Hinzufiigen
des Begriffs ,Gating Network® gelegt.

Die einzelnen Begriffe wurden mit den boolschen Operatoren verkniipft. Der Operator
fiur Disjunktion OR wird verwendet, um Begriffe und ihre Abkiirzungen gleichermafien im
Einschluss zu beriicksichtigen. Die verkniipfte Konjunktion AND verringert als Schnittmenge
der Teilsuchergebnisse das gesamte Suchergebnis. Damit die Reihenfolge der Worter innerhalb
der Begriffe richtig interpretiert wird, wurde mithilfe der Anfithrungszeichen eine Phrasensuche
durchgefiihrt. Der Zeitraum fiir die Verdffentlichung wurde auf vier Jahre festgelegt: 2021
bis 2024, um alle aktuellen Veroffentlichungen zu erhalten. Die Suche wurde im August 2024
durchgefiihrt.

Wihrend der Screening-Phase wurden Leitlinien auf Titel, Schlagworter und Zusammen-
fassung angewendet, um irrelevante Veroffentlichungen auszuschlieffen. Ergebnisse wurden

nicht weiter beriicksichtigt wenn:
1. Adaptives Lernen nicht im Sinne von kiinstlicher Intelligenz gemeint ist.
2. Reinforcement Learning eingesetzt wird.
3. Der Schwerpunkt nicht auf MoE liegt.

Suchergebnisse aus Proceedings wurden nicht explizit beriicksichtigt, da die veréffentlichten
Arbeiten bereits in den Suchergebnissen angezeigt werden. Diese Kriterien konnten verwendet
werden, um die Anzahl der Volltextarbeiten fiir die spatere Evaluierung zu reduzieren. Damit
ist ein Fokus auf potenziell relevante Arbeiten in der Phase Eligibility moglich.

In Abbildung 3.1a wird die systematische Literaturrecherche schematisch dargestellt. Die
initiale Suche mit der Suchanfrage ergab 178 Veroffentlichungen, wovon 90 aus der ACM Digital
Library, keine aus IEEE Explore sowie 63 aus Elsevier Science Direct und 25 von SpringerLink
kamen. Nach der ersten Sichtung der Titel, Schlagworter und Zusammenfassung konnten 141
Suchergebnisse entfernt werden. Davon waren 35 Duplikate, die als Redundanz in mehreren
Datenbanken auftauchten. In der nichsten Eignungsprifung wurden 22 irrelevante Arbeiten
aus den Suchergebnissen entfernt. In der finalen qualitativen und quantitativen Betrachtung
wurde die Auswahl auf 15 Artikel beschrankt, um den Rahmen der Arbeit nicht zu sprengen.

Wie in der Abbildung 3.1b zu erkennen, ist ein klarer Trend an MoE fiir adaptive und
aufgaben-agnostische Problemstellungen in den vergangenen vier Jahren zu erkennen. Vor
allem in den Jahren 2023 und 2024 ist die Anzahl der Veroffentlichungen stark gestiegen.
Im néchsten Abschnitt werden die ausgewahlten Artikel fiir die qualitative Analyse naher

betrachtet.
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Abbildung 3.1.: Ergebnisse der systematischen Literaturrecherche.

3.2. Qualitative Analyse

Die ausgewahlten 15 Veroffentlichungen wurden nach ihrem MoE-Schwerpunkt in die drei
Kategorien ,Gating-Ansétze®, ,Multi-Task® und ,,Adaptives Verhalten“ eindeutig zugeordnet.
Die Kategorien wurden aus den Schlagwortern Gating Network, Adaptive und Task
agnostic (fiir Multi-Task-Lernen) der oberen Suchanfrage abgeleitet. Eine Ubersicht der
Zuordnung nach Quelle zeigt Tabelle 3.1. Zuerkennen ist, dass viele Ansatze sich hauptséchlich
auf neue oder spezielle Gating-Ansatze konzentrieren. Mit einem speziellen Ansatz, dem Multi-
Mixture-of-Experts (MMOoE) Ansatz, lassen sich Aufgaben des Multi-Task-Lernen 16sen. Am
wenigsten wird sich mit Ansétzen beschéftigt, die sich in adaptiven Szenarien bewegen.

Alle Arbeiten haben die Gemeinsambkeit der grundlegend verwendeten MoE-Architektur.
In der ersten Kategorie ,,Gating-Ansétze” geht es um Veroffentlichungen, die sich auf MoE-
oder Gating-Mechanismen konzentrieren. Diese Mechanismen erméglichen eine dynamische
Auswahl von Modellkomponenten und verbessern die Leistung bei komplexen Aufgaben, indem
sie sich auf relevante Merkmale oder Experten konzentrieren. Mit der ,Multi-Task“-Kategorie
sind Beitrdge ausgewihlt, die MoE nutzen, um mehrere Aufgaben gleichzeitig bewéltigen zu

konnen oder so konzipiert sind, dass sie nicht an bestimmte Aufgaben gebunden sind. Sie
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Kategorie Anzahl Referenz

Gating-Ansitze 7 Huang et al. (2024); Z. Chen et al. (2024); Hihn und Braun
(2024); Hihn und Braun (2023); Chen, Yue und Shi (2023);
Wang et al. (2021); Kobayashi und Shirayama (2021)

Multi-Task 5 Hu et al. (2024); Park et al. (2024); S. Jiang et al. (2024);
Rahman et al. (2024); J. Du et al. (2022)
Adaptives Verhalten 3 C. Chen et al. (2024); Sharma, Henderson und Ghosh (2023);

W. Chen et al. (2023)

Tabelle 3.1.: Ubersicht der Kategorien aus der qualitativen Literraturrecherche.

zielen darauf ab, die Effizienz und Leistung durch die Nutzung von gemeinsamem Wissen iiber
Aufgaben hinweg zu verbessern. Die Kategorie ,Adaptives Verhalten“ umfasst Arbeiten, die sich
auf MoE-Modelle konzentrieren, die sich an veranderte Datenverteilungen oder Umgebungen
anpassen. Sie betonen das Lernen aus neuen Daten unter Beibehaltung des zuvor erworbenen

Wissens, was in dynamischen Umgebungen, wie OML, von entscheidender Bedeutung ist.

3.2.1. Gating-Ansatze

MoE vs. CNN In dem Paper von Z. Chen et al. (2024) wurde untersucht, wie Router lernen
Daten effektiv den richtigen Experten zuzuweisen und welche Vorteile das Divide-and-Conquer-
Prinzip der MoE gegeniiber CNN bringt. Nach der Einfithrung in die theoretischen Grundlagen
wird eine Datenverteilung mit Clusterstrukturen eingefiihrt, welche die Vorteile der MoE-
Architektur verdeutlichen kann. Empirisch wurde dies durch Experimente auf synthetischen
und realen Datensatzen (CIFAR-10 und CIFAR-10-Rotate) evaluiert. Verglichen wurde ein
klassisches CNN mit zwei Schichten, mit einem Sparse-MoE Top(k = 1). Auf synthetischen
Datensitzen erreicht MoE mit nicht linearen Experten eine Genauigkeit von > 99%, wihrend
lineare MoE-Modelle und das CNN deutlich schlechter abschneiden. In den realen Daten
hingt es von der Clusterstruktur der Daten ab. In dem modifizierten realen CIFAR-10-Rotate
Datensatz zeigt MoE klare Verbesserungen gegeniiber dem CNN. Die Entropie, die die Daten-
verteilung tiber die nicht linearen Experten beschreibt, ist fast null. Das deutet auf eine klare

Spezialisierung hin.

Bayesian-Gating Die Forscher Kobayashi und Shirayama (2021) haben eine Methode mit
Bayesschen Netzwerken entwickelt, die dem MoE-Ansatz dhnelt. Ziel war eine moglichst
robuste und genaue Vorhersage, ob die Rendite des Nikkei 225 Borsenindex in der nachsten

Periode uiber oder unter dem Durchschnitt liegt (bindre Klassifikation). Dafiir wurden die

31



3. Verwandte Arbeiten

Trainingsdaten aus sechs Borsenindizes mit K-means, dhnlich wie in vorherigen Arbeiten,
fiir sieben Experimente in ein dynamisches und zwei bis sieben normale Cluster aufgeteilt.
Das Bayessches-Netzwerk wurde fiir jedes KNN (FNN, RNN und LSTM) trainiert, damit es
die Beziehung zwischen Eingabedaten und dem KNN bestmoglich darstellt. Dieser Gating-
Mechanismus wahlt das beste KNN fiir die Vorhersage aus, indem er die Wahrscheinlichkeit
berechnet, mit der ein Datenpunkt zu einem bestimmten Cluster und somit zu einem KNN
gehort. Verglichen wurden die Ergebnisse mit einfachen und mehrfachen KNN, einem Deep-
MoE und Hard-MoE sowie einem fritheren Ansatz der Autoren mit Naive-Bayes-Klassifikator.
Das Bayesian-Gating erreicht bei K = 6 Clustern die besten Ergebnisse (Accuracy: 68,36 %;
F1-Score: 66,89 %) und ist damit besser als alle anderen Ansitze. Das probabilistische Gating

ermoglicht zudem stabile Vorhersagen.

WEKT Das Option-Weighting-Enhanced Mixture-of-Experts Knowledge Tracing (WEKT)-
Modell wird von Huang et al. (2024) vorgestellt. Ziel ist es, die Wissenszustinde von Lernenden
genauer zu modellieren, indem sowohl die Korrektheit der Antworten als auch die Wahl von Op-
tionen bei Multiple-Choice-Fragen aus Aufgaben beriicksichtigt wird. In der Methodik werden
mehrere Ansitze kombiniert. Das WEKT-Framework nutzt gewichtete Bewertungen der Ant-
wortoptionen, die Teilleistungen und Fehlerarten berticksichtigen. Ein Gating-Mechanismus
des MoE filtert und kombiniert die Outputs der aufgabenspezifischen Experten dynamisch.
Dabei werden zwei Aufgaben simultan gelost: Vorhersage der Antwortkorrektheit und der ge-
wihlten Option. Als Expertennetzwerke werden LSTMs und Multi-Head-Attention-Schichten
genutzt, um die insgesamt 34,45 Millionen Daten der Lernhistorie von Studierenden zu analyi-
sieren. WEKT tuibertraff zehn Referenzmodelle in allen Metriken (Accuracy, AUC und RMSE).
Zusatzlich ist das Modell effizienter als die vergleichenden Modelle, was auf den Einsatz
von MoE zuriickzufiihren ist. WEKT erzielt préazisere Vorhersagen der Lernendenleistung,
indem es als neuen Ansatz die Teilleistungen durch Options-Gewichtung berticksichtigt und

Fehlerursachen analysiert.

MoVE Die Forscher Hihn und Braun beschiftigen sich in zwei Verdffentlichungen von
2023 und 2024 mit dem Problem des katastrophalen Vergessens in MoE. Dieses Problem ist
insbesondere in kontinuierlichen Lernumgebungen, wie der untersuchten OML-Umgebung
problematisch. Beide Studien zielen darauf ab, task-agnostische Ansétze zu entwickeln, die
ohne explizite Aufgabeninformationen funktionieren und Wissen nachhaltig bewahren. Im Jahr
2023 wurde ein hierarchischer Ansatz mit Mixture-of-Variational-Experts (MoVE)-Schichten
eingefiihrt, die spezialisierte Sub-Netze durch eine Gating-Policy aktivieren und Diversitat

sowie Spezialisierung fordern. Der Mechanismus nutzt die Kullback-Leibler-Divergenz (KL-
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Divergenz) nach Kullback und Leibler (1951), um die Abweichung zwischen posterioren und
prioren Verteilungen der Expertenparameter zu minimieren und so ein Gleichgewicht zwischen
Lernen und Vergessen zu schaffen. Die Arbeit von 2024 erweitert diesen Ansatz, indem sie
Mutual Information einfiihrt, um Experten effizient zu spezialisieren, und Dirichlet-Prozesse zur
dynamischen Erweiterung der Experten nutzt. Diese Methode verzichtet auf generative Modelle
und Replay-Mechanismen, was ihre Flexibilitat erhoht. Beide Arbeiten fithrten Experimente
auf Standard-Datensatzen wie Split-MNIST und Split-CIFAR-10/100 sowie auf Reinforcement
Learning-Aufgaben durch. Die Ergebnisse zeigen, dass beide Ansatze effektiv das Vergessen
reduzieren und spezialisierte Experten fiir verschiedene Aufgaben schaffen. Wahrend die
Arbeit von 2023 durch eine hierarchische Struktur und gezielte Diversitatsziele tiberzeugt,
liefert die Arbeit von 2024 eine flexiblere, online-fahige Losung fiir dynamische und komplexe
CL-Szenarien (Hihn und Braun, 2023; Hihn und Braun, 2024).

LTMoE Space-Time Video Super-Resolution (STVSR) dient dazu, Videos mit niedriger Auf-
l6sung und niedriger Bildrate in hochauflésende Videos mit hoher Bildrate zu transformie-
ren. Chen, Yue und Shi (2023) fithren das Long-Term Temporal Feature Aggregation Network
(LTFA-Net) ein, das fiir die Feature-Interpolation ein neuartiges LTMoE nutzen. Long-Term
Mixture-of-Experts kombiniert mehrere Experten mit Convolutional-Schichten (u.a. ConvNext
von Liu et al.,, 2022), um raumlich-zeitliche Features aus mehreren benachbarten Frames zu
extrahieren und mit einem Soft-Gating-Netz zu gewichten. In Phase zwei und drei werden
Convolutional-Schichten genutzt, um lokale und globale Bewegungen zu verbessern. In der
letzten Phase wird die raumliche Auflésung durch ConvNext-Blocke erhoht. Mit dem Da-
tensatz Vimeo-90K wurde das Netzwerk trainiert. Evaluiert wurde mit einem Adobe- und
GoPro-Datensatz. Alle Videos wurden vorab durch bikubische Interpolation in der Auflésung
verringert. Mithilfe des Signal-Rausch-Verhiltnisses und der wahrgenommenen Ahnlichkeit
zwischen zwei Bildern hinsichtlich Helligkeit, Kontrast und Struktur wurden die Ergebnisse be-
wertet. Quantitativ erzielte das LTFA-Net bessere Ergebnisse als vergleichbare Ansatze und mit
einer Inferenzgeschwindigkeit von 14,53 Bilder pro Sekunde bei 12,41 Millionen Parametern.
Eine Leistungssteigerung wurde vor allem bei Gating-Netzen bemerkt, die Experten disjunkt

gewichten.

GNN Das Paper von Wang et al. (2021) stellt ein Framework fiir die interaktive Steuerung
virtueller Charaktere in Echtzeit vor. Als Grundlage wird ein Gated Neural Network (GNN) als
Gating-Ansatz in der MoE-Architektur eingefithrt. Ziel ist es, eine hohe Bewegungsrealitat
und Anpassungsfihigkeit an verschiedene Eingaben und Umgebungen zu erreichen, wihrend

gleichzeitig die Effizienz der Berechnungen optimiert wird. In der Architektur kommt ein
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MoE zum Einsatz, das zwei Gruppen von Experten-Netzwerke verwalten soll. In dem einen
Netzwerk geht es um die feine Anpassung von Bewegungen (Geschwindigkeit), in dem anderen
Netzwerk um grofle Ubergiange zwischen Bewegungsmodi (gehen zu laufen). Das GNN kann
zeitliche Sequenzen in Echtzeit verarbeiten und Gewichte errechnen und anpassen. Damit ist
es verantwortlich fiir die Auswahl von Experten in beiden Experten-Gruppen. Die Experimente
basieren auf offenen Motion-Capture-Datensitzen von CMU und der Universitat Edinburgh.
Diese enthalten realistische Bewegungsdaten in verschiedenen Szenarien (Gehen, Laufen,
Springen, Biicken). Das Modell wird mit bestehenden Methoden wie PFNN (Phase-Functioned
Neural Network ohne MoE) und MANN (Mode-Adaptive Neural Network ohne MoE) verglichen.
Der neue Ansatz iibertraf die anderen Methoden durch glattere Uberginge, menschlichere
Bewegungen und eine hohere Berechnungsgeschwindigkeit, was auf das dynamische GNN-

Gating zuriickgefiihrt wurde.

3.2.2. Umsetzung von Multi-Task Experten

Multi-Task-Lernen (MTL) wird in vielen realen Anwendungen verwendet, um mehrere Ziele
gleichzeitig zu optimieren. Ein Beispiel ist das Empfehlungssystem fiir das nachste Video auf
YouTube (Zhao et al., 2019). Alle ausgewahlten Beitrage zur Losung von Multi-Task Problemen
verwenden Multi-Mixture-of-Experts (MMOoE), auch Multi-Gate-MoE genannt. Diese Architektur
wurde von Ma et al. (2018) eingefiihrt. Wie in Abbildung 3.2 gezeigt, verwendet dieser Ansatz,
im Gegensatz zum klassischen One-Gate-MoE, mehrere Gates — pro Aufgabe.
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Abbildung 3.2.: Multi-Gate Mixture of Experts mit zwei Gates fiir Multi-Task Aufgaben.

Bei K -Aufgabenstellungen entscheidet jedes aufgabenspezifische Gate g* mithilfe der er-
rechneten Gewichte g*(z;) = Softmax(f,y. - z;) iiber den Beitrag einzelner Experten zur
Losung ihrer unterschiedlichen Aufgaben. Die Experten werden unter den Aufgaben geteilt.
Die gewichteten Ergebnisse der einzelnen Experten flieflen dann als Eingabe in den aufgaben-

spezifischen ,Turm*. Dieses trainierbare neuronale Netz h* wird genutzt, um die Optimierung
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der Aufgabe zu entkoppeln. Die Gesamtausgabe fiir eine Aufgabe k ergibt sich damit aus
Formel 3.1.

y, = hF (Z gf(ﬁ)fi(xt)) (3.1)

Anhand von Experimenten zeigten die Autoren, dass die MMoE-Architektur die Basisme-
thoden ubertrifft, insbesondere wenn die Korrelation zwischen den Aufgaben gering ist. Diese
Architektur erméglicht es, Experten je nach Anforderung unterschiedlich stark zu nutzen.

Trotz zusétzlicher Gating-Netzwerken, bleibt die Parameterzahl iiberschaubar.

ACMoE Die MMoE wurden von Park et al. (2024) fiir ein Empfehlungssystem mit zwei Haupt-
ansitzen verwendet: Single-Domain Sequential Recommendation (SDSR) und Cross-Domain
Sequential Recommendation (CDSR). Beim Ersteren handelt es sich um Empfehlungen, basie-
rend auf Interaktionen mit einer einzigen Doméne. Beim Zweiteren basieren die Empfehlungen
auf mehreren Doménen. Die Herausforderung ist der negative Transfer zwischen schwach
korrelierten Doménen, der die Leistung von CDSR beeintrichtigt. Der Negative Transfer Gap
(NTG) ist der Leistungsunterschied, hier zwischen SDSR und CDSR. Ziel der Forscher war
die Entwicklung eines Frameworks, das den NTG in CDSR minimiert und die Leistung aller
Domainen stetig verbessert. So wurde das Asymmetric Cooperative Network mit Mixture-of-
Sequential Experts (ACMOoE) entwickelt. Genutzt wird ein MTL-Szenario, das SDSR und CDSR
gleichzeitig behandelt. Der Gating-Mechanismus verteilt die Eingaben auf die Experten fiir
SDSR und CDSR. Fiir die Experimente wurden fiinf Doménen aus einem Amazon- und einem
Telco-Datensatz verwendet. Das ACMoE-Modell wurde mit 25 state-of-the-art Modellen und
doménenspezifischen Metriken wie Klickrate der besten fiinf Produkte verglichen. Das entwi-
ckelte Modell uibertraf die Referenzmodelle um 38,81 % in der Klickrate der Telco-Domaine. In
der produktiven Umsetzung wurde eine 21,4 % Steigerung der Klickrate gemessen. Insgesamt

hat sich der NTG reduziert und eine Verbesserung in allen Doménen entwickelt.

AutoMTL Eine weitere Forschung beschiftigt sich mit der Reduzierung des negativen Trans-
fers, um die Leistung aufgabenspezifischer Anpassungen zu verbessern. Dafiir haben die
Forscher S. Jiang et al. (2024) ihr Framework AutoMTL vorgestellt, das mithilfe von Neural
Architecture Search (NAS) automatisch optimale Architekturen und ,Expert-Sharing-Modi“ mit
MMOoE fir MTL-Modelle entwirft. Das AutoMTL sucht in einem zwei-ebenen Suchraum, um
zum einen die geteilte und zum anderen die spezifischen Expertennetzwerke auszuwihlen.

Damit konnen verschiedenen MoE-basierte Modelle kombiniert werden. Fur die Suche wird der
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Algorithmus Progressively Discretizing Differentiable Architecture Search (PD-DARTS) verwen-
det. Wahrend der Suche wird das Supernetzwerk schrittweise diskretisiert, indem unwichtige
Architekturkomponenten basierend auf Entropie-Metriken eliminiert werden, was die Effizienz
steigert und die Notwendigkeit eines vollstindigen Neutrainings vermeidet. Der Suchraum
des AutoMTL umfasst auch Mechanismen zur Auswahl relevanter Attribute, um sie fur die
verschiedenen Experten zu optimieren. Die Evaluierung erfolgte auf fiinf 6ffentlich zugéngli-
chen Datensatzen: UserBehavior-2017, I[JCAI-2015, KuaiRand-Pure, QB-Video und AliCCP mit
unterschiedlichen MTL-Aufgaben und der AUC-Metrik. Diese decken verschiedene Szenarien
ab, darunter Benutzerverhalten und Videobewertungen. AutoMTL ubertrifft vergleichbare
MTL-Modelle wie klassische MMoE oder AdaTT von D. Li et al. (2023) und PLE von Tang et al.
(2020) in allen Datensatzen. Der flexible Suchprozess erméglicht das Finden idealer MMoE-
Netzwerke und benétigt dhnlich viel Rechenzeit wie das Training. Das hebt, laut Autoren, die

Praxistauglichkeit hervor.

HTMN Die Generalisierungsfihigkeit in MTL-Modellen bei schwach korrelierenden Daten
haben auch die Forscher J. Du et al. (2022) untersucht. Dafiir stellen sie den neuen Ansatz
Hierarchical Task-aware Multi-Head Attention Network (HTMN) vor, um globale (Aufgaben-
iibergreifende) und lokale (aufgabenspezifische) Merkmale effizient zu extrahieren und adaptiv
zu integrieren zu konnen. Es besteht aus zwei Komponenten. Das Multi-Level Task-aware
Netzwerk extrahiert globale und lokale Merkmale durch spezialisierte MoE, die mit mehreren
Gates pro Aufgabe gewichtet werden. Im Anschluss wird der Self-Attention Mechanismus
im Hierachischem Multi-Head Attention Netzwerk angewendet, um lokale Merkmale fiir jede
Aufgabe zu erfassen. Das Endergebnis wird, wie im MMOoE, durch separate Aufgaben-Tiirme
generiert. Fiir die Experimente wurden Einkommensdaten und Filmbewertungen verwendet. Es
wurden insgesamt drei Gruppen mit schwach korrelierenden Vorhersage-Aufgaben verglichen
— wie Einkommen und Familienstand (Pearson-Korrelationskoeffizient: 0,176). Das HTMN
wurde mit zehn anderen Modellen und Metriken wie ROC-AUC, F1-Score, MSE und MAE
verglichen. Das HTMN tibertrifft die anderen Modelle in nahezu allen Aufgaben und Metriken,
insbesondere bei den schwach korrelierten kombinierten Attributen. Zudem konvergiert das
Modell schneller. Der hierarchische Attention-Mechnismus bietet Potenzial fiir zukiinftige

Forschungen in ressourcenschonenden MTL-Szenarien.

STGT Die Forscher Hu et al. (2024) haben eine kurzfristige Vorhersage von Ein- und Aus-
stiegspassagierstromen in stadtischen Schienenverkehrssystemen mit MMoE vorhergesagt. Die
Herausforderung liegt in der Modellierung der komplexen raumzeitlichen Abhangigkeiten und

der intrinsischen Beziehungen zwischen Ein- und Ausstromen, um die Genauigkeit und Ro-
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bustheit der Vorhersagen zu erhéhen. Fiir die Losung des Problems wurde ein Spatio-Temporal
Graph Transformer (STGT) Modell in ein MTL-Framework integriert. Der Graph-Transformer
nutzt Attention-Mechanismen, um die raumzeitlichen Merkmale zu extrahieren. Mithilfe des
MMOoE wird die Beziehung zwischen Ein- und Ausstromen durch dynamische Gewichtung
der Expertennetzwerke modelliert. Bei der Losung werden auch externe Merkmale wie das
Wetter, Zugfahrplane oder die Zugénglichkeit von Busstationen berticksichtigt. Als Datensatz
wurde ein realer Datensatz des Pekinger U-Bahn-Systems aus einem Jahr verwendet. Die
Daten umfassen Ein- und Ausstiegszeiten, Stationsnamen sowie externe Faktoren wie Wetter
und Busanbindung. Verglichen wurde der neue Ansatz mit traditionellen Methodiken fiir
Zeitreihen wie Autoregressive Integrated Moving Average (ARIMA), mithilfe von maschinellem
Lernen wie Support Vector Machines (SVM) und graph-basierte neuronale Netze wie Graph
Convolutional Network (GCN). Das STGT-MMoE-Modell iibertraf alle Vergleichsmodelle mit
geringeren Fehlern. Der MAE wurde um 11,2 % reduziert, der RMSE um 10,7 %. Der R2-Wert
liegt bei 0,88. Die Kombination von Multi-Task-Learning und den dynamischen Fahigkeiten
von Graph Transformer und MMoE erwies sich als besonders effektiv. Zukiinftige Forschung
sollte sich auf Vorhersagen unter auflergewohnlichen Bedingungen (unter anderem extreme

Wetterereignisse) konzentrieren.

GESME Eine weitere Arbeit, die sich mit MTL befasst, ist von Rahman et al. (2024). Das
Paper befasst sich mit der Entwicklung eines Vorhersagemodells fiir eine Plattform, auf der
Transport-Dienstleistungen in Echtzeit gebucht werden kénnen. Das Ziel war die simultane
Prognose fiir verschiedene Aufgaben wie Nachfrage- und Angebotsliicken mit einer MTL-
Architektur zu I6sen, statt fiir jede einzelne Aufgabe und Stadt ein eigenes Modell zu trainieren.
Dafiir entwickelten die Forscher das Gated Ensemble of Spatio-Temporal Mixture of Experts
(kurz GESME-Net). Es kombiniert durch Gating-Netzwerke dynamisch verschiedene MoE
untereinander. Jedes MoE besitzt spezialisierte Experten-Netzwerke wie CNN, RNN oder Conv-
RNN, um rdumliche und zeitliche Abhangigkeiten besser zu beriicksichtigen. Eine von den
Aufgaben unabhingige Ebene passt die Gewichtung an, um wichtige Attribute fiir jede Aufgabe
hervorzuheben. Es wurden insgesamt 25 Millionen Datensétze fiir die Experimente verwendet.
Verglichen wurde die Leistung des GESME-Net mit Standard-Modellen wie XGBoost, Gradient
Boosting Machines (GBM) oder Deep-Learning-Ansitzen wie GCN, die auch von Hu et al. (2024)
verwendet wurden. Zusétzlich wurde die Bedeutung der einzelnen Komponenten und das
Hyperparameter-Tuning untersucht. Das GESME-Net iibertrifft alle Benchmarks in Bezug
auf Fehlermetriken. Stadte-iibergreifend zeigten die Prognosen mit MTL-Architektur bessere

Generalisierung. Der MoE mit CNN (Conv-MoE) trug am starksten zur Modellleistung bei, in
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dem raumliche Abhingigkeiten effektiv erfasst wurden. Daneben konnte eine Effizienzsteige-
rung erzielt werden, da ein Modell fiir mehrere Aufgaben Wartungs- und Berechnungskosten

reduziert.

3.2.3. Adaptives Verhalten mit MoE

LLL Eine weitere Forschung, die sich mit dem katastrophalen Vergessen im Kontext von NLP
beschiftigt, kommt von W. Chen et al. (2023). Das Pre-Training von LLM ist ein Ansatz, um
starke allgemeine Sprachreprisentation zu entwickeln. Jedoch entstehen Herausforderungen,
wenn neue Datenverteilungen sequenziell, wie im Streaming, verarbeitet werden miissen. Das
klassische Fine-Tuning von LLM fiihrt oft zu katastrophalem Vergessen. Als Ansatz wihlen
die Autoren den Lifelong Learning (LLL)-Ansatz. Dabei wird die Anzahl der Experten im
MOoE progressiv erweitert, um neue Datenverteilungen zu modellieren. Die Destillation alter
Modellausgaben und das Sperren alter Experten werden als Regularisierung verwendet, um
altes Wissen vor dem Uberschreiben zu schiitzen. Der Gating-Mechanismus wahlt dann aus
gesperrten und aktiven Experten eine geringe, aber relevante Anzahl aus. Es wurden drei
Textdatensatze (A = Wikipedia und Webseiten; B = Internationale Inhalte; C' = Informelle
Dialoge aus sozialen Medien) verwendet, die sprachlich unterschiedlich sind und damit auch
eine disjunkte Verteilung haben. Die Modelle werden sequenziell trainiert: A — B — C, um
das Vergessen zu messen. In den Experimenten wurden die Modelle auf 21 NLP-Aufgaben
getestet. Verglichen wurde der Lifelong-MoE-Ansatz mit traditionellen Methoden wie Memory
Replay, bei dem bereits verwendete Informationen erneut zum Training verwendet werden,
um dem katastrophalen Vergessen entgegenzuwirken. Die Forscher kamen zu den Ergebnissen,
dass der Verlust von Wissen aus fritheren Verteilungen stark reduziert wurde. Dabei erreicht
das Lifelong-MoE-Modell vergleichbare Ergebnisse zu den Referenzergebnissen. Dieser Ansatz
bietet eine Grundlage fiir Sprachmodelle, die in dynamisch dndernden Szenarien eingesetzt

werden konnen.

BP-MoE In der Arbeit von C. Chen et al. (2024) geht es um eine adaptive Zuordnung
von MoE-Experten basierend auf Verhalten. Das Paper behandelt die Herausforderung der
temporalen Graphen, deren Knoten, Kanten und Attribute sich im Laufe der Zeit dndern und
dabei unterschiedliche evolutionire Praferenzen aufweisen. Ziel war die verbesserte Vorhersage
von Knoten- und Kantenattributen. Das wollten die Forscher durch ein Behavior Pattern-aware
Mixture-of-Experts (BP-MoE)-Modell erreichen. Dabei betrachtet das Framework, dhnlich wie
in der Arbeit (iber MoVE, drei Perspektiven, die durch spezifische KNN abgebildet werden:

langfristige, raumliche und kurzfristige Verhaltensmuster. Das Gating-Netzwerk aktiviert
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adaptiv Experten, basierend auf den Verhaltensdaten. Neben der Haupttrainingsfunktion
(Binary Cross-Entropy) werden zusétzliche Importance Loss und Load Loss eingefiihrt, um ein
ausgewogenes Training der Experten zu gewihrleisten. Verschiedene reale Datensétze aus dem
Internet wie Wikipedia, Reddit oder LastFM wurden in den Experimenten genutzt, um etwa die
Verbindung zwischen Knoten vorherzusagen oder die Klassifizierung von Knotenattributen,
die aus den Datensitzen kommen. Das BP-MoE tibertraf in der durchschnittlichen Genauigkeit
(Precision) alle vergleichbaren Modelle in allen Datensétzen und Szenarien. Der kurzfristige
Verhaltensexperte hatte den groten Einfluss auf die Modellleistung. Das BP-MoE zeigte
auch eine stabile Leistung bei wenigen Trainingsdaten, was auf die adaptive Eigenschaft

zurickzufiithren ist.

FEAMoE Der Ansatz Fair, Explainable and Adaptive Mixture of Experts (FEAMOoE) der For-
scher Sharma, Henderson und Ghosh (2023) vereint drei Schliisselmerkmale im Einsatz von
MoE in sensiblen Umgebungen: Fairness, Erklarbarkeit und Anpassungsfahigkeit. Es sollen Fair-
nessverluste und Genauigkeitsverluste durch Konzeptdrifts minimiert und gleichzeitig schnelle
und interpretierbare Erklarungen erméglicht werden. Trainiert wird das FEAMOoE mit einem
Soft-MoE in einer inkrementellen OML-Umgebung. Dabei werden neue Experten hinzugefiigt,
um Drift entgegenzuwirken. Eingesetzt werden logistische Regressionsmodelle als Experten.
Damit ist eine schnelle Trainings- und Inferenzzeit gegeben, was in einem Online-Learning
Szenario entscheidend ist. Ein FNN mit Softmax-Aktivierung wihlt die relevanten Experten aus.
Die Fairness wird umgesetzt, indem drei gingige Fairness-Metriken in die Verlustfunktion der
logistischen Regression integriert werden: demografische Paritat, Gleichheit der Chancen und
belastungsbasierte Fairness. Die Erklarbarkeit wird durch Shapley-Werte nach Shapley (1988)
in den einzelnen linearen Expertenmodellen effizient errechnet. Die Experimente wurden mit
drei Datensétzen aus Einkommen, Strafjustiz und Kreditvergabe trainiert, die demografische
Daten und Labels enthalten, die zum Zweck der Fairness-Evaluierung genutzt werden. Der
Home Mortgage Disclosure Act (HMDA) Datensatz hat zusétzlich noch ein Drift in den Daten.
Die ausgefithrten Experimente zeigten, dass die Fairness-Metriken durch die eingesetzte Ver-
lustfunktion gegeniiber klassischen MoE verbessert wurden. FEAMoE konnte sich dynamisch
an den Drift anpassen und erzielte bessere Ergebnisse als neural-basierte Modelle in einer

kontinuierlichen OML-Umgebung.
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3.3. Identifizierung von Forschungsliicken

Die Literaturrecherche zeigt, dass viele neue Verfahren fiir MoE entwickelt werden, um An-
wendungsfille des Offline-Lernens fiir Single- oder Multi-Task-Aufgaben zu 16sen. Das Ziel
einer Untersuchung von adaptivem Verhalten im MoE-Kontext konnte am wenigsten in den
Veroffentlichungen festgestellt werden. Interessant ist der Ansatz FEAMoE von Sharma, Hen-
derson und Ghosh (2023), die MoE in einer inkrementellen OML-Umgebung untersucht haben.
Der Fokus lag bei der Arbeit auf Erklarbarkeit und Fairness. Demzufolge wurden einfache
Algorithmen wie die logistische Regression gew#hlt.

Im Rahmen dieser Arbeit wird der Ansatz aufgegriffen und die Zielsetzung aus Abschnitt 1.2
bearbeitet. Die Zielsetzung umfasst eine Kombination von OML und MoE in einem Framework.
Das Losen eines Dynamisches Optimierungs-Problem wird damit moglich gemacht. Daher stellt

sich die folgende Forschungsfrage RQ1:

RQ1. Wie kann ein MoE-Ansatz mit Online-Lern-Mechanismen fiir dynamische Umgebungen

unter Verwendung von Streamingdaten umgesetzt werden?

Der Einsatz einer dynamischen Expertenmenge kam in allen drei Forschungen zu adaptiven
MOoE vor. Interessant ist, wie in der Arbeit von C. Chen et al. (2024), der Einsatz von aktiven und
inaktiven Experten, die abhéngig vom Verhalten ausgewahlt werden. Eine ressourcensparende
Auswahl von Experten ist fiir eine Echtzeit-Verarbeitung mit Streamingdaten notwendig. Als

weitere Frage ergibt sich die Forschungsfrage RQ2:

RQ2. In welchem Mafle konnen dynamisch hinzugefiigte Experten, basierend auf Drifterken-

nung, die Anpassungsfahigkeit in dynamischen Umgebungen verbessern?

In dem Einsatz von MoE in progressiv wachsenden Datensitzen aus Datenstromen sind
verschiedene Metriken interessant, die gegebenenfalls von offline Modellen abweichen. Die
Evaluierung der Methode und die dafiir notwendigen Definitionen der verschiedenen Metriken

sind Teil dieser Arbeit und werden durch die Forschungsfrage RQ3 betrachtet:

RQ3. Welche Metriken sind erforderlich, um die Leistung von Mixture of Experts bei progres-

siv steigenden Streamingdaten sinnvoll zu bewerten?

Anhand der Kombination von OML und der MoE-Architektur sollte ein Verfahren entstehen,
das mit Datenstromen analytisch arbeiten kann, die auch eine hohe Datenrate besitzen. Das
Grundprinzip Divide and Conquer von MoFE kann dazu beitragen, gezielt und ressourcensparend
auf neue und verdnderte Daten zu reagieren. Das erméglicht den Einsatz von komplexeren

Lernverfahren fur inkrementelle Daten, die etwa aus IoT-Geridten stammen.
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In diesem Kapitel wird das Vorgehen beschrieben, das zur Beantwortung der Forschungsfragen
herangefiihrt wird. Ziel ist es, die MoE-Architektur mit Online-Learning Mechanismen des OML
zu einem inkrementellen MoE in Form eines Frameworks zu vereinen (RQ1). Zu diesem Zweck
wird das Konzept einer neuen MoE-Architektur vorgestellt, die adaptiv in Streamingszenarien
agieren kann (RQ2). Die neue Architektur wird durch verschiedene Experimente und passende

Metriken evaluiert (RQ3), die in diesem Kapitel aufgefithrt werden.

4.1. Mischung adaptiver Experten

Die grundlegende Architektur eines klassischen MoE besteht aus einem neuronalen Gate G
und mehreren (verschiedenen) neuronalen Experten F = {E1, Es, ..., EN|N € N\ {0}}. Die
wichtigste Komponente eines MoE ist das Gate, dass fur eine Eingabe d = (x,y) A d € D die
besten Gewichte der Experten wiahlt, um die Vorhersagen zu dem besten Gesamtergebnis zu
kombinieren. Bei einer Expertenanzahl von |E| = 1 entfillt das Gating und die Prognose kann
direkt aus dem einzigen Expertenmodell, ohne Gewichtung, erzeugt werden § = Ej(x) (Jacobs
et al., 1991). Das Gating-Problem kann fiir den Datensatz D, mit n-Zeilen und m-Attributen,

formal wie in Formel 4.1 zusammengefasst werden:

R™™ — NIZI wenn |E| > 1
G(z) = (4.1)

R™™ — 1 ,wenn |E| =1
Zu den klassischen BML-Algorithmen gibt es haufig (adaptive) OML-Alternativen, die im
Streaming-Kontext inkrementell lernen. Beispielsweise ist der Hoeffding Tree ein inkrementelles
Lernverfahren, dass fiir Klassifikation und Regression statt des Decision Tree eingesetzt werden
kann (Domingos und Hulten, 2000). Andere Verfahren wie Lineare Regression oder Logarith-
mische Regression konnen mithilfe von SGD inkrementell trainiert werden (Bartz-Beielstein
und Bartz, 2023, S. 12). Da OML-Verfahren mit Streamingdaten arbeiten kénnen und in der
Regel schneller als BML-Verfahren sind, eignen sich die Verfahren fiir die Umsetzung eines

inkrementellen MoE.
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Zunichst wird betrachtet, welche Kombinationen von Experten und Gating-Methoden
moglich sind. Die Kombinationen sind in der Regel durch die Art des Skalenniveaus der Daten
mit der Ausgabe des Gating-Modells und der Expertenmodelle beschrankt. In Tabelle 4.1 sind
die moglichen Kombinationen gelistet. Die Kombinationen sind in vier Kategorien unterteilt:
Regressor, Klassifikator, Neuronales Netz und Clustering. Die Kombinationen sind entweder
direkt moglich oder durch eine Transformation der Daten, um sie als Gating zu verwenden,

moglich. Einige Kombinationen sind gar nicht méglich, da die Lernart dies nicht zulésst.

Gate Regressor | Klassifikator | Neuronales Netz | Clustering
Experte(n)
Regressor ) ) v -
Klassifikator ) v v =
Neuronales Netz ) v v -
Clustering (v) v v v

Tabelle 4.1.: Mogliche Kombination verschiedener ML-Lernarten fiir das Gating und Experten
in MoE. v'= Méglich, (v') = Mit Transformation méglich, — = Nicht moglich.

Wird ein Regressor als Gate herangezogen, besteht die Herausforderung, dass die vorlie-
genden Labels skalar sind und nicht direkt als Klassen interpretiert werden konnen. Eine
Moglichkeit ist die Transformation der Labels in Klassen, um ein Klassifikationsproblem zu
l6sen. Eine andere Moglichkeit ist die manuelle Festlegung von Klassen, die auf den Features
oder Labels basieren. Ein Klassifikator als Gate kann direkt verwendet werden, wenn die
Anzahl der Klassen der Anzahl der Experten entspricht. Damit ergibt sich zeitgleich eine Ein-
schrankung, da die Expertenanzahl an die (adaptive) Anzahl Klassen gebunden ist: |E| = | K]|.
Vor dem Training der Regressor-Experten miissen die nominalen oder ordinalen Klassen
in skalare Werte transformiert werden. Das ist beispielsweise mit LabelEncoding oder
OneHotEncoding und Multi-Output-Regression moglich. Ein neuronales Netz als Gate kann
flexibel im Fingang und Ausgang sein, sodass die Anzahl der Eingangsneuronen den Attributen
und die Anzahl der Ausgangsneuronen den Experten entspricht. Ein Clustering-Verfahren kann
fiir eine beliebige Datenmenge eine vorgegebene Clustermenge zuriickgeben, sodass die Anzahl
der Cluster den Experten entspricht. Damit wire dieser Algorithmus als Gating geeignet, da
die Cluster durch den Silhouetten-Koeffizienten gut evaluiert und erweitert werden kénnten.
Das Clustering entspricht aber dem uniiberwachten Lernen und beinhaltet keine Labels. Ein
Training von Experten mit tiberwachtem Lernen ist damit nicht méglich. Der Einsatz von nicht
neuronalen Gating-Verfahren ist moglich, jedoch nicht empfohlen, da zusatzlicher (manueller)
Aufwand beriicksichtigt werden muss und Einschrankungen vorliegen. Die hochste Flexibilitat

fiir das Gating, bietet das neuronale Netz, da hier die Struktur des Netzwerks beliebig verandert
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werden kann. Fiir die Experten kann jede Lernart fiir ein passendes Problem verwendet werden.
Angesichts dessen wird sich in dieser Arbeit auf die Kombination von neuronalen Gates und

mit neuronalen und nicht neuronalen Experten fiir Regression und Klassifikation fokussiert.

4.1.1. Inkrementelle MoE-Architektur

In dieser Arbeit wird eine neuartige Architektur fiir inkrementelle MoE eingefiihrt. Ein genereller
Aufbau der Architektur lasst sich aus der Abbildung 4.2 entnehmen. Vereint wird das Training
und die Inferenz mit einzelnen Datensitzen, wie bei OML aus Abbildung 2.4b, mit dem Konzept
des MoE aus Abbildung 2.9.

Datenstrom

deep| dp | di-g

MoE
Zeit t-1
A / ’
Sl _— St 7
V -~-__---.--f------------------------__-_-/d‘-
” T Neue Version /// 2. Metriken
paat / updaten
. / | —
- / |
{ Drift erkannt N
Drift-Detektor Gating G, (=)
D, 5(z) Neuronales Netz
f_....._....-...._...-...-_.J 1N
Expérten g
hinzufiigen Trainingsauswahl
v A 4
Experten-Pool
(dymamisch) wyy | wor | -

w2
-~
A

,l Eingangs- ——— i >
Tt datensatz M ;1 0 @g 0 °
OML-Experte N g R

Abbildung 4.1.: Generelle Architektur des inkrementellen MoE. Mit Drift-Detektor bei SAMoE.

Die neue Architektur lernt ohne Epochen und mit nur einem Datensatz pro Zeitpunkt. Es
handelt sich also um ein Batch-Lernen der Gréf3e n = 1, das dem OML entspricht. In jedem

Schritt wird, wie im OML, zunéchst mit dem Datensatz eine (gewichtete) Inferenz berechnet
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und zuriickgegeben und damit die progressive Metrik aktualisiert. Danach wird das MoE mit
einem Datensatz trainiert, was das Gating-Modell und die Experten sukzessiv aktualisiert.
Erginzend wird die neue Streaming Adaptive Mixtures of Experts (SAMoE) Variante eingefiihrt,
die zusétzlich einen Drift-Detektor enthélt, um neue Experten, wie in FEAMOoE von Sharma,
Henderson und Ghosh (2023), dynamisch hinzuzufiigen. Wird durch Verfahren wie ADWIN in
den Eingangsdaten ein Drift erkannt, wird ein Experte adaptiv zum Experten-Pool hinzugefiigt.

Wie in einem MoE, gibt das Gating-Modell, fiir einen einzelnen eingegangenen Datensatz
d; aus dem Datenstrom, eine Wahrscheinlichkeitsverteilung als Gewichte zuriick: G(z;) =
W1,t, Wty ..., Wp t. Die Gewichte werden fiir die Experten ' = E1, E», ..., B, verwendet, um

die Prognose zu einer skalaren Gesamtprognose zu kombinieren (Formel 4.2):

|E|

Z)t = Z wi,t . Ez(flft) (42)
=1

Es wird die neue Streaming Adaptive Mixtures of Experts (SAMoE) Variante eingefithrt, die
zusitzlich einen Drift-Detektor enthélt, um bei Drift neue Experten dynamisch hinzuzufiigen.
Das Gating ist ein MLP, das flexibel seine Eingangsneuronen und Ausgangsneuronen an die
inkrementellen Daten anpasst. Wie in Abbildung 4.2 dargestellt, entspricht die Anzahl der
Eingangsneuronen der Anzahl der Attribute im Datensatz x; = {z¢ 1, Z¢2, ..., Tt,m }. Die Aus-
gangsneuronen entsprechen immer der Anzahl der Experten im MoE. Das adaptive Anpassen

der Architektur ist damit moglich.

Anzahl Attribute

O\ W UelIedxy [yezuy

. Eingabeschicht /| Verborgene Schichten . iAusgabeschicht ;

Abbildung 4.2.: Adaptives MLP mit variablen Eingangs- und Ausgangsneuronen als Gating.

Damit die initiale Auswahl der Experten nicht durch einen zufalligen Bias vorbestimmt wird,

wird der Bias vor dem Training fiir das Gate auf 0 und die Gewichte auf eine Konstante ¢ # 0
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gesetzt. Wiren alle Gewichte 0, konnte das Netzwerk nicht lernen. Diese Null-Initialisierung
ist Uiblich in MoE (Z. Chen et al., 2024, S. 5). Das neuronale Netz des Gates wird, klassisch, mit
Optimierungs- und Verlustfunktionen nach der Inferenz trainiert. Als Optimierungsfunktion
kann beispielsweise SGD gewihlt werden. Bei der Verlustfunktion Lgate (¢, y1) beispielsweise
CE oder BCE fiir Klassifikation oder MSE fiir Regression. Das trainierte Gating-Modell wihlt

dann fiir eine Eingabe x; die bestmoéglichen Experten.

4.1.2. Auswahl des Basis-Frameworks

Derzeit gibt es viele Bibliotheken fiir den Einsatz von inkrementellem, maschinellem Lernen.
Darunter sind MOA (Massive Online Analysis), implementiert in Java, oder RMOA, das in der
Programmiersprache R umgesetzt ist. river ist ein Framework, das in Python implementiert
ist. Von allen Frameworks ist es am breitesten aufgestellt und enthilt aus jedem Bereich die
wichtigsten Methoden fiir Anomalie, Regression, Klassifikation, Clustering und verstiarkendes
Lernen. Es enthalt auflerdem viele zusatzliche und aktuellere Methoden, welche in den R-
Paketen nicht verfiigbar sind (Bartz-Beielstein und Bartz, 2023, S. 93ff.). Aufgrund des breiten
Funktionsumfangs und der gewahlten Programmiersprache Python wird sich fiir river als
Basis-Bibliothek entschieden.

river wurde von Montiel, Halford et al. (2021) umgesetzt und entstand aus gesammelten
Erfahrungen der Pakete creme (Halford et al., 2020) und scikit-multiflow (Montiel,
Read et al., 2018). In einem untersuchten Experiment konnte river seine zwei Vorganger
in Geschwindigkeit iibertreffen. Die Modellgiite war erwartungsgemaf; dhnlich gut. Das Fra-
mework ist auf dynamische Datenstrome und kontinuierliches Lernen spezialisiert. Dabei
wird ein Datensatz pro Zeitpunkt als Schliissel-Wert-Datenstruktur (dictonary in Python)
verarbeitet. Der auf Hash-Tabellen aufgebaute Datentyp hat eine effiziente Lese-, Anpassungs-
und Loschkomplexitit von O(1). Das Framework bietet mehrere hochmoderne Lernmetho-
den, Datengeneratoren/-transformatoren, Leistungsmetriken und Evaluationsmethoden an,
die im Kern durch Cython (Behnel et al., 2011) umgesetzt sind. Dadurch ist eine effiziente
Verarbeitung moglich.

Die in der Abbildung 2.4b der OML-Strategie vorgestellten Schritte Vorhersagen, Eva-
luieren und Lernen sind in der Bibliothek als einheitliche Application Programming Inter-
face (API) umgesetzt, damit eine moglichst hohe Kompatibilitit (beispielsweise bei einer
Erweiterung) innerhalb der Bibliothek gew#hrleistet ist. Alle Vorhersagemodelle konnen mit
learn_one(x,Yy) trainiert werden. Je nach Lernaufgabe liefern die Modelle Vorhersagen
y_pred tber die Methoden predict_one (x) (Klassifizierung, Regression und Cluste-
ring), predict_proba_one (x) (Wahrscheinlichkeitsverteilung der Klassifizierung) und
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score_one (X) (Anomalieerkennung). Das Suffix ,* _one* zeigt an, dass es sich bei der
Eingabe um eine einzelne Datenprobe handelt. Die Metriken fiir die Evaluation kénnen mit

update(y, y_pred) aktualisiert werden.

4.1.3. Umsetzung einer Framework-Erweiterung

Die in Abschnitt 4.1 vorgestellte Architektur ist eine adaptive und inkrementelle Ergénzung der
MoE-Architektur. Wie in den Grundlagen bereits beschrieben, setzen die MoE iiblicherweise
neuronale Funktionen voraus, die durch die Basis-Bibliothek, bis auf ein einfaches MLP fiir
Regressionen, nicht abgedeckt werden. Diese Funktionen werden in dieser Arbeit fiir das
Gating und fiir neuronale Experten vorausgesetzt. Eine neuronale Erweiterung von river
auf Basis von PyToxrch bietet das Framework deep-river von Kulbach et al. (2025). Die
neuronalen Modelle verwenden die gleiche API wie river, erginzen den Umfang um den
Einsatz von unterschiedlichsten NN-Architekturen wie FNN, RNN oder LSTM. Zusatzlich
konnen Eingabedaten (Features) und Ausgabedaten (Labels) dynamisch angepasst werden.
Mithilfe von deep-river und der Basis-Bibliothek wurde das Framework riverMoE
entwickelt, das MoE fiir dynamische Datenstrome und kontinuierliches Lernen umsetzt. Ziel
war es dabei, die Strategie der zwei vorherigen Bibliotheken zu beriicksichtigen. Das heif}t, es
wurde die gleiche Programmierschnittstelle verwendet, damit bereits umgesetzte Komponenten
fiir Datensitze, Algorithmen und Evaluierungsmethoden hier wiederverwendet und gegebe-
nenfalls erweitert werden konnen. Die SAMoE-Variante soll moglichst sparsam sein, weswegen
sie auf Sparse-MoE, eine Erweiterung von Soft-MoE, mit Top-K(k = 1) aufbaut. Deswegen
sind die Varianten Soft-MoE und Sparse-MoE notwendige Teile des riverMoE-Prototyps

und konnen verwendet werden, um ein Dynamisches Optimierungs-Problem zu l16sen.

4.2. Experimente

In diesem Abschnitt werden die Experimente vorgestellt, die zur Beantwortung der Forschungs-
fragen durchgefiihrt werden. Zunichst werden die verwendeten Algorithmen und Datensitze
vorgestellt. Zur Bewertung der Ergebnisse werden Evaluationsmethoden herangezogen, die hier
niher erldutert werden. Anschlieflend wird die experimentelle Umgebung und die Experimente

tabellarisch mit den gew#hlten Parametern aufgelistet.

4.2.1. Auswahl inkrementeller Algorithmen

Es gibt viele inkrementelle Lernverfahren, die bereits in river umgesetzt sind und in dieser

Arbeit zum Einsatz kommen (Bartz-Beielstein und Bartz, 2023, S. 93ff.). Innerhalb dieser Arbeit
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wird der Fokus nur auf die Problemstellungen Regression und Klassifikation gelegt. Eine

Ubersicht aller ausgewahlten Algorithmen ist in Tabelle 4.2 dargestellt.

Aufgabe Klasse in river/deep-river Abkiirzung
Regression HoeffingTreeRegressor HTR
HoeffingAdaptiveTreeRegressor HATR
LinearRegression LinR
DeepRegressor (aus deep-river) DeepR
StatisticalRegressor (Durchschnitt) BaseR
Klassifikation HoeffingTreeClassifier HTC
HoeffingAdaptiveTreeClassifier HATC
LogisticRegression LogR
DeepClassifier (aus deep-river) DeepC
NoChangeClassifier (Letzte Klasse) BaseC
Drift ADWIN ADWIN
KSWIN KSWIN

Tabelle 4.2.: Ubersicht der eingesetzten OML-Algorithmen fiir diese Arbeit.

H(A)TR/H(A)TC Der Hoeffding Tree (HT) ist ein inkrementeller Entscheidungsbaum spe-
ziell fiir das Online-Lernen und die Verarbeitung von Datenstromen. Er basiert auf dem
Hoeffding-Bound, der bestimmt, wie viele Datenpunkte erforderlich sind, um mit hoher Wahr-
scheinlichkeit die beste Attributaufteilung zu erkennen. Dies erméglicht es dem Algorithmus,
Entscheidungen auf Basis einer Teilmenge der Daten zu treffen, was bei gro3en oder kontinu-
ierlichen Datenstromen entscheidend ist. Der Hoeffding Adaptive Tree (HAT) erweitert den
Hoeffding Tree um Concept Drift-Erkennung. Bei Erkennung von Drift durch etwa ADWIN,
wird eine neue Verzweigung hinzugefiigt. In dynamischen Umgebungen, in denen sich die

Datenverteilung im Laufe der Zeit dndert, ist ein statisches Modell wie der HT oft unzureichend.

LinR Die Lineare Regression ist ein inkrementelles Lernmodell zur Vorhersage kontinu-
ierlicher Zielwerte. Sie basiert auf der Annahme einer linearen Beziehung zwischen den
Eingangsmerkmalen und dem Zielwert. Das Modell berechnet Vorhersagen, indem es die
Merkmale mit gelernten Gewichten multipliziert und summiert. Diese Gewichte werden, in
der inkrementellen Variante, schrittweise mit jedem eingehenden Datenpunkt aktualisiert,
héufig mithilfe von SGD. Bei nicht linearen Beziehungen oder starken Ausreiflern kann die

Leistung der linearen Regression jedoch beeintrachtigt werden.
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LogR Die Logistische Regression ist ein Klassifikationsmodell, das Wahrscheinlichkeiten
fiir Klassen vorhersagt. Sie eignet sich sowohl fiir binare als auch fiir multi-klassige Probleme.
Das Modell nutzt eine lineare Kombination der Eingangsmerkmale, deren Ergebnis durch die
Sigmoid-Funktion (bei binérer Klassifikation) oder Softmax-Funktion (bei mehreren Klassen) in
Wahrscheinlichkeiten umgewandelt wird. Wie die lineare Regression wird auch die logistische
Regression, in der inkrementellen Variante, mit Methoden wie SGD schrittweise aktualisiert,

was sie fiir Datenstrome pradestiniert.

BaseR/BaseC Die Baseline-Modelle werden als Referenzpunkte in der Modellbewertung
angewendet. Sie bieten eine einfache, schnelle und oft naive Losung fiir ein Vorhersagepro-
blem. Die anderen leistungsfahigeren Modelle sollten diese Baseline deutlich iibertreffen.
Gelingt dies nicht, ist der Einsatz eines aufwendigeren Verfahrens nicht gerechtfertigt. Fiir
die Regression wird der StatisticalRegressor mit der Aggregtation ,Durchschnitt®
verwendet, der den Durchschnitt der Zielwerte berechnet (BaseR). Fiir die Klassifikation wird

der NoChangeClassifier eingesetzt, der immer die letzte Klasse vorhersagt (BaseC).

Drift Die Drifterkennungs-Algorithmen kommen zum einen in der adaptiven Version des
HAT vor, werden aber auch fiir den Drift-Detektor in der SAMoE-Variante verwendet. Fur
diese Ausarbeitung wird das bereits vorgestellte Adaptive Windowing (ADWIN) genutzt. Das

Verfahren ist in der Lage, Drifts in Datenstromen zu erkennen.

DeepR/DeepC Mit der Bibliothek deep-river konnen Regressionen, Klassifikationen
und Anomalieerkennungen unter Einsatz von neuronalen Netzen mit Streamingdaten durch-
gefithrt werden. In die Wrapper konnen nahezu beliebige neuronale Netzwerkarchitekturen
als Pytorch-Module eingefiigt werden. Die neuronalen Modelle sind in der Lage, komplexe,
nicht lineare Beziehungen in den Daten zu modellieren und kdnnen durch die Anpassung der
Ein- und Ausgangsneuronen an verschiedene Probleme zur Laufzeit angepasst werden. Der
Nachteil ist, dass die Modelle aufgrund der hohen Anzahl an Parametern und der komplexen
Struktur mehr Rechenleistung und Speicherplatz benétigen. Initiiert werden die neuronalen

Netze mit einem Zufallsstartwert.

Alle ausgewihlten Lernverfahren haben den Vorteil, dass sie in adaptiven Umgebungen
funktionieren und dabei, je nach Einstellung, schnell sind und mit wenig Speicherplatz auskom-
men. Zudem haben nicht neuronale Algorithmen eine gute Interpretierbarkeit. Fiir HAT ergibt

sich noch der Vorteil, dass er auf Drift reagieren kann und damit Konzeptdrift entgegenwirkt.
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4.2.2. Eingesetzte Datensatze

Der Fokus dieser Arbeit liegt in der Evaluierung des umgesetzten inkrementellen MoE. Im
Rahmen dieser Grundlagenforschung wird bei den Datensétzen kein spezifisches Doménenpro-
blem festgelegt. Die unterschiedliche Auswahl der Datensitze soll den vielseitigen Einsatz von
riverMoE verdeutlichen. Das Training erfolgte ausschliefilich mit metrischen Attributen,

die vorab durch Standardisierung vereinheitlicht wurden.

Bikes Der Bikes-Sharing-Datensatz ist im Rahmen eines privaten Projektes ,,OpenBikes“ von
Halford (2016) entstanden. Dieser reale Datensatz beinhaltet neben dem Datum und der Uhrzeit
noch sieben weitere Attribute sowie die Anzahl ausgeliehener Fahrrader fiir fiinf verschiedene
Fahrradstationen in Toulouse, Frankreich. Es gibt 182470 Eintrdge in dem Datensatz. Die
Zielvariable ist die Anzahl der Fahrréder, die an einem bestimmten Tag und einer bestimmten
Uhrzeit ausgeliehen werden. In dieser Arbeit werden nur die numerischen Wetterattribute
Temperatur in Grad, Luftfeuchtigkeit in Prozent, Wolkenbedeckung in Prozent, Luftdruck in
hPa und Windgeschwindigkeit in “* verwendet, um die Anzahl der ausgeliehenen Fahrrader
vorherzusagen. Der Datensatz wird in dieser Arbeit verwendet, um die Leistung der Modelle

bei einem Regressionsproblem zu testen.

Elec2 Der Elec2-Datensatz stammt von Harries, Wales et al. (1999) und wurde bereits in der
Veréffentlichung von Montiel, Halford et al. (2021) fiir river zur Evaluierung verwendet.
Diese Daten wurden alle 30 Minuten aus dem australischen Strommarkt von ,New South
Wales“ (NSW) zwischen 1996 und 1998 erhoben. In der Abbildung 4.3 ist der durchschnittliche
Strompreis pro Tag dargestellt. Auf diesem Markt waren die Preise nicht festgeschrieben und
werden von Angebot und Nachfrage auf dem Markt beeinflusst. Am 4. Mai 1997 wurde der
Strommarkt im benachbarten Bundesstaat ,Victoria“ mit dem NSW verbunden, dadurch kamen
weitere Anbieter und Preise auf den Markt, die ebenfalls mit erhoben wurden und Einfluss
auf den NWS-Preis hatten. Der Ausreif3er aus der Abbildung 4.3, von November 1997, lasst
sich auf eine unterbrochene Stromverbindung zwischen NWS/Victoria und damit verbundenes
geringeres Angebot zuriickfithren.

Die Daten enthalten 8 numerische Attribute und 45312 Zeilen. Die Zielvariable ist die
Klassifizierung von Elektrizitatsverbrauchsmustern in 2 Klassen (,Preis aufwirts® TRUE oder
,Preis abwirts“ FALSE). Die Attribute enthalten eine Reihe von tatsachlichen Nachfragezahlen.
Dies ist problematisch, da die tatsachliche Nachfrage nicht direkt vor der Zeit zur Verfiigung
stehen wiirde. Die Attribute werden von den Autoren als Projektion fiir die Attributnachfrage

verwendet.
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Abbildung 4.3.: Durchschnittlicher Strompreis (Cents/kWh) pro Tag im Elec2-Datensatz.

Image Segmentation Der Image Segmentation-Datensatz stammt von dem UCI Machi-
ne Learning Repository aus dem Jahr 1990. Dabei wurden sieben Bildsegementierungen aus
verschiedenen Bildern extrahiert. Der Datensatz enthélt 2310 Zeilen und 19 Spalten. Die Zielva-
riable ist die Klassifizierung von sieben Bildsegmenten nach Positionsattributen: ,Mauerwerk",
.Zement®, ,Fenster®, ;Himmel®, ,Laub®, ,Weg" und ,Gras". Mit Hilfe eines t-SNE-Plot wurden

die 19 Attribute auf zwei Stiick reduziert und in einem Streudiagramm in Abbildung 4.4a

dargestellt.
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(a) Fir sieben Klassen.

Die Verteilung der Klassen wird durch diese Darstellung deutlich. Der Datensatz wird in
dieser Arbeit verwendet, um die Leistung der Modelle bei einem inkrementellen Drift, einem
Zielwechsel zur Laufzeit, zu testen. Zu diesem Zweck werden die sieben Klassen in zwei

unterschiedliche Aufgaben aufgeteilt. Die Erkennung der Klassen ,Mauerwerk®, ,Fenster” und

. Sky

50
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- window
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- foliage — 95 ‘;'
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—50

- Aufgabe 1

Aufgabe 2

(b) Umwandlung in zwei Aufgaben.

Abbildung 4.4.: t-SNE-Plot der Bildsegmentierungsdaten.
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wZement" gehort zur Aufgabe 1, die restlichen Klassen zur Aufgabe 2. In Abbildung 4.4b ist die
Verteilung fiir die beiden Aufgaben dargestellt.

Friedman-Drift Der Friedman-Drift-Datensatz ist ein synthetischer Datensatz, der von
Friedman (1991) erstellt wurde. Er besteht aus zehn numerischen Attributen. Bei jeder Beob-
achtung werden die zehn Ziffern zufallig aus einer Gleichverteilung gewahlt: z; ~ ¢/(0, 1).
Die Zielvariable ist eine lineare Kombination der relevanten Attribute und wird in river wie

in Formel 4.3 ermittelt:
1
f(x) = 10sin(wzory) + 20(x2 — 5)2 + 1023 + 524 + € mite ~ N(pp=0,02=1) (4.3)

Nur die ersten fiunf Merkmale xg, 21, ..., 24 sind relevant fiir die Zielvariable. Das € ist ein
normalverteilter Fehlerterm mit einem Mittelwert von 0 und einer Standardabweichung von
1. Ein Wechsel der aktiven Variablen fithrt zu einer Verdnderung, wodurch ein Konzeptdrift
umgesetzt wird (Bartz-Beielstein und Bartz, 2023, S. 6ff.). Es gibt drei verschiedene Driftarten.
Die verschiedenen Driftarten, die fiir diesen Datensatz in river implementiert sind, sind
in Abbildung 4.5 dargestellt (Gulcan und Can, 2023). Ein Drift unterscheidet sich von einem

Ausreifler, wie bei der Stromstérung im Elec2-Datensatz aus Abbildung 4.3.

@mmm

) Local Expanding Abrupt (LEA) (b) Global Recurring Abrupt (GRA)
) Global and Slow Gradual (GSG) ) Ausreifser

Abbildung 4.5.: Verschiedene Driftarten (a), (b) und (c) im Vergleich zu Ausreifern (d).

LEA beschreibt einen zunichst lokalen Konzeptwechsel, der sich ausdehnt und dann zum
Ursprung zuriickkehrt. GRA bewirkt eine abrupte, globale Verdnderung mit spéterer Riickkehr.
GSG hingegen entwickelt sich schrittweise und stabilisiert sich iiber die Zeit. Fir diese Arbeit
werden 12500 synthetische Datensétze mit Zufallsstartwert 42 aus dem Friedman-Datensatz
mit dem Drift GRA (Abbildung 4.5b) an den Stellen 5000 und 7500 erzeugt. Der Datensatz wird

in dieser Arbeit verwendet, um die Leistung bei einem Konzeptdrift zu testen.
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4.2.3. Experimentelle Umgebung

Alle Experimente werden auf einem MacBook Pro in der Jupyter Notebook-Umgebung durch-

gefithrt. Die genauen Spezifikationen des genutzten Gerites werden in Tabelle 4.3 beschrieben.

Betriebssystem  Prozessor Arbeitsspeicher
Name Version Modell Architektur Kerne Threads RAM
Darwin 24.3.0 Apple M1 Pro  arm64 10 10 32GB

Tabelle 4.3.: Verwendete Hardware fiir die Experimente.

Es wird die Programmiersprache Python in der Version 3.11.7 genutzt. Die river Bibliothek
wird in der Version 0.22.0 und die Erweiterung deep-river in Version 0.2.8 verwendet.
Das implementierte riverMoE-Framework wurde als Prototyp in der Version 0.1.0 fiir die
Experimente evaluiert. Die Experimente werden auf der CPU ausgefiihrt. Alle Algorithmen in
den Experimenten werden mit einem festen Zufallsstartwert von 42 verwendet. Damit sind

die Experimente reproduzierbar und die Ergebnisse vergleichbar.

4.2.4. Ubersicht der Experimente

Die Experimente sind in drei Gruppen unterteilt: Regression (R), Klassifikation (C) und Drift (D),
die in diesem Abschnitt kurz vorgestellt werden. Es werden fiir die Experimente die gleichen
Parameter und NN-Architekturen fiir Modelle genommen, damit die Ergebnisse vergleichbar
sind. Zur Minimierung der Rechenzeit und des Speicherbedarfs kommen einfache neuronale

Architekturen zum Einsatz, die in Tabelle 4.4 dargestellt werden.

Lernart Typ Architektur L Optim. Lernrate

Regression Gating m-ReLU-10-ReLU-|E| MSE SGD 0,001
DeepR  m-ReLU-10-ReLU-1 MSE SGD 0,001

Klassifikation Gating m-ReLU-10-ReLU-|E| CE SGD 0,01
DeepC m-ReLU-10-ReLU-|y|-Softmax CE SGD 0,01

Tabelle 4.4.: Verwendete adaptive NN-Architekturen fiir verschiedene neuronale Lernarten.

Die Eingangsneuronen sind von der Anzahl der Attribute m des jeweiligen Datensatzes
abhéngig. Fir das Gating bestimmt die Anzahl der Experten | F'| die Anzahl der Ausgangsneu-
ronen. Das Softmax im Gating wird durch das MoE implizit umgesetzt. Fiir die Regression ist
die Anzahl der Ausgangsneuronen immer 1, fiir die Klassifikation entspricht die Anzahl der

Ausgangsneuronen der Anzahl der Klassen |y|. Die ReLU-Funktion o(z) = max(0, z) lasst
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sich effizient berechnen und unterstutzt bei der Generalisierbarkeit des NN, da Neuronen
sparsamer aktiviert werden. Als Parameter fiir die neuronalen Modelle werden die bereits
vorgestellten Verlustfunktionen und Optimierungsfunktionen verwendet. SGD wird vor al-
lem fiir inkrementelles Lernen eingesetzt, da es mit einer kleinen Anzahl von Beispielen gut
konvergiert. Fiir die Regression wird eine kleinere Lernrate verwendet als fiir Klassifikation,
da zu hohe quadratische Fehler des MSE zur Instabilitit fithren kénnen. Auch wenn das Gate
der Regression ein Klassifikationsproblem ist, wird dennoch der MSE als Verlustfunktion

genommen, da der tatsichliche Wert und die vorhersagten Werte der Experten skalar sind.

Typ  Attribut Experiment R.1 Experiment R.2
Allg. Datensatz Bikes Bikes
Modelle LinR, HTR, DeepR, MoE, BaseR Top-K(k € [1,2,3])
MoE Anzahl Experten 3 3
MoE OML-Experten LinR, HTR, BaseR LinR, HTR, BaseR
MOoE Strategie Soft-MoE Sparse-MoE
Drifterkennung = =

Tabelle 4.5.: Ubersicht der Experimente der Gruppe Regression (R).

In der Gruppe der Regression werden zwei Experimente betrachtet, die in Tabelle 4.5 aufge-
listet werden. Im ersten Experiment R.1 werden die Modelle LinR, HTR, DeepR, Sof tMoE
und BaseR auf dem Bikes-Datensatz miteinander verglichen. Das zweite Experiment R.2
fokussiert sich auf das sparsame MoE ,Sparse-MoE“ und untersucht die Auswirkung der
Top-K-Strategie auf die Anzahl der drei Experten. Die MoE OML-Experten sind in beiden
Experimenten LinR, HTR und BaseR. Die Drifterkennung wird in beiden Experimenten

nicht verwendet.

Typ  Attribut Experiment C.1 Experiment C.2
Allg. Datensatz Elec2 Elec2
Modelle LogR, HTC, DeepC, MoE, BaseC Top-K(k € [1, 2, 3])
MoE Anzahl Experten 3 3
MoE OML-Experten LogR, HTC, BaseC LogR, HTC, BaseC
MOoE Strategie Soft-MoE Sparse-MoE
Drifterkennung = =

Tabelle 4.6.: Ubersicht der Experimente der Gruppe Klassifikation (C).

In der Gruppe der Klassifikation, aus Tabelle 4.6, werden ebenfalls zwei Experimente be-

trachtet. Im ersten Experiment C.1 werden die Modelle LogR, HTC, DeepC, Sof tMoE und
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BaseC auf dem Elec2-Datensatz trainiert und verglichen. Das zweite Experiment C.2 fokus-
siert sich, analog zur Regression, auf das Sparse-MoE-Modell und untersucht die Auswirkung
des gewdhlten £ der drei Experten. Die MoE OML-Experten sind in beiden Experimenten
LogR, HTC und BaseC. Die Drifterkennung wird in beiden Experimenten nicht verwendet.

Typ  Attribut Experiment D.1 Experiment D.2
Allg. Datensatz Friedman ImageSegmention
Driftstrategie GRA (Feature-Drift) Label-Shift
Modelle DeepR, HATR(ADWIN), MoE DeepC, HATC, MoE
Problemklasse Regression Multi-Klassifikation
MoE  Anzahl Experten 3 1 (initial)
MoE OML-Experten LinR, HTR, BaseR HTC
MoE Strategie Soft-MoE SAMoE
Drifterkennung = ADWIN

Tabelle 4.7.: Ubersicht der Experimente der Gruppe Drift (D).

In der Drift-Gruppe, aus Tabelle 4.7, werden zwei Experimente betrachtet, bei denen die Drif-
terkennung der neuen inkrementellen MoE-Architektur evaluiert wird. In beiden Experimenten
wird ADWIN mit einer Konfidenzgrenze von ¢ = 0,001 verwendet. Im ersten Experiment D.1
werden die Modelle DeepR, HATR und Sof tMoE auf der Friedman-Aufgabenstellung ver-
glichen. Dabei soll untersucht werden, inwiefern der Drift bei dynamischem Gating von Nicht-
Drift-Experten, gegeniiber Algorithmen mit Drift-Verfahren oder neuronalen Netzen die Leis-
tung iiber die Laufzeit beeinflusst. Im zweiten Drift-Experiment D.2 wird die SAMoE-Variante
evaluiert. Dabei dndert sich die Multi-Klassifikationsaufgabe zur Laufzeit — im Testdatensatz
wird auf beide Aufgaben gepriift. Initial wird in dieser Variante mit einem HTC-Experten
gestartet. Bei der Drifterkennung sollte ein neuer Experte hinzugefiigt werden.

Zur Begrenzung der Komplexitit und Gréfie der HT- und HAT-Baume wird die maximale
Tiefe max_depth auf 3 gesetzt. Alle anderen Verfahren werden mit ihren Standardparame-
tern verwendet. Eine Ubersicht aller gesetzten Parameter fiir Klassifikation ist im Anhang in
Tabelle A.1 und fiir Regression in Tabelle A.2.

4.2.5. Evaluationsmethoden

Zur Bewertung der Ergebnisse der durchgefithrten Experimente werden verschiedene Metriken
und Evaluationsmethoden herangezogen. Die verwendeten Metriken sind in der Bibliothek

river implementiert und konnen direkt fiir die Evaluierung verwendet werden. Zunichst

54



4. Methodik

einmal werden die bereits vorgestellten Modellmetriken herangezogen, um die Modellgiite zu

bewerten.

Modellgiite Fiir die Regression wird der MAE, RMSE und R2-Wert, wie in Tabelle 2.1 be-
schrieben, verwendet. Der MAE lasst sich leicht interpretieren und ist unempfindlich gegentiber
Ausreiflern. Da zusétzlich auch die Bewertung grof3erer Fehler beriicksichtigt werden soll,
wird ebenfalls der RMSE herangezogen. Der R2-Wert wird berechnet, um die Varianz der
Zielvariablen zu erklaren. Dies erméglicht eine intuitive Gesamtbewertung der Modellgiite.

Fir die Klassifikation wird eine Auswahl an Metriken der Tabelle 2.5b verwendet. Dazu
zéhlt die Accuracy, die Precision, der Recall. Die Accuracy ist eine haufig eingesetzte Gesamtein-
schiatzung der Modellleistung, ist aber problematisch bei unausgeglichenen Klassen. Daher
wird auch die Precision und der Recall herangezogen, um die Leistung des Modells besser
zu bewerten. Der FI-Score ist das harmonische Mittel aus Precision und Recall und spiegelt
eine zweite Gesamtbewertung der Modellleistung wider. Bei der Multi-Klassifizierung des
Datensatzes Image Segmentation wird die Micro-Betrachtung der Metriken herangezogen, um
die Gesamtleistung des Modells zu bewerten. Beim Mikro-Durchschnitt werden die Metriken
iiber alle Klassen hinweg aggregiert, bevor die Berechnungen durchgefithrt werden.

Die genannten Metriken werden haufig in der Literatur eingesetzt und werden fiir diese
Arbeit gewihlt, damit die Ergebnisse mit anderen Arbeiten vergleichbar sind. Alle Metriken
werden als Progressive Validierung ohne Delay (d = 0) berechnet, wie bereits in den Grundlagen
durch Abbildung 2.6a vorgestellt. Das heift, es wird zuerst die Vorhersage berechnet, dann
evaluiert und zum Schluss das Modell aktualisiert. Die Metriken werden in jeder Iteration als
kumulierter gleitender Durchschnitt, wie in Formel 2.5 berechnet. Die Gewichtung wird mit
wy = 1 ausgeklammert und entspricht dem Cumulative Moving Average (CMA). Damit ist ein
Vergleich der Leistung von verschiedenen OML-Methoden mit dem Framework riverMoE

moglich, die in Liniendiagrammen tiber den zeitlichen Verlauf dargestellt werden.

Hardware Der Einsatz von OML-Algorithmen ist besonders in Streamingszenarien inter-
essant. Eine verhaltnismafig schnelle Rechenzeit und moéglichst geringer Speicherplatzver-
brauch sind dabei entscheidend. Deswegen wird durch eine externe Evaluierungsmethode in
jeder Iteration die kumulierte Rechenzeit und der verwendete Speicherplatz gemessen und als
Liniendiagramm ausgegeben. Die Division der gesamten Laufzeit durch die Anzahl der Instan-
zen ergibt die durchschnittliche Laufzeit pro Instanz (,,Zeit/Instanz) und wird als Trainings-
und Inferenzzeit angegeben. Die Messung fiir die Rechenzeit in der Einheit Sekunden (s) und

Mebibyte (MiB) fiir den Speicherbedarf. Die Trainings- und Inferenzzeit pro Datensatz wird in
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Millisekunden (ms) angegeben. Bei MoE wird noch die jeweilige Speichergrofie der Experten

tabellarisch transparent dargestellt.

MoE-Evaluation Fiir die Evaluierung der MoE-Komponenten bedarf es spezieller Metriken
fiir Gating und Expertenauswahl. Bei jeder Trainingsinstanz kann das vom Gate berechnete
Gewicht gemessen werden. Zunichst wird erhoben, wie héufig ein Experte j € E nach den
N-Durchlaufen absolut ausgewahlt wurde. Dafiir wird die Indikatorfunktion 1 verwendet, um
alle Experten, deren Gewichte w in einem Durchlauf gréler als 0 sind, zu zahlen. Mithilfe der
absoluten Haufigkeit wird die relative Haufigkeit pro Experte j in Formel 4.4 ermittelt. Die
individuellen Beitrage, die die Experten zu den Vorhersagen beitragen, werden in Formel 4.5

als Durchschnitt zusammengefasst.

Rel. Haufigkeit(7) Z (w0 (44) Beitrag(j = Z lwjs|  (4.5)

Beide Metriken sind Prozentwerte. Die Entropie der Gate-Gewichte fiir eine Instanz x; wird
verwendet, um die Spezialisierung der Experten eines Durchlaufs zu bewerten. Damit die
Entropie-Werte vergleichbar sind, wird der Kehrwert der maximalen Entropie log(|E|) als

Skalierungsfaktor verwendet, um die Werte zwischen 0 und 1 in der Formel 4.6 zu normieren.

|E|
Normierte Entropie(z;) = -7 ‘ 2]} sz log(w;) € [0,1] (4.6)
og

Die Spezialisierung ist ein Maf3 fiir die Diversitdt der Experten und éhnelt der Evaluations-
methodik Router Dispatch Entropy von Z. Chen et al. (2024, S. 9). Je hoher der Wert ist, desto
gleichverteilter sind die Gewichte und vice versa. Bei einem Wert von 1 sind die Gewichte

perfekt gleichverteilt, bei 0 ist nur ein Experte aktiv.

Alle Metriken werden fiir ein Modell berechnet und pro Durchlauf gemessen und mit
den anderen Modellen verglichen. Dabei wird die Genauigkeit der Metriken auf drei Nach-
kommastellen gesetzt. Generell gilt, dass die Reihenfolge der Daten, also die Eintreffzeit der
Dateninstanzen aus dem Datenstrom, einen Einfluss auf die Ergebnisse hat. Es handelt sich da-
her um eine Prequential Validation. Daher ist es iiblich fiir die Gesamtbeurteilung, die Werte der
letzten Iteration zu betrachten. Dies entspricht im produktiven Szenario dann der Leistung des
Modells fiir neue eintreffende Dateninstanzen. Eine ausfithrliche Ubersicht der Zwischenwerte

mit gleichen Abstidnden wird im Anhang A.4 in Tabellen festgehalten.
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Bevor die Ergebnisse der Experimente prasentiert werden, wird zunéchst die prototypische
Implementierung des riverMoE-Frameworks vorgestellt. Dabei wird die entwickelte Archi-
tektur erkléart. Dies beantwortet die erste Forschungsfrage, ob ein Framework zur Generierung
von MoE-Systemen fiir dynamische Umgebungen méoglich ist (RQ1). Im zweiten Abschnitt
dieses Kapitels werden die Evaluationsergebnisse der einzelnen Experimente vorgestellt und
diskutiert. Dabei wird die zweite und dritte Forschungsfrage betrachtet, wie die Leistung
gemessen werden kann (RQ3) und ob sich die Leistung in dynamischen Umgebungen durch
die Architektur steigert (RQ2).

5.1. Prototypische Implementierung

Die Idee von riveryog wurde als Framework riverMoE! in Python umgesetzt und auf Github
veroffentlicht. Es dient als Erweiterung zu dem Basis-Framework river. Das Framework
ermoglicht die Generierung von MoE-Systemen fiir dynamische Umgebungen. Dabei kon-
nen verschiedene MoE-Varianten umgesetzt werden, die auf unterschiedlichen Gating- und
Experten-Modellen basieren. Die Funktionsweise und der Aufbau der Software werden in den

nachsten Abschnitten naher erlautert.

5.1.1. Framework-Architektur

Fir die prototypische Umsetzung wurden 15 Python-Klassen implementiert, die in der Ab-
bildung A.1 als Klassendiagramm im Anhang aufgelistet werden. Damit die grundlegende
API aus dem Basis-Framework river und deep-river wiederverwendet werden kann,

wurde primér mit Vererbungen von deren Klassen gearbeitet.

Basis MoE Zunichst wurde eine Basis-MoE Klasse BaseMixtureOfExperts erstellt,

die die grundlegenden Funktionen von dem Standard-Estimator aus river erbt. Damit

!Github: https://github.com/bitnulleins/rivermoe
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besitzt das MoE die gleichen Eigenschaften und Methoden wie alle Schétzer der river-
Bibliothek. Jede MoE-Variante hat zusatzlich die Attribute und Methoden, wie sie in Abbildung

5.1 beschrieben sind.

BaseMixtureOfExperts

+ gate: deep_ river.Classifier

-+ experts: List[river.base.Estimator]
+ seed: int = config.random__seed
— _name: str

— moe_initialized: bool

— _abs_freq: dict

— _rel freq: dict

— _gate_weights: dict

— _n_experts: int

— _memory _usage: str

— _raw_memory_usage per component: dict

-+ initalize moe(x: dict)
+ update_stats(weights: list)
+ draw()

— loss(y_pred, y)
— adapt_gate output dim(y)

Abbildung 5.1.: Basis-Klasse als Ausschnitt aus dem Klassendiagramm zu riverMoE

Jede MoE-Art besteht aus einem Gate-Objekt und einem oder mehreren Experten-Objekten,
die bei der Initialisierung des Objektes mitgegeben werden. Die Classifier-Klasse aus
deep-river wird als Schitzer fiir das Gate erwartet. Bei den Experten kann es ein beliebiger
Schatzer sein. Beides wird bei der Initialisierung geprift, um die Funktionalitit sicherzustellen.
Der Zufallsstartwert des MoE wird auf 42 als Standardwert gesetzt. Alle anderen Attribute
sind privat und werden intern verwendet. Die Anzahl der Experten kann aus _n_experts
entnommen werden, das dynamisch durch einen Eigenschaftsdekorator erzeugt wird. Fiir das
Gate wird ein neuronales Netz erwartet, wie bereits durch den Methodikteil der Tabelle 4.1
dieser Arbeit begriindet. Die Experten hingegen konnen beliebige OML-Verfahren sein. Das
Namen-Attribut soll bei der Identifizierung der MoE-Art unterstiitzen und wird im Standard
durch den Klassennamen gefiillt. Diese Methode kann auch durch parameterabhéngige Namen,
wie k bei einem Sparse-MoE, tiberschrieben werden. Der Name wird dann unter dem Gate als
MOoE-Strategie in der Architekturskizze angezeigt, wenn die draw () -Methode aufgerufen
wird. Eine erzeugte Skizze ist in Abbildung 5.2 zu sehen.

Bei dem Aufruf von update_stats werden jegliche Statistiken des MoE aktualisiert.
Das ist im Standard der Nutzungszahler der aktiven Experten (w; > 0) aus _abs_freq.In
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Gate: deep _river.Classifier

rivermoe.SparseMoEClassifier(k=2)

~N X
Expert 1: 1 ‘\\
river.Hoeffding TreeClassifier \
e — - \ n
— \
b Expert 2:
\\ river.NoChangeClassifier %
A |
Expert 0:
river.LogisticRegression

Abbildung 5.2.: Generierte Architekturskizze eines MoE mithilfe der draw () -Methode.

dem Attribut _rel_freq werden die relativen Hiufigkeiten der Experten, fir die Metrik aus
Formel 4.4, als Eigenschaftsdekorator aus den absoluten Héaufigkeiten berechnet. Die letzten
Gating-Gewichte werden in _gate_weights gespeichert, um spiter die Beitragsmetrik
(Formel 4.5) und normierte Entropie (Formel 4.6) berechnen zu kénnen. Uber die Speicherplatz-
werte konnen Informationen zur Speicherung der Experten, des Gates — und in summierter
Form - fiir das gesamte MoE abgerufen werden. Die adaptiven Eigenschaften des neuronalen
Gates, die deep-river bereits umgesetzt hat, werden aktiviert. Damit konnen zur Lautzeit
Eingangsdaten, das Label und die Anzahl an Experten im Gate veriandert werden. Die Adapti-
vitat entspricht einer der wichtigsten Eigenschaften von OML-Verfahren. Initialisiert werden
die neuronalen Komponenten mithilfe von _moe_initalize. Dabei wird die Anzahl der
Ausgangsneuronen, wenn nicht bereits gegeben, auf die Anzahl der Experten angepasst. Fiir
das erste Training wird im Gate-Netzwerk der Bias bg auf 0 und die Startgewichte 6 auf einen
konstanten Wert ﬁ gesetzt, damit nicht, je nach Expertenreihenfolge, ein Experte bevorzugt
wird. Die Experten aus den einzelnen MoE der Experimente wurden dafiir experimentell
variiert. Jede Reihenfolge fithrte korrekterweise zur gleichen Modellleistung.

Die grundlegenden Methoden der Basis-Regressoren und Basis-Klassifikatoren eines OML-
Verfahrens sind die Methoden learn_one und predict_one. Dafiir wurde zunéchst
von der Basis-MoE-Klasse geerbt und ein Basis-Regressor sowie ein Basis-Klassifikator imple-
mentiert. Diese wurden in den beiden Subklassen MOEClassifier und MOERegressor
implementiert. Letztere Methode gibt die Vorhersage fiir einen Datensatz x; zuriick. Fir
Klassifikationen wird noch die predict_proba_one benétigt, die pro Klasse die Wahr-
scheinlichkeiten zuriickgibt. Bei der Vorhersage der endgiiltigen Klassifikation wird die Klasse

mit der hochsten Wahrscheinlichkeit zuriickgegeben. Die Lernmethode 1earn_one trainiert
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mit dem Wertepaar d; = (x4, y;) ein oder mehrere Experten und aktualisiert die Gewichte des
Gates. Diese Methoden geben, wie in river, die grundlegende Funktionalitat des Modells
vor. In jedem Inferenz- und Trainingsschritt kann die Attributmenge durch neue, vorher unge-
sehene Attribute erginzt werden. In der Klassifikation werden noch zusétzlich die eindeutigen
Labels in jedem Schritt adaptiv aktualisiert. Bei der Umsetzung wurde auch die Eigenschaft
berticksichtigt, dass ein Experte direkt ausgewahlt wird, wenn im MoE nur ein Experte vor-
handen ist. Dies lasst sich durch Abbildung 5.3 veranschaulichen. Hier sind die Leistungen des
Experten und des Single-Expert-MoE identisch. Der generelle MoE-Klassen-Wrapper sorgt fiir

etwas hoheren Speicherbedarf und minimal héhere Laufzeiten.
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Abbildung 5.3.: Modellleistung ist bei Single-MoE identisch zur Expertenleistung ohne MoE.

MoE-Varianten Die grundlegenden MoE-Varianten, die in dieser Arbeit implementiert
wurden, sind Soft-Moe nach Jacobs et al. (1991) und Sparse-MoE mit Top-K-Routing nach
Shazeer et al. (2017). Fiir die Implementierung wird pro Problemart von dem MoE- und der
Varianten-Klasse geerbt. Das generelle Vorhersage- und Lernverhalten einer MoE-Variante wird
durch die Implementierung der abstrakten Methoden _learn und _predict bestimmt.
Die wesentliche Gating-Logik der Variante wird durch die Implementierung der abstrakten

gating (x)-Methode aus der BaseVariant-Klasse festgelegt.
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Die Gating-Gewichte des Soft-Max entspricht dem Softmax? der Rohwerte Z (z;) = 0; - z;
der Ausgabeneuronen: G(z;) = Softmax(Z(x;)). Fir die Gesamtvorhersage werden die
Vorhersagen aller Experten berechnet und durch die Gating-Gewichte gewichtet. Im Training
wird die Gesamtvorhersage ebenfalls berechnet und dient neben dem tatséchlichen Wert als
Eingabe fiir die Verlustfunktion, um das Gate sukzessiv zu verbessern.

Fiir das Sparse-MoE, bei dem nur die besten k-Experten aktiv sind, wurde zusétzlich der
Parameter k eingefiihrt, der bei der Erstellung der MoE-Variante verlangt wird. Mit diesem
Parameter werden immer die k-hochsten Gating-Gewichte w;, mit einem Rauschen nach
Shazeer et al. (2017) aus Formel 5.1 ausgewahlt. Die besten Experten e werden uiber das
Argument des Maximums abgeleitet: e; = arg max w;.

i€TopK (k)
G(xy) = Softmax(KeepTopK (Z(xy), k))

Z(xt)l = (9 ' wt)’i +N(07 1) ' Softplus((eRauschen : $t)z) ( )
5.1

w;, wenn wj; in den besten k-Experte von W
KeepTopK (W, k); =
0, sonst.

Durch das Rauschen und der Softplus®-Funktion wird die Diversitit der Experten erhéht.
Die sparsame Auswahl an Experten reduziert Rechenaufwénde im Training und erhoht die
Inferenzgeschwindigkeit, da nicht alle Experten pro Durchlauf aktiv sind. Die Implementie-
rung beider Varianten wurde mit PyTorch-Methoden umgesetzt, um die Kompatibilitat
zum bestehenden deep-river zu halten. Der generelle Ablauf fiir die Inferenz und das
Lernen ist grundsétzlich fiir jeweils Regression und Klassifikation identisch. Ein passendes

Aktivitatsdiagramm lasst sich aus dem Anhang A.2 entnehmen.

SAMoE Das Sparse-MoE stellt die Grundlage fiir SAMoE, eine adaptive MoE-Variante. Es wur-
de fiir die Klassifikation implementiert und erbt von der SparseMoEClassifier-Klasse.
Der k-Wert wurde auf 1 gesetzt, damit immer nur ein Experte pro Durchlauf ausgew#hlt wird.
Wie in der Architektur aus Abbildung 4.1 vorgestellt, ist das Novum der Variante die progressi-
ve Erweiterung des Expertenpools bei Drifterkennung. Deswegen wird ein Drift-Verfahren
als Drift-Detektor bei der Initialisierung des Objektes erwartet. Die iibergebenen (untrainier-
ten) Experten-Algorithmen aus experts werden in einen Katalog experts_catalog
geklont.

2Softmaz(z) = ——

>i—1 e’

*Softplus(z) = In(1 + €*)
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Der Ablauf des dynamischen Hinzufiigens von Experten wird durch das Listing aus 5.1
deutlich. Der Drift-Detektor wird in einem Trainingsschritt mit einem binaren Fehlerwert y; #
y; aktualisiert. Tritt ein Drift auf, &ndert sich die Fehlerquote und der Drift-Detektor erkennt
den Drift. Wird ein Drift erkannt, wird mithilfe von Modulo der letzte Experte aus dem Katalog
zyklisch ausgewiahlt und zum Experten-Pool hinzugefiigt. Dafiir wird die add_expert-
Methode aufgerufen. Dort wird die letzte Schicht im Gating um ein Ausgangsneuron adaptiv
erginzt und die Gewichte nach N (0, 1) normalverteilt initialisiert.
y_pred = self.predict_one(x)
error = 1 if y != y_pred else 0
self.drift_detector.update(error)
if self.drift detector.drift detected:

expert_index = (self._n_experts-1) % len(self.expert_catalog)
selected_expert = experts_catalog[expert_index]
self.add_expert(selected_expert)

Listing 5.1: Dynamisches hinzufiigen eines neuen Experten bei Drift-Erkennung.

NN-Generator Die neuronalen Gates und Experten konnen mithilfe eines entwickelten
neuronalen Generators aus einer beliebigen Konfiguration erzeugt werden. Durch Angabe der
Eingangs- und Ausgangsdimension, Aktivierungsfunktion und Ebenenkonfiguration erzeugt
die GenericNNArchitecture-Klasse ein Pytorch nn.Module. Es werden linear ver-
bundene Ebenen, aber auch LSTM-Schichten unterstiitzt. Bei den Aktivierungsfunktionen
konnen bekannte Verfahren wie ReLU gewahlt werden. Die generische NN-Architektur wird als
Modul in der GenericNN-Klasse verwendet und stellt damit eine Aggregations-Beziehung
im Klassendiagramm dar. Die entsprechenden Regressoren und Klassifikatoren erben die Ei-
genschaften von GenericNN. Das Anlegen eines neuronalen Schitzers fiir das Gate, wie in
Tabelle 4.4 (,m-ReLU-10-ReLU-| E

“), ist das durch Listing 5.2 moglich.

gate = GenericNNClassifier(
layer_configs=[10,],
activation fn="relu",
loss_fn="cross_entropy",
output_activation=None,
optimizer_fn="sgd"

)

Listing 5.2: Generierung eines inkrementellen Klassifikators mit einer versteckten Schicht aus
10 ReLU-aktivierten Neuronen und variablen Eingangs- und Ausgangsneuronen

(ohne Aktivierung). Optimiert wird nach Cross Entropy (CE) mit SGD.

62



5. Ergebnisse und Diskussion

Die Verwendung des riverMoE ist voll kompatibel mit river und deep-river und
wird mit der NNGenerator-Hilfsklasse vereinfacht. Damit lasst sich in wenigen Zeilen

(Listing 5.3) ein inkrementelles MoE-Modell erstellen:

soft_moe = Soft-MoERegressor/(
gate = gate,
experts = [LogisticRegression(), HoeffdingTreeClassifier() ]
)
Listing 5.3: Einfaches Beispiel zur Erstellung eines inkrementellen MoE mit neuronalen

SoftMax-Gate und zwei nicht neuronalen river-Experten.

Die Umsetzung eines Systems, das den MoE-Ansatz mit Online-Learning-Verfahren und in
dynamischen Umgebungen erméglicht, ist durch das riverMoE-Framework erreicht. Damit
ist die Umsetzung und Kombination beider Ansitze erfolgt, was zur teilweisen Beantwor-
tung der ersten Forschungsfrage (RQ1) fithrt. Die Evaluation des Frameworks erfolgt durch

Simulation von Experimenten.

5.1.2. Simulation der Experimente

Alle Experimente aus Abschnitt 4.2.4 werden durch einen simulierten endlichen Datenstrom als
produktives Szenario durchgefiihrt. Dabei flielen, anders als haufig in der Realitét, die Daten
mit einer gleichbleibenden Datenrate vy , ohne Verzégerung, in das MoE-System. Durch die
Verarbeitung einzelner Instanzen wird es méglich, auch theoretisch grof3e Datenmengen ohne
zusitzlichen Speicherplatz zu bearbeiten. Die Simulation spiegelt das Konzept der Adaptivitat
aus Abbildung 2.1 wider. Datensatze im Big Data konnen sich nach jedem Inferenz- und
Trainingsschritt verandern und das MoE-System muss auf das Dynamisches Optimierungs-
Problem reagieren.

Fiir die Evaluation wurde die experiment-Methode in der experimentellen Umgebung,
dem Jupyter-Notebook, implementiert, die fiir die Simulation zustindig ist. Zur visuellen
Darstellung der Ergebnisse erstellt diese Methode Grafiken und Tabellen zu den berechneten
Metriken pro Modell und Experiment. Sinnvolle Metriken zur Evaluation wurden bereits im
Abschnitt 4.2.5 vorgestellt. Durch das Hinzufiigen neuer Merkmale zum Speicher- und Leis-
tungsverhalten der Experten und des Gates konnten die MoE spezifischen Metriken realisiert
werden. Beides tragt zur Beantwortung der dritten Forschungsfrage bei (RQ3). Wie effektiv
die MoE-Architektur in dynamischen Umgebungen ist (RQ2), wird durch die Experimente

evaluiert. Die Ergebnisse werden in den folgenden Abschnitten prasentiert und diskutiert.
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5.2. Evaluation der Experimente

Es wurden insgesamt sechs Experimente durchgefiihrt, die in drei Kategorien unterteilt sind.
Die erste Kategorie umfasst die Regressionsexperimente, die zweite Kategorie die Klassifikati-
onsexperimente und die dritte Kategorie die Experimente zum katastrophalen Vergessen. Die
Ergebnisse der Experimente werden in den folgenden Abschnitten prasentiert. Die Diskussion

der Ergebnisse erfolgt in Bezug auf die Forschungsfragen.

5.2.1. Experimente fiir Regression

Experiment R.1 Im ersten Regressionsexperiment ging es um die Evaluation des MoE-
Systems gegeniiber LinR, HTR und DeepR. Werden die Liniendiagramme aus Abbildung 5.4
betrachtet, kann erkannt werden, dass die lineare Regression (LinR) besonders am Anfang eine
sehr starke Abweichung im MAE hatte. Die anderen Modelle haben bereits anfangs einen recht
niedrigen Fehlerwert. Im Verlauf ist es sichtbar, dass nicht neuronalen Modelle wie BaseR,
HTR oder LinR am weningsten Zeit benétigt haben. Dieses Verhalten war zu erwarten, da

aufwendigere Forward und Backward-Propragierungen bei neuronalen Netzen genutzt werden.
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Abbildung 5.4.: Modellmetriken, Zeit- und Speicherbedarf pro Modell (Experiment R.1).

Eine bessere Ubersicht der endgiiltigen Modellleistung zeigt Tabelle 5.1. Das Soft-MoE erzielt
die besten Ergebnisse in MAE, RMSE und R2. Die Laufzeit ist jedoch am liangsten und der
Speicherbedarf am héchsten. Das Soft-MoE konnte nur sehr knapp bessere Ergebnisse als
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das HTR erzielen. Dabei war das HTR-Modell, ohne neuronale Gating-Komponente, achtmal
frither fertig und verbraucht nur die Hélfte des Speichers. Soft-MoE und HTR konnten beide
das neuronale Netz DeepR iibertreffen. Die lineare Regression schnitt in der progressiven

Validierung schlechter als das Baseline-Modell ab und ist daher fiir das vorliegende Setting

nicht geeignet.
Modell ~ Zeit Speicher  Zeit/Instanz MAE RMSE R2
LinR 5,262s  0,005MiB  0,029ms 7,646 271,008 -919,481
HTR 6,333s  0,036MiB  0,035ms 5,597 7,369 0,32
DeepR 40,712s  0,034MiB  0,223ms 5,783 7,667 0,263
BaseR 4,136s 0,004MiB 0,023ms 7,247 8,933 -0
SoftMoE  56,855s 0,071MiB  0,312ms 5,589 7,349 0,323

Tabelle 5.1.: Ubersicht Metriken aller Modelle (Experiment R.1). Beste Ergebnisse markiert.

Ein Ergebnis ist, dass der Speicherverbrauch vom Soft-MoE identisch verlauft wie der von
HTR, blof nach oben verschoben. Am Anfang steigt der Speicherbedarf, nach ungefahr 35000
Instanzen sinkt der Bedarf und bleibt konstant. Dieses Verhalten ist zu erwarten, da die anderen
beiden MoE-Experten (LinR, BaseR) kaum Speicher benétigen und der Verbrauch daher primar
von HTR getrieben wird. DeepR und HTR konvergieren zu einem gleichen Speicherverbrauch.
Der Speicherverbrauch von Soft-MoE ist am hdchsten. Das ist insofern nachvollziehbar, als
ein MoE speichertechnisch aus einem neuronalen Gate und den einzelnen Experten besteht.
Die detaillierten MoE-Metriken aus Tabelle 5.2 der letzten Instanz bestétigen diese Vermutung.
Die Addition der Gewichte von DeepR, einem architektonisch dhnlichen Netzwerk zum Gate,
zum Speicherbedarf der drei nicht neuronalen Experten, ergibt einen Gesamtwert von 0,081
MiB. Das Soft-MoE ist in der Realitdt mit 0,074 MiB etwas sparsamer. Dennoch lasst sich
der grofite Speicherbedarf des MoE dadurch erkldren. Das schnellste und speichertechnisch
leichteste Modell ist das Base-Modell, was darauf zuriickzufithren ist, dass es sich lediglich um

den Cumulative Moving Average handelt - also die Berechnung eines skalaren Werts.

Haufigkeit Speicherbedarf
Modell Beitrag Relativ  Absolut Relativ  Absolut Relativ
StatisticRegressor 0,00 % 182470 33,30 % 490 B 0,70 %
HoeffdingTreeRegressor 35,00 % 182470 33,30 % 33,1 KiB 47,40 %
LinearRegression 65,00 % 182470 33,30 % 2,23 KiB 3,20 %
Gate 33,96 KiB 48,70 %

Tabelle 5.2.: Detaillierte Metriken fiir das Soft-MoE (Experiment R.1).
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Die Tabelle 5.2 zeigt einen detaillierten Einblick in das Soft-MoE-Modell. Im Soft-MoE wurden
alle Experten mit 33,3 % gleich hdufig verwendet. Bemerkenswert ist, dass die schlechtere
Lineare Regression mit 65 % durchschnittlich den gré3ten Beitrag an der Leistung hat, wihrend
sie beim HTR, mit besserer Modellgiite, nur 35 % beitragt. Das Gating-Routing fithrt dennoch
gewichtet zum Ergebnis (MAE: 5,589). Wie im oberen Absatz bereits beschrieben, hat das Gate
mit 34 KiB die gleiche Grofle wie das neuronale Netz in DeepR. Der HTR benotigt aber weniger
Speicherplatz als das alleinstehende Modell. Das kann damit zusammenhéngen, dass durch
die geringere Nutzung ein kleinerer Entscheidungsbaum entstanden ist. Einen Einblick in die
Gategewicht-Verteilung gibt die Abbildung 5.5.
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Abbildung 5.5.: Normierte Entropie der Soft-MoE Gategewichte (Experiment R.1).

Die normierte Entropie der Gategewichte iiber den zeitlichen Verlauf zeigt eine starke
Tendenz von 0. Das spricht deutlich dafiir, dass das Gate primar einzelne Experten gewichtet

hat. Das Gate hat sich damit haufig spezialisiert.

Experiment R.2 Im zweiten Experiment wurden die Sparse-MoE Modelle untersucht. Zu
diesem Zweck wurden jeweils die Top & 1, 2 oder 3 der drei Experten gew&hlt, um die Gesamt-
prognose zu berechnen. In der Abbildung 5.6 sind die Ergebnisse tiber den zeitlichen Verlauf
dargestellt. Zu Beginn ist zu erkennen, dass anfangs priméar der Entscheidungsbaum von HTR
aufgebaut wurde, was die Geschwindigkeit und Modellleistung etwas negativ beeinflusst hat.
Weiterhin ist erkennbar, dass die Modellleistung sinkt, je weniger Experten verwendet werden.
Da Experten in der Regel unterschiedliche Starken und Schwichen haben, erzielen sie oft
kombiniert bessere Ergebnisse.

Die zeitlichen und speicherbedingten Vorteile der verschiedenen k-Einstellungen, werden
durch die Ergebnistabelle 5.3 deutlicher. Das Sparse-MoE-Modell (k = 1), das Training und
Inferenz mit nur einem Experten ausfiithrt, arbeitete am schnellsten. Zeitgleich hat es die
stabilsten Ergebnisse erzielt. Der RMSE, der grofere Fehler bestraft, ist hier am niedrigsten.
Zusitzlich konnte das Modell die Daten am genauesten beschreiben (R2 = 0,188). Der mittlere
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Abbildung 5.6.: Modellmetriken, Zeit- und Speicherbedarf pro Modell (Experiment R.2).

Fehler ist, wenn mehr Experten herangezogen werden (k = 2 oder k£ = 3), niedriger. Gut zu
erkennen ist, dass die Anzahl und Auswahl der Experten einen Einfluss auf die Laufzeit und den
Speicherbedarf haben. So verbraucht das Sparse-MoE mit zwei Experten (k = 2) am geringsten
Speicher, hat aber langer gebraucht als das Sparse-MoE mit nur einem Experten (k = 1). Eine
identische Leistung zwischen Soft-MoE und Sparse-MoE bei Nutzung aller Experten (k = 3)

ist durch die unterschiedliche Umsetzung nicht gegeben.

Modell Zeit Speicher  Zeit/Instanz MAE RMSE R2
Top(k=1) 89,788s 0,074MiB  0,492ms 6,267 8,049 0,188
Top(k=2) 93,331s 0,063MiB 0,511ms 5,728 21,515 -4,802
Top(k=3) 92,15s 0,074MiB  0,505ms 5,917 79,232 -77,677

Tabelle 5.3.: Metriken des Sparse-MoE (Experiment R.2). Beste Ergebnisse markiert.

Das Soft-MoE schneidet insgesamt besser ab als das Sparse-MoE. Eine mogliche Erklarung
gibt das Sparse-MoE (k = 3) der Tabelle 5.4. Anders als bei dem Soft-MoE ist die relative
Haufigkeit der Experten im Sparse-MoE sehr unterschiedlich, obwohl alle Experten ausgewahlt
wurden. In der Haufigkeit werden nur aktive Experten beriicksichtigt, deren Gewicht gréfier 0
ist. Vermutlich wurde im Sparse-MoE durch das hinzugefiigte Rauschen vor der Top-K-Auswahl

eine klare Spezialisierung unter den Experten gefordert. Angesichts dessen wurde vermehrt
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HTR gewahlt, der auch mit 86 % den grofiten Beitrag hatte. Der HTR hatte bereits ohne MoE
die besten Ergebnisse fiir MAE, RMSE und R2 (Abbildung 5.4).

Haufigkeit Speicherbedarf
Modell Beitrag Relativ.  Absolut Relativ  Absolut Relativ
LinearRegression 11,20 % 33160 1492 % 2,23 KiB 3,20 %
StatisticRegressor 2,80 % 33040 1487 % 490 B 0,70 %
HoeffdingTreeRegressor 86,00 % 155977 70,20 % 33,1 KiB 47,50 %
Gate 33,95 KiB 48,70 %

Tabelle 5.4.: Detaillierte Metriken fiir das Sparse-MoE Top(k = 3) (Experiment R.2).

Im Kontrast zum Sparse-MoE (k = 3) lasst sich beim Sparse-MoE (k = 1) aus Tabelle 5.5
erkennen, dass die relative Hiufigkeit und der durchschnittliche Beitrag gleich verteilt sind und
dem Soft-MoE sehr dhneln. Das konnte daran liegen, dass das Gate mit der zu kleinen Lernrate
nicht gelernt hat, gut zwischen den Experten zu differenzieren. Es muss darauf hingewiesen
werden, dass Experten in diesem Modell eine geringere Wahrscheinlichkeit haben, trainiert zu
werden, als bei k£ = 3, wo alle Experten eine gleichméflige Wahrscheinlichkeit besitzen. Diese
durchschnittliche Trainingshaufigkeit liegt demnach bei % Daraus konnte folgen, dass der
HTR nicht zwingend die gleiche Trainingsmoglichkeit hatte wie im Soft-MoE und dadurch

seltener als Experte dominierte.

Haufigkeit Speicherbedarf
Modell Beitrag Relativ.  Absolut Relativ  Absolut Relativ
LinearRegression 30,00 % 60889 3340 % 2,23 KiB 3,20 %
StatisticRegressor 31,00 % 61054 3350 % 490 B 0,70 %
HoeffdingTreeRegressor 39,00 % 60527 33,20 % 33,14 KiB 4750 %
Gate 33,95 KiB 48,60 %

Tabelle 5.5.: Detaillierte Metriken fiir das Sparse-MoE Top(k = 1) (Experiment R.2).

Der Vorteil der Sparsamkeit des Sparse-MoE wurde in diesen Experimenten nur bedingt
deutlich, da die eingesetzten nicht neuronalen Modelle als Experten bereits grundsitzlich
schnell und sparsam sind. Der Effekt wird deutlicher, wenn neuronale Experten zum Einsatz
kommen, die im Einzelnen eine hohe Trainings- und Inferenzzeit haben. Fiir das vorliegende
Regressionsproblem konnte das MoE mit nicht neuronalen Experten teilweise bessere Ergeb-
nisse erzielen als vergleichbare Modelle ohne MoE. Die Ergebnisse hiangen aber auch von der

Wahl der Parameter ab, die hier fiir den Vergleich identisch gesetzt wurden.
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5.2.2. Experimente fiir Klassifikation

Experiment C.1 Im ersten Experiment zum Klassifikationsproblem wurde, analog zur Re-
gression, das Soft-MoE mit anderen Modellen verglichen. Die Ergebnisse dazu finden sich in

der Abbildung 5.7 wieder.
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Abbildung 5.7.: Detaillierte Metriken fiir das Soft-MoE (Experiment C.1).

Uber den gesamten Trainings- und Inferenzzeitraum bewegen sich die erfassten Metriken mit
einigen Ausnahmen recht konstant. So ist der Speicherbedarf des MoE und des HTC am Anfang
dhnlich hoch wie in den Regressionsexperimenten. Nach nur wenigen Hundert Durchldufen
reduziert sich der Bedarf aber wieder. Der Anstieg und Abstieg des Speicherbedarfs verhalt
sich beim Soft-MoE und HTC wieder identisch, obwohl der Soft-MoE insgesamt mehr Speicher

benoétigt. Die Griinde dazu wurden bereits bei der Regression erortert und treffen auch hier zu.

Haufigkeit Speicherbedarf
Modell Beitrag Relativ  Absolut Relativ  Absolut Relativ
LogisticRegression 41,80 % 45312 33,30 % 2,54 KiB 1,70 %
NoChangeClassifier 36,40 % 45312 33,30% 531B 0,40 %
HoeffdingTreeClassifier 21,80 % 45312 33,30 % 10591 KiB 72,60 %
Gate 36,96 KiB 25,30 %

Tabelle 5.6.: Detaillierte Metriken fiir das Soft-MoE (Experiment C.1).
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Interessant zu beobachten ist, dass der HTC tiber die Zeit an Accuracy verliert, obwohl der
Soft-MoE seine Leistung halt. Das konnte daran liegen, dass der HTC-Algorithmus nicht in der
Lage ist, die Datenstruktur zu adaptieren. Das Soft-MoE hingegen kann durch das dynamische
Gate und die Experten besser auf die Daten reagieren. Die genauen Ergebnisse der letzten

Instanz lassen sich in der Tabelle 5.7 ablesen.

Modell  Zeit Speicher  Zeit/Instanz Accuracy Precision Recall F1

LogR 1,411s  0,006MiB  0,031ms 0,837 0,84 0,762 0,799
HTC 1,471s  0,106MiB  0,032ms 0,747 0,742 0,619 0,675
DeepC 12,634s  0,037MiB  0,279ms 0,575 0,5 0 0

BaseC 0,996s 0,003MiB 0,022ms 0,853 0,827 0,827 0,827
SoftMoE  16,008s 0,146MiB  0,353ms 0,876 0,867 0,836 0,852

Tabelle 5.7.: Ubersicht Metriken aller Modelle (Experiment C.1). Beste Ergebnisse markiert.

Fur alle Modellmetriken hat das Soft-MoE die besten Werte erreicht. Erstaunlich ist, dass
DeepC fiir die vorliegende Datenverteilung deutlich schlechter abschneidet als die anderen Mo-
delle. Besonders im Recall hat DeepC keine Ergebnisse erhalten. Grund dafiir konnte sein, dass
das neuronale Netz fiir diese Problemstellung zu einfach ist. Das Baseline-Modell, das die letzte
Klasse als Prognose zuriickliefert, scheint auf diesem Datensatz besser zu funktionieren. In der
Implementierung der Klassifikations-Varianten wurde auf die korrekte OML-Lernreihenfolge
geachtet, dass zuerst vorhergesagt und dann gelernt wird. Andernfalls wiirde das Baseline-
Modell (letzte Klasse) immer die richtige Klasse vorab lernen. Besonders im Bereich des Recalls
und F1-Scores konnte das Soft-MoE mit HTC deutlich bessere Ergebnisse erzielen als HTC
alleine.

Ein wichtiger Vorteil von MoE, mit Einsatz von nicht neuronalen Experten, ist ihre Erklarbar-
keit, die auch schon von Sharma, Henderson und Ghosh (2023) in FEAMOoE untersucht wurde.
Die zugrundeliegenden Modelle, wie die logistische Regression oder der Entscheidungsbaum
aus HTC, lassen sich einfach interpretieren. Die logistische Regression lésst sich als einfaches
Wahrscheinlichkeitsmodell darstellen. Der trainierte Entscheidungsbaum aus dem HTC-Modell
des Soft-MoE aus Abbildung 5.8 konnte einfach exportiert werden.

Eine weitere Moglichkeit, die zur Erklarbarkeit bei MoE beitragt, sind die Gategewichte.
Diese entscheiden tiber die Gesamtprognose aus den Teilprognosen. Die Metrik der normierten
Entropie gibt Aufschluss dariiber, wie das Gate die Experten gewichtet hat. In Abbildung 5.9
ist zu erkennen, dass die Entropie iiber den gesamten Zeitraum sehr hoch ist, es dennoch
immer wieder auch zu Schwankungen kommt. Das spricht dafiir, dass das Gate grundsatzlich

eher unsicher ist und gleichverteilter gewichtet. Das kann auch daran liegen, dass alle der
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Abbildung 5.8.: HTC als exportierter Bindrbaum als erklarbares Modell (Experiment C.1).

nicht neuronalen Experten dhnlich gut sind und tatsachlich die Kombination der gewichteten
Wabhrscheinlichkeiten zu den besten Ergebnissen fithrt. Das lasst sich ebenfalls durch den

relativ gleichverteilten durchschnittlichen Beitrag aus Tabelle 5.6 ablesen.
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Abbildung 5.9.: Normierte Entropie der Soft-MoE Gategewichte (Experiment C.1).

Experiment C.2 Im zweiten Experiment zum Klassifikationsproblem, wurde das Sparse-
MoE-Modell mit unterschiedlichen k-Werten untersucht. Der Ablauf des Experiments dazu
findet sich in der Abbildung 5.10 wieder.

Zu erkennen ist, dass die Leistungen der einzelnen Sparse-Modelle fast identisch hoch und
stabil sind. Ahnlich wie bei der Regression sinkt die Modellleistung, umso weniger Experten
verwendet werden. Das lasst sich durch die tabellarischen Ergebnisse der letzten Instanz aus
Tabelle 5.8 erkennen. Das schnellste und kleinste Modell war das Sparse-MoE Top(k = 1),
das nur einen Experten pro Instanz verwendet. Die Unterschiede zwischen den Sparse-MoE

in der Laufzeit und Speicherverbrauch sind nur marginal. Die Komplexitat der eingesetzten
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Abbildung 5.10.: Modellmetriken, Zeit- und Speicherbedarf pro Modell (Experiment C.2).

Experten-Modelle spielt eine Rolle, um den Vorteil von sparsamen Sparse-MoE deutlicher
hervorzubringen. Der Speicherbedarf war am Anfang am stérksten, hat sich aber je schneller
reduziert, umso mehr Experten im Einsatz waren. Das konnte wieder mit der durchschnittlichen
Trainingshaufigkeit zusammenhéangen, also dass das dominierende HTC-Modell bei k =
3 am ehesten vollstandig trainiert war. Die Modellgiite mit den meisten Experten ist am

hochsten, aber ebenfalls schlechter als beim Soft-MoE. Die Griinde dafiir sind analog zum

Regressionsproblem.
Modell Zeit Speicher  Zeit/Instanz Accuracy Precision Recall F1
Top(k=1) 25,596s 0,112MiB  0,565ms 0,777 0,776 0,667 0,718
Top(k=2) 26,52s 0,112MiB 0,585ms 0,813 0,801 0,746 0,772
Top(k=3) 27,605s 0,146MiB  0,609ms 0,84 0,838 0,773 0,804

Tabelle 5.8.: Metriken des Sparse-MoE (Experiment C.2). Beste Ergebnisse markiert.

Eine mogliche Losung wire das Einfithren von Temperature Scaling nach Nguyen, Akbarian
und Ho (2024). Dabei handelt es sich um einen stetig sinkenden Temperaturparameter 7, in
der Softmax-Funktion: So ftmax(%). Damit liee sich die Entropie der Gategewichtsvertei-
lung steuern. Ein héherer Temperaturwert fithrt anfangs zu einer gleichméfligeren Verteilung,

sodass Experten hiufiger trainiert werden konnen. Durch das stetige Sinken des Temperaturs-
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kalierungsfaktors spezialisiert sich das MoE allméhlich. Die Herausforderung im OML-Kontext
ist die Strategie zur Senkung des Temperaturwerts, da Streamingdaten kein festes Ende haben.

Insgesamt konnte riverMoE in den Klassifikationsexperimenten die Ergebnisse von Mon-
tiel, Halford et al. (2021) tibertreffen. Die Entwickler von dem Basis-Framework river erziel-
ten mit der logistischen Regression fiir Experimente mit dem Elec2-Datensatz eine Accuracy
von 67,97 % und fir HTC einen Wert von 75,55 %. Die genauen Parameter wurden dabei nicht
genannt. Die durchgefithrten Experimente dieser Arbeit fithrten mit gleichem Datensatz zu
einer Accuracy von 83,73 % fiir die logistische Regression und 74,70 % fir das HTC-Modell.
Das Soft-MoE-Modell hat die hochste Accuracy von 87,62 % erreicht. In dieser Arbeit ist das
eine Verbesserung von 4,66 % fiir LogR und 17,27 % fiur HTC.

Die Ergebnisse der bisherigen Experimente zu Regressions- und Klassifikationsproblemen
realer Datensitze zeigen, dass eine gewichtete Kombination von (nicht-)neuronalen Experten
zu besseren Ergebnissen fithren kann, auch wenn der Speicher- und Rechenaufwand nachvoll-
ziehbar hoher ist. Eine Rechengeschwindigkeit von durchschnittlich weniger als 0,5ms fiir die
Inferenz- und Trainingszeit ist gegeniiber Batch maschinelles Lernen, trotz der recht komple-
xen Struktur, ein Vorteil. Das MoE-System arbeitet dabei dhnlich wie die Ensemble-Methode
VotingClassifier von Dietterich (2000), die Ergebnisse verschiedener ML-Algorithmen
gewichtet zusammenfasst. Der Unterschied liegt lediglich darin, dass die Gewichte statisch
festgelegt werden miissen oder zeitaufwendig durch Hyperparameteroptimierung optimiert
werden miissen. Ein neuronales Gate in riverMoE kann dagegen gezielt auf Eingangsdaten
trainiert werden, um effektiv die besten Gewichte zu ermitteln.

Die Resultate bestdtigen noch einmal, dass eine Umsetzung der MoE-Architektur und seiner
Varianten im Streaming-Kontext funktioniert und zu vergleichbaren oder besseren Ergebnissen
fihren kann. Damit wird die erste Forschungsfrage (RQ1), die auf die Machbarkeit zielte,
beantwortet. Die ausgewihlten Metriken und Evaluationsmethodik haben sich als sinnvoll
erwiesen, um die Modelle zu vergleichen und zu bewerten. Der Einsatz von grafischen Verlaufen
hilft dabei, die Veranderungen iiber die Zeit zu visualisieren und zu interpretieren. Durch
aggregierte Kennzahlen wie normierte Entropie der Gategewichte oder durchschnittlicher Beitrag
der Experten konnten zusétzliche Einblicke in das Verhalten der MoE-Modelle geben. Die dritte

Forschungsfrage zur Evaluationsmethodik (RQ3) ist damit beantwortet.

5.2.3. Experimente zu katastrophalem Vergessen

Die zweite Forschungsfrage (RQ2) hatte den Fokus auf die Anpassungsfahigkeit in dynami-

schen Umgebungen mit Drift. Dafiir wurde das riverMoE so implementiert, dass es bei
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Drift die Expertenanzahl dynamisch progressiv erhéht. Zur Untersuchung des Verhaltens bei

,Katastrophalem Vergessen® wurden folgende zwei Experimente durchgefiihrt.

Experiment D.1 Im ersten Experiment wurden kinstliche Daten mit wiederkehrendem
Konzept durch die Friedman-Formel generiert. Die resultierenden Ergebnisse des Experiments
D.1 lassen sich aus Abbildung 5.11 entnehmen. Im gesamten Konzept 1 konnte DeepR schnell
die hochste Genauigkeit erreichen. Beim Ubergang zum Konzept 2 (Drift) verschlechtert sich
die Genauigkeit von DeepR und HATR deutlich gegeniiber Soft-MoE. Das ist iiberraschend,
da HATR einen expliziten ADWIN Drift-Detektor verwendet, um gezielt auf Drift reagieren
zu kénnen. Das Soft-MoE-Modell konnte am schnellsten die Genauigkeit aus Konzept 1 wie-
derherstellen. Nach Riickkehr zum ersten Konzept konnten alle Modelle nach kurzer Zeit
auf das vorherige MAE zuriickkehren. Die Ergebnisse der letzten Instanz sind in Tabelle 5.9

zusammengefasst.
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Abbildung 5.11.: Ubersicht Metriken aller Modelle (Experiment D.1). GRA-Drift an den Stellen
5000 und 7500. Beste Ergebnisse markiert.

Durch die Grafik und Tabelle kann erkannt werden, dass der HATR deutlich schneller als
die beiden anderen OML-Verfahren war. Dennoch ist der Speicherbedarf bei der Riickkehr zu
Konzept 1 zwischenzeitlich sehr hoch. Das liegt vermutlich an den adaptiven Komponenten
von HATR. Der Bedarf sinkt zwar wieder, aber die Grof3e der anderen Modelle ist deutlich

kleiner. Auffillig ist, dass der Bedarf in der letzten Instanz fiir DeepR am geringsten ist, der in

74



5. Ergebnisse und Diskussion

den anderen Experimenten hoher war. Der Drift hat keine signifikante Auswirkung auf die

Trainings- und Inferenzzeit gehabt.

Modell  Zeit Speicher  Zeit/Instanz MAE RMSE R2

DeepR  2,974s 0,037MiB  0,238ms 1,707 2,32 0,803
HATR 1,651s 0,203MiB  0,132ms 2,408 3,066 0,655
SoftMoE  4,409s  0,074MiB  0,353ms 2,015 2,606 0,751

Tabelle 5.9.: Metriken aller Modelle (Experiment D.1). Beste Ergebnisse markiert.

Bei der endgiiltigen Modellgiite lasst sich das MoE zwischen DeepR und HATR einordnen.
Am schlechtesten schnitt HATR ab, was tiberrascht. Insgesamt konnte das Soft-MoE-Modell
mit einem MAE von 2,015 und einem RMSE von 2,606 ein deutlich besseres Ergebnis fiir
das synthetische Problem erzielen als das nicht neuronale Modell. Dennoch hat in dieser
Konstellation das DeepR-Modell die h6chste Modellgiite. Alle untersuchten Verfahren konnten,
mit den gewahlten Parametern, recht schnell auf das wiederkehrende Konzept zuriickfallen.

Dabei kam es nicht zum katastrophalen Vergessen.

Experiment D.2 Im zweiten Drift-Experiment wurde das Label-Shift fiir Multiklassifizierung
mit der neuartigen SAMoE-Variante mit Drift-Detektor aus Abbildung 4.1 untersucht. Nach
5000 Instanzen wurden die Trainingsdaten gewechselt — bei Vorhersagen wurde aber weiterhin
nach allen Klassen gefragt. Die gemessenen Accuracy-Werte pro Modell kénnen aus Abbildung
5.12 grafisch entnommen werden. Die durchschnittlichen Werte fiir Accuracy, Micro-Precision,
Micro-Recall und Micro-F1-Score pro Modell vor und nach Anpassung der Aufgabe sind in

Tabelle 5.10 zusammengefasst.

Metrik Accuracy Micro-Precision ~ Micro-Recall Micro-F1-Score
Aufgabe = Modell A B A B A B A B

Aufgabe 1 DeepC 0,515 0,125 | 0,505 0,086 | 0,515 0,125 | 0,423 0,084
HATC 0,243 0,104 | 0,250 0,235 | 0,243 0,104 | 0,236 0,134
SAMoE 0,248 0,002 | 0,257 0,005 0,248 0,002 | 0,239 0,003
Aufgabe 2 DeepC 0,000 0,179 | 0,000 0,228 | 0,000 0,179 | 0,000 0,090
HATC 0,000 0,150 | 0,000 0,298 | 0,000 0,150 | 0,000 0,168
SAMoE 0,000 0,340 | 0,000 0,330 | 0,000 0,340 | 0,000 0,261

Tabelle 5.10.: Durchschnittliche Modellmetriken pro Aufgabe und Instanzbereich A € [0, 5000]
und B € [5001, 10000] (Experiment D.2). Beste Ergebnisse markiert.
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Nach dem Label-Shift hat das neuronale Netz die erste Aufgabe noch gut gelost und dabei
leicht angefangen, die zweite Aufgabe zu lernen. Ab ungefahr 6500 Instanzen hat das neuronale
Netz verlernt, die erste Aufgabe zu l6sen und konnte die zweite Aufgabe besser l6sen. Dieses
katastrophale Vergessen lasst sich auch bei der SAMoE-Variante beobachten. Der Driftdetektor
von SAMoE hat korrekt die einzige Anderung bei Instanz 5152 erkannt, also 152 Instanzen nach
dem Label-Shift. Die Erkennung der Anderung hat damit zuverléssig funktioniert. Dennoch
hat das adaptive Hinzufiigen des neuen Experten dazu gefiihrt, dass der erste Experte komplett
deaktiviert wurde. Dadurch konnte der neue HTC-Experte die neue Aufgabe deutlich besser

lernen als die anderen Modelle, Aufgabe 1 konnte aber nicht mehr gelést werden.
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Abbildung 5.12.: Accuracy fiir Modelle mit Label-Shift nach 5000 Instanzen (Experiment D.2).

Mit dem Label-Shift ging der HATC mit ADWIN-Drift-Detektor am besten um. Die Anderun-
gen in den Klassen wurden schneller als bei SAMoE erkannt und haben den Entscheidungsbaum
adaptiv um eine Abzweigung ergénzt. Damit bleibt der Zugriff zum bereits gelernten bestehen.
Durchschnittlich schneidet DeepC am besten fiir Aufgabe 1 im Instanzbereich ab. Bei Aufgabe

2 konnte das SAMoE durch das falschlicherweise gezielte Lernen die hochsten Genauigkei-
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ten erreichen. Langfristig wird das HATC-Modell die durchschnittlich besseren Leistungen

erhalten, da kein katastrophales Vergessen eingetreten ist.

Die zweite Forschungsfrage dieser Arbeit, zum Thema der Anpassungsfihigkeit in dynami-
schen Umgebungen (RQ2), wurde durch die beiden Experimente unterschiedlich beantwortet.
Ein normales Soft-MoE konnte, mit vorliegenden Parametern, stabiler mit dem wechseln-
den und wiederkehrenden Konzept umgehen als HATC oder dem neuronalen Netz. Andert
sich in der Multi-Klassifikation das Trainingsmaterial durch Label-Shift kann die neu ein-
gefithrte SAMoE-Variante den Drift gut erkennen. Dennoch wurden beim Hinzufiigen des
neuen Experten die Ausgangsneuronen schlecht initialisiert. Das bereits Gelernte vom ers-
ten Experten ist damit nicht vergessen, sondern wird nur nicht abgerufen. Eine verbesserte

Initialisierungsmethode kann diesem Problem entgegenwirken.

5.3. Limitationen

Die durchgefithrten Experimente haben einige Limitationen, die in zukiinftigen Arbeiten
beriicksichtigt werden sollten. Zunéchst wurde nur eine sehr spezifische Parameterauswahl
der einzelnen und dufBerst unterschiedlichen Verfahren getroffen. Diese kénnen, besonders bei
komplexen Komponenten wie neuronalen Netzen, einen grofen Einfluss auf die Leistung haben.
Ein Vergleich kann damit sehr unterschiedlich ausfallen. Die durchgefiihrten Experimente
wurden alle nur einmalig mit festem Zufallsstartwert (Prequential Validation) statt variierendem
Zufallsstartwert durchgefiihrt. Bei nicht deterministischen Verfahren, wie sie in dieser Arbeit
zum Einsatz kamen, hat das ebenfalls einen Einfluss auf die Modellleistung. Damit sind die
Ergebnisse nur schwer generalisierbar.

Weiterhin wurde sich mit Soft-MoE und Sparse-MoE in dieser Arbeit auf grundlegende
MoE-Architekturen konzentriert. Viele andere Variationen wurden nicht weiter untersucht.
Diese konnen aber Einfluss im OML-Kontext haben. Der Fokus der Arbeit lag auf der grund-
legenden, inkrementellen MoE-Architektur. Daher wurde die neuartige Variante SAMoE nur
mit einem Experiment evaluiert, obwohl die dynamische Erweiterung des MoE-Systems ein
vielversprechender Ansatz ist.

Der hier durchgefithrte Umfang ist nicht ausreichend, um eine vollstdndige Beurteilung der
Leistung von inkrementellen MoE-Systemen widerzuspiegeln. Weitere Untersuchungen und Ex-
perimente sind notwendig, um ein tieferes Verstandnis der Potenziale und Herausforderungen

solcher Systeme zu erlangen.
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Im abschliefenden Kapitel werden die wichtigsten Erkenntnisse zusammengefasst und kritisch
reflektiert. Zudem wird ein Ausblick auf zukiinftige Forschungsperspektiven und mégliche
Weiterentwicklungen gegeben, um die Einsatzméglichkeiten von MoE in dynamischen Umge-

bungen weiter zu optimieren.

6.1. Zusammenfassung

Die vorliegende Arbeit untersuchte den Einsatz von Mixture of Experts (MoE) im Kontext
des Online maschinelles Lernen (OML) zur kontinuierlichen Verarbeitung von Streamingdaten.
Durch den stetigen Anstieg an Internet of Things (IoT) Geriten wichst die Menge an generierten
Daten exponentiell, sodass effiziente Methoden zur Echtzeitverarbeitung erforderlich sind.
Die theoretischen Grundlagen zeigen, dass Online Machine Learning hierbei eine Losung
bietet, da es kontinuierlich neue Daten verarbeitet, ohne dass eine vollstandige Speicherung
notwendig ist. Eine weitere mogliche Losung zur Verbesserung der Vorhersagegenauigkeit und
Modellrobustheit ist der Einsatz von MoE, dessen Konzept ebenfalls theoretisch eingefiihrt
wurde. Die systematische Literaturrecherche hat gezeigt, dass an verschiedenen (adaptiven)
MoE-Variationen geforscht wird, jedoch bisher nur wenige Arbeiten die Kombination von MoE
und OML untersuchen. Daraus wurden spezifische Forschungsfragen abgeleitet, die in der
Arbeit beantwortet wurden.

Die Kombination von OML und MoE war die erste Forschungsfrage und wurde in die-
ser Arbeit durch das implementierte riverMoE-Framework, das die Grundlage fiir MoE-
Architekturen mit inkrementellem Lernen bereitstellt, beantwortet. Dabei wurde die einfache
Schnittstelle des Basis-Framework river iibernommen, um die Wiederverwendbarkeit beizu-
behalten. In durchgefithrten Experimenten wurden unter gleichen Bedingungen verschiedene
Datensatze fiir die Regression und Klassifikation genutzt, um die Modellgiite und Leistung mit
anderen inkrementellen Verfahren zu vergleichen. In der Regression konnten marginal bessere
Ergebnisse mit MoE gegeniiber Modellen ohne MoE erzielt werden, wahrend in der Klassifika-

tion die Genauigkeit des Modells durch die Expertenmischung signifikant verbessert wurde.
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Die Experimente zeigen, dass die inkrementellen MoE-Modelle in der Lage sind, kontinuierlich
neue Daten zu integrieren und dabei die Vorhersagegenauigkeit zu verbessern (RQ1).

Ein zentraler Aspekt dieser Arbeit war die Frage, inwiefern sich die Modellanpassung durch
das dynamische Hinzufiigen neuer Experten verbessern lasst. Die durchgefiithrten Experimente
belegen, dass die Leistung des Modells durch eine dynamische Expertenselektion des Gates
gesteigert werden kann. In Szenarien mit Konzeptdrift zeigte sich, dass die adaptive Exper-
tenmischung robust auf Veranderungen reagieren kann. Die neu eingefiithrte SAMoE-Variante
mit Drift-Detektor konnte den Drift schnell erkennen und einen Experten hinzufiigen. Dabei
wurde aber der bisherige Experte deaktiviert (RQ2).

Um die Leistung von MoE im Kontext kontinuierlich wachsender Streamingdaten angemes-
sen zu bewerten, wurden verschiedene Evaluationsmetriken eingesetzt. Neben klassischen
Fehlerraten wurde besonderes Augenmerk auf Gating-Diversitat (Entropie), Rechengeschwin-
digkeit und Speicherverbrauch gelegt. Die Ergebnisse zeigen, dass offline-basierte Metriken
alleine nicht ausreichen, um die Performance von MoE in einer Streaming-Umgebung um-
fassend zu bewerten. Stattdessen sind spezifische Methoden zur progressiven Validierung
erforderlich, um die tatsdchliche Giite des Modells realistisch abzubilden (RQ3).

6.2. Fazit

Zusammenfassend konnten die Forschungsfragen beantwortet werden. Die Kombination von
MoE und OML ist ein vielversprechender Ansatz, um adaptive MoE-Modelle zu entwickeln,
die kontinuierlich neue Daten integrieren kénnen. Die durchgefiihrte systematische Literatur-
recherche zeigt ebenfalls, wie aktuell und relevant die Expertenmischung fiir die Forschung
ist. Die Forschung hat sich bisher grofitenteils nur auf Offline-Verfahren konzentriert, obwohl
inkrementelle Verfahren in der Praxis immer wichtiger werden.

Das umgesetzte Framework riverMoE bietet eine flexible und modulare Basis fiir die
Implementierung von MoE-Architekturen, die einfach um neue Varianten erweitert werden
konnen. Die durchgefithrten Experimente zeigen, dass die adaptive Expertenmischung die
Vorhersagegenauigkeit und Modellrobustheit verbessern kann. Dabei wurden nur lineare
Experten verwendet, obwohl méglicherweise noch mehr Potenzial in der Wahl von neuronalen
Experten steckt. In Szenarien mit Konzeptdrift zeigten die MoE-Modelle ein schlechteres
Verhalten als erwartet. Auch wenn die Drifterkennung zuverlassig funktionierte, fithrt der
deaktivierte Experte zu katastrophalen Vergessen — ein Kernproblem von inkrementellen
Lernverfahren. Gerade durch die Nutzung von disjunkten Experten wurde erwartet, dass dieses

Problem nicht auftritt.
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Zusatzlich sind die entstandenen Verbesserungen in der Genauigkeit auf Kosten der héheren
Rechenzeit und Speichernutzung entstanden. Aufgrund der komplexen neuronalen Komponen-
te wird es schwierig werden, diesen Trade-Off zu verbessern. Die aufgelisteten Limitationen
und Herausforderungen zeigen, dass es noch viel Forschungsbedarf gibt, um MoE-Modelle in
dynamischen Umgebungen weiter zu etablieren. Der nachste Abschnitt gibt einen méoglichen

Ausblick auf zukiinftige Forschungsperspektiven und Weiterentwicklungen.

6.3. Ausblick

Die vorliegende Arbeit bietet viel Potenzial fiir weitere Forschungsarbeiten. Zunichst sind
weitere Experimente mit anderen Datensitzen, Gating- und Expertenkonfigurationen sinnvoll,
um die Leistungsfihigkeit von MoE weiter zu untersuchen. Interessant sind dabei besonders
spezielle Streaming-Datensétze fiilr OML, die sich dynamisch verdndern und Drift erzeugen.
Das konnte den Vorteil der Kombination von MoE und OML verdeutlichen. Ublicherweise
werden neuronale Experten fiir MoE verwendet, das wurde in dieser Arbeit nicht betrachtet.
Die Verwendung von vortrainierten Experten konnte ebenfalls interessant sein, da das Gate
moglicherweise schneller das optimale Routing ermittelt.

Durch die theoretischen Grundlagen und systematische Literaturrecherche wurde die Viel-
zahl der Variationen von MoE deutlich. Daher ist es naheliegend, das modulare riverMoE-
Framework um weitere MoE-Varianten wie Adaptive-MoE, hierarchische MoE oder Deep-MoE
zu erweitern. Interessant wire auch die Ergdnzung um Multi-Gate MoE, um Multi-Task-Lernen
fiir kontinuierliches Lernen zu erforschen.

Die bereits vorgestellte SAMoE konnte erweitert werden, um das katastrophale Vergessen zu
vermeiden. Dazu kann die Initialisierung der Ausgangsneuronen bei neuen Experten optimiert
und mit dem vorgestellten Temperature Scaling kombiniert werden. Eine weitere mogliche
Losung wire die Replay Memory Methode. Gleichzeitig konnte betrachtet werden, ob beste-
hende Experten, die nicht benétigt werden, auch entfernt werden konnen. Das wiirde den
Speicherplatzbedarf reduzieren. Um SAMOoE besser zu evaluieren, konnten weitere Experimente
mit verschiedenen Driftszenarien durchgefithrt werden.

Durch den Einsatz der vorgestellten MoE-Metriken und der nicht neuronalen Experten, wie
den inkrementellen Entscheidungsbaumen, konnte in dieser Arbeit die Erklarbarkeit von inkre-
mentellen MoE-Modellen gefordert werden. Im Rahmen der verantwortungsvollen Kiinstlichen
Intelligenz ist es wichtig, die Gating- und Expertenentscheidungen von inkrementellen MoE-
Modellen transparenter zu machen. Daher ist es sinnvoll, wie bereits in der FEAMOoE-Arbeit,

die Erklarbarkeit von MoE-Modellen weiterzuerforschen.
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A.1. Klassendiagramm
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Abbildung A.1.: Vereinfachtes Klassendiagramm des riverMoE-Framework.
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A.2. Aktivitatsdiagramm
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Abbildung A.2.: riverMoE Aktivitiatsdiagramm des Inferenz- und Trainingsschritts.
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A.3. Modellparameter

Modell Parameter Standardwert Aktueller Wert

DeepC/MoE loss_fn binary_cross_entropy cross_entropy
optimizer_fn sgd sgd
Ir 0,001 0,01
output_is_logit True True
device cpu cpu

LogR optimizer SGD
loss Log
12 0,0 0,0
I1 0,0 0,0
intercept_init 0,0 0,0
intercept_Ir 0,01 Constant
clip_gradient 1000000000000,0 1000000000000,0
initializer Zeros

HTC grace_period 200 200
max_depth 3
split_criterion info_gain info_gain
delta le-07 le-07
tau 0,05 0,05
leaf_prediction nba nba
nb_threshold 0 0
nominal attributes
splitter GaussianSplitter
binary_split False False
min_branch_fraction 0,01 0,01
max_share_to_split 0,99 0,99
max_size 100,0 100,0
memory_estimate_period 1000000 1000000
stop_mem_management  False False
remove_poor_attrs False False
merit_preprune True True

+ HATC drift window_threshold 300 300
drift_detector ADWIN

HATC/MoE/DeepC seed 42

Tabelle A.1.: Parameter fiir die Klassifikationsmodelle.
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Modell Parameter Standardwert Aktueller Wert

MoE Gate loss_fn binary_cross_entropy mse

DeepR loss_fn mse mse

DeepR/ optimizer_fn sgd sgd

MOoE Gate Ir 0,001 0,001
output_is_logit True True
device cpu cpu

LogR optimizer SGD
loss Squared
12 0,0 0,0
11 0,0 0,0
intercept_init 0,0 0,0
intercept_Ir 0,01 Constant
clip_gradient 1000000000000,0 1000000000000,0
initializer Zeros

HTR grace_period 200 200
max_depth 3
delta le-07 le-07
tau 0,05 0,05
leaf_prediction adaptive adaptive
leaf_model LinearRegression
model_selector_decay 0,95 0,95
nominal_attributes
splitter TEBSTSplitter
min_samples_split 5 5
binary_split False False
max_size 500,0 500,0
memory_estimate_period 1000000 1000000
stop_mem_management  False False
remove_poor_attrs False False
merit_preprune True True

+ HATR drift window threshold 300 300
drift_detector ADWIN

BaseR statistic Mean

HATR/MoE/DeepR seed 42

Tabelle A.2.: Parameter fiir die Regressionsmodelle.
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A.4. Ergebnisse der Evaluationen

Instanz  Zeit Speicher  Zeit/Instanz MAE RMSE R2
1825 0,051s 0,005MiB 0,028ms 210,19 2708,872 -216065,538
21900 0,626s 0,0056MiB  0,029ms 22,363 782,014 -8443,816
41975 1,243s  0,005MiB  0,03ms 14,409 564,883 -4180,359
62050 1,818s 0,005MiB  0,029ms 11,472 464,621 -2830,396
82125 2,389s  0,0056MiB  0,029ms 10,031 403,878 -2112,995
102200 2,961s 0,0056MiB  0,029ms 9,171 362,059 -1693,292
122275 3,537s 0,0056MiB  0,029ms 8,656 331,021 -1392,648
142350 4,113s 0,005MiB  0,029ms 8,316 306,808 -1181,444
162425 4,687s 0,006MiB  0,029ms 7,978 287,235 -1030,817
182470 5,262s 0,0056MiB  0,029ms 7,646 271,008 -919,481
Tabelle A.3.: Ergebnisse des Regressions-Experiments R.1, Modell: LinR.
Instanz  Zeit Speicher  Zeit/Instanz MAE RMSE R2
1825 0,116s 0,044MiB 0,063ms 4,075 5,179 0,21
21900 0,845s 0,057MiB  0,039ms 5,205 7,013 0,321
41975 1,533s  0,036MiB  0,037ms 5,469 7,183 0,324
62050 2,208s  0,036MiB  0,036ms 5,421 7,136 0,332
82125 2,888s 0,036MiB  0,035ms 5,471 7,207 0,327
102200  3,567s 0,036MiB  0,035ms 5,51 7,246 0,321
122275  4,245s 0,036MiB  0,035ms 5,596 7,323 0,318
142350 4,926s 0,036MiB  0,035ms 5,689 7,42 0,308
162425 5,605s 0,036MiB  0,035ms 5,675 7,425 0,31
182470  6,333s  0,036MiB  0,035ms 5,597 7,369 0,32

Tabelle A.4.: Ergebnisse des Regressions-Experiments R.1, Modell: HTR.
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Instanz  Zeit Speicher  Zeit/Instanz MAE RMSE R2
1825 0,042s 0,004MiB  0,023ms 4,565 5,834 -0,002
21900 0,49s  0,004MiB 0,022ms 6,519 8,511 -0
41975  0,98s  0,004MiB  0,023ms 6,839 8,736 -0
62050 1,427s  0,004MiB 0,023ms 6,926 8,732 -0
82125 1,886s 0,004MiB 0,023ms 7,011 8,784 -0
102200  2,375s 0,004MiB  0,023ms 7,039 8,796 -0
122275 2,814s 0,004MiB  0,023ms 7,116 8,867 -0
142350  3,257s  0,004MiB  0,023ms 7,184 8,922 -0
162425 3,697s 0,004MiB 0,023ms 7,222 8,942 -0
182470  4,136s 0,004MiB  0,023ms 7,247 8,933 -0

Tabelle A.5.: Ergebnisse des Regressions-Experiments R.1, Modell: BaseR.

Instanz  Zeit Speicher  Zeit/Instanz MAE RMSE R2

1825 0,632s 0,079MiB  0,346ms 4,06 5,19 0,207
21900 6,973s 0,092MiB  0,318ms 5,203 7,014 0,321
41975 13,161s 0,071MiB 0,314ms 5,468 7,183 0,324
62050  19,313s 0,071MiB 0,311ms 5,42 7,137 0,332
82125 25,564s 0,071MiB  0,311ms 5,46 7,195 0,329
102200 31,785s 0,071IMiB  0,311ms 5,499 7,228 0,325
122275 37,882s 0,071MiB  0,31ms 5,586 7,304 0,322
142350  44,219s 0,071MiB  0,311ms 5,679 7,397 0,313
162425 50,553s 0,071IMiB  0,311ms 5,666 7,406 0,314
182470 56,855s 0,071MiB  0,312ms 5,589 7,349 0,323

Tabelle A.6.: Ergebnisse des Regressions-Experiments R.1, Modell: SoftMoE.

Instanz  Zeit Speicher  Zeit/Instanz MAE RMSE R2

1825 0,992s  0,127MiB  0,544ms 4,643 7,262 -0,553
21900 10,952s  0,098MiB  0,5ms 5,715 7,731 0,175
41975 20,541s  0,071MiB  0,489ms 5,991 7,869 0,188
62050 30,518s 0,071MiB  0,492ms 5,997 7,827 0,196
82125 40,754s  0,071MiB  0,496ms 6,064 7,885 0,194
102200 50,415s 0,071MiB  0,493ms 6,118 7,92 0,189
122275 60,418s 0,071IMiB  0,494ms 6,207 7,996 0,187
142350 70,53s  0,071MiB  0,495ms 6,295 8,075 0,181
162425 80,123s 0,071IMiB  0,493ms 6,303 8,086 0,182
182470  89,837s 0,071MiB  0,492ms 6,267 8,049 0,188

Tabelle A.7.: Ergebnisse des Regressions-Experiments R.2, Modell: SparseMoE Top(k = 1).
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A. Ergebnisse

Instanz  Zeit Speicher  Zeit/Instanz  MAE RMSE R2
1825 0,935s  0,1IMiB 0,512ms 11,516 202,016 -1200,659
21900 11,235s  0,061MiB  0,513ms 5,814 58,718 -46,61
41975 21,394s  0,061MiB  0,51ms 5,801 42,72 -22,914
62050 31,932s  0,061MiB  0,515ms 5,672 35,368 -15,407
82125 42,263s  0,061MiB  0,515ms 5,671 30,963 -11,425
102200  52,746s 0,061MiB  0,516ms 5,681 27,951 -9,098
122275 63,16s  0,061MiB  0,517ms 5,75 25,746 -7,431
142350  73,249s 0,061MiB  0,515ms 5,827 24,05 -6,266
162425 83,529s 0,061MiB  0,514ms 5,81 22,672 -5,428
182470  94,356s 0,06IMiB  0,517ms 5,728 21,515 -4,802

Tabelle A.8.: Ergebnisse des Regressions-Experiments R.2, Modell: SparseMoE Top(k = 2).

Instanz  Zeit Speicher  Zeit/Instanz MAE RMSE R2

1825 1,09s 0,079MiB  0,597ms 32,284 788,809 -18320,206
21900 11,295s  0,093MiB  0,516ms 7,596 227,814 -715,672
41975 21,494s 0,071MiB  0,512ms 6,737 164,633 -354,167
62050  31,833s 0,071MiB  0,513ms 6,293 135,467 -239,695
82125 41,566s 0,071MiB  0,506ms 6,137 117,809 -178,87
102200 51,386s 0,071IMiB  0,503ms 6,051 105,658 -143,288
122275 61,532s 0,071IMiB  0,503ms 6,053 96,647 -117,799
142350 71,835s 0,071MiB  0,505ms 6,084 89,623 -99,899
162425 82,031s 0,071MiB  0,505ms 6,028 83,943 -87,126
182470 92,114s 0,071MiB  0,505ms 5,917 79,232 -77,677

Tabelle A.9.: Ergebnisse des Regressions-Experiments R.2, Modell: SparseMoE Top(k = 3).

Instanz  Zeit Speicher  Zeit/Instanz Accuracy Precision Recall F1

453 0.013s  0.005MiB  0.029ms 0.79 0.786 0.744 0.764
5436 0.163s  0.005MiB  0.03ms 0.841 0.847 0.729 0.784
10419 0.313s  0.005MiB  0.03ms 0.853 0.857 0.799 0.827
15402 0.466s 0.005MiB  0.03ms 0.86 0.865 0.813 0.838
20385 0.615s 0.005MiB  0.03ms 0.856 0.867 0.794 0.829
25368 0.765s  0.005MiB  0.03ms 0.845 0.851 0.771 0.809
30351  0.915s  0.005MiB  0.03ms 0.84 0.844 0.762 0.801
35334 1.063s  0.005MiB  0.03ms 0.831 0.834 0.747 0.788
40317  1.261s 0.005MiB  0.031ms 0.834 0.834 0.754 0.792
45312 1.411s 0.005MiB 0.031ms 0.837 0.84 0.762 0.799

Tabelle A.10.: Ergebnisse des Klassifikations-Experiments C.1, Modell: LogR.
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A. Ergebnisse

Instanz  Zeit Speicher  Zeit/Instanz Accuracy Precision Recall F1

453 0,025s 0,127MiB  0,055ms 0,834 0,802 0,845 0,823
5436 0,207s 0,072MiB  0,038ms 0,826 0,792 0,758 0,775
10419 0,368s 0,072MiB  0,035ms 0,826 0,777 0,847 0,811
15402 0,53s  0,072MiB  0,034ms 0,819 0,764 0,861 0,809
20385 0,685s 0,072MiB  0,034ms 0,803 0,78 0,766 0,773
25368 0,838s 0,072MiB  0,033ms 0,784 0,787 0,678 0,729
30351 0,988s 0,072MiB  0,033ms 0,767 0,793 0,607 0,688
35334 1,139s  0,072MiB  0,032ms 0,75 0,797 0,543 0,646
40317 1,309s  0,073MiB  0,032ms 0,745 0,754 0,584 0,658
45312 1,471s  0,106MiB  0,032ms 0,747 0,742 0,619 0,675

Tabelle A.11.: Ergebnisse des Klassifikations-Experiments C.1, Modell: HTC.

Instanz  Zeit Speicher  Zeit/Instanz Accuracy Precision Recall F1
453 0,01s 0,003MiB  0,022ms 0,874 0,86 0,864 0,862
5436 0,119s 0,003MiB 0,022ms 0,841 0,8 0,8 0,8
10419 0,227s  0,003MiB  0,022ms 0,838 0,815 0,815 0,815
15402 0,335s  0,003MiB 0,022ms 0,846 0,827 0,827 0,827
20385 0,444s 0,003MiB 0,022ms 0,847 0,825 0,825 0,825
25368 0,553s  0,003MiB 0,022ms 0,846 0,82 0,82 0,82
30351 0,663s 0,003MiB 0,022ms 0,854 0,827 0,827 0,827
35334 0,774s  0,003MiB 0,022ms 0,856 0,828 0,828 0,828
40317 0,884s  0,003MiB 0,022ms 0,855 0,827 0,827 0,827
45312 0,996s 0,003MiB 0,022ms 0,853 0,827 0,827 0,827

Tabelle A.12.: Ergebnisse des Klassifikations-Experiments C.1, Modell: BaseC.

Instanz  Zeit Speicher  Zeit/Instanz Accuracy Precision Recall F1
453 0,178s  0,166MiB  0,393ms 0,885 0,838 0,928 0,881
5436 1,986s  0,111MiB  0,365ms 0,88 0,888 0,796 0,84
10419 3,761s  0,111MiB  0,361ms 0,885 0,891 0,842 0,866
15402 5,504s  0,111MiB  0,357ms 0,89 0,895 0,852 0,873
20385 7,245s  0,111MiB  0,355ms 0,885 0,895 0,836 0,864
25368 8981s  0,111MiB  0,354ms 0,879 0,888 0,82 0,853
30351  10,77s  0,111MiB  0,355ms 0,881 0,886 0,825 0,855
35334 12,501s 0,111MiB  0,354ms 0,879 0,879 0,827 0,852
40317  14,216s  0,113MiB  0,353ms 0,876 0,871 0,829 0,849
45312 16,008s 0,146MiB  0,353ms 0,876 0,867 0,836 0,852

Tabelle A.13.: Ergebnisse des Klassifikations-Experiments C.1, Modell: SoftMoE.
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A. Ergebnisse

Instanz  Zeit Speicher  Zeit/Instanz Accuracy Precision Recall F1
453 0,295s  0,106MiB  0,65ms 0,766 0,726 0,783 0,753
5436 3,201s  0,226MiB  0,589ms 0,806 0,776 0,719 0,746
10419 6,092s  0,169MiB  0,585ms 0,81 0,801 0,755 0,777
15402 8,936s  0,169MiB  0,58ms 0,812 0,813 0,749 0,78
20385 11,723s  0,169MiB  0,575ms 0,797 0,809 0,704 0,753
25368 14,542s 0,112MiB  0,573ms 0,786 0,8 0,666 0,727
30351 17,371s  0,112MiB  0,572ms 0,784 0,798 0,655 0,719
35334 20,207s  0,112MiB  0,572ms 0,776 0,793 0,633 0,704
40317 22,88s  0,112MiB  0,568ms 0,773 0,771 0,653 0,707
45312 25,596s 0,112MiB  0,565ms 0,777 0,776 0,667 0,718

Tabelle A.14.: Ergebnisse des Klassifikations-Experiments C.2, Modell: SparseMoE Top(k = 1).

Instanz  Zeit Speicher  Zeit/Instanz  Accuracy Precision Recall F1

453 0,263s 0,14MiB 0,581ms 0,828 0,782 0,865 0,821
5436 3,131s 0,169MiB  0,576ms 0,829 0,8 0,757 0,778
10419 5,979s 0,169MiB  0,574ms 0,831 0,806 0,812 0,809
15402 8,773s  0,111MiB  0,57ms 0,835 0,809 0,825 0,817
20385 11,846s 0,112MiB  0,581ms 0,829 0,814 0,791 0,802
25368 14,859s 0,112MiB  0,586ms 0,819 0,809 0,754 0,781
30351 17,831s  0,112MiB  0,587ms 0,816 0,811 0,737 0,772
35334 20,688s 0,112MiB  0,585ms 0,81 0,808 0,719 0,761
40317 23,568s 0,112MiB  0,585ms 0,811 0,801 0,732 0,765
45312 26,52s 0,112MiB  0,585ms 0,813 0,801 0,746 0,772

Tabelle A.15.: Ergebnisse des Klassifikations-Experiments C.2, Modell: SparseMoE Top(k = 2).

Instanz  Zeit Speicher  Zeit/Instanz Accuracy Precision Recall F1

453 0,275s  0,166MiB  0,607ms 0,857 0,826 0,87 0,847
5436 3,256s  0,111MiB  0,599ms 0,85 0,83 0,779 0,804
10419 6,409s  0,111MiB  0,615ms 0,857 0,841 0,331 0,836
15402 9,354s  0,111MiB  0,607ms 0,86 0,844 0,842 0,843
20385 12,266s 0,112MiB  0,602ms 0,851 0,847 0,806 0,826
25368 15,454s 0,112MiB  0,609ms 0,842 0,844 0,773 0,807
30351  18,548s 0,112MiB  0,611ms 0,842 0,847 0,763 0,803
35334 21,419s 0,112MiB  0,606ms 0,837 0,845 0,752 0,796
40317  24,529s 0,113MiB  0,608ms 0,838 0,838 0,762 0,798
45312 27,605s  0,146MiB  0,609ms 0,84 0,838 0,773 0,804

Tabelle A.16.: Ergebnisse des Klassifikations-Experiments C.2, Modell: SparseMoE Top(k = 3).
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A. Ergebnisse

Instanz  Zeit Speicher  Zeit/Instanz MAE RMSE R2
125 0,033s  0,036MiB  0,268ms 9,824 10,948 -4,692
1500 0,352s 0,037MiB  0,235ms 2,164 2,747 0,721
2875 0,668s 0,037MiB  0,232ms 1,949 2,565 0,734
4250 0,991s 0,037MiB  0,233ms 1,827 2,394 0,77
5625 1,322s  0,037MiB  0,235ms 2,296 2,977 0,652
7000 1,682s 0,037MiB  0,24ms 2,219 2,871 0,625
8375 1,998s 0,037MiB  0,239ms 2,042 2,635 0,686
9750 2,313s  0,037MiB  0,237ms 1,735 2,347 0,782
11125 2,65s 0,037MiB  0,238ms 1,639 2,083 0,826
12500 2,974s 0,037MiB  0,238ms 1,707 2,32 0,803
Tabelle A.17.: Ergebnisse des Drift-Experiments D.1, Modell: DeepR.
Instanz  Zeit Speicher  Zeit/Instanz MAE RMSE R2
125 0,008s 0,211MiB  0,062ms 3,515 4,516 0,031
1500 0,214s  0,498MiB 0,143ms 2,008 2,536 0,762
2875 0,393s  0,522MiB  0,137ms 2,136 2,726 0,7
4250 0,545s 0,506MiB  0,128ms 1,978 2,563 0,737
5625 0,713s  0,342MiB  0,127ms 2,326 2,985 0,65
7000 0,919s 0,594MiB 0,131ms 2,249 2,905 0,616
8375 1,15s 0,659MiB  0,137ms 2,313 3,021 0,587
9750 1,358s 0,517MiB  0,139ms 1,991 2,588 0,735
11125 1,517s 0,481MiB 0,136ms 2,084 2,649 0,719
12500 1,651s 0,203MiB  0,132ms 2,408 3,066 0,655
Tabelle A.18.: Ergebnisse des Drift-Experiments D.1, Modell: HATR.
Instanz  Zeit Speicher  Zeit/Instanz MAE RMSE R2
125 0,077s 0,241MiB  0,615ms 3,623 4,539 0,021
1500 0,65s 0,367MiB  0,433ms 2,2 2,758 0,718
2875 1,199s 0,402MiB  0,417ms 2,174 2,75 0,694
4250 1,709s  0,238MiB  0,402ms 1,988 2,526 0,744
5625 2,168s 0,074MiB  0,385ms 2,183 2,788 0,695
7000 2,616s 0,074MiB  0,374ms 1,841 2,419 0,734
8375 3,064s 0,074MiB  0,366ms 2,078 2,683 0,675
9750 3,513s 0,074MiB 0,36ms 1,918 2,51 0,75
11125 3,961s 0,074MiB  0,356ms 1,921 2,448 0,76
12500 4,409s 0,074MiB  0,353ms 2,015 2,606 0,751

Tabelle A.19.: Ergebnisse des Drift-Experiments D.1, Modell: SoftMoE.
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B. Hilfsmittel

Name Beschreibung

Draw.io Zeichnenprogramm, genutzt zur Erstellung aller Grafiken
LanguageTool  Prifung von Rechtschreibung und Grammatik
Github Copilot  KI-Unterstiitzung fiir das Schreiben von Code (zum Beispiel Kommentare)

Tabelle B.1.: Ubersicht der eingesetzten Hilfsmittel in dieser Arbeit
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