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Abstract 

Der Zugang zu öffentlichen Dienstleistungen und Informationen in einer verständlichen und 

barrierefreien Form ist eine zentrale Herausforderung moderner Gesellschaften. Besonders 

betroffen sind Menschen mit begrenzten Sprachkenntnissen oder kognitiven Beeinträchtigungen 

wie Demenz, für die komplexe amtliche Texte und Formulare erhebliche Hürden darstellen. Diese 

Barrieren erschweren nicht nur den Zugang zu wichtigen Informationen, sondern auch die 

gesellschaftliche Teilhabe. 

Diese Arbeit untersucht, wie Künstliche Intelligenz (KI), insbesondere Large Language Models 

(LLMs), dazu beitragen kann, englische Verwaltungstexte verständlicher zu machen, ohne ihre 

inhaltliche Genauigkeit zu verfälschen. Im theoretischen Teil wird die Problematik schwer 

verständlicher Verwaltungssprache erläutert und der aktuelle Stand der Forschung im Bereich KI-

gestützter Sprachvereinfachung analysiert. Dabei liegt der Fokus auf modernen Natural Language 

Processing (NLP)-Modellen, insbesondere auf Transfer-Learning-Ansätzen, die komplexe 

Sprachstrukturen gezielt transformieren können. Ein zentraler Beitrag dieser Arbeit ist die 

Erstellung eines spezifischen Datensatzes auf Basis amtlicher Formulare, der für das Training und 

die Evaluation der Modelle genutzt wird. 

Im experimentellen Teil werden drei führende Sprachmodelle – LLaMA 3 8B, Phi-3 mini und 

Mistral 7B– feinabgestimmt und evaluiert. Ziel ist es, ihre Fähigkeit zur Vereinfachung englischer 

Verwaltungssprache zu bewerten, indem sie Texte leichter verständlich machen, während ihre 

inhaltliche Präzision erhalten bleibt. Die Ergebnisse zeigen, dass diese Modelle die Lesbarkeit und 

Verständlichkeit amtlicher Texte erheblich verbessern können, ohne Informationen zu verfälschen. 

Abschließend werden die Herausforderungen und Grenzen der eingesetzten Methoden diskutiert, 

insbesondere im Hinblick auf die Anpassung an sprachliche und kulturelle Kontexte. Die 

Ergebnisse verdeutlichen das Potenzial von KI zur Förderung von Barrierefreiheit und Inklusion, 

indem sie zeigen, wie Technologie dazu beitragen kann, Verwaltungskommunikation nicht nur 

effizienter, sondern auch menschlicher zu gestalten. Abschließend werden Ansätze für zukünftige 

Forschungen aufgezeigt, um diese Technologien weiterzuentwickeln und ihre praktische 

Anwendbarkeit zu optimieren. 
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1 Einleitung und historischer Hintergrund 

In einer zunehmend informationsgetriebenen Gesellschaft ist die Verständlichkeit von Texten für alle 

Bevölkerungsgruppen von zentraler Bedeutung. Besonders im behördlichen und administrativen 

Bereich kann eine komplexe Sprache erhebliche Barrieren für Bürger*innen darstellen. Die 

automatische Textvereinfachung (Text Simplification) hat sich daher als ein bedeutendes 

Forschungsgebiet im Bereich des Natural Language Processing (NLP) etabliert. Ihr Ziel besteht darin, 

die sprachliche Komplexität von Texten zu reduzieren, ohne deren ursprüngliche Bedeutung oder den 

Informationsgehalt zu verfälschen [1] [2] [3]. Besonders profitieren davon Menschen mit 

Leseschwierigkeiten, Fremdsprachenlernende, Personen mit kognitiven Einschränkungen sowie all 

jene, die komplexe Fachinformationen in verständlicher Form benötigen. 

1.1 Historische Entwicklung der Textvereinfachung 

Die Idee der Textvereinfachung ist keineswegs neu. Erste Konzepte lassen sich bis in die 1930er Jahre 

zurückverfolgen, als Charles Kay Ogden mit Basic English eine reduzierte Form des Englischen 

entwickelte, die durch einen begrenzten Wortschatz von 850 Wörtern die Verständlichkeit erleichtern 

sollt [4]. Ein weiterer bedeutender Meilenstein war die Einführung von Special English durch Voice of 

America im Jahr 1959 [5]. Dieses sprachlich vereinfachte Nachrichtensystem zielte darauf ab, 

internationale Zuhörer*innen durch den Einsatz eines begrenzten Wortschatzes und vereinfachter 

Grammatik besser zu erreichen. 

Ein Durchbruch in der behördlichen Anwendung erfolgte 2010 in den USA mit dem Plain Writing Act, 

der öffentliche Institutionen dazu verpflichtete, eine klare und verständliche Sprache zu verwenden [6]. 

Auch im deutschsprachigen Raum gewann die Idee der Leichten und Einfachen Sprache zunehmend an 

Bedeutung. Ein entscheidender rechtlicher Rahmen wurde mit dem Behindertengleichstellungsgesetz 

[7] geschaffen. Die zugehörige Barrierefreie-Informationstechnik-Verordnung (BITV) verpflichtet 

öffentliche Einrichtungen, Verwaltungsdokumente in verständlicher Sprache bereitzustellen [7]. Diese 

gesetzlichen Initiativen verdeutlichen den wachsenden Bedarf an effizienten Methoden zur 

Textvereinfachung, insbesondere im behördlichen Umfeld. 

1.2 Technologische Entwicklung der Textvereinfachung 

Die technologische Entwicklung der Textvereinfachung verlief parallel zu Fortschritten im 

maschinellen Lernen. Erste computerlinguistische Ansätze in den 1990er Jahren verwendeten 

regelbasierte Systeme zur Vereinfachung bestimmter Textaspekte, wie etwa die syntaktische 
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Vereinfachung durch Satzteilung [8] oder die lexikalische Vereinfachung durch Wortersetzung [9]. 

Später, mit dem Aufkommen statistischer Maschinenlernverfahren, entstanden erste datengetriebene 

Modelle, die durch das Lernen aus parallelen Textkorpora Vereinfachungsmuster automatisch 

übernehmen konnten. 

Ab 2017 revolutionierten Transformer-Architekturen [10] das Feld der Textvereinfachung. Diese 

neuronalen Netzwerke ermöglichen durch den Einsatz des Aufmerksamkeitsmechanismus (Self-

Attention) eine präzisere Erfassung und Verarbeitung sprachlicher Zusammenhänge. Moderne 

Transformer-Modelle behandeln die Textvereinfachung als Sequenz-zu-Sequenz-Aufgabe, bei der sie 

anhand paralleler Textkorpora – bestehend aus Original- und vereinfachten Versionen – lernen, wie 

Texte optimal umformuliert werden können. Die aktuelle Forschung konzentriert sich dabei auf die 

Verbesserung der Modelle, um die sprachliche Komplexitätsreduktion noch präziser umzusetzen und 

die ursprüngliche Bedeutung gleichzeitig exakt zu bewahren. 

1.3 Problemstellung 

Die Verständlichkeit von Verwaltungstexten ist ein zentraler Faktor für die Bürgerbeteiligung und die 

Transparenz öffentlicher Prozesse. Wenn amtliche Dokumente oder behördliche Mitteilungen 

sprachlich zu komplex oder unklar formuliert sind, kann dies den Zugang zu wichtigen Informationen 

erheblich erschweren und das Vertrauen der Bürgerinnen und Bürger in Verwaltungsstrukturen 

beeinträchtigen. Besonders betroffen sind Menschen, die Englisch als Fremd- oder Zweitsprache erlernt 

haben, Personen mit kognitiven oder sprachlichen Einschränkungen sowie Bevölkerungsgruppen mit 

unterschiedlichen Bildungs- und Erfahrungshintergründen. Eine verständliche, barrierefreie 

Kommunikation ist daher essenziell, um eine gleichberechtigte gesellschaftliche Teilhabe zu 

gewährleisten [11]. 

Die manuelle Vereinfachung von Verwaltungstexten stellt jedoch keine praktikable Lösung dar, da sie 

mit einem hohen Ressourcenaufwand verbunden ist und aufgrund fehlender standardisierter Verfahren 

zu Qualitätsschwankungen führen kann. Zudem existieren bislang nur begrenzte objektive 

Bewertungsmethoden, was die Qualitätssicherung zusätzlich erschwert. Da herkömmliche Ansätze 

kaum skalierbar sind, sind sie ungeeignet, um große Mengen an Texten effizient zu vereinfachen oder 

sich flexibel an steigende Anforderungen anzupassen. Ohne eine geeignete digitale Infrastruktur bleibt 

eine umfassende und konsistente Automatisierung dieser Prozesse eine Herausforderung. 

Vor diesem Hintergrund eröffnet der Einsatz moderner NLP-Technologien, insbesondere Transformer-

basierter Large Language Models (LLMs), neue Möglichkeiten. Diese Modelle ermöglichen eine 

automatisierte, konsistente und qualitativ hochwertige Vereinfachung komplexer Verwaltungstexte und 
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tragen dazu bei, die Verständlichkeit und Barrierefreiheit in der behördlichen Kommunikation 

nachhaltig zu verbessern [12]. 

1.4 Zielsetzung der Arbeit 

Die vorliegende Bachelorarbeit verfolgt das Ziel, ein KI-gestütztes System zur automatisierten 

Vereinfachung behördlicher Texte zu entwickeln. Damit soll allen Bürgerinnen und Bürgern der 

Zugang zu wichtigen Informationen erleichtert werden. Im Fokus steht dabei die Vereinfachung der 

häufig komplexen Verwaltungssprache, um das Verständnis und die Nutzung administrativer 

Informationen zu fördern. 

Um dieses Ziel zu erreichen, wird in dieser Arbeit ein spezifischer Ansatz zur Anpassung moderner 

transformer-basierter LLMs erarbeitet. Durch gezieltes Fine-Tuning lernen die Sprachmodelle, 

komplexe Verwaltungstexte so zu vereinfachen, dass der Inhalt vollständig und präzise erhalten bleibt, 

während die sprachliche Komplexität reduziert wird. Ein eigens erstellter Trainingsdatensatz bildet die 

Grundlage, bestehend aus Originaltexten und ihren vereinfachten Versionen, um die Bedürfnisse der 

Verwaltungskommunikation zu adressieren. 

Da vortrainierte Modelle auf Englisch eine höhere Leistung zeigen, konzentriert sich diese Arbeit 

zunächst auf die Vereinfachung englischsprachiger Verwaltungstexte. Diese Entscheidung basiert 

darauf, dass die zugrunde liegenden Sprachmodelle auf großen, überwiegend englischsprachigen 

Datensätzen trainiert wurden und somit bei englischen Texten eine bessere Qualität und Genauigkeit 

liefern können. Langfristig bietet dieser Ansatz jedoch eine Grundlage, um ähnliche Systeme für 

andere Sprachen, einschließlich Deutsch, zu entwickeln. 

Mit der Entwicklung dieses Systems leistet die Arbeit einen Beitrag zur Demokratisierung des 

Zugangs zu behördlichen Informationen. Sie unterstützt das Ziel einer inklusiven und bürgernahen 

Verwaltungskommunikation und trägt zu einer langfristigen Verbesserung des Verständnisses 

öffentlicher Informationen bei. 

1.5 Methodisches Vorgehen und Strukturierung der Forschungsarbeit 

Die vorliegende Bachelorarbeit untersucht die Entwicklung eines innovativen Ansatzes zur 

automatisierten Vereinfachung administrativer Texte unter Einsatz moderner Sprachmodellen. Der 

methodische Fokus liegt auf drei folgenden linguistischen Ebenen: lexikalisch, syntaktisch und 

semantisch. Auf der lexikalischen Ebene wird der Schwerpunkt auf die Ersetzung komplexer 

Fachtermini durch allgemein verständliche Begriffe gelegt, um die Verständlichkeit der 
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Verwaltungskommunikation zu verbessern. Die syntaktische Ebene zielt darauf ab, verschachtelte 

Satzstrukturen in klarere, prägnantere Formulierungen umzuwandeln, um die kognitive Belastung der 

Leserschaft zu reduzieren. Auf der semantischen Ebene wird sichergestellt, dass die ursprüngliche 

Bedeutung und juristische Präzision der Texte erhalten bleibt, um die inhaltliche Integrität zu bewahren. 

Die praktische Umsetzung erfolgt in mehreren Schritten, beginnend mit der Erstellung eines 

spezialisierten Korpus aus Verwaltungstexten, das sowohl Originaltexte als auch deren vereinfachte 

Versionen umfasst. Darauf folgt das Fine-Tuning der vortrainierten Sprachmodelle, bei dem spezifische 

Anforderungen der Textvereinfachung berücksichtigt und relevante Modellparameter optimiert werden. 

Die Evaluierung der Modelle erfolgt sowohl auf Grundlage quantitativer Metriken wie BLEU und SARI, 

die technische Aspekte der Textvereinfachung bewerten, als auch durch qualitative Nutzerbewertungen, 

die die Verständlichkeit und Lesbarkeit der generierten Texte aus der Perspektive der Zielgruppe 

analysieren. 

Nach der Einleitung und der Darstellung des historischen Hintergrunds der Textvereinfachung im 

administrativen Kontext konzentriert sich diese Arbeit in den folgenden Kapiteln auf die methodische 

und technische Umsetzung. Im zweiten Kapitel werden die theoretischen Grundlagen moderner 

Transformer-Architekturen erläutert, die die technische Basis der eingesetzten Sprachmodelle bilden. 

Das dritte Kapitel widmet sich dem Implementierungsprozess und dem Fine-Tuning der Modelle, 

einschließlich der spezifischen Anpassungen an die Anforderungen der Textvereinfachung. Im vierten 

Kapitel werden die Ergebnisse präsentiert und sowohl objektiv anhand quantitativer Metriken als auch 

subjektiv aus der Perspektive der Nutzer analysiert. Abschließend behandelt das fünfte Kapitel die 

Diskussion der Ergebnisse, gibt eine zusammenfassende Bewertung der Forschungsergebnisse und 

skizziert mögliche zukünftige Forschungsansätze. 

Diese vielschichtige Methodik ermöglicht eine gründliche Untersuchung des Themas aus 

unterschiedlichen Perspektiven. Sie verbindet theoretische Grundlagen der Textvereinfachung mit 

praktischer Modellanwendung und einer fundierten Evaluierung. Die so entwickelte Herangehensweise 

bildet die wissenschaftliche Basis zur Bewertung der Effektivität von vortrainierten Sprachmodellen in 

der Verwaltungstextvereinfachung und für die darauf basierenden Schlussfolgerungen dieser 

Bachelorarbeit.  

Die zuvor beschriebene detaillierte Gliederung wird durch Abbildung 1 visualisiert. Diese Darstellung 

bietet eine klare Übersicht über den strukturellen Aufbau der Arbeit und verdeutlicht die logische 

Abfolge der einzelnen Kapitel und methodischen Schritte. 
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Abbildung 1: Struktur der Bachelorarbeit 
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2 Theoretische Grundlagen  

Die Verständlichkeit von Texten spielt eine zentrale Rolle in der schriftlichen Kommunikation, 

insbesondere in Verwaltung, Recht und Bildung. Komplexe Fachsprache kann Menschen mit 

eingeschränkten Sprachkenntnissen oder kognitiven Beeinträchtigungen den Zugang zu wichtigen 

Informationen erschweren. Um dem entgegenzuwirken, wurden verschiedene 

Sprachvereinfachungsansätze entwickelt, die sich in Leichte Sprache (Easy Language) und Einfache 

Sprache (Plain Language) unterteilen. 

Dieses Kapitel gibt einen Überblick über diese beiden Ansätze, ihre gesetzlichen Grundlagen sowie ihre 

Bedeutung für die Textvereinfachung durch moderne KI-Modelle. Zudem wird der aktuelle Stand der 

Technik im Bereich der LLMs erläutert und deren Entwicklung bis hin zur Transformer-Architektur 

nachgezeichnet. 

2.1 Überblick über Leichte und Einfache Sprache 

Die Leichte Sprache zielt darauf ab, Informationen für Menschen mit eingeschränkten 

Sprachkompetenzen zugänglich zu machen. Sie folgt festen Regeln, die sowohl sprachliche als auch 

gestalterische Aspekte berücksichtigen. Zu den zentralen Merkmalen zählen die Verwendung kurzer 

Sätze, die in der Regel nur eine Aussage enthalten, sowie die Nutzung einfacher und bekannter Wörter. 

Fachbegriffe und Fremdwörter werden vermieden oder unmittelbar erklärt. Zusammengesetzte Wörter 

werden durch Bindestriche getrennt, um die Lesbarkeit zu erhöhen. Zusätzlich wird großer Wert auf 

eine übersichtliche Textgestaltung gelegt, wobei jeder Satz in einer eigenen Zeile steht und 

unterstützende Bilder oder Symbole verwendet werden, um den Inhalt zu veranschaulichen. Diese 

Maßnahmen sollen sicherstellen, dass die Texte für die Hauptzielgruppe leicht verständlich sind. Die 

Leichte Sprache richtet sich primär an Personen mit geistiger Behinderung, Demenz, Aphasie sowie an 

Personen mit sehr geringen Lesekompetenzen. Auch Nicht-Muttersprachler profitieren von Leichter 

Sprache [13].  

Im Gegensatz dazu ist die Einfache Sprache weniger strikt reglementiert und näher an der 

Standardsprache angesiedelt. Sie zielt darauf ab, komplexe Informationen für eine breitere 

Öffentlichkeit zugänglich zu machen. Empfehlungen für die Einfache Sprache beinhalten die 

Verwendung kurzer, klar strukturierter Sätze mit maximal 15 bis 20 Wörtern, die Vermeidung von 

Fachjargon oder dessen Erklärung sowie eine klare und logische Gliederung des Textes. Obwohl es kein 

festes Regelwerk gibt, orientiert sich die Einfache Sprache an Prinzipien, die darauf abzielen, die 

Verständlichkeit zu erhöhen, ohne den Inhalt übermäßig zu simplifizieren. Die Zielgruppe der Einfachen 

Sprache ist vielfältig und umfasst neben Menschen mit leichten kognitiven Beeinträchtigungen auch 
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Personen mit geringen Sprachkenntnissen, wie Migrant*innen und Geflüchtete, sowie Menschen mit 

geringer Lesekompetenz. Auch Fachtexte, die für Laien verständlich aufbereitet werden sollen, 

profitieren von der Anwendung der Einfachen Sprache [14].  

2.1.1 Gesetzliche Grundlagen und historische Entwicklung 

Die Entwicklung vereinfachter Sprachstandards im englischsprachigen Raum begann bereits in den 

1940er Jahren, als erste Initiativen zur Förderung verständlicher Verwaltungssprache entstanden. 

Besonders in den Vereinigten Staaten und Großbritannien wurden früh Konzepte zur Verbesserung der 

Verständlichkeit administrativer und rechtlicher Dokumente entwickelt [15]. In den USA erhielt die 

Bewegung für Einfache Sprache mit dem Plain Writing Act of 2010 [6] eine gesetzliche Grundlage. 

Dieses Gesetz verpflichtet Bundesbehörden, Informationen in einer klaren, präzisen und verständlichen 

Sprache bereitzustellen [6]. 

In Großbritannien setzt sich die Plain English Campaign seit den 1980er Jahren für eine klare und 

verständliche Verwaltungssprache ein. Die Organisation vergibt offizielle Zertifizierungen für leicht 

verständliche Texte [16]. Auch Kanada und Australien haben ähnliche Programme entwickelt, um eine 

bessere Verständlichkeit in behördlichen Dokumenten zu gewährleisten [17]. 

Parallel dazu entwickelte sich die Bewegung für Leichte Sprache, die speziell für Menschen mit 

kognitiven Einschränkungen oder begrenzten Sprachkenntnissen geschaffen wurde. Eine der frühesten 

europäischen Initiativen wurde 1998 von Inclusion Europe ins Leben gerufen, um Standards für 

verständliche Texte für Menschen mit geistigen Behinderungen zu etablieren [18]. Diese Leitlinien 

wurden in mehreren Ländern übernommen, darunter das Konzept Leichte Sprache in Australien, das auf 

die Bedürfnisse von Menschen mit Lernschwierigkeiten und Sprachbarrieren zugeschnitten ist [17]. 

Die gesetzlichen Vorschriften zur sprachlichen Barrierefreiheit haben sich in den letzten Jahrzehnten 

kontinuierlich erweitert. In den USA setzen sich Organisationen wie das National Center on Disability 

and Access to Education (NCDAE) für eine klare und verständliche Sprache in Bildung und Verwaltung 

ein [19]. Diese Entwicklungen tragen dazu bei, dass Verwaltungs- und rechtliche Texte für eine größere 

Bevölkerungsgruppe zugänglich werden, insbesondere für Menschen mit geringer formaler Bildung, 

ältere Menschen und Migranten. 

2.2 Stand der Technik 

Die Vereinfachung von Verwaltungstexten mithilfe von Sprachmodellen ist ein wachsendes 

Forschungsfeld, das darauf abzielt, komplexe administrative Dokumente verständlicher und 

zugänglicher zu machen. Sprachmodellen bieten eine innovative Lösung, da sie in der Lage sind, 
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linguistische Strukturen effizient zu analysieren, Textkomplexität zu reduzieren und dabei die 

wesentlichen Inhalte zu bewahren. 

2.2.1 Fortschritte bei der Textvereinfachung mit LLMs 

Moderne LLMs sind in der Lage, komplexe Sätze umzustrukturieren, Fachterminologie zu vereinfachen 

und eine höhere Lesbarkeit zu gewährleisten. Zu den am häufigsten untersuchten Modellen gehören 

sowohl Open-Weight-Modelle wie BLOOM [20], T5 [21] und LLaMA [22] als auch Closed-Weight-

Modelle wie GPT-4 [23] und dessen API-basierte Anwendungen. Diese Modelle haben gezeigt, dass sie 

Textvereinfachung effektiv durchführen können. 

T5 wurde als ein vielseitiges Text-zu-Text-Modell entwickelt, das erfolgreich in verschiedenen NLP-

Aufgaben wie maschineller Übersetzung, Textzusammenfassung und auch Textvereinfachung 

eingesetzt wurde [21]. Es behandelt Vereinfachung als eine Form der Transformation zwischen 

komplexer und vereinfachter Sprache und hat sich als leistungsfähig für bildungsbezogene 

Anwendungen erwiesen. 

Ein weiterer bedeutender Fortschritt in diesem Bereich ist die Entwicklung Parameter-Efficient Fine-

Tuning (PEFT) [24]. Diese Technik ermöglicht es, große Modelle mit minimalem Rechenaufwand an 

domänenspezifische Aufgaben anzupassen [25] [26] [27]. 

2.2.2 Domänenspezifische LLMs zur Textvereinfachung 

Die Anpassung vortrainierter LLMs an spezifische Domänen ist ein wichtiger Forschungsbereich. 

Studien zeigen, dass spezialisierte Modelle besonders effektiv in der Verwaltung, Medizin, 

Rechtsprechung und anderen komplexen Bereichen eingesetzt werden können. 

Eine aktuelle Untersuchung von Musumeci et al. [28] zeigt, wie LLMs zur Generierung semi-

strukturierter Verwaltungstexte eingesetzt werden können. Ihr Ansatz kombiniert Prompt Engineering 

mit Multi-Agenten-Systemen, wodurch eine verbesserte Strukturierung und Vereinfachung von 

behördlichen Dokumenten erreicht wird. Durch die automatische Analyse und Umstrukturierung semi-

strukturierter Dokumente konnten bedeutende Fortschritte in der verständlichen Aufbereitung von 

Inhalten erzielt werden [28]. 

Mandravickaitė et al. [29] untersuchten die Vereinfachung litauischer Verwaltungstexte mit den 

Modellen mT5 und mBART. Die Ergebnisse zeigten, dass mBART konsistente Verbesserungen in den 

Metriken BLEU, SARI und ROUGE erzielte. Das Modell konnte juristische Präzision bewahren und 

gleichzeitig komplexe Satzstrukturen vereinfachen. Diese Arbeit unterstreicht die Bedeutung der 

Feinabstimmung vortrainierter Modelle auf bestimmte Sprachen und Fachbereiche [29]. 
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Im deutschsprachigen Raum hebt sich die Studie von Klöser et al. [30] hervor. Sie entwickelten ein 

semi-synthetisches Korpus, um die Problematik der Datenknappheit in der Textvereinfachung zu 

adressieren. Durch das Training von LLMs mit bis zu 13 Milliarden Parametern konnte die 

Verständlichkeit von Verwaltungstexten erheblich verbessert werden. Die Autoren weisen darauf hin, 

dass sowohl automatische als auch manuelle Bewertungen die Wirksamkeit von spezialisierten LLMs 

bestätigen [30]. 

Martínez et al. [31] untersuchten den Einsatz von LLaMA 2 für die Verwaltungstextvereinfachung, 

insbesondere für Personen mit kognitiven Beeinträchtigungen. Durch gezieltes Fine-Tuning auf ein 

speziell erstelltes Korpus wurden Verwaltungsdokumente gemäß den "Easy to Read"-Richtlinien 

umformuliert. Expertenbewertungen bestätigten, dass diese Methode eine bessere Verständlichkeit und 

Zugänglichkeit ermöglicht [31]. 

2.2.3 Prompt-Engineering und automatische Optimierung 

Ein wesentlicher Faktor für die Qualität der Vereinfachung ist das Prompt-Engineering, das gezielt 

darauf abzielt, LLMs mit effektiven Eingabeanweisungen zu optimieren. Brown et al. [32] heben hervor, 

dass In-Context Learning (ICL) und Few-Shot Learning es ermöglichen, LLMs durch die Bereitstellung 

weniger Beispiele gezielt auf eine bestimmte Umformulierung auszurichten [32]. Diese Techniken sind 

besonders relevant für die Verwaltungstextvereinfachung, da sie es ermöglichen, die Modelle direkt auf 

die gewünschten sprachlichen Anpassungen zu konditionieren, ohne dass ein aufwendiges Fine-Tuning 

erforderlich ist. 

Ein weiterer vielversprechender Ansatz ist das Chain-of-Thought (CoT) Prompting, das von Wei et al. 

[33] entwickelt wurde. Diese Technik ermutigt LLMs dazu, komplexe Aufgaben durch das Generieren 

von Zwischenschritten zu lösen, anstatt direkt eine Endantwort zu geben. [33] zeigten, dass CoT-

Prompting die Leistung von Modellen in logischen, arithmetischen und textbasierten 

Schlussfolgerungen signifikant verbessern kann, indem es eine strukturierte Denkweise simuliert. Dies 

macht die Methode besonders relevant für die schrittweise Vereinfachung komplexer Verwaltungstexte, 

indem die Umformulierung in logische Teilprozesse zerlegt wird. 

Ein weiterer wichtiger Ansatz ist die automatische Prompt-Optimierung. Amatriain [34] hebt hervor, 

wie fortgeschrittene Methoden wie CoT Prompting und Reflection genutzt werden können, um die 

Genauigkeit und Transparenz der Modelle zu verbessern. Diese Techniken strukturieren die 

Denkprozesse der Modelle explizit, sodass logischere und konsistentere Ergebnisse erzielt werden 

können. Zusätzlich zeigt [34], dass der Einsatz von Automatic Prompt Engineering (APE) die Effizienz 

und Effektivität der Vereinfachung erheblich steigern kann. 
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2.2.4 Herausforderungen und offene Fragen 

trotz signifikanter Fortschritte in der LLM-gestützten Vereinfachung von Verwaltungstexten bestehen 

weiterhin mehrere Herausforderungen. Eine zentrale Schwierigkeit liegt in der Balance zwischen 

Verständlichkeit und Präzision, insbesondere in rechtlichen oder administrativen Kontexten. Während 

die Vereinfachung von Texten die Zugänglichkeit erhöht, besteht die Gefahr, dass essenzielle juristische 

Feinheiten verloren gehen, was zu Missverständnissen führen kann. Zudem bleibt das Problem der 

"Halluzinationen" bestehen, bei den Modellen plausible, aber faktisch falsche Informationen generieren. 

Dieses Phänomen kann insbesondere in Verwaltungstexten zu erheblichen Fehlinformationen führen. 

Gekhman et al. [35] untersuchten dieses Problem und stellten fest, dass das Einführen neuer Fakten 

während des Fine-Tunings die Tendenz der Modelle zu Halluzinationen erhöhen kann. 

Ein weiterer offener Forschungsbereich ist die kulturelle und sprachliche Anpassung von LLMs. 

Gooding [36] diskutierte die ethischen Implikationen der Textvereinfachung und betonte, dass Modelle 

kulturelle Unterschiede nicht immer ausreichend berücksichtigen, was zu unangemessenen oder 

ungenauen Vereinfachungen führen kann. Dies unterstreicht die Notwendigkeit, LLMs so zu gestalten, 

dass sie kulturelle Nuancen und sprachliche Besonderheiten adäquat erfassen. 

Zusammenfassend zeigt die aktuelle Forschung, dass LLMs ein enormes Potenzial für die 

Vereinfachung von Verwaltungstexten besitzen. Dennoch bleiben Herausforderungen wie die 

Sicherstellung der Faktentreue, die kulturelle Adaption und die Balance zwischen Vereinfachung und 

Präzision zentrale Forschungsfragen für die Zukunft. 

2.3 Vorgänger der Transformer-Architektur 

Bevor die Transformer-Architektur [10] in der NLP-Forschung Einzug hielt, basierten Ansätze zur 

Sprachverarbeitung auf regelbasierten Systemen, statistischen Modellen und frühen neuronalen 

Netzwerken. Diese Methoden hatten jedoch erhebliche Einschränkungen bei der Handhabung von 

Kontext, langen Sequenzen und der Modellierung semantischer Beziehungen. Insbesondere scheiterten 

viele dieser Ansätze daran, die Bedeutung der Wortreihenfolge und den Kontext eines gesamten Satzes 

oder Dokuments effektiv zu erfassen. Die Entwicklung der Transformer-Architektur war ein 

revolutionärer Schritt, der viele dieser Herausforderungen überwand und die Grundlage für moderne 

LLMs schuf. 

2.3.1 Regelbasierte und frühe maschinelle Lernverfahren 

Frühe Ansätze in der NLP-Forschung stützten sich stark auf regelbasierte Systeme und statische 

Modelle. Regelbasierte Systeme, wie sie in der maschinellen Übersetzung oder Syntaxanalyse eingesetzt 
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wurden, nutzten explizit definierte grammatikalische Regeln zur Textverarbeitung. Diese Systeme 

waren jedoch stark limitiert, da sie Schwierigkeiten hatten, mit der Komplexität natürlicher Sprache und 

variierenden Kontexten umzugehen [37]. 

Eine statische Erweiterung dieser Ansätze war das Bag-of-Words (BoW)-Modell. Dieses Modell 

ignorierte die Reihenfolge der Wörter und repräsentierte Texte lediglich durch die Häufigkeit der darin 

enthaltenen Begriffe [37]. BoW wurde häufig in Textklassifikations- und Informationsabrufsystemen 

eingesetzt. Obwohl es effizient war, führte der Verlust der Kontextinformationen dazu, dass semantische 

Zusammenhänge nur unzureichend erfasst wurden. 

Probabilistische Modelle wie Hidden Markov Models (HMMs) und Conditional Random Fields (CRFs) 

boten eine statische Herangehensweise, die besser geeignet war, Unsicherheiten in der Sprache zu 

modellieren. HMMs fanden Anwendungen in der Spracherkennung und maschinellen Übersetzung, 

während CRFs vor allem bei Aufgaben wie Named Entity Recognition (NER) und 

Sequenzkennzeichnung erfolgreich eingesetzt wurden [37]. Trotz ihrer Erfolge hatten diese Modelle 

Schwierigkeiten, lange Abhängigkeiten und komplexe semantische Beziehungen zu modellieren. 

2.3.2 Neuronale Ansätze 

Die Einführung neuronaler Netzwerke führte zu signifikanten Fortschritten in der Sprachverarbeitung. 

Besonders Feedforward- und rekurrente Architekturen ermöglichten eine effizientere Verarbeitung und 

Generalisierung von Sprachmustern. 

2.3.2.1 Feedforward Neural Networks 

Die Einführung von Feedforward Neural Networks markierte einen Wendepunkt in der NLP-Forschung. 

Diese Netzwerke basieren auf einer Architektur, die eine Eingabe durch mehrere Schichten von 

Neuronen verarbeitet, um eine Ausgabe zu generieren. Sie waren besonders effektiv in Aufgaben wie 

Textklassifikation und Sentimentanalyse. Allerdings konnten sie die Reihenfolge und den Kontext von 

Wörtern nicht berücksichtigen, was [38] dazu veranlasste, ein probabilistisches Sprachmodell zu 

entwickeln, das Wortrepräsentationen in einem kontinuierlichen Raum erlernt. Dies machte deutlich, 

dass spezialisierte Modelle für sequentielle Daten erforderlich waren. 

2.3.2.2 Recurrent Neural Networks (RNNs) 

Die Einführung von Recurrent Neural Networks (RNNs) brachte eine entscheidende Verbesserung in 

der Verarbeitung von Sprachsequenzen. Durch Rückkopplungsschleifen konnten frühere Eingaben 
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gespeichert und bei späteren Berechnungen berücksichtigt werden. Diese Eigenschaft machte sie 

besonders wertvoll für maschinelle Übersetzung, Sprachmodellierung und Textgenerierung. 

Ein zentrales Problem dieser Netzwerke war jedoch das sogenannte Vanishing Gradient Problem, 

welches dazu führte, dass Informationen über lange Sequenzen hinweg nur schwer erfasst wurden. 

2.3.2.3 LSTM und GRUs 

Um die Schwächen von RNNs zu beheben, wurden Long Short-Term Memory (LSTM)-Netzwerke [39] 

entwickelt. Diese Netzwerke führten Gedächtniszellen ein, die entscheiden können, welche 

Informationen über längere Zeiträume hinweg gespeichert oder vergessen werden sollen. LSTMs 

wurden für viele NLP-Aufgaben wie maschinelle Übersetzung und Sprachmodellierung eingesetzt.  

Später wurden Gated Recurrent Units (GRUs) entwickelt, die eine kompaktere Struktur als LSTMs 

aufweisen und ähnliche Ergebnisse liefern konnten. Trotz dieser Fortschritte blieb die sequenzielle 

Verarbeitung ein Engpass, da diese Modelle weiterhin auf eine schrittweise Verarbeitung von Token 

angewiesen waren. Die Unterschiede zwischen RNNs, LSTMs und GRUs sind in Abbildung 2 

dargestellt.  

 

Abbildung 2: Vergleich verschiedener Sequenzmodelle [40] 

2.3.3 Attention-Mechanismus 

Die Einführung von Attention-Mechanismen war ein entscheidender Schritt zur Verbesserung der 

Verarbeitung natürlicher Sprache. Der bahnbrechende Ansatz wurde erstmals im Kontext von Seq2Seq-

Modellen mit Attention von [41] vorgestellt. Diese Technik ermöglichte es Modellen, sich dynamisch 

auf relevante Teile einer Eingabesequenz zu konzentrieren, anstatt alle Informationen gleich zu 

gewichten. Attention adressierte damit die Limitierungen früherer Modelle wie LSTMs, die 

Schwierigkeiten hatten, langreichweitige Abhängigkeiten effizient zu modellieren. 
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Attention-Mechanismen wurden zunächst in der maschinellen Übersetzung eingesetzt, wo sie dazu 

beitrugen, Quell- und Zielwörter effektiver zu verknüpfen. Sie boten eine klare Verbesserung der 

Genauigkeit und eröffneten neue Möglichkeiten für die Verarbeitung komplexer Sequenzen. Die 

Bedeutung dieses Fortschritts zeigt sich in der weiteren Entwicklung von Sprachmodellen, wie in 

Abbildung 3 dargestellt. Hier wird der Übergang von statistischen Sprachmodellen zu neuronalen 

Netzwerken sowie der Einfluss von Attention auf die Entwicklung moderner Transformer-Modelle 

veranschaulicht. 

 

Abbildung 3: Geschichte und Entwicklung von Sprachmodellen [42] 

2.3.4 Self-Attention als Grundlage der Transformer-Architektur 

Ein zentraler Durchbruch war die Einführung von Self-Attention in der Arbeit "Attention is All You 

Need" von [10]. Self-Attention ermöglicht es Modellen, Beziehungen zwischen allen Wörtern in einer 

Sequenz gleichzeitig zu berücksichtigen, unabhängig von deren Entfernung. Diese Fähigkeit zur 

parallelen Verarbeitung war eine Revolution im Vergleich zu LSTMs und GRUs, die Wörter nur 

sequentiell verarbeiteten. 

Self-Attention berechnet Gewichtungen für jedes Wort basierend auf seiner Relevanz für andere Wörter 

in der Sequenz. Dadurch können Modelle besser kontextuelle Informationen erfassen und auch lange 

Abhängigkeiten effizient modellieren. Die Kombination von Self-Attention mit Feedforward-Schichten 

und Layer-Normalisierung führte zur Transformer-Architektur, die Skalierbarkeit, Geschwindigkeit und 

Genauigkeit in NLP-Aufgaben erheblich verbesserte. 
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2.4 Übergang zu Transformer-Modellen 

Mit der Einführung des Transformer-Modells [10] wurde ein paradigmatischer Wandel in der 

Verarbeitung von Sequenzdaten vollzogen. Im Gegensatz zu früheren Modellen, die auf rekurrenten 

oder konvolutionalen Architekturen basierten, verzichtet der Transformer vollständig auf diese 

Strukturen und nutzt stattdessen eine Self-Attention-Mechanik. Diese ermöglicht die parallele 

Modellierung globaler Abhängigkeiten innerhalb einer Eingabesequenz und verbessert dadurch sowohl 

die Verarbeitungsgeschwindigkeit als auch die Skalierbarkeit und Effizienz, insbesondere bei langen 

Sequenzen. 

2.4.1 Transformer-Architektur 

Die Transformer-Architektur, wie in Abbildung 4 dargestellt, folgt einem Encoder-Decoder-Design. Der 

Encoder verarbeitet die Eingabesequenz über mehrere Schichten hinweg und generiert eine 

kontinuierliche Repräsentation, die anschließend vom Decoder genutzt wird, um die Zielsequenz zu 

erzeugen. Beide Komponenten bestehen aus einer Sequenz identischer Schichten, die jeweils eine Multi-

Head-Attention-Schicht und ein Position-wise Feed-Forward-Netzwerk als wesentliche Bausteine 

enthalten. Um Stabilität und eine effizientere Konvergenz während des Trainings zu gewährleisten, 

werden Residual-Verbindungen und Layer-Normalisierung integriert.  

 

Abbildung 4: Die Transformer-Modellarchitektur [10] 



 

 

 

15 

 

2.4.2 Encoder-Decoder-Struktur 

Der Encoder transformiert die Eingabesequenz zunächst in Vektorrepräsentationen (Embeddings), die 

durch Positional Encodings ergänzt werden, um die Reihenfolge der Tokens explizit zu berücksichtigen 

[10]. Anschließend wird diese angereicherte Eingabe in die erste Encoderschicht überführt, die auf dem 

Multi-Head-Attention-Mechanismus basiert [10]. 

Der Decoder hingegen verfügt über eine zusätzliche Masked Multi-Head-Attention-Schicht, die 

sicherstellt, dass während der Generierung einer Sequenz zukünftige Tokens nicht berücksichtigt 

werden. Diese Maskierung gewährleistet die Kausalität der Modellierung und verhindert Datenlecks 

innerhalb des Modells [10]. 

2.4.3 Multi-Head Attention und Scaled Dot-Product Attention 

Ein zentraler Mechanismus des Transformers ist die Multi-Head Attention, die auf dem Prinzip der 

Scaled Dot-Product Attention basiert. Dieser Mechanismus ermöglicht es dem Modell, verschiedene 

Teile einer Sequenz parallel zu betrachten, wodurch komplexe Abhängigkeiten und Beziehungen 

zwischen Tokens effizient erfasst werden können [10].  

Die Berechnung der Scaled Dot-Product Attention folgt der Gleichung (1): 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

 √𝑑𝑘
) 𝑉 (1) 

Hier stehen 𝑄 (Queries), 𝐾 (Keys) und 𝑉 (Values) für die Eingabematrizen, die aus den eingebetteten 

Token-Vektoren einer Sequenz gebildet werden. Die Skalierung durch √𝑑𝑘, wobei 𝑑𝑘 die Dimension 

der Keys ist, verhindert numerische Instabilitäten bei großen Werten. Der Softmax-Operator 

normalisiert die Gewichtungen der Werte 𝑉, sodass sich die Aufmerksamkeit selektiv auf relevante 

Tokens konzentrieren kann [10]. 

Die Architektur dieses Mechanismus wird in Abbildung 5 dargestellt. Sie zeigt den mehrstufigen 

Prozess, beginnend mit der Matrixmultiplikation von Q und K, gefolgt von der Skalierung und einer 

optionalen Maskierung, um kausale Abhängigkeiten sicherzustellen. Schließlich wird der Softmax-

Operator angewendet und die gewichteten Werte mit V multipliziert, um die endgültige Ausgabe zu 

generieren. 
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Abbildung 5: Scaled Dot-Product Attention [10] 

Multi-Head Attention erweitert das Konzept der Scaled Dot-Product Attention, indem mehrere 

Attention-Köpfe parallel arbeiten. Dadurch kann das Modell unterschiedliche Aspekte der 

Eingabesequenz simultan erfassen, was zu einer reichhaltigeren Repräsentation des Kontexts führt. Die 

mathematische Darstellung des Multi-Head Attention Mechanismus ist in Gleichung (2) definiert: 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂 (2) 

Hierbei wird jeder Kopf durch individuelle Gewichtungsmatrizen 𝑊𝑄 , 𝑊𝐾 , 𝑊𝑉 transformiert, bevor die 

Ergebnisse zusammengeführt werden. 

Die schematische Darstellung in Abbildung 6 zeigt, wie mehrere parallele Scaled Dot-Product 

Attention-Berechnungen durchgeführt werden. Jede Attention-Einheit verarbeitet die Eingabe 

unabhängig, sodass unterschiedliche Aspekte der Sequenz erfasst werden können. Anschließend werden 

die Ergebnisse der einzelnen Attention-Köpfe zusammengeführt (Concat-Schritt) und mittels einer 

linearen Transformation weiterverarbeitet. Diese Visualisierung ist entscheidend für das Verständnis, 

wie der Transformer verschiedene semantische Relationen innerhalb der Sequenz effizient modelliert. 

 

Abbildung 6: Multi-Head Attention [10] 
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2.4.4 Position-wise Feed-Forward-Netzwerk 

Jede Schicht des Encoders und Decoders enthält ein Feed-Forward-Netzwerk (FFN), das unabhängig 

auf jedes Token angewendet wird. Dieses Netzwerk dient der nichtlinearen Transformation der 

Eingabedaten, um die Repräsentationsfähigkeit des Modells zu verbessern [10]. Mathematisch wird das 

FFN durch die folgende Gleichung (3) definiert: 

𝐹𝐹𝑁(𝑥) = 𝑚𝑎𝑥(0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (3) 

Dabei handelt es sich um eine zweischichtige Transformation mit einer Zwischendimension von 𝑑𝑓𝑓 =

2048. Die erste lineare Transformation (W₁, b₁) projiziert den Eingabevektor in einen 

höherdimensionalen Raum, gefolgt von einer ReLU-Aktivierung 𝑚𝑎𝑥(0, 𝑥1), die Nichtlinearität 

einführt. Anschließend erfolgt eine zweite lineare Transformation (W₂, b₂), die die Daten wieder in die 

ursprüngliche Dimension zurückprojiziert. 

2.4.5 Positional Encodings 

Da der Transformer keine rekurrenten Strukturen verwendet, wird die Reihenfolge der Tokens durch 

Positional Encodings dargestellt. Diese Formeln werden mit den Eingabe-Embeddings kombiniert und 

nutzen sinus- und cosinusbasierten Funktionen, wie in Gleichung (4) dargestellt: 

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛 (
𝑝𝑜𝑠

 10000

2𝑖
 𝑑𝑚𝑜𝑑𝑒𝑙

), 𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos (
𝑝𝑜𝑠

 10000

2𝑖
 𝑑𝑚𝑜𝑑𝑒𝑙  

) (4) 

Hierbei repräsentieren 𝑝𝑜𝑠 die Position des Tokens und 𝑖 die Dimension. Diese Funktionen 

gewährleisten, dass das Modell die Reihenfolge der Sequenz erfassen kann. 

Nachdem die Architektur des Transformers ausführlich erläutert wurde, bietet die folgende Tabelle 1 

einen strukturierten Vergleich zwischen RNNs, LSTMs, GRUs und der Transformer-Architektur. Dabei 

werden zentrale Eigenschaften, Vorteile und Einschränkungen der einzelnen Modelle gegenübergestellt, 

um ihre jeweiligen Stärken und Schwächen zu verdeutlichen. 
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Tabelle 1: Vergleich verschiedener Sequenzmodelle [40] 

Beschreibung RNN LSTM GRU Transformer 

Überblick Iterative 

Verarbeitung 

von Sequenzen, 

wobei frühere 

Outputs als 

Inputs für die 

nächsten 

Schritte dienen. 

Erweiterung von 

RNNs zur besseren 

Erfassung von 

Langzeitabhängigke

iten. 

Vereinfachte Version 

von LSTMs mit 

optimiertem Gating-

Mechanismus. 

Nutzt 

Selbstaufmerksamkeit 

anstelle von Rekurrenz 

für parallele 

Verarbeitung. 

Hauptmerkmale - Speichert 

frühere 

Informationen 

über rekurrente 

Verbindungen. 

- Nutzt Gates 

(Eingangs-, 

Vergessens-, 

Ausgangsgate) zur 

Regulierung des 

Informationsflusses 

- Verwendet Reset- 

und Update-Gates zur 

effizienten Steuerung 

der 

Informationsweiterga

be. 

-

Selbstaufmerksamkeits

mechanismus 

gewichtet Eingaben 

dynamisch.  

- Besteht aus Encoder-

Decoder-Struktur mit 

paralleler 

Datenverarbeitung. 

Vorteile - Einfache 

Struktur. 

- Geeignet für 

Aufgaben mit 

kurzen 

Sequenzen. 

- Erfassen und 

Speichern von 

Langzeitabhängigke

iten.  

- Mildert das 

Vanishing-

Gradient-Problem. 

- Weniger Parameter 

als LSTMs, oft 

schnelleres Training.  

- Gute Balance 

zwischen Effizienz 

und Genauigkeit. 

- Lernfähigkeit für 

Langzeitabhängigkeite

n ohne Rekurrenz.  

- Hohe 

Parallelisierbarkeit 

beschleunigt das 

Training. 

Nachteile - Vanishing-

Gradient-

Problem, 

begrenzte 

Langzeitspeiche

rung. 

- Höhere 

Rechenanforderung

en als RNNs.  

- Längere 

Trainingszeiten. 

- Kann in manchen 

Szenarien schlechter 

als LSTMs sein. 

- Hohe 

Speicheranforderungen 

und Rechenlast.  

- Benötigt große 

Datenmengen für 

effizientes Training. 
 

2.5 Einführung in LLM 

LLMs sind leistungsfähige neuronale Netzwerke, die auf umfangreichen Textkorpora trainiert werden, 

um menschenähnliche Sprachverarbeitung zu ermöglichen. Die Einführung der Transformer-

Architektur revolutionierte diesen Bereich, da sie durch Selbstaufmerksamkeit eine effiziente 

Modellierung von Langzeitabhängigkeiten erlaubt und frühere rekurrente Ansätze ersetzte [10].  

Bekannte Vertreter sind GPT-3 [32], BERT [43] und T5 [21], die wesentliche Fortschritte in 

maschineller Übersetzung, Textklassifikation und Fragebeantwortung erzielt haben. Neben der 

Fähigkeit zur Textgenerierung zeichnen sie sich durch ihre hohe Präzision in NLP-Aufgaben aus. 

Ein zentraler Aspekt der Leistungsfähigkeit von LLMs ist ihre Skalierbarkeit. Größere Modelle, die mit 

umfangreicheren Datensätzen trainiert wurden, erzielen eine höhere Genauigkeit. Darüber hinaus kann 

durch gezieltes Fine-Tuning auf domänenspezifische Daten die Modellleistung für spezifische 

Anwendungen weiter optimiert werden. 
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3 Datensatz, Modellauswahl und Modelloptimierung 

Die Effektivität der automatisierten Vereinfachung englischer Verwaltungstexte hängt maßgeblich von 

der Qualität des Datensatzes, der Auswahl geeigneter Sprachmodelle und deren Optimierung ab. Dieses 

Kapitel beschreibt zunächst die Erstellung eines spezialisierten Textkorpus als Grundlage für das 

Modelltraining. Anschließend werden die verwendeten vortrainierten Modelle und deren technische 

Eigenschaften erläutert. Im weiteren Verlauf wird die Modellanpassung und Optimierung detailliert 

betrachtet, wobei der Fokus auf Hyperparametern, Trainingsmethoden und technischen 

Herausforderungen liegt. Abschließend werden die Ergebnisse der Feinabstimmung vorgestellt. 

3.1 Entwicklung des spezialisierten Textkorpus  

Die Grundlage dieser Arbeit bildet ein speziell erstellter Datensatz, der Verwaltungstexte aus 

gesellschaftlich relevanten Bereichen umfasst. Im Fokus stehen Dokumente der Bundesagentur für 

Arbeit sowie der Ausländerbehörden, da diese essenziellen Informationen für Bürgerinnen und Bürger 

bereitstellen und somit eine zentrale Rolle für die gesellschaftliche Teilhabe und das Verständnis 

administrativer Prozesse spielen.  

3.1.1 Datenerhebung und Aufbereitung  

Die Erstellung des Datensatzes erfolgte in einem mehrstufigen, systematischen Verfahren, das sowohl 

die sprachliche Verständlichkeit als auch die inhaltliche Präzision sicherstellen sollte. Zunächst wurden 

Verwaltungstexte in deutscher und englischer Sprache aus offiziellen Quellen, darunter Formulare der 

Bundesagentur für Arbeit und der Ausländerbehörden, extrahiert. Aufgrund der besseren Verarbeitung 

englischsprachiger Inhalte durch moderne vortrainierten Sprachmodelle wurden die deutschen 

Verwaltungstexte anschließend ins administrative Englisch übersetzt. Dabei wurde besonderes 

Augenmerk auf eine konsistente Terminologie sowie die Erhaltung des rechtlichen und formellen 

Charakters der Originaltexte gelegt, um die sprachliche Präzision und inhaltliche Integrität zu 

gewährleisten. 

Dieser iterative Ansatz gewährleistet, dass die finalen Texte sowohl sprachlich verständlich als auch 

rechtlich präzise bleiben. Die Kombination aus automatisierter Vereinfachung mit ChatGPT-4o und 

manueller Nachbearbeitung ermöglicht eine gezielte Anpassung an die Prinzipien der Einfachen 

Sprache, während gleichzeitig der formelle und rechtliche Charakter der Verwaltungstexte erhalten 

bleibt. Durch diese methodische Vorgehensweise entsteht ein qualitativ hochwertiger Datensatz, der 

sich sowohl für die Vereinfachung administrativer Kommunikation als auch für das Fine-Tuning von 

LLMs eignet. Zudem schafft die gezielte Verbindung von Übersetzungs- und Vereinfachungsstrategien 

https://chatgpt.com/
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eine solide Grundlage für zukünftige Anpassungen an weitere Sprachen, insbesondere Deutsch, um die 

Anwendbarkeit der entwickelten Modelle langfristig zu erweitern. 

3.1.2 Skalierte Datensatzstrukturen 

Der generierte Datensatz wurde systematisch in drei Größen skaliert. ein Minimaldatensatz mit 100 

Einträgen, ein mittlerer Datensatz mit 500 Einträgen und ein vollständiger Datensatz mit 1000 

Einträgen. Diese gestufte Skalierung dient dazu, die Auswirkungen der Datensatzgröße auf die Qualität 

der automatisierten Textvereinfachung zu analysieren und zu bewerten. 

Der Datensatz ist in einer zweispaltigen Struktur organisiert. Die erste Spalte enthält die englische 

Verwaltungstexte, die den komplexen, formellen Stil der Verwaltungssprache nachbilden. Die zweite 

Spalte enthält die entsprechende vereinfachte englische Version, die speziell unter Berücksichtigung der 

Prinzipien der Einfachen Sprache erstellt wurde. Diese Struktur unterstützt die vortrainierten 

Sprachmodelle dabei, die Transformation von komplexen zu vereinfachten Texten effizient zu erlernen. 

Durch diese Herangehensweise werden die Stärken vortrainierter Sprachmodelle optimal genutzt. 

Gleichzeitig wird der besondere Stil und die Komplexität der Verwaltungssprache in die 

Datensatzgestaltung einbezogen. Der erstellte Datensatz bietet somit eine solide Grundlage für die 

Entwicklung effektiver und anwendungsorientierter Strategien zur Textvereinfachung im 

Verwaltungskontext.  

3.2 Verwendete vortrainierte Modelle  

In dieser Arbeit werden drei state-of-the-art vortrainierte Modelle – LLama 3, Phi-3 mini und Mistral 

7B – untersucht und hinsichtlich ihrer Eignung zur Vereinfachung von Verwaltungstexten evaluiert. Im 

Folgenden werden diese Modelle im Detail vorgestellt. 

3.2.1 LLaMA 3 8B Instruct: Architektur und Leistungsfähigkeit 

LLaMA 3 8B Instruct ist ein leistungsfähiges Open-Source-Sprachmodell, das von Meta AI [44] im Jahr 

2024 veröffentlicht wurde. Es basiert auf einer decoderbasierten Transformer-Architektur und wurde 

gezielt für Aufgaben optimiert, die eine präzise Verarbeitung natürlicher Sprache erfordern. Das Modell 

ist speziell für Instruction-Following-Szenarien konzipiert, wodurch es besonders gut darin ist, 

komplexe Eingaben in verständliche und präzise Antworten zu überführen [44].Im Vergleich zu 

vorherigen Generationen bietet LLaMA 3 verbesserte Rechenleistung, Skalierbarkeit und Effizienz, was 

es ideal für die Vereinfachung von Verwaltungstexten macht. 
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Das Modell wurde auf einer umfassenden und qualitativ hochwertigen Datenbasis von über 15 Billionen 

Tokens trainiert. Die Trainingsdaten stammen aus CommonCrawl, wissenschaftlichen Publikationen, 

Lehrbüchern und technischen Dokumentationen. Die Datenvielfalt ermöglicht LLaMA 3 8B, komplexe 

Verwaltungstexte präzise zu analysieren und verständlich umzuwandeln, wodurch Behörden die 

Zugänglichkeit für Bürger mit geringer Sprachkompetenz oder kognitiven Einschränkungen verbessern. 

Abbildung 7 veranschaulicht die Wettbewerbsfähigkeit von LLaMA 3 8B im direkten Vergleich mit 

anderen Modellen. In den Massive Multitask Language Understanding (MMLU) Benchmarks (5-shot) 

erreichte das Modell eine Punktzahl von 68,4 und übertraf damit leicht konkurrierende Modelle wie 

Mistral 7B und Gemma 7B.  

 

Abbildung 7: Leistung des vortrainierten Modells [44] 

3.2.2 Phi-3 Mini: Architektur und Leistungsfähigkeit 

Die Phi-Modellfamilie, entwickelt von Microsoft Research [45], repräsentiert eine bedeutende 

Weiterentwicklung im Bereich ressourcenschonender und leistungsfähiger Sprachmodelle. Von Phi-1 

über Phi-2 bis hin zu Phi-3 Mini zeigt sich eine konsequente Optimierung hin zu effizienteren und 

flexibleren KI-Modellen. Phi-3 Mini, mit nur 3,8 Milliarden Parametern, stellt eine kompakte, aber 

leistungsstarke Alternative zu größeren Sprachmodellen dar und eignet sich besonders für 

Anwendungen mit begrenzten Rechenressourcen [45]. 

Eine der herausragenden Eigenschaften von Phi-3 Mini ist seine hohe Effizienz relativ zu seiner 

Modellgröße. Abbildung 8 zeigt die Positionierung von Phi-3 Mini im Vergleich zu anderen Small 

Language Models (SLMs) und LLMs auf der MMLU-Benchmark. Hier wird deutlich, dass Phi-3 Mini 
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trotz seiner geringen Parameteranzahl eine bemerkenswerte Qualität erreicht und sich gegenüber 

anderen Modellen mit vergleichbarer Größe behauptet.  

 

Abbildung 8: Vergleich der Modellqualität und Größe bei SLMs [45] 

Das Modell wurde auf der Grundlage von "textbook-quality data" trainiert. Diese Daten umfassen 

kuratierte Inhalte aus Lehrbüchern, wissenschaftlichen Publikationen und Programmierbeispielen, 

wobei spezialisierte Filtertechniken angewendet wurden, um die Qualität der Trainingsdaten 

sicherzustellen. Microsoft Research setzte bewusst auf qualitativ hochwertige Datensätze, um eine 

solide Grundlage für die Textgenerierung zu schaffen und gleichzeitig die Effizienz der 

Sprachverarbeitung zu maximieren. Durch diese datengetriebene Optimierung erzielt Phi-3 Mini eine 

bemerkenswerte Textgenerierungsleistung, die sich durch Präzision und Konsistenz auszeichnet [45]. 

Die Benchmark-Tests bestätigen die herausragende Leistungsfähigkeit von Phi-3 Mini in verschiedenen 

sprachlichen Disziplinen. Abbildung 9 stellt die Ergebnisse von Phi-3 Mini im Vergleich zu anderen 

Modellen, darunter Llama-3 8B, Mistral 7B und Gemma 7B, dar. Die MMLU-Bewertung zeigt, dass 

Phi-3 Mini trotz seiner kleineren Größe beeindruckende Werte in Kategorien wie Sprachverständnis 

(HellaSwag, ARC-Challenge) erreicht. 
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Abbildung 9: Benchmark-Ergebnisse von Phi-3 Mini [46] 

Phi-3 Mini optimiert die Vereinfachung von Verwaltungstexten, indem es komplexe Inhalte präzise und 

verständlich umformuliert. Seine kompakte Architektur erleichtert die Integration in bestehende IT-

Infrastrukturen und ermöglicht effiziente Textverarbeitung, insbesondere in ressourcenbeschränkten 

behördlichen Anwendungen. Durch seine Kombination aus Effizienz, Flexibilität und qualitativ 

hochwertigen Trainingsdaten trägt Phi-3 Mini zur barrierefreien Kommunikation und verbesserten 

Informationszugänglichkeit bei. 

3.2.3 Mistral 7B Instruct: Architektur und Leistungsfähigkeit 

Mistral 7B Instruct ist ein leistungsstarkes Open-Source-Sprachmodell, das von Mistral AI [47] 

entwickelt und unter dem Apachen 2.0-Lizenz veröffentlicht wurde. Mit 7,3 Milliarden Parametern 

bietet es eine bemerkenswerte Leistungsfähigkeit, die in vielen Bereichen mit wesentlich größeren 

Modellen wie LLaMA 2 13B und LLaMA 1 34B konkurrieren kann [47]. Dank seiner optimierten 

Architektur, die moderne Techniken wie Grouped-Query Attention (GQA) und Sliding Window 

Attention (SWA) nutzt, erzielt das Modell eine hohe Verarbeitungseffizienz und ermöglicht die 

Bearbeitung längerer Sequenzen bei reduziertem Rechenaufwand [47].  
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Das Modell wurde mit einem breit gefächerten hochwertigen Datensatz trainiert, der Inhalte aus 

wissenschaftlichen Publikationen, technischen Dokumentationen und offenen Textquellen umfasst. 

Dabei wurde ein besonderer Fokus auf die Optimierung der Sprachverarbeitung gelegt, um die 

Modellleistung für administrative und juristische Anwendungen zu maximieren. Durch Fine-Tuning für 

Instruct-Aufgaben wurde Mistral 7B speziell darauf ausgerichtet, Präzision und Klarheit in der 

Textgenerierung zu gewährleisten [47]. Diese Fähigkeit ist besonders relevant für die 

Verwaltungstextvereinfachung, da es darauf ankommt, juristische Genauigkeit zu bewahren, während 

der Text in eine verständliche und zugängliche Form umgewandelt wird. 

In Benchmark-Tests zeigt sich die überlegene Leistung von Mistral 7B Instruct im Vergleich zu ähnlich 

großen Modellen. Besonders in logischen und reasoning-basierten Aufgaben erreicht das Modell eine 

Effizienz, die mit einem LLaMA 2-Modell mit dreifacher Parametergröße vergleichbar ist. Dies 

bedeutet, dass Mistral 7B mit deutlich geringeren Rechenressourcen Ergebnisse auf dem Niveau 

größerer Modelle liefert. Eine Analyse der MMLU-, Knowledge-, Reasoning- und Comprehension-

Benchmarks zeigt, dass Mistral 7B in vielen Kategorien mit LLaMA 2 13B und LLaMA 1 34B 

konkurrieren kann (siehe Abbildung 10). 

 

Abbildung 10: Mistral 7B im Benchmark-Vergleich mit LLaMA-Modellen [46] 

Darüber hinaus zeigt eine detaillierte Bewertung der MT Bench-Ergebnisse, dass Mistral 7B Instruct 

alle anderen 7B-Modelle übertrifft und sich mit Modellen der 13B-Klasse messen kann. Besonders 

hervorzuheben ist die höhere Punktzahl im Vergleich zu LLaMA-2-7B-chat sowie Vicuna-7B-16k, was 

seine Stärke in der präzisen und verständlichen Sprachverarbeitung unterstreicht (siehe Abbildung 11). 

Diese herausragende Leistungsfähigkeit unterstreicht die Fähigkeit des Modells, komplexe sprachliche 

Aufgaben zu bewältigen, einschließlich der Textvereinfachung, bei der Kohärenz, Verständlichkeit und 

Präzision entscheidend sind. 
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Abbildung 11: Mistral 7B Instruct – MT Bench-Ergebnisse [47] 

Mistral 7B ist flexibel anpassbar und ermöglicht gezieltes Fine-Tuning für die 

Verwaltungstextvereinfachung, wodurch Fachjargon reduziert und komplexe Satzstrukturen 

vereinfacht werden.. Durch seine kompakte Modellgröße und effiziente Architektur eignet sich 

Mistral 7B besonders für Einsätze in Verwaltungen, Bildungseinrichtungen und öffentlichen 

Institutionen, wo es problemlos in bestehende IT-Systeme integriert werden kann [47]. 

3.3 Modellanpassung und Optimierung 

Im Rahmen der systematischen Fine-Tuning-Experimente werden drei ausgewählte Sprachmodelle 

durch die gezielte Variation mehrerer Hyperparameter optimiert. Die methodische Evaluierung umfasst 

die schrittweise Anpassung der Größe des Trainingsdatensatzes sowie die Untersuchung verschiedener 

maximale Trainingsschritte (max-steps). Darüber hinaus werden unterschiedliche Lernraten getestet, 

während gleichzeitig verschiedene Prompt-Strukturen evaluiert werden. Diese strukturierte 

Herangehensweise ermöglicht die Identifikation der optimalen Parameterkombination für jedes der drei 

Modelle und gewährleistet somit die bestmögliche Performanz bei der Vereinfachung von 

Verwaltungstexten.  

Aufgrund begrenzter GPU-Ressourcen und Speicherkapazitäten wurde auf eine automatisierte 

Hyperparameter-Optimierung mittels Grid Search oder Bayesian Optimization verzichtet. Über die 

untersuchten Parameter hinaus existieren jedoch weitere bedeutsame Optimierungsmöglichkeiten für 

die Textvereinfachungsaufgabe, die im Rahmen dieser Arbeit nicht näher betrachtet werden. So könnte 

die Implementierung verschiedener Loss-Funktionen, beispielsweise durch die Kombination von Cross-

Entropy-Loss mit zusätzlichen Metriken zur Messung lexikalischer Komplexität, die Qualität der 

Vereinfachung weiter verbessern.  

Darüber hinaus könnten Early-Stopping-Strategien auf Basis von Simplizitätsmetriken sowie die 

Integration von Readability-Scores in den Trainingsprozess die Modellleistung weiter steigern. Auch 

Ansätze wie die Implementierung von Warmup-Phasen oder das schrittweise Entfrieren von 
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Modellschichten (gradual unfreezing) bieten weiteres Optimierungspotenzial. Eine detaillierte 

Untersuchung dieser Parameter würde jedoch den definierten Rahmen dieser Bachelorarbeit 

überschreiten.  

3.3.1 Technische Umsetzung und Trainingsumgebung  

Der zugrunde liegende Code ist für alle drei vortrainierten Sprachmodelle einheitlich strukturiert, wobei 

Unterschiede nur bei der Auswahl des Modells und den genannten Parametern bestehen.  

Der gesamte Code wurde in der Google-Colab-Umgebung ausgeführt, die sich aufgrund ihrer GPU-

Unterstützung und der einfachen Integration externer Ressourcen wie Google Drive ideal für das 

Training großer Sprachmodelle eignet. Der Quellcode wurde zudem in einem Gitlab-Repository 

gespeichert, um die Nachvollziehbarkeit und Wiederverwendbarkeit der Implementierung zu 

gewährleisten.  

3.3.2 Code-Struktur und Einsatz von Unsloth  

Die Implementierung basiert auf der spezialisierten Bibliothek Unsloth, die für die effiziente Nutzung 

und Anpassung großer Sprachmodelle entwickelt wurde. Diese Bibliothek zeichnet sich durch eine 

benutzerfreundliche Schnittstelle aus, die das Laden, Trainieren und Feinjustieren von Modellen 

vereinfacht. Insbesondere für komplexe Modelle mit Milliarden Parametern ist Unsloth aufgrund seiner 

Ressourcenoptimierung hervorragend geeignet. 

Ein wesentliches Merkmal von Unsloth ist die Unterstützung des 4-Bit-Formats für die 

Modellverarbeitung, das den Speicherbedarf drastisch reduziert. Diese Funktion ist von entscheidender 

Bedeutung, um große Modelle auf GPUs mit begrenzten Ressourcen auszuführen, ohne dass die 

Modellleistung beeinträchtigt wird. Darüber hinaus integriert Unsloth moderne Techniken wie PEFT, 

einschließlich Low-Rank Adaptation (LoRA) [48]. Diese Techniken optimieren Modelle für spezifische 

Aufgaben wie die Verwaltungstextvereinfachung, minimieren den Rechenaufwand und machen Unsloth 

zu einem essenziellen Werkzeug für die automatisierte Textvereinfachung. 

3.3.3 Bibliotheken und Datensatzverarbeitung  

Die Implementierung nutzt eine Vielzahl bewährter Python-Bibliotheken, um die Datenverarbeitung 

und Modellanpassung zu unterstützen. Die Bibliothek Transformers wird für die Bereitstellung und 

Feinabstimmung vortrainierter Sprachmodelle verwendet. Datasets dient zur effizienten Verwaltung 

und Organisation der Trainingsdaten, während Pandas für die Datenanalyse und Vorverarbeitung 

eingesetzt wird. Der Datensatz wird direkt aus Google Drive geladen, was die Handhabung großer 

https://git.haw-hamburg.de/infwht611/llm-basierte-vereinfachung-von-verwaltungstexten


 

 

 

27 

 

Datenmengen erleichtert und eine zentrale Datenquelle bietet. Nach dem Importieren in ein pandas-

DataFrame wird der Datensatz in ein Hugging-Face-kompatibles Format umgewandelt, um eine 

nahtlose Integration in das Trainingsframework zu gewährleisten. 

Während der Datenvorbereitung werden die Verwaltungstexte systematisch standardisiert und für das 

Training optimiert. Jeder Eintrag im Datensatz wird in ein Eingabe-Ausgabe-Paar umgewandelt, bei 

dem die Eingabe den Originaltext und die Ausgabe die vereinfachte Version des Textes darstellt. Die 

strukturierte Datenvorbereitung und die Verwendung modernster Bibliotheken gewährleisten eine 

präzise und effiziente Umsetzung der Aufgabenstellung. 

3.3.4 Hyperparameter und Prompts  

Die Optimierung der Modellleistung wurde durch eine systematische Untersuchung zentraler 

Hyperparameter sowie durch gezielte Variation der Eingabeformulierung durchgeführt. Die Lernrate 

wurde in den Werten 3e-5 und 5e-5 getestet, um die besten Bedingungen für das Training zu 

identifizieren. Gleichzeitig wurden die maximalen Trainingsschritte (max steps) in den Intervallen 25, 

50 und 100 angepasst, um den Einfluss unterschiedlicher Trainingslängen auf die Modellleistung zu 

bewerten. Der Umfang des Datensatzes wurde ebenfalls variiert, mit Größen von 100, 500 und 1000 

Beispielen, um zu analysieren, wie der Datenumfang die Ergebnisse beeinflusst. 

Zusätzlich wurden drei unterschiedliche Prompts verwendet, um die Auswirkungen der 

Eingabeformulierung auf die Modellleistung zu untersuchen:  

a) Einfacher Prompt:  

Simplify text: {input_text}  

b) Präziser, verlustfreier Prompt:  

Simplify the following text without any information lost: {input_text}  

c) Ausführlicher Experten-Prompt:  

You are an expert in text simplification, specializing in transforming complex administrative 

language into Easy Language in English. Your goal is to rewrite the text so it is easy to 

understand for everyone, including people with limited language skills, cognitive impairments, 

or those who are not native speakers. Follow these guidelines for the best results: - Use simple 

and clear words: Choose everyday words that most people know. Avoid technical terms, 

jargon, or difficult expressions. - Keep sentences short and direct: Use one idea per sentence to 

avoid confusion. Break complex thoughts into multiple sentences or step-by-step instructions. 

- Explain concepts clearly: If a term or idea is necessary but difficult, provide a simple 

explanation or example. Assume the reader has no prior knowledge of the topic. - Avoid 

figurative language: Do not use idioms, metaphors, or abstract expressions that might be 
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confusing. Use straightforward language instead. - Structure the information clearly: Use lists 

or step-by-step formatting when appropriate to make the text easy to read and scan. - Be 

respectful and encouraging: Maintain a neutral and supportive tone. Make the text helpful 

without being condescending. Avoid creating a sense of urgency or pressure. - Simplify 

grammar and punctuation: Use basic punctuation like commas and periods. Avoid complex 

punctuation like semicolons. Write numbers as words for small numbers and as figures for 

larger ones. - Focus on active voice: Use direct, active sentences rather than passive voice. - 

Repeat key points if necessary: Repetition can help reinforce important information. The goal 

is to make the text as clear, concise, and easy to understand as possible, while keeping all 

essential information. Simplify the following text: {input_text}.  

 

Die Kombination aus variierenden Hyperparametern und differenzierten Prompt-Formulierungen wurde 

gezielt eingesetzt, um die optimalen Bedingungen für eine effektive Textvereinfachung zu 

identifizieren. Die Experimente zeigten, dass sowohl Modellparameter als auch Eingabeformulierung 

die Qualität der Vereinfachung maßgeblich beeinflussen. 

3.3.5 Einsatz von PEFT-Techniken mit LoRA  

Das Fine-Tuning der Modelle basiert auf PEFT. Innerhalb des PEFT-Frameworks wird LoRA 

verwendet, eine Methode, die es ermöglicht, lediglich ausgewählte Parametergruppen wie die 

Projektionsmatrizen zu trainieren, während die übrigen Modellparameter eingefroren bleiben. Diese 

gezielte Anpassung reduziert die Rechenkosten erheblich und bewahrt gleichzeitig die hohe Leistung 

der vortrainierten Modelle. 

LoRA ist besonders vorteilhaft, wenn nur begrenzte Trainingsdaten zur Verfügung stehen, wie es bei 

der Erstellung von spezialisierten Datensätzen für die Textvereinfachung oft der Fall ist. Die 

Implementierung im vorliegenden Projekt nutzt eine Dropout-Rate von 0 und einen Alpha-Wert von 32, 

was eine effiziente Balance zwischen der Modellanpassungsfähigkeit und der Stabilität der 

Trainingsergebnisse gewährleistet. Diese Parameter wurden sorgfältig gewählt, um sicherzustellen, dass 

das Modell trotz der Ressourcenschonung domänenspezifische Anforderungen präzise erfüllen kann. 

Die Integration von LoRA innerhalb der Unsloth-Bibliothek und ihrer Unterstützung für 

speichereffizientes Laden im 4-Bit-Format ist ein wesentlicher Bestandteil des Codes. Dies erlaubt es, 

das Training selbst auf Geräten mit begrenztem GPU-Speicher durchzuführen, während die 

leistungsstarken Eigenschaften der Modelle erhalten bleiben. 
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3.3.6 Trainingssetup und Modellbewertung  

Das Trainingssetup wurde sorgfältig konzipiert, um optimale Bedingungen für die Feinabstimmung 

vortrainierter Sprachmodelle sicherzustellen. Im Mittelpunkt standen die systematische Variation 

zentraler Hyperparameter wie Lernrate, Trainingsschritte, Datensatzgröße und die Formulierung der 

Prompts. Ziel war es, den Einfluss dieser Faktoren auf die Modellleistung umfassend zu analysieren. 

Für die Implementierung kam die leistungsfähige transformers-Bibliothek in Kombination mit der 

SFTTrainer-Klasse zum Einsatz, die speziell für die effiziente Anpassung großer Sprachmodelle 

entwickelt wurde. Um eine vergleichbare Bewertung der Experimente sicherzustellen, blieben 

Parameter wie Batch-Größe, Warmup-Schritte und Optimierungsalgorithmus über alle Tests hinweg 

konstant. 

Das Training basierte auf einem spezialisierten Datensatz mit vereinfachten Verwaltungstexten, wobei 

jede Modelliteration mit drei unterschiedlichen Prompt-Varianten durchgeführt wurde. Diese dienten 

dazu, die Reaktion des Modells auf unterschiedliche Eingabequalitäten zu evaluieren und die 

bestmögliche Strategie für die Textvereinfachung zu identifizieren. 

Während des Trainings wurde der Training Loss kontinuierlich überwacht, um die Konvergenz des 

Modells und dessen Fähigkeit zur präzisen Vorhersage der Zielausgabe zu bewerten. Dieser Wert 

lieferte entscheidende Hinweise darauf, wie gut das Modell die angestrebte Vereinfachung umsetzen 

konnte. 

3.3.7 Technische Herausforderungen und Lösungen 

Während der Implementierung und Feinabstimmung der Sprachmodelle traten mehrere technische 

Herausforderungen auf, die gezielt adressiert wurden, um eine effiziente Modellanpassung 

sicherzustellen. 

Eine zentrale Schwierigkeit bestand in der begrenzten GPU-Verfügbarkeit in Google Colab, die zu 

Speicherengpässen führte und die maximale Modell- und Batchgröße einschränkte. Zur Lösung dieses 

Problems wurde die 4-Bit-Quantisierung mithilfe der Unsloth-Bibliothek implementiert, wodurch der 

Speicherverbrauch erheblich reduziert, aber die Modellleistung weitgehend erhalten blieb. Dies 

ermöglichte ein effizientes Fine-Tuning trotz eingeschränkter Hardware-Ressourcen. 

Ein weiteres Problem war die Modellanpassung bei begrenzter Datenmenge, da ein vollständiges 

Training aus Rechen- und Datensicht nicht praktikabel war. Um dies zu lösen, wurde LoRA (Low-Rank 

Adaptation) eingesetzt, das eine selektive Anpassung spezifischer Gewichtsmatrizen innerhalb der 

Selbstaufmerksamkeitsmodule erlaubt, anstatt das gesamte Modell zu aktualisieren. Dies optimierte 
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nicht nur die Recheneffizienz, sondern bewahrte auch bereits erlernte Sprachstrukturen, wodurch der 

Trainingsprozess stabiler wurde. 

Eine weitere Herausforderung war die begrenzte Sitzungsdauer in Google Colab, die zu 

Verbindungsabbrüchen während längerer Trainingszyklen führte. Um dies zu umgehen, wurde ein 

Google Colab Pro-Abonnement genutzt, das eine verlängerte Sitzungsdauer und priorisierten GPU-

Zugriff ermöglichte. Die Wahl fiel auf die NVIDIA T4-GPU, da sie ein optimales Verhältnis zwischen 

Leistung und Speicherverbrauch bietet. 

Die Verwaltung großer Textdatenmengen stellte ebenfalls eine Herausforderung dar. Die Integration 

von Google Drive ermöglichte eine effiziente Speicherung und direkte Verfügbarkeit der 

Trainingsdaten, wodurch der Workflow erheblich verbessert wurde. 

Durch die Kombination dieser technischen und methodischen Lösungen konnte das Training trotz 

begrenzter Ressourcen erfolgreich durchgeführt und die Effizienz sowie Skalierbarkeit der 

Implementierung optimiert werden. 

3.3.8 Designentscheidungen 

Die Entscheidung, sich auf die Vereinfachung englischer Verwaltungstexte zu konzentrieren, basiert auf 

der Tatsache, dass die verwendeten vortrainierten Modelle überwiegend auf umfangreichen 

englischsprachigen Korpora trainiert wurden. Dadurch können sie in englischer Sprache eine höhere 

Präzision und Leistung erzielen. 

Die Wahl der Bibliotheken und Frameworks orientierte sich an der Effizienz und Skalierbarkeit der 

Implementierung. Die Unsloth-Bibliothek wurde aufgrund ihrer nativen Unterstützung für LoRA und 

die 4-Bit-Quantisierung priorisiert. Diese Kombination minimierte den Speicherverbrauch, während das 

Fine-Tuning trotz begrenzter Hardware-Ressourcen ermöglicht wurde. 

Bei der Modellauswahl spielten mehrere Faktoren eine Rolle. LLaMA 3 7B, Phi-3 mini und Mistral 7B 

wurden aufgrund ihrer bekannten Leistungsfähigkeit in vergleichbaren Szenarien gewählt. Die 

Architektur dieser Modelle bietet eine optimale Balance zwischen Größe und Anpassungsfähigkeit, 

wodurch sie sowohl für den Einsatz in ressourcenbeschränkten Umgebungen als auch für spezialisierte 

Fine-Tuning-Aufgaben geeignet sind. 

Ein zentraler Bestandteil des Designs war die Entwicklung und Strukturierung der Prompts, die die 

Eingaben für die Modelle steuern. Diese wurden gezielt auf die Zielgruppe und die Anforderungen der 

Textvereinfachung abgestimmt. Neben einem einfachen Prompt, der lediglich eine grundlegende 

Vereinfachung forderte, wurde ein präziser, verlustfreier Prompt entwickelt, der sicherstellte, dass keine 

Informationen verloren gingen. Zusätzlich wurde ein ausführlicher Experten-Prompt konzipiert, der 
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detaillierte Anweisungen und Leitlinien enthielt, um die Modelle gezielt auf die Übersetzung komplexer 

administrativer Sprache in leicht verständliches Plain English auszurichten. Diese differenzierte 

Herangehensweise ermöglichte nicht nur eine gezielte Analyse der Auswirkungen verschiedener 

Eingabequalitäten, sondern trug auch maßgeblich zur Optimierung der Modellleistung bei. 

3.4 Ergebnisse der Feinabstimmung 

In diesem Abschnitt werden die Ergebnisse der Experimente für jedes Modell detailliert dargestellt. Für 

jedes der untersuchten Modelle wurde eine optimale Kombination von Hyperparametern identifiziert, 

die die beste Leistung bei der Vereinfachung von Verwaltungstexten erzielte. Die Analyse umfasst die 

Auswirkungen von Lernrate, Trainingsschritten, Datensatzgröße und der Gestaltung von Prompts, um 

die jeweiligen Stärken und Schwächen der Modelle hervorzuheben und ihre Leistungsfähigkeit zu 

maximieren. 

3.4.1 LLaMA 3 8B Instruct 

Die Feinabstimmung von LLaMA 3 8B Instruct identifizierte eine optimale Kombination von 

Hyperparametern, die eine besonders gute Leistung bei der Vereinfachung komplexer Verwaltungstexte 

ermöglichte. Die Experimente zeigten, dass eine mittlere Datensatzgröße von 500 Instanzen die beste 

Balance zwischen Trainingsstabilität und Generalisierungsfähigkeit bot. Mit 100 Trainingsschritten und 

einer Lernrate von 5 × 10⁻⁵ wurde ein Final Loss von 0,4231 erreicht, während eine alternative Lernrate 

von 3 × 10⁻⁵ höhere Loss-Werte von 0,8288 erzielte, jedoch weiterhin stabile Ergebnisse lieferte. 

Interessanterweise führte eine Erhöhung des Trainingsdatensatzes auf 1000 Instanzen nicht 

zwangsläufig zu besseren Ergebnissen. In einigen Fällen lagen die Loss-Werte zwischen 1,0331 und 

1,6159, was darauf hindeutet, dass größere Datensätze ab einem bestimmten Punkt keine signifikanten 

Leistungssteigerungen mehr bringen und möglicherweise zu einer Erhöhung der Modellkomplexität 

ohne zusätzlichen Nutzen führen. Gleichzeitig zeigten kleinere Datensätze mit nur 100 Instanzen eine 

unzureichende Generalisierung, da die Loss-Werte selbst nach 100 Trainingsschritten über 16,7485 

blieben. Dies unterstreicht die Bedeutung einer ausreichend großen, aber nicht überdimensionierten 

Datenbasis für eine effektive Modellanpassung.  

Die Anzahl der Trainingsschritte hatte einen direkten Einfluss auf die Modellleistung. Während 25 oder 

50 Schritte akzeptable Ergebnisse lieferten, zeigte sich, dass 100 Trainingsschritte insbesondere bei 

mittleren und großen Datensätzen eine deutliche Verbesserung bewirkten. Bei 1000 Instanzen flachte 

der Trainingseffekt ab, während bei 500 Instanzen mit 100 Trainingsschritten der niedrigste Loss-Wert 
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(0,4231) erreicht wurde, was auf eine optimale Balance zwischen Datenmenge und Trainingsdauer 

hindeutet. 

Auch die Lernrate spielte eine entscheidende Rolle. Eine Lernrate von 5 × 10⁻⁵ führte durchweg zu den 

besten Ergebnissen, insbesondere bei 500 Instanzen und 100 Trainingsschritten. Eine konservativere 

Lernrate von 3 × 10⁻⁵ war zwar stabil, erzielte jedoch höhere Loss-Werte. Größere Datensätze (1000 

Instanzen) profitierten tendenziell von einer leicht höheren Lernrate, während kleinere Datensätze mit 

einer moderateren Optimierung stabilere Resultate lieferten. 

Ein zentraler Aspekt der Experimente war der Einsatz verschiedener Prompts, die das Modell zur 

Vereinfachung der Verwaltungssprache anleiteten. Die drei getesteten Prompt-Varianten unterschieden 

sich in Detailgrad, Struktur und sprachlicher Ausrichtung. Die besten Ergebnisse wurden mit klaren, 

präzisen Anweisungen erzielt. Besonders wirkungsvoll waren Prompts, die einfache Worte, kurze Sätze 

und die Vermeidung von Fachjargon betonten. Ein weiterer wichtiger Aspekt war der Umgang mit 

komplexen Begriffen. Während einige Prompts das Modell dazu veranlassten, schwierige Begriffe zu 

eliminieren, führten gezielte Anweisungen dazu, dass diese verständlich erklärt wurden. Dies 

verbesserte die Zugänglichkeit, ohne dass wesentliche Inhalte verloren gingen. 

3.4.2 Phi-3 mini  

Die Feinabstimmung von Phi-3 Mini zeigte, dass eine Lernrate von 5 × 10⁻⁵, 50 Trainingsschritte und 

eine Datensatzgröße von 1000 Instanzen die besten Ergebnisse lieferten. Diese Konfiguration erreichte 

einen Final Loss von 0,9385, was darauf hindeutet, dass das Modell eine präzise und stabile 

Textvereinfachung durchführen konnte. 

Die Experimente bestätigten die bedeutende Rolle der Datensatzgröße für die Modellleistung. Größere 

Datensätze mit 1000 Instanzen führten durchweg zu besseren Loss-Werten als kleinere. Dies zeigt, dass 

Phi-3 Mini stärker auf eine größere Anzahl an Trainingsbeispielen angewiesen ist, um eine robuste 

Generalisierung zu erreichen. Allerdings zeigte sich, dass eine Erhöhung der Trainingsschritte von 50 

auf 100 bei 1000 Instanzen nicht zu besseren Ergebnissen führte. Stattdessen stieg der Loss-Wert auf 

1,6441, was darauf hindeutet, dass das Modell bei längerer Trainingsdauer zu stark an die 

Trainingsdaten angepasst wurde und damit weniger flexibel auf neue Eingaben reagierte. 

Bei 500 Instanzen war ein ähnliches Muster zu beobachten. Während 50 Trainingsschritte (Loss: 

1,1142) solide Ergebnisse lieferten, führte eine Erhöhung auf 100 Schritte (Loss: 1,4698) nicht zu einer 

weiteren Verbesserung. Dies unterstreicht, dass eine angemessene Trainingsdauer gefunden werden 

muss, um Overfitting oder unnötige Rechenzeit zu vermeiden. Kleine Datensätze mit nur 100 Instanzen 

zeigten hingegen stark erhöhte Loss-Werte von über 12, selbst bei 100 Trainingsschritten. Dies bestätigt, 
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dass das Modell mit einer so begrenzten Datenbasis nicht effektiv lernen und generalisieren konnte, 

wodurch die Qualität der Vereinfachungen stark beeinträchtigt wurde. 

Die Wahl der optimalen Lernrate variierte je nach Datensatzgröße. Für große Datensätze (1000 

Instanzen) erwies sich eine Lernrate von 5 × 10⁻⁵ als besonders effektiv, da sie das Modell in der Lage 

versetzte, sich effizient zu optimieren, ohne dabei zu instabilen Trainingsdynamiken zu führen. Bei 

mittleren Datensätzen (500 Instanzen) war eine Lernrate von 3 × 10⁻⁵ mit 50 Schritten (Loss: 1,2494) 

eine stabile Alternative. Eine zu hohe Lernrate (5 × 10⁻⁵) führte hier mit 100 Schritten zu suboptimalen 

Ergebnissen (Loss: 1,4698), was darauf hindeutet, dass kleinere Datensätze empfindlicher auf 

aggressive Lernraten reagieren und mit moderateren Werten stabilere Ergebnisse liefern. 

Neben den Hyperparametern hatte auch die Struktur der Prompts einen erheblichen Einfluss auf die 

Qualität der erzeugten Vereinfachungen. Prompt c, der detaillierte Anweisungen zur Vermeidung von 

Fachjargon und zur Nutzung kurzer, prägnanter Sätze enthielt, führte zu den besten Ergebnissen. 

3.4.3 Mistral 7B Instruct 

Die Feinabstimmung von Mistral 7B Instruct zeigte, dass eine Lernrate von 5 × 10⁻⁵, kombiniert mit 

100 Trainingsschritten und einer Datensatzgröße von 500 Instanzen, die beste Modellleistung erzielte. 

Diese Konfiguration erreichte einen Final Loss von 0,0982, was auf eine stabile und effiziente 

Modellanpassung hinweist. 

Die Experimente bestätigten, dass eine mittlere Datensatzgröße (500 Instanzen) die beste Balance 

zwischen Datenvielfalt und Trainingsstabilität bot. Während eine Erhöhung auf 1000 Instanzen mit 

derselben Lernrate und 100 Trainingsschritten einen Final Loss von 0,3615 erreichte, lag dieser dennoch 

über dem Wert für 500 Instanzen. Dies deutet darauf hin, dass zusätzliche Trainingsdaten nicht 

zwangsläufig zu besseren Ergebnissen führen, sondern ab einem bestimmten Punkt die Konvergenz 

verlangsamen oder zu geringfügigem Overfitting führen können. 

Kleinere Datensätze (100 Instanzen) erwiesen sich als unzureichend, um eine effektive Generalisierung 

zu gewährleisten. Selbst bei 100 Trainingsschritten lagen die Loss-Werte über 9,6191, was verdeutlicht, 

dass das Modell nicht genügend Trainingsbeispiele hatte, um Verwaltungsstrukturen zuverlässig zu 

vereinfachen. Diese Ergebnisse unterstreichen, dass eine Mindestmenge an Daten erforderlich ist, um 

stabile und kohärente Vereinfachungen zu erzeugen. 

Die Anzahl der Trainingsschritte spielte ebenfalls eine wesentliche Rolle. Während 50 Trainingsschritte 

mit 500 Instanzen bereits akzeptable Ergebnisse erzielten (Loss: 0,7082), führte eine Erhöhung auf 100 

Schritte zu einer deutlichen Verbesserung (Loss: 0,0982). Dies zeigt, dass eine längere Trainingsdauer 
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das Modell weiter optimierte, ohne Overfitting zu verursachen. Bei 1000 Instanzen flachte der Effekt 

zusätzlicher Trainingsschritte jedoch ab, sodass die Verbesserung nicht mehr so signifikant war.  

Die Wahl der Lernrate beeinflusste die Trainingsstabilität erheblich. Eine Lernrate von 5 × 10⁻⁵ erwies 

sich als optimal, da sie eine schnelle Konvergenz ermöglichte, ohne zu Instabilitäten zu führen. Eine 

konservativere Lernrate von 3 × 10⁻⁵ zeigte eine langsamere, aber stabilere Lernkurve, was sich 

besonders bei kleineren Datensätzen als vorteilhaft erwies. Allerdings führte diese reduzierte Lernrate 

bei größeren Datensätzen zu einer ineffizienteren Optimierung, sodass das Modell mehr 

Trainingsschritte benötigt hätte, um vergleichbare Ergebnisse zu erzielen.  

Die Experimente bestätigten, dass auch bei Mistral 7B die Qualität der Vereinfachung stark von der 

Gestaltung der Prompts abhing. Die besten Ergebnisse wurden mit klar strukturierten und detaillierten 

Prompts erzielt, insbesondere mit Prompt c, der präzise Anweisungen zur Vereinfachung komplexer 

Sätze enthielt. Einfachere Prompts, die weniger Vorgaben zur Struktur und Wortwahl machten, führten 

zu weniger kohärenten und teilweise redundanten Vereinfachungen. Besonders problematisch war dies 

bei administrativen Fachbegriffen, da ungenaue Prompts oft zu übermäßigen Vereinfachungen führten, 

wodurch rechtliche Nuancen verloren gingen. Dies verdeutlicht, dass ein strukturiertes Prompt-Design 

eine Schlüsselrolle spielt, um die Effektivität von Mistral 7B für die Vereinfachung von 

Verwaltungstexten zu maximieren. 

3.4.4 Zusammenfassung der Feinabstimmungsergebnisse 

Die folgende Tabelle 2 gibt einen Überblick über die optimalen Hyperparameter-Kombinationen der 

drei getesteten Modelle. Diese Konfigurationen wurden iterativ durch umfangreiche Experimente 

ermittelt, um die bestmögliche Leistung in der Vereinfachung administrativer Texte zu erreichen. 

Tabelle 2: Optimale Parameterkonfigurationen der Modelle 

Modell  Datensatzgröße  Max-Step  Learning Rate  Prompt  Final Loss 

Llama-3  500  100  5e-5  c 0,4231 

Phi  1000 50  5e-5  c  0,9385 

Mistral  500  100  5e-5  c  0,0982 

  

 

Die experimentellen Ergebnisse zeigen, dass eine mittelgroße Datensatzgröße von 500 Instanzen in 

Kombination mit 100 Trainingsschritten für die meisten Modelle die beste Balance zwischen Effizienz 
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und Generalisierungsfähigkeit bot. Während Phi-3 Mini mit 1000 Instanzen eine stabile Leistung 

erreichte, führte eine weitere Erhöhung der Datenmenge nicht zwangsläufig zu einer proportionalen 

Verbesserung. Kleinere Datensätze (100 Instanzen) erwiesen sich als unzureichend, da sie zu stark 

erhöhten Loss-Werten führten und eine fehlende Generalisierungsfähigkeit aufzeigten. 

Ein entscheidender Faktor für die Modellleistung war die Anzahl der Trainingsschritte. 100 

Trainingsschritte erwiesen sich als optimale Wahl, insbesondere für Mistral 7B, das mit dieser 

Konfiguration einen Final Loss von 0,0982 erzielte. Phi-3 Mini hingegen profitierte von nur 50 

Trainingsschritten, da längere Trainingsläufe keinen zusätzlichen Mehrwert boten und möglicherweise 

sogar die Loss-Werte leicht verschlechterten. Dies zeigt, dass die optimale Trainingsdauer 

modellabhängig ist. 

Die Wahl der Lernrate spielte ebenfalls eine zentrale Rolle. Eine Lernrate von 5 × 10⁻⁵ erwies sich 

durchgängig als die beste Wahl, insbesondere für größere Datensätze und längere Trainingszeiten. 

Kleinere Lernraten (3 × 10⁻⁵) führten zwar zu stabileren Trainingsverläufen, erwiesen sich jedoch als 

weniger effizient, da sie die Konvergenz verlangsamten. Dies war insbesondere bei LLaMA 3 und 

Mistral 7B zu beobachten, bei denen die höhere Lernrate schnellere und präzisere Ergebnisse lieferte. 

Ein weiterer Schlüsselfaktor war die Gestaltung der Prompts. Strukturierte Eingabeaufforderungen mit 

klaren Vorgaben zur Vermeidung von Fachjargon, Satzlänge und Wortwahl führten bei allen Modellen 

zu signifikanten Verbesserungen. Besonders Prompt c, der detaillierte Anweisungen zur 

Verständlichkeit und sprachlichen Klarheit enthielt, zeigte die besten Ergebnisse. Weniger strukturierte 

Prompts erschwerten es den Modellen, kohärente und verständliche Vereinfachungen zu erzeugen, da 

detaillierte Vorgaben für Satzbau und Terminologie fehlten. 
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4 Ergebnisse und Diskussion 

In diesem Kapitel werden die Ergebnisse dieser Arbeit vorgestellt und bewertet. Der Fokus liegt auf der 

Analyse der Leistung der eingesetzten Modelle bei der Vereinfachung von Verwaltungstexten. Dabei 

wird sowohl eine subjektive als auch eine objektive Bewertung der vereinfachten Texte vorgenommen. 

Während die objektive Bewertung auf quantitativen Metriken basiert, die die Genauigkeit und Kohärenz 

der Sprache messen, zielt die subjektive Bewertung darauf ab, die Verständlichkeit und Lesbarkeit aus 

menschlicher Perspektive zu beurteilen. 

4.1 Objektive Bewertung 

Die objektive Bewertung der Modellleistung erfolgte durch die Anwendung standardisierter 

quantitativer Metriken, insbesondere BLEU (Bilingual Evaluation Understudy) [49] und SARI (System 

Output Against References and Input) [50]. 

4.1.1 Bewertung mit BLEU 

BLEU wurde ursprünglich für die automatische Bewertung von maschinellen Übersetzungen 

entwickelt. Es misst die Übereinstimmung von n-Grammen (Wortgruppen) zwischen dem generierten 

Text und Referenztexten. Dabei basiert BLEU auf der Annahme, dass eine höhere Übereinstimmung 

mit den Referenztexten auf eine bessere Qualität des Outputs hinweist. Die Metrik kombiniert 

modifizierte Präzision mit einer Kürzungsstrafe, um sicherzustellen, dass die generierten Texte nicht 

unnötig verkürzt werden [49]. 

Ein Vorteil von BLEU ist seine Spracheunabhängigkeit, was es vielseitig einsetzbar macht. Es wurde 

jedoch beobachtet, dass BLEU-Änderungen, die die Lesbarkeit verbessern oder den Text vereinfachen, 

nicht immer positiv bewertet, da es sich primär auf die Ähnlichkeit mit den Referenzen konzentriert. 

Dadurch eignet sich BLEU weniger, um spezifische Vereinfachungsaspekte zu bewerten [49]. 

4.1.2 Bewertung mit SARI 

SARI wurde speziell für die Textvereinfachung entwickelt und berücksichtigt drei zentrale Operationen: 

Hinzufügen, Löschen und Beibehalten von Informationen. Im Gegensatz zu BLEU vergleicht SARI den 

generierten Text nicht nur mit den Referenztexten, sondern auch mit dem Originaltext. Dadurch 

ermöglicht es eine detaillierte Bewertung, wie gut ein Text vereinfacht wurde, ohne dabei wichtige 

Informationen zu verlieren [50]. Die Qualität der Vereinfachung wird durch eine Kombination von 

Präzision und Vollständigkeit (Recall) für jede dieser drei Operationen gemessen. Ein hoher SARI-Wert 
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zeigt an, dass das Modell erfolgreich unnötige Komplexität entfernt hat, ohne den Sinn des Textes zu 

verändern [50].  

4.1.3 Die Ergebnisse der objektiven Bewertung 

Zur objektiven Bewertung wurden Verwaltungstexte manuell vereinfacht und als Referenz verwendet, 

um die Leistung der Modelle systematisch zu vergleichen. Dabei wurde für jedes der drei Modelle eine 

Stichprobe von zehn Sätzen aus Verwaltungstexten ausgewählt und mit den Modellen vereinfacht. 

Anschließend wurden die generierten Texte anhand der BLEU- und SARI-Metriken bewertet, indem sie 

mit den menschlich erstellten Referenzversionen verglichen wurden. Der Durchschnitt der BLEU- und 

SARI-Werte aus diesen zehn Sätzen wurde berechnet und in der folgenden Tabelle 3 dokumentiert, um 

eine fundierte Analyse der Modellleistung zu gewährleisten. 

Tabelle 3: BLEU- und SARI-Bewertung 

LLM-Modell BLEU  SARI  

LLaMA 3 8B  0.35130  63.20302 

Phi-3 mini   0.30812 58.64624  

Mistral 7B 0.35430   63.78774 

  

Die Ergebnisse zeigen, dass Mistral 7B mit einem SARI-Wert von 63.78 die beste Leistung in der 

Vereinfachung von Verwaltungstexten erzielte. Dies bedeutet, dass das Modell besonders effektiv darin 

war, komplexe Satzstrukturen zu vereinfachen und gleichzeitig relevante Informationen zu bewahren. 

Ein hoher SARI-Wert deutet darauf hin, dass das Modell erfolgreich überflüssige Komplexität entfernt 

hat, ohne den Inhalt zu verzerren. 

LLaMA 3 8B, mit einem SARI-Wert von 63.20, zeigte eine ähnlich hohe Vereinfachungsleistung, 

könnte aber in einigen Fällen geringfügig mehr Informationen entfernt haben als Mistral 7B. Dennoch 

bleibt es für die administrative Textvereinfachung gut geeignet. 

Phi-3 Mini erreichte mit 58.64 den niedrigsten SARI-Wert, was darauf schließen lässt, dass die 

vereinfachten Texte nicht in jedem Fall die optimale Balance zwischen Verständlichkeit und 

Informationswahrung erreichten. Während das Modell in der Lage war, Sätze zu verkürzen und 

vereinfacht darzustellen, könnte es häufiger als die anderen Modelle wichtige inhaltliche Details 

ausgelassen haben. 

Hinsichtlich der BLEU-Werte zeigen die Ergebnisse, dass Mistral 7B mit 0.354 die höchste strukturelle 

Übereinstimmung mit den Referenztexten aufweist, gefolgt von LLaMA 3 8B mit 0.351 und Phi-3 Mini 
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mit 0.308. Ein höherer BLEU-Wert deutet auf eine größere Ähnlichkeit mit den menschlich erstellten 

Referenztexten hin.  

Jedoch bedeutet ein niedriger BLEU-Wert nicht zwangsläufig eine schlechtere Vereinfachung. Die 

Kürzungsstrafe (brevity penalty) beeinflusst die BLEU-Metrik erheblich, da die getesteten Modelle 

darauf optimiert wurden, kürzere und einfachere Sätze zu erzeugen. Da BLEU kürzere Texte im 

Vergleich zu den Referenzen bestraft, könnten effektiv vereinfachte Texte niedrigere BLEU-Werte 

aufweisen, obwohl sie in der tatsächlichen Verständlichkeit überlegen sind. 

4.2 Subjektive Bewertung 

Zur subjektiven Bewertung wurden dieselben zehn Sätze herangezogen, die bereits für die objektive 

Bewertung verwendet wurden. Die von den drei Modellen mit den besten Hyperparameter-

Kombinationen generierten Texte wurden von drei Personen mit unterschiedlichen sprachlichen und 

kognitiven Hintergründen bewertet. Ziel war es, die Modellleistung aus der Perspektive realer 

Nutzergruppen zu beurteilen und die Verständlichkeit sowie Lesbarkeit der vereinfachten Texte zu 

analysieren. Die Auswahl der Bewerter erfolgte mit dem Ziel, eine möglichst breite Zielgruppe 

abzudecken, die von der Vereinfachung administrativer Texte profitieren könnte. 

Person A war ein Flüchtling mit begrenzter formaler Bildung (bis zur Grundschule) und 

Deutschkenntnissen auf dem Niveau A1. Seine Englischkenntnisse entsprachen dem Niveau A2, 

weshalb er administrative Formulare in englischer Sprache bevorzugte. Dennoch hatte er erhebliche 

Schwierigkeiten, komplexe Sätze und Fachbegriffe zu verstehen, was die Notwendigkeit einer klaren 

und strukturierten Vereinfachung betonte. 

Person B war ein internationaler Student mit Englischkenntnissen auf dem Niveau B1. Er hatte vor allem 

Schwierigkeiten, englischsprachige Formulare von Behörden wie der Ausländerbehörde vollständig zu 

verstehen und auszufüllen. Besonders herausfordernd waren für ihn unklare Formulierungen und 

komplizierte Begriffe, weshalb er detailliertere Erklärungen und eine präzisere Ausdrucksweise 

bevorzugte.  

Person C lebt nach drei Schlaganfällen mit kognitiven Einschränkungen. Diese Person spricht weder 

Deutsch noch Englisch fließend, verfügt jedoch über Englischkenntnisse auf dem Niveau A2. Aufgrund 

der kognitiven Beeinträchtigungen und der begrenzten Sprachkenntnisse hatte sie erhebliche 

Schwierigkeiten, lange und komplexe Sätze zu erfassen. Für ihn waren Texte mit einfacher Struktur, 

klaren Anweisungen und der Vermeidung von Fachjargon besonders wichtig. 

Die Bewertung der vereinfachten Texte erfolgte anhand spezifischer Kriterien, die auf den Prinzipien 

der Einfachen Sprache basieren und um zusätzliche Dimensionen ergänzt wurden: 
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1. Verständlichkeit: Ein Satz ist verständlich, wenn er für die Zielgruppe ohne zusätzliche Erklärungen 

sofort erfassbar ist. Dazu gehört die Verwendung einfacher Wörter, der Verzicht auf Fachbegriffe (es 

sei denn, sie werden direkt erklärt) und die Vermeidung von abstrakten oder komplizierten 

Formulierungen. 

2. Klarheit: Ein Satz ist klar, wenn seine Aussage eindeutig und direkt formuliert ist. 

Doppeldeutigkeiten, unnötige Einschübe oder lange verschachtelte Satzkonstruktionen sollten 

vermieden werden. Jede Aussage sollte klar das ausdrücken, was gemeint ist, ohne überflüssige oder 

schwer verständliche Informationen. 

3. Lesbarkeit: Ein Text ist gut lesbar, wenn er kurze, aktive Sätze enthält, unnötige Füllwörter vermeidet 

und eine natürliche Satzstruktur aufweist. Aktiv formulierte Sätze („The office processes the application 

“) sind klarer und verständlicher als passive Formulierungen („The application is processed by the office 

“). Zudem sollte die Satzlänge auf etwa 15 Wörter begrenzt sein, um die Lesbarkeit zu gewährleisten. 

4. Präzision: Ein Satz ist präzise, wenn er die wichtigsten Informationen vollständig und korrekt 

vermittelt. Der Inhalt sollte weder zu vage noch zu detailliert sein, sondern sich auf das Wesentliche 

konzentrieren. Überflüssige Informationen oder unklare Formulierungen sollten vermieden werden. 

5. Kohärenz: Ein Satz ist kohärent, wenn er sich logisch in den Gesamtkontext des Textes einfügt. Die 

Verbindung zwischen den Sätzen sollte klar sein, sodass der Text flüssig und nachvollziehbar bleibt. 

Logische Übergänge und strukturierte Informationen erleichtern das Verständnis. 

Die Bewerter wurden gebeten, die von den drei Modellen generierten vereinfachten Texte mit den 

ursprünglichen, komplexen Verwaltungstexten sowie mit den von GPT-4o generierten vereinfachten 

Versionen zu vergleichen. Dabei beurteilten sie die Verständlichkeit der Texte auf einer Skala von 1 bis 

5, wobei 5 „sehr gut vereinfacht“ und 1 „nicht gut vereinfacht“ bedeutete (Abbildung 12). Diese 

Methodik ermöglichte eine differenzierte Analyse der Modellleistung und lieferte wertvolle Einblicke 

in die praktische Anwendbarkeit der generierten Vereinfachungen. 

 

Abbildung 12: Skala zur Bewertung der Textvereinfachung 

0 1 2 3 4 5

1-Nicht gut vereinfacht

2-Wenig gut vereinfacht

3-Akzeptabel vereinfacht

4-Gut vereinfacht

5- Sehr gut vereinfacht

Bewertungsstufen
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Durch diese Kriterien konnte die Qualität der generierten Texte nicht nur sprachlich und inhaltlich 

bewertet, sondern auch ihre Eignung für verschiedene Nutzergruppen untersucht werden. Die 

Ergebnisse wurden systematisch dokumentiert und analysiert, um die Leistungsfähigkeit der Modelle 

im Vergleich zu GPT-4 zu evaluieren. 

4.2.1 Analyse der Bewertung von Person A 

Die Bewertung der Sprachmodelle durch Person A wird im Balkendiagramm (Abbildung 13) visualisiert 

und hebt die Unterschiede zwischen den Modellen hervor. 

Die Verständlichkeit der generierten Texte wurde durchweg positiv bewertet, wobei Mistral 7B mit 

94 % die höchste Einstufung erhielt, gefolgt von Phi-3 mini mit 92 % und GPT-4o mit 90 %. LLaMA 3 

8B erzielte mit 86 % den niedrigsten Wert, was dennoch auf eine insgesamt verständliche 

Sprachproduktion hindeutet. Hinsichtlich der Klarheit erzielte Phi-3 mini mit 96 % die beste Bewertung, 

während GPT-4o mit 94 % und Mistral mit 92 % ebenfalls sehr gut abschnitten. LLaMA 3 8B erreichte 

mit 88 % den niedrigsten, aber dennoch hohen Wert. Auch die Lesbarkeit wurde durchweg als sehr gut 

eingestuft, wobei Mistral 7B und GPT-4o mit 96 % die höchsten Werte erreichten, gefolgt von Phi-3 

mini mit 92 % und LLaMA 3 8B mit 90 %. 

Auffällig waren die Unterschiede in der Präzision. Während Mistral 7B, Phi-3 Mini und LLaMA 3 8B 

hohe Werte erreichten, blieb GPT-4o leicht zurück, was darauf hindeuten könnte, dass die erstgenannten 

Modelle genauere und spezifischere Antworten lieferten. Ein besonders konsistentes Ergebnis zeigt sich 

in der Kohärenzbewertung, bei der alle Modelle eine nahezu perfekte Bewertung von 100 % erhielten. 

Dies verdeutlicht die Fähigkeit der Modelle, zusammenhängende und logisch strukturierte Texte zu 

generieren. 

 

Abbildung 13: Bewertung von Person A 
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4.2.2 Analyse der Bewertung von Person B 

Die Bewertung der Sprachmodelle durch Person B (siehe Abbildung 14) bestätigt die insgesamt hohe 

Qualität der generierten Texte, weist jedoch einige Unterschiede in der Wahrnehmung einzelner 

Kriterien im Vergleich zu Person A auf. Während beide Personen eine hohe Verständlichkeit, Klarheit, 

Lesbarkeit, Präzision und Kohärenz feststellen, zeigen sich in den genauen Bewertungen der einzelnen 

Modelle leichte Abweichungen, die auf individuelle Präferenzen oder unterschiedliche Interpretationen 

der Kriterien hindeuten. 

LLaMA 3 8B und GPT-4o wurden mit 98 % als die verständlichsten Modelle bewertet, dicht gefolgt 

von Phi-3 mini mit 96 %. Mistral 7B schnitt mit 90 % etwas schwächer ab, bleibt jedoch weiterhin auf 

einem hohen Niveau. Hinsichtlich der Klarheit wurde GPT-4o mit 94 % am besten eingestuft, während 

LLaMA 3 8B mit 92 % ebenfalls gut abschnitt. Phi-3 mini erreichte 84 %, und Mistral 7B erhielt mit 

80 % die niedrigste Bewertung, was darauf hinweisen könnte, dass seine Formulierungen als weniger 

eindeutig wahrgenommen wurden. 

Die Lesbarkeit wurde bei LLaMA 3 8B und Phi-3 mini mit 98 % am höchsten bewertet, während GPT-

4o mit 96 % ebenfalls sehr gut abschnitt. Mistral 7B erhielt mit 86 % die niedrigste Bewertung, was 

darauf hindeutet, dass seine Texte für Person B weniger flüssig oder strukturiert wirkten. In der 

Kategorie Präzision schnitt LLaMA 3 8B mit 92 % am besten ab, während Mistral 7B mit 90% und  Phi-

3 mini und mit jeweils 86 % leicht darunter lagen. GPT-4o erhielt mit 82 % die niedrigste Bewertung, 

was darauf hindeuten könnte, dass seine Antworten als weniger spezifisch oder exakt wahrgenommen 

wurden. 

Die Kohärenz wurde insgesamt als sehr hoch bewertet. LLaMA 3 8B erreichte mit 100 % die höchste 

Bewertung, gefolgt von GPT-4o mit 98 %, Phi-3 mini mit 96 % und Mistral 7B mit 94 %. Diese 

Ergebnisse zeigen, dass alle Modelle in der Lage sind, zusammenhängende und logisch strukturierte 

Texte zu generieren, auch wenn leichte Unterschiede in der Wahrnehmung bestehen. 
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Abbildung 14: Bewertung von Person B 

4.2.3 Analyse der Bewertung von Person C 

Die Bewertung der Sprachmodelle durch Person C (siehe Abbildung 15) bestätigt die insgesamt hohe 

Qualität der generierten Texte und zeigt eine noch stärkere Übereinstimmung mit den Einschätzungen 

der vorherigen Bewertenden. Während sich Person A und B in einigen Aspekten leicht unterschieden, 

fällt die Bewertung von Person C insgesamt noch positiver aus, insbesondere in den Bereichen 

Verständlichkeit, Klarheit und Kohärenz. Dies deutet darauf hin, dass die Modelle eine durchweg hohe 

Qualität aufweisen und sich lediglich in Nuancen unterscheiden. 

LLaMA 3 8B und GPT-4o wurden mit einer Verständlichkeit von 100 % bewertet, was darauf 

hindeutet, dass diese Modelle für Person C besonders leicht verständliche Texte generierten. Phi-3 

Mini folgte mit 96 %, während Mistral 7B mit 92 % etwas niedriger eingestuft wurde, aber dennoch 

einen hohen Verständlichkeitsgrad erreichte. In der Kategorie Klarheit setzten sich LLaMA 3 8B und 

Phi-3 Mini mit 100 % an die Spitze, während GPT-4o mit 96 % ebenfalls eine sehr hohe Bewertung 

erzielte. Mistral 7B erhielt mit 92 % die niedrigste Bewertung, was dennoch auf eine durchweg hohe 

Klarheit hinweist. 

Auch die Lesbarkeit wurde durchgehend sehr positiv bewertet. LLaMA 3 8B und GPT-4o erreichten 

mit 98 % die höchsten Werte, gefolgt von Phi-3 Mini mit 96 %. Mistral 7B erzielte mit 90 % den 

niedrigsten Wert, blieb jedoch weiterhin auf einem soliden Niveau Ein ähnliches Muster zeigte sich in 

der Präzision. LLaMA 3 8B erhielt mit 98 % die höchste Bewertung, während Phi-3 Mini und Mistral 

7B mit jeweils 94 % sowie GPT-4o mit 92 % leicht darunter lagen. Dies verdeutlicht, dass alle 

Modelle als präzise empfunden wurden, wobei LLaMA 3 8B erneut leicht vorne lag. 
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Besonders auffällig ist die durchweg exzellente Bewertung der Kohärenz. LLaMA 3 8B erreichte mit 

100 % die höchstmögliche Wertung, während Phi-3 mini, GPT-4o und Mistral mit 98 % nur minimal 

darunter lagen. Diese Ergebnisse bestätigen, dass alle Modelle in der Lage sind, logisch 

zusammenhängende und strukturierte Texte zu erzeugen, unabhängig von individuellen Präferenzen. 

 

Abbildung 15: Bewertung von Person C 

4.3 Gesamtvergleich der Ergebnisse 

Die Gesamtbewertung der Sprachmodelle auf Basis sowohl der subjektiven als auch der objektiven 

Evaluation zeigt ein konsistentes Bild ihrer Leistungsfähigkeit, insbesondere in der Vereinfachung von 

Verwaltungstexten. Die Ergebnisse beider Ansätze deuten darauf hin, dass Mistral 7B und LLaMA 3 

8B besonders leistungsfähig sind und in mehreren Aspekten bessere Ergebnisse als GPT-4o erzielen 

konnten. Während Mistral 7B im objektiven Vergleich mit einem höchsten SARI-Wert von 63.78 die 

beste Vereinfachungsleistung zeigte, erzielte LLaMA 3 8B mit 63.20 ein ähnlich hohes Ergebnis, was 

darauf hindeutet, dass beide Modelle besonders effektiv in der Reduzierung sprachlicher Komplexität 

sind, ohne wesentliche Inhalte zu verlieren. Phi-3 mini zeigte mit einem SARI-Wert von 58.64 eine 

etwas geringere Leistung, was darauf schließen lässt, dass es teilweise relevante Informationen stärker 

vereinfacht oder ausgelassen hat. 

Zusätzlich wurde GPT-4o als Referenzmodell in den Vergleichen herangezogen, um die Ergebnisse 

der drei untersuchten Modelle besser einordnen zu können. Die subjektiven Bewertungen bestätigen 

weitgehend die Tendenzen der objektiven Ergebnisse, zeigen jedoch Unterschiede in der individuellen 

Wahrnehmung der Modelle. 
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In Bezug auf die Verständlichkeit schnitten LLaMA 3 8B und Mistral 7B durchweg gut ab. Besonders 

Mistral 7B wurde von einer Testperson als das verständlichste Modell wahrgenommen, während 

LLaMA 3 8B vor allem durch seine hohe Klarheit, Lesbarkeit und Kohärenz überzeugte. Phi-3 mini 

zeigte ebenfalls eine starke Verständlichkeit, wurde jedoch in den Kategorien Klarheit und Präzision 

inkonsistenter bewertet. 

Obwohl Phi-3 mini als kleineres Modell im Vergleich zu Mistral 7B und LLaMA 3 8B eine geringere 

Anzahl an Parametern aufweist, konnte es dennoch akzeptable Ergebnisse liefern. Dies zeigt, dass 

auch kompaktere Modelle in der Lage sind, Verwaltungstexte zu vereinfachen. Allerdings weist Phi-3 

mini in einigen Bereichen noch Optimierungspotenzial auf und würde durch zusätzliches Fine-Tuning 

vermutlich deutlich bessere Ergebnisse erzielen. 

Auffällig ist, dass GPT-4o in den subjektiven Einschätzungen teilweise hinter den anderen Modellen 

zurückblieb, insbesondere in der Präzision. Dies deutet darauf hin, dass Mistral 7B und LLaMA 3 8B 

durch gezieltes Fine-Tuning besonders gut an spezifische Anforderungen angepasst werden können 

und dadurch eine effektivere Verwaltungstextvereinfachung ermöglichen als GPT-4o. 

Zusammenfassend zeigen die Ergebnisse, dass die Kombination aus objektiven und subjektiven 

Bewertungen ein umfassendes Bild der Modellleistung liefert. Während die objektiven Metriken wie 

SARI und BLEU eine quantifizierbare Leistung bei der Vereinfachung und strukturellen 

Übereinstimmung der Texte bieten, reflektieren die subjektiven Bewertungen die tatsächliche 

Lesbarkeit und Verständlichkeit aus Nutzersicht. Die Konsistenz in den Ergebnissen beider Ansätze 

zeigt, dass Mistral 7B und LLaMA 3 8B besonders gut für die Textvereinfachung geeignet sind, 

während Phi-3 mini in bestimmten Bereichen noch Optimierungspotenzial hat. Die Ergebnisse 

verdeutlichen zudem, dass durch gezieltes Fine-Tuning diese Modelle bessere Ergebnisse als GPT-4o 

erzielen können. 
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5 Zusammenfassung und Überblick 

Diese Arbeit belegt das Potenzial LLM-gestützter Textvereinfachung zur Optimierung administrativer 

Kommunikation. Die Analyse verschiedener Modelle zeigt, dass gezieltes Fine-Tuning die 

Verständlichkeit komplexer Verwaltungstexte signifikant verbessern kann, während die inhaltliche 

Präzision erhalten bleibt. Dies stellt einen bedeutenden Fortschritt dar, um sprachliche Barrieren 

abzubauen und behördliche Informationen einem breiteren Publikum zugänglich zu machen.  

In den folgenden Abschnitten werden ein kurzes Fazit sowie zukünftige Forschungsansätze zur 

Weiterentwicklung der KI-gestützten Textvereinfachung vorgestellt. 

5.1 Fazit 

Die Ergebnisse dieser Arbeit zeigen, dass automatisierte Textvereinfachung mit LLMs eine 

vielversprechende Lösung zur Verbesserung der Verständlichkeit von Verwaltungstexten darstellt. Die 

untersuchten Modelle LLaMA 3 8B, Phi-3 Mini und Mistral 7B konnten durch gezieltes Fine-Tuning 

effektiv auf behördliche Kommunikationsanforderungen abgestimmt werden, sodass sie sprachliche 

Komplexität reduzieren, ohne wesentliche Inhalte zu verfälschen. 

Ein zentrales Ergebnis dieser Untersuchung ist die überlegene Präzision der drei Modelle im Vergleich 

zu GPT-4o. In der subjektiven Bewertung wurden sie durchweg als genauer und kohärenter eingestuft, 

insbesondere in der Fähigkeit, komplexe Verwaltungssprache in eine verständlichere Form zu 

übertragen. Gleichzeitig untermauerten die objektiven Metriken ihre hohe Leistungsfähigkeit und 

bestätigten, dass auch kleinere, spezialisierte Modelle mit modernsten LLMs konkurrieren können. 

Bemerkenswert ist, dass diese ressourcenschonenderen Modelle trotz ihrer geringeren 

Parameteranzahl nicht nur vergleichbare, sondern in bestimmten Aspekten sogar überlegene 

Ergebnisse erzielten. Dies unterstreicht das Potenzial dieser Modelle, die mit einem gut strukturierten 

Datensatz für spezifische Anwendungen sehr effektiv feinabgestimmt werden können. Die Qualität der 

Trainingsdaten erweist sich dabei als zentraler Faktor für die Leistungsfähigkeit der Modelle und 

ermöglicht eine gezielte Anpassung an domänenspezifische Anforderungen. 

Darüber hinaus zeigt die Arbeit die gesellschaftliche Relevanz KI-gestützter Sprachvereinfachung im 

öffentlichen Sektor. Die Fähigkeit, behördliche Texte barrierefreier zu gestalten, trägt nicht nur zur 

Inklusion sprachlich oder kognitiv eingeschränkter Personen bei, sondern fördert auch die allgemeine 

Transparenz und Verständlichkeit administrativer Prozesse. 
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5.2 Zukünftige Forschungsansätze 

Die Weiterentwicklung LLM-gestützter Textvereinfachung erfordert insbesondere die Optimierung und 

Erweiterung von Trainingsdatensätzen, da die Modellleistung maßgeblich von der Qualität und 

Domänenspezifität der Daten abhängt. Ein von Experten kuratierter Korpus könnte sicherstellen, dass 

vereinfachte Verwaltungstexte nicht nur sprachlich zugänglich, sondern auch inhaltlich präzise und 

rechtlich korrekt bleiben. Zudem sollten mehrsprachige Modelle erforscht werden, um 

Verwaltungskommunikation in mehrsprachigen Gesellschaften zu erleichtern.  

Ein weiteres zukunftsweisendes Forschungsfeld ist die kontrollierte Textvereinfachung, die es 

ermöglichen würde, den Grad der Vereinfachung gezielt an unterschiedliche Zielgruppen anzupassen, 

ohne inhaltliche Genauigkeit zu verlieren. Zudem könnten multimodale Modelle, die Bilder, Symbole 

oder interaktive Elemente einbinden, die Barrierefreiheit weiter erhöhen. Schließlich erfordert die 

langfristige Integration von LLMs in Verwaltungssysteme eine interdisziplinäre Zusammenarbeit, um 

ethische, rechtliche und datenschutzrechtliche Herausforderungen zu bewältigen.  
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Anhang 

Der vollständige Code der Implementierung sowie die vollständigen Bewertungen der Testpersonen 

sind auf der beiliegenden CD gespeichert. Zusätzlich ist der Code unter folgendem Repository 

verfügbar: https://git.haw-hamburg.de/infwht611/llm-basierte-vereinfachung-von-verwaltungstexten. 

Die wichtigsten Ergebnisse sind in Kapitel 3 und 4 zusammengefasst. 

https://git.haw-hamburg.de/infwht611/llm-basierte-vereinfachung-von-verwaltungstexten
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