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Kurzzusammenfassung

Entwurfsmuster sind essenziell um die Softwarequalitédt, Wartbarkeit und Skalierbarkeit
zu verbessern. Die Erkennung von Entwurfsmustern ist aufgrund unterschiedlicher Im-
plementierungen, sprachspezifischer Merkmale und komplexer Codestrukturen eine Her-
ausforderung. Ansétze im Bereich maschinelles Lernen und graphbasierte Methoden
haben vielversprechende Ergebnisse gezeigt, basieren jedoch héaufig auf sprachspezifis-
chen Vorlagen. Diese Arbeit erforscht einen sprachunabhéngigen Ansatz zur Erkennung
von Entwurfsmustern mittels Neural Subgraph Matching. Das vorgestellte Konzept ab-
strahiert Quellcode in einen sprachunabhéngigen Code Property Graph (CPG), welcher
Syntax, Semantik und Verhalten vereinheitlicht. Der CPG wird anschliefsend in einen
Record Interaction Graph (RIG) umgewandelt, welcher zentrale Interaktionen zwischen
Code-Elementen zusammenfasst. FEin Graph Learnable Multi-hop Attention Network
(GLeMA Net) wird verwendet, um Neural Subgraph Matching auf Beispielen von En-
twurfsmustern statt auf vordefinierten Regeln durchzufithren. Auswertungen mit realen
Softwareprojekten demonstrieren die Flexibilitdt des Ansatzes, verdeutlichen jedoch auch
eine hohe Rate an False Positive Erkennungen. Im Vergleich zu bestehenden Ansétzen
mit sprachspezifischen Vorlagen zeigt der verwendete Ansatz Potential fiir weitere Be-

trachtung.
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Abstract

Design patterns are essential for improving software quality, maintainability, and scala-
bility. Detecting design patterns is challenging due to varied implementations, language-
specific features, and complex code structures. Existing methods, including machine
learning and graph-based approaches, show promising results but rely on language-
specific templates. This thesis researches a language-independent approach for detecting
design patterns using neural subgraph matching. The proposed concept abstracts source
code into a language-independent Code Property Graph (CPG) that unifies syntax, se-
mantics, and behavior. The CPG is transformed into a Record Interaction Graph (RIG),
capturing crucial interactions between code entities. A Graph Learnable Multi-hop At-
tention Network (GLeMA Net) is used to perform subgraph matching on design pattern
examples rather than handcrafted rules. Evaluations using real-world software demon-
strate the flexibility of this approach but also highlight the high false-positive rate. When
compared to existing machine learning approaches with language-specific templates, the

proposed approach shows potential for further research.
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1 Introduction

Software design patterns are widely recognized as essential components in object-oriented
software engineering, contributing significantly to software maintainability, reusability,
and comprehension [81]. The effective utilization of design patterns allows developers
to solve common and recurring problems by employing well-established and proven solu-
tions, preventing inconsistencies and possible errors [1]. Identifying instances of design
patterns within existing software systems further promotes consistency across projects,
facilitates automated documentation, and enhances the scalability of software mainte-
nance efforts [5]. Software systems are under constant evolution and may lack com-
prehensive documentation, making it challenging to maintain existing design pattern

implementations.

Detecting design patterns is therefore a critical task that can help to improve software
quality. Existing approaches to design pattern detection primarily use heuristic-based,
graph-based, and machine learning methods [78]. Heuristic methods involve manually
defined rules that rely heavily on specific characteristics of patterns and are often limited
by their rigidity and inability to generalize across variations in pattern implementations.
Graph-based methods address some of these limitations by abstracting source code into
structural representations, enabling pattern detection through a wide range of graph
algorithms. Recent advancements in machine learning have introduced opportunities for
more flexible and generalized pattern detection by learning directly from data rather than
relying on explicit rule definitions [78|. Hybrid approaches combining graph-based and
machine learning techniques have shown promising results in detecting design patterns

across diverse software systems [60].

1.1 Problem Statement

Despite these advances, design pattern detection continues to face significant challenges.

One major difficulty arises from implementation variability, where patterns may have
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diverse representations even within the same software system |[78|. Existing language-
specific detection approaches often require handcrafted templates, limiting their applica-
bility across different programming languages |7, 4]. Additionally, many pattern-specific
approaches lack the ability to generalize to other patterns, restricting their broader utility
[20]. Moreover, current detection methods frequently depend on compilable code, which

constrains their applicability to incomplete or dynamically evolving software systems.

1.2 Research Goals

To address these challenges, this thesis researches a language-independent approach for
detecting design patterns using neural subgraph matching techniques on Code Property
Graphs (CPGs). The proposed concept capitalizes on the versatility of CPGs, which
represents source code in a unified abstraction, independent of any specific programming
language. This abstraction captures both structural and behavioral characteristics advan-
tageous for effective pattern detection. By employing a Graph Neural Network (GNN) for
subgraph matching, the proposed approach avoids dependency on handcrafted templates
or rigid rule-based definitions, instead relying on example-based queries to generalize

across multiple patterns and languages.

The general goal of this thesis is to investigate the effectiveness of combining language-
independent source code abstractions with neural subgraph matching techniques for de-

tecting design patterns. For this, the following research questions are proposed:

RQ 1. How can Code Property Graphs be effectively abstracted into a language-indepen-
dent representation that captures the structural and behavioral characteristics

of design patterns and is suitable for neural subgraph matching?

RQ 2. What techniques enable robust detection of design patterns that handle imple-
mentation variations without relying on handcrafted templates or rule-based

definitions?

RQ 4. To what extent can a language-independent approach for design pattern detec-
tion achieve comparable accuracy to existing language-specific machine learning

approaches?

To answer these questions, the research includes the development of a prototype imple-

mentation for abstracting source code into CPGs, training a GNN model for subgraph
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matching, evaluating the approach on real-world software projects, and comparing the re-
sults against existing pattern detection methods. This approach aims to demonstrate the
potential of language-independent source code abstractions in the context of a complex

pattern detection task.

1.3 Structure of Content

To address the outlined research goal and questions, this thesis starts by introducing
foundational knowledge and principles essential for understanding the subsequent re-
search in chapter 2, including topics like software design, code analysis techniques, graph
theory, and graph neural networks. Chapter 3 provides an overview of existing research
in design pattern detection, highlighting proven methods and identifying limitations that
this thesis aims to address. After establishing the theoretical foundations and related
works, chapter 4 presents the central concepts of the proposed approach, including the
CPG abstraction and neural subgraph matching techniques. Chapter 5 subsequently
outlines the implementation details, describing the system architecture, graph genera-
tion methods, and procedures for model training. The experiment results and evaluation
of the implementation are described in chapter 6. Finally, chapter 7 summarizes the key
findings, discusses their implications and limitations, and suggests possible directions for

future research.



2 Background

In order to comprehend the context of this thesis, a basic understanding of the underlying
theoretical concepts is essential. For this, the chapter provides an overview of each topic
and begins with an introduction to software design and its fundamental principles. After
this, various design patterns and their importance in software development are described.
Next, the chapter explains methods for analyzing code and describing the difference
between static and dynamic approaches. It then provides a basic understanding of graph
theory, including a general graph definition and essential properties that are central to
the subsequent discussions of the thesis. Finally, the chapter examines Graph Neural

Networks, highlighting recent developments in this area.

2.1 Software Design

The design aspect of software development is one of the most critical phases in the soft-
ware development lifecycle (fig. 2.1). This phase is crucial because it lays the foundation
for the entire software system [18]. Effective software design ensures that the software
can handle changing requirements and scale with increasing demands [39]. In addition
to this, software design is a highly individual process that can vary significantly depend-
ing on the project, the team, and the requirements. For this, software architects and
developers follow a set of principles and blueprints to ensure that the software reaches
the desired quality and functionality [55]. The scope can be a global system architecture
or a local design pattern for specific problems. Software architecture refers to the over-
all structure of a system, including its components, their interactions, and the guiding
design policies. On the other hand, at a more localized level, design patterns represent
proven solutions to common software development problems. These patterns encapsulate
best practices and provide reusable templates that can be applied to similar situations
across different projects. In all cases, effective software design choices can leverage the

common design principles for software development [53].
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e

SDLC
Software Development
Life Cycle

Figure 2.1: A common software development life cycle (SDLC) with 6 phases [57].

2.1.1 Design Quality and Principles

An effective software design is based on a set of principles and quality requirements [41].
In general, a software product should meet specific quality attributes through its design
decisions. Common quality attributes like the ISO 25010 standard |27, 6] are shown in
fig. 2.2.

Functional Performance Interaction

Suitability ey Compatibility Capability Reliability Security Maintainability Flexibility Safety
« Functional +Time Behaviour |- Co-Existence « Appropriateness |- Faultlessness « Confidentiality |- Modularity « Adaptability « Operational
Completeness - Resource - Interoperability | Recognizability |.Availability - Integrity - Reusability - Scalability Constraint
* Functional Utilization * Learnability Fault Tolerance |-Non-Repudiation |-Analysability - Installability |*Risk
Correctness « Capacity + Operability +Recoverability |- Accountability |- Modifiability + Replaceability Identification
+ Functional +User Error - Authenticity - Testability + Fail safe
Appropriateness Protection . Resistance + Hazard Warning
+ User Engagement + Safe Integration
+ Inclusivity
+ User Assistance

Figure 2.2: Quality attributes of a software product by the standard ISO 25010 |27].

Most design principles are focused on improving the maintainability, readability, and
scalability of the software. For this, modularity and encapsulation are key concepts in
software design [1]. Modularity refers to the division of a software system into smaller,
independent components that can be developed, tested, and maintained separately. En-

capsulation, on the other hand, refers to the bundling of data and methods into a single
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unit. This can be measured by the coupling and cohesion of the software components.
Coupling refers to the degree of interdependence between software modules, while cohe-
sion refers to the degree to which the elements inside a module belong together. High
cohesion and low coupling are desirable in software design because they make the soft-
ware easier to understand, maintain, and extend [59]. Those concepts are central to
Object-Oriented Programming (OOP), which is a common programming paradigm that
is based on the concept of encapsulating data in objects [11, 10]. Objects are instances of
classes, which are user-defined types that contain data and methods. The most common
design principles for OOP are the SOLID principles [61], which help developers reach the
described software quality attributes. The SOLID principles are:

e Single Responsibility Principle (SRP): A class should have only one reason

to change.

e Open/Closed Principle (OCP): Software entities should be open for extension

but closed for modification.

e Liskov Substitution Principle (LSP): Objects of a superclass should be re-
placeable with objects of its subclasses without affecting the correctness of the

program.

e Interface Segregation Principle (ISP): A client should not be forced to imple-

ment an interface that it does not use.

e Dependency Inversion Principle (DIP): High-level modules should not depend
on low-level modules. Both should depend on abstractions. Abstractions should

not depend on details. Details should depend on abstractions.

Those principles are proven to be effective in object-oriented programming, but they can
be applied to other paradigms as well. The SOLID principles are the foundation of many

design patterns, which are discussed in the next section [81].

2.1.2 Design Patterns

In contrast to software architecture patterns that are focused on the overall structure of a
system, design patterns are focused on solving specific problems that arise during software
development. Design patterns are reusable solutions to common problems [43]. They are

not finished designs that can be transformed directly into code. Instead, they provide a



2 Background

template for how to solve a problem that can be used in many different situations. Design
patterns can speed up the development process by providing tested, proven development
paradigms [81]. Reusing design patterns helps to prevent issues that can cause major

problems and improves code readability for developers and architects.

Creational Structural Behavioral
1. Abstract Factory 1. Adapter 1. Chain of
2. Builder 2. Bridge Responsibility
3. Factory Method 3. Composite 2. Command
4. Prototype 4. Decorator 3. Interpreter
5. Singleton 5. Facade 4. Iterator
6. Flyweight 5. Mediator
7. Proxy 6. Memento
7. Observer
8. State
9. Strategy
10. Template Method
11. Visitor

Figure 2.3: Categorized design patterns by the Gang of Four [19].

The most common design patterns are the Gang of Four (GoF) patterns [19] and are
shown in fig. 2.3. According to the GoF, design patterns can be classified into three

main categories:

e Creational Patterns: These patterns deal with object creation mechanisms, try-
ing to create objects in a manner suitable to the situation. The basic form of
object creation could result in design problems or added complexity to the design.
Creational design patterns solve this problem by controlling the object creation

process.

e Structural Patterns: These patterns deal with object composition. They de-
scribe how objects and classes can be combined to form larger structures. Structural
design patterns simplify the structure by identifying and abstracting the dependen-

cles.

e Behavioral Patterns: These patterns are focused on interactions between ob-
jects. They describe how objects interact and communicate with each other. Be-
havioral patterns are concerned with algorithms and the assignment of responsibil-

ities between objects.
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The GoF patterns are all formulated as general reusable solutions, expressed in terms of

objects and interfaces and focusing on the OOP paradigm.

Subject

- observers: List<Observer> <<Interface>>

notifies Observer

+ attach(o: Observer): void g
+ update(): void

+ detach(o: Observer): void

+ notify(): void |
ConcreteSubject ConcreteObserver
- state: SubjectState observers - subject: ConcreteSubject

+ getState(): SubjectState - state: ObserverState

+ setState(s: SubjectState): void + update(): void

Figure 2.4: The Observer patterns participants and interactions, defined by the GoF [19].

A design pattern systematically declares and explains a general design that addresses
a recurring design problem in object-oriented systems and is formulated as language-
independent definitions. An example of a design pattern is the Observer pattern, which
is a behavioral design pattern that defines a one-to-many dependency between objects
so that when one object changes state, all its dependents are notified and updated auto-
matically. The design pattern also describes the participants involved in the pattern and
the interactions between them (fig. 2.4). In the case of the Observer pattern, the partici-
pants are the subject, the observer, the concrete subject, and the concrete observer. The
subject is the object that is being observed, and the observer is the object that observes
the subject. The concrete subject and concrete observer are the implementations of the
subject and observer. With the help of this pattern, the developer can design a solution
to a common object interaction problem by implementing a loosely coupled system that

can be extended and maintained.

2.2 Code Analysis

Code analysis is the systematic examination of software artifacts to derive insights, detect
defects, and ensure adherence to quality standards. In modern software development,
it plays a pivotal role in addressing the growing complexity of systems, accelerating

development cycles, and mitigating risks associated with security vulnerabilities, perfor-
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mance degradation, and maintenance costs [52|. Applications of code analysis are used

in multiple domains:

e Bug prevention Identifying logic errors, type mismatches, and resource leaks

early in development.

e Security Detecting vulnerabilities like buffer overflows, injection flaws, or insecure

dependencies.
e Compliance Enforcing coding standards or licensing requirements [38].

e Maintainability Assessing technical debt and code smells (e.g., duplicated code
and high coupling).

e Optimization Profiling performance-critical paths and memory usage patterns.

The importance of code analysis has grown continuously with the rise of large-scale dis-
tributed systems, open-source dependencies, and regulatory demands [71|. Research in
recent years has focused on enhancing precision (e.g., reducing false positives with ma-
chine learning), scaling analysis to huge codebases, and integrating analysis into DevOps
pipelines (e.g., shift-left testing [67]). Emerging techniques, such as Al-powered code
review and hybrid approaches combining symbolic execution with dynamic fuzzing, have

further expanded the capabilities of modern tools.

2.2.1 Static and Dynamic

Code analysis techniques are broadly categorized into static and dynamic analysis, dif-
ferentiated by whether they examine code without execution (static) or during execution
(dynamic). Both approaches have distinct advantages and limitations, making them

complementary in practice [52].

Static analysis inspects source code, bytecode, or binaries without running the program.
Tools like linters (e.g., ESLint, Pylint), type checkers (e.g., MyPy), and security scanners
(e.g., SonarQube) parse code structure to identify syntax and style violations, potential
bugs (e.g., null dereferences or resource leaks), security vulnerabilities (e.g., SQL injection
patterns), and compliance with coding standards (e.g., MISRA-C') |32, 25]. This can help
to detect early errors in development and scale to large codebases [49]. However, static

analysis tools may produce false positives and cannot analyze runtime behavior.
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Dynamic analysis evaluates code during execution, often using instrumentation like
debuggers, profilers, or test cases [52, 47]. Tools like Valgrind (memory debugging),
coverage tools (e.g., JaCoCo), and fuzz testers (e.g., AFL) can help to detect memory
leaks, performance bottlenecks, and input validation flaws [26]. This approach captures
real-world behavior but requires representative test inputs and includes runtime overhead.
In addition to this, it cannot guarantee full path coverage and may miss latent defects

in unexecuted code.

2.2.2 Code Property Graphs

g Application Specific
X }\ ‘\\ Context Level

\
\
\
, \
, \

S/ % Instruction Level

; \

, \

, \

, \
, \
, \
, \
, \
, \
, \

- - - - e frontene

Figure 2.5: The different levels of abstraction and granularity a CPG can represent [72].

A Code Property Graph (CPG) is a unified, graph-based representation of software code
that integrates multiple abstract code structures into a single interconnected model. This
approach addresses the fragmentation of traditional code analysis, which often operates
on isolated representations like syntax trees or control flow graphs. A CPG combines syn-
tactic, semantic, and behavioral properties into a single graph [72]. This enables analysts
to traverse and query code across multiple layers of abstraction, making them particu-
larly effective for tasks requiring cross-cutting reasoning, such as vulnerability detection
and program comprehension |75, 76, 82|. For this, a CPG merges four fundamental code

representations into a single graph:

10
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e Abstract Syntax Tree (AST): Captures the syntactic structure of code, with
nodes representing language constructs (e.g., functions, loops, variables) and edges

denoting syntactic relationships (e.g., parent-child dependencies).

e Control Flow Graph (CFG): Models the order of execution between code blocks,

with edges representing conditional branches, loops, and function calls.

e Data Flow Graph (DFG): Tracks how data propagates through variables, func-

tion arguments, and return values, highlighting dependencies between operations.

e Program Dependence Graph (PDG): Combines control and data flow depen-

dencies to represent conditions under which data is computed or used.

By unifying these layers, the CPG allows queries to span syntax, control flow, and data
flow simultaneously. For example, a taint analysis query for a sensitive function call might
trace user input from a syntax-level variable declaration through control flow branches
to a data flow sink [84].

The strength of a CPG lies in its ability to abstract away language-specific details while
preserving semantic relationships. For individual use cases, the CPG schema enables
aggregation to higher-level abstractions for domain-specific analysis (fig. 2.5). A CPG is
a multi-graph, with nodes representing code entities (e.g., classes, functions, or variables),
and edges encode detailed relationships such as calls, extends, or defines. This abstraction

enables:

e Language-independent analysis: Queries can be written once and applied to
codebases in multiple programming languages, provided the CPG schema normal-

izes language-specific constructs.

e Context-aware reasoning: Combining control and data flow layers allows precise
identification of vulnerabilities (e.g., detecting if untrusted data reaches a security-

critical operation without proper sanitization).

e Scalable exploration: Graph traversal algorithms efficiently navigate complex

interactions, such as data leaks or race conditions.

Currently, CPGs are widely used as a static code analysis representation for vulnera-
bility detection, code similarity detection, code comprehension, and automated refac-
toring [9, 14|. Despite their versatility, the limitations of CPGs include the complexity

of construction. The generation of a CPG requires parsing and merging multiple code

11
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representations, which can be resource-intensive for large codebases. Furthermore, nor-
malizing diverse languages into a unified schema may obscure language-specific details

(e.g., dynamic and static types), which still is a major challenge in the field [48].

2.3 Graph Theory

As a fundamental area within discrete mathematics, graph theory provides a versatile
framework for representing and analyzing a wide range of systems. Its utility in com-
puter science is expressed by the natural way in which graphs model entities and the
relationships among them, thereby facilitating the design and analysis of algorithms in
areas such as networking, optimization, and data mining [12]. The abstraction offered by
graphs allows complex real-world problems to be encapsulated in a structure compatible

with both theoretical analysis and practical computation.

2.3.1 Definition

In the context of graph theory, a simple graph G is denoted by the ordered pair G =
(V,E), where V is a non-empty set of nodes (or vertices) and F is a set of edges [45].

For graphs without self-loops, each edge is represented as an unordered pair of nodes:
E C {{u,v} (or (u,v) for a directed graph) | u,v € V, u # v} (2.1)

In this formulation, the edge {u, v} denotes a bidirectional relationship between the nodes
u and v. For directed graphs, the set of edges is a subset of the Cartesian product of V'
with itself. An edge (u,v) in this context represents a relationship that is oriented from

node u to node v.

Expanding the expressiveness of graphs, a multigraph permits multiple edges between
the same pair of nodes [45]. Furthermore, many applications necessitate the inclusion
of weights to capture quantitative properties of the relationships. A weighted graph
augments the basic graph structure with a weight function. In the case of a weighted
undirected graph, the graph is defined as the triple G = (V, E, w), where w is the weight
function w : F — R, assigning a real number as the weight to each edge. For weighted
directed graphs, the same definition applies with £ C V x V and the weight function w

assigning values to ordered pairs accordingly [45].
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A widely used representation of graph relationships is the adjacency matrix [45]. Given
a graph G = (V, E) with |V| = n nodes, the adjacency matrix A is an n X n matrix where
each entry A;; encodes the presence or weight of an edge between node v; and node v;.

For a simple weighted graph, the adjacency matrix is defined as:

4 w(v;,vj), if {vi,v;} € E (or (v5,v;) € E for a directed graph) (2.2)
ij = .
0 or oo, if no edge exists.

Here, a missing edge may be represented either by zero or by infinity (if no direct con-
nection exists). If G is unweighted, the adjacency matrix is binary, with A;; = 1 if an
edge exists between v; and v, and A;; = 0 otherwise. The adjacency matrix provides an
efficient way to perform matrix-based computations on graphs, such as spectral graph
analysis and shortest path calculations. However, for sparse graphs, where |E| < |V|?,

adjacency lists are often preferred due to their lower space complexity [45].

2.3.2 Properties

A graph has multiple properties that can be used to characterize its structure and be-
havior [45]. Each of these properties provides valuable insights into the nature of the

graph and its relationships (fig. 2.6).

Undirected Directed Cyclic Acyclic

“of

Connected Disconnected Sparse Dense

"

Figure 2.6: Common structural properties of a graph [45].
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Connectivity Let G = (V,E) be an undirected graph. A graph G is said to be
connected if for every pair of distinct nodes u,v € V' there exists a sequence of nodes (a
path) (u = vg,v1,...,v = v) such that {v;,v;11} € E fori=0,1,...,k—1. If no such
path exists for at least one pair of nodes, the graph is disconnected. In a directed graph,
the concept of connectivity is extended to strongly connected and weakly connected. A
directed graph is strongly connected if there exists a directed path from every node to
every other node. Conversely, a directed graph is weakly connected if replacing all directed

edges with undirected edges results in a connected graph.

Density The density of a graph is a measure of how many edges are present compared
to the maximum number of edges possible. For a simple undirected graph G = (V, E)
with |V| = n nodes, the density D is defined as

2|E|

BCICEY

(2.3)
since the maximum number of edges in an undirected graph without loops is (n(n—1))/2.

A graph is often described as sparse if D is close to 0 and dense if D is close to 1.

Cyclicity A cycle in an undirected graph G = (V, E) is defined as a path (vg, v1, ..., vg)
with k& > 3 such that vg = v and the nodes vg, vy, ..., v,p_1 are distinct. A graph is called
cyclic if it contains at least one cycle. Conversely, if a graph contains no cycles, it is
termed acyclic. In the context of directed graphs, a directed cycle is defined analogously,
with the additional requirement that each consecutive pair of nodes (v;, v;+1) (and (v, v1)

for closure) respects the orientation of the edge.

Isomorphism Graphs are said to be isomorphic if they have exactly the same struc-
ture, even if their representations differ. This means that there exists a one-to-one
mapping between the vertices of the two graphs such that the edges are preserved. Let
G = (V,E) and G’ = (V', E’) be two graphs (either both directed or both undirected).
These graphs are isomorphic if there exists a bijective function f : V' — V' such that for
all u,v € V:

{u,v} (or (u,v) for a directed graph) € E if {f(u), f(v)} € E’ (2.4)
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This bijection f preserves the adjacency relation, ensuring that the two graphs share the

same structure.

Graph Non-Induced Subgraph Induced Subgraph Non-Subgraph

Figure 2.7: Comparison of different types of subgraphs [54].

Subgraph Given a graph G = (V, E), a graph H = (V, Ep) is called a subgraph of
G if
VH g V  and EH Q FE (2.5)

with the additional requirement that for every edge e € Ep, both endpoints of e belong
to V. An induced subgraph is a special type of subgraph that is formed by selecting a
subset of nodes from the original graph and including all edges that connect those nodes,
thus preserving the original connectivity. Formally, Ve € E, if e = (u,v) with u,v €
Vi, then e € Ex must hold. In the case of undirected graphs, the same definition

applies, but the edges are undirected.

2.3.3 Algorithms

In addition to their structural properties, graphs serve as the foundation for a wide range
of algorithms that tackle diverse computational challenges. For instance, the Connected
Components (CC) algorithm is designed to identify distinct clusters within a graph
by partitioning the node set into subsets where every pair of nodes within a subset is
connected by some path. This is particularly useful in analyzing social networks or

clustering data [65].

Another graph algorithm is Single Source Shortest Path (SSSP), which focuses on
finding the shortest paths from a designated source node to all other nodes. Techniques
such as the Dijkstra algorithm [16] or the Bellman-Ford algorithm are widely applied in

routing, navigation, and network optimization scenarios.
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PageRank (PR) represents a different paradigm, where the goal is to assess the rela-
tive importance of nodes within a directed graph. By iteratively updating node scores
based on the structure of incoming links, the algorithm effectively quantifies the influence
of nodes, a method that has proven instrumental in ranking web pages and analyzing

complex networks [23].

Subgraph Matching (SM) addresses the challenge of identifying specific patterns
within larger graphs and computes their subgraph isomorphism property. This problem
is critical in various domains, including pattern recognition, bioinformatics, and social
network analysis, where the ability to detect and extract meaningful substructures can

yield significant insights [54].

2.4 Graph Neural Networks

Neural networks have demonstrated remarkable success in various domains, particularly
where data can be naturally represented in a Euclidean space [83]. However, many real-
world systems involve entities and relationships that are best described as graphs, where
the structure and the relationships themselves hold crucial information. Traditional
neural networks, such as Convolutional Neural Networks (CNNs) [31], are not inherently
designed to capture these relational structures. Graph Neural Networks (GNNs) extend
deep learning methodologies to graph-structured data, enabling models to learn from

both the node features and the topology of the graph in various domains [33, 74].

2.4.1 Concept

A GNN operates by iteratively updating node representations through a process known
as message-passing [85]. At each layer, nodes aggregate information from their neighbors
to refine their embeddings. The general formulation of message-passing at layer ¢ for all

nodes v € V' is given by
B0 = (£, (B0, (B | ue N()})) (2.6)

where th) is the embedding of the node v at the layer ¢, N'(v) denotes the set of neighbors
of v, ff(fg) g is the aggregation function, and ¢ is the node update function. The choice

of the aggregation function (e.g., mean, sum, max pooling) affects model expressiveness
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[68]. Graph learning tasks can be categorized into three levels: node-level tasks, such
as node classification and node clustering, edge-level tasks, including link prediction and

edge classification, and graph-level tasks, such as graph classification and regression.

2.4.2 Approaches

In recent years, various GNN architectures have been proposed, each introducing different
mechanisms to enhance expressivity and efficiency. A Graph Convolutional Network
(GCN) |8, 28| is based on spectral graph theory and employs a simplified layer-wise

propagation rule given by
HO = o (D—%AD—%H@—UW“)) (2.7)

where A = A + I is the adjacency matrix with self-loops, D is its degree matrix, H®
is the node feature matrix at layer ¢, and W® is the learnable weight matrix. Another
influential architecture is the Graph Attention Network (GAT) [62, 36|, which in-
corporates attention mechanisms to dynamically weight the importance of neighbors [63].

The importance for each edge e to the neighbors v; of a node v; is expressed as
e(hi, hj) = LeakyReLU(a” [Wh;||[Wh;]) with LeakyReLU(z) = max(ax,z) (2.8)

where h; and h; are the feature vectors of the nodes v; and v;, W is a learnable weight
matrix, || denotes vector concatenation, and a is a learnable attention vector. The final

attention coeflicient is defined as

exp(e(hg, hj))
2 eni) exp(elhi, hyr))

Q5 = softmaxj(e(h,-, h])) = (29)

which normalizes the attention scores across all neighbors N (i) of the node v; using soft-
maz. By allowing different neighbors to contribute unequally to a node’s representation,

a GAT enhances the expressiveness of GNNs.
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This chapter reviews key research areas relevant to this thesis. It summarizes founda-
tional concepts, categorizes existing approaches, and highlights important contributions.
The chapter outlines the research in the area of design pattern detection (section 3.1),
followed by approaches to subgraph matching (section 3.2) and code property graphs
(section 3.3) that are influential to the thesis methodology.

3.1 Design Pattern Detection

Design pattern detection is essential in software engineering for identifying recurring
structures in object-oriented systems. These patterns offer solutions to common design
challenges, enhancing readability, maintenance, and reverse engineering by recovering lost
design knowledge and promoting code reusability [20]. Various rule-based and machine

learning-based approaches have been proposed [51].

Rule-based approaches Rule-based approaches rely on predefined rules to detect de-
sign patterns in software systems. These rules are typically derived from the formal
definition of the design pattern, specifying the structural constraints that must be satis-
fied by the pattern instances. Several rule-based approaches have been developed over the
years. Some approaches use pattern-specific heuristics to identify pattern-specific prop-
erties [22, 3, 15|, while others leverage structural analysis techniques [58, 60]. One early
example is a similarity-scoring-based approach [66], which represents software systems as
graphs and applies an iterative similarity scoring between graph vertices to identify design
pattern instances. To handle large-scale applications, the approach reduces the computa-
tional complexity by partitioning systems into inheritance hierarchies. PatternScout [50]
is another approach and utilizes SPARQL queries, generated by UML representations of
design patterns. For the detection of the patterns, the queries are used on a Resource

Description Framework (RDF) representation of the source code. For describing design
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Table 3.1: Overview of design pattern detection approaches.

Approach Year Category = Methodology

Similarity Scoring [66] 2006 Rule-based  Graphs (adjacency matrices)

PINOT |[58] 2006  Rule-based  Structural & control-flow
graphs

DeMIMA [22] 2008  Rule-based  Binary class relationships &
model constraints

Sempatrec [3] 2014 Rule-based  Ontology-based model
(OWL/SWRL)

DSL-driven Graph 2014 Rule-based  Attributed graphs (DSL

Matching [7] meta-model)

FINDER |[15] 2015  Rule-based  QL-scripts

Predicting Architectural 2022 ML-based Various ML-models

DPs [29]

Ex-DPDFE [30] 2022  Rule-based  Feature-based

DPDF [44] 2022 ML-based ~ Word2Vec

PatternScout [50| 2022  Rule-based = UML & SPARQL queries

DPDT [60] 2022  Rule-based  Graph matching & static
analysis

Neural Sub-graph 2022 ML-based Subgraph matching with

Matching [4]

DSL-patterns

patterns, Domain Specific Languages (DSLs) have been implemented, where design pat-
terns are modeled as attributed graphs, and detection is performed through a subgraph
matching algorithm |[7].

Despite their effectiveness, rule-based methods have several limitations. One signifi-
cant drawback is their limited adaptability to variations in pattern implementations.
Since these methods depend on predefined structural rules, they often fail to detect
non-standard or modified implementations of design patterns, which may deviate from
canonical structures due to software evolution or different coding practices [20]. Ad-
ditionally, the increase in computational overhead when parsing large codebases poses
scalability challenges [78]. Another challenge is the significant manual effort required
for fine-tuning rules. Because rule-based approaches rely on handcrafted heuristics, de-
velopers often need to refine and adjust them for different programming languages and

software domains, leading to additional maintenance and adaptability concerns [51].
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ML-based approaches Approaches based on machine learning leverage the potential
of ML models and algorithms to effectively learn the design patterns. These approaches
often extract structural and behavioral features from source code and train classifiers to
recognize design pattern instances or utilize Graph Neural Networks. For architectural
design patterns like the Model View Controller, various machine learning models were
evaluated to detect these patterns in Java-based Android projects [29]. The evaluated
models include Support Vector Machines, Random Forest, and Naive Bayes. Key findings
indicate that source code metrics like class methods, inheritance depth, and coupling are
strong predictors of architectural patterns. The approach outperforms prior research,
offering a more automated and accurate method for architecture detection. However,
it is limited to Java and only two patterns. DPDF [44] is another approach that uses
machine learning to detect design patterns in Java source code. The approach combines
structural and lexical code features to construct a semantic representation of the source
code. This representation is then processed using Word2Vec to generate a word-space
model, capturing relationships between classes, methods, and design patterns. A su-
pervised machine learning classifier is trained on a labeled dataset to identify a wide
range of GoF design patterns. The approach highlights the importance of lexical fea-
tures in pattern detection and suggests that combining structural and semantic analysis
significantly enhances accuracy. One of the most recent approaches combines a GNN and
subgraph matching [4]. This approach models both software systems and design patterns
as graphs and generates embeddings using a Order Embedding GNN [40] to perform sub-
graph matching efficiently instead of relying on heuristics. The detection process involves
extracting source code structures, transforming them into graphs, and matching them
with design pattern templates in an embedding space. The design pattern templates are
implemented as language-specific DSL representations.

Despite their advancements, ML-based approaches face several challenges. Dataset im-
balance causes biased performance as underrepresented design patterns lead to inconsis-
tent detection rates [44]. Labeling errors from subjective annotators further affect model
accuracy, even when multiple annotators are involved [44]. Additionally, while some
models achieve high precision for frequently occurring patterns, they often struggle with
rare or complex cases, leading to overfitting and poor generalization [29]. Furthermore,
these detection methods typically lack explainability. This affects especially deep learn-
ing models, which act as black boxes and obscure the reasoning behind pattern detection
[29]. Finally, accurately representing intricate class relationships through graph-based
methods is computationally expensive and prone to errors, reducing overall detection
reliability [4].
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3.2 Subgraph Matching

Subgraph matching is a core problem in graph theory that aims to identify occurrences of
a smaller query graph within a larger target graph. It is widely employed in domains such
as pattern recognition and large-scale data analysis, but its NP-completeness makes it
computationally demanding [56]. Various exact and approximate approaches have been

proposed to handle its complexity.

Before the advent of machine learning, research centered on exact methods (e.g., clique-
based search, backtracking, and dynamic programming) and optimizations for subgraph
isomorphism detection. Notable among these were Mazimum Common Subgraph (MCS)
approaches [54], the memory-efficient VF2 algorithm [13], and distributed systems like
STwig [64] that used query decomposition for large-scale graphs. Methods also extended
into frequent subgraph mining and pattern detection. For instance, GraMi [17] formu-
lated frequency evaluation as a constraint satisfaction problem to avoid exhaustive enu-
meration. Recently, machine learning methods have transformed subgraph matching by
learning effective node and edge representations. Graph Convolutional Networks (GCNs)
with Dual Message Passing [35] enhanced matching and counting accuracy, especially on
heterogeneous graphs. Further progress involved reinforcement learning for query op-
timization, as exemplified by RL-QVO [70], which used Graph Neural Networks and

Markov Decision Processes to learn optimal vertex orderings and reduce search costs.

NeuroMatch One of the most promising approaches to subgraph matching is Neu-
roMatch [56]. NeuroMatch leverages a scalable and efficient Graph Neural Network
framework to learn an embedding space in which subgraph matching translates directly
into comparing graph embeddings, thereby circumventing the need for expensive combi-
natorial searches. A key insight of this method is its use of Partial Order Embeddings
[40] to enforce geometric constraints that reflect subgraph relations. By embedding sub-
graphs in a way that respects partial ordering, NeuroMatch can effectively capture struc-
tural hierarchies and preserve the relational information crucial for accurate matching.
In addition, NeuroMatch incorporates the concept from Identity-Aware Graph Neural
Networks (ID-GNNs) [80]. Whereas traditional GNNs often struggle to distinguish be-
tween structurally similar nodes, ID-GNNs include the node identity information in the
message-passing process. By integrating this identity-aware mechanism, NeuroMatch
enhances its expressiveness to differentiate nodes that share similar structural roles but

play distinct parts in their respective subgraphs.
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xNeuSM Another promising approximative machine learning approach is zNeuSM
[46], which builds on prior multi-hop attention-based GNN architectures to subgraph
isomorphism detection and explanation. Unlike earlier methods that depend on fixed
attention decay factors, zNeuSM introduces a Graph Learnable Multi-hop Attention
Network (GLeMA Net), allowing the model to adaptively learn node-specific attention
decay parameters. This flexibility enables zNeuSM to capture relational dependencies
across multiple hops more effectively, leading to significant gains in subgraph matching
accuracy and interpretability. Traditional subgraph matching techniques typically rely
on exact combinatorial methods, which are prohibitively expensive for large graphs, or on
approximate methods that often lack interpretability. To address this challenge, tNeuSM
adopts a multi-task learning framework that simultaneously optimizes for subgraph de-
tection and explicit node correspondence prediction. This joint objective strikes a balance
between efficiency and explainability, distinguishing xNeuSM from earlier neural-based
approaches focused primarily on classification. The foundation of xNeuSM is based
on the Multi-hop Attention Graph Neural Network (MAGNA) [69], which first intro-
duced multi-hop attention diffusion to widen the receptive field of GNNs beyond direct
neighbors. MAGNA showed that leveraging multi-hop attention can capture long-range
dependencies without over-smoothing. Building on this insight, xNeuSM replaces the
globally fixed decay parameter of MAGNA with node-specific learnable attention decay,
further enhancing its ability to model the structural details of different graphs. This
node-level adaptability not only improves subgraph matching performance but also pro-
vides more transparent insights into how various parts of the graph contribute to the

matching process.

3.3 Code Property Graphs

The concept of Code Property Graphs (CPGs) was introduced as a method to improve
vulnerability detection and program analysis by integrating multiple traditional program
representations into a unified graph-based structure. There are various implementations

of CPGs, each with its unique features and applications.

Joern The work that initially proposed CPGs [76] and is implemented in the open-

source project Joern presented a CPG as a combination of Abstract Syntax Trees (ASTS),
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Control Flow Graphs (CFGs), and Program Dependence Graphs (PDGs). This integra-
tion allows for a more comprehensive representation of source code, enabling security
analysts to identify vulnerabilities more effectively. By using graph traversal techniques,
CPGs facilitate the discovery of security flaws such as buffer overflows, integer over-
flows, and memory disclosures. The approach was implemented using a graph database,

allowing efficient querying of large codebases.

Fraunhofer Building upon this foundational work, the approach of Fraunhofer AISEC
[72| extended the CPG approach to a language-independent analysis platform. Their
platform adapts CPGs to support multiple programming languages, making it suitable
for heterogeneous software environments. A key advancement introduced in this work is
the Evaluation Order Graph (EOG), which refines control flow modeling by capturing
execution order at a finer granularity than traditional CFGs. This enhancement enables
a more precise understanding of program semantics, facilitating data flow analysis across
different programming paradigms. Furthermore, the platform incorporates fuzzy parsing,
allowing it to analyze incomplete or non-compilable code, which is particularly useful in

early development stages or during security audits of partial source code.

The evolution of CPGs from a targeted vulnerability detection tool to a versatile analy-
sis framework demonstrates their growing relevance in software security and compliance
checking. Building on these foundational CPG concepts, a wide range of research has
employed CPGs to tackle various software engineering and security challenges. Sev-
eral works focus on vulnerability detection and secure code analysis. For instance, deep
learning-based approaches integrate AST, CFG, and data-flow representations to auto-
matically detect security flaws [75]. Others employ subgraph isomorphism to identify
vulnerable code clones at scale, pruning large CPGs for efficiency [73|. Extending these
ideas further, cross-project vulnerability detection frameworks leverage domain adapta-
tion and graph attention mechanisms to transfer knowledge across different codebases
[82]. Beyond vulnerability detection, CPGs are also used for bug predictions and refac-
toring recommendations [14]. Some approaches leverage source code graph structures
to capture incremental code change complexities, enabling just-in-time bug prediction
[42]. Others integrate deep semantic features from CPGs with attention-based models
to localize defects more accurately than traditional methods [24]. By modeling depen-
dencies, control flow, and syntactic structures together, these techniques achieve higher
precision and recall. For concurrency challenges, specific graph extensions capture thread

synchronization and inter-thread dependencies [9].
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This chapter provides the core concepts for the proposed approach to design pattern de-
tection. It combines techniques and approaches from the discussed related works (chap-
ter 3) and extends them to create a language-independent mechanism for recognizing
design patterns. The subsequent sections explain how source code is represented as a
graph-based abstraction, how neural subgraph matching identifies patterns, and how a

pattern voting method aggregates pattern predictions across multiple examples.

4.1 Approach

The proposed approach aims to meet the following requirements for the design pattern

detection to extend and improve on previous works.

e General Pattern Detection: The approach should be able to detect design
patterns without relying on handcrafted pattern definitions or templates. Instead,
it should extract and capture the inherent structural properties of design patterns

from existing examples.

e Language-Independence: The approach should be language-independent, mean-
ing the underlying representation should remain consistent and valid across different
programming languages. Specific properties must be abstracted to a more general

representation.

e Code Resilience: The approach should exhibit code resilience and remain func-
tional with incomplete or non-compilable source code. It should handle errors or

syntax anomalies gracefully, without breaking the detection process.

To meet those requirements, the approach generates a high-level, graph-based represen-
tation of the source code. For this, a Code Property Graph (CPG) is used. The CPG
will then be aggregated into a domain-specific Record Interaction Graph (RIG), which

24



4 Concepts

captures relevant information on how various code entities (or records) interact together
(section 4.2). Once this abstraction is obtained, the approach uses subgraph matching
that leverages a Graph Neural Network to efficiently identify structures in the RIG cor-
responding to a given query pattern (section 4.3). Finally, a pattern voting algorithm
is used to decide whether a pattern is present or not. For the queried patterns, the
approach extracts and normalizes common design pattern graphs from a set of examples.

This allows an expandable approach for other patterns (section 4.4).

Graph Generation Graph Matching
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Code
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Figure 4.1: Overview of the proposed approach.

)

The reasoning behind the used concepts of the proposed approach follows from prior
research in code property graphs and graph-based pattern matching. CPGs offer a pow-
erful, language-independent abstraction enriched with multiple aspects of source code,
such as control flow, data flow, and internal dependencies. Some existing CPG imple-
mentations are tolerant of compilation errors and partial code, which supports the code
resilience requirement. This is the reason why the approach of Fraunhofer AISEC [72] is
used for this problem. While theoretically NP-complete [56], subgraph matching can be
handled efficiently in many practical contexts by using specialized Graph Neural Network
architectures. For this, the GLeMA Net will be used [46], which has shown a high accu-
racy in subgraph matching tasks and can be easily adapted to different graph structures
and node features. By combining these techniques with a pattern voting mechanism, the
approach uses the ability of machine learning to discover common structural motifs and

unify them into robust design pattern signatures.

4.2 Record Interaction Graph

To detect design patterns with a Graph Neural Network, the source code has to be ab-
stracted into a graph-based representation. For this, the proposed approach translates

the source code into a Code Property Graph. This representation captures a wide range
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of information by combining multiple aspects of the code (section 2.2.2). However, the
CPG can quickly grow to large sizes and contain irrelevant information for the purpose
of design pattern detection. To reduce the complexity and focus on the relevant infor-
mation, the CPG has to be further processed and aggregated to a more concentrated
graph abstraction the neural network can work with. For this purpose, a domain-specific
abstraction is introduced, the Record Interaction Graph (RIG). The RIG captures the
interactions between code entities, focusing on aspects like entity dependencies, visibility,
inheritance, and behavior. The assumption for this abstraction is that the interactions

between code entities are the identifying features of design patterns.

4.2.1 Record Interactions

Abstract
ProductA
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Concrete
ProductAl

Abstract
Factory.

CALLS
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Concrete Concrete
ProductB1 ProductB2

Abstract
ProductB

(a) GoF [19] (b) RIG

Figure 4.2: Comparison between the GoF definition and the RIG of an Abstract Factory.

A record in an object-oriented context commonly refers to a code construct such as a
class, struct, entity, object, or instance that can be instantiated and holds data as well
as optional behavior. This broad definition emphasizes any self-contained unit within
the source code that describes a distinct set of attributes and methods. By encapsu-
lating these attributes and methods, a record promotes modularity and clarity in the
overall design, enabling the concept to serve as a fundamental building block for object-
oriented systems. Design patterns in object-oriented systems often revolve around the
interactions between these records. Typically, a design pattern aims to improve main-
tainability, reusability, and extensibility by reducing coupling and increasing cohesion.
This is achieved by defining clear visibility rules and communication channels between
records, ensuring that other records do not depend on concrete implementations that
are not necessary for their functionality. To achieve this, design patterns often introduce
intermediary abstractions, such as interfaces or abstract classes, to decouple records from

specific implementations and enforce modularity.
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In the proposed approach, a record interaction is defined as any direct operation involving

another record, such as:

¢ Extending a class: Extending a class indicates an inheritance relationship, where
the subclass gains access to the properties and methods of the superclass. This
relationship is important for recognizing hierarchical connections in design patterns,

as inheritance can be a fundamental structural feature.

e Creating an instance: Instantiating another record establishes a direct depen-
dency because one record explicitly controls the creation of the other. This process
is often used in patterns that revolve around object creation, such as the Factory
Method or Abstract Factory.

e Returning an instance: Methods that return instances create a dependency
from the caller’s perspective, tying the caller to that returned record. This inter-
action can indicate roles in patterns that involve transferring or sharing objects,

underscoring how records circulate in the system.

e Accessing instance properties: Accessing a record’s properties typically means
reading its state, which implies a less invasive form of interaction than direct mod-
ification. Nevertheless, it remains a crucial indicator of how records depend on one
another’s data, especially in patterns where data sharing or observation plays a

central role.

e Calling methods on an instance: Invoking another record’s methods signifies a
functional dependency between the caller and the callee. It represents a direct link
in the control flow and is often central in patterns that coordinate behavior across

multiple collaborating records.

e Referencing a record: Holding a reference to another record (e.g., storing it in
a field) establishes a structural connection between the two. This reference-based
link is instrumental for identifying composition or association in design patterns,

clarifying how records relate to one another within the larger system.

It is crucial to distinguish direct interactions from indirect ones, such as the use of an
interface or a superclass without referencing a specific implementation. In those cases,
the interaction is tied to the abstraction rather than to a particular record instance.
For the purposes of the proposed concept, only direct interactions contribute to the

Record Interaction Graph, given that the central assumption is that concrete interactions
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among records are key to identifying design pattern roles and responsibilities. The GoF
patterns are defined by the relationships between the records and the specific roles of
the records. The roles and relationships can be captured by the direct interactions
between the records. For example, in the Abstract Factory pattern, the record’s role
ConcreteFactory extends the superclass with the role AbstractFactory, which creates
instances of the role AbstractProduct. The role ConcreteProduct creates instances of the
role ConcreteProduct. Only the AbstractFactory is visible and can be called by the record
with the role Client. With this description, the roles for each record are implicitly defined
by the interactions between the records (fig. 4.2).

4.2.2 Code Property Graph Abstraction

In the proposed approach, the Record Interaction Graph is a high-level abstraction layer
of a Code Property Graph. For this purpose, the CPG is filtered and aggregated to
depict the interactions between records, capturing all edge information in the graph.
This includes the AST, CFG, DFG, and PDG edges that are relevant for the interactions

between records.

Given a CPG G = (V, E, ly,lg), where:
e V is a finite set of nodes
e FCV xV isaset of edges

e ly .V — Yy is a node labeling function that assigns a label from some set ¥y to

each node

o /p: E — XY is an edge labeling function that assigns a label from some set X5 to
each edge

Assuming there exists a label RECORD € Yy, which defines a record node, the set of
all records R C V is defined as R = {r € V | {y(r) = RECORD}. The RIG is a directed
multi-graph G’ = (V' E’, £:) and captures the aggregated paths between all records in
R, so that V' is defined as V/ C R. The record interactions are captured by the edges
E' C V' x V' where each edge (r1,73) € E’ represents a direct interaction between two

records r1,79 € V' and the interaction is labelled by the edge labeling function £z .

In order to capture all relevant interactions between records in G, all other nodes v ¢

R have to be assigned to the scope of any record r € R. This is because the RIG
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abstract Shape {
Bbox getBoundingBox();
bool containsAny(Point[] points) {
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Figure 4.3: Hlustration of the scope tree contained in a CPG and the corresponding color-
coded scope associations for the nodes.

captures the direct interactions between the records, which means that any path between
records should only change the record scope once to capture the interaction between
directly reachable neighbor records. For this, the CPG definition of Fraunhofer AISEC
[72] includes the concept of scopes. Assuming there exists a set of node scope labels
Yg C Yy, then for every node v € G, there exists a directed edge e = (v,vg), where
ly(vg) € ¥g. The scopes in the given CPG definition include a wide range of types, for
example, GLOBAL SCOPE, RECORD SCOPE, FUNCTION SCOPE, BLOCK SCOPE,
and LOOP SCOPE. All the scope types have a hierarchical order, where scopes like
GLOBAL SCOPE are the highest scope, and the LOOP SCOPE is further down. This
scope structure can be expressed as a directed tree graph. For the RIG, the record scope
for every node must be determined, which is a transitive and recursive relation in the
scope tree of GG. To determine the record scope of a node v € GG, there exists a recursive

function
ly(vg) if by (vs) = RECORD SCOPE,
lrs(v) = (4.1)
lrs(vsg) otherwise,
where vg is the directly associated scope node of v in G. This function recursively tra-
verses the scope tree of G until it reaches a node with the label RECORD SCOPE.
According to the CPG definition, it is guaranteed that there exists a record scope decla-

ration for every node in G by traversing the graph in this way.
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Figure 4.4: Steps to construct the Record Interaction Graph from a Code Property
Graph.

Given the record scopes for each node in GG, the direct paths between records can be de-
termined. For this, a path Py is defined as a finite sequence of nodes Py = (v1,va, ..., v,)
with n > 2. The start node v; and the end node v, are both records, i.e., vi,v, € R,
while any node strictly between v; and v, is not a record, i.e., V2 <i<n—1:v; ¢ R.
For all in-between nodes v;, the record scope is constrained to one of the record scopes of
the start and end nodes, so that {rs(v;) € {¢rs(v1),lrs(vy)} holds. Moreover, for each
consecutive pair of nodes in Py, (v;,v;+1) € E holds for all 1 < i < n. Note that the
start node and end node are part of R, with any node in between not belonging to R,

and all nodes in Py (except the start) are connected to the previous node by a directed
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edge in F. This implies the following properties for an aggregated path Py and its start

and end nodes vy, v, € Py:
e v; has a directed connection to v,
e v; has an n-hop distance to v,
e v, is one of the next reachable records for vy
e The record scope in P changes only once

If such an aggregated path Py exists with v1, v, € R, then the proposed concept includes
an edge (vl, vn) in E’. In this way, every existing n-hop connection between all records

and every neighboring record is captured in the RIG.

To determine the type of interaction of a path Py, there exists a mapping function

W (v1,v2, .., 0,) ((’1)1,’1)2), (v2,v3), ..., (Un_l,vn)) (4.2)

which transforms the node path Py into an edge path Pg = (e1, e, ..., e,—1), where each
e; = (vi,viy1). The path Pr can now be reduced to a single interaction type, which is
determined by the edge labeling function ;. Let T be the set of all possible interaction
types, and for each 7 € T, let ¥, C X be the identity labels that characterize 7. For
a given edge path Pp = (e1,e2,...,e,-1), there exists at least one edge e; whose label
¢ (e;) belongs to the identity labels of a certain interaction type 7, then the aggregated
edge e € E' is assigned the interaction type 7. The edge labeling function ¢g is defined

fE/(PE) = X<{T€T’E|€EPE:£E(€)GET}> (4.3)

The x function in this case picks the relevant interaction type 7 from the set of all
possible types for the given path by applying a predefined priority rule for each 7 € T.
This rule is defined by the domain-specific requirements of the Record Interaction Graph,
which can be adjusted to emphasize certain interactions over others. For example, the
interaction type CREATION might be prioritized over ACCESS in a pattern detection

context, as the former is more expressive for object creation roles.
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4.3 Neural Subgraph Matching

Neural subgraph matching serves as the primary technique for identifying design pat-
terns within the proposed Record Interaction Graph. The proposed approach adapts
the zNeuSM model architecture, which builds on prior multi-hop attention-based Graph
Neural Network designs [69]. zNeuSM leverages a Graph Learnable Multi-hop Atten-
tion Network (GLeMA Net) to tackle subgraph isomorphism detection and explanation
[46]. Unlike earlier methods that used fixed attention decay factors, the zNeuSM model
introduces node-specific learnable attention decay parameters. This adaptive mecha-
nism captures relational dependencies across multiple hops more effectively, resulting in
significant improvements in both matching accuracy and interpretability. The architec-
ture employs a multi-task learning framework that optimizes for subgraph detection and

explicit node correspondence prediction in parallel.

In addition to the base model architecture, the proposed approach incorporates a modi-
fication that anchors subgraphs at a specific node. This anchoring technique associates
the identity of a detected subgraph with a particular record in the graph and enhances
the interpretability of the matching process. By design, the concept not only identifies
a matching substructure but also ties it to a central node, which serves as a reference
point for the subgraph. This modification is mandatory for the subsequent pattern voting
mechanism, which relies on the identification of pattern occurrences and their anchoring

to specific records in the Record Interaction Graph.

4.3.1 Model Architecture

The proposed approach uses the GLeMA Net model. Unlike standard Graph Neural
Networks that focus on immediate neighbors, it employs a multistep attention mechanism
to capture deeper structural relationships and improve pattern recognition. The model
takes as input node features and two types of adjacency matrices. Node features represent
the properties of graph nodes and also indicate whether a node belongs to the pattern
or the target graph. Each node is represented by a vector with two parts, one for the
query and one for the target graph, forming a combined vector with dimension 2773 .
The first adjacency matrix is called the intra-graph matrix and represents connections
between nodes within the same graph. An entry in this matrix is set to 1 if two nodes
are directly or indirectly connected within the same graph and 0 otherwise. The second

adjacency matrix is the proxy cross-graph matrix, or inter-graph matrix, and includes
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Figure 4.5: Overview of the GLeMA Net architecture [46].

all connections from the intra-graph matrix but additionally connects nodes from the
other graph if they have matching labels. These virtual edge connections allow the

model to directly compare nodes from the query and the target graph (fig. 4.5).

Initially, node features are transformed into a more informative embedding space using
a simple linear transformation. Following this, the model calculates attention scores
between node pairs using a method similar to Luong’s attention, which weights the
relevance of nodes based on their embeddings. These scores indicate how strongly each
node pair influences each other and are then normalized to ensure that only immediate
neighbors affect a node’s representation. To incorporate information from nodes located
multiple hops away, the model uses a multistep diffusion of attention. This diffusion
aggregates information progressively from nodes farther away in the graph, weighting
their contributions according to learned decay factors. The attention diffusion matrix A

aggregates multiple steps of attention as follows:

A= "0(ANF with 6 = a(l - ) (4.4)
k=0

Here, A() represents the normalized attention matrix computed at a single step (1-hop),
and the term (A(l))k reflects the attention propagated across k steps in the graph. The
decay factor 6 determines how much influence nodes at distance k have, where a is
the teleport probability controlling the rate of decay. In practice, rather than summing
infinitely many steps, the diffusion is approximated through iterative computations to

ensure computational feasibility while still capturing distant relationships effectively.
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A significant innovation in the proposed approach is learning a distinct decay factor for
each node, rather than using a fixed decay factor for all nodes. This allows the model
to adaptively decide the importance of distant nodes based on local graph structure.
The GLeMA Net architecture applies multiple such layers sequentially, processing both
intra-graph and inter-graph information separately in parallel. Afterward, it explicitly
calculates the difference between these two perspectives to highlight discrepancies, which
aids in identifying accurate matches between the subgraph queries and the target graph.
These refined node embeddings are aggregated into a single representation that the model
uses for two tasks: predicting if a subgraph match exists and explaining this prediction
through node-level alignment. Both tasks are optimized simultaneously, guided by a loss

function that combines prediction accuracy with alignment precision.

4.3.2 Record Anchoring

The core idea behind anchoring in the proposed approach is to resolve the ambiguity
inherent in subgraph representations by explicitly marking a designated anchor node
within each extracted subgraph. In standard Graph Neural Network formulations, nodes
with similar local topologies are often assigned nearly identical embeddings, which can
lead to indistinguishability in tasks such as design pattern detection. By augmenting
the one-hot node features with an additional anchor indicator, the approach enforces a
structural asymmetry that preserves the identity of the central node. For instance, if the
original one-hot feature of node v is denoted by x,, the augmented feature z, is defined

as

[xy;1] if v is the anchor,
Ty = (4.5)
[,;0] otherwise.

This modification ensures that during the message-passing process, the anchor node is

treated differently from its neighbors.

In the adapted GLeMA Net architecture, subgraph matching is carried out by embedding
a k-hop neighborhood G, around each node v in the target graph. The network computes
node embeddings via an iterative message-passing scheme. However, by designating one

node as the anchor, the message functions can be made sensitive to its special role.
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Figure 4.6: An anchored node with its k-hop neighborhood.
In particular, if hq()k_l) denotes the node embedding at layer k — 1 and N(u) is the

neighborhood of node u, the message update can be formulated as

h&m = fgfg)g({mq()k) tv € N(u)}) with mq(f) = Z f](\’jlg(ﬁﬁ,’“‘l)) (4.6)

veN (u)
where ilq()k_l) is computed using the augmented features Z,. By incorporating the aug-
mented features, the GNN is provided with explicit information about which node in a
subgraph is the anchor. This differentiation allows the network to learn distinct trans-
formation parameters for the anchor compared to its neighbors, thereby improving the

ability to identify and compare the structure of subgraphs.
In practical terms, anchoring enables the following improvements:

e Disambiguation of Subgraph Structure: By marking one node as the anchor,
the model can resolve ambiguities that arise when multiple nodes share similar

local topologies.

35



4 Concepts

e Enhanced Interpretability: Each subgraph’s representation becomes tied to a
specific record, which is critical for downstream tasks like pattern voting in design

pattern detection.

e Improved Matching Accuracy: In subgraph matching, the query graph is de-
composed around an anchor node. When comparing a query subgraph G, (anchored
at node ¢) with a candidate target subgraph G, (anchored at node w), the model

focuses on matching the context relative to these anchor nodes.

Notably, while NeuroMatch [56] employs anchoring to structure its subgraph matching
routine, the proposed approach adopts only the anchoring idea without incorporating
order embeddings. Instead, the focus is on leveraging the anchoring signal to condition

the message-passing process.

4.4 Pattern Matching

The pattern detection concept is a key component of the proposed approach for design
pattern identification in source code. This section introduces the detection mechanism
based on neural subgraph matching within the Record Interaction Graph (RIG). In this
context, the source graph is defined as a subgraph of the RIG, anchored at a record
node, while the query graph is a subgraph representing a design pattern example. Using
subgraph matching, the proposed concept verifies whether the query graph is an induced
subgraph of the source graph. A positive match indicates the detection of the design

pattern.

The detection process faces several challenges. First, the extracted subgraph may be
noisy. Different instances of the same design pattern in the source graphs can exhibit
varying degrees of relationships, some of which may not be present in the query graph.
This requires a normalization step to align the representations (section 4.4.1). Second,
although design patterns embody specific structures, they may be implemented in diverse
ways. Because of this, extracting the most important components and preserving the
various structural shapes of design pattern examples is essential (section 4.4.2). Third,
when multiple instances of the same design pattern are used as queries, the accuracy of
detection may decrease, which requires the integration of a voting mechanism to identify

the most likely pattern (section 4.4.3).
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4.4.1 Graph Normalization

The extracted subgraphs from the Record Interaction Graph (RIG) may exhibit noise
due to the variability in the number and configuration of interaction relationships among
records. For instance, a design pattern example in the RIG might include four inheritance
interactions between two records, while an actual instance in the source graph may only
manifest three such interactions. Such discrepancies can prevent the query graph from

being recognized as an induced subgraph of the source graph, leading to false negatives.

(a) source (b) normalized

Figure 4.7: Ilustration of the normalization process for a RIG subgraph.

The proposed concept approaches this issue through a normalization process that aggre-
gates interaction relationships. Let a RIG subgraph be defined as G = (V, E), where V
denotes the set of record nodes and E the set of directed edges representing interactions.
The normalized subgraph G’ = (V’, E’) is derived from G by applying an aggregation
operator A that groups edges based on their interaction type. The normalization process

is defined as follows:

e Anchor Node Initialization: The process begins at an anchor node r, € V|,
which serves as the root of the normalized subgraph. The anchor node is included
in V.

e Edge Grouping and Aggregation: For each node r € V that is within the 1-hop
neighborhood of the anchor, the set of outgoing edges {e € E | e = (rq,7),lp(e) =
7} is aggregated into a single representative edge (r4,7’) in E’ with the interaction
type 7. Here, £g is the edge labeling function, and 7 is an element of the set of
interaction types 7. This step essentially performs an edge contraction on groups

of edges sharing the same label.
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e Iterative Aggregation: The same aggregation procedure is then applied itera-
tively. For any aggregated node r’ that represents a group of original nodes, the
outgoing edges from all nodes represented by 7’ are grouped by interaction type,
and the aggregated edges are added to G’. This recursion continues until an n-hop
neighborhood around the anchor is completely processed or all nodes in G have

been visited.

This normalization process can be seen as a graph reduction technique that maps the
original graph G onto a more abstract representation G’ via a function f : G — G’ that
preserves the structural essence of the interactions while ignoring minor variations in edge
multiplicity. The key assumption is that the characteristic features of a design pattern
are captured by the topology and types of interactions in an n-hop neighborhood, not
by the precise counts of these interactions. Thus, the aggregation operator A effectively

implements a many-to-one mapping:
A:{ee E|lgle)=1}—{ € E|lg()="1} (4.7)

The resulting normalized graph G’ has a tree-like structure with the anchor node as its
root, and it preserves the essential connectivity and interaction patterns of the original
RIG subgraph while filtering out noise (fig. 4.7). This refined representation enables the
neural subgraph matching component of the proposed approach to focus on the intrinsic
structural properties of design patterns and improves the comparability of subgraphs

during the detection process.

4.4.2 Pattern Extraction

In order to capture the essential structural characteristics of design patterns while accom-
modating implementation variability, the proposed concept employs an iterative common
subgraph extraction method, which is based on the idea of identifying commonalities
among multiple subgraph instances. This process is designed to distill the most repre-
sentative features of a design pattern from a set of normalized RIG subgraph examples.
Let G = {G1,Ga,...,G,} denote the set of normalized RIG subgraph examples corre-
sponding to a particular design pattern, where each G; = (V;, E;) is a directed graph

with V; representing the set of record nodes and F; the set of interaction edges.
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Figure 4.8: The iterative common subgraph extraction process for design pattern detec-
tion.

The extraction process is built upon two fundamental functions:

1. An intersection function Ny that computes the common subgraph of two normal-
ized graphs G; and G; starting from their respective anchor nodes. For any pair
(Gi,Gj), the common subgraph is defined as G;; = G; Ny Gj.

2. An equivalence function =p that determines whether two normalized subgraphs
are equal in structure and edge labeling, i.e., G =n G’ if and only if G and G’ are

isomorphic with respect to the labels.

The algorithm initiates by setting the candidate set of common patterns as C(¥) = G.
In each iteration ¢, the process considers all unordered pairs (G4, Gp) from the current

candidate set C(Y and computes their common subgraph:
COY) = (G, Ny Gy | Gu, Gy € CDY. (4.8)

To avoid redundancy, the set Clit1) is filtered by discarding any subgraph G for which
there exists another subgraph G’ such that G =5 G’. Moreover, only those subgraphs
satisfying the node threshold |V(G)| > npin are retained, where n,,;, is a predefined

minimum node count to ensure that only substantial substructures are considered.

This iterative extraction continues until the candidate subgraphs are reduced to at most
Jmaz O until the iteration count reaches i,,q:, stopping when ]C(i)] < Gmaz O T > tmaz-
The final output C® represents the distilled set of common subgraphs that encapsulate
the key interactions inherent in the design pattern. By iteratively extracting pairwise
common subgraphs and eliminating duplicates as well as subgraphs below a significance
node threshold, the proposed concept efficiently isolates the most common structural

motifs of a design pattern.
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4.4.3 Pattern Voting

The detection of design patterns using multiple query instances can lead to inconsistent
matching results, especially when variations in implementation and noise in the source
graph are present. The proposed approach addresses this challenge by introducing a
voting mechanism that consolidates evidence from several pattern queries to determine

whether a source graph represents an instance of a specific design pattern.

The core idea is to utilize a set of representative design pattern examples as queries.
Each query subgraph is matched against a source graph using neural subgraph matching,
resulting in a prediction value p € [0, 1] that indicates the likelihood of the query being a
subgraph of the source. To ensure valid comparisons, the approach first aligns the query
with the source: if a query subgraph is larger than the source subgraph, the query is
reduced in size by incrementally including nodes that are closer to the anchor until the

node count of the source is reached.

In addition, to account for the diverse structural manifestations of design pattern in-
stances, the query is sampled at varying distances from the anchor node. A distance
offset interval is defined such that subqueries of the original query are generated. The
maximum distance of the original query is denoted by dmax(Gy). In the iteration ¢, a sub-
query with maximum distance dmax(Gg,) = dmax(Gq) — i is extracted, with the process
terminating once a minimum distance dp;y, is reached. Since reducing the query distance

also reduces its descriptive significance, a weight w; is assigned to each subquery

A
Vi)

wj (4.9)
ensuring that the influence of each query is proportional to its node size |V,| relative to
the original query node size |V;|. Subsequently, pairs consisting of the source graph and
each sampled query are formed, and the neural model computes a subgraph matching
prediction p for each pair. Each prediction is then weighted by the corresponding query
weight, yielding a weighted prediction p,, defined as p, = p - w;.

Let Pr = {PwysPwss - - -, Pw,,  denote the set of weighted predictions for a given design
pattern type 7. In the final voting stage, for each design pattern type, the quantile Q7
of the set Py is computed using a high quantile value ¢ (e.g., ¢ = 0.9), so that only the

top percentage of the predictions contribute as positive votes.
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Let {p(o);P(1);--+»Pn)} be the elements of Py arranged in increasing order. For any
quantile level ¢ € [0, 1], the distribution index is defined as h = ¢- (n — 1). Let i = |h|
be the integer part and d = h — ¢ be the fractional part for interpolation. Then the g-th
quantile for Py is given by:

QT = Q¢(P1) = p(iy + 0 (Pii+1) — P&)) (4.10)

Q7 represents the interpolated threshold value such that approximately ¢ - 100% of the
predictions in Pr fall below it. If Q7 exceeds a predefined threshold (e.g., 0.5), the
source graph is declared as an instance of the design pattern. This voting mechanism
enhances the robustness of the detection process by aggregating evidence across multiple,
variably sampled queries. Consequently, the proposed approach is designed to detect
design patterns even in noisy source graphs and when design pattern examples exhibit

implementation variability.
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This chapter details the concrete realization of the proposed approach for design pattern
detection through the use of CPGs and neural subgraph matching. It presents an in-depth
view of the technologies and design decisions used for the implementation, highlighting
how language-independent code abstractions are transformed and processed into graph
representations for effective pattern matching. The chapter describes the implementation
of the concepts introduced earlier (chapter 4), providing insight into technical challenges
encountered and the respective solutions. The following sections outline the system
architecture (section 5.1), detail the stages of graph generation (section 5.2) and model
training (section 5.3), and discuss the testing strategies applied to ensure robustness and
correctness (section 5.4). The implementation represents a prototype that demonstrates
the feasibility of the proposed concepts and serves as a foundation for future research
and development. Therefore, the focus lies primarily on the functional correctness and

maintainability of the system, rather than on performance or scalability.

5.1 System Architecture

The proposed approach is built as a three-layer architecture using containerized com-
ponents that separate the overall processes. The components handle different stages of
the design pattern detection pipeline, including graph generation and pattern matching.
Both components are managed and orchestrated by the virtual container environment.
A lightweight command-line interface (CLI) tool provides a set of interactions to the
user by handling the communication and order of execution with systems underlying
components. Between the components, a robust graph database as a persistence layer is
provided. The persistence layer is used for storing and sharing the generated graph data
between the components. In addition, the graph database can be used for in-depth anal-
ysis of the graph data with graph query languages and graph visualization tools provided

by the specific database implementation.
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Figure 5.1: An overview of the system architecture and components.

The graph generation component has the purpose of translating and processing source

code into a structured graph representation. For this, the component is divided into

three tasks. First, the source code is translated into an external Code Property Graph

model defined by the external translation library. This model is then mapped to the

internal CPG representation and is optionally marked with design pattern annotations

for training and testing purposes. In the second task, the CPG model is transformed

into the RIG representation using a specific processing pipeline (section 5.2.3). The last

task maps the RIG to a graph database model and uses a dedicated persistence interface

to write the graph into the database.
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After the graph generation component has completed the processing of the source code,
the pattern matching component is responsible for reading the persisted graph datasets
from the database and preprocessing them for training and testing. The preprocessing
phase includes the partitioning of the datasets into smaller graph samples, generating
both positive and negative subgraphs for each sample, and synthesizing additional train-
ing data. Using the preprocessed data, the GNN model is trained and tested on the gen-
erated graph samples. The pattern detection task performs graph normalization steps on

the graph data and extracts pattern examples for the final pattern voting mechanism.

5.2 Graph Generation

The graph generation component is implemented as a Java 17 application and converts
raw source code into a structured graph representation. The process begins by translating
the source code into a Code Property Graph using the Fraunhofer AISEC CPG project
(version 8.3.0). This process leverages the comprehensive and extensible design of the
CPG, which is divided into core and language-specific modules. The library is designed
to be easily extensible and is still under active development, currently providing matured
support for languages like Java and C++ and experimental support for languages like
Ruby and JavaScript. Once the CPG is constructed, it is processed into a Record Inter-
action Graph via a custom pipeline that employs GraphStream (version 2.0) for efficient
in-memory graph manipulation. For this, core frameworks are implemented to manage
the processing steps, including a custom pipeline and a graph traversal algorithm. After
processing, the RIGs are persisted in a Neojj graph database using the Neo4j OGM
driver (version 4.0.10), which ensures reliable storage and facilitates subsequent retrieval

for pattern matching.

5.2.1 Core Frameworks

The processing of the Code Property Graph relies on two core frameworks: a custom
pipeline and a node-centric graph traversal algorithm. These frameworks form the foun-
dation of the proposed approach by managing the majority of the processing steps re-
quired for constructing the design pattern detection architecture. Both frameworks are

designed with a strong emphasis on modularity, extensibility, and maintainability.
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Pipeline The further transformation and processing task of the CPG is realized through
a custom pipeline that orchestrates the various processing steps required to construct the
RIG. The pipeline is designed with the primary goals of maintainability, clear separation
of concerns, and extensibility. The implementation organizes the required steps through a
sequence of processing modules. Each module in the pipeline is responsible for a distinct
transformation, ensuring that the logic is encapsulated and isolated within well-defined

boundaries.

@ = 1@

Figure 5.2: The pipeline implementation including the context handling by subprocesses.

The modules in the pipeline are constructed using a Builder pattern, which allows for the
dynamic assembly of the processing chain. Each processing module has a reference to the
next module in the sequence, enabling the sequential execution of the pipeline. For this,
each module uses the output of the previous module as input. In addition, a pipeline
context is maintained throughout the execution, which includes essential metadata such
as configuration arguments, processing statistics, and custom context information. The
context can be accessed and modified by each module, ensuring that the execution state
is consistently maintained across all processing stages. An abstract class is used to define
the execution management and context handling, as well as performance tracking. Each
concrete module implements this class and defines the input and output types of the
module. There is a single method that must be implemented by each module, which is
responsible for the actual processing logic. This modular structure not only enables easier
debugging and testing but also promotes maintainability by allowing individual modules
to be modified or replaced without impacting the overall system. By defining pipelines
in the modules themselves, processes can be easily grouped to combine subprocesses.
This generic implementation of a pipeline is used as the foundational architecture for

processing the CPGs.

Graph Process Traversal The second core framework implemented for processing the
CPG is a node-centric graph traversal algorithm, which serves as the central abstraction

for processing at a global graph level. This framework processes the graph on a node
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level by employing message-passing through the edges and is encapsulated within an

abstract class that handles the traversal logic and manages visited edges. The class also

determines when to halt the traversal, either via a custom stop signal or upon reaching

a predefined maximum depth.

Algorithm 1 Graph Process Traversal

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

procedure TRAVERSE(startNode, maxDepth)
queue < an empty deque
push (startNode, null, null, null, 0) into queue
while queue is not empty do

processData <+ pop from queue
node < processData.node
inputData < processData.message
ctx < (processData.edge, processData.parent, processData.depth)
if maxDepth > 0 and ctz.depth > maxDepth then
continue > Skip further processing if maximum depth is reached.
end if
output <— PROCESS(node, input Data, ctx)
if ctx.edge # null then
mark ctx.edge as visited
end if
if output.proceed = false then
continue > Do not traverse further from this node.
end if
for all edge in NEXT(node) do
if edge is not visited then
nextNode « edge.opposite(node)
message <— output.message
depth < ctx.depth+1
push (nextNode, node, edge, message, depth) into queue
end if
end for

end while

28: end procedure

Traversal processes that implement the abstract class must provide concrete implemen-

tations of only two methods. The Process method is responsible for processing a node

by applying custom logic. It accepts as input the current node, an incoming message

from the calling edge, and a context containing additional information such as the par-

ent node, the incoming edge, and the current traversal depth. Based on this input, the

Process method produces a process output that consists of the process output mes-
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sage and a flag indicating whether the traversal should continue from the current node.
In contrast, the Next method returns a list of edges to be queued for the subsequent
traversal step relative to the current node, thereby defining the custom traversal strategy.
This clear separation between the processing logic and the traversal strategy facilitates

flexible adaptation of the approach to various processing requirements.

5.2.2 Translation

The translation module is responsible for converting raw source code into an intermediate
Code Property Graph representation using the Fraunhofer AISEC project. The library
is divided into core functionalities and language-specific components, thereby supporting
multiple programming languages. This structure decouples the CPG logic from language-
specific features by using a dedicated translation layer that abstracts concrete language
constructs into a unified CPG representation. The translation supports multiple CPG

passes, each designed to extract different aspects of the source code. For instance:

e Data Flow Pass: Tracks the flow of data through variables and functions to

identify potential dependencies.

e Control Dependency Pass: Captures the control flow dependencies between

various code constructs.

e Program Dependence Pass: Combines control and data dependencies to provide

a comprehensive view of program structure.

e Evaluation Order Pass: Describes the order in which expressions are evaluated

within a program.

e Type Hierarchy Pass: Analyzes and resolves relationships between types, sup-

porting inheritance and interface implementations.

In the implemented processing module, a Builder pattern is employed to configure the
translation process. The Builder is used to register the desired passes, specify the tar-
get language, define source code files, attempt dynamic code inference, and load any
required dependencies. Once the configuration is complete, the translation process loads
the source files, computes the registered passes, and constructs the internal CPG repre-

sentation.
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For further processing, the internal CPG must be converted into a graph representation
using GraphStream. Although GraphStream was originally designed for dynamic graph
processing, it is utilized in this context for its robust support for static graph manipula-
tion, its extensive built-in algorithms (e.g., BFS, DFS, SSSP, CC), and its compatibility
with multi-graphs. The Fraunhofer library provides a mapping to a generic JSON repre-
sentation of the CPG graph, which includes a list of all nodes and edges along with their

1

propertiest. This JSON is then iterated over to construct a GraphStream multi-graph,

which is subsequently used for further processing within the pipeline.

5.2.3 Processing

The processing of the CPG and the transformation into the RIG are implemented as a
series of modules within the pipeline. Each module is responsible for a specific trans-
formation step, such as record scope propagation, record path computation, and record
interaction computation. The processing modules are designed to be modular and ex-
tensible, allowing for easy integration of additional processing steps or modifications to

existing ones. The most important processing modules are the following:

Record Scope Module The Record Scope Module is responsible for assigning the
record scope attribute to every node in the CPG in accordance with the hierarchical
scope structure defined in the concept section 4.2.2. In the proposed approach, the
module first iterates over all nodes and distinguishes between record declaration nodes
and those associated with a record scope. For nodes identified as record declarations,
the module extracts the full record scope attribute and immediately propagates it to all
directly connected nodes via incoming edges of type RECORD_DECLARATION. For nodes
that have the label SCOPE_RECORD and have not yet been propagated, the module
employs a graph traversal process to determine the correct record scope. It invokes an
implementation of the node-centric graph processing abstraction. This traversal follows a
message-passing paradigm where each node updates its record scope attribute by checking
if it directly represents a record scope and, if so, extracting the corresponding attribute.
The propagation then continues along the entering edges to update adjacent nodes. The

traversal stops upon reaching another record scope node. By following this strategy, the

'The JSON mapping for the Fraunhofer CPG is experimental and is not fully optimized. In cases
where the source code input is large, memory constraints might necessitate reducing the depth of
CPG traversal or employing batched database queries to store the CPG in smaller chunks.
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approach ensures that every node in the CPG is assigned the appropriate record scope,

thus preserving the integrity of the Record Interaction Graph construction.

Record Path Module The Record Path Module computes the direct paths between
record nodes in the CPG in accordance with the proposed approach. The module first
filters the graph to obtain nodes that are declared as records by checking for the corre-
sponding record label. For every record node, a record neighbor subgraph is extracted by
traversing the CPG up to a defined maximum path distance. This subgraph provides the
local context for the record and serves as the basis for computing the record interaction
paths. The module then employs the shortest path algorithm based on Dijkstra’s algo-
rithm [16] to compute the shortest paths from the current record node to all other record
nodes within the subgraph. In each iteration, the module calculates the shortest path
and removes the last edge of the found path from a copied instance of the subgraph. This
iterative process identifies multiple path variations for every record node and ensures that
alternative paths are explored up to a predefined maximum number of variations. In an
optimal scenario, the module would generate every possible unique path between the
record nodes, using k-shortest path algorithms like Yen’s algorithm [79]. However, due
to the complexity of the CPG and the computational overhead, the module is designed
to generate a limited number of path variations to balance performance and accuracy.
Each computed path is represented as a sequence of edges that connects the start and
end record nodes with intermediate nodes that do not belong to the record set. In this
way the module respects the constraint that the record scope changes only once along
the path. All computed record paths are aggregated in a dedicated container, and the
collection is then attached to the processing context to be used by subsequent stages in

the pipeline.

Record Interaction Module The proposed approach implements the Record Inter-
action Module as a processing step that computes and aggregates interactions between
record nodes. The module retrieves the collection of record paths from the processing
context and verifies each path to ensure it represents a direct interaction between record
nodes and that the record scope in the path changes only once. After validation, the
module determines the interaction type by analyzing the edge types along the path. If
the path contains specific edge types such as INSTANTIATES, SUPER_TYPE_DECLARA-
TIONS, or RETURN_TYPES, the corresponding interaction type is assigned. Otherwise,

the default interaction type is used. The computed interaction is aggregated and added
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to the graph by either reusing an existing interaction or creating a new one. An edge
is then created between the record and interaction node with attributes capturing the

interaction type.

Pattern Marking Module The Pattern Marking Module is responsible for annotat-
ing the Code Property Graph with design pattern labels by processing each node and
applying the corresponding design pattern marker to generate the train and test datasets
for the GNN model. The module retrieves the dataset of design patterns from the pro-
cessing context and initializes a statistics container for tracking the number of markings
per design pattern. The module iterates over all nodes in the graph and focuses on nodes
that represent declaration records. For each relevant node, the module extracts the full
class name from its attributes and identifies potential design patterns by matching the
class name with the design pattern declarations contained in the dataset. When a match
is detected, the module marks the node by adding a label that corresponds to the de-
tected design pattern type. The marking process is combined with an update of the
statistical counters that record the occurrence of each design pattern and a total count.
In addition, the module computes ground truth statistics by traversing the dataset and

then compares them with the observed markings.

5.3 Model Training

The graph matching component is realized as a Python 3.9 application and focuses on
the training of the GNN model and the actual pattern detection task. For this, the com-
ponent utilizes the Neo4j driver (version 5.26.0) for data access and relies on NetworkX
(version 3.2.1) for the manipulation and transformation of the graph structures. The im-
plementation partitions the persisted graph data into smaller subgraphs for each record.
For each sample, the anchor node is defined, and both positive and negative subgraph
samples are generated. Additional training samples are synthesized by analyzing the
structural properties of the graph. For the GNN, the implementation uses the GLeMA
Net model that is configured to use case-specific hyperparameters. The training process
is implemented with PyTorch (version 2.4.1) and optimized through a curriculum train-
ing strategy that starts with smaller subgraphs and gradually increases their size over

the training epochs.
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5.3.1 Dataset Preprocessing

The data preprocessing of the proposed approach is performed in four steps: loading
datasets, source graph generation, test sample augmentation, and train sample synthe-
sis. First, the datasets are read from the Neojj database and transformed for model
compatibility. The dataset is then partitioned into smaller subgraphs with an anchor
record node set for each sample. Based on these anchored source graphs, test samples
are generated by augmenting them with multiple positive subgraph query samples that
guarantee subgraph isomorphism. Negative subgraph query samples are generated by
random graph modifications to ensure non-isomorphism. Finally, synthesized training
samples are created by analyzing structural properties such as the average and standard
deviation of source sizes and node degrees, generating connected graphs that closely
resemble the original source graphs and amounting to four times the number of test sam-
ples. Steps 3 and 4 are skipped for the inference data, as only the training of the model

requires artificial query samples.

Loading Datasets Datasets are read from the Neo4j database. The RIG graph data
is then transformed for compatibility with the GLeMA Net model. Since the model
cannot handle edge features, each edge representing an interaction between records is
converted into a node with the original edge label as its node label. This interaction
node is connected with a single edge to the source record and with one or more edges to
the target record nodes that share the same interaction. In this way, the transformation
preserves the full informational content of the RIG while ensuring compatibility with the
GNN model (fig. 5.3).

Source Graph Generation The implementation in this step partitions the dataset
into smaller subgraph samples centered around each record node by extracting a k-hop
neighborhood. For each node identified as a valid record and candidate for anchoring,
an ego graph is computed in an undirected manner using an initial radius defined by
the import parameters. This is necessary to extract subgraphs of a mostly homogeneous
size around the anchor node. If the resulting subgraph exceeds the maximum allowed
nodes, the radius is iteratively decreased. If it contains fewer nodes than the minimum
required, the radius is increased. This dynamic adjustment is performed up to a prede-
fined maximum number of retries to obtain a subgraph that meets the size constraints.

Once a valid subgraph is extracted, it is converted to a directed graph and merged into
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(a) Original RIG (b) Transformed RIG

Figure 5.3: Comparison of the original RIG (left) and the transformed RIG (right) for
compatibility with the GNN model.

a global target graph by assigning each node a new sequential identifier. In this merging
process, the anchor node is explicitly mapped and preserved while essential attributes
such as label indices, design pattern types, and record scope are maintained. All edges
between nodes are subsequently added to the target graph provided both endpoints have
been successfully mapped. This systematic extraction and integration ensure that each
subgraph sample accurately represents the local structure of the original graph and is

suitable for further augmentation and model training.

Test Sample Augmentation To generate the test samples the GLeMA Net model
will be tested on while training, all source graphs must be augmented with a set of
query subgraphs. For this, the implementation of the proposed GLeMA Net model pro-
vides a process step, which uniformly generates positive (isomorphic) and negative (non-
isomorphic) subgraph samples for each anchored source graph. In the case of positive
samples, a subset of nodes is selected based on a probability derived from the desired
subgraph size relative to the total number of nodes in the source graph. The anchor
node is always retained while the remaining nodes are removed stochastically to yield
a connected subgraph that is isomorphic to the source graph. For negative samples, a
similar node selection is followed by a series of random modifications such as node label
changes and the addition or removal of nodes and edges. These operations are iteratively
applied while checking for subgraph isomorphism to ensure that the resulting subgraph
is not isomorphic to the source graph. The process is executed in parallel over multiple

source graphs with progress tracked through a multiprocessing queue.
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Figure 5.4: Dataset preprocessing for the GLeMA Net model training.

Train Sample Synthesis To generate a training dataset that is multiple times larger
than the test dataset, the implementation synthesizes the training samples by analyzing
the structural properties of the source graphs and emulating their structural properties.
This process is also included from the original implementation of the GLeMA Net model,
which is marginally modified to handle the structure of the RIG. In this implementation,
a connected synthetic graph is created using the Erdds—Rényi graph generator included in
the NetworkX library, where the number of nodes is sampled from a normal distribution
defined by the average source size and its standard deviation, and the probability of
edge creation is determined by the average degree in the dataset source graphs. Once
generated, the synthetic graph is augmented with additional features by first assigning an
anchor node based on a top PageRank score and then performing a depth-first traversal
from the anchor to assign node labels. Even-depth nodes are consistently labeled as
record nodes, while odd-depth nodes receive random labels, representing the interaction
types. This labeling process mirrors the structure of the transformed RIG (fig. 5.3).
Subsequently, the same query generation algorithm is used for the test samples, which
generates multiple positive and negative subgraph isomorphism examples. This entire
synthesis process is executed in parallel and configured to produce a training dataset that
is multiple times larger than the test dataset, thereby providing an optimal training-to-
test data distribution.
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5.3.2 Network Setup

The implementation described in this section is adopted directly from the original pa-
per. The GLeMA Net model is built upon a series of GLeMA layers that leverage a
learnable multi-hop attention mechanism. In each GLeMA layer, the input node features
are first projected into a higher-dimensional space via a linear transformation. The pro-
jected features are then reshaped into an attention representation where a learnable edge
parameter is used to compute pairwise interactions. A key aspect of this layer is the
derivation of node-specific attention decay factors through an additional linear mapping;
these factors are computed via a sigmoid function and enable each node to modulate the

contributions from its multi-hop neighbors dynamically.

The GLeMA Net module stacks four such graph attention layers. In each layer, the node
features are mapped to a 140-dimensional space. The multi-hop attention mechanism in
these layers is configured using the jump tactic. With this tactic, the number of hops is
increased in a non-linear fashion, following the rule that the effective number of hops is
2i+1, where 7 is the index of the layer. This design allows higher layers to capture broader
contextual information from distant nodes without incurring the computational cost of
a fixed large number of hops. An additional interesting detail is the dual branch design
incorporated in GLeMA Net. The network processes the input graph with two parallel
branches. One branch is dedicated to intra-graph feature extraction using an adjacency
matrix that represents direct connections among nodes. The other branch processes
inter-graph relationships via a proxy adjacency matrix that encodes “virtual” links based
on node label similarities between the query (pattern) and target graphs. The outputs
from these branches are then combined by taking their difference, effectively highlighting
the discrepancies between intra-graph structures and cross-graph correspondences. This

branching strategy is critical for robust subgraph matching and matching explanation.

Prior to entering the graph convolutional layers, the initial node features are embedded
into an n-dimensional space using a separate linear mapping. The number of the embed-
ded node features equals the number of node labels plus a feature for the anchor node.
After the stacked GLeMA layers, the aggregated node embeddings are passed through
a fully connected network comprising four layers, where the first layer expands the rep-
resentation to 128 dimensions. The final output is generated using a sigmoid activation

function, returning a probability score for subgraph matching.
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5.3.3 Curriculum Training

The proposed approach integrates a number of optimization strategies to improve the
training process of the GNN model. For the general training loop, the training and
test datasets are preprocessed into collections of pickle files that are indexed by unique
identifiers and corresponding metadata that includes metrics about the data samples,
like the number of nodes and edges. These identifiers serve to load individual samples
representing a source graph and either positive or negative query samples. While training,
the data loader retrieves the samples from the pickle files and processes them in batches.
The data loader is designed to handle the large graph samples efficiently by loading only
the required data into memory, thereby reducing the memory footprint and ensuring that

the training process is not hampered by memory constraints.

One of the key strategies is curriculum training, which is implemented to optimize the
training process when working with large graph samples [56]. For this, the curriculum
training approach is employed to gradually increase the complexity of the training sam-
ples over the course of the training epochs. The assumption is that the model can learn
more effectively from smaller subgraphs at the beginning and that this enables the model
to generalize better to larger subgraphs. Let D denote the complete dataset and let C'(x)
be a function that quantifies the complexity of a sample z € D. The implementation
uses the C'(x) = |V,| as the complexity measure, where V, represents the nodes of z.
The dataset is partitioned into subsets based on complexity ranges. A complexity range

is defined as
DZ:{x€D|az§C(az)<bZ} (5.1)

where the interval [a;, b;) specifies the complexity range for subset D;. The curriculum
training strategy begins with training on the lowest complexity range D;, which corre-
sponds to the smallest graph samples. During training, samples are selected from the
union
2
Do =D (5.2)
i=1
where k is the current complexity threshold. Initially, & is set to 1. After every T" epochs,
the threshold is increased by one unit, thereby incorporating samples of higher complexity
into the training process. When k exceeds the maximum available level, the complexity
constraint is removed, and training is conducted on the entire dataset D. This approach
enables the model to build a strong foundation by first learning from simpler subgraphs

before gradually adapting to more complex structures [56].
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Figure 5.5: Overview of the curriculum training process.

In addition to the curriculum training, the training loop includes a mechanism for early
stopping. The training process is monitored for performance metrics such as the Area
Under Receiver Operating Characteristic Curve (ROC AUC) score (section 6.2). An
improvement in this metric triggers a reset of the early stopping counter. Conversely, if
the performance does not improve and training is beyond the initial stage, the counter
increments until a predefined limit is reached, leading to early stopping. This prevents
overfitting and ensures that the model generalizes well to unseen data. Another technique
to prevent overfitting to the training data is to balance the data samples. Each epoch, the
model should be trained with an equal number of positive and negative query samples.
This is achieved by dynamically adjusting the training samples based on the number
of available samples for each class, especially in consideration of the used curriculum

training approach.

5.4 Tests

Testing is crucial to guarantee the correctness, robustness, and reliability of the imple-
mentation by verifying that each component functions accurately both independently and
within the integrated system. The implementation uses a test-driven design approach

and focuses on unit tests. Integration tests are also included but are less emphasized.

Tests within this implementation utilize well-established testing frameworks in Java and
Python. Specifically, JUnit is employed for unit testing the Java-based components, while
Python-based modules utilize Pytest for both unit and integration testing. Table 5.1

provides an overview of the test coverage across the implementation and is generated
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Table 5.1: Test coverage of the implementation.

Files Covered (%) Lines Covered (%)

Graph Generation

Code Translation 75 66
CPG Processing 81 73
RIG Persistence 71 52
Utils 93 87
Graph Matching
Dataset Preparation 50 26
Graph Embedding 75 32
Pattern Detection 75 65
Utils 73 84

using the test coverage tools provided by the used IDEs (IntelliJ and PyCharm). The
coverage presents a high percentage across the different implementation scopes. Lower
test coverage is present in files that use external libraries, like the CPG generation, the
Neojj database, and the training of the GLeMA Net model. Those external libraries
are not covered by the tests, since they are not part of the implementation. To test the
modules using these libraries, mock frameworks like Mockito are used to simulate the

behavior of the external libraries.

Unit tests were used to validate individual functionalities, including the transformation
from CPG to RIG, ensuring accurate capturing of record interactions. Further unit
tests assess the graph normalization routines, verifying correct graph aggregation and
abstraction. Integration tests are used for the Code Property Graphs pipeline and the
pattern voting process. Automated system tests for the complete detection task are not

utilized but were manually evaluated.
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This chapter presents a comprehensive evaluation of the proposed approach for detecting
design patterns in source code using neural subgraph matching. The evaluation examines
the effectiveness and efficiency of the concept by discussing the experimental setup, the
choice of datasets, the definition of metrics, the obtained results, and the subsequent
analysis. The analysis addresses generalization capabilities, language independence, and

the robustness of the concept, answering the research questions stated in section 1.2.

6.1 Datasets

The evaluation of the proposed approach relies on two datasets that serve as robust
benchmark corpora in the field of design pattern detection. The availability of reliable
benchmark datasets is a well-known challenge in this domain. The chosen datasets
provide a wide range of Java projects that enable a comprehensive assessment of the

approach.

Table 6.1: Overview of projects included in the P-MARt dataset [4].

Project Version Size (KB) Classes Methods Pattern-Instances
QuickUML 2.1 632 142 1264 46
Lexi 0.1 355 23 601 18
JRefactory 2.6 2800 556 4690 201
Netbeans 1.0 26000 2238 25446 255
JUnit 3.7 469 69 856 49
JHotDraw 5.1 639 136 1393 165
MapperXML 1.9 1800 195 2307 95
Nutch 0.4 1300 149 1832 19
PMD 1.8 1300 423 3752 50
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P-MARt The first dataset is P-MARt [21]. This dataset is widely used in design
pattern detection benchmarks and includes 9 Java projects. The numbers of instances per
design pattern have a high degree of variance, resulting in an unbalanced dataset. Because

of this and for comparison reasons, P-MARt is only used as a benchmark dataset.

DPDf The second dataset is the DPDf corpus [44]. The dataset contains labeled design
patterns of the Github Java Corpus [2|, which contains over 14,000 Java projects. In
contrast to P-MARt, the DPDf corpus offers a balanced dataset with an average of 90
instances for each design pattern. For this reason, the dataset is primarily used as design

pattern examples for the queries.

Table 6.2: Design pattern instances included in the datasets [44].

Pattern P-MARt DPDf Pattern P-MARt DPDf
Abstract Factory 210 89 Decorator 59 89
Observer 104 89 Proxy 3 96
Adapter 189 94 Factory Method 96 96
Memento 11 86 Singleton 13 91
Builder 35 97 Facade 11 99
Prototype 26 85 Visitor 141 91

The representation of design patterns differs between the two datasets. P-MA Rt provides
detailed listings that include all roles and relations for each design pattern instance
across multiple classes as specified by the GoF. The DPDf corpus represents each design
pattern instance only by a single class name without additional role or relation details.
To support both datasets, the detailed design pattern instances in P-MARt are aligned
with the DPDf representation by discarding the role information. In addition to this, the
evaluation focuses only on a subset of the design pattern types included in both datasets.

This selection is made for comparison against other approaches in the field.

6.2 Metrics

The evaluation uses several metrics to quantify the performance of the proposed approach
for design pattern detection. The metrics have been chosen for their ability to capture
various aspects of the task. They provide insight into the effectiveness of neural subgraph

matching in identifying design patterns in source code. The metrics are calculated based
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on the number of true positives (T'P), false positives (F'P), true negatives (T'N), and

false negatives (F'N) obtained from the matching and detection process.

Precision Precision measures the ability of the approach to correctly identify design
patterns while minimizing false detections. This metric is particularly important in

design pattern detection because it reflects the exactness of the identified patterns.

TP
P=—"—-—- 6.1
TP+ FP (6.1)
Recall Recall indicates the ability of the approach to retrieve all relevant instances of
design patterns from the source code. This metric is essential for design pattern detection

because it reflects the completeness of the recognition process.

TP
R=——r—7-— (6.2)
TP+ FN
F1-Score The F1-Score is the harmonic mean of precision and recall. It provides a
balanced measure that combines both precision and recall. It serves as a comprehensive
metric that summarizes the performance of the approach in scenarios with uneven class

distributions in design pattern detection.

F=92.—* (6.3)

Accuracy Accuracy is defined as the ratio of correctly identified instances to the total
number of instances. It offers a general measure of the overall performance of the ap-
proach. In the context of design pattern detection, this metric evaluates the effectiveness

of the approach in distinguishing between the presence and absence of design patterns.

A TP +TN
TP+TN+FP+FN

(6.4)

ROC AUC The Area Under Receiver Operating Characteristic Curve (ROC AUC)
measures the ability of the approach to discriminate between design patterns and non-
design pattern instances at various threshold settings. It is defined as the area under the

curve that plots the true positive rate (TPR) against the false positive rate (FPR). A
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higher ROC AUC value indicates that the approach is effective in ranking true design

pattern instances higher than false ones.

PR AUC The Area Under Precision Recall Curve (PR AUC) quantifies the relation-
ship between precision and recall for different threshold values used by the approach. It
is computed as the area under the curve that plots precision against recall. A higher
PR AUC value demonstrates that the approach effectively balances the accuracy of the

detections with the completeness of the detection process.

The metrics are widely used in the field of machine learning and pattern detection.
They provide a comprehensive overview of the performance of the proposed approach in
detecting design patterns in source code and leverage the comparability of the results

with other approaches.

6.3 Experiments

The evaluation includes both qualitative and quantitative results with a primary focus
on detection quality rather than runtime efficiency. The analysis addresses the entire
process, starting from the graph generation through to the neural subgraph matching
training and the final design pattern detection. The experiments were conducted on a
system equipped with an Apple Silicon M3 Pro CPU and 18GB of RAM.

6.3.1 Quantitative Results

The runtime benchmarks for the graph generation are shown in fig. 6.1 and fig. 6.2.
The first plot compares runtimes for data fetching, source code translation to the CPG,
CPG processing, and graph persistence, using 100 projects from the DPDf dataset. The
second plot illustrates how runtime scales with source code size, normalized for direct
comparison across processes. It is evident that the translation and processing steps have
the greatest impact on the overall runtime as they scale with the size of the source
code. In contrast, the data-fetching step remains mostly constant and of low variance
with only a minor influence on the overall runtime. The graph persistence step becomes

increasingly costly when dealing with large graphs.
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Figure 6.2: Runtime scaling for the graph generation processes.

The training of the GLeMA Net model is presented in fig. 6.3 and fig. 6.4. Multiple
training runs were executed, and the training curves reveal the distinct stages of the
curriculum training approach. An increase in the complexity limit initially causes a
noticeable drop in accuracy. Especially in the middle of the training process, when
the highest complexity is reached. At this point, the model experiences a significant
decrease in accuracy but can adapt rapidly. The training experiments show that the best

performance is achieved when the curriculum training strategy is applied. Convergence
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Figure 6.3: GLeMA Net train curves.
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Figure 6.4: GLeMA Net test curves.

is reached after around 10 epochs, and the early stopping mechanism is then activated to
prevent overfitting. Results on the test data show that the model achieves high accuracy
above 90% and increasingly low loss values, indicating that the model is able to generalize

well to unseen data.

The performance metrics for the neural subgraph matching model are detailed in fig. 6.5,
which represents the binary classification task of subgraph matching. The metrics are
presented in relation to the prediction confidence. Only the predictions above or equal
to the confidence threshold are considered as a potential positive match. The model
achieves sufficiently high values across every metric on the test dataset. As the prediction
confidence increases, there is a decrease in accuracy, recall, and F1-Score while precision
increases marginally. This trend indicates that higher confidence levels lead to fewer false
positives, although at the expense of a reduction in true positives. The ROC AUC and
PR AUC values are high, indicating that the model is effective in distinguishing between

positive and negative instances.
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Figure 6.5: GLeMA Net metric curves by confidence.
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Figure 6.6: Confusion matrix of the pattern detection.

The actual design pattern detection results on the P-MARt dataset are presented in
fig. 6.7 and table 6.3. The confusion matrix in fig. 6.6 is normalized by each pattern

type, and the detection metrics, including accuracy, precision, recall, F1-Score, ROC
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Figure 6.7: Pattern detection metric curves by confidence.

Table 6.3: Design pattern detection results.

Pattern Accuracy Precision Recall F1-Score ROC PR
Observer 0.72 0.44 0.50 0.47 0.65 0.35
Factory Method 0.88 0.67 0.67 0.67 0.80 0.51
Decorator 0.91 0.50 0.67 0.57 0.80 0.36
Builder 0.94 0.67 0.67 0.67 0.82 0.48
Singleton 0.84 0.00 0.00 0.00 0.48 0.12
Adapter 0.88 0.60 0.60 0.60 0.76 0.42
Overall 0.86 0.48 0.52 0.50 0.72 0.37

AUC, and PR AUC, are also shown in relation to the prediction confidence. The results
are summarized for each pattern and further compared with two other approaches using
machine learning in table 6.4. The DPDF [44] approach uses Word2Vec embeddings
for pattern detection, while the DPF-GNN [4] approach also uses a subgraph matching
GNN but without the use of CPGs.

Table 6.4: Design pattern detection comparison.

Own DPDF DPF-GNN
Pattern ‘ Recall Precision F1-Score ‘ Recall Precision F1-Score | Recall Precision F1-Score
Adapter 0.60 0.60 0.60 0.92 0.87 0.89 0.89 0.82 0.85
Builder 0.67 0.67 0.67 0.78 0.80 0.79 - - -
Decorator 0.67 0.50 0.57 0.60 0.37 0.46 - - -
Factory Method 0.67 0.67 0.67 0.57 0.63 0.60 0.66 0.73 0.69
Observer 0.50 0.44 0.47 0.68 0.77 0.72 0.91 0.89 0.90
Singleton 0.00 0.00 0.00 0.43 0.40 0.42 0.83 0.92 0.87
Overall 0.52 0.48 0.50 0.66 0.64 0.64 0.82 0.84 0.83
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The results demonstrate that the design patterns are detected with overall high accuracy.
The detection has an overall high ROC AUC score, indicating that the approach is
effective in distinguishing between the design pattern types. The approach was unable
to detect a single instance of the Singleton pattern, often predicting it as a Observer
pattern. In comparison to the other approaches, the proposed approach achieves lower
metric scores but can achieve comparable results in some instances, like the Factory

Method and Decorator patterns.

6.3.2 Qualitative Results

This section presents qualitative insights into the performance of the proposed approach
by evaluating the generated RIGs, the node predictions of the GLeMA Net model, and

concrete examples of pattern matching.
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Figure 6.8: Language comparison of generated design pattern RIGs.

Figure 6.8 shows a comparison of the generated RIGs, including a selection of pattern
examples written in Java and C++!. The results are showing that the generated RIGs
are mostly equal in their general structure, and all records are included. Some differ-
ences appear in the interaction types, and some record relationships are missing. The

interaction comparisons are detailed in table 6.5. The Abstract Factory pattern shows

'The design pattern examples are copied from Refactoring Guru (https://refactoring.guru/d
esign-patterns/examples, Accessed 3. March 2025 ) and are translated into the respective
languages.
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Table 6.5: Language differences of generated design pattern RIGs.

Records Interactions Knows Calls Extends Creates Returns

Abstract Factory

C++ 9 19 4 2 6 1 6

Java 9 21 7 0 6 2 6

| Az 0 2 3 2 0 1 0
Builder

C++ 4 3 1 0 1 1 0

Java 4 3 1 0 1 1 0

|Az| 0 0 0 0 0 0 0
Factory Method

C++ 6 10 2 0 4 2 2

Java [§ 7 0 0 4 0 3

|Az| 0 3 2 0 0 2 1
Decorator

C++ 5 4 1 0 3 0 0

Java 5 4 1 0 3 0 0

|Az| 0 0 0 0 0 0 0

the most differences. Additionally, some RIGs are less complex than others. This lower

complexity makes them potentially harder to distinguish from non-pattern code.
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Figure 6.9: Node predictions for queries in a source graph with the GLeMA Net model.
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The node predictions of the GLeMA Net model are visualized to illustrate the mapping
of nodes in a source graph to the query graph. Figure 6.9 shows an example with two
queries that include isomorphic and non-isomorphic mappings on the same source graph.
The first figure displays the source graph with the query graph and highlights their
overlapping nodes and edges. The second figure shows the ground truth of the query
graph in the source graph. Only query nodes and edges that are part of the source graph
are included. The third figure shows the prediction for each query node. Exact matches
are shown when a query node can be mapped to a node in the source graph. Matches
are also displayed when a node can be mapped to any node in the source graph. In the
case of the isomorphic query example, the model is able to map the query nodes in the
source graph. Non-isomorphic queries are detected when some nodes in the query cannot

be mapped to the source graph.
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Figure 6.10: Matching examples of the Observer, Singleton, and Decorator patterns.
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Figure 6.11: Matching examples of the Adapter, Builder, and Factory Method patterns.

To demonstrate the design pattern matching and voting process, figs. 6.10 and 6.11 show
each pattern overlaid with all other patterns in a confusion matrix that displays the
possible matches. In addition, the model prediction for each pair is presented. The
matrix shows a high matching potential for most pairs with the same pattern type, and
the model has a high prediction for most of those pairs. Some patterns of different types
also exhibit a high matching potential. Examples include the Builder and Adapter as
well as Decorator and Observer patterns. The model sometimes has a high subgraph
prediction for non-matching pattern examples. Examples of this behavior include the
Adapter pattern with itself or Singleton Method and Decorator patterns. An example of
a false negative is the Adapter with the Factory Method pattern. In general, there are

more false positives than false negatives in this set of examples.
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6.4 Analysis

This section provides an analysis of the results obtained from the evaluation of the
experiments for design pattern detection. The analysis focuses on the capabilities and

limitations of the approach and addresses the research questions stated in section 1.2.

Table 6.6: Observations on the capabilities and limitations of the approach.

Capabilities

Limitations

Language-Independent Ab-
straction: Translates source code
into a language-independent repre-
sentation using CPGs and reduces
them into a RIG, capturing the
characteristics of design patterns.

Robustness & Generalization:
Tested on Java and C++ examples
showing similar structural proper-
ties, with normalization techniques
that reduce language-specific varia-
tions.

Accurate Subgraph Matching:
The GLeMA Net model achieves
high accuracy and precision in de-
tecting subgraphs. Training utilizes
curriculum training and data syn-
thesis, reaching over 90% recall and
precision.

Flexible Pattern Detection: De-
tection relies on pattern examples
rather than handcrafted templates,
tested on a wide range of design pat-
terns with an ROC AUC score of
72%.

e Detection Accuracy Issues: Ex-

hibits a high false positive rate,
where patterns are sometimes de-
tected even when absent, and cer-
tain patterns (e.g., Singleton and
Adapter) are frequently misclassi-
fied. For those patterns, the RIG
model is too simple to capture their
structural and behavioral character-
istics.

Model Sensitivity: Accuracy is
sensitive to the chosen confidence,
leading to a tradeoff between preci-
sion and recall and difficulty in find-
ing a suitable threshold.

Scalability Challenges: The gen-
eration of the CPGs is expensive in
terms of runtime and memory us-
age, leading to scalability issues for
larger projects.

Consistency Challenges: Mi-
nor inconsistencies in the generated
RIGs across different programming
languages may reduce detection pre-
cision in cross-language scenarios.

The proposed approach demonstrates promising capabilities in detecting design patterns

with a language-independent source code representation and by enabling flexible detec-
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tion with examples without the need for handcrafted templates or rule-based methods.
However, it also faces significant challenges that need to be addressed. Based on the

evaluation results, the following research questions are answered:

RQ 1. How can Code Property Graphs be effectively abstracted into a
language-independent representation that captures the structural and be-
havioral characteristics of design patterns and is suitable for neural subgraph
matching? The proposed approach abstracts source code into a language-independent
representation by converting CPGs into a Record Interaction Graph. This transformation
retains the essential structural and behavioral features that are critical for design pattern
detection by tracing the shortest direct paths between records and aggregating them to
predefined interaction types. The interaction types have to be modeled carefully to not
compromise the expressiveness for especially small design patterns. The experiments

show that the current RIG model introduces some ambiguities in those cases.

RQ 2. What techniques enable robust detection of design patterns that han-
dle implementation variations without relying on handcrafted templates or
rule-based definitions? The use of CPG representations abstracts away language-
specific features, while the normalizing techniques of the RIGs reduce the effects of source
code variations, resulting in a more robust detection process that accounts for differences
in design pattern implementations. Aggregating multiple pattern examples for the neural
subgraph matching, the approach generalizes and isolates the key structural features of
design patterns, removing the need for handcrafted templates or rule-based definitions.
The experiments indicate that this flexible method depends on high-quality, consistent

pattern examples for the highest accuracy.

RQ 3. To what extent can a language-independent approach for design
pattern detection achieve comparable accuracy to existing language-specific
machine learning approaches? The evaluation demonstrates that the proposed ap-
proach achieves comparable accuracy for several design patterns, such as the Factory
Method and Decorator patterns. However, the overall performance is affected by the
high false positive rate and inconsistent pattern matching observed for simpler patterns
like Singleton. These results indicate that while the approach shows promising potential,
it requires further refinement to fully match the accuracy of language-specific machine

learning approaches.
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This chapter concludes the thesis by summarizing the research on detecting design pat-
terns in source code using a language-independent approach. The chapter also discusses
the challenges and limitations encountered. Finally, promising directions for improve-

ments are described, and compatible applications for the approach are presented.

7.1 Summary

This thesis represents research on language-independent design pattern detection in
source code. The work addresses a critical issue in software engineering, where exist-
ing methods on this problem rely on language-specific rules and handcrafted templates
for detecting design patterns. Such limitations hinder the applicability and flexibility of

design pattern detection for large-scale software projects and diverse code structures.

The proposed approach addresses these challenges by employing a language-independent
abstraction of source code. For this, a Code Property Graph is used that abstracts the
syntactic, semantic, and behavioral aspects of different programming languages into a
uniform graph representation. The CPG is then processed and reduced into a Record
Interaction Graph that captures the characteristic interactions between code entities.
Neural subgraph matching is applied to query pattern instances, while a pattern voting
mechanism combines the detection results from multiple pattern examples to improve

the robustness of the detection process without the need for handcrafted templates.

The evaluation on real-world software projects demonstrates promising results for the
prototype implementation and the capability of CPGs. The experiments show that the
approach has the potential to generalize across multiple programming languages and
varied design pattern implementations. At the same time, the results highlight a high
rate of false positive detections and the need for a less reduced CPG abstraction to

distinguish between design patterns and other code structures.
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7.2 Discussion

To address the problem of language independence, the approach demonstrates that the
usage of CPGs is effective in abstracting language-specific features and multiple source
code aspects into a single graph representation. The problem with CPGs is the com-
plexity of the generated graphs, which can be very large and expensive to compute. The
approach resolves this issue by reducing the complexity of the CPG into a RIG, which
captures the essential interactions between code entities while preserving the character-
istics of design patterns. This reduction process allows for a more efficient computation
and successfully enables the detection of design patterns across different programming

languages.

The detection process includes the use of neural subgraph matching, performed with the
GLeMA Net model. Multiple pattern examples are queried to improve the robustness of
the detection process. The pattern voting mechanism combines the results from different
pattern examples, which allows for a flexible and adaptable detection process. This is
particularly beneficial for unseen patterns, as the approach does not rely on handcrafted
templates or rule-based definitions. A more accurate approach for detecting specific
design patterns would be to use a classification model, but this would limit the flexibility
and adaptability of the approach because this kind of model does not generalize to unseen
patterns. In contrast, the use of subgraph matching allows for a more general detection
process. Assuming that there are enough pattern examples available and that the graph
model is expressive enough, the approach can adapt to different design patterns and

implementations.

While the approach enables the detection of design patterns in a language-independent
manner, the evaluation reveals several limitations that must be considered. The graph
model is not yet expressive enough to capture the characteristics of all design patterns.
The experiments illustrate a high accuracy and precision in the subgraph matching task,
but at the same time, the pattern detection exhibits a high false positive rate. Some
design patterns, such as Singleton and Adapter, are frequently misclassified because the
RIG may be too simple to differentiate these patterns from other code structures. In
those cases, it is apparent that the chosen graph model is not expressive enough and has
to be extended to capture the characteristics of the design patterns more precisely and

in more detail.
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The scalability of the graph generation process is another challenge. The conversion
of source code into a CPG requires considerable runtime and memory resources. In
comparison, the CPG processing and the detection process scale much better. This
makes the approach less feasible for large source code projects and has to be improved.
In addition, the translation process is not fully consistent across different programming
languages. Minor differences in the generated RIGs can lead to less precise detection in

cross-language scenarios.

The research on this problem demonstrates the capabilities of the proposed approach on
language-independent design patterns detection. The implemented prototype achieves
results that are not yet competitive with existing language-specific machine learning ap-
proaches but outlines a promising starting point for further improvements. The potential
of the approach is evident in its flexibility and adaptability to different programming lan-
guages and design patterns. The combination of a language-independent abstraction of
source code and neural subgraph matching techniques is a suitable approach to design

patterns detection if the described challenges can be resolved.

7.3 Outlook

The approach can be improved in several ways. The use of an exact subgraph matching
technique instead of the current approximative method would enhance the accuracy and
precision of the detection process [77]. This would allow for a more reliable identification
of design patterns and reduce the false positive rate. In addition, employing a more
expressive and detailed graph model with less reduction of the original CPG may capture
the details of design patterns with greater fidelity. To address the scalability issue,
an interesting addition would be to partially generate and update the CPG instead of

generating the complete graph from scratch.

The general approach enables the potential use in complex tasks and applications beyond
design pattern detection. The approach may be applied to the reversed case, which is the
detection of antipatterns or code smells [34, 37]. The concept can also be extended to
architecture detection in source code [29], where the goal is to identify global architectural
patterns and structures within software systems. The flexibility and adaptability of the
approach make it potentially suitable for a wide variety of tasks that can be formulated

as graph pattern detection problems.
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A Appendix

A.2 Tools and Software

The tools used in addressing the subject of this thesis are listed in table A.1.

Table A.1: Overview of the used tools.

Tool Usage

TEX Typesetting and layout tool used for creating this document.

Zotero Reference management software used for managing the bibliography.

VS Code Text editor used for writing this document.

IntelliJ IDEA | Integrated development environment used for writing the Java code.
PyCharm Integrated development environment used for writing the Python code.
Git Version control system used for managing the source code revisions.
Neo4j Bloom | Visualization tool used for exploring the Neo4j graph database.

Docker Containerization platform used for managing the application environment.

A.3 Content of the Electronic Appendix

The enclosed CD contains the following files and directories:

o thesis.pdf

® source

datasets

generation

— matching

— docker-

— run.py

e results

compose.yml

README.md

— generation

— matching
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