
BACHELORTHESIS
Nico Karsten Lange

Automatisierte Generierung von
Projektmanagementdokumenten mittels
eines Large Language Models

FACULTY OF COMPUTER SCIENCE AND ENGINEERING
Department of Information and Electrical Engineering

Fakultät Technik und Informatik
Department Informations- und Elektrotechnik

HAMBURG UNIVERSITY
OF APPLIED SCIENCES
Hochschule für Angewandte
Wissenschaften Hamburg

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung
im Studiengang Bachelor of Science Elektro- und Informationstechnik
am Department Informations- und Elektrotechnik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Hensel
Zweitgutachter: Prof. Dr. Herster

Eingereicht am: 04. Juni 2025

Nico Karsten Lange

Automatisierte Generierung von
Projektmanagementdokumenten mittels eines Large

Language Models

Nico Karsten Lange

Title of Thesis

Automated generation of project management documents using a large language model

Keywords

AI, LLM, Prompting, Document generation

Abstract
This bachelor thesis deals with the development of an application for the automated
generation of requirements. A requirements document is read in from the customer and
broken down into individual requirements. These are then written in a separate require-
ments document. A large language model is used to generate the requirements.

Nico Karsten Lange

Thema der Arbeit

Automatisierte Generierung von Projektmanagementdokumenten mittels eines Large
Language Models

Stichworte

KI, LLM, Prompting, Dokumenten Generierung

Kurzzusammenfassung

Diese Bachelorthesis behandelt die Entwicklung einer Anwendung zur automatisierten
Generierung von Anforderungen. Es wird ein Anforderungsdokument vom Kunden ein-
gelesen und in einzelne Anforderungen aufgegliedert. Danach werden diese in ein eigenes
Anforderungsdokument geschrieben. Für die Generierung der Anforderungen wird ein
Large Language Model verwendet.

iii

Inhaltsverzeichnis

Abbildungsverzeichnis ix

Tabellenverzeichnis x

Listings xi

Abkürzungsverzeichnis xii

Glossar xiv

1 Einleitung 1
1.1 Ausgangslage und Motivation . 1
1.2 Umfeld . 2
1.3 Zielsetzung . 2
1.4 Aufbau der Arbeit . 2

2 Grundlagen 4
2.1 Maschinelles Lernen . 4
2.2 Generative KI . 5
2.3 Natural Language Processing . 5

2.3.1 Vorverarbeitung natürlicher Sprache 6
2.3.2 Berechnung des nächsten Wortes 6

2.4 Large Language Model . 7
2.4.1 Fähigkeiten von LLMs . 7
2.4.2 KI-Halluzination . 9

2.5 Transformer-Architektur . 10
2.5.1 Encoder . 10
2.5.2 Decoder . 11

2.6 Aufmerksamkeitsmechanismen . 12
2.6.1 Grouped Query Attention . 12

iv

Inhaltsverzeichnis

2.6.2 Sliding Window Attention . 12
2.7 Prompt Engineering . 13

2.7.1 Kontextbezogene Prompts . 13
2.7.2 Zero-shot und Few-shot . 13
2.7.3 Structured Output . 14
2.7.4 Fine-Tuning . 14
2.7.5 Rollen eines Prompts . 15

2.8 Bewertung von LLMs . 15
2.8.1 MT-Bench . 15
2.8.2 MMLU . 16
2.8.3 HellaSwag . 16

2.9 Markdown . 17
2.10 Representational State Transfer . 18

3 Anforderungsanalyse 20
3.1 Systemkontext . 20
3.2 Stakeholder . 21

3.2.1 Auftraggeber . 21
3.2.2 Software-Entwickler . 22
3.2.3 Anwendende . 22
3.2.4 Personen für die Weiterentwicklung 22

3.3 Anwendungsfälle . 22
3.4 Anforderungen . 23

3.4.1 Dokumentengenerator . 24
3.4.2 Anforderungsdokument . 26
3.4.3 Technische Spezifikationen . 28
3.4.4 Testfälle . 31

3.5 Hinweis . 32

4 Konzept und Design 33
4.1 Eingesetzte Sprachmodelle . 33

4.1.1 Mistral 7b Instruct . 34
4.1.2 Deepseek R1 Distill Qwen 7b . 34
4.1.3 Qwen2.5 Coder 7B Instruct . 35
4.1.4 Llama 3.1 8B Instruct . 35
4.1.5 Mistral Nemo Instruct 2407 . 36

v

Inhaltsverzeichnis

4.1.6 Qwen3 30B A3B . 36
4.1.7 Pixtral 12B 2409 . 36

4.2 Programmiersprache . 37
4.3 Kommunikation mit dem LLM . 38

4.3.1 Aufbau der Nachrichten . 39
4.3.2 Prompting . 41

4.4 Einlesen und Verarbeiten einer PDF-Datei 41
4.4.1 PdfSharp-Bibliothek . 42
4.4.2 PdfPig-Bibliothek . 43
4.4.3 Bildererkennung . 44

4.5 Erstellen der Dokumente . 45
4.5.1 Anforderungsdokument . 46
4.5.2 Technische Spezifikation . 49
4.5.3 Testfälle . 50

4.6 Anforderungsmanagement Tool (Polarion) 51
4.6.1 Auswahl der Dokumente . 51
4.6.2 Speichern der Dokumente . 52

4.7 Grafische Benutzeroberfläche . 53

5 Implementierung 57
5.1 Kommunikation mit dem LLM . 57
5.2 Einlesen und Verarbeiten einer PDF . 58
5.3 Erstellen der Dokumente . 60

5.3.1 Anforderungsdokument . 60
5.3.2 Technische Spezifikation und Testfälle 61

5.4 Anforderungsmanagement Tool (Polarion) 61
5.4.1 Kopieren der Dokumente . 61
5.4.2 Speichern der Dokumente . 62

5.5 Grafische Benutzeroberfläche . 62

6 Evaluation 66
6.1 Dokumentengenerator . 66
6.2 Polarion . 69
6.3 Anforderungsdokument . 70

6.3.1 Anforderungen . 70
6.3.2 Qualität der Anforderungen . 73

vi

Inhaltsverzeichnis

6.4 Technische Spezifikationen und Testfälle 78

7 Fazit und Ausblick 79

Literaturverzeichnis 81

A Anhang 84
A.1 Dokumentenbezeichnung . 84

A.1.1 Document Classification Code . 84
A.1.2 Dateinamen . 84

A.2 Benchmarks . 84
A.2.1 MT-Bench . 84
A.2.2 MMLU . 86
A.2.3 HellaSwag . 86

A.3 Prompts . 86
A.3.1 System Prompt zur Generierung der Anforderungen 86
A.3.2 User Prompt zum Extrahieren des Texts eines PDFs 87

A.4 Anforderungsdokumente . 87
A.4.1 Anforderungsdokument Auszug - Fließtext 87
A.4.2 Anforderungsdokument Auszug - Tabellenform 87
A.4.3 Anforderungsdokument Auszug - Anforderungsliste 87

A.5 LLM Antworten . 87
A.5.1 Anforderungsdokument Fließtext - Pixtral 12B 2409 87
A.5.2 Anforderungsdokument Tabellenform - Pixtral 12B 2409 87
A.5.3 Anforderungsdokument Anforderungsliste - Pixtral 12B 2409 . . . 88
A.5.4 Anforderungsdokument Fließtext - Mistral 7B Instruct 88
A.5.5 Anforderungsdokument Fließtext - Deepseek R1 Distill Qwen 7B . 88
A.5.6 Anforderungsdokument Fließtext - Qwen2.5 Coder 7B Instruct . . 88
A.5.7 Anforderungsdokument Fließtext - Llama 3.1 8B Instruct 88
A.5.8 Anforderungsdokument Fließtext - Mistral Nemo Instruct 2407 . . 88
A.5.9 Anforderungsdokument Fließtext - Qwen3 30B A3B 88
A.5.10 Anforderungsdokument Tabellenform - Mistral 7B Instruct 89
A.5.11 Anforderungsdokument Tabellenform - Deepseek R1 Distill Qwen

7B . 89
A.5.12 Anforderungsdokument Tabellenform - Qwen2.5 Coder 7B Instruct 89
A.5.13 Anforderungsdokument Tabellenform - Llama 3.1 8B Instruct . . . 89
A.5.14 Anforderungsdokument Tabellenform - Mistral Nemo Instruct 2407 89

vii

Inhaltsverzeichnis

A.5.15 Anforderungsdokument Tabellenform - Qwen3 30B A3B 89
A.5.16 Anforderungsdokument Anforderungsliste - Mistral 7B Instruct . . 89
A.5.17 Anforderungsdokument Anforderungsliste - Deepseek R1 Distill

Qwen 7B . 90
A.5.18 Anforderungsdokument Anforderungsliste - Qwen2.5 Coder 7B In-

struct . 90
A.5.19 Anforderungsdokument Anforderungsliste - Llama 3.1 8B Instruct 90
A.5.20 Anforderungsdokument Anforderungsliste - Mistral Nemo Instruct

2407 . 90
A.5.21 Anforderungsdokument Anforderungsliste - Qwen3 30B A3B 90

A.6 Generierte Anforderungsdokumente . 90
A.6.1 Generiertes Anforderungsdokument aus Fließtext 90
A.6.2 Generiertes Anforderungsdokument aus Tabelle 91
A.6.3 Generiertes Anforderungsdokument aus Anforderungsliste 91

A.7 Quellcode der Anwendung . 91

Eigenständigkeitserklärung 92

viii

Abbildungsverzeichnis

2.1 Der Transformer - Modellarchitektur (vgl. Kapitel 3, S.3, [20]) 11

3.1 Systemkontext . 21
3.2 Anwendungsfalldiagramm für die Anforderungsmanagement Anwendung . 23
3.3 Aufbau der Kopfzeile der technischen Spezifikation 28
3.4 Aufbau der Fußzeile der technischen Spezifikation 28
3.5 Aufbau der Titelseite der technischen Spezifikation 29
3.6 Tabelle für das Versionsmanagement der technischen Spezifikation 30
3.7 Tabelle für den Dokumentenstatus der technischen Spezifikation 30

4.1 Klassendiagramm der Klasse LlmConnection 39
4.2 Ablaufplan zum Erstellen einer Tabelle . 45
4.3 Klassendiagramm des Interface Documents mit den Unterklassen Re-

quirementDocument, TechnicalSpecification und Testcases 46
4.4 Programmablaufplan der Methode AddContent() aus der Klasse Re-

quirementDocument . 48
4.5 Klassendiagramm der Klasse PolarionConnection 51
4.6 Design der grafischen Benutzeroberfläche 56

5.1 Klassendiagramm der Klasse LlmConnection 58
5.2 Design der grafischen Benutzeroberfläche 65

A.1 Vorgaben zum Festlegen des DCCs . 84
A.2 Vorgaben zum Dateinamen für Dokumente 84
A.3 Kategorisierte Genauigkeit verschiedener Modelle im MT-Bench Bench-

mark [22] . 85
A.4 Ergebnisse verschiedener Modelle im MT-Bench Benchmark [22] 85
A.5 Kategorisierte Genauigkeit verschiedener Modelle im MMLU Benchmark [8] 86
A.6 Ergebnisse verschiedener Modelle im HellaSwag Benchmark [21] 86

ix

Tabellenverzeichnis

6.1 Evaluation der nicht funktionalen Anforderungen des Dokumentengenerators 69
6.2 Vergleich der Modelle beim Generieren von Anforderungen aus einem Kun-

den Anforderungsdokument in Tabellenform 75
6.3 Vergleich der Modelle beim Generieren von Anforderungen aus einem Kun-

den Anforderungsdokument im Fließtext 76
6.4 Vergleich der Modelle beim Generieren von Anforderungen aus einem Kun-

den Anforderungsdokument in Anforderungsform 77

x

Listings

4.1 Aufbau der Nachricht für Chat LLMs im JSON-Format 40
4.2 Aufbau der Nachricht für visuelle LLMs im JSON-Format 41
4.3 Aufbau der Antwort des LLM im JSON-Format 42
4.4 Aufbau eines system Prompts . 43
4.5 Methode CopyDocument() zum Kopieren eines Dokuments aus Polarion 52
4.6 Aktualisierung von Dokumenten in Polarion (patchDocument) 53
4.7 JSON-Schema zum Übertragen der Aktion für die Aktualisierung von Do-

kumenten in Polarion . 55

5.1 Impelmentierung eines Bild-Request aus der Methode LlmChatRequest()
zur Kommunikation mit einem LLM . 59

5.2 Impelmentierung der Methode AddContent() aus der Klasse Require-
mentDocument zum Einfügen der LLM Antwort in die Excel-Datei . . . 64

5.3 URL für die Kommunikation mit Polarion über eine REST-API 65

6.1 Fehlermeldung beim Ausführen der Methode CopyDocument() 69

xi

Abkürzungsverzeichnis

API Application Programming Interface.

DCC Document Classification Code.

GPT Generative Pre-trained Transformer.

GQA Grouped Query Attention.

HTTP Hypertext Transfer Protocol.

JSON JavaScript Object Notation.

KI Künstliche Intelligenz.

LLM Large Language Model.

MINT Mathematik, Informatik, Naturwissenschaft und Technik.

MMLU Massive Multitask Language Understanding.

NLP Natural Language Processing.

PDF Portable Document Format.

PNG Portable Network Graphics.

REST Representational State Transfer.

RMG Rail-Mounted Gantry Crane.

xii

Abkürzungsverzeichnis

RTG Rubber-Tired Gantry Crane.

SPS Speicherprogrammierbare Steuerung.

STEM Science, Technology, Engineering and Mathematics.

STS Ship-To-Shore Crane.

SWA Sliding Window Attention.

xiii

Glossar

BERT BERT (Bidirectional Encoder Representations from Transformers) ist ein vor-
trainiertes Sprachmodell von Google. Mit der Einführung wurde ein deutlicher
Sprung im NLP und der Leistungsfähigkeit von Sprachmodellen erzielt.

Chain of Thought Der Chain of Thought (COT) ist eine Gedankenkette, welche an ein
LLM übergeben werden kann. Dabei wird das strukturierte und logische Vorgehen
beschrieben, um eine Aufgabe zu lösen.

CNN Ein CNN (Convolutional Neural Network) ist neuronales Netzwerk, welches vor-
wiegend zur Audio- und Bildverarbeitung eingesetzt wird..

Polarion Polarion ist ein Anforderungsmanagement Tool von Siemens, in dem die Do-
kumentation von Projekten verwaltet wird. Dort werden unter anderem Anforde-
rungsdokumente, technische Spezifikationen und Testfälle abgelegt.

xiv

1 Einleitung

In diesem Kapitel werden die Ausgangslage, Motivation, das Umfeld, die Zielsetzung und
der Aufbau der Arbeit dargestellt.

1.1 Ausgangslage und Motivation

Ein essenzieller Teil in der Projektarbeit ist das Projektmanagement, insbesondere das
Anforderungsmanagement. Qualitativ hochwertige Anforderungsdokumente, technische
Spezifikationen, sowie Testfälle stellen wichtige Komponenten für den Erfolg eines Pro-
jekts dar. Die Erstellung dieser Dokumente ist jedoch meistens mühselig und unbeliebt.
Schlechte, unvollständige oder unspezifizierte Anforderungen verursachen immer Kosten
am Ende eines Projekts. Ergebnisse werden nicht erreicht und es entsteht eine Unzufrie-
denheit beim Kunden.
Dem kann mit einem vernünftigen Anforderungsmanagement vorgebeugt werden. Im An-
forderungsmanagement gibt es verschiedene Tätigkeiten, wie beispielsweise: [12]

• Erhebung und Identifikation von Anforderungen

• Strukturierte Dokumentation der ermittelten Anforderungen

• Überprüfung und Abstimmung der Anforderungen mit relevanten Stakeholdern

• Validierung der Anforderungen hinsichtlich Zielerreichung und Umsetzbarkeit

Vor allem das strukturierte und einheitliche Dokumentieren von Anforderungen ist ent-
scheidend, damit die Erwartungen von unterschiedlichen Personen an ein Projekt nicht
auseinanderlaufen. Die Projekte haben dabei häufig eine Vielzahl von Anforderungen,
welche alle manuell durchgegangen und dokumentiert werden müssen. Dieser Prozess
soll optimiert, sowie Mitarbeitende entlastet werden.

1

1 Einleitung

1.2 Umfeld

Diese Bachelorarbeit wird im Rahmen eines dualen Studiums bei der Siemens AG in
Bremen erstellt. Die Bearbeitung erfolgt in der Abteilung RC-DE DI PA SO WFC MC-
CRANES, die sich mit der Elektrifizierung und Automatisierung von Kranen, insbeson-
dere in Hafenbereichen, beschäftigt. Zu den typischen Krantypen in Häfen zählen der
Ship-To-Shore Crane (STS), der Rubber-Tired Gantry Crane (RTG) und der Rail-
Mounted Gantry Crane (RMG).

Derzeit werden Anforderungsdokumente, technische Spezifikationen und Testfälle manu-
ell erstellt. Ziel dieser Bachelorarbeit ist, einen Teil dieser Tätigkeiten zu übernehmen und
zu erleichtern. Es handelt sich zudem um die erste Anwendung, die ein Large Language
Model (LLM) einsetzt, da solche Modelle in der Abteilung bisher kaum genutzt werden.

1.3 Zielsetzung

Das Ziel dieser Arbeit ist, die Erstellung von Projektmanagementdokumenten, insbe-
sondere von Anforderungsdokumenten, zu vereinfachen. Das heißt, es werden die einzel-
nen Anforderungen aus einem Anforderungsdokument geschrieben . Zusätzlich soll eine
Grundlage für künftige Arbeiten geschaffen werden, um weitere Dokumente, wie tech-
nische Spezifikationen und Testfälle, automatisiert zu generieren. Die Generierung soll
mit einem LLM realisiert werden, da auch in diesem Bereich Kompetenzen aufgebaut
werden sollen. Es soll hier ebenfalls darauf geachtet werden, dass auf den Einsatz von
LLMs aufgebaut werden kann, um bei weiteren Projekten und Anwendung generative
Künstliche Intelligenz (KI) einzusetzen. Dabei geht es nicht um das Trainieren eines
LLMs. Es werden bereits vorhandene Modelle eingesetzt und evaluiert, wie gut diese die
Aufgabe lösen.

1.4 Aufbau der Arbeit

Diese Arbeit ist in acht Kapitel gegliedert. Zunächst beschäftigt sich Kapitel 2 mit den
Grundlagen dieser Arbeit. Anschließend werden in Kapitel 3 die Anforderungen an diese
Arbeit definiert. In Kapitel 4 und Kapitel 5 geht es um das Konzept und die Imple-
mentierung, um diese Anforderungen umzusetzen. Inwiefern die Anforderungen am Ende

2

1 Einleitung

umgesetzt wurden, wird in Kapitel 6 evaluiert. Zum Schluss folgt ein Fazit mit einem
Ausblick auf weitere Arbeiten.

3

2 Grundlagen

Dieses Kapitel behandelt die fundamentalen Grundlagen, die für die weitere Arbeit von
Bedeutung sind. Zunächst wird ein allgemeiner Überblick über maschinelles Lernen ge-
geben, gefolgt von einer Einführung in die Computerlinguistik. Hierbei wird erläutert,
wie natürliche Sprache verarbeitet wird und was unter dem Begriff „Token“ zu verstehen
ist. Anschließend wird das Thema LLM behandelt, welche Fähigkeiten sie besitzen und
welche davon relevant für diese Arbeit sind, sowie das Thema KI-Halluzination. Im wei-
teren Verlauf werden die Transformer-Architektur, Aufmerksamkeitsmechanismen, die
Bewertung von LLMs und das Prompt Engineering beschrieben. Es folgt ein Abschnitt
zu Markdown. Das Format wird zum einen dafür verwendet den Kontext für ein LLM
bereitzustellen und zum anderen eine verarbeitbare Antwort zu erhalten. Abschließend
wird kurz auf den Architekturstil REST, welcher die Schnittstellen zum Requirement
Management Tool bildet, eingegangen.

2.1 Maschinelles Lernen

Das Feld der KI gewinnt heutzutage zunehmend an Bedeutung und Popularität.1 Große
Fortschritte in der KI, wie beispielsweise ChatGPT und BERT, haben die vielfältigen
Möglichkeiten und Anwendungsbereiche von KI verdeutlicht. Ein bedeutender Teilbereich
der KI ist das maschinelle Lernen, zu dem auch LLMs, auf denen ChatGPT und BERT
basieren, gehören.2 [2]
Maschinelles Lernen beschreibt die Fähigkeit von Computern, aus Daten Vorhersagen
oder Entscheidungen zu treffen. Hierbei wird ein Modell mit bereits vorhandenen Daten
trainiert, um daraus spezifische Ergebnisse zu generieren. Für die Datenverarbeitung
und das Training stehen zahlreiche Modelle zur Verfügung. Die Einsatzmöglichkeiten

1https://de.statista.com/statistik/kategorien/kategorie/15/themen/2604/
branche/kuenstliche-intelligenz/#overview, Zugriffsdatum: 25.02.2025

2https://www.iais.fraunhofer.de/de/geschaeftsfelder/big-data-analytics-and-
intelligence/innovation-briefing-generative-ki.html, Zugriffsdatum: 28.05.2025

4

2 Grundlagen

des maschinellen Lernens sind äußerst vielfältig. In der Medizin wird es beispielsweise
zur Diagnoseunterstützung eingesetzt, im Telekommunikationsbereich zur Analyse von
Anrufmustern und in den Bereichen Physik, Astronomie und Biologie zur Analyse großer
Datenmengen. Wie oben bereits erwähnt, gehören ChatGPT und BERT ebenfalls zum
Bereich des maschinellen Lernens. Genauer gesagt fallen sie in den Bereich der generativen
KI, welcher sich mit dem Erzeugen von Inhalten beschäftigt. [2]

2.2 Generative KI

Generative KI befasst sich mit Modellen, die Inhalte oder Daten erzeugen, die nicht im
Trainingsdatensatz enthalten waren, aber dennoch kohärent sind und die gleiche Struktur
aufweisen. Die wichtigsten Merkmale der generativen KI sind die Datengenerierung,
die Synthese und die Lernverteilung. Die Datengenerierung bezieht sich auf die Fä-
higkeit, neue Daten zu erzeugen, die nicht im Trainingsdatensatz vorhanden waren. Dies
wird auch als „produktiv“ bezeichnet. Es werden Daten produziert, welche es zuvor nicht
gegeben hat. Dies können Texte, Bilder, Audios, Videos und vieles mehr sein. Synthese
bedeutet, dass das generative Modell in der Lage ist, mehrere verschiedene Eingaben zu
kombinieren, beispielsweise zwei Bilder zu einem zusammenzuführen. Die Lernverteilung
beschreibt die Fähigkeit eines generativen KI-Modells, Wahrscheinlichkeitsverteilungen
aus den Trainingsdaten zu erlernen, um daraus neue Muster zu generieren.
Generative KI unterscheidet sich vor allem zu anderen KIs in der Hinsicht, dass dabei
versucht wird, neue Daten zu synthetisieren und zu generieren, während die meisten
traditionellen KI Modelle Daten klassifizieren und analysieren. [4, 17]

2.3 Natural Language Processing

Damit KI schlüssige Texte generieren kann, muss die KI lernen, wie zusammenhängende
Sätze geschrieben werden. Diese Verarbeitung von natürlicher Sprache durch Maschinen
wird als Natural Language Processing (NLP) bezeichnet. Dabei wird nicht nur die Se-
mantik eines einzelnen Wortes analysiert, sondern der gesamte Kontext betrachtet. Es
geht dementsprechend um die Verarbeitung von ganzen Sätzen, bzw. Texten. [9, 11]

5

2 Grundlagen

Wahrscheinlichkeit erstellt. Geht man beispielsweise davon aus, dass das LLM 100.000
Wörter kennt, wird für jedes dieser 100.000 Wörter eine Wahrscheinlichkeit zwischen 0
und 1 erstellt. Die Summe aller 100.000 Wahrscheinlichkeiten ergibt 1. Dementsprechend
wird nicht direkt das nächste Wort, sondern nur eine Wahrscheinlichkeit für die einzel-
nen Wörter berechnet. Zudem müssen die Wahrscheinlichkeiten für die nächsten Wörter
immer neu berechnet werden und können nicht für bestimmte oder alle Fälle gespeichert
werden. Andernfalls wäre eine Datenmenge enormer Größe notwendig, um die möglichen
Fälle abzudecken. Zudem kann das nächste Wort mit der größten Wahrscheinlichkeit von
dem am häufigsten verwendeten nächsten Wort abweichen. [17]

2.4 Large Language Model

Das Fraunhofer-Institut für experimentelles Software-Engineering beschreibt LLMs fol-
gendermaßen: „Large Language Models (kurz: LLM und auf Deutsch: Große Sprach-
modelle) sind leistungsstarke Modelle, die darauf ausgelegt sind, menschliche Sprache
zu verstehen und zu generieren. Sie können Texte analysieren und verstehen, kohärente
Antworten generieren und sprachbezogene Aufgaben ausführen“.3 Moderne LLMs sind
mittlerweile ausschließlich neuronale Netze und sind damit ein Teil des maschinellen Ler-
nens. Es gibt zudem LLMs, welche keine Texte, sondern Bilder, Audios oder Ähnliches
generieren. [4, 17]

2.4.1 Fähigkeiten von LLMs

Im Folgenden befindet sich ein Überblick über die Fähigkeiten von LLMs. Die Fähig-
keiten werden in nützliche und elementare Fähigkeiten unterteilt. Die nützlichen
Fähigkeiten sind diejenigen, die von den Anwendenden direkt genutzt werden können.
Die elementaren Fähigkeiten hingegen sind grundlegende Funktionen, ohne die die
nützlichen Fähigkeiten nicht funktionieren würden. Diese elementaren Fähigkeiten sind
abstrakter und werden von den Anwendenden nicht direkt genutzt.
In Bezug auf diese Arbeit sind nicht alle Fähigkeiten relevant, der Vollständigkeit halber
werden dennoch alle Text- und Bildbezogenen Fähigkeiten aufgelistet. Im Anschluss wird
auf die unterstrichenen, vom Verfasser ausgewählten, nützlichen Fähigkeiten genauer

3https://www.iese.fraunhofer.de/blog/large-language-models-ki-
sprachmodelle/, Zugriffsdatum: 26.03.2025

7

2 Grundlagen

eingegangen. Diese bilden im späteren Verlauf einen großen Anteil an der Nutzung eines
LLMs.

Nützliche Fähigkeiten

• Text generieren

• Text umschreiben

• Text übersetzen

• Text analysieren, erklären und
interpretieren

• Text zusammenfassen

• Themen und Konzepte erklären

• Vorschläge machen

• Probleme lösen

• Gespräche führen

• Bilder generieren

• Bilder beschreiben

Elementare Fähigkeiten

• Plausible Worte vorhersagen

• Allgemeine Erwartungen von Benut-
zern erfüllen

• Aufforderungen verstehen

• Langreichweitige Beziehungen berück-
sichtigen

• Große Kontexte berücksichtigen und
Polysemie auflösen

• Ähnlichkeiten erkennen

• Analogien und Beispiele verstehen und
generalisieren

• Koreferenzen auflösen, insbesondere
Pronomen

• Redewendungen und uneigentliche Re-
de

• Grammatik und Morphologie

Die Textgenerierung ist ein wesentlicher Aspekt von LLMs. Dabei geht es nicht nur
um das Generieren von einzelnen Wörtern oder Sätzen, sondern um das Erstellen eines
längeren Texts zu einem bestimmten bzw. vorgegebenen Themenbereich.
Beim Umschreiben von Texten ist ein Text bereits vorgegeben und das LLM ist in
seinen Antwortmöglichkeiten eingeschränkt, da der Inhalt durch den Text gegeben ist.
Zu dem Umschreiben gehört auch die sprachliche Korrektur von Texten.
Eine spezielle Form des Umschreibens von Texten ist das Übersetzen von Texten.
Dabei werden Texte in einer anderen Sprache „umgeschrieben“.
Texte analysieren, erklären und interpretieren umfasst drei sehr ähnliche und sich

8

2 Grundlagen

überschneidende Fähigkeiten. Das Analysieren von Texten ist dabei die Voraussetzung
für das Erklären und Interpretieren von Texten. LLMs analysieren ständig Texte, da sie
eine Voraussetzung für fast alle Fähigkeiten ist. Dabei setzen sie die Wörter und ihre
Bestandteile in komplexer werdende Beziehungen zueinander. Die Erklärung ist eine Art
des Umschreibens in andere, eigene Wörter, um den Text verständlich zu machen.
Um einen Text zusammenzufassen, muss das LLM Texte verstehen und die wich-
tigsten Informationen erkennen können. LLMs werden häufig für das Zusammenfassen
von Texten genutzt, daher werden sie in dieser Hinsicht nach trainiert. Zum Schluss gibt
es die Fähigkeit Bilder zu beschreiben. Das erkennen von Elementen in einem Bild
beruht nicht auf der Transformer-Architektur, sondern CNNs. Dieses gibt die Informa-
tionen über die Elemente an das LLM weiter, welches anschließend diese in Beziehung
zu einander setzt, um das Bild zu beschreiben. [17]

2.4.2 KI-Halluzination

Als KI-Halluzination wird das Generieren von Daten bezeichnet, welche plausibel erschei-
nen, jedoch frei erfunden sind. Hervorgerufen wird dieses Phänomen durch unvollständi-
ge, verzerrte oder anderweitig fehlerhafte Trainingsdaten.4 Die folgenden Methoden sind
Beispiele, wie KI-Halluzination verhindert, bzw. eingeschränkt werden kann: [4]

1. Feedback
Es besteht die Möglichkeit, dem Modell Feedback zu einer Antwort zu geben und
dem Modell mitzuteilen, welche Informationen in die Antwort sollen und welche
nicht.

2. Faktencheck
Mittels Faktenchecks der Ergebnisse eines Modells können Halluzinationen erkannt
und markiert werden.

3. Prompt Engineering Das Prompt Engineering kann Halluzination ebenfalls vor-
beugen. Wichtig sind dabei klare, spezifische und informative Prompts, welche zu
genaueren Ergebnissen führen. Methoden des Prompt Engineerings werden in Ab-
schnitt 2.7 beschrieben.

4https://cloud.google.com/discover/what-are-ai-hallucinations?hl=de, Zugriffsda-
tum: 25.03.2025

9

2 Grundlagen

Die Punkte 1 und 3 beschreiben Methoden zur Reduzierung von Halluzinationen während
der Nutzung eines LLMs. Punkt 2 bezieht sich auf das Identifizieren von Halluzinationen
und fehlerhaften Ergebnissen, die Methode dient nicht dazu das Auftreten von Hallu-
zinationen zu verhindern. Trotz dieser Methoden zur Reduzierung und Erkennung von
Halluzinationen können diese nicht vollständig verhindert oder erkannt werden. Deshalb
muss bewusst und kritisch mit KI-generierten Inhalten umgegangen werden. [4]

2.5 Transformer-Architektur

Die Transformer-Architektur ist ein Eckpfeiler bei den sequence-to-sequence Aufgaben.
Transformer transformieren eine Eingabesequenz in eine Ausgabesequenz. Die elemen-
taren Schichten der Transformer-Architektur sind in Abbildung 2.1 dargestellt. Diese
Elemente werden in den folgenden Abschnitten genauer beschrieben. Transformer sind
ein zentrales Element moderner LLMs und bestehen aus zwei Hauptkomponenten: Dem
Encoder und dem Decoder. [10, 20]

2.5.1 Encoder

Der Encoder hat die Aufgabe, die Eingangssequenz zu verarbeiten und die komprimierten
Informationen in einem Kontext dem Decoder zur Verfügung zu stellen. Dabei wird
nicht nur die Information über die Bedeutung jedes einzelnen Wortes weitergegeben.
Es werden zusätzlich auch die Informationen der vorherigen Worte berücksichtigt. Der
Encoder besteht dabei aus mehreren identischen Schichten. Diese haben jeweils zwei
Hauptelemente, welche in Abbildung 2.1 zu sehen sind:

• Multi-Head Attention: Dieses Element des Encoders erlaubt es dem Modell, mit
jedem Attention-Head unterschiedliche Bereiche der Eingabedaten zu berücksich-
tigen und somit verschiedene Aspekte der Daten zu erkennen.

• Feed-Forward Neural Network: Ein neuronales Netzwerk, das die Attention-
Vektoren verarbeitet, nichtlineare Transformationen durchführt und diese für die
nachfolgende Encoder-Schicht sowie die Decoder-Schicht zugänglich macht.

• Add&Norm: Die Schicht Add&Norm normiert die Ausgabe einer Schicht und
macht diese für die nächste Schicht verfügbar. Sie befindet sich sowohl im Encoder,
als auch Decoder hinter jedem Hauptelement. [10, 20]

10

2 Grundlagen

Abbildung 2.1: Der Transformer - Modellarchitektur (vgl. Kapitel 3, S.3, [20])

2.5.2 Decoder

Der Decoder erzeugt die Ausgabesequenz aus dem übergebenen Kontext des Encoders.
Dabei wird ähnlich wie beim Encoder nicht nur der übergebende Kontext vom Encoder
betrachtet, sondern auch die zuvor generierten Token. Diese haben einen Einfluss auf
das nächste Token. Auch der Decoder besteht aus mehreren identischen Schichten, wobei
jede Schicht drei Hauptelemente besitzt:

• Masked Multi-Head Attention: Diese Schicht funktioniert ähnlich wie die Multi-
Head Attention, jedoch wird durch einen Masking-Mechanismus sichergestellt, dass
die Generierung eines Wortes nicht von zukünftigen Worten abhängt.

• Encoder-Decoder Attention: Die Encoder-Decoder Attention sorgt für den Fo-
kus auf die relevanten Eingabesequenzen durch den übergebenen Kontext des En-
coders.

11

2 Grundlagen

• Feed-Forward Neural Network: Es handelt sich um die gleiche Schicht wie beim
Encoder.

• Add&Norm: Wie bereits in Unterabschnitt 2.5.1 beschrieben, ist diese Schicht
identisch zu der im Encoder. [10, 20]

2.6 Aufmerksamkeitsmechanismen

Mit Hilfe von Aufmerksamkeitsmechanismen kann der Fokus von LLMs auf die relevanten
Eingabeinformationen gelenkt werden. Dadurch lässt sich die Geschwindigkeit von LLMs
erhöhen, oder es kann ein längerer Kontext betrachtet werden. In Abschnitt 2.5 wurde
die Multi-Head-Attention kurz eingeführt. In diesem Abschnitt werden mit, Grouped
Query Attention (GQA) und Sliding Window Attention (SWA), zwei weitere Aufmerk-
samkeitsmechanismen beschrieben.

2.6.1 Grouped Query Attention

Die GQA unterteilt mehrere Abfragen (Query) in einzelne Gruppen. Jeder Gruppe wird
dabei ein Schlüssel (Key) und ein Wert (Value) zugewiesen. Somit wird nicht mehr jeder
Abfrage ein Schlüssel und ein Wert zugewiesen, wie beispielsweise bei der Multi-Head
Attention. Dies reduziert die Anzahl der Berechnungen. Das LLM kann mit der GQA
schneller eine Antwort generieren, ohne dass diese groß an Qualität verliert. [1]

2.6.2 Sliding Window Attention

Mit der SWA können lange Sequenzen eines LLMs verarbeitet werden. Dabei wird die
Aufmerksamkeit auf bestimmte Token innerhalb einer definierten Fenstergröße w gelegt.
Das Fenster (Window), mit einer definierten Größe, wird auf die Eingabesequenz, sowie
über die Transformer-Schichten (Layer), gelegt. Die Token können sich nur innerhalb
dieses Fensters betrachten und ignorieren alle Token außerhalb des Fensters. Das Fenster
liegt 1

2w Token links und rechts neben dem betrachteten Token. [3, 6]

12

2 Grundlagen

2.7.3 Structured Output

Es ist möglich, LLMs immer in einem gleichen Format antworten zu lassen. Dies wird
Structured Output genannt. Dabei kann das Antwortformat vom Nutzenden festgelegt
werden. Ein Structured Output hat die Vorteile, dass keine falsch formatierten Antwor-
ten überprüft werden müssen, die Prompts nicht wesentlich erweitert werden, um ein
einheitliches Format zu erhalten und [14]

2.7.4 Fine-Tuning

Mit dem Fine-Tuning lassen sich die Antworten von LLMs in Eigenschaften Kreativität,
Kohärenz und Länge kontrollieren. Nachkommend werden die Funktionen „Temperature“,
„Top_p“ und „Max Tokens“ kurz beschrieben.

Temperature Die Temperatur eines LLMs beschreibt die Zufälligkeit der Antwort. Bei
höheren Werten, ab 0,8, ist die Antwort kreativer und vielfältiger. Dies hat den Nachteil,
dass die Antwort auch zufälliger wird und bei einer zu hohen Temperatur die Sinnhaf-
tigkeit verliert. Kleine Temperaturen (z. B. 0,2) führen zu zielgerichteten und mehr de-
terministischen Antworten. Die Antwort wird vorhersehbarer. Für die Temperatur sind
Werte zwischen 0 und 2 möglich.

Top_p Neben der Temperatur kann die Zufälligkeit der Antwort auch durch die Funk-
tion „Top_p“ gesteuert werden. Diese Technik wählt nicht das wahrscheinlichste nächste
Token, sondern berücksichtigt eine Gruppe der wahrscheinlichsten Tokens. Möglich sind
Werte zwischen 0 und 1. Bei höheren Werten wird die Antwort, ähnlich wie bei der
Temperatur, zufälliger. Im Gegensatz dazu führt die Wahl kleinerer Werte zu einer de-
terministischeren Antwort.

Max Tokens Neben der Temperatur und dem Top_p lässt sich mit der Funktion
„Max Tokens“ die Antwortlänge einstellen. Dadurch können kurze Antworten erzwungen
werden. [18]

14

2 Grundlagen

2.7.5 Rollen eines Prompts

Für Modelle, die mit der OpenAI API kompatibel sind, existieren drei unterschiedliche
Nachrichtenrollen.5

• System: Dies sind Nachrichten, die Regeln und Vorgehensweisen für die Antwort
vergeben.

• User: Dies sind die Nachrichten vom Benutzer. Das können Fragen oder Aufgaben
sein.

• Assistant: Assistant Nachrichten sind die Antworten des LLMs.

2.8 Bewertung von LLMs

Aufgrund des großen Umfangs von LLMs und des Mangels an menschlichen Präferenzen
in vorhandenen Benchmarks, ist es schwer, chatfähige LLMs zu bewerten. [22] Es gibt ei-
ne Reihe von Benchmarks, um die Leistungsfähigkeit von LLMs zu bewerten, bevor diese
genutzt werden. Dabei enthalten diese Benchmarks Beispieldaten, verschiedene Fragen
und Aufgaben, ein Bewertungssystem sowie ein Punktesystem.6 Im Folgenden werden die
geläufigen Benchmarks MT-Bench, Massive Multitask Language Understanding (MM-
LU) und HellaSwag betrachtet, da diese vom Verfasser dieser Arbeit als relevant für die
späteren Aufgaben angesehen werden.

2.8.1 MT-Bench

Die geläufigen Benchmarks zur Bewertung von LLMs vernachlässigen größtenteils die
menschlichen Präferenzen. Dabei werden LLMs hauptsächlich für die Interaktion zwi-
schen Mensch und KI eingesetzt. Der im Jahr 2023 veröffentlichte Benchmark MT-Bench
bewertet LLMs im Hinblick auf diese menschlichen Präferenzen.
Bei dem MT-Bench werden dem LLM 80 hochqualitative mehrteilige Fragen gestellt.
Zudem werden mehrstufige Konversationen und die Fähigkeit zur Befolgung von Anwei-
sungen getestet. Um die gängigen Anwendungsfälle von Chatbots abzudecken, werden

5https://platform.openai.com/docs/guides/text?api-mode=chat, Zugriffsdatum:
30.05.2025

6https://www.ibm.com/think/topics/llm-benchmarks, Zugriffsdatum: 21.05.2025

15

2 Grundlagen

User Prompts in acht Kategorien aufgeteilt: Schreiben, Rollenspiel, Extraktion, logisches
Denken, Mathematik, Codierung, Wissen I (MINT) und Wissen II (Geistes-/ Sozialwis-
senschaften). Für jede Kategorie werden zehn mehrteilige Fragen gestellt.

Im Anhang (Abbildung A.3, A.4) ist dargestellt, wie verschiedene LLMs bei dem Bench-
mark abgeschnitten haben. Abbildung A.3 zeigt dabei die Ergebnisse in den acht ver-
schiedenen Kategorien, während Abbildung A.4 vergleicht, wie gut einzelne Modelle in
den verschiedenen Benchmarks MMLU, TruthfulQA und MT-Bench abschneiden.

2.8.2 MMLU

Der MMLU Benchmark wurde 2021 veröffentlicht und ist ein umfangreicher Test mit
57 Aufgaben aus verschiedenen Wissensbereichen und Schwierigkeitsstufen. Dazu zählen
unter anderem die Bereiche Geistes-, Sozial- und Naturwissenschaften. Er enthält über
15.000 Multiple-Choice-Fragen, die von Studierenden aus frei verfügbaren Online-Quellen
gesammelt wurden. Der Test dient dazu, die Fähigkeit von LLMs im Hinblick auf ihre
Vielseitigkeit, den Umfang ihres globalen Wissens und der Entwicklung anspruchsvoller
Problemlösungsstrategien zu bewerten. Während unspezialisierte Personen etwa 34,5%
Genauigkeit erreichen, liegt die geschätzte Leistung von spezialisierten Personen bei rund
89,8 %. Für medizinische Prüfungen liegt die Genauigkeit für spezialisierte Personen bei-
spielsweise bei 87 %. Der Benchmark gilt als anspruchsvolles und langfristig relevantes
Ziel für die Entwicklung leistungsfähiger Sprachmodelle. [8]

Im Anhang (Abbildung A.5) sind die Ergebnisse verschiedener LLMs für den MMLU
Benchmark dargestellt. Dabei sind die Ergebnisse auf die vier verschiedenen Themen
Geisteswissenschaften, Sozialwissenschaft, STEM und „Andere“, sowie der Durchschnitt
aller Themen, abgebildet. Da der Benchmark aus dem Jahr 2021 stammt, sind Modelle
wie DeepSeek R1 oder GPT-4 nicht enthalten.

2.8.3 HellaSwag

Der HellaSwag Benchmark wurde im Jahr 2019 veröffentlicht und stellt eine verbesserte
Version von SWAG dar. Er wurde gezielt entwickelt, um stilistische Verzerrungen zu ver-
meiden und die tatsächliche Fähigkeit zum Schlussfolgern mit Alltagswissen zu testen.

16

2 Grundlagen

ActivityNet Captions Zur Bewertung wurde der Datensatz ActivityNet Captions
integriert. Dieser beinhaltet zeitliche Beschreibungen und Aktivitätsbezeichnungen für
jede Beschriftung. Dadurch soll die Generalisierungsfähigkeit getestet werden.

WikiHow Testfeld Neben ActivityNet Captions wird auch das Testfeld WikiHow be-
trachtet. Es beinhaltet 80.000 Kontext- und Folgeabsätze, zu Themen wie „Wie man eine
Origami-Eule bastelt“ oder „Wie man einen Banküberfall überlebt“. Die Folgeabsätze
sind zwei Sätze lang, da sie für LLMs herausfordernd, aber für Menschen gut lösbar sind.

HellaSwag enthält spezielle Zero-shot Sätze, um zu prüfen, ob Modelle auf neue, unbe-
kannte Themenbereiche verallgemeinern können. Das Thema Zero-shot wird im Folgen-
den Abschnitt 2.7 erläutert. Für jeden Validierungs- oder Testsatz gibt es zwei Teilmen-
gen:

• 5k In-domain Beispiele, die aus bekannten Kategorien vom Training stammen

• 5k Zero-shot Beispiele, aus zufällig ausgewählten, zurückgehaltenen Kategorien [21]

Abbildung A.6 aus dem Anhang zeigt die Ergebnisse verschiedener Modelle, sowie vom
Menschen. Die Ergebnisse sind aufgeteilt, in ein generelles Ergebnis über den gesamten
Benchmark, die der In-Domain und Zero-shot Teilmenge sowie den Datensätzen Acti-
vityNet und WikiHow. Es lässt sich erkennen, dass der Mensch, in allen Kategorien,
wesentlich besser abschneidet als die LLMs.

2.9 Markdown

Um dem LLM eine strukturierte Antwort zu übergeben und eine ebenso strukturierte
Antwort zurück zu bekommen, Markdown verwendet werden. Markdown ist ein Textfor-
mat, welches das Ziel hat, möglichst einfach lesbar und schreibbar, zu sein. Dementspre-
chend ist die Syntax nah an das Zieldesign angelehnt und Listen sehen beispielsweise im
Markdownformat bereits aus wie Listen. Jedoch hat es im Vergleich zu z. B. HTML we-
sentlich weniger Umfang und Möglichkeiten, Text darzustellen. Dies ist für diese Arbeit
auch nicht notwendig, da Markdown lediglich zur Darstellung von Portable Document
Format (PDF) Dokumenten und zur Formulierung der Prompts genutzt werden soll.

17

2 Grundlagen

• Zustandslosigkeit: Mit der Zustandslosigkeit wird beschrieben, dass bei einer
Anfrage alle notwendigen Informationen enthalten sein müssen. Es werden keine
Informationen von vorherigen Anfragen gespeichert.

• Zwischenspeicherung: Bei einer Antwort an den Client ist die Information zur
Zwischenspeicherung enthalten. Diese berechtigt den Client, bei Zustimmung, die
Antwort für einen bestimmten Zeitraum zwischenzuspeichern, um auf ähnliche An-
fragen zu reagieren.

• Mehrschichtiges System: Das mehrschichtige System sorgt für einen Aufbau, bei
dem jede Schicht nur Informationen aus der unmittelbar nächsten Schicht erhält,
mit welcher sie interagiert.

• Code auf Anfrage: Durch den Code auf Anfrage können Clients Code vom Server
herunterladen und ausführen. Dadurch verringert sich die Anzahl der implemen-
tierten Funktionen des Clients.8

8https://restfulapi.net/, Zugriffsdatum: 24.05.2025

19

3 Anforderungsanalyse

Die Anforderungsanalyse ist essenziell für den Erfolg eines Projekts. Sie dokumentiert die
Anforderungen und das Projektziel und stellt sicher, dass diese klar verstanden werden.
Zunächst wird dafür der Systemkontext, für einen ersten Überblick über das System,
beschrieben. Anschließend werden die wichtigsten Stakeholder betrachtet, um die Erwar-
tungen der interessierten Personen an das Projekt bestmöglich zu erfüllen. Im nächsten
Schritt werden die Anwendungsfälle betrachtet, aus denen sich später die konkreten An-
forderungen bilden. Durch eine gründliche Anforderungsanalyse wird sichergestellt, dass
die Bedürfnisse der Interessengruppen verstanden werden.

3.1 Systemkontext

Für ein besseres Verständnis des Themas der Arbeit, wird in diesem Abschnitt die Um-
gebung des Systems beschrieben. Dabei wird auf einzelne Komponenten der Umgebung
und deren Bezug auf das System eingegangen. Des Weiteren wird definiert, auf welche
Elemente Einfluss genommen werden kann und welche lediglich verwendet werden, je-
doch nicht beeinflussbar sind. Dabei wird über Schnittstellen die Umgebung mit dem
System verknüpft. Abbildung 3.1 zeigt die wesentlichen Elemente des Systemkontexts,
zur Erstellung von Dokumenten für das Projektmanagement.

Die Anwendung soll ein Anforderungsdokument von Siemens, technische Spezifikatio-
nen und Testfälle, automatisch generieren. Dazu wird ein Anforderungsdokument vom
Kunden, aus einem externen Anforderungsmanagement Tool entnommen. Mit Hilfe eines
LLM wird aus dem Anforderungsdokument vom Kunden ein Anforderungsdokument von
Siemens generiert, in dem die einzelnen Anforderungen in einer Liste aufgeführt werden.
Dieses Dokument wird anschließend wieder im Anforderungsmanagement Tool abgelegt
und kann später von Mitarbeitenden der Abteilung kontrolliert und korrigiert werden.
Zudem werden durch die Mitarbeitenden die einzelnen Anforderungen kategorisiert.

20

3 Anforderungsanalyse

Abbildung 3.1: Systemkontext

Aus dem korrigierten und kategorisierten Anforderungsdokument von Siemens können,
durch das LLM, technische Spezifikationen für die einzelnen Kategorien generiert werden.
Die erstellten technischen Spezifikationen werden wieder im Anforderungsmanagement
Tool abgelegt und können anschließend von Mitarbeitenden korrigiert und angepasst wer-
den.
Zuletzt können aus einer technischen Spezifikation Testfälle erstellt werden. Diese werden
ebenfalls mit Hilfe des LLMs generiert und anschließend im Anforderungsmanagement
Tool abgelegt.

3.2 Stakeholder

Für das Projekt sind neben der technischen Umsetzung auch die Stakeholder ein wichtiger
Faktor für das Gelingen des Projekts. Stakeholder sind Personen oder Personengruppen,
welche ein Interesse an dem Projekt haben. Im Folgenden werden die wichtigsten Stake-
holder kurz beschrieben.

3.2.1 Auftraggeber

Als Auftraggeber fungiert die Siemens AG, insbesondere die Abteilung RC-DE DI PA SO
WFC MC-CRANES. Die Software wird für diese Abteilung entwickelt, um Arbeitszeit
beim Erstellen der einzelnen Testfälle und beim Analysieren der Kundenanforderungen
zu sparen. Sie haben daher ein besonderes Interesse am Erfolg der Arbeit.

21

3 Anforderungsanalyse

3.2.2 Software-Entwickler

Der Software-Entwickler, der diese Bachelorarbeit verfasst, ist ein zentraler Stakeholder.
Sein Ziel ist, eine funktionsfähige Lösung zu entwickeln und zu präsentieren. Dabei liegt
sein Interesse nicht nur auf der Realisierung einer funktionierenden Lösung, welche den
Hauptteil der Arbeit darstellt, sondern auch auf dem Erwerb neuer Fähigkeiten in Bezug
auf künstlicher Intelligenz und dem Nutzen von LLMs.

3.2.3 Anwendende

Weitere Stakeholder sind die Personen, welche die Software später aktiv nutzen. Ihr Inter-
esse besteht nicht nur darin, dass die Anwendung funktioniert, sondern auch darin, dass
sie die geforderten Aufgaben zuverlässig erfüllt und dabei einfach sowie intuitiv zu bedie-
nen ist. Zudem soll die Anwendung übersichtlich gestaltet sein und dem Anwendenden
die Arbeit zur Erstellung von Projektmanagementdokumenten erleichtern.

3.2.4 Personen für die Weiterentwicklung

Die Ergebnisse dieser Arbeit sollen auch für die zukünftige Weiterentwicklung innerhalb
der Abteilung nutzbar sein. Vor allem ist die Kommunikation mit einem LLM für künftige
Projekte besonders interessant. Daher ist die Wiederverwendbarkeit der Schnittstelle zum
LLM und eine umfassende Dokumentation erforderlich. Die Arbeit soll es ermöglichen, die
Anwendung fertigzustellen, zu erweitern oder ähnliche Anwendungen zu erstellen, welche
auf Basis eines großen Sprachmodells Aufgaben ausführen. In der Abteilung geht es
hauptsächlich um die SPS-Programmierung. Hochsprachen kommen nicht alltäglich vor.
Dennoch wird dabei vorwiegend die Entwicklungsumgebung VisualStudio in Verbindung
mit der Programmiersprache C# verwendet.

3.3 Anwendungsfälle

In Abbildung 3.2 ist das Anwendungsfalldiagramm für die Anforderungsmanagement-
Anwendung abgebildet. Dort werden die einzelnen Funktionalitäten der Anwendung
übersichtlich dargestellt. Unten werden die Anwendungsfälle (AF) kurz beschrieben.

22

3 Anforderungsanalyse

Abbildung 3.2: Anwendungsfalldiagramm für die Anforderungsmanagement Anwendung

AF1: Dokument auswählen Es wird ein Dokument aus dem Anforderungsmanage-
ment Tool ausgewählt.

AF2: Anforderungsdokument (Siemens) erstellen Aus dem ausgewählten Doku-
ment wird mit Hilfe eines LLM ein Anforderungsdokument von Siemens erstellt.

AF3: Technische Spezifikationen erstellen Aus dem ausgewählten Dokument wer-
den mit Hilfe eines LLM technische Spezifikationen erstellt.

AF4: Testfälle erstellen Aus dem ausgewählten Dokument werden mit Hilfe eines
LLM Testfälle erstellt.

3.4 Anforderungen

Bei den Anforderungen wird zwischen funktionalen und nicht funktionalen Anforderun-
gen unterschieden. Funktionale Anforderungen (F) sind die Anforderungen, welche
die Funktionalität der Anwendung beschreiben. Die nicht funktionalen Anforderun-
gen (NF) sind hingegen Anforderungen, welche nicht die Funktion der Anwendung

23

3 Anforderungsanalyse

beschreiben, sondern die Eigenschaften der Anwendung und wie die Funktionen umge-
setzt werden. Die Priorisierung wird in eckigen Klammern dargestellt ([...]) und in zwei
Arten unterteilt. Muss steht für die Anforderungen, ohne die die Funktionalität später
nicht gegeben ist. Diese Anforderungen sind daher essenziell für den Erfolg dieser Ar-
beit. Kann steht für die Anforderungen, welche zum Projekt dazu gehören, das Projekt
jedoch auch ohne diese funktioniert und ihren Zweck erfüllt.

Da die zu erstellenden Dokumente zum Großteil verschiedene Anforderungen haben,
werden die Anforderungen im Folgenden in vier Unterkapiteln (Dokumentengenerator,
Anforderungsdokumente, technische Spezifikationen und Testfälle) aufgeteilt.

3.4.1 Dokumentengenerator

Die Anforderungen für den Dokumentengenerator (DG) befassen sich mit den Anfor-
derungen für die Umgebung der Anwendung. Hier wird festgehalten, was die Anwendung
selbst für Anforderungen erfüllen muss.

DG-F1 [muss]: Aus dem Anforderungsdokument des Kunden wird ein Anforderungs-
dokument von Siemens generiert.
Diese Anforderung wird in Unterabschnitt 3.4.2 genauer beschrieben.

DG-F2 [kann]: Das Anforderungsdokument des Kunden wird aus dem Anforderungs-
management Tool ausgewählt.

DG-F3 [muss]: Aus dem Anforderungsdokumenten von Siemens werden technische
Spezifikationen generiert.
Diese Anforderung wird in Unterabschnitt 3.4.3 genauer beschrieben.

DG-F4 [kann]: Das Anforderungsdokument von Siemens wird aus dem Anforderungs-
management Tool ausgewählt.

DG-F5 [muss]: Aus einer technischen Spezifikation werden Testfälle generiert.
Diese Anforderung wird in Unterabschnitt 3.4.4 genauer beschrieben.

DG-F6 [kann]: Die technische Spezifikation wird aus dem Anforderungsmanagement
Tool ausgewählt.

24

3 Anforderungsanalyse

DG-F7 [muss]: Die Anwendung besitzt eine grafische Benutzeroberfläche.

DG-F8 [muss]: Es ist möglich den zu generierenden Dokumententypen in der grafi-
schen Benutzeroberfläche auszuwählen. Es gibt drei Dokumententypen: Anforderungsdo-
kument, technische Spezifikation, Testfälle.

DG-F9 [kann]: Die grafische Benutzeroberfläche besitzt eine Auswahl, ob mit dem
Anforderungsmanagement Tool oder lokal gearbeitet wird.

DG-F10 [muss]: Die Projektnummer wird von den Anwendenden eingegeben.

DG-F11 [muss]: Es muss ein lokales Dokument ausgewählt werden, aus dem das
Projektmanagementdokument generiert wird.
Dieser Fall tritt nur ein, wenn der Nutzende zuvor ausgewählt hat lokal zu arbeiten.

DG-F12 [muss]: Die Nutzenden können ein Zielverzeichnis, für das generierte Doku-
ment auswählen. Wird dieses nicht ausgewählt, wird das Dokument auf dem Desktop
abgelegt.
Dieser Fall tritt nur ein, wenn der Nutzende zuvor ausgewählt hat lokal zu arbeiten.

DG-F13 [kann]: Die Testfälle werden im richtigen Projekt im Verzeichnis „Test cases“
im Anforderungsmanagement Tool abgelegt.
Dazu muss der Nutzende zuvor die Auswahl für das Anforderungsmanagement Tool
getroffen haben (vgl. Anforderung DG-F9).

DG-F14 [kann]: Die technsichen Spezifikationen werden im richtigen Projekt im
Verzeichnis „Technical functions“ im Anforderungsmanagement Tool abgelegt.
Dazu muss der Nutzende zuvor die Auswahl für das Anforderungsmanagement Tool
getroffen haben (vgl. Anforderung DG-F9).

DG-F15 [kann]: Die technsichen Spezifikationen werden im richtigen Projekt im
Verzeichnis „System Requirements“ im Anforderungsmanagement Tool abgelegt.
Dazu muss der Nutzende zuvor die Auswahl für das Anforderungsmanagement Tool
getroffen haben (vgl. Anforderung DG-F9).

25

3 Anforderungsanalyse

DG-NF1 [kann]: Alle generierten Dokumente sowie die Anwendung selber sind in
Englisch (amerikanisch).
Da die Kunden weltweit verteilt sind und überwiegend außerhalb von Deutschland sitzen,
ist die Kommunikations- und Dokumentationssprache Englisch (amerikanisch). Zudem
sprechen nicht alle Personen der Abteilung deutsch, weshalb Englisch (amerikanisch) als
Sprache notwendig ist.

DG-NF2 [muss]: Die Implementierung und Nutzung der Anwendung darf keine zu-
sätzlichen Kosten verursachen. Ausgenommen hiervon sind lediglich die Lizenzkosten für
Visual Studio, die während der Implementierungsphase anfallen dürfen.

DG-NF3 [muss]: Die Anwendung soll auf einem Windows-Betriebssystem mit Windows
10 oder höher kompatibel sein.

DG-NF4 [muss]: Die Dokumente werden mit Hilfe eines LLMs erstellt.
Da ein Ziel der Arbeit darin besteht, dass Kompetenzen im Bereich KI und speziell dabei
in LLMs erworben werden, muss ein LLM auch eine wesentliche und sinnvolle Funktion
der Anwendung übernehmen.

DG-NF5 [kann]: Die übergebenen Informationen an das LLM müssen vertraulich
behandelt werden.
Für die Umsetzung des Projektes dieser Arbeit spielt die Vertraulichkeit keine Rolle,
da die Anforderungsdokumente vom Kunden, welche als Kontext genutzt werden sollen
öffentlich sind. Diese Anforderung bezieht sich, auf zukünftige Projekte, die auf Basis
dieser Arbeit realisiert werden.

3.4.2 Anforderungsdokument

In diesem Abschnitt werden die Anforderungen für die Generierung eines Anforde-
rungsdokuments (AD) von Siemens aufgelistet. Dabei wird festgehalten, welche Infor-
mationen in dem Anforderungsdokument enthalten sein müssen und wie dieses aufgebaut
ist. Der Inhalt des Anforderungsdokuments wird anhand eines Beispielprojekts festgelegt.
Die Anforderungen AD-F1 bis AD-F9 sowie die nicht funktionalen Anforderungen sind
für jedes Projekt gleich.

26

3 Anforderungsanalyse

AD-F1 [muss]: Die Anforderungen werden aus einem Kundenanforderungsdokument
generiert.
Das Kundenanforderungsdokument ist in Form eines PDF Dokuments.

AD-F2 [muss]: Das Dokument hat eine Übersicht, welche die Projektnummer, die Do-
kumentenbezeichnung, das Erstellungsdatum, die Dokumentennummer und die Version
beinhaltet.

AD-F3 [muss]: In der Übersicht gibt es eine Tabelle für das Versionsmanagement, mit
den Spalten: Version, Änderungsdatum, Autor, Änderungen und Bemerkungen

AD-F4 [muss]: Die Anforderungen werden eindeutig nummeriert. Die Nummern
werden in einer Spalte, mit der Überschrift „No.“ eingetragen.
Die Nummerierung hat die Form: Anf1, Anf2, Anf3, etc.

AD-F5 [muss]: Für das Kapitel der Anforderungen gibt es eine Spalte „Chapter“. Dort
werden die jeweiligen Kapitel des Kundenanforderungsdokuments eingetragen.

AD-F6 [muss]: Die Anforderungen haben eine kurze und messbare Beschreibung, welche
in der Spalte „Description“ stehen.

AD-F7 [muss]: Es gibt eine leere Spalte für die Kategorisierung, mit der Überschrift
„Category“ und eine Spalte für Kommentare, mit der Überschrift „Notes“.

AD-F8 [kann]: Die einzelnen Anforderungen werden auf ihre Umsetzbarkeit überprüft
und farblich markiert.
Dies dient dazu, dass beim späteren Korrigieren des Dokuments durch einen Mitarbei-
tenden die Arbeit vereinfacht wird.

AD-F9 [muss]: Der Dateiname wird aus der Projektnummer, dem DCC, der
Dokumentennummer, dem Status, der Version und der Dokumentenbezeichnung zu-
sammengesetzt. Der Name für das Anforderungsdokument lautet: Projektnummer +
„-EC411-W01-RequirementList“.
Es gibt für die Dokumentennamen eine Vorschrift der Abteilung, von der ein Auszug im
Anhang (Abschnitt A.1) zu finden ist.

AD-F10 [muss]: Es soll kein neuer Inhalt generiert werden. Die Anforderungen werden
anhand der Informationen des Anforderungsdokument vom Kunden erstellt.

27

3 Anforderungsanalyse

Abbildung 3.3: Aufbau der Kopfzeile der technischen Spezifikation

Abbildung 3.4: Aufbau der Fußzeile der technischen Spezifikation

AD-NF1 [kann]: Das Dokument ist in Form einer Excel-Datei.

3.4.3 Technische Spezifikationen

Der Abschnitt Technische Spezifikationen (TS) listet die Anforderungen an die Do-
kumente für die technischen Spezifikationen. Dabei wird sowohl auf das Dateiformat, das
Design des Dokuments, als auch den Inhalt anhand von Beispieldokumenten eingegan-
gen.

TS-F1 [muss]: Die technische Spezifikation wird aus einem Anforderungsdokument
generiert.
Das Anforderungsdokument ist eine .xlsx-Datei

TS-F2 [muss]: Das Dokument hat eine Kopfzeile mit den folgenden Informationen:
Kunde, Projekt, Dokumentenbezeichnung/ Titel, Erstellungsdatum, Dokumentennum-
mer, Version. Zudem ist der Schriftzug „SIEMENS“ abgebildet.
Die Aufbau der Kopfzeile kann aus Abbildung 3.3 entnommen werden.

TS-F3 [muss]: Das Dokument hat eine Fußzeile mit den folgenden Informationen:
Seitenzahl, Dateiname mit Dateiformat, Copyright-Hinweis
Die Aufbau der Fußzeile kann aus Abbildung 3.4 entnommen werden.

28

3 Anforderungsanalyse

Abbildung 3.5: Aufbau der Titelseite der technischen Spezifikation

TS-F4 [muss]: Die Titelseite enthält im linken unteren Bereich die Informationen:
Erstellungsdatum, Autor, Dokumentennummer und Version.
Das Design der Titelseite kann aus Abbildung 3.5 entnommen werden.

TS-F5 [muss]: Die Titelseite enthält keine Fußzeile.

TS-F6 [muss]: Die Titelseite enthält als Titel die Projektbezeichnung und sowie die
Dokumentenbezeichnung

TS-F7 [muss]: Es gibt ein automatisches Inhaltsverzeichnis, welches die einzelnen Ab-
schnitten des Dokuments beinhaltet.

TS-F8 [kann]: Es gibt ein Tabellenverzeichnis, in dem alle, in der technischen Spezifi-
kation, vorkommenden Tabellen aufgelistet sind.

29

3 Anforderungsanalyse

Abbildung 3.6: Tabelle für das Versionsmanagement der technischen Spezifikation

Abbildung 3.7: Tabelle für den Dokumentenstatus der technischen Spezifikation

TS-F9 [kann]: Es gibt ein Abbildungsverzeichnis, in dem alle, in der technischen Spe-
zifikation, vorkommenden Abbildungen aufgelistet sind.

TS-F10 [muss]: Für das Versionsmanagement gibt es eine Tabelle mit den Spalten:
Version, Änderungsdatum, Autor, Änderungen und Bemerkungen.
Eine Vorlage für das Aussehen des Versionsmanagement ist in Abbildung 3.6 dargestellt.

TS-F11 [muss]: Für den Dokumentenstatus gibt es eine Tabelle mit den Spalten:
Aktion und Name, Unterschrift und Datum. In der Spalte „Aktion“ gibt es drei Felder
mit dem Inhalt Autor, Kontrolle und Veröffentlichung.
In Abbildung 3.7 ist eine Designvorlage für den Dokumentenstatus abgebildet.

30

3 Anforderungsanalyse

TS-F12 [muss]: Der Dateiname wird aus der Projektnummer, dem DCC, der
Dokumentennummer, dem Status, der Version und der Dokumentenbezeichnung zu-
sammengesetzt. Der Name für das Anforderungsdokument lautet: Projektnummer +
„-EC412-W01-TechnicalSpecification“.
Es gibt für die Dokumentennamen eine Vorschrift der Abteilung. Ein Ausschnitt davon
ist im Anhang zu finden.

TS-NF1 [kann]: Das Dokument ist in Form einer Word-Datei

3.4.4 Testfälle

Im Folgenden werden die Anforderungen zum Erstellen von Testfällen (TF) beschrie-
ben. Dabei werden zunächst die Anforderungen an den Aufbau eines Testfalls aufgeführt
und anschließend, welche Informationen die Testfälle beinhalten müssen.

TS-F1 [muss]: Die Testfälle werden aus einer technischen Sepzifikation generiert.
Die technische Sepzifikation ist eine .docx-Datei.

TF-F2 [muss]: Das Dokument hat eine Übersicht, in der das Projekt, die Testart/ der
Testname, sowie die Dokumentenbezeichnung beinhaltet.

TF-F3 [muss]: Die Testfälle müssen eine eindeutige ID („ID“) haben.

TF-F4 [muss]: Die Testfälle haben eine Spalte „Section“ für die Gruppierung des Test-
falls.

TF-F5 [muss]: Die Testfälle werden in der Spalte „Description“ eindeutig beschrieben.

TF-F6 [muss]: Für das Testdatum wird die Spalte „Test date“ angelegt.

TF-F7 [muss]: Es gibt eine Spalte „Tester“ für den Namen der testenden Person.

31

3 Anforderungsanalyse

TF-F8 [muss]: Es wird das zu erwartende Ergebnis („Expected result“) definiert.

TF-F9 [muss]: Zum Eintragen des Testergebnisses gibt es ein Feld „Test result“.

TF-F10 [muss]: Es können Kommentare („Notes“) für einen S7-Programmtest und den
CMS Test eingetragen werden.

TF-F11 [muss]: Es werden sowohl Negativ- als auch Positivtests erstellt.

TF-F12 [muss]: Der Dateiname wird aus der Projektnummer, dem DCC, der
Dokumentennummer, dem Status, der Version und der Dokumentenbezeichnung zu-
sammengesetzt. Der Name für das Anforderungsdokument lautet: Projektnummer +
„-WT1901-W01-Textcases“.
Es gibt für die Dokumentennamen eine Vorschrift der Abteilung. Ein Ausschnitt davon
ist im Anhang zu finden.

TF-NF1 [kann]: Die Dokumente sind in Form einer Excel-Datei

3.5 Hinweis

Aufgrund der Vollständigkeit, sowie eines besseren Überblicks über den Umfang der ge-
samten Anwendung, sind in Abschnitt 3.4 alle Anforderungen an die Anwendung aufge-
listet. Da der Umfang und die Dauer einer Bachelorarbeit beschränkt sind, können nicht
alle Anforderungen erfüllt werden. Der Schwerpunkt liegt aus diesem Grund vor allem
auf die Anforderungen aus Unterabschnitt 3.4.1 und 3.4.2. Dies sind die Kernpunkte der
Anwendung, auf die später bei einer Weiterentwicklung aufgebaut werden können. Für
die spätere Weiterentwicklung wird kurz auf die Anforderungen aus Unterabschnitt 3.4.3
und 3.4.4 im Konzept (Abschnitt 4.5) eingegangen.
Zudem können die Anforderungen zum Anforderungsmanagement Tool Polarion nur be-
dingt erfüllt werden, da lediglich ein Testzugang für die Anwendung vorliegt. Dies wird
in Abschnitt 5.4 genauer erläutert.

32

4 Konzept und Design

In diesem Kapitel werden das Konzept und das Design der Anwendung detailliert be-
schrieben. Zunächst erfolgt ein Vergleich verschiedener Sprachmodelle zur Generierung
der Projektmanagementdokumente. Im Anschluss daran wird eine geeignete Program-
miersprache für die Implementierung der Anwendung ausgewählt. Danach wird die Kom-
munikation mit dem LLM erläutert und wie diese strukturiert sein soll. Dabei wird auf
das Senden einer Nachricht von chatbasierten und visuellen LLMs, sowie das Empfangen
der Antwort eingegangen. Weiterhin wird das Einlesen und Verarbeiten von PDFs erläu-
tert, um den Kontext zur Erstellung von Anforderungsdokumenten generieren zu können.
Es werden verschiedene Methoden dargestellt und ihre Vorteile sowie Nachteile erläutert.
Anschließend wird auf die Erstellung der einzelnen Dokumente eingegangen. Zum einen
wird dabei der erforderliche Kontext für das LLM betrachtet und zum anderen, wie die
Informationen verarbeitet und das Dokument geschrieben wird. Darauf folgt die Kom-
munikation mit dem Anforderungsmanagement Tool „Polarion“. Von dort werden die
Dokumente zur Generierung der Projektmanagementdokumente entnommen und die ge-
nerierten Dokumente wieder abgelegt. Zum Schluss wird auf die grafische Oberfläche der
Anwendung Bezug genommen.

4.1 Eingesetzte Sprachmodelle

Die interne Siemensplattform code.siemens bietet Zugriff auf verschiedene LLMs. An-
dere Plattformen, wie ChatGPT, speichern Informationen häufig zwischen oder verwen-
den sie zum Trainieren von Modellen. Da die Kommunikation mit dem LLM auch für
andere Projekte genutzt werden kann, müssen die übergebenen Informationen an das
LLM vertraulich behandelt werden (vgl. Anforderung DG-NF5). Daher wird die unter-
nehmensinterne interne Plattform code.siemens verwendet (vgl. Anforderung DG-NF2,
Anforderung DG-NF4).
Es gibt mehrere Modelle, welche für die Anwendung genutzt werden können. Dabei sind

33

4 Konzept und Design

vor allem die drei Modelle, Mistral 7b Instruct, Deepseek R1 Distill Qwen 7b und
Qwen3 30B A3B zu betrachten. Diese können frei verwendet werden und sind für den
Produktionseinsatz vorgesehen.
Neben den drei genannten Modellen gibt es noch weitere Modelle, welche genutzt werden
können. Diese befinden sich jedoch im Alpha-Status und sind für die Entwicklung und
Forschung vorgesehen. Daher werden diese Modelle auch häufiger gegen neuere Modelle
ersetzt und sind damit nicht Vorwärtskompatibel. Es handelt sich dabei um die Modelle
Llama 3.1 8B Instruct, Mistral Nemo Instruct 2407 und Qwen2.5 Coder 7B
Instruct. Es werden nur chatfähige Modelle einbezogen, da dies notwendig für das Er-
stellen der Dokumente ist. Zum Extrahieren des Textes einer PDF-Datei wird jedoch
das Pixtral 12B 2409 betrachtet, welches ein visuelles Modell darstellt und für die
Bildanalyse ausgelegt ist. [15]

4.1.1 Mistral 7b Instruct

Das Modell Mistral 7B ist ein Modell aus September 2023 mit 7,3 Milliarden Parame-
tern. Es benutzt die GQA für schnellere Schlussfolgerungen und die SWA, um besser mit
längeren Sequenzen umzugehen. Die Fenstergröße beträgt 4k und die Sequenzlänge 16k
Token. Mistra 7B Instruct ist eine Abwandlung von Mistral 7B und für eine Chatinter-
aktion ausgelegt. Im MT-Bench schneidet das Modell besser ab, als andere 7B Modelle,
wie Llama-2-7b-chat. Zudem hat Mistral 7B Instruct eine bessere Performance bei dem
Benchmark, als manche 13B Modelle, wie Llama-2-13b-chat oder WizardLM-13B-v1.1.
Insgesamt erreicht das Modell Mirstral 7B Instruct bei dem MT Bench einen Wert von
6, 84±0, 065. Im MMLU Benchmark wird eine Genauigkeit von 60,1 % und im HellaSwag
Benchmark eine Genauigkeit von 81,3 %.1,2

4.1.2 Deepseek R1 Distill Qwen 7b

DeepSeek R1 ist ein Modell von der Firma DeepSeek aus dem Jahr 2025. Es besitzt 7,62
Milliarden Parameter und die Fähigkeit zur Selbstüberprüfung, Reflexion und Denkket-
ten (Chain of Thought) zu bilden. Die maximale Kontextlänge beträgt 32.768 Token.

1https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2, Zugriffsdatum:
06.03.2025

2https://mistral.ai/news/announcing-mistral-7b, Zugriffsdatum: 06.03.2025

34

4 Konzept und Design

DeepSeek ist für die Sprachen Englisch und Chinesisch optimiert, wodurch es vorkom-
men kann, dass die Antwort und Schlussfolgerung auf Englisch ist, obwohl die Anfrage
in einer anderen Sprache gestellt wurde. Neben der Antwort auf die Anfrage, liefert De-
epSeek R1 einen Gedankengang (Chain of Thought). Dort wird die Vorgehensweise zur
Absolvierung der Anfrage beschrieben. Gekennzeichnet wird der Chain of Thought durch
den XML-Tag <think> . Das 32B Modell erreicht im MMLU Benchmark eine Genauig-
keit von 87,4 %. Es ist anzunehmen, dass das 7B Modell schlechter im MMLU Benchmark
abschneidet.3 [5]

4.1.3 Qwen2.5 Coder 7B Instruct

Das neueste Modell der CodeQwen Code-spezifischen LLMs ist der Qwen2.5-Coder. Das
Modell Qwen2.5 Coder 7B Instruct hat 7,62 Milliarden Parameter und 28 Schichten. Die
Kontextlänge beträgt 131.072 Token. Es ist speziell für das Schreiben und Analysieren
von Code ausgelegt und daher vermutlich für den Zweck dieser Arbeit nicht optimal
geeignet. Wie in Unterabschnitt 2.4.1 bereits beschrieben, ist es notwendig, Text zu
generieren, zusammenzufassen, zu analysieren und ggf. zu übersetzen. Code wird in keiner
Form verarbeitet. Dennoch wird das Modell, wie die anderen genannten Modelle, für die
Anwendung getestet. Es verwendet die GQA mit 28 Köpfen für schnellere Antworten.4,5

Im MMLU Benchmark erreicht das Modell Qwen2.5 Coder 7B Instruct eine Genauigkeit
von 67,6%.6

4.1.4 Llama 3.1 8B Instruct

Auch die Firma Meta hat mit Llama ein LLM auf den Markt gebracht. Das Modell
Llama 3.1 8B Instruct hat 8,03 Milliarden Parameter und ist im Juli 2024 erschienen.
Es ist ausschließlich für Texteingaben entwickelt und für den mehrsprachigen Dialog
optimiert. Die Kontextlänge beträgt 128k Token. Das Modell verwendet GQA für eine

3https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B, Zugriffsdatum:
10.04.2025

4https://huggingface.co/Qwen/Qwen2.5-Coder-7B, Zugriffsdatum: 27.05.2025
5https://qwenlm.github.io/blog/qwen2.5-coder-family/, Zugriffsdatum: 28.05.2025
6https://llm-stats.com/models/compare/qwen-2.5-14b-instruct-vs-qwen-2.5-
coder-7b-instruct, Zugriffsdatum: 03.06.2025

35

4 Konzept und Design

verbesserte Skalierbarkeit der Inferenz. Es erreicht eine Genauigkeit von 68,5 % im MMLU
Benchmark.7 8

4.1.5 Mistral Nemo Instruct 2407

Mistral Nemo Instruct 2407 ist ebenfalls im Juli 2024 erschienen, besitzt 12,2 Milliarden
Parameter und wurde in Zusammenarbeit mit NVIDIA entwickelt. Die Kontextlänge
beträgt 128k Token und das Modell hat 40 Schichten. Als Aufmerksamkeitsmechanismus
wird eine GQA verwendet. Es erreicht im HellaSwag Benchmark eine Genauigkeit von
83.5% und 68.0% im MMLU Benchmark.9,10

4.1.6 Qwen3 30B A3B

Das Modell Qwen3 30B A3B ist ein Modell aus der neuesten Qwen Reihe. Es besitzt
30,5 Milliarden Parameter und 48 Schichten. Die Kontextlänge beträgt 128K Token und
verwendet die GQA. Im MMLU Benchmark wird eine Genauigkeit von 81.38%. Zudem
liefert das Modell, wie DeepSeek R1, bei der Antwort den Chain of Thought mit. Die-
ser wird ebenfalls durch „<think></think>“ markiert. Für dieses Modell wurden keine
Genauen Ergebnisse für den MMLU, HellaSwag oder MT-Bench Benchmark gefunden.
Jedoch performen die Modelle der Qwen3 Reihe genauso gut, wie die der Qwen2.5 Reihe
mit mehr Parametern. Qwen3 30B lässt sich demnach Qwen2.5 72B verleichen, welches
im MMLU Benchmark eine Genauigkeit von 86,1% erreicht hat.11,12 [19]

4.1.7 Pixtral 12B 2409

Das Pixtral Modell ist im Gegensatz zu den anderen Modellen nicht zur generellen Text-
verarbeitung gedacht, sondern für das Verarbeiten von Bildern. Es wurde im September
2024 veröffentlicht und hat 12,4 Milliarden Parameter. Die Kontextlänge beträgt 128k
Token. Pixtral 12B unterstützt variable Bildgrößen und Seitenverhältnisse, sodass diese

7https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct, Zugriffsdatum: 10.04.2025
8https://ai.meta.com/blog/meta-llama-3-1/, Zugriffsdatum: 04.04.2025
9https://mistral.ai/news/mistral-nemo, Zugriffsdatum: 04.04.2025

10https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407, Zugriffsdatum:
04.04.2025

11https://huggingface.co/Qwen/Qwen3-30B-A3B, Zugriffsdatum: 27.05.2025
12https://qwenlm.github.io/blog/qwen2.5-max/, Zugriffsdatum: 03.06.2025

36

4 Konzept und Design

nicht zuvor normiert werden müssen. Beim MMLU Benchmark wird eine Genauigkeit
von 69,2 % erreicht und beim MT-Bench einen Wert von 7,68. Zudem wurde ein multi-
modaler MT-Bench Benchmark entwickelt, welcher das Modell auf die Verarbeitung von
mehreren verschiedenen Datentypen (Bild und Text gleichzeitig) bewertet. Dort erreicht
Pixtral 12B einen Wert von 6,05.13,14

4.2 Programmiersprache

Für die Entwicklung der Anwendung muss zunächst eine Programmiersprache ausgewählt
werden. Hierzu werden verschiedene Programmiersprachen im Hinblick auf die folgenden
Aspekte betrachtet, welche vom Verfasser als relevant erachtet werden:

1. Entwicklung einer grafischen Benutzeroberfläche
(Anforderung DG-F7)
Für die Entwicklung einer grafischen Benutzeroberfläche können z. B. die Program-
miersprachen JavaScript15, Python16, Java17 und C#18 genutzt werden. Es gibt
noch viele weitere Programmiersprachen, mit denen die Entwicklung einer grafi-
schen Benutzeroberfläche möglich ist.

2. Schreiben von Microsoft Excel und Word-Dateien
(Anforderung AD-NF1, TS-NF1, TF-NF1)
Das Schreiben von Microsoft Excel und Word-Dateien ist mit verschiedenen Pro-
grammiersprachen möglich. Beispiel sind Python19,20, VBA21, C#22, JavaScript23

und Java24. VBA wird dabei vor allem für die Automatisierung von Office-Dateien
genutzt, beispielsweise in Form von Makros.

13https://mistral.ai/news/pixtral-12b, Zugriffsdatum: 27.05.2025
14https://huggingface.co/mistralai/Pixtral-12B-2409, Zugriffsdatum: 27.05.2025
15https://docs.nodegui.org/, Zugriffsdatum: 12.05.2025
16https://wiki.python.org/moin/GuiProgramming, Zugriffsdatum: 09.04.2025
17https://spring.io/, Zugriffsdatum: 12.05.2025
18https://dotnet.microsoft.com/en-us/apps/desktop, Zugriffsdatum: 09.04.2025
19https://www.python-excel.org/, Zugriffsdatum: 09.05.2025
20https://python-docx.readthedocs.io/en/latest/, Zugriffsdatum: 09.05.2025
21https://learn.microsoft.com/en-us/office/vba/library-reference/concepts/

getting-started-with-vba-in-office, Zugriffsdatum: 09.05.2025
22https://learn.microsoft.com/de-de/dotnet/csharp/advanced-topics/interop/

how-to-access-office-interop-objects, Zugriffsdatum: 09.05.2025
23https://learn.microsoft.com/en-us/office/dev/add-ins/overview/office-add-

ins, Zugriffsdatum: 09.05.2025
24https://poi.apache.org/, Zugriffsdatum: 09.05.2025

37

4 Konzept und Design

3. Kommunikation mit dem LLM
(Anforderung DG-NF4, DG-NF5)
Die Kommunikation mit dem LLM kann über ein API mit Hypertext Transfer
Protocol (HTTP)25 oder eine OpenAI Bibliothek realisiert werden.26 Dafür eignen
sich JavaScript, Python, C#, Java und Go.27 Eine HTTP-Verbindung kann mit
vielen Programmiersprachen realisiert werden.

4. Kommunikation mit Polarion
(Anforderung DG-F2, DG-F4, DG-F6, DG- F13, DG-F14, DG-F15)
Mit einer REST API kann die Kommunikation mit Polarion implementiert werden.
Besonders eignen sich dafür die Programmiersprachen Java, JavaScript und C#,
da die Schnittstelle für diese Programmiersprachen dokumentiert ist.28

5. Verwendete Programmiersprachen in der Abteilung
(Unterabschnitt 3.2.4)
Da das Kerngeschäft die Elektrifizierung und Automatisierung von Krananlagen
ist und dabei vorwiegend die SPS-Programmierung notwendig ist, überwiegen die
Sprachen FUP und SCL. Des Weiteren werden noch C# und VBA verwendet, für
Makros oder Anwendungen verwendet.

Anhand der aufgeführten Kriterien zur Programmiersprache ist zu erkennen, dass sich
mehrere Programmiersprachen, wie Java, JavaScript, Python oder C#, zur Erstellung
der Anwendung eignen. Da in der Abteilung bereits C# verwendet wird und in Zukunft
weitere Projekte, basierend auf der Anwendung, implementiert werden sollen, wird sich
für C# zur Entwicklung der Anwendung entschieden.

4.3 Kommunikation mit dem LLM

Für die Kommunikation mit dem LLM, bzw. den Modellen gibt es verschiedene Möglich-
keiten. Generell wird Kommunikation über HTTP realisiert. Dabei werden im Request
die URL, der API-Key und die Nachricht übergeben. Der Aufbau der Nachricht wird

25https://developer.internal.siemens.com/code-siemens-com/llm/overview.html,
Zugriffsdatum: 09.05.2025

26https://code.siemens.io/ai/, Zugriffsdatum: 09.05.2025
27https://platform.openai.com/docs/libraries, Zugriffsdatum: 09.05.2025
28https://testdrive.polarion.com/polarion/sdk/doc/rest/index.html, Zugriffsdatum:

06.03.2025

38

4 Konzept und Design

Abbildung 4.1: Klassendiagramm der Klasse LlmConnection

in Unterabschnitt 4.3.1 näher beschrieben. Es gibt die Option, die Kommunikation über
HTTP selbst zu implementieren oder ein vorhandenes Paket zur Kommunikation zu nut-
zen, welches auf der OpenAI Application Programming Interface (API) basiert. In die-
sem Fall fällt die Entscheidung auf das Paket OpenAI-DotNet. Das OpenAI -Paket wird
nicht genutzt, da es dort nicht möglich ist, die URL für die Verbindung zu ändern.29,30

Für die Kommunikation wird eine Klasse LlmConnection implementiert (siehe Ab-
bildung 4.1). Diese beinhaltet die Attribute für die Hauptadresse (baseUrl), den API
Schlüssel (apiKey) und den Modellnamen (modelName). Zudem besitzt die Klasse noch
die Methode LlmChatRequest() zur Kommunikation. Dabei soll es möglich sein, Chat-
nachrichten, sowie Bilder zu senden.

4.3.1 Aufbau der Nachrichten

Die Nachrichten sind im JSON-Format (JavaScript Object Notation). In Listing 4.1
sind die notwendigen Parameter für die Kommunikation aufgelistet. Dabei wird zunächst
das Modell („model“) festgelegt, welches genutzt wird. Die verwendeten Modelle dieser
Arbeit sind bereits in Unterabschnitt 4.1.1 bis Unterabschnitt 4.1.6 aufgeführt. Nach der
Auswahl des Modells werden die Nachrichten („messages“) geschrieben. Dabei gibt es
drei Kategorien der Nachrichten, die durch „role“ festgelegt werden: „system“, „user“
und „assistant“. Im „content“ steht der jeweilige Prompt für den Nachrichtentyp. Über
„temperature“ kann die Kreativität und Zufälligkeit der Antwort eingestellt werden.
Eine niedrige Temperatur sorgt für eine kohärente und konsistente Antwort, während
eine hohe Temperatur für eine kreative Antwort sorgt. Durch „stream“ wird die Antwort

29https://www.nuget.org/packages/OpenAI/2.1.0#show-readme-container, Zugriffsda-
tum: 06.05.2025

30https://platform.openai.com/docs/api-reference/introduction, Zugriffsdatum:
30.05.2025

39

4 Konzept und Design

in Echtzeit während der Generierung in Chunks übermittelt und die Antwort baut sich
nach und nach auf.

1 {
2 "model": "mistral-7b-instruct",
3 "messages": [
4 {
5 "role": "system",
6 "content": "You are a helpful AI assistant."
7 },
8 {
9 "role": "user",

10 "content": "Hello, how are you?"
11 }
12],
13 "temperature": 0,
14 "stream": true
15 }

Listing 4.1: Aufbau der Nachricht für Chat LLMs im JSON-Format

Die Struktur der Nachricht für visuelle Modelle, wie etwa Pixtral 12B, unterscheidet sich
geringfügig (vgl. Listing 4.2), da es sich, wie in Unterabschnitt 4.1.7 erläutert, um ein
Bildverarbeitungsmodell handelt. Dabei wird der Inhalt „content“ in verschiedene Kate-
gorien aufgeteilt. Zunächst wird die Kategorie „type“ selbst festgelegt, in der beschrieben
wird, ob es sich um eine Textanweisung oder um ein Bild handelt. Bei einer Textanwei-
sung, wird in „text“ die Anweisung beschrieben, welche Aktion das Modell, bezogen auf
das Bild, durchgeführt wird. Zum Bereitstellen des Bilds wird über „image_url“ und
„url“ die URL des zu verarbeitenden Bildes übergeben. Anstelle einer URL ist es ebenfalls
möglich, das Bild als einen Base64 String zu übergeben. Die Parameter „model“ , „mes-
sages“ , „role“ , „temperature“ und „stream“ sind die gleichen wie in Listing 4.1.

Bei der Antwort des LLMs wird lediglich der Bereich „choices“ genutzt, da dort die
Nachricht des LLM enthalten ist. Dies ist in Listing 4.3 abgebildet. Im Bereich „choi-
ces“ befinden sich: „finish_reason“ „index“ und „message“. „Message“ beinhaltet
„content“, „role“, „tool_calls“ und „function_call“, wobei „content“ die Nachricht
des LLMs enthält.

40

4 Konzept und Design

1 {
2 "model": "pixtral-12b-2409",
3 messages = [
4 {
5 "role": "user",
6 "content": [{"type": "text", "text": prompt}, {"type":

"image_url", "image_url": {"url": image_url}}]
7 },
8],
9 "temperature": 0,

10 "stream": true
11 }

Listing 4.2: Aufbau der Nachricht für visuelle LLMs im JSON-Format

4.3.2 Prompting

Die Prompts werden spezifisch für die unterschiedlichen Dokumente erstellt. Jeder Fall
beinhaltet dabei einen System Prompt sowie einen User Prompt. Für die Pompts wird
die Few-shot Methode angewandt und die Antwort als Structured Output vorgegeben.
Der Systemprompt wird in einer Textdatei im Markdown und XML-Format geschrieben.
Dabei gibt es die folgenden drei Kategorien:

• Identity

• Instructions

• Examples

Die Abschnitte werden als Markdown dargestellt und geschrieben. Nur der Abschnitt
„Examples“ ist im XML-Format, um zu zeigen wie auf eine Nachricht reagiert werden
soll. Dazu gibt es ein Element für die Benutzeranfrage („<user_query>“) und eins für die
Antwort des LLMs („<assistant_response>“). Der Aufbau ist beispielhaft in Listing 4.4
dargestellt.

4.4 Einlesen und Verarbeiten einer PDF-Datei

Um die Informationen aus den Anforderungsdokumenten des Kunden, welche in Form
einer PDF-Datei vorliegen, zu extrahieren, muss es möglich sein, den Inhalt dieser PDF-

41

4 Konzept und Design

1 "choices": [
2 {
3 "finish_reason": "stop",
4 "index": 0,
5 "message": {
6 "content": " Hello! I’m just an AI, so I don’t have

feelings, but I’m here and ready to assist you. How
can I help you today?",

7 "role": "assistant",
8 "tool_calls": null,
9 "function_call": null

10 }
11 }
12]

Listing 4.3: Aufbau der Antwort des LLM im JSON-Format

Datei einzulesen (Anforderung AD-F1). Zudem muss der Inhalt sinnvoll verarbeitet wer-
den, um dem LLM eine vernünftige und eindeutige Nachricht übermitteln zu können.
Ein großes Problem stellt dabei das Einlesen von Grafiken und Tabellen, die in einer
PDF-Datei vorkommen, dar. Dieses Problem wird später genauer erläutert.

4.4.1 PdfSharp-Bibliothek

Eine Möglichkeit, zum Einlesen von PDF-Dateien, bietet die PdfSharp-Bibliothek in
C#. Diese ist eine frei verwendbare Open-Source-Bibliothek31 zum Lesen, Erstellen und
Bearbeiten von PDF-Dokumenten. Das Extrahieren von Text aus diesen Dokumenten ist
dabei zwar möglich, es gibt jedoch keine explizite Funktion dafür. Damit gestaltet sich
das Extrahieren von Text mit der PdfSharp-Bibliothek aufwendig und diese Funktion
soll nur einen kleinen Teil der Arbeit darstellen, weshalb dazu die PdfSharp-Bibliothek
nicht weiter verwendet wird.
Das Extrahieren von Bildern aus einem PDF Dokument ist dahingegen intuitiv und ohne
großen Aufwand verbunden. Dennoch muss vorher selbstständig überprüft werden, ob es
sich bei einem Objekt um ein Bild handelt.

31https://www.pdfsharp.net/Licensing.ashx, Zugriffsdatum: 11.03.2025

42

4 Konzept und Design

1 # Identity
2

3 ...
4

5 # Instructions
6

7 *...
8 *...
9

10 # Examples
11

12 <user_query>
13 ...
14 </user_query>
15

16 <assistant_response>
17 ...
18 </assistant_response>

Listing 4.4: Aufbau eines system Prompts

4.4.2 PdfPig-Bibliothek

Eine bessere Möglichkeit bietet die PdfPig-Bibliothek in C#. Dies ist eine unter der
Apache-Lizenz 2.032 verwendbare Bibliothek zum Lesen, Erstellen und Bearbeiten von
PDF-Dokumenten. Mit PdfPig können die einzelnen Buchstaben, Zeichen, Wörter und
Bilder einer PDF extrahiert werden. Mit den Methoden GetWords() und GetImage()
der Klasse Page lassen sich der Text und die Bilder einer PDF extrahieren.
Eine besondere Herausforderung ist das Auslesen von Tabellen. Diese werden nicht er-
kannt und der Text wird, wie der restliche Blocktext, in dem verwendeten Format dar-
gestellt. Das erschwert das Lesen und richtige Interpretieren des Textes, nachdem dieser
extrahiert wurde. Hinzu kommt, dass leere Felder einer Tabelle gar nicht dargestellt wer-
den. Um die Tabellen sinnvoll darzustellen, muss ein Algorithmus implementiert werden,
der Tabellen erkennt und vernünftig in einen String formatiert.

Tabellen extrahieren: Um Tabellen aus einer PDF-Datei zu extrahieren, werden zu-
nächst alle Linien einer Seite herausgefiltert, wobei Buchstaben und Zeichen nicht dazu

32https://licenses.nuget.org/Apache-2.0, Zugriffsdatum: 11.03.2025

43

4 Konzept und Design

zählen. Es handelt sich dabei um Linien, welche in Form eines Rechtecks auftauchen,
wenn diese auch als eine Geometrieform deklariert sind. Dies kann mit der Methode
GetBoundingRectangle() realisiert werden. Danach können diese in horizontale und
vertikale Linien unterteilt werden.
Nachdem der Text, sowie die horizontalen und vertikalen Linien extrahiert wurden, kann
eine Tabelle erstellt werden. Dazu ist ein Programmablaufplan in Abbildung 4.2 abge-
bildet. Zunächst wird überprüft, ob alle Zeilen der Tabelle durchlaufen wurden. Ist dies
nicht der Fall, wird die Position der ersten Zeile der Tabelle ermittelt. Danach wird eine
horizontale Linie zum String hinzugefügt. Um nun den Inhalt der einzelnen Zellen der
Zeile zu extrahieren, wird überprüft, ob alle Spalten durchlaufen wurden. Wurden nicht
alle Spalten durchlaufen, wird eine vertikale Linie und der Text der Zelle zum String
hinzugefügt. Nachdem alle Spalten durchlaufen wurden, wird noch einmal eine vertikale
Linie zum String hinzugefügt und die Schleife beginnt von vorn. Sobald jede Zeile der
Tabelle durchlaufen wurde, wird noch eine horizontale Linie zum String hinzugefügt und
die Methode beendet.

4.4.3 Bildererkennung

Statt des direkten Lesens einer PDF-Datei, kann diese auch zuerst in ein Bild konver-
tiert werden, um anschließend das Bild zu lesen. Dazu kann das LLM Pixtral 12B 2409
verwendet werden, welches für visuelle Aufgaben ausgelegt ist.

PDF zu PNG: Um die PDF-Datei als Bild zu verarbeiten, muss diese wie oben ge-
nannt erst in ein Bild konvertiert werden. Dazu wird das Paket Freeware.Pdf2Png ver-
wendet. Dies konvertiert, wie der Name impliziert, PDFs in einzelne Bilder (ein Bild pro
Seite). Die Bilder werden als Portable Network Graphics (PNG) zurückgegeben.

Extrahieren des Textes mit Pixtral 12B: Nachdem die PDF-Datei mit Freewa-
re.Pdf2Png in ein Bild konvertiert wurde, ist es möglich, dieses mit Pixtral 12B 2409
zu analysieren. Die Kommunikation mit dem Modell wird bereits in Abschnitt 4.3 be-
schrieben. Um dem Modell ein Bild zu senden, muss dieses zuvor in einen Base64 String
konvertiert werden. Mit Base64 lassen sich 8-Bit-Binärdateien, wie Programme, .zip-
Datein und Bilder in eine Zeichenfolge aus ASCII-Zeichen konvertieren.33 Dazu kann mit

33https://www.base64decode.org/de/, Zugriffsdatum: 17.04.2025

44

4 Konzept und Design

Abbildung 4.2: Ablaufplan zum Erstellen einer Tabelle

der Methode ReadAllBytes() der Klasse File eine Datei in einen Array von Bytes ge-
schrieben werden. Dieser Array wird anschließend mit der Methode ToBase64String()
der Klasse Convert in einen Base64 String konvertiert. Beide Klassen (File und Con-
vert) befinden sich im System.IO Namespace.
Der Base64 String kann nun an das Pixtral-Modell, mit einer Aufgabe oder Anweisung,
gesendet werden. Das Modell soll den Text des Bildes extrahieren und als Markdown
wiedergeben. Dabei soll das Design unverändert bleiben.

4.5 Erstellen der Dokumente

Die einzelnen Dokumente werden durch das LLM generiert (Anforderung DG-NF4). Da-
zu muss ein geeigneter Kontext für das Modell bereitgestellt werden. Für alle Dokumente
soll der Kontext als Markdown übergeben werden und auch das Modell soll das erstellte

45

4 Konzept und Design

Abbildung 4.3: Klassendiagramm des Interface Documents mit den Unterklassen Re-
quirementDocument, TechnicalSpecification und Testcases

Dokument als Markdown zurückgeben. Zudem ist der Kontext für das LLM sowie die
Antwort auf Englisch (Anforderung DG-NF1). Mit den Informationen des LLMs werden
anschließend die Dokumente erstellt. Da diese Microsoft Office-Dateien sind, wird dafür
das Microsoft.Office.Interop.Excel und Microsoft.Office.Interop.Word Assembly genutzt
(Anforderung AD-NF1, Anforderung TS-NF1, Anforderung TF-NF1).
Für die Erstellung der Dokumente wird ein Interface Documents mit den Methoden
CreateDocument(), AddContent(), SaveDocument() und CloseDocument() im-
plementiert. Diese sind in Abbildung 4.3 abgebildet. Die Methoden werden bei den ent-
sprechenden Dokumenten in den Unterabschnitten 4.5.1, 4.5.2 und 4.5.3 genauer be-
schrieben.

4.5.1 Anforderungsdokument

Die Übersichtseite des Anforderungsdokuments wird unabhängig von der Antwort des
LLMs erstellt. Dies wird mit der Methode CreateDocument() der Klasse Require-
mentDocument realisiert (Anforderung AD-F2, Anforderung AD-F3, Anforderung AD-
F4). In der gleichen Methode wird auch die zweite Seite („Requirements“) erstellt und
die Tabellen Überschriften „No.“, „Description“, „Category“ und „Notes“ (Anforderung
AD-F5, Anforderung AD-F6, Anforderung AD-F7).

46

4 Konzept und Design

Anforderungen: Um geeignete Anforderungen zu generieren muss zuerst ermittelt
werden, was gute Anforderungen ausmachen. Die generierten Anforderungen sollen die
folgenden Regeln einhalten:

Regeln
• Nur eine Anforderung pro Satz

• Kurze Sätze bilden

• Das Subjekt muss eindeutig sein

• Das Passiv vermeiden

• Anforderungen beschreiben keinen Lö-
sungsweg

• Anforderungen sind messbar

Neben den sechs Regeln sollen die Anforderungen zusätzlich immer aus einem Subjekt,
Prädikat und Objekt bestehen und durch die Wörter „muss“, „soll“ und „kann“ wird die
Priorität beschrieben. [7]

Kontext: Für das Generieren der Anforderung wird ein LLM verwendet. Das Modell
soll die Antwort in einem vorgegebenen Format wiedergeben. Zuerst kommt die Nummer
der Anforderung „Anf1“, „Anf2“, „Anf3“ usw. (Anforderung AD-F5). Danach kommt ein
Leerzeichen und es folgt die Anforderung (Anforderung Ad-F6). Endet die Anforderung,
wird ein Zeilenumbruch „\n“ hinzugefügt. Für den System Prompt wird die Few-shot Me-
thode genutzt. Es werden dementsprechend Beispiele übergeben, um eine bessere Antwort
zu erhalten.
Da die Kontextlänge der Modelle begrenzt ist und die Anforderungsdokumente vom
Kunden umfangreich sein können, müssen diese für den Kontext aufgeteilt werden. Ei-
ne Möglichkeit ist immer, nur einzelne Seiten, bzw. eine bestimmte Anzahl von Seiten
zu übergeben. Dabei kann es jedoch vorkommen, dass Sätze, Wörter oder Abschnitte
unterbrochen werden und somit die Informationen verloren gehen. Demzufolge wird das
Dokument auf die einzelnen Kapitel aufgeteilt. Zudem werden Seiten, die keine relevan-
ten Informationen für die einzelnen Anforderungen enthalten, ignoriert. Dies bezieht sich
auf die Titelseite und das Inhalts-, Tabellen- und Abbildungsverzeichnis.

Erstellen: Um die Antwort des LLMs korrekt in das Anforderungsdokument einzufü-
gen, wird die Methode AddContent() implementiert. Diese bekommt die Antwort über-
geben und fügt diese in die erstellte Exceldatei ein. Die Antwort hat, wie zuvor bereits
beschrieben, immer eine feste Struktur. Der Programmablauf der Methode AddCon-
tent() ist in Abbildung 4.4 dargestellt. Zunächst wird die Anzahl der Anforderungen

47

4 Konzept und Design

Abbildung 4.4: Programmablaufplan der Methode AddContent() aus der Klasse Re-
quirementDocument

gezählt. Dazu wird ein regulärer Ausdruck genutzt, der den String nach den Anfor-
derungsnummern durchsucht. Daraufhin wird über eine for-Schleife jede Anforderung
durchlaufen. Dabei wird zuerst die erste Nummer abgeschnitten und in die Spalte „No.“
eingefügt. Anschließend wird die Anforderung selbst abgeschnitten und in die Spalte
„Description“ eingefügt(Anforderung AD-F5, Anforderung AD-F6).

Mit der Methode SaveDocument() wird das Anforderungsdokument gespeichert. Für
das Speichern muss ein Dateiname, nach den Richtlinien aus Abschnitt A.1, erstellt wer-
den. Dieser besteht aus der Projektnummer, dem Document Classification Code (DCC),
der Dokumentennummer, dem Status, der Version, sowie dem Dokumentennamen. Die
Projektnummer kann bei verschiedenen Dokumenten unterschiedlich sein. Die restlichen
Parameter sind jedoch immer gleich. Der DCC ist „EC“, was für technische Spezifikations-
und Anforderungsdokumente steht. Die Dokumentennummer wird auf „411“ festgelegt.

48

4 Konzept und Design

Der Status beträgt „W“, für in Arbeit und die Version ist „01“. Der Dokumentenname
lautet „RequirementList“ (Anforderung AD-F9).

4.5.2 Technische Spezifikation

Die technische Spezifikation wird aus dem Anforderungsdokument generiert (Anforde-
rung DG-F3, TS-F1) und als Word-Datei bereitgestellt (Anforderung TS-NF1). Ähnlich
zu Unterabschnitt 4.5.1 wird die Kopf- und Fußzeile (Anforderung TS-F2, Anforderung
TS-F3), die Titelseite (Anforderung TS-F4, Anforderung TS-F5, Anforderung TS-F6),
das Versionsmanagement (Anforderung TS-F10) und der Dokumentenstatus (Anforde-
rung TS-F11) unabhängig von der Antwort des LLMs erstellt. Dies wird ebenfalls in der
Methode CreateDocument() der Klasse TechnicalSpecification implementiert.

Kontext: Für die technische Spezifikation wird ein Anforderungsdokument übergeben.
Die technische Spezifikation soll dabei nur für eine Kategorie („Category“) erstellt werden,
welche zuvor vom Nutzenden ausgewählt wird. Dazu werden als Kontext für das LLM
lediglich die Anforderungen der vorgegebenen Kategorie übergeben, sowie die Abschnitte,
in denen diese aufgelistet waren (Anforderung). Auch in diesem Fall soll die Few-shot
Methode genutzt werden, um die Qualität der Antwort des LLMs durch Beispiele zu
verbessern.

Erstellen: Das Erstellen der technischen Spezifikationen ist wesentlich aufwendiger als
das Anforderungsdokument oder die Testfälle, da in diesem Fall die Worddatei vernünf-
tig formatiert werden muss. Das bedeutet, es wird ein automatisches Inhaltsverzeichnis,
ein Titelblatt und Kapitel und Abschnitte mit Überschriften benötigt. Die technische
Spezifikation ist als Fließtext geschrieben, welcher vom Markdown zu Word konvertiert
werden muss.

Auch hier ist die Methode SaveDocument() zum Speichern des Dokuments. Lediglich
der Dateiname sowie das Dateiformat ändern sich im Gegensatz zum Anforderungsdo-
kument. Die Dokumentenbezeichnung lautet in diesem Fall „TechnicalSpecification“ und
das Dateiformat ist „.docx“. Der Rest bleibt identisch zum Anforderungsdokument.

49

4 Konzept und Design

4.5.3 Testfälle

Die Testfälle werden aus den technischen Spezifikationen generiert (Anforderung DG-F5,
TF-F1). Am Ende werden sie, wie das Anforderungsdokument, als Excel-Datei gespei-
chert (Anforderung TF-NF1). Wie bei den beiden vorherigen Dokumenten aus Unter-
abschnitt 4.5.1 und 4.5.2 werden vier Methoden zur Erstellung des Testfalldokuments
implementiert: CreateDocument(), AddContent(), SaveDocument() und Close-
Document().
CreateDocument() erstellt das Dokument unabhängig von der Antwort des LLMs.
Dazu wird einmal eine Übersicht in einem separaten Worksheet erstellt (Anforderung
TF-F2). Anschließend werden auf der zweiten Seite die Spaltenüberschriften „ID“, „sec-
tion“, „Description“, „Test date“, „Tester“, „Expected result“, „Test result“ und „Notes“
erstellt (Anforderung TF-F3, TF-F4, TF-F5, TF-F6, TF-F7, TF-F8, TF-F9, TF-F10).

Kontext: Die Testfälle sollen in einem ähnlichen Format, wie die Anforderungen über-
geben werden. Zuerst wird die ID des Testfalls fortlaufend geschrieben, danach kommt
die Testbeschreibung und getrennt durch zwei Et-Zeichen („&&“) das erwartete Tester-
gebnis. Jeder Testfall steht in einer eigenen Reihe. Es soll ebenfalls die Few-shot Methode
für das Prompting genutzt werden, um die Beschreibung mit Beispielen zu verbessern.
Um die Kontextlänge nicht zu überschreiten, sollen, wie bei dem Anforderungsdoku-
ment, einzelne, aber in sich abgeschlossene, Abschnitte an das LLM übergeben werden.
Die Antworten werden dann aneinander gehängt. Werden aus einem Abschnitt keine
Testfälle generiert, soll vordefinierte Antwort übergeben werden.

Erstellen: Das Erstellen des Dokuments ist bei den Testfällen, im Gegensatz zu der
technischen Spezifikation, ähnlich zum Anforderungsdokument. Mit der Methode Add-
Content() wird die LLM Antwort in die entsprechenden Zellen geschrieben. Auch der
Programmablauf ähnelt sich zu dem des Anforderungsdokuments. Die Änderungen sind,
dass es sich um Testfälle statt Anforderungen handelt und dementsprechend andere Spal-
ten beschrieben werden. Es handelt sich um die Spalten „ID“, „Description“ und „Expec-
ted result“ (Anforderung TF-F3, TF-F5, TF-F8).
Für die Testfälle ist die Methode SaveDocument() wieder ähnlich zum Anforderungsdo-
kument. Die Dokumentenbezeichnung ändert sich zu „Testcases“ und der DCC zu „WT“,
was für Logbücher und Prüfprotokolle steht. Somit ändert sich auch der Dateiname, der
Rest ist jedoch identisch mit dem Anforderungsdokument.

50

4 Konzept und Design

Abbildung 4.5: Klassendiagramm der Klasse PolarionConnection

4.6 Anforderungsmanagement Tool (Polarion)

Polarion ist eine Anforderungsmanagement Anwendung von Siemens und soll für das
Verwalten von Projekten genutzt werden. Dort werden alle Dokumente, welche im Laufe
eines Projekts anfallen, abgelegt. Dazu zählen ebenfalls die Dokumente (Anforderungen,
technische Spezifikation, Testfälle), die durch diese Arbeit generiert werden sollen. Damit
die Nutzenden die Dokumente nicht selbstständig ablegen müssen, soll dies über die
Anwendung automatisiert werden. Polarion verfügt über eine REST API, mit welcher
sich die Dokumente aus einem Projekt verwalten lassen. Dazu wird das Paket RestSharp
verwendet.
Zur Kommunikation mit Polarion wird die Klasse PolarionConnection implementiert,
welche Methoden zur Auswahl und Speichern von Dokumenten enthält. Des Weiteren
enthält die Klasse vier Attribute (projectId, spaceId, documentName, revision), zur
Ermittlung des Speicherorts. Das Klassendiagramm der Klasse PolarionConnection ist
in Abbildung 4.5 abgebildet.

4.6.1 Auswahl der Dokumente

Mit der Methode CopyDocument() wird ein ausgewähltes Dokument kopiert, um an-
schließend daraus ein anderes Dokument mit dem LLM zu generieren. Das Dokument
wird vom Nutzenden ausgewählt, gleichzeitig wird die Projektnummer gespeichert, um
diese bei der Erstellung der Dokumente sowie für das Speichern zu verwenden. Für das
Wiedergeben von Dokumenten aus Polarion gibt es bereits eine Vorlage von Polarion,

51

4 Konzept und Design

welche in Listing 4.5 dargestellt ist.34 In der URL für den REST-Client stehen dabei die
Informationen Projektnummer (projectId), Ordner (spaceId), Dokumentenname (docu-
mentName) und Version (revision). Die Version ist dabei optional. Um auf den Stan-
dardordner zuzugreifen, wird „_default“ für den Ordner verwendet.

1 var client = new RestClient("https://example.com/polarion/rest/v1/projects
/{projectId}/spaces/{spaceId}/documents/{documentName}/actions/copy?
revision={revision}");

2 client.Timeout = -1;
3 var request = new RestRequest();
4 request.Method = Method.POST;
5 request.AddHeader("Content-Type", "application/json");
6 request.AddHeader("Accept", "application/json");
7 request.AddHeader("Authorization", "Bearer {personal_access_token}");
8 IRestResponse response = client.Execute(request);
9 Console.WriteLine(response.Content);

Listing 4.5: Methode CopyDocument() zum Kopieren eines Dokuments aus Polarion

4.6.2 Speichern der Dokumente

Mit patchDocument können Dokumente aktualisiert werden. Zudem gibt es die Funk-
tion, Dokumente mit PDF-Attachments zu versehen. Das Ablegen, bzw. Hochladen von
lokalen Dokumenten, mit der REST API, ist nicht möglich.35,36 Die Vorlage für das Ak-
tualisieren von Dokumenten ist in Listing 4.6 dargestellt. Dazu wird der Projektname
(projectId), der Ordner (spaceId) und der Dokumentenname (documentName) benö-
tigt. Die Aktion (workflowAction) wird im JavaScript Object Notation (JSON)-Format
übergeben. Das Schema dazu ist in Listing 4.7 abgebildet. Um nun die generierten Infor-
mationen in ein entsprechendes Dokument zu schreiben, muss dieses bereits existieren.

34https://testdrive.polarion.com/polarion/sdk/doc/rest/index.html#api-
Documents-getDocument, Zugriffsdatum: 08.05.2025

35https://testdrive.polarion.com/polarion/sdk/doc/rest/index.html#api-
Documents-postDocuments, Zugriffsdatum: 08.05.2025

36https://gsit-polarion-008.siemens.net/polarion/sdk/doc/rest/index.html#api-
DocumentAttachments-patchDocumentAttachment, Zugriffsdatum: 13.05.2025

52

4 Konzept und Design

1 var client = new RestClient("https://example.com/polarion/rest/v1/projects
/{projectId}/spaces/{spaceId}/documents/{documentName}?workflowAction
={workflowAction}");

2 client.Timeout = -1;
3 var request = new RestRequest();
4 request.Method = Method.PATCH;
5 request.AddHeader("Content-Type", "application/json");
6 request.AddHeader("Accept", "application/json");
7 request.AddHeader("Authorization", "Bearer {personal_access_token}");
8 IRestResponse response = client.Execute(request);
9 Console.WriteLine(response.Content);

Listing 4.6: Aktualisierung von Dokumenten in Polarion (patchDocument)

4.7 Grafische Benutzeroberfläche

Zur Bedienung der Anwendung wird eine grafische Benutzeroberfläche implementiert
(Anforderung DG-F7). Mit der Plattform .NET Core 9.0 gibt es die Möglichkeiten, die
Benutzeroberfläche mit Windows Presentation Foundation, Windows Forms und .NET
MAUI zu implementieren. Für die Auswahl eines geeigneten Benutzeroberflächenframe-
works werden die folgenden Punkte betrachtet:

• Eingabefelder für die Eingabe eines Dokumentenverzeichnisses, Zielverzeichnisses
und der Projektnummer (Anforderung DG-F10, Anforderung DG-F11, Anforde-
rung DG-F12).

• Steuerfelder in Form von Button zur Auswahl des zu generierenden Dokumenten-
typs (Anforderung DG-F8).

• Das Benutzeroberflächenframeworks kann unter Windows ausgeführt werden (An-
forderung DG-NF3).

Die oben genannten Punkte können alle mit den drei verschiedenen Benutzeroberflä-
chenframeworks realisiert werden. Windows Presentation Foundation kann nur unter
Windows ausgeführt werden und Windows Forms ist für die Entwicklung von Windows-
Anwendungen ausgelegt.37,38,39

37https://learn.microsoft.com/de-de/dotnet/maui/what-is-maui?view=net-maui-
9.0, Zugriffsdatum: 14.05.2025

38https://learn.microsoft.com/de-de/dotnet/desktop/winforms/overview/?view=
netdesktop-9.0, Zugriffsdatum: 14.05.2025

39https://learn.microsoft.com/de-de/dotnet/desktop/wpf/overview/, Zugriffsdatum:
14.05.2025

53

4 Konzept und Design

Die Möglichkeit, die Anwendung auf mehreren Plattformen ausführen zu können, ist mo-
mentan nicht notwendig, mit Blick auf die Weiterentwicklungsmöglichkeiten jedoch eine
nützliche Funktion. Aus diesem Grund wird das Benutzeroberflächenframeworks .NET
MAUI verwendet.

Der Aufbau der grafischen Benutzeroberfläche ist in Abbildung 4.6 dargestellt. Es gibt ein
Feld zur Eingabe der Projektnummer, sowie zur Auswahl des Dokumentenpfads. Zudem
ist es möglich, das Zielverzeichnis auszuwählen (Anforderung DG-10, Anforderung DG-
11, Anforderung DG-12). Mit den drei Buttons „Create requirement document“, „Create
technical specification“ und „Create test cases“ lassen sich die einzelnen Dokumententy-
pen erstellen (Anforderung DG-F8). Es ist jedoch notwendig, zuvor die Projektnummer
sowie ein Dokument auszuwählen. Das Zielverzeichnis muss nicht ausgewählt werden, in
dem Fall wird das erstellte Dokument auf dem Desktop abgelegt.

54

4 Konzept und Design

1 "data": {
2 "type": "documents",
3 "id": "MyProjectId/MySpaceId/MyDocumentId",
4 "attributes": {
5 "autoSuspect": true,
6 "homePageContent": {
7 "type": "text/html",
8 "value": "My text value"
9 },

10 "outlineNumbering": {
11 "prefix": "ABC"
12 },
13 "renderingLayouts": [
14 {
15 "label": "My label",
16 "layouter": "paragraph",
17 "properties": [
18 {
19 "key": "fieldsAtStart",
20 "value": "id"
21 }
22],
23 "type": "task"
24 }
25],
26 "status": "draft",
27 "title": "Title",
28 "type": "req_specification",
29 "usesOutlineNumbering": true
30 }
31 }

Listing 4.7: JSON-Schema zum Übertragen der Aktion für die Aktualisierung von
Dokumenten in Polarion

55

4 Konzept und Design

Abbildung 4.6: Design der grafischen Benutzeroberfläche

56

5 Implementierung

Beim Beschreiben der Implementierung wird zunächst auf die Kommunikation mit dem
LLM eingegangen. Es wird erläutert, welche Probleme auftreten und wie diese gelöst
werden. Danach wird das Einlesen und Verarbeiten einer PDF-Datei beschrieben und
wie dieses, im Gegensatz zum Konzept, implementiert wurde. Darauf folgt das Erstellen
der einzelnen Dokumente (Anforderungsdokument, technische Spezifikation, Testfälle)
und das Ablegen der Dokumente in das Anforderungsmanagement Tool Polarion. Zum
Schluss wird auf die grafische Benutzeroberfläche der Anwendung eingegangen.

5.1 Kommunikation mit dem LLM

Um auch Fine-Tuning an dem LLM vorzunehmen, wurde die Klasse LlmConnecti-
on nach dem Klassendiagramm aus Abbildung 5.1 implementiert. Nun ist es möglich,
auch die Temperatur des LLMs anzupassen. Zudem wurden zwei Methoden für eine
LLM Antwort erstellt (LlmChatRequest(), LlmImageRequest()). Somit wurden
Chat-Anfragen und visuelle-Anfragen aufgeteilt. Zudem werden zwei private Methoden
(GetAIClient(), LlmStreamResponse()) implementiert, da der Client sowie die Ant-
wort für beide Anfragen gleich sind. Eine weitere Änderung ist, dass die Antwort als
Stream zurückgegeben wird. Darauf wird am Ende dieses Abschnitts genauer eingegan-
gen.

Bei der Methode LlmChatRequest(), wird die Nachricht nach dem Schema aus Lis-
ting 4.1 aufgebaut. Die Methode LlmImageRequest() konvertiert das Bild zunächst in
einen Base64 String. Die Nachricht wird anschließend nach dem Schema aus Listing 4.2
erstellt. Dazu muss der Inhalt „content“ noch einmal extra erstellt werden, da es in dem
Fall zwei Contenttypen „Text, ImageUrl“ gibt. Erst dann kann die Nachricht erstellt
und übermittelt werden. Zudem wird das Modell immer auf das Pixtral 12B gesetzt und
das übergebene Modell ignoriert. Pixtral 12B ist extra für visuelle Aufgaben ausgelegt

57

5 Implementierung

Abbildung 5.1: Klassendiagramm der Klasse LlmConnection

und entwickelt worden, weshalb das Modell am besten für die Aufgabe geeignet ist. Die
Methode ist in Listing 5.1 dargestellt.

Bei der Kommunikation mit den Chatmodellen Deepseek R1, sowie dem Modell Pixtral
12B treten Probleme bei der Antwort auf. Die drei Modelle benötigen für die Antwort
zu lange, weshalb es bei den drei Modellen zu Timeout Fehlern (408 Request Timeout)
kommt. Aus diesem Grund wird an das Objekt „client“ vom Typ OpenAIClient, neben
den Einstellung und dem Authentifizierungsschlüssel, noch ein Http-Client (HttpClient)
übergeben, bei dem der Timeout auf fünf Minuten hochgesetzt wird. Mit dieser Änderung
kann das Modell Deepseek R1 genutzt werden, ohne einen Timeout-Fehler zu generieren.
Das Modell Pixtral 12B geniert jedoch weiterhin einen Timeout Fehler (408 Request
Timeout). Zudem wird der Fehler bereits ausgeworfen, bevor die fünf Minuten vorbei
sind. Um auch das Pixtral Modell nutzen zu können wird die Antwort des LLMs als
Stream zurückgegeben. Die Methode LlmStreamResponse() gibt die Antwort zum
Ende vollständig, als String, zurück.

5.2 Einlesen und Verarbeiten einer PDF

Das Einlesen einer PDF-Datei mit dem Paket PdfPig oder über Pixtral 12B verursacht
einige Probleme. Zum Auslesen des Textes eines PDFs wird die Methode GetText im-
plementiert. Diese durchläuft jede Seite der PDF-Datei und schreibt den Text Zeile für
Zeile und Wort für Wort in einen String. Mit PdfPig lässt der Text aus einer PDF-Datei,
ohne großen Aufwand, komplett und vollständig extrahieren. Jedoch behält dieser nicht
sein ursprüngliches Format, da der Text Zeile für Zeile ausgelesen und übergeben wird.

58

5 Implementierung

1 // Image request
2 else
3 {
4 // Convert image to Base64 string
5 var imageBytes = File.ReadAllBytes(imagePath);
6 var base64Image = Convert.ToBase64String(imageBytes);
7

8 // Create list of content for the messages
9 var contentList = new List<Content>

10 {
11 new Content(ContentType.Text, userMsg),
12 new Content(ContentType.ImageUrl, $"data:image/png;base64,{

base64Image}")
13 };
14

15 // Create list of messages
16 var imageMessageList = new List<Message>
17 {
18 new Message(OpenAI.Role.User, contentList)
19 };
20

21 // Chat request
22 request = new ChatRequest(
23 messages: imageMessageList,
24 model: "pixtral-12b-2409"
25);
26 }

Listing 5.1: Impelmentierung eines Bild-Request aus der Methode LlmChatRequest()
zur Kommunikation mit einem LLM

Formen, wie Linien, werden nicht übergeben, weshalb sich die Darstellung von Tabellen
problematisch darstellt. In Unterabschnitt 4.4.2 wird bereits eine Methode zum Extra-
hieren von Tabellen mit PdfPig aufgezeigt. Diese ist jedoch recht aufwendig und liest
die Tabellen aus, ohne sie an die korrekte Stelle des Textes einzufügen. Dazu müsste ei-
ne weitere Methode implementiert, bzw. die Methode GetText() dahingehend geändert
werden.
Wenn der Text einer PDF-Datei nun statt mit PdfPig mit Hilfe des Modells Pixtral 12B
2407 extrahiert werden soll, tauchen zwei andere Probleme auf. Zum einen ist das Bild,
welches aus einer PDF-Seite erstellt wird, zu groß, wenn diese selbst ein Bild beinhaltet.
Aus diesem Grund muss die Auflösung auf 200 dpi begrenzt werden, wenn eine PDF-Seite
in ein PNG konvertiert wird. Zum anderen werden Zeichen falsch interpretiert. Aus ei-
nem „T“ wird beispielsweise ein „I“ oder das große „I“ wird mit dem kleinen „ℓ“ vertauscht.

59

5 Implementierung

Was auffällt ist, dass beide Konzepte zusammen sowohl den Text korrekt wiedergeben
können, als auch richtig darstellen können, beispielsweise in Tabellenform. Des Weite-
ren kann die PDF-Datei, durch die Verarbeitung mit dem Pixtral 12B Modell, direkt
als Markdown wiedergegeben werden, was die Weiterverarbeitung für den Kontext zur
Erstellung der Projektmanagementdokumente wesentlich erleichtert. Aus den genann-
ten Gründen wird zunächst der Text der PDF-Datei mit dem Paket PdfPig extrahiert.
Anschließend verarbeitet das Pixtral 12B Modell jede Seite einzeln, in dem der zuvor
extrahierte Text der Seite als Kontext, sowie ein Bild der Seite an das Modell übergeben
wird. Die Seite soll anschließend als Markdown wiedergegeben werden. Die Bereitstellung
des Inhalts mit einem LLM hat den Vorteil, dass dieser direkt für den Kontext weiter-
verarbeitet werden kann und kein Algorithmus zum Filtern der einzelnen Kapitel und
Abschnitte notwendig ist. Für die Kombination der beiden Funktionen wird die Klasse
DocImageToString erstellt. Diese beinhaltet die Methode zum GetPdfPagesAsS-
tring() Laden des PDF-Inhalts. Dort wird der Text der PDF-Datei zuerst mit PdfPig
ausgelesen. Anschließend wird die PDF in Bilder konvertiert. Danach wird Seitenwei-
se das Bild zusammen mit dem Text an das LLM übergeben, um daraus die Seite als
Markdown darzustellen.

5.3 Erstellen der Dokumente

Das Erstellen wird nach dem Konzept aus Abschnitt 4.5 implementiert. Dazu enthält
jede Klasse zur Generierung der Dokumente die Methoden CreateDocument(), Add-
Content(), SaveDocument() und CloseDocument().

5.3.1 Anforderungsdokument

Mit der Methode CreateDocument() wird das Anforderungsdokument entsprechnend
den Anforderungen AD-F2, AD-F3, AD-F4, AD-F5, AD-F6 und AD-F7 formatiert. Da-
zu wird lediglich eine Exceldatei erstellt und die Zellen werden mit den Informationen
beschrieben.
Die Methode AddContent zum Hinzufügen der LLM-Antwort in das Anforderungsdo-
kument ist in Listing 5.2 dargestellt. Die Anforderungen werden vom LLM (unabhängig
vom Modell) mit dem Aufbau aus Unterabschnitt 4.5.1 wiedergegeben. Das Aufschlüsseln
der Antwort wird mit regulären Ausdrücken realisiert. Zunächst wird mit der Methode

60

5 Implementierung

ParseLLMResponse() aus der Klasse LLMResponseParser der Gedankengang des
LLMs ausgeschnitten. Die beiden Modelle Deepseek R1 Distill Qwen 7B und Qwen3 30B
A3B liefern ihre Antwort mit dem Gedankengang. Anschließend wird überprüft, ob die
Antwort überhaupt eine Anforderung enthält. Ist dies nicht der Fall übergibt das LLM
die Antwort „$empty$“. Die generierten Anforderungen werden danach aufgeteilt und in
den Array splitContent geschrieben. Daraufhin werden sie einzeln in die jeweiligen Zellen
des Excel Worksheets geschrieben (Anforderung AD-F4, AD-F5, AD-F6).

5.3.2 Technische Spezifikation und Testfälle

Die Generierung der technischen Spezifikationen und Tesfälle wird aus zeitlichen Grün-
den nicht implementiert. Es werden lediglich die Klassen TechnicalSpecification und
Testcases gemäß Abbildung 4.3 aus Abschnitt 4.5, sowie die Methoden CreateDo-
cument(), AddContent(), deklariert. Die beiden Methoden SaveDocument() und
CloseDocument() wurden bereits implementiert, da sich diese Methoden untereinan-
der sehr ähneln. Nur der Dateipfad ändert sich, sowie die Dateiendung von „.xlsx“ zu
„.docx“ bei der technische Spezifikation.

5.4 Anforderungsmanagement Tool (Polarion)

Polarion wird noch nicht offiziell in der Abteilung genutzt. Es gibt einen Testzugang
mit dem überprüft wird, ob die Anwendung nützlich für die Abteilung ist. Aus diesem
Grund können Dokumente nur aus den Testprojekt entnommen und nur in die Testpro-
jekte abgelegt werden. Dies schränkt dabei Funktionen der Anwendung, wie die korrekte
Namensgebung über die Projektnummer und das Entnehmen aus und Ablegenden in
das zugehörige Verzeichnis, ein. Bei der Implementierung der Schnittstelle zu Polarion
wird daher nur auf die generelle Funktionalität eingegangen, Dokumente aus Polarion zu
entnehmen und dort abzulegen.

5.4.1 Kopieren der Dokumente

Für die Kommunikation mit Polarion, muss zunächst der Server gewechset werden. Der
Testzugang wurde für den 008 Server eingerichtet, welcher die REST API nicht voll-
umfänglich unterstützt. Daher musste erst ein Zugang für den 006 eingerichtet werden.

61

5 Implementierung

Bei 008 und 006 handelt es sich lediglich um die Serverbezeichnungen und sind für die
Generelle Funktionalität nicht notwendig.
Zum Kopieren von Dokumenten wurde anschließend ein Live Dokument „TestDoc“ im
Standardraum Default Space („_default“) angelegt, um die Funktionalität der Methode
CopyDocument() zu testen. Zudem muss ein API-Token, für die Authentifizierung,
generiert werden. Die Methode wurde nach Listing 4.5 implementiert. Die URL für das
Kopieren von Dokumenten ist in Listing 5.3 dargestellt.

5.4.2 Speichern der Dokumente

Das Ablegen der Dokumente in Polarion ist, wie in Unterabschnitt 4.6.2 bereits erwähnt,
nicht möglich. Es können lediglich LiveDocs angelegt und aktualisiert werden. Die Im-
plementierung zur Bearbeitung von LiveDocs ist mit großem Zeitaufwand verbunden.
Aufgrund des zeitlichen Rahmens und des Umfangs der Arbeit wird diese Funktion nicht
weiter implementiert.

5.5 Grafische Benutzeroberfläche

Das Design der grafischen Benutzeroberfläche wird nach Abbildung 4.6 aus Abschnitt 4.7
implementiert (Anforderung DG-F7). Es gibt jeweils ein Eingabefeld für die Projektnum-
mer, den Dateipfad, sowie das Zielverzeichnis (Anforderung DG-F10, DG-F11, DG-F12).
Zudem ist es möglich, den Dateipfad und das Zielverzeichnis über den File Explorer aus-
zuwählen. Dabei sind nur „.pdf“, „.docx“ und „.xlsx“ Dateien zugelassen. Es gibt drei
Schaltflächen zum Generieren der einzelnen Dokumente (Anforderung DG-F8). Dazu
muss zuvor eine Datei ausgewählt werden, aus der das Dokument generiert werden soll.
Zudem muss es die entsprechende Dateiendung haben (Anforderung AD-F1, TS-F1, TF-
F1). Das endgültige Design der Benutzeroberfläche ist in Abbildung 5.2 abgebildet.

Das Design der Benutzeroberfläche ist zwar identisch zum Konzept aus Abbildung 4.6
geblieben, jedoch wird statt des Benutzeroberflächenframeworks .NET Maui 9.0 die Ver-
sion 8.0 genutzt. Dies hat den Grund, dass einerseits die Neuerungen von .NET Maui 9.0

62

5 Implementierung

gegenüber 8.0, wie das Einführen einer Titelleiste für Windows, in dieser Arbeit nicht not-
wendig sind.1 Das Framework .NET Maui 8.0 bietet gegenüber 9.0 ein Langzeitsupport
an, welches im Hinblick auf die Weiterentwicklungsmöglichkeiten einen Vorteil bietet.
Zudem gibt es einen bekannten Bug bei .NET Maui 9.0 bei der Nutzung der Klasse
FilePicker, zum Auswählen einer Datei über den Windows-Explorer.2

1https://learn.microsoft.com/de-de/dotnet/maui/whats-new/dotnet-9?view=net-
maui-9.0, Zugriffsdatum: 20.05.2025

2https://github.com/dotnet/maui/issues/27552, Zugriffsdatum: 20.05.2025

63

5 Implementierung

1 public void AddContent(List<string> contentList)
2 {
3 // Load the second worksheet
4 _Excel.Worksheet worksheet = workbook.Worksheets[2];
5 var count = 1;
6

7 // Running through the individual LLM answers
8 foreach (var content in contentList)
9 {

10 // Remove the chain of thoughts
11 var parsedContent = LLMResponseParser.ParseLLMResponse(content,

"</think>");
12

13 // Check whether the answer contains requirements
14 if (!Regex.IsMatch(parsedContent, @"\$empty\$"))
15 {
16 // Split requirements
17 var splitContent = Regex.Split(parsedContent, @"^Anf[\d]{1,}",

RegexOptions.Multiline);
18

19 // Write requirements to the file
20 for (int i = 0; i < splitContent.Length; i++)
21 {
22 if (!String.IsNullOrEmpty(splitContent[i]))
23 {
24 // Write requirement number
25 worksheet.Cells[count + 1, 1] = "Anf" + count;
26

27 // Delete space at the beginning if the element
conatins one

28 if (Regex.IsMatch(splitContent[i], @"^ "))
29 {
30 splitContent[i] = splitContent[i][1..];
31 }
32

33 // Add the chapter/ section to the table
34 worksheet.Cells[count + 1, 3] = Regex.Match(

splitContent[i], @"^([A-Za-z][\d\.]{1,}|[\d
\.]{1,})");

35 // Add the requirement to the table
36 worksheet.Cells[count + 1, 4] = splitContent[i][

splitContent[i].IndexOf(’ ’)..];
37

38 count++;
39 }
40 }
41 }
42 }
43 }

Listing 5.2: Impelmentierung der Methode AddContent() aus
der Klasse RequirementDocument zum Einfügen der LLM Antwort in
die Excel-Datei

64

5 Implementierung

1 $"https://gsit-polarion-006.siemens.net/polarion/rest/v1/
projects/{projectId}/spaces/{spaceId}/documents/{
documentName}/actions/copy?revision={revision}"

Listing 5.3: URL für die Kommunikation mit Polarion über eine REST-API

Abbildung 5.2: Design der grafischen Benutzeroberfläche

65

6 Evaluation

Nachdem die Implementation der Anwendung beschrieben wurde, wird diese evaluiert.
Es wird geprüft, welche Anforderungen aus Kapitel 3 erfüllt wurden und ob die An-
wendung erfolgreich implementiert wurde. Zudem wird auf die Qualität der generierten
Anforderungen eingegangen.

6.1 Dokumentengenerator

Zunächst werden die Anforderungen an den Dokumentengenerator während der Nut-
zung der Anwendung überprüft. Die Ergebnisse der einzelnen Anforderungen sind im
Folgenden aufgeführt.

DG-F1 [muss]: Aus dem Anforderungsdokument des Kunden wird ein Anforderungs-
dokument von Siemens generiert.

Erfüllt: Aus Anforderungen vom Kunden werden mit Hilfe von LLMs eigene Anforde-
rungen generiert und in eine Excel-Datei geschrieben (vgl. Unterabschnitt 5.3.1). Auf die
Anforderungen selbst wird in Unterabschnitt 6.3.2 genauer eingegangen.

DG-F3 [muss]: Aus dem Anforderungsdokumenten von Siemens werden technische
Spezifikationen generiert.

Nicht erfüllt: Aufgrund von Zeit- und Umfangsbeschränkungen konzentriert sich diese
Arbeit hauptsächlich auf die Erstellung von Anforderungsdokumenten. (vgl. Abschnitt 3.5).

66

6 Evaluation

Für die Generierung von technischen Spezifikationen wurde lediglich ein grobes Konzept
in Unterabschnitt 4.5.2 erstellt.

DG-F5 [muss]: Aus einer technischen Spezifikation werden Testfälle generiert.

Nicht erfüllt: Wie bereits zuvor, für Anforderung DG-F3 erläutert, lag das Generieren
von Anforderungsdokumenten im Vordergrund (vgl. Abschnitt 3.5). Das Generieren von
Testfällen wurde nicht implementiert, es wurde nur ein Konzept in Unterabschnitt 4.5.3
entwickelt.

DG-F7 [muss]: Die Anwendung besitzt eine grafische Benutzeroberfläche.

Erfüllt: Für die Anwendung wird eine grafische Benutzeroberfläche bereitgestellt.
(vgl. Abschnitt 5.5)

DG-F8 [muss]: Es ist möglich den zu generierenden Dokumententypen in der gra-
fischen Benutzeroberfläche auszuwählen. Es gibt drei Dokumententypen: Anforderungs-
dokument, technische Spezifikation, Testfälle.

Erfüllt: Auf der grafischen Benutzeroberfläche können, die zu generierenden Dokumen-
tentypen, über drei Schaltflächen ausgewählt werden. Dabei wird überprüft, ob eine Datei
mit dem korrekten Typ ausgewählt wurde, andernfalls erscheint eine Fehlermeldung und
die Dokumentengenerierung wird nicht durchgeführt.

DG-F9 [kann]: Die grafische Benutzeroberfläche besitzt eine Auswahl, ob mit dem
Anforderungsmanagement Tool oder lokal gearbeitet wird.

Nicht erfüllt: Da es für Polarion nur einen Testzugang gibt und die Plattform nicht
sinngemäß genutzt werden kann, gibt es keine Möglichkeit auszuwählen, ob mit Polarion

67

6 Evaluation

oder lokal gearbeitet wird. Es können ausschließlich lokale Dokumente ausgewählt und
generierte Dokumente lokal gespeichert werden.

DG-F10 [muss]: Die Projektnummer wird von den Anwendenden eingegeben.

Erfüllt: Ein Eingabefeld zur Eingabe der Projektnummer ist vorhanden. Wird keine
Projektnummer eingegeben, wird eine Fehlermeldung ausgeworfen.

DG-F11 [muss]: Es muss ein lokales Dokument ausgewählt werden, aus dem das
Projektmanagementdokument generiert wird.

Erfüllt: Ohne die Auswahl eines lokalen Dokuments kann kein Dokument generiert
werden und es taucht eine Mitteilung auf, dass ein Dokument auszuwählen ist.

DG-F12 [muss]: Die Nutzenden können ein Zielverzeichnis, für das generierte Do-
kument auswählen. Wird dieses nicht ausgewählt, wird das Dokument auf dem Desktop
abgelegt.

Erfüllt: Die Eingabe des Zielverzeichnisses ist möglich und das Dokument wird in
dem Zielverzeichnis gespeichert. Wurde kein Zielverzeichnis ausgewählt, wird es auf dem
Desktop gespeichert.

Anforderung DG-F2, DG-F4, DG-F6, DG-F13, DG-F14 und DG-F15

Nicht erfüllt: Die Plattform Polarion wird aktuell nicht von der Abteilung genutzt,
sondern es existiert nur ein Testzugang, welcher von mehreren Abteilungen genutzt wird.
Dementsprechend werden die Projekte nicht über Polarion verwaltet und es ist nicht
möglich, die generierten Dokumente in dem zugehörigen Projekt in Polarion abzulegen.
Zudem ist es nicht möglich, die Dokumente aus Polarion auszuwählen.

In der Tabelle 6.1 ist das Ergebnis der nicht funktionalen Anforderungen für den Do-
kumentengenerator abgebildet. In Bezug auf Anforderung DG-NF3 ist es, neben der

68

6 Evaluation

Ausführung der Anwendung auf einem Windows-Betriebssystem, auch möglich, die An-
wendung auf weiteren Plattformen auszuführen.

Tabelle 6.1: Evaluation der nicht funktionalen Anforderungen des Dokumentengenerators
Anforderung Ergebnis

DG-NF1 Erfüllt
DG-NF2 Erfüllt
DG-NF3 Erfüllt
DG-NF4 Erfüllt
DG-NF5 Erfüllt

6.2 Polarion

Bei der Evaluierung der Anforderungen des Dokumentengenerators wurde gezeigt, dass
die Anforderungen zum Thema Polarion nicht erfüllt wurden. In Abschnitt 4.6 aus
dem Konzept und Abschnitt 5.4 aus der Implementierung wurde ebenfalls darauf ein-
gegangen, dass die Anforderungen an Polarion in der Form nicht umsetzbar sind. Da
das Tool jedoch in Zukunft eingesetzt werden soll, wurde dennoch eine Testmethode
(CopyDocument()) implementiert, um die generelle Funktionsweise zu überprüfen.
Beim Ausführen der Methode wird die folgende Fehlermeldung aus Listing 6.1 ausgewor-
fen:

1 "status":"403","title":"Forbidden","detail":"Sorry, you do not
have the necessary permissions to perform this operation.
Please contact your Administrator if you need additional
permissions."

Listing 6.1: Fehlermeldung beim Ausführen der Methode CopyDocument()

Es liegen demnach nicht die benötigten Berechtigungen vor, um die Anfrage durchzufüh-
ren. Aus diesem Grund kann die Methode nicht weiter getestet werden und es muss auf
eine Erteilung der Rechte gewartet werden.

69

6 Evaluation

6.3 Anforderungsdokument

In diesem Abschnitt erläutert, welche Anforderungen im Hinblick auf das Anforderungs-
dokument erfüllt wurden. Zudem wird untersucht, welche Qualität die genierten Anfor-
derungen haben.

6.3.1 Anforderungen

Beim Auswerten der Anforderungen wird nur auf das Modell Qwen3 30B A3B Bezug
genommen. Dies funktioniert am zuverlässigsten und ist beständig (stable) auf der co-
de.siemens Plattform. Auf die generelle Qualität aller Modelle, in Bezug auf die Gene-
rierung von Anforderungen, wird in Unterabschnitt 6.3.2 eingegangen.

AD-F1 [muss]: Die Anforderungen werden aus einem Kundenanforderungsdokument
generiert.

Erfüllt: Die Anforderungen werden aus dem Anforderungsdokument des Kunden gene-
riert (vgl. Abschnitt 5.2). Mit dem Modell Pixtral 12B wird das Dokument zudem als
Markdown bereitgestellt, um einen geeigneten Kontext für das Generieren der Anforde-
rungen bereitzustellen.

AD-F2 [muss]: Das Dokument hat eine Übersicht, welche die Projektnummer, die
Dokumentenbezeichnung, das Erstellungsdatum, die Dokumentennummer und die Ver-
sion beinhaltet.

Erfüllt: Das Anforderungsdokument besitzt eine Tabelle „Overview“. Die erste Zelle
beinhaltet die Informationen zu dem Kundennamen, dem Projektnamen, der Dokumen-
tenbezeichnung, dem Erstellungsdatum, der Dokumentennummer und der Version. Diese
wird ohne Hilfe des LLMs erstellt.

AD-F3 [muss]: In der Übersicht gibt es eine Tabelle für das Versionsmanagement,

70

6 Evaluation

mit den Spalten: Version, Änderungsdatum, Autor, Änderungen und Bemerkungen

Erfüllt: Auf derselben Seite wird, zwei Zeilen unter der Übersicht, eine Versionstabelle
angelegt. Dort sind Spalten mit den Überschriften „Version“, „Date of change“, „Author“,
„Changes“ und „Notes“ vorhanden. Zudem wir die erste Zeile mit den entsprechenden
Informationen gefüllt. Für den Autor wird „Automatically generated“ eingetragen.

AD-F4 [muss]: Die Anforderungen werden eindeutig nummeriert. Die Nummern wer-
den in einer Spalte, mit der Überschrift „No.“ eingetragen.

Erfüllt: Durch den Structed Output gib tdas LLM die Anforderungen in dem vorgege-
benen Format zurück. Dabei hat jede Anforderung eine eindeutige Nummer in der Form
„Anf1“, „Anf2“, „Anf3“, etc.

AD-F5 [muss]: Für das Kapitel der Anforderungen gibt es eine Spalte „Chapter“.
Dort werden die jeweiligen Kapitel des Kundenanforderungsdokuments eingetragen.

Erfüllt: Das LLM gibt die Kapitel, aus welchen die Anforderungen entnommen wurden,
zurück. Diese werden anschließend in die Spalte „Chapter“ des Anforderungsdokuments
eingetragen (vgl. Unterabschnitt 5.3.1).

AD-F6 [muss]: Die Anforderungen haben eine kurze und messbare Beschreibung, wel-
che in der Spalte „Description“ stehen.

Erfüllt: Die Anforderungen werden in der vierten Spalte „description“ beschrieben
(vgl. Unterabschnitt 5.3.1). Die Qualität der Anforderung, mit den verschiedenen Mo-
dellen, wird in Unterabschnitt 6.3.2 beurteilt.

AD-F7 [muss]: Es gibt eine leere Spalte für die Kategorisierung, mit der Überschrift
„Category“ und eine Spalte für Kommentare, mit der Überschrift „Notes“.

71

6 Evaluation

Erfüllt: Die beiden Spalten „Category“ und „Notes“ werden unabhängig vom LLM er-
stellt (vgl. Unterabschnitt 5.3.1).

AD-F8 [kann]: Die einzelnen Anforderungen werden auf ihre Umsetzbarkeit über-
prüft und farblich markiert.

Nicht erfüllt: Eine Überprüfung der Machbarkeit der einzelnen Anforderungen wurde
nicht implementiert. Die Anforderungen werden lediglich im gewünschten Format aufge-
listet und in die Excel-Datei geschrieben.

AD-F9 [muss]: Der Dateiname wird aus der Projektnummer, dem DCC, der Doku-
mentennummer, dem Status, der Version und der Dokumentenbezeichnung zusammen-
gesetzt. Der Name für das Anforderungsdokument lautet: Projektnummer + „-EC411-
W01-RequirementList“.

Erfüllt: Der Dateiname wird entsprechend der Vorgabe aus der Projektnummer, dem
DCC, der Dokumentennummer, dem Status, der Version und der Dokumentenbezeich-
nung zusammengesetzt (vgl. Unterabschnitt 5.3.1). Dazu wurde die Methode SaveDo-
cument() implementiert.

AD-F10 [muss]: Es soll kein neuer Inhalt generiert werden. Die Anforderungen werden
anhand der Informationen des Anforderungsdokument vom Kunden erstellt.

Erfüllt: Durch das Prompting und Übergeben von spezifischen und kohärenten An-
weisungen werden Halluzinationen vorgebeugt. Zusätzlich wird die Temperatur leicht
verringert, um die Kreativität des LLMs einzuschränken (Unterabschnitt 4.3.2, 5.3.1).

AD-NF1 [kann]: Das Dokument ist in Form einer Excel-Datei.

72

6 Evaluation

Erfüllt: Das Anforderungsdokument ist eine Exceldatei. Dies wird mit Hilfe des Interops
Microsoft.Office.Interop.Excel realisiert (vgl. Unterabschnitt 5.3.1).

6.3.2 Qualität der Anforderungen

Bevor die Qualität der Anforderungen betrachtet wird und die Textmodelle miteinander
verglichen werden, wird auf das Pixtral 12B Modell eingegangen.

Pixtral 12B 2409: Das Pixtral 12B liefert zusammen mit dem über PdfPig ausgele-
senen Text einer PDF-Datei, eine in vielen Punkten gute Antwort. Drei ausgewählten
Antworten können aus dem Anhang (Unterabschnitt A.5.1, A.5.2, A.5.3) entnommen wer-
den. Der Text wird bei den Antworten korrekt wiedergegeben und auch Tabellen, Listen
und Aufzählungen werden berücksichtigt. Bei den Tabellen kann es zu Darstellungsfeh-
lern kommen, was in Unterabschnitt A.5.2 zu erkennen ist. Ein weiteres Problem liegt
bei der Erkennung und Markierung von Kapiteln und Abschnitten. Diese werden nicht
korrekt im Markdown Format angegeben, wodurch die Qualität der Antwort gemindert
wird.

Testumgebung: Zur Evaluation werden Auszüge von Dokumenten aus drei verschie-
denen Projekten verwendet. Dabei handelt es sich bei zwei Projekten um die Imple-
mentierung von STS und bei dem dritten Projekt um RMGs. Die Dokumente haben
verschiedene Strukturen, um möglichst viele Fälle abzudecken. Unterabschnitt A.4.2 ist
in Tabellenform verfasst worden, während Unterabschnitt A.4.3 bereits in einzelne An-
forderungen gegliedert ist. Unterabschnitt A.4.1 ist im Fließtext geschrieben, bei dem
die einzelnen Anforderungen nicht direkt ersichtlich sind. Die Antworten der LLMs sind
ebenfalls aus dem Anhang (Abschnitt A.5) zu entnehmen.
Es wird jedem Modell der gleiche Prompt, mit demselben Kontext (Anhang Unterab-
schnitt A.3.1) übergeben. Zudem liefern die Modelle Deepseek R1 und Qwen3 einen
Gedankengang (Chain of Thought), welcher jedoch nicht berücksichtigt wird.

Vergleich der Textmodelle: In Tabelle 6.2, 6.3 und 6.4 werden die einzelnen Modelle
auf die Qualität der generierten Anforderungen getestet. Dabei wird auf auf die Regeln
aus Unterabschnitt 4.5.1 zurückgegriffen. Die Bildung des Passivs wird nicht in den Ta-
bellen 6.2, 6.3 und 6.4 bewertet, sondern es wird darauf später separat eingegangen.

73

6 Evaluation

Zum Vergleich der Modelle werden verschiedene Dokumente getestet, welche verschiede-
ne Formen haben. Einmal sind die Anforderungen als Tabelle aufgeführt (Tabelle 6.2),
danach stehen sie im Fließtext (Tabelle 6.3) und zum Schluss sind die Anforderungen be-
reits einzeln aufgeteilt (Tabelle 6.4). Dabei wird erst die absolute Anzahl der generierten
Anforderungen eines Modells aufgezeigt. Danach wird die Anzahl der erfüllten Regeln
relativ zur absoluten Anzahl dargestellt. Wichtig zu erwähnen ist, dass nur der Aufbau
der Anforderungen an sich bewertet wird. Ergänzungen, wie die Antwort als XML wie-
derzugeben, werden nicht berücksichtigt. Auch der Inhalt der Anforderungen wird in den
Tabellen nicht betrachtet.
Das gewählte Format wird von den getesteten Modellen je nach Quelle unterschiedlich gut
eingehalten wird. Die Entnahme aus dem Fließtext schneidet hierbei am besten ab. Am
schlechtesten wird das Format bei einem Anforderungsdokument in Tabellenform einge-
halten. Es wird bei allen Anforderungsdokumenten von keinem Modell ein Lösungsweg
angegeben. Dies hat den Grund, dass die Anforderungsdokumente keine Lösungswege
enthalten. Es werden jedoch auch keine eigenen Lösungswege von den Modellen gene-
riert. Die teilweise schlechte Messbarkeit der Anforderungen hängt mit der ersten Regel
„eine Anforderung pro Satz“ zusammen. Stehen keine oder mehrere Anforderungen in
einem Satz, kann diese auch nicht gemessen werden. Zudem lassen sich Anforderungen,
welche nur stichpunktartig geschrieben sind oder bereits im Anforderungsdokument nicht
messbar sind, ebenfalls nicht messen.

Vermeiden des Passivs: Ähnlich wie beim Lösungsweg oder der Messbarkeit ist auch
das Passiv stark abhängig vom Anforderungsdokument. Werden die Anforderungen dort
bereits im Passiv formuliert, werden diese vom LLM nicht ins Aktiv umgeschrieben.
Andersherum werden Sätze im Aktiv nicht ins Passiv umgeschrieben.

Bewertung der gesamten Antwort: Die jeweiligen Antworten der Modelle sind im
Anhang unter Unterabschnitt A.5.4 bis Unterabschnitt A.5.21 zu entnehmen. Wie die
Anforderungen selbst aufgebaut sind, wird bereits in den drei Tabellen evaluiert.
Beim Betrachten der Struktur der Antworten stechen die beiden Modellen Mistral 7B
Instruct und Mistral Nemo Instruct 2407 im negativen Sinne heraus. Die Anforderungen
werden häufig in einen XML-Block geschrieben und teilweise ist der Gedankengang mit
aufgelistet. Neben den Anforderungen wird auch die Nutzeranfrage, in manchen Fällen,
vor der eigentlichen Antwort wiederholt. Zusätzlich werden die Kapitelnummern teilweise
inkorrekt dargestellt, was in Unterabschnitt A.5.4 und A.5.8 zu sehen ist. Dies macht das

74

6 Evaluation

Tabelle 6.2: Vergleich der Modelle beim Generieren von Anforderungen aus einem Kun-
den Anforderungsdokument in Tabellenform

Mistral
7B

Instruct

Deepseek
R1 Distill
Qwen 7B

Qwen2.5
Coder 7B
Instruct

Llama 3.1
8B

Instruct

Mistral
Nemo

Instruct
2407

Qwen3
30B A3B

Anzahl
der gene-
rierten

Anforde-
rungen

68 34 32 34 46 29

Eine An-
forderung
pro Satz

100,00 % 91,18 % 53,13 % 100,00 % 100,00% 100,00 %

Kurze
Sätze

95,59 % 91,18 % 50,00 % 100,00 % 100,00% 96,55 %

Eindeutiges
Subjekt

98,53 % 88,24 % 50,00 % 97,06 % 97,83 % 96,55 %

Kein Lö-
sungsweg

100,00 % 100,00% 100,00 % 100,00 % 100,00% 100,00 %

Messbar 100,00 % 91,18 % 53,13 % 100,00 % 100,00% 100,00 %
Einhalten

des
vorgege-
benen

Formats

25,00 % 100,00% 50,00 % 0,00 % 63,04 % 48,28 %

Verarbeiten der Antwort aufwendiger. Neben den formalen Mängeln kommt es bei den
beiden Modellen verstärkt zu Halluzinationen, vor allem wenn die Nutzeranfrage keine
Anforderungen enthält.
Die Modelle Deepseek R1 Distill Qwen 7B und Llama 3.1 8B Intrsuct performen ins-
gesamt besser. Es kommt hier ebenfalls vor, dass das Format nicht eingehalten wird,
dies bezieht sich meist auf die Anforderungen selbst. Halluzinationen, Gedankengänge
oder andere Formfehler treten nicht auf. Jedoch fehlen beim DeepSeek R1 Modell teil-
weise die Anforderungen selbst (vgl. Unterabschnitt A.5.17) oder es kommt zu Fehlern
bei der Information zum Kapitel (vgl. Unterabschnitt A.5.5). Llama 3.1 lässt die In-
formationen zum Kapitel in Unterabschnitt A.5.13 komplett weg. Auch zu Beginn in
Unterabschnitt A.5.7 fehlen diese Angaben.
Das Modell Qwen2.5 Coder 7B Instruct stellt ebenfalls die Kapitelnummer teilweise

75

6 Evaluation

Tabelle 6.3: Vergleich der Modelle beim Generieren von Anforderungen aus einem Kun-
den Anforderungsdokument im Fließtext

Mistral
7B

Instruct

Deepseek
R1 Distill
Qwen 7B

Qwen2.5
Coder 7B
Instruct

Llama 3.1
8B

Instruct

Mistral
Nemo

Instruct
2407

Qwen3
30B A3B

Anzahl
der

Anforde-
rungen

33 33 18 20 51 17

Eine An-
forderung
pro Satz

57,58 % 54,55 % 88,89 % 95,00 % 62,75 % 88,24 %

Kurze
Sätze

51,52 % 54,55 % 88,89 % 95,00 % 74,51 % 88,24 %

Eindeutiges
Subjekt

57,58 % 54,55 % 100,00 % 100,00 % 62,75 % 100,00 %

Kein Lö-
sungsweg

100,00 % 100,00% 100,00 % 100,00 % 100,00% 100,00 %

Messbar 57,58 % 54,55 % 100,00 % 100,00 % 62,75 % 100,00 %
Einhalten

des
vorgege-
benen

Formats

100,00 % 96,97 % 88,89 % 100,00 % 100,00% 76,47 %

inkorrekt dar (vgl. Unterabschnitt A.5.12). Bei derselben Antwort werden die Anforde-
rungen zudem teilweise stichpunktartig und nicht in vollständigen Sätzen geschrieben. In
Unterabschnitt A.5.6 und A.5.18 werden Aufzählungen zu einer Anforderung kombiniert,
anstatt diese in einzelne Anforderungen aufzuteilen. Dabei treten keine Halluzinationen,
Gedankengänge oder andere Formfehler auf.
Qwen3 30B A3B performt besser als das Qwen2.5 Modell. Es kommt auch hier teilwei-
se zu Fehlern bei der Kapitelnummer (vgl. Unterabschnitt A.5.15 und Listen werden in
einer Anforderung kombiniert (vgl. Unterabschnitt A.5.21).

Zusammenfassung: Bei der Evaluation der Qualität der Anforderungen fällt auf, dass
sich die generierten Anforderungen an das Anforderungsdokument halten. Dies ist in ge-
wisser Weise gewollt, da das LLM keinen Inhalt generieren soll und auch die Bedeutung

76

6 Evaluation

Tabelle 6.4: Vergleich der Modelle beim Generieren von Anforderungen aus einem Kun-
den Anforderungsdokument in Anforderungsform

Mistral
7B

Instruct

Deepseek
R1 Distill
Qwen 7B

Qwen2.5
Coder 7B
Instruct

Llama 3.1
8B

Instruct

Mistral
Nemo

Instruct
2407

Qwen3
30B A3B

Anzahl
der

Anforde-
rungen

30 28 25 38 26 32

Eine An-
forderung
pro Satz

96,67 % 64,29 % 96,00 % 97,37 % 96,15 % 96,88 %

Kurze
Sätze

96,67 % 64,29 % 96,00 % 97,37 % 96,15 % 96,88 %

Eindeutiges
Subjekt

96,67 % 64,29 % 96,00 % 100,00 % 100,00% 96,88 %

Kein Lö-
sungsweg

100,00 % 100,00% 100,00 % 100,00 % 100,00% 100,00 %

Messbar 100,00 % 67,86 % 100,00 % 97,37 % 100,00% 96,88 %
Einhalten

des
vorgege-
benen

Formats

96,67 % 32,14 % 96,00 % 100,00 % 96,15 % 96,88 %

der Anforderungen nicht verändern soll. Dies führt jedoch dazu, dass bereits qualitativ
schlechte Anforderungen aus dem Dokument schlecht bleiben, während bereist qualitativ
gute Anforderungen gut bleiben.
Es stellt sich die Frage, ob ein LLM zum Generieren der Anforderungen benötigt wird,
wenn diese stark den ursprünglichen ähneln. Es hat sich gezeigt, dass die Modelle lange
Anforderungen in mehrere Sätze oder auf mehrere Anforderungen aufteilen. Dies erhöht
die Lesbarkeit und Verständlichkeit der Anforderungen. Zudem werden Anforderungen
aus einem Fleißtext in eine Listenform überführt, was ebenfalls die Lesbarkeit und Ver-
ständlichkeit erhöht.

77

6 Evaluation

6.4 Technische Spezifikationen und Testfälle

Wie bereits in Abschnitt 3.5 und 6.1 beschrieben, ist er Schwerpunkt dieser Arbeit die
Generierung von Anforderungsdokumenten, sowie der Vergleich verschiedener LLMs. Es
wurde lediglich in Unterabschnitt 4.5.2 und 4.5.3 ein grobes Konzept zur Generierung
der technischen Spezifikationen und Testfälle erstellt.
Alle Anforderungen aus Unterabschnitt 3.4.3 und 3.4.4 sind nicht erfüllt.

78

7 Fazit und Ausblick

Das Ziel dieser Arbeit bestand darin, eine Anwendung zu entwickeln, die Personen beim
Lesen von Kundenanforderungsdokumenten unterstützt und die Erstellung eigener Anfor-
derungsdokumente erleichtert. Zudem sollten Kenntnisse im Umgang mit LLMs erworben
werden. Hierzu wurden verschiedene Modelle verwendet, die aus den Kundenanforde-
rungsdokumenten eigene Anforderungsdokumente generieren. Es wurde eine Anwendung
konzipiert, die Kundenanforderungsdokumente einliest und die darin enthaltenen Infor-
mationen als Kontext für ein LLM bereitstellt. Das LLM formatiert diese Informationen
anschließend als einzelne Anforderungen, versehen mit einer Nummer, dem Kapitel, aus
dem sie entnommen wurden, und einer Beschreibung. Dabei zeigte sich, dass die ver-
schiedenen Modelle die gestellte Aufgabe gut erfüllen. Besonders wichtig war dabei ein
vollständiger und konsistenter Kontext. Herausstechend waren die Modelle Llama 3.1
Instruct und Qwen3 30B A3B. Auch wenn sie nicht immer perfekte Antworten lieferten,
erzielten sie dennoch die besten Ergebnisse für alle Anforderungstypen und produzierten
ein verarbeitbares Format, das letztlich in das Anforderungsdokument integriert werden
konnte. Im Gegensatz dazu neigten die Modelle Mistral 7B Instruct und Mistral Nemo
2407 vermehrt zu Halluzinationen und hielten das allgemeine Format nicht ein.

Neben der automatischen Generierung der Anforderungsdokumente wurde ebenfalls eine
Schnittstelle zu den LLMs implementiert, die in zukünftigen Projekten wiederverwendet
werden kann. Beispielsweise besteht bereits die Idee, SPS-Variablen automatisiert aus
einem Stromlaufplan mithilfe eines LLMs zu generieren. Hierfür kann die implementierte
Schnittstelle genutzt werden.
Auch das Anforderungsmanagement-Tool Polarion könnte zukünftig eingebunden wer-
den. Das Konzept zum Kopieren von Dokumenten sowie das Prinzip, die Antwort in Po-
larion hochzuladen, wurden kurz erläutert. Hierfür ist jedoch noch weiterführende Arbeit
erforderlich, da die Funktionen bislang nicht getestet werden konnten. Zudem verwendet
Polarion andere Dokumententypen, was insbesondere die Erstellung und das Hochladen

79

7 Fazit und Ausblick

von Dokumenten herausfordernd gestaltet.
Zusätzlich kann die Generierung zweier weiterer Dokumentarten realisiert werden: der
technischen Spezifikationen und der Testfälle. Diese Erweiterung konnte ebenfalls auf-
grund zeitlicher Beschränkungen und des begrenzten Umfangs der vorliegenden Arbeit
nicht umgesetzt werden. Dennoch sind die Struktur und das Konzept für einen geeigneten
Kontext sowie die Klassen und Methoden zur Erstellung dieser Dokumente bereits doku-
mentiert. Dies bietet eine solide Grundlage, auf der zukünftige Entwicklungen aufbauen
können, um die Implementierung der beiden zusätzlichen Funktionen zu erleichtern.

Abschließend wird die eigentliche Arbeit reflektiert. Sie bietet erste Grundlagen zur Ge-
nerierung von Anforderungsdokumenten, jedoch bestehen noch Verbesserungspotenziale.
Die Qualität der Antworten der LLMs könnte beispielsweise durch die Übergabe eines in-
dividuellen Kontexts für jedes Modell verbessert werden. So kann auf spezifische Schwach-
stellen der einzelnen Modelle eingegangen werden. Des Weiteren könnte das Fine-Tuning
optimiert werden, indem die Antworten hinsichtlich verschiedener Temperaturen evalu-
iert, die maximalen Token begrenzt und der Top_p-Wert angepasst wird. Obwohl in der
Arbeit kurz auf die Temperatur eingegangen wurde, geschah dies nicht im Detail. Es hat
sich jedoch gezeigt, dass bei Temperaturen unter 1 die Antworten qualitativ hochwertiger
sind. Für das Extrahieren des Textes einer PDF-Datei mit dem Modell Pixtral 12B 2409
führt eine Temperatur nahe 0 zu einer verbesserten Antwort. Eine genaue Analyse der
Temperatur könnte die Antworten der LLMs ebenfalls verbessern.

Zusammenfassend kann festgehalten werden, dass die Arbeit einen ersten Schritt in Rich-
tung der automatisierten Generierung von Projektmanagementdokumenten darstellt. Sie
bietet eine deutliche Zeitersparnis bei der Erstellung von Anforderungsdokumenten, ins-
besondere, wenn diese als Fließtext vorliegen. Auch die Kompetenz im Bereich LLMs
wurde erweitert, um in Zukunft weitere Projekte mithilfe von LLMs realisieren zu kön-
nen. Zudem liefert die Arbeit selbst eine Grundlage, auf der Projekte unter Verwendung
von LLMs aufgebaut werden können.

80

Literaturverzeichnis

[1] Joshua Ainslie, James Lee-Thorp, Michiel de Jong, et al. Gqa: Training generalized
multi-query transformer models from multi-head checkpoints. EMNLP 2023, 2023.
URL https://arxiv.org/abs/2305.13245. Zugriffsdatum: 23.05.2025.

[2] Ethem Alpaydin. Maschinelles Lernen 2. De Gruyter, Berlin, 2019.

[3] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document
transformer. 2020. URL https://arxiv.org/abs/2004.05150. Zugriffsda-
tum: 24.05.2025.

[4] Oswald Campesato. Large Language Models : An Introduction. De Gruyter, Dulles,
VA, 2024.

[5] DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning. 2025. URL https://github.com/deepseek-ai/DeepSeek-

R1/blob/main/DeepSeek_R1.pdf. Zugriffsdatum: 27.05.2025.

[6] Zichuan Fu, Wentao Song, Yejing Wang, et al. Sliding window attention training for
efficient large language models. 2025. URL https://arxiv.org/abs/2502.

18845. Zugriffsdatum: 23.05.2025.

[7] Marcus Grande. 100 Minuten für Anforderungsmanagement: Kompaktes Wissen
nicht nur für Projektleiter und Entwickler. Springer Vieweg, Wiesbaden, 2014.

[8] Dan Hendrycks, Collin Burns, Steven Basart, et al. Measuring massive multitask
language understanding. ICLR 2021, 2021. URL https://arxiv.org/abs/

2009.03300. Zugriffsdatum: 21.05.2025.

[9] Jochen Hirschle. Deep Natural Language Processing Einstieg in Word Embedding,
Sequence-to-Sequence-Modelle und Transformer mit Python. Carl Hanser Verlag,
München, 2022.

81

Literaturverzeichnis

[10] Uday Kamath, Kevin Keenan, Garrett Somers, and Sarah Sorenson. Large Language
Models: a Deep Dive : Bridging Theory and Practice. Springer, Cham, 2024.

[11] Jon Krohn, Grant Beyleveld, Aglaé Bassens, and Kathrin Lichtenberg. Deep Lear-
ning illustriert Deep Learning illustriert: eine anschauliche Einführung in Machine
Vision, Natural Language Processing und Bilderzeugung für Programmierer und Da-
tenanalysten. dpunkt.verlag, München, 2020.

[12] Thomas Niebisch and Jens Kawelke. Anforderungsmanagement in sieben Tagen:
Requirements Engineering im Zeitalter der KI. Springer Gabler, Berlin, Heidelberg,
2024.

[13] OpenAI. Openai api reference: Text generation and prompting, 2024. URL https:

//platform.openai.com/docs/guides/text?api-mode=responses.
Zugriffsdatum: 18.04.2025.

[14] OpenAI. Openai api reference: Structured outputs, 2024. URL https:

//platform.openai.com/docs/guides/structured-outputs?api-

mode=responses. Zugriffsdatum: 22.05.2025.

[15] Siemens. Models, 2024. URL https://code.siemens.io/ai/models/. Zu-
griffsdatum: 25.03.2024.

[16] Bhawna Singh. Building Applications with Large Language Models: Techniques, Im-
plementation, and Applications. APress, New York, 2024.

[17] Hans-Peter Stricker. Sprachmodelle verstehen: Chatbots und generative künstliche
Intelligenz im Zusammenhang. Springer, Berlin, 2024.

[18] Mehrzad Tabatabaian. Prompt engineering using ChatGPT : crafting effective in-
teractions and building GPT apps. De Gruyter, Boston, Massachusetts, 2024.

[19] Qwen Team. Qwen3 technical report. 2025. URL https://arxiv.org/abs/

2505.09388. Zugriffsdatum: 27.05.2025.

[20] Ashish Vaswani, Noam Shazeer, Niki Parmar, et al. Attention is all you need.
NIPS 2017, 2017. URL https://proceedings.neurips.cc/paper/2017/

file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf. Zugriffsdatum:
31.03.2025.

82

Literaturverzeichnis

[21] Rowan Zellers, Ari Holtzman, Yonatan Bisk, et al. Hellaswag: Can a machine really
finish your sentence? ACL 2019, 2019. URL https://arxiv.org/abs/1905.

07830. Zugriffsdatum: 22.05.2025.

[22] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, et al. Judging llm-as-a-judge with
mt-bench and chatbot arena. NeurIPS 2023, 2023. URL https://arxiv.org/

abs/2306.05685. Zugriffsdatum: 14.05.2025.

83

A Anhang

A.1 Dokumentenbezeichnung

A.1.1 Document Classification Code

Abbildung A.1: Vorgaben zum Festlegen des DCCs

A.1.2 Dateinamen

Abbildung A.2: Vorgaben zum Dateinamen für Dokumente

A.2 Benchmarks

A.2.1 MT-Bench

84

A Anhang

Abbildung A.3: Kategorisierte Genauigkeit verschiedener Modelle im MT-Bench Bench-
mark [22]

Abbildung A.4: Ergebnisse verschiedener Modelle im MT-Bench Benchmark [22]

85

A Anhang

A.2.2 MMLU

Abbildung A.5: Kategorisierte Genauigkeit verschiedener Modelle im MMLU Bench-
mark [8]

A.2.3 HellaSwag

Abbildung A.6: Ergebnisse verschiedener Modelle im HellaSwag Benchmark [21]

A.3 Prompts

A.3.1 System Prompt zur Generierung der Anforderungen

CD Pfad: „/Anhang/Prompts/RequirementDocSystemMsg.md“

86

A Anhang

A.3.2 User Prompt zum Extrahieren des Texts eines PDFs

CD Pfad: „/Anhang/Prompts/ImageContentUser.md“

A.4 Anforderungsdokumente

A.4.1 Anforderungsdokument Auszug - Fließtext

CD Pfad: „/Anhang/Anforderungsdokumente/Anforderungsdokument_Fließtext_Aus-
zug_geschwärzt.pdf“

A.4.2 Anforderungsdokument Auszug - Tabellenform

CD Pfad: „/Anhang/Anforderungsdokumente/Anforderungsdokument_Tabelle_Auszug_-
geschwärzt.pdf“

A.4.3 Anforderungsdokument Auszug - Anforderungsliste

CD Pfad: „/Anhang/Anforderungsdokumente/Anforderungsdokument_Anforderungen_-
Auszug_geschwärzt.pdf“

A.5 LLM Antworten

A.5.1 Anforderungsdokument Fließtext - Pixtral 12B 2409

CD Pfad: „/Anhang/LLMAntworten/Pixtral/Fließtext_PdfContent.txt“

A.5.2 Anforderungsdokument Tabellenform - Pixtral 12B 2409

CD Pfad: „/Anhang/LLMAntworten/Pixtral/Tabelle_PdfContent.txt“

87

A Anhang

A.5.3 Anforderungsdokument Anforderungsliste - Pixtral 12B 2409

CD Pfad: „/Anhang/LLMAntworten/Pixtral/Anforderungsliste_PdfContent.txt“

A.5.4 Anforderungsdokument Fließtext - Mistral 7B Instruct

CD Pfad: „/Anhang/LLMAntworten/Mistral/Fließtext_MistralResponse.txt“

A.5.5 Anforderungsdokument Fließtext - Deepseek R1 Distill Qwen
7B

CD Pfad: „/Anhang/LLMAntworten/DeepSeek/Fließtext_DeepSeekResponse.txt“

A.5.6 Anforderungsdokument Fließtext - Qwen2.5 Coder 7B
Instruct

CD Pfad: „/Anhang/LLMAntworten/Qwen25/Fließtext_Qwen25Response.txt“

A.5.7 Anforderungsdokument Fließtext - Llama 3.1 8B Instruct

CD Pfad: „/Anhang/LLMAntworten/Llama/Fließtext_LlamaResponse.txt“

A.5.8 Anforderungsdokument Fließtext - Mistral Nemo Instruct
2407

CD Pfad: „/Anhang/LLMAntworten/MistralNemo/Fließtext_MistralNemoResponse.txt“

A.5.9 Anforderungsdokument Fließtext - Qwen3 30B A3B

CD Pfad: „/Anhang/LLMAntworten/Qwen3/Fließtext_Qwen3Response.txt“

88

A Anhang

A.5.10 Anforderungsdokument Tabellenform - Mistral 7B Instruct

CD Pfad: „/Anhang/LLMAntworten/Mistral/Tabelle_MistralResponse.txt“

A.5.11 Anforderungsdokument Tabellenform - Deepseek R1 Distill
Qwen 7B

CD Pfad: „/Anhang/LLMAntworten/DeepSeek/Tabelle_DeepSeekResponse.txt“

A.5.12 Anforderungsdokument Tabellenform - Qwen2.5 Coder 7B
Instruct

CD Pfad: „/Anhang/LLMAntworten/Qwen25/Tabelle_Qwen25Response.txt“

A.5.13 Anforderungsdokument Tabellenform - Llama 3.1 8B Instruct

CD Pfad: „/Anhang/LLMAntworten/Llama/Tabelle_LlamaResponse.txt“

A.5.14 Anforderungsdokument Tabellenform - Mistral Nemo Instruct
2407

CD Pfad: „/Anhang/LLMAntworten/MistralNemo/Tabelle_MistralNemoResponse.txt“

A.5.15 Anforderungsdokument Tabellenform - Qwen3 30B A3B

CD Pfad: „/Anhang/LLMAntworten/Qwen3/Tabelle_Qwen3Response.txt“

A.5.16 Anforderungsdokument Anforderungsliste - Mistral 7B
Instruct

CD Pfad: „/Anhang/LLMAntworten/Mistral/Anforderungsliste_MistralResponse.txt“

89

A Anhang

A.5.17 Anforderungsdokument Anforderungsliste - Deepseek R1
Distill Qwen 7B

CD Pfad: „/Anhang/LLMAntworten/DeepSeek/Anforderungsliste_DeepSeekResponse.txt“

A.5.18 Anforderungsdokument Anforderungsliste - Qwen2.5 Coder 7B
Instruct

CD Pfad: „/Anhang/LLMAntworten/Qwen25/Anforderungsliste_Qwen25Response.txt“

A.5.19 Anforderungsdokument Anforderungsliste - Llama 3.1 8B
Instruct

CD Pfad: „/Anhang/LLMAntworten/Llama/Anforderungsliste_LlamaResponse.txt“

A.5.20 Anforderungsdokument Anforderungsliste - Mistral Nemo
Instruct 2407

CD Pfad: „/Anhang/LLMAntworten/MistralNemo/Anforderungsliste_MistralNemoRe-
sponse.txt“

A.5.21 Anforderungsdokument Anforderungsliste - Qwen3 30B A3B

CD Pfad: „/Anhang/LLMAntworten/Qwen3/Anforderungsliste_Qwen3Response.txt“

A.6 Generierte Anforderungsdokumente

A.6.1 Generiertes Anforderungsdokument aus Fließtext

CD Pfad: „Anhang/LLMAntworten/Qwen3/Fließtext-EC411-W01-RequirementList.xlsx“

90

A Anhang

A.6.2 Generiertes Anforderungsdokument aus Tabelle

CD Pfad: „Anhang/LLMAntworten/Qwen3/Tabelle-EC411-W01-RequirementList.xlsx“

A.6.3 Generiertes Anforderungsdokument aus Anforderungsliste

CD Pfad: „Anhang/LLMAntworten/Qwen3/Anforderungsliste-EC411-W01-RequirementList.xlsx“

A.7 Quellcode der Anwendung

CD Pfad: „/Documentgenerator“

91

Erklärung zur selbstständigen Bearbeitung einer Abschlussarbeit

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig
verfasst und nur die angegebenen Hilfsmittel benutzt habe.

Ort Datum Unterschrift im Original

92

