

Masterarbeit eingereicht im Rahmen der Masterprüfung
im gemeinsamen Masterstudiengang Mikroelektronische Systeme
am Fachbereich Technik
der Fachhochschule Westküste
und
am Department Informations- und Elektrotechnik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Heike Neumann
Zweitgutachter: Prof. Dr. Sönke Appel

Eingereicht am: 20. Februar 2025

Denise Wendlandt

Design und Programmierung einer
mikrokontrollergesteuerten Überwachungsplatine für

die Magnetstromversorgung und
Hot-Swap-Steuerung in Elektronenbeschleunigern

Denise Wendlandt

Thema der Arbeit

Design und Programmierung einer mikrokontrollergesteuerten Überwachungsplatine für
die Magnetstromversorgung und Hot-Swap-Steuerung in Elektronenbeschleunigern

Stichworte

Mikrokontroller, Platine, Hot-Swap-Matrix, Petra IV, Eagle, galvanische Trennung, Pro-
grammierung, C, UART

Kurzzusammenfassung

In dieser Arbeit werden Hardware und Software für ein Überwachungssystem entwi-
ckelt und implementiert. Dieses System soll die Funktion der Hot-Swap-Matrix sowie die
Spannungsversorgung der Magnete eines Elektronenbeschleunigers überwachen. Dabei
gewährleisten die Magnete die Stabilität und Aufrechterhaltung des Elektronenstrahls
und spielen eine zentrale Rolle im Betrieb des Beschleunigers.

Denise Wendlandt

Title of Thesis

Design and programming of a microcontroller-driven monitoring board for magnetic
power supply and hot-swap control in electron accelerators

Keywords

Microcontroller, circuit board, hot-swap matrix, Petra IV, Eagle, galvanic isolation, Pro-
gramming, C, UART

Abstract

In this thesis, hardware and software for a monitoring system are developed and imple-
mented. This system is intended to monitor the function of the hot-swap matrix and the
power supply to the magnets of an electron accelerator. The magnets ensure the stability
and maintenance of the electron beam and play a central role in the operation of the
accelerator.

iii

Inhaltsverzeichnis

Abbildungsverzeichnis vi

Tabellenverzeichnis viii

Abkürzungen ix

1 Einleitung 1

2 Grundlagen 3
2.1 Die Hot-Swap-Matrix . 3
2.2 Der Mikrokontroller . 5

3 Rahmenbedingung 7
3.1 Ausgangssituation . 7
3.2 Anforderungen . 8

4 Konzept 12
4.1 Hardware . 12

4.1.1 Überblick über die von der Hot-Swap-Platine übertragenen Signale 12
4.1.2 Konsequenzen für die Konzeptionierung der Hardware 17
4.1.3 Umsetzung weiterer Überwachungsmöglichkeiten auf der Mikro-

kontrollerplatine . 25
4.1.4 Anschlussplan an den Mikrokontroller 35

4.2 Konzeptionierung der Software . 36
4.2.1 Priorisierung der Signale . 36
4.2.2 Empfang und Auswertung der eingehenden Signale 37
4.2.3 Fehlererkennungsverfahren für die UART-Übertragung 41
4.2.4 UART Frame . 43
4.2.5 Konzeptionierung der Timinganforderungen 46

iv

Inhaltsverzeichnis

5 Implementierung 50
5.1 Hardware . 50

5.1.1 Erstellung der Schaltpläne in Eagle 50
5.1.2 Erstellung des Platinendesigns in Eagle 65

5.2 Software . 68
5.2.1 Übersicht über die Programmstruktur 68
5.2.2 Auslesen der Temperaturdaten . 71
5.2.3 Umrechnung und Auswertung der ADU Werte 72
5.2.4 Erstellung des UART Frames . 74
5.2.5 Implementierung des CRC-Checks 76
5.2.6 Senden der UART Daten . 78

6 Verifikation der Implementierung 79
6.1 Hardware . 79

6.1.1 Ermittlung des Leistungsverbrauchs der Platine 79
6.1.2 Schaltungen zur galvanischer Trennung 80
6.1.3 RS485 Transceiver-Schaltung . 83
6.1.4 Auslesen der Temperaturdaten mithilfe von I2C 84

6.2 Software . 85
6.2.1 Umrechnung der ADU Werte . 86
6.2.2 Erstellung des UART-Frames . 87

7 Fazit 89

Literaturverzeichnis 91

A Anhang 97
A.1 Verwendete Hilfsmittel . 97
A.2 Anschlussplan an den Mikrokontroller . 98
A.3 Schaltungsauslegung zur galvanischen Trennung der 12 V Spannung 100
A.4 Schaltpläne . 102
A.5 Softwarecode . 105

Selbstständigkeitserklärung 130

v

Abbildungsverzeichnis

2.1 Darstellung eines MOSFET-Schalters . 3
2.2 Darstellung der Hot-Swap-Matrix für einen Magnetstromkreis 4
2.3 STM32 Nucleo-64 board . 5

3.1 Überblick über das Gesamtsystem . 7

4.1 Übersicht mit zwei Magnetstromkreisen und einer Reservespannungsver-
sorgung . 13

4.2 Entstehung der digitalen Signale zur Überwachung der Magnetspannung . 14
4.3 Zusammensetzung des über UART zu übertragenden Frames 46

5.1 Auszug aus dem Schaltplan: Verbindungsstecker 51
5.2 Auszug aus dem Schaltplan: LDO . 52
5.3 Auszug aus dem Schaltplan: Abwärtswandler 53
5.4 Auszug aus dem Schaltplan: Spannungsteiler 55
5.5 Auszug aus dem Schaltplan: Spannungsumsetzung der digitalen Signale . . 57
5.6 Auszug aus dem Schaltplan: Galvanische Trennung Magnetspannung . . . 58
5.7 Auszug aus dem Schaltplan: Referenzspannung 1.5 V 59
5.8 Auszug aus dem Schaltplan: Galvanische Trennung 12 V-Versorgungsspannung 62
5.9 Auszug aus dem Schaltplan: Temperatursensor 63
5.10 Auszug aus dem Schaltplan: RS485 Empfänger 64
5.11 Auszug aus dem Schaltplan: Mikrokontroller 65
5.12 Finale Platinendesign in Eagle . 66
5.13 Bestückte Mikrokontrollerplatine des ersten Prototyps 67
5.14 Übersicht über die Softwarestruktur . 68
5.15 Auszug aus dem Datenblatt: Temperatur Register 71

6.1 Oszilloskopbild zur Verifikation der Übertragung der Magnetspannung . . 81
6.2 Oszilloskopbild zur Verifikation der Funktion der RS485 Transceiver Schal-

tung . 83

vi

Abbildungsverzeichnis

6.3 Oszilloskopbild zur korrekten I2C-Übertragung 85
6.4 Debugauszug zur Überprüfung der ADU-Werte 86
6.5 Debugauszug zur Erstellung des UART-Frames 87

A.1 Auszug aus dem Schaltplan: Galvanische Trennung 12 V-Versorgungsspannung100
A.2 Schaltplan Seite 1 . 102
A.3 Schaltplan Seite 2 . 103
A.4 Schaltplan Seite 3 . 104

vii

Tabellenverzeichnis

2.1 Eckdaten des Mikrokontrollers . 6

3.1 Anforderungen an den Hardwareteil . 10
3.2 Anforderungen an den Softwareteil . 11

4.1 Vor- und Nachteile der Methoden zur Gewährleistung der Spannungsver-
sorgung . 20

4.2 Vergleich von verschiedenen Methoden zur Spannungspegelreduktion . . . 24
4.3 Vergleich von One-Wire, I2C und SPI . 27
4.4 Vergleich verschiedener Methoden zur Potentialtrennung 32
4.5 Vergleich Polling, Interrupt und DMA . 38
4.6 Vergleich von Fehlererkennungsverfahren 41

A.1 Verwendete Hilfsmittel und Werkzeuge . 97
A.2 Anschlussplan des CN7 Steckers . 98
A.3 Anschlussplan des CN10 Steckers . 99

viii

Abkürzungen

I2C Inter-integrated circuit.

ADU Analog-Digital-Umsetzer.

CPU Central processing unit.

CRC Cyclic redundancy check.

DAU Digital-Analog-Umsetzer.

Desy Deutsche Elektronen-Synchrotron.

DMA Direct Memory Access.

EMI elektromagnetische Interferenz.

ESD Elektrostatische Entladungen.

GPIO General Purpose Input/Output.

IC integrierte Schaltkreis.

ISR Interrupt service routine.

LDO Low Drop Out.

LED Leuchtdiode.

MOSFET Metall-Oxid-Halbleiter-Feldeffekttransistor.

ix

Abkürzungen

.

PWM Pulsweitenmodulation.

RAM Random access memory.

SCK Serial Clock.

SCL Serial Clock.

SDA Serial Data.

SPI Serial Peripheral Interface.

UART Universal Asynchronous Receiver Transmitter.

x

1 Einleitung

Das Deutsche Elektronen-Synchrotron (Desy) ist eines der weltweit führenden Unterneh-
men im Bereich der Beschleunigerphysik und Synchrostrahlung. Als Teil der Helmholtz-
Gesellschaft liegt der Forschungsschwerpunkt im Bereich der grundlegenden Struktur der
Materie und der Prozesse im Universum. Es wird unter anderem Forschung in den Fach-
bereichen der Physik, Chemie, Biologie und der Materialwissenschaft ermöglicht. Mithilfe
von hochmodernen Teilchenbeschleunigern bietet das Desy Wissenschaftlern aus der gan-
zen Welt die Möglichkeit unter anderem komplexe Strukturen und ultraschnelle Prozesse
auf atomarer Ebene zu untersuchen [21].
Eine zentrale Rolle bei diesem wissenschaftlichen Erfolg trägt die PETRA III Anlage. Mit
ihrer außergewöhnlichen Brillanz als Speicherring für Synchrotronstrahlung hat sie über
viele Jahre hinweg entscheidende Fortschritte in der Forschung ermöglicht. Doch trotz
der Leistungsfähigkeit kommt die Petra III Anlage aus technischer und wissenschaftlicher
Sicht immer weiter an ihre Grenzen. Um den steigenden Anforderungen innerhalb der
Wissenschaft gerecht zu werden, wird das Projekt Petra IV als Nachfolger entwickelt.
Hierbei soll Petra IV als hochmodernes 3D-Röntgenmikroskop eingesetzt werden, das
dreidimensionale Strukturbilder vom Millimeterbereich bis hin zur atomaren Auflösung
liefert. Technisch gesehen basiert Petra IV auf einem Synchrotron, in dem Elektronen
nahezu auf Lichtgeschwindigkeit beschleunigt werden. Die Anlage soll die Petra III An-
lage um das 500- bis 1000-fache in der Leistungsfähigkeit übertreffen. Somit bietet die
neue Petra IV Anlage eine um ein Vielfaches höhere Strahlhelligkeit und Auflösung. Mit
dieser Verbesserung kann die Forschung unter anderem in der Entwicklung nachhaltiger
Energietechnologien, in der Untersuchung biologischer Strukturen für medizinische Fort-
schritte und in der Verbesserung von Werkstoffen für die Industrie verbessert werden [9].

Für die präzise Steuerung und für die Stabilisierung der Elektronen innerhalb des Rings
der Petra IV Anlage werden verschiedene Magnete verwendet. Eine stabile Spannungs-
versorgung der Magnete ist für den Beschleunigerbetrieb essentiell, da ein Ausfall der
Spannungsversorgung an den Magneten zu einem Verlust des Elektronenstrahls führen

1

1 Einleitung

kann. Dieser Verlust würde im ungünstigsten Fall die Wiederholung eines wissenschaftli-
chen Versuchs nach sich ziehen. Dies wiederum führt unter Umständen zu hohen Kosten,
zu einem erheblichen gesteigerten Zeitaufwand für die Forschenden und zu einer Reduzie-
rung des guten Rufs des Desy. Aus diesen Gründen ist der Verlust des Elektronenstrahls
aufgrund einer instabilen Magnetstromversorgung unbedingt zu vermeiden.
In dieser Masterarbeit ist ein Prototyp zu entwickeln, welcher die Status der Spannungs-
versorgungen der Magneten und einer Hot-Swap-Matrix überprüft und die gewonnen Da-
ten an ein übergeordnetes System weiterleitet. Mithilfe von dem übergeordneten System
können anschließend Vorhersagen über einen möglichen Ausfall der Magnetstromversor-
gung getroffen und gegen wirkende Maßnahmen eingeleitet werden. In dieser Arbeit ist
eine Platine zu entwickeln, die verschiedene Signale überwacht und mithilfe eines Mikro-
kontrollers auswertet und weiterleitet. Die Software zur Verarbeitung der Daten auf dem
Mikrokontroller ist ebenfalls Bestandteil dieser Arbeit.

An dieser Stelle möchte ich mich herzlich beim Desy sowie bei meinen Kollegen und
Kolleginnen für ihre wertvolle Unterstützung und die Möglichkeit, diese Arbeit zu ver-
fassen, bedanken. Besonderem Dank gilt hierbei meinem Betreuer Christian Putscher.

2

2 Grundlagen

In diesem Kapitel werden Grundlagen vorgestellt, welche zum Verständnis dieser Arbeit
vorausgesetzt werden. Hierbei wird zunächst die Hot-Swap-Matrix beschrieben. Diese
Matrix wurde bereits im Vorfeld dieser Arbeit entwickelt und ist hinsichtlich ihrer Funk-
tion mit geeigneten Mechanismen zu überwachen. Darauf erfolgt eine kurze Vorstellung
des zu verwendenden Mikrokontrollers.

2.1 Die Hot-Swap-Matrix

In diesem Kapitel wird die Hot-Swap-Matrix vorgestellt. Mithilfe der Hot-Swap-Matrix
wird eine verzugsfreie Umschaltung der Stromversorgung eines Magneten auf eine Re-
servestromversorgung ermöglicht. Dies kann einen Verlust des Elektronenstrahls ver-
hindern, was für den Betrieb der zukünftigen Petra IV Anlage essenziell ist. Die Hot-
Swap-Matrix stellt dabei eine Halbleiter-Matrix bestehend aus N-Metall-Oxid-Halbleiter-
Feldeffekttransistoren (MOSFETs) dar. Die MOSFETs agieren als Schalter und ermög-
lichen das Umschalten zwischen den Spannungsversorgungen.
In der Abbildung 2.1 ist ein MOSFET-Schalter abgebildet.

Abbildung 2.1: Darstellung eines MOSFET-Schalters

3

2 Grundlagen

Zu erkennen sind zwei N-MOSFETs, welche Back-to-Back (Rücken an Rücken) über
die Source-Anschlüsse (S) miteinander verbunden sind. Parallel zu den MOSFETs ist
jeweils eine Diode geschaltet, die in der Richtung von Source nach Drain des Transis-
tors leitfähig ist. An den Drain-Pin (D) des linken MOSFETs wird der Magnet, welche
mit der Spannungsversorgung betrieben werden soll, anschlossen. An den Drain-Pin des
rechten Transistors wird die zu verwendende Spannungsversorgung angelegt. Die Gate-
Spannungen werden von einem Gate-Treiber bereitgestellt, wobei die Spannungen aus
dem gleichen Signal erzeugt werden. Diese Schaltung wird als bidirektionaler MOSFET-
Schalter verwendet. Liegt eine zu geringe Spannung an den Gates (G) an, sodass die
MOSFET nicht durchschalten, wird ein Stromfluss durch die Schaltung durch die beiden
Dioden verhindert. Der Magnet ist somit von der Spannungsversorgung getrennt. Wird
hingegen eine ausreichend positive Gate-Spannung angelegt, leiten beide Dioden und der
entsprechende Magnet kann durch die angeschlossene Spannungsversorgung betrieben
werden.
Nachdem die Funktion eines einzelnen Schalters erläutert wurde, ist die Gesamtfunktion
der Hot-Swap-Matrix zu erklären. Hierfür ist in der Abbildung 2.2 die Hot-Swap-Matrix,
ein Magnetstromkreis und die Reservespannungsversorgung dargestellt.

Abbildung 2.2: Darstellung der Hot-Swap-Matrix für einen Magnetstromkreis

4

2 Grundlagen

Die Hot-Swap-Matrix (blau) stellt das Verbindungsglied zwischen der Spannungsver-
sorgung, dem Magneten und der Reservespannungsversorgung dar. Die eingezeichneten
Schalter stehen dabei für die vorgestellte MOSFET-Struktur. Im oberen Kreislauf ist
ein Magnet (grün) zu erkennen, der durch die Spannungsversorgung VS1 (rot) betrieben
werden kann. Sollte diese Spannungsversorgung ausfallen, ist es möglich über die Schalter
in der Hot-Swap-Matrix die Reservespannungsversorgung (rot) hinzu zu schalten.
Diese Abbildung stellt eine stark vereinfachte Version dar. Im realen Betrieb sind mehr
als 4000 Magnete zur Aufrechterhaltung des Betriebs geplant [22]. Dabei sollen eine
große Anzahl an Magnete mit der Hot-Swap-Matrix ausgestattet werden. Hierbei wird
eine Reserve-Spannungsversorgung voraussichtlich an acht verschiedene Magnetstrom-
kreise angeschlossen werden. Im realen Betrieb sind somit mehrere Hot-Swap-Systeme
zu implementieren.

2.2 Der Mikrokontroller

In diesem Kapitel wird der in diesem Projekt zu verwendende Mikrokontroller vorgestellt.
Es wird der STM32F072RBT6 mit dem Board NUCLEO-F072RB implementiert. In der
Abbildung 2.3 ist das Board dargestellt.

Abbildung 2.3: STM32 Nucleo-64 board

5

2 Grundlagen

In der Tabelle 2.1 werden einige Eckdaten des Mikrokontrollers aufgeführt. Die Daten sind
dem Datenblatt des Mikrokontrollers, als auch dem User Manual des Boards entnommen.
Beide Quellen sind in dem digitalen Anhang vorhanden.

Tabelle 2.1: Eckdaten des Mikrokontrollers
Hersteller STMicroelectronics
Kern Arm 32-bit Cortex-M0 Central processing unit (CPU)
Programmspeichergröße 128 kB

Random access memory (RAM)
Datengröße 16 kB

Maximale Taktfrequenz 48 MHz

Digitale und I/O
Spannungsversorgung 2 − 3.6 V

Anzahl der Inputs/Outputs bis zu 87

Peripherie

Direct Memory Access (DMA) Controller mit 7 Kanälen
12-Bit Analog-Digital-Umsetzer (ADU) mit 16 Kanälen
12-Bit Digital-Analog-Umsetzer (DAU) mit 2 Kanälen
Zwölf Timer

Kommunikation Interfaces

Zwei Inter-integrated circuit (I2C)-Anbindungen
Vier
Universal Asynchronous Receiver Transmitter (UART)-
Anbindungen
Zwei Serial Peripheral Interface (SPI) Anbindungen
Eine Controller Area Network (CAN) Anbindung
Ein Universal Serial Bus (USB) 2.0 Interface

Durch die Verwendung des NUCLEO-Boards sind die gesamten Peripherien über Steck-
verbinder zu erreichen. Ebenfalls stehen eine User-Leuchtdiode (LED) und ein User-
Button zur freien Programmierung zur Verfügung. Die Programmierung des Mikrokon-
trollers wird durch einen USB-C Zugang ermöglicht. Es sind mehrere Möglichkeiten vor-
handen das Board über Spannungen zu versorgen. Zum einen kann das Board über die
USB-C Schnittstelle versorgt werden, zum anderen gibt es externe Spannungspins, an
denen eine Spannung von 3.3 V oder 5 V angelegt werden kann.

6

3 Rahmenbedingung

Innerhalb dieses Kapitels werden die Rahmenbedingungen des Projekts beschrieben.
Hierbei wird zunächst die bisherige Ausgangssituation genauer betrachtet. Anschließend
werden die einzelnen gestellten Anforderungen an dieses Projekt aufgeführt und analy-
siert.

3.1 Ausgangssituation

Innerhalb von diesem Unterkapitel werden die zu entwickelnden Komponenten in das
bereits gegebene System eingeordnet. Das Ziel ist es einen Überblick über das gesamte
System zu erhalten. Die Abbildung 3.1 dient zur visuellen Unterstützung und zeigt die
einzelnen Komponenten des gesamten Systems.

Abbildung 3.1: Überblick über das Gesamtsystem

7

3 Rahmenbedingung

Zentral in grün ist die Hot-Swap-Platine dargestellt. Die Hot-Swap-Platine enthält die in
dem Grundlagenkapitel 2.1 vorgestellte Hot-Swap-Matrix. Anders wie in der Vorstellung
in dem Grundlagenkapitel, wird diese Hot-Swap-Matrix für zwei Magnetstromkreise aus-
gelegt. Dies bedeutet, dass an die Hot-Swap-Matrix zwei unterschiedliche Versorgungs-
spannungen und zwei Magnete angeschlossen werden können. Beide Versorgungskreise
weisen dabei zueinander unterschiedliche Potentiale auf und sind strikt voneinander zu
trennen. Die Versorgungsspannungen werden von einer Spannungsquelle mit zwei sepa-
raten Ausgängen bereitgestellt. In der Abbildung sind die zwei Versorgungskreise in lila
und in blau dargestellt. Der Prototyp dieser Hot-Swap-Platine wird zeitgleich zu dieser
Arbeit entwickelt.
In grau ist die Reserve-Spannungsversorgung dargestellt. Sollte ein Problem in einer
der Spannungsversorgungen auftreten, kann die Reserve-Spannungsversorgung durch die
MOSFET Schalter an einen der Versorgungskreise zugeschaltet werden. Dies soll den
Ausfall eines Magneten aufgrund einer fehlerhaften Versorgungsspannung entgegenwir-
ken. Kontrolliert wird dieser Vorgang durch ein übergeordnetes System, welches in der
Grafik in orange dargestellt ist.
In rot ist die in dieser Arbeit zu entwickelnde Erweiterung des Gesamtsystems zu erken-
nen. Die Erweiterung umfasst eine Platine, welche mit einemMikrokontroller ausgestattet
ist. Die genauen gestellten Anforderungen an diese Mikrokontrollerplatine sind im nächs-
ten Unterkapitel einzusehen.
Die Spannungsquelle, die Hot-Swap-Platine und die zu entwickelnde Erweiterung be-
finden sich zusammen in einem Einschubfach eines Racks, welches voraussichtlich nach
Realisierung des Projektes in der Halle der Petra IV Anlage aufzufinden ist.

3.2 Anforderungen

Es folgt die Vorstellung der Anforderungen an das in dieser Arbeit zu entwickelnde
System. Hierbei werden die Anforderungen in einen hardware-spezifischen und einen
software-spezifischen Teil unterteilt. Der hardware-spezifische Teil umfasst dabei die An-
forderungen an die Konzeptionierung und an die Entwicklung der Mikrokontrollerplatine.
Innerhalb des Softwareteils werden die Anforderungen an die Signalauswertung durch den
Mikrokontroller thematisiert.

Innerhalb des Hardwareteils ist zunächst eine Konzeptfindung durchzuführen. Hierbei
sind geeignete Verfahren zur Überwachung der Funktion der Hot-Swap-Platine und der

8

3 Rahmenbedingung

Magnete zu ermitteln. Das Ziel ist es, mit diesem Verfahren eine mögliche Fehlfunktionen
innerhalb der oben genannten Komponenten frühzeitig zu erkennen. Anschließend sind
diese Informationen möglichst zeitnah an das übergeordnete System weiterzuleiten. Um
dies zu ermöglichen, sind bei der Entwicklung der Verfahren die kritischen Signale und
Spannungen, welche zu einem Ausfall des Elektronenstrahls führen können, besonders zu
berücksichtigen.
Anschließend müssen für die gefundenen Überwachungsverfahren effiziente Umsetzungs-
möglichkeiten ermittelt werden. Hierbei sind geeignete Schaltungen zu entwickeln und
passende Bauteile auszuwählen. Der Schaltplan muss mit dem Entwicklungstool Eagle
erstellt werden, da dieses Tool im Unternehmen für die Platinenentwicklung eingesetzt
wird und daher unter anderem die benötigten Bibliotheken bereits vorhanden sind. Be-
sondere Beachtung bei der Erstellung des Schaltplans liegt dabei auf dem Vorhandensein
von verschiedenen Potentialen. In dieser Anwendung sind insgesamt drei verschiedene
Potentiale vorhanden. Jeweils ein Potential für jeden Magnetstromkreis und ein weiteres
Potential für die Mikrokontrollerplatine. Eine Vermischung dieser Potentiale führt zu un-
erwünschten Nebeneffekten. Bei der Auswahl der Bauteile ist zu berücksichtigen, dass be-
vorzugt standardisierte Bauteile verwendet werden. Dadurch soll eine höhere Flexibilität
bei der Beschaffung, eine Unabhängigkeit von bestimmten Herstellern und eine geringere
Gefahr für potentielle Engpässe innerhalb der Lieferkette erreicht werden. Gleichzeitig
können Kosten bei der Bauteilebeschaffung reduziert werden.
Bei der Entwicklung der Schaltungen ist zu berücksichtigen, dass alle Signale, welche
überwacht werden sollen, eine Verbindung zu dem Mikrokontroller aufweisen müssen.
Hierbei ist es erforderlich das STM32 Nucleo-64-Board NUCLEO-F072RB in den Schalt-
plan zu integrieren. Dieses Board enthält den Mikrokontroller STM32F072RB. Beide
Komponenten wurden bereits im Grundlagenkapitel 2.2 vorgestellt.
Ebenso ist vorgegeben, dass die Mikrokontrollerplatine mit der Hot-Swap-Platine über
eine UART-Verbindung kommunizieren können muss. Hierüber erfolgt der Austausch
von Daten und von allgemeinen Anweisungen. Um dies zu realisieren, müssen beide Pla-
tinen über Steckverbinder miteinander verbunden werden. Über die Steckverbinder muss
zusätzlich zum Austausch der Daten über UART der gesamte Signalaustausch erfolgen.
Dies umfasst die Übertragung von Versorgungsspannungen und die Übertragung der zu
überwachenden Signale. Damit die Steckverbinder später miteinander genau in der Posi-
tion übereinstimmen, ist eine enge Zusammenarbeit bei der Entwicklung der Prototypen
der Hot-Swap-Platine und der Mikrokontrollerplatine erforderlich. Schon bei geringen
positionellen Abweichungen der Steckverbinder können die Platinen nicht mehr korrekt
verbunden werden.

9

3 Rahmenbedingung

Nach der Implementierung der Schaltungen im Schaltplan ist das Layout der Platine zu
erstellen. Dies erfolgt ebenfalls in dem Entwicklungstool Eagle. Die Platine muss dabei
vier Lagen umfassen. Bei dem Erstellen des Layouts ist unter anderem darauf zu achten,
dass die Platzierung der Bauteile auf der Platine so erfolgt, dass die entstehenden Verbin-
dungen zwischen den Bauteilen möglichst kurz sind. Dies bedeutet, dass keine Leiterbahn
von einem Ende zu dem anderen Ende der Platine gezogen werden darf. Vor allem bei
störanfälligen Signalen muss auf eine kurze Anbindung geachtet werden. Des Weiteren
sollen die Mikrokontrollerplatine und die Hot-Swap-Platine beide zusammen über ein
Einschubfach direkt in das Rack implementiert werden. Aus diesem Grund sind vorgege-
bene Maße einzuhalten, welche die Platinen zusammen nicht überschreiten dürfen. Der
Einschub ist dabei 100 mm breit, 35 mm hoch und 160 mm tief. Bei einer Überschreitung
dieser Maße kann nicht garantiert werden, dass die Platinen in das Rack passen.
Ebenfalls zu beachten ist, dass die Platine nur einen geringen Stromverbrauch aufweisen
darf, da die vorgesehene Anbindung zur Spannungsversorgung der beiden Platinen nur
eine begrenzte Menge an Leistung zur Verfügung stellen kann. Es muss eine maximale
Leistung von 1 W eingehalten werden.
In der Tabelle 3.1 sind die einzelnen Anforderungen an die Hardwareentwicklung noch-
mals zusammengefasst.

Tabelle 3.1: Anforderungen an den Hardwareteil
Anforderung

1.
Konzeptfindung für geeignete Überwachungsverfahren, um eine
Fehlfunktion an der Spannungsversorgung der Magnete oder an der
Hot-Swap-Matrix frühzeitig zu erkennen

2. Entwicklung von Schaltungen zur Umsetzung der Überwachungsverfahren

3. Verwendung des STM32 Nucleo-64 Boards NUCLEO-F072RB mit dem
Mikrokontroller STM32F072RB

4. Entwicklung einer vierlagigen Platine mit Eagle
5. Maximaler erlaubter Leitungsverbrauch von 1W

Es folgt die Vorstellung der Anforderungen an den Softwareteil.
Zunächst ist ein geeignetes Softwarekonzept zu erstellen. Hierbei ist zu ermitteln, wie die
eingehenden Signale empfangen und ausgewertet werden müssen. Dabei sind geeignete
Verfahren und Mechanismen zum Datenempfang durch einen Mikrokontroller für die ent-
sprechenden Signale zu bewerten. Anschließend muss für die Signale eine Priorisierung
festgelegt werden. Hierbei sind kritische Signale höher zu priorisieren als weniger kriti-
sche Signale. Dabei gilt es zu entscheiden, welche der übertragenden Signale als kritisch

10

3 Rahmenbedingung

eingestuft werden müssen.
Die Weiterleitung der Daten an die Hot-Swap-Platine wird durch eine UART-Verbindung
ermöglicht. Hierbei soll im Rahmen des Softwarekonzeptes ein geeignetes Fehlererken-
nungsverfahren gefunden werden. Mithilfe von diesem Verfahren muss eine fehlerhaf-
te Kommunikation zwischen dem Mikrokontroller und der Hot-Swap-Platine festgestellt
werden können. Ebenfalls muss ein Konzept für die Datenübermittlung über die UART-
Verbindung erstellt werden. Dabei ist erneut die Priorisierung der einzelnen Signale zu
beachten.
Besonders zu berücksichtigen ist die Konzeptionierung des Timings des gesamten Softwa-
recodes. Hierbei müssen die Datenerfassung, die Datenverarbeitung und die Datenüber-
mittlung genau aufeinander abgestimmt werden. Es dürfen keine Informationen durch
das zu langsame Verarbeiten der eingehenden Signale durch die Software verloren ge-
hen. Ebenso muss auf eine konstante Datenübermittlung mittels UART geachtet wer-
den. Durch die konstante Übermittlung sollen mögliche Fehlkommunikationen erkannt
werden. Auch wird vermieden, dass ein Datenstau entsteht, welcher zu einer zeitlichen
Verzögerung der Datenübermittlung führt.
Anschließend ist die Software auf dem Mikrokontroller zu implementieren. Hierbei muss
die Entwicklungsumgebung STMCubeIDE verwendet werden. Als Programmiersprache
ist C vorgesehen. Des Weiteren ist bei der Implementierung drauf zu achten, dass das
System möglichst autark verwendet werden soll. Dies bedeutet, dass das Softwaresystem
Programmfehler, wie beispielsweise das Aufhängen des Systems an einer Stelle des Pro-
grammcodes, selbst erkennen und beheben muss.
In der Tabelle 3.2 werden die Anforderungen an die Software nochmals zusammengefasst
tabellarisch dargestellt.

Tabelle 3.2: Anforderungen an den Softwareteil
Anforderung

1. Konzepterstellung zum Empfang und zur Auswertung der zu
überwachenden Signale

2.
Konzepterstellung für Fehlererkennungsverfahren, um eine
inkorrekte UART-Übertragung zu ermitteln

3. Konzepterstellung für Übermittlungsmöglichkeiten der Daten via
UART an die Hot-Swap-Platine

4. Konzepterstellung für das Timing zwischen Datenerfassung,
Datenauswertung und Datenübermittlung

5. Implementierung des Software in der STMCubeIDE unter
Verwendung der Programmiersprache C

11

4 Konzept

In diesem Kapitel wird das Konzept dieser Arbeit vorgestellt. Hierbei gliedert sich das
Konzept in einen Hardwareteil und einen Softwareteil.
Innerhalb des Hardwareteils werden Konzepte zur Erstellung der Platine getroffen. Im
Softwareteil wird die Auswertung der einzelnen Signale durch den Mikrokontroller und
der Aufbau des gesamten Softwarecodes behandelt.

4.1 Hardware

Es folgt die Konzeptvorstellung des Hardwareteils. Zunächst werden die Signale, wel-
che von der Hot-Swap-Platine an die Mikrokontrollerplatine übergeben werden, vorge-
stellt. Anschließend werden die daraus resultierenden Konsequenzen für die vorzuneh-
mende Hardwareentwicklung beschrieben. Es folgt die Vorstellung von weiteren mögli-
chen Überwachungsmöglichkeiten, deren Implementierung auf der Mikrokontrollerplatine
vorzunehmen ist. Anschließend wird der Anschlussplan der Signale an die Pins des Mi-
krokontrollers vorgestellt.

4.1.1 Überblick über die von der Hot-Swap-Platine übertragenen
Signale

In diesem Teil des Hardwarekonzeptes werden zunächst alle Signale beschrieben, wel-
che von der Hot-Swap-Platine an die Mikrokontrollerplatine übermittelt werden. Die
zugehörigen Hardwareschaltungen zur Erzeugung der Signale befinden sich auf der Hot-
Swap-Platine und werden in dieser Arbeit nicht tiefer gehend erläutert.

12

4 Konzept

Überwachung der Hot-Swap-Matrix

Mithilfe der ersten implementierten Überwachungsmethode wird die Hot-Swap-Matrix
überwacht. Es soll die Schalterstellung der verschiedenen MOSFET-Schalter durch digi-
tale Signale erkenntlich gemacht werden. Hierfür sind für jeden Magnetstromkreis zwei
digitale Signale vorhanden. Das eine digitale Signal zeigt mit seinem Pegel die aktu-
elle Ansteuerung des Schalters, welcher sich zwischen Spannungsversorgung und Ma-
gnet befindet, an. Ein High-Pegel bedeutet, dass der Schalter geschlossen ist. Ein Low-
Pegel zeigt die geöffnete Schalterstellung an. Dieses Signal heißt Matrix_1_1. Ein Wei-
teres digitales Signal zeigt die Ansteuerung des Schalters, welcher zwischen Reserve-
Spannungsversorgung und Magneten liegt, an. Dieses Signal heißt Matrix_1_2. Für den
zweiten Magnetstromkreis auf der Hot-Swap-Platine werden die gleichen Schalter mit
digitalen Signalen überwacht. Diese Signale heißten dann Matrix_2_1 für den Schalter
zwischen Spannungsversorgung und Magnet und Matrix_2_2 für den Schalter zwischen
Reserve-Spannungsversorgung und Magnet. Die Abbildung 4.1 soll dies grafisch verdeut-
lichen. In rot werden die Schalter, welche für die jeweiligen Matrix-Signale verwendet wer-
den, farblich hervorgehoben. Beide Magnetstromkreise sind über eine Hot-Swap-Matrix
verbunden.

Abbildung 4.1: Übersicht mit zwei Magnetstromkreisen und einer Reservespannungsver-
sorgung

13

4 Konzept

Mithilfe von dieser Überwachungsmethode soll ein vereinfachter Überblick über die ver-
wendeten Spannungsversorgungen bei den einzelnen Magneten ermöglicht werden. Durch
das übergeordnete System kann so nachvollzogen werden, welche Spannungsversorgung
welchem Magneten zugeordnet ist. Zudem können Fehler, wie das unbeabsichtigte Zu-
sammenschalten verschiedener Magnetstromkreise durch eine falsche Schalterstellung,
reduziert werden.

Überwachung der Magnetspannungen

Eine weitere implementierte Überwachungsmöglichkeit stellt die Überwachung der Ma-
gnetspannungen dar. Mithilfe dieser Überwachung können Anstiege beziehungsweise Ab-
fälle in der Spannungsversorgung der beiden Magneten festgestellt werden. Es werden
digitale Signale eingesetzt. Mithilfe der Abbildung 4.2 soll die Bedeutung der digitalen
Signale genauer erklärt werden.

Abbildung 4.2: Entstehung der digitalen Signale zur Überwachung der Magnetspannung

Innerhalb des oberen Graphen ist in schwarz ein möglicher Verlauf der Magnetspan-
nung an dem Magneten M1 zu erkennen. Die gestrichelte rote Linie gibt den maxima-
len Schwellwert der Magnetspannung und die blaue gestrichelte Linie den minimalen
Schwellwert der Magnetspannung an. Sollte die Magnetspannung die rote gestrichelte
Linie für den maximalen Schwellwert übersteigen, wird das Detection_1_High-Signal
auf eins gesetzt. Dieses Signal wird in rot innerhalb des unteren Graphen dargestellt.

14

4 Konzept

Solange die Magnetspannung über den Schwellwert liegt, bleibt das digitale Signal auf
einem High-Pegel. Sollte die Magnetspannung hingegen unter die blau gestichelte Linie,
welche den minimalen Schwellwert angibt, fallen, wird das Detection_1_Low Signal auf
einen High-Pegel gesetzt. Dieses Signal bleibt solange auf einem High-Pegel, bis die Ma-
gnetspannung den unteren Schwellwert wieder übersteigt. Die gleiche Anordnung liegt
auch für die Spannung an dem Magneten M2 vor. Hier heißen die digitalen Signale De-
tection_2_High und Detection_2_Low. Somit sind insgesamt vier digitale Signale für
die Überwachung der Magnetspannung zuständig.
Mithilfe dieser digitalen Signale kann eine erhöhte beziehungsweise eine verringerte Ver-
sorgungsspannung an den Magneten erkannt werden. Die jeweiligen Schwellwerte sind
dabei sehr entscheidend. Da die Spannung direkt die Magnetkraft beeinflusst, ist eine
stabile Spannungsversorgung innerhalb eines vorgesehenen Bereichs essentiell. Die Stär-
ke des durch den Magneten erzeugten elektrischen Felds nimmt bei einer zu geringen
Spannungsversorgung ab. Bei einer zu hohen Spannungsversorgung nimmt die Stärke
hingegen zu. Beides führt dazu, dass der Elektronenstrahl nicht mehr korrekt gesteuert
werden kann, was wiederum Ungenauigkeiten und den eventuellen Verlust des Elektro-
nenstrahls begünstigt. Mithilfe dieser Signale ist zusammenfassend eine Änderung in der
Spannungsversorgung der Magnete festzustellen. Anhand der übermittelten Daten kön-
nen geeignete Maßnahmen ergriffen werden. Dazu zählt unter anderem das Umschalten
auf die Reserve-Spannungsversorgung.

Überwachung der Dump-Schaltung

Eine weitere Überwachungsmöglichkeit bezieht sich auf die Überwachung der Dump-
Schaltung. Hierfür wird zunächst die Funktion der Dump-Schaltung erklärt.
Im Allgemeinen ist eine Dump-Schaltung eine Hardwareschaltung, welche dazu dient ei-
ne gespeicherte elektrische Ladung oder Energie sicher abzuleiten oder abzuführen (zu
dumpen). In Elektromagneten wird während des Betriebs Energie in Form eines Magnet-
felds gespeichert. Beim Abschalten des Stroms kann diese gespeicherte Energie eine hohe
Spannung erzeugen, welche Schäden an elektrischen Bauteilen verursacht. Die Ursache
für diese entstehenden Spannungsspitzen liegt im Induktionsgesetz [36].

UL = −L · δI
δt

(4.1)

15

4 Konzept

Wenn durch eine Spule ein Strom fließt, wird ein Magnetfeld erzeugt, dessen Stärke pro-
portional zum Strom ist. Wenn der Stromfluss plötzlich unterbrochen wird, steigt die
Änderung des Stromflusses (δIδt) stark an, was wiederum zu einer hohen negativen Span-
nung (UL) führt. Diese Spannung kann so hoch werden, dass Bauteile, wie die MOSFETs
der Hot-Swap-Matrix, zerstört werden.
Die Dump-Schaltung soll dies verhindern, indem die vorliegende Spannung innerhalb
der Schaltung überwacht. Sobald diese Spannung einen Schwellenwert übersteigt, wird
ein niederohmiger Pfad über einen Widerstand freigegeben. Über diesen Widerstand
wird die gespeicherte Energie gezielt abgeleitet und in Wärme umgewandelt. So können
gefährliche Spannungsspitzen vermieden werden. Fließt in der Dump-Schaltung ein be-
stimmter Strom, schaltet ein Optokoppler durch und erzeugt dabei ein digitales Signal.
Dieses digitale Signal wird an die Mikrokontrollerplatine übermittelt und zeigt mit einem
High-Signal die Aktivierung der Dump-Schaltung an. Dies kann zum einen als Kontrolle
genutzt werden, ob die Schaltung bei einer bewussten Abschaltung der Spannungsversor-
gung der Magneten korrekt funktioniert. Zum anderen kann über das unvorhergesehene
Auftreten eines High-Signals auf ein mögliches Problem mit der Spannungsversorgung des
Magneten geschlossen werden. Da jede Hot-Swap-Matrix mit zwei Magnetstromkreisen
verbunden werden kann, sind ebenso zwei Dump-Schaltungen vorhanden. Es werden so-
mit zwei digitale Signale übermittelt. Dump_1 für den Magnetstromkreis 1 und Dump_2
für den Magnetstromkreis 2.

Adresssignale

Als sogenannte Adresssignale dienen vier digitale Signale. Diese Signale sind nicht für
eine bestimmte Überwachungsmöglichkeit zuständig, sondern sollen Informationen über
die verwendete Hot-Swap-Platine übermitteln. Die Signale übermitteln mit einem High-
Pegel eine binäre Eins und mit einem Low-Pegel eine binäre Null. Beispielsweise kann
so eine Revisionsnummer der Platine angegeben werden. Mithilfe der Signale ist fest-
zustellen, welche Platine wo verbaut ist und welche Aktualität diese Platine aufweist.
Dies ermöglicht einen leichteren Überblick über die verwendete Hardware innerhalb der
Anlage.

16

4 Konzept

PWM-Signal

Des Weiteren wird ein Pulsweitenmodulation (PWM)-Signal zur Informationsübermitt-
lung übertragen. Die Übertragung des PWM-Signals bezieht sich auf eine Überwachungs-
methode, welche auf der Mikrokontrollerplatine zu implementieren ist. Somit wird die
genaue Bedeutung von diesem Signal erst unter dem Kapitel 4.1.3 Umsetzung weiterer
Überwachungsmöglichkeiten auf der Mikrokontrollerplatine im Unterkapitel Auswertung
des PWM Signals genauer erläutert werden.

Spannungssignale

Innerhalb von diesem Kapitel werden verschiedene relevante Versorgungsspannungen vor-
gestellt.
Die Mikrokontrollplatine wird über die Hot-Swap-Platine mit einer 12 V-Spannung ver-
sorgt. Ebenso wird ein 5 V-VCC-Spannungssignals, welches für die Spannungsversorgung
verschiedener Bauteile auf der Hot-Swap-Platine zuständig ist, an die Mikrokontroller-
platine übergeben. Des Weiteren erfolgt die Übermittlung einer zweiten 12 V-Spannung.
Diese Spannung wird von der Spannungsquelle der Magnete erzeugt und ist durch die Mi-
krokontrollerplatine zu überwachen. Hierbei muss auf eine galvanische Trennung dieser
Spannung zu der Mikroplatine geachtet werden. Des Weiteren werden noch zwei Ma-
gnetspannungen an die Mikrokontrollerplatine übermittelt. Diese Spannungen zeigen an,
wie die Magnete aktuell mit Spannung versorgt werden. Die Magnetspannungen sind
ebenfalls galvanisch von der Mikrokontrollerplatine zu trennen.

4.1.2 Konsequenzen für die Konzeptionierung der Hardware

Im folgenden werden nun die Konsequenzen, welche sich aus den vorgestellten Signalen
ergeben, für die weitere Hardwarekonzeptionierung der Mikrokontrollerplatine erläutert.
Die erste Konsequenz befasst sich mit der Bewerkstelligung der Spannungsversorgung der
Mikrokontrollerplatine. Anschließend wird in der zweiten Konsequenz eine erforderliche
Spannungsreduktion der übertragenen digitalen Signale konzeptioniert.

17

4 Konzept

Gewährleistung der Spannungsversorgung der Mikrokontrollerplatine

Innerhalb von diesem Kapitel werden verschiedene Methoden zur Bewerkstelligung der
Spannungsversorgung der Mikrokontrollerplatine beschrieben. Die Mikrokontrollerplati-
ne wird über eine 12 V Spannung durch die Hot-Swap-Platine versorgt. Das verwendete
Mikrokontrollerboard erlaubt eine Spannungsversorgung von 3.3 V oder 5 V. Da noch
weitere Bauteile auf der Mikrokontrollerplatine mit einer Versorgungsspannung betrie-
ben werden müssen, wird sich für die Versorgung mit 5 V entschieden. Es muss somit
eine Hardwareschaltung entwickelt werden, die die Eingangsspannung auf ein geeignetes
Spannungslevel reduziert. Hierfür werden zunächst verschiedene Methoden vorgestellt.

Die erste Methode beinhaltet die Verwendung eines Low Drop Outs (LDOs). Der LDO
arbeitet wie ein aktiver linearer Regler, der überschüssige Spannung in Form von Wärme
ableitet. Er kann vereinfacht mit einem variablen Widerstand verglichen werden, jedoch
steuert er die Spannung durch eine präzise Rückkopplungsschleife [38].
Vorteilhaft an dieser Methode ist die unkomplizierte Umsetzung. Es muss eine einfache
Schaltung mit wenigen externen Komponenten entwickelt werden. Typischerweise wird
hier nur der LDO mit einem Eingangs- und einem Ausgangskondensator benötigt [24].
Dies führt unter anderem zu einer geringen Fehleranfälligkeit innerhalb des Entwick-
lungsprozesses. Durch die Verwendung von einer niedrigen Anzahl an Bauteilen kann die
Schaltung platzsparend auf der Platine implementiert werden. Ein weiterer Vorteil liegt
in der sehr stabilen Ausgangsspannung des LDOs. Die Restwelligkeit und der Ausgangs-
rauschpegel sind sehr gering, was eine zuverlässige Versorgung des Mikrokontrollerboards
mit einer stabilen Eingangsspannung gewährleistet. Durch das geringe Rauschen wird
zudem die Wahrscheinlichkeit minimiert, dass andere störungsempfindliche Schaltungen
oder Signale auf der Platine beeinträchtigt werden [35].
Hingegen ist nachteilig zu betrachten, dass ein hoher Energieverlust durch die Abgabe der
überschüssigen Energie in Form von Wärme entsteht. Besonders bei höheren Spannungs-
unterschieden ist dies sehr ineffizient [35]. Resultierend nimmt bei einer hohen Span-
nungsdifferenz von Eingangsspannung zu Ausgangsspannung der Wirkungsgrad stark ab
[12]. Auch der Bereich der übertragbaren Ströme ist auf kleine bis mittlere Ströme be-
grenzt, da hohe Ströme eine erhöhte Wärmeproduktion bedeuten. Unter Umständen ist
es somit notwendig Kühlkörper einzusetzen, welche den LDO herunterkühlen, um einen
Ausfall des Bauteils zu vermeiden [34].

Die zweite mögliche Methode besteht darin, eine Zenerdiode (Z-Diode) mit Vorwider-

18

4 Konzept

stand zu verwenden. Die Zenerdiode wird dabei parallel zur Last in Sperrrichtung betrie-
ben, sodass die Spannung über der Last immer gleich der Spannung über der Z-Diode
entspricht. Auf diese Weise wird eine konstante Ausgangsspannung gewährleistet. Die
überschüssige Spannung, also die Differenz zwischen Eingangsspannung und Zenerspan-
nung, fällt über den Vorwiderstand ab. Des Weiteren begrenzt der Vorwiderstand den
Stromfluss durch die Zenerdiode und schützt diese vor Überlastung [27].
Ein Vorteil liegt in der einfachen Implementierung der Schaltung. Für eine korrekte Schal-
tungsfunkion müssen die Zenerdiode und der Vorwiderstand passend ausgelegt werden
[27]. Die aufzubringende Entwicklungsarbeit ist somit gering. Die geringe Anzahl an
Bauteilen reduziert sowohl den Platzbedarf auf der Platine als auch die aufzubringenden
Bauteilkosten.
Ein wesentlicher Nachteil dieser Methode ist ihre geringe Effizienz. Bei höheren Strömen
wird der Vorwiderstand zunehmend ineffizient und erzeugt erhebliche Wärme. Ebenso
führt eine große Spannungsdifferenz dazu, dass die Schaltung ähnlich viel Wärme wie
ein LDO abgibt. Jedoch ist bei dieser Schaltung die Regelgenauigkeit im Vergleich zum
LDO deutlich geringer. Dies liegt daran, dass die Genauigkeit von dem Widerstand der
Last abhängig ist. Somit können Änderungen in der Last eine deutlich veränderte Aus-
gangsspannung bewirken [27].

Als dritte Methode wird die Verwendung eines Abwärtswandlers, auch Buck-Converter
genannt, aufgeführt. Ein Abwärtswandler zählt zu den DC-DC-Wandlern. Der Wandler
wandelt die Spannung durch ein Schaltprinzip, bspw. PWM, und durch Energiezwischen-
speicherung in Spulen und Kondensatoren um [18]. Durch verschiedene Bauteilformen
kann sowohl eine Spannungsreduktion, als auch eine Spannungserhöhung ermöglicht wer-
den [42].
Ein besonders positiver Aspekt ist die hohe Effizienz [42]. Diese hohe Effizienz resultiert
aus der Verwendung von Induktivitäten und Kondensatoren zur Energiespeicherung. Da-
durch kann die Energie besonders bei großen Spannungsdifferenzen effizient umgewan-
delt werden. Somit wird ein hoher Wirkungsgrad erreicht, welcher bei niedrigen und
hohen Spannungsdifferenzen einen gleichbleibenden hohen Wert aufzeigt [12]. Im Gegen-
satz zum LDO oder zur Z-Diode entsteht keine große Wärmeabgabe. Die gewünschte
Ausgangsspannung lässt sich durch die externe Beschaltung des Abwärtswandlers mit
Widerständen einstellen. Dies ermöglicht eine hohe Flexibilität in der Entwicklungspha-
se. Durch das Vorhandensein einer Feedback-Schleife wird zudem eine gute Stabilität der
Ausgangsspannung erreicht [44] [39] [11].
Ein Nachteil liegt in der höheren Komplexität des Entwicklungsaufwands [42]. Es wer-

19

4 Konzept

den mehrere externe Bauteile, wie Widerstände, Kondensatoren und Spulen benötigt.
Auch die aufzubringenden Kosten sind höher, als bei den anderen bisher vorgestellten
Methoden. Ein ebenfalls wichtiger Nachteil ist die Erzeugung von hochfrequenten Stö-
rungen, wie elektromagnetische Interferenz (EMI), die auf benachbarte Schaltungen oder
störungsempfindliche Signale negative Auswirkungen haben können [42]. Hierfür werden
unter Umständen zusätzliche Filter benötigt. Innerhalb der Tabelle 4.1 werden nochmals
die Vor- und Nachteile aller vorgestellten Methoden aufgeführt.

Tabelle 4.1: Vor- und Nachteile der Methoden zur Gewährleistung der Spannungsversor-
gung

LDO Zenerdiode Abwärtswandler

Wirkungsgrad

bei geringer
Spannungsdifferenz
nahezu 100%,
nimmt bei Zunahme der
Differenz stark ab [24]

gering,
nimmt bei Zunahme
der Differenz stark ab

hoch

Komplexität gering sehr gering hoch
Kosten niedrig sehr niedrig mittel

Vorteile geringe Restwelligkeit
und geringes Rauschen

sehr einfaches
und kostengünstiges
Design

hohe Effizienz

einfaches und
kostengünstiges
Design

geringer Platzbedarf
auf der Platine flexibel

kompakt und leicht
integrierbar

geeignet für große
Spannungs-
differenzen

Nachteile hohe Verlustleistung Ausgangsspannung
von Last abhängig

komplexer
Schaltungsaufbau

begrenzte
Stromkapazität

gegebenenfalls hohe
Wärmeentwicklung hohe EMI

Wirkungsgrad nimmt
bei Zunahme der
Spannungsdifferenz ab

begrenzte
Spannungsreglung höhere Kosten

Es ist im folgenden eine Entscheidung über die zu verwendende Methode zu treffen.
Innerhalb des Projekts ist eine Spannungsreduktion von 12 V auf 5 V vorzunehmen. Somit
wird ein Spannungsabfall von insgesamt 7 V über dem zu verwendenden Bauteil erwartet.
Ein erheblicher Teil der Energie wird bei der Z-Diode in Form von Wärme abgegeben, was
den Wirkungsgrad der Schaltung stark reduziert. Zusätzlich ist die Ausgangsspannung

20

4 Konzept

bei der Z-Diode stark von der Last abhängig. Bei größeren Änderungen der Last oder
des Laststroms kann die Spannung über der Z-Diode schwanken, was zu einer ungenauen
Spannungsregulierung führt. Dies bedeutet, dass die Z-Diode in vielen Fällen keine präzise
und stabile Reduzierung der Spannung liefert. Aus diesen Gründen stell die Z-Diode in
dieser Anwendung keine geeignete Lösung dar.
Im Vergleich zur Z-Diode weist der LDO eine deutlich bessere Regelgenauigkeit auf.
Jedoch wird auch bei dem LDO ein großer Teil der Energie in Wärme abgegeben. Der
Wirkungsgrad des LDOs kann bei der Annahme, dass der Eingangsstrom gleich dem
Ausgangsstrom ist, mit der folgenden Formel vorgenommen werden [45].

η =
VOUT

VIn
(4.2)

Wird eine Ausgangsspannung von 5 V und eine Eingangsspannung von 12 V angenom-
men, ergibt sich folgende Rechnung.

η =
5 V

12 V

= 0.416

Es ergibt sich ein Wirkungsgrad von 41.6 %. Dieser Wert ist sehr gering. Aus diesem
Grund wird die Verwendung eines LDOs ausgeschlossen.
Der Abwärtswandler bietet im Vergleich zur Z-Diode und zum LDO einen gleichblei-
benden hohen Wirkungsgrad und ist somit in dieser Anwendung eine geeignete Lösung.
Es wird eine präzise Spannungsumwandlung ermöglicht, wodurch die Spannungsversor-
gung der Bauteile auf der Mikrokontrollerplatine gesichert gewährleistet ist. Die höheren
Kosten und der gesteigerte Entwicklungsaufwand werden für eine gesicherte Spannungs-
versorgung hingenommen.

Spannungsreduktion von digitalen 5 V-Signalen auf 3.3 V

In diesem Kapitel wird die zweite Konsequenz für die Hardwareentwicklung beschrie-
ben. Alle digitalen Signale, welche von der Hot-Swap-Platine an die Mikrokontrollerpla-
tine übergeben werden, liegen auf einem 5 V-Pegel. Die General Purpose Input/Output
(GPIO)-Eingänge des zu verwendenden Mikrokontrollers können maximal 3.3 V verar-
beiten. Andernfalls würde eine zu hohe Spannung an den GPIO Pins Schäden an dem
Mikrokontroller und dessen Beschaltung herbeiführen. Um dies zu verhindern, sind die

21

4 Konzept

digitalen Signale von einem 5 V-Pegel auf einen 3.3 V-Pegel zu reduzieren. Hierbei sind
geeignete Bauteile zu finden, welche diese Reduktion durchführen können. Im folgenden
werden verschiedene Methoden vorgestellt.

Die erste Option sieht die Verwendung eines Spannungsteilers vor. Hierbei wird die ge-
wünschte Ausgangsspannung über zwei in Reihe geschalteten Widerstände eingestellt.
Vorteilhaft an dieser Methode ist die Einfachheit in der Implementierung. Dies erspart
Entwicklungsarbeit, da die Auslegung der Widerstände durch eine einfache Formelberech-
nung möglich ist. Auch können Kosten für das Material gespart werden, da Widerstände
im Vergleich zu anderen möglichen Bauteilen kostengünstig sind. Ebenfalls wird eine Un-
abhängigkeit von bestimmten Herstellern erreicht, da Widerstände vielfältig zu erhalten
sind.
Negativ zu betrachten ist die Ungenauigkeit der Signalübertragung, welche die Signal-
qualität des Ausgangssignals beeinflusst. Diese Ungenauigkeit entsteht unter anderem
durch die vorhandenen Toleranzen der einzelnen Widerstände [33]. Zudem ändern sich
die realen Widerstandswerte mit der Temperatur. Somit können Widerstände mit hohem
Temperaturkoeffizienten bei einer schwankenden Umgebungstemperatur die Ausgangs-
spannung des Spannungsteilers beeinflussen [33]. Zudem ist es möglich, dass externe
Störungen, wie elektromagnetische Interferenzen, über ungeschirmte Leitungen oder die
Widerstände in den Spannungsteiler einkoppeln und somit die Signalqualität des Aus-
gangssignals reduzieren [26]. Ein weiterer Nachteil ist, dass bei hohen Frequenzen und
schnellen Signalen eine verstärke Signalverzerrung auftreten kann. Dies ist unter anderem
auf die parasitären Kapazitäten der realen Widerstände und der kapazitiven Kopplung
der Verbindungsleitungen zur Masse zurückzuführen. Durch die Verwendung von meh-
reren Widerständen erzeugen die parasitären Kapazitäten ein Tiefpass-Verhalten. Somit
werden hohe Frequenzen stärker gedämpft als niedrige Frequenzen. Dies führt insbe-
sondere bei steilen Signalflanken zu einer Verzerrung des Signals [14][26]. Des Weiteren
ändert sich bei hohen Frequenzen die Impedanz der Schaltung. Dies bedeutet, dass die
Frequenzabhängigkeit der Impedanz das Verhältnis des Spannungsteilers verändert, wo-
durch eine abweichende Ausgangsspannung festzustellen ist [14].

Als zweite Methode wird die Verwendung eines MOSFET-basierenden Wandlers vor-
gestellt. Hierbei wird ein n-Kanal-MOSFET-Transistor so verschaltet, dass seine Source
mit dem niedrigeren Spannungspegel verbunden ist. Der Gate-Eingang wird über einen
Widerstand auf diese niedrigere Spannung festgelegt. Der Drain-Pin des MOSFETs ist
über einen Pull-Up-Widerstand mit der höheren Spannung verbunden.Liegt am Drain-

22

4 Konzept

Pin das höhere Spannungssignal an, bleibt der MOSFET gesperrt. In diesem Zustand
sorgt der Pull-Up-Widerstand dafür, dass die Spannung am Drain bei 5 V gehalten wird,
während die Source durch einen weiteren Pull-Up-Widerstand auf 3.3 V fixiert bleibt.
Sinkt das 5 V-Signal auf 0 V, wird der MOSFET leitend. Dadurch wird die Source auf
0 V gezogen, sodass auch am Mikrocontroller-Eingang 0 V anliegt. [25].
Eine geringe Verzögerung und Verzerrung des Ausgangssignals wird durch eine theore-
tisch sehr hohe Geschwindigkeit des Schaltvorgangs des MOSFETs erreicht. Diese beruht
auf der Beschaffenheit des Kanals. Da es sich um ein unipolares Bauelement handelt,
müssen Ladungsträger bei einem Schaltvorgang nicht rekombinieren, sondern lediglich
zufließen oder abfließen. Dies führt zu einer hohen Beweglichkeit der Ladungsträger und
ermöglicht Schaltfrequenzen im MHz-Bereich [48]. Ebenfalls vorteilhaft zu erwähnen ist,
dass MOSFETs sehr weit verbreitet sind. Sie sind somit von mehreren unabhängigen
Herstellern zu beziehen [41]. Des Weiteren kann diese Schaltung bei Bedarf auf eine bi-
direktionale Pegelwandlung ausgelegt werden. Anschließend ist eine Pegelwandlung in
beide Richtungen möglich [25].
Nachteilig an dieser Methode sind folgende Punkte zu betrachten. Die Schaltgeschwin-
digkeit der MOSFETs ist abhängig von der Auslegung der Pull-Up-Widerstände. Dies
liegt an den Gate-Kapazitäten, die beim Schalten geladen oder entladen werden müs-
sen [48]. Die Pull-Up-Widerstände bilden mit der Ladekapazität eine RC-Zeitkonstante
τ = R ·C [16]. Je größer somit die Widerstandswerte gewählt werden, desto länger dau-
ert das Laden der Kondensatoren und desto langsamer ist die Schaltzeit der MOSFETs.
Eine langsame Schaltzeit kann wiederum zu Verzögerungen und Verzerrungen im Aus-
gangssignal führen. Somit ist für eine gute Signalqualität die korrekte Dimensionierung
der Schaltung essentiell. Ein weiterer Nachteil liegt in der Anzahl der zu überwachenden
Signale. Insgesamt werden 15 digitale Signale übertragen, welche alle eine Pegelwandlung
benötigen. Die MOSFET-Schaltung muss für jedes einzelne digitale Signal implementiert
werden. Dies führt wiederum zu einem höheren Aufwand, zu gesteigerten Kosten und zu
einem erhöhten Platzbedarf auf der Platine. Ein letzter zu erwähnender Nachteil ist die
vorhandene Temperaturabhängigkeit der MOSFETs [20].

In der dritten Methode wird die Verwendung eines Pegelwandlungs-ICs vorgestellt. Dieser
integrierte Schaltkreis (IC) enthält die in Methode drei vorgestellte MOSFET-Variante.
Zusätzlich sind in diesem IC bereits Pull-Up-Widerstände, Verstärker, um die Signale
präziser zu formen, und Schutzmechanismen integriert worden[32].
Zunächst sollen die Vorteile dieser Methode genannt werden. Mithilfe von diesen ICs kann
eine hohe Geschwindigkeit und Signalqualität erreicht werden. Die Schaltung ist auf das

23

4 Konzept

Problem der Spannungsreduktion spezialisiert und optimiert worden. Ebenso müssen die
kritischen Pull-Up-Widerstände bei der Schaltungsentwicklung nicht manuell ausgelegt
werden [32]. Dies erspart viel Arbeit und Ungenauigkeiten, da die optimierte Auslegung
bereits innerhalb des ICs integriert ist. Die Beschaltung der ICs ist ebenfalls einfach vor-
zunehmen. Ein weiterer Vorteil sind die bereits in dem IC integrierten Schutzmechanis-
men. Hier kann ein Schutz vor elektrostatischer Entladung (ESDs), ein Kurzschlussschutz
oder ein Überspannungsschutz integriert sein, welcher die Zuverlässigkeit der Schaltung
erhöht [32]. Durch die Optimierung der Schaltung ist die Energieeffizienz von diesem IC
sehr hoch. Dadurch wird ein geringer Stromverbrauch garantiert. Die ICs werden von
mehreren Herstellern angeboten. Dabei gibt es IC Varianten mit mehreren Anschlüssen
für verschiedene Eingangssignale. Dies führt zu einer Reduktion des Platzbedarfs, da eine
Schaltung für mehrere Signale ausgelegt werden kann [31].
Nachteilig zu erwähnen sind die aufzubringenden Kosten für die Bauteilbeschaffung. Die-
se ICs sind meist teurer als die anderen vorgestellten Methoden. Für den Betrieb von
diesem IC werden auf beiden Spannungspegelseiten unabhängige Spannungsquellen benö-
tigt. Dies erhöht die Spannungskomplexität auf der Platine. Bei extremen Temperaturen
kann sich zudem die Performance der ICs verschlechtern, da die internen Transistoren und
Schutzmechanismen temperaturabhängig sind [31]. In der Tabelle 4.2 werden nochmals
alle Methoden und die wichtigsten Aspekte gegeneinander über gestellt.

Tabelle 4.2: Vergleich von verschiedenen Methoden zur Spannungspegelreduktion

Spannungsteiler MOSFET-basierte
Pegelwandlung

Pegelwandlungs-
IC

Kosten sehr günstig günstig/moderat moderat

Schaltungs-
aufwand sehr gering

moderat durch
Pull-Up-
Widerstände

höher,
aber einfache
Integration

Signalqualität beeinträchtigt bei
schellen Signalen gut sehr gut

Geschwindigkeit
begrenzt,
von Widerständen
abhängig

hoch sehr hoch

Bidirektionalität nein ja ja

Temperatur-
abhängigkeit

Widerstandswerte
können temperatur-
abhängig sein

vorhanden gering

Überspannungs-
schutz keiner keiner ja

24

4 Konzept

Anschließend wird eine Methode ausgewählt, welche bei der Entwicklung der Platine
umzusetzen ist. Das wichtigste Kriterium ist das Beibehalten einer guten Signalqualität,
damit der Mikrokontroller das Signal korrekt auswerten kann. Sollte eine zu starkes Rau-
schen auftreten, könnte das Signal falsch interpretiert werden, was wiederum zu einem
Informationsverlust oder einer Falschinformation führt. Bei einer Verzerrung des Aus-
gangssignals kann es dazu zu einer zeitlichen Verzögerung kommen, bis der vorhandene
Signalpegel von dem Mikrokontroller erkannt wird. Diese zeitliche Verzögerung kann zu
einer späten Informationsübermittlung führen.
Wird die Methode des Spannungsteilers genauer betrachtet, gibt es bei dieser Methoden
deutliche Vorteile in der Einfachheit der Entwicklung und in den geringen Kosten. Die
negativen Auswirkungen auf die Signalqualität und Geschwindigkeit sind jedoch erheb-
lich. Diese Methode eignet sich daher besser zur Reduzierung von Spannungssignalen, ist
jedoch aufgrund der geringen Präzision für digitale Signale nicht ideal und wird somit
für diese Anwendung nicht gewählt.
Die Methoden zwei und drei bieten beide eine hohe Signalqualität und eine hohe Ge-
schwindigkeit bei der Signalreduzierung. Der größte Unterschied der Methoden liegt im
Bereich des Entwicklungsaufwands und der Kosten. Das Pegelwandlungs-IC benötigt nur
wenig Entwicklungsaufwand, jedoch sind die aufzubringenden Bauteilkosten höher anzu-
setzen. Die MOSFET-basierte Methode benötigt einen höheren Entwicklungsaufwand,
aber die Kosten sind niedriger. Jedoch muss bei dieser Methode sehr genau auf die Aus-
legung der Pull-Up-Widerstände geachtet und zusätzliche Schutzmechanismen müssen
extra in die Schaltung integriert werden. Dies steigert unter Umständen wiederum die
Kosten. Aus diesem Grund wird das Pegelwandlungs-IC gewählt. Dieses IC ist genau auf
diese Anwendungen optimiert und besitzt somit die meisten Vorteile.

4.1.3 Umsetzung weiterer Überwachungsmöglichkeiten auf der
Mikrokontrollerplatine

Innerhalb von diesem Kapitel werden weitere mögliche Überwachungsmethoden, welche
auf der Mikrokontrollerplatine zu implementieren sind, beschrieben. Hierbei wird unter
anderem die Umsetzung einer Überwachung der Umgebungstemperatur und eine wei-
tere Beobachtung der Magnetspannungen diskutiert. Auch wird die Überwachung von
verschiedenen Spannungsversorgungen konzeptioniert.

25

4 Konzept

Überwachung der Versorgungsspannungen der Hot-Swap-Platine

Innerhalb von diesem Kapitel wird die Überwachung von verschiedenen Versorgungsspan-
nungen der Platinen diskutiert. Zu überwachen sind hier unter anderem die 12 V Ver-
sorgungsspannung der Mikrokontrollerplatine und die 5 V VCC-Spannung der ICs der
Hot-Swap-Platine. Beide Spannungen sind für einen korrekten Betrieb der Hot-Swap-
Platine und der Mikrokontrollerplatine essentiell.
Die 12 V Spannung versorgt die Mikrokontrollerplatine mit Spannung. Sollte diese Span-
nung einen falschen Wert oder starke Schwankungen aufweisen, wird die Funktion der
Mikrokontrollerplatine stark beeinträchtigt beziehungsweise es erfolgt ein Ausfall der
Platine. Um dies zu vermeiden, ist somit diese Spannung mithilfe eines ADUs des Mi-
krokontrollers zu überwachen.
Die 5 V VCC-Spannung versorgt verschiedene ICs der Hot-Swap-Platine mit Spannung.
Eine inkorrekte Spannung führt unter Umständen dazu, dass die ICs nicht korrekt arbei-
ten oder zerstört werden. In diesen Fällen sind die ermittelten Daten und die Funktion
der Platine unbrauchbar. Um falsche Rückschlüsse durch fehlerhafte Daten zu vermei-
den, ist diese Spannungsversorgung essentiell für den Überwachungsbetrieb. Aus diesem
Grund ist diese Spannung ebenfalls mithilfe eines ADUs des Mikrokontrollers zu über-
wachen.
Um die Spannungen auf einen für den Mikrokontroller passenden Wert zu reduzieren,
werden Spannungsteiler verwendet. Diese sind ausreichend, da keine schnellen Signalän-
derungen, wie bei einem digitalen Signal erwartet werden, und keine galvanische Tren-
nung von Nöten ist.

Temperaturüberwachung

In diesem Kapitel wird eine Temperaturüberwachung der Hot-Swap-Platine und der Mi-
krokontrollerplatine konzeptioniert. Bei einer zu hohen Umgebungstemperatur können
einige ICs und verwendete Bauteile auf der Platine eine ungenaue Funktion aufweisen
oder Schaden nehmen. Ebenso kann durch die Überwachung der Umgebungstemperatur
indirekt die korrekte Funktion des Lüftersystems verifiziert werden. Bei einem Ausfall
oder einer Fehlfunktion des Systems können möglicherweise durch das übergeordneten
System steigende Temperaturwerte festgestellt werden.

26

4 Konzept

Im folgenden werden einige für dieses Projekt wichtige Auswahlkriterien eines Tempera-
tursensors aufgeführt.
Zu dem jetzigen Entwicklungszeitpunkt ist die vorliegende Temperatur an dem Einsatzort
der Platinen nicht bekannt. Aus diesem Grund sollen die Temperatursensoren einen mög-
lichst großen Bereich der Temperaturskala abdecken. Es ist jedoch davon auszugehen,
dass der Einsatzort der Platinen im Inneren liegt. Aus diesem Grund ist der positive
Temperaturbereich umfassender abzudecken, als der negative Temperaturbereich.
Um die vorliegende Temperatur mit einem möglichst genauen Wert feststellen zu können,
muss eine hohe Genauigkeit gewählt werden. Eine zu hohe Abweichung der Messdaten
von dem Sollwert kann zu fehlerhaften Daten führen.
Des Weiteren muss ein Kommunikationsprotokoll zur Übertragung der Daten ausgewählt
werden. Mögliche Optionen sind hier die Übertragung mittels One-Wire, I2C oder SPI.
Im folgenden werden die Methoden kurz vorgestellt und deren jeweiligen Vor- und Nach-
teile gegenübergestellt. Die Tabelle 4.3 vergleicht die Methoden hinsichtlich allgemeiner
Fakten.

Tabelle 4.3: Vergleich von One-Wire, I2C und SPI
One-Wire I2C SPI

Anzahl der
Drähte

1
(plus Masse) 2 mindestens 4

Geschwindigkeit
Standard: 9.6 kBits/s
Overdrive: 125 kBits/s
[3]

Standard: 100 kBits/s
High-Speed: 3.4 MBits/s
[10]

Bis zu 60 Mbits/s
[10]

Maximale
Anzahl an
Geräten

Begrenzt auf 255 [41] 7 Bit: 127
10 Bit: 1023

Von Anzahl an
SS-Pins abhängig

Master-Slave-
Model Ja Ja Ja

Datenrichtung Halbduplex Halbdplex Vollduplex
Synchronisation asynchron synchron synchron

Komplexität gering
moderat
(benötigt
Pull-Up-Widerstände)

moderat

Fehlersicherheit niedrig
moderat
Überprüfung durch
ACK-Bit

niedrig

Implementierungs-
kosten sehr niedrig niedrig etwas höher durch

mehrere Leitungen

27

4 Konzept

One-Wire ist ein serielles Kommunikationsprotokoll. Hierbei wird für die Datenkommuni-
kation nur eine Datenleitung benötigt. Zusätzlich zur Datenleitung wird eine gemeinsame
Masseverbindung vorausgesetzt. Somit erfolgt die Datenübertragung asynchron. Dieses
Kommunikationsprotokoll unterstützt zudem das Master-Slave-Model [15]. Der Vorteil
dieses Kommunikationsmodels liegt in dem geringen aufzubringenden Arbeitsaufwand
bei der Implementierung. Ebenso werden nur geringe Materialkosten erwartet, wodurch
diese Methode als kostengünstig einzustufen ist. Nachteilig zu betrachten ist die sehr ge-
ringe Übertragungsgeschwindigkeit der Daten. Dies ermöglicht einen nur langsamen Da-
tenaustausch zwischen Temperatursensor und Mikrokontroller [15]. Ein weiterer Nachteil
besteht darin, dass kein Fehlerüberwachungssystem vorhanden ist. Daher lässt sich nicht
feststellen, ob die empfangenen Daten korrekt sind.
I2C ist ein serielles und synchrones Kommunikationsprotokoll. Die Datenübertragung er-
folgt mithilfe einer Datenleitung Serial Data (SDA) und einer Taktleitung Serial Clock
(SCL). Es wird das Master-Slave-Modell unterstützt. Jeder Slave erhält dabei eine 7-
oder 10-Bit Adresse. Über diese Adresse ist es dem Master möglich einen bestimmten
Slave anzusprechen. Bei einer 7-Bit Adressierung können bis zu 127 Slaves mit einem
Master verbunden werden [7]. Ein Vorteil der Verwendung von I2C ist, dass mehrere
Geräte auf der selben Leitung angeschlossen werden können. Somit eignet sich I2C gut
für Anwendungen, wo viele Geräte mit einer minimalen Verkabelung verbunden werden
müssen. Ebenso wird eine einfache Erweiterung um neue Slaves erreicht, da diese nur
an die entsprechenden SDA und SCL Leitung angebunden werden müssen. Es können
moderate Übertragungsgeschwindigkeiten erreicht werden, welche meist für die Erfas-
sung von Sensordaten ausreichend sind. Durch die geringe Anzahl an Leitungen und die
niedrigen bis moderaten Übertragungsgeschwindigkeiten tritt in der Regel ein geringerer
Stromverbrauch auf. Des Weiteren wird bei der Kommunikation zwischen Master und
Slave jedes empfangene Byte vom Empfänger mit einem Acknowledge Bit (ACK-Bit)
bestätigt. Durch das Ausbleiben dieses Bits können eventuelle Fehler aufgedeckt werden.
Nachteilig zu betrachten ist, dass nur eine Halbduplex-Kommunikation möglich ist. Es
kann somit nur gesendet oder empfangen werden. Beides gleichzeitig ist nicht möglich
[7].
SPI ist ebenfalls ein synchrones und serielles Kommunikationsprotokoll. Hierbei werden
zwischen einem Master und einem Slave besonders hohe Übertragungsgeschwindigkei-
ten erreicht. Für die Übertragung werden mindestens vier Leitungen benötigt. Die erste
Leitung ist die Taktleitung Serial Clock (SCK), die zweite Leitung dient zur Datenüber-
tragung von demMaster zum Slave (MOSI), die dritte Leitung stellt die Datenverbindung
vom Slave zum Master her (MISO) und die vierte Leitung dient zur Auswahl des Slaves,

28

4 Konzept

mit dem aktuell kommuniziert werden soll (SS). Ein Vorteil dieses Protokolls ist, dass
eine Vollduplex-Kommunikation ermöglicht wird. Hier können Daten gleichzeitig gesen-
det und empfangen werden. Ebenso können sehr hohe Datenraten erreicht werden [7].
Bei einer korrekten Verdrahtung wird eine geringe Fehleranfälligkeit erreicht. Nachtei-
lig zu betrachten ist der deutlich höhere Implementierungsaufwand und die komplexere
Verdrahtung. Da jeder Slave eine eigene Anbindung an den Master benötigt, wird un-
ter Umständen eine hohe Anzahl an anzuschließenden Pins benötigt oder die Anzahl
der Slaves ist stark begrenzt. Dies erhöht zusätzlich den Aufwand, wenn das System
um zusätzliche Slaves erweitert werden soll. Ebenso ist im Vergleich zu I2C keine Feh-
lerüberprüfung implementiert. Dies muss bei Bedarf durch eine geeignete externe Logik
durchgeführt werden [7]. In der Tabelle 4.3 werden die drei Übertragungsarten mitein-
ander auf allgemeine Fakten verglichen.

Nach Einbezug der gegebenen technischen Daten, sowie der Vor- und Nachteile wird
im folgenden nun ein passendes Kommunikationsprotokoll ausgewählt. In diesem Projekt
wird I2C ausgewählt, da die moderaten Übertragungsgeschwindigkeiten für die Über-
tragung der Umgebungstemperatur ausreichend sind. Zudem sollen mehrere Sensoren
implementiert werden, was bei SPI einen deutlich höheren Aufwand verursachen würde.
Ein weiterer Vorteil von I2C ist das Vorhandensein einer Fehlerüberwachung, was diese
Methode im Vergleich zu anderen Methoden positiv hervorhebt.
All die genannten Aspekte sind bei der Auswahl des Temperatursensors zu berücksichti-
gen.

Signalüberwachung mit Potentialtrennung

Wie bereits beschrieben, ist die Überwachung der Magnetspannungen essentiell für den
Beschleunigerbetrieb. Von der Hot-Swap-Platine wird bereits ein digitales Signal zur
Überwachung der Magnetspannung an die Mikrokontrollerplatine übermittelt. Um die
Informationen dieses Signals verifizieren zu können, ist es sinnvoll eine zweite Überwa-
chungsmöglichkeit der Magnetspannungen auf der Mikrokontrollerplatine zu implemen-
tieren. Dies soll Fehler innerhalb der Deutung der aktuellen Magnetspannung verhindern.
Hierbei ist es sinnvoll die Magnetspannungen mithilfe eines ADUs des Mikrokontrollers
auszuwerten und anschließend mit den digitalen Detektionssignalen zu vergleichen. Das
Signal wird dann sowohl durch eine Hardwareschaltung als auch durch die Software sepa-
rat voneinander überwacht. Um die Magnetspannung an den Mikrokontroller anlegen zu

29

4 Konzept

können, muss die galvanische Trennung der Potentiale der Magnetspannungen und des
Mikrokontrollers beachtet werden. Innerhalb von diesem Kapitel werden somit verschie-
dene Möglichkeiten aufgeführt, mit denen eine Potentialtrennung der Signale ermöglicht
wird. Hierbei ist eine hohe Signalintegrität und eine geringes Rauschen wichtig, da die
Signale möglichst genau durch den ADU des Mikrokontrollers ausgewertet werden sol-
len. Es folgt nun die Vorstellung von drei verschiedenen möglichen Umsetzungsmethoden.

Zuerst wird der Trennverstärker, auch Isolationsverstärker genannt, vorgestellt. Es han-
delt sich hierbei um einen Verstärker, der zwischen Eingangs- und Ausgangsschaltkreis
galvanisch isoliert ist. Teilweise wird ebenfalls die Spannungsversorgung des Bauteils
galvanisch isoliert übermittelt. Die Übertragung des Signals kann durch verschiedene
Kopplungstechniken erfolgen. Es wird zwischen optischen, kapazitiven und magnetischen
Techniken unterschieden. Der Eingang des Verstärkers verarbeitet das analoge Signal und
überträgt es anschließend durch eine Isolationseinheit. Diese Isolationseinheit stellt die
physikalische Sicherung sicher und beinhaltet eine der Kopplungstechniken. Am Ausgang
wird das Signal zunächst verstärkt und anschließend ausgegeben [47].
Ein wesentlicher Vorteil des Trennverstärkers liegt in der optimierten internen Schaltung
des ICs, die eine galvanische Trennung des Eingangs- und des Ausgangssignals ermög-
licht. Diese galvanische Trennung schützt vor sogenannten Masseschleifen und die damit
verbundenen Störungen und Signalverzerrungen [37]. Somit trägt der Trennverstärker
zu einer stabilen und unverfälschten Signalübertragung mit einer hohen Linearität bei
[23]. Dies führt dazu, dass Trennverstärker besonders in Anwendungen, wo eine hohe
Signalintegrität wichtig ist, verwendet werden [4]. Ein weiterer Vorteil stellt der Schutz
gegenüber von EMI und Hochspannungsereignissen mit hohen Spannungsspitzen dar [37].
Der Trennverstärker verhindert somit Beschädigungen an empfindlichen nachfolgenden
elektronischen Bauteilen. Zudem wird das Übertragen von bipolaren Signalen, welche
sowohl positive als auch negative Spannungswerte aufweisen, ermöglicht [37]. Auch die
kompakte Bauform des ICs stellt einen Vorteil dar. Diese Bauweise erleichtert die Imple-
mentierung und minimiert den benötigten Platzbedarf auf der Platine.
Nachteilig zu betrachten sind die entstehenden Bauteilkosten, da die ICs teurer als an-
dere Methoden zur galvanischen Trennung sind [4].

Ein alternatives Verfahren stellt die Verwendung eines Optokopplers dar. Bei einem Op-
tokoppler wird ein elektrisches Signal mithilfe von Licht übertragen, um eine galvanische
Trennung zwischen Eingang und Ausgang herzustellen. Der Eingang des Optokopplers
enthält dabei eine LED, die durch das angelegte elektrische Signal angesteuert wird.

30

4 Konzept

Ist das elektrische Signal stark genug, emittiert die LED Licht, welches durch einen
lichtempfindlichen Empfänger, wie einen Phototransistor oder eine Photodiode, auf der
Ausgangsseite des Optokopplers erfasst wird. Anschließend erzeugt der Empfänger ein
elektrisches Signal [19].
Der größte Vorteil dieser Methode liegt in der vollständigen galvanischen Trennung zwi-
schen Eingangs- und Ausgangskreis. Somit ist auch bei dieser Anwendung ein Schutz
gegenüber von Masseschleifen vorhanden [6]. Ein weiterer Vorteil liegt in der einfachen
Implementierung der Optokoppler. Hier ist meist nur das IC selbst und keine weiteren
Bauteile notwendig [41]. Des Weiteren bieten Optokoppler einen Schutz gegenüber von
hohen Spannungen und Spannungsspitzen, da die optische Trennung keine elektrische
Verbindung zwischen den zwei Schaltkreisen benötigt [6].
Nachteilig zu betrachten ist die begrenzte Linearität des Optokopplers, welche zu Ver-
zerrungen im Ausgangssignal führen. Hervorgerufen wird dies unter anderem durch die
Nichtlinearität des Photodetektors und der LED. Die LED erzeugt in Abhängigkeit des
Stroms, der durch sie hindurchfließt, Licht. Diese Beziehung ist nicht vollkommen linear.
Ebenfalls der Photodetektor weist eine nichtlineare Kennlinie auf. Auch kann die Über-
tragungscharakteristik von Optokopplern durch die Temperatur beeinflusst werden. Dies
kann zu weiteren Verzerrungen in der Signalübertragung führen [19]. Die Übertragung
des bipolaren Signals stellt ebenfalls einen Nachteil dar. Die verwendete LED innerhalb
des Optokopplers benötigt einen definierten Vorwärtsstrom, um Licht zu emittieren. Bei
negativen Spannungswerten wird diese LED in Sperrrichtung betrieben, was dazu führt,
dass kein Licht durch diese LED emittiert wird [5]. Um trotzdem positive als auch negati-
ve Signale übertragen zu können, sind Schaltungserweiterungen vorzunehmen. Hier kann
beispielsweise ein Level shifting unternommen werden, wo die negativen Spannungswerte
in einen positiven Bereich verschoben werden oder es werden zwei Optokoppler eingesetzt.
Ebenfalls zu erwähnen ist, dass die Sendedioden des Optokopplers im Alterungsprozess
an Leistung und Effizienz verlieren. Dies führt zu einem Herabsetzen des Übertragungs-
verhältnisses [46].

Das dritte Verfahren beinhaltet eine Kombination aus ADU und DAU. Hierbei wird
das analoge Spannungssignal zunächst mithilfe eines ADUs in ein digitales Signal um-
gewandelt. Anschließend kann dieses digitale Signal beispielsweise über einen digitalen
Isolator übertragen werden. Der digitale Isolator stellt dabei die galvanische Trennung
zwischen den Stromkreisen sicher. Nach der galvanischen Trennung wird das Signal auf
der Empfängerseite durch einen ADU wieder in ein analoges Spannungssignal umgewan-
delt.

31

4 Konzept

Ein Vorteil ist, dass durch den Einsatz des digitalen Isolators eine komplette galvanische
Trennung des Eingangs- und des Ausgangskreises erreicht wird [13]. Durch die Digitalisie-
rung des Signals können Methoden der digitalen Signalverarbeitung angewendet werden,
um das Signal weiterzuverarbeiten oder zu optimieren. Beispielsweise können digitale
Filter angewendet werden. Somit ist eine hohe Flexibilität in der Signalverarbeitung ge-
geben.
Die Signalintegrität ist stark von der Präzision des gewählten ADUs und des DAUs
abhängig. Je höher die Auflösung ist, desto genauer kann das Eingangssignal abgebildet
werden. Ebenso wird durch eine höhere Auflösung der Quantisierungsfehler reduziert [43].
Hieraus kann der Nachteil abgeleitet werden, dass die Bauteile sehr sorgfältig ausgewählt
werden müssen. Dementsprechend wird ein höherer Implementierungsaufwand erwartet.
Ebenso kommt es durch den Umwandlungsprozess vom anlogen in ein digitales Signal
und anschließend wieder zurück zu einem erhöhten Zeitbedarf, welcher eine Verzögerung
in der Datenbereitstellung bedeutet. Durch das Verwenden von mehreren Komponenten
ist ebenfalls der Energieverbrauch höher, als bei den anderen vorgestellten Optionen.

In der Tabelle 4.4 werden nochmals alle drei Verfahren gegenübergestellt.

Tabelle 4.4: Vergleich verschiedener Methoden zur Potentialtrennung

Trennverstärker Optokoppler ADU-DAU-
Verfahren

Galvanische
Trennung sehr gut sehr gut sehr gut

Präzision und
Linearität hoch

eingeschränkt,
Verzerrungen
möglich

eingeschränkt,
Quantisierungsfehler
möglich

Latenz sehr gering mäßig hoch
Komplexität einfach einfach hoch

Kosten hoch niedrig hoch
viele Bauteile benötigt

Energieverbrauch niedrig niedrig höher

Es folgt nun die Auswahl einer der beschriebenen Möglichkeiten. Mithilfe der galvani-
schen Trennung sind unter anderem die zwei Magnetspannungen zu überwachen. Es ist
erforderlich, dass selbst geringe Abweichungen von dem Sollwert der Magnetspannung
erkennbar sind. Aus diesem Grund ist bei der galvanischen Trennung ein besonderes Au-
genmerk auf die Signalintegrität zu legen. Dies bedeutet das möglichst kein Rauschen und

32

4 Konzept

keine Verzerrungen durch das Bauteil hervorgerufen werden sollen. Hierbei weist der Op-
tokoppler deutliche Nachteile im Vergleich zu dem Trennverstärker und dem ADU-DAU-
Verfahren auf. Aus diesem Grund wird der Optokoppler nicht in für diese Anwendung
ausgewählt. Im Vergleich zwischen dem Trennverstärker und dem ADU-DAU-Verfahren
besteht ein wesentlicher Unterschied im Implementierungsaufwand. Während bei dem
ADU-DAU-Verfahren viele verschiedene aufeinander abgestimmte Komponenten benö-
tigt werden, wird bei dem Trennverstärker nur ein kompaktes Bauteil benötigt. Gerade
im Hinblick auf den Platzverbrauch auf der Platine und den aufzubringenden Kosten bei
der Bauteilbestellung weist somit der Trennverstärker Vorzüge auf. Auch entsteht bei
dem ADU-DAU-Verfahren durch das Verwenden mehrerer Bauteile eine gewisse Latenz.
Diese Latenz führt zu einer Verzögerung innerhalb der Datenübermittlung. Aus diesen
Gründen wird sich in diesem Projekt für den Trennverstärker als zu implementierendes
Bauteil entschieden.

Auswertung des PWM Signals

Um die Daten der zwei verschiedenen Methoden zur Überwachung der Magnetspannung
miteinander vergleichen zu können, muss für die softwarebasierte Auswertung ebenfalls
ein Schwellwert einstellbar sein. Die Größe des Schwellwerts wird mithilfe des PWM Si-
gnals von der Hot-Swap-Platine an die Mikrokontrollerplatine übermittelt. Im folgenden
wird nun die Auswertung des Signals konzeptioniert.
Hierbei werden zwei mögliche Ansätze vorgestellt. Der erste Ansatz wertet das PWM-
Signal auf dem Mikrocontroller softwareseitig anhand seines Duty-Cycles aus. Beim zwei-
ten Ansatz wird das PWM-Signal zunächst durch einen Tiefpassfilter gemittelt und an-
schließend über einen ADU an den Mikrocontroller weitergegeben.

Zunächst soll die softwarebasierende Methode vorgestellt werden. Bei dieser Methode
wird ein Timer so eingestellt, dass bei jeder Flanke des PWM Signals ein Interrupt aus-
gelöst wird. Dies kann durch die Aktivierung des Input-Capture-Modus erfolgen [17]. Bei
einer steigenden Flanke wird der aktuelle Zählerstand erfasst und gespeichert. Bei der
nächsten fallenden Flanke wird erneut der Zählerstand erfasst. Die Differenz zwischen
diesen beiden Werten entspricht der Dauer des High-Pegels. Der Duty Cycle wird be-
rechnet, indem die Dauer des High-Pegels durch die Gesamtperiode des Signals geteilt
wird.
Mithilfe dieser Methode wird eine hohe Präzision erreicht, da durch die direkte Messung

33

4 Konzept

der Zeiten mithilfe eines Timers sehr genaue Ergebnisse erzielt werden können. Ebenso
ist diese Methode an verschiedene PWM-Frequenzen und PWM-Signale ohne zusätzliche
Hardware anpassbar. Dadurch entsteht eine hohe Flexibilität. Ein weiterer Vorteil stellt
die effiziente Ressourcennutzung des Mikrokontrollers dar. Es wird der bereits vorhandene
Timer des Mikrokontrollers benutzt, sodass keine weiteren Bauelemente zur Signalaus-
wertung auf der Platine implementiert werden müssen.
Ein bedeutender Nachteil ist jedoch die hohe CPU-Auslastung. Bei der Erfassung der
Interrupts und der Berechnung der Zeiten ist die CPU erforderlich. Je nach Frequenz
des PWM-Signals kann hier eine hohe Belastung entstehen, welche die Ausführung von
anderen CPU-Aufgaben blockiert. Des Weiteren wird eine sorgfältige Implementierung
in der Software benötigt, um die genaue Messung sicherzustellen.

Es folgt nun die Vorstellung des hardwarebasierten Ansatzes. Hierbei wird ein Tiefpassfil-
ter implementiert, welcher den Mittelwert des PWM-Signals bestimmt. Der resultierende
Spannungswert kann anschließend mit einem ADU ausgelesen werden [8].
Vorteilhaft bei dieser Methode ist die geringe benötigte CPU-Last. Die CPU muss nur den
ADU-Wert auslesen und im Gegensatz zur softwarebasierten Methode keine großen Be-
rechnungen durchführen. Wenn die PWM-Frequenz bekannt ist, kann der Tiefpass-Filter
sehr einfach entworfen werden. Dafür wird lediglich ein Widerstand und ein Kondensator
benötigt [8]. Die Änderungen innerhalb des Duty-Cycles können kontinuierlich und ohne
Latenz überwacht werden.
Ein Nachteil ist, dass der Tiefpass-Filter auf die Frequenz des PWM-Signals abgestimmt
werden muss. Dies kann bei variablen Frequenzen problematisch sein. Die Genauigkeit,
mit der der Mittelwert bestimmt wird, hängt von der Qualität des Filters und der Auflö-
sung des ADUs ab. Des Weiteren werden zusätzliche Hardwarebauteile benötigt, welche
auf der Platine implementiert werden müssen [8].

Für dieses Projekt wird sich für die hardwarebasierte Methode entschieden. Der aus-
schlaggebende Grund stellt die CPU-Auslastung dar. Diese ist in der softwarebasierten
Methode sehr hoch, was dazu führen kann, dass kritische Signale mit Verzögerungen
oder sogar gar nicht verarbeitet werden. Das PWM-Signal wird dauerhaft gesendet, so-
dass dauerhaft CPU-Kapazität für das Verarbeiten der Interrupts und für das Bestimmen
der Zeiten benötigt wird. Dies ist nicht mit den anderen Anforderungen an die Software
vereinbar.

34

4 Konzept

4.1.4 Anschlussplan an den Mikrokontroller

Innerhalb von diesem Unterkapitel soll ein Anschlussplan der in den vorherigen Un-
terkapiteln vorgestellten Signale erstellt werden. Hierfür werden zunächst nochmals die
benötigten Schnittstellen und die Signale, welche über die Schnittstellen an den Mikro-
kontroller weitergegebene werden, aufgeführt. Das Interrupt-Signal für den Temperatur-
sensor und das enable-Signal für die Pegelwandlungs-ICs ergeben sich aus den jeweils
gewählten Bauteilen und werden innerhalb der Implementierung genauer beschrieben.

1. GPIO-Pins

a. Vier Detection-Signale

b. Zwei Dump-Signale

c. Vier Matrix-Signale

d. Ein Interrupt-Signal des Temperatursensors

e. Ein PWM-Signal

f. Ein Enable-Signal für die Pegelwandlungs-ICs

e. Vier Adress-Signale

2. I2C-Verbindung zum Auslesen der Temperaturdaten

3. UART-Verbindung zur Hot-Swap-Platine

4. ADUs

a. Magnetspannung M1

b. Magnetspannung M2

c. 12V- Spannung der Spannungsquelle der Magnete

d. 12V-Versorgungsspannung der Mikrokontrollerplatine

e. 5V VCC-Spannung

f. PWM-Signal

35

4 Konzept

Zusammengefasst werden somit 17 GPIO-Pins und sechs ADU Anbindungen an den
Mikrokontroller benötigt. Des Weiteren benötigt I2C zwei Pins für die SDA- und SCL-
Leitung, sowie UART zwei Pins für die RX- und die TX-Anbindung. Der gesamte An-
schlussplan mit der genauen Pinbelegung kann in dem Anhang unter dem Kapitel A.2
angesehen werden.

4.2 Konzeptionierung der Software

In diesem Kapitel erfolgt die Konzeptionierung der Software. Zuerst wird die Priorisie-
rung der Signale festgelegt. Anschließend erfolgt die Konzeptionierung des Empfangs der
verschiedenen Signale und die Auswahl eines Fehlererkennungsverfahrens für die UART-
Übertragung. Des Weiteren werden verschiedene Möglichkeiten, den über UART zu über-
tragenden Frame zu gestalten, diskutiert. Zuletzt werden einige Timinganforderungen
konzeptioniert.

4.2.1 Priorisierung der Signale

Innerhalb von diesem Kapitel erfolgt die Priorisierung der einzelnen zu überwachen-
den Signale. Hierbei müssen kritische Signale höher priorisiert werden, um eine zeitnahe
Abfrage und Verarbeitung der Daten sicherzustellen. Das Kapitel beginnt mit den am
höchsten priorisierten Signalen. Anschließend werden die weiteren Signale in absteigen-
der Priorität beschrieben.
Einen besonderen Stellenwert nimmt die Überwachung der Magnetspannungen ein. Wie
bereits mehrfach betont, ist ein störungsfreier Betrieb der Magnete von entscheidender
Bedeutung für den Beschleunigerbetrieb. Daher werden die Signale zur Überwachung
der Versorgungsspannungen der Magnete als besonders kritisch eingestuft. Aus diesem
Grund besitzt die Überwachung der vier digitalen Detektionssignale sowie der Magnet-
spannungen an den ADUs höchste Priorität.
Die vier digitalen Dump-Signale weisen eine ähnlich hohe Priorität auf. Wenn eines dieser
Signale ein High-Signal zeigt, deutet dies auf ein Problem mit der Spannungsversorgung
der Magnete hin. Aus diesem Grund ist ein Pegelwechsel dieser Signale umgehend zu
erkennen und dem übergeordneten System mitzuteilen.
Es folgt die Überwachung der verschiedenen Versorgungsspannungen innerhalb der Prio-
ritätenreihenfolge. Sie dienen zur Überprüfung, ob das Überwachungssystem selbst funk-

36

4 Konzept

tionsfähig ist. Andernfalls können die gesammelten Daten Fehlinformationen beinhalten,
die zu einer falschen Reaktion durch das übergeordnete System führen können.
Etwas niedriger in der Priorität ist die Temperaturüberwachung einzuordnen. Eine abfal-
lende Spannungsversorgung ist zunächst kritischer zu bewerten, da ihr Toleranzbereich
kleiner ist und ein Funktionsausfall schneller eintritt als bei einer Temperaturänderung.
Aus diesem Grund ist die Überwachung der Temperatur weniger kritisch als die Überwa-
chung der Spannungen und wird daher unter der Spannungsüberwachung in der Priorität
angeordnet.
Die Priorität des PWM-Signals ist geringfügig niedriger anzuordnen. Dieses Signal dient
zur Festlegung eines neuen Schwellenwerts für die Überprüfung der Über- oder Unter-
schreitung der Grenzwerte der Magnetspannung. Die Grenzen der Schwellenwerte werden
nur selten und langsam angepasst. Daher hat diese Änderung eine eher niedrige Priorität.
Es folgt die Überwachung der Matrix-Signale und der Adress-Signale. Beide Signale wer-
den vor allem für ein Status-Update der verbauten Hardware und dem aktuellen Schal-
tungszustand der Anlage verwendet. Aus diesem Grund ist die Priorität von diesen Si-
gnalen am geringsten anzusehen.

4.2.2 Empfang und Auswertung der eingehenden Signale

Dieses Kapitel dient dazu verschiedene Mechanismen zur Verarbeitung der empfangenen
Signale vorzustellen. Es stehen die Optionen Abfrage der Daten durch Polling, Empfang
der Daten mittels Interrupts sowie Übertragung der Daten über DMA zur Verfügung.
Zuerst sollen diese Möglichkeiten vorgestellt und miteinander verglichen werden. An-
schließend wird eine passende Methode für die verwendeten Schnittstellen ausgewählt.

Vergleich Polling, Interrupt und DMA

Beim Polling werden die Daten regelmäßig in einer Schleife durch die CPU abgefragt.
Dies kann bei häufigem Abfragen der Daten allem sehr ineffizient sein, da die CPU durch
die Abfrage voll ausgelastet ist und keine parallelen Aufgaben ausführen kann. Positiv zu
betrachten ist hingegen die einfache Implementierung. Ebenso kann das Zeitintervall der
Abfrage manuell voreingestellt werden, sodass ein vorhersehbares Zeitverhalten entsteht.
Nachteilig an diesen festgelegten Abfrageintervallen ist, dass spontan auftretende Ände-
rungen, die zwischen zwei Abtastintervallen vorkommen, unter Umständen nicht erfasst
werden können [28].

37

4 Konzept

Bei dem Verwenden von Interrupts wird ein Ereignis, beispielsweise die Pegeländerung
an einem GPIO-Pin, als Hardware-Interrupt registriert. Dies führt dazu, dass die CPU
sofort reagiert und eine Interrupt service routine (ISR) ausgeführt wird. Somit kann
eine Änderung an dem Dateneingang sofort erkannt und verarbeitet werden. Nach Be-
endigung der ISR wird das unterbrochene Programm fortgeführt. In der Zeit zwischen
den Interrupts kann die CPU andere Aufgaben erfüllen. Somit ist eine Parallelität der
Aufgaben möglich. Bei der Verwendung von mehreren verschiedenen Interrupts können
verschiedene Prioritäten vergeben werden [28]. Nachteilig zu nennen, ist die komplexere
Implementierung im Vergleich zum Polling. Auch kann beim Auftreten von mehreren In-
terrupts zur gleichen Zeit eine Verzögerung bei der Datenerfassung entstehen, da immer
zuerst der höher priorisierte oder zuerst ausgelöste Interrupt verarbeitet wird.
Mithilfe des DMA-Controllers können Daten direkt von den Peripheriegeräten in den
Speicher geschrieben werden, ohne dass die CPU eingreifen muss. Somit geschieht diese
Datenerfassung komplett unabhängig von der CPU. Die CPU kann in dieser Zeit an-
dere Aufgaben erfüllen [28]. Nachteilig ist, dass die Implementierung sehr komplex ist.
Auch gibt es nur eine begrenzte Anzahl von DMA-Kanälen. Der DMA reagiert ebenfalls
nicht auf schnelle Veränderungen der Eingangsdaten. Somit ist der DMA-Controller für
kontinuierliche Datenströme geeignet, welche effizient verarbeitet werden müssen. In der
Tabelle 4.5 werden alle drei Methoden miteinander verglichen.

Tabelle 4.5: Vergleich Polling, Interrupt und DMA
Polling Interrupt DMA

Reaktionszeit Langsam
abhängig vom Intervall Sehr schnell

Schnell aber nicht
„Echtzeit“-fähig für
Einzelereignisse

Effizienz Ineffizient
benötigt CPU-Zeit

Effizient
CPU arbeitet nur
bei Bedarf

Sehr effizient
CPU kaum
beansprucht

Implementierung Einfach Mittel Hoch

Parallelität Keine
CPU voll ausgelastet

Unterstützt parallele
Aufgaben

Vollständig
parallelisierbar
CPU und DMA
arbeiten unabhängig

Beständigkeit Änderungen können
verpasst werden

Sehr zuverlässig
reagiert sofort auf
Änderungen

Sehr beständig für
kontinuierliche
Datenübertragungen

38

4 Konzept

GPIO-Pins

Die Datenerfassung der GPIO-Pins soll in gleichmäßigen und regelmäßigen Intervallen
erfolgen, damit die aktuellen Daten an die Hot-Swap-Platine übertragen werden können.
Somit ist eine Datenerfassung via Polling sinnvoll. Hier kann ein festes Zeitintervall vor-
gegeben werden, indem die Daten immer neu abgefragt werden. Um zu verhindern, dass
Datenänderungen zwischen den Abfrageintervallen verloren gehen, ist es zudem zielfüh-
rend besonders die Pins mit den kritischen Signalen zusätzlich über Interrupts zu über-
wachen. Somit kann gewährleistet werden, dass immer die aktuellsten Daten über UART
versendet werden und keine Datenänderung verloren geht. Eine Erfassung der Daten
mithilfe von DMA ist nicht möglich, da der verwendete Mikrokontroller die GPIO-Pins
nicht als Eingangsperipherie für den DMA-Controller unterstützt.

I2C

Über das Kommunikationsprotokoll I2C sind die aktuellen Temperaturdaten der Tempe-
ratursensoren abgefragt werden. Hier ist ebenfalls eine kontinuierliche Abfrage der Daten
erwünscht, damit die aktuellsten Temperaturdaten übermittelt werden können.
Dabei muss sowohl beim Einsatz von Polling als auch beim Einsatz von Interrupts ein
Befehl zum Abrufen der Daten aufgerufen werden. Der entscheidende Unterschied liegt
jedoch darin, dass beim Polling der I2C-Bus kontinuierlich durch die CPU abgefragt
werden muss, während beim Interrupt eine Callback-Funktion ausgelöst wird, sobald die
Daten vom Slave gesendet wurden. In der Zeit zwischen dem Start des Interrupts und
dem Aufrufen der Callback-Funktion kann die CPU anderen Aufgaben nachgehen. Aus
diesem Grund wird die Interrupt-Methode vor der Polling-Methode präferiert. Da kein
kontinuierlicher Datenfluss vorhanden ist, sondern nur 16 Bit an Temperaturwerten pro
Abfrage übertragen werden, ist von der Verwendung eines DMA-Controllers abzusehen.
Dementsprechend wird sich bei dem Empfang der Temperaturdaten für die Interrupt-
Methode entschieden.

ADUs

Die Datenabfrage von den ADUs soll ebenfalls kontinuierlich in einem festen Zeitintervall
erfolgen. Es werden insgesamt sechs verschiedene Signale, welche über sechs Kanäle eines
ADUs übertragen werden, überwacht.

39

4 Konzept

Polling weist denselben Nachteil wie die I2C-Übertragung auf. Die CPU wird während
der gesamten Datenabfrage kontinuierlich beansprucht. Aus diesem Grund wird Polling
im weiteren Vergleich nicht weiter betrachtet. Es wird sich somit zwischen Interrupts oder
DMA-Controller entschieden. Um die sechs ADU-Kanäle gleichzeitig auszulesen, werden
alle zugehörigen Interrupts zeitgleich aktiviert. Dies birgt das Risiko, dass ein Interrupt
übersehen wird, wodurch die aktuellsten Daten nicht ausgelesen werden. Zudem führt
das gleichzeitige Auftreten der Interrupts zu einer gewissen Latenz beim Auslesen der
Daten. Da sechs ADU Kanäle mit einer jeweiligen Auflösung von 12 Bits gleichzeitig
abgefragt werden, entsteht ein Datenstrom von 72 Bits. Um die Effizienz zu steigern,
ist der Einsatz eines DMA-Controllers sinnvoll. Dieser ermöglicht es, den Datenstrom
direkt in einen Speicher zu schreiben, ohne die CPU zu belasten. Nach Abschluss der
Übertragung wird eine Callback-Funktion aufgerufen, in der die Daten aus dem Speicher
weiterverarbeitet werden können.

UART

Über das Kommunikationsprotokoll UART sind regelmäßig die aktuellen Daten an die
Hot-Swap-Platine zu senden. Da eine Datenübertragung aus mehreren Datenpaketen be-
steht, ist ein großer Datenstrom gegeben. Bei der Übertragung durch Interrupts wird
die CPU nach jedem übertragenden bzw. empfangenem Byte aktiviert, um die Daten zu
verarbeiten. Dies kann bei hohem Datenaufkommen belastend sein, da die CPU konti-
nuierlich die anderen auszuführenden Aufgaben unterbrechen muss. Aus diesem Grund
wird bei der UART-Übertagung der DMA-Controller verwendet. Hierbei werden die Da-
ten dauerhaft durch den DMA-Controller gesendet und empfangen, ohne dass die CPU
ihre Aufgaben unterbrechen muss. Es wird erst eine Callback-Routine ausgelöst, wenn
alle Daten aus dem vorhergesehenen Speicherbereich gesendet wurden oder der vorher-
gesehene Speicherbereich mit neu empfangenen Daten voll ist.

40

4 Konzept

4.2.3 Fehlererkennungsverfahren für die UART-Übertragung

In diesem Kapitel sollen verschiedene Verfahren, mit denen eine fehlerhafte Übertragung
der Daten über UART festgestellt werden kann, vorgestellt werden. Hierfür werden die
Verfahren Checksumme, Fletcher-Checksumme, Cyclic redundancy check (CRC)-Check
und Hamming-Code betrachtet. In der Tabelle 4.6 werden die Methoden hinsichtlich
einiger Aspekte verglichen.

Tabelle 4.6: Vergleich von Fehlererkennungsverfahren

Checksumme Fletcher-
Checksumme CRC-Check Hamming-Code

Fehler-
erkennung

Grundlegende
Fehlererkennung
(Einzelbitfehler)

Besser als einfache
Checksumme
(Einzel- und
Mehrfachfehler)

Sehr gut
(Einzel- und
Mehrfachbitfehler)

Gut
(Einzelbitfehlern)

Fehler-
korrektur Nein Nein Nein Ja

(Einzelbitfehler)
Komplexität Sehr gering Gering Mittel Mittel
Rechnungs-
aufwand Sehr gering Gering bis Mittel Gering bis Mittel Gering

Effektivität
bei UART

Einfach und
schnell, aber
anfällig für
Fehler

Gute Erkennung
von Einzel- und
Mehrfachfehlern,
effizient für UART

Sehr gut für
einfache und
robuste
Fehlererkennung,
effizient

Gut für
fehleranfällige
Übertragungen,
ermöglicht Fehler-
korrektur

Bei der Verwendung einer Checksumme werden alle Daten aufsummiert, um eine Summe
zu erhalten. Diese Summe wird anschließend als Checksumme zusammen mit den Daten
übertragen. Dadurch, dass nur eine einfache Addition der Daten ausgeführt werden muss,
ist sowohl die Komplexität, als auch der Rechenaufwand mit sehr gering zu bewerten.
Mithilfe von dieser Methode können Einzelbitfehler erkannt werden. Bei dem Auftreten
von mehreren Fehlern oder dem Vertauschen von einzelnen Bits kann keine zuverlässi-
ge Fehlererkennung erwartet werden. Dies resultiert daraus, dass jeder Summand der
Summe gleich behandelt wird. Sollten sich zwei Fehler gegeneinander aufheben, ist die
Checksumme die Gleiche, obwohl bei der Übertragung zwei Fehler entstanden sind. Aus
diesem Grund kann die Fehlererkennung von mehreren Fehlern nicht garantiert werden.
Die Checksumme ist somit eine sehr einfache und schnelle Methode, welche für UART
Verbindungen, die eine niedrige Wahrscheinlichkeit von Übertragungsfehlern aufweisen,

41

4 Konzept

geeignet ist. Jedoch ist die Zuverlässigkeit der Fehlererkennung stark begrenzt [30].

Die Fletcher-Checksumme ist eine Verbesserung zu der eben vorgestellt Checksumme.
Hierbei werden zwei Prüfsummen erstellt. Die erste Prüfsumme wird wie bei der Checks-
umme durch einfach Addition der zu übertragenden Daten bestimmt. Die zweite Checks-
umme wird durch die Addition der Ergebnisse der ersten Checksumme berechnet. Um
die Summen möglichst klein zuhalten, wird anschließend eine Modulo-Operation durchge-
führt. Beispielweise wird bei der Fletcher-16-Checksumme modulo 255 gerechnet. Durch
diese Methode entsteht die Möglichkeit neben Einfachfehlern auch Mehrfachfehler be-
stimmen zu können. Dadurch, dass weiterhin einfache Additionen durchgeführt werden,
ist die Komplexität und der Rechnungsaufwand weiterhin mit gering zu bewerten. Somit
stellt diese Methode eine effiziente Möglichkeit zur Fehlererkennung dar, wo keine auf-
wändigere Implementierung gewünscht ist [30].

Als nächstes wird der CRC-Check vorgestellt. Der CRC-Check basiert auf der binären
Division der zu übertragenden Daten durch ein vorher festgelegtes Generatorpolynom.
Der Rest dieser Division stellt die CRC-Checksumme dar, die zusammen mit den Daten
übermittelt wird. Auf der Empfangsseite wird die Division mit dem gleichen Polynom
und den übertragenden Daten mit angehängter CRC-Checksumme durchgeführt. Sollte
die Übertragung fehlerfrei durchgeführt worden sein, ist hier der Rest der Division Null.
Andernfalls ist ein Fehler innerhalb der Datenübertragung aufgetreten. Es gibt verschie-
dene Arten des CRC-Checks, wobei der Name durch die Länge des Generatorpolynoms
bestimmt wird. Beim CRC-8 ist das Polynom acht Bit lang, während beim CRC-16 das
Polynom 16 Bit aufweist. Mithilfe eines längeren Generatorpolynoms können sowohl Ein-
zelbitfehler als auch Mehrfachbitfehler sicherer erkannt werden. Jedoch erhöht sich die
Komplexität und der Rechnungsaufwand mit einem größeren Generatorpolynom [40].

Zuletzt wird die Methode des Hamming-Codes vorgestellt. Mithilfe dieser Methode ist
neben der Fehlererkennung auch die Fehlerkorrektur von Einzelbitfehlern möglich. Bei
dieser Methode werden sogenannte Paritätsbits in die Datenbits eingefügt. Berechnet
werden die Paritätsbits aus den zu sendenden Datenbits. Dabei werden alle Positionen
der Daten, wo sich eine eins befindet, miteinander addiert. Die Anzahl der benötigten
Paritätsbits bestimmt sich aus der Anzahl der zu übertragenden Bits. Bei 2n Bits müssen
n+1 Bits als Paritätsbits vorgesehen werden. Die Komplexität der Berechnung bestimmt
sich somit aus der Anzahl der Datenbits. Die Paritätsbits sollten dabei sorgfältig berech-
net werden. Der Rechenaufwand hingegen ist gering, da bei dieser Methode Bits addiert

42

4 Konzept

werden. Jedoch wird bei der Addition der Übertrag nicht beachtet. Der besondere Vor-
teil liegt darin, dass bei dem Auftreten eines einzelnen Bitfehlers die Position des Fehlers
auf der Empfangsseite berechnet werden kann. Somit ist eine nachträgliche Korrektur
möglich. Jedoch ist es eine genau Fehlervorhersage bei Mehrfachfehlern, die direkt hin-
tereinander auftreten, nicht garantiert [29].

Nachdem mehrere Methoden vorgestellt wurden, soll eine Methode ausgewählt werden.
Da die UART-Verbindung die aktuellsten Messdaten überträgt, sollte die verwendete
Methode eine hohe Zuverlässigkeit in der Übertragung bieten. Auch ist es sinnvoll, dass
nicht nur Einzelbitfehler, sondern auch Mehrfachbitfehler erkannt werden können. Aus
diesem Grund ist die Checksumme keine geeignete Methode für diese Anwendung. Auch
der Hamming-Code ist in der Erkennung von Mehrfachbitfehlern nicht die zuverlässigste
Methode. Es wird sich somit gegen den Hamming-Code entschieden, obwohl die Korrek-
tur von Einzelbitfehlern vorteilhaft ist. Diese Methode sollte jedoch für die zukünftige
Weiterentwicklung des Projekts in Betracht gezogen werden. Der wesentliche Vorteil des
CRC-Checks gegenüber der Fletcher-Checksumme liegt in der flexiblen Anpassbarkeit der
Zuverlässigkeit der Fehlererkennung durch die Wahl der Länge des Generatorpolynoms.
Gleichzeitig kann der Rechenaufwand durch die Verwendung eines kürzeren Generator-
polynoms verringert werden. Aus diesen Gründen fällt die Wahl auf den CRC-Check.

4.2.4 UART Frame

Innerhalb von diesem Kapitel werden verschiedene Möglichkeiten zum Aufbau des UART-
Frames miteinander verglichen. Dieser UART-Frame wird an die Hot-Swap-Platine ge-
sendet und soll alle relevanten Daten enthalten. Hierbei ist die in dem Kapitel 4.2.1
festgelegte Priorität der Signale zu beachten.

Die erste Möglichkeit, um den Frame zu gestalten, liegt darin eine feste Struktur vor-
zugeben, die bei jeder Datenübermittlung eingehalten wird. Dabei werden alle zu ver-
sendenden Daten hintereinander verschickt. Die Vorteile dieser Methode liegen in der
Einfachheit der Umsetzung und der geringen Fehleranfälligkeit bei der Interpretation der
Daten. Da immer die gleichen Daten in der selben Reihenfolge geschickt werden, ist eine
Fehlinterpretation relativ gering. Durch eventuelle Start- und Endbytes am Anfang und
Ende der UART-Übertragung können Fehler durch verschobene Daten einfacher erkannt
werden. Nachteilig zu nennen, ist die geringe Flexibilität beim Versenden der Daten. Soll-

43

4 Konzept

te sich die Anzahl der Datenpunkte in der Zukunft ändern, ist eine manuelle Anpassung
notwendig. Auch können keine Daten priorisiert werden, da alle im gleichen Zeitintervall
versendet werden.

Die zweite Möglichkeit sieht es vor, zwei verschiedene Frames zu versenden. Die Frames
können beispielsweise durch die Wahl eines unterschiedlichen Startbytes voneinander un-
terschieden werden. Der erste Frame kann dabei die priorisierten Daten enthalten. Der
zweite Frame enthält anschließend die restlichen Daten, welche eine geringere Priorität
aufweisen. Somit ermöglicht diese Methode die höher priorisierten Daten häufiger und
unabhängig von den anderen Daten zu versenden. Dadurch wird eine hohe Flexibilität
ermöglicht, bei der die Daten entsprechend ihrer Priorität behandelt werden können.
Auch die Fehlertoleranz ist im Vergleich zur ersten Methode höher. Sollte ein Frame
aus unterschiedlichen Gründen beim Senden verloren gehen, kann ein wichtiges Frame
schneller erneut verschickt werden. Nachteilig ist der erhöhte Aufwand zu betrachten.
Sowohl der Sender, als auch der Empfänger müssen anhand der Startbytes die Daten
richtig interpretieren können. Außerdem wird mehr Overhead durch die Verwaltung von
zwei Frame-Typen benötigt.

Die dritte Methode teilt den Frame in zwei Abschnitte ein. In der ersten Hälfte des
Frames werden die Daten mit der höchsten Priorität, die Magnetspannungen, bei jeder
Übertragung gesendet, sodass die Daten mit einer möglichst geringen Latenz immer ak-
tuell übermittelt werden. Die zweite Hälfte des Frames dient der Übertragung weniger
priorisierter Daten, wobei eine zyklische Reihenfolge angewendet wird. Um die eindeutige
Zuordnung der übertragenen Informationen zu gewährleisten, wird jedem Datenpaket ein
Identifier hinzugefügt, der angibt, welche Variable übertragen wird. Der Identifier 0x01
könnte beispielsweise signalisieren, dass die VCC-Spannung übermittelt wird. Durch die-
se Struktur wird eine klare Trennung zwischen priorisierten kritischen und weniger kri-
tischen Daten erreicht. Die Methode stellt sicher, dass die wichtigsten Daten bei jeder
Übertragung enthalten sind, während weniger dringliche Informationen durch den zy-
klischen Mechanismus regelmäßig gesendet werden. Die Identifier ermöglichen es, die
empfangenen Datenpakete eindeutig zu interpretieren und den entsprechenden Variablen
zuzuordnen. Nachteilig zu betrachten ist, dass der zusätzliche Identifier den Kommuni-
kationsaufwand erhöht. Dies führt zu einem gesteigerten Overhead. Zudem kann es bei
weniger priorisierten Daten durch die zyklische Übertragung zu Verzögerungen kommen.
Darüber hinaus erhöht die Implementierung der zyklischen Reihenfolge und der Verwal-
tung der Identifier die Komplexität des Codes.

44

4 Konzept

Nachdem nun mehrere Möglichkeiten aufgeführt wurden, wird sich innerhalb von diesem
Absatz für eine Methode zur Fehlerkennung innerhalb der UART Übertragung entschie-
den. Die erste Möglichkeit beachtet nicht die Priorisierung der verschiedenen Signale.
Dadurch, dass immer alle Daten versendet werden, entsteht ein langer Frame mit vielen
Datenpakten. Die Übertragung erfordert viel Zeit, was dazu führt, dass zwischen den
neuen Daten der kritischen Signale eine längere Latenz besteht. Somit wird sich nicht
für die erste Methode entschieden. Der Unterschied zwischen der zweiten und der drit-
ten Methode liegt in der Anordnung der Daten innerhalb der Frame. Bei der zweiten
Methode wird ein separater Frame ausschließlich für die Übermittlung kritischer Signa-
le verwendet. Dies bedeutet, dass unkritische Daten in separaten Frames und zeitlich
getrennt gesendet werden. Im Gegensatz dazu kombiniert die dritte Methode kritische
und unkritische Daten innerhalb eines einzigen Frames. Die kritischen Signale werden
dabei bei jeder Übertragung gesendet, während die unkritischen Daten zyklisch ergänzt
werden. Ein entscheidender Vorteil der dritten Methode besteht darin, dass die Frames
die gleiche Anzahl an Datenpaketen enthalten und daher stets das gleiche Zeitintervall
zur Übermittlung benötigen. Dadurch entsteht eine konstante und gleichmäßige Übertra-
gung. Dies ermöglicht es dem Empfänger, die Übertragungszyklen zu überwachen, indem
die Zeitabstände zwischen den Frames überprüft werden. Wenn die Übertragungen nicht
mehr regelmäßig erfolgen, kann dies auf mögliche Fehler in der Datenübertragung hinwei-
sen. Somit bietet die dritte Methode zusätzliche Sicherheit zur Überprüfung der korrekten
Funktion des Systems. Aufgrund der eben genannten Aspekte wird die dritte Methode
bevorzugt. Sie vereint die zuverlässige Priorisierung kritischer Signale mit der regelmä-
ßigen Übertragung unkritischer Daten und ermöglicht gleichzeitig eine Überwachbarkeit
der korrekten Funktion der Software.
Für dieses Projekt bedeutet dies, dass ein Frame mit zehn Datenpaketen gestaltet wird.
Jedes Datenpaket weist eine Größe von 8-Bit auf. Das erste Datenpaket enthält einen spe-
zifischen Header, der die Art des zu sendenden Datenpakets identifiziert. Für die Über-
mittlung der gesammelten Messdaten wird der Header 0x01 verwendet. Anschließend
werden in den nächsten vier Datenpaketen die kritischen Werte der aktuellen Magnet-
spannungen übermittelt. Es folgt das Senden des Identifiers. Mit dessen Unterstützung
werden die weniger kritischen Signale zyklisch übermittelt. Der Identifier gibt dabei an,
welche Daten in den folgenden zwei Datenpaketen übertragen werden.

45

4 Konzept

Der folgenden Auflistung kann entnommen werden, wie der Identifier den zu übertragen-
den Daten zugeordnet ist.

Identifier 0: Temperaturdaten Sensor 1

Identifier 1: Temperaturdaten Sensor 2

Identifier 2: Temperaturdaten Sensor 3

Identifier 3: 12 V Signal Power-Supplies

Identifier 4: 12 V Spannungsversorgung

Identifier 5: 5 V VCC- Spannung

Identifier 6: digitale Signale (Detektions-, Matrix-, Dump- und Adresssignale)

Zuletzt erfolgt das Senden der CRC-16-Checksumme in den letzten zwei Datenpaketen.
In der Abbildung 4.3 ist die Zusammensetzung des Frames nochmals grafisch dargestellt.
Jeder Kasten beinhaltet ein 8-Bit Paket.

Abbildung 4.3: Zusammensetzung des über UART zu übertragenden Frames

4.2.5 Konzeptionierung der Timinganforderungen

Eine Anforderung an das System ist es die Daten innerhalb eines vorgegebenen gleich-
bleibenden Intervalls zu sammeln und anschließend an das Hauptsystem mittels UART
zu übermitteln. Um das feste Zeitintervall zu realisieren, ist es sinnvoll Timer zu ver-
wenden, die nach Ablauf einer einstellbaren Zeit einen Interrupt auslösen. Ein Vorteil
dieser Methode ist die Genauigkeit in der Ausführung. Hardware-Timer bieten meist eine
sehr präzise Zeitsteuerung, da sie unabhängig von der CPU oder weiteren Systemaufga-
ben arbeiten. Dadurch, dass die Zeitmessung ohne CPU-Anspruch durchgeführt werden
kann, werden die Ressourcen effektiv genutzt und die CPU nicht blockiert. Während der
Counter des Timers abläuft, können dementsprechend andere Aufgaben durch die CPU
ausgeführt werden. Eine Alternative zu dem Hardware-Timer wäre das Verwenden von
Polling, wo in einer Endlosschleife zwischen Datenabfrage und aktiven Warten gewechselt

46

4 Konzept

wird. Dies ist im Gegensatz den Timern ressourcenintensiv, da die CPU dauerhaft mit
dem Warten und Abfragen der Daten beschäftigt ist. Ebenso ist keine gute Genauigkeit
der Zeitpunkte der Datenabfrage gegeben, da diese durch die Prozessorauslastung beein-
trächtigt werden kann. Somit ist von dieser Methode abzusehen.

Um die verschiedenen Daten unabhängig voneinander und der Priorisierung entspre-
chend abzufragen, werden vier verschiedene Timer benötigt. Davon dienen drei Timer
zur Datenerfassung und ein Timer zur regelmäßigen Datenübermittlung.
Zunächst wird der Timer für die konstante UART-Übertragung konzeptioniert. Hierfür
muss zunächst die Zeit bestimmt werden, welche für eine UART-Übertragung benötigt
wird. Es werden insgesamt elf Datenpakete bei einer UART-Übertragung übermittelt.
Als Baudrate wird die 230400 Bits pro Sekunde gewählt. Es wird ein Stopbit und eine
gerade Parität bei der Übertragung verwendet. Zuerst wird die benötigte Zeit für die
Übertragung eines Bits bestimmt.

Baud =
1

Baudrate

=
1

230400 Bit
s

= 4.34µs pro Bit

Pro Datenpaket werden ein Startbit, acht Datenbits, ein Paritätsbit und ein Stopbit
übertragen. Dies ergibt insgesamt elf Bits pro Datenpaket. Bei einer Gesamtanzahl von
elf Datenpaketen pro Übertragung ergibt sich die benötigte Zeit für die Übertragung
eines Frames wie folgt.

tGes = Baud · 11 Bit · 11

= 4.34
µs

Bit
· 11 Bit · 11

= 525.17µs

Die Übertragung von elf Datenpaketen benötigt somit 525.17µs. Für die Timereinstellung
wird ein Intervall von 1 ms für das Senden der UART-Daten gewählt. Dieser Abstand
ermöglicht es, die vorherige UART-Übertragung komplett abzuschließen und die neuen
Daten zur Übertragung bereitzustellen. Ebenso wird ein Puffer für Zeitverzögerungen
implementiert, die durch die GPIO-Interrupts oder das Empfangen von UART-Daten
entstehen. Der Empfänger dieser UART-Daten kann dementsprechend ein konstantes

47

4 Konzept

Empfangsintervall von 1 ms erwarten. Es folgt die Bestimmung der Timereinstellungen,
um dieses Intervall zu ermöglichen. Der Timer wird so eingestellt, dass jede Mikrosekunde
ein Zählschritt ausgeführt wird. Es wird ein 16-Bit Timer verwendet, welcher mit einer
Frequenz von 48 MHz betrieben wird.

fTimer =
1

1µs

= 1 MHz

Prescaler =
fTakt
fTimer

=
48 MHz

1 MHz

= 48

Mit einem Prescaler von 48 zählt der Timer jede Mikrosekunde einen Zählschritt nach
oben. Bei einem gewünschten Zählintervall von 1 ms muss somit die Zählvariable einen
Wert von 1000 erhalten.

Es folgt die Timer Bestimmung für die ADU-Auswertung. Zunächst wird bestimmt, wie
viel Zeit für das Auslesen der sechs Kanäle des ADUs benötigt wird. Der ADU weist eine
Auflösung von 12 Bit auf. Hieraus ergibt sich eine benötigte Wandlungszeit von 12.5 Tak-
ten. Diese Zeit wird benötigt, um die analogen Werte des Signals in einen digitalen Wert
zu wandeln. Zudem wird eine Variable Sample-and-Hold-Zeit genutzt. Diese Variable ist
die Zeitverzögerung an, bis eine stabile Spannung am Kondensator des ADUs anliegt. Es
wird eine Zeit von 7.5 Takten verwendet. Die ADU-Frequenz beträgt 14 MHz

tADU =
Wandlungszeit + Sample-and-Hold-Zeit

fADU
· 6

=
12.5 + 7.5

14 MHz
· 6

= 8.57µs

Zum Auslesen der sechs Kanäle werden insgesamt 8.57µs benötigt. Da zu diesem Zeit-
punkt noch nicht bekannt ist, wie lange die Auswertung der Daten der ADUs benötigt,
wird ein Zeitpuffer integriert. Die berechnete Zeit stellt das minimale Intervall für die
Abfrage der ADU-Werte dar. Wird das Abfrageintervall zu kurz gewählt, ist die CPU
vollständig mit der Verarbeitung und Abfrage der ADU-Werte ausgelastet und kann keine

48

4 Konzept

weiteren Aufgaben ausführen. Um dieses Problem zu vermeiden, wird der hinzugefügte
Puffer bewusst großzügig ausgelegt. In der Implementierung muss das hier festgelegte
Zeitintervall jedoch erneut überprüft und gegebenenfalls angepasst werden. Das Intervall
soll 70µs betragen. Es wird wie bei der UART-Übertragung eine Zählzeit von einer Mi-
krosekunde pro Schritt festgelegt. Dementsprechend erhält der Prescaler ebenfalls einen
Wert von 48. Die Zählvariable muss bei einem Intervall von 70µs den Wert 70 aufweisen.

Die Abfrage der Temperaturwerte soll in einem deutlich längeren Intervall erfolgen. Ei-
ne Temperaturänderung wird voraussichtlich langsamer erfolgen als die Veränderung der
Magnetspannung. Aus diesem Grund wird Timer so eingestellt, dass die Temperatursen-
soren alle 1.5 s abgefragt werden. Bei insgesamt drei Timer ist es sinnvoll, die Abfrage
eines Timers immer nach 500 ms zu starten und den abzufragenden Timer zyklisch zu
ändern. Es wird eine Zählzeit für einen Schritt von einer Millisekunde festgelegt.

fTimer =
1

1 ms

= 1 kHz

Prescaler =
fTakt
fTimer

=
48 MHz

1 kHz

= 48000

Der Prescaler muss einen Wert von 48000 und die Zählvariable von 500 aufweisen.

Zuletzt ist der Timer für die GPIO Auswertung via Polling zu bestimmen. Hier wird
ebenfalls wieder eine Zählzeit von 1µs verwendet. Das Abfrageintervall beträgt 300µs.
Im Vergleich zu der Auswertung der Magnetspannung durch die ADUs werden hier eher
unkritische Signale abgefragt. Die kritischen GPIO-Signale sind mit einem Interrupt aus-
gestattet, sodass hier keine Änderung verpasst wird. Aus diesem Grund ist das längere
Abfrageintervall ausreichend. Um dieses Abtastintervall zu erhalten, muss der Prescaler
einen Wert von 48 und die Zählvariable einen Wert von 300 annehmen.

49

5 Implementierung

In diesem Kapitel wird die Umsetzung der Anforderungen und der Konzepte behandelt.
Hierfür wird zunächst innerhalb des Unterkapitels Hardware die Erstellung der Schalt-
pläne und der Platine mit Hilfe des Entwicklungstools Eagle beschrieben. Anschließend
erfolgt in dem Unterkapitel Software die Programmierung des Mikrokontrollers. Es ist
anzumerken, dass die nachfolgende Beschreibung der Implementierung der Hardware auf
einen zweiten, bereits erweiterten Prototypen basiert. Dieser zweite Prototyp konnte bis
zur Abgabe dieser Arbeit aus Zuliefergründen nicht vollständig fertiggestellt werden.
Da die Softwareentwicklung parallel erfolgt, ist die Software auf den ersten Prototypen
ausgelegt.

5.1 Hardware

Es erfolgt zunächst die Implementierung der Hardware. Dieses Kapitel ist in die Erstel-
lung des Schaltplans und Erstellung der Platine unterteilt. Im ersten Teil werden die
einzelnen implementierten Schaltungen vorgestellt und beschrieben. Im zweiten Teil er-
folgt anschließend die Vorstellung der Platine, welche die Schaltungen aus dem ersten
Teil enthält.

5.1.1 Erstellung der Schaltpläne in Eagle

Es folgt die Vorstellung von einzelnen Auszügen aus dem Schaltplan. Hierbei wird die
einzelne vorgenommene Schaltung und die verwendeten Komponenten vorgestellt. Der
gesamte Schaltplan ist innerhalb des Anhangs unter dem Kapitel A.4 einzusehen.

50

5 Implementierung

Verbindungsstecker zwischen den Platinen

Zunächst werden die Verbindungsstecker zwischen den Platinen vorgestellt. Es sind insge-
samt sechs Stecker zu implementieren. Die Anzahl und die Signalbelegung wird durch die
Hot-Swap-Platine vorgegeben. In der Abbildung 5.1 sind die sechs Stecker zu erkennen.

Abbildung 5.1: Auszug aus dem Schaltplan: Verbindungsstecker

Es folgt nun eine Beschreibung der einzelnen Stecker.

Zuerst wird der Stecker J4 beschrieben. Die ersten beiden Pins weisen keine Belegung
auf. Über Pin drei bis sechs wird ein differentielles Bussignal übertragen. Dieses Bussignal
wird durch eine RS485-Schaltung in das UART-Signal umgewandelt. Die Vorstellung die-
ser Schaltung erfolgt innerhalb des Kapitels RS485 Empfänger im hinteren Teil der Hard-
wareimplementierung. Über Pin sieben und Pin acht wird die 12 V-Versorgungsspannung
der Mikrokontrollerplatine und die GND-Anbindung übertragen. Über Pin neun wird das
5 V VCC-Signal übermittelt. Auf dem Pin zehn ist das PWM-Signal
ADJ_Detection_Bus gelegt. An Pin elf bis Pin vierzehn liegen die Matrix-Signale an. Es
folgt an den Pins 15 bis 18 die Übertragung der Detection-Signale. Anschließend werden
an Pin 19 und Pin 20 die Dump-Signale übertragen. Über die Pins 21 bis 24 werden die
vier Adress-Signale übergeben.
Der Stecker J3 dient zur Übertragung der 12 V-Versorgungsspannung sowie des GND-
Signals der Spannungsversorgungen. Zusätzlich wird das 5 V-VCC-Signal übertragen.

51

5 Implementierung

Die Stecker J1 und J2 sind nahezu identisch aufgebaut. Beide Stecker werden dazu ver-
wendet, um die zwei Temperatursensoren auf der Hot-Swap-Platine zu betreiben. Da
diese Sensoren auf der Hot-Swap-Platine räumlich getrennt angeordnet sind und die ent-
sprechenden Leitungen nicht über die ganze Platine gezogen werden sollen, ist für jeden
Sensor ein Stecker vorgesehen. An beiden Steckern wird die Vorsorgungsspannung von
3.3 V, zwei GND-Anbindungen, die Signale SCL und SDA für die I2C Kommunikation
und ein Interruptsignal übermittelt.
Die Stecker J5 und J6 dienen der Übertragung der Magnetspannungen. Dabei reprä-
sentieren M1+ und M1- die Magnetspannung des ersten Magneten, während M2+ und
M2- die Magnetspannung des zweiten Magneten übertragen. Zusätzlich wird für jede
Magnetspannung ein +5 V- und ein −5 V-Signal auf demselben Potential der jeweiligen
Spannung übermittelt.

Versorgungsspannung des Mikrokontrollers

Innerhalb von diesem Kapitel wird die implementierte Schaltung zur Bewerkstelligung
der 5 V-Versorgungsspannung des Mikrokontrollers erläutert. Von dem ersten Prototy-
pen konnte der Entschluss gefasst werden, dass ein LDO aufgrund der hohen Differenz
von Eingangs- zu Ausgangsspannung der damit verbundenen Wärmeentwicklung an sei-
nem absoluten Maximum arbeitet. Aus diesem Grund wird auf dem zweiten Prototypen
ein Abwärtswandler implementiert. Um einen späteren Vergleich der beiden Schaltungen
innerhalb des Betriebs ausführen zu können, ist eine im Vergleich zum ersten Prototy-
pen verbesserte LDO-Schaltung weiterhin auf der Platine vorhanden. Im folgenden wird
zunächst die LDO-Schaltung und anschließend die Schaltung des Abwärtswandlers er-
läutert.
In der Abbildung 5.2 ist der Schaltplanauszug des LDOs zu erkennen.

Abbildung 5.2: Auszug aus dem Schaltplan: LDO

52

5 Implementierung

Es wird das 12 V-Eingangsspannungssignal an den Input-Pin und das GND-Potential an
den GND-Pin angelegt. Am Ausgang der LDOs liegen die benötigten 5 V an, welche für
die Spannungsversorgung des Mikrokontrollers und für weitere ICs, wie die Pegelwandler
für die digitalen Signale, verwendet werden.

Es folgt die Beschreibung der Schaltung zur Reduktion der 12 V-Spannung mithilfe des
Abwärtswandlers. Der entsprechende Auszug aus dem Schaltplan ist innerhalb der Ab-
bildung 5.3 zu erkennen.

Abbildung 5.3: Auszug aus dem Schaltplan: Abwärtswandler

Es wird der Buck-Converter TPS629210DRLR zur Spannungsreduktion verwendet. An
den Pin sechs wird die 12 V-Eingangsspannung dem IC zugeführt. Über die Kondensato-
ren C22 und C32 werden Spannungsschwankungen innerhalb der 12 V-Spannung heraus-
gefiltert und das Signal geglättet. Durch den Spannungsteiler der Widerstände R42, R43
und R44 wird der enable-Pin (Pin 7) mit der 12 V-Spannung verbunden. Bei einem High-
Signal am Enable-Pin wird das IC aktiviert und in den Betriebsmodus versetzt. Liegt
hingegen ein Low-Signal an, bleibt das IC deaktiviert und außer Betrieb. Der Spannungs-
teiler wird verwendet, damit das IC erst bei einer ausreichend hohen Eingangsspannung
aktiviert wird. Aus dem Datenblatt des TPS629210DRLR ist zu entnehmen, dass das
IC ab einer Spannung von 1 V an dem enable-Pin in den Betriebsmodus versetzt wird.
Wäre der enable-Pin direkt an die 12 V-Eingangsspannung angeschlossen, würde das IC
aktiviert werden, sobald die Eingangsspannung den Wert von 1 V übersteigt. In der fol-
genden Rechnung wird bestimmt, welchen Wert die Eingangspannung annehmen muss,
damit das IC nach dem Spannungsteiler in den Betriebsmodus versetzt wird. Es wird die

53

5 Implementierung

allgemeine Formel des Spannungsteilers angewendet.

VIN_min = Ven_min ·
R42 +R43 +R44

R44
(5.1)

= 1V · 1 MΩ + 510 kΩ + 200 kΩ

200 kΩ

= 8.55 V

Die minimale Eingangsspannung, ab der das IC in den Betriebsmodus versetzt wird, liegt
bei einem Wert von 8.55 V.
Mithilfe des Pin acht des ICs kann der Betriebsmodus des Buck-Converters eingestellt
werden. Hier ist sowohl durch den Anschluss des Pins auf GND, als auch über den Wider-
standswert des Widerstands R46 der Auto Pulsfrequenzmodulation (PFM)/PWMModus
ausgewählt. Dieser Modus ermöglicht eine automatische Optimierung der Effizienz bei
unterschiedlichen Lastbedingungen.
An dem Pin vier liegt der Ausgang der Schaltfrequenz an, welche die Spule L1 ansteu-
ert. Die Ausgangsspannung der Spule wird an den Pin VOS zurück gekoppelt, um die
Spannung zu stabilisieren. Mithilfe des Feedbackpins FB/_VSet (Pin 1) kann die Aus-
gangsspannung über den folgenden Spannungsteiler von R48 und R47 eingestellt werden.
Der Widerstand R48 wird nicht bestückt. Somit ist diese Leitung als offen anzusehen.
Der Widerstand R47 weist einen Wert von 82 kΩ auf. Der Tabelle 8-2 aus dem Datenblatt
des Bauteils ist zu entnehmen, dass dieser Widerstandswert eine Ausgangsspannung von
5 V erzeugt. Die Ausgangskondensatoren C16 und C21 dienen zur Glättung der Aus-
gangsspannung.

Spannungsteilung für die Eingangsspannungsüberwachung

In diesem Unterkapitel werden die Spannungsteiler von 12 V und von 5 V auf 3 V be-
schrieben. Die Spannungsteilung ist notwendig, um die Signale mithilfe eines ADUs des
Mikrokontroller überwachen zu können.

54

5 Implementierung

Der hierfür relevante Schaltplanauszug ist in der Abbildung 5.4 zu erkennen. Es müssen
die Widerstände R29 und R30 sowie R34 und R35 bestimmt werden.

Abbildung 5.4: Auszug aus dem Schaltplan: Spannungsteiler

Zunächst wird die Berechnung des Spannungsteilers von 12 V auf 3 V durchgeführt. Es
soll ein maximaler Stromfluss von 1 mA möglich sein. Zuerst wird der benötigte Gesamt-
widerstand RGes bestimmt.

RGes =
U

I
(5.2)

=
12 V

1 mA

= 12 kΩ

Anschließend erfolgt die Bestimmung der Widerstandsgrößen R29 und R30.

R29 =
UR29

UGes
· RGes (5.3)

=
9 V

12 V
· 12 kΩ

= 9 kΩ

R30 =
UR30

UGes
· RGes (5.4)

=
3 V

12 V
· 12 kΩ

= 3 kΩ

55

5 Implementierung

Es folgt die Berechnung, welche Leistung über den Spannungsteiler abfällt. Diese Leistung
ist bei der Auswahl der Widerstände zu berücksichtigen.

P = U · I (5.5)

= 12 V · 1 mA

= 12 mW

Mit den ausgerechneten Werten können geeignete Widerstände für R29 und R30 ausge-
wählt werden. Für R29 wird ein Widerstand mit 9.1 kΩ und für R30 ein Widerstand mit
3 kΩ ausgewählt. Beide Widerstände sollten eine Leistung von mindestens 0.1 W vertra-
gen können. Es werden SMD 0603 Widerstände mit einer Toleranz von ±1% ausgewählt.
Es folgt die Berechnung des 5 V Spannungsteilers. Hier erfolgt ebenfalls eine Strombegren-
zung auf 1 mA.

RGes =
U

I
(5.6)

=
5 V

1 mA

= 5 kΩ

Anschließend erfolgt die Bestimmung der Widerstandsgrößen R35 und R34.

R34 =
UR34

UGes
· RGes (5.7)

=
2 V

5 V
· 5 kΩ

= 2 kΩ

R35 =
UR35

UGes
· RGes (5.8)

=
3 V

5 V
· 5 kΩ

= 3 kΩ

Anschließend wird der Leistungsabfall über dem Spannungsteiler bestimmt.

P = U · I (5.9)

= 5 V · 1 mA

= 5 mW

Mit den ausgerechneten Werten können geeignete Widerstände für R34 und R35 ausge-
wählt werden. Für R34 wird ein Widerstand mit 2 kΩ und für R35 ein Widerstand mit

56

5 Implementierung

3 kΩ ausgewählt. Beide Widerstände sollten mindestens eine Leistung von 0.1 W um-
setzen können. Auch hier werden SMD 0603 Widerstände mit einer Toleranz von ± 1%
gewählt.

Spannungsumsetzung der digitalen Signale

Es folgt die Umsetzung der Spannungsreduktion der digitalen Signale mithilfe des Pegelwandlungs-
ICs TXS0104ED. In der Abbildung 5.5 ist ein Ausschnitt des Schaltplans zu erkennen. Es
wird die implementierte Schaltung einmal vorgestellt, da die Wandlung bei allen digitalen
Signalen auf identische Weise erfolgt.

Abbildung 5.5: Auszug aus dem Schaltplan: Spannungsumsetzung der digitalen Signale

Auf der linken Seite des Bauteils TXS0104E werden die Signale, die mit dem Mikro-
controller verbunden werden sollen, an die Pins A1, A2, A3 und A4 angeschlossen. Die
Spannung, auf die die Signale nach der Spannungsumsetzung geregelt werden sollen, wird
an VCCA angelegt. In diesem Fall beträgt sie 3.3 V. Pin 7 wird mit GND verbunden. Auf
der rechten Seite des Bauteils werden die 5 V-Signale, die über die Steckverbindungen von
der Hot-Swap-Platine übermittelt werden, an die Pins B1, B2, B3 und B4 angeschlossen.
An VCCB werden 5 V angelegt. Das Bauteil wird über den Pin OE (Output Enable)
durch den Mikrokontroller gesteuert. Liegt ein Low-Signal am OE-Pin an, ist das Bau-
teil deaktiviert. Alle Ein- und Ausgänge befinden sich im hochohmigen Zustand. Wird

57

5 Implementierung

hingegen eine Eingangsspannung von 3.3 V angelegt, erhält der OE-Pin ein High-Signal,
wodurch das Bauteil aktiviert wird.

Galvanische Trennung der Magnetspannungen

In diesem Abschnitt wird die Umsetzung der galvanischen Trennung zur Messung der Ma-
gnetspannung beschrieben. Der entsprechende Schaltplanauszug ist in der Abbildung 5.6
zu erkennen. Es wird nur der Schaltplanauszug für die Magnetspannung M1 beschrieben.
Der Schaltplan für die galvanische Trennung des zweiten Magneten ist nahezu identisch
und kann im Anhang unter dem Kapitel A.4 eingesehen werden.

Abbildung 5.6: Auszug aus dem Schaltplan: Galvanische Trennung Magnetspannung

Der Baustein AMC1350DWVR (IC2) ist der Trennverstärker, welcher für die galvanische
Trennung der Magnetspannung verantwortlich ist. Auf der linken Seite des Bauteils ist
der Anschluss für den Magneten mit dem zugehörigen Potential angeordnet, während auf
der rechten Seite das Potential des Mikrokontrollers anliegt.
Zunächst soll die linke Seite des Trennverstärkers betrachtet werden. An VDD1 wird eine
3.3 V-Versorgungsspannung angeschlossen. Diese Spannung wird mithilfe eines LDOs ge-
neriert. Der LDO ist in diesem Schaltplanauszug unter dem IC6 zu erkennen. Hier wird
die 5 V Eingangsspannung, welche durch den Buck-Converter erzeugt wurde, auf 3.3 V

reduziert. Der Enable-Pin (Pin 3) ist direkt mit der 5 V-Spannung verbunden. Dadurch
ist das Bauteil permanent aktiv, sobald eine Spannung anliegt. Dieser LDO wird be-
nötigt, damit an dem Trennverstärker eine konstante Spannungsversorgung anliegt, um
einen störungsfreien Betrieb der Schaltung zu gewährleisten.
An dem Pin GND1 des Trennverstärkers wird das zur Magnetspannung M1 zugehörige

58

5 Implementierung

GND-Potential angeschlossen.
An die Pins INP und INN werden Plus und Minus der Magnetspannung angelegt. Da
der Trennverstärker maximal eine Spannung von ± 5 V verarbeiten kann, jedoch deutlich
höhere Magnetspannungen auftreten können, ist die Verwendung eines Spannungsteilers
erforderlich. Mithilfe von diesem Spannungsteiler soll die Magnetspannung reduziert wer-
den, damit der Trennverstärker korrekt arbeiten kann. Um den Spannungsteiler genau
auslegen zu können, muss zuerst die rechte Seite vom Trennverstärker betrachtet werden.

Auf rechten Seite werden an den VDD2-Pin die 3.3 V-Versorgungsspannung, welche
vom Mikrokontrollerboard generiert werden, angeschlossen. Der GND2-Pin wird mit dem
GND-Potential des Mikrokontrollers verbunden.
An OUTP und OUTN liegt die Magnetspannung nach der galvanischen Trennung an. Zu
beachten ist hierbei, dass dieses Signal differentiell ist. Diese differentielle Spannung kann
maximale Werte von ±2 V in Bezug auf eine Ausgangs-Gleichtaktspannung (VCMout)
annehmen. Dieser Wert ist dem entsprechendem Datenblatt im digitalen Anhang zu ent-
nehmen.
Um das differentielle Signal in ein single-ended Signal umzuwandeln, wird ein Opera-
tionsverstärker (AR1) verwendet. Dieser Operationsverstärker agiert als Addierer und
besitzt zwei voneinander unabhängige Kanäle. An Pin acht wird die Versorgungsspan-
nung VDD_3V3 angeschlossen. Diese Spannung weist einen Wert von 3.3 V auf. Somit
kann der OP in einem Bereich von 0 V bis maximal 3.3 V arbeiten, wobei im realen Zu-
stand meist nicht die 3.3 V erreicht werden können.
An dem Kanal A des OPs wird das differentielle Signal angeschlossen (Pin zwei und Pin
drei). Da das differentielle Signal Werte von ± 2 V erreichen kann, muss es mit einer
Referenzspannung angehoben werden. Dies ist erforderlich, um sicherzustellen, dass der
gesamte Spannungsbereich vom Operationsverstärker verarbeitet werden kann. Die Re-
ferenzspannung wird mithilfe eines LDOs erzeugt. Der zugehörige Schaltplanauszug ist
in der Abbildung 5.7 zu erkennen.

Abbildung 5.7: Auszug aus dem Schaltplan: Referenzspannung 1.5 V

59

5 Implementierung

Durch den LDO wird aus der 3.3 V-Spannung eine 1.5 V-Spannung erzeugt. Der Grund,
warum gerade eine 1.5 V-Spannung als Referenzspannung verwendet wird, wird zu ei-
nem späteren Zeitpunkt erläutert. Der Enable-Pin (Pin drei) ist bei diesem LDO mit der
Versorgungsspannung VDD_3V3 verbunden. Somit ergibt sich an dem Enable-Pin ein
High-Signal, welches das Bauteil freischaltet.

Bezugnehmend auf die Abbildung 5.6 werden die vom LDO erzeugten 1.5 V an den Ein-
gang B des Operationsverstärkers angeschlossen. Am Pin eins des OPs liegt anschließend
das single-ended Ausgangssignal vor. Dieses Signal wird an einen ADU des Mikrokon-
trollers angeschlossen.

Es folgt nun die Auslegung der Schaltung. An den ADU des Mikrokontrollers darf maxi-
mal eine Spannung von 3.3 V angelegt werden. Hieraus kann auf die Spannungswerte für
das differentielle Signal und der Referenzspannung geschlossen werden. Die Differenz des
differentiellen Signals sollte genau die Hälfte der 3.3 V betragen, um sowohl die positiven
Spannungswerte als auch die negativen Spannungswerte der Magnetspannung gleichmä-
ßig abbilden zu können. Dies bedeutet bei einer maximalen Mikrokontroller Spannung
von 3.3 V, dass das differentielle Signal ± 1.6 V aufweisen sollte. Die Referenzspannung
sollte dementsprechend ebenfalls 1.6 V betragen, um die -1.6 V komplett auf einen posi-
tiven Wert anheben zu können. In der Implementierung ist ein LDO mit einer Ausgangs-
spannung 1.5 V verbaut worden, da die 1.5 V-Ausgangsspannung einen Standardwert
darstellen. Somit werden auf der negativen Spannungsseite 0.1 V abgeschnitten.
Mithilfe von diesen Größen kann nun der Spannungsteiler auf der linken Seite des Trenn-
verstärkers ausgelegt werden. Hierfür wird der positive maximale Wert von 1.6 V für das
differentielle Signal (UOUT) betrachtet. Der Trennverstärker besitzt nah dem Datenblatt
einen Verstärkungsfaktor von 0.4 V

V . Es soll nun in der folgenden Rechnung der maximale
positive Wert bestimmt werden, welcher an den Eingängen des Trennverstärkers anliegen
darf.

UIN =
UOUT

Gain
(5.10)

=
1.6 V

0.4 V
V

= 4 V

60

5 Implementierung

Anschließend gilt es den Spannungsteiler so einzustellen, dass an dem Eingang des Trenn-
verstärkers maximal die berechneten 4 V anliegen. Hierbei wird vorgegeben, dass eine
Magnetspannung von 40 V als maximaler Wert messbar sein sollen. Somit werden die
40 V bei der Bestimmung des Spannungsteilers als UGes angenommen. Es soll ein maxi-
maler Stromfluss von 4 mA auftreten. Zuerst wird die Größe des Gesamtwiderstands des
Spannungsteilers bestimmt.

RGes =
UGes

IGes
(5.11)

=
40 V

4 mA

= 10 kΩ

Mithilfe des Gesamtwiderstands kann die Größe des Widerstandes R3, unterer Wider-
stand des Spannungsteilers, bestimmt werden. Dabei gilt, dass UIN = UR3.

R3 =
UR3

UGes
· RGes (5.12)

=
4 V

40 V
· 10 kΩ

= 1 kΩ

Es folgt die Bestimmung der Größe des Widerstandes R2.

R2 = RGes − R3 (5.13)

= 10 kΩ − 1 kΩ

= 9 kΩ

Die berechneten Werte werden mit den verfügbaren Werten in der vorhandenen Biblio-
thek von Eagle abgeglichen. Dabei muss insbesondere der maximale Leistungsverbrauch

61

5 Implementierung

berücksichtigt werden.

P = U · I (5.14)

P = 40 V · 4 mA

P = 0.16 W

Die einzubauenden Widerstände müssen somit mindestens eine Leistung von 0.16 W ver-
tragen können. Somit wird für R3 ein Widerstand mit 1 kΩ und für R2 ein Widerstand
mit 9.1 kΩ verwendet. Beide Widerstände sind 1206 SMD-Widerstände mit einer Toleranz
von ± 1% und können eine Leistung bis zu 0.25 W vertragen. Durch den leicht veränder-
ten Widerstandswert von R2 ergibt sich eine maximale positive anliegende Spannung von
3.96 V an dem Trennverstärker.

Galvanische Trennung der 12 V-Versorgungsspannung

In diesem Abschnitt erfolgt die Umsetzung der galvanischen Trennung für die Messung
der 12 V-Spannung. Diese Schaltung ist nahezu identisch zu der Schaltung der galvani-
schen Trennung der Magnetspannung. Nur die zu überwachende Eingangsspannung kann
andere Werte annehmen (0 V−12 V). In der Abbildung 5.8 ist der entsprechende Auszug
aus dem Schaltplan zu erkennen.

Abbildung 5.8: Auszug aus dem Schaltplan: Galvanische Trennung 12 V-
Versorgungsspannung

Die durchzuführende Berechnung zur Auslegung des Schaltung ist zu dem vorherigen
Kapitel identisch. Aus diesem Grund werden hier nur die Ergebnisse angegeben. Die

62

5 Implementierung

vollständige Berechnung kann im Anhang unter dem Kapitel A.3 eingesehen werden. Für
den Widerstand R22 wird ein Widerstand mit 8.2 kΩ und für R23 ein Widerstand mit
3.3 kΩ ausgewählt. Auch dies sind beides 1206 SMD-Widerstände mit einer Toleranz von
± 1%. Es ergibt sich eine Eingangsspannung (UR23) an dem Trennverstärker von 3.3V

bei einer angelegten Spannung von 12 V. Am Ausgang des Operationsverstärkers liegt
bei einer Eingangsspannung von 12 V eine Spannung von 3 V an.

Temperatursensor

Es wird der Temperatursensor STLM75DS2F von STMicroelectronics verwendet. Inner-
halb der Abbildung 5.9 ist der zugehörige Ausschnitt aus dem Schaltplan zu erkennen.

Abbildung 5.9: Auszug aus dem Schaltplan: Temperatursensor

Der Sensor wird mit der Versorgungsspannung VDD 3.3 V betrieben. Mithilfe der Ein-
gänge A0, A1 und A2 kann die individuelle Adresse des Sensor eingestellt werden, indem
die einzelnen Eingänge mit VDD oder auf GND verbunden werden. In diesem Fall sind
A0 und A2 auf Low, also auf GND, und A1 auf High gelegt. Nach dem Datenblatt des
Sensors ergibt sich eine Dezimaladresse von 74. In binär ist das eine 1001010, wobei die
letzten drei Bits A2, A1 und A0 darstellen. Die beiden Eingänge SCL und SDA stellen
die Anbindung an den I2C-Bus dar. Hierbei ist zu beachten, dass sowohl SCL als auch
SDA jeweils einen Pull-Up-Widerstand auf VDD benötigen. Dafür werden hier die Wi-
derstände R5 und R6 mit jeweils 10 kΩ verwendet. Des Weiteren bietet dieser Sensor die
Möglichkeit ein Interruptsignal zu konfigurieren und zu verwenden. Der Interrupt wird bei
dem Über- oder Unterschreiten eines festzulegenden Schwellwerts ausgelöst. Das Signal
wird durch den Ausgang OS/INT übertragen. Hier ist ebenfalls durch den Widerstand
R4 ein Pull-Up-Widerstand integriert.

63

5 Implementierung

RS485 Empfänger

Die hier vorzustellende Schaltung ist von der Hot-Swap-Platine übernommen worden.
Jedoch soll die Funktion der Schaltung zur Vollständigkeit erklärt werden.
Mithilfe von dieser Schaltung wird das differentielle Bussignal zu einem UART-Signal
umgewandelt, so dass die zu sendenden Daten über eine größere Entfernung störungsarm
übertragen werden können. In der Abbildung 5.10 ist der zugehörige Schaltplanauszug
zu erkennen.

Abbildung 5.10: Auszug aus dem Schaltplan: RS485 Empfänger

Das Bauteil LTC2864IS ist ein RS485/RS422 Transceiver. Auf der rechten Seite des Bau-
teils wird das differentielle Signal an die Pins Y und Z für das Ausgangssignal, sowie an
A und B für das Eingangssignal angelegt. Auf der linken Seite des Bauteils werden an
den Pins DI und RO die UART Rx- und TX-Pins angeschlossen. Der Pin drei und der
Pin vier sind zur Freigabe des Sendens und Empfanges vorhanden. Mithilfe von dem Pin
drei (Receiver Enable (RE)) wird der Empfänger und durch den Pin vier (Driver Enable
(DE)) der Sendetreiber aktiviert. Sobald an dem DE Pin ein High-Signal anliegt, sendet
der Transceiver über die Leitungen Y und Z Daten. Liegt an dem RE Pin ein Low-Signal
an, empfängt der Transceiver über die Leitungen A und B Daten und gibt diese an die

64

5 Implementierung

RO Leitung weiter. In dieser Schaltung ist sowohl das Senden, als auch das Empfangen
der Daten freigeschaltet.
Der Widerstand R9 stellt den Abschlusswiderstand, welche Reflexionen vermeiden soll,
dar. Die Widerstände R7, R8, R12 und R13 dienen zur Strombegrenzung und Rausch-
unterdrückung. Mithilfe der Kondensatoren C1 und C2 kann in Zukunft noch eine zu-
sätzliche Filterung der Signale vorgenommen werden. In dieser Schaltung sind die Kon-
densatoren zunächst nicht zu bestücken.

Mikrokontroller

In der Abbildung 5.11 ist der Schaltplan des Mikrokontrollers abgebildet. Die genaue
Pinbelegung ist dem Anschlussplan zu entnehmen, welcher in dem Anhang unter dem
Kapitel A.2 einzusehen ist.

Abbildung 5.11: Auszug aus dem Schaltplan: Mikrokontroller

5.1.2 Erstellung des Platinendesigns in Eagle

Nach der Fertigstellung der Schaltpläne erfolgt das Design der Platine. Auf der folgenden
Seite ist in der Abbildung 5.12 das gesamte Design des zweiten Prototyps zu erkennen.

65

5 Implementierung

Abbildung 5.12: Finale Platinendesign in Eagle

66

5 Implementierung

Die Platine weist vier Lagen auf. Der Platinenumriss besitzt eine maximale Breite von
100 nm und eine maximale Länge von 121.20 nm und erfüllt somit die Anforderung an
die Maße der Platine. Die Anforderung an die Tiefe muss zusammen mit der Hot-Swap-
Platine und dem aufgesteckten Mikrokontrollerboard betrachtet werden. Die Umrisse
und Aussparungen in dem Layout der Mikrokontrollerplatine sind durch die Hot-Swap-
Platine und der darauf verbauten Komponenten vorgegeben. Dort wo die Bauteile höher
sind, als die Steckverbindung der Platinen zueinander, müssen auf der Mikrokontroller-
Platine Aussparungen eingeplant werden. Die Positionen der Steckverbinder sind eben-
falls durch die Hot-Swap-Platine vorgegeben.Alle Bauteile wurden auf dem Top-Layer
platziert, um die Handhabung zu erleichtern. Beim Zusammenbau der Platinen befinden
sich die Bauteile jedoch auch auf der Unterseite. Die Bauteile sind möglichst nahe an
den Steckverbindern platziert, wo die entsprechenden Signale für die Schaltung übertra-
gen werden. Aufgrund der vorgegebenen Positionierung der Steckverbinder müssen einige
Leiterbahnen länger gestaltet werden. Um Störungen zu vermeiden sind hier Kondensa-
toren möglichst nah an den Eingangspins der Bauteile zu platzieren.

In den Abbildungen 5.13 ist die fertig bestückte Platine des ersten Prototyps zu er-
kennen.

(a) Vorderseite (b) Rückseite

Abbildung 5.13: Bestückte Mikrokontrollerplatine des ersten Prototyps

67

5 Implementierung

5.2 Software

In diesem Kapitel wird die Umsetzung der Software beschrieben. Hierbei sollen eini-
ge markante Implementierungspunkte erklärt werden. Der gesamte Softwarecode ist im
Anhang unter dem Punkt A.5 einzusehen.

5.2.1 Übersicht über die Programmstruktur

In diesem Kapitel wird eine Übersicht über die komplette Programmstruktur gegeben.
In der Abbildung 5.14 wird die Struktur grafisch dargestellt.

Abbildung 5.14: Übersicht über die Softwarestruktur

68

5 Implementierung

Zuerst wird in diesem Abschnitt die Aufgabe der Main-Funktion vorgestellt. Die Main
ist in der Abbildung in orange dargestellt. Innerhalb der Main werden zunächst alle
Initialisierungen durchgeführt. Anschließend wird der enable-Pin für die Pegelkonverter-
Bauteile auf High gesetzt und die vorhandenen Timer gestartet. Es erfolgt das Erstellen
der CRC-Lookup-Tabelle (grün) und das Abfragen der Seriennummer des Mikrokontrol-
lers (grau).
Innerhalb der while(1)-Schleife werden verschiedene Flags abgefragt. Zunächst folgt die
Abfrage, ob neue ADU-Werte zur Verarbeitung bereit stehen. Bei positiver Abfrage wird
die Funktion calcMagnetvoltage() aufgerufen (lila). Innerhalb dieser Funktion werden die
ADU Werte umgerechnet und der Schwellwertvergleich der Magnetspannungen durchge-
führt.
Ein weiteres Flag dient zum Überprüfen, ob ein neuer UART-Frame erstellt werden kann.
Hier wird bei einem Wert von Eins des Flag die Funktion CreateUartFrame() aufgerufen
(gelb). Innerhalb von dieser Funktion werden die über UART zu versendenden Daten
formatiert und in ein Array gespeichert.
Zuletzt wird das Flag für das Vorhandensein von neuen über UART empfangenen Da-
ten überprüft. Liegen neue Daten zur Verarbeitung vor, wird zunächst ein CRC-Check
durchgeführt. Ist das Ergebnis Null und der Check somit positiv, werden die Daten ent-
sprechend ihrer Funktion verarbeitet. Ist das Ergebnis des Checks hingegen ungleich Null,
wird ein Fehlerbit gesetzt, welches bei der nächsten UART-Übertragung zu versenden ist.

Wie bereits im Konzept und dem Kapitel 4.2.5 beschrieben, wird die Datenabfrage durch
verschiedene Timer durchgeführt. Nach Ablauf des Counters eines Timers, wird ein In-
terrupt ausgelöst, welcher wiederum den Timer-Callback (blau) aufruft. Dieser Callback
wird von allen aktiven General Purpose Timern aufgerufen. Somit muss innerhalb des
Callbacks bei der Verwendung von mehreren Timern zunächst abgefragt werden, von
welchem Timer der Interrupt ausgelöst wurde.
Zum Erfassen der verschiedenen Daten sind drei unterschiedliche Timer vorgesehen. Die-
se Timer sind bereits in dem Kapitel 4.2.5 konzeptioniert worden. Mithilfe des Timers
sechs werden die aktuellen Temperaturdaten in zyklischer Reihenfolge von den drei Sen-
soren abgeholt. Durch den Timer sieben wird eine neue DMA Übertragung gestartet,
um die aktuellen ADU Werte aller sechs Kanäle zu erhalten. Der Timer 16 führt beim
Auftreten des Timer-Callbacks die Funktion ReadGPIOPin (türkis) aus. In dieser Funk-
tion werden mithilfe von Polling alle vorhandenen GPIO-Input-Pins auf ihren aktuellen
Status abfragt.
Zusätzlich zu den drei Timern zur regelmäßigen Datenabfrage werden zwei weitere Timer

69

5 Implementierung

benötigt. Der Timer 3 wird verwendet, um regelmäßig nach dessen Ablauf das Senden
eines neuen Datenframes über UART zu garantieren. So kann eine regelmäßige Über-
mittlung der Daten ermöglicht werden. Der Timer 14 dient als Überwachungstimer und
wird nach jedem Senden der UART Daten zurückgesetzt. Sollte dieser Timer nicht vor
seinem Ablauf zurückgesetzt werden, erfolgt ein Systemreset, da ein annehmbarer Fehler
innerhalb der Software vorliegt.

Sowohl bei Interrupts als auch bei der Nutzung des DMA ist es möglich, Callbacks beim
Abschluss bestimmter Ereignisse auszuführen. Alle Callbacks werden in der Abbildung
in blau dargestellt. Bei I2C wird der I2C Callback nach Beendigung der Datenübermitt-
lung vom Slave zum Master aufgerufen. Innerhalb des Callbacks sind die ausgelesenen
Temperaturdaten der Sensoren in ein geeignetes Datenformat umzuwandeln.
Der ADU-Callback wird aufgerufen, wenn alle Kanäle des ADUs abgefragt und die Wer-
te über den DMA in den vorgesehenen Speicher abgelegt sind. Innerhalb des Callbacks
muss die DMA Übertragung gestoppt werden, da diese ansonsten dauerhaft neue Daten
übermitteln würde, bevor die alten Daten verarbeitet sind. Ebenso müssen die Werte für
die weitere Nutzung in ein weiteres Array um gespeichert werden. Um die Callbackrouti-
ne möglichst kurz zu halten, erfolgt die Verarbeitung der Daten innerhalb der Main. Um
zu signalisieren, dass neue ADU Daten vorhanden sind und ausgewertet werden können,
wird ein Flag auf High gesetzt.
Für die hoch priorisierten digitalen Signale, welche an GPIO-Pins anliegen, sind eben-
falls Interrupts vorgesehen. Bei einer steigenden oder fallenden Flanke wird die GPIO-
Callbackroutine ausgelöst. In dieser Routine wird zunächst der Interrupt auslösende Pin
bestimmt. Anschließend wird bei der nächsten UART Übertragung ein abweichender
Frame versendet, welcher die Änderungen in den digitalen Signalen mitteilt. Bei der
Implementierung des ersten Prototyps der Platine unterlief der Fehler, dass die zu über-
wachenden Signale über GPIO-Interrupts an Pins angeschlossen wurden, die nicht alle
Interrupt-Funktionalität unterstützen. Jeder Interrupt-Kanal kann nur einem Pin zuge-
wiesen werden, sodass beispielsweise PA6 und PB6 nicht gleichzeitig Interrupts auslösen
können, wenn sie denselben Interrupt-Kanal nutzen. Dieser Umstand ist bei der Er-
stellung des ersten Prototyps nicht bedacht worden und wurde im zweiten Prototypen
behoben. Da der zweite Prototyp jedoch zum Zeitpunkt des Abschlusses dieser Arbeit
noch nicht verfügbar war und die Software nur mit dem ersten Prototypen getestet wer-
den konnte, wurden die GPIO-Interrupts eingeplant, aber nicht vollständig optimiert.
Zuletzt sind noch zwei Callbackroutinen für die UART Übertragung vorhanden. Die
Callbackroutine UART_Transmit wird ausgelöst, wenn alle Daten aus dem vorgesehe-

70

5 Implementierung

nen Buffer übertragen wurden. Innerhalb der Routine wird ein Flag gesetzt. Dieses Flag
zeigt an, dass die Übertragung erfolgreich abgeschlossen worden ist und die nächsten Da-
ten für die darauffolgende UART-Übertragung in den Buffer gespeichert werden können.
Der zweite UART Callback dient zum Empfang von Daten über die UART-Verbindung.
Er wird durch den Aufruf der Funktion HAL_UARTEx_ReceiveToIdle_DMA ermög-
licht. Mithilfe von dieser Funktion wird der Callback UART_Idle aufgerufen, sobald in
der UART-Übertragung eine Pause von der Länge eines einzelnen Zeichens auftritt. Dies
ermöglicht die sofortige Verarbeitung der empfangenen Daten. Innerhalb des Callbacks
werden die empfangenen Daten in ein weiteres Array gespeichert, der Inhalt des Emp-
fangsarrays gelöscht und der Empfang für neue UART-Daten erneut gestartet. Es wird
ein Flag gesetzt, dass neue empfangene UART-Daten zur Auswertung bereit stehen. Die
Auswertung erfolgt innerhalb der Main.

5.2.2 Auslesen der Temperaturdaten

Innerhalb von diesem Unterkapitel wird erläutert, wie die Temperatursensoren nachein-
ander abzufragen und die Daten anschließend auszuwerten sind.
Die Datenabfrage der Sensoren über I2C wird in dem Callbacks des Timers sechs gestar-
tet. Innerhalb des I2C-Callbacks werden die empfangenen Temperaturdaten verarbeitet.
In der Abbildung 5.15 ist ein Ausschnitt aus dem Datenblatt des Temperatursensors
erkennbar. Es wird das Format des Temperaturregisters dargestellt, aus dem die Tem-
peraturdaten zur Übermittlung ausgelesen werden. Die Temperaturdaten werden in dem
Register in zwei 8-Bit Blöcke unterteilt. Dabei enthalten die niedrigsten sieben Bits keine
relevante Information und sind bei der Auswertung der Temperaturdaten vernachlässig-
bar.

Abbildung 5.15: Auszug aus dem Datenblatt: Temperatur Register

71

5 Implementierung

In dem Auszug aus dem Softwarecode 5.1 ist die Codezeile für die Verarbeitung der
Temperaturdaten des Sensors 1 dargestellt. Die aus dem Register ausgelesenen Tempe-
raturdaten sind in dem Array temperature_data gespeichert. Es ist zu erkennen, wie
der erste 8 Bit-Block um acht Stellen nach links verschoben wird und anschließend der
zweite 8-Bit Block rechts an den ersten-Block angefügt wird. Es folgt ein Shiften um
sieben Stellen nach rechts, um die sieben unrelevanten Bits zu verwerfen.

1 temp_sensor1 = (temperature_data [0] [0] << 8 | temperature_data [0] [1])
>> 7 ;

Quellcode 5.1: Umrechnung des Temperaturwerts

5.2.3 Umrechnung und Auswertung der ADU Werte

In diesem Abschnitt wird die Auswertung der von dem ADU ausgelesenen Daten erläu-
tert. Hierbei werden die Daten der Magnetspannungen, sowie der drei zu überwachenden
Versorgungsspannungen innerhalb der Funktion calcMagnetvoltage() verarbeitet.

Um eine möglichst hohe Ausführungsgeschwindigkeit bei der Datenverarbeitung zu er-
halten, werden bei der Auswertung der ADU-Werte nur Ganzzahloperationen durchge-
führt. Dies hat zur Folge, dass Nachkommastellen bei der Berechnung wegfallen. Da die
Magnetspannungen möglichst genau ausgewertet und übertragen werden sollen, ist dies
fatal. Aus diesem Grund wird eine Skalierung der Daten mithilfe von Zweierpotenzen vor-
genommen. Jeder Variablen wird eine Bezeichnung angehängt, die den Skalierungsgrad
angibt (P10, P12, P14....). Die Bezeichnung steht dabei für die entsprechenden Zweipo-
tenzen, mit denen die Variable skaliert wird. Beispielsweise steht P10 für eine Skalierung
mit 210.
Um ein Beispiel zu geben, wird eine empfangene Magnetspannung von 12.45 V ange-
nommen. Diese Spannung soll nun beispielsweise mit einem Faktor von 3.2 multipliziert
werden. Dies würde eine Spannung von 39.84 V ergeben. Da in dem Programm nur mit
Ganzzahlen gerechnet wird, würde die Multiplikation von 12 V mit 3 einen Wert von 36 V

ergeben. Dies wäre eine Abweichung von 3.84 V vom korrekten Ergebnis. Zum Vergleich
wird nun die Berechnung mit einer P10 Skalierung durchgeführt. Hierfür werden die Wer-
te zunächst in eine P10 Skalierung umgewandelt, anschließend wird die Berechnung mit

72

5 Implementierung

Ganzzahlen durchgeführt und das Ergebnis wieder in eine P1 Skalierung zurückgeführt.

Magnetspannung_P10 = 12.45 V · 210 = 12748.8 V

Faktor_P10 = 3.2 · 210 = 3276.8

Ergebnis_P10 =
Magnetspannung_P10 · Faktor_P10

210

=
12748 V · 3276

210
= 40783.64 V

Ergebnis_P1 =
Ergebnis_P10

210

=
40783 V

210
= 39.82 V

Es ist zu erkennen, dass der mit der P10 Skalierung berechnete Wert nur 0.02 V von dem
korrekten Wert abweicht. Somit kann gezeigt werden, dass durch die Anwendung der Ska-
lierung eine viel höhere Genauigkeit in der Berechnung erreicht wird. Ein weiterer Vorteil
stellt das Teilen durch die Zweierpotenzen innerhalb der Softwareimplementierung dar.
Diese kann durch einfache Shift-Operationen durchgeführt werden.

Innerhalb des Quellcodeausschnitts 5.2 ist ein Teil der Funktion calcMagnetvoltage()
dargestellt. Da der ADU eine Auflösung von 12 Bit besitzt, weisen alle ausgelesenen
ADU-Werte bereits eine P12 Skalierung auf. Um die jeweiligen Skalierungsfaktoren zu
den Spannungen hinzuzurechnen, sind die Faktoren innerhalb von Variablen mit einer
P12 Skalierung vorberechnet.

1 i n t Faktor34_P12 = 13926 ; // 3 .4 ∗ 2^12
2 i n t RefSpannung15_P12 = 6144 ; // 1 .5 ∗ 2^12
3 i n t SkalierungMagnet_P10 = 25600 ; // (10/0 . 4) ∗2^10
4 i n t SkalierungPWM_P12 = 1987 ; // (5/3 . 3) ∗ 1/10 ∗3 .4 ∗ 2^12
5 i n t SkalierungVCC_P12 = 22282; // 16/10 ∗ 3 .4 ∗ 2^12
6 i n t Skalierung12V_P12 = 55705 ; // 4∗ 3 .4 ∗ 2^12
7 i n t Skalierung12VPS_P10 = 8960 ; // (3 . 5 / 0 . 4) ∗2^10
8

9 ADC_M1_P12 = ((ADC_M1 ∗ Faktor34_P12) >> 12) − RefSpannung15_P12 ;
10 ADC_M1_P10 = ((ADC_M1_P12 >> 2) ∗ SkalierungMagnet_P10) >> 10 ;
11 ADC_M2_P12 = ((ADC_M2 ∗ Faktor34_P12) >> 12) − RefSpannung15_P12 ;
12 ADC_M2_P10 = ((ADC_M2_P12 >> 2) ∗ SkalierungMagnet_P10) >> 10 ;

Quellcode 5.2: Skalierung der Magnetspannungen

73

5 Implementierung

Die Formeln zur Berechnung der einzelnen Spannungen werden aus der Implementierung
der Schaltungen bestimmt. Hierbei sind die verschiedenen Verstärkungsfaktoren und Re-
ferenzspannungen zu berücksichtigen. Die Mittelwertbildung der Magnetspannungen für
den Vergleich mit dem Schwellwert wird durch eine exponentielle Glättung durchgeführt.
Hierbei wird der aktuelle gemessene Spannungswert zu dem vorherigen Wert hinzu ad-
diert. Beide Werte sind mit einem Faktor Alpha versehen. Mithilfe dieses Faktors kann
die Einflussstärke des neuen Werts zum neuen Mittelwert definiert werden. In der Imple-
mentierung ist der Faktor Alpha mit 0.5 gewichtet. Der betreffende Codeausschnitt ist
im Quellcodeausschnitt 5.3 zu erkennen.

1 ADC_M2_MW_P10 = (ADC_M2_P10 >> 1) + (ADC_M2_MW_P10 >> 1) ;

Quellcode 5.3: Ermittlung des gleitenden Mittelwertes

Die Bestimmung der Schwellwerte erfolgt durch Addition bzw. Subtraktion des aus dem
PWM-Signal bestimmten Schwellwerts von dem aktuellen Mittelwert. Wenn einer der
Vergleiche des aktuellen Wertes mit den berechneten Schwellwerten positiv ausfällt, wird
mit der nächsten UART-Übertragung eine Fehlermeldung übermittelt. Diese Meldung
beinhaltet den Header 0x02 und die Werte der zwei Magnetspannungen. Im übergeord-
neten System sind die übertragenen Spannungen auf Auffälligkeiten zu überprüfen.

5.2.4 Erstellung des UART Frames

In diesem Kapitel wird der geschriebene Softwarecode zur Erstellung des UART Frames
genauer beschrieben.
Um eine reibungslose Übertragung der UART-Daten zu ermöglichen, werden zwei ver-
schiedene Datenbuffer erstellt. Solange die Daten des einen Datenbuffers versendet wer-
den, wird der zweite Datenbuffer mit neuen Daten gefüllt. Mithilfe von dieser Technik
soll der Abstand zwischen zwei UART-Übertragung möglichst kurz gehalten werden.
Umgesetzt wird die Erstellung des UART-Frames innerhalb der Funktion CreateUART-
Frame().
Zunächst werden die P10 skalierten Magnetspannungen auf eine P9 Skalierung umge-
rechnet. Dies ist notwendig, da für die Übertragung der Magnetspannungen zwei 8-Bit
Datenpakete vorgesehen sind. Innerhalb der Implementierung wurde festgestellt, dass
die Magnetspannungen in P10 Skalierung den darstellbaren Zahlenbereich von 16-Bit
übersteigen. Eine Magnetspannung von 30 V würde eine P10 Darstellung von 35840 V

benötigen. Der darstellbare Zahlenbereich einer signed 16-Bit int-Zahl kann nur positive

74

5 Implementierung

Zahlen bis 215 − 1 darstellen. Dies ergibt eine maximale positive Zahl von 32767. Somit
liegen die 35840 außerhalb des darstellbaren Bereichs. In der P9 Skalierung können alle
erwartbaren Magnetspannungen dargestellt werden.
Anschließend erfolgt das Zusammensetzen des Frames. Innerhalb des Quellcodeausschnitts
5.4 wird die Zuweisung der Daten zu den ersten sechs Datenpaketen dargestellt. Bei dem
Aufteilen der Magnetspannungen in zwei 8-Bit-Blöcke wird das MSB dem ersten Block
zugeordnet.

1 // Header f u e r normale UART Datenuebertragung
2 dataBufferUARTTx1 [0] = 0x01 ;
3 // Einfuegen der Magnetspannungen
4 // MSB zue r s t
5 dataBufferUARTTx1 [1] = (uint8_t) ((ADC_M1_P9 >> 8) & 0xFF) ;
6 dataBufferUARTTx1 [2] = (uint8_t) (ADC_M1_P9 & 0xFF) ;
7 dataBufferUARTTx1 [3] = (uint8_t) ((ADC_M2_P9 >> 8) & 0xFF) ;
8 dataBufferUARTTx1 [4] = (uint8_t) (ADC_M2_P9 & 0xFF) ;
9 // Fehlermeldungen

10 dataBufferUARTTx1 [5] = 0x00 ;

Quellcode 5.4: Erstellung des UART-Frames

Die Auswahl der weiteren zu übertragenden Daten wird durch einen Identifier vorgenom-
men. Die Auswahl erfolgt mithilfe einer switch-case Anweisung. Die Zuweisung des Iden-
tifiers zu den Daten kann in dem Konzept unter dem Kapitel 4.2.4 nachgelesen werden. In
dem Quellcodeausschnitt 5.5 wird der Code beispielhaft für den Identifier 2 dargestellt.
Bei dem Identifier 2 werden die Temperaturdaten einer der Sensoren übertragen. Das
MSB der Daten wird in dem ersten 8-Bit-Paket übermittelt.

1 //Temperatur Sensor 3
2 case 2 :
3 dataBufferUARTTx1 [6] = i d e n t i f i e r [i] ;
4 dataBufferUARTTx1 [7] = (uint8_t) ((temp_sensor3 >> 8) & 0xFF) ;
5 dataBufferUARTTx1 [8] = (uint8_t) (temp_sensor3 & 0xFF) ;
6 i++;
7 break ;

Quellcode 5.5: Erstellung des UART-Frames: Auswahl der variablen Daten

Nach der Erstellung des Frames wird der CRC Check durchgeführt. Die Checksumme
wird anschließend an die Stellen 9 und 10 des Datenbuffers eingefügt. Der CRC-Check
wird im folgenden Kapitel erläutert.

75

5 Implementierung

5.2.5 Implementierung des CRC-Checks

Im folgenden wird die Implementierung des CRC-Checks genauer betrachtet.
Es wird der CRC-16-CCITT-Check zur Überwachung der UART-Daten implementiert.
Dieser Check verwendet das Generatorpolynom x16 + x12 + x5 + 1, was hexadezimal
0x1021 entspricht. Als Initialwert wird 0xFFFF verwendet. Es wird keine Reflexion vor-
genommen. Die Bitreihenfolge wird somit nicht verändert.
Der CRC-Check wird in zwei Funktionen aufgeteilt. Um eine höhere Geschwindigkeit bei
der Bestimmung des CRCs zu erreichen, wird zu Beginn des Programm eine Lookup-
Tabelle erstellt. Innerhalb dieser Tabelle werden die CRC- Werte für alle 256 möglichen
Eingangsbytes gespeichert. Dies spart bei der Verwendung Zeit, da nur ein Speicherzugriff
und eine XOR-Operation bei der Berechnung auszuführen sind. Der verwendete Code für
die Erstellung der Lookup-Tabelle ist in dem Quellcodeausschnitt5.8 zu erkennen. Der
Code basiert auf der Logik der Quelle [1].

1 void generateCRC16Table (void) {
2 f o r (i n t i = 0 ; i < 256 ; i++) {
3 uint16_t crc = i << 8 ;
4 f o r (i n t j = 0 ; j < 8 ; j++) {
5 i f (c r c & 0x8000) {
6 c r c = (c rc << 1) ^ CRC_POLYNOM;
7 } e l s e {
8 c r c <<= 1 ;
9 }

10 }
11 CRC16_Table [i] = crc ;
12 }
13 }

Quellcode 5.6: Funktion zur Erzeugung der CRC-Tabelle

In der äußersten for-Schleife (Zeile 2) wird über alle möglichen 8-Bit Eingangsbytes ite-
riert (0 bis 255). Jedes Eingangsbyte wird in die oberen 8 Bits der 16-Bit CRC-Variablen
geschoben. Die unteren 8 Bits der CRC-Variablen werden dabei mit Nullen aufgefüllt. In
der inneren for- Schleife (Zeile 4) wird die Polynomdivision durchgeführt, indem die Bits
des aktuellen Eingangsbytes nacheinander verarbeitet werden. In jeder Iteration wird
geprüft, ob das MSB von CRC auf 1 gesetzt ist (Zeile 5). Wenn das MSB 1 ist, wird
die CRC-Variable nach links geschoben und mit dem CRC-Generatorpolynom 0x1021
(CRC_POLYNOM) XOR-verknüpft. Ist das MSB 0, wird nur ein Linksshift ausgeführt.

76

5 Implementierung

Nach 8 Iterationen der inneren Schleife ist das aktuelle Eingangsbyte vollständig verar-
beitet worden und die CRC-Variable enthält den berechneten CRC-Wert für dieses Byte.
Dieser Wert wird in der Lookup-Tabelle (CRC16_Table) gespeichert. Der gesamte Vor-
gang wird in der äußeren Schleife für das nächste Eingangsbyte wiederholt.
In einer zweiten Funktion wird der tatsächliche CRC-Check für die entsprechenden Ein-
gangsdaten durchgeführt. Die Funktion ist innerhalb des Quellcodeausschnitts 5.7 dar-
gestellt.

1 uint16_t calculateCRC16 (uint8_t ∗data , uint16_t length) {
2

3 uint16_t crc = 0xFFFF; // I n i t i a l w e r t
4

5 f o r (uint16_t i = 0 ; i < length ; i++) {
6 uint8_t byte = data [i] ;
7 c r c = (c rc << 8) ^ CRC16_Table [(c r c >> 8) ^ byte] ;
8 }
9

10 re turn c rc ;
11 }

Quellcode 5.7: Funktion zur Durchführung des CRC-Checks

Die Funktion erhält als Übergabewerte die zu verarbeitenden Daten und die Anzahl der
8-Bit-Pakete. In der Zeile 3 wird zunächst der Startwert initiiert. Anschließend wird eine
for-Schleife über die angegebene Anzahl an Datenpaketen ausgeführt. Hierbei wird das
aktuelle Datenpaket in die lokale Variable byte gespeichert. Anschließend wird der CRC-
Wert aktualisiert, indem die oberen 8 Bits des aktuellen CRC-Werts mit dem aktuellen
Datenpaket XOR-verknüpft werden. Dieser Wert dient als Index, um den entsprechenden
Eintrag in der Lookup-Tabelle abzurufen. Der CRC-Wert wird um 8 Bits nach links
verschoben und mit dem Tabellenwert XOR gerechnet, um das Ergebnis zu aktualisieren.
Am Ende der Schleife enthält die Variable crc die berechnete Prüfsumme, die von der
Funktion zurückgegeben wird.

77

5 Implementierung

5.2.6 Senden der UART Daten

Das Senden der UART-Daten wird innerhalb des Callbacks des Timers 3 gestartet. Hier-
bei wird mithilfe einer if-Abfrage unterschieden, welche UART-Daten versendet werden
sollen. Innerhalb des Quellcodeausschnitts 5.8 ist der entsprechende Ausschnitt aus dem
Timer-Callback zu erkennen.

1 i f (htim−>Instance == TIM3) {
2 i f (UARTTxBufferSelection == 0x02 && sendSer ia lnumber != 1
3 && MagnetProblem != 1) {
4 HAL_UART_Transmit_DMA(&huart1 , (uint8_t ∗) dataBufferUARTTx1 , 11) ;
5 }
6 e l s e i f (UARTTxBufferSelection == 0x01 && sendSer ia lnumber != 1
7 && MagnetProblem != 1) {
8 HAL_UART_Transmit_DMA(&huart1 , (uint8_t ∗) dataBufferUARTTx2 , 11) ;
9 }

10 e l s e i f (sendSer ia lnumber == 1 && MagnetProblem != 1) {
11 HAL_UART_Transmit_DMA(&huart1 , (uint8_t ∗) serialNumberUART , 13) ;
12 }
13 e l s e i f (MagnetProblem == 1) {
14 HAL_UART_Transmit_DMA(&huart1 , (uint8_t ∗) MagnetUART, 5) ;
15 }
16 }

Quellcode 5.8: Auswahl der zu sendenden UART-Frames

Innerhalb der Zeile 2 und der Zeile 6 erfolgt die Abfrage für das Senden der Messdaten
an die Hot-Swap-Platine. In der Zeile 2 wird dabei der Datenbuffer 1 und in Zeile 6 der
Datenbuffer 2 gesendet. Der Nutzen der beiden Buffer wurde bereits beschrieben. Ge-
sendet werden dürfen die Daten nur, wenn kein Fehler innerhalb der Magnetspannungen
gefunden wurde und die Seriennummer nicht übermittelt werden soll. Zur Abfrage dienen
die Flags sendSerialnumber und MagnetProblem. Das Senden der Seriennummer wird in
der Abfrage in Zeile 10 ermöglicht, jedoch nur, wenn die Magnetspannungen den Schwell-
wert nicht über- oder unterschritten haben. In diesem Fall wird eine Fehlermeldung an
die Hot-Swap-Platine gesendet (Zeile 13), welche die höchste Sendepriorität aufweist.

78

6 Verifikation der Implementierung

In diesem Kapitel werden einige grundlegende Tests durchgeführt, um die korrekte und
funktionsfähige Implementierung der Hardware und der Software zu verifizieren.

6.1 Hardware

Zuerst werden in diesem Kapitel einige Test durchgeführt, um die Funktion der imple-
mentierten Hardwareschaltungen zu bestätigen. Hierbei wird zunächst die Schaltung zur
galvanischen Trennung, die Schaltung zur UART-Übertragung und anschließend die I2C

Übertragung zur Datenabfrage der Temperatursensoren getestet. Des Weiteren sind alle
vorhanden Spannungen auf der Platine mithilfe eines Multimeters zu verifizieren. Al-
le Oszilloskop Bilder sind mithilfe des Tablet Oszilloskops TO2004 von Micsig erstellt
worden.

6.1.1 Ermittlung des Leistungsverbrauchs der Platine

Eine zu erfüllende Anforderung ist es, dass die Platine einen Verbrauch von maximal
1 W aufweist. Um den Leistungsverbrauch zu ermitteln wird an die Platine des ersten
Prototypen eine 12 V Versorgungsspannung angelegt und der Stromverbrauch mithilfe
eines Multimeters gemessen. Es kann ein Stromverbrauch von 0.09 A festgestellt werden.
Im folgenden wird der resultierende Leistungsverbrauch bestimmt.

P = U · I (6.1)

= 12 V · 0.09 A

= 1.08 W

79

6 Verifikation der Implementierung

Es wird ein Leistungsverbrauch von 1.08 W bestimmt. Somit liegt der bestimmte Wert
80 mW über der angegebenen Grenze. Um die geforderte Anforderung zu erfüllen, muss
der Energieverbrauch des zweiten Prototyps optimiert werden.

6.1.2 Schaltungen zur galvanischer Trennung

In diesem Unterkapitel wird die entwickelte Schaltung zur galvanisch getrennten Messung
von Spannungen verifiziert. Hierfür wird die Schaltung zur Messung der Magnetspannung
M1 auf korrekte Funktion getestet. Da die drei auf der Platine vorhandenen Schaltungen
zur galvanischen Trennung nahezu identisch sind, wird in diesem Kapitel nur eine Schal-
tung genauer betrachtet.
Zunächst wird an die Eingänge M1+ und M1- eine Spannung angelegt und mithilfe eines
Multimeters die Ausgangsspannung am Optokoppler gemessen. Dabei wird der Eingang
M1- auf GND gelegt. Der am Ausgang gemessene Wert wird anschließend mit dem erwar-
teten, berechneten Wert verglichen. Bei einer Eingangsspannung von 5 V an M1+ wird
eine Ausgangsspannung ADC_M1 von 1.7 V gemessen. Im folgenden wird der zu erwar-
tende Wert bestimmt. Hierbei wird die an M1+ angelegte Eingangsspannung durch 10
geteilt, was auf den eingebauten Spannungsteiler zurückzuführen ist. Anschließend wird
der Verstärkungsfaktor des Trennverstärkers von 0.4 berücksichtigt. Abschließend werden
die 1.5 V der Referenzspannung hinzuaddiert.

VErwartung =
VM1+

10
· 0.4 + 1.5 V (6.2)

= 1.7 V

Bei einer angelegten Eingangsspannung von 5 V an M1+ wird ein berechnete Spannung
von 1.7 V an dem Optokopplerausgang für ADC_M1 erwartet. Der gemessene und der
erwartete Wert stimmen somit überein. Dieser Vorgang wird für weitere Eingangsspan-
nungen an M1+ wiederholt. Hierbei kann keine signifikante Abweichung des gemessenen
und des zu erwartenden Werts zueinander festgestellt werden.

80

6 Verifikation der Implementierung

In einem weiteren Test werden das an die Schaltung angelegte Eingangssignal und das
Ausgangssignal gegenüber gestellt. Hierfür wird mithilfe eines Oszilloskops der Span-
nungsverlauf beider Signale grafisch dargestellt. Das Oszilloskopbild ist in der Abbildung
6.1 dargestellt. In gelb wird das Eingangssignal des Trennverstärkers angezeigt. Dabei ist
zu beachten, dass dieses Signal nach dem Spannungsteiler und somit nach der Reduzie-
rung um den Faktor 10 angezeigt wird. Die Werte der tatsächlich angelegten Eingangs-
spannung sind somit um einen Faktor von 10 höher. Es wird ein Sinussignal mithilfe eines
Funktionsgenerators erzeugt und auf die Schaltung gegeben. In türkis ist das Ausgangssi-
gnal des Optokopplers zu erkennen. Dieses Signal wird an den ADU des Mikrokontrollers
weitergegeben. In der unteren Zeile des Bildes sind einige gemessene Werte dargestellt.

Abbildung 6.1: Oszilloskopbild zur Verifikation der Übertragung der Magnetspannung

Das gelbe Eingangssignal weist eine Sinusspannung mit den maximalen Werten von ±2 V

auf. Diese Werte sind zum einen dem Spannungsverlauf des Signals zu entnehmen, zum
anderen wird der minimale und der maximale Wert der Spannung als Messwert in der
unteren Zeile des Bildes in gelb dargestellt. Dies bedeutet, dass mit der zusätzlichen Ver-
stärkung von 10 eine Eingangsspannung von ±20 V an die Schaltung angelegt ist.
Bei der Betrachtung des türkisen Ausgangssignals kann ein Offset beziehungsweise eine

81

6 Verifikation der Implementierung

Verschiebung des Signals in den positiven Bereich festgestellt werden. Der ausgegebene
Mittelwert (mean) für dieses Signal weist einen Wert von 1.523 V auf. Diese Verschiebung
wird durch die 1.5 V Referenzspannung hervorgerufen. Mithilfe von der Referenzspannung
werden die negativen Werte der Eingangsspannung auf einen positiven Wertebereich an-
gehoben, sodass sowohl negativ als auch positive Eingangsspannungen von dem Mikro-
kontroller erfasst werden können.
Der in türkis erfasste maximale und minimale Spannungswert der Ausgangsspannung
muss mit dem zu erwartenden Wert bei einer Eingangsspannung von −20 V beziehungs-
weise +20 V übereinstimmen. Zur Berechnung der zu erwartenden Werte wird die Formel
6.2 erneut verwendet. Es resultiert ein berechneter Wert von 2.3 V bei einer Eingangs-
spannung von +20 V und ein Wert von 0.7 V bei einer Eingangsspannung von −20 V.
Diese Werte werden mit dem vom Oszilloskop angegebenen minimalen und maximalen
Wert der Ausgangsspannung verglichen. Beide berechneten Werte stimmen mit der An-
gabe des Oszilloskops überein. Somit kann die korrekte Funktion für positive als auch
negative Eingangsspannungen nachgewiesen werden.
Des Weiteren kann der Verstärkungsfaktor des Trennverstärkers innerhalb des Oszillo-
skopbilds nachgewiesen werden. Der Faktor ist in dem Datenblatt mit 0.4 angegeben. Um
den Faktor zu bestimmen wird zunächst von dem bestimmten maximalen und minima-
len Werten der Ausgangsspannung die 1.5 V Referenzspannung abgezogen. Anschließend
wird die Ausgangsspannung durch die Eingangsspannung geteilt, um das Verhältnis zu-
einander zu bestimmen.

βmax =
(UAusgang,max − URef)

UEingang,max
(6.3)

=
(2.357 V − 1.523 V)

1.976 V

= 0.42

βmin =
(UAusgang,min − URef)

UEingang,min
(6.4)

=
(715.4 mV − 1.523 V)

−2.031 V

= 0.398

Der Verstärkungsfaktor entspricht hier für den maximalen Wert 0.42 und für den mi-
nimalen Wert 0.398. Dies entspricht einer Abweichung von 5% beim maximalen Wert
und von 0.5% beim minimalen Wert von der Angabe des Herstellers im Datenblatt. Bei
einem vom Hersteller angegebenen typischen Fehler des Verstärkungsfaktors von ±0.05%

muss in Zukunft geklärt werden, ob diese gemessene Abweichung durch Messfehler oder
durch den vorgenommenen Schaltungsaufbau hervorgerufen wird.

82

6 Verifikation der Implementierung

6.1.3 RS485 Transceiver-Schaltung

Mithilfe dieses Tests ist die Schaltung des RS485 Transceivers auf Korrektheit zu überprü-
fen. Hierfür wird zunächst ein Softwarecode geschrieben, welcher über den Mikrokontrol-
ler eine Nachricht über die UART Anbindung versendet. Innerhalb des Hardwareaufbaus
wird ein oop erstellt, indem an dem Stecker J7 eine Brücke zwischen den Signalen BUS_-
OUT_1+ und BUS_IN_1+ sowie BUS_OUT_1- und BUS_IN_1- gesetzt wird. Durch
das Setzen dieser Brücke wird das durch den Transceiver übertragene Ausgangssignal wie-
der als Eingangssignal an den Transceiver übermittelt. Anschließend wird dieses Signal
erneut von dem Mikrokontroller empfangen. Bei einer korrekten Funktion wird erwartet,
dass das durch den Mikrokontroller gesendete Signal dem wiederum empfangenen Signal
entspricht. Es wird ein Oszilloskop an das UART Ausgangssignal des Mikrokontrollers
(TX) und an das UART Eingangssignal des Mikrokontrollers (RX) angeschlossen. Es
wird erwartet, dass beide Signale identisch sind. In der Abbildung 6.2 ist das Ergeb-
nis der Messung dargestellt. In pink ist das UART-Eingangssignal (UART_TX) und
in türkis das UART Ausgangssignal (UART_RX) zu erkennen. In orange werden die
übertragenden UART Daten in hexadezimaler Schreibweise angezeigt.

Abbildung 6.2: Oszilloskopbild zur Verifikation der Funktion der RS485 Transceiver
Schaltung

83

6 Verifikation der Implementierung

Deutlich zu erkennen ist, dass das türkise UART Ausgangssignal von dem pinken UART
Eingangssignal nahezu überdeckt wird. Dabei werden beide Signale mit den gleichen Ein-
stellungen auf dem Oszilloskop dargestellt. Dies bedeutet, dass die beiden Signale einen
identischen Signalverlauf aufweisen. Hieraus kann wiederum geschlussfolgert werden, dass
die vom Mikrokontroller gesendeten Daten identisch wieder zurückgeführt werden.
In diesem Testprogramm wird zur Überprüfung der Verbindung die Nachricht Hello
World über UART gesendet. In orange werden die über UART an dem Eingangssignal
empfangenen Zeichen hexadezimal dargestellt. Wird der hexadezimale Code in ASCII
umgewandelt, steht dort beginnend mit der 6F o World. Dies ist Teil der zum Testen
versendeten Nachricht.
Mithilfe von diesem Test kann nachgewiesen werden, dass Daten über die Transceiver
Schaltung korrekt versendet und empfangen werden können.

6.1.4 Auslesen der Temperaturdaten mithilfe von I2C

Durch diesen Funktionstest wird sowohl die Funktion der Hardware als auch indirekt die
Funktion der Software überprüft. Mithilfe eines geschriebenen Softwarecodes soll die Da-
tenübermittlung der Temperaturdaten durch I2C überprüft werden. Hierbei werden die
Daten von den drei implementierten Temperatursensoren von der Software über I2C ab-
gefragt. Die Sensoren weisen dabei die hexadezimalen Adressen 0x48, 0x49 und 0x4A auf.
Es wird erwartet, dass die Daten von allen Sensoren an den Mikrokontroller übermittelt
werden. Dabei sind die Daten in zwei 8-Bit Datenpakete aufgeteilt.

84

6 Verifikation der Implementierung

In der Abbildung 6.3 ist das Oszilloskopbild der I2C Übertragung zu erkennen. In türkis
wird SCL, in pink SDA und in orange die I2C Kommunikation angezeigt.

Abbildung 6.3: Oszilloskopbild zur korrekten I2C-Übertragung

Zu erkennen ist, dass alle drei auf den Platinen implementierten Sensoren abgefragt
werden. Die Adressen der angesprochenen Sensoren sind in der I2C Übertragung grün
ausgeschrieben. Anschließend werden die Temperaturdaten übermittelt. Bei diesem Test
liefern alle drei Sensoren die gleiche Temperatur, welche durch die hexadezimalen Zahlen
0x19 und 0x80 übertragen wird. Dies entspricht nach der Umrechnung in einen dezimalen
Wert einer Temperatur von 25.5 ◦C.
Mithilfe von diesem Test kann bewiesen werden, dass alle drei verbauten Temperatursen-
soren korrekt auf der Hardware implementiert wurden und durch die Software abgefragt
werden können.

6.2 Software

Innerhalb von diesem Kapitel werden einige grundlegende Funktionen der Software über-
prüft. Hierzu zähen das korrekte Umwandeln der ADU-Werte auf die ursprünglichen

85

6 Verifikation der Implementierung

Spannungswerte, die Übertragung der Daten mittels UART und die korrekte Ausfüh-
rung des CRC-Checks.

6.2.1 Umrechnung der ADU Werte

In diesem Unterkapitel soll die Umrechnung der ADU-Werte in die entsprechenden Span-
nungswerte verifiziert werden. Hierfür ist in der Abbildung 6.4 ein Auszug aus den Debug-
Ausgaben des Entwicklungsprogramms zu erkennen.

Abbildung 6.4: Debugauszug zur Überprüfung der ADU-Werte

Dargestellt sind die beiden Magnetspannungen, die 12 V Spannung der Spannungsver-
sorgungen, die 12 V Versorgungsspannung der Mikrokontrollerplatine und die 5 V VCC-
Spannung. Die Spannung des PWM-Signals konnte bis zum Zeitpunkt der Abgabe nicht
getestet werden, da die dafür benötigte Schaltung auf dem zweiten Prototypen vorgese-
hen ist.
An der Magnetspannung M1 liegt zum Zeitpunkt des Tests eine Eingangsspannung von
0 mV an. Für die Magnetspannung M1 wird der Wert 1811 vom ADU ausgelesen. Nach
der Umrechnung ergibt sich ein Spannungswert in der P9 Skalierung von −125 V. Um-
rechnet bedeutet dieser Wert in der P1 Skalierung eine Spannung von −0.24 V. An der
Magnetspannung M2 ist eine Eingangsspannung von 10 V angeschlossen. Es wird ein Di-
gitwert von 2292 vom ADU ausgelesen. Dies bedeutet in der P9-Skalierung einen Wert
von 5225 V. Umgerechnet ist dies eine Spannung von 10.2 V in der P1-Skalierung. Bei
beiden Magnetspannung kann somit eine Abweichung von 0.2 V festgestellt werden.

86

6 Verifikation der Implementierung

An das 12 V PS-Signal wird eine Spannung von 5 V angelegt. Es ergibt sich ein P10-Wert
von 5241 V. Dies entspricht einem Wert von 5.11 V. Die 12 V Versorgungsspannung der
Platine besitzt einen Wert von 12199 in der P10 Skalierung. Dies sind 11.91 V in der P1
Skalierung. Zuletzt wird die 5 V VCC-Spannung betrachtet. Hier wird ein P10 Wert von
4980 V bestimmt. In P1 entspricht dies 4.86 V. Somit liegt dieser Wert geringfügig unter
den erwarteten 5 V.
Mithilfe von diesem Test kann festgestellt werden, dass keiner der Spannungswerte genau
dem erwarteten Wert entspricht. Dies ist unter anderem mit starken Störungen auf der
ADU-Leitung zu begründen. Diese Störungen sind unter anderem auf die Signalführung
über lange Wege auf der Platine und auf schlecht gesetzte oder fehlende Kondensatoren
zurückzuführen. Durch das nachträgliche Einlöten von Kondensatoren an verschiedenen
Punkten kann eine Verbesserung der Werte festgestellt werden. Diese Verbesserungen
sind auf dem zweiten Prototypen eingearbeitet worden.

6.2.2 Erstellung des UART-Frames

Innerhalb von diesem Kapitel wird die Zusammensetzung des UART-Frames und die
Funktion des CRC-Checks überprüft. Hierfür ist in der Abbildung 6.5 der Debug-Auszug
eines zu sendenden UART-Frames zu erkennen.

Abbildung 6.5: Debugauszug zur Erstellung des UART-Frames

An der Position 0 wird der Header des zu sendenden UART-Datenpakets mit einer dezi-
malen 1 dargestellt. Dies entspricht in hexadezimal die 0x01. Alle Datenübertragungen
der Messdaten weisen diesen Header auf.

87

6 Verifikation der Implementierung

Anschließend werden in den Positionen 1 bis 4 die Magnetspannungen gesendet. Da-
bei wird das MSB der Spannung zuerst übertragen. Die Magnetspannung M1 weist
somit die dezimalen Zahlen 255 und 193 auf. Dies entspricht in hexadezimal der Zahl
0xFFC1 und in dezimal der Zahl 65473. Binär weist diese Zahl die folgende Abfolge auf:
1111111111000001. Da das MSB dieser Zahl eine 1 aufweist und die Magnetspannung
negative Werte annehmen kann, muss die Zahl 216 = 65536 von der 65473 subtrahiert
werden. Dies ergibt einen dezimalen Wert von -63. Umgerechnet in die P1-Skalierung
ergibt sich dementsprechend eine Spannung von −0.12 V. Der gleiche Vorgang wird für
die Magnetspannung M2 durchgeführt. Hierbei sind die dezimalen Zahlen 30 und 107
zu übertragen. Dies entspricht der hexadezimalen Zahl 0x1E6B, was in dezimal der Zahl
7787 entspricht. Binär ergibt sich folgende Zahl: 0001111001101011. Das MSB (Vorzei-
chenbit) weist eine 0 auf, weshalb keine Zahl abgezogen werden muss. Es ergibt sich
somit ein Wert in der P1-Skalierung von 15.21 V. An der Magnetspannung M1 liegen
zum Zeitpunkt des Tests 0 V und an der Magnetspannung M2 15 V an. Somit sind die
Magnetspannungen korrekt in das UART-Frame eingefügt worden.
An der Position 5 erfolgt die Übertragung einer Null. Hier können in Zukunft Fehlermel-
dungen übertragen werden, welche bisher nicht genauer definiert wurden.
Es folgt die Übermittlung des Identifiers an Position 6. Hier wird der Identifier 1 übermit-
telt. Dies bedeutet, dass die nachfolgenden zwei Positionen Temperaturdaten enthalten.
Es werden die dezimalen 0 und 44 als Temperaturdaten übertragen. Die Temperatur-
daten weisen bei der Umrechnung neun signifikante Bit auf. Bei der Übertragung durch
16-Bit sind somit die obersten sieben Bit nicht relevant und können bei der Berechnung
des Temperaturwertes weggelassen werden. An Bit neun ist das MSB des Temperatur-
werts vorhanden. Es sind somit die dezimalen Zahlen 0 und 44 zu übertragen. Dies ergibt
den dezimalen Gesamtwert von 44. Um den genauen Temperaturwert zu erhalten, muss
diese Zahl nach dem Datenblatt noch durch 0.5 geteilt werden. Es ergibt sich somit eine
Temperatur von 22 Grad.
Die letzten zwei Positionen des UART-Frames erhalten die CRC-Checksumme. Um den
korrekten Wert zu verifizieren, wird die Berechnung mithilfe eines Online-Tools vorge-
nommen [2]. Hier ist das Ergebnis des CRC-16/IBM-3740 relevant, da alle Parameter
zu dem implementierten CRC-Check dieses Programms übereinstimmen. Das Ergebnis
des Tools lautet in hexadezimal 0x14B0. In dezimal umgerechnet ergeben sich die zwei
dezimalen Werte 20 und 176. Die Werte stimmen somit mit den angegebenen Werten in
dem Datenbuffer überein.
Zusammenfassend erfolgt die korrekte Zusammenstellung der Daten innerhalb des Da-
tenbuffers, welcher über UART zu versenden ist.

88

7 Fazit

In dieser Arbeit wurden die ersten Prototypen zur Überwachung der Hot-Swap-Matrix
und der Magnetspannungen entwickelt. Diese Hot-Swap-Matrix dient zum verzugsfreien
Umschalten einer Spannungsversorgung der Magnete auf eine Reserve-Spannungsversorgung.
Hiermit soll der Ausfall eines Magneten und damit einhergehend der Ausfall des ge-
samten Beschleunigerbetriebs der zukünftigen Petra IV Anlage verhindert werden. Die
Hot-Swap-Matrix ist auf der Hot-Swap-Platine implementiert. Das Ziel der entwickelten
Prototypen liegt darin, kritische Signale, welche zu einem Ausfall des Beschleunigerbe-
triebs führen können, zu überwachen und die gesammelten Daten an ein übergeordnetes
System weiterzuleiten. Anhand der übermittelten Daten kann das übergeordnete System
Maßnahmen zur Sicherung des Betriebs einleiten.
Um die Überwachung gewährleisten zu können, wurde in dieser Arbeit eine Mikrokon-
trollerplatine mit dem STM32 Nucleo-64-Board NUCLEO-F072RB und die zugehörige
Software entwickelt. Hierbei werden verschiedene Signale durch den Mikrokontroller über-
wacht und deren Daten mithilfe einer UART-Verbindung über die Hot-Swap-Platine an
das übergeordnete System weitergeleitet. Zu den überwachten Signalen zählen unter an-
derem die Überwachung der Versorgungsspannung der Magneten, die Beobachtung der
Dump-Schaltung, die Überprüfung der Schalterstellung in der Hot-Swap-Matrix und die
Überwachung der Umgebungstemperatur. Hierbei wurde bei der Entwicklung der Schal-
tungen auf der Mikrokontrollerplatine besonders auf die galvanische Trennung zwischen
den Potentialen der zwei durch die Hot-Swap-Matrix überwachbaren Magnetspannung-
kreise und dem Potential der Mikrokontrollerplatine geachtet. Ebenso mussten Schal-
tungen zur Spannungsreduktion von digitalen und analogen Signalen integriert werden.
Innerhalb der Softwareentwicklung ist auf eine regelmäßige und konstante Datenabfrage
und Datenübermittlung geachtet worden. Dabei wurden die besonders kritischen Signale
identifiziert, die bei der Datenübermittlung eine deutlich höher priorisierte Behandlung
erfordern. Um eine sichere und zuverlässige Übertragung über UART zu gewährleisten,
wurde ein CRC-Check integriert.
In einigen abschließenden Tests konnten grundlegende Funktionen der Prototypen verifi-

89

7 Fazit

ziert werden. Hierbei wurde vor allem die korrekte Funktion der implementierten Hard-
wareschaltungen nachgewiesen. Im Bereich der Software konnten grundlegende Funk-
tionen verifiziert werden. Jedoch fehlte ein geeigneter Testaufbau, mit dessen Hilfe das
gesamte Timing des Codes mit verschiedenen externen Signalen getestet werden kann.
Diese Tests sollten in Zukunft unbedingt durchgeführt werden, um einen reibungslosen
Gesamtbetrieb verifizieren zu können. Hierbei sind die verschiedenen implementierten
Überwachungsmechanismen hinsichtlich ihrer Sinnhaftigkeit in dem realen Beschleuni-
gerbetrieb zu beurteilen und zu bewerten. Darüber hinaus besteht insbesondere bei der
autarken Systemfunktion weiterer Entwicklungsbedarf.
Mit dieser Arbeit wurde ein grundlegender Prototyp zur Überwachung der Spannungs-
versorgung der Magnete und der Hot-Swap-Platine entwickelt, der nun weiter optimiert
werden kann, um in der zukünftigen Petra IV-Anlage effektiv eingesetzt zu werden.

90

Literaturverzeichnis

[1] : CRC 16 CCITT in C#. – URL http://sanity-free.org/133/crc_16_c

citt_in_csharp.html. – Zugriffsdatum: 31-01-2025

[2] : CRC-Rechner. – URL https://crccalc.com/?crc=0x01%200x00%200x0

0%200x00%200x00%200x00%200x05%200x00%200x00&method=CRC-16%2

0CCITT&datatype=hex&outtype=hex. – Zugriffsdatum: 14-01-2025

[3] : ESERA 1-Wire Bussystem - Grundlagen, Tipps und Hintergrundinformationen. –
URL https://esera.de/Service-Support/1-Wire-Grundlagen/1-W

ire-Grundlagen/. – Zugriffsdatum: 13-12-2024

[4] : Isolationsverstärker. – URL https://www.electricity-magnetism.org/

de/isolationsverstaerker/. – Zugriffsdatum: 29-12-2024

[5] : Leuchtdioden (LED) - Einführung. – URL https://www.leifiphysik.de/e

lektronik/halbleiterdiode/grundwissen/leuchtdioden-led-einfu

ehrung. – Zugriffsdatum: 19-12-2024

[6] : Optokoppler / Opto-Koppler. – URL https://www.elektronik-kompendiu

m.de/sites/bau/0411091.htm. – Zugriffsdatum: 19-12-2024

[7] : SPI vs. I2C Kommunikationsprotokolle: Die wichtigsten Unterschiede. – URL
https://www.fs-pcba.com/de/spi-vs-i2c/. – Zugriffsdatum: 10-12-2024

[8] Tiefpass mit Tücken. In: 30 elektronik industrie 10 - 2006 electronica-
VORBERICHTE (2006). – URL https://www.all-electronics.de/wp-

content/uploads/migrated/article-pdf/75751/ei06-10-030.pdf. –
Zugriffsdatum: 11-01-2025

[9] PETRA IV - 3D-Röntgenmikroskop der Superlative. (2019), Dezember. – URL
https://www.sciencecity.hamburg/wp-content/uploads/PETRA-IV-

Broschuere_web.pdf. – Zugriffsdatum: 09-01-2025

91

Literaturverzeichnis

[10] SPI vs. I2C: So wählen Sie das beste Protokoll für Ihre Speicherchips. In: Altium
(2022), November. – URL https://resources.altium.com/de/p/spi-

versus-i2c-how-choose-best-protocol-your-memory-chips. –
Zugriffsdatum: 13-12-2024

[11] Analog Devices: LTC3115-1 40V, 2A Synchronous Buck-Boost DC/DC Conver-
ter. – URL https://www.mouser.de/datasheet/2/609/LTC3115_1-295

6069.pdf

[12] Baker, Bonnie C.: Wirkungsgrad-Überlegungen, July 2002. – URL https://ww

w.all-electronics.de/wp-content/uploads/migrated/article-pdf

/66321/e4cb8433e80.pdf. – Zugriffsdatum: 27-12-2024

[13] Beningo, Jacob: Einsatz von digitalen Isolatoren zum Schutz von Testgeräten. Juli
2021. – URL https://www.digikey.de/de/blog/protect-your-test-e

quipment-using-digital-isolators?srsltid=AfmBOoqc11Ajag_OB7

LH3Bq4ORRO_jr_9iMLOJPDqjGqP6emrmrJAvIe. – Zugriffsdatum: 21-12-2024

[14] Bernd Pompe: Elektronik. – URL https://physik.uni-greifswald.de/s

torages/uni-greifswald/fakultaet/mnf/physik/Studium/Elektron

ik/elektronik-vorlesung.pdf

[15] Carle, Georg ; Schmitt, Corinna ; Klein, Alexander ; Baumgarten, Uwe ;
Söllner, Christoph: Proceeding zum Seminar Sensorknoten. 2010. – URL https:

//www.net.in.tum.de/fileadmin/TUM/NET/NET-2010-09-1.pdf. –
Zugriffsdatum: 10-12-2024

[16] DigiKey: How To Calculate and Use RC Time Constants. – URL https://ww

w.digikey.de/de/maker/tutorials/2024/how-to-calculate-and-

use-rc-time-constants. – Zugriffsdatum: 05-12-2024

[17] DigiKey: PWM INPUT in STM32. – URL https://controllerstech.co

m/pwm-input-in-stm32/. – Zugriffsdatum: 11-01-2025

[18] Erickson, Robert W.: DC-DC Power Converters. In: Wiley Encyclopedia of Elec-
trical and Electronics Engineering. – URL https://web.archive.org/web/

20170809015854/http://ecee.colorado.edu/~ecen4517//materials

/Encyc.pdf. – Zugriffsdatum: 30-12-2024

92

Literaturverzeichnis

[19] Falco, Eleazar: ANO007 | Grundlagen zu Phototransistor-Optokopplern. In:Würth
Elektronik (2023), August. – URL https://www.we-online.com/componen

ts/media/o760905v410%20ANO007a_DE.pdf. – Zugriffsdatum: 19-12-2024

[20] Göbel, Holger: Einführung in die Halbleiter- Schaltungstechnik. Springer-Verlag
GmbH Deutschland, 2019. – ISBN 978-3-662-56562-9

[21] Grotelüschen, Frank: DESY. (2012), August. – URL https://pr.desy.de

/sites/sites_desygroups/sites_extern/site_pr/content/e10409

8/e104099/DESY_Broschuere_web_ger.pdf. – Zugriffsdatum: 09-01-2025

[22] Hillen, Heidrun: Das Herz von PETRA IV. – URL https://petra4.desy.

de/petra_iv/beschleuniger/das_herz_von_petra_iv/index_ger.h

tml. – Zugriffsdatum: 03-01-2025

[23] Horowitz, Paul ; Hill, Winfeld: The Art of Electronics. Cambridge University
Press, 2015. – ISBN 978-0-521-80926-9

[24] Instruments, Texas: TLV773 300mA, Small-Size, High-PSRR, Low-Dropout Re-
gulator. – URL https://www.ti.com/lit/ds/symlink/tlv773.pdf?ts=

1733236688805&ref_url=https%253A%252F%252Fwww.ti.com%252Fpr

oduct%252FTLV773. – Zugriffsdatum: 26-12-2024

[25] Johanneck, Don: Grundlagen zur Logikpegelwandlung. In: DigiKey (2021), Au-
gust. – URL https://www.digikey.de/de/blog/logic-level-shiftin

g-basics. – Zugriffsdatum: 05-12-2024

[26] K.H.Gonschorek ; H.Singer: elektromagnetisce Verträglichkeit. B.G. Teubner
Stuttgart, 1992. – ISBN 978-3-332-82992-4

[27] Kompendium, Elektronik: Spannungsstabilisierung mit Z-Diode. – URL http

s://www.elektronik-kompendium.de/sites/slt/1012151.htm. –
Zugriffsdatum: 24-12-2024

[28] Lerch, Reinhard: Elektrische Messtechnik - Analoge, digitale und computergestützte
Verfahren. Springer-Verlag Berlin Heidelberg 2016, 2016. – ISBN 978-3-662-46940-8

[29] LMU München: Erklärung Hamming Codes. – URL https://www.mobile.i

fi.lmu.de/wp-content/uploads/lehrveranstaltungen/rechnerar

chitektur-sose17/Erkl%C3%A4rungHammingCodes.pdf. – Zugriffsdatum:
08-12-2024

93

Literaturverzeichnis

[30] Maxino, Theresa C. ; Koopman, Philip J.: The Effectiveness of Checksums for
Embedded Control Networks. In: IEEE (2009). – URL https://ieeexplore

.ieee.org/document/4358707. – Zugriffsdatum: 07-12-2024

[31] Mouser Electronics: Level Shifter Übersetzungsspannungs-Pegel. – URL ht

tps://www.mouser.de/c/semiconductors/logic-ics/translati

on-voltage-levels/?type=Level%20Shifter&sort=pricing%7C1. –
Zugriffsdatum: 05-12-2024

[32] Patel, Atul: Integrated vs. Discrete Open Drain Level Translation. Texas Instru-
ments (Veranst.), Januar 2024. – URL https://www.ti.com/lit/ab/sdla00

7/sdla007.pdf. – Zugriffsdatum: 06-12-2024

[33] Paul, Steffen ; Paul, Reinhold: Grundlagen der Elektrotechnik und Elektronik 1 -
Gleichstromnetzwerke und ihre Anwendungen. Springer-Verlag GmbH Deutschland,
2022. – ISBN 978-3-662-66187-1

[34] Peterson, Zachariah: Abwärtsregler vs. Spannungsregler für DC, AC und HF:
Welcher ist der Beste. – URL https://resources.altium.com/de/p/

buck-converter-regulator-vs-ldo-dc-ac-and-rf-which-best. –
Zugriffsdatum: 26-12-2024

[35] Peterson, Zachariah: LDO-Wirkungsgrad: Testen Sie die Grenzen Ihres Span-
nungsreglers. – URL https://resources.altium.com/de/p/testing-li

mits-your-ldos-efficiency. – Zugriffsdatum: 27-12-2024

[36] Physik, Leifi: Elektromagnetische Induktion - Selbstinduktion und Induktivität. –
URL https://www.leifiphysik.de/elektrizitaetslehre/elektroma

gnetische-induktion/grundwissen/selbstinduktion-und-induktiv

itaet. – Zugriffsdatum: 24-12-2024

[37] Pini, Art: Messung kleiner Signale auf hohen Spannungen und Vermeidung von
Masseschleifen in Sensoren. In: DigiKey (2018), August. – URL https://ww

w.digikey.de/de/articles/measure-small-signals-riding-on-h

igh-voltages-avoid-sensor-ground-loops?srsltid=AfmBOoqj22t

rbqVhC8qvYWWWLGMFKBA4DyKM2zEhiN0RK3CeHLUpWFH7. – Zugriffsdatum:
18-12-2024

[38] Pini, Art: Die Grundlagen von LDOs und ihre Anwendung zur Verlängerung der
Batterielebensdauer in tragbaren und Wearable-Geräten. (2022), November. – URL

94

Literaturverzeichnis

https://www.digikey.de/de/articles/the-basics-of-ldos-and-

how-to-apply-them-to-extend-battery-life-in-portables-and-

wearables?srsltid=AfmBOorMGRwrpLgF__rQAc3n0F4aBVG0Q2Sij2mlR

q4_yGrXD2qIK4uq. – Zugriffsdatum: 26-12-2024

[39] Renesas: ISL85403 2.5A Regulator with Integrated High-side MOSFET for Syn-
chronous Buck or Boost Buck Converter. 2015. – URL https://www.mouser.d

e/pdfdocs/isl85403.pdf. – Zugriffsdatum: 28-12-2024

[40] Sack, Harald ; Meinel, Christoph: Digitale Kommunikation - Vernetzen, Multime-
dia, Sicherheit. Springer-Verlag Berlin Heidelberg, 2009. – ISBN 978-3-540-92922-2

[41] Scherz, Paul ; Monk, Simon: Practical Electronics for Inventors. McGraw-Hill
Educatio, 2016. – ISBN 78-1-25-958754-2

[42] Schweber, Bill: Understanding the Advantages and Disadvantages of Linear Re-
gulators. – URL https://www.digikey.de/en/articles/understandi

ng-the-advantages-and-disadvantages-of-linear-regulators. –
Zugriffsdatum: 27-12-2024

[43] Siegl, Johann: Schaltungstechnik - analog und gemischt analog/digital. Springer-
Verlag Berlin Heidelberg, 2010. – ISBN 78-3-642-13303-9

[44] Texas Instruments: TPS629210 3-V to 17-V, 1-A Low IQ Buck Converter in
SOT-583 Package. 2021. – URL https://www.ti.com/lit/ds/symlink/tp

s629210.pdf?ts=1735904987225&ref_url=https%253A%252F%252Fwww

.bing.com%252F. – Zugriffsdatum: 28-12-2024

[45] TOSHIBA: 4-1. Efficiency of LDO regulators. – URL https://toshiba.se

micon-storage.com/us/semiconductor/knowledge/e-learning/

basics-of-low-dropout-ldo-regulators/chap4/chap4-1.html. –
Zugriffsdatum: 27-12-2024

[46] Trowbridge, Luke: Isolation: Optokoppler versus Opto-Emulatoren. Februar 2024.
– URL https://www.elektronikpraxis.de/isolation-optokoppler-

versus-opto-emulatoren-a-56c57f7c4c575513242bf33468c5254b/. –
Zugriffsdatum: 21-12-2024

[47] Viehmann, Matthias: Operationsverstärker - Grundlagen und Schaltungen und An-
wendungen. Carl Hanser Verlag München, 2020. – ISBN 978-3-446-45951-9

95

Literaturverzeichnis

[48] Zach, Frank: Leistungselektronik. Springer Fachmedien Wiesbaden, 2010. – ISBN
978-3-658-04898-3

96

A Anhang

Der vollständige Anhang dieser Arbeit befindet sich auf CD und kann bei dem Erstgut-
achter eingesehen werden.

A.1 Verwendete Hilfsmittel

In der Tabelle A.1 sind die im Rahmen der Bearbeitung des Themas der Masterarbeit ver-
wendeten Werkzeuge und Hilfsmittel aufgelistet.

Tabelle A.1: Verwendete Hilfsmittel und Werkzeuge
Tool Verwendung

LATEX
Textsatz- und Layout-Werkzeug
verwendet zur Erstellung dieses Dokuments

Eagle Erstellung der Schaltpläne und des Platinenlayouts
STMCubeIDE Programmierung des Mikrokontrollers
Tablet Oszilloskop TO2004
von Micsig Erstellung von Oszilloskopbildern

97

A Anhang

A.2 Anschlussplan an den Mikrokontroller

Tabelle A.2: Anschlussplan des CN7 Steckers

Pin Pin-
name

Signal/
Funktion Pin Pin-

name
Signal/
Funktion

1 PC10 2 PC11
3 PC12 4 PD2
5 VDD 6 E5V
7 BOOT0 8 GND
9 NC 10 NC
11 NC 12 IOREF
13 PA13 14 Reset
15 PA14 16 3V3
17 PA15 18 5V
19 GND 20 GND

21 PB7 I2C_SDA
I2C Daten 22 GND

23 PC13 Button 24 VIN
25 PC14 RCC 26 NC

27 PC15 RCC 28 PA0 ADC_VCC5V
5V VCC-Spannung

29 PF0 RCC 30 PA1
ADC_12VPS
12V Power-Supplie-
Spannung

31 PF1 RCC 32 PA4 ADC_12V
12V-Versorgungsspannung

33 VBAT 34 PB0 ADC_M1
Magnetspannung M1

35 PC2 36 PC1 ADC_M2
Magnetspannung M2

37 PC3 38 PC0 ADC_PWM
PWM-Signal

98

A Anhang

Tabelle A.3: Anschlussplan des CN10 Steckers

Pin Pin-
name

Signal/
Funktion Pin Pin-

name
Signal/
Funktion

1 PC9 2 PC8
3 PB8 Detection_2_Low 4 PC6 Detection_2_High
5 PB9 Detection_1_Low 6 PC5 Detection_1_High
7 AVDD 8 U5V
9 GND 10 NC
11 PA5 LED 12 PA12 Dump_1
13 PA6 Matrix_2_2 14 PA11 Dump_2
15 PA7 Matrix_2_1 16 PB12 Matrix_1_2

17 PB6 I2C_SCL
Taktleitung I2C 18 PB11 Matrix_1_1

19 PC7 ADJ_Detection_Bus
PWM-Signal 20 GND

21 PA9 UART 1_TX 22 PB2 Interrupt des
Temperatursensors

23 PA8
TXS_Enable
Freigabe der Pegel-
wandler

24 PB1 ADDR1
Address-Signal

25 PB10 26 PB15 ADDR2
Address-Signal

27 PB4 28 PB14 ADDR3
Address-Signal

29 PB5 30 PB13 ADDR4
Address-Signal

31 PB3 32 AGND
33 PA10 UART 1_RX 34 PC4
35 PA2 36 NC
37 PA3 38 NC

99

A Anhang

A.3 Schaltungsauslegung zur galvanischen Trennung der
12V Spannung

Der passende Schaltplanauszug ist in der Abbildung A.1 zu erkennen.

Abbildung A.1: Auszug aus dem Schaltplan: Galvanische Trennung 12 V-
Versorgungsspannung

Die Auslegung erfolgt für die 12 V-Eingangsspannung. Anders als bei der Magnetspan-
nung, weist dieses Eingangssignal keine negativen Signale auf. Um einen geringfügigen
Puffer einzubauen, damit auch Spannungen über den vorgegebenen 12 V bestimmt wer-
den können, wird die Schaltung so ausgelegt, dass bei einer Eingangsspannung von 12 V

3 V am Mikrokontroller anliegen. Dies bedeutet, dass das differentielle Signal am Trenn-
verstärkerausgang ± 1.5 V aufweisen sollte. Um die Anzahl an verbauten Komponenten
zu minimieren, wird der gleiche LDO für die Erzeugung der Referenzsspannung, wie bei
den Magnetspannungen verwendet. Dieser LDO erzeugt eine Spannung von 1.5 V.
Anschließend wird nun der Spannungsteiler am Trennverstärkereingang ausgelegt. Es er-
folgt zunächst die Bestimmung der Eingangsspannung am AMC. Der AMC weist auch
hier einen Verstärkungsfaktor von 0.4 V

V auf.

UIN =
UOUT

Gain
(A.1)

=
1.5 V

0.4 V
V

= 3.75 V

100

A Anhang

Es erfolgt nun die Ermittlung des Gesamtwiderstandes des Spannungsteilers. Es wird ein
maximaler Stromfluss von 1 mA angenommen.

RGes =
U

I
(A.2)

=
12 V

1 mA

= 12 kΩ

Es folgt die Bestimmung von R22, oberer Widerstand des Spannungsteilers, und von
R23, unterer Widerstand des Spannungsteilers. Dabei gilt, dass UIN = UR23.

R23 =
UR23

UGes
· RGes (A.3)

=
3.5 V

12 V
· 12 kΩ

= 3.75 kΩ

R22 = RGes − R23 (A.4)

= 12 kΩ − 3.5 kΩ

= 8.25 kΩ

101

A Anhang

A.4 Schaltpläne

Abbildung A.2: Schaltplan Seite 1

102

A Anhang

Abbildung A.3: Schaltplan Seite 2

103

A Anhang

Abbildung A.4: Schaltplan Seite 3

104

A Anhang

A.5 Softwarecode

1 /∗
2 ∗ Def ines . h
3 ∗
4 ∗ Created on : Sep 4 , 2024
5 ∗ Author : Denise
6 ∗/
7

8 // E in s t e l l ungen UART
9 #de f i n e BAUDRATE_UART 230400

10 #de f i n e WORDLENGTH_UART UART_WORDLENGTH_9B // Datenbits + Stopb i t s
11 #de f i n e STOPBIT_UART UART_STOPBITS_1
12 #de f i n e PARITY_UART UART_PARITY_EVEN
13

14 // E in s t e l l ungen ADC
15 #de f i n e SAMPLE_TIME_ADC ADC_SAMPLETIME_41CYCLES_5//ADC_SAMPLETIME_7CYCLES_5
16

17 // E in s t e l l ungen Timer3 UART
18 #de f i n e PRESCALER_TIM3 48 − 1
19 #de f i n e PERIOD_TIM3 1000 − 1
20

21 // E in s t e l l ungen Timer 6 I2C
22 #de f i n e PRESCALER_TIM6 48000−1
23 #de f i n e PERIOD_TIM6 500−1
24

25 // E in s t e l l ungen Timer 7 ADC
26 #de f i n e PRESCALER_TIM7 48−1
27 #de f i n e PERIOD_TIM7 210−1 //70−1
28

29 // E in s t e l l ungen Timer 14 Ueberwachungstimer
30 // 10 UART Uebertragungen werden n i cht durchgefuehrt , bevor das Programm
31 // neu g e s t a r t e t wird
32 #de f i n e PRESCALER_TIM14 48 − 1 ;
33 #de f i n e PERIOD_TIM14 10000 − 1
34

35 // E in s t e l l ungen Timer 16 GPIO
36 #de f i n e PRESCALER_TIM16 48000 − 1
37 #de f i n e PERIOD_TIM16 200 − 1
38

39 // Sensoradres sen
40 # de f i n e SENSOR1 72
41 # de f i n e SENSOR2 73
42 # de f i n e SENSOR3 74

105

A Anhang

43

44 // E in s t e l l ungen CRC Check
45 #de f i n e CRC_POLYNOM 0x1021

Quellcode A.1: Defines

1 /∗ ∗∗
2 ∗ @f i l e : main . c
3 ∗ @brie f : Main program body
4 ∗∗∗
5 ∗ @attent ion
6 ∗ Copyright (c) 2024 STMicroe l ec t ron i c s .
7 ∗ Al l r i g h t s r e s e rved .
8 ∗
9 ∗ This so f tware i s l i c e n s e d under terms that can be found in the LICENSE

f i l e
10 ∗ in the root d i r e c t o r y o f t h i s so f tware component .
11 ∗ I f no LICENSE f i l e comes with t h i s so f tware , i t i s provided AS−IS .
12 ∗∗∗ ∗/
13

14 // Inc lude s
15 #inc lude "Header_Init . h"
16 #inc lude "main . h"
17 #inc lude " De f ine s . h"
18

19 // Var iabe ln
20 ADC_HandleTypeDef hadc ;
21 DMA_HandleTypeDef hdma_adc ;
22 I2C_HandleTypeDef h i2c1 ;
23 TIM_HandleTypeDef htim3 ;
24 TIM_HandleTypeDef htim6 ;
25 TIM_HandleTypeDef htim7 ;
26 TIM_HandleTypeDef htim14 ;
27 TIM_HandleTypeDef htim16 ;
28 UART_HandleTypeDef huart1 ;
29 DMA_HandleTypeDef hdma_usart1_rx ;
30 DMA_HandleTypeDef hdma_usart1_tx ;
31

32 // Prototypen Funktionen
33 void SystemClock_Config (void) ;
34 s t a t i c void MX_GPIO_Init(void) ;
35 s t a t i c void MX_DMA_Init(void) ;
36 s t a t i c void MX_ADC_Init(void) ;
37 s t a t i c void MX_I2C1_Init (void) ;
38 s t a t i c void MX_USART1_UART_Init(void) ;

106

A Anhang

39 s t a t i c void MX_TIM3_Init(void) ;
40 s t a t i c void MX_TIM14_Init(void) ;
41 s t a t i c void MX_TIM7_Init(void) ;
42 s t a t i c void MX_TIM6_Init(void) ;
43 s t a t i c void MX_TIM16_Init(void) ;
44

45 // Var iablen I2C
46 HAL_StatusTypeDef stat I2C ;
47 int16_t temp_sensor1 = 0 , temp_sensor2 = 0 , temp_sensor3 = 0 ;
48 uint8_t count = 1 ;
49 uint8_t temperature_data [3] [2] ;
50

51 // Var iablen UART senden
52 uint8_t dataBufferUARTTx1 [1 1] = { 0 } ;
53 uint8_t dataBufferUARTTx2 [1 1] = { 0 } ;
54 uint8_t UARTTxBufferSelection = 0x01 ;
55 uint8_t ua r t t r an sm i t e r r o r = 0 ;
56 i n t i = 0 ;
57 uint8_t sendSer ia lnumber = 0 ;
58 uint8_t MagnetUART [5] = { 0 } ;
59 uint8_t newUARTTxData = 0 ;
60

61 // Var iablen UART empfangen
62 uint8_t dataBufferUARTRx [1 1] = { 0 } ;
63 uint8_t dataBufferUARTnewData [1 1] = { 0 } ;
64 uint8_t newUARTRxData = 0 ;
65 uint8_t CountUARTRxData = 0 ;
66

67 // Var iablen ADUs
68 uint16_t ADC_Values [6] = { 0 } ;
69 uint16_t ADC_12V = 0 , ADC_12VPS = 0 , ADC_VCC5V = 0 ;
70 int16_t ADC_M1 = 0 , ADC_M2 = 0 , ADC_PWM = 0 , ADC_PWM_P10 = 0 ;
71 i n t ADC_M1_MW_P10 = 0 , ADC_M2_MW_P10 = 0 ;
72 i n t ADC_M1_P12 = 0 , ADC_M1_P10 = 0 , ADC_M2_P12 = 0 , ADC_M2_P10 = 0 ;
73 int16_t ADC_M1_P9 = 0 , ADC_M2_P9 = 0 ;
74 int16_t ADC_12V_P10 = 0 , ADC_12VPS_P12 = 0 , ADC_12VPS_P10 = 0 ,
75 ADC_VCC5V_P10 = 0 ;
76 int16_t SchwellwertM1_max_P10 = 0 , SchwellwertM1_min_P10 = 0 ,
77 SchwellwertM2_max_P10 = 0 , SchwellwertM2_min_P10 = 0 ;
78 i n t newADCData = 0 ;
79 uint8_t MagnetProblem = 0 ;
80

81 // Var iablen GPIO Auslesen
82 uint8_t Detect_2_L = 0 , Detect_2_H = 0 , Detect_1_L = 0 , Detect_1_H = 0 ;

107

A Anhang

83 uint8_t Dump1 = 0 , Dump2 = 0 ;
84 uint8_t Matrix_22 = 0 , Matrix_21 = 0 , Matrix_12 = 0 , Matrix_11 = 0 ;
85 uint8_t INT_Temp = 0 ;
86 uint8_t ADDR1 = 0 , ADDR2 = 0 , ADDR3 = 0 , ADDR4 = 0 ;
87

88 // Var iablen zum Speichern der Seriennummmer
89 uint32_t ser ia lNumber [3] = { 0 } ;
90 uint8_t serialNumberUART [1 3] = { 0 } ;
91

92 // Var iablen zur CRC Ermitt lung
93 uint16_t CRC16_Table [2 5 6] ;
94 uint8_t dataCRC [1 1] ;
95 uint8_t i d e n t i f i e r [8] = {0x01 , 0x02 , 0x03 , 0x04 , 0x05 , 0x06 , 0x07 , 0x08 } ;
96 uint16_t crc_t ;
97 uint16_t crc = 0 ;
98

99 i n t main (void) {
100

101 HAL_Init () ;
102

103 SystemClock_Config () ;
104

105 // I n i t i a l i s i e r u n g e n
106 MX_GPIO_Init () ;
107 MX_DMA_Init() ;
108 MX_ADC_Init() ;
109 MX_I2C1_Init () ;
110 MX_USART1_UART_Init() ;
111 MX_TIM14_Init () ;
112 MX_TIM7_Init () ;
113 MX_TIM14_Init () ;
114 MX_TIM6_Init () ;
115 MX_TIM3_Init () ;
116

117 // Enable−S igna l f u e r d i e Pege lkonver te r
118 HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_SET) ;
119

120 // Starten der Timer
121 HAL_TIM_Base_Start_IT(&htim14) ;
122 HAL_TIM_Base_Start_IT(&htim3) ; //UART
123 HAL_TIM_Base_Start_IT(&htim6) ; //I2C
124 HAL_TIM_Base_Start_IT(&htim7) ; //ADC
125 HAL_TIM_Base_Start_IT(&htim16) ; //GPIO
126

108

A Anhang

127 // Generierung der CRC−Tabe l l e
128 generateCRC16Table () ;
129 // Auslesen der Seriennummer
130 readSerialNumber () ;
131

132 // Starten des Datenempfangs ueber UART
133 i f (HAL_UARTEx_ReceiveToIdle_DMA(&huart1 , (uint8_t ∗) dataBufferUARTRx ,
134 s i z e o f (dataBufferUARTRx)) != HAL_OK) {
135 // Fehler
136 }
137

138 whi le (1) {
139 // Abfrage , ob neue ADU Daten vo r l i e g en
140 i f (newADCData != 0) {
141 //Umwandlung der Daten
142 ca lcMagnetvo l tage () ;
143 newADCData = 0 ;
144 }
145 // Abfrage , ob neuer UART Frame g e f u e l l t werden s o l l
146 i f (newUARTTxData != 0) {
147 newUARTTxData = 0 ;
148 CreateUartFrame () ;
149 }
150 // Verarbeitung der ueber UART empfangenen Daten
151 i f (newUARTRxData != 0) {
152 newUARTRxData = 0 ;
153

154 // Durchfuehrung des CRC−Checks
155 uint16_t crc = calculateCRC16 ((uint8_t ∗) dataBufferUARTnewData ,
156 CountUARTRxData) ;
157

158 CountUARTRxData = 0 ;
159

160 // Abfrage , ob CRC Check e r f o l g r e i c h war
161 i f (c r c != 0) {
162 ua r t t r an sm i t e r r o r = 1 ;
163 }
164 e l s e {
165 ua r t t r an sm i t e r r o r = 0 ;
166 // Senden der Seriennummer
167 i f (dataBufferUARTnewData [0] == 0x02) {
168 sendSer ia lnumber = 1 ;
169 }
170 }

109

A Anhang

171 }
172 // Abfrage , ob enable−Pin akt iv i s t
173 i f (HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_8) != GPIO_PIN_SET)
174 {
175 HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_SET) ;
176 }
177 }
178

179 }
180

181 /∗ ∗∗∗
182 ∗ Funktionen zum Konvert ieren der Daten
183 ∗∗ ∗/
184 void CreateUartFrame (void) {
185 //Umrechung der Magnetspannungen in d i e P10−Ska l i e rung
186 ADC_M1_P9 = ADC_M1_P10 >> 1 ;
187 ADC_M2_P9 = ADC_M2_P10 >> 1 ;
188 // Fue l l en des Bu f f e r s 1
189 i f (UARTTxBufferSelection == 0x01) {
190 UARTTxBufferSelection = 0x02 ;
191 // Header f u e r normale UART Datenuebertragung
192 dataBufferUARTTx1 [0] = 0x01 ;
193 // Einfuegen der Magnetspannungen
194 // MSB zue r s t
195 dataBufferUARTTx1 [1] = (uint8_t) ((ADC_M1_P9 >> 8) & 0xFF) ;
196 dataBufferUARTTx1 [2] = (uint8_t) (ADC_M1_P9 & 0xFF) ;
197 dataBufferUARTTx1 [3] = (uint8_t) ((ADC_M2_P9 >> 8) & 0xFF) ;
198 dataBufferUARTTx1 [4] = (uint8_t) (ADC_M2_P9 & 0xFF) ;
199 // Fehlermeldungen
200 dataBufferUARTTx1 [5] = 0x00 ;
201 // I d e n t i f i e r und Daten
202 switch (i) {
203 // Temperatur Sensor 1
204 case 0 :
205 dataBufferUARTTx1 [6] = i d e n t i f i e r [i] ;
206 dataBufferUARTTx1 [7] = (uint8_t) ((temp_sensor1 >> 8) & 0xFF) ;
207 dataBufferUARTTx1 [8] = (uint8_t) (temp_sensor1 & 0xFF) ;
208 i++;
209 break ;
210 // Temperatur Sensor 2
211 case 1 :
212 dataBufferUARTTx1 [6] = i d e n t i f i e r [i] ;
213 dataBufferUARTTx1 [7] = (uint8_t) ((temp_sensor2 >> 8) & 0xFF) ;
214 dataBufferUARTTx1 [8] = (uint8_t) (temp_sensor2 & 0xFF) ;

110

A Anhang

215 i++;
216 break ;
217 //Temperatur Sensor 3
218 case 2 :
219 dataBufferUARTTx1 [6] = i d e n t i f i e r [i] ;
220 dataBufferUARTTx1 [7] = (uint8_t) ((temp_sensor3 >> 8) & 0xFF) ;
221 dataBufferUARTTx1 [8] = (uint8_t) (temp_sensor3 & 0xFF) ;
222 i++;
223 break ;
224 // ADC 12V PS
225 case 3 :
226

227 dataBufferUARTTx1 [6] = i d e n t i f i e r [i] ;
228 dataBufferUARTTx1 [7] = (uint8_t) ((ADC_12VPS_P10 >> 8) & 0xFF) ;
229 dataBufferUARTTx1 [8] = (uint8_t) (ADC_12VPS_P10 & 0xFF) ;
230 i++;
231 break ;
232 // ADC 12V
233 case 4 :
234

235 dataBufferUARTTx1 [6] = i d e n t i f i e r [i] ;
236 dataBufferUARTTx1 [7] = (uint8_t) ((ADC_12V_P10 >> 8) & 0xFF) ;
237 dataBufferUARTTx1 [8] = (uint8_t) (ADC_12V_P10 & 0xFF) ;
238 i++;
239 break ;
240 // ADC 5V VCC
241 case 5 :
242

243 dataBufferUARTTx1 [6] = i d e n t i f i e r [i] ;
244 dataBufferUARTTx1 [7] = (uint8_t) ((ADC_12V_P10 >> 8) & 0xFF) ;
245 dataBufferUARTTx1 [8] = (uint8_t) (ADC_12V_P10 & 0xFF) ;
246 i++;
247 break ;
248 // Detect ion + Matrix + Adresse + Dump
249 case 6 :
250 dataBufferUARTTx1 [6] = i d e n t i f i e r [i] ;
251 dataBufferUARTTx1 [7] |= (Detect_1_H << 7) | (Detect_1_L << 6)
252 | (Detect_2_H << 5) | (Detect_2_L << 4) | (Matrix_11 << 3)
253 | (Matrix_12 << 2) | (Matrix_21 << 1) | Matrix_22 ;
254 dataBufferUARTTx1 [8] |= (ADDR1 << 5) | (ADDR2 << 4) | (ADDR3 << 3)
255 | (ADDR4 << 2) | (Dump1 << 1) | Dump2 ;
256 i = 0 ;
257 break ;
258 }

111

A Anhang

259 //Gernierung der CRC−Checksumme
260 c r c = calculateCRC16 (dataBufferUARTTx1 , 9) ;
261 // Einfuegen der CRC−Checksumme
262 dataBufferUARTTx1 [9] = (uint8_t) ((c r c >> 8) & 0xFF) ;
263 dataBufferUARTTx1 [1 0] = (uint8_t) (c r c & 0xFF) ;
264

265 }
266 // Datenbuf fer 2 f u e l l e n
267 e l s e i f (UARTTxBufferSelection == 0x02) {
268 UARTTxBufferSelection = 0x01 ;
269 // Header f u e r normale UART Datenuebertragung
270 dataBufferUARTTx2 [0] = (uint8_t) 0x01 ;
271 // Magnetspannungen MSB zue r s t
272 dataBufferUARTTx2 [1] = (uint8_t) ((ADC_M1_P9 >> 8) & 0xFF) ;
273 dataBufferUARTTx2 [2] = (uint8_t) (ADC_M1_P9 & 0xFF) ;
274 dataBufferUARTTx2 [3] = (uint8_t) ((ADC_M2_P9 >> 8) & 0xFF) ;
275 dataBufferUARTTx2 [4] = (uint8_t) (ADC_M2_P9 & 0xFF) ;
276 // Fehlermeldungen
277 dataBufferUARTTx2 [5] = (uint8_t) 0x00 ;
278 // I d e n t i f i e r und Daten
279 switch (i) {
280 // Temperatursensor 1
281 case 0 :
282 i++;
283 dataBufferUARTTx2 [6] = i d e n t i f i e r [i] ;
284 dataBufferUARTTx2 [7] = (uint8_t) ((temp_sensor1 >> 8) & 0xFF) ;
285 dataBufferUARTTx2 [8] = (uint8_t) (temp_sensor1 & 0xFF) ;
286 break ;
287 // Temperatursensor 2
288 case 1 :
289 i++;
290 dataBufferUARTTx2 [6] = i d e n t i f i e r [i] ;
291 dataBufferUARTTx2 [7] = (int8_t) ((temp_sensor2 >> 8) & 0xFF) ;
292 dataBufferUARTTx2 [8] = (int8_t) (temp_sensor2 & 0xFF) ;
293 break ;
294 //Temperatursensor 3
295 case 2 :
296 i++;
297 dataBufferUARTTx2 [6] = i d e n t i f i e r [i] ;
298 dataBufferUARTTx2 [7] = (uint8_t) ((temp_sensor3 >> 8) & 0xFF) ;
299 dataBufferUARTTx2 [8] = (uint8_t) (temp_sensor3 & 0xFF) ;
300 break ;
301 // ADC 12V PS
302 case 3 :

112

A Anhang

303 i++;
304 dataBufferUARTTx2 [6] = i d e n t i f i e r [i] ;
305 dataBufferUARTTx2 [7] = (uint8_t) ((ADC_12VPS_P10 >> 8) & 0xFF) ;
306 dataBufferUARTTx2 [8] = (uint8_t) (ADC_12VPS_P10 & 0xFF) ;
307 break ;
308 // ADC 12V
309 case 4 :
310 i++;
311 dataBufferUARTTx2 [6] = i d e n t i f i e r [i] ;
312 dataBufferUARTTx2 [7] = (uint8_t) ((ADC_12V_P10 >> 8) & 0xFF) ;
313 dataBufferUARTTx2 [8] = (uint8_t) (ADC_12V_P10 & 0xFF) ;
314 break ;
315 // ADC 5V VCC
316 case 5 :
317 i++;
318 dataBufferUARTTx2 [6] = i d e n t i f i e r [i] ;
319 dataBufferUARTTx2 [7] = (uint8_t) ((ADC_12V_P10 >> 8) & 0xFF) ;
320 dataBufferUARTTx2 [8] = (uint8_t) (ADC_12V_P10 & 0xFF) ;
321 break ;
322 // Detect ion + Matrix + Adresse + Dump
323 case 6 :
324 i = 0 ;
325 dataBufferUARTTx2 [6] = i d e n t i f i e r [i] ;
326 dataBufferUARTTx2 [7] |= (Detect_1_H << 7) | (Detect_1_L << 6)
327 | (Detect_2_H << 5) | (Detect_2_L << 4) | (Matrix_11 << 3)
328 | (Matrix_12 << 2) | (Matrix_21 << 1) | Matrix_22 ;
329 dataBufferUARTTx2 [8] |= (ADDR1 << 5) | (ADDR2 << 4) | (ADDR3 << 3)
330 | (ADDR4 << 2) | (Dump1 << 1) | Dump2 ;
331

332 break ;
333 }
334

335 //CRC Check
336 uint16_t crc = calculateCRC16 (dataBufferUARTTx2 , 9) ;
337

338 dataBufferUARTTx2 [9] = (uint8_t) ((c r c >> 8) & 0xFF) ;
339 dataBufferUARTTx2 [1 0] = (uint8_t) (c r c & 0xFF) ;
340 }
341 }
342

343 // Funktion zum CRC−Check (CRC−16−CCITT−Standard)
344 uint16_t calculateCRC16 (uint8_t ∗data , uint16_t length) {
345

346 uint16_t crc = 0xFFFF; // I n i t i a l w e r t

113

A Anhang

347

348 f o r (uint16_t i = 0 ; i < length ; i++) {
349 uint8_t byte = data [i] ;
350 c r c = (c rc << 8) ^ CRC16_Table [(c r c >> 8) ^ byte] ;
351 }
352

353 re turn c rc ;
354 }
355

356 //Funktion zum Gerner i e ren der CRC−Tabe l l e
357 void generateCRC16Table (void) {
358 f o r (i n t i = 0 ; i < 256 ; i++) {
359 uint16_t crc = i << 8 ;
360 f o r (i n t j = 0 ; j < 8 ; j++) {
361 i f (c r c & 0x8000) {
362 c r c = (c rc << 1) ^ CRC_POLYNOM;
363 } e l s e {
364 c r c <<= 1 ;
365 }
366 }
367 CRC16_Table [i] = crc ;
368 }
369 }
370

371 /∗ ∗∗∗
372 ∗ Funktion zum Auslesen der i n d i v i d u e l l e n Seriennummer
373 ∗∗∗ ∗/
374 void readSerialNumber (void) {
375 // Auslesen der Seriennummer
376 ser ia lNumber [0] = ∗(uint32_t ∗) 0x1FFFF7AC; // Low 32 b i t s
377 ser ia lNumber [1] = ∗(uint32_t ∗) 0x1FFFF7B0 ; // Mid 32 b i t s
378 ser ia lNumber [2] = ∗(uint32_t ∗) 0x1FFFF7B4 ; // High 32 b i t s
379

380 // Er s t e l l ung der UART−Frames
381 serialNumberUART [0] = (uint8_t) 0x02 ;
382 serialNumberUART [1] = (uint8_t) (ser ia lNumber [0] & 0xFF) ;
383 serialNumberUART [2] = (uint8_t) ((ser ia lNumber [0] >> 8) & 0xFF) ;
384 serialNumberUART [3] = (uint8_t) ((ser ia lNumber [0] >> 16) & 0xFF) ;
385 serialNumberUART [4] = (uint8_t) ((ser ia lNumber [0] >> 24) & 0xFF) ;
386

387 serialNumberUART [5] = (uint8_t) (ser ia lNumber [1] & 0xFF) ;
388 serialNumberUART [6] = (uint8_t) ((ser ia lNumber [1] >> 8) & 0xFF) ;
389 serialNumberUART [7] = (uint8_t) ((ser ia lNumber [1] >> 16) & 0xFF) ;
390 serialNumberUART [8] = (uint8_t) ((ser ia lNumber [1] >> 24) & 0xFF) ;

114

A Anhang

391

392 serialNumberUART [9] = (uint8_t) (ser ia lNumber [2] & 0xFF) ;
393 serialNumberUART [1 0] = (uint8_t) ((ser ia lNumber [2] >> 8) & 0xFF) ;
394 serialNumberUART [1 1] = (uint8_t) ((ser ia lNumber [2] >> 16) & 0xFF) ;
395 serialNumberUART [1 2] = (uint8_t) ((ser ia lNumber [2] >> 24) & 0xFF) ;
396 }
397

398 /∗ ∗∗∗
399 ∗ Funktionen zum Auslesen der GPIO−I n t e r rup t s
400 ∗∗ ∗/
401 void Read_GPIO(void) {
402

403 // Detect ion−S igna l e
404 Detect_2_L = HAL_GPIO_ReadPin(GPIOC, GPIO_PIN_9) ;
405 Detect_2_H = HAL_GPIO_ReadPin(GPIOC, GPIO_PIN_8) ;
406 Detect_1_L = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_8) ;
407 Detect_1_H = HAL_GPIO_ReadPin(GPIOC, GPIO_PIN_6) ;
408

409 //Dump−S igna l e
410 Dump1 = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_9) ;
411 Dump2 = HAL_GPIO_ReadPin(GPIOC, GPIO_PIN_5) ;
412

413 //Matrix−S igna l e
414 Matrix_22 = HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_12) ;
415 Matrix_21 = HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_11) ;
416 Matrix_12 = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_12) ;
417 Matrix_11 = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_11) ;
418

419 // Inter rupt−S igna l Temperatursensor
420 INT_Temp = HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_7) ;
421

422 //Address−S igna l e
423 ADDR1 = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_1) ;
424 ADDR2 = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_15) ;
425 ADDR3 = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_14) ;
426 ADDR4 = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_13) ;
427

428 }
429

430 // GPIO−Cal lback
431 void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) {
432 i f (GPIO_Pin == GPIO_PIN_8) // In t e r rup t fu e r Pin 8
433 {
434

115

A Anhang

435 }
436

437 i f (GPIO_Pin == GPIO_PIN_9) // In t e r rup t fu e r Pin 9
438 {
439

440 }
441

442 }
443

444 /∗ ∗∗∗
445 ∗ Funktionen zum Auslesen der ADCs
446 ∗∗ ∗/
447

448 void ca lcMagnetvo ltage () {
449 i n t Faktor34_P12 = 13926 ; // 3 .4 ∗ 2^12
450 i n t RefSpannung15_P12 = 6144 ; // 1 .5 ∗ 2^12
451 i n t SkalierungMagnet_P10 = 25600 ; // (10/0 . 4) ∗2^10
452 i n t SkalierungPWM_P12 = 1987 ; // (5/3 . 3) ∗ 1/10 ∗3 .4 ∗ 2^12
453 i n t SkalierungVCC_P12 = 22282; // 16/10 ∗ 3 .4 ∗ 2^12
454 i n t Skalierung12V_P12 = 55705 ; // 4∗ 3 .4 ∗ 2^12
455 i n t Skalierung12VPS_P10 = 8960 ; // (3 . 5 / 0 . 4) ∗2^10
456

457 ADC_M1_P12 = ((ADC_M1 ∗ Faktor34_P12) >> 12) − RefSpannung15_P12 ;
458 ADC_M1_P10 = ((ADC_M1_P12 >> 2) ∗ SkalierungMagnet_P10) >> 10 ;
459 ADC_M2_P12 = ((ADC_M2 ∗ Faktor34_P12) >> 12) − RefSpannung15_P12 ;
460 ADC_M2_P10 = ((ADC_M2_P12 >> 2) ∗ SkalierungMagnet_P10) >> 10 ;
461

462 ADC_PWM_P10 = (ADC_PWM ∗ SkalierungPWM_P12) >> 14 ;
463

464 // Bestimmung Grenzen des Schwe l lwer tes
465 SchwellwertM1_max_P10 = ADC_M1_MW_P10 + ADC_PWM_P10;
466 SchwellwertM1_min_P10 = ADC_M1_MW_P10 − ADC_PWM_P10;
467 SchwellwertM2_max_P10 = ADC_M2_MW_P10 + ADC_PWM_P10;
468 SchwellwertM2_min_P10 = ADC_M2_MW_P10 − ADC_PWM_P10;
469

470 // Verg l e i ch der Schwel lwerte mit aktue l lem Messwert
471 i f (ADC_M1_P10 < SchwellwertM1_min_P10
472 | | ADC_M1_P10 > SchwellwertM1_max_P10) {
473 MagnetProblem = 1 ;
474 // Er s t e l l ung des UART−Frames
475 MagnetUART [0] = (uint8_t) 0x03 ;
476 MagnetUART [1] = (uint8_t) ((ADC_M1_P9 >> 8) & 0xFF) ;
477 MagnetUART [2] = (uint8_t) (ADC_M1_P9 & 0xFF) ;
478 MagnetUART [3] = (uint8_t) ((ADC_M2_P9 >> 8) & 0xFF) ;

116

A Anhang

479 MagnetUART [4] = (uint8_t) (ADC_M2_P9 & 0xFF) ;
480 }
481

482 e l s e i f (ADC_M2_P10 < SchwellwertM2_min_P10
483 | | ADC_M2_P10 > SchwellwertM2_max_P10) {
484 MagnetProblem = 1 ;
485 // Er s t e l l ung des UART−Frames
486 MagnetUART [0] = (uint8_t) 0x03 ;
487 MagnetUART [1] = (uint8_t) ((ADC_M1_P9 >> 8) & 0xFF) ;
488 MagnetUART [2] = (uint8_t) (ADC_M1_P9 & 0xFF) ;
489 MagnetUART [3] = (uint8_t) ((ADC_M2_P9 >> 8) & 0xFF) ;
490 MagnetUART [4] = (uint8_t) (ADC_M2_P9 & 0xFF) ;
491

492 } e l s e {
493 MagnetProblem = 0 ;
494 }
495

496 // Gle i tenden MW bestimmen (Alpha 0 . 5)
497 ADC_M1_MW_P10 = (ADC_M1_P10 >> 1) + (ADC_M1_MW_P10 >> 1) ;
498 ADC_M2_MW_P10 = (ADC_M2_P10 >> 1) + (ADC_M2_MW_P10 >> 1) ;
499

500 // Ska l i e rung der Versorgungsspannungen
501 ADC_VCC5V_P10 = (ADC_VCC5V ∗ SkalierungVCC_P12) >> 14 ;
502 ADC_12VPS_P12 = ((ADC_12VPS ∗ Faktor34_P12) >> 12) − RefSpannung15_P12 ;
503 ADC_12VPS_P10 = ((ADC_12VPS_P12 >> 2) ∗ Skalierung12VPS_P10) >> 10 ;
504 ADC_12V_P10 = (ADC_12V ∗ Skalierung12V_P12) >> 14 ;
505 }
506

507 void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef ∗hadc) {
508

509 HAL_ADC_Stop_DMA(hadc) ;
510

511 i f (hadc−>Instance == ADC1) {
512 // Umspeichern der Werte
513 ADC_12V = ADC_Values [0] ;
514 ADC_12VPS = ADC_Values [1] ;
515 ADC_VCC5V = ADC_Values [5] ;
516 ADC_M1 = ADC_Values [2] ;
517 ADC_M2 = ADC_Values [3] ;
518 ADC_PWM = ADC_Values [4] ;
519

520 newADCData = 1 ;
521 }
522 }

117

A Anhang

523

524 /∗ ∗∗∗
525 ∗ Funktionen zum Auswerten von I2C
526 ∗ Uebermitt lung der Temperaturdaten
527 ∗∗ ∗/
528

529 void HAL_I2C_MasterRxCpltCallback (I2C_HandleTypeDef ∗ hi2c1) {
530

531 i f (s tat I2C == HAL_OK) {
532 // Auswertung der Temperaturdaten
533 switch (count) {
534 case 1 :
535 temp_sensor1 = (temperature_data [0] [0] << 8 | temperature_data [0] [1])

>> 7 ;
536 count++;
537 break ;
538

539 case 2 :
540 temp_sensor2 =
541 (temperature_data [1] [0] << 8 | temperature_data [1] [1]) >> 7 ;
542 count++;
543 break ;
544

545 case 3 :
546 temp_sensor3 =
547 (temperature_data [2] [0] << 8 | temperature_data [2] [1]) >> 7 ;
548 count = 1 ;
549 break ;
550 }
551 }
552 e l s e {
553 i f (HAL_I2C_GetError (h i2c1) != HAL_I2C_ERROR_AF) {
554 MX_I2C1_Init () ;
555 }
556 }
557 }
558

559 /∗ ∗∗∗
560 ∗ Funktionen zur Datenuebertragung mit UART
561 ∗∗ ∗/
562

563 void HAL_UARTEx_RxEventCallback(UART_HandleTypeDef ∗huart , uint16_t S i z e) {
564 i f (huart−>Instance == USART1) {
565

118

A Anhang

566 newUARTRxData = 1 ;
567

568 // Daten umspeichern , so lange Daten vorhanden s ind
569 f o r (i n t i = 0 ; i <= (s i z e o f (dataBufferUARTRx)) ; i++) {
570 i f (dataBufferUARTRx [i] != 0) {
571 dataBufferUARTnewData [i] = dataBufferUARTRx [i] ;
572 CountUARTRxData = CountUARTRxData + 1 ;
573 }
574 }
575

576 // UART Empfangsarray l e e r e n
577 f o r (i n t i = 0 ; i <= (s i z e o f (dataBufferUARTRx)) ; i++) {
578 dataBufferUARTRx [i] = 0 ;
579 }
580

581 // Datenempfang s t a r t en
582 i f (HAL_UARTEx_ReceiveToIdle_DMA(&huart1 , (uint8_t ∗) dataBufferUARTRx ,
583 s i z e o f (dataBufferUARTRx)) != HAL_OK) {
584 // Fehler
585 }
586 }
587 }
588

589 void HAL_UART_TxCpltCallback(UART_HandleTypeDef ∗huart1) {
590 i f (huart1−>Instance == USART1) {
591 newUARTTxData = 1 ;
592 }
593 }
594

595 void HAL_UART_ErrorCallback(UART_HandleTypeDef ∗huart) {
596

597 i f (huart−>ErrorCode & HAL_UART_ERROR_PE) {
598 } e l s e i f (huart−>ErrorCode & HAL_UART_ERROR_NE) {
599 // Not−Au s f a l l f e h l e r
600 } e l s e i f (huart−>ErrorCode & HAL_UART_ERROR_FE) {
601 // Ueber t ragungs f eh l e r
602 } e l s e i f (huart−>ErrorCode & HAL_UART_ERROR_ORE) {
603 // Ueberlauf−Fehler
604 }
605 }
606

607 /∗ ∗∗∗
608 ∗ Funktionen zur Timersteuerung
609 ∗∗ ∗/

119

A Anhang

610 // Timer In t e r rup t Cal lback
611 void HAL_TIM_PeriodElapsedCallback (TIM_HandleTypeDef ∗htim) {
612

613 // Timer 3 −> I n t e r v a l l UART −> 1000 Mikrosekunden
614 i f (htim−>Instance == TIM3) {
615 i f (UARTTxBufferSelection == 0x02 && sendSer ia lnumber != 1
616 && MagnetProblem != 1) {
617 HAL_UART_Transmit_DMA(&huart1 , (uint8_t ∗) dataBufferUARTTx1 , 11) ;
618 }
619 e l s e i f (UARTTxBufferSelection == 0x01 && sendSer ia lnumber != 1
620 && MagnetProblem != 1) {
621 HAL_UART_Transmit_DMA(&huart1 , (uint8_t ∗) dataBufferUARTTx2 , 11) ;
622 }
623 e l s e i f (sendSer ia lnumber == 1 && MagnetProblem != 1) {
624 HAL_UART_Transmit_DMA(&huart1 , (uint8_t ∗) serialNumberUART , 13) ;
625 }
626 e l s e i f (MagnetProblem == 1) {
627 HAL_UART_Transmit_DMA(&huart1 , (uint8_t ∗) MagnetUART, 5) ;
628 }
629 }
630

631 // Timer 6 I n t e r v a l l I2C Messung (1 s)
632 i f (htim−>Instance == TIM6) {
633 switch (count) {
634 case 1 :
635 s tat I2C = HAL_I2C_Master_Receive_IT(&hi2c1 , (SENSOR1 << 1) ,
636 temperature_data [0] , 2) ;
637 break ;
638

639 case 2 :
640 s tat I2C = HAL_I2C_Master_Receive_IT(&hi2c1 , (SENSOR2 << 1) ,
641 temperature_data [1] , 2) ;
642 break ;
643

644 case 3 :
645 s tat I2C = HAL_I2C_Master_Receive_IT(&hi2c1 , (SENSOR3 << 1) ,
646 temperature_data [2] , 2) ;
647 break ;
648 }
649

650 }
651

652 // Timer 7 I n t e r v a l l f u e r ADC Messung 55 Mikrosekunden
653 i f (htim−>Instance == TIM7) {

120

A Anhang

654 HAL_ADC_Start_DMA(&hadc , (uint32_t ∗) ADC_Values , 6) ;
655 }
656

657 // TIM14 Ueberwachungstimer
658 i f (htim−>Instance == TIM14) {
659

660 }
661

662 // Timer 16 I n t e r v a l GPIO Pins abfragen
663 i f (htim−>Instance == TIM16) {
664 Read_GPIO() ;
665 }
666

667 }
668

669 /∗∗
670 ∗ @brie f System Clock Conf igurat ion
671 ∗ @retval None
672 ∗/
673 void SystemClock_Config (void) {
674 RCC_OscInitTypeDef RCC_OscInitStruct = { 0 } ;
675 RCC_ClkInitTypeDef RCC_ClkInitStruct = { 0 } ;
676 RCC_PeriphCLKInitTypeDef Per iphClk In i t = { 0 } ;
677

678 /∗∗ I n i t i a l i z e s the RCC Os c i l l a t o r s accord ing to the s p e c i f i e d parameters
679 ∗ in the RCC_OscInitTypeDef s t r u c tu r e .
680 ∗/
681 RCC_OscInitStruct . Osc i l l a to rType = RCC_OSCILLATORTYPE_HSI
682 | RCC_OSCILLATORTYPE_HSI14 | RCC_OSCILLATORTYPE_HSI48;
683 RCC_OscInitStruct . HSIState = RCC_HSI_ON;
684 RCC_OscInitStruct . HSI48State = RCC_HSI48_ON;
685 RCC_OscInitStruct . HSI14State = RCC_HSI14_ON;
686 RCC_OscInitStruct . HSICal ibrat ionValue = RCC_HSICALIBRATION_DEFAULT;
687 RCC_OscInitStruct . HSI14Cal ibrat ionValue = 16 ;
688 RCC_OscInitStruct .PLL. PLLState = RCC_PLL_NONE;
689 i f (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
690 Error_Handler () ;
691 }
692

693 /∗∗ I n i t i a l i z e s the CPU, AHB and APB buses c l o ck s
694 ∗/
695 RCC_ClkInitStruct . ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
696 | RCC_CLOCKTYPE_PCLK1;
697 RCC_ClkInitStruct . SYSCLKSource = RCC_SYSCLKSOURCE_HSI48;

121

A Anhang

698 RCC_ClkInitStruct . AHBCLKDivider = RCC_SYSCLK_DIV1;
699 RCC_ClkInitStruct . APB1CLKDivider = RCC_HCLK_DIV1;
700

701 i f (HAL_RCC_ClockConfig(&RCC_ClkInitStruct , FLASH_LATENCY_1) != HAL_OK) {
702 Error_Handler () ;
703 }
704 Per iphClk In i t . Per iphClockSe l e c t i on = RCC_PERIPHCLK_USART1
705 | RCC_PERIPHCLK_I2C1;
706 Per iphClk In i t . Usar t1ClockSe l e c t i on = RCC_USART1CLKSOURCE_PCLK1;
707 Per iphClk In i t . I 2 c1C lo ckSe l e c t i on = RCC_I2C1CLKSOURCE_HSI;
708 i f (HAL_RCCEx_PeriphCLKConfig(&Per iphClk In i t) != HAL_OK) {
709 Error_Handler () ;
710 }
711 }
712

713 /∗∗
714 ∗ @brie f ADC I n i t i a l i z a t i o n Function
715 ∗ @param None
716 ∗ @retval None
717 ∗/
718 s t a t i c void MX_ADC_Init(void) {
719

720 ADC_ChannelConfTypeDef sConf ig = { 0 } ;
721

722 /∗∗ Conf igure the g l oba l f e a t u r e s o f the ADC (Clock , Reso lut ion , Data
Alignment and number o f conver s i on)

723 ∗/
724 hadc . Ins tance = ADC1;
725 hadc . I n i t . C lockPre s ca l e r = ADC_CLOCK_ASYNC_DIV1;
726 hadc . I n i t . Reso lut ion = ADC_RESOLUTION_12B;
727 hadc . I n i t . DataAlign = ADC_DATAALIGN_RIGHT;
728 hadc . I n i t . ScanConvMode = ADC_SCAN_DIRECTION_FORWARD;
729 hadc . I n i t . EOCSelection = ADC_EOC_SEQ_CONV;
730 hadc . I n i t . LowPowerAutoWait = DISABLE;
731 hadc . I n i t . LowPowerAutoPowerOff = DISABLE;
732 hadc . I n i t . ContinuousConvMode = DISABLE;
733 hadc . I n i t . DiscontinuousConvMode = DISABLE;
734 hadc . I n i t . ExternalTrigConv = ADC_SOFTWARE_START;
735 hadc . I n i t . ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
736 hadc . I n i t . DMAContinuousRequests = DISABLE;
737 hadc . I n i t . Overrun = ADC_OVR_DATA_PRESERVED;
738 i f (HAL_ADC_Init(&hadc) != HAL_OK) {
739 Error_Handler () ;
740 }

122

A Anhang

741

742 /∗∗ Conf igure f o r the s e l e c t e d ADC regu l a r channel to be converted .
743 ∗/
744 sConf ig . Channel = ADC_CHANNEL_0;
745 sConf ig . Rank = ADC_RANK_CHANNEL_NUMBER;
746 sConf ig . SamplingTime = SAMPLE_TIME_ADC;
747 i f (HAL_ADC_ConfigChannel(&hadc , &sConf ig) != HAL_OK) {
748 Error_Handler () ;
749 }
750

751 /∗∗ Conf igure f o r the s e l e c t e d ADC regu l a r channel to be converted .
752 ∗/
753 sConf ig . Channel = ADC_CHANNEL_1;
754 i f (HAL_ADC_ConfigChannel(&hadc , &sConf ig) != HAL_OK) {
755 Error_Handler () ;
756 }
757

758 /∗∗ Conf igure f o r the s e l e c t e d ADC regu l a r channel to be converted ∗/
759 sConf ig . Channel = ADC_CHANNEL_4;
760 i f (HAL_ADC_ConfigChannel(&hadc , &sConf ig) != HAL_OK) {
761 Error_Handler () ;
762 }
763

764 /∗∗ Conf igure f o r the s e l e c t e d ADC regu l a r channel to be converted . ∗/
765 sConf ig . Channel = ADC_CHANNEL_8;
766 i f (HAL_ADC_ConfigChannel(&hadc , &sConf ig) != HAL_OK) {
767 Error_Handler () ;
768 }
769

770 /∗∗ Conf igure f o r the s e l e c t e d ADC regu l a r channel to be converted .
771 ∗/
772 sConf ig . Channel = ADC_CHANNEL_10;
773 i f (HAL_ADC_ConfigChannel(&hadc , &sConf ig) != HAL_OK) {
774 Error_Handler () ;
775 }
776

777 /∗∗ Conf igure f o r the s e l e c t e d ADC regu l a r channel to be converted .
778 ∗/
779 sConf ig . Channel = ADC_CHANNEL_11;
780 i f (HAL_ADC_ConfigChannel(&hadc , &sConf ig) != HAL_OK) {
781 Error_Handler () ;
782 }
783 }
784

123

A Anhang

785 /∗∗
786 ∗ @brie f I2C1 I n i t i a l i z a t i o n Function
787 ∗ @param None
788 ∗ @retval None
789 ∗/
790 s t a t i c void MX_I2C1_Init (void) {
791

792 hi2c1 . Ins tance = I2C1 ;
793 hi2c1 . I n i t . Timing = 0x2000090E ;
794 hi2c1 . I n i t . OwnAddress1 = 0 ;
795 hi2c1 . I n i t . AddressingMode = I2C_ADDRESSINGMODE_7BIT;
796 hi2c1 . I n i t . DualAddressMode = I2C_DUALADDRESS_DISABLE;
797 hi2c1 . I n i t . OwnAddress2 = 0 ;
798 hi2c1 . I n i t . OwnAddress2Masks = I2C_OA2_NOMASK;
799 hi2c1 . I n i t . GeneralCallMode = I2C_GENERALCALL_DISABLE;
800 hi2c1 . I n i t . NoStretchMode = I2C_NOSTRETCH_DISABLE;
801 i f (HAL_I2C_Init(&hi2c1) != HAL_OK) {
802 Error_Handler () ;
803 }
804

805 /∗∗ Conf igure Analogue f i l t e r
806 ∗/
807 i f (HAL_I2CEx_ConfigAnalogFilter(&hi2c1 , I2C_ANALOGFILTER_ENABLE)
808 != HAL_OK) {
809 Error_Handler () ;
810 }
811

812 /∗∗ Conf igure D i g i t a l f i l t e r
813 ∗/
814 i f (HAL_I2CEx_ConfigDigitalFilter(&hi2c1 , 0) != HAL_OK) {
815 Error_Handler () ;
816 }
817 }
818

819 /∗∗
820 ∗ @brie f TIM3 I n i t i a l i z a t i o n Function
821 ∗ @param None
822 ∗ @retval None
823 ∗/
824 s t a t i c void MX_TIM3_Init(void) {
825

826 TIM_ClockConfigTypeDef sClockSourceConf ig = { 0 } ;
827 TIM_MasterConfigTypeDef sMasterConf ig = { 0 } ;
828

124

A Anhang

829 htim3 . Ins tance = TIM3 ;
830 htim3 . I n i t . P r e s c a l e r = PRESCALER_TIM3;
831 htim3 . I n i t . CounterMode = TIM_COUNTERMODE_UP;
832 htim3 . I n i t . Per iod = PERIOD_TIM3;
833 htim3 . I n i t . C lockDiv i s i on = TIM_CLOCKDIVISION_DIV1;
834 htim3 . I n i t . AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
835 i f (HAL_TIM_Base_Init(&htim3) != HAL_OK) {
836 Error_Handler () ;
837 }
838 sClockSourceConf ig . ClockSource = TIM_CLOCKSOURCE_INTERNAL;
839 i f (HAL_TIM_ConfigClockSource(&htim3 , &sClockSourceConf ig) != HAL_OK) {
840 Error_Handler () ;
841 }
842 sMasterConf ig . MasterOutputTrigger = TIM_TRGO_RESET;
843 sMasterConf ig . MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
844 i f (HAL_TIMEx_MasterConfigSynchronization(&htim3 , &sMasterConf ig)
845 != HAL_OK) {
846 Error_Handler () ;
847 }
848 }
849

850 /∗∗
851 ∗ @brie f TIM6 I n i t i a l i z a t i o n Function
852 ∗ @param None
853 ∗ @retval None
854 ∗/
855 s t a t i c void MX_TIM6_Init(void) {
856

857 TIM_MasterConfigTypeDef sMasterConf ig = { 0 } ;
858

859 htim6 . Ins tance = TIM6 ;
860 htim6 . I n i t . P r e s c a l e r = PRESCALER_TIM6;
861 htim6 . I n i t . CounterMode = TIM_COUNTERMODE_UP;
862 htim6 . I n i t . Per iod = PERIOD_TIM6;
863 htim6 . I n i t . AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
864 i f (HAL_TIM_Base_Init(&htim6) != HAL_OK) {
865 Error_Handler () ;
866 }
867 sMasterConf ig . MasterOutputTrigger = TIM_TRGO_RESET;
868 sMasterConf ig . MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
869 i f (HAL_TIMEx_MasterConfigSynchronization(&htim6 , &sMasterConf ig)
870 != HAL_OK) {
871 Error_Handler () ;
872 }

125

A Anhang

873 }
874

875 /∗∗
876 ∗ @brie f TIM7 I n i t i a l i z a t i o n Function
877 ∗ @param None
878 ∗ @retval None
879 ∗/
880 s t a t i c void MX_TIM7_Init(void) {
881

882 TIM_MasterConfigTypeDef sMasterConf ig = { 0 } ;
883

884 htim7 . Ins tance = TIM7 ;
885 htim7 . I n i t . P r e s c a l e r = PRESCALER_TIM7;
886 htim7 . I n i t . CounterMode = TIM_COUNTERMODE_UP;
887 htim7 . I n i t . Per iod = PERIOD_TIM7;
888 htim7 . I n i t . AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
889 i f (HAL_TIM_Base_Init(&htim7) != HAL_OK) {
890 Error_Handler () ;
891 }
892 sMasterConf ig . MasterOutputTrigger = TIM_TRGO_RESET;
893 sMasterConf ig . MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
894 i f (HAL_TIMEx_MasterConfigSynchronization(&htim7 , &sMasterConf ig)
895 != HAL_OK) {
896 Error_Handler () ;
897 }
898 }
899

900 /∗∗
901 ∗ @brie f TIM14 I n i t i a l i z a t i o n Function
902 ∗ @param None
903 ∗ @retval None
904 ∗/
905 s t a t i c void MX_TIM14_Init(void) {
906

907 htim14 . Ins tance = TIM14 ;
908 htim14 . I n i t . P r e s c a l e r = PRESCALER_TIM14;
909 htim14 . I n i t . CounterMode = TIM_COUNTERMODE_UP;
910 htim14 . I n i t . Per iod = PERIOD_TIM14;
911 htim14 . I n i t . C lockDiv i s i on = TIM_CLOCKDIVISION_DIV1;
912 htim14 . I n i t . AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
913 i f (HAL_TIM_Base_Init(&htim14) != HAL_OK) {
914 Error_Handler () ;
915 }
916 }

126

A Anhang

917

918 /∗∗
919 ∗ @brie f TIM16 I n i t i a l i z a t i o n Function
920 ∗ @param None
921 ∗ @retval None
922 ∗/
923 s t a t i c void MX_TIM16_Init(void) {
924

925 htim16 . Ins tance = TIM16 ;
926 htim16 . I n i t . P r e s c a l e r = PRESCALER_TIM16;
927 htim16 . I n i t . CounterMode = TIM_COUNTERMODE_UP;
928 htim16 . I n i t . Per iod = PERIOD_TIM16;
929 htim16 . I n i t . C lockDiv i s i on = TIM_CLOCKDIVISION_DIV1;
930 htim16 . I n i t . Repet i t ionCounter = 0 ;
931 htim16 . I n i t . AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
932 i f (HAL_TIM_Base_Init(&htim16) != HAL_OK) {
933 Error_Handler () ;
934 }
935 }
936

937 /∗∗
938 ∗ @brie f USART1 I n i t i a l i z a t i o n Function
939 ∗ @param None
940 ∗ @retval None
941 ∗/
942 s t a t i c void MX_USART1_UART_Init(void) {
943

944 huart1 . In s tance = USART1;
945 huart1 . I n i t . BaudRate = BAUDRATE_UART;
946 huart1 . I n i t . WordLength = WORDLENGTH_UART;
947 huart1 . I n i t . StopBits = STOPBIT_UART;
948 huart1 . I n i t . Par i ty = PARITY_UART;
949 huart1 . I n i t .Mode = UART_MODE_TX_RX;
950 huart1 . I n i t . HwFlowCtl = UART_HWCONTROL_NONE;
951 huart1 . I n i t . OverSampling = UART_OVERSAMPLING_16;
952 huart1 . I n i t . OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
953 huart1 . AdvancedInit . AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
954 i f (HAL_UART_Init(&huart1) != HAL_OK) {
955 Error_Handler () ;
956 }
957 }
958

959 /∗∗
960 ∗ Enable DMA c o n t r o l l e r c l o ck

127

A Anhang

961 ∗/
962 s t a t i c void MX_DMA_Init(void) {
963

964 /∗ DMA con t r o l l e r c l o ck enable ∗/
965 __HAL_RCC_DMA1_CLK_ENABLE() ;
966

967 /∗ DMA in t e r r up t i n i t ∗/
968 /∗ DMA1_Channel1_IRQn in t e r r up t c on f i gu r a t i on ∗/
969 HAL_NVIC_SetPriority (DMA1_Channel1_IRQn , 1 , 0) ;
970 HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn) ;
971 /∗ DMA1_Channel2_3_IRQn in t e r r up t c on f i gu r a t i on ∗/
972 HAL_NVIC_SetPriority (DMA1_Channel2_3_IRQn, 0 , 0) ;
973 HAL_NVIC_EnableIRQ(DMA1_Channel2_3_IRQn) ;
974

975 }
976

977 /∗∗
978 ∗ @brie f GPIO I n i t i a l i z a t i o n Function
979 ∗ @param None
980 ∗ @retval None
981 ∗/
982 s t a t i c void MX_GPIO_Init(void) {
983 GPIO_InitTypeDef GPIO_InitStruct = { 0 } ;
984

985 /∗ GPIO Ports Clock Enable ∗/
986 __HAL_RCC_GPIOC_CLK_ENABLE() ;
987 __HAL_RCC_GPIOF_CLK_ENABLE() ;
988 __HAL_RCC_GPIOA_CLK_ENABLE() ;
989 __HAL_RCC_GPIOB_CLK_ENABLE() ;
990

991 /∗Conf igure GPIO pin Output Leve l ∗/
992 HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5 | GPIO_PIN_8, GPIO_PIN_SET) ;
993

994 /∗Conf igure GPIO pin : PC13 ∗/
995 GPIO_InitStruct . Pin = GPIO_PIN_13 ;
996 GPIO_InitStruct .Mode = GPIO_MODE_IT_FALLING;
997 GPIO_InitStruct . Pul l = GPIO_NOPULL;
998 HAL_GPIO_Init(GPIOC, &GPIO_InitStruct) ;
999

1000 /∗Conf igure GPIO pins : PA5 PA8 ∗/
1001 GPIO_InitStruct . Pin = GPIO_PIN_5 | GPIO_PIN_8;
1002 GPIO_InitStruct .Mode = GPIO_MODE_OUTPUT_PP;
1003 GPIO_InitStruct . Pul l = GPIO_NOPULL;
1004 GPIO_InitStruct . Speed = GPIO_SPEED_FREQ_LOW;

128

A Anhang

1005 HAL_GPIO_Init(GPIOA, &GPIO_InitStruct) ;
1006

1007 /∗Conf igure GPIO pins : PA7 PA11 PA12 ∗/
1008 GPIO_InitStruct . Pin = GPIO_PIN_7 | GPIO_PIN_11 | GPIO_PIN_12 ;
1009 GPIO_InitStruct .Mode = GPIO_MODE_INPUT;
1010 GPIO_InitStruct . Pul l = GPIO_NOPULL;
1011 HAL_GPIO_Init(GPIOA, &GPIO_InitStruct) ;
1012

1013 /∗Conf igure GPIO pins : PC5 PC6 ∗/
1014 GPIO_InitStruct . Pin = GPIO_PIN_5 | GPIO_PIN_6;
1015 GPIO_InitStruct .Mode = GPIO_MODE_INPUT;
1016 GPIO_InitStruct . Pul l = GPIO_NOPULL;
1017 HAL_GPIO_Init(GPIOC, &GPIO_InitStruct) ;
1018

1019 /∗Conf igure GPIO pins : PB1 PB11 PB12 PB13
1020 PB14 PB15 PB8 PB9 ∗/
1021 GPIO_InitStruct . Pin = GPIO_PIN_1 | GPIO_PIN_11 | GPIO_PIN_12 |

GPIO_PIN_13
1022 | GPIO_PIN_14 | GPIO_PIN_15 | GPIO_PIN_8 | GPIO_PIN_9;
1023 GPIO_InitStruct .Mode = GPIO_MODE_INPUT;
1024 GPIO_InitStruct . Pul l = GPIO_NOPULL;
1025 HAL_GPIO_Init(GPIOB, &GPIO_InitStruct) ;
1026

1027 /∗ EXTI i n t e r r up t i n i t ∗/
1028 HAL_NVIC_SetPriority (EXTI4_15_IRQn, 0 , 0) ;
1029 HAL_NVIC_EnableIRQ(EXTI4_15_IRQn) ;
1030

1031 }
1032

1033 /∗∗
1034 ∗ @brie f This func t i on i s executed in case o f e r r o r occurrence .
1035 ∗ @retval None
1036 ∗/
1037 void Error_Handler (void) {
1038 __disable_irq () ;
1039 whi le (1) {
1040 }
1041

1042 }

Quellcode A.2: Gesamter Softwarecode

129

Erklärung zur selbständigen Bearbeitung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig
verfasst und nur die angegebenen Hilfsmittel benutzt habe. Wörtlich oder dem Sinn
nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich
gemacht.

Ort Datum Unterschrift im Original

130

