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A system for the recognition of selection gestures was developed for this bachelor thesis.
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1 Einleitung

Die Anzahl Haushalte, die Smart Home Technologien einsetzen, ist in den letzten Jahren
angestiegen. Allein in der EU ist die Anzahl Nutzer zwischen 2024 und 2025 um 18,8%
angestiegen [8]. Während die Funktionen eines Smart Home sich bereits nahtlos in die
Umgebung einfügen, benötigt die Steuerung, abseits von Sprachassistenten, immer noch,
dass Führen einer Fernbedienung um das Smart Home jederzeit zu steuern.
Gesten, d.h. Körperbewegungen, bieten die Möglichkeit, ähnlich wie verbale Sprache, das
natürliche Kommunikationsverhalten des Menschen auszunutzen um eine intuitive Steue-
rung zu ermöglichen. Dazu wird lediglich benötigt, dass sich der Nutzer in Sensorreich-
weite befindet, was sich in der statischen Struktur von Wohnräumen gut flächendeckend
herstellen lässt. Während Gestensteuerung eine ähnliche Funktion erfüllen wie Sprachas-
sistenten, kann sie Menschen bedienen, die nicht zu verbaler Kommunikation fähig sind
oder dieser anderweitig abgeneigt sind.
Je eine Geste mit einer Aktion zu verknüpfen funktioniert gut solange die Aktionen kon-
textfrei sind, d.h. solange immer alle Fenster zusammen geöffnet oder geschlossen werden
sollen. Sobald jedoch nur einzelne Fenster beeinflusst werden sollen, muss der Nutzer an-
geben können welches. Während es möglich wäre je eine Geste für "öffne Fenster Aünd
"öffne Fenster Bßu definieren, wird dies mit ansteigender Objektzahl zunehmend unintui-
tiv, da immer abstraktere Gesten verwendet werden müssen um die notwendige Anzahl
individueller Gesten zu erreichen.
Sprachassistenten lösen dieses Problem indem das Objekt und die Aktion jeweils explizit
genannt werden. Die Beispiele "öffne Fenster Aünd "öffne Fenster Bßeigen dies bereits
deutlich. Die Aktion "öffneïst in beiden Fällen die selbe und trägt dementsprechend einen
konstanten Betrag zur Komplexität bei. Unabhängig davon wie viele verschiedene Fens-
ter es gibt.
Die Trennung der Selektion d.h. der Auswahl des Objekts und der Manipulation, d.h. der
Aktion lässt sich auch auf Gestensteuerung übertragen. Das Ziel dieser Arbeit besteht
darin, ein System zur Selektion via Gestensteuerung zu designen. Dazu soll es in der Lage
sein den Output einer einzelnen RGB-Kamera in Echtzeit auszuwerten um darin Selek-
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1 Einleitung

tionen zu erkennen und mit minimaler Zeitverzögerung an das größere Steuerungssystem
weiterzugeben. Zu der Tatsache, dass eine Selektion stattgefunden hat soll ebenfalls das
selektierte Objekt aus einer bekannten Menge stationärer Objekte identifiziert werden.
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2 Analyse

In diesem Kapitel werden beschrieben aus welchen Teilproblem sich die Selektionserken-
nung zusammensetzt und wie diese bereits in anderen Arbeiten bewältigt wurden. Es
beginnt damit mit welchen Gesten eine Selektion kommuniziert werden kann.

2.1 Selektions Gesten

Bei der Gestensteuerung, wie auch allen anderen Steuerungsmethoden, ist das Ziel dem
System eine Absicht zu kommunizieren, damit diese ausgeführt wird. Die selbe Geste
kann dabei aber abhängig vom Kontext unterschiedliche Absichten ausdrücken. In der
zwischenmenschlichen/natürlichen Kommunikation existiert das Konzept der gemeinsa-
men Aufmerksamkeit [19, 20] wo die Aufmeksamkeit der Kommunikationsteilnehmer auf
dem selben Objekt liegt und damit zum Kontext des Gesprächs beiträgt. Dieser Zustand
wird über Blicke sowie deiktische Gesten und Ausdrücke hergestellt und koordiniert.
In Stukenbrocks Model of the Interactional Organization of Deictic Reference and Joint
Attention [21] wird der Prozess der Herstellung gemeinsamer Aufmerksamkeit in 10 Be-
standteile unterteilt. Für die angestrebte Gestensteuerung sind drei dieser von Bedeu-
tung, da der Ansatz darin besteht über das natürliche Kommunikationsverhalten des
Nutzers gemeinsame Aufmerksamkeit zwischen dem Nutzer und dem System herzustel-
len und so den Kontext für folgende Befehle zu bestimmen.
Der erste dieser Schritte ist dabei die Ausführung der deiktischen Geste. In dieser Arbeit
handelt es sich spezifisch um die deiktische Geste des Zeigens, welche von Müller-Tomfelde
[12] in drei Phasen unterteilt wird. In der ersten Phase wird das Zeigewerkzeug, in dieser
Arbeit der Arm, auf das Ziel gerichtet, wo es in der zweiten Phase eine kurze Zeit ver-
weilt. In der dritten Phase wird das Zeigewerkzeug wieder vom Ziel weg bewegt 2.1.
Der zweite relevante Schritt besteht darin, dass der Adressat die Menge plausibler Ziele
bestimmt um den Suchraum für den nächsten Schritt zu begrenzen. Dieser letzte Schritt
umfasst die Identifikation des Ziels über das geometrische Verhältnis des Zeigens zu den
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2 Analyse

Abbildung 2.1: Beispielsequenz: Zeigen aus dem Arm

möglichen Zielen.

Zudem muss noch beachtet werden, dass sich Gesten statische und dynamische Gesten
unterteilen lassen. Erstere sind durch eine charakteristische Haltung der beteiligten Kör-
perteile definiert, die sich über den Zeitraum der Geste nicht verändern. Das heißt, dass
statische Gesten auch auf Fotos identifizierbar sind. Dynamische Gesten hingegen defi-
nieren sich über einen charakteristischen Bewegungsablauf und lassen sich dementspre-
chend nicht auf eine einzelne Haltung reduzieren. Die Geste des Zeigen lässt sich neben
der bereits beschriebenen dynamischen Variante auch statisch auffassen. Dafür wäre die
Handhaltung bei der nur der Zeigefinger gestreckt ist, das charakteristischste Merkmal.
Problematisch wäre jedoch die Abgrenzung zur Geste des Aufzeigens/Meldens, die die
selbe Handhaltung aufweist. Dieser spezifische Fall bereitet natürlich nur Probleme, wenn
sich direkt über dem Nutzer ein steuerbares Objekt befindet

2.2 Human Pose Estimation

„ Pose estimation refers to the process of estimating the configuration of the under- lying
kinematic or skeletal articulation structure of a person.“ (Moeslund u. a. [11] S.105)

Pose Estimation beschreibt die Schätzung von Ort und Orientierung von Objekten und
Personen im Raum basierend auf Bild und Video Daten. Die für diese Arbeit relevante
Schätzung der Haltung von Personen wird begrifflich auch als Human Pose Estimation
abgegrenzt. Die Haltung einer Person wird dabei über die Koordinaten einer Menge an
Keypoints, die signifikante Punkte des Körpers markieren, angegeben. Die Anzahl und
Zusammensetzung dieser Keypoints variiert dabei zwischen Pose Estimation Modellen.
Meist wird jedoch die Struktur des menschlichen Skeletts ausgenutzt indem Keypoints
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2 Analyse

an den Gelenken platziert werden, da die Haltung zwischen diesen durch die statische
Form der Knochen bestimmt ist. D.h. solange die Positionen des Schulter- und Ellen-
bogengelenks bekannt sind, ist klar, dass der Punkt bei der Hälfte des Oberarms mittig
zwischen diesen Positionen liegt, da der Oberarmknochen gerade ist.
Manche Pose Estimation Modelle bestimmen die Positionen der Keypoints nur in der
Bildebene während andere die kompletten dreidimensionalen Koordinaten im Raum be-
stimmen. Da Systeme, die nur auf einzelnen Videoquellen arbeiten, dabei noch Probleme
mit Unklarheit in der räumlichen Tiefe haben Zheng u. a. [26], gibt es Ansätze, die zu-
sätzliche Sensoren wie Tiefensensoren oder Inertial Measurement Unit (IMU) verwenden
um die Genauigkeit der räumlichen Informationen zu erhöhen. Dementsprechend benöti-
gen diese Ansätze jedoch spezielle Hardware, welche die Kosten erhöhen. Andere Ansätze
beruhen darauf, weitere Videodaten in Form von Stereokameras oder multipler Monoka-
meras in unterschiedlichen Perspektiven für Tiefeninformationen zu nutzen. Während die
Verwendung von Stereokameras die selben Vor- und Nachteile wie bei Tiefensensoren hat,
hat die Verwendung von multiplen Perspektiven den Vorteil, dass verdeckte Keypoints
aus einer anderen Perspektive potentiell sichtbar sind und dementsprechend akkurater
bestimmt werden können. Jedoch erfordert die Abstimmung der verschiedenen Perspek-
tiven zueinander zusätzlichen Aufwand.

Es gibt verschieden Modelle zur Pose Estimation auf Bilddaten. Unterschieden wird bei
diesen zwischen Top-Down und Bottom-Up Pose Estimation. Erstere erkennen dabei
zuerst wo sich Personen im Bild befinden und bestimmen dann die Positionen der Land-
marks in diesen Bereichen, während letztere zuerst alle Landmarks erkennen und im
zweiten Schritt zu Personen zuordnen.

Zu den Modellen die ohne zusätzliche Sensoren auskommen, gehören MediaPipe Pose [1]
und OpenPose [6]. OpenPose bietet die Option zur 3D Triangulation über zusätzliche
Perspektiven, ist aber sonst auf 2D Pose Estimation von multiplen Personen im selben
Bild ausgelegt.Das Bottom-Up Modell OpenPose verwendet dafür eine CNN Architektur,
die die sogenannten Part Confidence Maps und Part Affinity Fields erstellt. Unter Part
Confidence Map wird hier eine Heatmap für jeweils einen Keypoint verstanden, welche
alle Vorkommnisse des Keypoints und deren Position im Bild ausdrückt. Die Part Affi-
nity Fields stellen die Richtung der Gliedmaßen als Richtungsvektor pro Pixel dar. Sie
werden pro Gliedmaße errechnet und dienen dazu Vermischung der Keypoints multipler
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Personen zu vermeiden.

MediaPipe ist eine Sammlung von Opensource KI Bibliotheken von Google. Es enthält
eine Reihe von Computer Vision Bibliotheken darunter auch die Pose Landmark Detec-
tion Bibliothek (im folgenden ’MediaPipe Pose’). Das Top-Down Modell MediaPipe Pose
verwendet ein CNN, spezifisch eine Variante des BlazePose Modells Bazarevsky u. a. [2],
welche GHUM Xu u. a. [25] zur 3D Modellierung verwendet [1].
Bei BlazePose handelt es sich um ein CNN-Modell dessen Fokus darauf liegt real-time
Pose Estimation einzelner Personen auf mobilen Geräten auszuführen. Zu diesem Zweck
verwendet es einen Ansatzt bei dem die Regression zu Keypoint-Koordinaten während
des Trainings durch einen Heatmap/Offset-Zweig des Netzwerk unterstützt wird.
Um die Inferenz nur auf den Bildabschnitt indem sich die Person befindet zu reduzieren,
wird ein separater ’Person Detector’ verwendet, welcher mit dem BlazeFace Bazarevsky
u. a. [3] Netzwerk zuerst das Gesicht erkennt. Basierend auf der Position des Gesichts
wird die Bounding Box der Person bestimmt, welche den Input für das eigentliche Pose
Estimation Netzwerk definiert. In den darauf folgenden Frames wird die Bounding Box
stattdessen von dem Resultat des letzten Frames abgeleitet, bis keine Person mehr er-
kannt wurde und im nächsten Frame wieder mit dem ’Person Detector’ gearbeitet wird.
Dadurch besteht die Einschränkung, dass das Gesicht der Person zumindest initial sicht-
bar sein muss.
Erkannt werden 33 Keypoints 3.5, die die groben Features der Haltung beinhalten aber
feinere Features wie die Haltung der Finger vernachlässigen. Wenn diese Informationen
benötigt sind bietet MediaPipe die sogenannte "holistic landmark detection"welche in
der Lage ist die Modelle für pose, face und hand landmark detection zu kombinieren. Zu
den Koordinaten dieser Keypoints beinhaltet der Output auch einen visibility score, der
angibt zu welcher Wahrscheinlichkeit der Keypoint im Input zu sehen ist. Das Koordi-
natensystem der Keypooints folgt den Bildschirmachsen wonach die x-Achse nach rechts
und die y-Achse nach unten verläuft. Die z-Achse gibt die Tiefe an und verläuft entlang
der Blickrichtung der Kamera.
Der Output besteht aus zwei Sets an Koordinaten, die jeweils alle 33 Keypoints beinhal-
ten, den sogenannten Image und World Coordinates. Die Image Coordinates haben x und
y Werte zwischen 0.0 und 1.0 , welche die relative Position zur Bildbreite/-höhe angeben.
Die z-Achse hat ihren Nullpunkt hingegen beim Mittelpunkt der Hüfte der erkannten
Person. Die Größeordnung der z-Achse orientiere sich dabei laut der Dokumentation an
der x-Achse. Die World Coordinates haben den Nullpunkt des gesamten Koordinatensys-
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tems im Mittelpunkt der Hüften. Die Werte dieser Koordinaten sind jedoch in Metern.
In den Koordinatensequenzen findet sich Zittern der Koordinaten, das in seiner Intensität
schwankt und besonders bei schlechter sichtbaren Keypoints stärker auftritt.
Die Skelett-Daten beinhalten einige Ungenauigkeiten mit unterschiedlicher Relevanz für
diese Arbeit. Zu den weniger relevanten Verhalten zählt zum Beispiel, dass MediaPipe
Pose annimmt, dass die Beine an den Torso angezogen sind, wenn sie nicht sichtbar sind.
Auffällig ist auch, dass die Skellette eine Schräglage in Richtung der Kamera aufweisen.
Diese variiert zwischen ungefähr 90° und 60° zum Boden und wird meist kleiner, d.h.
der Winkel zum Boden nähert sich 90°, wenn mindestens ein Arm angehoben wird. Da
diese Schräglage keinen erkennbaren Einfluss auf das entwickelte System hat, wurde ihr
Winkel nicht genauer vermessen.
Die vielleicht relevanteste Verzerrung findet sich in den Image Coordinates. In diesen
werden die Abstände zwischen den Keypoints in der Bildebene mit zunehmender Ent-
fernung zur Kamera erwartungsgemäß kleiner. Entlang der z-Achse hingegen werden die
Körperteile hingegen auf jeweils konstante Werte geschätzt, die nicht von der Größe der
Person im Bild beeinflusst wird. Dies hat zum Effekt, dass z.B. die Schulterbreite der
Person variiert während sie sich auf der Stelle dreht. Während die Schultern parallel
zur Bildebene ausgerichtet sind, die Person also Richtung Kamera steht, entspricht die
Schulterbreite ihrem perspektivischen Ausmaß. Wenn sich der Person aber dreht und
die Schultern parallel zur Bildachse ausrichtet, entspricht die Breite einem konstanten
Wert.

2.2.1 Ortsschätzung

Da der MediaPipe Pose Output keine Informationen zum Ort der Person im Raum bein-
haltet, müssen diese separat errechnet werden. Die MediaPipe Sammlung beinhaltet Me-
diaPipe Iris Vakunov und Lagun [24], ein Modell zur Erkennung der Iris des Auges in
Bildern/Videos. Dieses ist auch in der Lage die Distanz zwischen der Person zur Kame-
ra zu bestimmen indem der zweite Strahlensatz 2.1 auf der Größe der Iris angewendet
wird. Mit dem 2. Strahlensatz lässt sich aus der Brennweite f sowie der realen Größe
wr und der Größe im Bild wp eines Objekts die Entfernung d bestimmen. Dieser Ansatz
erfordert natürlich, dass die reale Größe des verwendeten Referenzwerts bekannt ist und,
dass der Referenzwert konstant im Bild sichtbar ist. Zudem beeinflussen Verzerrungen
des Referenzwert die errechnete Entfernung.
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2 Analyse

f

wp
∗ wr = d (2.1)

2.3 Gestenerkennung

2.3.1 Beispielbasierte Methoden

Es gibt verschiedene Möglichkeiten Bewegungen zu erfassen und zu klassifizieren. Darun-
ter zum Beispiel die Auswertung elektromyographischer Daten d.h. Informationen über
die elektrische Muskelaktivität, über Support Vector Machines [4] oder CNN-LSTMs [9]
zu verarbeiten. Auch Videodaten können mit CNNs ausgewertet werden.

2.3.2 Modellbasierte Methoden

Der Dynamic Time Warping Algorithmus [16], der ursprünglich zur Spracherkennung ent-
wickelt wurde, dient zur Mustererkennung in sequentiellen Daten. Dabei wendet DTW
eine nichtlineare Zeitnormierung an, um Muster trotz stellenweiser Geschwindigkeits-
unterschiede erkennen zu können. Damit eignet sich der Algorithmus auch für die Er-
kennung von dynamischen Gesten, da diese ebenfalls zwischen Personen unterschiedlich
schnell ausgeführt werden und sich diese Differenz nicht gleichmäßig über die gesamte
Geste erstreckt.

Aus den bestehenden Ansätzen zur Gestenerkennung über DTW lassen sich eine Reihe
von allgemeinen Problemen und ihren Lösungen ermitteln. Das erste dieser ist, dass die
Keypoint Positionen oft relativ zum Ort des Sensors ermittelt werden. Damit weisen die
Koordinaten innerhalb der selben Gesten große Unterschiede auf, wenn die ausführende
Person an einem anderen Ort relativ zum Sensor steht. Indem die Keypoints in einen auf
der Person zentrierten Rahmen versetzt werden lässt sich dies jedoch beheben [18, 5, 15].
Da Verschiebung durch Addition eines Vektors realisiert wird, kann der Ortsvektor eines
Keypoints von allen anderen Keypoints subtrahiert werden um jeweils die relative Posi-
tion zu diesem zu erhalten.
Schneider u. a. [18] skalieren die Skelette zusätzlich um den Einfluss der Körpergröße und
der Distanz zu eliminieren. Dazu werden alle Koordinaten nachdem sie in Relation zur
Person gestellt wurden durch die Distanz zwischen den Schultern geteilt werden womit
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2 Analyse

dieses Distanz 1 wird. Dabei ist anzumerken, dass die Schultern hier gewählt wurden, da
die Breite der Schultern durch die Knochenstruktur konstant ist und angenommen wird,
dass sie immer frontal zur Kamera ausgerichtet sind. Ansonsten würde die Distanz in der
Projektion auf die Bildebene nicht gleichmäßig mit der Gesamtgröße variieren und eine
akkurate Skalierung wäre nicht möglich.
Anstelle anzunehmen, dass die Person immer frontal zur Kamera ausgerichtet ist, stellen
Bodiroža u. a. [5] ebenfalls Rotations-Invarianz her indem das Skelett rotiert wird, dass
sie an der Hüfte gemessen in die selbe Richtung orientiert sind.
Das Zittern der Keypoints stellt ebenfalls eines der übergreifenden Probleme dar. Um
die eigentlichen Bewegungen aus dem Zittern zu extrahieren werden Glättungsfilter wie
der Gauß- [18, 23] oder der Butterworth-Filter [13] eingesetzt.
Da alle Koordinaten der Pose-Keypoints mindestens 2 Dimensionen haben und ein ein-
zelner Keypoint nicht zwingend zur Klassifikation ausreicht, muss die Anwendung des
DTW Algorithmus dies zumindest in der Distanzfunktion berücksichtigen. Die Euklidi-
sche Distanz stellt die Distanz zwischen einzelnen Punkten im Raum am akkuratesten
dar und wird dementsprechend verwendet [13]. Sobald jedoch die Elemente der Zeitse-
quenzen aus den Koordinaten multipler Keypoints zusammengesetzt sind, verzerrt die
Euklidische Distanz die Zusammenhänge zwischen den Elementen. Dazu kommt, dass der
Informationsgehalt in den verschiedenen Dimensionen sich zwischen den Gesten unter-
scheidet. Um den Informationsgehalt zu berücksichtigen, kann eine dynamische Auswahl
der berücksichtigten Dimensionen getroffen werden.
Für Ten Holt u. a. [23] ist diese Auswahl notwendig, da sie jede Dimension auf einen
Mittelwert von Null und Einheitsvarianz normalisieren. Die Normalisierung führt jedoch
auch dazu, dass wenn eine Dimension nur Rauschen enthält, dieses verstärkt wird. Ohne
die Normalisierung könnte jedoch eine Dimension mit einem größeren Wertebereich die
DTW-Distanz, welche mit der Manhattan Metrik über alle Dimensionen berechnet wird,
dominieren. Deshalb werden alle Dimensionen, deren Varianz unter einem Grenzwert
liegt, aussortiert.
Schneider u. a. [18] wenden den DTW Algorithmus hingegen auf alle Dimensionen sepa-
rat an und bestimmen dann die durchschnittliche Distanz aller Dimensionen. Sie können
somit die Komplexität verringern, indem sie die Anzahl verwendeter Dimensionen redu-
zieren. Die Auswahl basiert ebenfalls auf einem Varianz Grenzwert, den die Dimensionen
entweder im Muster oder in der Sequenz überschreiten müssen. Eine dynamische statt
einer statischen Auswahl hat den Vorteil, dass auch Gesten die sich Bewegungen tei-
len akkurat klassifiziert werden können. So könnte bei einer statischen Auswahl, die nur
die Mustersequenz berücksichtigt, "Winken mit der linken Handëinen besseren Score er-
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2 Analyse

halten als "Winken mit der beiden Händenäuch wenn letzteres ausgeführt wird. Indem
dynamisch ausgewählt wird, kann in diesem Beispiel auch im Vergleich mit der "Winken
mit der linken HandMustergeste die Differenz zwischen der still gehaltenen und der win-
kenden rechten Hand einfließen.
Nach DTW lässt sich per 1-Nearest-Neighbour die zutreffendste Geste auswählen [23,
18].

2.4 Identifikation des selektierten Objekts

Das Wissen, das eine Selektion stattgefunden hat, ist allein von geringen Nutzen, wenn
nicht ebenfalls bekannt ist welches Objekt selektiert wurde. Da das Ziel des Zeigens sich
vom Zeigenden aus in der durch das Zeigewerkzeug angegebenen Richtung befindet, han-
delt es sich hier um ein Problem der Geometrie. Die Position des Zeigenden muss dafür
mit den Positionen der möglichen Zielobjekte und der Zeigerichtung in Relation gebracht
werden.
In VR Systemen besteht ebenfalls das Problem den Nutzer zwischen verschiedenen Objek-
ten in 3D Umgebungen wählen zu lassen, wofür verschiedene Cursor entwickelt wurden.
Während VR Cursor hilfreiche Metriken zur Identifikation des beabsichtigten Ziels bein-
halten, lassen sie sich nicht vollständig auf Smart-Home-Gestensteuerung übertragen, da
ohne erheblichen extra Aufwand keine 3D Visualisierung möglich ist. Lu u. a. [10] verglei-
chen verschiedene VR Cursor mit ihrer Implementation eines dreidimensionalen Bubble
Cursor. Zu beachten ist, dass die VR Cursor nicht nur in der Existenz einer Visuali-
sierung vom Anwendungsgebiet dieser Arbeit abweichen, sondern auch darin, dass ein
Tastendruck auf einem Controller anstelle einer Geste verwendet wird um die Selektion
auszulösen. So kann der Nutzer zuerst sicherstellen, dass das korrekte Objekt im Aus-
wahlbereich ist bevor die Selektion ausgelöst sind. Der Bubble Cursor ist mechanisch auch
darauf ausgelegt diese Verifizierung zu unterstützen indem der Auswahlbereich angepasst
wird um optisch immer nur ein Objekt umschließt. Indem so die Verifizierung erleich-
tert wird, wird auch die Selektion im gesamten gestärkt. Die Ergebnisse lassen jedoch
Rückschlüsse darauf zu, welche Auswahl-Metriken die Erwartungshaltung des Nutzers
am besten widerspiegeln.
Während der Naive Ray bereits die höchste Fehlerrate aller Verglichener Techniken auf-
weist, ist davon auszugehen, dass diese noch weiter ansteigt, wenn der Nutzer ohne Visua-
lisierung nicht mehr dazu in der Lage ist den spezifischen Strahl zu sehen. Die Techniken,
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die das Objekt wählen welches im kleinsten Volumen um den Zeigestrahl liegt weisen ge-
ringere Fehlerraten und auch bessere subjektive Bewertung der Nutzer auf. Zwischen den
zwei Varianten des Bubble Cursor, von denen je eine die euklidische Distanz und eine
die Winkeldistanz zwischen Zeigestrahl und Zielobjekt verwendet, ist die Performance in
fast allen Metriken zwar ähnlich jedoch leicht zugunsten der Winkeldistanz gewichtet.
In einem Testszenario indem die Ziele in verschiedenen Distanzen grob hintereinander
angeordnet waren, bevorzugte die euklidische Distanz die vorne gelegenen Zielobjekte,
womit sich die Winkeldistanz in ähnlichen Situationen besser eignet.

2.5 Zielsetzung

Das in dieser Arbeit entwickelte Selektionserkennungs-System sollte folgende Eigenschaf-
ten erfüllen:

• Selektionen sollen zuverlässig erkannt werden.

• Um den Nutzers wahrzunehmen soll eine einzelne RGB-Kamera verwendet werden.

• Die Selektionserkennung soll im Rahmen eines Smart Home einsetzbar sein.

• Die Selektionserkennung soll in Echtzeit laufen.

• Eine Selektion sollte innerhalb einer Sekunde erkannt und registriert werden.

Folgende Annahmen werden gemacht:

• Zwischen der Selektionserkennung und der restlichen Gestensteuerung besteht eine
zuverlässige Verbindung.

• Alle steuerbaren Objekte sind so positioniert sind, dass der Nutzer nie nach hinten
zeigen muss, da die Richtung des Zeigens sonst vom Körper des Nutzers verdeckt
wird.

• Bei den steuerbaren Objekten handelt es sich um Objekte in der Größenordnung
eines Fensters. D.h. ihr optischer Schwerpunkt befindet sich zwischen 0,8m und
1,6m über dem Boden mit mindestens 1,5m zwischen zwei Objekten.

• Aus technischen Einschränkungen 3.5.1 wird davon ausgegangen, dass der Nutzer
beim Ziegen frontal zur Kamera steht.
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3 Lösungsansatz

In diesem Kapitel wird das Design des Lösungsansatzes beschrieben. Zuerst wird das
Gesamtkonzept beschrieben, gefolgt von der jeweiligen Methodik um die Teilprobleme
Gestenerkennung, Identifikation des Ziels und Pose Estimation zu lösen. Zuletzt wird auf
im Vorfeld notwendige Setup Operationen eingegangen.

3.1 Gesamtkonzept

In Relation zu seiner Umwelt 3.1, hat das System zwei Kontaktpunkte. Auf der einen
Seite ist der Nutzer, der per Kamera wahrgenommen wird und eine Selektion per Geste
kommuniziert. Auf der anderen Seite steht der Manipulation Controller, der das
System beschreibt, welches den Manipulations-Befehl des Nutzers ausführt und dafür
den Kontext aus der Selektion benötigt. Da sich diese Arbeit auf die Erkennung der
Selektion beschränkt, ist der Manipulation Controller außerhalb des Scopes und
wird dementsprechend gemockt.

Nachdem alle notwendigen Daten geladen wurden, erfolgt die eigentliche Selektions-
Erkennung in einem zyklischen Ablauf 3.2. Um Selektionen in Echtzeit zu erkennen wer-
den kontinuierlich Bilder von der Kamera gelesen und verarbeitet. Aus diesen Bildern

Abbildung 3.1: Systemkontextdiagramm
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wird zuerst die Haltung des Nutzers mittels Pose Estimation als Keypoints extrahiert.
Da mit DTW ein Klassifikationsalgorithmus verwendet wird, der vollständige Sequenzen
statt je einzelnen Elementen benötigt, müssen die Keypoints zwischengespeichert wer-
den. Sobald die Sequenz im Buffer die Ziellänge erreicht hat, kann klassifiziert werden ob
eine Selektionsgeste enthalten ist oder nicht.
Da davon auszugehen ist, dass die Gesten nicht erkannt werden, wenn nur ein Bruch-
stück in der Sequenz ist, sollte der Buffer nach der Klassifikation nicht vollständig ent-
leert werden. Stattdessen sollten nur die ältesten Elemente entfernt werden. Indem also
überlappende Sequenzen klassifiziert werden, kann sichergestellt werden, dass jede Se-
lektion mindestens einmal vollständig in der Sequenz enthalten ist. Womit die Chance,
dass sie korrekt erkannt wird maximiert wird. Die Ziellänge der Sequenz sollte sich an
der durchschnittlichen Länge der Zeigegesten orientieren, diese kann zusammen mit der
Mustergeste im Setup ermittelt werden. Die Anzahl der Elemente, die jeweils nach der
Klassifikation entfernt werden, kann variiert werden. Eine größere Anzahl verringert die
Anzahl Klassifikationen, die in der selben Zeit ausgeführt werden müssen und reduziert
damit den Rechenaufwand. Der Preis dafür ist jedoch, dass die Chance, dass die Selek-
tionen je nie vollständig in einer Sequenz auftauchen ansteigt. Eine kleinere Anzahl hat
dementsprechend den gegenteiligen Effekt.
Wenn die Klassifikation keine Selektionsgeste findet, kann mit dem nächsten Frame fort-
gefahren werden. Ansonsten muss ermittelt werden welches Objekt selektiert wird.
Bei der Identifikation des Zielobjekts muss berücksichtigt werden, dass auch wenn die
Gestenerkennung perfekt funktioniert nicht jede erkannte Zeigegeste zur Steuerung ge-
dacht ist. Da die Klassifikation nicht in der Lage ist diese Fälle auszusortieren, werden
weitere Kriterien benötigt. Eines dieser Kriterien ist, dass der Nutzer auf keines der
steuerbaren Objekt zeigt. Ebenfalls lässt sich davon ausgehen, dass die Geste nicht zur
Steuerung gedacht ist, wenn auf sie kein Manipulationsbefehl folgt. Da die Manipulation
jedoch erst im Manipulation Controller berücksichtigt wird, kann dieses Krite-
rium erst in diesem verwendet werden. Indem zum Beispiel die Selektion nach einem
Timeout ohne Manipulation wieder verfällt.
Wenn auch ein Zielobjekt erkannt wird, muss zuletzt noch die Selektion an den Ma-

nipulation Controller übergeben werden, bevor wieder mit dem nächsten Frame
fortgefahren wird.

Aus den drei großen Arbeitsschritten leiten sich drei der sieben Komponenten 3.3 direkt
ab. targeting umfasst die Identifikation des Zielobjekts und pose_estimation die
Pose Estimation aus den Bilddaten. Während die classifier für die Klassifikation
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Abbildung 3.2: Flow Chart des primären Schleife

der Sequenzen verantwortlich ist, nehmen die dazu notwendigen Vorverarbeitungsschrit-
te mit pre_processing eine eigene Komponente ein. Die Komponente setup umfasst
die Schritte im Vorfeld der Selektionserkennung um notwendige Daten wie die Orte der
steuerbaren Objekte zu ermitteln. selection_recognition beinhaltet das main-
Script und ist damit für die in 3.2 beschriebene Schleife zuständig. Sie verknüpft die
Funktionalitäten der restlichen Komponenten zur vollständigen Selektionserkennung. In
data_writer finden sich Funktionen um relevante Informationen in Dateien zu spei-
chern. Diese umfassen sowohl Performance Daten zur Auswertung als auch Pose Daten in
PoseViz (.pose) Dateien. Letztere vereinfachen die Entwicklung, da Pose Informationen
aus diesen zu lesen bedeutend schneller ist als sie jedes mal per Pose Estimation aus
Videos zu extrahieren. Diese beiden Zwecke tragen nicht zur eigentlichen Selektionser-
kennung bei, weshalb die Komponente als nicht-essentiell gilt.
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Abbildung 3.3: Komponentendiagramm
Von den sieben Komponenten ist data_writer als nicht-essentiell gekennzeichnet, da

sie nur Funktionen enthält die die Entwicklung und Auswertung vereinfachen, nicht
jedoch zur Selektionserkennung notwendig sind.

3.1.1 Implementation

Der Prototyp wird in Python 3.10 implementiert. Das main-Script selection_reco-
gnition/selection_recognition.py implementiert die primäre Schleife 3.2.
Diese Schleife arbeitet bis das Ende der Datenquelle erreicht ist. Da das System auch
damit umgehen können muss, dass keine Person im Sichtfeld der Kamera ist, muss dies
berücksichtigt werden. Der Dynamic Time Warping (DTW) Algorithmus kann nur mit
leeren Frames umgehen, wenn eine Distanzfunktion verwendet wird, die explizit darauf
ausgelegt ist nit diesen umzugehen. Stattdessen setzt die Schleife die Gestenerkennung
aus, wenn keine Person erkannt wird. Der verbliebene Inhalt des Buffers wird dafür klas-
sifiziert und entleert sobald die Person das Sichtfeld verlässt.
Über das gesamte System wird eine gleichmäßige Repräsentation der Pose Sequenzen
verwendet. Dabei handelt es sich um drei dimensionale Arrays. Die erste Dimension um-
fasst die einzelnen Frames der Sequenz. Die zweite Dimension beinhaltet die Keypoints
und die letzte Dimension die Achsen der Koordinaten.

3.2 Manipulation Controller Mock

Die einzige Funktion, die der Mock bieten muss, besteht darin eine Selektion anzunehmen.
Da es sich um ein Echtzeit System handeln soll, kann angenommen werden, dass der
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einzige relevante Zeitpunkt einer Selektion "jetztïst. Somit lässt sich der Zeitpunkt der
Selektion implizit durch den Zeitpunkt des Funktionsaufruf angeben. Welches Objekt
Selektiert wird ist der zweite Bestandteil einer Selektion und kann per Objekt ID als
Argument übergeben werden.

3.3 Gestenerkennung

Zur Erkennung der Zeigegeste wird ein modellbasierter Ansatz anstelle eines Beispiel-
basierten verwendet, da es sich bei letzteren um Blackboxen handelt. Modellbasierte
Ansätze erlauben es deutlich einfacher die Performance nachzuvollziehen und gezielt an-
zupassen. Spezifisch wird er DTW Algorithmus verwendet, weil bereits gezeigt wurde,
dass sich dieser gut zur Gestenerkennung auf Pose Daten eignet 2.3.2.
Anstatt DTW auf den Koordinaten der Keypoints auszuführen, werden Winkel verwen-
det. Dabei werden sowohl Winkel zwischen Körperteilen und den Achsen des Raums
verwendet, welche die Orientierung dieser Körperteile angeben, als auch Winkel an den
Gelenken zwischen den Körperteilen. Da Knochen steif sind, lässt sich die Haltung des
gesamten Körpers durch die Ausrichtung der Knochen zueinander, d.h. den Winkeln der
Gelenke, beschreiben. Der Vorteil der Winkel besteht darin, dass bei der selben Haltung
die Winkel gleich sind auch wenn zwei unterschiedlich große Personen sie einnehmen.
Auch der Standort und Rotation, die die Koordinaten beeinflusst haben keinen Effekt
auf die Winkel. Während die Winkel also anders als die Koordinaten separat berechnet
werden müssen, sind sie von Natur aus Translation, Scale, und Rotation Invariant, was
die notwendige Vorverarbeitung reduziert.
Zur Erkennung der Geste liefert nur eine begrenzte Teilmenge der 33 MediaPipe Key-
points relevante Informationen. Anders als bei Schneider u. a. [18] sollen nur Zeigegesten
erkannt werden, womit die involvierten Körperteile im Verhältnis uniform sind. Anstelle
einer dynamischen Auswahl relevanter Keypoints wird deshalb auf statische Filter ge-
setzt, da immer die selben Keypoints relevant sind.
Sowohl der Butterworth als auch der Gauß Filter kommen zur Glättung in Frage. In Tests
3.4 hat sich gezeigt, dass beide Filter sehr ähnliche Ergebnisse in der Glättung zeigen.
Der Butterworth Filter fügt jedoch eine kurze Verzögerung von ≈ 1

6s hinzu, weshalb der
Gaußsche Filter verwendet wird.
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Abbildung 3.4: Visualisierung der Glättungsfilter
Graph der x-Koordinate des rechten kleiner-Finger-Keypoint (Nr. 18 in MediaPipe).
Der unveränderte Mediapipe Output ist in Orange, in Blau ist die mit Butterworth

gefilterte Sequenz und in Grün ist die Gaußsche gefilterte Sequenz

Da mehr als ein Winkel im DTW verwendet werden, ist die Sequenz multidimensio-
nal. Die einzelnen Winkel haben keine signifikante Abhängigkeit zueinander und sollten
dementsprechend als absolute Differenz pro Winkel in die Distanz einfließen. Deshalb
wird die Manhattan Distanz als Distanzfunktion verwendet.
Während es für die Gestenerkennung ebenfalls möglich wäre, wie bei Schneider u. a. [18]
auf allen Winkeln separat DTW zu verwenden und die durchschnittliche Distanz zu be-
stimmen, erhält man bei dieser Methode keinen eindeutigen Warping Path, sondern je
einen unterschiedlichen pro Winkel. Da jedoch der Warping Path benötigt wird um zu
ermitteln in welchem Frame auf das Ziel gezeigt wird, ist dieser Ansatz keine Option.

Zur Gestenerkennung wird die DTWClassifier Klasse in der classifer Komponente
definiert. Sie hat abseits des Konstruktors eine öffentliche Methode.

• __init__(gestures, kp_filter, dist_function, smoothing_filter,

threshold) Der Konstruktor hat fünf Parameter. In gestures wird eine Liste
mit allen Mustersequenzen übergeben. Auf die Mustersequenzen werden die selben
Vorverarbeitungsschritte angewendet, die auch während der Klassifikation verwen-
det werden, um die Vergleichbarkeit zu gewährleisten. kp_filter beschreibt die
statische Auswahl Keypoints die in den Vergleich einfließen. dist_function ist
die verwendete Distanzfunktion und smoothing_filter der verwendete Glät-
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tungsfilter. threshold ist der Distanz-Grenzwert über dem davon ausgegangen
wird, dass keine Geste enthalten ist.

• classify(sequence) Die Kernmethode der Gestenerkennung, klassifiziert die
Sequenz und gibt die Id der Mustergeste mit der geringsten DTW Distanz zur
Sequenz, eine Liste mit den Distanzen zu allen Mustergesten und den Warping Path
der Geste mit der geringsten Distanz zurück. Wenn zu keiner der Mustergesten die
Distanz kleiner als threshold ist, wird sowohl für die Gesten Id als auch den
Warping Path None zurückgegeben. Die Distanzen zu allen Mustergesten werden
zurückgegeben um das Sammeln von Evaluationsdaten zu erleichtern.

Buffer

Da DTW nur vollständige Sequenzen vergleichen kann, der Kamerafeed aber nur einzelne
Frames nacheinander liefert, müssen diese in einem Buffer zwischengespeichert werden
bis eine ausreichend Große Sequenz erreicht ist. Um die Frames weiterhin in chronolo-
gischer Reihenfolge zu bearbeitet, muss der Buffer dem FIFO Prinzip folgen. Von einer
simplen Queue unterscheidet sich der Buffer daher, dass statt dem ersten Element die
ersten n Elemente als Sequenz gelesen werden. Zudem werden nicht zwingend alle n gele-
senen Elemente aus dem Buffer entfernt, sondern nur die ersten m damit die Sequenzen
überlappen können. Die Klasse WindowBuffer hat mit dem Konstruktor die folgenden
fünf Methoden.

• __init__(window_size, step) Mit window_size wird die Länge der gele-
senen Sequenz n beschrieben also die Fenstergröße. step beschreibt die Schritt-
weite, also die Anzahl Elemente die beim Lesen entfernt werden m.

• add(item) Diese Methode fügt das Element item am Ende des Buffers hinzu.

• get_window() Über diese Methode wird vom Buffer gelesen. Wie beschrieben
werden die ersten n Elemente zurückgegeben und die ersten m entfernt. Wenn
weniger als n Elemente im Buffer enthalten sind, werden diese zurückgegeben. Dies
beinhaltet eine leere Sequenz, wenn der Buffer leer ist.

• has_full_window() Diese Methode gibt zurück ob der Inhalt des Buffers min-
destens so lang ist wie die Fenstergröße n ist. Wenn dies nicht der Fall ist wird
beim lesen eine Sequenz zurückgegeben die kürzer als n ist.
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• clear() Diese Methode entleert den Buffer vollständig ohne zu lesen.

3.3.1 Vorverarbeitung

Die vier Funktionen zur Vorverarbeitung finden sich in der pre_processing Kompo-
nente.

• prepare(sequence, kp_filter, smoothing_filter)Diese Funktion bün-
delt alle folgenden Vorverarbeitungs-Funktionen. Zuerst werden die irrelevanten
Keypoints entfernt. Die Winkel werden dann auf den geglätteten Keypoints be-
rechnet

• filter_keypoints(kp_filter, sequence) Diese Funktion gibt eine Ko-
pie von sequence zurück in der nur die in kp_filter angegebenen Keypoints
enthalten sind.

• smooth_sequence(sequence, smoothing_filter) Diese Funktion gibt ei-
ne mit dem Glättungs Filter smoothing_filter geglättete Kopie von sequence
zurück. Die Glättung werden dabei nur innerhalb der einzelnen Dimensionen geglät-
tet, auch wenn verwendete Filter, wie der Gauß Filter, mehrdimensionale Glättung
ermöglichen.

• calculate_angles(sequence) Für jedes Element von sequence werden die
Winkel zwischen den Keypoints des Elements errechnet und als neue Sequenz zu-
rückgegeben. Dabei wird angenommen, dass jeweils die Gelenkwinkel einer Glied-
maße berechnet wird. Gliedmaßen lassen sich als Reihe von verbunden Gelenken
verstehen. In der Keypoint Repräsentation einer derart abstrahierten Gliedmaße,
sind die der erste und letzte Keypoint jeweils die Anfang und Ende der Gliedmaße.
Jeder Keypoint dazwischen beschreibt eines der Gelenke. Der Gelenkwinkel für das
Gelenk bei Keypoint Ki ist gegeben durch den Winkel zwischen den Vektoren von
Keypoint Ki zu den Keypoints Ki+1 und Ki−1

3.3.2 Implementation

Im Prototyp wird die Implementation des DTW Algorithmus aus dem fastDTW Python
Package [22] verwendet. Während es sich hier eigentlich um eine Implementation des
FastDTW Algorithmus von Salvador und Chan [17] handelt, kann diese so konfiguriert
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Abbildung 3.5: MediaPipe Körper Key Points
In den Keypoints der MediaPipe Pose Estimation sind die verwendeten Winkel

eingezeichnet

werden, dass reguläres DTW ausgeführt wird. Diese Implementation wurde gewählt, da
sie leicht erlaubt eigene Distanzfunktionen zu verwenden und sie das Potential bietet auf
den FastDTW Algorithmus zu wechseln, falls eine schnellere Performance benötigt wird.
Die verwendeten Keypoints und dementsprechend Winkel, werden werden der Config Da-
tei importiert. Der Prototyp verwendet hier die Schulter, den Ellenbogen und die Hand.
Um neben dem Ellenbogenwinkel noch den Hebewinkel des Oberarms zu verwenden,
wird senkrecht unter dem Schulter-Keypoint ein Pseudokeypoint hinzugefügt 3.5. Der
Pseudokeypoint ist eine Kopie des Schulterkeypoints mit erhöhtem y Wert. Die Winkel
der Gelenke werden wie bei der Identifikation des Ziels mit der Formel 3.1 berechnet.

3.4 Identifikation des Ziels

Nachdem erkannt wurde, dass eine Zeigegeste zur Selektion getätigt wurde, muss erkannt
werden auf welches Objekt gezeigt wurde. Dafür könnte man unterschiedliche Zeige-
Mustersequenzen definieren, die jeweils das Ziel beinhalten um im selben Schritt die
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Geste und das Ziel zu erkennen. Damit dieser Ansatz funktioniert muss jedoch die re-
lative Position zwischen Subjekt und Objekt konstant sein. Dazu müsste das Subjekt
immer am selben Ort stehen oder man müsste für jede Kombination aus Ort und Ziel
eine Mustersequenz verwenden.
Stattdessen lässt sich die Identifikation des Objekts separat umsetzten indem basierend
auf der Position des Subjekts und der Zeigerichtung errechnet werden, welches der mög-
lichen Objekte gemeint ist.
Dafür muss zuerst identifiziert werden, an welchem Punkt in der Sequenz die volle Zeige-
haltung eingenommen wurde und der Arm auf das Ziel zeigt. Ein Ansatz dafür besteht
darin den Frame der Sequenz zu wählen, der die maximale Armstreckung aufweist. Da-
bei wäre jedoch problematisch, dass der in Ruheposition hängende Arm ebenfalls nahezu
maximal gestreckt ist und, dass dies für alle Frames gilt sollte der gestreckte Arm von
der Ruheposition aus der Schulter in die Zeigehaltung rotiert werden. Letzteres ist der
Grund wieso ein mindest-horizontalitäts Grenzwert nicht ausreicht um die Frames der
Zeigehaltung korrekt zu extrahieren. Ein solcher Grenzwert könnte den überlappenden
Bereich zwischen "leicht nach unten zeigen" und "kurz davor gerade zu zeigen" nicht
korrekt trennen.
Stattdessen lässt sich der beim DTW errechnete Warpingpath zur Identifikation verwen-
den. Der Warpingpath enthält die Information welches Element der Sequenz dem Element
in der Mustersequenz entspricht, in dem die Zeigehaltung erreicht ist. Dies erfordert, dass
dieser Punkt in der Mustersequenz bekannt ist, was pro Mustersequenz einmalig ermit-
telt werden muss und in dieser Arbeit manuell gemacht wird.
Um aus einem Frame das Ziel des Zeigens zu errechnen, können der Ausgangspunkt und
die Richtung des Zeigen durch einen Strahl definiert werden, dessen Ausgungspunkt und
Richtung durch je einen Pose Keypoint gegeben sind. Beim Zeigen mit dem gestreckten
Arm, ist dies von der Schulter durch die Hand 3.6. Wenn andere Zeigevarianten verwendet
werden, müssen andere Keypoints verwendet werden. Das könnte z.B. vom Ellenbogen
durch die Hand oder auch vom Handgelenk zur Spitze des Zeigefingers sein. Solange nur
Zeigestrahlen benötigt sind, die sich durch existierende Pose Keypoints definieren lassen,
ist es möglich, die mit der erkannten Zeigevariante assoziierten, Keypoints dynamisch
auszuwählen um immer den korrekten Zeigestrahl zu verwenden.

Wenn der Zeigestrahl bestimmt ist, kann mit diesem das Ziel identifiziert werden. Dazu
könnte man prüfen ob der Zeigestrahl durch die Bounding Boxen der Ziele verläuft und
dann das Ziel selektieren, das sowohl durchlaufen wird als auch dem Ursprung des Zei-
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Abbildung 3.6: Visualisierung des Zeigestrahls von der Schulter durch die Hand

gestrahls am nächsten liegt.
Da jedoch alle räumlichen Daten aufgrund der Limitationen der Pose Estimation unge-
nau sind, wäre es besser eine Methode zu verwenden die dies berücksichtigt. Eine Option
hierfür ist es nicht mit dem reinen Zeigestrahl selbst auf Kollisionen zu prüfen, sondern
einen Kegel um den Zeigestrahl zu spannen und zu prüfen welche der Objekte sich in
diesem befinden. Die Spitze und Achse des Kegels sind dabei durch den Ursprung und
die Richtung des Zeigestrahls gegeben. Anders als bei der Verwendung eines Zylinders
oder eines anderen Prisma als prüfendes Volumen berücksichtigt die Verwendung eines
Kegels, dass Abweichungen in der Richtung des Strahls von der Richtung zum Ziel bei
größeren Distanzen zu einer größeren Entfernung zum Strahl führen 3.7.

Wenn mit einem Volumen auf Kollision geprüft wird, ist es möglich die Zielobjekte auf
Punkte zu abstrahieren. Das hat den Vorteil, dass weder ein komplexes Mesh noch die
Bounding Box des Objekts benötigt wird. Während ein Rückgang der Genauigkeit mög-
lich ist, wird in den meisten Fällen ungefähr auf die optische Mitte des Objekts gezeigt.
Daraus ergibt sich ein Zeigeschwerpunkt des Objekts, dass wenn der Kegel ausreichend
weit ist immer in diesem liegt. Die Abstraktion auf einen Punkt kann also ausgeglichen
werden indem der Kegel weiter geöffnet wird.
Ob sich ein Punkt P in einem Kegel befindet lässt sich dadurch bestimmen ob der Win-
kel zwischen der Kegelachse und dem Vektor von der Spitze des Kegels zu P kleiner ist
als der halbe Öffnungswinkel des Kegels. Bei einem Winkel mit begrenzter Höhe müsste
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Abbildung 3.7: Zeigestrahl-Kegel Diagramm
Auf 2 Dimensionen reduzierte Abbildung des Zeigestrahls [OD und dessen

umspannednen Kegels, sowie der Richtung zum Ziel OT. Die Parallele ∥ [OD ist
eingezeichnet, um zu visualieren, dass ab P das Ziel bei Verwendung eines Zylinders

nicht mehr erkannt werden würde, während der Abweichungswinkel zwischen OT und
[OD gleich bleibt.

zwar noch bestimmt werden, ob der Punkt von der Spitze aus hinter der Grundfläche
liegt, aber da von einem Zeigestrahl und keiner Zeigestrecke ausgegangen wird, ist dieses
Kriterium unwichtig. Der halbe Öffnungswinkel ist bei dieser Methode die Stellschraube
um den Grad der Toleranz an die bestehende Ungenauigkeit anzupassen.

Zur Zielerkennung wird die Klasse Targeting definiert, die neben dem Konstruktor
eine Methode hat.

• __init__(targets, angle) Da die Menge der steuerbaren Objekte während
der Laufzeit konstant bleibt, kann sie in targets dem Konstruktor übergeben und
als Attribut gespeichert werden. angle beschreibt den halben Öffnungswinkel des
Kegels, der um den Zeigestrahl gespannt wird.

• find_target(origin, direction) Diese Methode erhält den Zeigestrahl in
Form von zwei Punkten. Der Strahl beginnt am Punkt origin und verläuft durch
direction. Die Methode gibt die ID des Zielobjekts zurück, welches sowohl im
Kegel um den Zeigestrahl liegt und den kleinsten Winkel zu diesem aufweist. Wenn
keines der Objekte im Kegel liegt, wird None zurückgegeben.
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3.4.1 Implementation

Der Winkel zwischen der Kegelachse und dem Vektor von der Spitze des Kegels zum
Punkt, lässt sich wie alle Winkel zwischen zwei Vektoren mit der Formel 3.1 berechnen.
Da diese Formel sowohl zur Identifikation des Ziels als auch in der Gestenerkennung ver-
wendet wird, wird die Funktion calculate_angle(vector_a, vector_b, get_-

degrees außerhalb der beiden Komponenten in der Datei util.py implementiert.
get_degrees gibt an ob der Winkel als Cosinus Wert oder in Grad zurückgegeben
wird.

cosα =
a⃗ · b⃗

|⃗a| × |⃗b|
(3.1)

3.5 Pose Estimation

Während die 2D Pose Estimation von Modellen wie OpenPose zur Gestenerkennung
ausreicht, benötigt die Identifikation des Ziels die dreidimensionale Haltung zur geome-
trischen Analyse. OpenPose benötigt zur 3D Pose Estimation mehr als eine Kameraper-
spektive und ist damit nicht für dieses Projekt geeignet. MediaPipe gibt die Haltung in
3D an, vernachlässigt jedoch die Position im Raum. Obwohl die Position noch zusätzlich
errechnet werden muss, erfüllt MediaPipe die meisten Anforderungen und wird deshalb
verwendet.
Der MediaPipe Landmarker hat drei Betriebsmodi. Einen für Bilder und je einen synchro-
nen und einen asynchronen für Videos. Der in dieser Arbeit erstellte Prototyp verwendet
den synchronen Videobetriebsmodus, da sich dieser simpler in den Programmfluss einfü-
gen lässt.
Um Haltungsdaten aus Videos und PoseViz-Dateien zu lesen sowie in der Lage zu sein das
verwendete Pose Estimation Modell zu wechseln ohne Änderungen an der restlichen Pro-
jektstruktur vorzunehmen, wird das pose_loader Interface definiert. Dieses besteht
aus fünf Funktionen.

• get_pose_data_source(source)Diese statische Funktion identifiziert die Art
der Quelle und gibt eine initialisierte Instanz der zugehörigen Implementation zu-
rück.
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• get_next_frame() Diese Methode gibt die Haltung der Person im nächsten
Frame in Form einer Mx3 Matrix zurück. Die Größe de Matrix ergibt sich aus
der Anzahl Keypoints der verwendeten Pose Estimation und den drei räumlichen
Achsen der Koordinaten.

• is_opened() Diese Methode gibt zurück ob von der Quelle weitere Frames ge-
lesen werden können. Sie gibt False zurück, wenn entweder das Ende der Quelle
erreicht ist oder sie geschlossen wurde. Sie wird als Ausstiegskondition in der Pri-
mären Schleife verwendet.

• close() Diese Methode schließt die Quelle um verknüpfte Ressourcen wie Kame-
ras wieder freizugeben.

• get_ms_per_frame() Diese Methode gibt den Zeitabstand zwischen den Frames
in Millisekunden zurück.

In der Implementation wird die eigentliche Pose Estimation in get_next_frame()

über eine Instanz der MPLandmarkerKlasse ausgeführt. MPLanddmarker ist ein Wrap-
per für die MediaPipe eigenen Objekte um die Umwandlung zwischen MediaPipe und
Projekt Datentypen zu kapseln.

3.5.1 Ortsschätzung

Der Ort der Person kann aus der Größe und Position im Bild bestimmt werden. Diese
lassen sich aus MediaPipes Image Coordinates errechnen. Wie bereits in der Analyse 2.2.1
beschrieben, kann der 2. Strahlensatz dazu verwendet werden die Distanz der Person zur
Kamera dcp zu bestimmen. Diese Distanz beschreibt die z Koordinate des Orts der Person.
Dazu wird eine bekannte Größe benötigt, die in der realen Welt konstant groß bleibt und
zumindest zum Zeitpunkt der Selektion sichtbar ist. Es wurde keine Größe gefunden die
immer gut sichtbar ist. Die Körpergröße/Höhe scheidet aus, weil die Füße leicht hinter
Möbeln verdeckt sind. Die Arme die zwar beim Zeigen zwingend sichtbar sein müssen,
sind oft Richtung Kamera gestreckt und so maximal perspektivisch verkürzt. Die Wahl
fällt deshalb auf die Schulterbreite, da diese zumindest wenn die Person zum Zeigen
frontal zur Kamera steht, gut sichtbar sind.
Da Wohnräume in der Regel einen ebenen Boden haben, wird angenommen, dass sich
der Nutzer auf einer konstanten Höhe bewegt, die nicht näher geschätzt werden muss.
Zuletzt wird noch die links/rechts Abweichung von der Bildachse, also die x Koordinate
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des Orts benötigt. Gunerli [7] bestimmt diese indem zuerst das Verhältnis dpp zwischen
Pixeln im Bild und der realen Entfernung bei der errechneten Distanz dcp bestimmt. Sie
wird durch die Funktion 3.2 bestimmt. Dazu wird ebenfalls der FOV-Winkel der Kamera
FOV und die Bildbreite in Pixeln wi benötigt.

dpp =
tan(FOV

2 ) ∗ 2 ∗ dcp
wi

(3.2)

dpp kann dann mit der horizontalen Distanz im Bild zwischen der Person und dem Mit-
telpunkt des Bildes in Pixeln multipliziert werden um die reale horizontale Verschiebung
dap zu bestimmen.

Der resultierende Ortsvektor

dap

0

dcp

 kann auf die World Coordinates addiert werden um

Haltung und Position zu vereinen. Die World Coordinates sind dafür besser geeignet, da
sie anders als die Image Coordinates nicht die Bildposition enthalten und sie unabhängig
der Distanz der Person gleich groß sind.

3.5.2 Implementation

Die Bilder werden mit der opencv-python Bibliothek geladen und mit der ’light’ Variante
des MediaPipe Landmarkers verarbeitet. Die Ortsschätzung verwendet die Implementa-
tion von Gunerli [7]. Anstatt die Brennweite aus der Auflösung und dem Sichtfeld (FOV)
zu berechnen, wurde sie per Kamera Kalibrierung ermittelt.

3.6 Setup

Die Identifikation des Ziels benötigt die Koordinaten der möglichen Ziele und die Ges-
tenerkennung benötigt Mustergesten, die die Gesten jeweils gut repräsentieren. Diese zu
ermitteln ist Auffgabe der Kompnente setup.

3.6.1 Koordinaten der Zielobjekte

Die simpelste Methode um zu ermitteln wo sich die Zielobjekte befinden besteht darin
den realen Raum und damit die Koordinaten manuell auszumessen. Dieser Ansatz funk-

26



3 Lösungsansatz

tioniert jedoch nur, wenn die Pose Estimation die räumlichen Dimensionen zuverlässig
abbildet. Wenn aber der virtuelle Raum eine andere potentiell unbekannte Größe be-
sitzt, schlägt dies fehl. Es ist jedoch auch gar nicht notwendig die realen Koordinaten
der Objekte zu kennen, da es ausreicht repräsentative Koordinaten zu haben, die bei der
Identifikation des Ziels korrekte Ergebnisse liefern. Es kann also aus einer Menge Zeige-
strahlen zu einem Objekt eine repräsentative Koordinate trianguliert werden, indem der
Punkt, an dem sich die Strahlen am nächsten kommen, berechnet wird. Dazu werden
zuerst die nächsten Punkte zwischen allen Paaren der Zeigestrahlen bestimmt. Der Mit-
telpunkt dieser nächsten Punkte wird als repräsentative Koordinate gewählt.
Wenn zwei Strahlen gegeben sind von denen einer von Punkt A in Richtung a⃗ und der
andere von Punkt B in Richtung b⃗ verläuft, lässt sich der nächste Punkt zwischen diesen
mit den Formeln 3.3 errechnen [14]. c⃗ beschreibt hier den Vektor zwischen A und B. D
und E beschreiben jeweils den Punkt auf dem jeweils ersten und zweiten Strahl an dem
dieser dem anderen am nächsten kommt. Der nächste Punkt zwischen den Strahlen ist
dementsprechend D+E

2 .

D =A+ a⃗
−(⃗a · b⃗)(⃗b · c⃗) + (⃗a · c⃗)(⃗b · b⃗)
(⃗a · a⃗)(⃗b · b⃗)− (⃗a · b⃗)(⃗a · b⃗)

E =B + b⃗
(⃗a · b⃗)(⃗a · c⃗)− (⃗b · c⃗)(⃗a · a⃗)
(⃗a · a⃗)(⃗b · b⃗)− (⃗a · b⃗)(⃗a · b⃗)

(3.3)

3.6.2 Optimale Mustergeste

Der Zweck einer Mustergeste besteht darin durch ihre Ähnlichkeit zu anderen Instanzen
der selben Geste zu bestimmen ob es sich bei einer Sequenz um die selbe Geste handelt.
Dementsprechend ist eine gute Mustergeste allen anderen Instanzen der Geste möglichst
ähnlich.
Die Ähnlichkeitsmetrik ist dabei die selbe, wie während der Klassifikation also die DTW
Distanz. Aus einer Menge möglicher Mustergesten kann die beste dadurch bestimmt
werden, dass DTW zwischen allen Mustergesten der selben Geste durchgeführt wird. Die
beste Mustergeste ist dann die mit der kleinsten durchschnittlichen Distanz.
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4.1 Versuchsaufbau

Um das System zu testen wurden in einem Versuchsaufbau einige Selektionen ausge-
führt. Die Selektionserkennung wurde dabei auf einem HP Envy x360 Laptop mit einer
2.40GHz Intel i5 CPU und 16GB RAM ausgeführt. Die Webcam des Geräts wurde dabei
als Kamera verwendet. Dazu wurde das Gerät auf einem 120cm hohen Sockel aufgestellt
und so ausgerichtet, dass die Kamera horizontal in den Raum zeigt. Die Kamera nimmt
mit einer Auflösung von 720p und einer Framerate von 30fps auf.
Der Versuchsaufbau 4.1 umfasst dabei drei Ziele LW, RW und FT. LW und RW sind zwei
115cm breite und 155cm hohe Fenster. Sie befinden sich 90cm über dem Boden und sind
70cm von einander entfernt. FT ist ein ungefähr 40cm x 30cm x 30cm großes Objekt,
das 3m von RW entfernt auf einem 120cm hohen Sockel steht.
Der Versuchsaufbau wurde im Living Place Labor der HAW-Hamburg erstellt. Bei diesem
handelt es sich um ein Testlabor für Smart Home Anwendungen womit es die Bedingun-
gen eines Smart Home widerspiegelt.
Zur Triangulation der repräsentativen Koordinaten 3.6.1 der Zielobjekte wurde auf jedes
Objekt von vier Standpunkten aus gezeigt. Für alle Objekte wurden die selben Stand-
punkte verwendet. Der Mittlere der Standpunkte ist 300cm vom Sockel der Kamera
entfernt. Die weiteren Standpunkte befinden sich in Relation zu diesem je 120cm links,
60cm rechts und 120cm näher an der Kamera.
Innerhalb des Versuchsaufbaus wurden auch sechs mögliche Mustergesten aufgenommen.
Bei der Aufnahme dieser wurde nicht explizit auf die Zielobjekte gezeigt um sicherzu-
stellen, dass die Mustergesten möglichst allgemein sind. Die Mustergesten wurden so
geschnitten, dass sie mit der Bewegung anfangen und enden.
Um mehr als einen Test auf den selben Daten ausführen zu können, wurden die Selek-
tionen als Video aufgenommen. In diesem wird aus fünf verschiedenen Standpunkten
jedes Ziel einmal selektiert. Damit wurden innerhalb von 128s 15 Selektionen ausgeführt.
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Abbildung 4.1: Versuchsaufbau
Diagramm der Draufsicht des Versuchsaufbau. Eingezeichnet sind die Positionen der
Zielobjekte (blaue Marker), die Triangulations-Standpunkte (rote Kreuze), der Bereich
aus dem die Selektionen ausgeführt wurden (grün gestrichelt) die Kamera, die gerade
nach unten zeigt. Die Skala des Diagramms beträgt 60cm pro Kästchen.

Um die Auswertung zu vereinfachen wurden die Ziele jeweils in der selben Reihenfolge
selektiert. Die Reihenfolge ist FT, LW und zuletzt RW. Damit zwischen den Selektionen
wieder die Ruheposition eingenommen wurde, wurde nach jeder Selektion kurz gewartet.
Zwischen den Selektionen wurden andere Bewegungen wie Strecken oder Winken ausge-
führt. Sowohl die Mustergesten als auch die Selektionen wurden mit Zeigegesten aus dem
ganzen Arm 2.1 ausgeführt.
Für alle Test wurde die Fenstergröße des Buffers basierend auf der Länge der zwei besten
Mustersequenzen auf 65 Frames gesetzt.

4.2 Laufzeitmessungen

Die erste untersuchte Metrik ist die Laufzeit. Damit die Selektion in Echtzeit läuft ist
es notwendig, dass die Schleife in der die Daten verarbeitet werden, diese mindestens so
schnell verarbeitet wie sie entstehen. Das Laden der Mustergesten und anderer Daten
vor der Verarbeitungsschleife haben keinen Einfluss auf die Verarbeitungsgeschwindig-
keit. Die Zeitmessung beginnt deshalb mit der Schleife.
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Pose Estiamtion +Gestenerkennung +Zielerkennung
Mittelwert 16,25 45,314 45,745

Standartabweichung 0,294 0,668 0,277

Tabelle 4.1: Laufzeit Messergebnisse in ms
Alle Messungen wurden auf dem im Versuchsaufbau aufgenommenen Video je drei mal

ausgeführt. Die Ergebnisse in dieser Tabelle sind auf die dritte Nachkommastelle
gerundet. Die Werte beschreiben die Laufzeit pro Frame des Videos in Millisekunden.

Indem die Zeit bis das gesamte Video verarbeitet wird gemessen und durch die Anzahl
Frames geteilt wird, kann die durchschnittliche Verarbeitungszeit pro Frame bestimmt
werden. Bei einer Framerate von 30fps vergehen zwischen jedem Frame 33,333ms, die
genutzt werden können bevor die Verarbeitung langsamer als die Kamera wird.
Um den Einfluss der einzelnen Komponenten auf die Laufzeit beurteilen zu können, wur-
den drei Konfigurationen vermessen, die progressiv weiter Komponenten verwenden. In
der ersten wird nur die Pose Estimation mit Ortsschätzung ausgeführt. In der zweiten
wird zusätzlich die Gestenerkennung ausgeführt. In der letzten wird auch die Identifikati-
on des Ziels ausgeführt. Bei Gestenerkennung werden hier zwei Mustergesten verwendet.
Die Schrittweite des Buffers ist hier 1. Das heißt, dass die Gesten- und Zielerkennung für
jeden Frame ausgeführt werden.

4.2.1 Ergebnisse

Aus den Differenzen der Laufzeit 4.1 zwischen den Konfigurationen lassen sich die Lauf-
zeiten der einzelnen Komponenten errechnen. Die Pose Estimation die für sich Vermessen
wurde benötigt 16, 25ms. Die Gestenerkennung benötigt demnach 45, 314ms−16, 25ms =

29, 064ms und die Identifikation des Ziels 45, 745ms− 45, 314ms = 0, 431ms.
Die Vollständige Verarbeitungszeit von 45,745ms ist über der Echtzeitgrenze von 33,333ms
und muss dementsprechend gesenkt damit das System in Echtzeit laufen kann. Der Ein-
fluss der Pose Estimation kann nur reduziert werden indem die Framerate der Aufnahme
gesenkt wird. Zu beachten ist auch, dass die Identifikation des Ziels während der Se-
lektionserkennung, anders als bei dieser Messung nur eingesetzt wird wenn Erfolgreich
eine Geste erkannt wird, was in einem Bruchteil der Frames der Fall sein sollte. Damit
sinkt ihr bereits minimaler Einfluss auf die Laufzeit. Zudem macht es keinen Sinn die
Häufigkeit de Zielerkennung allein künstlich zu senken, da eine entdeckte Geste ohne
das Ziel der Selektion nutzlos ist. Stattdessen kann der Einfluss der Gestenerkennung
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reduziert werden. Da die verwendeten Mustersequenzen ungefähr gleich lang sind, kann
davon ausgegangen werden, dass sie gleichmäßig zur Laufzeit beitragen. Die Laufzeit der
Gestenerkennung kann also halbiert werden indem entweder nur eine der Mustergesten
verwendet wird, oder, wenn beide notwendig sind, indem die Schrittweite auf 2 verdoppelt
wird. Eine Schrittweite von 2 würde verursachen, dass die Gestenerkennung halb so oft
eingesetzt wird, was auch die Häufigkeit der Zielerkennung reduzieren würde. Die Lauf-
zeit der Gestenerkennung auf 17, 532 zu halbieren würde die Gesamtlaufzeit bereits auf
28, 213 reduzieren. Damit kann festgehalten werden, dass das System in Echtzeit läuft,
wenn die Schrittweite der Anzahl Mustergesten entspricht. Zumindest wenn die restli-
chen Einflussfaktoren wie die Fenstergröße des Buffers oder die Länge der Mustergesten
unverändert bleiben.

4.3 Zuverlässigkeit der Selektionserkennung

Die Zuverlässigkeit der Selektionserkennung ergibt sich aus der Zuverlässigkeit ihrer Teile,
also der Gestenerkennung und der Identifikation des Ziels. Beide Systeme funktionieren
mit dem Prinzip den 1-Nearest-Neighbour aus einer Menge zu identifizieren. Dieser wird
basierend auf je einer Metrik mit einem Cutoff-Threshold gewählt.
Da der der optimale Threshold experimentell bestimmt werden muss, wird die Zuverläs-
sigkeit der Gestenerkennung daran gemessen, ob ein Threshold so definiert werden kann,
dass alle Zeigegesten und nur diese den Threshold erfüllen. Da bereits angenommen wird,
dass eine Selektion ausgeführt wird, wenn das Ziel identifiziert wird, ist der Threshold
weniger wichtig, als dass das korrekte Ziel den besten Wert in der Metrik erhält.
In beiden Fällen sind die Werte der jeweiligen Metrik zur Bewertung notwendig. Da die
Laufzeit beim Sammeln dieser Daten keine Rolle spielt, wird die Schrittweite des Buffers
auf 1 gesetzt um die Werte der Metriken möglichst oft zu bestimmen. Zudem wird das
Zielobjekt nach jeder Gestenerkennung bestimmt, unabhängig vom Resultat letzterer. So
wird der Einfluss der Gestenerkennung auf die Bewertung der Zielerkennung minimiert.
Ein gewisser Einfluss bleibt natürlich, da der Warping Path der Gestenerkennung zur
Zielerkennung verwendet wird.
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Abbildung 4.2: Graph der DTW Distanz aus der Gestenerkennung
Dieser Graph zeigt die DTW Distanz über die gesamte Aufnahme aus dem

Versuchsaufbau. Die x Achse beschreibt den Zeitpunkt in der Aufnahme in Frames. Um
zu markieren wann eine Selektionsgeste ausgeführt wurde, wurde die Enden der Gesten

manuell bestimmt und die Länge eines Buffer Fensters vor den Enden leicht rot
eingefärbt.

4.3.1 Gestenerkennungs Ergebnisse

Da die DTW Distanz kleiner wird je mehr zwei Sequenzen sich ähneln, ist es positiv zu
beobachten, dass die Distanz bei 11 der zwölf Selektionen merklich sinkt 4.2. Die Zeige-
geste bei Frame 1530, die eine ungewöhnlich hohe Distanz verursacht hat, kennzeichnet
sich dadurch, dass die zweite Phase des Zeigens 2.1 deutlich länger gehalten wurde als
in den anderen Fällen. Die niedrige Distanz ohne Zeigen bei Frame 2200 trifft auf als
gewunken wurde. Während sich Zeigen und Winken darin ähneln, dass der Arm aus
der Schulter gehoben wird. Die fürs Winken charakteristische Seitwärtsbewegung ändert
weder den Hebewinkel des Oberarms noch den Winkel am Ellenbogen und wird dement-
sprechend in der Gestenerkennung nicht wahrgenommen. Während zusätzliche Winkel,
die die Orientierung des Arms in der horizontalen Ebene angeben, die Rotationsinvarianz
widersprechen würden, könnte in zukünftiger Weiterentwicklung untersucht werden, ob
die Verwendung der Änderungsrate der Winkel statt ihrer absoluten Werte diesen Wi-
derspruch beheben könnte.
Während ein niedrigerer Threshold von 11,8 einen False-Positve in diesem Fall ver-

hindern könnte, ist die Distanz so klein wie bei einigen korrekten Gesten, sodass ein
geringerer Threshold neue False-Negatives 4.3 verursachen würde. Wenn es im Anwen-
dungsfall nicht besonders wichtig ist die Anzahl False-Positives zu minimieren sollte statt
einem Threshold von 11,8 mit einer Accuracy von 0,75 ein Threshold von 17 verwendet
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Abbildung 4.3: DTW Distanzen mit möglichen Grenzwerten
In diesem Ausschnitt des Distanz Graphs 4.2 werden zwei mögliche Cutoff Thresholds

gezeigt. Ein Threshold von 17 würde je einen False-Positve und False-Negative sowie 11
True-Positives erzeugen. Ein Threshold von 11,8 würde den False-Positive entfernen. Es
würde jedoch auch die Anzahl False-Negatives auf Kosten der True-Positives erhöhen.
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werden, der eine Accuracy von 0,875 hat.
Es ist ebenfalls zu beobachten, dass die Fälle in denen der Tiefpunkt der Distanz 10
Frames oder weniger vor dem manuell bestimmten Ende der Geste auftritt, zu geringe-
ren Distanzen tendieren als die Fälle in denen der Tiefpunkt früher erreicht wird. Eine
mögliche Erklärung dafür ist, dass bei letzteren die Geste langsamer ausgeführt wurde
und somit immer mindestens ein Ende der Geste nicht Teil der verglichenen Sequenz ist.
Bei einem Threshold von 17 wird dieser in allen korrekten Fällen vor Ende der Geste un-
terschritten und für mindestens 5 Frames am Stück. Das heißt, dass die gestenerkennung
alle fünf Frames ausgeführt werden könnte ohne Selektionen zu verlieren und, dass die
Selektion aus Wahrnehmung des Nutzers ohne Zeitverzögerung registriert wird.

Bei den Winkel zu den jeweiligen Zielobjekten während der Zielerkennung 4.4 fällt auf,
dass sich die Winkel sprunghaft von einem Frame Frame zum nächsten verändern. Dabei
wird von 90° was in der Ruheposition erwartet wird, direkt auf unter 20° gesprungen.
Wenn der Zeigestrahl naiv jeweils aus dem nächsten Frame erstellt wird, wäre davon aus-
zugehen, dass die Winkel gleichmäßig mit dem Anheben des Arm sinken. Es kann folglich
davon ausgegangen werden, dass die Auswahl des Zeige-Frames über den Warping Path
wie geplant funktioniert. Wenn sie funktioniert würde schließlich erwartet werden, dass
sobald der korrekte in der Sequenz ist dieser erkannt wird und der Winkel springend
sinkt. Der kleine Winkel würde dann konstant bleiben, bis der korrekte Zeigeframe die
Sequenz wieder verlässt. Dieses Verhalten wird im Graph gezeigt.
Ein Winkel Threshold von 25° würde alle korrekt erkannten Ziele umfassen. Dieser

Threshold würde ebenfalls verhindern, dass das Winken bei Frame 2200 zu einer Selek-
tion führt auch wenn der Threshold von 17 bei der Gestenerkennung verwendet wird.
Während die Zielobjekte FT und LW immer die kleinsten Winkel aufweisen, wenn sie
selektiert werden sollen, hat RW nur in 40% der Fälle den kleinsten Winkel. In den
restlichen Fällen wird fälschlicherweise LW ausgewählt. Auch in der Triangulation der
Koordinaten fiel auf, dass die meisten der Zeigstrahlen zu RW sich bereits von ihrem
Ursprung aus voneinander entfernt haben. Eine mögliche Erklärung dafür ist, dass das
die Dimensionen in der Ortsschätzung und der Haltung aus MediaPipe nicht gleich groß
sind. Dies könnte dazu führen, dass die Strahlen nicht zu einem Punkt konvergieren.
Dass RW am nächsten hinter der Kamera liegt unterscheidet es am stärksten von den
seitlicher gelegenen Objekten FT und LW und ist wahrscheinlich ein Teil des Grundes.
Die Identifikation des Ziels hat also mit drei Fehlern bei RW und insgesamt 15 Selektio-
nen eine Accuracy von 0,8.
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4 Evaluation

Abbildung 4.4: Graph der Winkel zwischen den Zeigestrahlen und den Zielobjekten
Gezeigt werden die Winkel zwischen den Zeigestrahlen und den Zielobjekten über die
gesamte Aufnahme aus dem Versuchsaufbau. Die Winkel sind an der y Achse in Grad

angegeben, die Position in der Sequenz an der x Achse in Frames. Die vertikal
markierten Bereiche zeigen die manuell bestimmte Position der Selektionen. Sie sind in

der selben Farbe des korrekten Objekts eingezeichnet.

In Kombination würden mit einem Gestenerkennungs Threshold von 17 und einem Win-
kel Threshold von 25 von den 15 Selektionen 11 korrekt erkannt. 3 würden das falsche
Objekt selektieren und eine würde gar nicht registriert werden. Das ergibt eine gesamte
Accuracy von 0, 73.

4.4 Fazit

Der Entwickelte Prototyp demonstriert, dass der Lösungsansatz Potential hat. Die Selek-
tion funktioniert mit einer Accuracy von 0, 73. 20% der Fehler treten bei der Identifikation
eines Zielobjekts auf, sodass wenn das unterliegende Problem ermittelt und behoben wird
die Accuracy 0, 93 steigen würde. Die Ergebnisse zeigen auch, dass der Prototyp bis zu
5 verschiedene Mustergesten in Echtzeit erkennen könnte. Das Ziel einer Reaktionszeit
von unter einer Sekunde wurde ebenfalls erfüllt, da die Selektion bereits erfasst ist, wenn
der Nutzer wieder die Ruheposition erreicht hat.
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5 Ausblick

Wie bereits im Fazit erwähnt, sollte in weiterführender Arbeit die Ursache für falsche
Identifikation des Zielobjekts ermittelt werden. Sollte die Ursache wirklich in einer Dif-
ferenz zwischen Pose Estimation und Ortsschätzung liegen, könnte dies ein anderes Pose
Estimation Modell erfordern. Das neue Modell müsste in dem Fall native Ortsschätzung
enthalten. Sollte dies mit einzelnen RGB-Kameras nicht möglich sein, sollte die Verwen-
dung spezilaisierter Hardware das Problem beseitigen.
Um die Ortsschätzung zu verbesssern, könnte auch untersucht werden ob multiple Refern-
zwerte gleichzeitig verwendet werden können. Dafür könnte der Refernzwert dynamisch
aus einer Menge ausgewählt werden, der zur Bildebene am parallesten orientiert ist. Dies
könnte die Bedingung, dass der Nutzer gerade zur Kamera steht unnötig machen.
Wenn die Selektionserkennung eine ausreichende Qualität erreicht hat, liegt es nahe eine
Manipulationsgestenerkennung zu entwickeln um die Gestensterúerung zu vervollständi-
gen.
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