> >
=

MBURG

L I

BACHELORTHESIS
Nico Karsten Lange

Automatisierte Generierung von
Projektmanagementdokumenten mittels
eines Large Language Models

FACULTY OF COMPUTER SCIENCE AND ENGINEERING
Department of Information and Electrical Engineering

Fakultat Technik und Informatik
Department Informations- und Elektrotechnik

HAMBURG UNIVERSITY
OF APPLIED SCIENCES

Hochschule fiir Angewandte
Wissenschaften Hamburg

Nico Karsten Lange

Automatisierte Generierung von
Projektmanagementdokumenten mittels eines Large
Language Models

Bachelorarbeit eingereicht im Rahmen der Bachelorpriifung

im Studiengang Bachelor of Science Elektro- und Informationstechnik
am Department Informations- und Elektrotechnik

der Fakultdt Technik und Informatik

der Hochschule fiir Angewandte Wissenschaften Hamburg

Betreuender Priifer: Prof. Dr. Hensel
Zweitgutachter: Prof. Dr. Herster

Eingereicht am: 04. Juni 2025

Nico Karsten Lange

Title of Thesis

Automated generation of project management documents using a large language model

Keywords

Al LLM, Prompting, Document generation

Abstract

This bachelor thesis deals with the development of an application for the automated
generation of requirements. A requirements document is read in from the customer and

broken down into individual requirements. These are then written in a separate require-

ments document. A large language model is used to generate the requirements.

Nico Karsten Lange

Thema der Arbeit

Automatisierte Generierung von Projektmanagementdokumenten mittels eines Large
Language Models

Stichworte

KI, LLM, Prompting, Dokumenten Generierung

Kurzzusammenfassung

Diese Bachelorthesis behandelt die Entwicklung einer Anwendung zur automatisierten
Generierung von Anforderungen. Es wird ein Anforderungsdokument vom Kunden ein-
gelesen und in einzelne Anforderungen aufgegliedert. Danach werden diese in ein eigenes
Anforderungsdokument geschrieben. Fiir die Generierung der Anforderungen wird ein

Large Language Model verwendet.

iii

Inhaltsverzeichnis

Abbildungsverzeichnis
Tabellenverzeichnis
Listings
Abkiirzungsverzeichnis
Glossar

1 Einleitung

1.1 Ausgangslage und Motivation . .
1.2 Umfeld.
1.3 Zielsetzung
1.4 Aufbau der Arbeit

2 Grundlagen

2.1 Maschinelles Lernen
2.2 Generative KI
2.3 Natural Language Processing
2.3.1 Vorverarbeitung natiirlicher Sprache
2.3.2 Berechnung des nachsten Wortes
2.4 Large Language Model,
2.4.1 VFahigkeiten von LLMs o oo
2.4.2 Kl-Halluzination
2.5 Transformer-Architektur
2.5.1 Encoder
2.5.2 Decoder
2.6 Aufmerksamkeitsmechanismen L.

2.6.1 Grouped Query Attention

ix

xi

xii

xiv

v

Inhaltsverzeichnis

2.6.2 Sliding Window Attention
2.7 Prompt Engineering
2.7.1 Kontextbezogene Prompts
2.7.2 Zero-shot und Few-shot
2.7.3 Structured Output
2.74 Fine-Tuning o
2.7.5 Rollen eines Prompts
2.8 Bewertung von LLMs.
281 MT-Bench.
2.82 MMLU e
2.8.3 HellaSwag
2.9 Markdown
2.10 Representational State Transfer
3 Anforderungsanalyse
3.1 Systemkontext
3.2 Stakeholder
3.2.1 Auftraggeber
3.2.2 Software-Entwickler o oo
3.23 Anwendende
3.2.4 Personen fiir die Weiterentwicklung
3.3 Anwendungsfille
3.4 Anforderungen
3.4.1 Dokumentengenerator Lo
3.4.2 Anforderungsdokument L. L.
3.4.3 Technische Spezifikationen
344 Testfille
3.5 Hinweis
4 Konzept und Design
4.1 Eingesetzte Sprachmodelle00
4.1.1 Mistral 7b Instruct
4.1.2 Deepseek R1 Distill Qwen 7b L.
4.1.3 Qwen2.5 Coder 7B Instruct
414 Llama 3.1 8B Instruct
4.1.5 Mistral Nemo Instruct 2407

20
20
21
21
22
22
22
22
23
24
26
28
31
32

33
33
34
34
35
35
36

Inhaltsverzeichnis

4.1.6 Qwen330B A3B
4.1.7 Pixtral 12B 2409
4.2 Programmiersprache
4.3 Kommunikation mit dem LLM
4.3.1 Aufbau der Nachrichten
432 Prompting.
4.4 Einlesen und Verarbeiten einer PDF-Datei
4.4.1 PdfSharp-Bibliothek L.
4.4.2 PdfPig-Bibliothek 0L
4.4.3 Bildererkennung oL
4.5 Erstellen der Dokumente L
4.5.1 Anforderungsdokument L.
4.5.2 Technische Spezifikation
4.5.3 Testfalle
4.6 Anforderungsmanagement Tool (Polarion)
4.6.1 Auswahl der Dokumente
4.6.2 Speichern der Dokumente
4.7 Grafische Benutzeroberflicheo oL
Implementierung
5.1 Kommunikation mit dem LLM
5.2 Einlesen und Verarbeiten einer PDF
5.3 Erstellen der Dokumente
5.3.1 Anforderungsdokument
5.3.2 Technische Spezifikation und Testfélle
5.4 Anforderungsmanagement Tool (Polarion)
5.4.1 Kopieren der Dokumente
5.4.2 Speichern der Dokumente
5.5 Grafische Benutzeroberfliche 0oL
Evaluation
6.1 Dokumentengenerator oL
6.2 Polarion
6.3 Anforderungsdokument
6.3.1 Anforderungen
6.3.2 Qualitat der Anforderungeno

57
o7
58
60
60
61
61
61
62
62

66
66
69
70
70
73

vi

Inhaltsverzeichnis

6.4 Technische Spezifikationen und Testfalle 78
7 Fazit und Ausblick 79
Literaturverzeichnis 81
A Anhang 84

A.1 Dokumentenbezeichnung 84

A.1.1 Document Classification Code 84
A.1.2 Datelnamen 84
A2 Benchmarks 84
A21 MT-Bench. 84
A2.2 MMLU e 86
A23 HellaSwag 86
A3 Prompts 86
A.3.1 System Prompt zur Generierung der Anforderungen 86
A.3.2 User Prompt zum Extrahieren des Texts eines PDFs 87
A.4 Anforderungsdokumente 87
A.4.1 Anforderungsdokument Auszug - Fliefstext 87
A.4.2 Anforderungsdokument Auszug - Tabellenform 87
A.4.3 Anforderungsdokument Auszug - Anforderungsliste 87
A5 LLM Antworten 87
A.5.1 Anforderungsdokument Fliefstext - Pixtral 12B 2409 87
A.5.2 Anforderungsdokument Tabellenform - Pixtral 12B 2409 87
A.5.3 Anforderungsdokument Anforderungsliste - Pixtral 12B 2409 . . . 88
A.5.4 Anforderungsdokument Fliefstext - Mistral 7B Instruct 88
A.5.5 Anforderungsdokument Fliefitext - Deepseek R1 Distill Qwen 7B . 88
A.5.6 Anforderungsdokument Fliefitext - Qwen2.5 Coder 7B Instruct . . 88
A.5.7 Anforderungsdokument Fliefstext - Llama 3.1 8B Instruct 88
A.5.8 Anforderungsdokument Fliefitext - Mistral Nemo Instruct 2407 . . 88
A.5.9 Anforderungsdokument Fliefitext - Qwen3 30B A3B 88
A.5.10 Anforderungsdokument Tabellenform - Mistral 7B Instruct 89
A.5.11 Anforderungsdokument Tabellenform - Deepseek R1 Distill Qwen
B e 89
A.5.12 Anforderungsdokument Tabellenform - Qwen2.5 Coder 7B Instruct 89
A.5.13 Anforderungsdokument Tabellenform - Llama 3.1 8B Instruct . . . 89

A.5.14 Anforderungsdokument Tabellenform - Mistral Nemo Instruct 2407 89

vii

Inhaltsverzeichnis

A.5.15 Anforderungsdokument Tabellenform - Qwen3 30B A3B 89
A.5.16 Anforderungsdokument Anforderungsliste - Mistral 7B Instruct . . 89
A.5.17 Anforderungsdokument Anforderungsliste - Deepseek R1 Distill
Qwen 7B . . . L 90
A.5.18 Anforderungsdokument Anforderungsliste - Qwen2.5 Coder 7B In-
structo 90

A.5.19 Anforderungsdokument Anforderungsliste - Llama 3.1 8B Instruct 90
A.5.20 Anforderungsdokument Anforderungsliste - Mistral Nemo Instruct

2407 . . . e 90

A.5.21 Anforderungsdokument Anforderungsliste - Qwen3 30B A3B. . . . 90

A.6 Generierte Anforderungsdokumenteo 90
A.6.1 Generiertes Anforderungsdokument aus Fliekftext 90

A.6.2 Generiertes Anforderungsdokument aus Tabelle 91

A.6.3 Generiertes Anforderungsdokument aus Anforderungsliste 91

A.7 Quellcode der Anwendung o 91
Eigenstindigkeitserklarung 92

viii

Abbildungsverzeichnis

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3

4.4

4.5
4.6

5.1
5.2

Al
A2
A3

A4
A5
A6

Der Transformer - Modellarchitektur (vgl. Kapitel 3, S.3,(20]) 11
Systemkontext 21
Anwendungsfalldiagramm fiir die Anforderungsmanagement Anwendung . 23
Aufbau der Kopfzeile der technischen Spezifikation 28
Aufbau der Fulzeile der technischen Spezifikation 28
Aufbau der Titelseite der technischen Spezifikation 29
Tabelle fiir das Versionsmanagement der technischen Spezifikation 30
Tabelle fiir den Dokumentenstatus der technischen Spezifikation 30
Klassendiagramm der Klasse LimConnection 39
Ablaufplan zum Erstellen einer Tabelle 45
Klassendiagramm des Interface Documents mit den Unterklassen Re-

quirementDocument, TechnicalSpecification und Testcases 46
Programmablaufplan der Methode AddContent() aus der Klasse Re-

quirementDocument L. 48
Klassendiagramm der Klasse PolarionConnection 51
Design der grafischen Benutzeroberfliche 56
Klassendiagramm der Klasse LlImConnection 58
Design der grafischen Benutzeroberfliche 65
Vorgaben zum Festlegen des DCCs 84
Vorgaben zum Dateinamen fiir Dokumente 84

Kategorisierte Genauigkeit verschiedener Modelle im MT-Bench Bench-

mark [22] ... 85
Ergebnisse verschiedener Modelle im MT-Bench Benchmark [22] 85
Kategorisierte Genauigkeit verschiedener Modelle im MMLU Benchmark [8] 86
Ergebnisse verschiedener Modelle im HellaSwag Benchmark [21] 86

1X

Tabellenverzeichnis

6.1
6.2

6.3

6.4

Evaluation der nicht funktionalen Anforderungen des Dokumentengenerators 69
Vergleich der Modelle beim Generieren von Anforderungen aus einem Kun-
den Anforderungsdokument in Tabellenform 75
Vergleich der Modelle beim Generieren von Anforderungen aus einem Kun-
den Anforderungsdokument im Fliefstext 76
Vergleich der Modelle beim Generieren von Anforderungen aus einem Kun-

den Anforderungsdokument in Anforderungsform 7

Listings

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1

5.2

9.3

6.1

Aufbau der Nachricht fiir Chat LLMs im JSON-Format 40
Aufbau der Nachricht fiir visuelle LLMs im JSON-Format 41
Aufbau der Antwort des LLM im JSON-Format 42
Aufbau eines system Promptso 43

Methode CopyDocument() zum Kopieren eines Dokuments aus Polarion 52
Aktualisierung von Dokumenten in Polarion (patchDocument) 53
JSON-Schema zum Ubertragen der Aktion fiir die Aktualisierung von Do-

kumenten in Polarion 55

Impelmentierung eines Bild-Request aus der Methode LimChatRequest /()
zur Kommunikation mit einem LLM 29

Impelmentierung der Methode AddContent() aus der Klasse Require-

mentDocument zum Einfiigen der LLM Antwort in die Excel-Datei . . . 64
URL fiir die Kommunikation mit Polarion {iber eine REST-API 65
Fehlermeldung beim Ausfithren der Methode CopyDocument() 69

X1

Abkiuirzungsverzeichnis

APl Application Programming Interface.
DCC Document Classification Code.

GPT Generative Pre-trained Transformer.

GQA Grouped Query Attention.
HTTP Hypertext Transfer Protocol.
JSON JavaScript Object Notation.
Kl Kiinstliche Intelligenz.

LLM Large Language Model.

MINT Mathematik, Informatik, Naturwissenschaft und Technik.

MMLU Massive Multitask Language Understanding.
NLP Natural Language Processing.

PDF Portable Document Format.

PNG Portable Network Graphics.

REST Representational State Transfer.

RMG Rail-Mounted Gantry Crane.

xii

Abkiirzungsverzeichnis

RTG Rubber-Tired Gantry Crane.

SPS Speicherprogrammierbare Steuerung.

STEM Science, Technology, Engineering and Mathematics.

STS Ship-To-Shore Crane.

SWA Sliding Window Attention.

xiii

Glossar

BERT BERT (Bidirectional Encoder Representations from Transformers) ist ein vor-
trainiertes Sprachmodell von Google. Mit der Einfithrung wurde ein deutlicher

Sprung im NLP und der Leistungsfahigkeit von Sprachmodellen erzielt.

Chain of Thought Der Chain of Thought (COT) ist eine Gedankenkette, welche an ein
LLM iibergeben werden kann. Dabei wird das strukturierte und logische Vorgehen

beschrieben, um eine Aufgabe zu l6sen.

CNN Ein CNN (Convolutional Neural Network) ist neuronales Netzwerk, welches vor-

wiegend zur Audio- und Bildverarbeitung eingesetzt wird..

Polarion Polarion ist ein Anforderungsmanagement Tool von Siemens, in dem die Do-
kumentation von Projekten verwaltet wird. Dort werden unter anderem Anforde-

rungsdokumente, technische Spezifikationen und Testfdlle abgelegt.

Xiv

1 Einleitung

In diesem Kapitel werden die Ausgangslage, Motivation, das Umfeld, die Zielsetzung und
der Aufbau der Arbeit dargestellt.

1.1 Ausgangslage und Motivation

Ein essenzieller Teil in der Projektarbeit ist das Projektmanagement, insbesondere das
Anforderungsmanagement. Qualitativ hochwertige Anforderungsdokumente, technische
Spezifikationen, sowie Testfélle stellen wichtige Komponenten fiir den Erfolg eines Pro-
jekts dar. Die Erstellung dieser Dokumente ist jedoch meistens miihselig und unbeliebt.
Schlechte, unvollstdndige oder unspezifizierte Anforderungen verursachen immer Kosten
am Ende eines Projekts. Ergebnisse werden nicht erreicht und es entsteht eine Unzufrie-
denheit beim Kunden.

Dem kann mit einem verniinftigen Anforderungsmanagement vorgebeugt werden. Im An-

forderungsmanagement gibt es verschiedene Tétigkeiten, wie beispielsweise: [12]

e Erhebung und Identifikation von Anforderungen
e Strukturierte Dokumentation der ermittelten Anforderungen
e Uberpriifung und Abstimmung der Anforderungen mit relevanten Stakeholdern

e Validierung der Anforderungen hinsichtlich Zielerreichung und Umsetzbarkeit

Vor allem das strukturierte und einheitliche Dokumentieren von Anforderungen ist ent-
scheidend, damit die Erwartungen von unterschiedlichen Personen an ein Projekt nicht
auseinanderlaufen. Die Projekte haben dabei hdufig eine Vielzahl von Anforderungen,
welche alle manuell durchgegangen und dokumentiert werden miissen. Dieser Prozess

soll optimiert, sowie Mitarbeitende entlastet werden.

1 FEinleitung

1.2 Umfeld

Diese Bachelorarbeit wird im Rahmen eines dualen Studiums bei der Siemens AG in
Bremen erstellt. Die Bearbeitung erfolgt in der Abteilung RC-DE DI PA SO WFC MC-
CRANES, die sich mit der Elektrifizierung und Automatisierung von Kranen, insbeson-
dere in Hafenbereichen, beschéaftigt. Zu den typischen Krantypen in Héafen zéhlen der
Ship-To-Shore Crane (STS), der Rubber-Tired Gantry Crane (RTG) und der Rail-
Mounted Gantry Crane (RMG).

Derzeit werden Anforderungsdokumente, technische Spezifikationen und Testfélle manu-
ell erstellt. Ziel dieser Bachelorarbeit ist, einen Teil dieser Tétigkeiten zu iibernehmen und
zu erleichtern. Es handelt sich zudem um die erste Anwendung, die ein Large Language
Model (LLM) einsetzt, da solche Modelle in der Abteilung bisher kaum genutzt werden.

1.3 Zielsetzung

Das Ziel dieser Arbeit ist, die Erstellung von Projektmanagementdokumenten, insbe-
sondere von Anforderungsdokumenten, zu vereinfachen. Das heift, es werden die einzel-
nen Anforderungen aus einem Anforderungsdokument geschrieben . Zusétzlich soll eine
Grundlage fiir kiinftige Arbeiten geschaffen werden, um weitere Dokumente, wie tech-
nische Spezifikationen und Testfélle, automatisiert zu generieren. Die Generierung soll
mit einem LLM realisiert werden, da auch in diesem Bereich Kompetenzen aufgebaut
werden sollen. Es soll hier ebenfalls darauf geachtet werden, dass auf den Einsatz von
LLMs aufgebaut werden kann, um bei weiteren Projekten und Anwendung generative
Kiinstliche Intelligenz (KI) einzusetzen. Dabei geht es nicht um das Trainieren eines
LLMs. Es werden bereits vorhandene Modelle eingesetzt und evaluiert, wie gut diese die

Aufgabe l6sen.

1.4 Aufbau der Arbeit

Diese Arbeit ist in acht Kapitel gegliedert. Zunéchst beschéftigt sich Kapitel 2 mit den
Grundlagen dieser Arbeit. Anschliefend werden in Kapitel 3 die Anforderungen an diese
Arbeit definiert. In Kapitel 4 und Kapitel 5 geht es um das Konzept und die Imple-

mentierung, um diese Anforderungen umzusetzen. Inwiefern die Anforderungen am Ende

1 FEinleitung

umgesetzt wurden, wird in Kapitel 6 evaluiert. Zum Schluss folgt ein Fazit mit einem

Ausblick auf weitere Arbeiten.

2 Grundlagen

Dieses Kapitel behandelt die fundamentalen Grundlagen, die fiir die weitere Arbeit von
Bedeutung sind. Zunéchst wird ein allgemeiner Uberblick iiber maschinelles Lernen ge-
geben, gefolgt von einer Einfiihrung in die Computerlinguistik. Hierbei wird erlautert,
wie natiirliche Sprache verarbeitet wird und was unter dem Begriff , Token“ zu verstehen
ist. Anschliefend wird das Thema LLM behandelt, welche Fahigkeiten sie besitzen und
welche davon relevant fiir diese Arbeit sind, sowie das Thema KI-Halluzination. Im wei-
teren Verlauf werden die Transformer-Architektur, Aufmerksamkeitsmechanismen, die
Bewertung von LLMs und das Prompt Engineering beschrieben. Es folgt ein Abschnitt
zu Markdown. Das Format wird zum einen dafiir verwendet den Kontext fiir ein LLM
bereitzustellen und zum anderen eine verarbeitbare Antwort zu erhalten. Abschliefiend
wird kurz auf den Architekturstil REST, welcher die Schnittstellen zum Requirement

Management Tool bildet, eingegangen.

2.1 Maschinelles Lernen

Das Feld der KI gewinnt heutzutage zunehmend an Bedeutung und Popularitit.! Grofke
Fortschritte in der KI, wie beispielsweise ChatGPT und BERT, haben die vielfiltigen
Moglichkeiten und Anwendungsbereiche von KI verdeutlicht. Ein bedeutender Teilbereich
der KI ist das maschinelle Lernen, zu dem auch LLMs, auf denen ChatGPT und BERT
basieren, gehéren.? [2]

Maschinelles Lernen beschreibt die Fahigkeit von Computern, aus Daten Vorhersagen
oder Entscheidungen zu treffen. Hierbei wird ein Modell mit bereits vorhandenen Daten
trainiert, um daraus spezifische Ergebnisse zu generieren. Fiir die Datenverarbeitung

und das Training stehen zahlreiche Modelle zur Verfiigung. Die Einsatzmdoglichkeiten

"https://de.statista.com/statistik/kategorien/kategorie/15/themen/2604/
branche/kuenstliche-intelligenz/#overview, Zugriffsdatum: 25.02.2025

?https://www.iais.fraunhofer.de/de/geschaeftsfelder/big-data-analytics—and-
intelligence/innovation-briefing—generative—ki.html, Zugriffsdatum: 28.05.2025

2 Grundlagen

des maschinellen Lernens sind auferst vielfaltig. In der Medizin wird es beispielsweise
zur Diagnoseunterstiitzung eingesetzt, im Telekommunikationsbereich zur Analyse von
Anrufmustern und in den Bereichen Physik, Astronomie und Biologie zur Analyse grofer
Datenmengen. Wie oben bereits erwahnt, gehéren ChatGPT und BERT ebenfalls zum
Bereich des maschinellen Lernens. Genauer gesagt fallen sie in den Bereich der generativen

KI, welcher sich mit dem Erzeugen von Inhalten beschéftigt. 2]

2.2 Generative KI

Generative KI befasst sich mit Modellen, die Inhalte oder Daten erzeugen, die nicht im
Trainingsdatensatz enthalten waren, aber dennoch kohérent sind und die gleiche Struktur
aufweisen. Die wichtigsten Merkmale der generativen KI sind die Datengenerierung,
die Synthese und die Lernverteilung. Die Datengenerierung bezieht sich auf die Fa-
higkeit, neue Daten zu erzeugen, die nicht im Trainingsdatensatz vorhanden waren. Dies
wird auch als ,produktiv® bezeichnet. Es werden Daten produziert, welche es zuvor nicht
gegeben hat. Dies konnen Texte, Bilder, Audios, Videos und vieles mehr sein. Synthese
bedeutet, dass das generative Modell in der Lage ist, mehrere verschiedene Eingaben zu
kombinieren, beispielsweise zwei Bilder zu einem zusammenzufithren. Die Lernverteilung
beschreibt die Fahigkeit eines generativen KI-Modells, Wahrscheinlichkeitsverteilungen
aus den Trainingsdaten zu erlernen, um daraus neue Muster zu generieren.

Generative KI unterscheidet sich vor allem zu anderen KlIs in der Hinsicht, dass dabei
versucht wird, neue Daten zu synthetisieren und zu generieren, wahrend die meisten

traditionellen KI Modelle Daten klassifizieren und analysieren. [4, 17|

2.3 Natural Language Processing

Damit KI schliissige Texte generieren kann, muss die KI lernen, wie zusammenhéngende
Sétze geschrieben werden. Diese Verarbeitung von natiirlicher Sprache durch Maschinen
wird als Natural Language Processing (NLP) bezeichnet. Dabei wird nicht nur die Se-
mantik eines einzelnen Wortes analysiert, sondern der gesamte Kontext betrachtet. Es

geht dementsprechend um die Verarbeitung von ganzen Sitzen, bzw. Texten. [9, 11]

2 Grundlagen

2.3.1 Vorverarbeitung natiirlicher Sprache

Um die natiirliche Sprache fiir ein Modell verarbeitbar zu machen, muss sie zunichst
vorverarbeitet werden. Dazu wird der Eingabetext vektorisiert. Das heifit, der Text wird
in diskrete Sprachelemente, wie Worter, zerlegt und in Vektoren geschrieben. Dies wird

auch Tokenisierung genannt. [9, 11]

Beispiel (vgl. Kapitel 2, Abschnitt 2.1, S. 8, [9])

Eingabe:
'Die Sonne steht hoch am Himmel.’
Tokenisierung:

['Die’, Sonne’, ’steht’, ’hoch’, ’am’, "Himmel’, *.’]

\.

Moderne und bekannte LLMs, wie der Chatbot ChatGPT von OpenAl, arbeiten nicht

mit einzelnen Wértern als Token, sondern unterteilen diese in noch kleinere Einheiten.

Diese Token kénnen sehr unterschiedlich sein, wie beispielsweise ,dar®, ,ett“, ,kennen-
lernen oder auch einzelne Buchstaben. Der Grund dafiir liegt in der enormen Anzahl
von Wortern (im Duden befinden sich 13 Millionen deutsche Wérter). Zudem kénnen

dadurch auch rhetorische Stilmittel wie z. B. Neologismen besser erfasst werden. [17]

2.3.2 Berechnung des nachsten Wortes

Im Unterabschnitt 2.3.1 wurde ein Eindruck gegeben, wie natiirliche Sprache aufbereitet
wird, um es fiir ein LLM verarbeitbar zu machen. In diesem Abschnitt wird beschrieben,
wie aus einer Eingabe eine sprachlich und inhaltlich sinnvolle Ausgabe generiert und be-
rechnet wird. Dafiir wird lediglich das grundlegende Prinzip beschrieben und nicht genau
im Detail erldutert.

Prinzipiell wird zur Berechnung des nichsten Wortes bzw. fiir das nichste Token ei-
ne Wahrscheinlichkeit fiir jedes mogliche Token berechnet. Das Token mit der groften
Wahrscheinlichkeit wird ausgegeben. Fiir ein besseres Verstindnis wird im Folgenden
nicht mehr von Token, sondern von Wértern gesprochen.

Zur Berechnung des néchsten Wortes werden zunichst alle Eingabeworter eingelesen
und nach einer Verarbeitung durch ein mehrschichtiges neuronales Netz in einem inter-
nen Format dargestellt. Dies wird auch Kontext genannt. Nachdem jedes Eingabewort

verarbeitet wurde und in den Kontext eingeflossen ist, wird fiir jedes mogliche Wort eine

2 Grundlagen

Wahrscheinlichkeit erstellt. Geht man beispielsweise davon aus, dass das LLM 100.000
Woérter kennt, wird fiir jedes dieser 100.000 Worter eine Wahrscheinlichkeit zwischen 0
und 1 erstellt. Die Summe aller 100.000 Wahrscheinlichkeiten ergibt 1. Dementsprechend
wird nicht direkt das néachste Wort, sondern nur eine Wahrscheinlichkeit fiir die einzel-
nen Worter berechnet. Zudem miissen die Wahrscheinlichkeiten fiir die ndchsten Worter
immer neu berechnet werden und kénnen nicht fiir bestimmte oder alle Fille gespeichert
werden. Andernfalls wére eine Datenmenge enormer Grofe notwendig, um die méglichen
Fille abzudecken. Zudem kann das nidchste Wort mit der groften Wahrscheinlichkeit von

dem am héufigsten verwendeten néchsten Wort abweichen. [17]

2.4 Large Language Model

Das Fraunhofer-Institut fiir experimentelles Software-Engineering beschreibt LLMs fol-
gendermafen: ,Large Language Models (kurz: LLM und auf Deutsch: Grofe Sprach-
modelle) sind leistungsstarke Modelle, die darauf ausgelegt sind, menschliche Sprache
zu verstehen und zu generieren. Sie konnen Texte analysieren und verstehen, kohdrente
Antworten generieren und sprachbezogene Aufgaben ausfiihren“.? Moderne LLMs sind
mittlerweile ausschlieftlich neuronale Netze und sind damit ein Teil des maschinellen Ler-
nens. Es gibt zudem LLMs, welche keine Texte, sondern Bilder, Audios oder Ahnliches

generieren. 4, 17]

2.4.1 Fahigkeiten von LLMs

Im Folgenden befindet sich ein Uberblick iiber die Fahigkeiten von LLMs. Die Fihig-
keiten werden in niitzliche und elementare Fahigkeiten unterteilt. Die niitzlichen
Fahigkeiten sind diejenigen, die von den Anwendenden direkt genutzt werden koénnen.
Die elementaren Fahigkeiten hingegen sind grundlegende Funktionen, ohne die die
niitzlichen Féahigkeiten nicht funktionieren wiirden. Diese elementaren Fahigkeiten sind
abstrakter und werden von den Anwendenden nicht direkt genutzt.

In Bezug auf diese Arbeit sind nicht alle Fahigkeiten relevant, der Vollsténdigkeit halber
werden dennoch alle Text- und Bildbezogenen Fahigkeiten aufgelistet. Im Anschluss wird

auf die unterstrichenen, vom Verfasser ausgewéahlten, niitzlichen Fihigkeiten genauer

3https ://www.lese.fraunhofer.de/blog/large-language-models-ki-
sprachmodelle/, Zugriffsdatum: 26.03.2025

2 Grundlagen

eingegangen. Diese bilden im spéteren Verlauf einen grofen Anteil an der Nutzung eines

LLMs.

Niitzliche Fihigkeiten

e Text generieren

e Text umschreiben

e Text iibersetzen

e Text analysieren, erklaren und

interpretieren

o Text zusammenfassen

e Themen und Konzepte erkldren
e Vorschlidge machen

e Probleme l6sen

e Gespriche fiithren

e Bilder generieren

e Bilder beschreiben

Elementare Fahigkeiten

Plausible Worte vorhersagen

Allgemeine Erwartungen von Benut-

zern erfiillen
Aufforderungen verstehen

Langreichweitige Beziehungen bertiick-

sichtigen

Grofse Kontexte beriicksichtigen und

Polysemie auflosen
Ahnlichkeiten erkennen

Analogien und Beispiele verstehen und

generalisieren

Koreferenzen auflésen, insbesondere

Pronomen

Redewendungen und uneigentliche Re-
de

Grammatik und Morphologie

Die Textgenerierung ist ein wesentlicher Aspekt von LLMs. Dabei geht es nicht nur

um das Generieren von einzelnen Wortern oder Sétzen, sondern um das Erstellen eines

langeren Texts zu einem bestimmten bzw. vorgegebenen Themenbereich.

Beim Umschreiben von Texten ist ein Text bereits vorgegeben und das LLM ist in

seinen Antwortmoglichkeiten eingeschrankt, da der Inhalt durch den Text gegeben ist.

Zu dem Umschreiben gehort auch die sprachliche Korrektur von Texten.

Eine spezielle Form des Umschreibens von Texten ist das Ubersetzen von Texten.

Dabei werden Texte in einer anderen Sprache ,umgeschrieben‘.

Texte analysieren, erklaren und interpretieren umfasst drei sehr dhnliche und sich

2 Grundlagen

iiberschneidende Fahigkeiten. Das Analysieren von Texten ist dabei die Voraussetzung
fiir das Erklaren und Interpretieren von Texten. LLMs analysieren stdndig Texte, da sie
eine Voraussetzung fiir fast alle Fahigkeiten ist. Dabei setzen sie die Worter und ihre
Bestandteile in komplexer werdende Beziehungen zueinander. Die Erklarung ist eine Art
des Umschreibens in andere, eigene Worter, um den Text verstédndlich zu machen.

Um einen Text zusammenzufassen, muss das LLM Texte verstehen und die wich-
tigsten Informationen erkennen konnen. LLMs werden héufig flir das Zusammenfassen
von Texten genutzt, daher werden sie in dieser Hinsicht nach trainiert. Zum Schluss gibt
es die Fahigkeit Bilder zu beschreiben. Das erkennen von Elementen in einem Bild
beruht nicht auf der Transformer-Architektur, sondern CNNs. Dieses gibt die Informa-
tionen iiber die Elemente an das LLM weiter, welches anschliefend diese in Beziehung

zu einander setzt, um das Bild zu beschreiben. [17]

2.4.2 KI-Halluzination

Als KI-Halluzination wird das Generieren von Daten bezeichnet, welche plausibel erschei-
nen, jedoch frei erfunden sind. Hervorgerufen wird dieses Phéanomen durch unvollstandi-
ge, verzerrte oder anderweitig fehlerhafte Trainingsdaten.* Die folgenden Methoden sind

Beispiele, wie KI-Halluzination verhindert, bzw. eingeschrankt werden kann: [4]

1. Feedback
Es besteht die Moglichkeit, dem Modell Feedback zu einer Antwort zu geben und
dem Modell mitzuteilen, welche Informationen in die Antwort sollen und welche
nicht.

2. Faktencheck
Mittels Faktenchecks der Ergebnisse eines Modells konnen Halluzinationen erkannt

und markiert werden.

3. Prompt Engineering Das Prompt Engineering kann Halluzination ebenfalls vor-
beugen. Wichtig sind dabei klare, spezifische und informative Prompts, welche zu
genaueren Ergebnissen fithren. Methoden des Prompt Engineerings werden in Ab-
schnitt 2.7 beschrieben.

‘https://cloud.google.com/discover/what-are-ai-hallucinations?hl=de, Zugriffsda-
tum: 25.03.2025

2 Grundlagen

Die Punkte 1 und 3 beschreiben Methoden zur Reduzierung von Halluzinationen wahrend
der Nutzung eines LLMs. Punkt 2 bezieht sich auf das Identifizieren von Halluzinationen
und fehlerhaften Ergebnissen, die Methode dient nicht dazu das Auftreten von Hallu-
zinationen zu verhindern. Trotz dieser Methoden zur Reduzierung und Erkennung von
Halluzinationen koénnen diese nicht vollstdandig verhindert oder erkannt werden. Deshalb

muss bewusst und kritisch mit KI-generierten Inhalten umgegangen werden. [4]

2.5 Transformer-Architektur

Die Transformer-Architektur ist ein Eckpfeiler bei den sequence-to-sequence Aufgaben.
Transformer transformieren eine Eingabesequenz in eine Ausgabesequenz. Die elemen-
taren Schichten der Transformer-Architektur sind in Abbildung 2.1 dargestellt. Diese
Elemente werden in den folgenden Abschnitten genauer beschrieben. Transformer sind
ein zentrales Element moderner LLMs und bestehen aus zwei Hauptkomponenten: Dem
Encoder und dem Decoder. |10, 20|

2.5.1 Encoder

Der Encoder hat die Aufgabe, die Eingangssequenz zu verarbeiten und die komprimierten
Informationen in einem Kontext dem Decoder zur Verfiigung zu stellen. Dabei wird
nicht nur die Information iiber die Bedeutung jedes einzelnen Wortes weitergegeben.
Es werden zusétzlich auch die Informationen der vorherigen Worte beriicksichtigt. Der
Encoder besteht dabei aus mehreren identischen Schichten. Diese haben jeweils zwei

Hauptelemente, welche in Abbildung 2.1 zu sehen sind:

e Multi-Head Attention: Dieses Element des Encoders erlaubt es dem Modell, mit
jedem Attention-Head unterschiedliche Bereiche der Eingabedaten zu beriicksich-

tigen und somit verschiedene Aspekte der Daten zu erkennen.

e Feed-Forward Neural Network: Ein neuronales Netzwerk, das die Attention-
Vektoren verarbeitet, nichtlineare Transformationen durchfiithrt und diese fiir die

nachfolgende Encoder-Schicht sowie die Decoder-Schicht zugénglich macht.

e Add&Norm: Die Schicht Add&Norm normiert die Ausgabe einer Schicht und
macht diese fiir die ndchste Schicht verfiigbar. Sie befindet sich sowohl im Encoder,

als auch Decoder hinter jedem Hauptelement. [10, 20]

10

2 Grundlagen

Abbildung 2.1: Der Transformer - Modellarchitektur (vgl. Kapitel 3, S.3, [20])

2.5.2 Decoder

Der Decoder erzeugt die Ausgabesequenz aus dem iibergebenen Kontext des Encoders.
Dabei wird dhnlich wie beim Encoder nicht nur der iibergebende Kontext vom Encoder
betrachtet, sondern auch die zuvor generierten Token. Diese haben einen Einfluss auf
das néchste Token. Auch der Decoder besteht aus mehreren identischen Schichten, wobei

jede Schicht drei Hauptelemente besitzt:

e Masked Multi-Head Attention: Diese Schicht funktioniert dhnlich wie die Multi-
Head Attention, jedoch wird durch einen Masking-Mechanismus sichergestellt, dass

die Generierung eines Wortes nicht von zukiinftigen Worten abhéngt.

e Encoder-Decoder Attention: Die Encoder-Decoder Attention sorgt fiir den Fo-
kus auf die relevanten Eingabesequenzen durch den iibergebenen Kontext des En-

coders.

11

2 Grundlagen

e Feed-Forward Neural Network: Es handelt sich um die gleiche Schicht wie beim

Encoder.

e Add&Norm: Wie bereits in Unterabschnitt 2.5.1 beschrieben, ist diese Schicht
identisch zu der im Encoder. [10, 20]

2.6 Aufmerksamkeitsmechanismen

Mit Hilfe von Aufmerksamkeitsmechanismen kann der Fokus von LLMs auf die relevanten
Eingabeinformationen gelenkt werden. Dadurch lasst sich die Geschwindigkeit von LLMs
erhdhen, oder es kann ein lidngerer Kontext betrachtet werden. In Abschnitt 2.5 wurde
die Multi-Head-Attention kurz eingefiihrt. In diesem Abschnitt werden mit, Grouped
Query Attention (GQA) und Sliding Window Attention (SWA), zwei weitere Aufmerk-

samkeitsmechanismen beschrieben.

2.6.1 Grouped Query Attention

Die GQA unterteilt mehrere Abfragen (Query) in einzelne Gruppen. Jeder Gruppe wird
dabei ein Schliissel (Key) und ein Wert (Value) zugewiesen. Somit wird nicht mehr jeder
Abfrage ein Schliissel und ein Wert zugewiesen, wie beispielsweise bei der Multi-Head
Attention. Dies reduziert die Anzahl der Berechnungen. Das LLM kann mit der GQA

schneller eine Antwort generieren, ohne dass diese grofs an Qualitét verliert. [1]

2.6.2 Sliding Window Attention

Mit der SWA kénnen lange Sequenzen eines LLMs verarbeitet werden. Dabei wird die
Aufmerksamkeit auf bestimmte Token innerhalb einer definierten Fenstergrofke w gelegt.
Das Fenster (Window), mit einer definierten Grofe, wird auf die Eingabesequenz, sowie
tiber die Transformer-Schichten (Layer), gelegt. Die Token kénnen sich nur innerhalb
dieses Fensters betrachten und ignorieren alle Token aufserhalb des Fensters. Das Fenster

liegt %w Token links und rechts neben dem betrachteten Token. |3, 6]

12

2 Grundlagen

2.7 Prompt Engineering

Das Prompt Engineering bezeichnet das Schreiben von zielgerichteten Anweisungen fiir
ein LLM, um eine konsistente Antwort zu erhalten, die den gewiinschten Anforderungen
entspricht. [13, 16, 18|

2.7.1 Kontextbezogene Prompts

Damit das LLM eine Aufgabe korrekt losen oder eine Frage richtig beantworten kann,
kann es notwendig sein, dem LLM einen Kontext, bezogen auf die Aufgabe, zu iiber-
geben. In dem Kontext werden Informationen iibergeben, die erforderlich sind, um die

Aufforderung nach den Wiinschen der Nutzenden zu 15sen. 18]

[Beispiel

Prompt: ,Isa hat am 30. September Geburtstag. An welchem Wochentag hat Isa
dieses Jahr Geburtstag?

Ohne den Kontext zum Geburtsdatum von Isa kann die nachfolgende Frage nicht vom
LLM gelost werden.

2.7.2 Zero-shot und Few-shot

Es gibt zwei Methoden, Aufgaben an ein LLM zu stellen. Einmal wird dem LLM eine Auf-
gabe/ Frage optional mit einem Kontext gestellt, wobei jedoch keine Beispiele iibergeben

werden. Die andere Methode ist es eine Aufgabe/ Frage mit Beispiel zu liefern.

Zero-shot Das Zero-shot Prompting beschreibt Prompts, die ohne Beispiele erstellt wer-
den. Das LLM muss die Aufgabe nur anhand seines Wissens und des iiberlieferten Kon-
texts losen.

Few-shot Im Gegensatz zum Zero-shot Prompting werden beim Few-shot Prompting
dem LLM Beispiele, neben der Aufgabe, iibergeben. [13, 16]

13

2 Grundlagen

2.7.3 Structured Output

Es ist moglich, LLMs immer in einem gleichen Format antworten zu lassen. Dies wird
Structured Output genannt. Dabei kann das Antwortformat vom Nutzenden festgelegt
werden. Ein Structured Output hat die Vorteile, dass keine falsch formatierten Antwor-
ten iiberpriift werden miissen, die Prompts nicht wesentlich erweitert werden, um ein

einheitliches Format zu erhalten und [14]

2.7.4 Fine-Tuning

Mit dem Fine-Tuning lassen sich die Antworten von LLMs in Eigenschaften Kreativitét,
Kohérenz und Léange kontrollieren. Nachkommend werden die Funktionen ,, Temperature®,

,Top_ p*“ und ,Max Tokens* kurz beschrieben.

Temperature Die Temperatur eines LLMs beschreibt die Zufélligkeit der Antwort. Bei
hoheren Werten, ab 0,8, ist die Antwort kreativer und vielfdltiger. Dies hat den Nachteil,
dass die Antwort auch zufélliger wird und bei einer zu hohen Temperatur die Sinnhaf-
tigkeit verliert. Kleine Temperaturen (z.B. 0,2) fithren zu zielgerichteten und mehr de-
terministischen Antworten. Die Antwort wird vorhersehbarer. Fiir die Temperatur sind

Werte zwischen 0 und 2 moglich.

Top p Neben der Temperatur kann die Zufalligkeit der Antwort auch durch die Funk-
tion ,,Top p“ gesteuert werden. Diese Technik wahlt nicht das wahrscheinlichste nichste
Token, sondern beriicksichtigt eine Gruppe der wahrscheinlichsten Tokens. Moglich sind
Werte zwischen 0 und 1. Bei hoéheren Werten wird die Antwort, dhnlich wie bei der
Temperatur, zufélliger. Im Gegensatz dazu fiihrt die Wahl kleinerer Werte zu einer de-

terministischeren Antwort.

Max Tokens Neben der Temperatur und dem Top p lésst sich mit der Funktion
,Max Tokens" die Antwortlénge einstellen. Dadurch kénnen kurze Antworten erzwungen
werden. [18]

14

2 Grundlagen

2.7.5 Rollen eines Prompts

Fiir Modelle, die mit der OpenAl API kompatibel sind, existieren drei unterschiedliche

Nachrichtenrollen.?

e System: Dies sind Nachrichten, die Regeln und Vorgehensweisen fiir die Antwort

vergeben.

e User: Dies sind die Nachrichten vom Benutzer. Das konnen Fragen oder Aufgaben

sein.

e Assistant: Assistant Nachrichten sind die Antworten des LLMs.

2.8 Bewertung von LLMs

Aufgrund des grofen Umfangs von LLMs und des Mangels an menschlichen Préferenzen
in vorhandenen Benchmarks, ist es schwer, chatfahige LLMs zu bewerten. [22] Es gibt ei-
ne Reihe von Benchmarks, um die Leistungsfahigkeit von LLMs zu bewerten, bevor diese
genutzt werden. Dabei enthalten diese Benchmarks Beispieldaten, verschiedene Fragen
und Aufgaben, ein Bewertungssystem sowie ein Punktesystem.% Im Folgenden werden die
geldufigen Benchmarks MT-Bench, Massive Multitask Language Understanding (MM-
LU) und HellaSwag betrachtet, da diese vom Verfasser dieser Arbeit als relevant fiir die

spéteren Aufgaben angesehen werden.

2.8.1 MT-Bench

Die geldufigen Benchmarks zur Bewertung von LLMs vernachléssigen grofitenteils die
menschlichen Préaferenzen. Dabei werden LLMs hauptséchlich fiir die Interaktion zwi-
schen Mensch und KI eingesetzt. Der im Jahr 2023 veroffentlichte Benchmark MT-Bench
bewertet LLMs im Hinblick auf diese menschlichen Préiferenzen.

Bei dem MT-Bench werden dem LLM 80 hochqualitative mehrteilige Fragen gestellt.
Zudem werden mehrstufige Konversationen und die Fahigkeit zur Befolgung von Anwei-

sungen getestet. Um die géngigen Anwendungsfille von Chatbots abzudecken, werden

Shttps://platform.openai.com/docs/guides/text?api-mode=chat, Zugriffsdatum:
30.05.2025
Shttps://www.ibm.com/think/topics/llm-benchmarks, Zugriffsdatum: 21.05.2025

15

2 Grundlagen

User Prompts in acht Kategorien aufgeteilt: Schreiben, Rollenspiel, Extraktion, logisches
Denken, Mathematik, Codierung, Wissen I (MINT) und Wissen II (Geistes-/ Sozialwis-

senschaften). Fiir jede Kategorie werden zehn mehrteilige Fragen gestellt.

Im Anhang (Abbildung A.3, A.4) ist dargestellt, wie verschiedene LLMs bei dem Bench-
mark abgeschnitten haben. Abbildung A.3 zeigt dabei die Ergebnisse in den acht ver-
schiedenen Kategorien, wihrend Abbildung A.4 vergleicht, wie gut einzelne Modelle in
den verschiedenen Benchmarks MMLU, Truthful QA und MT-Bench abschneiden.

2.8.2 MMLU

Der MMLU Benchmark wurde 2021 verdffentlicht und ist ein umfangreicher Test mit
57 Aufgaben aus verschiedenen Wissensbereichen und Schwierigkeitsstufen. Dazu zédhlen
unter anderem die Bereiche Geistes-, Sozial- und Naturwissenschaften. Er enthélt iiber
15.000 Multiple-Choice-Fragen, die von Studierenden aus frei verfiigbaren Online-Quellen
gesammelt wurden. Der Test dient dazu, die Fahigkeit von LLMs im Hinblick auf ihre
Vielseitigkeit, den Umfang ihres globalen Wissens und der Entwicklung anspruchsvoller
Problemlosungsstrategien zu bewerten. Wahrend unspezialisierte Personen etwa 34,5 %
Genauigkeit erreichen, liegt die geschatzte Leistung von spezialisierten Personen bei rund
89,8 %. Fiir medizinische Priifungen liegt die Genauigkeit fiir spezialisierte Personen bei-
spielsweise bei 87 %. Der Benchmark gilt als anspruchsvolles und langfristig relevantes

Ziel fiir die Entwicklung leistungsfahiger Sprachmodelle. [8]

Im Anhang (Abbildung A.5) sind die Ergebnisse verschiedener LLMs fiir den MMLU
Benchmark dargestellt. Dabei sind die Ergebnisse auf die vier verschiedenen Themen
Geisteswissenschaften, Sozialwissenschaft, STEM und ,,Andere”, sowie der Durchschnitt
aller Themen, abgebildet. Da der Benchmark aus dem Jahr 2021 stammt, sind Modelle
wie DeepSeek R1 oder GPT-4 nicht enthalten.

2.8.3 HellaSwag

Der HellaSwag Benchmark wurde im Jahr 2019 veroffentlicht und stellt eine verbesserte
Version von SWAG dar. Er wurde gezielt entwickelt, um stilistische Verzerrungen zu ver-

meiden und die tatséchliche Fahigkeit zum Schlussfolgern mit Alltagswissen zu testen.

16

2 Grundlagen

ActivityNet Captions Zur Bewertung wurde der Datensatz ActivityNet Captions
integriert. Dieser beinhaltet zeitliche Beschreibungen und Aktivitdtsbezeichnungen fiir

jede Beschriftung. Dadurch soll die Generalisierungsfihigkeit getestet werden.

WikiHow Testfeld Neben ActivityNet Captions wird auch das Testfeld WikiHow be-
trachtet. Es beinhaltet 80.000 Kontext- und Folgeabsétze, zu Themen wie ,Wie man eine
Origami-Eule bastelt® oder ,Wie man einen Bankiiberfall {iberlebt“. Die Folgeabsétze

sind zwei Sétze lang, da sie fiir LLMs herausfordernd, aber fiir Menschen gut l6sbar sind.

HellaSwag enthélt spezielle Zero-shot Sétze, um zu priifen, ob Modelle auf neue, unbe-
kannte Themenbereiche verallgemeinern konnen. Das Thema Zero-shot wird im Folgen-
den Abschnitt 2.7 erldutert. Fiir jeden Validierungs- oder Testsatz gibt es zwei Teilmen-

gen:
e 5k In-domain Beispiele, die aus bekannten Kategorien vom Training stammen
e 5k Zero-shot Beispiele, aus zufillig ausgewédhlten, zuriickgehaltenen Kategorien [21]

Abbildung A.6 aus dem Anhang zeigt die Ergebnisse verschiedener Modelle, sowie vom
Menschen. Die Ergebnisse sind aufgeteilt, in ein generelles Ergebnis {iber den gesamten
Benchmark, die der In-Domain und Zero-shot Teilmenge sowie den Datensétzen Acti-
vityNet und WikiHow. Es lasst sich erkennen, dass der Mensch, in allen Kategorien,
wesentlich besser abschneidet als die LLMs.

2.9 Markdown

Um dem LLM eine strukturierte Antwort zu libergeben und eine ebenso strukturierte
Antwort zurilick zu bekommen, Markdown verwendet werden. Markdown ist ein Textfor-
mat, welches das Ziel hat, moglichst einfach lesbar und schreibbar, zu sein. Dementspre-
chend ist die Syntax nah an das Zieldesign angelehnt und Listen sehen beispielsweise im
Markdownformat bereits aus wie Listen. Jedoch hat es im Vergleich zu z. B. HTML we-
sentlich weniger Umfang und Moglichkeiten, Text darzustellen. Dies ist fiir diese Arbeit
auch nicht notwendig, da Markdown lediglich zur Darstellung von Portable Document

Format (PDF) Dokumenten und zur Formulierung der Prompts genutzt werden soll.

17

2 Grundlagen

Fiir diese beiden Einsatzmoglichkeiten miissen Uberschriften, Tabellen, Listen, horizon-
tale Linien, sowie Absitze dargestellt werden kénnen, was mit Markdown mdoglich ist.
Uberschriften werden mit ein bis sechs Rauten (,7#“) dargestellt, wobei die eine Raute
fiir die erste Ebene steht und sechs Rauten fiir die sechste. Tabellen haben kein expli-

zites Format. Die Linien werden mit Hilfe der Symbole ,|“ und ,-* dargestellt und der

|“
Text passend dazwischen geschrieben. Unsortierte Listen kénnen mit den Symbolen ,*“,
¢ und - dargestellt werden, wihrend bei sortierten Listen die Nummer davor steht,

« w7
z.B., 1. oder ,2.“.

[Beispiel

Uberschrift

Unterabschnitt

* Liste

* Liste

* Liste

Sortierte Liste

1. Liste

2. Liste

3. Liste

#+# Horizontale Linie

2.10 Representational State Transfer

Representational State Transfer (REST) ist ein Architekturstil fiir den Aufbau webba-

sierter APIs. Es basiert dabei auf sechs Prinzipien:

e Einheitlichkeit der Schnittstelle: Die Einheitlichkeit der Schnittstelle verein-
facht die Systemarichtektur und verbessert die Transparenz der Datenfliisse. Bei ei-
ner HTTP basierten REST API werden beispielsweise die standardméfigen HTTP-
Methoden (GET, POST, PUT, DELETE etc.) verwendet.

e Client und Server: Durch die Trennung von Client und Server kénnen sich beide

Komponenten unabhéngig voneinander entwickeln.

"https://daringfireball.net/projects/markdown/, Zugriffsdatum: 02.05.2025

18

2 Grundlagen

e Zustandslosigkeit: Mit der Zustandslosigkeit wird beschrieben, dass bei einer
Anfrage alle notwendigen Informationen enthalten sein miissen. Es werden keine

Informationen von vorherigen Anfragen gespeichert.

e Zwischenspeicherung: Bei einer Antwort an den Client ist die Information zur
Zwischenspeicherung enthalten. Diese berechtigt den Client, bei Zustimmung, die
Antwort fiir einen bestimmten Zeitraum zwischenzuspeichern, um auf &hnliche An-

fragen zu reagieren.

e Mehrschichtiges System: Das mehrschichtige System sorgt fiir einen Aufbau, bei
dem jede Schicht nur Informationen aus der unmittelbar néchsten Schicht erhélt,

mit welcher sie interagiert.

e Code auf Anfrage: Durch den Code auf Anfrage kénnen Clients Code vom Server
herunterladen und ausfiihren. Dadurch verringert sich die Anzahl der implemen-

tierten Funktionen des Clients.®

Shttps://restfulapi.net/, Zugriffsdatum: 24.05.2025

19

3 Anforderungsanalyse

Die Anforderungsanalyse ist essenziell fiir den Erfolg eines Projekts. Sie dokumentiert die
Anforderungen und das Projektziel und stellt sicher, dass diese klar verstanden werden.
Zunichst wird dafiir der Systemkontext, fiir einen ersten Uberblick iiber das System,
beschrieben. Anschlieffend werden die wichtigsten Stakeholder betrachtet, um die Erwar-
tungen der interessierten Personen an das Projekt bestméglich zu erfiillen. Im néchsten
Schritt werden die Anwendungsfélle betrachtet, aus denen sich spéter die konkreten An-
forderungen bilden. Durch eine griindliche Anforderungsanalyse wird sichergestellt, dass

die Bediirfnisse der Interessengruppen verstanden werden.

3.1 Systemkontext

Fiir ein besseres Verstandnis des Themas der Arbeit, wird in diesem Abschnitt die Um-
gebung des Systems beschrieben. Dabei wird auf einzelne Komponenten der Umgebung
und deren Bezug auf das System eingegangen. Des Weiteren wird definiert, auf welche
Elemente Einfluss genommen werden kann und welche lediglich verwendet werden, je-
doch nicht beeinflussbar sind. Dabei wird {iber Schnittstellen die Umgebung mit dem
System verkniipft. Abbildung 3.1 zeigt die wesentlichen Elemente des Systemkontexts,

zur Erstellung von Dokumenten fiir das Projektmanagement.

Die Anwendung soll ein Anforderungsdokument von Siemens, technische Spezifikatio-
nen und Testfdlle, automatisch generieren. Dazu wird ein Anforderungsdokument vom
Kunden, aus einem externen Anforderungsmanagement Tool entnommen. Mit Hilfe eines
LLM wird aus dem Anforderungsdokument vom Kunden ein Anforderungsdokument von
Siemens generiert, in dem die einzelnen Anforderungen in einer Liste aufgefiihrt werden.
Dieses Dokument wird anschliefend wieder im Anforderungsmanagement Tool abgelegt
und kann spater von Mitarbeitenden der Abteilung kontrolliert und korrigiert werden.

Zudem werden durch die Mitarbeitenden die einzelnen Anforderungen kategorisiert.

20

3 Anforderungsanalyse

Abbildung 3.1: Systemkontext

Aus dem korrigierten und kategorisierten Anforderungsdokument von Siemens kénnen,
durch das LLM, technische Spezifikationen fiir die einzelnen Kategorien generiert werden.
Die erstellten technischen Spezifikationen werden wieder im Anforderungsmanagement
Tool abgelegt und kénnen anschlieffend von Mitarbeitenden korrigiert und angepasst wer-
den.

Zuletzt konnen aus einer technischen Spezifikation Testfélle erstellt werden. Diese werden
ebenfalls mit Hilfe des LLMs generiert und anschliefsend im Anforderungsmanagement

Tool abgelegt.

3.2 Stakeholder

Fiir das Projekt sind neben der technischen Umsetzung auch die Stakeholder ein wichtiger
Faktor fiir das Gelingen des Projekts. Stakeholder sind Personen oder Personengruppen,
welche ein Interesse an dem Projekt haben. Im Folgenden werden die wichtigsten Stake-

holder kurz beschrieben.

3.2.1 Auftraggeber

Als Auftraggeber fungiert die Siemens AG, insbesondere die Abteilung RC-DE DI PA SO
WFC MC-CRANES. Die Software wird fiir diese Abteilung entwickelt, um Arbeitszeit
beim Erstellen der einzelnen Testfdlle und beim Analysieren der Kundenanforderungen

zu sparen. Sie haben daher ein besonderes Interesse am Erfolg der Arbeit.

21

3 Anforderungsanalyse

3.2.2 Software-Entwickler

Der Software-Entwickler, der diese Bachelorarbeit verfasst, ist ein zentraler Stakeholder.
Sein Ziel ist, eine funktionsfdhige Losung zu entwickeln und zu prisentieren. Dabei liegt
sein Interesse nicht nur auf der Realisierung einer funktionierenden Losung, welche den
Hauptteil der Arbeit darstellt, sondern auch auf dem Erwerb neuer Fahigkeiten in Bezug

auf kiinstlicher Intelligenz und dem Nutzen von LLMs.

3.2.3 Anwendende

Weitere Stakeholder sind die Personen, welche die Software spéter aktiv nutzen. Thr Inter-
esse besteht nicht nur darin, dass die Anwendung funktioniert, sondern auch darin, dass
sie die geforderten Aufgaben zuverlassig erfiillt und dabei einfach sowie intuitiv zu bedie-
nen ist. Zudem soll die Anwendung iibersichtlich gestaltet sein und dem Anwendenden

die Arbeit zur Erstellung von Projektmanagementdokumenten erleichtern.

3.2.4 Personen fiir die Weiterentwicklung

Die Ergebnisse dieser Arbeit sollen auch fiir die zukiinftige Weiterentwicklung innerhalb
der Abteilung nutzbar sein. Vor allem ist die Kommunikation mit einem LLM fiir kiinftige
Projekte besonders interessant. Daher ist die Wiederverwendbarkeit der Schnittstelle zum
LLM und eine umfassende Dokumentation erforderlich. Die Arbeit soll es ermdglichen, die
Anwendung fertigzustellen, zu erweitern oder &hnliche Anwendungen zu erstellen, welche
auf Basis eines grofen Sprachmodells Aufgaben ausfiihren. In der Abteilung geht es
hauptséichlich um die SPS-Programmierung. Hochsprachen kommen nicht alltédglich vor.
Dennoch wird dabei vorwiegend die Entwicklungsumgebung VisualStudio in Verbindung

mit der Programmiersprache C# verwendet.

3.3 Anwendungsfille

In Abbildung 3.2 ist das Anwendungsfalldiagramm fiir die Anforderungsmanagement-
Anwendung abgebildet. Dort werden die einzelnen Funktionalititen der Anwendung

iibersichtlich dargestellt. Unten werden die Anwendungsfille (AF) kurz beschrieben.

22

3 Anforderungsanalyse

Abbildung 3.2: Anwendungsfalldiagramm fiir die Anforderungsmanagement Anwendung

AF1: Dokument auswihlen Es wird ein Dokument aus dem Anforderungsmanage-

ment Tool ausgewahlt.

AF2: Anforderungsdokument (Siemens) erstellen Aus dem ausgewihlten Doku-

ment wird mit Hilfe eines LLM ein Anforderungsdokument von Siemens erstellt.

AF3: Technische Spezifikationen erstellen Aus dem ausgewéhlten Dokument wer-

den mit Hilfe eines LLM technische Spezifikationen erstellt.

AF4: Testfille erstellen Aus dem ausgewidhlten Dokument werden mit Hilfe eines
LLM Testfalle erstellt.

3.4 Anforderungen

Bei den Anforderungen wird zwischen funktionalen und nicht funktionalen Anforderun-
gen unterschieden. Funktionale Anforderungen (F) sind die Anforderungen, welche
die Funktionalitdt der Anwendung beschreiben. Die nicht funktionalen Anforderun-

gen (NF) sind hingegen Anforderungen, welche nicht die Funktion der Anwendung

23

3 Anforderungsanalyse

beschreiben, sondern die Eigenschaften der Anwendung und wie die Funktionen umge-
setzt werden. Die Priorisierung wird in eckigen Klammern dargestellt (]...]) und in zwei
Arten unterteilt. Muss steht fiir die Anforderungen, ohne die die Funktionalitdt spéter
nicht gegeben ist. Diese Anforderungen sind daher essenziell fiir den Erfolg dieser Ar-
beit. Kann steht fiir die Anforderungen, welche zum Projekt dazu gehoren, das Projekt

jedoch auch ohne diese funktioniert und ihren Zweck erfiillt.

Da die zu erstellenden Dokumente zum Grofsteil verschiedene Anforderungen haben,
werden die Anforderungen im Folgenden in vier Unterkapiteln (Dokumentengenerator,

Anforderungsdokumente, technische Spezifikationen und Testfille) aufgeteilt.

3.4.1 Dokumentengenerator

Die Anforderungen fiir den Dokumentengenerator (DG) befassen sich mit den Anfor-
derungen fiir die Umgebung der Anwendung. Hier wird festgehalten, was die Anwendung

selbst fiir Anforderungen erfiillen muss.
DG-F1 [muss|: Aus dem Anforderungsdokument des Kunden wird ein Anforderungs-
dokument von Siemens generiert.

Diese Anforderung wird in Unterabschnitt 8.4.2 genauer beschrieben.
DG-F2 [kann]: Das Anforderungsdokument des Kunden wird aus dem Anforderungs-
management Tool ausgewéhlt.

DG-F3 |muss]: Aus dem Anforderungsdokumenten von Siemens werden technische
Spezifikationen generiert.

Diese Anforderung wird in Unterabschnitt 3.4.8 genauer beschrieben.

DG-F4 [kann]: Das Anforderungsdokument von Siemens wird aus dem Anforderungs-
management Tool ausgewéhlt.
DG-F5 [muss]: Aus einer technischen Spezifikation werden Testfille generiert.

Diese Anforderung wird in Unterabschnitt 8.4.4 genauer beschrieben.

DG-F6 [kann]: Die technische Spezifikation wird aus dem Anforderungsmanagement

Tool ausgewahlt.

24

3 Anforderungsanalyse

DG-F7 [muss]: Die Anwendung besitzt eine grafische Benutzeroberflache.

DG-F8 [muss|: Es ist moglich den zu generierenden Dokumententypen in der grafi-
schen Benutzeroberfliche auszuwéhlen. Es gibt drei Dokumententypen: Anforderungsdo-

kument, technische Spezifikation, Testfélle.

DG-F9 [kann|: Die grafische Benutzeroberfliche besitzt eine Auswahl, ob mit dem

Anforderungsmanagement Tool oder lokal gearbeitet wird.
DG-F10 [muss]: Die Projektnummer wird von den Anwendenden eingegeben.

DG-F11 [muss]: Es muss ein lokales Dokument ausgewéhlt werden, aus dem das
Projektmanagementdokument generiert wird.

Dieser Fall tritt nur ein, wenn der Nutzende zuvor ausgewdhlt hat lokal zu arbeiten.

DG-F12 [muss|: Die Nutzenden kénnen ein Zielverzeichnis, fiir das generierte Doku-
ment auswahlen. Wird dieses nicht ausgewahlt, wird das Dokument auf dem Desktop
abgelegt.

Dieser Fall tritt nur ein, wenn der Nutzende zuvor ausgewdhlt hat lokal zu arbeiten.

DG-F13 [kann]: Die Testfille werden im richtigen Projekt im Verzeichnis , Test cases®
im Anforderungsmanagement Tool abgelegt.

Dazu muss der Nutzende zuvor die Auswahl fir das Anforderungsmanagement Tool
getroffen haben (vgl. Anforderung DG-F9).

DG-F14 [kann|: Die technsichen Spezifikationen werden im richtigen Projekt im
Verzeichnis), Technical functions* im Anforderungsmanagement Tool abgelegt.

Dazu muss der Nutzende zuvor die Auswahl fir das Anforderungsmanagement Tool
getroffen haben (vgl. Anforderung DG-F9).

DG-F15 [kann]: Die technsichen Spezifikationen werden im richtigen Projekt im
Verzeichnis ,,System Requirements* im Anforderungsmanagement Tool abgelegt.
Dazu muss der Nutzende zuvor die Auswahl fir das Anforderungsmanagement Tool

getroffen haben (vgl. Anforderung DG-F9).

25

3 Anforderungsanalyse

DG-NF1 [kann]: Alle generierten Dokumente sowie die Anwendung selber sind in
Englisch (amerikanisch).

Da die Kunden weltweit verteilt sind und tberwiegend auferhalb von Deutschland sitzen,
ist die Kommunikations- und Dokumentationssprache Englisch (amerikanisch). Zudem
sprechen nicht alle Personen der Abteilung deutsch, weshalb Englisch (amerikanisch) als

Sprache notwendig ist.

DG-NF2 [muss|: Die Implementierung und Nutzung der Anwendung darf keine zu-
sitzlichen Kosten verursachen. Ausgenommen hiervon sind lediglich die Lizenzkosten fiir

Visual Studio, die wihrend der Implementierungsphase anfallen diirfen.

DG-NF3 [muss]|: Die Anwendung soll auf einem Windows-Betriebssystem mit Windows
10 oder hoher kompatibel sein.

DG-NF4 [muss]|: Die Dokumente werden mit Hilfe eines LLMs erstellt.
Da ein Ziel der Arbeit darin besteht, dass Kompetenzen im Bereich KI und speziell dabei
i LLMs erworben werden, muss ein LLM auch eine wesentliche und sinnvolle Funktion

der Anwendung tbernehmen.

DG-NF5 [kann]: Die iibergebenen Informationen an das LLM miissen vertraulich
behandelt werden.

Fiir die Umsetzung des Projektes dieser Arbeit spielt die Vertraulichkeit keine Rolle,
da die Anforderungsdokumente vom Kunden, welche als Kontext genutzt werden sollen
Offentlich sind. Diese Anforderung bezieht sich, auf zukiinftige Projekte, die auf Basis

dieser Arbeit realisiert werden.

3.4.2 Anforderungsdokument

In diesem Abschnitt werden die Anforderungen fiir die Generierung eines Anforde-
rungsdokuments (AD) von Siemens aufgelistet. Dabei wird festgehalten, welche Infor-
mationen in dem Anforderungsdokument enthalten sein miissen und wie dieses aufgebaut
ist. Der Inhalt des Anforderungsdokuments wird anhand eines Beispielprojekts festgelegt.
Die Anforderungen AD-F1 bis AD-F9 sowie die nicht funktionalen Anforderungen sind
fiir jedes Projekt gleich.

26

3 Anforderungsanalyse

AD-F1 [muss|: Die Anforderungen werden aus einem Kundenanforderungsdokument
generiert.

Das Kundenanforderungsdokument ist in Form eines PDF Dokuments.

AD-F2 [muss|: Das Dokument hat eine Ubersicht, welche die Projektnummer, die Do-
kumentenbezeichnung, das Erstellungsdatum, die Dokumentennummer und die Version
beinhaltet.

AD-F3 [muss]: In der Ubersicht gibt es eine Tabelle fiir das Versionsmanagement, mit

den Spalten: Version, Anderungsdatum, Autor, Anderungen und Bemerkungen

AD-F4 [muss]: Die Anforderungen werden eindeutig nummeriert. Die Nummern
werden in einer Spalte, mit der Uberschrift ,No.“ eingetragen.
Die Nummerierung hat die Form: Anfl, Anf2, Anf3, etc.

AD-F5 [muss]: Fiir das Kapitel der Anforderungen gibt es eine Spalte ,Chapter. Dort

werden die jeweiligen Kapitel des Kundenanforderungsdokuments eingetragen.

AD-F6 [muss]|: Die Anforderungen haben eine kurze und messbare Beschreibung, welche

in der Spalte ,Description” stehen.

AD-F7 [muss]: Es gibt eine leere Spalte fiir die Kategorisierung, mit der Uberschrift

Category* und eine Spalte fiir Kommentare, mit der Uberschrift ,Notes“.

AD-F8 [kann]|: Die einzelnen Anforderungen werden auf ihre Umsetzbarkeit tiberpriift
und farblich markiert.
Dies dient dazu, dass beim spdteren Korrigieren des Dokuments durch einen Mitarbei-

tenden die Arbeit vereinfacht wird.

AD-F9 [muss]: Der Dateiname wird aus der Projektnummer, dem DCC, der
Dokumentennummer, dem Status, der Version und der Dokumentenbezeichnung zu-
sammengesetzt. Der Name fiir das Anforderungsdokument lautet: Projektnummer -+
,-EC411-WO01-RequirementList®.

Es gibt fiir die Dokumentennamen eine Vorschrift der Abteilung, von der ein Auszug im
Anhang (Abschnitt A.1) zu finden ist.

AD-F10 [muss]|: Es soll kein neuer Inhalt generiert werden. Die Anforderungen werden

anhand der Informationen des Anforderungsdokument vom Kunden erstellt.

27

3 Anforderungsanalyse

Abbildung 3.3: Aufbau der Kopfzeile der technischen Spezifikation

Abbildung 3.4: Aufbau der Fufizeile der technischen Spezifikation

AD-NF1 [kann]: Das Dokument ist in Form einer Excel-Datei.

3.4.3 Technische Spezifikationen

Der Abschnitt Technische Spezifikationen (TS) listet die Anforderungen an die Do-
kumente fiir die technischen Spezifikationen. Dabei wird sowohl auf das Dateiformat, das
Design des Dokuments, als auch den Inhalt anhand von Beispieldokumenten eingegan-

gen.

TS-F1 [muss]: Die technische Spezifikation wird aus einem Anforderungsdokument
generiert.

Das Anforderungsdokument ist eine .xlsx-Datei

TS-F2 [muss|: Das Dokument hat eine Kopfzeile mit den folgenden Informationen:
Kunde, Projekt, Dokumentenbezeichnung/ Titel, Erstellungsdatum, Dokumentennum-
mer, Version. Zudem ist der Schriftzug ,,SIEMENS“ abgebildet.

Die Aufbau der Kopfzeile kann aus Abbildung 3.3 entnommen werden.

TS-F3 [muss|: Das Dokument hat eine Fufzeile mit den folgenden Informationen:
Seitenzahl, Dateiname mit Dateiformat, Copyright-Hinweis

Die Aufbau der Fufizeile kann aus Abbildung 3.4 entnommen werden.

28

3 Anforderungsanalyse

Abbildung 3.5: Aufbau der Titelseite der technischen Spezifikation

TS-F4 [muss]: Die Titelseite enthélt im linken unteren Bereich die Informationen:
Erstellungsdatum, Autor, Dokumentennummer und Version.

Das Design der Titelseite kann aus Abbildung 3.5 entnommen werden.

TS-F5 [muss]|: Die Titelseite enthilt keine Fufizeile.
TS-F6 [muss]: Die Titelseite enthélt als Titel die Projektbezeichnung und sowie die
Dokumentenbezeichnung

TS-F7 [muss]|: Es gibt ein automatisches Inhaltsverzeichnis, welches die einzelnen Ab-

schnitten des Dokuments beinhaltet.

TS-F8 [kann|: Es gibt ein Tabellenverzeichnis, in dem alle, in der technischen Spezifi-

kation, vorkommenden Tabellen aufgelistet sind.

29

3 Anforderungsanalyse

Abbildung 3.6: Tabelle fiir das Versionsmanagement der technischen Spezifikation

Abbildung 3.7: Tabelle fiir den Dokumentenstatus der technischen Spezifikation

TS-F9 [kann]: Es gibt ein Abbildungsverzeichnis, in dem alle, in der technischen Spe-

zifikation, vorkommenden Abbildungen aufgelistet sind.

TS-F10 [muss]: Fiir das Versionsmanagement gibt es eine Tabelle mit den Spalten:
Version, Anderungsdatum, Autor, Anderungen und Bemerkungen.

Eine Vorlage fiir das Aussehen des Versionsmanagement ist in Abbildung 3.6 dargestellt.

TS-F11 [muss|: Fiir den Dokumentenstatus gibt es eine Tabelle mit den Spalten:
Aktion und Name, Unterschrift und Datum. In der Spalte ,,Aktion* gibt es drei Felder
mit dem Inhalt Autor, Kontrolle und Veréffentlichung.

In Abbildung 3.7 ist eine Designvorlage fir den Dokumentenstatus abgebildet.

30

3 Anforderungsanalyse

TS-F12 [muss]: Der Dateiname wird aus der Projektnummer, dem DCC, der
Dokumentennummer, dem Status, der Version und der Dokumentenbezeichnung zu-
sammengesetzt. Der Name fiir das Anforderungsdokument lautet: Projektnummer +
,-EC412-W01-TechnicalSpecification®.

Es gibt fiir die Dokumentennamen eine Vorschrift der Abteilung. Ein Ausschnitt davon

ist im Anhang zu finden.

TS-NF1 [kann|: Das Dokument ist in Form einer Word-Datei

3.4.4 Testfille
Im Folgenden werden die Anforderungen zum Erstellen von Testféllen (TF) beschrie-

ben. Dabei werden zunéchst die Anforderungen an den Aufbau eines Testfalls aufgefiihrt

und anschlieffend, welche Informationen die Testfélle beinhalten miissen.

TS-F1 [muss]: Die Testfille werden aus einer technischen Sepzifikation generiert.

Die technische Sepzifikation ist eine .docz-Dater.

TF-F2 [muss]: Das Dokument hat eine Ubersicht, in der das Projekt, die Testart, der

Testname, sowie die Dokumentenbezeichnung beinhaltet.

TF-F3 [muss]|: Die Testfille miissen eine eindeutige ID (,ID*) haben.

TF-F4 [muss]|: Die Testfélle haben eine Spalte ,Section® fiir die Gruppierung des Test-
falls.

TF-F5 [muss|: Die Testfille werden in der Spalte ,Description® eindeutig beschrieben.

TF-F6 [muss]: Fiir das Testdatum wird die Spalte , Test date angelegt.

TF-F7 [muss]|: Es gibt eine Spalte ,/ Tester* fiir den Namen der testenden Person.

31

3 Anforderungsanalyse

TF-F8 [muss]|: Es wird das zu erwartende Ergebnis (,Expected result”) definiert.

TF-F9 [muss|: Zum Eintragen des Testergebnisses gibt es ein Feld , Test result®.

TF-F10 [muss|: Es konnen Kommentare (,Notes”) fiir einen S7-Programmtest und den

CMS Test eingetragen werden.

TF-F11 [muss]: Es werden sowohl Negativ- als auch Positivtests erstellt.

TF-F12 [muss|: Der Dateiname wird aus der Projektnummer, dem DCC, der
Dokumentennummer, dem Status, der Version und der Dokumentenbezeichnung zu-
sammengesetzt. Der Name fiir das Anforderungsdokument lautet: Projektnummer -+
,+WT1901-WO01-Textcases”.

Es gibt fir die Dokumentennamen eine Vorschrift der Abteilung. Ein Ausschnitt davon

ist im Anhang zu finden.

TF-NF1 [kann|: Die Dokumente sind in Form einer Excel-Datei

3.5 Hinweis

Aufgrund der Vollstéindigkeit, sowie eines besseren Uberblicks iiber den Umfang der ge-
samten Anwendung, sind in Abschnitt 3.4 alle Anforderungen an die Anwendung aufge-
listet. Da der Umfang und die Dauer einer Bachelorarbeit beschriankt sind, kénnen nicht
alle Anforderungen erfiillt werden. Der Schwerpunkt liegt aus diesem Grund vor allem
auf die Anforderungen aus Unterabschnitt 3.4.1 und 3.4.2. Dies sind die Kernpunkte der
Anwendung, auf die spéter bei einer Weiterentwicklung aufgebaut werden kénnen. Fiir
die spatere Weiterentwicklung wird kurz auf die Anforderungen aus Unterabschnitt 3.4.3
und 3.4.4 im Konzept (Abschnitt 4.5) eingegangen.

Zudem koénnen die Anforderungen zum Anforderungsmanagement Tool Polarion nur be-
dingt erfiillt werden, da lediglich ein Testzugang fiir die Anwendung vorliegt. Dies wird

in Abschnitt 5.4 genauer erldutert.

32

4 Konzept und Design

In diesem Kapitel werden das Konzept und das Design der Anwendung detailliert be-
schrieben. Zunéchst erfolgt ein Vergleich verschiedener Sprachmodelle zur Generierung
der Projektmanagementdokumente. Im Anschluss daran wird eine geeignete Program-
miersprache fiir die Implementierung der Anwendung ausgewahlt. Danach wird die Kom-
munikation mit dem LLM erlautert und wie diese strukturiert sein soll. Dabei wird auf
das Senden einer Nachricht von chatbasierten und visuellen LLMs, sowie das Empfangen
der Antwort eingegangen. Weiterhin wird das Einlesen und Verarbeiten von PDF's erlau-
tert, um den Kontext zur Erstellung von Anforderungsdokumenten generieren zu kénnen.
Es werden verschiedene Methoden dargestellt und ihre Vorteile sowie Nachteile erlautert.
Anschlieftend wird auf die Erstellung der einzelnen Dokumente eingegangen. Zum einen
wird dabei der erforderliche Kontext fiir das LLM betrachtet und zum anderen, wie die
Informationen verarbeitet und das Dokument geschrieben wird. Darauf folgt die Kom-
munikation mit dem Anforderungsmanagement Tool , Polarion”. Von dort werden die
Dokumente zur Generierung der Projektmanagementdokumente entnommen und die ge-
nerierten Dokumente wieder abgelegt. Zum Schluss wird auf die grafische Oberflache der

Anwendung Bezug genommen.

4.1 Eingesetzte Sprachmodelle

Die interne Siemensplattform code.siemens bietet Zugriff auf verschiedene LLMs. An-
dere Plattformen, wie ChatGPT, speichern Informationen héufig zwischen oder verwen-
den sie zum Trainieren von Modellen. Da die Kommunikation mit dem LLM auch fiir
andere Projekte genutzt werden kann, miissen die iibergebenen Informationen an das
LLM vertraulich behandelt werden (vgl. Anforderung DG-NF5). Daher wird die unter-
nehmensinterne interne Plattform code.siemens verwendet (vgl. Anforderung DG-NF2,
Anforderung DG-NF4).

Es gibt mehrere Modelle, welche fiir die Anwendung genutzt werden konnen. Dabei sind

33

4 Konzept und Design

vor allem die drei Modelle, Mistral 7b Instruct, Deepseek R1 Distill Qwen 7b und
Qwen3 30B A3B zu betrachten. Diese konnen frei verwendet werden und sind fiir den
Produktionseinsatz vorgesehen.

Neben den drei genannten Modellen gibt es noch weitere Modelle, welche genutzt werden
konnen. Diese befinden sich jedoch im Alpha-Status und sind fiir die Entwicklung und
Forschung vorgesehen. Daher werden diese Modelle auch haufiger gegen neuere Modelle
ersetzt und sind damit nicht Vorwéartskompatibel. Es handelt sich dabei um die Modelle
Llama 3.1 8B Instruct, Mistral Nemo Instruct 2407 und Qwen2.5 Coder 7B
Instruct. Es werden nur chatfihige Modelle einbezogen, da dies notwendig fiir das Er-
stellen der Dokumente ist. Zum Extrahieren des Textes einer PDF-Datei wird jedoch
das Pixtral 12B 2409 betrachtet, welches ein visuelles Modell darstellt und fiir die
Bildanalyse ausgelegt ist. [15]

4.1.1 Mistral 7b Instruct

Das Modell Mistral 7B ist ein Modell aus September 2023 mit 7,3 Milliarden Parame-
tern. Es benutzt die GQA fiir schnellere Schlussfolgerungen und die SWA, um besser mit
langeren Sequenzen umzugehen. Die Fenstergrofe betragt 4k und die Sequenzldnge 16k
Token. Mistra 7B Instruct ist eine Abwandlung von Mistral 7B und fiir eine Chatinter-
aktion ausgelegt. Im MT-Bench schneidet das Modell besser ab, als andere 7B Modelle,
wie Llama-2-7b-chat. Zudem hat Mistral 7B Instruct eine bessere Performance bei dem
Benchmark, als manche 13B Modelle, wie Llama-2-13b-chat oder WizardLM-13B-v1.1.
Insgesamt erreicht das Modell Mirstral 7B Instruct bei dem MT Bench einen Wert von
6,8440,065. Im MMLU Benchmark wird eine Genauigkeit von 60,1 % und im HellaSwag

Benchmark eine Genauigkeit von 81,3 %.1:2

4.1.2 Deepseek R1 Distill Qwen 7b

DeepSeek R1 ist ein Modell von der Firma DeepSeek aus dem Jahr 2025. Es besitzt 7,62
Milliarden Parameter und die Fahigkeit zur Selbstiiberpriifung, Reflexion und Denkket-
ten (Chain of Thought) zu bilden. Die maximale Kontextldnge betragt 32.768 Token.

'https://huggingface.co/mistralai/Mistral-7B-Instruct-vo0.2, Zugriffsdatum:
06.03.2025
?https://mistral.ai/news/announcing-mistral-7b, Zugriffsdatum: 06.03.2025

34

4 Konzept und Design

DeepSeek ist fiir die Sprachen Englisch und Chinesisch optimiert, wodurch es vorkom-
men kann, dass die Antwort und Schlussfolgerung auf Englisch ist, obwohl die Anfrage
in einer anderen Sprache gestellt wurde. Neben der Antwort auf die Anfrage, liefert De-
epSeek R1 einen Gedankengang (Chain of Thought). Dort wird die Vorgehensweise zur
Absolvierung der Anfrage beschrieben. Gekennzeichnet wird der Chain of Thought durch
den XML-Tag <think> . Das 32B Modell erreicht im MMLU Benchmark eine Genauig-
keit von 87,4 %. Es ist anzunehmen, dass das 7B Modell schlechter im MMLU Benchmark
abschneidet.? [5]

4.1.3 Qwen2.5 Coder 7B Instruct

Das neueste Modell der CodeQwen Code-spezifischen LLMs ist der Qwen2.5-Coder. Das
Modell Qwen2.5 Coder 7B Instruct hat 7,62 Milliarden Parameter und 28 Schichten. Die
Kontextlinge betragt 131.072 Token. Es ist speziell fiir das Schreiben und Analysieren
von Code ausgelegt und daher vermutlich fiir den Zweck dieser Arbeit nicht optimal
geeignet. Wie in Unterabschnitt 2.4.1 bereits beschrieben, ist es notwendig, Text zu
generieren, zusammenzufassen, zu analysieren und ggf. zu iibersetzen. Code wird in keiner
Form verarbeitet. Dennoch wird das Modell, wie die anderen genannten Modelle, fiir die
Anwendung getestet. Es verwendet die GQA mit 28 Kopfen fiir schnellere Antworten.*:5
Im MMLU Benchmark erreicht das Modell Qwen2.5 Coder 7B Instruct eine Genauigkeit
von 67,6 %.6

4.1.4 Llama 3.1 8B Instruct

Auch die Firma Meta hat mit Llama ein LLM auf den Markt gebracht. Das Modell
Llama 3.1 8B Instruct hat 8,03 Milliarden Parameter und ist im Juli 2024 erschienen.
Es ist ausschlieblich fiir Texteingaben entwickelt und fiir den mehrsprachigen Dialog
optimiert. Die Kontextlinge betragt 128k Token. Das Modell verwendet GQA fiir eine

3https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B, Zugriffsdatum:
10.04.2025

“https://huggingface.co/Qwen/Qwen2.5-Coder-7B, Zugriffsdatum: 27.05.2025

Shttps://qwenlm.github.io/blog/qwen2.5-coder-family/, Zugriffsdatum: 28.05.2025

Shttps://llm-stats.com/models/compare/qwen—-2.5-14b—instruct-vs—-qwen-2.5-
coder-T7b-instruct, Zugriffsdatum: 03.06.2025

35

4 Konzept und Design

verbesserte Skalierbarkeit der Inferenz. Es erreicht eine Genauigkeit von 68,5 % im MMLU
Benchmark.” 8

4.1.5 Mistral Nemo Instruct 2407

Mistral Nemo Instruct 2407 ist ebenfalls im Juli 2024 erschienen, besitzt 12,2 Milliarden
Parameter und wurde in Zusammenarbeit mit NVIDIA entwickelt. Die Kontextlinge
betragt 128k Token und das Modell hat 40 Schichten. Als Aufmerksamkeitsmechanismus
wird eine GQA verwendet. Es erreicht im HellaSwag Benchmark eine Genauigkeit von
83.5% und 68.0 % im MMLU Benchmark.?1?

4.1.6 Qwen3 30B A3B

Das Modell Qwen3 30B A3B ist ein Modell aus der neuesten Qwen Reihe. Es besitzt
30,5 Milliarden Parameter und 48 Schichten. Die Kontextlange betriagt 128K Token und
verwendet die GQA. Im MMLU Benchmark wird eine Genauigkeit von 81.38 %. Zudem
liefert das Modell, wie DeepSeek R1, bei der Antwort den Chain of Thought mit. Die-
ser wird ebenfalls durch ,,<think>< /think>“ markiert. Fiir dieses Modell wurden keine
Genauen Ergebnisse fiir den MMLU, HellaSwag oder MT-Bench Benchmark gefunden.
Jedoch performen die Modelle der Qwen3 Reihe genauso gut, wie die der Qwen2.5 Reihe
mit mehr Parametern. Qwen3 30B ldsst sich demnach Qwen2.5 72B verleichen, welches
im MMLU Benchmark eine Genauigkeit von 86,1 % erreicht hat.!!+12 [19]

4.1.7 Pixtral 12B 2409

Das Pixtral Modell ist im Gegensatz zu den anderen Modellen nicht zur generellen Text-
verarbeitung gedacht, sondern fiir das Verarbeiten von Bildern. Es wurde im September
2024 verdffentlicht und hat 12,4 Milliarden Parameter. Die Kontextlinge betréagt 128k

Token. Pixtral 12B unterstiitzt variable Bildgrofsen und Seitenverhéltnisse, sodass diese

"https://huggingface.co/meta-1lama/Llama-3.1-8B-Instruct, Zugrifisdatum: 10.04.2025
8https://ai.meta.com/blog/meta-1llama-3-1/, Zugriffsdatum: 04.04.2025
https://mistral.ai/news/mistral-nemo, Zugriffsdatum: 04.04.2025
Yhttps://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407, Zugriffsdatum:
04.04.2025
Upttps://huggingface.co/Qwen/Qwen3-30B-A3B, Zugriffsdatum: 27.05.2025
2https://qwenlm.github.io/blog/qwen2.5-max/, Zugriffsdatum: 03.06.2025

36

4 Konzept und Design

nicht zuvor normiert werden miissen. Beim MMLU Benchmark wird eine Genauigkeit
von 69,2 % erreicht und beim MT-Bench einen Wert von 7,68. Zudem wurde ein multi-
modaler MT-Bench Benchmark entwickelt, welcher das Modell auf die Verarbeitung von
mehreren verschiedenen Datentypen (Bild und Text gleichzeitig) bewertet. Dort erreicht
Pixtral 12B einen Wert von 6,05.13:14

4.2 Programmiersprache

Fiir die Entwicklung der Anwendung muss zunéchst eine Programmiersprache ausgewéhlt
werden. Hierzu werden verschiedene Programmiersprachen im Hinblick auf die folgenden

Aspekte betrachtet, welche vom Verfasser als relevant erachtet werden:

1. Entwicklung einer grafischen Benutzeroberfliche
(Anforderung DG-F7)
Fiir die Entwicklung einer grafischen Benutzeroberfliche kénnen z. B. die Program-
miersprachen JavaScript'®, Python!'6, Javal” und C#'® genutzt werden. Es gibt
noch viele weitere Programmiersprachen, mit denen die Entwicklung einer grafi-

schen Benutzeroberfliche moglich ist.

2. Schreiben von Microsoft Excel und Word-Dateien
(Anforderung AD-NF1, TS-NF1, TF-NF1)
Das Schreiben von Microsoft Excel und Word-Dateien ist mit verschiedenen Pro-
grammiersprachen moglich. Beispiel sind Python!?20, VBA2!, C#22, JavaScript?3
und Java??. VBA wird dabei vor allem fiir die Automatisierung von Office-Dateien

genutzt, beispielsweise in Form von Makros.

Bhttps://mistral.ai/news/pixtral-12b, Zugriffsdatum: 27.05.2025
Ynttps://huggingface.co/mistralai/Pixtral—-12B-2409, Zugriffsdatum: 27.05.2025
Bhttps://docs.nodegui.org/, Zugriffsdatum: 12.05.2025
Yhttps://wiki.python.org/moin/GuiProgramming, Zugriffsdatum: 09.04.2025
"https://spring.io/, Zugriffsdatum: 12.05.2025
Bnttps://dotnet .microsoft.com/en-us/apps/desktop, Zugriffsdatum: 09.04.2025
¥https://www.python-excel.org/, Zugriffsdatum: 09.05.2025
Pnttps://python-docx.readthedocs.io/en/latest/, Zugriffsdatum: 09.05.2025
21https ://learn.microsoft.com/en-us/office/vba/library-reference/concepts/
getting-started-with-vba-in-office, Zugriffsdatum: 09.05.2025
2https://learn.microsoft.com/de—-de/dotnet/csharp/advanced-topics/interop/
how-to-access-office-interop-objects, Zugriffsdatum: 09.05.2025
Bhttps://learn.microsoft.com/en-us/office/dev/add-ins/overview/office—add-
ins, Zugriffsdatum: 09.05.2025
Mhttps://poi.apache.org/, Zugriffsdatum: 09.05.2025

37

4 Konzept und Design

3. Kommunikation mit dem LLM
(Anforderung DG-NF4, DG-NF5)
Die Kommunikation mit dem LLM kann iiber ein API mit Hypertext Transfer
Protocol (HTTP)?® oder eine OpenAl Bibliothek realisiert werden.?¢ Dafiir eignen
sich JavaScript, Python, C#, Java und Go.?” Eine HTTP-Verbindung kann mit

vielen Programmiersprachen realisiert werden.

4. Kommunikation mit Polarion
(Anforderung DG-F2, DG-F4, DG-F6, DG- F13, DG-F14, DG-F15)
Mit einer REST API kann die Kommunikation mit Polarion implementiert werden.
Besonders eignen sich dafiir die Programmiersprachen Java, JavaScript und C#,

da die Schnittstelle fiir diese Programmiersprachen dokumentiert ist.?®

5. Verwendete Programmiersprachen in der Abteilung
(Unterabschnitt 3.2.4)
Da das Kerngeschift die Elektrifizierung und Automatisierung von Krananlagen
ist und dabei vorwiegend die SPS-Programmierung notwendig ist, tiberwiegen die
Sprachen FUP und SCL. Des Weiteren werden noch C# und VBA verwendet, fir

Makros oder Anwendungen verwendet.

Anhand der aufgefiihrten Kriterien zur Programmiersprache ist zu erkennen, dass sich
mehrere Programmiersprachen, wie Java, JavaScript, Python oder C#, zur Erstellung
der Anwendung eignen. Da in der Abteilung bereits C# verwendet wird und in Zukunft
weitere Projekte, basierend auf der Anwendung, implementiert werden sollen, wird sich

fiir C# zur Entwicklung der Anwendung entschieden.

4.3 Kommunikation mit dem LLM

Fiir die Kommunikation mit dem LLM, bzw. den Modellen gibt es verschiedene M6glich-
keiten. Generell wird Kommunikation iiber HTTP realisiert. Dabei werden im Request
die URL, der API-Key und die Nachricht iibergeben. Der Aufbau der Nachricht wird

Phttps://developer.internal.siemens.com/code-siemens—com/1llm/overview.html,
Zugriffsdatum: 09.05.2025

https://code.siemens.io/ai/, Zugrifisdatum: 09.05.2025

https://platform.openai.com/docs/libraries, Zugriffsdatum: 09.05.2025

Bnttps://testdrive.polarion.com/polarion/sdk/doc/rest/index.html, Zugriffsdatum:
06.03.2025

38

4 Konzept und Design

Abbildung 4.1: Klassendiagramm der Klasse LimConnection

in Unterabschnitt 4.3.1 ndher beschrieben. Es gibt die Option, die Kommunikation iiber
HTTP selbst zu implementieren oder ein vorhandenes Paket zur Kommunikation zu nut-
zen, welches auf der OpenAl Application Programming Interface (API) basiert. In die-
sem Fall féllt die Entscheidung auf das Paket OpenAlI-DotNet. Das OpenAlI-Paket wird
nicht genutzt, da es dort nicht méglich ist, die URL fiir die Verbindung zu dndern.??-39
Fiir die Kommunikation wird eine Klasse LlImConnection implementiert (siche Ab-
bildung 4.1). Diese beinhaltet die Attribute fiir die Hauptadresse (baseUrl), den API
Schliissel (apiKey) und den Modellnamen (modelName). Zudem besitzt die Klasse noch
die Methode LiImChatRequest() zur Kommunikation. Dabei soll es mdglich sein, Chat-

nachrichten, sowie Bilder zu senden.

4.3.1 Aufbau der Nachrichten

Die Nachrichten sind im JSON-Format (JavaScript Object Notation). In Listing 4.1
sind die notwendigen Parameter fiir die Kommunikation aufgelistet. Dabei wird zunéchst
das Modell (,,model*) festgelegt, welches genutzt wird. Die verwendeten Modelle dieser
Arbeit sind bereits in Unterabschnitt 4.1.1 bis Unterabschnitt 4.1.6 aufgefiihrt. Nach der
Auswahl des Modells werden die Nachrichten (,messages®) geschrieben. Dabei gibt es
drei Kategorien der Nachrichten, die durch ,role“ festgelegt werden: ,system”, ,user
und ,,assistant“. Im ,,content* steht der jeweilige Prompt fiir den Nachrichtentyp. Uber
,2temperature” kann die Kreativitdt und Zuféalligkeit der Antwort eingestellt werden.
Eine niedrige Temperatur sorgt flir eine kohdrente und konsistente Antwort, wihrend

eine hohe Temperatur fiir eine kreative Antwort sorgt. Durch ,,stream* wird die Antwort

Phttps://www.nuget .org/packages/OpenAI/2.1.0#show-readme-container, Zugriffsda-
tum: 06.05.2025

3%https://platform.openai.com/docs/api-reference/introduction, Zugriffsdatum:
30.05.2025

39

© 00 N O Ut ok W N

e e e
T W NN = O

4 Konzept und Design

in Echtzeit wihrend der Generierung in Chunks iibermittelt und die Antwort baut sich

nach und nach auf.

—_

"model": "mistral-7b-instruct",
"messages": |
{
"role": "system",
"content": "You are a helpful AI assistant."”
b
{
"role": "user",
"content": "Hello, how are you?"
}
Iy
"temperature": O,
"stream": true

Listing 4.1: Aufbau der Nachricht fiir Chat LLMs im JSON-Format

Die Struktur der Nachricht fiir visuelle Modelle, wie etwa Pixtral 12B, unterscheidet sich
geringfiigig (vgl. Listing 4.2), da es sich, wie in Unterabschnitt 4.1.7 erldutert, um ein
Bildverarbeitungsmodell handelt. Dabei wird der Inhalt ,,content” in verschiedene Kate-
gorien aufgeteilt. Zundchst wird die Kategorie ,,type“ selbst festgelegt, in der beschrieben
wird, ob es sich um eine Textanweisung oder um ein Bild handelt. Bei einer Textanwei-
sung, wird in , text* die Anweisung beschrieben, welche Aktion das Modell, bezogen auf
das Bild, durchgefiihrt wird. Zum Bereitstellen des Bilds wird iiber ,image url® und
,url“ die URL des zu verarbeitenden Bildes iibergeben. Anstelle einer URL ist es ebenfalls
moglich, das Bild als einen Base64 String zu iibergeben. Die Parameter ,,model*, ,,mes-

sages®, ,role, ,temperature’ und ,stream* sind die gleichen wie in Listing 4.1.

Bei der Antwort des LLMs wird lediglich der Bereich ,,choices* genutzt, da dort die
Nachricht des LLM enthalten ist. Dies ist in Listing 4.3 abgebildet. Im Bereich ,,choi-
ces” befinden sich: ,finish reason® ,index” und , message”. ,Message* beinhaltet
»content®, role“, tool calls* und ,function call, wobei ,content* die Nachricht
des LLMs enthélt.

40

S Tt W N

~

10
11

4 Konzept und Design

"model": "pixtral-12b-2409",
messages = |
{
"role": "user",
"content": [{"type": "text", "text": prompt}, {"type":
"image_url", "image_url": {"url": image_url}}]
b
1y
"temperature": 0O,

"stream": true

Listing 4.2: Aufbau der Nachricht fiir visuelle LLMs im JSON-Format

4.3.2 Prompting

Die Prompts werden spezifisch fiir die unterschiedlichen Dokumente erstellt. Jeder Fall
beinhaltet dabei einen System Prompt sowie einen User Prompt. Fiir die Pompts wird
die Few-shot Methode angewandt und die Antwort als Structured Output vorgegeben.
Der Systemprompt wird in einer Textdatei im Markdown und XML-Format geschrieben.

Dabei gibt es die folgenden drei Kategorien:

o Identity
e Instructions

e Examples

Die Abschnitte werden als Markdown dargestellt und geschrieben. Nur der Abschnitt
y,Examples* ist im XML-Format, um zu zeigen wie auf eine Nachricht reagiert werden
soll. Dazu gibt es ein Element fiir die Benutzeranfrage (,,<user _query>“) und eins fiir die
Antwort des LLMs (,,<assistant response>“). Der Aufbau ist beispielhaft in Listing 4.4
dargestellt.

4.4 FEinlesen und Verarbeiten einer PDF-Datei

Um die Informationen aus den Anforderungsdokumenten des Kunden, welche in Form

einer PDF-Datei vorliegen, zu extrahieren, muss es moglich sein, den Inhalt dieser PDF-

41

10
11
12

4 Konzept und Design

"choices": |
{
"finish_reason”": "stop",
"index": O,
"message": |
"content": " Hello! I'm just an AI, so I don’t have

feelings, but I’'m here and ready to assist you. How
can I help you today?",

"role": "assistant",

"tool_calls": null,

"function_call": null

Listing 4.3: Aufbau der Antwort des LLM im JSON-Format

Datei einzulesen (Anforderung AD-F1). Zudem muss der Inhalt sinnvoll verarbeitet wer-
den, um dem LLM eine verniinftige und eindeutige Nachricht iibermitteln zu koénnen.
Ein groftes Problem stellt dabei das Einlesen von Grafiken und Tabellen, die in einer

PDF-Datei vorkommen, dar. Dieses Problem wird spéter genauer erldautert.

4.4.1 PdfSharp-Bibliothek

Eine Moglichkeit, zum FKEinlesen von PDF-Dateien, bietet die PdfSharp-Bibliothek in
C#. Diese ist eine frei verwendbare Open-Source-Bibliothek3! zum Lesen, Erstellen und
Bearbeiten von PDF-Dokumenten. Das Extrahieren von Text aus diesen Dokumenten ist
dabei zwar moglich, es gibt jedoch keine explizite Funktion dafiir. Damit gestaltet sich
das Extrahieren von Text mit der PdfSharp-Bibliothek aufwendig und diese Funktion
soll nur einen kleinen Teil der Arbeit darstellen, weshalb dazu die PdfSharp-Bibliothek
nicht weiter verwendet wird.

Das Extrahieren von Bildern aus einem PDF Dokument ist dahingegen intuitiv und ohne
groften Aufwand verbunden. Dennoch muss vorher selbststandig tiberpriift werden, ob es
sich bei einem Objekt um ein Bild handelt.

3nttps://www.pdfsharp.net/Licensing.ashx, Zugriffsdatum: 11.03.2025

42

4 Konzept und Design

Identity

Instructions

Examples
<user_query>
</user_query>
<assistant_response>

</assistant_response>

Listing 4.4: Aufbau eines system Prompts

4.4.2 PdfPig-Bibliothek

Eine bessere Moglichkeit bietet die PdfPig-Bibliothek in C#. Dies ist eine unter der
Apache-Lizenz 2.03? verwendbare Bibliothek zum Lesen, Erstellen und Bearbeiten von
PDF-Dokumenten. Mit PdfPig konnen die einzelnen Buchstaben, Zeichen, Worter und
Bilder einer PDF extrahiert werden. Mit den Methoden GetWords() und GetImage()
der Klasse Page lassen sich der Text und die Bilder einer PDF extrahieren.

Eine besondere Herausforderung ist das Auslesen von Tabellen. Diese werden nicht er-
kannt und der Text wird, wie der restliche Blocktext, in dem verwendeten Format dar-
gestellt. Das erschwert das Lesen und richtige Interpretieren des Textes, nachdem dieser
extrahiert wurde. Hinzu kommt, dass leere Felder einer Tabelle gar nicht dargestellt wer-
den. Um die Tabellen sinnvoll darzustellen, muss ein Algorithmus implementiert werden,

der Tabellen erkennt und verniinftig in einen String formatiert.

Tabellen extrahieren: Um Tabellen aus einer PDF-Datei zu extrahieren, werden zu-

néchst alle Linien einer Seite herausgefiltert, wobei Buchstaben und Zeichen nicht dazu

32https://licenses.nuget.org/Apache-2.0, Zugriffsdatum: 11.03.2025

43

4 Konzept und Design

zéhlen. Es handelt sich dabei um Linien, welche in Form eines Rechtecks auftauchen,
wenn diese auch als eine Geometrieform deklariert sind. Dies kann mit der Methode
GetBoundingRectangle() realisiert werden. Danach kénnen diese in horizontale und
vertikale Linien unterteilt werden.

Nachdem der Text, sowie die horizontalen und vertikalen Linien extrahiert wurden, kann
eine Tabelle erstellt werden. Dazu ist ein Programmablaufplan in Abbildung 4.2 abge-
bildet. Zunéchst wird iiberpriift, ob alle Zeilen der Tabelle durchlaufen wurden. Ist dies
nicht der Fall, wird die Position der ersten Zeile der Tabelle ermittelt. Danach wird eine
horizontale Linie zum String hinzugefiigt. Um nun den Inhalt der einzelnen Zellen der
Zeile zu extrahieren, wird iiberpriift, ob alle Spalten durchlaufen wurden. Wurden nicht
alle Spalten durchlaufen, wird eine vertikale Linie und der Text der Zelle zum String
hinzugefiigt. Nachdem alle Spalten durchlaufen wurden, wird noch einmal eine vertikale
Linie zum String hinzugefiigt und die Schleife beginnt von vorn. Sobald jede Zeile der
Tabelle durchlaufen wurde, wird noch eine horizontale Linie zum String hinzugefiigt und
die Methode beendet.

4.4.3 Bildererkennung

Statt des direkten Lesens einer PDF-Datei, kann diese auch zuerst in ein Bild konver-
tiert werden, um anschlieffend das Bild zu lesen. Dazu kann das LLM Pixtral 12B 2409

verwendet werden, welches fiir visuelle Aufgaben ausgelegt ist.

PDF zu PNG: Um die PDF-Datei als Bild zu verarbeiten, muss diese wie oben ge-
nannt erst in ein Bild konvertiert werden. Dazu wird das Paket Freeware. Pdf2Png ver-
wendet. Dies konvertiert, wie der Name impliziert, PDF's in einzelne Bilder (ein Bild pro
Seite). Die Bilder werden als Portable Network Graphics (PNG) zuriickgegeben.

Extrahieren des Textes mit Pixtral 12B: Nachdem die PDF-Datei mit Freewa-
re.Pdf2Png in ein Bild konvertiert wurde, ist es mdoglich, dieses mit Pixtral 12B 2409
zu analysieren. Die Kommunikation mit dem Modell wird bereits in Abschnitt 4.3 be-
schrieben. Um dem Modell ein Bild zu senden, muss dieses zuvor in einen Base64 String
konvertiert werden. Mit Base64 lassen sich 8-Bit-Binédrdateien, wie Programme, .zip-

Datein und Bilder in eine Zeichenfolge aus ASCII-Zeichen konvertieren.?® Dazu kann mit

33https://www.base64decode.org/de/, Zugriffsdatum: 17.04.2025

44

4 Konzept und Design

Abbildung 4.2: Ablaufplan zum Erstellen einer Tabelle

der Methode ReadAllBytes() der Klasse File eine Datei in einen Array von Bytes ge-
schrieben werden. Dieser Array wird anschlieflend mit der Methode ToBase64String()
der Klasse Convert in einen Base64 String konvertiert. Beide Klassen (File und Con-
vert) befinden sich im System.I/O Namespace.

Der Base64 String kann nun an das Pixtral-Modell, mit einer Aufgabe oder Anweisung,
gesendet werden. Das Modell soll den Text des Bildes extrahieren und als Markdown

wiedergeben. Dabei soll das Design unveréandert bleiben.

4.5 FErstellen der Dokumente

Die einzelnen Dokumente werden durch das LLM generiert (Anforderung DG-NF4). Da-
zu muss ein geeigneter Kontext fiir das Modell bereitgestellt werden. Fiir alle Dokumente

soll der Kontext als Markdown iibergeben werden und auch das Modell soll das erstellte

45

4 Konzept und Design

Abbildung 4.3: Klassendiagramm des Interface Documents mit den Unterklassen Re-
quirementDocument, TechnicalSpecification und Testcases

Dokument als Markdown zuriickgeben. Zudem ist der Kontext fiir das LLM sowie die
Antwort auf Englisch (Anforderung DG-NF1). Mit den Informationen des LLMs werden
anschlieftend die Dokumente erstellt. Da diese Microsoft Office-Dateien sind, wird dafiir
das Microsoft. Office. Interop. Fxcel und Microsoft. Office.Interop. Word Assembly genutzt
(Anforderung AD-NF1, Anforderung TS-NF1, Anforderung TF-NF1).

Fiir die Erstellung der Dokumente wird ein Interface Documents mit den Methoden
CreateDocument(), AddContent(), SaveDocument() und CloseDocument() im-
plementiert. Diese sind in Abbildung 4.3 abgebildet. Die Methoden werden bei den ent-
sprechenden Dokumenten in den Unterabschnitten 4.5.1, 4.5.2 und 4.5.3 genauer be-

schrieben.

4.5.1 Anforderungsdokument

Die Ubersichtseite des Anforderungsdokuments wird unabhingig von der Antwort des
LLMs erstellt. Dies wird mit der Methode CreateDocument() der Klasse Require-
mentDocument realisiert (Anforderung AD-F2, Anforderung AD-F3, Anforderung AD-
F4). In der gleichen Methode wird auch die zweite Seite (,Requirements*) erstellt und
die Tabellen Uberschriften ,No.“, ,Description, ,Category” und ,Notes" (Anforderung
AD-F5, Anforderung AD-F6, Anforderung AD-FT7).

46

4 Konzept und Design

Anforderungen: Um geeignete Anforderungen zu generieren muss zuerst ermittelt
werden, was gute Anforderungen ausmachen. Die generierten Anforderungen sollen die

folgenden Regeln einhalten:

Regeln
e Nur eine Anforderung pro Satz e Das Passiv vermeiden
e Kurze Sitze bilden e Anforderungen beschreiben keinen L6-

. . . sungsweg
e Das Subjekt muss eindeutig sein

e Anforderungen sind messbar

Neben den sechs Regeln sollen die Anforderungen zusédtzlich immer aus einem Subjekt,
Pradikat und Objekt bestehen und durch die Worter ,muss“, ,soll“ und ,kann“ wird die
Prioritét beschrieben. [7]

Kontext: Fiir das Generieren der Anforderung wird ein LLM verwendet. Das Modell
soll die Antwort in einem vorgegebenen Format wiedergeben. Zuerst kommt die Nummer
der Anforderung ,Anfl“, |Anf2¢, Anf3“ usw. (Anforderung AD-F5). Danach kommt ein
Leerzeichen und es folgt die Anforderung (Anforderung Ad-F6). Endet die Anforderung,
wird ein Zeilenumbruch ,,\n“ hinzugefiigt. Fiir den System Prompt wird die Few-shot Me-
thode genutzt. Es werden dementsprechend Beispiele {ibergeben, um eine bessere Antwort
zu erhalten.

Da die Kontextlinge der Modelle begrenzt ist und die Anforderungsdokumente vom
Kunden umfangreich sein kénnen, miissen diese fiir den Kontext aufgeteilt werden. Ei-
ne Moglichkeit ist immer, nur einzelne Seiten, bzw. eine bestimmte Anzahl von Seiten
zu iibergeben. Dabei kann es jedoch vorkommen, dass Sétze, Worter oder Abschnitte
unterbrochen werden und somit die Informationen verloren gehen. Demzufolge wird das
Dokument auf die einzelnen Kapitel aufgeteilt. Zudem werden Seiten, die keine relevan-
ten Informationen fiir die einzelnen Anforderungen enthalten, ignoriert. Dies bezieht sich

auf die Titelseite und das Inhalts-, Tabellen- und Abbildungsverzeichnis.

Erstellen: Um die Antwort des LLMs korrekt in das Anforderungsdokument einzufi-
gen, wird die Methode AddContent() implementiert. Diese bekommt die Antwort iiber-
geben und fiigt diese in die erstellte Exceldatei ein. Die Antwort hat, wie zuvor bereits
beschrieben, immer eine feste Struktur. Der Programmablauf der Methode AddCon-
tent() ist in Abbildung 4.4 dargestellt. Zunéchst wird die Anzahl der Anforderungen

47

4 Konzept und Design

Abbildung 4.4: Programmablaufplan der Methode AddContent() aus der Klasse Re-
quirementDocument

gezahlt. Dazu wird ein regularer Ausdruck genutzt, der den String nach den Anfor-
derungsnummern durchsucht. Darauthin wird iiber eine for-Schleife jede Anforderung
durchlaufen. Dabei wird zuerst die erste Nummer abgeschnitten und in die Spalte ,,No.“
eingefiigt. Anschliefend wird die Anforderung selbst abgeschnitten und in die Spalte
,Description® eingefiigt(Anforderung AD-F5, Anforderung AD-F6).

Mit der Methode SaveDocument() wird das Anforderungsdokument gespeichert. Fiir
das Speichern muss ein Dateiname, nach den Richtlinien aus Abschnitt A.1, erstellt wer-
den. Dieser besteht aus der Projektnummer, dem Document Classification Code (DCC),
der Dokumentennummer, dem Status, der Version, sowie dem Dokumentennamen. Die
Projektnummer kann bei verschiedenen Dokumenten unterschiedlich sein. Die restlichen
Parameter sind jedoch immer gleich. Der DCC ist ,,kC*, was fiir technische Spezifikations-

und Anforderungsdokumente steht. Die Dokumentennummer wird auf ,411¢ festgelegt.

48

4 Konzept und Design

Der Status betragt ,W*, fiir in Arbeit und die Version ist ,01“. Der Dokumentenname
lautet ,RequirementList* (Anforderung AD-F9).

4.5.2 Technische Spezifikation

Die technische Spezifikation wird aus dem Anforderungsdokument generiert (Anforde-
rung DG-F3, TS-F1) und als Word-Datei bereitgestellt (Anforderung TS-NF1). Ahnlich
zu Unterabschnitt 4.5.1 wird die Kopf- und Fufzeile (Anforderung TS-F2, Anforderung
TS-F3), die Titelseite (Anforderung TS-F4, Anforderung TS-F5, Anforderung TS-F6),
das Versionsmanagement (Anforderung TS-F10) und der Dokumentenstatus (Anforde-
rung T'S-F11) unabhéngig von der Antwort des LLMs erstellt. Dies wird ebenfalls in der

Methode CreateDocument() der Klasse TechnicalSpecification implementiert.

Kontext: Fiir die technische Spezifikation wird ein Anforderungsdokument {ibergeben.
Die technische Spezifikation soll dabei nur fiir eine Kategorie (,,Category*) erstellt werden,
welche zuvor vom Nutzenden ausgewéahlt wird. Dazu werden als Kontext fiir das LLM
lediglich die Anforderungen der vorgegebenen Kategorie iibergeben, sowie die Abschnitte,
in denen diese aufgelistet waren (Anforderung). Auch in diesem Fall soll die Few-shot
Methode genutzt werden, um die Qualitdt der Antwort des LLMs durch Beispiele zu

verbessern.

Erstellen: Das Erstellen der technischen Spezifikationen ist wesentlich aufwendiger als
das Anforderungsdokument oder die Testfélle, da in diesem Fall die Worddatei verniinf-
tig formatiert werden muss. Das bedeutet, es wird ein automatisches Inhaltsverzeichnis,
ein Titelblatt und Kapitel und Abschnitte mit Uberschriften benétigt. Die technische
Spezifikation ist als Flieltext geschrieben, welcher vom Markdown zu Word konvertiert

werden muss.

Auch hier ist die Methode SaveDocument() zum Speichern des Dokuments. Lediglich
der Dateiname sowie das Dateiformat dndern sich im Gegensatz zum Anforderungsdo-
kument. Die Dokumentenbezeichnung lautet in diesem Fall TechnicalSpecification und

das Dateiformat ist ,.docx“. Der Rest bleibt identisch zum Anforderungsdokument.

49

4 Konzept und Design

4.5.3 Testfalle

Die Testfélle werden aus den technischen Spezifikationen generiert (Anforderung DG-F5,
TF-F1). Am Ende werden sie, wie das Anforderungsdokument, als Excel-Datei gespei-
chert (Anforderung TF-NF1). Wie bei den beiden vorherigen Dokumenten aus Unter-
abschnitt 4.5.1 und 4.5.2 werden vier Methoden zur Erstellung des Testfalldokuments
implementiert: CreateDocument(), AddContent(), SaveDocument() und Close-
Document().

CreateDocument() erstellt das Dokument unabhéngig von der Antwort des LLMs.
Dazu wird einmal eine Ubersicht in einem separaten Worksheet erstellt (Anforderung
TF-F2). Anschliefend werden auf der zweiten Seite die Spalteniiberschriften ,ID“, sec-
tion“, ,Description”, , Test date”, , Tester, ,Expected result”, ,Test result® und ,Notes“
erstellt (Anforderung TF-F3, TF-F4, TF-F5, TF-F6, TF-F7, TF-F8, TF-F9, TF-F10).

Kontext: Die Testfille sollen in einem dhnlichen Format, wie die Anforderungen iiber-
geben werden. Zuerst wird die ID des Testfalls fortlaufend geschrieben, danach kommt
die Testbeschreibung und getrennt durch zwei Et-Zeichen (,&&*) das erwartete Tester-
gebnis. Jeder Testfall steht in einer eigenen Reihe. Es soll ebenfalls die Few-shot Methode
fiir das Prompting genutzt werden, um die Beschreibung mit Beispielen zu verbessern.
Um die Kontextldnge nicht zu iiberschreiten, sollen, wie bei dem Anforderungsdoku-
ment, einzelne, aber in sich abgeschlossene, Abschnitte an das LLM iibergeben werden.
Die Antworten werden dann aneinander gehédngt. Werden aus einem Abschnitt keine

Testfdlle generiert, soll vordefinierte Antwort tibergeben werden.

Erstellen: Das Erstellen des Dokuments ist bei den Testfillen, im Gegensatz zu der
technischen Spezifikation, &hnlich zum Anforderungsdokument. Mit der Methode Add-
Content() wird die LLM Antwort in die entsprechenden Zellen geschrieben. Auch der
Programmablauf #hnelt sich zu dem des Anforderungsdokuments. Die Anderungen sind,
dass es sich um Testfille statt Anforderungen handelt und dementsprechend andere Spal-
ten beschrieben werden. Es handelt sich um die Spalten ,ID“, , Description* und , Expec-
ted result (Anforderung TF-F3, TF-F5, TF-F8).

Fiir die Testfélle ist die Methode SaveDocument () wieder dhnlich zum Anforderungsdo-
kument. Die Dokumentenbezeichnung dndert sich zu ,, Testcases” und der DCC zu ,WT*,
was fiir Logbiicher und Priifprotokolle steht. Somit &ndert sich auch der Dateiname, der

Rest ist jedoch identisch mit dem Anforderungsdokument.

50

4 Konzept und Design

Abbildung 4.5: Klassendiagramm der Klasse PolarionConnection
4.6 Anforderungsmanagement Tool (Polarion)

Polarion ist eine Anforderungsmanagement Anwendung von Siemens und soll fiir das
Verwalten von Projekten genutzt werden. Dort werden alle Dokumente, welche im Laufe
eines Projekts anfallen, abgelegt. Dazu zdhlen ebenfalls die Dokumente (Anforderungen,
technische Spezifikation, Testfille), die durch diese Arbeit generiert werden sollen. Damit
die Nutzenden die Dokumente nicht selbststiandig ablegen miissen, soll dies iiber die
Anwendung automatisiert werden. Polarion verfiigt {iber eine REST API, mit welcher
sich die Dokumente aus einem Projekt verwalten lassen. Dazu wird das Paket RestSharp
verwendet.

Zur Kommunikation mit Polarion wird die Klasse PolarionConnection implementiert,
welche Methoden zur Auswahl und Speichern von Dokumenten enthélt. Des Weiteren
enthalt die Klasse vier Attribute (projectld, spaceld, documentName, revision), zur
Ermittlung des Speicherorts. Das Klassendiagramm der Klasse PolarionConnection ist
in Abbildung 4.5 abgebildet.

4.6.1 Auswahl der Dokumente

Mit der Methode CopyDocument() wird ein ausgewéhltes Dokument kopiert, um an-
schlieffend daraus ein anderes Dokument mit dem LLM zu generieren. Das Dokument
wird vom Nutzenden ausgewéhlt, gleichzeitig wird die Projektnummer gespeichert, um
diese bei der Erstellung der Dokumente sowie fiir das Speichern zu verwenden. Fiir das

Wiedergeben von Dokumenten aus Polarion gibt es bereits eine Vorlage von Polarion,

51

4 Konzept und Design

welche in Listing 4.5 dargestellt ist.?* In der URL fiir den REST-Client stehen dabei die
Informationen Projektnummer (projectld), Ordner (spaceld), Dokumentenname (docu-
mentName) und Version (revision). Die Version ist dabei optional. Um auf den Stan-

dardordner zuzugreifen, wird ,, default” fiir den Ordner verwendet.

1 var client = new RestClient ("https://example.com/polarion/rest/vl/projects
/{projectId}/spaces/{spaceld}/documents/{documentName}/actions/copy?
revision={revision}");

client.Timeout = -1;

var request = new RestRequest();

request .Method = Method.POST;

request .AddHeader ("Content-Type", "application/json");

request .AddHeader ("Accept", "application/json");

request .AddHeader ("Authorization", "Bearer {personal_access_token}");

IRestResponse response = client.Execute (request);

Console.WritelLine (response.Content) ;

© 0 N O Ok W N

Listing 4.5: Methode CopyDocument() zum Kopieren eines Dokuments aus Polarion

4.6.2 Speichern der Dokumente

Mit patchDocument kénnen Dokumente aktualisiert werden. Zudem gibt es die Funk-
tion, Dokumente mit PDF-Attachments zu versehen. Das Ablegen, bzw. Hochladen von
lokalen Dokumenten, mit der REST API, ist nicht mdglich.3%:3% Die Vorlage fiir das Ak-
tualisieren von Dokumenten ist in Listing 4.6 dargestellt. Dazu wird der Projektname
(projectld), der Ordner (spaceld) und der Dokumentenname (documentName) beno-
tigt. Die Aktion (workflowAction) wird im JavaScript Object Notation (JSON)-Format
iibergeben. Das Schema dazu ist in Listing 4.7 abgebildet. Um nun die generierten Infor-

mationen in ein entsprechendes Dokument zu schreiben, muss dieses bereits existieren.

3nttps://testdrive.polarion.com/polarion/sdk/doc/rest/index.html#api-
Documents—getDocument, Zugriffsdatum: 08.05.2025

3https://testdrive.polarion.com/polarion/sdk/doc/rest/index.html#api-
Documents-postDocuments, Zugriffsdatum: 08.05.2025

36nttps://gsit-polarion-008.siemens.net/polarion/sdk/doc/rest/index.htmlfapi-
DocumentAttachments-patchDocumentAttachment, Zugriffsdatum: 13.05.2025

52

4 Konzept und Design

1 var client = new RestClient ("https://example.com/polarion/rest/vl/projects
/{projectId}/spaces/{spaceld}/documents/{documentName}?workflowAction
={workflowAction}");

client.Timeout = -1;

var request = new RestRequest ();

request.Method = Method.PATCH;

request .AddHeader ("Content-Type", "application/json");

request .AddHeader ("Accept", "application/json");

request .AddHeader ("Authorization", "Bearer {personal_access_token}");

IRestResponse response = client.Execute (request);

Console.WriteLine (response.Content) ;

© 0 N D Ok W N

Listing 4.6: Aktualisierung von Dokumenten in Polarion (patchDocument)

4.7 Grafische Benutzeroberflache

Zur Bedienung der Anwendung wird eine grafische Benutzeroberfliche implementiert
(Anforderung DG-F7). Mit der Plattform .NET Core 9.0 gibt es die Moglichkeiten, die
Benutzeroberfliche mit Windows Presentation Foundation, Windows Forms und .NET
MAUI zu implementieren. Fiir die Auswahl eines geeigneten Benutzeroberflichenframe-

works werden die folgenden Punkte betrachtet:

e Eingabefelder fiir die Eingabe eines Dokumentenverzeichnisses, Zielverzeichnisses
und der Projektnummer (Anforderung DG-F10, Anforderung DG-F11, Anforde-
rung DG-F12).

e Steuerfelder in Form von Button zur Auswahl des zu generierenden Dokumenten-
typs (Anforderung DG-F8).

e Das Benutzeroberflichenframeworks kann unter Windows ausgefiihrt werden (An-
forderung DG-NF3).

Die oben genannten Punkte konnen alle mit den drei verschiedenen Benutzeroberfla-
chenframeworks realisiert werden. Windows Presentation Foundation kann nur unter
Windows ausgefiihrt werden und Windows Forms ist fiir die Entwicklung von Windows-

Anwendungen ausgelegt.37-38:39

3Thttps://learn.microsoft.com/de—de/dotnet /maui/what-is-maui?view=net-maui-
9.0, Zugriffsdatum: 14.05.2025

38https://learn.microsoft.com/de-de/dotnet/desktop/winforms/overview/?view=
netdesktop-9.0, Zugriffsdatum: 14.05.2025

3https://learn.microsoft.com/de-de/dotnet/desktop/wpf/overview/, Zugriffsdatum
14.05.2025

53

4 Konzept und Design

Die Moglichkeit, die Anwendung auf mehreren Plattformen ausfithren zu kénnen, ist mo-
mentan nicht notwendig, mit Blick auf die Weiterentwicklungsmoglichkeiten jedoch eine
niitzliche Funktion. Aus diesem Grund wird das Benutzeroberflichenframeworks .NET
MAUI verwendet.

Der Aufbau der grafischen Benutzeroberfliche ist in Abbildung 4.6 dargestellt. Es gibt ein
Feld zur Eingabe der Projektnummer, sowie zur Auswahl des Dokumentenpfads. Zudem
ist es moglich, das Zielverzeichnis auszuwéhlen (Anforderung DG-10, Anforderung DG-
11, Anforderung DG-12). Mit den drei Buttons ,Create requirement document”, ,Create
technical specification” und ,Create test cases lassen sich die einzelnen Dokumententy-
pen erstellen (Anforderung DG-F8). Es ist jedoch notwendig, zuvor die Projektnummer
sowie ein Dokument auszuwahlen. Das Zielverzeichnis muss nicht ausgewéahlt werden, in

dem Fall wird das erstellte Dokument auf dem Desktop abgelegt.

54

4 Konzept und Design

"data": {
"type": "documents",
"id": "MyProjectId/MySpaceld/MyDocumentId",
"attributes": {
"autoSuspect": true,
"homePageContent": {
"type": "text/html",
"value": "My text value"
I
"outlineNumbering": {
"prefix": "ABC"
b
"renderingLayouts": [
{
"label": "My label",
"layouter": "paragraph",
"properties": [
{
"key": "fieldsAtStart",
"value": "id"
}
] 14
"type": "task"
}
1y
"status": "draft",
"title": "Title",
"type": "req specification",
"usesOutlineNumbering": true

}

Listing 4.7: JSON-Schema zum Ubertragen der Aktion fiir die Aktualisierung von

Dokumenten in Polarion

55

4 Konzept und Design

Abbildung 4.6: Design der grafischen Benutzeroberfliche

56

5 Implementierung

Beim Beschreiben der Implementierung wird zunéchst auf die Kommunikation mit dem
LLM eingegangen. Es wird erldutert, welche Probleme auftreten und wie diese gelost
werden. Danach wird das Einlesen und Verarbeiten einer PDF-Datei beschrieben und
wie dieses, im Gegensatz zum Konzept, implementiert wurde. Darauf folgt das Erstellen
der einzelnen Dokumente (Anforderungsdokument, technische Spezifikation, Testfille)
und das Ablegen der Dokumente in das Anforderungsmanagement Tool Polarion. Zum

Schluss wird auf die grafische Benutzeroberfliche der Anwendung eingegangen.

5.1 Kommunikation mit dem LLM

Um auch Fine-Tuning an dem LLM vorzunehmen, wurde die Klasse LlImConnecti-
on nach dem Klassendiagramm aus Abbildung 5.1 implementiert. Nun ist es moglich,
auch die Temperatur des LLMs anzupassen. Zudem wurden zwei Methoden fiir eine
LLM Antwort erstellt (LlImChatRequest(), LlmImageRequest()). Somit wurden
Chat-Anfragen und visuelle-Anfragen aufgeteilt. Zudem werden zwei private Methoden
(GetAIClient(), LimStreamResponse()) implementiert, da der Client sowie die Ant-
wort fiir beide Anfragen gleich sind. Eine weitere Anderung ist, dass die Antwort als
Stream zuriickgegeben wird. Darauf wird am Ende dieses Abschnitts genauer eingegan-

gen.

Bei der Methode LiImChatRequest(), wird die Nachricht nach dem Schema aus Lis-
ting 4.1 aufgebaut. Die Methode LiImImageRequest() konvertiert das Bild zunéchst in
einen Base64 String. Die Nachricht wird anschlieffend nach dem Schema aus Listing 4.2
erstellt. Dazu muss der Inhalt ,,content* noch einmal extra erstellt werden, da es in dem
Fall zwei Contenttypen ,,Text, ImageUrl*“ gibt. Erst dann kann die Nachricht erstellt
und tibermittelt werden. Zudem wird das Modell immer auf das Pixtral 12B gesetzt und

das iibergebene Modell ignoriert. Pixtral 12B ist extra fiir visuelle Aufgaben ausgelegt

57

5 Implementierung

Abbildung 5.1: Klassendiagramm der Klasse LimConnection

und entwickelt worden, weshalb das Modell am besten fiir die Aufgabe geeignet ist. Die
Methode ist in Listing 5.1 dargestellt.

Bei der Kommunikation mit den Chatmodellen Deepseek R1, sowie dem Modell Pixtral
12B treten Probleme bei der Antwort auf. Die drei Modelle benétigen fiir die Antwort
zu lange, weshalb es bei den drei Modellen zu Timeout Fehlern (408 Request Timeout)
kommt. Aus diesem Grund wird an das Objekt ,client“ vom Typ OpenAIClient, neben
den Einstellung und dem Authentifizierungsschliissel, noch ein Http-Client (HttpClient)
iibergeben, bei dem der Timeout auf fiinf Minuten hochgesetzt wird. Mit dieser Anderung
kann das Modell Deepseek R1 genutzt werden, ohne einen Timeout-Fehler zu generieren.
Das Modell Pixtral 12B geniert jedoch weiterhin einen Timeout Fehler (408 Request
Timeout). Zudem wird der Fehler bereits ausgeworfen, bevor die fiinf Minuten vorbei
sind. Um auch das Pixtral Modell nutzen zu koénnen wird die Antwort des LLMs als
Stream zuriickgegeben. Die Methode LlmStreamResponse() gibt die Antwort zum

Ende vollstiandig, als String, zuriick.

5.2 Einlesen und Verarbeiten einer PDF

Das Einlesen einer PDF-Datei mit dem Paket PdfPig oder iiber Piztral 12B verursacht
einige Probleme. Zum Auslesen des Textes eines PDFs wird die Methode GetText im-
plementiert. Diese durchlduft jede Seite der PDF-Datei und schreibt den Text Zeile fiir
Zeile und Wort fiir Wort in einen String. Mit PdfPig lasst der Text aus einer PDF-Datei,
ohne groflen Aufwand, komplett und vollstdndig extrahieren. Jedoch behélt dieser nicht

sein urspriingliches Format, da der Text Zeile fiir Zeile ausgelesen und iibergeben wird.

58

5 Implementierung

1 // Image request

2 else

3 {

4 // Convert image to Base64 string

5 var imageBytes = File.ReadAllBytes (imagePath);

6 var baseb4Image = Convert.ToBaseb64String (imageBytes);

7

8 // Create list of content for the messages

9 var contentList = new List<Content>

10 {

11 new Content (ContentType.Text, userMsqg),

12 new Content (ContentType.ImageUrl, $"data:image/png;base64, {
base64Image}")

13 }i

14

15 // Create list of messages

16 var imageMessagelList = new List<Message>

17 {

18 new Message (OpenAI.Role.User, contentList)

19 }i

20

21 // Chat request

22 request = new ChatRequest (

23 messages: imageMessagelist,

24 model: "pixtral-12b-2409"

25)i
26 }

Listing 5.1: Impelmentierung eines Bild-Request aus der Methode LimChatRequest()
zur Kommunikation mit einem LLM

Formen, wie Linien, werden nicht iibergeben, weshalb sich die Darstellung von Tabellen
problematisch darstellt. In Unterabschnitt 4.4.2 wird bereits eine Methode zum Extra-
hieren von Tabellen mit PdfPig aufgezeigt. Diese ist jedoch recht aufwendig und liest
die Tabellen aus, ohne sie an die korrekte Stelle des Textes einzufiigen. Dazu miisste ei-
ne weitere Methode implementiert, bzw. die Methode GetText() dahingehend geéndert
werden.

Wenn der Text einer PDF-Datei nun statt mit PdfPig mit Hilfe des Modells Pixtral 12B
2407 extrahiert werden soll, tauchen zwei andere Probleme auf. Zum einen ist das Bild,
welches aus einer PDF-Seite erstellt wird, zu groft, wenn diese selbst ein Bild beinhaltet.
Aus diesem Grund muss die Auflésung auf 200 dpi begrenzt werden, wenn eine PDF-Seite
in ein PNG konvertiert wird. Zum anderen werden Zeichen falsch interpretiert. Aus ei-

nem ,, T wird beispielsweise ein , I oder das grofse ,,] wird mit dem kleinen ,.£“ vertauscht.

59

5 Implementierung

Was aufféllt ist, dass beide Konzepte zusammen sowohl den Text korrekt wiedergeben
kénnen, als auch richtig darstellen kénnen, beispielsweise in Tabellenform. Des Weite-
ren kann die PDF-Datei, durch die Verarbeitung mit dem Piztral 12B Modell, direkt
als Markdown wiedergegeben werden, was die Weiterverarbeitung fiir den Kontext zur
Erstellung der Projektmanagementdokumente wesentlich erleichtert. Aus den genann-
ten Griinden wird zunéchst der Text der PDF-Datei mit dem Paket PdfPig extrahiert.
Anschlietend verarbeitet das Piztral 12B Modell jede Seite einzeln, in dem der zuvor
extrahierte Text der Seite als Kontext, sowie ein Bild der Seite an das Modell iibergeben
wird. Die Seite soll anschliefsend als Markdown wiedergegeben werden. Die Bereitstellung
des Inhalts mit einem LLM hat den Vorteil, dass dieser direkt fiir den Kontext weiter-
verarbeitet werden kann und kein Algorithmus zum Filtern der einzelnen Kapitel und
Abschnitte notwendig ist. Fiir die Kombination der beiden Funktionen wird die Klasse
DoclmageToString erstellt. Diese beinhaltet die Methode zum GetPdfPagesAsS-
tring() Laden des PDF-Inhalts. Dort wird der Text der PDF-Datei zuerst mit PdfPig
ausgelesen. Anschliefend wird die PDF in Bilder konvertiert. Danach wird Seitenwei-
se das Bild zusammen mit dem Text an das LLM iibergeben, um daraus die Seite als

Markdown darzustellen.

5.3 Erstellen der Dokumente

Das Erstellen wird nach dem Konzept aus Abschnitt 4.5 implementiert. Dazu enthélt
jede Klasse zur Generierung der Dokumente die Methoden CreateDocument(), Add-

Content(), SaveDocument() und CloseDocument().

5.3.1 Anforderungsdokument

Mit der Methode CreateDocument() wird das Anforderungsdokument entsprechnend
den Anforderungen AD-F2, AD-F3, AD-F4, AD-F5, AD-F6 und AD-F7 formatiert. Da-
zu wird lediglich eine Exceldatei erstellt und die Zellen werden mit den Informationen
beschrieben.

Die Methode AddContent zum Hinzufligen der LLM-Antwort in das Anforderungsdo-
kument ist in Listing 5.2 dargestellt. Die Anforderungen werden vom LLM (unabhéngig
vom Modell) mit dem Aufbau aus Unterabschnitt 4.5.1 wiedergegeben. Das Aufschliisseln

der Antwort wird mit reguliren Ausdriicken realisiert. Zunéchst wird mit der Methode

60

5 Implementierung

ParseLLMResponse() aus der Klasse LLMResponseParser der Gedankengang des
LLMs ausgeschnitten. Die beiden Modelle Deepseek R1 Distill Qwen 7B und Qwen3 30B
AS8B liefern ihre Antwort mit dem Gedankengang. Anschlieffend wird {iberpriift, ob die
Antwort iiberhaupt eine Anforderung enthélt. Ist dies nicht der Fall iibergibt das LLM
die Antwort ,,$empty$“. Die generierten Anforderungen werden danach aufgeteilt und in
den Array splitContent geschrieben. Daraufhin werden sie einzeln in die jeweiligen Zellen

des Excel Worksheets geschrieben (Anforderung AD-F4, AD-F5, AD-F6).

5.3.2 Technische Spezifikation und Testfalle

Die Generierung der technischen Spezifikationen und Tesfélle wird aus zeitlichen Griin-
den nicht implementiert. Es werden lediglich die Klassen TechnicalSpecification und
Testcases geméf Abbildung 4.3 aus Abschnitt 4.5, sowie die Methoden CreateDo-
cument(), AddContent(), deklariert. Die beiden Methoden SaveDocument() und
CloseDocument() wurden bereits implementiert, da sich diese Methoden untereinan-
der sehr dhneln. Nur der Dateipfad &ndert sich, sowie die Dateiendung von ,.xlsx“ zu

,~-docx™ bei der technische Spezifikation.

5.4 Anforderungsmanagement Tool (Polarion)

Polarion wird noch nicht offiziell in der Abteilung genutzt. Es gibt einen Testzugang
mit dem {berpriift wird, ob die Anwendung niitzlich fiir die Abteilung ist. Aus diesem
Grund kénnen Dokumente nur aus den Testprojekt entnommen und nur in die Testpro-
jekte abgelegt werden. Dies schrinkt dabei Funktionen der Anwendung, wie die korrekte
Namensgebung iiber die Projektnummer und das Entnehmen aus und Ablegenden in
das zugehorige Verzeichnis, ein. Bei der Implementierung der Schnittstelle zu Polarion
wird daher nur auf die generelle Funktionalitét eingegangen, Dokumente aus Polarion zu

entnehmen und dort abzulegen.

5.4.1 Kopieren der Dokumente
Fiir die Kommunikation mit Polarion, muss zundchst der Server gewechset werden. Der

Testzugang wurde fiir den 008 Server eingerichtet, welcher die REST API nicht voll-

umfanglich unterstiitzt. Daher musste erst ein Zugang fiir den 006 eingerichtet werden.

61

5 Implementierung

Bei 008 und 006 handelt es sich lediglich um die Serverbezeichnungen und sind fiir die
Generelle Funktionalitdt nicht notwendig.

Zum Kopieren von Dokumenten wurde anschlieffend ein Live Dokument ,,TestDoc* im
Standardraum Default Space (,, _default) angelegt, um die Funktionalitdt der Methode
CopyDocument() zu testen. Zudem muss ein API-Token, fiir die Authentifizierung,
generiert werden. Die Methode wurde nach Listing 4.5 implementiert. Die URL fiir das

Kopieren von Dokumenten ist in Listing 5.3 dargestellt.

5.4.2 Speichern der Dokumente

Das Ablegen der Dokumente in Polarion ist, wie in Unterabschnitt 4.6.2 bereits erwéhnt,
nicht moglich. Es konnen lediglich LiveDocs angelegt und aktualisiert werden. Die Im-
plementierung zur Bearbeitung von LiveDocs ist mit grofsem Zeitaufwand verbunden.
Aufgrund des zeitlichen Rahmens und des Umfangs der Arbeit wird diese Funktion nicht

weiter implementiert.

5.5 Grafische Benutzeroberflache

Das Design der grafischen Benutzeroberflache wird nach Abbildung 4.6 aus Abschnitt 4.7
implementiert (Anforderung DG-FT7). Es gibt jeweils ein Eingabefeld fiir die Projektnum-
mer, den Dateipfad, sowie das Zielverzeichnis (Anforderung DG-F10, DG-F11, DG-F12).
Zudem ist es moglich, den Dateipfad und das Zielverzeichnis iiber den File Explorer aus-
zuwahlen. Dabei sind nur ,.pdf“, ,.docx” und ,,.xlsx“ Dateien zugelassen. Es gibt drei
Schaltflichen zum Generieren der einzelnen Dokumente (Anforderung DG-F8). Dazu
muss zuvor eine Datei ausgewéhlt werden, aus der das Dokument generiert werden soll.
Zudem muss es die entsprechende Dateiendung haben (Anforderung AD-F1, TS-F1, TF-
F1). Das endgiiltige Design der Benutzeroberfliche ist in Abbildung 5.2 abgebildet.

Das Design der Benutzeroberfliche ist zwar identisch zum Konzept aus Abbildung 4.6
geblieben, jedoch wird statt des Benutzeroberflichenframeworks .NET Maui 9.0 die Ver-

sion 8.0 genutzt. Dies hat den Grund, dass einerseits die Neuerungen von .NET Maui 9.0

62

5 Implementierung

gegeniiber 8.0, wie das Einfiihren einer Titelleiste fiir Windows, in dieser Arbeit nicht not-
wendig sind.! Das Framework .NET Maui 8.0 bietet gegeniiber 9.0 ein Langzeitsupport
an, welches im Hinblick auf die Weiterentwicklungsmoglichkeiten einen Vorteil bietet.
Zudem gibt es einen bekannten Bug bei .NET Maui 9.0 bei der Nutzung der Klasse

FilePicker, zum Auswihlen einer Datei {iber den Windows-Explorer.?

nttps://learn.microsoft.com/de-de/dotnet /maui/whats-new/dotnet-9?view=net-
maui-9.0, Zugriffsdatum: 20.05.2025
2https://github.com/dotnet /maui/issues/27552, Zugriffsdatum: 20.05.2025

63

5 Implementierung

public void AddContent (List<string> contentList)
{

1

2

3 // Load the second worksheet

4 _Excel.Worksheet worksheet = workbook.Worksheets[2];
5 var count = 1;
6

7

8

9

// Running through the individual LLM answers
foreach (var content in contentList)
{
10 // Remove the chain of thoughts
11 var parsedContent = LLMResponseParser.ParseLLMResponse (content,
"</think>");
12

13 // Check whether the answer contains requirements

14 if (!Regex.IsMatch (parsedContent, @"\Sempty\s$"))

15 {

16 // Split requirements

17 var splitContent = Regex.Split (parsedContent, @""Anf[\d]{1l,}",

RegexOptions.Multiline);
18

19 // Write requirements to the file

20 for (int i = 0; 1 < splitContent.Length; i++)

21 {

22 if (!String.IsNullOrEmpty (splitContent[i]))

23 {

24 // Write requirement number

25 worksheet.Cells[count + 1, 1] = "Anf" + count;

26

27 // Delete space at the beginning if the element
conatins one

28 if (Regex.IsMatch(splitContent[i], @Q"~ "))

29 {

30 splitContent[i] = splitContent[i][1l..];

31 }

32

33 // Add the chapter/ section to the table

34 worksheet.Cells[count + 1, 3] = Regex.Match(

splitContent[i], @"~([A-Za-z][\d\.1{1,}|I[\d
NLI{L, M)

35 // Add the requirement to the table

36 worksheet.Cells[count + 1, 4] = splitContent[i] [
splitContent[i].IndexOf (" ’")..1;

37

38 count++;

39 }

40 }

41 }

42 }

43 '}

Listing 5.2: Impelmentierung der Methode AddContent() aus
der Klasse RequirementDocument zum Einfiigen der LLM Antwort in
die Excel-Datei

64

5 Implementierung

1 $"https://gsit-polarion-006.siemens.net/polarion/rest/vl/
projects/{projectId}/spaces/{spaceld}/documents/ {
documentName} /actions/copy?revision={revision}"

Listing 5.3: URL fiir die Kommunikation mit Polarion iiber eine REST-API

Document generator

Projectnumber

Document directory

Target directory

Create a requirement document from Siemens Create a technical specifications

Abbildung 5.2: Design der grafischen Benutzeroberflache

65

6 Evaluation

Nachdem die Implementation der Anwendung beschrieben wurde, wird diese evaluiert.
Es wird gepriift, welche Anforderungen aus Kapitel 3 erfiillt wurden und ob die An-
wendung erfolgreich implementiert wurde. Zudem wird auf die Qualitit der generierten

Anforderungen eingegangen.

6.1 Dokumentengenerator

Zunichst werden die Anforderungen an den Dokumentengenerator wahrend der Nut-
zung der Anwendung iiberpriift. Die Ergebnisse der einzelnen Anforderungen sind im

Folgenden aufgefiihrt.

DG-F1 [muss]: Aus dem Anforderungsdokument des Kunden wird ein Anforderungs-

dokument von Siemens generiert.
Erfiullt: Aus Anforderungen vom Kunden werden mit Hilfe von LLMs eigene Anforde-

rungen generiert und in eine Excel-Datei geschrieben (vgl. Unterabschnitt 5.3.1). Auf die

Anforderungen selbst wird in Unterabschnitt 6.3.2 genauer eingegangen.

DG-F3 [muss]: Aus dem Anforderungsdokumenten von Siemens werden technische

Spezifikationen generiert.

Nicht erfillt: Aufgrund von Zeit- und Umfangsbeschréankungen konzentriert sich diese

Arbeit hauptséchlich auf die Erstellung von Anforderungsdokumenten. (vgl. Abschnitt 3.5).

66

6 Evaluation

Fiir die Generierung von technischen Spezifikationen wurde lediglich ein grobes Konzept
in Unterabschnitt 4.5.2 erstellt.

DG-F5 [muss]: Aus einer technischen Spezifikation werden Testfélle generiert.

Nicht erfillt: Wie bereits zuvor, fiir Anforderung DG-F3 erlautert, lag das Generieren
von Anforderungsdokumenten im Vordergrund (vgl. Abschnitt 3.5). Das Generieren von
Testfillen wurde nicht implementiert, es wurde nur ein Konzept in Unterabschnitt 4.5.3

entwickelt.

DG-F7 [muss]: Die Anwendung besitzt eine grafische Benutzeroberflache.

Erfullt: Fir die Anwendung wird eine grafische Benutzeroberflache bereitgestellt.
(vgl. Abschnitt 5.5)

DG-F8 [muss|: Es ist moglich den zu generierenden Dokumententypen in der gra-
fischen Benutzeroberfliche auszuwihlen. Es gibt drei Dokumententypen: Anforderungs-

dokument, technische Spezifikation, Testfélle.

Erfullt: Auf der grafischen Benutzeroberfliche konnen, die zu generierenden Dokumen-
tentypen, iiber drei Schaltflichen ausgewéhlt werden. Dabei wird tiberpriift, ob eine Datei
mit dem korrekten Typ ausgewéahlt wurde, andernfalls erscheint eine Fehlermeldung und

die Dokumentengenerierung wird nicht durchgefiihrt.

DG-F9 [kann]: Die grafische Benutzeroberfliche besitzt eine Auswahl, ob mit dem

Anforderungsmanagement Tool oder lokal gearbeitet wird.

Nicht erfillt: Da es fiir Polarion nur einen Testzugang gibt und die Plattform nicht

sinngemaft genutzt werden kann, gibt es keine Moglichkeit auszuwéahlen, ob mit Polarion

67

6 Evaluation

oder lokal gearbeitet wird. Es konnen ausschlieklich lokale Dokumente ausgewahlt und

generierte Dokumente lokal gespeichert werden.

DG-F10 [muss]: Die Projektnummer wird von den Anwendenden eingegeben.

Erfillt: Ein Eingabefeld zur Eingabe der Projektnummer ist vorhanden. Wird keine

Projektnummer eingegeben, wird eine Fehlermeldung ausgeworfen.

DG-F11 [muss]: Es muss ein lokales Dokument ausgewéhlt werden, aus dem das

Projektmanagementdokument generiert wird.

Erfillt: Ohne die Auswahl eines lokalen Dokuments kann kein Dokument generiert

werden und es taucht eine Mitteilung auf, dass ein Dokument auszuwéhlen ist.

DG-F12 [muss|: Die Nutzenden konnen ein Zielverzeichnis, fiir das generierte Do-
kument auswihlen. Wird dieses nicht ausgewéhlt, wird das Dokument auf dem Desktop

abgelegt.

Erfillt: Die Eingabe des Zielverzeichnisses ist moglich und das Dokument wird in
dem Zielverzeichnis gespeichert. Wurde kein Zielverzeichnis ausgewahlt, wird es auf dem

Desktop gespeichert.

Anforderung DG-F2, DG-F4, DG-F6, DG-F13, DG-F14 und DG-F15

Nicht erfillt: Die Plattform Polarion wird aktuell nicht von der Abteilung genutzt,
sondern es existiert nur ein Testzugang, welcher von mehreren Abteilungen genutzt wird.
Dementsprechend werden die Projekte nicht iiber Polarion verwaltet und es ist nicht
moglich, die generierten Dokumente in dem zugehorigen Projekt in Polarion abzulegen.

Zudem ist es nicht moglich, die Dokumente aus Polarion auszuwéahlen.

In der Tabelle 6.1 ist das Ergebnis der nicht funktionalen Anforderungen fiir den Do-
kumentengenerator abgebildet. In Bezug auf Anforderung DG-NF3 ist es, neben der

68

6 Evaluation

Ausfiihrung der Anwendung auf einem Windows-Betriebssystem, auch moglich, die An-

wendung auf weiteren Plattformen auszufiihren.

Tabelle 6.1: Evaluation der nicht funktionalen Anforderungen des Dokumentengenerators

Anforderung | Ergebnis
DG-NF1 Erfillt
DG-NF2 Erfillt
DG-NF3 Erfillt
DG-NF4 Erfiillt
DG-NF5 Erfillt

6.2 Polarion

Bei der Evaluierung der Anforderungen des Dokumentengenerators wurde gezeigt, dass
die Anforderungen zum Thema Polarion nicht erfiillt wurden. In Abschnitt 4.6 aus
dem Konzept und Abschnitt 5.4 aus der Implementierung wurde ebenfalls darauf ein-
gegangen, dass die Anforderungen an Polarion in der Form nicht umsetzbar sind. Da
das Tool jedoch in Zukunft eingesetzt werden soll, wurde dennoch eine Testmethode
(CopyDocument()) implementiert, um die generelle Funktionsweise zu iiberpriifen.

Beim Ausfiihren der Methode wird die folgende Fehlermeldung aus Listing 6.1 ausgewor-

fen:

"status":"403","title":"Forbidden", "detail":"Sorry, you do not
have the necessary permissions to perform this operation.
Please contact your Administrator if you need additional
permissions."

Listing 6.1: Fehlermeldung beim Ausfithren der Methode CopyDocument()

Es liegen demnach nicht die benétigten Berechtigungen vor, um die Anfrage durchzufiih-
ren. Aus diesem Grund kann die Methode nicht weiter getestet werden und es muss auf

eine Erteilung der Rechte gewartet werden.

69

6 Evaluation

6.3 Anforderungsdokument

In diesem Abschnitt erlautert, welche Anforderungen im Hinblick auf das Anforderungs-
dokument erfiillt wurden. Zudem wird untersucht, welche Qualitat die genierten Anfor-

derungen haben.

6.3.1 Anforderungen

Beim Auswerten der Anforderungen wird nur auf das Modell Qwen3 30B A3B Bezug
genommen. Dies funktioniert am zuverldssigsten und ist besténdig (stable) auf der co-
de.siemens Plattform. Auf die generelle Qualitdt aller Modelle, in Bezug auf die Gene-

rierung von Anforderungen, wird in Unterabschnitt 6.3.2 eingegangen.

AD-F1 [muss]: Die Anforderungen werden aus einem Kundenanforderungsdokument

generiert.

Erfillt: Die Anforderungen werden aus dem Anforderungsdokument des Kunden gene-
riert (vgl. Abschnitt 5.2). Mit dem Modell Piztral 12B wird das Dokument zudem als
Markdown bereitgestellt, um einen geeigneten Kontext fiir das Generieren der Anforde-

rungen bereitzustellen.

AD-F2 [muss]: Das Dokument hat eine Ubersicht, welche die Projektnummer, die
Dokumentenbezeichnung, das Erstellungsdatum, die Dokumentennummer und die Ver-

sion beinhaltet.
Erfillt: Das Anforderungsdokument besitzt eine Tabelle ,,Overview”. Die erste Zelle
beinhaltet die Informationen zu dem Kundennamen, dem Projektnamen, der Dokumen-

tenbezeichnung, dem Erstellungsdatum, der Dokumentennummer und der Version. Diese
wird ohne Hilfe des LLMs erstellt.

AD-F3 [muss]: In der Ubersicht gibt es eine Tabelle fiir das Versionsmanagement,

70

6 Evaluation

mit den Spalten: Version, Anderungsdatum, Autor, Anderungen und Bemerkungen

Erfillt: Auf derselben Seite wird, zwei Zeilen unter der Ubersicht, eine Versionstabelle
angelegt. Dort sind Spalten mit den Uberschriften ,Version, ,Date of change“, ,, Author®,
,Changes“ und ,Notes* vorhanden. Zudem wir die erste Zeile mit den entsprechenden

Informationen gefiillt. Fiir den Autor wird ,,Automatically generated eingetragen.

AD-F4 [muss|: Die Anforderungen werden eindeutig nummeriert. Die Nummern wer-

den in einer Spalte, mit der Uberschrift ,No.“ eingetragen.

Erfillt: Durch den Structed Output gib tdas LLM die Anforderungen in dem vorgege-
benen Format zuriick. Dabei hat jede Anforderung eine eindeutige Nummer in der Form
S2Anf1 Anf2) | Anf3“) etc.

AD-F5 |muss|: Fiir das Kapitel der Anforderungen gibt es eine Spalte ,Chapter®.

Dort werden die jeweiligen Kapitel des Kundenanforderungsdokuments eingetragen.

Erfillt: Das LLM gibt die Kapitel, aus welchen die Anforderungen entnommen wurden,
zuriick. Diese werden anschlieffend in die Spalte ,,Chapter” des Anforderungsdokuments

eingetragen (vgl. Unterabschnitt 5.3.1).

AD-F6 [muss|: Die Anforderungen haben eine kurze und messbare Beschreibung, wel-

che in der Spalte ,Description” stehen.
Erfillt: Die Anforderungen werden in der vierten Spalte ,description” beschrieben

(vgl. Unterabschnitt 5.3.1). Die Qualitat der Anforderung, mit den verschiedenen Mo-
dellen, wird in Unterabschnitt 6.3.2 beurteilt.

AD-F7 [muss]: Es gibt eine leere Spalte fiir die Kategorisierung, mit der Uberschrift

Category* und eine Spalte fiir Kommentare, mit der Uberschrift ,Notes“.

71

6 Evaluation

Erfillt: Die beiden Spalten ,Category” und ,Notes“ werden unabhéingig vom LLM er-
stellt (vgl. Unterabschnitt 5.3.1).

AD-F8 [kann]: Die einzelnen Anforderungen werden auf ihre Umsetzbarkeit iiber-

priift und farblich markiert.

Nicht erfillt: Eine Uberpriifung der Machbarkeit der einzelnen Anforderungen wurde
nicht implementiert. Die Anforderungen werden lediglich im gewiinschten Format aufge-

listet und in die Excel-Datei geschrieben.

AD-F9 [muss]: Der Dateiname wird aus der Projektnummer, dem DCC, der Doku-
mentennummer, dem Status, der Version und der Dokumentenbezeichnung zusammen-
gesetzt. Der Name fiir das Anforderungsdokument lautet: Projektnummer + ,-EC411-
WO01-RequirementList®.

Erfillt: Der Dateiname wird entsprechend der Vorgabe aus der Projektnummer, dem
DCC, der Dokumentennummer, dem Status, der Version und der Dokumentenbezeich-
nung zusammengesetzt (vgl. Unterabschnitt 5.3.1). Dazu wurde die Methode SaveDo-

cument() implementiert.

AD-F10 [muss]: Es soll kein neuer Inhalt generiert werden. Die Anforderungen werden

anhand der Informationen des Anforderungsdokument vom Kunden erstellt.

Erfillt: Durch das Prompting und Ubergeben von spezifischen und kohirenten An-
weisungen werden Halluzinationen vorgebeugt. Zusétzlich wird die Temperatur leicht
verringert, um die Kreativitdt des LLMs einzuschrénken (Unterabschnitt 4.3.2, 5.3.1).

AD-NF1 [kann]: Das Dokument ist in Form einer Excel-Datei.

72

6 Evaluation

Erfullt: Das Anforderungsdokument ist eine Exceldatei. Dies wird mit Hilfe des Interops
Microsoft. Office. Interop. Excel realisiert (vgl. Unterabschnitt 5.3.1).

6.3.2 Qualitidt der Anforderungen

Bevor die Qualitdt der Anforderungen betrachtet wird und die Textmodelle miteinander

verglichen werden, wird auf das Pixtral 12B Modell eingegangen.

Pixtral 12B 2409: Das Pixtral 12B liefert zusammen mit dem iiber PdfPig ausgele-
senen Text einer PDF-Datei, eine in vielen Punkten gute Antwort. Drei ausgewéhlten
Antworten konnen aus dem Anhang (Unterabschnitt A.5.1, A.5.2, A.5.3) entnommen wer-
den. Der Text wird bei den Antworten korrekt wiedergegeben und auch Tabellen, Listen
und Aufzidhlungen werden beriicksichtigt. Bei den Tabellen kann es zu Darstellungsfeh-
lern kommen, was in Unterabschnitt A.5.2 zu erkennen ist. Ein weiteres Problem liegt
bei der Erkennung und Markierung von Kapiteln und Abschnitten. Diese werden nicht
korrekt im Markdown Format angegeben, wodurch die Qualitdt der Antwort gemindert

wird.

Testumgebung: Zur Evaluation werden Ausziige von Dokumenten aus drei verschie-
denen Projekten verwendet. Dabei handelt es sich bei zwei Projekten um die Imple-
mentierung von STS und bei dem dritten Projekt um RMGs. Die Dokumente haben
verschiedene Strukturen, um mdoglichst viele Fille abzudecken. Unterabschnitt A.4.2 ist
in Tabellenform verfasst worden, wiahrend Unterabschnitt A.4.3 bereits in einzelne An-
forderungen gegliedert ist. Unterabschnitt A.4.1 ist im FlieRtext geschrieben, bei dem
die einzelnen Anforderungen nicht direkt ersichtlich sind. Die Antworten der LLMs sind
ebenfalls aus dem Anhang (Abschnitt A.5) zu entnehmen.

Es wird jedem Modell der gleiche Prompt, mit demselben Kontext (Anhang Unterab-
schnitt A.3.1) iibergeben. Zudem liefern die Modelle Deepseeck R1 und Qwen3 einen
Gedankengang (Chain of Thought), welcher jedoch nicht beriicksichtigt wird.

Vergleich der Textmodelle: In Tabelle 6.2, 6.3 und 6.4 werden die einzelnen Modelle
auf die Qualitdt der generierten Anforderungen getestet. Dabei wird auf auf die Regeln
aus Unterabschnitt 4.5.1 zuriickgegriffen. Die Bildung des Passivs wird nicht in den Ta-

bellen 6.2, 6.3 und 6.4 bewertet, sondern es wird darauf spéter separat eingegangen.

73

6 Evaluation

Zum Vergleich der Modelle werden verschiedene Dokumente getestet, welche verschiede-
ne Formen haben. Einmal sind die Anforderungen als Tabelle aufgefiihrt (Tabelle 6.2),
danach stehen sie im Flieftext (Tabelle 6.3) und zum Schluss sind die Anforderungen be-
reits einzeln aufgeteilt (Tabelle 6.4). Dabei wird erst die absolute Anzahl der generierten
Anforderungen eines Modells aufgezeigt. Danach wird die Anzahl der erfiillten Regeln
relativ zur absoluten Anzahl dargestellt. Wichtig zu erwdhnen ist, dass nur der Aufbau
der Anforderungen an sich bewertet wird. Ergénzungen, wie die Antwort als XML wie-
derzugeben, werden nicht berticksichtigt. Auch der Inhalt der Anforderungen wird in den
Tabellen nicht betrachtet.

Das gewéhlte Format wird von den getesteten Modellen je nach Quelle unterschiedlich gut
eingehalten wird. Die Entnahme aus dem Fliefitext schneidet hierbei am besten ab. Am
schlechtesten wird das Format bei einem Anforderungsdokument in Tabellenform einge-
halten. Es wird bei allen Anforderungsdokumenten von keinem Modell ein Lésungsweg
angegeben. Dies hat den Grund, dass die Anforderungsdokumente keine Losungswege
enthalten. Es werden jedoch auch keine eigenen Losungswege von den Modellen gene-
riert. Die teilweise schlechte Messbarkeit der Anforderungen hiangt mit der ersten Regel
weine Anforderung pro Satz‘ zusammen. Stehen keine oder mehrere Anforderungen in
einem Satz, kann diese auch nicht gemessen werden. Zudem lassen sich Anforderungen,
welche nur stichpunktartig geschrieben sind oder bereits im Anforderungsdokument nicht

messbar sind, ebenfalls nicht messen.

Vermeiden des Passivs: Ahnlich wie beim Losungsweg oder der Messbarkeit ist auch
das Passiv stark abhéngig vom Anforderungsdokument. Werden die Anforderungen dort
bereits im Passiv formuliert, werden diese vom LLM nicht ins Aktiv umgeschrieben.

Andersherum werden Satze im Aktiv nicht ins Passiv umgeschrieben.

Bewertung der gesamten Antwort: Die jeweiligen Antworten der Modelle sind im
Anhang unter Unterabschnitt A.5.4 bis Unterabschnitt A.5.21 zu entnehmen. Wie die
Anforderungen selbst aufgebaut sind, wird bereits in den drei Tabellen evaluiert.

Beim Betrachten der Struktur der Antworten stechen die beiden Modellen Mistral 7B
Instruct und Mistral Nemo Instruct 2407 im negativen Sinne heraus. Die Anforderungen
werden hiufig in einen XML-Block geschrieben und teilweise ist der Gedankengang mit
aufgelistet. Neben den Anforderungen wird auch die Nutzeranfrage, in manchen Féllen,
vor der eigentlichen Antwort wiederholt. Zusétzlich werden die Kapitelnummern teilweise
inkorrekt dargestellt, was in Unterabschnitt A.5.4 und A.5.8 zu sehen ist. Dies macht das

74

6 Evaluation

Tabelle 6.2: Vergleich der Modelle beim Generieren von Anforderungen aus einem Kun-
den Anforderungsdokument in Tabellenform

Mistral Deepseek | Qwen2.5 | Llama 3.1 Mistral Qwen3
7B R1 Distill | Coder 7B 8B Nemo 30B A3B
Instruct Qwen 7B Instruct Instruct Instruct
2407
Anzahl 68 34 32 34 46 29
der gene-
rierten
Anforde-
rungen
Eine An- | 100,00 % 91,18% 53,13 % 100,00 % 100,00% | 100,00 %
forderung
pro Satz
Kurze 95,59 % 91,18% 50,00 % 100,00 % 100,00 % 96,55 %
Sétze
Eindeutiges 98,53 % 88,24 % 50,00 % 97,06 % 97,83 % 96,55 %
Subjekt
Kein Lo- | 100,00 % 100,00 % 100,00 % 100,00 % 100,00% | 100,00 %
sungsweg
Messbar 100,00 % 91,18% 53,13 % 100,00 % 100,00% | 100,00 %
Einhalten | 25,00% 100,00 % 50,00 % 0,00 % 63,04 % 48,28 %
des
vorgege-
benen
Formats

Verarbeiten der Antwort aufwendiger. Neben den formalen Méngeln kommt es bei den
beiden Modellen verstéirkt zu Halluzinationen, vor allem wenn die Nutzeranfrage keine
Anforderungen enthélt.

Die Modelle Deepseek R1 Distill Qwen 7B und Llama 3.1 8B Intrsuct performen ins-
gesamt besser. Es kommt hier ebenfalls vor, dass das Format nicht eingehalten wird,
dies bezieht sich meist auf die Anforderungen selbst. Halluzinationen, Gedankengéinge
oder andere Formfehler treten nicht auf. Jedoch fehlen beim DeepSeek R1 Modell teil-
weise die Anforderungen selbst (vgl. Unterabschnitt A.5.17) oder es kommt zu Fehlern
bei der Information zum Kapitel (vgl. Unterabschnitt A.5.5). Llama 3.1 lasst die In-
formationen zum Kapitel in Unterabschnitt A.5.13 komplett weg. Auch zu Beginn in
Unterabschnitt A.5.7 fehlen diese Angaben.

Das Modell Qwen2.5 Coder 7B Instruct stellt ebenfalls die Kapitelnummer teilweise

75

6 Evaluation

Tabelle 6.3: Vergleich der Modelle beim Generieren von Anforderungen aus einem Kun-
den Anforderungsdokument im Fliefitext

Mistral Deepseek | Qwen2.5 | Llama 3.1 Mistral Qwen3
7B R1 Distill | Coder 7B 8B Nemo 30B A3B
Instruct Qwen 7B Instruct Instruct Instruct
2407
Anzahl 33 33 18 20 51 17
der
Anforde-
rungen
Eine An- 57,58 % 54,55 % 88,89 % 95,00 % 62,75 % 88,24 %
forderung
pro Satz
Kurze 51,52 % 54,55 % 88,89 % 95,00 % 74,51 % 88,24 %
Sétze
Eindeutiges 57,58 % 54,55 % 100,00 % 100,00 % 62,75 % 100,00 %
Subjekt
Kein Lo- | 100,00 % 100,00 % 100,00 % 100,00 % 100,00% | 100,00 %
sungsweg
Messbar 57,58 % 54,55 % 100,00 % 100,00 % 62,75 % 100,00 %
Einhalten | 100,00 % 96,97 % 88,89 % 100,00 % 100,00 % 76,47 %
des
vorgege-
benen
Formats

inkorrekt dar (vgl. Unterabschnitt A.5.12). Bei derselben Antwort werden die Anforde-
rungen zudem teilweise stichpunktartig und nicht in vollstdndigen Sétzen geschrieben. In
Unterabschnitt A.5.6 und A.5.18 werden Aufzdhlungen zu einer Anforderung kombiniert,
anstatt diese in einzelne Anforderungen aufzuteilen. Dabei treten keine Halluzinationen,
Gedankengénge oder andere Formfehler auf.

Qwend 30B A3B performt besser als das Qwen2.5 Modell. Es kommt auch hier teilwei-
se zu Fehlern bei der Kapitelnummer (vgl. Unterabschnitt A.5.15 und Listen werden in

einer Anforderung kombiniert (vgl. Unterabschnitt A.5.21).

Zusammenfassung: Bei der Evaluation der Qualitdt der Anforderungen fallt auf, dass
sich die generierten Anforderungen an das Anforderungsdokument halten. Dies ist in ge-

wisser Weise gewollt, da das LLM keinen Inhalt generieren soll und auch die Bedeutung

76

6 Evaluation

Tabelle 6.4: Vergleich der Modelle beim Generieren von Anforderungen aus einem Kun-
den Anforderungsdokument in Anforderungsform

Mistral Deepseek | Qwen2.5 | Llama 3.1 Mistral Qwen3

7B R1 Distill | Coder 7B 8B Nemo 30B A3B
Instruct Qwen 7B Instruct Instruct Instruct
2407
Anzahl 30 28 25 38 26 32
der

Anforde-

rungen

Eine An- 96,67 % 64,29 % 96,00 % 97,37 % 96,15 % 96,88 %
forderung

pro Satz

Kurze 96,67 % 64,29 % 96,00 % 97,37 % 96,15 % 96,88 %
Sétze
Eindeutiges 96,67 % 64,29 % 96,00 % 100,00 % 100,00 % 96,88 %
Subjekt
Kein Lo- 100,00 % 100,00 % 100,00 % 100,00 % 100,00 % 100,00 %
sungsweg
Messbar 100,00 % 67,86 % 100,00 % 97,37 % 100,00 % 96,88 %
Einhalten | 96,67 % 32,14 % 96,00 % 100,00 % 96,15 % 96,88 %
des
vorgege-
benen
Formats

der Anforderungen nicht verdndern soll. Dies fiihrt jedoch dazu, dass bereits qualitativ
schlechte Anforderungen aus dem Dokument schlecht bleiben, wiahrend bereist qualitativ
gute Anforderungen gut bleiben.

Es stellt sich die Frage, ob ein LLM zum Generieren der Anforderungen benétigt wird,
wenn diese stark den urspriinglichen &hneln. Es hat sich gezeigt, dass die Modelle lange
Anforderungen in mehrere Sétze oder auf mehrere Anforderungen aufteilen. Dies erhéht
die Lesbarkeit und Verstdndlichkeit der Anforderungen. Zudem werden Anforderungen
aus einem Fleifstext in eine Listenform iiberfiihrt, was ebenfalls die Lesbarkeit und Ver-
standlichkeit erhoht.

77

6 Evaluation

6.4 Technische Spezifikationen und Testfalle

Wie bereits in Abschnitt 3.5 und 6.1 beschrieben, ist er Schwerpunkt dieser Arbeit die
Generierung von Anforderungsdokumenten, sowie der Vergleich verschiedener LLMs. Es
wurde lediglich in Unterabschnitt 4.5.2 und 4.5.3 ein grobes Konzept zur Generierung
der technischen Spezifikationen und Testfalle erstellt.

Alle Anforderungen aus Unterabschnitt 3.4.3 und 3.4.4 sind nicht erfiillt.

78

7 Fazit und Ausblick

Das Ziel dieser Arbeit bestand darin, eine Anwendung zu entwickeln, die Personen beim
Lesen von Kundenanforderungsdokumenten unterstiitzt und die Erstellung eigener Anfor-
derungsdokumente erleichtert. Zudem sollten Kenntnisse im Umgang mit LLMs erworben
werden. Hierzu wurden verschiedene Modelle verwendet, die aus den Kundenanforde-
rungsdokumenten eigene Anforderungsdokumente generieren. Es wurde eine Anwendung
konzipiert, die Kundenanforderungsdokumente einliest und die darin enthaltenen Infor-
mationen als Kontext fiir ein LLM bereitstellt. Das LLM formatiert diese Informationen
anschlieffend als einzelne Anforderungen, versehen mit einer Nummer, dem Kapitel, aus
dem sie entnommen wurden, und einer Beschreibung. Dabei zeigte sich, dass die ver-
schiedenen Modelle die gestellte Aufgabe gut erfiillen. Besonders wichtig war dabei ein
vollstandiger und konsistenter Kontext. Herausstechend waren die Modelle Liama 3.1
Instruct und Qwend 30B A3B. Auch wenn sie nicht immer perfekte Antworten lieferten,
erzielten sie dennoch die besten Ergebnisse fiir alle Anforderungstypen und produzierten
ein verarbeitbares Format, das letztlich in das Anforderungsdokument integriert werden
konnte. Im Gegensatz dazu neigten die Modelle Mistral 7B Instruct und Mistral Nemo

2407 vermehrt zu Halluzinationen und hielten das allgemeine Format nicht ein.

Neben der automatischen Generierung der Anforderungsdokumente wurde ebenfalls eine
Schnittstelle zu den LLMs implementiert, die in zukiinftigen Projekten wiederverwendet
werden kann. Beispielsweise besteht bereits die Idee, SPS-Variablen automatisiert aus
einem Stromlaufplan mithilfe eines LLMs zu generieren. Hierfiir kann die implementierte
Schnittstelle genutzt werden.

Auch das Anforderungsmanagement-Tool Polarion kénnte zukiinftig eingebunden wer-
den. Das Konzept zum Kopieren von Dokumenten sowie das Prinzip, die Antwort in Po-
larion hochzuladen, wurden kurz erlautert. Hierfiir ist jedoch noch weiterfithrende Arbeit
erforderlich, da die Funktionen bislang nicht getestet werden konnten. Zudem verwendet

Polarion andere Dokumententypen, was insbesondere die Erstellung und das Hochladen

79

7 Fazit und Ausblick

von Dokumenten herausfordernd gestaltet.

Zusatzlich kann die Generierung zweier weiterer Dokumentarten realisiert werden: der
technischen Spezifikationen und der Testfille. Diese Erweiterung konnte ebenfalls auf-
grund zeitlicher Beschrankungen und des begrenzten Umfangs der vorliegenden Arbeit
nicht umgesetzt werden. Dennoch sind die Struktur und das Konzept fiir einen geeigneten
Kontext sowie die Klassen und Methoden zur Erstellung dieser Dokumente bereits doku-
mentiert. Dies bietet eine solide Grundlage, auf der zukiinftige Entwicklungen aufbauen

konnen, um die Implementierung der beiden zusétzlichen Funktionen zu erleichtern.

Abschliefsend wird die eigentliche Arbeit reflektiert. Sie bietet erste Grundlagen zur Ge-
nerierung von Anforderungsdokumenten, jedoch bestehen noch Verbesserungspotenziale.
Die Qualitiit der Antworten der LLMs konnte beispielsweise durch die Ubergabe eines in-
dividuellen Kontexts fiir jedes Modell verbessert werden. So kann auf spezifische Schwach-
stellen der einzelnen Modelle eingegangen werden. Des Weiteren konnte das Fine-Tuning
optimiert werden, indem die Antworten hinsichtlich verschiedener Temperaturen evalu-
iert, die maximalen Token begrenzt und der Top p-Wert angepasst wird. Obwohl in der
Arbeit kurz auf die Temperatur eingegangen wurde, geschah dies nicht im Detail. Es hat
sich jedoch gezeigt, dass bei Temperaturen unter 1 die Antworten qualitativ hochwertiger
sind. Fiir das Extrahieren des Textes einer PDF-Datei mit dem Modell Pixtral 12B 2409
flihrt eine Temperatur nahe 0 zu einer verbesserten Antwort. Eine genaue Analyse der

Temperatur konnte die Antworten der LLMs ebenfalls verbessern.

Zusammenfassend kann festgehalten werden, dass die Arbeit einen ersten Schritt in Rich-
tung der automatisierten Generierung von Projektmanagementdokumenten darstellt. Sie
bietet eine deutliche Zeitersparnis bei der Erstellung von Anforderungsdokumenten, ins-
besondere, wenn diese als Fliefstext vorliegen. Auch die Kompetenz im Bereich LLMs
wurde erweitert, um in Zukunft weitere Projekte mithilfe von LLMs realisieren zu kon-
nen. Zudem liefert die Arbeit selbst eine Grundlage, auf der Projekte unter Verwendung

von LLMs aufgebaut werden kénnen.

80

Literaturverzeichnis

1]

2]
3]

[4]

[5]

[6]

7]

18]

[9]

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, et al. Gqa: Training generalized
multi-query transformer models from multi-head checkpoints. EMNLP 2023, 2023.
URL https://arxiv.org/abs/2305.13245. Zugriffsdatum: 23.05.2025.

Ethem Alpaydin. Maschinelles Lernen 2. De Gruyter, Berlin, 2019.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document
transformer. 2020. URL https://arxiv.org/abs/2004.05150. Zugriffsda-
tum: 24.05.2025.

Oswald Campesato. Large Language Models : An Introduction. De Gruyter, Dulles,
VA, 2024.

DeepSeek-Al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforce-
ment learning. 2025. URL https://github.com/deepseek-ai/DeepSeek-
R1/blob/main/DeepSeek_R1.pdf. Zugriffsdatum: 27.05.2025.

Zichuan Fu, Wentao Song, Yejing Wang, et al. Sliding window attention training for
efficient large language models. 2025. URL https://arxiv.org/abs/2502.
18845. Zugriffsdatum: 23.05.2025.

Marcus Grande. 100 Minuten fiir Anforderungsmanagement: Kompaktes Wissen

nicht nur fiir Projektleiter und Entwickler. Springer Vieweg, Wiesbaden, 2014.

Dan Hendrycks, Collin Burns, Steven Basart, et al. Measuring massive multitask
language understanding. [ICLR 2021, 2021. URL https://arxiv.org/abs/
2009.03300. Zugriffsdatum: 21.05.2025.

Jochen Hirschle. Deep Natural Language Processing Finstieg in Word Embedding,
Sequence-to-Sequence-Modelle und Transformer mit Python. Carl Hanser Verlag,
Miinchen, 2022.

81

Literaturverzeichnis

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Uday Kamath, Kevin Keenan, Garrett Somers, and Sarah Sorenson. Large Language

Models: a Deep Dive : Bridging Theory and Practice. Springer, Cham, 2024.

Jon Krohn, Grant Beyleveld, Aglaé Bassens, and Kathrin Lichtenberg. Deep Lear-
ning illustriert Deep Learning illustriert: eine anschauliche Einfihrung in Machine
Vision, Natural Language Processing und Bilderzeugung fiir Programmierer und Da-

tenanalysten. dpunkt.verlag, Miinchen, 2020.

Thomas Niebisch and Jens Kawelke. Anforderungsmanagement in sieben Tagen:
Requirements Engineering im Zeitalter der KI. Springer Gabler, Berlin, Heidelberg,
2024.

OpenAl. Openai api reference: Text generation and prompting, 2024. URL https:
//platform.openai.com/docs/guides/text?api-mode=responses.
Zugriffsdatum: 18.04.2025.

OpenAl. Openai api reference: Structured outputs, 2024. URL https:
//platform.openai.com/docs/guides/structured-outputs?api-

mode=responses. Zugriffsdatum: 22.05.2025.

Siemens. Models, 2024. URL https://code.siemens.io/ai/models/. Zu-
griffsdatum: 25.03.2024.

Bhawna Singh. Building Applications with Large Language Models: Techniques, Im-
plementation, and Applications. APress, New York, 2024.

Hans-Peter Stricker. Sprachmodelle verstehen: Chatbots und generative kiinstliche

Intelligenz im Zusammenhang. Springer, Berlin, 2024.

Mehrzad Tabatabaian. Prompt engineering using ChatGPT : crafting effective in-
teractions and building GPT apps. De Gruyter, Boston, Massachusetts, 2024.

Qwen Team. Qwen3 technical report. 2025. URL https://arxiv.org/abs/
2505.09388. Zugriffsdatum: 27.05.2025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, et al. Attention is all you need.
NIPS 2017, 2017. URL https://proceedings.neurips.cc/paper/2017/
file/3f5ee243547dee91fbd053clc4a845aa—Paper.pdf. Zugriffsdatum:
31.03.2025.

82

Literaturverzeichnis

[21] Rowan Zellers, Ari Holtzman, Yonatan Bisk, et al. Hellaswag: Can a machine really
finish your sentence? ACL 2019, 2019. URL https://arxiv.org/abs/1905.
07830. Zugriffsdatum: 22.05.2025.

[22] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, et al. Judging llm-as-a-judge with
mt-bench and chatbot arena. NeurlPS 2023, 2023. URL https://arxiv.org/
abs/2306.05685. Zugriffsdatum: 14.05.2025.

83

A Anhang

A.1 Dokumentenbezeichnung

A.1.1 Document Classification Code

Abbildung A.1: Vorgaben zum Festlegen des DCCs

A.1.2 Dateinamen

Abbildung A.2: Vorgaben zum Dateinamen fiir Dokumente

A.2 Benchmarks

A.2.1 MT-Bench

84

A Anhang

Abbildung A.3: Kategorisierte Genauigkeit verschiedener Modelle im MT-Bench Bench-
mark [22]

Abbildung A.4: Ergebnisse verschiedener Modelle im MT-Bench Benchmark [22]

85

A Anhang

A.2.2 MMLU

Abbildung A.5: Kategorisierte Genauigkeit verschiedener Modelle im MMLU Bench-
mark (8]

A.2.3 HellaSwag

Abbildung A.6: Ergebnisse verschiedener Modelle im HellaSwag Benchmark [21]

A.3 Prompts

A.3.1 System Prompt zur Generierung der Anforderungen

CD Pfad: ,,/Anhang/Prompts/RequirementDocSystemMsg.md*

86

A Anhang

A.3.2 User Prompt zum Extrahieren des Texts eines PDFs

CD Pfad: ,,/Anhang/Prompts/ImageContent User.md*

A.4 Anforderungsdokumente

A.4.1 Anforderungsdokument Auszug - Fliefitext

CD Pfad: ,,/Anhang/Anforderungsdokumente/Anforderungsdokument Fliektext Aus-
zug_ geschwérzt.pdf*

A.4.2 Anforderungsdokument Auszug - Tabellenform

CD Pfad:,,/Anhang/Anforderungsdokumente/Anforderungsdokument Tabelle Auszug -
geschwarzt.pdf

A.4.3 Anforderungsdokument Auszug - Anforderungsliste

CD Pfad:,,/Anhang/Anforderungsdokumente/Anforderungsdokument Anforderungen -
Auszug geschwirzt.pdf

A.5 LLM Antworten

A.5.1 Anforderungsdokument Fliefitext - Pixtral 12B 2409

CD Pfad: ,,/Anhang/LLMAntworten/Pixtral/Flieftext PdfContent.txt"

A.5.2 Anforderungsdokument Tabellenform - Pixtral 12B 2409

CD Pfad: ,,/Anhang/LLMAntworten/Pixtral/Tabelle PdfContent.txt*

87

A Anhang

A.5.3 Anforderungsdokument Anforderungsliste - Pixtral 12B 2409

CD Pfad: ,,/Anhang/LLMAntworten/Pixtral/Anforderungsliste PdfContent.txt“

A.5.4 Anforderungsdokument Fliefitext - Mistral 7B Instruct

CD Pfad: ,,/Anhang/LLMAntworten/Mistral/Flieftext MistralResponse.txt*

A.5.5 Anforderungsdokument Fliefstext - Deepseek R1 Distill Qwen
B

CD Pfad: ,,/Anhang/LLMAntworten/DeepSeek /Flieftext DeepSeekResponse.txt

A.5.6 Anforderungsdokument Fliefitext - Qwen2.5 Coder 7B
Instruct

CD Pfad: ,,/Anhang/LLMAntworten/Qwen25/Flieftext Qwen25Response.txt*

A.5.7 Anforderungsdokument Fliefitext - Llama 3.1 8B Instruct

CD Pfad: ,,/Anhang/LLMAntworten/Llama/Flieftext LlamaResponse.txt*

A.5.8 Anforderungsdokument Fliefstext - Mistral Nemo Instruct
2407

CD Pfad: ,,/Anhang/LLMAntworten /MistralNemo/Flieftext MistralNemoResponse.txt

A.5.9 Anforderungsdokument Fliefitext - Qwen3 30B A3B

CD Pfad: ,,/Anhang/LLMAntworten/Qwen3/Flieftext Qwen3Response.txt*

88

A Anhang

A.5.10 Anforderungsdokument Tabellenform - Mistral 7B Instruct

CD Pfad: ,,/Anhang/LLMAntworten/Mistral/Tabelle MistralResponse.txt*

A.5.11 Anforderungsdokument Tabellenform - Deepseek R1 Distill
Qwen 7B

CD Pfad: ,,/Anhang/LLMAntworten/DeepSeek/Tabelle DeepSeekResponse.txt*

A.5.12 Anforderungsdokument Tabellenform - Qwen2.5 Coder 7B
Instruct

CD Pfad: ,,/Anhang/LLMAntworten/Qwen25/Tabelle Qwen25Response.txt*

A.5.13 Anforderungsdokument Tabellenform - Llama 3.1 8B Instruct

CD Pfad: ,,/Anhang/LLMAntworten/Llama/Tabelle LlamaResponse.txt*

A.5.14 Anforderungsdokument Tabellenform - Mistral Nemo Instruct
2407

CD Pfad:,,/Anhang/LLMAntworten/MistralNemo/Tabelle MistralNemoResponse.txt*

A.5.15 Anforderungsdokument Tabellenform - Qwen3 30B A3B

CD Pfad: ,,/Anhang/LLMAntworten/Qwen3/Tabelle Qwen3Response.txt

A.5.16 Anforderungsdokument Anforderungsliste - Mistral 7B
Instruct

CD Pfad:,,/Anhang/LLMAntworten/Mistral / Anforderungsliste MistralResponse.txt

89

A Anhang

A.5.17 Anforderungsdokument Anforderungsliste - Deepseek R1
Distill Qwen 7B

CD Pfad: ,,/Anhang/LLMAntworten /DeepSeek / Anforderungsliste DeepSeekResponse.txt*

A.5.18 Anforderungsdokument Anforderungsliste - Qwen2.5 Coder 7B
Instruct

CD Pfad: ,,/Anhang/LLMAntworten/Qwen25 / Anforderungsliste Qwen25Response.txt®

A.5.19 Anforderungsdokument Anforderungsliste - Llama 3.1 8B
Instruct

CD Pfad: ,,/Anhang/LLMAntworten/Llama/Anforderungsliste LlamaResponse.txt*

A.5.20 Anforderungsdokument Anforderungsliste - Mistral Nemo
Instruct 2407

CD Pfad: ,,/Anhang/LLMAntworten/MistralNemo/Anforderungsliste MistralNemoRe-

sponse.txt
A.5.21 Anforderungsdokument Anforderungsliste - Qwen3 30B A3B

CD Pfad: ,,/Anhang/LLMAntworten/Qwen3/Anforderungsliste Qwen3Response.txt*

A.6 Generierte Anforderungsdokumente

A.6.1 Generiertes Anforderungsdokument aus Fliefstext

CD Pfad: ,,Anhang/LLMAntworten/Qwen3/Fliektext-EC411-W01-RequirementList.xlsx*

90

A Anhang

A.6.2 Generiertes Anforderungsdokument aus Tabelle

CD Pfad: ,,Anhang/LLMAntworten/Qwen3/Tabelle-EC411-W01-RequirementList.xlsx"

A.6.3 Generiertes Anforderungsdokument aus Anforderungsliste

CD Pfad: ,Anhang/LLMAntworten/Qwen3/Anforderungsliste-EC411-W01-RequirementList.xlsx"

A.7 Quellcode der Anwendung

CD Pfad: ,,/Documentgenerator

91

Erklarung zur selbststandigen Bearbeitung einer Abschlussarbeit

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbsténdig

verfasst und nur die angegebenen Hilfsmittel benutzt habe.

Ort Datum Unterschrift im Original

92

