=

L I

> >

MBURG

BACHELOR THESIS
Hauke Simon Rosler

Modellbasierte Erkennung von
Selektionsgesten

FAKULTAT TECHNIK UND INFORMATIK
Department Informatik

Faculty of Engineering and Computer Science
Department Computer Science

HOCHSCHULE FUR ANGEWANDTE
WISSENSCHAFTEN HAMBURG

Hamburg University of Applied Sciences



Hauke Simon Rosler

Modellbasierte Erkennung von Selektionsgesten

Bachelorarbeit eingereicht im Rahmen der Bachelorpriifung
im Studiengang Bachelor of Science Angewandte Informatik
am Department Informatik

der Fakultdt Technik und Informatik

der Hochschule fiir Angewandte Wissenschaften Hamburg

Betreuender Priifer: Prof. Dr. Thomas Lehmann
Zweitgutachter: Prof. Dr. Kai von Luck

Eingereicht am: 27. Méarz 2025



Hauke Simon Rosler

Thema der Arbeit

Modellbasierte Erkennung von Selektionsgesten

Stichworte

Dynamic Time Warping, Pose Estimation, Selektionsgesten, Gesten Erkennung

Kurzzusammenfassung

In dieser Bachelorarbeit wird ein System zur Erkennung von Selektionsgesten zur Ges-
tensteuerung erstellt. Dazu wird die Bewegung des Nutzers mittels Pose Estimation aus
RGB-Videos erfasst und Gesten mittels Dynamic Time Warping erkannt. Auch das Ziel
der Selektion wird iiber geometrische Operationen bestimmt. Der entwickelte Prototyp

demonstriert mit einer Accuracy von 0,73 das Potential des Ansatz.
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Abstract

A system for the recognition of selection gestures was developed for this bachelor thesis.
The system uses Pose Estimation to extract the Users Pose from RGB-videos. Gestures
are classified in the pose data with the Dynamic Time Warping Algorithm. The targets of
the selection is determined using geometric operations. The developed prototype shows

the potential of the design with an accuracy of 0, 73.
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1 Einleitung

Die Anzahl Haushalte, die Smart Home Technologien einsetzen, ist in den letzten Jahren
angestiegen. Allein in der EU ist die Anzahl Nutzer zwischen 2024 und 2025 um 18,8%
angestiegen [8]. Wahrend die Funktionen eines Smart Home sich bereits nahtlos in die
Umgebung einfiigen, bendtigt die Steuerung, abseits von Sprachassistenten, immer noch,
dass Fiihren einer Fernbedienung um das Smart Home jederzeit zu steuern.

Gesten, d.h. Kérperbewegungen, bieten die Moglichkeit, &hnlich wie verbale Sprache, das
natiirliche Kommunikationsverhalten des Menschen auszunutzen um eine intuitive Steue-
rung zu ermoglichen. Dazu wird lediglich benétigt, dass sich der Nutzer in Sensorreich-
weite befindet, was sich in der statischen Struktur von Wohnraumen gut flichendeckend
herstellen lasst. Wahrend Gestensteuerung eine dhnliche Funktion erfiillen wie Sprachas-
sistenten, kann sie Menschen bedienen, die nicht zu verbaler Kommunikation fahig sind
oder dieser anderweitig abgeneigt sind.

Je eine Geste mit einer Aktion zu verkniipfen funktioniert gut solange die Aktionen kon-
textfrei sind, d.h. solange immer alle Fenster zusammen getffnet oder geschlossen werden
sollen. Sobald jedoch nur einzelne Fenster beeinflusst werden sollen, muss der Nutzer an-
geben konnen welches. Wihrend es moglich wére je eine Geste fiir "6ffne Fenster Atind
"6ffne Fenster Bfsu definieren, wird dies mit ansteigender Objektzahl zunehmend unintui-
tiv, da immer abstraktere Gesten verwendet werden miissen um die notwendige Anzahl
individueller Gesten zu erreichen.

Sprachassistenten 16sen dieses Problem indem das Objekt und die Aktion jeweils explizit
genannt werden. Die Beispiele "6ffne Fenster Aiind "6ffne Fenster Bfteigen dies bereits
deutlich. Die Aktion "6ffneist in beiden Féllen die selbe und trégt dementsprechend einen
konstanten Betrag zur Komplexitat bei. Unabhéngig davon wie viele verschiedene Fens-
ter es gibt.

Die Trennung der Selektion d.h. der Auswahl des Objekts und der Manipulation, d.h. der
Aktion lasst sich auch auf Gestensteuerung iibertragen. Das Ziel dieser Arbeit besteht
darin, ein System zur Selektion via Gestensteuerung zu designen. Dazu soll es in der Lage

sein den Output einer einzelnen RGB-Kamera in Echtzeit auszuwerten um darin Selek-
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tionen zu erkennen und mit minimaler Zeitverzogerung an das grofiere Steuerungssystem
weiterzugeben. Zu der Tatsache, dass eine Selektion stattgefunden hat soll ebenfalls das

selektierte Objekt aus einer bekannten Menge stationédrer Objekte identifiziert werden.
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In diesem Kapitel werden beschrieben aus welchen Teilproblem sich die Selektionserken-
nung zusammensetzt und wie diese bereits in anderen Arbeiten bewiltigt wurden. Es

beginnt damit mit welchen Gesten eine Selektion kommuniziert werden kann.

2.1 Selektions Gesten

Bei der Gestensteuerung, wie auch allen anderen Steuerungsmethoden, ist das Ziel dem
System eine Absicht zu kommunizieren, damit diese ausgefiihrt wird. Die selbe Geste
kann dabei aber abhéingig vom Kontext unterschiedliche Absichten ausdriicken. In der
zwischenmenschlichen /natiirlichen Kommunikation existiert das Konzept der gemeinsa-
men Aufmerksamkeit [19, 20| wo die Aufmeksamkeit der Kommunikationsteilnehmer auf
dem selben Objekt liegt und damit zum Kontext des Gespréchs beitréagt. Dieser Zustand
wird iiber Blicke sowie deiktische Gesten und Ausdriicke hergestellt und koordiniert.

In Stukenbrocks Model of the Interactional Organization of Deictic Reference and Joint
Attention |21] wird der Prozess der Herstellung gemeinsamer Aufmerksamkeit in 10 Be-
standteile unterteilt. Fiir die angestrebte Gestensteuerung sind drei dieser von Bedeu-
tung, da der Ansatz darin besteht iiber das natiirliche Kommunikationsverhalten des
Nutzers gemeinsame Aufmerksamkeit zwischen dem Nutzer und dem System herzustel-
len und so den Kontext fiir folgende Befehle zu bestimmen.

Der erste dieser Schritte ist dabei die Ausfiithrung der deiktischen Geste. In dieser Arbeit
handelt es sich spezifisch um die deiktische Geste des Zeigens, welche von Miiller-Tomfelde
[12] in drei Phasen unterteilt wird. In der ersten Phase wird das Zeigewerkzeug, in dieser
Arbeit der Arm, auf das Ziel gerichtet, wo es in der zweiten Phase eine kurze Zeit ver-
weilt. In der dritten Phase wird das Zeigewerkzeug wieder vom Ziel weg bewegt 2.1.
Der zweite relevante Schritt besteht darin, dass der Adressat die Menge plausibler Ziele
bestimmt um den Suchraum fiir den néchsten Schritt zu begrenzen. Dieser letzte Schritt

umfasst die Identifikation des Ziels iiber das geometrische Verhéltnis des Zeigens zu den
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Abbildung 2.1: Beispielsequenz: Zeigen aus dem Arm

moglichen Zielen.

Zudem muss noch beachtet werden, dass sich Gesten statische und dynamische Gesten
unterteilen lassen. Erstere sind durch eine charakteristische Haltung der beteiligten Kor-
perteile definiert, die sich iiber den Zeitraum der Geste nicht verdndern. Das heifst, dass
statische Gesten auch auf Fotos identifizierbar sind. Dynamische Gesten hingegen defi-
nieren sich iiber einen charakteristischen Bewegungsablauf und lassen sich dementspre-
chend nicht auf eine einzelne Haltung reduzieren. Die Geste des Zeigen lésst sich neben
der bereits beschriebenen dynamischen Variante auch statisch auffassen. Dafiir wére die
Handhaltung bei der nur der Zeigefinger gestreckt ist, das charakteristischste Merkmal.
Problematisch wére jedoch die Abgrenzung zur Geste des Aufzeigens/Meldens, die die
selbe Handhaltung aufweist. Dieser spezifische Fall bereitet natiirlich nur Probleme, wenn
sich direkt iiber dem Nutzer ein steuerbares Objekt befindet

2.2 Human Pose Estimation

,, Pose estimation refers to the process of estimating the configuration of the under- lying

kinematic or skeletal articulation structure of a person.“ (Moeslund u.a. [11] S.105)

Pose Estimation beschreibt die Schétzung von Ort und Orientierung von Objekten und
Personen im Raum basierend auf Bild und Video Daten. Die fiir diese Arbeit relevante
Schétzung der Haltung von Personen wird begrifflich auch als Human Pose Estimation
abgegrenzt. Die Haltung einer Person wird dabei iiber die Koordinaten einer Menge an
Keypoints, die signifikante Punkte des Korpers markieren, angegeben. Die Anzahl und
Zusammensetzung dieser Keypoints variiert dabei zwischen Pose Estimation Modellen.

Meist wird jedoch die Struktur des menschlichen Skeletts ausgenutzt indem Keypoints
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an den Gelenken platziert werden, da die Haltung zwischen diesen durch die statische
Form der Knochen bestimmt ist. D.h. solange die Positionen des Schulter- und Ellen-
bogengelenks bekannt sind, ist klar, dass der Punkt bei der Hélfte des Oberarms mittig
zwischen diesen Positionen liegt, da der Oberarmknochen gerade ist.

Manche Pose Estimation Modelle bestimmen die Positionen der Keypoints nur in der
Bildebene wiahrend andere die kompletten dreidimensionalen Koordinaten im Raum be-
stimmen. Da Systeme, die nur auf einzelnen Videoquellen arbeiten, dabei noch Probleme
mit Unklarheit in der rdumlichen Tiefe haben Zheng u.a. [26], gibt es Ansitze, die zu-
sitzliche Sensoren wie Tiefensensoren oder Inertial Measurement Unit (IMU) verwenden
um die Genauigkeit der rdumlichen Informationen zu erh6hen. Dementsprechend benéti-
gen diese Ansétze jedoch spezielle Hardware, welche die Kosten erhéhen. Andere Ansétze
beruhen darauf, weitere Videodaten in Form von Stereokameras oder multipler Monoka-
meras in unterschiedlichen Perspektiven fiir Tiefeninformationen zu nutzen. Wahrend die
Verwendung von Stereokameras die selben Vor- und Nachteile wie bei Tiefensensoren hat,
hat die Verwendung von multiplen Perspektiven den Vorteil, dass verdeckte Keypoints
aus einer anderen Perspektive potentiell sichtbar sind und dementsprechend akkurater
bestimmt werden kénnen. Jedoch erfordert die Abstimmung der verschiedenen Perspek-

tiven zueinander zusatzlichen Aufwand.

Es gibt verschieden Modelle zur Pose Estimation auf Bilddaten. Unterschieden wird bei
diesen zwischen Top-Down und Bottom-Up Pose Estimation. Erstere erkennen dabei
zuerst wo sich Personen im Bild befinden und bestimmen dann die Positionen der Land-
marks in diesen Bereichen, wahrend letztere zuerst alle Landmarks erkennen und im

zweiten Schritt zu Personen zuordnen.

Zu den Modellen die ohne zusétzliche Sensoren auskommen, gehoren MediaPipe Pose [1]
und OpenPose [6]. OpenPose bietet die Option zur 3D Triangulation {iber zusétzliche
Perspektiven, ist aber sonst auf 2D Pose Estimation von multiplen Personen im selben
Bild ausgelegt.Das Bottom-Up Modell OpenPose verwendet dafiir eine CNN Architektur,
die die sogenannten Part Confidence Maps und Part Affinity Fields erstellt. Unter Part
Confidence Map wird hier eine Heatmap fiir jeweils einen Keypoint verstanden, welche
alle Vorkommnisse des Keypoints und deren Position im Bild ausdriickt. Die Part Affi-
nity Fields stellen die Richtung der Gliedmafen als Richtungsvektor pro Pixel dar. Sie

werden pro Gliedmafle errechnet und dienen dazu Vermischung der Keypoints multipler
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Personen zu vermeiden.

MediaPipe ist eine Sammlung von Opensource KI Bibliotheken von Google. Es enthélt
eine Reihe von Computer Vision Bibliotheken darunter auch die Pose Landmark Detec-
tion Bibliothek (im folgenden ’MediaPipe Pose’). Das Top-Down Modell MediaPipe Pose
verwendet ein CNN, spezifisch eine Variante des BlazePose Modells Bazarevsky u. a. [2],
welche GHUM Xu u. a. [25] zur 3D Modellierung verwendet [1].

Bei BlazePose handelt es sich um ein CNN-Modell dessen Fokus darauf liegt real-time
Pose Estimation einzelner Personen auf mobilen Gerdten auszufiihren. Zu diesem Zweck
verwendet es einen Ansatzt bei dem die Regression zu Keypoint-Koordinaten wéhrend
des Trainings durch einen Heatmap/Offset-Zweig des Netzwerk unterstiitzt wird.

Um die Inferenz nur auf den Bildabschnitt indem sich die Person befindet zu reduzieren,
wird ein separater 'Person Detector’ verwendet, welcher mit dem BlazeFace Bazarevsky
u. a. [3] Netzwerk zuerst das Gesicht erkennt. Basierend auf der Position des Gesichts
wird die Bounding Box der Person bestimmt, welche den Input fiir das eigentliche Pose
Estimation Netzwerk definiert. In den darauf folgenden Frames wird die Bounding Box
stattdessen von dem Resultat des letzten Frames abgeleitet, bis keine Person mehr er-
kannt wurde und im néchsten Frame wieder mit dem 'Person Detector’ gearbeitet wird.
Dadurch besteht die Einschriankung, dass das Gesicht der Person zumindest initial sicht-
bar sein muss.

Erkannt werden 33 Keypoints 3.5, die die groben Features der Haltung beinhalten aber
feinere Features wie die Haltung der Finger vernachlissigen. Wenn diese Informationen
benétigt sind bietet MediaPipe die sogenannte "holistic landmark detection"welche in
der Lage ist die Modelle fiir pose, face und hand landmark detection zu kombinieren. Zu
den Koordinaten dieser Keypoints beinhaltet der Output auch einen visibility score, der
angibt zu welcher Wahrscheinlichkeit der Keypoint im Input zu sehen ist. Das Koordi-
natensystem der Keypooints folgt den Bildschirmachsen wonach die x-Achse nach rechts
und die y-Achse nach unten verlduft. Die z-Achse gibt die Tiefe an und verlduft entlang
der Blickrichtung der Kamera.

Der Output besteht aus zwei Sets an Koordinaten, die jeweils alle 33 Keypoints beinhal-
ten, den sogenannten Image und World Coordinates. Die Image Coordinates haben x und
y Werte zwischen 0.0 und 1.0 , welche die relative Position zur Bildbreite/-hohe angeben.
Die z-Achse hat ihren Nullpunkt hingegen beim Mittelpunkt der Hiifte der erkannten
Person. Die Gréfeordnung der z-Achse orientiere sich dabei laut der Dokumentation an

der x-Achse. Die World Coordinates haben den Nullpunkt des gesamten Koordinatensys-
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tems im Mittelpunkt der Hiiften. Die Werte dieser Koordinaten sind jedoch in Metern.
In den Koordinatensequenzen findet sich Zittern der Koordinaten, das in seiner Intensitét
schwankt und besonders bei schlechter sichtbaren Keypoints starker auftritt.

Die Skelett-Daten beinhalten einige Ungenauigkeiten mit unterschiedlicher Relevanz fiir
diese Arbeit. Zu den weniger relevanten Verhalten zdhlt zum Beispiel, dass MediaPipe
Pose annimmt, dass die Beine an den Torso angezogen sind, wenn sie nicht sichtbar sind.
Aulffallig ist auch, dass die Skellette eine Schriglage in Richtung der Kamera aufweisen.
Diese variiert zwischen ungefihr 90° und 60° zum Boden und wird meist kleiner, d.h.
der Winkel zum Boden néhert sich 90°, wenn mindestens ein Arm angehoben wird. Da
diese Schréglage keinen erkennbaren Einfluss auf das entwickelte System hat, wurde ihr
Winkel nicht genauer vermessen.

Die vielleicht relevanteste Verzerrung findet sich in den Image Coordinates. In diesen
werden die Absténde zwischen den Keypoints in der Bildebene mit zunehmender Ent-
fernung zur Kamera erwartungsgemaéfs kleiner. Entlang der z-Achse hingegen werden die
Korperteile hingegen auf jeweils konstante Werte geschétzt, die nicht von der Gréfe der
Person im Bild beeinflusst wird. Dies hat zum Effekt, dass z.B. die Schulterbreite der
Person variiert wiahrend sie sich auf der Stelle dreht. Wahrend die Schultern parallel
zur Bildebene ausgerichtet sind, die Person also Richtung Kamera steht, entspricht die
Schulterbreite ihrem perspektivischen Ausmaf. Wenn sich der Person aber dreht und
die Schultern parallel zur Bildachse ausrichtet, entspricht die Breite einem konstanten
Wert.

2.2.1 Ortsschitzung

Da der MediaPipe Pose Output keine Informationen zum Ort der Person im Raum bein-
haltet, miissen diese separat errechnet werden. Die MediaPipe Sammlung beinhaltet Me-
diaPipe Iris Vakunov und Lagun [24], ein Modell zur Erkennung der Iris des Auges in
Bildern/Videos. Dieses ist auch in der Lage die Distanz zwischen der Person zur Kame-
ra zu bestimmen indem der zweite Strahlensatz 2.1 auf der Grofe der Iris angewendet
wird. Mit dem 2. Strahlensatz ldsst sich aus der Brennweite f sowie der realen Grofe
w, und der Grofe im Bild w), eines Objekts die Entfernung d bestimmen. Dieser Ansatz
erfordert natiirlich, dass die reale Grofle des verwendeten Referenzwerts bekannt ist und,
dass der Referenzwert konstant im Bild sichtbar ist. Zudem beeinflussen Verzerrungen

des Referenzwert die errechnete Entfernung.
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—xw, =d (2.1)

2.3 Gestenerkennung

2.3.1 Beispielbasierte Methoden

Es gibt verschiedene Moglichkeiten Bewegungen zu erfassen und zu klassifizieren. Darun-
ter zum Beispiel die Auswertung elektromyographischer Daten d.h. Informationen iiber
die elektrische Muskelaktivitét, iiber Support Vector Machines [4] oder CNN-LSTMs [9]

zu verarbeiten. Auch Videodaten kénnen mit CNNs ausgewertet werden.

2.3.2 Modellbasierte Methoden

Der Dynamic Time Warping Algorithmus [16], der urspriinglich zur Spracherkennung ent-
wickelt wurde, dient zur Mustererkennung in sequentiellen Daten. Dabei wendet DTW
eine nichtlineare Zeitnormierung an, um Muster trotz stellenweiser Geschwindigkeits-
unterschiede erkennen zu kénnen. Damit eignet sich der Algorithmus auch fiir die Er-
kennung von dynamischen Gesten, da diese ebenfalls zwischen Personen unterschiedlich
schnell ausgefiihrt werden und sich diese Differenz nicht gleichméfig iiber die gesamte

Geste erstreckt.

Aus den bestehenden Ansitzen zur Gestenerkennung iiber DTW lassen sich eine Reihe
von allgemeinen Problemen und ihren Losungen ermitteln. Das erste dieser ist, dass die
Keypoint Positionen oft relativ zum Ort des Sensors ermittelt werden. Damit weisen die
Koordinaten innerhalb der selben Gesten groffe Unterschiede auf, wenn die ausfiihrende
Person an einem anderen Ort relativ zum Sensor steht. Indem die Keypoints in einen auf
der Person zentrierten Rahmen versetzt werden lésst sich dies jedoch beheben [18, 5, 15].
Da Verschiebung durch Addition eines Vektors realisiert wird, kann der Ortsvektor eines
Keypoints von allen anderen Keypoints subtrahiert werden um jeweils die relative Posi-
tion zu diesem zu erhalten.

Schneider u. a. [18] skalieren die Skelette zusétzlich um den Einfluss der Korpergrofe und
der Distanz zu eliminieren. Dazu werden alle Koordinaten nachdem sie in Relation zur

Person gestellt wurden durch die Distanz zwischen den Schultern geteilt werden womit
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dieses Distanz 1 wird. Dabei ist anzumerken, dass die Schultern hier gewéhlt wurden, da
die Breite der Schultern durch die Knochenstruktur konstant ist und angenommen wird,
dass sie immer frontal zur Kamera ausgerichtet sind. Ansonsten wiirde die Distanz in der
Projektion auf die Bildebene nicht gleichméfig mit der Gesamtgrofe variieren und eine
akkurate Skalierung wére nicht moglich.

Anstelle anzunehmen, dass die Person immer frontal zur Kamera ausgerichtet ist, stellen
Bodiroza u. a. [5] ebenfalls Rotations-Invarianz her indem das Skelett rotiert wird, dass
sie an der Hiifte gemessen in die selbe Richtung orientiert sind.

Das Zittern der Keypoints stellt ebenfalls eines der iibergreifenden Probleme dar. Um
die eigentlichen Bewegungen aus dem Zittern zu extrahieren werden Glattungsfilter wie
der Gaufs- [18, 23] oder der Butterworth-Filter [13] eingesetzt.

Da alle Koordinaten der Pose-Keypoints mindestens 2 Dimensionen haben und ein ein-
zelner Keypoint nicht zwingend zur Klassifikation ausreicht, muss die Anwendung des
DTW Algorithmus dies zumindest in der Distanzfunktion beriicksichtigen. Die Fuklidi-
sche Distanz stellt die Distanz zwischen einzelnen Punkten im Raum am akkuratesten
dar und wird dementsprechend verwendet [13]. Sobald jedoch die Elemente der Zeitse-
quenzen aus den Koordinaten multipler Keypoints zusammengesetzt sind, verzerrt die
Euklidische Distanz die Zusammenhénge zwischen den Elementen. Dazu kommt, dass der
Informationsgehalt in den verschiedenen Dimensionen sich zwischen den Gesten unter-
scheidet. Um den Informationsgehalt zu beriicksichtigen, kann eine dynamische Auswahl
der beriicksichtigten Dimensionen getroffen werden.

Fiir Ten Holt u.a. [23] ist diese Auswahl notwendig, da sie jede Dimension auf einen
Mittelwert von Null und Einheitsvarianz normalisieren. Die Normalisierung fiihrt jedoch
auch dazu, dass wenn eine Dimension nur Rauschen enthélt, dieses verstarkt wird. Ohne
die Normalisierung kénnte jedoch eine Dimension mit einem groferen Wertebereich die
DTW-Distanz, welche mit der Manhattan Metrik {iber alle Dimensionen berechnet wird,
dominieren. Deshalb werden alle Dimensionen, deren Varianz unter einem Grenzwert
liegt, aussortiert.

Schneider u. a. [18] wenden den DTW Algorithmus hingegen auf alle Dimensionen sepa-
rat an und bestimmen dann die durchschnittliche Distanz aller Dimensionen. Sie kénnen
somit die Komplexitat verringern, indem sie die Anzahl verwendeter Dimensionen redu-
zieren. Die Auswahl basiert ebenfalls auf einem Varianz Grenzwert, den die Dimensionen
entweder im Muster oder in der Sequenz iiberschreiten miissen. Eine dynamische statt
einer statischen Auswahl hat den Vorteil, dass auch Gesten die sich Bewegungen tei-
len akkurat klassifiziert werden kénnen. So konnte bei einer statischen Auswahl, die nur

die Mustersequenz beriicksichtigt, "Winken mit der linken Handéinen besseren Score er-
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halten als "Winken mit der beiden Handenduch wenn letzteres ausgefiihrt wird. Indem
dynamisch ausgewahlt wird, kann in diesem Beispiel auch im Vergleich mit der "Winken
mit der linken HandMustergeste die Differenz zwischen der still gehaltenen und der win-
kenden rechten Hand einfliefen.

Nach DTW lésst sich per 1-Nearest-Neighbour die zutreffendste Geste auswéihlen [23,
18].

2.4 Identifikation des selektierten Objekts

Das Wissen, das eine Selektion stattgefunden hat, ist allein von geringen Nutzen, wenn
nicht ebenfalls bekannt ist welches Objekt selektiert wurde. Da das Ziel des Zeigens sich
vom Zeigenden aus in der durch das Zeigewerkzeug angegebenen Richtung befindet, han-
delt es sich hier um ein Problem der Geometrie. Die Position des Zeigenden muss dafiir
mit den Positionen der moglichen Zielobjekte und der Zeigerichtung in Relation gebracht
werden.

In VR Systemen besteht ebenfalls das Problem den Nutzer zwischen verschiedenen Objek-
ten in 3D Umgebungen wéhlen zu lassen, wofiir verschiedene Cursor entwickelt wurden.
Wiéhrend VR Cursor hilfreiche Metriken zur Identifikation des beabsichtigten Ziels bein-
halten, lassen sie sich nicht vollstdndig auf Smart-Home-Gestensteuerung iibertragen, da
ohne erheblichen extra Aufwand keine 3D Visualisierung moglich ist. Lu u. a. [10] verglei-
chen verschiedene VR Cursor mit ihrer Implementation eines dreidimensionalen Bubble
Cursor. Zu beachten ist, dass die VR Cursor nicht nur in der Existenz einer Visuali-
sierung vom Anwendungsgebiet dieser Arbeit abweichen, sondern auch darin, dass ein
Tastendruck auf einem Controller anstelle einer Geste verwendet wird um die Selektion
auszulosen. So kann der Nutzer zuerst sicherstellen, dass das korrekte Objekt im Aus-
wahlbereich ist bevor die Selektion ausgeldst sind. Der Bubble Cursor ist mechanisch auch
darauf ausgelegt diese Verifizierung zu unterstiitzen indem der Auswahlbereich angepasst
wird um optisch immer nur ein Objekt umschliefst. Indem so die Verifizierung erleich-
tert wird, wird auch die Selektion im gesamten gestérkt. Die Ergebnisse lassen jedoch
Riickschliisse darauf zu, welche Auswahl-Metriken die Erwartungshaltung des Nutzers
am besten widerspiegeln.

Wiéhrend der Naive Ray bereits die hochste Fehlerrate aller Verglichener Techniken auf-
weist, ist davon auszugehen, dass diese noch weiter ansteigt, wenn der Nutzer ohne Visua-

lisierung nicht mehr dazu in der Lage ist den spezifischen Strahl zu sehen. Die Techniken,
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2 Analyse

die das Objekt wihlen welches im kleinsten Volumen um den Zeigestrahl liegt weisen ge-
ringere Fehlerraten und auch bessere subjektive Bewertung der Nutzer auf. Zwischen den
zwei Varianten des Bubble Cursor, von denen je eine die euklidische Distanz und eine
die Winkeldistanz zwischen Zeigestrahl und Zielobjekt verwendet, ist die Performance in
fast allen Metriken zwar dhnlich jedoch leicht zugunsten der Winkeldistanz gewichtet.
In einem Testszenario indem die Ziele in verschiedenen Distanzen grob hintereinander
angeordnet waren, bevorzugte die euklidische Distanz die vorne gelegenen Zielobjekte,

womit sich die Winkeldistanz in d&hnlichen Situationen besser eignet.

2.5 Zielsetzung

Das in dieser Arbeit entwickelte Selektionserkennungs-System sollte folgende Eigenschaf-

ten erfiillen:
e Selektionen sollen zuverléssig erkannt werden.
e Um den Nutzers wahrzunehmen soll eine einzelne RGB-Kamera verwendet werden.
e Die Selektionserkennung soll im Rahmen eines Smart Home einsetzbar sein.
e Die Selektionserkennung soll in Echtzeit laufen.
e Eine Selektion sollte innerhalb einer Sekunde erkannt und registriert werden.
Folgende Annahmen werden gemacht:

e Zwischen der Selektionserkennung und der restlichen Gestensteuerung besteht eine

zuverlassige Verbindung.

e Alle steuerbaren Objekte sind so positioniert sind, dass der Nutzer nie nach hinten
zeigen muss, da die Richtung des Zeigens sonst vom Korper des Nutzers verdeckt

wird.

e Bei den steuerbaren Objekten handelt es sich um Objekte in der Gréfenordnung
eines Fensters. D.h. ihr optischer Schwerpunkt befindet sich zwischen 0,8m und

1,6m iiber dem Boden mit mindestens 1,5m zwischen zwei Objekten.

e Aus technischen Einschrankungen 3.5.1 wird davon ausgegangen, dass der Nutzer

beim Ziegen frontal zur Kamera steht.
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3 Losungsansatz

In diesem Kapitel wird das Design des Losungsansatzes beschrieben. Zuerst wird das
Gesamtkonzept beschrieben, gefolgt von der jeweiligen Methodik um die Teilprobleme
Gestenerkennung, Identifikation des Ziels und Pose Estimation zu 16sen. Zuletzt wird auf

im Vorfeld notwendige Setup Operationen eingegangen.

3.1 Gesamtkonzept

In Relation zu seiner Umwelt 3.1, hat das System zwei Kontaktpunkte. Auf der einen
Seite ist der Nutzer, der per Kamera wahrgenommen wird und eine Selektion per Geste
kommuniziert. Auf der anderen Seite steht der Manipulation Controller, der das
System beschreibt, welches den Manipulations-Befehl des Nutzers ausfithrt und dafiir
den Kontext aus der Selektion benétigt. Da sich diese Arbeit auf die Erkennung der
Selektion beschréankt, ist der Manipulation Controller auferhalb des Scopes und

wird dementsprechend gemockt.

Nachdem alle notwendigen Daten geladen wurden, erfolgt die eigentliche Selektions-
Erkennung in einem zyklischen Ablauf 3.2. Um Selektionen in Echtzeit zu erkennen wer-

den kontinuierlich Bilder von der Kamera gelesen und verarbeitet. Aus diesen Bildern

Selection Gesture
selects object by pointing Recognition

E provides contexi

¥

expresses infended acﬁon- T

Manipulation Controller

Abbildung 3.1: Systemkontextdiagramm
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3 Losungsansatz

wird zuerst die Haltung des Nutzers mittels Pose Estimation als Keypoints extrahiert.
Da mit DTW ein Klassifikationsalgorithmus verwendet wird, der vollstdndige Sequenzen
statt je einzelnen Elementen benétigt, miissen die Keypoints zwischengespeichert wer-
den. Sobald die Sequenz im Buffer die Ziellinge erreicht hat, kann klassifiziert werden ob
eine Selektionsgeste enthalten ist oder nicht.

Da davon auszugehen ist, dass die Gesten nicht erkannt werden, wenn nur ein Bruch-
stlick in der Sequenz ist, sollte der Buffer nach der Klassifikation nicht vollstdndig ent-
leert werden. Stattdessen sollten nur die dltesten Elemente entfernt werden. Indem also
iiberlappende Sequenzen klassifiziert werden, kann sichergestellt werden, dass jede Se-
lektion mindestens einmal vollstdndig in der Sequenz enthalten ist. Womit die Chance,
dass sie korrekt erkannt wird maximiert wird. Die Ziellinge der Sequenz sollte sich an
der durchschnittlichen Lénge der Zeigegesten orientieren, diese kann zusammen mit der
Mustergeste im Setup ermittelt werden. Die Anzahl der Elemente, die jeweils nach der
Klassifikation entfernt werden, kann variiert werden. Eine grofere Anzahl verringert die
Anzahl Klassifikationen, die in der selben Zeit ausgefiihrt werden miissen und reduziert
damit den Rechenaufwand. Der Preis dafiir ist jedoch, dass die Chance, dass die Selek-
tionen je nie vollstdndig in einer Sequenz auftauchen ansteigt. Eine kleinere Anzahl hat
dementsprechend den gegenteiligen Effekt.

Wenn die Klassifikation keine Selektionsgeste findet, kann mit dem néchsten Frame fort-
gefahren werden. Ansonsten muss ermittelt werden welches Objekt selektiert wird.

Bei der Identifikation des Zielobjekts muss beriicksichtigt werden, dass auch wenn die
Gestenerkennung perfekt funktioniert nicht jede erkannte Zeigegeste zur Steuerung ge-
dacht ist. Da die Klassifikation nicht in der Lage ist diese Félle auszusortieren, werden
weitere Kriterien benétigt. Eines dieser Kriterien ist, dass der Nutzer auf keines der
steuerbaren Objekt zeigt. Ebenfalls lasst sich davon ausgehen, dass die Geste nicht zur
Steuerung gedacht ist, wenn auf sie kein Manipulationsbefehl folgt. Da die Manipulation
jedoch erst im Manipulation Controller beriicksichtigt wird, kann dieses Krite-
rium erst in diesem verwendet werden. Indem zum Beispiel die Selektion nach einem
Timeout ohne Manipulation wieder verféllt.

Wenn auch ein Zielobjekt erkannt wird, muss zuletzt noch die Selektion an den Ma-
nipulation Controller iibergeben werden, bevor wieder mit dem nachsten Frame

fortgefahren wird.

Aus den drei groften Arbeitsschritten leiten sich drei der sieben Komponenten 3.3 direkt
ab. targeting umfasst die Identifikation des Zielobjekts und pose_estimation die

Pose Estimation aus den Bilddaten. Wahrend die classifier fir die Klassifikation

13



3 Losungsansatz

Video Frame lesen

FY WY

kein Zeigen ] .
erkannt Ziel auswahlen
x
¥ Buffer nicht voll
Pose Estimation Ki SE':!;'E_"Z
> assllizieren > Ziel identifizieren
Buffer voll Zeigen erkannt
x
Legende
Live-System- Zielobjekt Positionen
Schritte triangulieren
Einmalige | B —
Einrichtung

Abbildung 3.2: Flow Chart des priméren Schleife

der Sequenzen verantwortlich ist, nehmen die dazu notwendigen Vorverarbeitungsschrit-
te mit pre_processing eine eigene Komponente ein. Die Komponente setup umfasst
die Schritte im Vorfeld der Selektionserkennung um notwendige Daten wie die Orte der
steuerbaren Objekte zu ermitteln. selection_recognition beinhaltet das main-
Script und ist damit fiir die in 3.2 beschriebene Schleife zustindig. Sie verkniipft die
Funktionalitdten der restlichen Komponenten zur vollstdndigen Selektionserkennung. In
data_writer finden sich Funktionen um relevante Informationen in Dateien zu spei-
chern. Diese umfassen sowohl Performance Daten zur Auswertung als auch Pose Daten in
PoseViz (.pose) Dateien. Letztere vereinfachen die Entwicklung, da Pose Informationen
aus diesen zu lesen bedeutend schneller ist als sie jedes mal per Pose Estimation aus
Videos zu extrahieren. Diese beiden Zwecke tragen nicht zur eigentlichen Selektionser-

kennung bei, weshalb die Komponente als nicht-essentiell gilt.
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targeting o selection_recognition > classifier »  pre_processing
A A
l h 4
data_writer pose_estimation setup
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Abbildung 3.3: Komponentendiagramm
Von den sieben Komponenten ist data_writer als nicht-essentiell gekennzeichnet, da
sie nur Funktionen enthélt die die Entwicklung und Auswertung vereinfachen, nicht
jedoch zur Selektionserkennung notwendig sind.

3.1.1 Implementation

Der Prototyp wird in Python 3.10 implementiert. Das main-Script selection_reco-
gnition/selection_recognition.py implementiert die primére Schleife 3.2.
Diese Schleife arbeitet bis das Ende der Datenquelle erreicht ist. Da das System auch
damit umgehen kénnen muss, dass keine Person im Sichtfeld der Kamera ist, muss dies
beriicksichtigt werden. Der Dynamic Time Warping (DTW) Algorithmus kann nur mit
leeren Frames umgehen, wenn eine Distanzfunktion verwendet wird, die explizit darauf
ausgelegt ist nit diesen umzugehen. Stattdessen setzt die Schleife die Gestenerkennung
aus, wenn keine Person erkannt wird. Der verbliebene Inhalt des Buffers wird dafiir klas-
sifiziert und entleert sobald die Person das Sichtfeld verlésst.

Uber das gesamte System wird eine gleichmiifiige Reprisentation der Pose Sequenzen
verwendet. Dabei handelt es sich um drei dimensionale Arrays. Die erste Dimension um-
fasst die einzelnen Frames der Sequenz. Die zweite Dimension beinhaltet die Keypoints

und die letzte Dimension die Achsen der Koordinaten.

3.2 Manipulation Controller Mock

Die einzige Funktion, die der Mock bieten muss, besteht darin eine Selektion anzunehmen.

Da es sich um ein Echtzeit System handeln soll, kann angenommen werden, dass der
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3 Losungsansatz

einzige relevante Zeitpunkt einer Selektion "jetztist. Somit ldsst sich der Zeitpunkt der
Selektion implizit durch den Zeitpunkt des Funktionsaufruf angeben. Welches Objekt
Selektiert wird ist der zweite Bestandteil einer Selektion und kann per Objekt ID als

Argument tibergeben werden.

3.3 Gestenerkennung

Zur FErkennung der Zeigegeste wird ein modellbasierter Ansatz anstelle eines Beispiel-
basierten verwendet, da es sich bei letzteren um Blackboxen handelt. Modellbasierte
Ansétze erlauben es deutlich einfacher die Performance nachzuvollziechen und gezielt an-
zupassen. Spezifisch wird er DTW Algorithmus verwendet, weil bereits gezeigt wurde,
dass sich dieser gut zur Gestenerkennung auf Pose Daten eignet 2.3.2.

Anstatt DTW auf den Koordinaten der Keypoints auszufithren, werden Winkel verwen-
det. Dabei werden sowohl Winkel zwischen Korperteilen und den Achsen des Raums
verwendet, welche die Orientierung dieser Korperteile angeben, als auch Winkel an den
Gelenken zwischen den Korperteilen. Da Knochen steif sind, lasst sich die Haltung des
gesamten Korpers durch die Ausrichtung der Knochen zueinander, d.h. den Winkeln der
Gelenke, beschreiben. Der Vorteil der Winkel besteht darin, dass bei der selben Haltung
die Winkel gleich sind auch wenn zwei unterschiedlich grofse Personen sie einnehmen.
Auch der Standort und Rotation, die die Koordinaten beeinflusst haben keinen Effekt
auf die Winkel. Wahrend die Winkel also anders als die Koordinaten separat berechnet
werden miissen, sind sie von Natur aus Translation, Scale, und Rotation Invariant, was
die notwendige Vorverarbeitung reduziert.

Zur Erkennung der Geste liefert nur eine begrenzte Teilmenge der 33 MediaPipe Key-
points relevante Informationen. Anders als bei Schneider u. a. [18] sollen nur Zeigegesten
erkannt werden, womit die involvierten Kérperteile im Verhéltnis uniform sind. Anstelle
einer dynamischen Auswahl relevanter Keypoints wird deshalb auf statische Filter ge-
setzt, da immer die selben Keypoints relevant sind.

Sowohl der Butterworth als auch der Gaufs Filter kommen zur Gléattung in Frage. In Tests
3.4 hat sich gezeigt, dass beide Filter sehr dhnliche Ergebnisse in der Glattung zeigen.
Der Butterworth Filter fiigt jedoch eine kurze Verzogerung von = %s hinzu, weshalb der

Gaufsche Filter verwendet wird.
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44500 45000 45500 46000 46500 47000 47500

Abbildung 3.4: Visualisierung der Glattungsfilter
Graph der x-Koordinate des rechten kleiner-Finger-Keypoint (Nr. 18 in MediaPipe).
Der unverénderte Mediapipe Output ist in Orange, in Blau ist die mit Butterworth
gefilterte Sequenz und in Griin ist die Gaufische gefilterte Sequenz

Da mehr als ein Winkel im DTW verwendet werden, ist die Sequenz multidimensio-
nal. Die einzelnen Winkel haben keine signifikante Abhéngigkeit zueinander und sollten
dementsprechend als absolute Differenz pro Winkel in die Distanz einflieften. Deshalb
wird die Manhattan Distanz als Distanzfunktion verwendet.

Wihrend es fiir die Gestenerkennung ebenfalls moglich wére, wie bei Schneider u. a. [18]
auf allen Winkeln separat DTW zu verwenden und die durchschnittliche Distanz zu be-
stimmen, erhélt man bei dieser Methode keinen eindeutigen Warping Path, sondern je
einen unterschiedlichen pro Winkel. Da jedoch der Warping Path benétigt wird um zu

ermitteln in welchem Frame auf das Ziel gezeigt wird, ist dieser Ansatz keine Option.

Zur Gestenerkennung wird die DTWClassifier Klasse in der classifer Komponente
definiert. Sie hat abseits des Konstruktors eine 6ffentliche Methode.

e 1init_ (gestures, kp_filter, dist_function, smoothing_filter,
threshold) Der Konstruktor hat fiinf Parameter. In gestures wird eine Liste
mit allen Mustersequenzen iibergeben. Auf die Mustersequenzen werden die selben
Vorverarbeitungsschritte angewendet, die auch wahrend der Klassifikation verwen-
det werden, um die Vergleichbarkeit zu gewahrleisten. kp_filter beschreibt die
statische Auswahl Keypoints die in den Vergleich einflieflen. dist_function ist

die verwendete Distanzfunktion und smoothing_filter der verwendete Glat-
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tungsfilter. threshold ist der Distanz-Grenzwert iiber dem davon ausgegangen

wird, dass keine Geste enthalten ist.

e classify (sequence) Die Kernmethode der Gestenerkennung, klassifiziert die
Sequenz und gibt die Id der Mustergeste mit der geringsten DTW Distanz zur
Sequenz, eine Liste mit den Distanzen zu allen Mustergesten und den Warping Path
der Geste mit der geringsten Distanz zuriick. Wenn zu keiner der Mustergesten die
Distanz kleiner als threshold ist, wird sowohl fiir die Gesten Id als auch den
Warping Path None zuriickgegeben. Die Distanzen zu allen Mustergesten werden

zuriickgegeben um das Sammeln von Evaluationsdaten zu erleichtern.

Buffer

Da DTW nur vollstédndige Sequenzen vergleichen kann, der Kamerafeed aber nur einzelne
Frames nacheinander liefert, miissen diese in einem Buffer zwischengespeichert werden
bis eine ausreichend Grofie Sequenz erreicht ist. Um die Frames weiterhin in chronolo-
gischer Reihenfolge zu bearbeitet, muss der Buffer dem FIFO Prinzip folgen. Von einer
simplen Queue unterscheidet sich der Buffer daher, dass statt dem ersten Element die
ersten n Elemente als Sequenz gelesen werden. Zudem werden nicht zwingend alle n gele-
senen Elemente aus dem Buffer entfernt, sondern nur die ersten m damit die Sequenzen
iiberlappen konnen. Die Klasse WindowBuffer hat mit dem Konstruktor die folgenden
fiinf Methoden.

e init_ (window_size, step) Mit window_size wird die Lange der gele-
senen Sequenz n beschrieben also die Fenstergroffe. step beschreibt die Schritt-

weite, also die Anzahl Elemente die beim Lesen entfernt werden m.
e add (item) Diese Methode fiigt das Element item am Ende des Buffers hinzu.

e get_window () Uber diese Methode wird vom Buffer gelesen. Wie beschrieben
werden die ersten n Elemente zuriickgegeben und die ersten m entfernt. Wenn
weniger als n Elemente im Buffer enthalten sind, werden diese zuriickgegeben. Dies

beinhaltet eine leere Sequenz, wenn der Buffer leer ist.

e has_full_window () Diese Methode gibt zuriick ob der Inhalt des Buffers min-
destens so lang ist wie die Fenstergrofe n ist. Wenn dies nicht der Fall ist wird

beim lesen eine Sequenz zuriickgegeben die kiirzer als n ist.
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e clear () Diese Methode entleert den Buffer vollstdndig ohne zu lesen.

3.3.1 Vorverarbeitung

Die vier Funktionen zur Vorverarbeitung finden sich in der pre_processing Kompo-

nente.

e prepare (sequence, kp_filter, smoothing_filter) Diese Funktion biin-
delt alle folgenden Vorverarbeitungs-Funktionen. Zuerst werden die irrelevanten
Keypoints entfernt. Die Winkel werden dann auf den gegliatteten Keypoints be-

rechnet

e filter_ keypoints (kp_filter, sequence) Diese Funktion gibt eine Ko-
pie von sequence zurlick in der nur die in kp_filter angegebenen Keypoints

enthalten sind.

e smooth_sequence (sequence, smoothing_filter) Diese Funktion gibt ei-
ne mit dem Gléattungs Filter smoothing_filter geglidttete Kopie von sequence
zuriick. Die Gléttung werden dabei nur innerhalb der einzelnen Dimensionen geglét-
tet, auch wenn verwendete Filter, wie der Gauf Filter, mehrdimensionale Glattung

ermoglichen.

e calculate_angles (sequence) Fiir jedes Element von sequence werden die
Winkel zwischen den Keypoints des Elements errechnet und als neue Sequenz zu-
riickgegeben. Dabei wird angenommen, dass jeweils die Gelenkwinkel einer Glied-
mafe berechnet wird. Gliedmafen lassen sich als Reihe von verbunden Gelenken
verstehen. In der Keypoint Reprisentation einer derart abstrahierten Gliedmafe,
sind die der erste und letzte Keypoint jeweils die Anfang und Ende der Gliedmafe.
Jeder Keypoint dazwischen beschreibt eines der Gelenke. Der Gelenkwinkel fiir das
Gelenk bei Keypoint K; ist gegeben durch den Winkel zwischen den Vektoren von
Keypoint K; zu den Keypoints K;;1 und K;_1

3.3.2 Implementation
Im Prototyp wird die Implementation des DTW Algorithmus aus dem fastDTW Python

Package [22| verwendet. Wéhrend es sich hier eigentlich um eine Implementation des
FastDTW Algorithmus von Salvador und Chan [17] handelt, kann diese so konfiguriert
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Abbildung 3.5: MediaPipe Kérper Key Points
In den Keypoints der MediaPipe Pose Estimation sind die verwendeten Winkel
eingezeichnet

werden, dass reguldres DTW ausgefiihrt wird. Diese Implementation wurde gewéhlt, da
sie leicht erlaubt eigene Distanzfunktionen zu verwenden und sie das Potential bietet auf
den FastDTW Algorithmus zu wechseln, falls eine schnellere Performance bendtigt wird.
Die verwendeten Keypoints und dementsprechend Winkel, werden werden der Config Da-
tei importiert. Der Prototyp verwendet hier die Schulter, den Ellenbogen und die Hand.
Um neben dem Ellenbogenwinkel noch den Hebewinkel des Oberarms zu verwenden,
wird senkrecht unter dem Schulter-Keypoint ein Pseudokeypoint hinzugefiigt 3.5. Der
Pseudokeypoint ist eine Kopie des Schulterkeypoints mit erhéhtem y Wert. Die Winkel

der Gelenke werden wie bei der Identifikation des Ziels mit der Formel 3.1 berechnet.

3.4 Identifikation des Ziels

Nachdem erkannt wurde, dass eine Zeigegeste zur Selektion getitigt wurde, muss erkannt
werden auf welches Objekt gezeigt wurde. Dafiir kénnte man unterschiedliche Zeige-

Mustersequenzen definieren, die jeweils das Ziel beinhalten um im selben Schritt die
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Geste und das Ziel zu erkennen. Damit dieser Ansatz funktioniert muss jedoch die re-
lative Position zwischen Subjekt und Objekt konstant sein. Dazu miisste das Subjekt
immer am selben Ort stehen oder man miisste fiir jede Kombination aus Ort und Ziel
eine Mustersequenz verwenden.

Stattdessen ldsst sich die Identifikation des Objekts separat umsetzten indem basierend
auf der Position des Subjekts und der Zeigerichtung errechnet werden, welches der mog-
lichen Objekte gemeint ist.

Dafiir muss zuerst identifiziert werden, an welchem Punkt in der Sequenz die volle Zeige-
haltung eingenommen wurde und der Arm auf das Ziel zeigt. Ein Ansatz dafiir besteht
darin den Frame der Sequenz zu wéhlen, der die maximale Armstreckung aufweist. Da-
bei wére jedoch problematisch, dass der in Ruheposition hdngende Arm ebenfalls nahezu
maximal gestreckt ist und, dass dies fiir alle Frames gilt sollte der gestreckte Arm von
der Ruheposition aus der Schulter in die Zeigehaltung rotiert werden. Letzteres ist der
Grund wieso ein mindest-horizontalitidts Grenzwert nicht ausreicht um die Frames der
Zeigehaltung korrekt zu extrahieren. Ein solcher Grenzwert konnte den {iberlappenden
Bereich zwischen "leicht nach unten zeigen” und "kurz davor gerade zu zeigen" nicht
korrekt trennen.

Stattdessen lasst sich der beim DTW errechnete Warpingpath zur Identifikation verwen-
den. Der Warpingpath enthélt die Information welches Element der Sequenz dem Element
in der Mustersequenz entspricht, in dem die Zeigehaltung erreicht ist. Dies erfordert, dass
dieser Punkt in der Mustersequenz bekannt ist, was pro Mustersequenz einmalig ermit-
telt werden muss und in dieser Arbeit manuell gemacht wird.

Um aus einem Frame das Ziel des Zeigens zu errechnen, kénnen der Ausgangspunkt und
die Richtung des Zeigen durch einen Strahl definiert werden, dessen Ausgungspunkt und
Richtung durch je einen Pose Keypoint gegeben sind. Beim Zeigen mit dem gestreckten
Arm, ist dies von der Schulter durch die Hand 3.6. Wenn andere Zeigevarianten verwendet
werden, miissen andere Keypoints verwendet werden. Das konnte z.B. vom Ellenbogen
durch die Hand oder auch vom Handgelenk zur Spitze des Zeigefingers sein. Solange nur
Zeigestrahlen bendtigt sind, die sich durch existierende Pose Keypoints definieren lassen,
ist es moglich, die mit der erkannten Zeigevariante assoziierten, Keypoints dynamisch

auszuwahlen um immer den korrekten Zeigestrahl zu verwenden.

Wenn der Zeigestrahl bestimmt ist, kann mit diesem das Ziel identifiziert werden. Dazu
konnte man priifen ob der Zeigestrahl durch die Bounding Boxen der Ziele verlauft und

dann das Ziel selektieren, das sowohl durchlaufen wird als auch dem Ursprung des Zei-
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Abbildung 3.6: Visualisierung des Zeigestrahls von der Schulter durch die Hand

gestrahls am néchsten liegt.

Da jedoch alle rdumlichen Daten aufgrund der Limitationen der Pose Estimation unge-
nau sind, wére es besser eine Methode zu verwenden die dies beriicksichtigt. Eine Option
hierfiir ist es nicht mit dem reinen Zeigestrahl selbst auf Kollisionen zu priifen, sondern
einen Kegel um den Zeigestrahl zu spannen und zu priifen welche der Objekte sich in
diesem befinden. Die Spitze und Achse des Kegels sind dabei durch den Ursprung und
die Richtung des Zeigestrahls gegeben. Anders als bei der Verwendung eines Zylinders
oder eines anderen Prisma als priifendes Volumen beriicksichtigt die Verwendung eines
Kegels, dass Abweichungen in der Richtung des Strahls von der Richtung zum Ziel bei

grofieren Distanzen zu einer grofseren Entfernung zum Strahl fithren 3.7.

Wenn mit einem Volumen auf Kollision gepriift wird, ist es moglich die Zielobjekte auf
Punkte zu abstrahieren. Das hat den Vorteil, dass weder ein komplexes Mesh noch die
Bounding Box des Objekts benotigt wird. Wahrend ein Riickgang der Genauigkeit mog-
lich ist, wird in den meisten Féllen ungefdhr auf die optische Mitte des Objekts gezeigt.
Daraus ergibt sich ein Zeigeschwerpunkt des Objekts, dass wenn der Kegel ausreichend
weit ist immer in diesem liegt. Die Abstraktion auf einen Punkt kann also ausgeglichen
werden indem der Kegel weiter gedffnet wird.

Ob sich ein Punkt P in einem Kegel befindet ldsst sich dadurch bestimmen ob der Win-
kel zwischen der Kegelachse und dem Vektor von der Spitze des Kegels zu P kleiner ist

als der halbe Offnungswinkel des Kegels. Bei einem Winkel mit begrenzter Hohe miisste
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Abbildung 3.7: Zeigestrahl-Kegel Diagramm
Auf 2 Dimensionen reduzierte Abbildung des Zeigestrahls [OD und dessen
umspannednen Kegels, sowie der Richtung zum Ziel OT. Die Parallele || [OD ist
eingezeichnet, um zu visualieren, dass ab P das Ziel bei Verwendung eines Zylinders

nicht mehr erkannt werden wiirde, wihrend der Abweichungswinkel zwischen OT und
|OD gleich bleibt.

zwar noch bestimmt werden, ob der Punkt von der Spitze aus hinter der Grundflache
liegt, aber da von einem Zeigestrahl und keiner Zeigestrecke ausgegangen wird, ist dieses
Kriterium unwichtig. Der halbe Offnungswinkel ist bei dieser Methode die Stellschraube

um den Grad der Toleranz an die bestehende Ungenauigkeit anzupassen.

Zur Zielerkennung wird die Klasse Targeting definiert, die neben dem Konstruktor
eine Methode hat.

e  init_ (targets, angle) Da die Menge der steuerbaren Objekte wahrend
der Laufzeit konstant bleibt, kann sie in targets dem Konstruktor iibergeben und
als Attribut gespeichert werden. angle beschreibt den halben Offnungswinkel des

Kegels, der um den Zeigestrahl gespannt wird.

e find_target (origin, direction) Diese Methode erhélt den Zeigestrahl in
Form von zwei Punkten. Der Strahl beginnt am Punkt origin und verlduft durch
direction. Die Methode gibt die ID des Zielobjekts zuriick, welches sowohl im
Kegel um den Zeigestrahl liegt und den kleinsten Winkel zu diesem aufweist. Wenn

keines der Objekte im Kegel liegt, wird None zuriickgegeben.
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3.4.1 Implementation

Der Winkel zwischen der Kegelachse und dem Vektor von der Spitze des Kegels zum
Punkt, lasst sich wie alle Winkel zwischen zwei Vektoren mit der Formel 3.1 berechnen.
Da diese Formel sowohl zur Identifikation des Ziels als auch in der Gestenerkennung ver-
wendet wird, wird die Funktion calculate_angle (vector_a, vector_b, get_-
degrees aufterhalb der beiden Komponenten in der Datei util.py implementiert.
get_degrees gibt an ob der Winkel als Cosinus Wert oder in Grad zuriickgegeben

wird.

l
S

cosa = % (3.1)
@l x [b]

3.5 Pose Estimation

Wihrend die 2D Pose Estimation von Modellen wie OpenPose zur Gestenerkennung
ausreicht, bendtigt die Identifikation des Ziels die dreidimensionale Haltung zur geome-
trischen Analyse. OpenPose bendtigt zur 3D Pose Estimation mehr als eine Kameraper-
spektive und ist damit nicht fiir dieses Projekt geeignet. MediaPipe gibt die Haltung in
3D an, vernachléssigt jedoch die Position im Raum. Obwohl die Position noch zusétzlich
errechnet werden muss, erfiillt MediaPipe die meisten Anforderungen und wird deshalb
verwendet.

Der MediaPipe Landmarker hat drei Betriebsmodi. Einen fiir Bilder und je einen synchro-
nen und einen asynchronen fiir Videos. Der in dieser Arbeit erstellte Prototyp verwendet
den synchronen Videobetriebsmodus, da sich dieser simpler in den Programmfluss einfii-
gen lésst.

Um Haltungsdaten aus Videos und PoseViz-Dateien zu lesen sowie in der Lage zu sein das
verwendete Pose Estimation Modell zu wechseln ohne Anderungen an der restlichen Pro-
jektstruktur vorzunehmen, wird das pose_loader Interface definiert. Dieses besteht

aus finf Funktionen.

e get_pose_data_source (source) Diese statische Funktion identifiziert die Art
der Quelle und gibt eine initialisierte Instanz der zugehérigen Implementation zu-

riick.
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e get_next_frame () Diese Methode gibt die Haltung der Person im néchsten
Frame in Form einer Mx3 Matrix zuriick. Die Grofe de Matrix ergibt sich aus
der Anzahl Keypoints der verwendeten Pose Estimation und den drei rdumlichen

Achsen der Koordinaten.

e is_opened () Diese Methode gibt zuriick ob von der Quelle weitere Frames ge-
lesen werden konnen. Sie gibt False zurilick, wenn entweder das Ende der Quelle
erreicht ist oder sie geschlossen wurde. Sie wird als Ausstiegskondition in der Pri-

maren Schleife verwendet.

e close () Diese Methode schliefst die Quelle um verkniipfte Ressourcen wie Kame-

ras wieder freizugeben.

e get_ms_per_frame () Diese Methode gibt den Zeitabstand zwischen den Frames

in Millisekunden zurtick.

In der Implementation wird die eigentliche Pose Estimation in get_next_frame ()
iiber eine Instanz der MPLandmarker Klasse ausgefithrt. MPLanddmarker ist ein Wrap-
per fiir die MediaPipe eigenen Objekte um die Umwandlung zwischen MediaPipe und
Projekt Datentypen zu kapseln.

3.5.1 Ortsschitzung

Der Ort der Person kann aus der Grofe und Position im Bild bestimmt werden. Diese
lassen sich aus MediaPipes Image Coordinates errechnen. Wie bereits in der Analyse 2.2.1
beschrieben, kann der 2. Strahlensatz dazu verwendet werden die Distanz der Person zur
Kamera d., zu bestimmen. Diese Distanz beschreibt die z Koordinate des Orts der Person.
Dazu wird eine bekannte Grofe benotigt, die in der realen Welt konstant groft bleibt und
zumindest zum Zeitpunkt der Selektion sichtbar ist. Es wurde keine Grofe gefunden die
immer gut sichtbar ist. Die Korpergrofe/Hohe scheidet aus, weil die Fiifle leicht hinter
Mobeln verdeckt sind. Die Arme die zwar beim Zeigen zwingend sichtbar sein miissen,
sind oft Richtung Kamera gestreckt und so maximal perspektivisch verkiirzt. Die Wahl
fallt deshalb auf die Schulterbreite, da diese zumindest wenn die Person zum Zeigen
frontal zur Kamera steht, gut sichtbar sind.

Da Wohnraume in der Regel einen ebenen Boden haben, wird angenommen, dass sich
der Nutzer auf einer konstanten Hohe bewegt, die nicht ndher geschatzt werden muss.

Zuletzt wird noch die links/rechts Abweichung von der Bildachse, also die x Koordinate
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des Orts benétigt. Gunerli [7] bestimmt diese indem zuerst das Verhéltnis dp, zwischen
Pixeln im Bild und der realen Entfernung bei der errechneten Distanz d, bestimmt. Sie
wird durch die Funktion 3.2 bestimmt. Dazu wird ebenfalls der FOV-Winkel der Kamera
FOV und die Bildbreite in Pixeln w; benétigt.

_ tan(F(Q)V) * 2 % dep

dpp = (3.2)

Wi

dpp kann dann mit der horizontalen Distanz im Bild zwischen der Person und dem Mit-
telpunkt des Bildes in Pixeln multipliziert werden um die reale horizontale Verschiebung
dqp zu bestimmen.

dap
Der resultierende Ortsvektor | 0 | kann auf die World Coordinates addiert werden um

dep
Haltung und Position zu vereinen. Die World Coordinates sind dafiir besser geeignet, da

sie anders als die Image Coordinates nicht die Bildposition enthalten und sie unabhéngig

der Distanz der Person gleich grof sind.

3.5.2 Implementation
Die Bilder werden mit der opencv-python Bibliothek geladen und mit der ’light’ Variante
des MediaPipe Landmarkers verarbeitet. Die Ortsschidtzung verwendet die Implementa-

tion von Gunerli [7]|. Anstatt die Brennweite aus der Auflgsung und dem Sichtfeld (FOV)

zu berechnen, wurde sie per Kamera Kalibrierung ermittelt.

3.6 Setup

Die Identifikation des Ziels benotigt die Koordinaten der moglichen Ziele und die Ges-
tenerkennung bendtigt Mustergesten, die die Gesten jeweils gut reprasentieren. Diese zu

ermitteln ist Auffgabe der Kompnente setup.

3.6.1 Koordinaten der Zielobjekte

Die simpelste Methode um zu ermitteln wo sich die Zielobjekte befinden besteht darin

den realen Raum und damit die Koordinaten manuell auszumessen. Dieser Ansatz funk-
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tioniert jedoch nur, wenn die Pose Estimation die rdumlichen Dimensionen zuverlassig
abbildet. Wenn aber der virtuelle Raum eine andere potentiell unbekannte Grofe be-
sitzt, schldgt dies fehl. Es ist jedoch auch gar nicht notwendig die realen Koordinaten
der Objekte zu kennen, da es ausreicht repriasentative Koordinaten zu haben, die bei der
Identifikation des Ziels korrekte Ergebnisse liefern. Es kann also aus einer Menge Zeige-
strahlen zu einem Objekt eine repréasentative Koordinate trianguliert werden, indem der
Punkt, an dem sich die Strahlen am nichsten kommen, berechnet wird. Dazu werden
zuerst, die ndchsten Punkte zwischen allen Paaren der Zeigestrahlen bestimmt. Der Mit-
telpunkt dieser nachsten Punkte wird als représentative Koordinate gewéhlt.

Wenn zwei Strahlen gegeben sind von denen einer von Punkt A in Richtung @ und der
andere von Punkt B in Richtung b verlduft, lasst sich der ndchste Punkt zwischen diesen
mit den Formeln 3.3 errechnen [14]. & beschreibt hier den Vektor zwischen A und B. D
und E beschreiben jeweils den Punkt auf dem jeweils ersten und zweiten Strahl an dem

dieser dem anderen am néchsten kommt. Der nichste Punkt zwischen den Strahlen ist

dementsprechend #.
potsq DO 4@ 06D
Ea _’a)gb- ) — Sa'b)ga -_’b) (3.3)
o I ) I A el G (CAL)
- ab-b)—(a-b)a-b)

3.6.2 Optimale Mustergeste

Der Zweck einer Mustergeste besteht darin durch ihre Ahnlichkeit zu anderen Instanzen
der selben Geste zu bestimmen ob es sich bei einer Sequenz um die selbe Geste handelt.
Dementsprechend ist eine gute Mustergeste allen anderen Instanzen der Geste moglichst
ghnlich.

Die Ahnlichkeitsmetrik ist dabei die selbe, wie wihrend der Klassifikation also die DTW
Distanz. Aus einer Menge moglicher Mustergesten kann die beste dadurch bestimmt
werden, dass DTW zwischen allen Mustergesten der selben Geste durchgefiihrt wird. Die

beste Mustergeste ist dann die mit der kleinsten durchschnittlichen Distanz.
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4.1 Versuchsaufbau

Um das System zu testen wurden in einem Versuchsaufbau einige Selektionen ausge-
flihrt. Die Selektionserkennung wurde dabei auf einem HP Envy x360 Laptop mit einer
2.40GHz Intel i5 CPU und 16GB RAM ausgefiihrt. Die Webcam des Geréts wurde dabei
als Kamera verwendet. Dazu wurde das Gerét auf einem 120cm hohen Sockel aufgestellt
und so ausgerichtet, dass die Kamera horizontal in den Raum zeigt. Die Kamera nimmt
mit einer Auflésung von 720p und einer Framerate von 30fps auf.

Der Versuchsaufbau 4.1 umfasst dabei drei Ziele LW, RW und FT. LW und RW sind zwei
115cm breite und 155¢cm hohe Fenster. Sie befinden sich 90cm iiber dem Boden und sind
70cm von einander entfernt. FT ist ein ungefdhr 40cm x 30cm x 30cm groftes Objekt,
das 3m von RW entfernt auf einem 120cm hohen Sockel steht.

Der Versuchsaufbau wurde im Living Place Labor der HAW-Hamburg erstellt. Bei diesem
handelt es sich um ein Testlabor fiir Smart Home Anwendungen womit es die Bedingun-
gen eines Smart Home widerspiegelt.

Zur Triangulation der reprasentativen Koordinaten 3.6.1 der Zielobjekte wurde auf jedes
Objekt von vier Standpunkten aus gezeigt. Fiir alle Objekte wurden die selben Stand-
punkte verwendet. Der Mittlere der Standpunkte ist 300cm vom Sockel der Kamera
entfernt. Die weiteren Standpunkte befinden sich in Relation zu diesem je 120cm links,
60cm rechts und 120cm naher an der Kamera.

Innerhalb des Versuchsaufbaus wurden auch sechs mogliche Mustergesten aufgenommen.
Bei der Aufnahme dieser wurde nicht explizit auf die Zielobjekte gezeigt um sicherzu-
stellen, dass die Mustergesten moglichst allgemein sind. Die Mustergesten wurden so
geschnitten, dass sie mit der Bewegung anfangen und enden.

Um mehr als einen Test auf den selben Daten ausfiihren zu kénnen, wurden die Selek-
tionen als Video aufgenommen. In diesem wird aus fiinf verschiedenen Standpunkten

jedes Ziel einmal selektiert. Damit wurden innerhalb von 128s 15 Selektionen ausgefiihrt.
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Abbildung 4.1: Versuchsaufbau
Diagramm der Draufsicht des Versuchsaufbau. Eingezeichnet sind die Positionen der
Zielobjekte (blaue Marker), die Triangulations-Standpunkte (rote Kreuze), der Bereich
aus dem die Selektionen ausgefiihrt wurden (griin gestrichelt) die Kamera, die gerade
nach unten zeigt. Die Skala des Diagramms betragt 60cm pro Késtchen.

Um die Auswertung zu vereinfachen wurden die Ziele jeweils in der selben Reihenfolge
selektiert. Die Reihenfolge ist FT, LW und zuletzt RW. Damit zwischen den Selektionen
wieder die Ruheposition eingenommen wurde, wurde nach jeder Selektion kurz gewartet.
Zwischen den Selektionen wurden andere Bewegungen wie Strecken oder Winken ausge-
fiihrt. Sowohl die Mustergesten als auch die Selektionen wurden mit Zeigegesten aus dem
ganzen Arm 2.1 ausgefiihrt.

Fiir alle Test wurde die Fenstergrofe des Buffers basierend auf der Lange der zwei besten

Mustersequenzen auf 65 Frames gesetzt.

4.2 Laufzeitmessungen

Die erste untersuchte Metrik ist die Laufzeit. Damit die Selektion in Echtzeit l&uft ist
es notwendig, dass die Schleife in der die Daten verarbeitet werden, diese mindestens so
schnell verarbeitet wie sie entstehen. Das Laden der Mustergesten und anderer Daten
vor der Verarbeitungsschleife haben keinen Einfluss auf die Verarbeitungsgeschwindig-

keit. Die Zeitmessung beginnt deshalb mit der Schleife.
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Pose Estiamtion +Gestenerkennung -+Zielerkennung
Mittelwert 16,25 45,314 45,745
Standartabweichung 0,294 0,668 0,277

Tabelle 4.1: Laufzeit Messergebnisse in ms
Alle Messungen wurden auf dem im Versuchsaufbau aufgenommenen Video je drei mal
ausgefiihrt. Die Ergebnisse in dieser Tabelle sind auf die dritte Nachkommastelle
gerundet. Die Werte beschreiben die Laufzeit pro Frame des Videos in Millisekunden.

Indem die Zeit bis das gesamte Video verarbeitet wird gemessen und durch die Anzahl
Frames geteilt wird, kann die durchschnittliche Verarbeitungszeit pro Frame bestimmt
werden. Bei einer Framerate von 30fps vergehen zwischen jedem Frame 33,333ms, die
genutzt werden kénnen bevor die Verarbeitung langsamer als die Kamera wird.

Um den Einfluss der einzelnen Komponenten auf die Laufzeit beurteilen zu kénnen, wur-
den drei Konfigurationen vermessen, die progressiv weiter Komponenten verwenden. In
der ersten wird nur die Pose Estimation mit Ortsschidtzung ausgefiithrt. In der zweiten
wird zusétzlich die Gestenerkennung ausgefiihrt. In der letzten wird auch die Identifikati-
on des Ziels ausgefiihrt. Bei Gestenerkennung werden hier zwei Mustergesten verwendet.
Die Schrittweite des Buffers ist hier 1. Das heifit, dass die Gesten- und Zielerkennung fiir

jeden Frame ausgefiihrt werden.

4.2.1 Ergebnisse

Aus den Differenzen der Laufzeit 4.1 zwischen den Konfigurationen lassen sich die Lauf-
zeiten der einzelnen Komponenten errechnen. Die Pose Estimation die fiir sich Vermessen
wurde bendtigt 16, 25ms. Die Gestenerkennung bendtigt demnach 45, 314ms—16, 25ms =
29,064ms und die Identifikation des Ziels 45, 745ms — 45,314ms = 0,431ms.

Die Vollstandige Verarbeitungszeit von 45,745ms ist iiber der Echtzeitgrenze von 33,333ms
und muss dementsprechend gesenkt damit das System in Echtzeit laufen kann. Der Ein-
fluss der Pose Estimation kann nur reduziert werden indem die Framerate der Aufnahme
gesenkt wird. Zu beachten ist auch, dass die Identifikation des Ziels wihrend der Se-
lektionserkennung, anders als bei dieser Messung nur eingesetzt wird wenn Erfolgreich
eine Geste erkannt wird, was in einem Bruchteil der Frames der Fall sein sollte. Damit
sinkt ihr bereits minimaler Einfluss auf die Laufzeit. Zudem macht es keinen Sinn die
Héaufigkeit de Zielerkennung allein kiinstlich zu senken, da eine entdeckte Geste ohne

das Ziel der Selektion nutzlos ist. Stattdessen kann der Einfluss der Gestenerkennung
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reduziert werden. Da die verwendeten Mustersequenzen ungefahr gleich lang sind, kann
davon ausgegangen werden, dass sie gleichméfig zur Laufzeit beitragen. Die Laufzeit der
Gestenerkennung kann also halbiert werden indem entweder nur eine der Mustergesten
verwendet wird, oder, wenn beide notwendig sind, indem die Schrittweite auf 2 verdoppelt
wird. Eine Schrittweite von 2 wiirde verursachen, dass die Gestenerkennung halb so oft
eingesetzt wird, was auch die Haufigkeit der Zielerkennung reduzieren wiirde. Die Lauf-
zeit der Gestenerkennung auf 17,532 zu halbieren wiirde die Gesamtlaufzeit bereits auf
28,213 reduzieren. Damit kann festgehalten werden, dass das System in Echtzeit 1auft,
wenn die Schrittweite der Anzahl Mustergesten entspricht. Zumindest wenn die restli-
chen Einflussfaktoren wie die Fenstergrofte des Buffers oder die Lange der Mustergesten

unverandert bleiben.

4.3 Zuverlassigkeit der Selektionserkennung

Die Zuverlassigkeit der Selektionserkennung ergibt sich aus der Zuverlassigkeit ihrer Teile,
also der Gestenerkennung und der Identifikation des Ziels. Beide Systeme funktionieren
mit dem Prinzip den 1-Nearest-Neighbour aus einer Menge zu identifizieren. Dieser wird
basierend auf je einer Metrik mit einem Cutoff-Threshold gewahlt.

Da der der optimale Threshold experimentell bestimmt werden muss, wird die Zuverlas-
sigkeit der Gestenerkennung daran gemessen, ob ein Threshold so definiert werden kann,
dass alle Zeigegesten und nur diese den Threshold erfiillen. Da bereits angenommen wird,
dass eine Selektion ausgefiihrt wird, wenn das Ziel identifiziert wird, ist der Threshold
weniger wichtig, als dass das korrekte Ziel den besten Wert in der Metrik erhélt.

In beiden Féllen sind die Werte der jeweiligen Metrik zur Bewertung notwendig. Da die
Laufzeit beim Sammeln dieser Daten keine Rolle spielt, wird die Schrittweite des Buffers
auf 1 gesetzt um die Werte der Metriken moglichst oft zu bestimmen. Zudem wird das
Zielobjekt nach jeder Gestenerkennung bestimmt, unabhéngig vom Resultat letzterer. So
wird der Einfluss der Gestenerkennung auf die Bewertung der Zielerkennung minimiert.
Ein gewisser Einfluss bleibt natiirlich, da der Warping Path der Gestenerkennung zur

Zielerkennung verwendet wird.
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Abbildung 4.2: Graph der DTW Distanz aus der Gestenerkennung
Dieser Graph zeigt die DTW Distanz iiber die gesamte Aufnahme aus dem
Versuchsaufbau. Die x Achse beschreibt den Zeitpunkt in der Aufnahme in Frames. Um
zu markieren wann eine Selektionsgeste ausgefithrt wurde, wurde die Enden der Gesten
manuell bestimmt und die Lénge eines Buffer Fensters vor den Enden leicht rot
eingeférbt.

4.3.1 Gestenerkennungs Ergebnisse

Da die DTW Distanz kleiner wird je mehr zwei Sequenzen sich &hneln, ist es positiv zu
beobachten, dass die Distanz bei 11 der zwolf Selektionen merklich sinkt 4.2. Die Zeige-
geste bei Frame 1530, die eine ungewohnlich hohe Distanz verursacht hat, kennzeichnet
sich dadurch, dass die zweite Phase des Zeigens 2.1 deutlich ldnger gehalten wurde als
in den anderen Féllen. Die niedrige Distanz ohne Zeigen bei Frame 2200 trifft auf als
gewunken wurde. Wéahrend sich Zeigen und Winken darin dhneln, dass der Arm aus
der Schulter gehoben wird. Die fiirs Winken charakteristische Seitwirtsbewegung éndert
weder den Hebewinkel des Oberarms noch den Winkel am Ellenbogen und wird dement-
sprechend in der Gestenerkennung nicht wahrgenommen. Wahrend zusétzliche Winkel,
die die Orientierung des Arms in der horizontalen Ebene angeben, die Rotationsinvarianz
widersprechen wiirden, konnte in zukiinftiger Weiterentwicklung untersucht werden, ob
die Verwendung der Anderungsrate der Winkel statt ihrer absoluten Werte diesen Wi-
derspruch beheben konnte.

Wahrend ein niedrigerer Threshold von 11,8 einen False-Positve in diesem Fall ver-
hindern konnte, ist die Distanz so klein wie bei einigen korrekten Gesten, sodass ein
geringerer Threshold neue False-Negatives 4.3 verursachen wiirde. Wenn es im Anwen-
dungsfall nicht besonders wichtig ist die Anzahl False-Positives zu minimieren sollte statt

einem Threshold von 11,8 mit einer Accuracy von 0,75 ein Threshold von 17 verwendet
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Abbildung 4.3: DTW Distanzen mit moéglichen Grenzwerten
In diesem Ausschnitt des Distanz Graphs 4.2 werden zwei mdogliche Cutoff Thresholds
gezeigt. Ein Threshold von 17 wiirde je einen False-Positve und False-Negative sowie 11
True-Positives erzeugen. Ein Threshold von 11,8 wiirde den False-Positive entfernen. Es
wiirde jedoch auch die Anzahl False-Negatives auf Kosten der True-Positives erhéhen.
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werden, der eine Accuracy von 0,875 hat.

Es ist ebenfalls zu beobachten, dass die Fille in denen der Tiefpunkt der Distanz 10
Frames oder weniger vor dem manuell bestimmten Ende der Geste auftritt, zu geringe-
ren Distanzen tendieren als die Fille in denen der Tiefpunkt frither erreicht wird. Eine
mogliche Erklarung dafiir ist, dass bei letzteren die Geste langsamer ausgefiihrt wurde
und somit immer mindestens ein Ende der Geste nicht Teil der verglichenen Sequenz ist.
Bei einem Threshold von 17 wird dieser in allen korrekten Féllen vor Ende der Geste un-
terschritten und fiir mindestens 5 Frames am Stiick. Das heifst, dass die gestenerkennung
alle fiinf Frames ausgefiihrt werden kénnte ohne Selektionen zu verlieren und, dass die

Selektion aus Wahrnehmung des Nutzers ohne Zeitverzogerung registriert wird.

Bei den Winkel zu den jeweiligen Zielobjekten wahrend der Zielerkennung 4.4 féllt auf,
dass sich die Winkel sprunghaft von einem Frame Frame zum néchsten verdndern. Dabei
wird von 90° was in der Ruheposition erwartet wird, direkt auf unter 20° gesprungen.
Wenn der Zeigestrahl naiv jeweils aus dem néchsten Frame erstellt wird, wére davon aus-
zugehen, dass die Winkel gleichméfig mit dem Anheben des Arm sinken. Es kann folglich
davon ausgegangen werden, dass die Auswahl des Zeige-Frames iiber den Warping Path
wie geplant funktioniert. Wenn sie funktioniert wiirde schlieflich erwartet werden, dass
sobald der korrekte in der Sequenz ist dieser erkannt wird und der Winkel springend
sinkt. Der kleine Winkel wiirde dann konstant bleiben, bis der korrekte Zeigeframe die
Sequenz wieder verlisst. Dieses Verhalten wird im Graph gezeigt.

Ein Winkel Threshold von 25° wiirde alle korrekt erkannten Ziele umfassen. Dieser
Threshold wiirde ebenfalls verhindern, dass das Winken bei Frame 2200 zu einer Selek-
tion fithrt auch wenn der Threshold von 17 bei der Gestenerkennung verwendet wird.
Wiéhrend die Zielobjekte FT und LW immer die kleinsten Winkel aufweisen, wenn sie
selektiert werden sollen, hat RW nur in 40% der Falle den kleinsten Winkel. In den
restlichen Féllen wird félschlicherweise LW ausgewé#hlt. Auch in der Triangulation der
Koordinaten fiel auf, dass die meisten der Zeigstrahlen zu RW sich bereits von ihrem
Ursprung aus voneinander entfernt haben. Eine mogliche Erklarung dafiir ist, dass das
die Dimensionen in der Ortsschidtzung und der Haltung aus MediaPipe nicht gleich grofs
sind. Dies konnte dazu fithren, dass die Strahlen nicht zu einem Punkt konvergieren.
Dass RW am néchsten hinter der Kamera liegt unterscheidet es am starksten von den
seitlicher gelegenen Objekten FT und LW und ist wahrscheinlich ein Teil des Grundes.
Die Identifikation des Ziels hat also mit drei Fehlern bei RW und insgesamt 15 Selektio-

nen eine Accuracy von 0,8.
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Abbildung 4.4: Graph der Winkel zwischen den Zeigestrahlen und den Zielobjekten
Gezeigt werden die Winkel zwischen den Zeigestrahlen und den Zielobjekten iiber die
gesamte Aufnahme aus dem Versuchsaufbau. Die Winkel sind an der y Achse in Grad

angegeben, die Position in der Sequenz an der x Achse in Frames. Die vertikal
markierten Bereiche zeigen die manuell bestimmte Position der Selektionen. Sie sind in
der selben Farbe des korrekten Objekts eingezeichnet.

In Kombination wiirden mit einem Gestenerkennungs Threshold von 17 und einem Win-
kel Threshold von 25 von den 15 Selektionen 11 korrekt erkannt. 3 wiirden das falsche
Objekt selektieren und eine wiirde gar nicht registriert werden. Das ergibt eine gesamte

Accuracy von 0, 73.

4.4 Fazit

Der Entwickelte Prototyp demonstriert, dass der Losungsansatz Potential hat. Die Selek-
tion funktioniert mit einer Accuracy von 0, 73. 20% der Fehler treten bei der Identifikation
eines Zielobjekts auf, sodass wenn das unterliegende Problem ermittelt und behoben wird
die Accuracy 0,93 steigen wiirde. Die Ergebnisse zeigen auch, dass der Prototyp bis zu
5 verschiedene Mustergesten in Echtzeit erkennen konnte. Das Ziel einer Reaktionszeit
von unter einer Sekunde wurde ebenfalls erfiillt, da die Selektion bereits erfasst ist, wenn

der Nutzer wieder die Ruheposition erreicht hat.
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5 Ausblick

Wie bereits im Fazit erwéhnt, sollte in weiterfithrender Arbeit die Ursache fiir falsche
Identifikation des Zielobjekts ermittelt werden. Sollte die Ursache wirklich in einer Dif-
ferenz zwischen Pose Estimation und Ortsschéatzung liegen, konnte dies ein anderes Pose
Estimation Modell erfordern. Das neue Modell miisste in dem Fall native Ortsschiatzung
enthalten. Sollte dies mit einzelnen RGB-Kameras nicht méglich sein, sollte die Verwen-
dung spezilaisierter Hardware das Problem beseitigen.

Um die Ortsschétzung zu verbesssern, kdnnte auch untersucht werden ob multiple Refern-
zwerte gleichzeitig verwendet werden kénnen. Dafiir konnte der Refernzwert dynamisch
aus einer Menge ausgewéahlt werden, der zur Bildebene am parallesten orientiert ist. Dies
konnte die Bedingung, dass der Nutzer gerade zur Kamera steht unnotig machen.
Wenn die Selektionserkennung eine ausreichende Qualitét erreicht hat, liegt es nahe eine
Manipulationsgestenerkennung zu entwickeln um die Gestensterterung zu vervollstandi-

gen.
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