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Kurzzusammenfassung

Diese Arbeit bewertet den Einfluss von synthetischen Hellfeldmikroskopiebildern auf
Objekterkennungsmodelle bei der Einzelzellenerkennung. Eine zuverldssige Erkennung
und Analyse einzelner Zellen in Mikroskopiebildern ist eine kritische Aufgabe in vie-
len biologischen und medizinischen Anwendungen. Deep-Learning Modelle haben grofies
Potenzial gezeigt, um Zellerkennungsaufgaben zu automatisieren. Jedoch ist ihre Leis-
tung stark von der Verfiigbarkeit grofser, vielfdltiger und genau gelabelter Datensétze
abhéngig. Ebenso sind hochwertige Mikroskopiebilder teuer und zeitaufwéndig zu er-
werben, was es schwierig macht, grofse Datensétze fiir das Training zu erhalten. Um
dieses Problem zu 16sen, konnen generative Modelle verwendet werden, um synthetische
Mikroskopiebilder zu erstellen. Durch das Trainieren von unkonditionierten Diffusions-
modellen auf einem Datensatz von echten Hellfeldmikroskopiebildern generiert diese
Studie synthetische Bilder, um die Trainingsdaten zu erweitern. Die Erkennungsrate und
Genauigkeit von Objekterkennungsmodellen die auf Datensétzen trainiert wurden, die
unterschiedliche Anteile von synthetischen Daten enthalten, wird dann auf echten Test-
daten bewertet. Die Ergebnisse zeigen, dass diese Diffusionsmodelle in der Lage sind, rea-
listische und hochwertige synthetische Bilder zu generieren, die schwer von echten Bildern
zu unterscheiden sind. Aktuelle Objekterkennungsmodelle, die auf diesen synthetischen
Daten trainiert wurden, erreichen vergleichbare Frgebnisse zu denen, die nur auf echten
Daten trainiert wurden, insbesondere bei niedrigeren IoU-Schwellenwerten. Jedoch wird
der Unterschied bei héheren loU-Schwellenwerten und einem héheren Prozentsatz an syn-
thetischen Daten leicht grofer. Die Ergebnisse zeigen, dass synthetische Bilder verwen-
det werden kénnen, um Objekterkennungsmodelle fiir Einzelzellenerkennungsaufgaben
zu trainieren, was einen vielversprechenden Ansatz darstellt, um die Herausforderungen

bei der Datenerfassung und -annotation in der biologischen Forschung zu iiberwinden.
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Abstract

This thesis evaluates the impact of synthetic brightfield microscopy images on object de-
tection models in single cell detection tasks. Reliably detecting and analyzing individual
cells in microscopy images is a critical task in many biological and medical applications.
Deep learning models have shown great promise in automating cell detection tasks, but
their performance is heavily dependent on the availability of large, diverse, and accu-
rately labeled datasets. But acquiring high-quality microscopy images is expensive and
time-consuming, making it challenging to obtain large-scale datasets for training. To ad-
dress this issue, generative models can be used to create synthetic microscopy images that
closely resemble real images. By training unconditional diffusion models on a dataset of
real brightfield microscopy images, this study generates synthetic images to augment the
training data. The performance of object detection models trained on datasets contain-
ing varying proportions of synthetic data is then evaluated on real test data. The results
show that these diffusion models are able to generate realistic and high-quality synthetic
images that are difficult to distinguish from real images. State-of-the-art object detection
models trained on this synthetic data achieve comparable performance to those trained
on real data only, particularly at lower IoU thresholds. However, the performance gap
slightly widens at higher IoU thresholds and increased percentages of synthetic data.
The findings show that synthetic images can be used to train object detection models for
single cell detection tasks, offering a promising approach to overcoming the challenges of

dataset acquisition and annotation in biological research.
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1 Introduction

Cell detection is a fundamental task in many biological and medical applications, serving
as a crucial step in understanding cellular processes, diagnosing diseases, and developing
new treatments [114]. The ability to accurately identify and locate individual cells within
brightfield microscopy images enables researchers to quantify cell populations, analyze
cell morphology, and track cellular behavior over time. However, the process of cell de-
tection has traditionally been a labor-intensive and time-consuming task, often requiring

manual annotation by trained domain experts.

1.1 Problem Statement

Recent advancements in Artificial Intelligence (AI) and computer vision have shown
great promise in automating the cell detection process [42]. For instance, a study by
Falk et al. [173] demonstrated the successful application of Artificial Intelligence (AI)-
assisted cell detection in analyzing large-scale time-lapse experiments of neural stem
cell development. Their deep learning-based approach not only significantly reduced the
time required for analysis but also improved the consistency and reproducibility of results
compared to manual annotation [173|. This example highlights the potential impact of
automated cell detection on accelerating biological research and improving the reliability

of experimental outcomes.

Despite the potential benefits of Al-assisted cell detection, several challenges remain in
developing robust and accurate automated systems. One of the primary difficulties lies
in the inherent variability of cell appearances in microscopy images. Cells can vary wildly
in shape, size, and intensity, depending on factors such as cell type, cell cycle stage, and
imaging conditions [23]|. This variability makes it challenging to develop algorithms that

can reliably detect cells across different experimental setups and biological contexts.
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Deep learning approaches, particularly Convolutional Neural Networks (CNNs), have
emerged as powerful tools for addressing the complexities of cell detection [188]. These
models can learn to recognize complex patterns and features directly from raw image
data, potentially overcoming the limitations of traditional handcrafted image processing
techniques [149]. However, the success of deep learning models is heavily dependent on

the availability of large, diverse, and accurately labeled datasets for training [149].

Herein lies the significant bottleneck in the development of automated cell detection
systems: the acquisition and labeling of large-scale microscopy datasets. Obtaining a
sufficient number of high-quality brightfield microscopy images is both expensive and
time-consuming, often requiring specialized equipment and expertise [132]. Moreover,
the process of manually annotating these images to create ground truth labels for training

is equally demanding, requiring significant time and effort from domain experts.

To address these challenges, researchers have begun exploring the potential of synthetic
data generation as a means to augment over even replace real-world datasets [138, 174,
94]|. By leveraging generative models, it may be possible to create large volumes of

realistic brightfield microscopy images.

1.2 Objective and Scope

The primary objective of this thesis is to evaluate the impact of introducing synthetic
brightfield microscopy images into training datasets for object detection models. The
investigation faces several key challenges, including the generation of high-quality syn-
thetic microscopy images, the training of various object detection models on datasets
containing varying proportions of synthetic data, and the rigorous evaluation of model

performance on real-world test data.

The scope of this research is focused on brightfield microscopy images of single cells, a
common and important imaging modality in biological research. While the ultimate goal
is not to maximize detection in absolute terms, the study aims to provide a comparative
analysis of how synthetic data impacts the performance of different state-of-the-art object
detection architectures. This approach will yield insights into the potential benefits and

limitations of using synthetic data in the context of cell detection.
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1.3 Research Questions

The central research question driving this thesis can be stated as follows:

RQ: Does the introduction of synthetic brightfield microscopy im-
ages to a training dataset positively impact the performance of

object detection models in single cell detection tasks?

Additionally, the research will explore two related sub-questions:

1. SRQ1: Isit possible to generate synthetic brightfield microscopy images to sufficient

quality to make them indistinguishable from real images to human experts?

2. SRQ2: How does the proportion of synthetic data in the training set influence the

magnitude and direction of its impact on model performance?

This thesis aims to address these research questions and contribute valuable insights to
the fields of computer vision, machine learning, and computational biology. The findings
may have significant implications for the development of more efficient and effective cell
detection systems, potentially accelerating biological research and improving the accuracy

of cellular analysis in various applications.

1.4 Thesis Structure

The structure of this thesis is designed to provide a comprehensive exploration of the
research questions and objectives outlined above. Following this introduction, Chapter 2
presents a review of relevant literature, covering topics such as recent advancements in
synthetic microscopy image generation and deep learning techniques in microscopy image
analysis. Chapter 3 provides essential technical background on diffusion models, differ-
ent diffusion types and architectures, fundamentals and history of object detection and
common metrics used to evaluate object detection models. Chapter 4 goes into more
detail on the motivation behind this research, discussing the current challenges and lim-
itations, potential benefits and ethical considerations of using Al, especially synthetic
data, in biological research. Chapter 5 outlines the methodology for generating the syn-
thetic brightfield microscopy images used in this study. It contains details on the dataset
acquisition and preparation, model architectures trained to generate images, training

procedures, model evaluation process, and presents the final model that was selected for
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generating the synthetic images used in the subsequent experiments. Chapter 6 builds
upon the methodology presented in the previous chapter and describes the process of the
cell detection task. It covers the data labeling, state-of-the-art model selection, train-
ing configuration, and describes the evaluation process. The results of the experiments
are presented in Chapter 7, including a survey of human experts, visual comparisons of
generated and real images, and quantitative and qualitative assessments of cell detec-
tion performance. Chapter 8 interprets the results, discusses the potential impact of the
findings on biological research and applications, and outlines the limitations and future
directions of the research. Finally, Chapter 9 summarizes the key findings of the study,

provides recommendations for future work, and concludes the thesis.



2 Related Works

Brightfield microscopy is a widely used imaging technique in biological research and
medical diagnosis. However, acquiring high-quality brightfield images can be challenging
due to various factors such as illumination non-uniformity, focusing issues and other
laboratory environment settings. In recent years, there has been growing interest in using
artificial intelligence and deep learning approaches to enhance and analyze microscopy
images. This chapter provides an overview of relevant prior work in two main areas
related to this thesis:

1. Methods for generating synthetic brightfield microscopy images, and
2. Al-based techniques for microscopy image analysis.

The first section focuses on computational approaches that aim to simulate realistic
brightfield images, which can aid in training deep learning models when real image data
is limited. The second section surveys the application of machine learning, especially deep
learning, for various microscopy image analysis tasks such as cell detection, segmentation

and classification.

2.1 Synthetic Brightfield Microscopy

One of the early works in this area by Svoboda et al. [33], proposed a technique to
generate time-lapse sequences of fully 3D synthetic brightfield microscopy image datasets,
including cell shapes, structures and motion. This enabled the creation of ground truth
data for evaluating cell segmentation and tracking algorithms. They further extended this
work [34] to generate more realistic distributions of cell populations in 3D by controlling

cell count and clustering probability.
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Several research groups have focused on translating brightfield images into the corre-
sponding fluorescence microscopy images, to reduce the amount of destructive fluores-
cent that has to be added to cells. This step can greatly reduce the time-consuming
and laborious tissue preparation process and further improve high-throughput screen-
ing [64]. Christiansen et al. [27] have introduced the approach “In Silico Labeling” (ISL)
using deep learning to predict fluorescent labeling from transmitted light images. Build-
ing upon this, Lee et al. [63, 64] developed DeepHCS and DeepHCS++ to transform
brightfield images into multiple fluorescence channels commonly used in high-content
screening. They leveraged multitask learning with adversarial losses to generate realistic

virtual stains.

Generative Adversarial Network (GAN) have emerged as a powerful framework for mi-
croscopy image generation and translation tasks. Zhang et al. [195] combined a Gener-
ative Adversarial Network (GAN) with light microscopy to achieve deep learning-based
super-resolution under a large field-of-view. The model can recover a high-resolution
accurate image from its single low-resolution measurement. In the same year, Scalbert
et al. [111] developed a generic isolated cell image generator by approximating the shape
and texture distributions of cell components using GANs. Furthermore, Liu et al. [103]
used a GAN to transfer styles across brightfield and fluorescence modalities to augment
limited annotated data for cell segmentation. They were able to improve the segmenta-
tion accuracy of the two top-ranked Mask Region-based Convolutional Neural Network
(R-CNN)-based nuclei segmentation algorithms significantly. And very recently, Liu et
al. [101] proposed a two-stage cell image recovery model that is able to reduce or even
remove phenotypic feature loss caused by saturation artifacts, enabling a full analysis of

the morphological features of cells in a given microscopy image.

More recently, diffusion models have shown promise for image generation in this domain.
Cross-Zamirski et al. [28] introduced a class-guided diffusion model to generate cell paint-
ing images from brightfield along with class labels. Taking a different approach, Della
Maggiora et al. [52] presented a conditional variational diffusion model that learns the
noise schedule during training itself, trying to improve a common drawback with diffusion
models, and demonstrating applications in super-resolution microscopy and quantitative
phase imaging. Lu et al. [105] developed EMDiffuse, a suite of algorithms designed to
enhance Electron Microscopy (EM) and Volume Electron Microscopy (VEM). It demon-
strates proficiency in several tasks such as reconstruction and generation. Incorporating
the physical model of microscopy image formation into the loss function of a Diffusion
Denoising Probabilistic Model (DDPM), Li et al. [97] suggest a physics-informed Dif-
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fusion Denoising Probabilistic Model (DDPM) (PI-DDPM) to improve reconstructions
with reduced artifacts compared to regular DDPMs when trained on synthetic microscopy
data.

In summary, the development of deep learning methods for artificially generating and
improving brightfield images has made significant progress. Techniques include uncon-
ditional generation, cross-modality translation, super-resolution, and style transfer. Al-
though previous research relied heavily on GANs, diffusion models are gaining popularity
due to their ability to generate high-quality and diverse samples. However, in particular
when training data is limited, further research is needed to improve the reliability and
utility of the generated images. The methods discussed here lay the foundations for this
research on using unconditional diffusion models to generate realistic brightfield images

to improve single cell detection.

2.2 Al-Based Microscopy Image Analysis

In recent years, deep learning approaches have achieved state-of-the-art performance on
cell segmentation and detection tasks in microscopy images. Convolutional Neural Net-
works (CNNs) have proven particularly effective due to their ability to learn hierarchical
features directly from raw pixel data. One of the most influential deep learning architec-
tures for biomedical image segmentation is U-Net, originally proposed by Ronneberger
et al. [149]. U-Net uses an encoder-decoder structure with skip connections to combine
high-resolution features from the contracting path with upsampled outputs from the ex-
panding path. This allows the network to produce precise localization while capturing
context. The authors demonstrated U-Net’s ability to achieve good segmentation results
with very little training data in microscopy applications, while maintaining a very high
computation speed. Falk et al. [173] later released a user-friendly ImageJ [158] plugin to

make U-Net accessible to non-experts for cell segmentation and detection tasks.

Many subsequent works have built upon the U-Net architecture. Caicedo et al. [86]
performed an extensive evaluation of U-Net and other deep learning strategies for nucleus
segmentation in fluorescence images. They found that U-Net outperformed classical
image processing algorithms and could reduce biologically relevant errors by half. Raza
et al. [159] offered a multi-scale version of U-Net called Micro-Net for segmenting various
objects in microscopy images. By training the network at multiple resolutions, Micro-Net

improved performance on datasets with high variability in cell sizes. To further improve
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research in brightfield microscopy, Salem et al. [30] present a U-Net architecture, called
YeastNet, to conduct semantic segmentation on brightfield microscopy images. The
presented model is able to accurately generate segmentation masks, which can further
be used for cell labeling and tracking. To evaluate the performance on the HelLa cell
line, Ghaznavi et al. [6] proposed a residual attention U-Net and compared it with an
attention and simple U-Net. They came to the conclusion that the residual attention
architecture achieved the best results regarding the mean Intersection over Union (IoU)
and Dice metric. Li et al. [17] trained the state-of-the-art object detection model You
Only Look Once (YOLO)X [53] on 2D brightfield microscopy images to detect T-cells
with a mean average precision of 96.32%. Taking it a step further in 2024, Ferreira et
al. [40] leverage CNN-based models to not only detect cells, but also classify them into

different lineages with high accuracy.

Other enhancements to U-Net have also been explored. Ounkomol et al. [26] used a
label-free approach to predict 3D fluorescence directly from transmitted-light images,
which can be extended to predict immunofluorescence from electron micrograph input.
Taking a different approach, Arbelle et al. [13] drew inspiration from GANs to train
U-Net in a weakly supervised manner, reducing the need for pixelwise annotations. By
adding a modified encoded branch to the standard U-Net architecture, Long et al. [104]
proposed a light-weighted variant, called U-Net+. This enables the model to work with
low-resource computing hardware, while increasing the average Intersection over Union

(IoU) by 1-3% compared to competing methods.

Beyond U-Net, other CNN architectures have also been applied to cell segmentation. 3
years before the U-Net architecture, Akram et al. [153] recommend a CNN-based method
that provides high-quality segmentation candidates, which can be used for cell detection,
segmentation and tracking. These segmentation candidates provide an efficient way of
exploiting the spatial and temporal context to aid in the decision process of ambiguous,
overlapping regions. Xie et al. [185] leverage convolutional neural networks to regress
a cell spatial density map across the image. This method works especially well, when
standard image segmentation fails due to cell clumping or overlap, enabling them to
set new state-of-the-art performances for cell counting and detection. Pan et al. [189]
designed a novel multi-scale fully convolutional neural network for regression of a density
map to robustly detect the nuclei of pathology and microscopy images. To capture the
state-of-the-art in 2020, Waithe et al. [38] benchmarked leading object detection networks
like Faster Region-based Convolutional Neural Network (R-CNN), YOLOv2, YOLOv3,

and RetinaNet for cell detection in fluorescence microscopy. And Mohammed et al. [118]
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performed an extensive comparison of U-Net with other state-of-the-art segmentation
networks like U-Net++-, DeepLabv3+-, and a novel architecture called PPU-Net across
multiple microscopy modalities, showing, that deeper architectures outperform standard
U-Net.

In addition to 2D segmentation, deep learning has been used to analyze 3D volumetric
microscopy data. Lugagne et al. [81] developed DeLTA, a 3D cell segmentation and
tracking pipeline based on U-Net. Their approach enabled high-throughput analysis of

E. coli cells in a microfluidic device without human intervention.

Litjens et al. [54] reviewed over 300 contributions to the field of medical image analysis to
give a concise overview of tasks and applications. They end with a summary of the current
state-of-the-art, as well as a critical discussion about open challenges and future research.
Building on this work, Moen et al. [42] and Durkee et al. [108] provide a comprehensive
review of how deep learning is transforming all facets of cellular image analysis, including
classification, segmentation, and augmented microscopy. Liu et al. [198| present a survey
on applications of deep learning in microscopy image analysis, and also discuss drawbacks
of existing deep learning-based methods, highlighting the acquisition of labeled training
data.

In addition, Castiglioni et al. [74] also dive into the topic of unbalanced medical datasets,
as well as explainable Al to deal with the so-called black box issue [136]. Kopel et
al. [129] give a comprehensive review on cell segmentation for label-free imaging contrast
microscopy, undermining the need of fluorescence-free microscopy analysis, since the step
of cell staining is time-consuming and toxic. The internal structure of the cell is destroyed,

rendering the cell unable for later reusability [17].

In summary, deep learning has revolutionized the field of cellular image segmentation and
detection. While challenges remain, such as the need for extensive annotated training
data, advances in weakly supervised and label-free imaging approaches are promising.
As microscopy continues to generate ever-increasing quantities of data, deep learning will

be an indispensable tool for extracting biological insights at scale.



3 Technical Background

3.1 Diffusion Fundamentals

Diffusion models are a class of generative models that learn the underlying distribution
of the training data and generate new samples that are similar to the learned distribu-
tion [69, 164]. These models are inspired by the principles of non-equilibrium thermo-
dynamics [78] and have demonstrated state-of-the-art performance in generating high-
quality images. The application of diffusion models extends beyond image generation,
as they have been successfully employed in tasks such as audio synthesis [51, 200, 199],
voice cloning [170, 176] and lately even video generation |71, 125].

3.1.1 Overview

The core mechanism of diffusion models, firstly presented by Sohl-Dickstein et al. [78] and
further developed by Ho et al. [69], involves a two-stage process: the forward diffusion
process (Fig. 3.1a) and the reverse diffusion process (Fig. 3.1b). During the forward
diffusion process, the training data is gradually corrupted by adding Gaussian noise at
each step. This process aims to transform the complex data distribution into a simple,
tractable distribution, typically a standard Gaussian distribution. The reverse diffusion
process, on the other hand, learns to recover the original data from the noisy versions
by reversing the noising process step by step. By training the model to denoise the
corrupted data, it effectively learns the underlying structure and patterns present in the

training data.

Once trained, diffusion models can generate new data by sampling random Gaussian noise
and passing it through the learned denoising process. The model gradually refines the
noise, step by step, to produce a sample that resembles the training data. This generative
process allows diffusion models to create novel and diverse samples that capture the

essential features of the learned distribution.
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Diffusion models have gained significant attention in the research community due to
their ability to address the challenges commonly associated with adversarial training in
GANSs [59]. These challenges include training instability [86], mode collapse [144, 192],
and difficulty in achieving convergence [156]. In contrast, diffusion models offer several
advantages, such as improved training stability, efficiency, scalability, and the ability to
parallelize the training process [36]. These properties make diffusion models an attractive
choice for generative modeling tasks, particularly in scenarios where stable and reliable

training is crucial.

3.1.2 Mathematical Concepts
Forward Diffusion

Taking a data point xg ~ ¢(x) from a real data distribution, a forward diffusion process
can be defined in which small amounts of Gaussian noise are added to the sample in T'
number of steps, producing a sequence of noise samples x1,...,x7 [69]. The step sizes

are controlled by a variance schedule {8; € (0,1)}L;.

T

q(x¢|x¢-1) = N(Xt; V1= Bxi—1,8I) q(x1.7|%0) = HQ(Xt|Xt—1) (Eq. 1)

t=1

With increasing steps ¢, the data sample x( loses more and more distinguishable features

until xp is indifferentiable from an isotropic Gaussian distribution for 7' — oo [69].

a) Slowly adding noise to the data sample xy over T steps.

Pa(xt 1|Xt
@) — @ — o — (%o .
. Q(xt|xt 1)

(b) Gradually removing noise from the data sample x7 over T steps.

=

Fig. 3.1: The forward (a) and backward (b) diffusion process.
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I ( Eq. 1) denotes the identity matrix indicating that each dimension in this multi-
dimension scenario has the same standard deviation f;. Note that g(x;|x;—1) remains a
normal distribution, defined by the mean p and the variance X, where p; = /1 — Bix;_1
and ¥; = 5,1 [69].

Thus, distinguishing diffusion models from other latent variable models, the transition
from the input data xg to x7, the approximate posterior ¢(x1.7|xq), also called forward

process, can be defined as [69]:

T

a(xrrlxo) = [ alxelxi-1) (Eq. 2)
t=1

While this approach is mathematically sound, it poses practical challenges. For instance,
at timestep ¢ = 500 < T', ¢ needs to be applied 500 times to sample x;. This repetitive

application can be computationally expensive.

By defining oy =1 — ¢, ay = Hi:o as, where €, ..., €—2,6_1 ~ N(0,I), the reparame-

terization [37] trick can be recursively used to prove that [69]:

Xt =1 —Bix¢—1+ /Prer—1

= Voixi_ o+ V1= e o
= ... (Ea. 3)
= Vayxo + V1 — auep
Thus, to produce a sample x4, following, simplified distribution can be used [69]:
x¢ ~ q(x¢[x0) = N (x5 vVarxo, (1 — a)I) (Eq. 4)

Since S, is a hyperparameter, a; and a; can be precomputed for all timesteps, the diffusion
process is able to sample noise at any timestep ¢ and obtain x; in one step [69]. Therefore,
the latent variable x; can be sampled at any arbitrary timestep, without needing to apply
Eq. 4 ¢ times [69].

Ho et al. [69] proposed to utilise a linear variance schedule for f3; increasing from (1 =
10~* to B7 = 0.02. These boundaries were chosen to be relatively small compared to
the data that was scaled to [—1, 1], ensuring that the reverse and forward processes have
approximately the same functional form while keeping the signal-to-noise ratio at xp

as small as possible [69]. Nichole et al. [121] however, showed that a cosine variance
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scheduler works even better, by providing a smoother degradation of the image. Hence,

allowing the model to operate longer on less noisy images.

Reverse Diffusion

As T — oo, the latent variable xp approximates an isotropic Gaussian distribution [69].
Therefore, if the reverse distribution g(x;—1|x;) can be learned, xp can be sampled from
N(0,I) [69]. By running the reverse process, and obtaining a sample from ¢(x¢), new,
synthetic data points can be generated from the original data distribution [69]. Unfor-

tunately, g(x;—1|x¢) is unknown.

Instead, g(x;—1|x¢) is approximated using a parameterized model pg: a neural network.
Given that q(x;—1|x¢) will also be Gaussian for sufficiently small g;, pg is chosen to be

Gaussian and the mean and variance are parameterized as follows [69, 78]:

po(xi—1|x¢) = N(x¢—1; po(xe, 1), Lo (x¢, 1)) (Eq. 5)

To go from xp to the data distribution, the reverse formula for all timesteps (pg(xo.7),

also called reverse process) can be applied [69]:

T
po(xo:7) = po(xr) [ [ po(xi-1]x:) (Eq. 6)
t=1

3.1.3 Model Architectures

Two common backbone architectures are generally chosen for diffusion models: U-Net

and Transformer.

U-Net

The U-Net, as already mentioned in chapter 2.2, is a convolutional neural network archi-
tecture that was originally developed for biomedical image segmentation by Ronneberger
et al. [149] in 2015. The defining characteristic of the U-Net architecture is its symmetric
U-shaped structure, consisting of a contracting path (encoder) and an expansive path
(decoder) [149]. The contracting path follows the typical design of a convolutional net-

work, applying a series of convolutions and max pooling operations to capture hierarchical
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features. Whereas, the expansive path increases the spatial resolution [149]. Each step
in the expansive path consists of upsampling the feature map, followed by a convolution.
A key innovation is the use of skip connections, which concatenate features from the
contracting path with the upsampled features in the expansive path. This allows the
network to combine high-resolution spatial information from the contracting path with

the semantic information learned in the expansive path [149].

In diffusion models, the U-Net is used to predict the noise that was added to the image at
each timestep of the diffusion process [36]. The skip connections in the U-Net, specifically,
allow for the preservation of fine details and spatial information during the denoising
process [36]. Several modifications and extensions have been made to the original U-
Net architecture for its application in diffusion models. These include the use of residual
blocks, attention mechanisms, and the incorporation of timestep embeddings to condition
the network on the noise level [69, 164, 122].

Transformer

The Transformer is a deep learning architecture that has revolutionized natural language
processing and is now being applied to other domains like computer vision. It was first
proposed in the seminal 2017 paper “Attention Is All You Need” by Vaswani et al. [12].
The key innovation of the Transformer is its use of self-attention mechanisms instead of
recurrent or convolutional layers to process sequential data. The main components of

the Transformer architecture are [12]:

1. Input embedding layer: Converts input tokens into dense vector representations.

Learned embeddings capture semantic and syntactic properties of the tokens.

2. Positional encoding: Injects information about the relative or absolute position of
tokens in the sequence, since the Transformer contains no recurrence. Positional

encodings allow the model to make use of the order of the sequence.

3. Multi-head self-attention: Allows the model to jointly attend to information from
different representation subspaces at different positions. Multiple attention heads

learn different relationships between tokens in the sequence.

4. Feed-forward networks: Consist of two linear transformations with a ReLU activa-
tion in between. These are applied to each position separately and identically to

transform the attended representations.
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5. Layer normalization and residual connections: Used after each sub-layer to stabilize
training. Residual connections help propagate the signal and layer normalization

keeps the scale of representations consistent across layers.

The Transformer also follows an encoder-decoder structure, with the encoder mapping the
input sequence to a sequence of continuous representations, and the decoder generating
an output sequence one element at a time while attending to the encoder representa-
tions [12].

Only recently, the Transformer architecture has been adapted for use in diffusion models
for image generation. Peebles et al. [186] proposed the Diffusion Transformer (DiT),
which replaces the typical U-Net backbone of diffusion models with a Transformer that
operates on latent image patches. The Diffusion Transformer (DiT) architecture makes

a few key modifications to the standard Transformer [186]:

e [t uses an adaptive layer normalization mechanism to inject conditional inputs like

the diffusion timestep and class label into each Transformer block.

e The input “patchify” layer linearly embeds image patches into a sequence of tokens

that are fed into the Transformer stack.

e Deeper and wider DiT variants with more Transformer blocks and attention heads

tend to improve performance, but also increase computation time and cost.

The largest DiT-XL /2 model outperformed prior diffusion models on the class-conditional

ImageNet generation benchmarks while being relatively compute-efficient [186].

3.1.4 Applications and Popular Models

Diffusion models have found applications in a wide range of areas, leveraging their abil-
ity to model complex data distributions and generate realistic samples. Some notable

applications include:

e Image Generation: Diffusion models excel at generating high-resolution, diverse,
and realistic images. Models like DALL-E 2 [126], Imagen [155], and Stable Dif-
fusion [147, 128] have showcased impressive capabilities in text-to-image synthesis,

enabling users to generate images based on textual descriptions.
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e Image Inpainting and Outpainting: Diffusion models can be used for image inpaint-
ing [9, 22|, where missing regions of an image are filled in, and outpainting [160],
where the image is extended beyond its original boundaries. This has applications

in image editing, restoration, and creative design.

e Super-Resolution: Diffusion models can enhance the resolution and quality of low-
resolution images, enabling the generation of high-resolution versions while pre-

serving important details and structures |21, 193, 204].

e Video Generation: Diffusion models have been extended to generate videos by
modeling the temporal dynamics and generating frames sequentially. This has

potential applications in video synthesis, animation, and special effects [71, 125, 70].

e Audio Generation: Diffusion models can be applied to audio data, enabling the
generation of realistic speech, music, and sound effects. This has implications for

text-to-speech systems, audio synthesis, and creative applications [51, 148].

Several diffusion models have gained significant attention and popularity due to their
impressive performance and wide-ranging capabilities. Stable Diffusion, developed by
Stability Al, is an open-source text-to-image diffusion model that has gained widespread
adoption. It offers high-quality image generation capabilities and supports various styles
and domains. With version one [147], two [147] and three [128], Stable Diffusion has
been a leader in advancing the art and technology of image generation using diffusion
models. Developed by OpenAl, DALL-E 2 [126] & 3 [127] are powerful text-to-image
diffusion models that can generate highly realistic and diverse images from textual de-
scriptions. They have showcased remarkable abilities in capturing complex scenes and
concepts. Imagen [155] was developed by Google and is another state-of-the-art text-to-
image diffusion model that produces high-quality images with fine-grained control over
the generated content. Lastly, Midjourney [116] is a popular diffusion-based model that
focuses on artistic and creative image generation. It allows users to explore and generate

images with unique styles and aesthetics

3.1.5 Unconditional Diffusion

While the previous sections have provided an overview of diffusion models and their ap-

plications, it is important to distinguish between conditional and unconditional diffusion
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models, as this study focuses specifically on unconditional diffusion-based image genera-
tion. Unconditional diffusion models generate samples from a learned data distribution
without any additional input or conditioning information. In contrast, conditional diffu-
sion models incorporate extra information to guide the generation process, such as class

labels, text prompts, or other forms of conditioning.

The key difference lies in the input and training process. Unconditional models are
trained solely on a dataset of images, learning to generate samples that match the over-
all distribution of the training data. Whereas, conditional models receive additional
inputs that allow more controlled generation, such as generating images based on a text
description or belonging to a specific class. For unconditional image generation, the
diffusion model learns to denoise randomly sampled noise tensors into coherent images
resembling the training distribution, without any guiding information. This allows for
open-ended image synthesis but provides less control over the specific content generated.
Some key advantages of this approach include simplicity, flexibility and unsupervised
learning. Unconditional diffusion models do not require paired data or labels, simplify-
ing data collection and training. They can generate diverse samples from the learned
distribution without constraints, while also potentially discovering underlying patterns
and structures in the data distribution without supervision. However, unconditional
diffusion models lack control over the generated content, compared to their conditional
counterparts. There is no direct way to specify desired attributes or content in the
generated images. This characteristic intrinsically links a single unconditional diffusion
model to a specific dataset representing a particular biological setup. When dealing with
multiple cell lines, experimental conditions, or imaging setups, it becomes necessary to
train separate models for each scenario. This represents a limitation of unconditional
diffusion models, as it necessitates more extensive and multiple training processes. In
contrast, conditional models offer the advantage of being trainable on a single, diverse
dataset, where each image is labeled with its corresponding condition. This allows for
greater flexibility and efficiency in handling varied experimental setups within a single

model framework.

In the context of this study, unconditional diffusion models present an interesting avenue
for generating diverse microscopy images. By learning the underlying distribution of cel-
lular images without explicit conditioning, these models may capture nuanced features
and variations that could impact detection algorithms. The use of unconditional mod-
els also aligns with the often label-scarce nature of microscopy datasets, where paired

condition-image data may be limited.
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3.2 Object Detection Fundamentals

Object detection is a fundamental task in computer vision that involves identifying and
localizing objects of interest within an image or video frame [197|. The goal is to de-
velop computational models that can accurately determine what objects are present and
where they are located in the visual input. This information is crucial for a wide range
of applications, from self-driving cars and video surveillance to medical imaging and
robotics [177].

3.2.1 Overview

The importance of object detection lies in its ability to provide a foundation for higher-
level computer vision tasks. By accurately detecting and localizing objects, subsequent
processes such as object tracking, instance segmentation, and scene understanding can be
performed more effectively [201, 15]. Object detection enables computer vision systems
to interpret and interact with their environment, making it a critical component in the

development of intelligent and autonomous systems [177].

Object detection techniques have evolved significantly in the last two decades by go-
ing through two main historical periods [197]: traditional object detection (pre-2014)
and deep learning-based object detection (post-2014). The early approaches relied on
template matching, sliding window methods and many more classical image processing
techniques. These methods were limited in their ability to handle variations in object
appearance, scale, and occlusion. The introduction of AlexNet in 2012 [3], originally
designed for image recognition and classification, started the revolution of object detec-
tion to rely heavily on deep learning, especially the CNN-based model architecture. It
showed that CNNs could automatically learn powerful visual features, reducing the need

for hand-crafted features in object detection pipelines [3].

In general, there are the two main approaches for detecting objects in images using
deep learning: One-stage object detectors and two-stage object detectors. The
key difference is that two-stage detectors like Faster R-CNN [161] first generate region
proposals using a Region Proposal Network (RPN), and then classify and refine the
coordinates of these proposals in a second stage. In contrast, one-stage detectors like
YOLOX [143] and Single Shot MultiBox Detector (SSD) [102] directly predict object

classes and locations in a single forward pass of the network, skipping the region proposal
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step. This makes one-stage detectors faster and simpler, but sometimes less accurate than

two-stage methods.

Within these two approaches, models can further be categorized as anchor-based or
anchor-free (Fig. 3.2). Anchor-based detectors like Faster R-CNN [161] and RetinaNet [100]
use preset anchor boxes of different scales and aspect ratios, and predict offsets relative to
these anchors. Anchor-free detectors like CornerNet [93] and some versions of YOLO [53]
eliminate anchor boxes, and instead directly predict keypoints like object centers or cor-
ners. The advantage is they avoid the complexities of tuning anchor hyperparameters.

Overall, while two-stage anchor-based detectors dominated for many years, one-stage

anchor-free models have rapidly caught up in accuracy while being faster and more flex-
ible.

Anchor-based Anchor-free

Fig. 3.2: The left image of the figure illustrates the anchor-based approach, where multi-
ple bounding boxes of varying sizes and aspect ratios are generated around the
object, represented by different colored rectangles. The right image shows the
anchor-free approach, where the object is directly detected without predefined
anchor boxes, focusing on the center and scale of the object, indicated by red
arrows. This visual comparison highlights the difference in methodology be-
tween anchor-based and anchor-free object detectors. (Image source: Zhang et
al. [83])

3.2.2 History of Object Detectors

The early era of object detection was characterized by handcrafted features and inge-
nious designs to overcome the limitations of computing power and image representation.
In 2001, Viola and Jones [178, 179] achieved a breakthrough with their real-time face

detection algorithm. Running on modest hardware, their detector was remarkably faster
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than contemporary methods while maintaining comparable accuracy. The Viola-Jones
detector introduced three key innovations: Integral image representation, Feature se-
lection and Detection cascades. These techniques allowed for efficient computation and
rapid rejection of non-face regions, enabling real-time performance. Dalal and Triggs [29]
proposed the Histogram of Oriented Gradients (HOG) descriptor in 2005, which repre-
sented a significant improvement over previous feature extraction methods. Histogram
of Oriented Gradients (HOG) balanced feature invariance and nonlinearity by comput-
ing gradients on a dense grid of uniformly spaced cells with overlapping local contrast
normalization. While versatile, HOG was primarily motivated by pedestrian detection.
Deformable Part-based Model (DPM), developed by Felzenszwalb et al. [47, 48, 49],
dominated object detection challenges from 2008 to 2010. It extended the HOG detec-
tor using a “divide and conquer” philosophy, decomposing objects into parts for more
robust detection. Deformable Part-based Model (DPM) introduced several influential
concepts: Mizture models, Hard negative mining, Bounding box regression and Context
priming. Although surpassed in accuracy by modern methods, many of DPM ’s insights,
like Bounding box regression continue to influence contemporary object detectors. Going
into more detail on these methods is beyond the scope of this study, but they laid the

foundation for modern object detection techniques.

The rise of deep learning, particularly CNNs, revolutionized object detection [92]. This
era can be broadly categorized into two-stage and one-stage detectors. Girshick et
al. [151, 58] introduced Regions with CNN features (R-CNN) in 2014, marking the begin-
ning of the deep learning era in object detection. R-CNN used selective search to gener-
ate object proposals, then applied a CNN to extract features from each proposal. Linear
SVMs were used for final classification. While R-CNN significantly improved detection
accuracy, it suffered from slow inference due to redundant computations. He et al. [65]
proposed Spatial Pyramid Pooling Networks (SPPNet) in 2014 to address R-CNN’s speed
limitations. Spatial Pyramid Pooling Networks (SPPNet) introduced a Spatial Pyramid
Pooling (SPP) layer, allowing CNNs to generate fixed-length representations regardless
of input image size. This innovation enabled to compute the features of an entire image
just once, dramatically improving detection speed. Building on his previous work, Gir-
shick [150] proposed Fast R-CNN in 2015. This detector enabled simultaneous training
of a detector and bounding box regressor under the same network configuration. Fast
R-CNN significantly improved both accuracy and speed compared to its predecessors.
Ren et al. [161] introduced Faster R-CNN shortly after Fast R-CNN [150], achieving

near real-time detection speeds. The key innovation was the Region Proposal Network
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(RPN), which enabled efficient generation of object proposals within the neural network.
Faster R-CNN represented a major step towards end-to-end trainable detection systems.
Lin et al. [99] proposed Feature Pyramid Network (FPN) in 2017 to address the chal-
lenge of detecting objects at various scales. Feature Pyramid Network (FPN) introduced
a top-down architecture with lateral connections, building high-level semantic feature
maps at all scales. This approach has significantly improved detection of objects across

a wide range of sizes.

You Only Look Once (YOLO), proposed by Joseph et al. [143] in 2015, was the first one-
stage detector of the deep learning era. YOLO framed detection as a regression problem,
applying a single neural network to the full image to predict bounding boxes and class
probabilities simultaneously. While sacrificing some localization accuracy, especially for
small objects, YOLO achieved unseen detection speeds. Since then, many more versions
of YOLO have been developed and published [141, 142, 18, 53, 183, 184, 182]. Liu et
al. [102]| introduced the Single Shot MultiBox Detector (SSD) model in 2015, incorpo-
rating multi-reference and multi-resolution detection techniques. SSD improved upon
YOLOv1’s accuracy, particularly for small objects, while maintaining high detection
speeds. A key innovation was detecting objects at different scales on different layers of
the network. Lin et al. [100] proposed RetinaNet in 2017 to address the accuracy gap be-
tween one-stage and two-stage detectors. They identified extreme foreground-background
class imbalance as a key issue and introduced the focal loss to address this problem. Reti-
naNet achieved comparable accuracy to two-stage detectors while maintaining the speed

advantages of one-stage approaches.

Most of the above-mentioned deep learning-based object detection models rely heavily on
non-maximum suppression as a post-processing step. Non-Maximum Suppression (NMS)
is a crucial technique used to eliminate redundant bounding boxes and select the most
relevant detections [76]. The primary purpose of Non-Maximum Suppression (NMS) is
to refine the output of object detectors by removing duplicate detections of the same
object, thereby improving the overall accuracy and reducing false positives [120]. NMS
has its roots in early computer vision techniques. It was initially proposed as a method
for edge detection in images [24]. As object detection algorithms evolved, NMS was
adapted to handle bounding box refinement. The concept gained significant attention
with the rise of sliding window detectors and has since become an integral part of modern
object detection pipelines [29]. The NMS algorithm [5] typically follows the steps shown
in Algorithm 1.
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Algorithm 1 Non-Maximum Suppression (NMS)

1: Input:

2: List of Bounding Boxes B

3: List of Corresponding Scores S

4: ToUthreshold

5: Output: List of Remaining Boxes D

6: D + @

7: Sort B in descending order of scores S

8: while B # () do

9: bmax < first box in B > Get box with highest score
10: D < DU {bpmax} > Add it to the final list
11: B < B\ {bmax} > Remove it from the initial list
12: for all b € B do

13: if ToU(bmax; b) > [0Uthreshold then

14: B+ B\ {b} > Eliminate boxes with high enough IoU
15: end if

16: end for

17: end while
18: return D

This process ensures that only the most confident and least overlapping detections are
retained, effectively suppressing less confident, redundant predictions [102]|. In two-stage
detectors like R-CNN and its variants (Fast R-CNN, Faster R-CNN), NMS is typically
applied twice: First after the RPN to refine the proposed regions and after the final
classification and bounding box regression to eliminate duplicate detections [161]. For
one-stage detectors like YOLO and SSD, NMS is applied once at the end of the network:
After the network generates a set of bounding boxes and class probabilities in a single
forward pass [143]. In both cases, NMS plays a critical role in reducing the number of
detections and improving the overall accuracy of the object detection system [100]. But

it suffers from several limitations that researchers are trying to address:

e Inability to detect nearby objects: Traditional NMS suppresses all bounding boxes
that have significant overlap with the highest-scoring detection. This can lead to

missed detections when objects are close together or partially occluded [139].

e Reliance on arbitrary thresholds: NMS typically uses a fixed IoU threshold to
determine which boxes to suppress. This arbitrary threshold may not be optimal

for all object classes and scenarios [190, 2].
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e Discarding potentially useful information: By completely eliminating overlapping
boxes, NMS discards information that could be valuable for improving detection

accuracy [120].

e Sensitivity to localization errors: Small errors in bounding box coordinates can lead

to incorrect suppression decisions, especially with high IoU thresholds [85].

e Computational inefficiency: The iterative nature of NMS can be computationally

expensive, particularly for large numbers of detections [10].

The success of Transformer architectures in natural language processing has recently in-
fluenced object detection. In 2020, Carion et al. [25] proposed Detection Transformer
(DETR) (DEtection TRansformer), framing object detection as a set prediction prob-
lem using Transformers. This approach eliminated the need for many hand-designed
components like anchor generation and most importantly, non-maximum suppression.
Zhu et al. [202] further improved upon this concept with Deformable DETR, addressing
issues of slow convergence and limited performance on small objects. In 2023, Zhao et
al. [106] proposed Real-Time Detection Transformer (RT-DETR), by building on top of
DETR [25]. This approach has enabled transformer-based detection models to be on par
when it comes to detection speed of non-transformer models, while maintaining the accu-
racy and detection rate of previous DETR models. These Transformer-based approaches
represent a new paradigm in object detection, achieving state-of-the-art performance on
benchmark datasets [106].

3.2.3 Datasets and Performance Metrics

The creation of large-scale, diverse datasets has been instrumental in pushing the bound-
aries of object detection capabilities. Several key datasets have emerged as benchmarks
for the computer vision community, each contributing to the field’s progression in unique

ways.

The Pattern Analysis, Statistical Modelling and Computational Learning (PASCAL)
Visual Object Classes (VOC) Challenges, running from 2005 to 2012, were pivotal in
the early development of object detection algorithms [112, 113]. Two versions of this
dataset are particularly noteworthy: VOCO07 and VOC12. VOCO07 consists of 5,000
training images with roughly 12,000 annotated objects, whereas VOC12 expands this

dataset with an additional 6,000 training images and 15,000 annotated objects, resulting
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in 11,000 images and 27,000 objects. Both datasets feature annotations for 20 common
object classes, such as “person”, “cat” and “bicycle”, providing a foundation for detect-
ing everyday objects [112, 113]. ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [124], organized annually from 2010 to 2017, significantly advanced the state
of the art in generic object detection. The detection challenge within ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) utilized ImageNet images and expanded
the scope to 200 object classes. This dataset marked a substantial increase in scale, with
the number of images and object instances surpassing that of Pattern Analysis, Statis-
tical Modelling and Computational Learning (PASCAL) Visual Object Classes (VOC)
by two orders of magnitude. Introduced in 2014, Microsoft Common Objects in Context
(MS-COCO) quickly became one of the most challenging and widely used object detec-
tion datasets [175]. Key features of Microsoft Common Objects in Context (MS-COCO)

include:

e A focus on 80 object categories, with fewer classes than ILSVRC but more instances

per class.

e The inclusion of per-instance segmentation annotations, in addition to bounding

boxes, to aid in precise localization.

e A higher proportion of small objects (area < 1% of the image) and more densely

located objects.

The MS-COCO-17 version, for example, contains 164,000 images with 897,000 anno-
tated objects. The dataset’s emphasis on small and densely packed objects has made
it particularly valuable for developing robust detection algorithms. Launched in 2018,
the Open Images Dataset (OID) challenge represents the next leap in dataset scale and
complexity [7]. The Open Images Dataset (OID) dataset includes 1.91 million images
with 15.44 million annotated bounding boxes across 600 object categories for standard
object detection, and a visual relationship detection task, focusing on identifying paired
objects in specific relations. The unprecedented scale of the OID has further pushed the

boundaries of object detection research.

The evolution of evaluation metrics in object detection reflects the changing priorities
and capabilities of detection algorithms over time. In the early days of object detection
research, particularly in pedestrian detection, metrics such as “miss rate vs. false positives
per window (FPPW)” were common [29]. However, this per-window measurement was

found to be flawed and not indicative of full image performance [133]. The introduction
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of the Caltech pedestrian detection benchmark in 2009 [133, 134] shifted the focus to false
positives per image (FPPI), providing a more realistic assessment of detector performance
in full images. Currently, the most widely used evaluation metric for object detection is
Average Precision (AP), first introduced in VOC2007 [112|. Average Precision (AP) is
calculated as the average detection precision across different recall levels and is typically
computed for each object category separately. The Mean Average Precision (mAP) across
all categories serves as an overall performance metric. To assess localization accuracy,
the ToU between predicted and ground truth bounding boxes is used. Traditionally, a

threshold of 0.5 IoU has been used to determine whether an object is correctly detected:

N
1
APQ50 = — AP, Eq.
m 50 N Zél (Eq. 7)

where:

e NN is the number of classes.

e AP; is the Average Precision for class .

The Average Precision (AP) for a single class is computed as:

n

AP = "(P(k) - AR(k)) (Eq. 8)
k=1

where:

e 1 is the number of detections.
e P(k) is the precision at cutoff k.
e AR(k) is the change in recall at cutoff k.

With the introduction of the MS-COCO dataset [175], a more strict evaluation protocol
was established. The MS-COCO AP is averaged over multiple IoU thresholds ranging
from 0.5 to 0.95, encouraging more precise object localization ( Eq. 9). This metric has
become particularly relevant for applications requiring high localization accuracy, such

as robotic manipulation tasks or medical image analysis.

1 L1 &
mAP@[50:95] = > (N > APi(IoU]-)> (Eq. 9)
j=1 i=1
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where:

e M is the number of ToU thresholds (10, corresponding to 50%, 55%, ..., 95%).
IoUj is the j-th IoU threshold.

N is the number of classes.

AP;(IoUj) is the Average Precision for class ¢ at IoU threshold IoU;.

The development of comprehensive datasets and rigorous evaluation metrics has been
crucial in advancing the field of object detection. From the early days of PASCAL
VOC to the current state-of-the-art MS-COCO and OID, researchers have continually
raised the bar for detection algorithms. Similarly, the evolution of evaluation metrics
from simple per-window measurements to sophisticated multi-threshold AP calculations
reflects the increasing demands placed on modern object detectors. As the field continues
to progress, it is likely that even more challenging datasets and nuanced evaluation

metrics will emerge, further driving innovation in object detection techniques.

26



4 Motivation

Single-cell analysis has emerged as a powerful approach for understanding cellular het-
erogeneity and dynamics in biological systems. By examining individual cells rather than
bulk populations, researchers can uncover critical insights into developmental processes,
disease mechanisms, and therapeutic responses [44, 40]. However, the detection and
segmentation of individual cells from microscopy images remains a significant challenge,
particularly when using label-free imaging brightfield imaging techniques [72, 157|. In
biological applications, “label-free imaging” techniques refer to methods that analyze bi-
ological samples without the use of fluorescent dyes or other external labels, enabling the
study of cells and biomolecules in their natural state. In contrast, “labels” in machine
learning denote annotated data points used to train supervised models, providing the
necessary output categories or values that enable the model to learn and make accurate

predictions.

4.1 Current Challenges and Limitations

Detecting single cells in brightfield microscopy images presents several significant chal-
lenges. One of the primary difficulties is the low contrast between cells and the back-
ground, making it hard to distinguish cell boundaries accurately [44]|. Unlike fluorescence
microscopy, where specific cellular components can be labeled, brightfield images often
show cells as transparent objects with minimal intensity differences [87|. This low con-
trast is further complicated by illumination variations across the field of view and over
time during long-term experiments [44]. Additionally, cells in brightfield images can

exhibit heterogeneous intensity levels, even within the same cell population [44, 46].

To combat this issue, fluorescent dyes are often used to lift cells out of the background.
But relying on fluorescence labeling techniques poses its own set of challenges. While flu-

orescence microscopy provides high contrast images that clearly delineate cell boundaries,

27



4 Motivation

the labeling process can be time-consuming, expensive, and potentially cytotoxic [95, 40].

This limits the ability to perform live-cell imaging over extended time periods.

Another challenge is the presence of imaging artifacts, such as uneven illumination, out-
of-focus effects, air bubbles, and debris, which can be mistaken for cells or obscure
actual cell boundaries [157|. The three-dimensional nature of cells also poses problems
when projecting them onto a two-dimensional image plane, leading to overlapping cell
boundaries and apparent “lateral spillover” effects [157]. This is particularly problematic

in dense cell cultures or tissues where individual cells are in close proximity [40].

Furthermore, the morphological diversity of different cell types adds another layer of
complexity. Cells can vary greatly in size, shape, and texture, making it challenging to
develop a universal detection algorithm [80]. This diversity necessitates the development
of adaptive and robust methods that can handle various cell morphologies without ex-
tensive parameter tuning |44, 88|. Lastly, the computational demands of processing large
datasets from high-throughput microscopy experiments require algorithms that are not
only accurate but also efficient in terms of processing time [44, 46]. Modern microscopy
experiments can generate vast amounts of image data, necessitating efficient and scalable

computational methods for single-cell detection and analysis [131].

One of the biggest limitations researchers face is the acquisition of large, high-quality

and diverse microscopy datasets:

1. Time constraints: Collecting extensive brightfield microscopy data is highly time-
consuming. Imaging large numbers of samples across multiple conditions and time
points can take days or even weeks of continuous microscope operation [166]. This is
especially challenging for live-cell imaging experiments that require frequent image
acquisition over extended periods.

2. Cost considerations: High-throughput brightfield microscopy setups are expensive,
often requiring specialized equipment like automated stages, environmental con-
trol systems, and high-performance cameras [137]. Additionally, there are ongoing
costs for sample preparation materials, microscope maintenance, and data storage
infrastructure.

3. Ethical considerations: When working with biological samples, especially those
derived from human subjects or animal models, researchers must navigate complex
ethical requirements. This includes obtaining proper informed consent, ensuring
confidentiality of sensitive information, and adhering to regulations on the use and

storage of biological materials [11, 73, 61]. For human samples, researchers must
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often obtain approval from institutional review boards, which can be a lengthy
process’.

4. Laboratory labor requirements: Preparing samples for large-scale brightfield mi-
croscopy experiments is labor-intensive. This includes cell culture maintenance,
sample mounting, and quality control checks. Additionally, operating microscopes
for extended periods and managing the resulting data requires significant personnel
time and expertise [119, 152].

5. Data management challenges: The sheer volume of data generated by large-scale
brightfield microscopy experiments poses significant storage and analysis challenges.
Researchers must implement robust data management systems to organize, store,
and process terabytes of image data [79].

6. Standardization issues: Ensuring consistency across large datasets can be difficult,
especially when experiments span multiple days or use different microscope setups.
Variations in sample preparation, imaging conditions, microscope performance, and

microscope operator can introduce unwanted variability into the data [23, 67, 68|.

4.2 Potential Benefits and Impact

Diffusion models offer promising potential for generating synthetic brightfield microscopy
images, which could significantly benefit cell detection tasks. These models can produce
diverse and realistic synthetic data, potentially alleviating the scarcity of labeled training
data that often slows down deep learning approaches in microscopy [35, 28|. By learning
to model the underlying distribution of cellular appearances, diffusion models may en-
hance the ability to detect cells across varying imaging conditions and morphologies [8§].
This improved robustness is particularly valuable for brightfield microscopy, where cell
contrast and appearance can vary immensely. Furthermore, diffusion models have demon-
strated success in generating high-quality, fully-annotated microscopy datasets without
the need for manual annotations [28, 35]. This capability could dramatically reduce the
time and resources required for data preparation while still enabling the training of accu-
rate cell detection models. Additionally, the synthetic data generated by diffusion models
has shown potential for improving the performance of downstream tasks, such as image-
based profiling and classification [28]. By leveraging these models to augment existing

datasets, researchers may be able to develop more robust and generalizable cell detection

!Panel on Research Ethics. TCPS 2: CORE-2022 (Course on Research Ethics) Chapter 12. Retrieved
from: http://tcps2core.ca/welcome (Accessed September 09th 2024)
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algorithms that perform well across a broader range of brightfield imaging conditions and

cell types.

Developing more effective methods for single-cell detection in brightfield images could
have far-reaching implications for biological research and applications. Improved bright-
field cell detection would enable large-scale, label-free imaging analysis, making high-
throughput screening and longitudinal studies of live cells easier, without the need for
potentially cytotoxic fluorescent labels [165, 60]. More accurate cell detection could re-
veal subtle variations in morphology and behavior that are masked in population-level
analyses, advancing the understanding of cellular heterogeneity [60]. Additionally, en-
hanced capabilities for analyzing label-free imaging cellular responses could streamline
the drug discovery process by enabling more physiologically relevant assays and acceler-
ating compound screening [171, 77]. These advancements would collectively contribute
to a more comprehensive and efficient approach to cellular analysis across various fields

of biomedical research.

4.3 Ethical Considerations and Responsible Development

While diffusion models offer promising capabilities for generating synthetic microscopy
data, their usage raises several important ethical considerations that must be carefully
examined. A primary ethical concern is ensuring proper consent and privacy protections
when using real microscopy data to train diffusion models. Even if the synthetic images
generated are not exact copies of real data, the model may encode private or sensitive
information from the training set [56]. Researchers must obtain appropriate consent and
permissions to use real microscopy data for model training. Additionally, synthetic data
generation should be done in compliance with relevant data protection regulations like
GDPR [32]. Diffusion models can potentially amplify biases present in training data
or introduce new biases [109]. For microscopy applications, this could manifest as the
model generating images that are not representative of the full diversity of cell types,
tissue samples, or experimental conditions. Biased synthetic data could then lead to bi-
ased or unfair performance of downstream object detection models [162]. Using synthetic
microscopy images in scientific research and model development raises questions of scien-
tific integrity and reproducibility. There is a risk that artifacts or unrealistic features in
synthetic images could lead to spurious or non-reproducible results in downstream anal-

ysis [110]. The ability to generate highly realistic synthetic microscopy images creates
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potential for misuse, such as fabricating scientific results or evading detection of manip-
ulated images [117]. While diffusion models are not uniquely susceptible to misuse, their
powerful generative capabilities warrant consideration of safeguards and responsible de-
velopment practices. When synthetic images are used in research or clinical applications,
there may be an ethical obligation to disclose their synthetic nature to human experts
reviewing the images or to patients whose diagnoses rely on Al systems trained using
synthetic data [31]. Clear policies should be developed regarding disclosure and consent.
And lastly, training large diffusion models can have a significant computational cost and
associated environmental impact [41]. Researchers should consider the energy usage and
carbon footprint of synthetic data generation, and explore more efficient architectures or

transfer learning approaches where possible.
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This chapter dives into the process of brightfield microscopy image generation using
unconditional diffusion models. It outlines the comprehensive methodology, beginning
with dataset acquisition and progressing through model architecture design, training
procedures, and evaluation techniques. The chapter explores both objective metrics
and subjective measures to assess the quality and realness of the generated images.
Ultimately, it leads up to the selection of the final model and optimized generation
process that will be used to generate synthetic data for the proceeding cell detection

step.

5.1 Dataset Acquisition

High-quality image acquisition is crucial for training effective diffusion models in image
generation tasks. The quality of the training data directly impacts the model’s ability
to learn and generate realistic images. As noted by Ho et al. [69], the forward process of
adding noise to images relies on high-fidelity starting points to effectively learn the reverse
denoising process. Furthermore, Rombach et al. [147] emphasize that the latent space
representation in latent diffusion models benefits from clean, high-resolution input images
to capture fine details and textures. The importance of image quality extends beyond just
resolution; factors such as lighting, background, and camera settings play a significant
role in creating optimal training data. Proper image acquisition techniques can help
highlight desired features and minimize unwanted artifacts, leading to more robust and
accurate diffusion models. As diffusion models continue to advance in generating high-
quality synthetic images, ensuring the quality of the training data becomes increasingly

important to push the boundaries of what these models can achieve.
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5.1.1 Biological Setup

Chinese Hamster Ovary (CHO) cells, specifically the Chinese Hamster Ovary ()-K1 and
CHO DG44 variants, were used as the starting point for the experiments in this thesis.
These cells are widely used in biotechnology for producing proteins and other biological
products [89], and thus serve as a great research base. The cells were “stably transfected”
with a plasmid, which is a small circular piece of DNA [194] that has been permanently

integrated into the cells’ genetics. This plasmid contained several important elements:

1. A Cytomegalovirus () promoter: This is a genetic element that ensures strong and
consistent expression of the Enhanced Green Fluorescent Protein () gene [167].

2. A gene coding for Enhanced Green Fluorescent Protein (eGFP): This protein glows
green when exposed to blue or ultraviolet light, making it easy to visualize cells
that have successfully incorporated the plasmid [146, 145].

3. Two antibiotic selection markers: These genes allow cells that have taken up the
plasmid to survive in the presence of specific antibiotics. One marker works in
bacteria (used during the plasmid preparation process) and the other in mammalian
cells like CHO [146, 145].

After introducing the plasmid, the cells were grown in a special growth medium containing
antibiotics. This step ensures that only cells that have successfully incorporated the
plasmid survive, as they can resist the antibiotic due to the selection marker. The
cells were maintained in this selective environment until over 95% of the population
showed strong green fluorescence, indicating successful and stable integration of the eGFP

gene.

To prepare for imaging, the cells were counted to determine their concentration. This
step is crucial for calculating how much cell suspension to use when seeding the plates
for Al training. Cell suspension refers to a liquid mixture where the cells are evenly
dispersed in a solution. This means that cells are floating freely in a liquid rather than
being attached to a surface or clumped together. The cells were then placed into 96-well
plates (a standard format in biological research) at three different densities: 300, 150,
and 1 cell per well. This range of densities allows for the capture of images with varying
cell numbers and distributions to create a diverse dataset, allowing the model to see

varying degrees of cell density.

Finally, the plates were imaged using a high-throughput microscope called CELLAVISTA
3.1 RS HE by Synentec GmbH [168]. This advanced instrument captured two types of
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images for each well: Brightfield and Fluorescence Images. Brightfield images show the
overall structure and position of cells, similar to what can be seen through a standard
microscope (Fig. 5.1a). Whereas fluorescence images specifically highlight the cells ex-
pressing GFP, appearing as bright spots against a dark background (Fig. 5.1b). The
images were taken using a 10x magnification objective lens, resulting in 8-bit grayscale
images with a resolution of 3056x3056 pixels. The imager, with its 10x lens, captures
multiple smaller regions of interest of the well, resulting in 20 total images per well.
These images, also called “subwell images”, are mechanically stitched together in a circu-
lar pattern, resulting in an image of size 8192 x 8192, due to cropping of overlapping areas
(Fig. 5.1c and 5.1d). This approach was chosen to capture as much detail as possible,

and to increase the relative area these small cells occupy in high-quality images.

While fluorescence microscopy images may not seem immediately relevant to this thesis
focused on brightfield microscopy, they play a crucial role in the data acquisition phase
of the object detection model. Although these fluorescence images are not utilized in the
image generation process itself, they significantly facilitate the labeling of cells for object
detection purposes. The fluorescent markers provide a clear contrast, making it easier
to identify and localize individual cells and their boundaries accurately. This enhanced
visibility allows for more precise and efficient labeling, and ensures that the increased
workload in the cell line development step is worthwhile. A more detailed explanation of

this labeling process and its importance will be provided in subchapter 6.1.

5.1.2 Pre-Processing

The Pre-processing stage plays a crucial role in preparing the raw microscopy images for
training diffusion models. This phase involves several steps to optimize the dataset, en-
suring that the images are suitable for the machine learning task at hand while preserving

the essential cellular information.

Following the imaging process described in the previous section, a total of roughly 900
subwell images were acquired, each with dimensions of 3056 x 3056 pixels. To further
increase the relative area occupied by cells in each image and to prevent data loss that
might occur from resizing larger images, these subwell images were split into smaller
patches of 512 x 512 pixels. This process resulted in approximately 32,000 patches,
significantly increasing the dataset size while maintaining a high image quality. It’s

worth noting that during the patch creation process, the last column and row of patches
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(a) Brightfield subwell image sample. (b) Fluorescence subwell image sample.

(c) Stitched full well brightfield image, with (d) Stitched full well brightfield image with the
no additional visualization effects. fluorescence channel tinted and overlaid on
top. Both have been normalized across all

sub well images.

Fig. 5.1: Resulting images from brightfield and fluorescence imaging using the CELLAV-
ISTA 3.1 RS HE. Typically, the fluorescence image is overlaid on top of the
brightfield image and tinted to reflect the emission color of the eGFP protein.
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required black padding of 16 pixels on the right and bottom edge, to ensure a consistent
patch size across the dataset. This minor adjustment ensures uniformity in the input

data for the diffusion models.

One of the challenges encountered in the raw images was the presence of optical imag-
ing artifacts caused by the shape of the wells in the microtiter plate. These artifacts
manifested as dark arches in many subwell images (Fig. 5.2b), creating a thick border
between the inside of the well and the plate itself. They are caused by the refraction and
reflection of light on the curved surfaces of the wells, which bend and scatter light in var-
ious directions. Additionally, the curved geometry of the wells acts like lenses, focusing
and defocusing light, leading to uneven illumination and shadowing effects. This artifact
could potentially interfere with the model’s ability to detect and analyze cells accurately.
The appearance of these well edges varies considerably depending on the exact shape of
the well (Fig. 5.2a), impacting the visibility of cells near the edge. To address this issue
and maintain the focus on cellular structures, a decision was made to exclude patches
containing visible well edges from the dataset. This filtering process reduced the total
number of usable patches to approximately 24,000. While this reduction in data quantity
might seem substantial, it ensures that the remaining images contain primarily relevant

cellular information, which is crucial for training accurate diffusion models.

Square
corners
V-bottom U-bottom
' Rounded :
corners
"
Round well Square well F-bottom C-bottom

(a) Schematic of the most common microtiter plate well shapes. (b) Sample subwell image with
(Image source: Auld et al. [14]) the visible well edge.

Fig. 5.2: llustration of various microtiter plate well shapes and a subwell image demon-
strating how the well edge can obscure the visibility of cells.

Given the computational constraints and the time limitations of this thesis, a further
subset of 10,000 images was randomly selected from the 24,000 filtered patches. This final
dataset strikes a balance between having sufficient data for training different diffusion

models and managing the computational resources available within the thesis timeframe.
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To optimize the training process even further and reduce potential bottlenecks in data
transfer, the selected images were converted into a Hugging Face dataset format [96].
This involved transforming the image data into parquet files, a columnar storage format
that offers improved efficiency and maintainability during the training phase [180]. This
step is particularly important when dealing with large datasets, as it can significantly

reduce the time spent on data loading and preprocessing during model training.

By implementing these pre-processing steps, a refined and optimized dataset has been

created that is well-suited for training diffusion models.

5.2 Model Architectures

This section details the rationale behind testing different model configurations and presents
the specific architectures employed in this study, whereas training details and further hy-

perparameters are explained in more detail in chapter 5.3.

The exploration of various diffusion model architectures is crucial for understanding
the impact of different structural elements on the generation of single-cell microscopy
images. Firstly, it allows for a comprehensive understanding of how architectural choices
influence the model’s ability to capture and reproduce the intricate details of single cells in
microscopy images. Secondly, by testing models with and without attention mechanisms,
it becomes possible to assess whether the additional computational cost of attention layers
actually translates to meaningful improvements in image quality. Lastly, experimenting
with larger and smaller U-Net architectures (see 3.1.3) provides insights into the trade-

offs between model complexity, computational requirements, and generation quality.

The Hugging Face Diffusers [181] library was utilized for implementing and training four
distinct diffusion models: scc small_attn, scc_ small, scc_large and scc_medium__ attn.
This choice was motivated by the library’s robust implementation of state-of-the-art
diffusion techniques and its flexibility in allowing customization of model architectures
and interchangeable noise schedulers to evaluate different diffusion speeds and output

quality.

The scc_small _attn model serves as the baseline architecture, incorporating a balance of
standard convolutional blocks and attention blocks. With 71.4 million trainable param-
eters out of a total of 95.3 million, this model required a substantial training duration of

7 days, 12 hours, and 40 minutes to reach the maximum training amount of 350 epochs
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(see chapter 5.3). The architecture includes attention blocks in both the down-sampling

and up-sampling paths, potentially allowing for more complex feature interactions.

In contrast, scc_ small eliminates all attention blocks, relying solely on standard convolu-
tional operations. This simplification barely reduces the number of trainable parameters
to 70.1 million, but significantly shortens the training time to about a third compared
to scc_small_attn. The comparison between scc_small attn and scc_small aims to
elucidate the specific contributions of attention mechanisms in the context of single cell

image generation.

The scc_large model represents a substantial increase in network capacity, featuring
additional layers and a higher number of channels in the later stages of the network.
With 277 million trainable parameters, this model is about four times larger than scc_ -
small and explores the potential benefits of increased model complexity. Although having
a bigger architecture with much more trainable parameters, this model had a similar
training time as scc_small. This confirms that the self-attention blocks require much

more computational resources than normal CNN blocks.

Finally, scc_medium_attn presents an intermediate approach, incorporating more atten-
tion blocks than scc_ small attn but maintaining a more moderate increase in overall
network size compared to scc_ large. Due to time constraints and no further visual im-
provements in performance, the training process of this model was cancelled after 310
epochs. With 114 million trainable parameters, and more self-attention blocks than
scc_small_ attn, training this model for 40 more epochs would have resulted in far more

than 8 days of pure training.

The systematic variation in these architectures allows for an analysis of how different
structural elements contribute to the model’s performance in generating realistic single
cell microscopy images. By comparing the outputs and performance metrics of these
models, it becomes possible to draw informed conclusions about the optimal architectural
choices for this specific application, potentially leading to more accurate and efficient

single cell image generation systems.
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Tab. 5.1: This table presents a detailed comparison of the diffusion model archictectures.

Model Name Block Down Up Total  Train- | Epochs Training
Out Block Block | Params  able Duration
Channels | Types! Types? Params
scc small_ - 128 DB UB 95.3M  71.4M 350 7d 12h 40m
attn 128 DB UB
256 ADB AUB
256 DB UB
512 DB UB
scc_small 128 DB UB 94M 70.1M 350 2d 7h 10m
128 DB UB
256 DB UB
256 DB UB
512 DB UB
scc_large 128 DB UB 300M 27TM 350 2d 11h 30m
128 DB UB
256 DB UB
256 DB UB
512 DB UB
512 DB UB
1024 DB UB
sec_ - 128 DB UB 128M 114M 310 7d 4h 50m
medium__ - 128 DB AUB
attn 256 ADB UB
256 DB AUB
512 ADB UB
512 DB UB

I DB = DownBlock, ADB = AttnDownBlock
2 UB = UpBlock, AUB = AttnUpBlock

5.3 Model Training

The training process for the diffusion models was designed to optimize performance while
balancing computational constraints. This section details the training configuration and

hyperparameters used across all model architectures.

The training dataset comprised 10,000 images, selected from a larger pool of prepro-

cessed patches as described in section 5.1.2. This dataset size was chosen to provide
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a robust representation of the cell imagery while remaining computationally tractable
within the time constraints of this thesis. Each model was trained for a maximum of
350 epochs, a duration chosen through testing to allow for convergence while reducing
overfitting risks. The learning rate was set at 0.0001, a value commonly used in dif-
fusion model training that provides a balance between convergence speed and stability.
The AdamW optimizer was selected for its ability to handle sparse gradients effectively,
which is particularly beneficial in the context of diffusion models. The Diffusion Dif-
fusion Inference Model (DDIM) scheduler was employed for its efficiency and improved
sampling quality compared to traditional diffusion processes. An Exponential Moving
Average (EMA) decay of 0.9999 was applied to the model weights, a technique known to
stabilize training and potentially improve generalization. A batch size of 4 was utilized,
optimized for the available Graphics Processing Unit (GPU) memory while trying to

ensure sufficient stochasticity in gradient updates.

To facilitate model evaluation and enable the selection of optimal checkpoints, the train-
ing process incorporated regular checkpointing and validation. Checkpoints were saved
every 10 epochs, allowing for analysis of model performance over time. Concurrently,
Fréchet Inception Distance (FID) validation was performed every 10 epochs, providing
quantitative metrics on the quality and diversity of generated images throughout the
training process. For this purpose, a subset of 128 sample images was generated. These
images were produced using 25 inference steps and the Diffusion Diffusion Inference
Model (DDIM) scheduler, providing a consistent basis for evaluating model progress and
performance. Torchmetrics [123] was used to calculate the Fréchet Inception Distance
(FID) value.

The training infrastructure leveraged Distributed Data Parallel (DDP) across two NVIDIA
A100-SXM4-40GB GPU, significantly accelerating the training process. Mixed precision
training with float16 was implemented to further enhance computational efficiency with-
out compromising model quality. PyTorch Lightning [45] was used to reduce boilerplate
code and facilitate easy scaling to multi-GPU training scenarios. This framework also

seamlessly integrated mixed precision training and other optimization techniques.

This comprehensive training configuration was applied consistently across all model ar-
chitectures described in section 5.2. By maintaining consistency in the training process,
meaningful comparisons could be drawn between the performance of different model ar-
chitectures, isolating the impact of architectural choices on the quality of generated cell

images.
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5.4 Model Evaluation

The evaluation of the trained diffusion models is a critical step in assessing their perfor-
mance and suitability for generating high-quality images. In the context of this thesis,
where the final model will be used to generate samples for object detection, a compre-
hensive evaluation approach combining both objective and subjective measures is essen-
tial. The use of both objective and subjective metrics is necessary for several reasons.
Objective metrics provide quantifiable and reproducible results, allowing for consistent
comparisons between different models and across various experiments. They offer a stan-
dardized way to assess model performance and track improvements over time. However,
these metrics may not always capture the nuanced aspects of image quality that are im-
portant for human perception [55, 154]. Subjective metrics, on the other hand, directly
incorporate human judgment and can capture subtle qualities that objective measures
might miss. They are particularly valuable in assessing the realism and perceptual qual-
ity of generated images, which is crucial for applications in microscopy and biological
imaging. However, subjective evaluations can be time-consuming, expensive, and poten-
tially biased [130]. By combining both approaches, the strengths of each method can be

leveraged to gain a more comprehensive understanding of the model’s performance.

5.4.1 Objective Metrics

The primary objective metric used in this evaluation is the FID. FID has become a
standard metric in the field of generative models due to its ability to capture both the
quality and diversity of generated images [55]. FID measures the distance between the
feature distributions of real and generated images. It uses the Inception-v3 network, pre-
trained on ImageNet, to extract features from both sets of images. The feature vectors are
then modeled as multivariate Gaussian distributions, and the Fréchet distance between
these distributions is calculated [154]:

FID = ||pr — MgHQ +Tr(X, + Xy — 2(27"29)1/2) (Eq. 1)

Where p1, and 114 are the mean feature vectors for real and generated images, respectively,
and X, and Y, are their covariance matrices. Tr denotes the trace of a matrix as a scalar
value, meaning the sum of the elements on its main diagonal. It is used to measure the
difference in the covariances of the real and generated data distributions. FID is preferred

over other metrics for several reasons [43, 75]:
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1. It correlates well with human perception of image quality.
2. It has become one of the most commonly used metric in the field.

3. It is sensitive to both the quality and diversity of generated images.

However, it’s important to note that FID has some limitations. Recent research has
shown that it may not always reflect the state-of-the-art perceptual realism of diffusion
models as judged by humans [55]. Additionally, its reliance on the Inception-v3 network,
which was trained on natural images, may not be ideal for specialized domains like

microscopy images [154].

In addition to the Fréchet Inception Distance, several other objective metrics have been
proposed for evaluating generative models. However, FID remains the most widely used
due to its balance of effectiveness and practicality. Some alternative metrics and brief
explanations of why they may be less suitable than FID for this thesis are described below:
Inception Score (IS): This metric also uses the Inception-v3 network to measure both
the quality and diversity of generated images. While it was once popular, Inception Score
(IS) has several limitations [16, 140]:

e It doesn’t compare generated images to real ones, making it less suitable for as-
sessing realism.

e It can be easily fooled by mode collapse, where a model generates a small set of
high-quality but limited-diversity images.

e It’s less reliable for domains significantly different from ImageNet, such as mi-

croscopy images.

Kernel Inception Distance (KID): Similar to FID, Kernel Inception Distance (KID)
measures the distance between real and generated image features. However, it’s compu-
tationally more expensive than FID and it may not provide significant advantages over
FID for the specific microscopy image domain [203, 154].

Wasserstein Distance: This metric measures the cost of transforming one distribution
into another. It can also be computationally intensive, especially for high-dimensional
data like images, while also being less intuitive to interpret [115, 4].

Multi-Scale Structural Similarity Index Measure (MS-SSIM): This metric fo-
cuses on structural similarities between images. But it focuses too much on luminance
and structural information, potentially overlooking color-related aspects and does not

align well with human judgement of image quality [50, 135].
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5.4.2 Subjective Measures

To complement the objective evaluation, a subjective assessment was conducted using a
survey created with SurveyJS [1] (Fig. A.1 and A.2). The survey (Appendix A) included
a set of sample images, consisting of 20 generated images (Tab. A.1) and 10 real images
(Tab. A.2) in random order. The images were generated by the final model and hyperpa-
rameter set concluded in section 5.5. This survey was distributed to microscopy imaging

experts and biologists from Synentec GmbH. The participants were asked to:

1. Decide whether each image was real or generated.
2. State the confidence in their decision.

3. If they decided an image was fake, explain what led to their decision.

This approach allows for a nuanced evaluation of the generated images, capturing aspects
that might not be reflected in objective metrics. It provides insights into the model’s
ability to generate images that are indistinguishable from real microscopy images, which

is crucial for its intended application in object detection.

5.5 Final Model Decision

The evaluation of trained diffusion models with different noise schedulers and hyper-
parameters is a crucial step in optimizing the performance of generative models. This
process is particularly important because the chosen combination will significantly im-
pact the quality and characteristics of the generated images, which will subsequently be
used for object detection tasks. Testing various hyperparameters and noise schedulers
during inference is essential for several reasons. Firstly, different schedulers can affect the
trade-off between image quality and generation speed [82]. Secondly, they can influence

the plausibility and semantic expression of the generated images [82].

In this study, the top 5 lowest FID checkpoints (see Fig. 5.3) of every model architecture
(chapter 5.2) were tested with multiple state-of-the-art noise schedulers and different hy-
perparameters. The schedulers evaluated included DPM++ 2M, DPM++ 2M Karras,
DPM-++ 2M SDE, DPM++ 2M SDE Karras, DPM++ SDE, DPM++ SDE Karras, Eu-
ler, Euler a, and DDIM. Each scheduler was tested with varying inference steps, ranging
from 10 to 45 in increments of 5 for all schedulers except DDIM, which was tested from

30 to 65 in increments of 5. Additional hyperparameters that were explored include:
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Fig. 5.3: FID metric comparison of the different diffusion architectures throughout the
training process. The top 5 lowest FID checkpoints of each model are marked
with a star.

e Solver order: This parameter, set to either 2 or 3, determines the order of
the numerical solver used in the diffusion process. It is recommended to use
solver order = 2 for guided sampling, and solver order = 3 for unconditional
sampling.

e Prediction type: Two options were tested: epsilon and v_prediction. The
epsilon prediction focuses on predicting the noise added to the image, while
v__prediction is an alternative formulation that offers more numerical stability and
might avoid color-shifting artifacts in higher resolution samples.

e Timestep spacing: This parameter, set to either linspace or trailing, determines
how the timesteps are distributed during the diffusion process. Linspace spacing
distributes timesteps evenly, while trailing spacing concentrates more steps towards

the end of the process.

Each combination of these hyperparameters was used to generate 8 samples, providing a
comprehensive set of images for evaluation. The final model, scheduler, and hyperparam-
eter combination was handpicked based on a careful examination of all generated samples,

with the goal of selecting the configuration that produced the best-looking images.
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This approach to hyperparameter optimization aligns with recent research in the field.
For instance, studies have shown that the choice of noise schedule can significantly im-
pact the plausibility of generated designs, with some schedules improving the rate of
plausible designs from 83.4% to 93.5% [82]. By meticulously evaluating these various
configurations, it can be ensured that the chosen model and parameters are optimized
for generating high-quality, diverse, and semantically coherent images. This optimization
is crucial for the subsequent object detection tasks, as the quality and characteristics of
the generated images will directly impact the performance and reliability of the detection

algorithms.

After thorough evaluation of the various model architectures, noise schedulers, and hy-
perparameters, a final configuration was selected for the cell detection task. The chosen
model is the scc_ small architecture, which demonstrated a good balance between per-
formance and computational efficiency. This model, despite its relatively smaller size
(70.1M trainable parameters), achieved competitive results in terms of image quality
and fidelity.

The selected noise scheduler for the final configuration is Euler a, which is known for its
ability to produce high-quality samples with a good trade-off between speed and image
fidelity. The choice of trailing timestep spacing allows for a more concentrated sampling
towards the end of the diffusion process, potentially leading to improved fine details in
the generated images. The prediction type was set to epsilon, focusing on predicting the

noise added to the image during the diffusion process.

For the generation of the final dataset to be used in the cell detection task, a dynamic
approach was implemented. The inference steps were randomly chosen between 35 and
40 for each batch of 16 images. A total of 10,000 images were generated. This variation in
inference steps introduces a subtle level of diversity in the generation process, potentially

benefiting the robustness of the subsequent detection model.

The final calculated FID score for this configuration was 45.57, which represents a signif-
icant improvement over the initial FID scores observed during training (Fig. 5.3). This
improvement might be be attributable to the careful selection of the noise scheduler and
other hyperparameters, as well as the increased number of inference steps compared to
the validation setup. It’s worth noting that the final decision was solely influenced by
subjective evaluation of the samples. The chosen configuration produced images that
were deemed to have the best visual quality and most closely resembled the character-

istics of real microscopy images of single cells. This optimized model and generation

45



5 Methodology: Image Generation

pipeline was then used as the foundation for creating a diverse and high-quality dataset
of synthetic cell images. These images were crucial in the next phase of the thesis, where
they were used to train and evaluate object detection models for single-cell detection in

microscopy images.

46



6 Methodology: Cell Detection

In the field of object detection, datasets typically consist of images paired with corre-
sponding text files containing bounding box information for the objects of interest. Over
time, several standardized formats have emerged for storing this label data, each with

its own strengths and use cases.

Formerly one of the most widely used formats is the PASCAL VOC format, which has
been influential in the development of many object detection models, including SSD,
R-CNN, Fast R-CNN, and Faster R-CNN (chapter 3.2.2). The PASCAL VOC format
stores annotation data in XML files, providing a structured and human-readable rep-
resentation of object locations. Each XML file contains detailed information about the
image, including filename, size, and object annotations. The bounding box coordinates
are represented as [x_min,y min,r_mazx,y maz], defining the top-left and bottom-

right corners of the box.

Another popular format is the YOLO format, which is closely associated with the YOLO
family of object detection models. YOLO annotations are stored in simple text files, with
each line representing a single bounding box and each value in a line being separated by
a whitespace. The format is concise and easy to parse, using normalized coordinates:
[class _id,x center,y center,width, height] . This normalization allows for easier scal-

ing and processing of annotations across different image sizes.

The Common Objects in Context (COCO) format, developed by Microsoft, offers a more
comprehensive approach to object annotation. Common Objects in Context (COCO)
annotations are stored in JSON files, providing a flexible and extensible structure for
complex datasets, while also being human-readable. The bounding box information is
represented as [z, y, width, height], where (x,y) defines the top-left corner of the box.
COCO’s format allows for additional features such as segmentation masks and keypoints,

making it suitable for a wide range of computer vision tasks beyond object detection.
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Each of these formats has its advantages and disadvantages. The PASCAL VOC for-
mat’s XML structure provides rich metadata and is human-readable, but it can be more
verbose and slower to parse for large datasets. The YOLO format’s simplicity makes it
efficient for processing and storage, but it may lack some of the detailed metadata found
in other formats. The COCO format offers the most flexibility and feature-richness, but
its complexity can be overwhelming for simpler projects. The choice of annotation format
often depends on the specific requirements of the project, the models being used, and
the available tools and workflows. For instance, researchers working with R-CNN-based
models might prefer the PASCAL VOC format for its compatibility with existing code-
bases. Those focusing on real-time object detection might opt for the YOLO format due
to its efficiency and direct integration with YOLO models. Projects requiring advanced
annotations or working with diverse datasets might benefit from the extensibility of the

COCO format.

For this research the YOLO format was chosen, as it aligns best with the object detection
models that were trained (chapter 6.2).

6.1 Dataset Acquisition

The creation of object detection datasets is significantly more time-consuming than as-
sembling datasets for unconditional diffusion models, primarily due to the need for de-
tailed label data. While the base dataset described in Section 5.1.2 provided the necessary
images, it lacked the crucial label data needed for training an object detection model.
To address this, a comprehensive labeling process was undertaken to prepare the data

for the object detection task.

Tab. 6.1: Baseline and mixed datasets used for object detection model training.

Dataset | Real Images ‘ Generated Images | Val Images | Test Images

scc_real 5000 0 2,527 16,758
scc_ 10 4500 500 2,527 16,758
scc_ 30 3500 1500 2,527 16,758
scc_ 50 2500 2500 2,527 16,758

Four distinct datasets were created (Tab. 6.1), each containing a total of 5,000 labeled
images for training. The remaining images were allocated to validation and test splits,

maintaining consistency across all four datasets. The composition of these datasets varied
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in terms of the ratio between real and generated images. For all datasets, the validation

split consisted of 2,527 images, while the test split comprised 16,758 images.

The decision to use a large number of test images in the dataset can be highly beneficial

for several reasons:

e Statistical Significance: A large test set provides more statistically significant re-
sults. With 16,758 images, the performance metrics derived from the test set are
likely to be more robust and reliable, reducing the impact of random variations or
outliers.

e Diverse Scenarios: In microscopy, cell appearances can vary greatly due to factors
like cell cycle stage, environmental conditions, or imaging parameters. A large test
set is more likely to encompass a wide range of scenarios, ensuring that the model’s
performance is evaluated across diverse conditions.

e Confidence in Generalization: With a substantial test set, there’s greater confidence
that the model’s performance metrics reflect its true generalization capability rather
than being overly influenced by the specific composition of a smaller test set.

e Confidence in Small Improvements: When comparing different models or tech-
niques, a large test set allows for the detection of small but statistically significant

improvements that might not be apparent with a smaller dataset.

6.1.1 Real Images

As mentioned in Section 5.1.1, the fluorescence images, which were not utilized during
the diffusion training process, played a crucial role in the labeling of real images. The
availability of these fluorescence images significantly sped up the labeling process for the

brightfield microscopy images.

To leverage the fluorescence data, a simple classical image processing algorithm was de-
veloped using OpenCV [20]. This algorithm was designed to detect cells in the binarized
fluorescence mask (as shown in Fig. 5.1b). Bounding boxes were then extracted from the
detected contours. The process can be summarized by the simplified pseudocode of Algo-
rithm 2. This algorithm provides a foundation for automated cell detection, significantly
reducing the manual labeling effort. However, to ensure accuracy, the detected bound-
ing boxes were manually checked and, when necessary, slightly adjusted. This approach
combines the efficiency of automated detection with the precision of human verification,

resulting in a high-quality labeled dataset of real images.
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Algorithm 2 Cell Detection and Bounding Box Extraction Pseudocode

Input: Fluorescence image F
Output: List of bounding boxes B
B+
Fy, < Binarize(F)
contours < FindContours(Fy;y,)
for each contour in contours do
if Area(contour) > min_area then
box <+ BoundingRect(contour)
B.append(box)
end if
: end for
: return B

—_ = =

6.1.2 Generated Images

The acquisition of the generated images was discussed in more detail in chapter 5.5,
and only missing are the bounding boxes for the cells in these images. To facilitate
the labeling process for these images, a YOLOv8m model was quickly trained on the
previously labeled real image data. This pre-trained model was then used in conjunction
with Roboflow’s “Model-Assisted Labeling” [39] feature, where the selected model will

run when an image is opened in the annotation tool, streamlining the labeling process.

While this approach significantly accelerated the labeling process compared to complete
manual labeling, it was not without its limitations. The model’s predictions often re-
quired minor adjustments, particularly in cases where it detected dead-looking cells,
misclassified generated debris as cells or simply missed them. This process not only
aided in efficient labeling but also served as an initial indicator of the quality and realism
of the generated images. The need for adjustments and the types of errors encountered
provided first valuable insights into the strengths and weaknesses of the diffusion-based
image generation process. From the initial set of 10,000 generated images, 2,500 were
carefully selected and labeled for inclusion in the mixed datasets. This selection process
ensured that only the highest quality generated images were incorporated into the train-
ing data, maintaining the integrity of the dataset while exploring the impact of synthetic

data on model performance.
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6.2 Model Architectures

When selecting an object detection model for single cell detection in brightfield mi-

croscopy images, several factors must be taken into account:

1. Accuracy: The model should be capable of detecting cells with high precision and
recall, even in challenging scenarios such as crowded fields or low-contrast images.

2. Speed: Real-time or near-real-time performance is often desirable in microscopy
applications, especially for live-cell imaging or high-throughput screening.

3. Scalability: The model should be able to handle varying image sizes and cell den-
sities without significant performance degradation.

4. Robustness: Given the potential variability in cell appearance and imaging con-
ditions, the model should be resilient to noise, illumination changes, and other
artifacts.

5. Computational requirements: The hardware available for training and inference
should be considered, as some models may require substantial computational re-
sources.

6. Ease of use and community support: Models with well-documented implemen-
tations and active community support can facilitate easier integration and trou-
bleshooting, especially for researchers with limited experience in machine learning

or computer vision.

Based on these considerations and the specific requirements of this thesis, three state-of-
the-art models were selected for evaluation: YOLOvS, YOLOvV9, and Real-Time Detec-
tion Transformer (RT-DETR). Each of these models offers unique advantages and has

shown promising results in various object detection benchmarks.

6.2.1 YOLOvVS

YOLOVS, developed and published by Ultralytics in january 2023, builds upon the suc-
cess of YOLOv5 while introducing several key improvements and extensions [84]. The
architecture of YOLOvVS8 is characterized by its efficient backbone, neck, and head com-
ponents, which work in unison to achieve high accuracy and speed. The backbone of
YOLOvVS utilizes a CSPDarknet53 variant, which employs cross-stage partial connections
to enhance feature reuse and gradient flow. This design choice contributes to improved

accuracy without significantly increasing computational complexity [172]. YOLOvS uses
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CIoU [196] and DFL [98] loss functions as the two main losses. These losses help in de-
tecting objects of varying sizes, especially smaller objects, which is particularly beneficial
for cell detection tasks where cell sizes may vary, but are always small compared to the
image [172]. The head of YOLOv8 employs an anchor-free detection mechanism (chap-

ter 3.2.1), moving away from the anchor-based approach of earlier YOLO versions.

Additional improvements are available during the training process of YOLOvS. Mosaic
Augmentation is an advanced data augmentation technique that combines multiple im-
ages into a single training sample, enhancing the model’s ability to detect objects in
various contexts [18]. YOLOvVS8’s head is decoupled, enabling an independent process-
ing of objectiveness, classification and regression. This allows for more efficient training
and inference, as the model can focus on specific tasks without interference from other

components [172].

For this thesis, YOLOvVS8 models of sizes s, m, and x were trained and evaluated. These
different sizes offer a range of trade-offs between accuracy and computational efficiency,
allowing for a comprehensive assessment of the model’s performance in the context of

single cell detection.

6.2.2 YOLOvV9

The successor of YOLOv8, YOLOvV9 was published by Wang et al. [184] in February

2024 and aims to push the boundaries of object detection performance further.
Its architecture is characterized by several innovative features and improvements [184]:

e Programmable Gradient Information (PGI): This novel concept allows the model
to generate reliable gradients through auxiliary reversible branches, ensuring that
deep features can correctly maintain the key characteristics for the target task.

e Enhanced Backbone: YOLOvV9 employs a refined backbone structure that incor-
porates a more generalized version of the Efficient Layer Aggregation Network
(GELAN).

e Information Bottleneck Principle: By leveraging PGI, essential data can be pre-
served across the network’s depth, that otherwise might be lost during passes

through successive layers of the network.
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e Reversible Functions: To further prevent information degradation —particularly
in its deeper layers— YOLOvV9 integrates reversible functions into its architecture,

ensuring the preservation of vital data for object detection tasks.

For this thesis, YOLOvV9 models of sizes ¢ and e were trained and evaluated. These
models represent different points on the accuracy-efficiency spectrum, allowing for a

comprehensive assessment of YOLOvV9’s capabilities in single cell detection tasks.

6.2.3 RT-DETR

RT-DETR, or Real-Time Detection Transformer, marks a significant shift from the CNN-
based architectures that have dominated the YOLO family of object detection models.
Introduced by Zhao et al. [106] in 2023, RT-DETR aims to seamlessly blend the global
reasoning capabilities of transformers with the computational efficiency characteristic
of CNN-based detectors. This innovative approach represents a promising direction in
the field of object detection, particularly for applications such as single cell detection in

microscopy images.

The architecture of RT-DETR comprises several key components designed for efficient
real-time object detection. At its foundation lies a CNN-based backbone, which ex-
tracts multi-scale features from the input image. Specifically, the last three stages of
the backbone (S3, S4, S5) are used as input to the subsequent stages [106]. Following
the backbone is an efficient hybrid encoder, which transforms the multi-scale features
into a sequence of image features. This hybrid encoder employs two main modules: The
Attention-based Intra-scale Feature Interaction (AIFI) for processing the S5 features,
and the CNN-based Cross-scale Feature-fusion Module (CCFM) for fusing features from
S4 and S5 [106]. This feature fusion strategy strikes a balance between computational
efficiency and the need to capture multi-scale information. It is particularly relevant in
the context of cell detection, where cells may appear at various scales within a single
image due to factors such as depth of field or natural size variations. The use of both
attention mechanisms and convolutional operations in the encoder allows RT-DETR to
capture both local and global contextual information efficiently. Following the encoder,
an loU-aware query selection module chooses a set of initial object queries, which are
then refined by a Transformer decoder with auxiliary prediction heads to generate the

final bounding boxes and confidence scores.
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One of the standout features of RT-DETR is its end-to-end design, eliminating the need
for non-maximum suppression (chapter 3.2.2). As mentioned in previous chapters, the
removal of NMS in post-processing steps enables the model to generate high-quality

predictions directly, while maintaining real-time performance.

For the same reasons mentioned previously, RT-DETR models of sizes x and | were

trained and evaluated.

6.3 Model Training

The training process for the object detection models in this study utilized the Ultr-
alytics framework as the primary tool [84]. This choice was made due to its robust
implementation of state-of-the-art models and its flexibility in handling various train-
ing configurations. All models were fine-tuned on the datasets described in chapter 6.1,
rather than being trained from scratch. The base models had been pre-trained on the
COCO dataset, a large-scale object detection dataset comprising 80 classes, as discussed
in chapter 3.2.3.

6.3.1 Fine-Tuning Approach

The decision to fine-tune pre-trained models instead of training from scratch offers sev-
eral advantages. Transfer learning, the process of using knowledge gained from solving
one problem and applying it to a different but related problem, is at the core of fine-
tuning [169]. In the context of object detection, fine-tuning allows the model to leverage
general features learned from a large, diverse dataset, like shapes, and adapt them to
the specific task at hand. One of the primary benefits of fine-tuning is the significant
reduction in training time and computational resources required. Pre-trained models
have already learned a rich set of features from a large dataset, which can be particularly
beneficial when working with smaller, domain-specific datasets [191]. This is especially
relevant in the current study, where the dataset size is relatively small compared to large-
scale datasets like COCO. Additionally, fine-tuning often leads to better generalization
and performance, particularly when the target dataset is limited in size or diversity. The
pre-trained weights serve as a good initialization point, allowing the model to converge
faster and potentially to a better optimum than if it were trained from random initial-

ization [91]. Another advantage of fine-tuning is its ability to mitigate overfitting. When
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training complex models on smaller datasets, there’s a risk of the model memorizing the

training data rather than learning generalizable features [66].

6.3.2 Training Configuration

The training process was conducted using a single NVIDIA GeForce RTX 3090 GPU
with 24GB of memory. This hardware configuration allowed for efficient training of the
various model architectures and sizes. Due to the restricted time frame of this thesis, an
extensive hyperparameter search was not conducted. Instead, the training configurations
were based on the default settings provided by the Ultralytics framework!, with a batch
size of 32, maximum epochs of 200 and early stopping patience of 35 epochs. This batch
size was chosen as a balance between memory constraints and training efficiency. A larger
batch size can lead to more stable gradient estimates and potentially faster convergence,
but it also requires more memory [163]. The maximum number of epochs was set to
200 to allow sufficient time for model convergence with the limited data available, while
the early stopping patience of 35 epochs was implemented to prevent overfitting and

unnecessary computation if the model’s performance plateaued.

Ultralytics default data augmentation techniques were employed to artificially expand
the training dataset and improve the model’s ability to generalize. The following aug-

mentation parameters were used:

e HSV-Hue augmentation: 0.015

e HSV-Saturation augmentation: 0.7
e HSV-Value augmentation: 0.4

e Image translation: +0.1 (fraction)
e Image scale: £0.5 (gain)

Left-right flip probability: 0.5

e Mosaic augmentation probability: 1.0

These augmentation techniques were chosen to introduce variability in the training data
without distorting the essential characteristics of the cells. The Hue and Saturation
augmentations should have no effect on truly grayscale images. The Value augmentation
can slightly change the brightness of the images, simulating variations in illumination.
Translation and scaling augmentations simulate variations in cell position and size, which

are common in microscopy images. The left-right flip augmentation introduces reflection

Lultralytics /ultralytics/cfg/default.yaml at main - ultralytics/ultralytics - GitHub
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invariance, while the mosaic augmentation combines multiple images, potentially helping

the model learn to detect cells in various contexts and densities.

Notably, shear, and perspective transformations were not applied (all set to 0.0) to pre-
serve the natural shape of the cells, which are important features in brightfield microscopy
images. Similarly, channel swapping (BGR) was not used, as this transformation might
introduce unrealistic variations that do not reflect the expected appearance of cells in

the microscopy setup.

6.4 Model Evaluation

Models trained on datasets partially composed of generated images (90%, 70%, and
50% real images) were systematically compared against the baseline (100% real images).
This comparison aims to effectively measure any improvements or degradations in model

performance resulting from the inclusion of synthetic data.

The primary method for evaluating object detection model performance is through the
comparison of standardized metrics (chapter 3.2.3). As already mentioned, while various
metrics exist, Mean Average Precision (mAP) stands out as the most commonly and
widely accepted metric in the field of object detection [175]. Although mAP@50:95 is
often used to determine overall model precision in localization and accuracy, this study
places particular emphasis on mAP@50. The rationale behind this focus lies in the

specific requirements of single cell detection in brightfield microscopy images.

In the context of this research, the primary objective is to accurately detect the presence
and approximate location of individual cells. Unlike tasks that require precise morpho-
logical analysis of the detected cells afterwards, the exact tightness of the bounding box is
of lesser importance. As long as the cell is correctly identified and roughly localized, the
detection can be considered successful for the purpose of this study. The chosen metric
(mAP@50) is well-suited for this scenario, as it evaluates the model’s performance based
on a more lenient Intersection over Union (IoU) threshold of 0.5. In addition, this model
is less sensitive to cell size variations compared to higher IoU thresholds. It is important
to note that while mAP@50 is the primary focus, the other mAP variants are not dis-
regarded. These metrics provide valuable supplementary information about the models’
performance, particularly in cases where more precise localization may be beneficial for

downstream analysis or future applications.
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While mAP serves as the primary quantitative metric, the evaluation process also con-

siders several qualitative and practical aspects:

1. Inference speed: Assessment of the model’s processing time per image, which
is crucial for potential real-time applications in microscopy workflows and high-
throughput screening.

2. Model size and computational requirements: Evaluation of the trained models’
memory footprint and computational demands, considering potential deployment
constraints in research or clinical settings.

3. Sample detections: Curated sets of images showcasing successful detections, failure
cases, and comparisons between models, providing qualitative insights into model

behavior.

The comprehensive evaluation methodology described in this chapter aims to provide a
thorough and nuanced understanding of the impact of incorporating generated images
into the training data for single cell detection models. By combining quantitative metrics,
and qualitative assessments, this approach enables a robust evaluation of the potential
benefits and limitations of leveraging unconditional diffusion-based image generation in
the context of brightfield microscopy cell detection. The results obtained through this
evaluation process will directly address the research question (chapter 1.3), shedding light
on whether and to what extent generated images can enhance object detection accuracy
or reduce the reliance on large datasets of real images. These findings have significant
implications for the fields of biological image analysis and machine learning, potentially
offering new strategies for developing robust cell detection models with limited real-world
data.
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This chapter presents the results of the conducted survey (Chapter 5.4.2); visual image
differences, and the performance of the trained models on the real and synthetic datasets
(Chapter 6.4). The first section delves into the survey results, providing detailed insights
into the participants’ ability to distinguish between real and synthetic images. The
second section offers a visual comparison of the generated and real images, highlighting
key differences in color, contrast, brightness, and texture. The third section will present
the performance of the trained models (as described in Chapter 6.2) on the various

datasets (outlined in Chapter 6.1).

7.1 Survey Results

The survey engaged 11 imaging experts and biologists from Synentec GmbH, leveraging
their professional expertise in microscopy and cell biology. Each participant was tasked

with classifying 30 images, resulting in a total of 330 individual classifications.

Fig. 7.1: Normalized confusion matrix showing the distribution of correct and incorrect
classifications for real and generated microscopy images.
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The confusion matrix (Fig. 7.1) offers a concise overview of the participants’ ability to
distinguish between real and generated microscopy images. Out of 330 total classifica-
tions, 165 were correct, yielding an overall accuracy of 50%. This even split between
correct and incorrect classifications suggests a significant challenge in reliably differen-
tiating between the two image types. Notably, 54% of generated images were correctly
identified as synthetic, while 46% were misclassified as real. Conversely, only 42% of real

images were correctly identified, with 58% misclassified as synthetic.

Fig. 7.2: Bar chart displaying accuracy for individual Al-generated and real images.

The bar chart (Fig. 7.2) provides a more nuanced view of classification accuracy for
individual images. The data reveals substantial variation across the 30 images, with
accuracies ranging from approximately 18% to 90%. This wide range underscores the
complexity of the task and the diverse characteristics of the images. Only four images
(numbers 9, 13, 22, and 26) achieved an accuracy of 80% or higher, suggesting these im-
ages possessed distinctive features that made them more easily classifiable. Conversely,
five images (numbers 3, 14, 17, 18, and 21) had accuracies of 30% or lower. The ma-
jority of images fell within the 35% to 60% accuracy range, with no discernible pattern
emerging, even when differentiating by image type. This distribution further emphasizes
the difficulty participants faced in consistently distinguishing between real and generated

images.

The word cloud visualization (Fig. 7.3) offers valuable insights into the specific features
and characteristics that influenced participants’ classifications. The size of each term

corresponds to its frequency in the participants’ responses, with larger words indicating
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Fig. 7.3: Word cloud depicting common reasons for classifying an image as generated.

more common reasons for classifying an image as generated. The prominence of terms
such as “cell”, “background”, and “edge” indicates their frequency in participants’ expla-
nations and highlights the key areas of focus during the decision-making process. Other
notable terms like “pattern”; “perfect”, “artifacts” and “noise” suggest common features
associated with generated images. These terms provide a window into the participants’
mental models and the visual cues they relied upon to make their judgments. The word
cloud also reveals clusters of related terms that offer additional context. Words such as
“blurry”, “quality”, “shadows” and “contrast” indicate that image quality and environmen-
tal factors played a significant role in participants’ assessments. This suggests that the
overall visual fidelity and realistic imperfections were important considerations in distin-
guishing between real and generated images. Similarly, terms like “pattern”; “structure”,
“smooth”, and “surface” imply that participants were attuned to the spatial distribution
and arrangement of visual elements, possibly looking for unnatural regularities or repeti-
tions that might indicate a synthetic origin. The prominence of “background” and related
terms like “noise” and “artifact” underscores the importance of the image context in the
classification process. Participants were not solely focused on the cells themselves but
also considered the surrounding areas and overall image characteristics. This compre-
hensive evaluation of images captures the intricacies involved in the task and highlights

the diverse visual elements that influenced the decision-making.

60



7 Results

In conclusion, the survey results reveal the intricate challenge of distinguishing between
real and generated microscopy images of single cells. The near-even split in overall ac-
curacy, combined with the wide range of individual image accuracies and the diverse
terminology used by participants, demonstrates the sophistication of the generated im-
ages and the difficulty of the classification task. These findings highlight the potential
of unconditional diffusion-based image generation techniques to produce highly realistic
microscopy images that can challenge even expert observers. The results also underscore
the importance of considering multiple visual aspects when evaluating image authentic-
ity and the potential need for more advanced tools or training to reliably differentiate

between real and synthetic microscopy images in scientific contexts.

7.2 Visual Comparison of Generated and Real Images

The comparison between generated images (Appendix A.1) and real brightfield mi-
croscopy images (Appendix A.2) reveals subtle differences. This analysis employs both
visual inspection and quantitative metrics to provide a comprehensive evaluation of the
unconditional diffusion model’s performance in replicating brightfield microscopy images.
The metric-based approach includes average brightness, average contrast, color channel
ratios, and a color bias metric, which complement and substantiate the visual observa-

tions.

The color bias metric is calculated as the difference between the highest and lowest color
channel ratios. The metrics for the generated images were calculated using the 2500
images included in the scc 50 dataset, whereas the metrics for the real images were
calculated using the entire scc_real dataset. The images were converted from a float

range of 0—1 to an integer range of 0—255 for the metric calculations.

One of the most striking differences is the overall color palette. The generated images
exhibit a faint of greenish tint that seems to be overlaid on top of the actual images. This
observation is supported by the metric-based analysis, which reveals a very small color
bias of 0.0008 in the generated images compared to 0.0000 in the real images. Although
this difference is small, it aligns with the perceived color tint. The color channel ratios
(R: 0.3330, G: 0.3338, B: 0.3332) for generated images deviate slightly from the ideal
grayscale distribution of 0.3333 for each channel, further confirming the subtle color

variations introduced by the diffusion model.
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In contrast, the real microscopy images maintain a consistent grayscale palette, typical
of standard brightfield microscopy, as evidenced by their perfect 0.3333 ratio across all
color channels. This difference in color range suggests that the diffusion model may have

introduced some color variations not present in the original training data.

Fig. 7.4: Density histogram depicting the contrast levels of generated and real images.

The contrast levels also differ between the two sets, both visually and metrically (Fig. 7.4).
The generated images have a lower average contrast value of 8.21, whereas real images
have an average contrast of 14.51, so nearly twice as high. This discrepancy is also
slightly visible in the generated images, which appear a little bit washed out or lacking
in detail compared to the real images. The real images, on the other hand, exhibit a
higher contrast range, with more pronounced differences between light and dark areas,

hinting at clearer and more defined cell boundaries.

Brightness levels follow a similar pattern to contrast (Fig. 7.5). The metric-based analysis
reveals an average brightness of 206.1 for real images compared to 132.21 for generated
images, indicating a noticeable overexposure in the real images. Ideally, the brightness
levels should be scattered around the middle of the available range (128) to avoid over-
exposure or underexposure for grayscale images with 8-bit depth (pixel values of 0-255).
The overexposure in the real images can lead to loss of detail and information in the
brighter areas, which is less likely in the generated images due to their better balanced

brightness levels.
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Fig. 7.5: Density histogram illustrating the brightness levels of generated and real images.

The texture is another area where differences are apparent. The generated images some-
times display a subtle, almost canvas-like structure or noise across the background, which
is rarely that noticeable in the real microscopy images. This added texture in the gen-
erated set might be an artifact of the diffusion process or an attempt by the model to

replicate microscopic details it interpreted from the training data.

Lastly, as mentioned in chapter 5.1.2, the model was able to reliably generate images
with the same 16 pixel black padding. This padding can be generated on every side and
serves as a clear indicator of the model’s ability to replicate this specific feature, ensuring

consistency across the synthetic and real dataset.

These differences, both visual and metric-based, highlight both the capabilities and cur-
rent limitations of the unconditional diffusion model in replicating brightfield microscopy
images. While the model has captured many key features, there are still slight differences

that distinguish the generated images from their real counterparts.

The metric-based analysis provides quantitative support for many of the visual obser-
vations, particularly regarding brightness, contrast, and color variations. However, it
also reveals that some perceived differences, such as the color tint, are subtler than they
might appear visually, giving an initial explanation for the difficulty in distinguishing
between real and generated images in the survey. Generally, this underscores the value

of combining both approaches for a more comprehensive evaluation.
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7.3 Single Cell Detection Performance

A detailed comparison of the performance metrics for all evaluated models across the
different training datasets can be found in Tab. 7.1. Several key observations can be

made from the performance data:

1. Inference Speed: The YOLOv8 models demonstrate the fastest inference times,
ranging from approximately 17ms to 21ms. YOLOv9 models show slightly slower
inference, with the compact version at 23ms and the efficient version at 34ms.
The RT-DETR models have the slowest inference times, with the large version at
34ms and the extra-large at 40ms.

2. Model Size and Parameters: As expected, there is a trade-off between model size
and performance. The YOLOv8s model has the smallest footprint at 42.7MB,
while the RT-DETR-x model is the largest at 257.9MB. This variation in model
size corresponds to the number of parameters, ranging from 11.2M for YOLOvSs
to 68.2M for YOLOvS extra-large.

3. mAP Performance: The mAP metrics reveal interesting patterns across the dif-
ferent loU thresholds and training datasets. Generally, the models trained on the
real dataset slightly outperform those trained on synthetic datasets, particularly at
higher IoU thresholds. However, the performance gap narrows at lower IoU thresh-
olds, with some synthetic-trained models achieving comparable or even slightly

better results in certain cases.

Analyzing the requirements of a specific use case is crucial when selecting the most suit-
able model for single cell detection. The trade-offs between inference speed, model size,
and detection accuracy must be carefully considered to align with the project’s con-
straints and objectives. Ultimately, the choice of model should be tailored to the specific
needs of the application, balancing performance metrics with practical considerations

such as computational resources and real-time processing requirements.

64



7 Results

Tab. 7.1: Detailed comparison of the performance metrics for all evaluated models across
the different training datasets.

Model Dataset | Inference | Total Model mAP mAP mAP
Speed Params Size @50 @75 | @50:95
YOLOvS8s scc_real | ~ 17ms 11.2M | 42.7/MB | 0.8947 | 0.8095 | 0.6557
scc_ 10 0.8941 | 0.8053 | 0.6470
scc_ 30 0.9043 | 0.8079 | 0.6448
scc_ 50 0.8932 | 0.7891 | 0.6325
YOLOv8m scc_real | ~ 19ms | 25.9M | 98.9MB | 0.9038 | 0.8203 | 0.6637
scc_ 10 0.9035 | 0.8093 | 0.6558
scc_ 30 0.8945 | 0.8076 | 0.6462
scc_ 50 0.8930 | 0.8040 | 0.6456
YOLOv8x scc_real | ~2lms | 68.2M | 260.5MB | 0.9038 | 0.8120 | 0.6639
scc_ 10 0.9032 | 0.8055 | 0.6531
scc_ 30 0.9031 | 0.8085 | 0.6549
scc_ 50 0.8935 | 0.7961 | 0.6425
YOLOv9c scc_real | ~ 23ms 25.0M | 97.8MB | 0.9047 | 0.8215 | 0.6645
scc_ 10 0.9042 | 0.8070 | 0.6531
scc_ 30 0.9042 | 0.8106 | 0.6568
scc_ 50 0.8935 | 0.7951 | 0.6422
YOLOvV9e scc_real | ~ 34ms | 58.1M | 222.4MB | 0.9037 | 0.8201 | 0.6629
scc_ 10 0.9041 | 0.8141 | 0.6650
scc_ 30 0.8946 | 0.8069 | 0.6485
scc_ 50 0.8938 | 0.8037 | 0.6453
RT-DETR-l | scc_real | ~ 34ms | 33.0M | 126.0MB | 0.9146 | 0.8169 | 0.6614
scc_ 10 0.9147 | 0.8071 | 0.6574
scc_ 30 0.9017 | 0.7780 | 0.6240
scc_ 50 0.9036 | 0.7843 | 0.6298
RT-DETR-x | scc_real | ~ 40ms | 67.5M | 257.9MB | 0.9164 | 0.8257 | 0.6748
scc_ 10 0.9144 | 0.8083 | 0.6565
scc_ 30 0.9032 | 0.7830 | 0.6328
scc_ 50 0.9045 | 0.8032 | 0.6437
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7.3.1 Quantitative Metrics
mAP@50

Fig. 7.6 illustrates the mAP@50 values for all models across the four datasets. At this
lower IoU threshold, the performance differences between models trained on real and
synthetic datasets are relatively small. In fact, some models trained on synthetic data
achieve marginally higher mAP@50 scores than their counterparts trained on real data.
For instance, the RT-DETR-]1 model trained on the 10% synthetic dataset achieves the
highest mAP@50 of 0.9147, slightly outperforming the same model trained on real data
(0.9146). Similarly, the YOLOv9e model trained on the 10% synthetic dataset achieves a

Fig. 7.6: mAP@50 values for all models trained on the four datasets.

mAP@50 of 0.9041, marginally higher than the 0.9037 achieved by the real-data trained
version. The YOLOv8s model trained on the 30% synthetic dataset also outperforms its
real-data counterpart by roughly 1%. The largest difference between a model trained on
the real data and a model trained on synthetic data is 1.19% (RT-DETR-x). Generally,
the mAP@50 values for all models are relatively high, indicating strong performance in
detecting cells at this ToU threshold, with all models achieving scores above 89%. Also
interesting to observe is the visible grouping of the models, especially on the real and 10%

synthetic datasets. As expected by models sizes and architectures, YOLOvS8s performs
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the worst, whereas the other two YOLOvV8 models and both YOLOv9 models perform
similarly. The RT-DETR models, on the other hand, start as the best performing models,
but show the greatest performance drop, particularly on the 30% synthetic dataset.

mAPQ75

The mAPQT75 metric, shown in Fig. 7.7, reveals a more pronounced difference between
models trained on real and synthetic datasets. At this higher IoU threshold, models
trained on real data consistently outperform their synthetic-trained counterparts across
all architectures. The RT-DETR-x model trained on real data achieves the highest

Fig. 7.7: mAPQT75 values for all models trained on the four datasets.

mAP@75 of 0.8257, followed closely by the YOLOvV9 compact model at 0.8215. The
performance gap between real and synthetic-trained models becomes more evident, with
the synthetic models generally showing a decrease in mAP@75 as the proportion of
generated images in the training set increases. The largest gap between a real and
synthetic-trained model grew to 4.27% (RT-DETR-x). Additionally, both transformer
models (RT-DETR) perform better on 50% synthetic data compared to 30% synthetic
data. As for the model grouping visible in the mAP@50 results, the same pattern can

not be observed here. All YOLO models perform similarly on all datasets, whereas
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the RT-DETR models again show a significant performance drop on the 30% synthetic

dataset.

mAP@50:95

Lastly, the mAP@50:95 metric, illustrated in Fig. 7.8, provides the most comprehensive
view of model performance across a range of IoU thresholds. This metric further rein-
forces the observations made from the mAP@Q75 analysis. The RT-DETR-x model trained
on real data achieves the highest mAP@50:95 of 0.6748, demonstrating its superior per-

formance across various IoU thresholds. Interestingly, the YOLOv9e model trained on the

Fig. 7.8: mAP@50:95 values for all models trained on the four datasets.

10% synthetic dataset achieves the second-highest mAP@50:95 of 0.6650, slightly outper-
forming its real-data trained counterpart (0.6629). As expected by now, the RT-DETR-x
model again shows the largest performance gap between real and synthetic-trained mod-
els, with a difference of 4.2%. And again, the RT-DETR models show a significant
performance drop on the 30% synthetic dataset, which slightly increases again on the

50% synthetic dataset (observable for all three metrics).
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7.3.2 Qualitative Assessment

This chapter presents a detailed analysis of the performance of three object detection
models —YOLOv8s, YOLOv9e, and RT-DETR-I —on sample batches from the single-
cell detection datasets (Appendix B). The analysis focuses on the models’ ability to
accurately detect and localize cells in brightfield microscopy images, highlighting both
their strengths and limitations. The limitations of this thesis do not allow for a more

detailed analysis of sample detections of every trained model.

YOLOv8s Sample Detections

The YOLOvV8s model, despite being the smallest and least com-
plex of the three architectures examined, demonstrated impres-
sive performance on the scc_ 30 dataset. Fig. B.1 illustrates the
ground truth labels and model predictions for a representative
sample batch. The ground truth labels, as depicted in Fig. B.1a,
showcase the complexity of the cell detection task. The labeled

images contain a variety of cell presentations, including:

1. Fully visible cells within the image boundaries . ) .
Fig. 7.9: Overlapping
2. Partially visible cells at the image edges boxes.

3. Overlapping cells with intersecting bounding boxes

This diversity in cell presentation poses significant challenges for

object detection models, requiring them to accurately identify and localize cells under
various conditions. Despite its relative simplicity, the YOLOv8s model exhibited remark-
able performance on the sample batch. As shown in Fig. B.1b, the model successfully
detected all cells present in the images with 100% confidence. This high level of confi-
dence across all detections suggests that the model has learned robust features for cell
identification, even in challenging scenarios such as partial visibility and overlapping

cells.
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YOLOv9e Sample Detections

Fig. 7.10: Missing
box.

The YOLOv9e model, trained on the scc_ 10 dataset, also show-
cased strong performance in cell detection tasks. Fig. B.2
presents the ground truth labels and model predictions for a
sample batch from this datasets’ test split. An important obser-
vation from the ground truth labels (Fig. B.2a) is the presence
of a labeling inconsistency. Specifically, in the image located in
the first row and third column, one cell lacks a bounding box la-
bel. This missing label highlights a critical aspect of real-world
machine learning applications: datasets are often imperfect, and
models must learn to generalize effectively despite such incon-

sistencies. The sample batch for the YOLOv9e model predomi-

nantly features fully visible cells, which may present a somewhat easier detection scenario

compared to the YOLOv8s sample batch. This difference in sample characteristics un-

derscores the importance of diverse and representative datasets in training robust object

detection models.

The YOLOv9e model demonstrated excellent performance on the

sample batch, as evidenced in Fig. B.2b. The model also successfully detected all cells

with high confidence, including the cell with the missing label. This suggests that the

YOLOvV9e architecture has developed a strong internal representation of cell features,

allowing it to generalize beyond the provided labels. Such robustness is crucial for real-

world applications where perfect labeling cannot be guaranteed.

RT-DETR-1 Sample Detections

The RT-DETR-1 model, also trained on the scc_ 10 dataset, ex-
hibited strong performance in cell detection tasks. Fig. B.3 illus-
trates the ground truth labels and model predictions for a sample
batch. The sample batch for this model represents a combination
of the previous two batches, by including partially visible cells at
image boundaries, multiple cells per image and a missing label
for one of the cells (Fig. B.3a). Key observations of the models’

performance on this sample batch are as follows (Fig. B.3b):

e Successful detection of all visible cells, including those with

missing labels

Fig. 7.11: Split box.
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e High confidence scores for most detections

e Detection of the cell with the missing label, albeit with a
lower confidence score of 0.3

e A false positive detection at the left border of one image,

also with a confidence score of 0.3

The model’s ability to detect the cell with the missing label, similar to the YOLOv9e
model, indicates robust feature learning and generalization capabilities. However, the
lower confidence score for this detection suggests some uncertainty, which is reasonable
given the lack of a corresponding ground truth label during training. The potential false
positive detection at the image border with a low confidence score of 0.3 highlights an
important consideration in object detection tasks: the trade-off between sensitivity and
specificity. While high sensitivity is crucial for detecting all cells, it may occasionally
lead to false positives, especially in challenging areas such as image boundaries where

partial cells or artifacts may be present.

Comparative Analysis

Comparing the performance of the three models —YOLOv8s, YOLOv9e, and RT-DETR-

1 —on their respective sample batches reveals several important insights:

e All three models demonstrated strong cell detection capabilities, successfully iden-
tifying cells under various conditions, including partial visibility and overlapping
instances.

e The similar performance of the three models is consistent with their comparable
mAP scores, confirming that evaluating models based on quantitative metrics and
qualitative assessments can provide a comprehensive view of their capabilities.

e The models showed robustness to labeling inconsistencies, detecting cells even when
ground truth labels were missing. This suggests effective feature learning and
generalization beyond the provided annotations.

e The YOLOvS8s model, despite being the smallest and least complex, achieved 100%
confidence in its detections on the sample batch.

e This high confidence, however, should be interpreted cautiously and verified across
a larger, more diverse sample batch to ensure it’s not a result of a particularly easy

sample batch.

71



7 Results

e The YOLOv9e and RT-DETR-1 models, trained on the scc_ 10 dataset, showed
similar performance in terms of detection accuracy. However, the RT-DETR-I
model exhibited more nuanced confidence scoring, particularly for challenging cases
like the cell with the missing label and the potential false positive at the image
border.

e The potential false positive detection by the RT-DETR-1 model highlights the on-
going challenge in object detection of balancing sensitivity and specificity. This
trade-off is particularly crucial in medical and biological applications where both

false negatives and false positives can have significant consequences.

These observations underscore the importance of comprehensive evaluation beyond sim-
ple accuracy metrics. Factors such as confidence calibration, robustness to labeling errors,
and performance on edge cases (e.g. partially visible cells) play crucial roles in determin-

ing a model’s suitability for real-world applications in cell detection and analysis.

72



8 Discussion

The results presented in the previous chapter offer valuable insights into the research
questions (Chapter 1.3) and have significant implications for the fields of machine learn-

ing, computer vision, and computational biology.

8.1 Interpretation of Results

The survey results involving imaging experts and biologists revealed a remarkable level
of difficulty in distinguishing between real and generated microscopy images. With an
overall accuracy of 50%, the survey demonstrates the high quality and realism achieved
by the unconditional diffusion model in generating synthetic brightfield microscopy im-
ages. This finding aligns with recent advancements in generative Al, particularly in the
domain of image synthesis, where state-of-the-art models have shown remarkable capa-
bilities in replicating complex visual patterns, textures, and sceneries. The results of the
survey further underscore the challenge faced by human experts in this task, with only
a handful of images being consistently classified correctly. A 50% accuracy rate resem-
bles random guessing, giving a clear answer to the first sub research question (SRQ1):
the synthetic images are of sufficient quality to be indistinguishable from real images to

human experts.

Additionally, the word cloud analysis of participants’ reasoning provides valuable insights
into the visual cues and features that experts rely on when evaluating microscopy images.
The prominence of terms such as “cell”, “background”, and “edge” indicates that both the
primary subjects (cells) and the overall image context play crucial roles in the assessment
process. The frequent mention of image quality-related terms (e.g., “quality”, “blurry”,
“contrast”) suggests that the diffusion model has successfully replicated not only the con-
tent but also the typical imperfections and variations found in real microscopy images.

This level of detail contributes significantly to the realism of the generated images and
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highlights the potential of diffusion models in creating diverse and representative syn-
thetic datasets for machine learning applications in microscopy. The visual comparison
between generated and real images revealed subtle but noteworthy differences, particu-
larly in color tones, brightness and contrast levels. The more equally balanced brightness
values in the generated images, might actually improve the performance of object de-
tection models. Whereas lower average contrast values could potentially decrease the
performance, as the models might struggle to detect cells with less pronounced edges.
Additionally, color tints pose a significant problem, since brightfield microscopy is by
definition grayscale. Using synthetic images with color tints in combination with real
images introduces a bias to the model, that is not present in the real data. There is
a need to further investigate the actual impact of these color tints on the performance
of object detection models. These issues also underscores the importance of continued
refinement in generative models to more accurately capture the specific visual proper-
ties of brightfield microscopy. Generally, the differences are hard to spot for the human
eye, but might be of technical relevance and importance for the performance of object

detection models.

The performance analysis of various object detection models trained on real and syn-
thetic datasets yielded several significant findings. Generally, models trained on synthetic
datasets achieved comparable performance to those trained on real data, particularly at
lower IoU thresholds. This suggests that synthetic images can serve as a viable alter-
native or supplement to real data for training object detection models in microscopy
applications. The observation that some models trained on synthetic data marginally
outperformed their counterparts trained on real data at mAP@50 is particularly en-
couraging, indicating the potential of synthetic data to enhance model robustness and
generalization. However, the performance gap between real and synthetic-trained mod-
els became more pronounced at higher ToU thresholds, as evidenced by the mAP@75
and mAP@50:95 metrics. This trend suggests that while synthetic data can effectively
capture general cell features and locations, it may fall short in replicating the precise
boundaries and fine details of cells. This limitation could be attributed to subtle differ-
ences in cell morphology or edge definition between real and generated images, highlight-
ing an area for future improvement in the image generation process. Generally, a slight
performance decrease was observable when increasing the percentage of synthetic images
in the training set. This decrease was more pronounced in the case of the RT-DETR
models, indicating a greater impact of synthetic data. These results suggest that sub re-

search question two (SRQ2) can be answered by stating that the proportion of synthetic
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data in the training set slightly influences the magnitude and direction of its impact on
model performance. Especially, the transformer-based models seem more sensitive to the
proportion of synthetic data in the training set. But it is important to note that the
difference in performance is limited to a few percentage points and might not be that

noticeable in real-world applications.

The qualitative assessment of sample detections from YOLOv8s, YOLOv9e, and RT-
DETR-I models provided valuable insights into their practical performance. All three
models demonstrated strong cell detection capabilities across various challenging scenar-
ios, including partially visible and overlapping cells. Their ability to detect cells even
in the presence of labeling inconsistencies is particularly noteworthy, suggesting robust
feature learning and generalization beyond the provided annotations. This resilience to
imperfect ground truth data is crucial for real-world applications where labeling errors
are common. But these sample detections and their results have to be analyzed with a
grain of salt, as the sample size is small and might not represent the actual distribution of
the data. They should be analyzed and evaluated in combination with the quantitative

results.

The observed differences in confidence scoring between models, particularly the more
nuanced approach of the RT-DETR-1 model, highlight the importance of considering not
just detection accuracy but also the reliability of confidence estimates. The potential false
positive detection by RT-DETR-1 at an image border underscores the ongoing challenge
of balancing sensitivity and specificity in object detection tasks, especially in medical and
biological applications where both false negatives and false positives can have significant

consequences.

To sum everything up and answer the central research question (RQ): The introduction
of synthetic brightfield microscopy images to a training dataset has an impact on the per-
formance, although the magnitude of this impact is very limited and not always positive.
Depending on the object detection model, the proportion of synthetic data in the training
set, and the evaluation metric, the performance can slightly increase or decrease. The
results suggest that synthetic data can be a valuable tool for training object detection
models in microscopy applications, providing a cost-effective and scalable alternative to
real-world datasets. However, further refinement of the image generation process and
model training strategies is necessary to fully leverage the potential of synthetic data

and really improve the accuracy and robustness of cell detection models.
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8.2 Impact on Biological Research and Applications

The findings of this study have significant implications for biological research and appli-
cations, particularly in the realm of brightfield microscopy and cell analysis. By demon-
strating the viability of using synthetic brightfield microscopy images for training object
detection models, this research opens up new possibilities for advancing scientific under-

standing and improving experimental methodologies.

One of the most immediate impacts is the potential for research groups and laboratories
to generate their own data, given sufficient computational resources and expertise. This
capability could lead to a substantial time and cost savings, as well as increased flexibility
in experimental design and data acquisition. The ability to generate synthetic data is
particularly valuable for research groups with limited access to high-quality microscopy
images, democratizing advanced cell detection techniques and potentially accelerating

scientific progress in resource-constrained environments.

The use of generated images also has important implications for cell viability and ex-
perimental design. By reducing the need for fluorescence dyes, which can be harmful to
cells, researchers can minimize potential confounding factors in their experiments. This
approach aligns with the principles of ethical research and may lead to more accurate

results in studies of cell behavior and function.

Another significant advantage of synthetic image generation is the ability to create sce-
narios and cell configurations that are challenging to achieve in laboratory settings or
occur rarely in nature. This capability addresses a common limitation in machine learn-
ing applications, where rare events are often underrepresented in training data. By
specifically generating these uncommon scenarios, researchers can develop more robust
and generalizable cell detection models, potentially improving performance in real-world

applications where such rare events may be critical.

The technique also offers the possibility of generating many images of rare or expensive
cell lines in silico. This could dramatically reduce costs associated with certain types
of research and enables studies that might otherwise be too expensive or logistically
challenging to conduct. Furthermore, the ability to generate diverse datasets could ac-
celerate the process of assay development, drug discovery, and analysis of cell behavior,
potentially leading to faster breakthroughs in biomedical research and pharmaceutical

development.
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However, it is crucial to note that transparency is paramount when using generated
images in research. To main scientific integrity and avoid ethical issues, researchers should
clearly disclose the use of synthetic data in their studies. This transparency will ensure
that the scientific community can properly evaluate the validity and generalizability of

findings based on synthetic data.

In conclusion, the impact of this research on biological studies and applications is far-
reaching. By providing a method to generate high-quality synthetic microscopy images,
this work paves the way for more efficient, cost-effective, and ethically sound research
practices. As the technique is further refined and adopted, it has the potential to accel-

erate scientific discoveries and innovation in cell biology and related fields.

8.3 Limitations and Future Directions

While this study has yielded promising results, several limitations must be acknowledged,

and some paths for future research remain to be explored.

The most significant limitations and opportunities for improvement lie in the image gen-
eration process. The current architecture of the diffusion model, which produces multi-
channel images (RGB), introduces undesirable color tints that are inconsistent with true
brightfield microscopy. Future work should focus on adjusting the model architecture to
accept and generate single-channel grayscale images only. This modification would likely
improve the fidelity of the generated images and potentially enhance the performance of

object detection models trained on synthetic data.

The generalizability of the trained diffusion model is another area of concern. Currently,
the model is tailored to a specific biological application and dataset, which limits its
broader applicability. Future research should explore the development of more versatile
models, possibly through the use of conditional diffusion techniques, that can generate
images for a wider range of biological applications and cell types. This would involve
gathering and incorporating real microscopy images from diverse sources, including dif-

ferent microscopes and cell lines, to create a more comprehensive training dataset.

The computational requirements for training the diffusion model posed a significant con-
straint in this study. Future work should investigate the relationship between the amount
of training data and the quality of generated images, to determine the optimal balance

between computational resources and image fidelity. Additionally, exploring alternative
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architectures for the diffusion model could potentially yield improvements in both effi-

ciency and output quality.

Regarding the evaluation of generated images, it is important to note that the experts
and biologists involved in the survey were aware that some images were generated. This
knowledge may have influenced their judgements, potentially biasing the results. Future
studies that also employ surveys should consider implementing double-blind evaluation

protocols and more participants to eliminate this potential source of bias.

In terms of object detection, there is moderate room for improvement in both data quality
and model performance. Enhancing the quality of label data should be a priority, as this
could significantly impact the accuracy of trained models. Furthermore, a more extensive
exploration of the hyperparameter space for the various object detection models could
yield performance improvements. Future research should also consider evaluating addi-
tional state-of-the-art object detection models to identify the most effective approaches

for cell detection in brightfield microscopy images.

The performance discrepancies observed between models trained on real and synthetic
data, particularly at higher IoU thresholds, suggest that further refinement of the im-
age generation or object detection process is necessary. Future work should consider
improving the replication of fine cellular details and precise boundaries in generated im-
ages. This could involve developing more sophisticated loss functions or incorporating

additional biological constraints into the generation process.

Additionally, due to time constrains, as mentioned in Chapter 5.1.2, image patches con-
taining the well edge were removed from the initial dataset. Hence, neither the diffusion
model was able to generate them, nor the object detection models were trained on them.
Since these artifacts are common in brightfield microscopy, cells are often located, and
are especially hard to detect near the well edge, future research should explore methods

to incorporate these challenging scenarios into the training process.

Lastly, while this study focused on brightfield microscopy, future research could fur-
ther explore the application of similar techniques to other imaging modalities in biology
and medicine. This could include fluorescence microscopy, electron microscopy, or even

medical imaging techniques such as MRI or CT scans.

By pursuing the suggested research directions, future studies can build upon this work
to further advance the field of computational biology and enhance the capabilities of

Al-assisted microscopy analysis.
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This thesis set out to investigate the impact of leveraging unconditional diffusion-based
image generation on single cell detection accuracy in brightfield microscopy images. The
primary objective was to evaluate whether the introduction of synthetic brightfield mi-
croscopy images to a training dataset could positively impact the performance of object

detection models in single cell detection tasks.

9.1 Summary of Findings

The research yielded several significant findings. First, the survey results involving imag-
ing experts and biologists revealed a remarkable level of difficulty in distinguishing be-
tween real and generated microscopy images, with an overall accuracy of 50%. This
demonstrates the high quality and realism achieved by the unconditional diffusion model

in generating synthetic brightfield microscopy images.

Second, the performance analysis of various object detection models trained on real and
synthetic datasets showed that models trained on synthetic datasets achieved compa-
rable performance to those trained on real data, particularly at lower IoU thresholds.
Some models trained on synthetic data even marginally outperformed their counter-
parts trained on real data at mAP@50. However, the performance gap between real
and synthetic-trained models became more pronounced at higher IoU thresholds and

increased percentage of synthetic data.

Third, the visual comparison between generated and real images revealed subtle but
noteworthy differences, particularly in color tones, contrast levels, and background tex-
tures. While these differences highlight some limitations of the current image generation
process, the increased variability in the synthetic images may actually prove beneficial

for developing more robust cell detection models.
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9 Conclusion

9.2 Outlook and Recommendations

The findings of this research have significant implications for the fields of machine learn-
ing, computer vision, and computational biology. By demonstrating the viability of
using synthetic brightfield microscopy images for training object detection models, this
study opens up new possibilities for advancing scientific understanding and improving

experimental methodologies in cell biology and related fields.

The ability to generate high-quality synthetic microscopy images could lead to substantial
time and cost savings in research, as well as increased flexibility in experimental design
and data acquisition. This capability is particularly valuable for research groups with
limited access to high-quality microscopy images, potentially democratizing advanced
cell detection techniques and accelerating scientific progress in resource-constrained en-

vironments.

However, several limitations and areas for future research remain. The most significant
opportunities for improvement lie in the image generation process. Future work should
focus on adjusting the model architecture to accept and generate single-channel grayscale
images, which could negate the most pronounced visual differences between real and syn-
thetic images: the color tints. Additionally, exploring the development of more versatile
models through conditional diffusion techniques could expand the applicability of this

approach to a wider range of biological applications and cell types.

Further research should also investigate methods to improve the replication of fine cellu-
lar details and precise boundaries in generated images, as well as incorporate challenging
scenarios such as cells located near well edges into the training process. These enhance-
ments could help close the performance gap observed between real and synthetic-trained
models at higher IoU thresholds.

In conclusion, this thesis has demonstrated the potential of using synthetic brightfield
microscopy images for cell detection, while also highlighting the challenges and oppor-
tunities for improvement in this emerging field. As generative Al techniques continue to
advance, their integration with biological research holds promise for accelerating scien-
tific discoveries and innovation in cell biology and related disciplines. The findings of this
study provide a foundation for future research in this exciting intersection of computer
science and biology, paving the way for more efficient, cost-effective, and ethically sound

research practices in microscopy and cell analysis.
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A Survey

Fig. A.1: Survey form — Part 1.

111



A Survey

Fig. A.2: Survey form — Part 2.
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A Survey

Tab. A.1: Generated images employed in the survey.
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A Survey

Tab. A.2: Real images employed in the survey.
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B Sample Detections

115



B Sample Detections

(b) YOLOVSs predictions of a sample batch.

Fig. B.1: Comparison of labels and predictions from the YOLOv8s model that was
trained on the scc_ 30 dataset.



B Sample Detections

(b) YOLOV9e predictions of a sample batch.

Fig. B.2: Comparison of labels and predictions from the YOLOv9e model that was
trained on the scc_ 10 dataset.



B Sample Detections

(b) RT-DETR-1 predictions of a sample batch.

Fig. B.3: Comparison of labels and predictions from the RT-DETR-1 model that was
trained on the scc_ 10 dataset.



Glossary

antibiotic selection marker A gene that confers resistance to a specific antibiotic, used

to select for cells that have successfully incorporated a plasmid [62]

brightfield microscopy A basic light microscopy technique where light is transmitted
through a specimen, creating contrast as the light is absorbed or scattered by

dense areas in the sample

cell line A population of cells derived from a single cell and therefore consisting of cells
with a uniform genetic makeup [57|

cell viability The proportion of live cells within a population

chinese hamster ovary cells A cell line derived from the ovary of a Chinese hamster,
commonly used in biological and medical research [187]

cytomegalovirus A genetic element used to drive strong and consistent expression of

genes in mammalian cells [19]

enhanced green fluorescent protein A genetically engineered version of the green flu-
orescent protein that produces a brighter fluorescence and higher expression in

mammalian cells [145]

fluorescence microscopy A type of light microscopy that uses fluorescence to generate
an image. Fluorescent molecules are excited by light of a specific wavelength and

emit light of a longer wavelength

high-throughput screening A method for scientific experimentation that uses automa-

tion to rapidly conduct a large number of tests [107]

label-free imaging Microscopy techniques that allow for the visualization of samples

without the use of labels or stains [17]

microtiter plate A flat plate with multiple "wells" used as small test tubes in various

laboratory procedures
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Glossary

plasmid A small, circular piece of DNA that can replicate independently of chromosomal
DNA

stably transfected Refers to cells that have permanently incorporated foreign DNA into
their genome [90]
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