BACHELORARBEIT

Performance -
Optimierung
von Datenbanken

vorgelegt am 13. Marz 2025
Daniel Freire Mendes

Erstpruferin: Prof. Dr. Stefan Sarstedt
Zweitprufer: Prof. Dr. Olaf Zukunft

HOCHSCHULE FUR ANGEWANDTE
WISSENSCHAFTEN HAMBURG
Department Informatik

Berliner Tor 7

20099 Hamburg

HAW
HAMBURG

Zusammenfassung

Relationale Datenbanken sind ein essenzieller Bestandteil moderner IT-Systeme und bilden
die Grundlage fiir zahlreiche Anwendungen, die taglich von Millionen von Nutzern verwen-
det werden. Mit wachsender Datenmenge steigen jedoch die Antwortzeiten von Abfragen,
was die Systemnutzung erschwert. Die Herausforderung besteht darin, geeignete Optimie-
rungsstrategien zu finden, die sowohl Lese- als auch Schreiboperationen effizient gestalten
und eine hohe Skalierbarkeit gewahrleisten. Diese Arbeit untersucht verschiedene Ansatze
zur Optimierung der Performance, darunter Datentypen, Indexierung, Views, Partitionierung
und Replikation. Zur Analyse der Auswirkungen dieser Methoden wird das Tool Sysbench fiir
Leistungsmessungen eingesetzt. Die Ergebnisse zeigen, dass die Wahl des kleinstmoglichen
Datentyps und die Verwendung von Not Null-Spalten die Effizienz verbessern, indem sie
Speicherplatz sparen. Hash-Indizes sind besonders bei exakten Schliisselvergleichen effektiv,
wohingegen B-Baum-Indizes vielseitigere Einsatzmoglichkeiten bieten. Materialisierte Sich-
ten bieten Performancevorteile durch gespeicherte Abfrageergebnisse, im Gegensatz dazu
liefern virtuelle Sichten Echtzeitdaten, miissen jedoch bei jedem Zugriff die Abfrage neu
ausfithren und sind daher langsamer. Bei grofien Datenmengen kann Partitionierung eine
effektive Losung darstellen, wahrend Replikation die Lastverteilung insbesondere bei hoher
CPU-Last verbessert. Es gibt keine universelle Losung, aber je nach Anwendungsfall kénnen
geeignete Konzepte ausgewahlt, optimiert und auch miteinander kombiniert werden.

Abstract

Relational databases are an essential component of modern IT systems and form the founda-
tion for numerous applications used daily by millions of users. However, as data volumes
grow, query response times increase, making system usage more challenging. The challenge
lies in identifying suitable optimization strategies that make both read and write operations
efficient while ensuring high scalability. This paper examines various approaches to per-
formance optimization, including data types, indexing, views, partitioning and replication.
The impact of these methods is analyzed through benchmarking with the Sysbench tool.
The results show that choosing the smallest possible data type and using Not Null columns
optimizes performance by saving storage space. Hash indexes are particularly effective for
exact key comparisons, while B-tree indexes offer more versatile applications. Materialized
views provide performance benefits by storing query results, whereas virtual views deliver
real-time data but execute the query anew with each access, making them slower. For large
datasets, partitioning can be an effective solution, with replication improving load distribu-
tion, especially under high CPU load. There is no universal solution, but depending on the
use case, suitable concepts can be selected, optimized and even combined.

Inhaltsverzeichnis

Abbildungsverzeichnis

1 Einleitung

1.1 Benchmarks
1.2 Kennzahlen.
1.3 Auswahlder Tools

2 Grundlagen

2.1 Uberblick iiber die Tools
2.2 Projektaufbau
23 GitHub Actions e
2.4 Optimierung des Workflows

3 Optimierungen von Datentypen

3.1 Allgemeine Faktoren
3.2 Funktionsweise individueller Datentypen
3.3 Analyseder Benchmarks
4 Indizes
41 Grundlagen
42 B-Baum-Index
43 Hash-Index
44 Vergleich zwischen B-Tree- und Hash-Index
5 Views
51 Virtuelle Views o Lo
5.2 Materialisierte Views L o
5.3 Durchfithrung der Benchmarks

6 Partitionen

6.1 Grundlagen
6.2 Partitionierungstypen L L L
6.3 Auswertung der Benchmarks oL

W e -

N

10
18
21

23
23
24
27

29
29
32
36
39

40
40
44
48

7 Replikation

7.1 Grundlagen

7.2 Konfiguration der Master-Replika-Architektur

7.3 Untersuchung der Replikation
8 Fazit
Literatur

Anhang

I

60
60
64
66

70

73

75

Abbildungsverzeichnis

2.1
2.2
2.3

3.1
3.2
33

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2

6.1
6.2
6.3

7.1
7.2
7.3
7.4

Demo: Gnuplotvs.Pandas,
Join-Typ: Skriptvergleich
Join-Typ: Metrikvergleich

Datentypen: Vergleich mit Not Null, sowie Int und Char
Datentypen: Numerische Datentypen
Datentypen: Zeichenkettenbasierte Typen

Bindrbaum-Visualisierung L
B-Tree-Indexing: Mit Index vs Ohne
B-Tree-Indexing: Unterschiedliche Selects mit Index und Ohne
Hash-Indexing: Auswirkungen von Hashkollisionen
Hash-Indexing: Unterschiedliche Abfragen mit Index und Ohne
Indexing: Vergleich von B-Tree- und Hash-Index

Views: Keine View, virtuelle View und Ansatz mit Triggern
Views: Beide Triggeransitze sowie materialisierte Sicht

Range-Partitionierung: Unterschiedliche Selects mit und ohne Partition . . .
List-Partitionierung: Unterschiedliche Abfragen mit und ohne Partition . . .
Hash-Partitionierung: Variationen der Partitionsanzahl

Master-Replikat-Visualisierung
Replikation: Master-Replikat-Ansatz vs Single-Server
Replikation: Threadanzahl aufgeteilt an Master-Replikate
Replikation: Unterschiedliche Binlog-Typen

111

17
18

27
28
28

33
34
35
38
38
39

1 Einleitung

Diese Bachelorarbeit untersucht verschiedene Datenbankobjekte in relationalen Datenban-
ken. Dabei werden zunéchst die einzelnen Konzepte detailliert erlautert, bevor ihre praktische
Umsetzung in einem Datenbankmanagementsystem erfolgt. Um die Effizienz der verschiede-
nen Implementierungen bewerten zu konnen, wird eine geeignete Messmethode benétigt.
Dafiir sind Benchmarks das optimale Werkzeug. Anhand der Benchmark-Ergebnisse lassen
sich Riickschliisse auf die Leistungsfahigkeit der untersuchten Ansatze ziehen. Dieses Kapitel
behandelt die Grundlagen und Typen von Benchmarks, die relevanten Kennzahlen sowie die
Auswahl geeigneter Tools fir eine korrekte Durchfithrung.

1.1 Benchmarks

Benchmarks dienen dazu, das Verhalten eines Systems unter Last praktisch und effektiv zu
untersuchen. Die wichtigste Erkenntnis, die aus Benchmarks gewonnen werden kann, ist die
Identifikation von Problemen und Fehlern, die systematisch dokumentiert und nach Prioritat
bearbeitet werden sollten. Zudem kann analysiert werden, wie sich das System sowohl
unter aktuellen als auch unter simulierten, zukiinftigen und anspruchsvolleren Bedingungen
verhalten konnte.

Es gibt zwei verschiedene Techniken fiir Benchmarks (Schwartz et al., 2012, S. 35-49). Die
erste zielt darauf ab, die Applikation als Ganzes zu testen (engl. full-stack). Dabei wird nicht
nur die Datenbank getestet, sondern die gesamte Applikation, einschlief}lich des Webservers,
des Netzwerks und des Applikationscodes. Der Grundgedanke dahinter ist, dass der Nutzer
genauso lange auf eine Antwort warten muss, wie das gesamte System fir die Verarbeitung
der Anfrage benétigt. Um den Kunden kiirzere Wartezeiten zu ermdglichen, sollte das Ziel
darin bestehen, diese Zeit so weit wie moglich zu reduzieren. Es kann dabei auch vorkommen,
dass das Datenbanksystem nicht das Bottleneck ist.! Full-Stack-Benchmarks haben jedoch

!Ein Bottleneck ist ein Engpass beim Transport von Daten oder Waren, der einen maf3geblichen Einfluss
auf die Abarbeitungsgeschwindigkeit hat. Wenn der Bottleneck weiterhin bestehen bleibt, fithren Opti-
mierungsversuche an anderen Stellen nur zu marginalen oder gar keinen messbaren Verbesserungen der
Gesamtleistung (Vogel, 2009).

auch Nachteile, denn sie sind schwieriger zu erstellen und insbesondere schwieriger korrekt
einzurichten.

Die zweite Art von Benchmarks sind die sogenannten Single-Component-Benchmarks, die
zum Einsatz kommen, wenn lediglich verschiedene Schemata und Abfragen im DBMS hin-
sichtlich ihrer Performance getestet werden sollen. Sie analysieren ein spezifisches Problem
in der Applikation und sind deutlich einfacher zu erstellen. Ein weiterer Vorteil besteht darin,
dass nur ein Teil des gesamten Systems getestet wird, wodurch die Antwortzeiten kiirzer sind
und man schneller Ergebnisse erhilt. Da sich diese Bachelorarbeit ausschlief3lich mit den
verschiedenen Objekten in Datenbanken beschaftigt, wurde sich fiir einen Single-Component-
Benchmark entschieden.

Das Gefdhrliche bei der Verwendung von Benchmarks ist, dass schlechte Designentschei-
dungen zu falschen Interpretationen des Systems fithren. Ein méglicher Grund dafiir kann
sein, dass die Ergebnisse nicht die Realitdt wiederspiegeln. Deshalb ist es wichtig, dass die
Grofle des Datensatzes und des Workloads realistisch sind. Idealerweise verwendet man
einen Snapshot des tatsichlichen produktiven Datensatzes.? Weil in dieser Arbeit keine
echten Produktionsdaten zur Verfiigung stehen, werden die Daten und der Workload nicht
durch Snapshots bereitgestellt, sondern stattdessen zufallig generiert. Ein Problem bei der
Verwendung zufillig erzeugter Werte ist die unrealistisch gleichmaflige Verteilung der Da-
tensatze. Im Gegensatz dazu konnen in der Realitat Hotspots auftreten, die die Verteilung
erheblich beeinflussen. In den folgenden Kapiteln werden die Ansatze moglichst allgemein
erlautert, weshalb dieser Kompromiss in Kauf genommen werden kann. Fiir die Analyse eines
speziellen Systems sollten jedoch Snapshots aus der Produktivumgebung verwendet werden,
um fehlerhafte Schlisse zu vermeiden.

Ein weiterer Fehler, der bei Benchmarks auftreten kann, ist das falsche Nachstellen des tat-
sachlichen Benutzerverhaltens. Zudem sollte darauf geachtet werden, dass Caching-Effekte
nicht zu falschen Annahmen tiber die Performance fithren. Teilweise wird auch die Aufwarm-
phase des Systems vollstiandig ignoriert und kurze Benchmarks kénnen die Performance
ebenfalls verfalschen. Um zuverlédssige Ergebnisse zu erzielen, sollten Benchmarks tiber einen
ausreichend langen Zeitraum durchgefithrt werden, um den stabilen Zustand des Systems zu
erfassen. Dies gilt besonders fiir Server mit groflen Datenmengen und viel Speicher.

Zudem muss gewahrleistet sein, dass der Benchmark reproduzierbar ist, da unzureichende
oder fehlerhafte Tests keine aussagekraftigen Ergebnisse liefern. Es empfiehlt sich auch die
Ergebnisse eines Benchmarks in einem Diagramm darzustellen, da bestimmte Phdnomene
oft nur so erkennbar werden und nicht in tabellarischer Form sichtbar sind. Im nachsten
Abschnitt wird ausgewahlt, welche Messwerte betrachtet werden sollen.

2Snapsho’ts bestehen grofitenteils aus Metadaten, die den Zustand Threr Daten definieren und sind keine
vollstandige Duplikation der Daten auf Ihrer Festplatte. Snapshots werden haufig fir Test- und Entwick-
lungsaufgaben verwendet (Microsoft, 2024).

1.2 Kennzahlen

Zunichst sollte geklart werden, welche Kennzahlen im Datenbankkontext relevant sind und
fur die jeweiligen Zwecke von besonderem Interesse. Darauf basierend kann ein Benchmark-
Tool ausgewahlt werden, das in der Lage ist, diese Kennzahlen zu erfassen und zugénglich zu
machen.

Die erste Kennzahl, die betrachtet wird, ist der Durchsatz (engl. throughput). Der Durchsatz
gibt an, wie viele Transaktionen pro Zeiteinheit durchgefithrt werden, wobei ein hoherer Wert
eine bessere Performance zur Folge hat. Ublicherweise wird als Einheit Transaktionen pro
Sekunde verwendet, gelegentlich auch Transaktionen pro Minute. Man kann Transaktionen
auch in verschiedene Kategorien unterteilen, wie beispielsweise Lese- und Schreibtransaktio-
nen. Diese Unterscheidung ist wichtig, da bestimmte Implementierungen schnellere Lese-,
aber langsamere Schreibtransaktionen zur Folge haben kénnen.

Die nachste Metrik ist die Antwortzeit (engl. latency), die die gesamte Zeit misst, die fiir
eine Abfrage benotigt wird. Abhéngig von der Applikation kann sie in Mikrosekunden (us),
Millisekunden (ms), Sekunden oder sogar Minuten angegeben werden. Oft wird die Latenz
in einer aggregierten Form angegeben, wie beispielsweise dem Durchschnitt, Maximum,
Minimum oder Perzentilen. Bei der Betrachtung von Latenzzeiten macht es aber wenig Sinn,
Maximal- oder Minimalwerte zu betrachten, da diese oft Ausreifler sind und die allgemeine
Performance nicht reprasentieren. Daher nutzt man eher Perzentile. Perzentile bezeichnen
den Wert, unter dem ein bestimmter Prozentsatz der gemessenen Latenzzeiten liegt. Wenn
beispielsweise das 95. Perzentil der Antwortzeit bei 5 ms liegt, bedeutet dies, dass 95% der
Abfragen in weniger als 5 ms abgeschlossen wurden (Reinboth, 2020).

Eine weitere Kennzahl ist die Gleichzeitigkeit (engl. concurrency), die angibt, wie viele An-
fragen gleichzeitig bearbeitet werden konnen. Zur genaueren Messung der Gleichzeitigkeit
auf dem Webserver wird die Anzahl der gleichzeitig ausgefithrten Anfragen zu einem be-
stimmten Zeitpunkt ermittelt. Eine Website mit 50.000 gleichzeitigen Benutzern konnte unter
Umsténden nur 10 oder 15 gleichzeitige Abfragen erfordern. Es kann auch geprift werden,
ob der Durchsatz sinkt oder die Antwortzeiten steigen, wenn die Gleichzeitigkeit zunimmt.
Ein weiterer wichtiger Messwert, der die Leistung bei mehreren Nutzern beschreibt, ist die
Skalierbarkeit (engl. scalability). Sie gibt an, wie sich das Verhalten des Systems verandert,
wenn die Anzahl der Benutzer oder die Grof3e der Datenbank steigt. In einem idealen Sys-
tem wiirden doppelt so viele Abfragen bearbeitet werden, wenn doppelt so viele ,Arbeiter”
versuchen, die Aufgaben zu erledigen.

Es gibt noch zahlreiche weitere Messgrofien, wie beispielsweise die Verfiigbarkeit oder die
CPU-Auslastung. Auf Letztere wird im Kapitel 7 naher eingegangen. Fiir das Benchmark-Tool
sind die Metriken Durchsatz und Antwortzeit unverzichtbar und sollten daher unbedingt

beriicksichtigt werden. Das Tool sollte auch dazu in der Lage sein, zwischen Lese- und Schreib-
transaktionen zu unterscheiden. Die anderen Metriken sind vor allem im Zusammenhang mit
Mehrbenutzer-Systemen wichtig und nehmen daher in den meisten Kapiteln dieser Arbeit
eine untergeordnete Rolle ein.

1.3 Auswahl der Tools

Zu Beginn muss ein geeignetes relationales Datenbankmanagementsystem ausgew#ahlt wer-
den. In dieser Bachelorarbeit wird MySQL in der Version 8.0 verwendet, das erstmals am 19.
April 2018 veréffentlicht wurde (Oracle, 2025¢). Die aktuellste eingesetzte Version ist 8.0.41.
Im Kapitel 5 wird zudem das DBMS PostgreSQL verwendet, um ein spezifisches Konzept zu
untersuchen. Dieses Konzept wird mit MySQL verglichen, da MySQL keine native Imple-
mentierung dafiir bereitstellt. Dies ist aber die einzige Ausnahme und der Schwerpunkt im
weiteren Verlauf der Arbeit wird tiberwiegend auf MySQL liegen.

Die Grundlage dieser Bachelorarbeit bildet die Untersuchung des Verhaltens der MySQL-
Datenbank (Reimers, 2017) im Hinblick auf verschiedene Konzepte mithilfe eines zentralen
Benchmark-Tools. Nach eingehender Uberlegung wurde sich fiir Sysbench (Kopytov, 2024)
entschieden. Sysbench ist ein Open-Source-Tool, das auf LuaJIT basiert und Skriptfahigkeit
sowie Multi-Threading unterstiitzt, um Benchmarks durchzufiithren (Schwartz et al., 2012,
S. 50-66). Es wird hauptsachlich fiir Datenbankbenchmarks verwendet, kann jedoch auch
dazu eingesetzt werden, um beliebig komplexe Arbeitslasten zu erstellen, die keinen Daten-
bankserver erfordern. Das Tool erfasst verschiedene Metriken, die im vorherigen Kapitel
vorgestellt wurden, wie etwa Transaktionen pro Sekunde und Latenz. Auflerdem kann ge-
nauer spezifiziert werden, wie oft diese Metriken geloggt werden sollen. Ein weiterer Vorteil
von Sysbench ist, dass es nicht auf ein einzelnes Datenbanksystem beschrankt ist, sondern
die Auswahl aus mehreren DBMS erméglicht, darunter auch PostgreSQL.

Bei der Auswahl des Benchmark-Tools wurden auch andere Optionen wie Benchbase (Difallah
et al,, 2013) und Mybench (Shopity, 2024) in Erwagung gezogen. Im Vergleich zu diesen Tools
bietet Sysbench jedoch eine deutlich hohere Skriptfahigkeit und Flexibilitat. Das bedeutet, dass
Sysbench in groflem Umfang tiber Skripte gesteuert werden kann, was eine benutzerdefinierte
Konfiguration der Tests ermdglicht. Allerdings ist die Verwendung von Sysbench im ersten
Projekt aufwendiger, da die Skripte von Grund auf neu erstellt werden miissen. Sobald jedoch
ein Projekt einmal eingerichtet ist, konnen viele Aspekte ibernommen und prazise sowie
schnelle Anderungen vorgenommen werden. Dieser Vorteil wird im Kapitel 2.2 niaher erklirt.

Sysbench zeichnet sich zudem dadurch aus, dass es als de facto Standard im Bereich der
Datenbankbenchmarks gilt (Shopify, 2022b). Durch diese Positionierung im Markt gibt es viele
aktive Nutzer und dadurch bedingt viele verfiigbaren Ressourcen. Ein Vorteil der anderen

Tools besteht jedoch in der praziseren Steuerung der Ergebnisraten und Transaktionen im
Vergleich zu Sysbench. Zudem beschrankt sich Sysbench hinsichtlich des Outputs auf das
Wesentliche, da es lediglich eine Reihe von Log-Dateien erzeugt. Die Visualisierung der
Ergebnisse muss vom Benutzer selbst mithilfe anderer Tools umgesetzt werden. Anders sieht
das bei dem Tool Mybench aus, da dort die Moglichkeit besteht, in Echtzeit umfassende
Abbildungen anzuzeigen (Shopify, 2022a). Trotz dieses Features wurde sich aufgrund der
hohen Anpassbarkeit sowie der Stellung als de facto Standard fiir Sysbench entschieden.

Auf die Erstellung von Grafiken sollte aber auch mit Sysbench nicht verzichtet werden. Durch
Abbildungen lassen sich Entwicklungen im Zeitverlauf wesentlich besser erkennen als in
einer Log-Datei. Anhand der reinen Zahlen in einem Log lassen sich moglicherweise einige
Trends erkennen, doch vor allem zyklische Schwankungen sind ohne Visualisierung schwer
zu identifizieren. Mithilfe von Graphen mit einer Zeitachse werden Zyklen sofort sichtbar
und der Vergleich unterschiedlicher Messungen wird erheblich vereinfacht.

Um die Kennzahlen, die mithilfe von Sysbench ermittelt worden sind, in eine grafische
Darstellung umzuwandeln, gibt es unterschiedliche Tools. Eine erste Moglichkeit bietet
Gnuplot (Williams et al., 2010), das sich gut fur die Darstellung von CSV-Dateien eignet.
Wenn jedoch nur bestimmte Spalten der Tabelle angezeigt werden sollen, st6f3t man schnell
an seine Grenzen. Aus diesem Grund fiel die Entscheidung auf ein Python-Script als flexiblere
Alternative. Fir die grafische Darstellung kommen dabei die Bibliotheken pandas (pandas
development team, 2020) und matplotlib.pyplot (Hunter, 2007) zum Einsatz. Die genaue
Verwendung von Sysbench wird im nachsten Kapitel erklart.

2 Grundlagen

In diesem Kapitel werden die Grundlagen der Bachelorarbeit betrachtet, die in den spéteren
Kapiteln fiir die Durchfithrung der Benchmark-Tests und Analysen erforderlich sind. Zunéchst
werden die einzelnen Schritte dargelegt, um die im vorherigen Kapitel 1.3 ausgewahlten Tools
korrekt zu verwenden. Besonders beim Benchmark-Tool werden die verschiedenen Argu-
mente untersucht, die iibergeben werden kdnnen und es wird anhand eines kurzen Beispiels
gezeigt, wie die Resultate dieses Tools aussehen konnten. Danach wird eine komplexere
Demonstration betrachtet, die bei spateren Tests wiederverwendet werden kann. Zu guter
Letzt wird gezeigt, wie GitHub Actions funktionieren, bei den Benchmark-Tests Aufwand
ersparen und wie die Workflows sowohl zeitlich als auch ressourcenschonend optimiert
werden konnen.

2.1 Uberblick iiber die Tools

Um die Tools nédher zu erlautern, ist die Grundvoraussetzung zuallererst ein laufendes Da-
tenbankmanagementsystem, in diesem Fall MySQL. Dabei ist es egal, ob es lokal auf einem
Rechner oder iiber Docker in einem GitHub CI/CD-Workflow gestartet wird. Wichtig ist aber,
dass man sich die Zugangsdaten, bestehend aus Benutzer- und Passwortdaten, abspeichert,
da diese gebraucht werden, um den Benchmark-Test mit Sysbench zu starten. Nachdem das
RDBMS gestartet worden ist, muss zunachst eine Datenbank erstellt werden:

1 CREATE DATABASE sbtest;

Neben der erfolgreichen Erstellung der Datenbank muss ebenfalls das Tool Sysbench installiert
werden. Auf einem Linux-basierten System kann dies wie folgt umgesetzt werden:

1 sudo apt install sysbench

Damit die Grafiken erstellt werden koénnen, werden zusatzlich die Tools Gnuplot und Pandas
in Kombination mit matplotlib benétigt. Die Befehle sudo apt und pip miissen je nach Be-
triebssystem beispielsweise durch brew und pip3 ersetzt werden.

1 sudo apt install gnuplot
2 pip install pandas matplotlib

Damit wurden alle Abhéngigkeiten eingerichtet und im nachsten Schritt muss man sich
mit den Tools vertraut machen. Der Hauptfokus wird dabei auf Sysbench gerichtet. Um mit
Sysbench zu interagieren, verwendet man Shell-Befehle, bei denen verschiedene Parameter
angegeben werden konnen, um spezifische Tests durchzufithren. Die folgende Ubersicht zeigt
die Argumente, die iibergeben werden miissen, sowie solche, die optional angegeben werden
konnen:

o db-driver: Treiber der Datenbank, in diesem Fall mysql

« mysql-host: Hostname oder IP-Adresse des Servers (Standard: localhost)

« mysql-user: Benutzername der Datenbank

« mysql-password: Passwort des DB-Benutzers (kann weggelassen werden, wenn keine
Authentifizierung erforderlich ist)

« mysql-db: Name der zu verwendenden Datenbank, hier: sbtest

« time: Laufzeit des Benchmarks in Sekunden (verpflichtend)

« report-interval: Intervall in Sekunden, in dem Zwischenergebnisse angezeigt werden
(Standard: nur Gesamtstatistiken am Ende)

« tables: Anzahl der zu erstellenden Tabellen (Standard: 1)

« table-size: Anzahl der Datensitze pro Tabelle (optional)

Einige dieser genannten Parameter, wie z.B. db-driver, dienen dazu die Verbindung mit den
Datenbankmanagementsystem herzustellen. Mit den anderen Argumenten kann man die
Einzelheiten des Benchmarks genauer bestimmen. So kann beispielweise festgelegt werden,
wie lange der Benchmark laufen soll und wie héufig die Teilergebnisse geloggt werden. Damit
fehlen aber noch die Informationen iiber die Tabellen und die Abfragen, die getestet werden
sollen. Dies kann, wie im Abschnitt 1.3 beschrieben, entweder iiber explizite Lua-Skripts oder
mithilfe von vordefinierte Testtypen in Sysbench geregelt werden. Durch die vordefinierten
Typen lasst sich schnell kontrollieren, ob die Parameter zur Datenbankverbindung korrekt
sind, ohne dafiir SQL-Befehle oder Lua-Skripte schreiben zu miissen. Unter anderen kann
man zwischen dem reinen Einfiigen von Daten (oltp_insert), dem Abfragen von Daten
(oltp_read_only) oder einer Kombination aus beidem (oltp_read_write) wahlen. Als letztes
muss noch festgelegt werden, welche der folgenden Methoden ausgefithrt werden soll:

« prepare: Bereitet die Datenbank fiir den Test vor, u.a. das Erstellen der Tabellen.

« run: Je nach Testtyp fiihrt diese Methode die spezifizierten Operationen aus und misst
dabei die Performance.

+ cleanup: Stellt die Datenbank in ihren urspriinglichen Zustand zuriick.

0 I N U s W N =

N =

QN U W

Die Methoden sowie der Testtyp oder der Pfad des Lua-Skripts werden am Ende der Sysbench-
Befehlszeile hinzugefiigt. Als Beispiel wird der Testtyp oltp_read_write zusammen mit der
Methode RUN ausgewahlt. Die Query konnte wie folgt aussehen, wobei die Werte fiir die
Variablen YOUR_USER und YOUR_PASSWORD durch die tatsidchlichen Benutzerdaten ersetzt werden
mussen:
sysbench oltp_read_write \

——db-driver=mysql \

—-mysql-user=YOUR_USER \

—-mysql-password=YOUR_PASSWORD \

—-mysql-db="sbtest" \

——time=10 \

—-report-interval=1 \

run

Wenn man nur diese Query ausfiihrt, fallt er auf, dass sie scheitert. Die Fehlermeldung lautet
dabei wie folgt:

FATAL: MySQL error: 1146 "Table 'sbtest.sbtestl1' doesn't exist"

Der entstandene Fehler wird dadurch verursacht, dass die Tabelle sbtest1 nicht erstellt
worden ist. Daher muss vor der Ausfithrung der RUN-Methode zunichst die PREPARE-Methode
durchgefithrt werden. Und um die Datenbank wieder in den Ausgangszustand zu versetzen,
muss nach dem oltp_read_write-Testtyp auch die CLEANUP-Methode aufgerufen werden. Um
sich die manuelle Ausfithrung dieser drei Befehle in der korrekten Reihenfolge zu sparen,
bietet es sich an, ein Shell-Script zu schreiben, das diese Aufgabe iibernimmt.

Codeblock 2.1: Ausfithrung der Sysbench-Methoden in korrekten Reihenfolge

Zunachst folgendes definieren : DB_HOST, DB_USER, DB_PASS, DB_NAME, TABLES, TABLE_SIZE, DURATION
SYSBENCH_CONFIG="--db-driver=mysql --mysql-host=$DB_HOST --mysql-user=$DB_USER --mysql-password=$DB_PASS --mysql-db
=$DB_NAME --tables=$TABLES --table-size=$TABLE_SIZE"

sysbench oltp_read_write $SYSBENCH_CONFIG prepare
sysbench oltp_read_write $SYSBENCH_CONFIG --time=$DURATION --threads=1 --report-interval=1 run
sysbench oltp_read_write $SYSBENCH_CONFIG cleanup

Beim Ausfithren des Skripts gibt die run-Methode einmal pro Sekunde die Zwischenergebnis-
se in der Konsole aus, da der Wert von report_interval auf 1 gesetzt ist. Nach erfolgreichem
Abschluss wird zudem eine Gesamtstatistik mit der gemessenen Kennzahlen angezeigt. An-
statt die Ausgabe in der Konsole darzustellen, konnen die Werte auch in einer Log-Datei
gespeichert werden. Damit wurde bisher erlautert, wie man Sysbench verwendet, jedoch
fehlt noch die Erstellung von Graphen. Um diesen Prozess zu erleichtern, empfiehlt es sich,
die relevanten Kennzahlen aus der Log-Datei zu extrahieren und mit passenden Spalten-
iiberschriften in einer CSV-Datei zu speichern. Dies kann mit dem Shell-Kommando grep
erfolgen:

SO 00U WD -

—_

O 0NN U R WD =

Codeblock 2.2: Extraktion der Ergebnisse aus der Log-Datei in eine Tabelle

RAW_RESULTS_FILE="output/sysbench.log"
OUTPUT_FILE="output/sysbench_output.csv"

echo "Script,Time (s),Threads, TPS,QPS,Reads,Writes,Other,Latency (ms;95%),ErrPs,ReconnPs" > "$OUTPUT_FILE"
grep 'A\[' $RAW_RESULTS_FILE | while read -r line; do

time=$(echo $line | awk '{print $2}' | sed 's/s//")

threads=$(echo $line | awk -F 'thds: ' '{print $2}' | awk '{print $1}')

Extract other measures

latency=$(echo $line | awk -F 'lat \\(ms,95%\\): ' '{print $2}' | awk '{print $1}')

echo "demo,$time, $threads, $tps, $qps, $reads, $writes, $other, $latency, $err_per_sec, $reconn_per_sec" »>

$OUTPUT_FILE"

done
echo "Results saved to $OUTPUT_FILE."

Mit der erstellten CSV-Datei konnen Graphen entweder mit Gnuplot oder der Python-
Bibliothek Pandas erzeugt werden. Das Python-Skript muss die CSV-Datei als Argument
erhalten und optional eine Liste spezifischer Messwerte, fiir die Graphen erstellt werden
sollen.

Codeblock 2.3: Erstellung der Graphen aus der CSV-Datei

OUTPUT_FILE="$OUTPUT_DIR/sysbench_output.csv"

Gnuplot
GNUPLOT_SCRIPT="YOUR_PATH_TO_PROJECT/plot_sysbench.gp"
gnuplot $GNUPLOT_SCRIPT

Python with Library Pandas
PYTHON_SCRIPT="YOUR_PATH_TO_PROJECT/generatePlot.py"
python3 "$PYTHON_SCRIPT" "$OUTPUT_FILE"

Metrics over Time

I —————

Benchmark Results: TPS, Latency, Queries, and More
35000 T T T T T T T

TPS 30000

Values

Other.
Latency (ms)
T Enmls

25000

Reconn/s

20000

Values

15000

Measure
/——’/—_— Threads

— s

— aps

— Reads

— wites

— other

Latency (ms;95%)

— Enps
Reconnps.

10000

5000

Time (s)

Abbildung 2.1: Grafik zeigt Erstellung mit Gnuplot (links) und Pandas (rechts)

Die Abbildung 2.1 zeigt die Ergebnisse der Grapherstellung. Die dargestellten Metriken
umfassen: Transaktionen, Abfragen, Fehler und Wiederverbindungen pro Sekunde (engl. TPS,
QPS, ErrPs, ReconnPs), Anzahl der Operationen (engl. Reads, Writes, Other), die Latenz im
95. Perzentil und die Anzahl der Threads.

1
2
3
4
5
6
7
8
9

10
11

2.2 Projektaufbau

In dem vorausgegangenen Abschnitt wurde das Tool Sysbench und seine Funktionsweise
anhand eines Demo-Projekts niher erlautert. Damit ist die Reihenfolge und die Bedeutungen
der unterschiedlichen Methoden (prepare — run — cleanup) sowie die Vorgehensweise zur
Erstellung der Grafiken deutlich geworden. Das bisherige Problem besteht jedoch darin, dass
bei dem dargelegten Beispiel keine Kontrolle iber die getesteten Daten besteht. Wenn man
sich die Logs genauer anschaut, dann zeigt sich, dass zwar tiber die Parameter des Sysbench-
Befehls die Anzahl der erstellten Tabellen und eingefiigten Datensétze von aufien gesteuert
werden kann, die genaue Implementierung jedoch auf diese Weise nicht veranderbar ist.
Genau fiir diese Anwendungsfille gibt es noch die Moglichkeit ein Lua-Skript, als Parameter
beim Sysbench-Aufruf mit anzugeben. In diesen Lua-Dateien konnen die Implementierungen
der einzelnen Methoden selbststandig gewahlt werden.

Um das Vorgehen besser zu erkldren, wird ein Beispiel angeschaut, bei dem zwei Tabellen
erstellt und mit zufélligen Testdaten befiillt werden. Die Abfrage, die auf Performance getes-
tet werden soll, ist das Verbinden (Joinen) dieser beiden Tabellen. In diesem Fall wird eine
Kundentabelle mit Name, Geburtstag und Adresse sowie eine Bestelltabelle mit Artikeldetails,
Bestelldatum und einem Bezug zu dem Kunden, der die Bestellung aufgibt, erstellt. Damit
nicht nur ein Beispiel dargestellt wird, ist ein Vergleich zwischen zwei verschiedenen Imple-
mentierungen erforderlich. Der Unterschied zwischen den beiden Versionen besteht darin,
dass die eine Tabelle einen Priméarschliissel vom Typ INT und die andere vom Typ VARCHAR hat.
Da Verbundoperationen aufwendig sind, wird angenommen, dass der speichereffizientere Typ
INT Performancevorteile bietet. Dies gilt es nun mit Benchmark-Tests genauer zu untersuchen.

Fir die Durchfithrung der Benchmarks wird zunachst unabhéngig von den Lua-Skripten
mit der Spezifizierung der Tabellen begonnen, die erstellt werden sollen. Insgesamt sind vier
verschiedene CREATE TABLE-Befehle erforderlich, jeweils zwei pro Variante. Sie unterscheiden
sich nur im Typ des Primarschliissels der Kundentabelle und des Fremdschliissels in der
Bestelltabelle. Fiir den Fall mit INT, miissen die folgenden Tabellen erstellt werden:

Codeblock 2.4: Create Table-Befehl fiir Kunden

CREATE TABLE KUNDEN (

KUNDEN_ID INT PRIMARY KEY,
NAME VARCHAR (255,
GEBURTSTAG DATE,

ADRESSE VARCHAR (255)

STADT VARCHAR (100)
POSTLEITZAHL VARCHAR(10),

LAND VARCHAR (100)

EMAIL VARCHAR(255) UNIQUE,

TELEFONNUMMER VARCHAR (20)
)5

10

CO I ONUT s WIN —

O ONUT s WD —

_ e
W N~ OO0

QN Ul R WD =

Codeblock 2.5: Create Table-Befehl fiir Bestellung

CREATE TABLE BESTELLUNG (

BESTELLUNG_ID INT PRIMARY KEY,

BESTELLDATUM DATE,

ARTIKEL_ID INT,

UMSATZ INT,

FK_KUNDEN INT NOT NULL,

FOREIGN KEY (FK_KUNDEN) REFERENCES KUNDEN (KUNDEN_ID)
)5

Anschlieflend werden diese Befehle in der prepare()-Funktion verwendet. Dafiir miissen
einfach die CREATE TABLE-Befehle an die Datenbank gesendet werden. Wenn bestimmte Indexe
oder andere Datenbankstrukturen erstellt werden sollen, miisste dies ebenfalls in der Prepare-
Funktion erfolgen. Dies ist ein Auszug aus der Funktion:

Codeblock 2.6: Lua-Script fiir die Erstellung der Tabellen

local con = sysbench.sql.driver():connect()
function prepare()
local create_kunden_query = [[
CREATE TABLE KUNDEN (...);
1]

local create_bestellung_query = [[
CREATE TABLE BESTELLUNG (...);

1]

con:query(create_kunden_query)

con:query(create_bestellung_query)

print("Tables KUNDEN und BESTELLUNG have been successfully created")
end

Wenn die Datenbank beispielsweise in einer Produktivumgebung lauft, dann wollen wir, dass
Benchmarks moglichst wenig Einfluss auf sie haben. Damit ist es das Ziel, dass die Datenbank
moglichst nach dem Durchlauf wieder in ihrem Anfangszustand ist. Auflerdem sollte der
Benchmark idempotent sein, also beliebig oft nacheinander ausgefiihrt werden kénnen, ohne
zu Problemen zu fithren. Wenn eine Tabelle erstellt wird, ohne sie vorher zu 16schen, schlagt
der CREATE TABLE-Befehl im nachsten Durchlauf fehl. Dies lasst sich durch die Klausel IF NOT
EXISTS vermeiden oder noch besser, indem die Tabelle am Ende des Benchmarks geloscht
wird. Dafiir ist die cleanup()-Funktion vorgesehen:

Codeblock 2.7: Lua-Script fiir das Aufraumen

local con = sysbench.sql.driver():connect()

function cleanup()
con:query("DROP TABLE IF EXISTS BESTELLUNG;")
con:query("DROP TABLE IF EXISTS KUNDEN:")
print("Cleanup successfully done")

end

11

CO IO\ U WIN—

O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Wichtig ist dabei, dass man keine Schliisselintegrititen verletzt. Da in diesem Fall die Tabelle
BESTELLUNG eine Referenz auf die Tabelle KUNDEN hat, muss zuerst die Bestelltabelle und danach
die Kundentabelle entfernt werden.

Damit wurde das Geriist fiir die eigentlichen Insert- und Select-Befehle geschaffen. Bei den
Insert-Befehlen kann entweder eine Zufallszahl generiert oder aus vordefinierten Listen
zuféllig gewahlt werden. Allerdings muss bei den zufallig generierten Daten darauf geachtet
werden, dass die Priméarschliisselbedingung nicht verletzt wird. Deshalb bietet es sich an, mit
inkrementellen Werten zu arbeiten. In diesem Beispiel wird die KUNDEN_ID fortlaufend mit
dem Schleifendurchgang vergeben und die BESTELLUNG_ID wird aus einer Kombination der
Kundennummer und der Bestellnummer berechnet. Es muss zudem festgelegt werden, wie
viele Kunden und Bestellungen pro Kunde erstellt werden. Um sicherzustellen, dass keine
Werte in den Tabellen enthalten sind, konnen alle Daten aus den Tabellen entfernt werden,
bevor neue hinzugefiigt werden. Damit die Performance der Insert-Query auch gemessen
wird, ist es wichtig, dass die insert()-Funktion in der event()-Funktion aufgerufen wird.

Codeblock 2.8: Lua-Script fiir das Einfiigen von Daten

local con = sysbench.sql.driver():connect()
local num_rows = 1000
local bestellungProKunde = 4

function delete_data()
con:query("DELETE FROM BESTELLUNG;")
con:query("DELETE FROM KUNDEN;")

end

function insert_data()
delete_data()
for i =1, num_rows do
local kunden_id = i -- define name, geburtstag, adresse, stadt, postleitzahl, land, email, telefonnummer
local kunden_query = string.format([[
INSERT IGNORE INTO KUNDEN
(KUNDEN_ID, NAME, GEBURTSTAG, ADRESSE, STADT, POSTLEITZAHL, LAND, EMAIL, TELEFONNUMMER)
VALUES (%d, '#s', '%s', '%s', '%s', '%s', '%s', '%s', '%s');
11, kunden_id, name, geburtstag, adresse, stadt, postleitzahl, land, email, telefonnummer)
con:query(kunden_query)

for j = 1, bestellungProKunde do
local bestellung_id = (i-1) % bestellungProKunde + j -- define bestelldatum, artikel_id, umsatz
local bestellung_query = string.format([[
INSERT IGNORE INTO BESTELLUNG
(BESTELLUNG_ID, BESTELLDATUM, ARTIKEL_ID, UMSATZ, FK_KUNDEN)
VALUES (%d,'%s', %d, %d, %d);
1], bestellung_id, bestelldatum, artikel_id, umsatz, kunden_id)
con:query(bestellung_query)
end
end
end

function event()

insert_data()
end

12

Die letzte Anweisung, die noch benétigt wird, ist die Select-Abfrage. Hierbei muss man sich
Gedanken machen, welche Abfrage man stellen muss, damit die untersuchten Effekte auch
tatsachlich auftreten. Da die Performance des Join-Operators untersucht wird, miissen beide
Tabellen iiber den Fremdschliissel verbunden werden.

Codeblock 2.9: Lua-Script fiir das Abfragen von Daten

1 local con = sysbench.sql.driver():connect()

2 function select_query()

3 local join_query = [[

4 SELECT k.STADT, SUM(b.UMSATZ) AS Total_Umsatz
5 FROM KUNDEN k

6 JOIN BESTELLUNG b ON k.NAME = b.FK_KUNDEN
7 GROUP BY k.STADT;

8 11

9 con:query(join_query)

10 end

12 function event()

13 select_query()

14 end

Damit sind fiir den Vergleich mit INT alle vier Operationen genauer definiert, aber es fehlen
noch die Veranderungen fiir VARCHAR. Dazu muss beim CREATE TABLE-Befehl der Typ fiir die
Spalten KUNDEN_ID und FK_KUNDEN angepasst werden und beim Einfiigen muss die Variable i
zu einem String umgewandelt werden.

Neben dem Vergleich zwischen INT und VARCHAR soll auch das Verhalten mit unterschiedlichen
Langen analysiert werden. Dadurch kann der Performanceunterschied zwischen beiden Da-
tentypen sowie der Einfluss der Lange des Verbundoperators festgestellt werden. Dazu wird
fur beide Typen eine Hilfsfunktion benoétigt, die eine Zeichenkette bzw. eine Zahl mit einer
bestimmten Lange erstellt. Das Ergebnis der Funktion wird in der INSERT-Methode verwendet
und zur Sicherstellung der Eindeutigkeit der KUNDEN_ID mit der Schleifenvariable i konkate-
niert. Ein Problem besteht jedoch noch darin, dass bisher nur eine Lange pro INSERT-Methode
festgelegt werden kann. Man konnte nun die beiden Ordner mit den Skripten duplizieren
und die Langen in den neuen Dateien anpassen. Dies wiirde zu extremer Redundanz fithren,
weshalb es eine intuitivere Losung gibt. Und zwar konnte man beim Aufruf des Shell-Scripts
Variablen definieren, die im Skript exportiert werden und in den Lua-Dateien importiert
werden konnen. Die Zeile mit der festgelegten Lange konnte so aussehen:

1 local length = 10

Um die im Skript exportierte Variable, beispielsweise LENGTH, zu verwenden, muss man
Folgendes tun:

1 local length = tonumber(os.getenv("LENGTH"))

13

O 0 NN N g W N

11

Jetzt muss noch ermittelt werden, welche Langen iiberhaupt zulassig sind. Bei VARCHAR gestaltet
sich das einfach, da dort alle Langen bis 255 bei VARCHAR(255) mdglich sind. INT kann Werte
bis 232 — 1 (4.294.967.295) speichern, also bis zu 10 Stellen, wihrend BIGINT Werte bis 264 _
1 (18.446.744.073.709.551.615) kann und damit 20 Stellen umfasst. Um grofiere Langen zu
testen, wird der Typ der Kundentabelle von INT auf BIGINT gedndert und es werden 4 sowie
16 Stellen als getestete Langen gewahlt.

Es wurde also gezeigt, dass sich mithilfe von Lua-Skripten Tabellen gezielt erstellen, einge-
figte Daten verwalten und Abfragen steuern lassen. Um die Operationen in der korrekten
Reihenfolge auszufithren und die Grafiken zu generieren, wird wieder ein Shell-Skript bend-
tigt. Dieses Skript soll moglichst wenige Parameter erhalten, weshalb eine festgelegte Datei-
struktur erforderlich ist. Es wird ein Ordner mit einem beliebigen Namen, z.B. int_queries,
bendtigt, in dem sich folgende Dateien befinden:

o int_queries.lua = enthalt die prepare()- und cleanup()-Funktionen
e int_queries_insert.lua = enthalt die insert()-Funktion

« int_queries_select.lua = enthilt die select()-Funktion

Analog muss auch ein Ordner fiir die Varchar-Variante erstellt werden. Wichtig ist dabei,
dass die Namen der Dateien mit dem Namen des Ordners {ibereinstimmen. Das Shell-Script
bedient sich dieser Struktur, fithrt die Lua-Skripte aus und geht die einzelnen Schritte bis zur
Erstellung der Grafiken durch. Wenn Variablen definiert werden, werden diese exportiert,
um sie in den Lua-Dateien importieren zu kénnen. Der Dateiname dieses Orchestrators ist
sysbench_script.sh und man kann ihn wie folgt aufrufen:

Codeblock 2.10: Befehl zum Ausfithren des Orchestrator Skripts
./sysbench_script.sh \

—out "YOUR_PATH_TO_DIRECTORY/Output" \
-var '{"length":[4, 16]}"' \

-scripts '{
"YOUR_PATH_TO_DIRECTORY/Scripts/varchar_queries": {
"vars": "length"
I
"YOUR_PATH_TO_DIRECTORY/Scripts/int_queries": {
"vars": "length"
}
}r

Wenn man will, kann man mehrere Select-Abfragen ohne unterschiedliche Insert-Befehle de-
finieren. Dies wird spater in der Bachelorarbeit niitzlich sein, wenn verschiedene Indextypen
untersucht und mithilfe unterschiedlicher SELECT-Abfragen tiberpriift wird, ob ein bestimm-
ter Indextyp bei Abfragen verwendet wird. Die eigentlichen Tabellen und deren Datensatze

14

miussen dabei nicht immer wieder neu befiillt werden. Wenn auf die Ordnerstruktur mit dem
Int-Query-Beispiel zuriickgekommen wird, konnte anstelle von int_queries_select.lua auch
ein Ordner mit dem Namen int_queries_select erstellt werden. In diesem Ordner kénnen
sich beliebig viele unterschiedliche Lua-Skripts befinden, die Select-Befehle durchfiithren.
Dadurch werden alle Select-Befehle auf der gleichen Datenbasis verglichen und es kann im
Kapitel 4.1 erkannt werden, wann der Index verwendet wird und wann nicht.

Erklarung aller moglichen Parameter des Orchestrator-Skripts:

« —out: Gibt den Pfad des Speicherorts fiir den Output-Ordner an
« -var: Gibt die Variablen und deren Werte im JSON-Format an

« -scripts: Gibt die Pfade der Ordner mit den jeweiligen Lua-Skripten im JSON-Format
an. Der Schliissel fir jedes Skript ist der Pfad zur Datei.

Innerhalb von -scripts kann man folgendes angeben:

- -vars: Wahlt aus, welche unter der -var angegebenen Variablen fiir das jeweilige
Skript verwendet werden sollen

— -selects: Legt fest, welche Select-Abfragen verwendet werden sollen, wenn man
mehrere in einem Ordner definiert

— -db: Gibt den Namen aller verwendeten Datenbankverbindungen aus der db.env-
Datei in einer Liste an. Standardmaflig wird MySQL verwendet.

Im Grundlegenden arbeitet das Orchestrator-Skripts sysbench_script.sh dhnlich wie schon
das Skript im Demo-Beispiel, aber durch die zusétzlichen Anwendungsfille kommt es zu mehr
Komplexitat. Zu Beginn des Skripts werden die Argumente des Skripts (siehe 2.10) definiert
und tberprift. Beispielsweise wird sichergegangen, dass die fiir die Skripts verwendeten
Parameter, in diesem Beispiel length, tatsachlich definiert werden mit -var. Danach wird
der Output-Ordner erstellt und die Spalteniiberschriften in die CSV-Dateien geschrieben.
Anschlieflend beginnt erst das eigentliche Durchgehen der unterschiedlichen Skripte, die
unter dem Argument -script angegeben wurden. Zu Beginn der Schleife entnimmt man
die verwendeten Datenbanken (unter dem Argument -db) und die Select-Abfragen (unter
dem Argument -selects) des aktuellen Skripts. Darauthin geht man in eine weitere Schleife,
um die unterschiedlichen Datenbankverbindungen durchzugehen. Innerhalb dieser Schleife
wird eine Methode aufgerufen, die alle Variablen vorbereitet. Zum Beispiel werden dort fir
die jeweilige Datenbank die richtigen Umgebungsvariablen aus der Datei envs. json geladen.
Diese Variablen sind unverzichtbar, da sonst keine Verbindung zur Datenbank aufgebaut
werden kann.

Als Nachstes kommt eine Fallunterscheidung, die tiberpriift, ob das Skript im aktuellen
Durchlauf Variablen exportiert. Fiir den Fall, dass keine Variablen exportiert werden, wird
direkt die Methode process_script_benchmark aufgerufen. Wenn aber Variablen exportiert
werden, dann miissen weitere Zwischenschritte umgesetzt werden. Zunéchst miissen alle

15

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17

18
19

20
21
22
23
24
25
26
27
28
29

30

31

Kombinationen zwischen den verschiedenen exportierten Variablen generiert werden. Wenn
es drei Variablen gibt, von denen 2 jeweils 2 Werte und eine letzte nur einen Wert hat, dann gibt
es 2 x 2 x 1 =4 unterschiedliche Kombinationen. AnschlieBend muss man fiir jede Kombination
die entsprechenden Werte exportieren und dann die Methode process_script_benchmark
aufrufen.

Die Funktion process_script_benchmark fithrt wie schon beim Demo-Beispiel (siehe 2.1) er-
wiahnt, die Methoden PREPARE, INSERT, SELECT und CLEANUP durch. Auflerdem iiberpriift sie, ob
innerhalb des fiir das aktuelle Skript angegebenen Ordners ein weiterer existiert oder nicht.
Wenn es noch einen Ordner gibt, dann werden alle SELECT-Funktionen darin nacheinander
ausgefithrt, wenn nicht, dann wird nur eine Datei mit der Endung _select.lua betrachtet.
Die Methode run_benchmark fithrt den Sysbench-Befehl (siehe 2.1) aus und wenn es sich um
die Methode RUN handelt, werden die Daten wahrend der Ausfithrung und die Endstatistiken
in je eine CSV-Datei gespeichert.

Codeblock 2.11: Verkiirzter Ausschnitt aus Orchestrator Script

for SCRIPT_PATH in $SCRIPT_DIRS; do

DBMS=$(echo "$SCRIPTS" | jq -r —-arg key "$SCRIPT_PATH" '.[$key].db // ["mysql"]')
SELECT_QUERIES=$(echo "$SCRIPTS" | jq -r -—-arg key "$SCRIPT_PATH" '.[$key].selects')
for DB in $(echo "$DBMS" | jgq -r '.[]'); do

prepare_variables "$SCRIPT_PATH" "$DB"

DB_INFO="$(["$DBMS_COUNT" -ne 1] && echo "${CUSTOM_DB_NAME}")"

if [[-n "$EXPORTED_VARS" 1]; then

IFS=',' read -r -a KEYS «<<< "$EXPORTED_VARS"

COMBINATIONS=$(generate_combinations "" "${KEYS[@]}")
while IFS=',' read -r combination; do
Export key-value pairs for the current combination
IFS=',' read -ra key_value_pairs <<« "$combination"
for pair in "${key_value_pairs[@]}"; do
export "$(echo "${pair%%=x}" | tr '[:lower:]' '[:upper:]')=${pairsx=}"
done
COMBINATION_NAME=$(echo "$combination" | sed -E 's/(A|,)num_rows=[",]x//g;s/™,//;s/,$//" | tr ',' '_'
tr = ")
LOG_DIR_COMBINATION="$LOG_DIR/$COMBINATION_NAME"
process_script_benchmark "$DB_INFO" "$SCRIPT_PATH" "$LOG_DIR_COMBINATION" "$INSERT_SCRIPT" "
$SELECT_SCRIPT" "$COMBINATION_NAME"

done <<< "$COMBINATIONS"
else
process_script_benchmark "$DB_INFO" "$SCRIPT_PATH" "$LOG_DIR" "$INSERT_SCRIPT" "$SELECT_SCRIPT"
fi
eval $(jgq -r ——arg env "$DB" '.[$env] | to_entries | .[] | "unset " + .key' "$ABS_PATH/envs.json")
done
done

Combine csv files during runtime and end statistics and generate plots

python3 "$PYTHON_PATH/generateCombinedCSV.py" "$STATISTICS_FILE_TEMP" "$STATISTICS_FILE" --select_columns "
$STATS_SELECT_COLUMNS" --insert_columns "$STATS_INSERT_COLUMNS" --prefixes "$PREFIXES"

python3 "$PYTHON_PATH/generateCombinedCSV.py" "$RUNTIME_FILE_TEMP" "$RUNTIME_FILE" --select_columns "
$RUNTIME_SELECT_COLUMNS" --insert_columns "$RUNTIME_INSERT_COLUMNS" --prefixes "$PREFIXES"

python3 "$PYTHON_PATH/generatePlot.py" "$RUNTIME_FILE" "$STATISTICS_FILE"

16

Nach dem Durchfiihren aller Schleifen sind alle Messwerte in CSV-Dateien gespeichert.
Mithilfe von Python-Skripten miissen nun die Ergebnisse der Insert- und Select-Benchmarks
aus den CSV-Dateien pro Skript vereint werden, indem die Attribute miteinander addiert
werden. Als letztes werden die Graphen mithilfe von Python und Pandas erstellt.

Wenn der Befehl aus 2.10 ausgefithrt wird, wird ein Output-Ordner an der gewiinschten
Stelle erstellt. Dieser besteht es den Unterordner pngs, logs und den CSV-Dateien. In dem
Unterordner pngs befinden sich verschiedene Grafiken, die die Ergebnisse visualisieren. Dabei
gibt es zwei unterschiedliche Arten von Grafiken. Die erste Art von Grafik ist ein Zeitreihen-
diagramm, welches auf der x-Achse den zeitlichen Verlauf zeigt. Auf der y-Achse werden in
einigen Diagrammen die unterschiedlichen Metriken fiir jedes einzelne Skript dargestellt,
wihrend andere Diagramme die Werte einer bestimmten Metrik auf der y-Achse zeigen
und dabei die Ergebnisse verschiedener Skripte vergleichen. Dadurch kénnen beispielsweise
die Metriken Reads und Writes analysiert werden, um herauszufinden, welches Skript in
diesen Bereichen besser abschneidet. Die zweite Art von Grafik, die erstellt wird, ist ein
Hexagon-Diagramm. Dieses verzichtet auf eine Zeitachse und fasst die Performance iiber den
gesamten Zeitraum hinweg zusammen. Im Vergleich zur Laufzeitanalyse liefert es zusatzliche
Informationen, wie etwa die Latenz oder die Gesamtanzahl der Queries. Dadurch ist es auch
moglich, dass mehrere Skripte und mehrere Kennzahlen in einer Grafik dargestellt werden
konnen.

Damit wird zum finalen Schritt Gibergegangen, der Analyse der Ergebnisse fiir die verschie-
denen Datentypen und Langen des Verbundoperators. Die ersten beiden Abbildungen aus 2.2
sind Zeitreihendiagramme, die fiir beide Varianten mit der Lange 4 alle Metriken darstellen.
Aus den Grafiken, die fiir ein Skript alle Metriken veranschaulichen, kann man méglicher-
weise Datenfehler erkennen. Bei beiden springt die Latenz bei einigen Messpunkten von 0
ms auf einen héheren Wert und wieder zuriick. Ansonsten aber sind die anderen Metriken
auf einem konstanten Level und es gibt wenige Schwankungen.

All metrics for int_queries_length_4 All metrics for varchar_queries_length_4

Measure Measure
3000 4 — Threads 3000 1 — Threads
TPS TPS
— QPS —— QPS
25004 — Reads 25001 — Reads
— Writes — Writes
—— Other —— Other
Latency (ms;95%) 20004 Latency (ms;95%)
—— EmPs —— ErrPs
ReconnPs " ReconnPs

2000
5 s
3 < 15001
g 1500 3

N I Y A SN W— W I R —

1000 1000 4

N S —— — ——1 By S S VS e e e B v

(a) int_queries_length_4 (b) varchar_queries_length_4

Abbildung 2.2: Die Grafik zeigt alle Metriken fiir die jeweiligen Skripte

17

Wenn alle vier Skripte miteinander verglichen werden sollen, kénnen die Abbildungen aus 2.3
herangezogen werden. Was die Lesegeschwindigkeit angeht, kann man erkennen, dass INT
eine etwa 10% bessere Lese-Performance hat als VARCHAR bei einer Lange von 4. Aus dem
Vergleich von den unterschiedlichen Langen mit INT kann man schlieffen, dass er Einfluss
nicht sonderlich grof} ist. In diesem Fall ist sogar die Variante mit 16 Stellen im Durchschnitt
etwas schneller als die mit 4. Bei VARCHAR ist deutlich erkennbar, dass die Abfrage umso
langsamer wird, je langer die Zeichenkette ist. Dennoch ist der Unterschied zwischen den
Datentypen grofler als innerhalb der verschiedenen Langen von VARCHAR. Es ist auch zu
erkennen, dass die Werte bis auf wenige Ausnahmen sehr konstant bleiben und es keine
grofen Schwankungen gibt. Aus der Gesamtstatistik in 2.3b kann ein dhnliches Verhalten
abgeleitet werden. Bei der Schreibgeschwindigkeit kann man kaum Unterschiede erkennen
und auch bei der Latenz liegen alle Varianten nah aneinander.

Reads over Time by Script Comparison of Metrics

[e E—
B~

script
—— int_queries_length_16

Queries (max: 94485 pers.) Read)(ma: 27,247 noq)

Total Events (max=27,270)

(a) Reads (b) Gesamtstatistik

Abbildung 2.3: Die Grafik zeigt den Vergleich zwischen allen Skripten fiir die Metriken

2.3 GitHub Actions

Im Verlauf der Bachelorarbeit kommen immer mehr Projekte mit unterschiedlichen Lua-
Dateien, die alle das Orchestrator-Skript verwenden, dazu. Manche dieser Projekte erfordern
keine Anpassungen an dem Skript, wahrend andere wiederum viele bendtigen. Das Pro-
blem dabei ist, dass man durch die Komplexitit des Skripts schnell den Uberblick iiber die
Auswirkungen der Anderungen auf andere Projekte verliert. Um sicherzugehen, miissen
die Benchmarks fiir alle Projekte durchgefithrt und anschlieffend die Output-Ergebnisse
iberpriift werden. Dazu muss jedes Skript nacheinander ausfiihrt werden, was zum einen
zeitintensiv ist und zum anderen hohe Lasten fiir den lokalen Rechner bedeutet. Das Vor-
gehen konnte man zeitlich optimieren, indem man die Skripte parallel ausfiithrt, aber auch
das wiirde nicht das Problem der hohen Lasten und des manuellen Aufwands l6sen. Eine
deutlich bessere Variante ist das Automatisieren dieser Befehle unabhangig von dem lokalen

18

O ONUT WD =

— e
W N = OO

Rechner auf virtuellen Maschinen in der Cloud. Als Plattform fiir Continuous Integration und
Continuous Delivery (CI/CD) wurde GitHub Actions gewahlt (GitHub, 2025b). Mit GitHub
Actions kann man Workflows erstellen, die bei einem bestimmten Event getriggert werden
und anschlieend eine Anzahl von Auftrigen nacheinander oder gleichzeitig ausfithren kon-
nen. Jeder Auftrag (engl. Job) wird innerhalb eines eigenen Runners der virtuellen Maschine
in einem Container ausgefithrt und kann iiber einen oder mehrere Schritte verfiigen. Die
Schritte konnen wiederum beliebige Shell-Befehle, Skripte oder Aktionen ausfithren.

Im vorherigen Kapitel wurde gezeigt, wie das Hauptskript fiir das Beispiel auf dem lokalen
Rechner ausgefiihrt werden kann (2.10). Jetzt werden diese Informationen fiir alle Projekte
gebraucht, die getestet werden sollen. Es werden immer die Pfade zu den Lua-Skripten beno-
tigt, die getestet werden sollen, sowie in einigen Féllen die zusétzlich definierten Variablen.
Diese Pfade und Variablen werden in einer JSON-Datei gesammelt und jedem Projekt wird
ein Name zugewiesen, hier z.B. join-type.

Codeblock 2.12: JSON-Datei mit dem Join-Typ Beispiel

{

"join-type": {
"scripts": {
"./Projects/Scripts/varchar_queries": {
"vars": "length"

Iy
"./Projects/Scripts/int_queries": {
"vars": "length"

}

¥

"var": {"length": [4, 16]}

}
}

Damit das Hauptskript ausgefithrt werden kann, miissen im ersten Job die Daten dieser
JSON-Datei verarbeitet und bestimmte Variablen, wie beispielsweise der Output-Ordner,
definiert werden. Zudem miissen alle Namen der verschiedenen Projekte in einer Liste
zusammengefiigt und als Output fiir den néachsten Job bereitgestellt werden. Der néchste
Auftrag ist verantwortlich fiir das eigentliche Durchfithren der Benchmarks und wird erst
gestartet, wenn der Vorherige beendet ist. Um die Vorteile des gleichzeitigen Ausfithrens
der Auftrage zu nutzen, muss die Matrixstrategie verwendet werden. Bei der Matrixstrategie
kann man eine Liste von Variablen angeben, um mehrere Auftragsausfithrungen parallel zu
erstellen. In diesem Fall wird dafiir die Liste mit den unterschiedlichen Projektnamen genutzt.

Damit die einzelnen Benchmarks ausgefithrt werden konnen, miissen innerhalb der Ma-
trixausfithrung einige Vorbereitungen getroffen werden. Zuallererst miissen, abhangig vom
Projektnamen, die entsprechenden Variablen aus der JSON-Datei, die im ersten Job erstellt
wurden, geladen und exportiert werden. AnschlieBend werden die Dependencies fiir Sysbench

19

und die Python-Libraries installiert sowie die Datenbank-Container mit passenden Konfigu-
rationen gestartet und vorbereitet. Nach diesen Schritten kann das Hauptskript ausgefiihrt
werden und die Outputdateien werden am angegebenen Pfad erstellt.

Um Zugrift auf diese Dateien zu erhalten, miissen sie als GitHub Artifact hochgeladen werden.
Die GitHub Artifacts konnen anschlieflend entweder tiber die GitHub REST API oder die
Ubersicht des Workflows auf der GitHub-Webseite als Zip-Datei heruntergeladen werden. Als
letzten Schritt, nach Beendigung beider vorangegangenen Jobs, konnen alle GitHub Artifacts
des aktuellen Workflows heruntergeladen und gemeinsam als ein neues Artifact wieder
hochgeladen werden. Dadurch entfillt beispielsweise bei 10 Projekten die Notwendigkeit, 10
Zip-Dateien einzeln herunterzuladen und zu entpacken, um die Anderungen in den Dateien
zu iiberpriifen. Wenn fehlerhafte Anderungen den Workflow triggern, kann es dazu kommen,
dass je nach Fehler unterschiedliche Jobs oder Steps nicht erfolgreich ausgefithrt werden und
damit der komplette Workflow scheitert.

Der Workflow wird in einer YAML-Datei im Ordner .github/workflows/ definiert. Zunéachst
muss man den Namen des Workflows festlegen und anschlieend, wann er getriggert werden
soll. Dies kann beispielsweise manuell auf GitHub mit dem Tag workflow_dispatch oder bei
jedem Push mit push geschehen. Zudem kann der Trigger auch auf bestimmte Dateien oder
Ordner beschrankt werden. Als Nachstes kann man unter dem Tag jobs die verschiedenen
Auftrage definieren. Der Schliissel outputs beschreibt die Ausgaben eines Jobs, die von anderen
Jobs verwendet werden konnen, wihrend steps die Aufgaben festlegt, die innerhalb eines
Jobs ausgefiihrt werden. Unter dem Tag env muss man die Umgebungsvariablen definieren,
dazu gehoren zum Beispiel beim zweiten Job die Lange der Durchfithrung des Benchmarks.
Wenn es sich um vertrauliche Informationen handelt, sollte man GitHub Secrets verwenden.
Ein Beispiel dafiir ware das Downloaden der Artefakte im letzten Job, um einen gemeinsamen
Output-Ordner zu erstellen. Dafiir wird die GitHub REST API benoétigt, die ein vertrauliches
Personal Access Token erfordert, welches Repository- sowie Lese- und Schreibrechte fiir
GitHub Registries besitzt. Die Workflow-Datei fiir das Durchfithren der Benchmarks sieht in
verkiirzter Form wie folgt aus:

Codeblock 2.13: Ausschnitt aus der Workflow-Datei

1 name: Run All Benchmarks

2 on:

3 push:

4 paths: ['Projects/sx', ...]

5 jobs:

6 prepare-benchmark:

7 outputs:

8 matrix: ${{ steps.set-matrix.outputs.matrix }}

9 configurations: ${{ steps.prepare-config.outputs.configurations }}
10 steps:
11 - { name: Checkout repository, uses: actions/checkout@v3 }
12 - name: Read and generate list of matrix name # echo "matrix=$matrix" >> $GITHUB_OUTPUT
13 - name: Prepare configurations for all test types

20

14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36
37
38
39

40

run: # ... export variables like test_type, dirs, var, output_dir, artifact_name as "configurations"
run-tests:
needs: prepare-benchmark
strategy:
matrix:

test-type: ${{ fromJson(needs.prepare-benchmark.outputs.matrix) }}
env: { TIME: 32, THREADS: 1, EVENTS: @, REPORT_INTERVAL: 2 }
steps:
- { name: Checkout repository, uses: actions/checkout@v3 }
- name: Extract and save values to GitHub environment
- name: Install dependencies (sysbench, pandas, matplotlib)
- name: Start MySQL container (and wait for it to be ready)
run: |
docker run --name mysql-${{ env.test_type }} -d -e MYSQL_ROOT_PASSWORD=$DB_PASS -e MYSQL_DATABASE=
$DB_NAME -p $DB_PORT:3306 mysql:8.0
- name: Run sysbench script
run: |
chmod +x Tools/Shell-Scripts/sysbench_script.sh
Tools/Shell-Scripts/sysbench_script.sh -out "${{ env.output_dir }}" \
-var '${{ env.var }}' -scripts:'${{ env.dirs }}'
- name: Stop MySQL and PostgreSQL containers
- name: Upload outputs # with actions/upload-artifact@v4
upload-combined-output:
needs: [prepare-benchmark, run-tests]
steps:
- name: Loop through configurations, download artifacts with artifact_name and unzip it
run: # ... ALL_ARTIFACTS=$(curl -s -H "Authorization: Bearer ${{ secrets.GITHUB_TOKEN }}" "https://api.
github.com/repos/${{ github.repository }}/actions/artifacts")
- name: Upload "Output"-folder with all downloaded benchmarks as one artifact named "combined-output"

2.4 Optimierung des Workflows

Es gibt verschiedene Mdoglichkeiten, die Laufzeit und den Ressourcenverbrauch des Workflows
zu optimieren. Zum einen kann man die zu installierenden Abhéngigkeiten mithilfe von
GitHub Caches (GitHub, 2025a) speichern. Dies bietet sich besonders deswegen an, da sich die
Abhangigkeiten tiber die Workflows hinweg nur selten dndern. Falls sich doch etwas dndert,
kann man beispielsweise die requirements.txt-Datei anpassen. Dadurch werden einmalig
alle Abhéangigkeiten neu installiert und anschlieffend im Cache abgelegt. Falls sich bis zum
nichsten Workflow keine Anderungen an den Abhingigkeiten ergeben, wird der Cache
automatisch heruntergeladen. Der Zeitgewinn in diesem Beispiel ist jedoch nur gering und
betrdagt nur wenige Sekunden pro Workflow.

Deutlich mehr Zeit und Ressourcen kann man aber sparen, wenn man zwischen zwei un-
terschiedlichen Arten von Dateien unterscheidet. Denn zum einen gibt es Dateien, die die
Ergebnisse von allen Skripten beeinflussen. Dazu gehéren das Workflow-Skript und die JSON-
Datei, aber auch das Orchestrator-Skript und die darin verwendeten Python-Skripte. Die
Ordner, die in der JSON angegeben werden, die beeinflussen aber nur sich selbst und nicht die
anderen Skripte. Beispielsweise, wenn in Projekt A die Anzahl an Zeilen geandert wird, die in

21

eine Tabelle eingefiigt werden, hat dies keinen Einfluss auf das Ergebnis von Projekt B oder
C. Daher wiirde es sich anbieten, die Benchmarks fiir Projekt A neu durchzufithren, wihrend
fir Projekte B und C jeweils der letzte erfolgreiche Output-Ordner verwendet werden konnte.
Als Endresultat konnte damit die neue Durchfithrung von Projekt A zusammen mit der alten
Ausfithrung der Projekte B und C in einer Zip-Datei hochgeladen werden. Dadurch wird nur
ein Drittel der eigentlichen Ressourcen verbraucht, wenn man davon ausgehen wiirde, dass
alle 3 Projekte gleich viel Zeit benotigen wiirden.

Fiir die Implementierung dieser Optimierung miissen zunachst die allgemeinen Skripte sowie
die benétigten Ordner mit den Lua-Skripten, die fiir das jeweilige Skript in der JSON-Datei
erforderlich sind, gehasht werden. Diese beiden Hashes konnen zusammen mit den Testtypen
kombiniert werden. Damit ergibt sich die folgende Struktur fiir den Namen:

NAME="${{ matrix.test-type }}-${{ env.hash }}-${{ env.general_hash }}"

Nachdem die JSON im ersten Job geladen wurde, wird nicht direkt mit dem zweiten und
der damit verbundenen Installation der Abhéngigkeiten fortgefahren. Stattdessen werden
zunéchst die unterschiedlichen Pfade gehasht und der entsprechende Name erstellt. Falls
kein Ordner mit diesem Namen existiert, wird wie bisher fortgefahren. Existiert jedoch
bereits ein Ordner mit diesem Namen, werden alle weiteren Schritte nach dem Extrahieren
der Werte aus der JSON im Job run-tests iibersprungen. Dadurch erspart man sich die
Installation der Abhédngigkeiten, das Starten der Datenbank-Container sowie das Ausfithren
des Orchestrator-Skripts.

Als letztes stellt sich die Frage, wo die Ordner mit den berechneten Namen gespeichert und
beim néachsten Run wieder heruntergeladen werden sollen. Zum einen kann man Lsungen in
GitHub selbst verwenden. Zum einen wiirde sich wieder eine GitHub Cache-Losung anbieten,
aber tatséchlich sind GitHub Artifacts fiir das Sichern von Dateien besser geeignet (GitHub,
2025a). Eine andere mogliche Losung wire die Nutzung expliziter Branches ausschlief3lich fiir
die Sicherung der Dateien, bei der die GitHub Action iiber Schreibberechtigungen verfiigen
muss. Das Problem ist dabei, dass durch Timing-Probleme beim Pushen ein paralleler Work-
flow den Code zwischen Rebase, Commit und Push verandert haben konnte, wodurch nach
einem verhinderten Push erneut ein Rebase nétig wird. Die Implementierung dieser Variante
hat dieses Problem bestétigt. Des Weiteren eignen sich auch Cloud-Speicherlésungen sehr gut,
um die Ordner zu speichern und wieder herunterzuladen. Dazu gehéren von Google Cloud
Storage (GCS), AWS S3 oder MS Azure Storage, die sich zusammen mit GitHub Artifacts
am besten eignen. Wie in der workflow.yaml zu erkennen ist, wurde die Losung mit GitHub
Artifacts gewahlt. Wenn man eine andere Losung umsetzen mochte, dann muss man aber
nur wenige Zielen im Workflow anpassen.

22

3 Optimierungen von Datentypen

Das erste Thema in Bezug auf die Performance-Optimierung von Datenbanken sind die un-
terschiedlichen Datentypen und deren Auswirkungen auf die Performance. Bei der Auswahl
des korrekten Datentyps gibt es unterschiedliche Faktoren, die vom jeweiligen Typen ab-
hangen. Besonders werden die unterschiedlichen Implementierungen von numerischen und
zeichenkettenbasierten Datentypen analysiert. Am Ende des Kapitels werden die Ergebnisse
der Benchmarks betrachtet. Zunachst wird aber mit den allgemeineren Prinzipien begonnen.

3.1 Allgemeine Faktoren

In diesem Abschnitt werden die geltenden Grundsétze behandelt, die generell bei der Wahl
der Datentypen beachtet werden sollten. Bevor das behandelt wird, muss geklart werden,
welche Schritte zur Auswahl von Datentypen durchgefithrt werden (Schwartz et al., 2012,
S. 115-145). Als erstes wird die iibergeordnete Kategorie des Datentyps, wie beispielsweise
numerisch, textbasiert oder zeitbezogen, festgelegt. Anschlieffend sollte der spezifische Typ
ausgewahlt werden. Fiir numerische Daten kommen beispielsweise Ganzzahlen wie INT oder
FlieBkommazahlen wie FLOAT und DOUBLE infrage. Die spezifischen Typen konnen dieselbe
Art von Daten speichern, unterscheiden sich jedoch im Bereich der Werte, die sie speichern
konnen. Auch sind sie unterschiedlich in der Genauigkeit (engl. Precision), die sie erlauben und
dem physischen Speicherplatz, den sie entweder auf der Festplatte oder im Arbeitsspeicher
benoétigen. Einige Datentypen haben auch spezielle Verhaltensweisen und Eigenschaften.

Der erste Grundsatz fiir Datentypen besagt, dass kleiner besser ist. Deshalb sollte man den
kleinstmoglichen Datentypen wiahlen, den man speichern kann und der die vorhandenen
Daten entsprechend reprasentieren kann. Dadurch wird weniger Speicherplatz im Arbeits-
speicher und CPU-Cache benétigt, was wiederum zu schnelleren Abfragen fiihrt. Auflerdem
ist bei der Benutzung des kleinstméglichen Typs eine einfache Typverdnderung moglich.
Wenn die vorhandenen Daten beispielsweise falsch eingeschatzt wurden, lasst sich der Typ
nachtriglich mit wenig Aufwand in einen gréfieren umwandeln.

Eine weitere allgemeine Richtlinie ist die Einfachheit von Datentypen. So sind Integer-Werte
beispielsweise leichter zu verarbeiten als Character. Daher sollte man stets einen Integer

23

wihlen, wenn er die Daten korrekt abbilden kann. Begriinden kann es damit, dass fiir einfa-
chere Datentypen weniger CPU-Zyklen bendtigt werden, um Operationen auszufithren. Im
Fall von Integer und Character liegt der Unterschied in den Character Sets und Sortierregeln,
die den Vergleich von Character erschweren.

Die letzte Regel zur Performanceverbesserung ist die Vermeidung von NULL. Viele Tabellen
enthalten NULLABLE-Spalten, obwohl keine NULL-Werte gespeichert werden miissen, da NULL
die Standardeinstellung ist. Daher sollten solche Spalten bei der Tabellenerstellung mit dem
Identifier NOT NULL definiert werden, es sei denn, NULL-Werte sind erforderlich.

»A missing NOT NULL constraint can prevent index usage in an Oracle database-
especially for count(*) queries.” (Winand, 2011, S. 57)

Mit NULL wird es auch fir MySQL schwieriger, Abfragen zu optimieren, da Indizes und
Wertevergleiche mehr Speicherplatz benétigen. Dies liegt daran, dass indizierte nullable
Spalten ein zusatzliches Byte pro Eintrag erfordern, wodurch ein Index mit fester Grofle in
einen variablen umgewandelt wird. Der Leistungsunterschied zwischen NULL und NOT NULL
ist zwar gering, kann jedoch, besonders in Verbindung mit Indizes, spiirbar sein.

Abschlieflend ist darauf hinzuweisen, dass MySQL eine Vielzahl von Aliasen fiir Datentypen
unterstiitzt, darunter INTEGER, BOOL und NUMERIC. Obwohl diese Aliase potenziell zu Verwirrung
fihren konnen, haben sie keinen Einfluss auf die Performance. Im Wesentlichen funktioniert
es so, dass ein aliasierter Datentyp beim Erstellen einer Tabelle intern in den Basistyp
umgewandelt wird. Dies lasst sich mit dem Befehl SHOW CREATE TABLE bestatigen.

3.2 Funktionsweise individueller Datentypen

Der erste Datentyp, bei dem das Verhalten genauer betrachtet wird, ist der numerische
Datentyp. Bei diesem kann zwischen Ganzzahlen und FlieBkommazahlen gewahlt werden.
Die spezifischen Typen unterscheiden sich nur in der Anzahl der Bits, die sie speichern
konnen. SMALLINT kann 16 Bits speichern, wahrend INT 32 und BIGINT 64 Bits speichern kann
(Oracle, 2025b). Dementsprechend verdndert sich auch der mogliche Wertebereich der Zahlen,
die durch den Speicherplatz abgedeckt sind. Mit den optionalen UNSIGNED-Attributen kénnen
keine negativen Werte gespeichert werden konnen. Dafiir verdoppelt sich die obere Grenze
der positiven Werte, wahrend der Speicherplatz und die Leistung unverandert bleiben. Die
Berechnung des Wertebereichs fiir SIGNED und UNSIGNED erfolgt nach den folgenden Formeln:

Signed: — 2(N=1) big o(N-1) _ 4 (3.1
Unsigned: 0 bis 2N 1 (3.2)

Hinweis: N entspricht der Anzahl der Bits.

24

Wenn die Wertebereiche fiir den Datentyp TINYINT in MySQL berechnet werden sollen, muss
fir N der Wert 8 eingesetzt werden. Als Ergebnis ergeben sich fiir SIGNED die Werte von -128
bis 127 und fiir UNSIGNED die Werte von 0 bis 255. Bei einem Beispiel mit 150 Werten kann
anstelle von SMALLINT also einfach UNSIGNED verwendet werden, um Speicherplatz zu sparen.

Eine Breitenangabe wie INT(11) beeinflusst nur die Anzeige und nicht den Wertebereich oder
die Speicheranforderungen. Um dies zu beweisen, wird die folgende Tabelle erstellt:

CREATE TABLE test_int (
int_5 INT(5),
int_11 INT(11)

);

Fir beide Spalten wurde der Datentyp INT gewé&hlt und da iiberprift werden soll, ob die
Breitenangabe einen Einfluss auf die Speicheranforderungen hat, wird versucht, die Grenzen
von INT einzufiigen. Da INT 32 Bits bendtigt, ergeben sich folgende Grenzen: 202-1) _q =
2147483647 und 203271 = —2147483648.

Codeblock 3.1: Inserts und Selects fur Testtabelle

INSERT INTO test_int (int_5, int_11) VALUES (2147483647, 2147483647);
INSERT INTO test_int (int_5, int_11) VALUES (-2147483648, -2147483648);
SELECT x FROM test_int;

Tabelle 3.1: Ergebnis der SQL-Abfrage aus 3.1

int 5 int_11
obere Grenze 2147483647 | 2147483647
untere Grenze | -2147483648 | -2147483648

Bei der Ausfithrung der Insert-Befehle wird keine Fehlermeldung angezeigt, weshalb INT(5)
und INT(11) beide die Grenzwerte speichern konnen. Damit wurde gezeigt, dass die Breiten-
angabe keinen Einfluss auf die Speicheranforderungen hat, sondern lediglich die Anzeige
beeinflusst.

Neben dem Typ fiir Ganzzahlen gibt es auch den Typ fiir Festkommazahlen, der in MySQL als
DECIMAL bezeichnet wird. Eine Festkommazahl ist eine Zahl mit einem festen Dezimalpunkt,
bei der sowohl die Anzahl der Dezimalstellen als auch die maximale Anzahl der Ziffern
vor und nach dem Dezimalpunkt definiert sind. Damit ist er auch fiir die Speicherung von
Ganzzahlen geeignet. DECIMAL(18, 9) beispielsweise speichert neun Ziffern vor und nach dem
Dezimalpunkt und benétigt dafiir 9 Bytes Speicherplatz. Zudem speichert DECIMAL die Zahlen
in einer binaren Zeichenkette mit neun Ziffern pro vier Bytes und unterstiitzt insgesamt bis
zu 65 Ziffern.

25

Ein weiterer numerischer Datentyp sind die FlieBkommazahlen, zu denen FLOAT und DOUBLE
gehoren. FlieBkommazahlen verwenden die Gleitkomma-Arithmetik und sind fiir unge-
fahre Berechnungen optimiert. FLOAT benotigt 4 Bytes, wahrend DOUBLE 8 Bytes Speicher-
platz beansprucht und eine hohere Prazision sowie einen grofieren Wertebereich bietet.
Die Gleitkomma-Arithmetik ist aufgrund der nativen Verarbeitung durch die CPU deutlich
schneller als die prazise Berechnung mit DECIMAL, bringt jedoch einen gewissen Prazisions-
verlust mit sich. Alternativ kann man auch BIGINT nutzen, um sowohl die Ungenauigkeit
von Gleitkomma-Speicherungen als auch die hoheren Kosten der DECIMAL-Arithmetik zu
vermeiden.

Als Nachstes werden die zeichenkettenbasierten Datentypen betrachtet. Die beiden Haupt-
typen sind VARCHAR und CHAR. VARCHAR speichert die Zeichenfolgen mit variabler Lange und
benotigt daher weniger Speicherplatz als Typen mit fester Lange, da nur so viel Platz ver-
wendet wird, wie tatsachlich benétigt wird. Zuséatzlich werden ein oder zwei Bytes fiir die
Speicherung der Lange der Zeichenfolge verwendet (1 Byte fiir < 255 Bytes Zeichenfolge).
Durch diese effiziente Speichernutzung ist VARCHAR der am haufigsten verwendete Datentyp
fir Zeichenketten. Es gibt jedoch auch Nachteile, da Aktualisierungen der Werte zu wach-
senden Zeilen fithren und damit auch zu zuséatzlicher Verarbeitung der Speicher-Engine.
Interessant ist auch, dass die Speicherung von hello in VARCHAR(5) oder VARCHAR(200) zwar
gleich viel Speicherplatz benétigt, jedoch ineffizienter bei Sortierungen oder Operationen auf
temporaren Tabellen sein kann. Deshalb sollte immer so viel Platz reserviert werden, wie
tatsachlich benétigt wird.

Im Gegensatz zu VARCHAR hat CHAR hingegen eine feste Lange und MySQL reserviert auch den
nicht gebrauchten Platz fiir die angegebene Anzahl an Zeichen. Daher ist CHAR ideal fiir sehr
kurze Strings oder Werte, die alle nahezu gleich lang sind, da VARCHAR(1) aufgrund des Langen-
Bytes 2 Bytes benotigt, CHAR(1) hingegen nur 1 Byte. Auflerdem bleibt die Speicherstruktur
bei Aktualisierungen von CHAR unverandert, weshalb er besser geeignet ist, wenn die Daten
haufig geandert werden. Dafiir ist CHAR nicht dafiir geeignet, wenn die maximale Spaltenldnge
deutlich grofler ist als die durchschnittliche Wertelange.

Als Letztes werden die zeitbezogenen Datentypen DATE, TIME, TIMESTAMP und DATETIME behan-
delt. Der Datentyp DATE speichert nur das Datum ohne Uhrzeit und ist besonders speichereffi-
zient, wahrend TIME ausschlief3lich eine Uhrzeit oder Zeitspanne, auch tiber 24 Stunden hinaus,
erfasst. Die anderen beiden speichern das Datum mit Uhrzeit und haben eine Genauigkeit
von einer Sekunde. TIMESTAMP bendétigt nur halb so viel Speicherplatz wie DATETIME und ist
zeitzonenbewusst, hat aber dafiir einen deutlich kleineren Wertebereich. Abhéngig von der
Information, die gespeichert werden soll, wahlt man den passenden zeitbezogenen Datentyp.

26

3.3 Analyse der Benchmarks

Der erste Leitsatz, der untersucht wird, besagt, dass Spalten nach Méglichkeit als NOT NULL
deklariert werden sollten. Zum Nachweis wird die Kundentabelle aus 2.4 verwendet, bei
der einmal alle Spalten als NOT NULL deklariert sind und einmal der Standardwert genutzt
wird. Wenn das Attribut nicht deklariert wird, konnen NULL-Werte in die Tabelle eingefiigt
werden. Um bei Select-Abfragen mit WHERE-Klauseln sowie COUNT- und GROUP BY-Befehlen die
gleiche Anzahl an Zeilen zu erhalten, werden NULL-Werte beim Einfiigen ausgeschlossen.

In der Grafik 3.1a sind die Ergebnisse der Select-Befehle zu sehen, wobei die Werte fiir NOT
NULL im Durchschnitt hoher sind als fiir WITH NULL. Hohere Werte bedeuten mehr Abfragen
pro Sekunde und deuten auf bessere Performance hin, weshalb man sagen kann, dass NOT
NULL besser performt als WITH NULL. Wenn man auf die y-Achse schaut, féllt aber auf, dass die
Werte nicht so weit auseinanderliegen und damit sind die Unterschiede sehr gering. Daher
sollte die Entscheidung, eine Spalte als NOT NULL zu deklarieren, vor allem aus Griinden der
Datenintegritat und -konsistenz und nicht aus Performancegriinden getroffen werden.

Reads over Time by Script Reads over Time by Script

380 / /\ \//\ =

10 20 30 40 50 60 10 20 30 10 50 60
Time (s) Time (s)

(a) Vergleich von NULL und NOT NULL (b) Vergleich von INT und CHAR
Abbildung 3.1: Vergleich von NULL und NOT NULL, sowie INT und CHAR

Um zu zeigen, dass bei der Wahl zwischen unterschiedlichen Datentypen der einfachere
bevorzugt werden sollte, wird erneut die Kundentabelle verwendet. Fiir diesen Benchmark
wird jeweils der Datentyp des Schliisselattributs der Tabelle geandert. Zunachst wird eine
Kundentabelle mit einem INT-Primérschliissel erstellt, gefolgt von einer weiteren mit CHAR.
Die Performance der Schreibbefehle ist in beiden Féllen etwa gleich. Bei den Lesebefehlen
sieht das anders aus (siehe 3.1b). Wenn man einen Wertebereich abfragt, dann ist INT deutlich
schneller (etwa 20%) als CHAR. Bei der Sortierung hat INT ebenfalls einen Vorteil, jedoch fallen
die Abstande deutlich geringer aus.

Als letztes soll der Vergleich unterschiedlicher Datentypen erfolgen. Hierfiir wird die gleiche
Tabelle wie beim Vergleich von INT und CHAR verwendet, jedoch werden diesmal verschiedene
numerische oder zeichenkettenbasierte Typen als Primarschliissel eingesetzt. Beim Vergleich
der numerischen Typen zeigt sich, dass DECIMAL mit deutlichem Abstand am langsamsten ist

27

(Abbildung 3.2). Danach folgt, wie vermutet, der nachstgroflere Datentyp BIGINT. Das lasst
sich sowohl an der Grafik als auch an der Legende erkennen, die die Typen nach Performance
absteigend sortiert. Die Legende hilft vor allem deswegen, weil die unterschiedlichen Werte
auch aufgrund der Skalierung der y-Achse sehr stark schwanken. Als Nachstes kommen
INT, MEDIUMINT und SMALLINT, wobei die Unterschiede kleiner sind als erwartet. Dies wird
vermutlich darauf zuriickzufithren sein, dass die Abfragen nur auf einer Tabelle mit wenigen
tausend Datensatzen ausgefiithrt wurden. In der Praxis mit Millionen von Datensiatzen diirften
die Unterschiede zwischen den Typen grofler sein als in diesem Vergleich.

Reads over Time by Script

script
int_datatyp_smallint_16
int int

int_datatyp_mediumint
int_datatyp_int_32
int_datatyp_bigint_64
int_datatyp_decimal_65

10 20 30 40 50 60
Time (s)

Abbildung 3.2: Vergleich von unterschiedlichen zeichenkettenbasierten Typen

Beim Vergleich zwischen den beiden Zeichenketten-Typen CHAR und VARCHAR ist unabhéngig
von der Lange zu erkennen, dass VARCHAR effizienter ist als CHAR (siehe 3.3a). Im ersten Vergleich
wurde jeweils eine Lange von 4 Stellen verwendet und beim zweiten Vergleich eine Lange
von 64 Stellen. Bei beiden untersuchten Langen ist VARCHAR schneller als CHAR.

Als letzten Vergleich wurden beide Zeichenketten-Typen mit der Lange von 255 Stellen
definiert, aber mit unterschiedlich vielen Stellen befiillt. Anschliefend wurden bei beiden
Tabellen die Werte aktualisiert, wobei in der Namen-Spalte zufllig einige Stellen hinzugefiigt
wurden. Dabei war CHAR schneller als VARCHAR (3.3b). Dies bestatigt die Vermutungen aus
Abschnitt 3.2, da die Vorteile von CHAR insbesondere bei der Aktualisierung von Werten zum
Tragen kommen, wahrend VARCHAR bei der Selektion von Werten besser abschneidet.

Reads over Time by Script Writes over Time by Script

_

700 62
60
650 58 /_/\;p:’\

Script
—— string_typ_varchar_4 P string_typ_char_255 length 56
® —— string_typ_char 4 £ 56 —— string_typ_varchar_255_length_56
& —— string_typ_varchar_64 H —— string_typ_char_255_length_240
600 string_typ_char_64 5 —— string_typ_varchar_255_length_240

10 20 30 40 50 60 10 20 30 40 50 60
Time (s) Time (s)

64

(a) Unterschiedliche Zeichenketten-Typen (b) Bei unterschiedlichem Befiillungsgrad
Abbildung 3.3: Vergleich von unterschiedlichen zeichenkettenbasierten Typen

28

4 Indizes

Das folgende Kapitel befasst sich mit der Indexierung und den damit verbundenen Performance-
Optimierungen, die naher erlautert werden. Zunachst werden einige Grundlagen betrachtet.
Anschlieflend werden die verschiedenen Arten von Indizes naher erklart und unterschiedliche
Benchmarks mit ihnen durchgefiihrt. Im letzten Schritt werden die Ergebnisse analysiert, um
festzustellen, welche Verwendung der Indizes am besten funktioniert.

4.1 Grundlagen

Indizes sind Datenstrukturen, die von Speicher-Engines (engl. storage engines) verwendet
werden, um Zeilen schneller zu finden. Die Storage-Engine ist eine Kernkomponente ei-
nes Datenbankmanagementsystems, die fiir die Speicherung und Verwaltung der Daten
verantwortlich ist. Verschiedene Storage-Engines unterscheiden sich hinsichtlich ihrer In-
dexfunktionalitat sowie der Unterstiitzung von Transaktionen und Sperrmechanismen. Im
weiteren Verlauf werden verschiedene Indextypen vorgestellt, die nicht von allen Engines
unterstiitzt werden.

Mit zunehmender Grofie der Datenbank wird das Scannen aller Tupel immer aufwendiger,
weshalb Indizes eine zentrale Rolle fiir die Datenbank-Performance spielen. Weniger aus-
gelastete Datenbanken konnen ohne ordnungsgemafie Indizes gut funktionieren, aber die
Leistung kann rapide sinken, wenn die Datenmenge wiachst. Wenn ein solches Problem
auftritt, ist die Index-Optimierung oft der effektivste Weg, um die Abfrageleistung schnell
zu verbessern. Um wirklich optimale Indizes zu erstellen, ist es haufig notwendig, Abfragen
umzuschreiben. Besonders niitzlich sind Indizes bei Abfragen, die Joins zwischen mehreren
Tabellen enthalten, da sie erméglichen, die Anzahl der zu priifenden Tupel erheblich zu
reduzieren, wenn eine einschrankende Bedingung vorliegt.

Um die Funktionsweise eines Indexes anschaulicher zu erklaren, wird als Beispiel ein wissen-
schaftliches Fachbuch betrachtet (vgl. Schwartz et al., 2012, S. 147). Am Ende dieser Biicher
gibt es meist ein Stichwortverzeichnis oder Register. Dieses Register besteht aus einer alpha-
betisch geordneten Liste von Begriffen, Themen und Stichworten. Mochte man einen Begriff
nachschlagen, sucht man ihn im Stichwortverzeichnis und erhélt die Seitenzahlen, auf denen

29

er vorkommt. In DBMS verwendet die Storage-Engine Indizes auf eine dhnliche Weise. Sie
durchsucht die Datenstruktur des Indexes nach einem Wert. Und wenn ein Treffer gefunden
wird, kann die Engine die Zeilen ermitteln, die den Treffer enthalten. Das folgendes Beispiel
veranschaulicht dies:

SELECT NAME FROM KUNDEN WHERE KUNDEN_ID = T7;

Angenommen, es existiert ein Index auf der Spalte KUNDEN_ID, dann wird MySQL diesen
verwenden, um Zeilen zu finden, bei denen die KUNDEN_ID den Wert 7 hat. Ein Index kann aber
nicht nur die Werte einer einzelnen Spalte enthalten, sondern auch mehrere Spalten einer
Tabelle umfassen. Bei mehrspaltigen Indizes spielt die Reihenfolge der Spalten im Index eine
entscheidende Rolle. Aulerdem ist der Zugriff auf nicht alle Spalten bedingungslos effizient,
da MySQL nur auf das linkeste Préfix des Indexes zugreifen kann. Wenn man nur das zweite
Attribut eines Indexes angibt, ohne das erste zu referenzieren, kann der Index nicht direkt
verwendet werden. Es ist wichtig zu beachten, dass ein Index, der iiber zwei Spalten definiert
ist, nicht mit zwei getrennten einspaltigen Indizes gleichzusetzen ist. In diesem Fall konnen
Abfragen nur auf einer der beiden Spalten basieren, was zu schlechterer Performance fiihrt,
wenn beide Spalten gleichzeitig abgefragt werden.

Um zu verstehen, wie man Indizes fiir eine Datenbank auswahlt, ist es wichtig zu wissen,
welcher Teil der Abfrage am meisten Zeit in Anspruch nimmt (Garcia-Molina et al., 2008,
S. 350-353). Das Datenbanksystem verteilt die Tupel einer Relation tiblicherweise auf viele
Festplattenseiten. Um die Werte eines Tupels zu priifen, muss die gesamte Seite, auch Block
genannt, in den Hauptspeicher geladen werden. Dabei erfordert es nahezu gleich viel Zeit,
alle Tupel einer Seite zu priifen, anstatt nur ein einzelnes. Aufgrund dieser Tatsache kann
die Entscheidung, ob fiir ein bestimmtes Attribut ein Index definiert werden soll, von drei
Faktoren abhiangig gemacht werden. Erstens ist ein Index besonders niitzlich, wenn Abfragen
haufig auf ein bestimmtes Attribut zugreifen. Zweitens kann ein Index sinnvoll sein, wenn es
nur wenige Tupel fiir einen bestimmten Wert des Attributs gibt, da dies den Festplattenzugriff
bei einer Abfrage reduziert. Und der letzte Fall betrifft Situation, in denen Tupel nach einem
Attribut geclustert sind. Da die Werte des Attributs aufeinanderfolgender gespeichert sind,
missen durch einen Index weniger Datenblocke geladenen werden.

Trotz dieser Faktoren miissen Entwickler bei der Auswahl von Schliisseln und Indizes einen
Tradeoff abwégen. Es gibt dabei zwei Faktoren, die die Entscheidung beeinflussen. Zum einen
kann ein Index auf einem Attribut Abfragen mit diesem Attribut erheblich beschleunigen.
Zum anderen erschwert jeder Index Einfiigungen, Loschungen und Aktualisierungen, da
diese mehr Zeit und Aufwand erfordern. Dennoch kann ein Index auf ein haufig verandertes
Attribut die Leistung verbessern, da einige Modifikationen zunachst eine Datenbankabfrage
erfordern. Im Kapitel Partitionen wird dieses Thema erneut behandelt

30

Zur Entscheidungsfindung anhand einer Berechnung wird die folgende Tabelle verwendet
(abgedndertes Beispiel aus Garcia-Molina et al., 2008, S. 355-357):

Fakten(Id, Bestelldatum, Artikel_Id, Kunden_Id, ...)

Der Schliissel der Faktentabelle ist die Spalte Id und fir die Artikel_Id sowie die Kunden_Id
werden eigene Indizes erstellt, sodass insgesamt drei Indizes vorhanden sind. Als Nachstes
werden Befehle benotigt, bei denen die Indizes benutzt werden (siehe 4.1). In der ersten Zeile
wird nur der Kundenindex verwendet und in der zweiten nur der Artikelindex.

Codeblock 4.1: Select-Queries fiir die Faktentabelle

SELECT Bestelldatum, Artikel_Id FROM Fakten WHERE Kunden_Id
SELECT Bestelldatum, Kunden_Id FROM Fakten WHERE Artikel_Id

k;

a;

Damit berechnet werden kann, ob es sinnvoll ist, die Indizes zu erstellen, miissen bestimmte
Voraussetzungen festgelegt werden. Zuallererst wird davon ausgegangen, dass die Faktenta-
belle 10 Datenbldocke belegt und im Durchschnitt jeder Kunde 3 Artikel kauft, wahrend ein
Artikel von 3 Kunden gekauft wird. Die Tupel fiir einen bestimmten Kunden oder Artikel sind
gleichméaflig tiber die 10 Seiten verteilt. Trotzdem sind mit einem Index nur 3 Festplattenzu-
griffe erforderlich, um die durchschnittlich 3 Tupel fiir einen Kunden oder Artikel zu finden.
Um die Seite des Indexes zu lesen, ist ein Festplattenzugriff erforderlich und ein weiterer, um
die modifizierte Seite zuriickzuschreiben, falls eine Indexseite geandert werden muss. Ohne
Index sind 10 Festplattenzugriffe zum Lesen und zwei Festplattenzugriffe zum Schreiben
erforderlich. Unter diesen Bedingungen ergibt sich die folgende Kostentabelle:

Aktion | Kein Index Kunden Index Artikel Index Beide Indizes

) 10 4 10 4

0, 10 10 4 4

I 2 4 4 6
Durchschnitt | 2 + 8p; + 8p, 4+6p, 4+ 6p 6 —2p; —2py

Tabelle 4.1: Kosten der unterschiedlichen Queries in Abhéngigkeit der Indizes

Unter der Annahme, dass die erste Abfrage p1 und die zweite p2 der Zeit beansprucht, ergibt
sich fiir I ein Anteil von 1 - p1 - p2. Damit kann der Durchschnitt fiir den Kundenindex wird
wie folgt berechnet (siehe letzte Zeile aus 4.1):

4p1 +10py + 4+ (1= p1 = py) = 4py + 10p + 4 = 4py — 4py = 4+ 6
Abhéngig von den Werten fiir p1 und p2 kann jede der vier Optionen die geringsten Kosten

fir die drei Operationen verursachen. Zum Beispiel, wenn p1 = p2 = 0,1, dann ist der Ausdruck
2 + 8pl + 8p2 am kleinsten, sodass keine Indizes bevorzugt werden wiirden. Damit wurde

31

gezeigt, dass es sinnvoll ist, keinen Index zu verwenden, wenn tiberwiegend Einfiigungen
durchgefithrt werden und nur sehr wenige Abfragen anfallen. Intuitiv gilt, dass bei vielen
Abfragen und einer ungefiahr gleichen Haufigkeit von Abfragen, die Artikel und Kunden
angeben, beide Indizes vorteilhaft sind. Wird hingegen nur ein Typ von Abfrage haufig
genutzt, sollte nur der Index definiert werden, der bei dieser Abfrageart hilft.

Um die Verantwortung fiir die Wahl der Indizes vom Datenbankdesigner zu iibernehmen,
wurden zahlreiche Tools entwickelt. Dabei optimiert das System sich selbst oder dem Entwick-
ler werden zumindest Empfehlungen fiir sinnvolle Entscheidungen gegeben. Ein bewéhrter
Ansatz zur Auswahl von Indizes ist das sogenannte Greedy-Verfahren (Garcia-Molina et al.,
2008, S. 824), bei dem zunéachst ohne ausgewahlte Indizes der Nutzen jedes Kandidaten-Index
bewertet wird. Wenn es einen Index mit positivem Nutzen gibt, wird dieser ausgewéhlt und
anschlielend wird eine Neubewertung ausgefiihrt, wobei davon ausgegangen wird, dass der
zuvor ausgewdhlte Index bereits verfiigbar ist. Dieser Prozess wird so lange wiederholt, bis
es keinen Kandidaten-Index mit positivem Nutzen mehr gibt.

4.2 B-Baum-Index

Der erste zu betrachtende Indextyp ist der B-Baum-Index (engl. B-Tree Index), der auf einer
speziellen Baum-Datenstruktur basiert. Diese Struktur wird von den meisten MySQL-Storage-
Engines unterstiitzt. Auflerdem verwendet ihn MySQL standardméafig fiir die Primary Keys
(Oracle, 2025a). Die Implementierung und Nutzung des B-Baum-Indexes kann je nach ver-
wendeter Storage-Engine variieren.

Das Grundprinzip eines B-Baums ist, dass alle Werte in einer bestimmten Reihenfolge gespei-
chert werden und jede Blattseite den gleichen Abstand zum Wurzelknoten hat.

»,The height of a B+ tree depends on the number of data entries and the size of
index entries.” (Ramakrishnan und Gehrke, 2002, S. 358)

Ein B-Baum-Index beschleunigt den Datenzugriff, da die Storage-Engine nicht die gesamte
Tabelle durchsuchen muss, um die gewiinschten Daten zu finden. Stattdessen beginnt die
Suche beim Wurzelknoten. Die Slots im Wurzelknoten enthalten Zeiger auf Kindknoten und
die Storage-Engine folgt diesen Zeigern. Der richtige Zeiger wird durch Vergleich der Werte in
den Knoten-Seiten (engl. node pages) ermittelt, die die oberen und unteren Grenzen der Werte
in den Kindknoten definieren. Letztlich stellt die Storage-Engine fest, ob der gewiinschte
Wert existiert oder ob sie erfolgreich eine Blatt (engl. leaf page) erreicht.

32

[J Valuein page
[Pointer to child page
I Pointer to next leaf

Leaf page:values < key1

e

Pointers to data (varies

Pointer from
higher-level
node page

Link to
next leaf

key1 <= values < key2

by storage engine)

[
"’[' values >= keyN
[}

‘4— Logical page. Size —>|
depends on storage
engine. 16K for InnoDB.

Abbildung 4.1: Bindr-Baums-Darstellung (Abbildung 5-1 aus Schwartz et al., 2012, S. 149)

Die Blatter sind besonders, da sie Zeiger auf die indexierten Daten enthalten, anstatt auf
andere Seiten zu verweisen. Zwischen dem Wurzelknoten und den Blattseiten konnen viele
Ebenen von Knoten-Seiten existieren. Die Tiefe des Baumes hangt von der Grofie der Tabelle
ab. Auflerdem speichern B-Baume die indexierten Spalten in einer festgelegten Reihenfolge,
was sie besonders niitzlich fiir die Suche nach Datenbereichen macht. Beispielsweise kann
ein Index auf einem Textfeld (z.B. vom Typ VARCHAR) effizient alle Namen finden, die mit ,K*
beginnen, da die Werte in alphabetischer Reihenfolge gespeichert sind.

Der Index sortiert die Werte entsprechend der Reihenfolge der in der CREATE INDEX-Anweisung
angegebenen Spalten, beispielsweise kann man wie folgt ein Index erstellen:

Codeblock 4.2: B-Baum-Index bestehend aus mehreren Attributen
CREATE INDEX combined_index ON KUNDEN(NAME, VORNAME, GEBURTSTAG);

Als Nachstes werden mogliche Abfragen betrachtet, bei denen B-Baum-Indizes besonders
hilfreich sind, um ein besseres Verstdndnis fiir ihre optimale Nutzung zu gewinnen. Eine
Ubereinstimmung mit dem vollstindigen Schliisselwert liefert Werte fiir alle Spalten im Index.
Eine beispielhafte Abfrage zur Suche nach allen Eintragen mit dem Index aus 4.2 ist die
Suche nach allen Kunden, die Max Mustermann heiflen und am 01.01.2000 geboren wurden.
Auch Abfragen, die nur mit dem linken Préfix ibereinstimmen, konnen von diesem Index
profitieren. So lasst sich etwa gezielt nach dem Nachnamen ,Mustermann® suchen. Ebenso
ist es moglich, nur ein Spaltenpréfix zu verwenden, etwa um alle Nachnamen zu finden,
die mit ,M" beginnen. Ein weiterer Vorteil ergibt sich bei Bereichsabfragen, denn der Index
kann effizient genutzt werden, um Nachnamen zwischen ,Mustermann® und ,Miiller” zu
ermitteln. Dartiber hinaus unterstiitzt ein B-Baum-Index auch Kombinationen aus exakten
und Bereichsabfragen, beispielsweise wenn nach dem Nachnamen ,Mustermann® gesucht

33

wird, wihrend der Vorname innerhalb eines Bereichs liegt, etwa ab ,Ma“. Ein weiterer Vorteil
von B-Baum-Indizes ist, dass sie aufgrund der sortierten Baumstruktur nicht nur Abfragen,
sondern auch ORDER BY-Bedingungen effizient unterstiitzen konnen.

Es gibt jedoch Einschrankungen von B-Baum-Indizes, die dazu fiithren, dass andere Indextypen
fiir bestimmte Szenarien besser geeignet sind. Eine Einschrankung ist, dass die Suche nicht
am rechten Ende des Indexes beginnen kann. Beispielsweise ist der Beispiels-Index nicht
dazu geeignet, alle Personen zu finden, die vor dem Jahr 2000 geboren wurden, ohne dass
der Nachname und Vorname ebenfalls spezifiziert werden. Fiir optimale Leistung kann es
auch erforderlich sein, dass Indizes mit den gleichen Spalten, jedoch in unterschiedlicher
Reihenfolge erstellt werden. Auf diese Weise konnten mehr Kombinationen abgedeckt und
zusatzlich einige Abfragen optimiert werden.

Im néchsten Abschnitt werden die Benchmarks durchgefiihrt, um das Verstandnis fiir die
Funktionsweise des B-Baum-Index zu bestatigen. Dazu wird zunédchst wieder die Kundenta-
belle (2.4) erstellt und fiir den ersten Vergleich werden folgende Indizes definiert:

Codeblock 4.3: Definition mehrere Indizes

1 CREATE INDEX idx_stadt ON KUNDEN(STADT);
2 CREATE INDEX idx_postleitzahl ON KUNDEN(POSTLEITZAHL);
3 CREATE INDEX idx_geburtstag ON KUNDEN(GEBURTSTAG);

Um die Effizienz dieser Indizes einordnen zu kénnen, wird diese Konfiguration mit einer
verglichen, bei der nur die Kundentabelle ohne Indizes erstellt wird. In beiden Falle werden
eine bestimmte Anzahl an Datensatze eingefiigt. Um die Performance der Select-Abfragen zu
messen, werden verschiedene Queries an die Datenbank ausgefiihrt, bei denen die Attribute
GEBURTSTAG, STADT und POSTLEITZAHL beriicksichtigt werden. Dazu gehdren GROUP BY- und
COUNT-Abfragen, bei denen die Index-Attribute verwendet werden oder sie spielen in der
WHERE-Bedingung eine Rolle. Damit es tibersichtlich bleibt, werden einmal 10 Datensétze mit
40 und einmal 400 mit 4000 Zeilen verglichen.

Reads over Time by Script Reads over Time by Script

4700
3000
e e AN S —
a0 W .
script script

—— without_index_length_10 » 2000 —— with_index_length_400
ith_index_length_10 —— without_index_length_400
x_length_40 with_index_length_4000
—— without_index_length_40 —— without_index_length_4000
1500

4400
/\/x/¥ e
4300
10 20 30 40 50 60 10 20 30 40 50 60
Time (s) Time (s)

Read:

(a) Mit 10 und 40 Datensitze (b) Mit 400 und 4000 Zeilen

Abbildung 4.2: Grafik zeigt Performance mit und ohne Index fiir Readsabfragen

34

O 0N U WD

In der Abbildung 4.2a ist zu erkennen, dass bei 10 Datensétzen die Kundentabelle ohne Indizes
schneller ist als die mit Indizes. Bei 40, 400 oder 4000 Zeilen (siehe 4.2a und 4.2b) wird die
Wirkung der Indizes deutlich. Der Unterschied bei 40 Datensitzen ist zwar etwas geringer,
aber in den anderen Fallen sind die Unterschiede noch grofier. Interessant ist, dass es nicht
linear oder quadratisch mit der Anzahl an Datensitzen in der Tabelle steigt, sondern bei
400 und 4000 Zeilen betragt der Unterschied zur Tabelle ohne Index jeweils etwa 500-700
Abfragen. Bei der Schreibgeschwindigkeit liegen beide auf einem sehr dhnlichen Niveau,
wobei die Version ohne Index tendenziell einen leichten Vorteil hat.

Mit dem vorherigen Benchmark kénnen die Vorteile eines Indexes bereits deutlich erkannt
werden. Nun soll jedoch auch die Funktionalitat des B-Tree-Indexes in Bezug auf unterschied-
liche Selects untersucht werden. Dazu wird erneut die Kundentabelle erstellt, aber diesmal
wird nur ein Index definiert (siehe 4.2). AnschlieBend wird die Tabelle mit einer festgelegten
Anzahl an Datensatzen befiillt und es werden unterschiedliche Select-Befehle ausgefiihrt. Im
Codeblock 4.4 sind aus Platzgriinden nur die Where-Bedingungen zu sehen und am Ende
jeder Zeile steht der Name der Query, damit spéter in der Analyse nachvollzogen werden
kann, welche Query welche Performance liefert.

Codeblock 4.4: Unterschiedliche Where-Bedingungen fiir B-Tree-Index

WHERE NAME LIKE 'M%'; -- columm_prefix

WHERE NAME = 'Miller' AND VORNAME = 'Max' AND GEBURTSTAG < '1980-01-01'; -- combined_match_with_range
WHERE NAME = 'MGller' AND VORNAME LIKE 'M%' ORDER BY GEBURTSTAG; -- exact_with_prefix

WHERE NAME = 'Muller' AND VORNAME = 'Max' AND GEBURTSTAG = '1960-01-01'; -- full_match

WHERE NAME = 'Mlller'; -- leftmost_prefix

WHERE GEBURTSTAG < '1980-01-01'; -- not_leftmost

WHERE NAME BETWEEN 'Miller' AND 'Schulz'; -- range_values

WHERE NAME = 'MUller' AND VORNAME LIKE 'M%' AND GEBURTSTAG <« '1980-01-01'; -- range_with_like

WHERE NAME = 'Muller' AND GEBURTSTAG < '1980-01-01'; -- skip_columns

Anhand der Grafik in Abbildung 4.3 lasst sich erkennen, bei welchen Abfragen der Index am
effizientesten ist. Auf der linken Seite konnen die Ergebnisse fiir die Read-Befehle mit Index
betrachtet werden, wahrend auf der rechten Seite die Werte ohne Index zu sehen sind.

Reads over Time by Script Reads over Time by Script

Script
— full_match
combined_match_with_range 550 1
— range_with_like
3500 —— exact_with_prefix

4000

skip_columns

X Script

— 500 1
Iefllmost,prihx —— full_match_no_index

—— column_prefix

combined_match_with_range_no_index

range_values /_—\/\’— exact_with_prefix_no_index

2500 [__notlefimost 450 4 —— range_with_like_no_index
siip_columns_no_index

2000 — leftmost_prefix_no_index

—— column_prefix_no_index

400 range_values_no_index

—— not_leftmost_no_index

3000

Reads
Reads

1500

1000

350 1

10 20 30 40 50 60 10 20 30 a0 50 60
Time (s) Time (s)

(a) Mit Index (b) Ohne Index

Abbildung 4.3: Visualisierung von unterschiedlichen Select-Queries mit und ohne Index

35

Zunachst fallt auf, dass die Reihenfolge fiir die Werte mit und ohne Index komplett identisch
ist. Dies ist direkt erkennbar, da die Legenden beider Grafiken nach dem durchschnittlichen
Wert tiber die gesamte Zeit sortiert sind. Damit die richtigen Schliisse aus der Grafik gezogen
werden konnen, muss zunachst ermittelt werden, wie viele Zeilen die unterschiedlichen
Queries zuriickgeben. Dazu werden die Abfragen zusétzlich mit dem COUNT(x)-Operator
durchgefiihrt und die Ergebnisse in die Log-Datei geschrieben. Anschlieffend werden die
Werte entnommen und in einer Tabelle zusammengefasst.

Select-Query Anzahl an Zeilen | Faktor | Index benutzt?
full_match 0 7.31 ja
combined_match_with_range | 8 6.75 ja
range_with_like 29 5.80 ja
exact_with_prefix 51 5.03 ja

skip_columns 146 3.77 ja
leftmost_prefix 255 3.13 ja
column_prefix 517 1.88 ja

range_values 1340 1.00 nein
not_leftmost 2371 1.02 nein

Tabelle 4.2: Ergebnisse der COUNT(*)-Abfragen fiir B-Tree-Index

Anhand der Spalte Anzahl an Zeilen lasst sich erkennen, dass die Queries, die am wenigsten
Zeilen zuriickgeben, auch diejenigen sind, bei denen die hochste Performance erzielt wird.
Damit ist auch die Reihenfolge mit und ohne Index gleich, weshalb man meinen konnte, dass
der Index keinen Einfluss auf die Performance hat. Dies betrifft jedoch nur die Reihenfolge,
nicht aber die Werte der Abfragen, da hier deutliche Unterschiede erkennbar sind. Anschaulich
wird das mit der Betrachtung der Spalte Faktor. Um den Wert zu berechnen, werden die
Werte aus der Gesamtstatistik entnommen und die Version mit Index durch die Version ohne
Index geteilt. Dadurch lasst sich erkennen, dass full_match zwar bei beiden Versionen am
schnellsten ist, jedoch mit Index etwa 7-mal schneller als ohne. Es lasst sich auch erkennen,
dass je weniger Zeilen zuriickgegeben werden, desto grofier ist der Faktor. Bei den Queries
range_values und not_leftmost liegt der Faktor sehr nah 1, was bedeutet, dass der Index
keinen Einfluss auf die Performance hat. Deshalb stellt sich auch die Frage, ob der Index
iiberhaupt verwendet wird. Um das zu tiberpriifen, wird der EXPLAIN-Operator verwendet,
das Ergebnis erneut geloggt und der Tabelle hinzugefiigt. Und tatsachlich sehen wir, dass die
vermuteten Queries die einzigen sind, bei denen der Index nicht verwendet wird.

4.3 Hash-Index

Ein weiterer Indextyp, der betrachtet wird, ist der Hash-Index. Dieser basiert auf einer Hash-
Tabelle und ist daher nur fiir exakte Suchanfragen geeignet, die alle Spalten des Indexes
verwenden. In MySQL unterstiitzt nur die Memory-Storage-Engine explizite Hash-Indizes.
Einige Storage-Engines, wie zum Beispiel InnoDB, kénnen erkennen, wenn bestimmte Index-
Werte besonders haufig abgefragt werden. Sie erstellen dann automatisch einen Hash-Index

36

fiir diese Werte im Speicher, der zusatzlich zu den bestehenden B-Baum-Indizes genutzt wird.
Die Funktionsweise der Storage-Engine lasst sich wie folgt beschreiben.

Fir jede Zeile wird mithilfe einer Hash-Funktion ein Hash-Wert der indexierten Spalte
berechnet. Der Hash-Wert (engl. hash code) ist eine kleine Zahl, die sich in der Regel von den
Hash-Werten anderer Zeilen unterscheidet. Anschlieend wird die Position im Index gesucht
und man findet einen Zeiger auf die entsprechende Zeile. In letzten Schritt iiberpriift man die
Werte der Zeile, um sicherzustellen, dass es sich um die richtige Zeile handelt.

Wenn mehrere Werte denselben Hash-Wert besitzen, speichert der Index die Zeiger auf
die Zeilen (engl. row pointers) in demselben Hash-Tabelleneintrag, typischerweise mithilfe
einer verketteten Liste (z.B. einer Linked List). Hash-Kollisionen kénnen die Leistung eines
Hash-Index beeintrachtigen, da jeder Zeiger in der verketteten Liste durchlaufen und die
entsprechenden Werte mit dem Suchwert verglichen werden miissen, um die richtigen Zeilen
zu finden. Das ist auch bei Index-Wartungsoperationen mit viel Aufwand verbunden. Es gibt
auch eindeutige Hash-Indizes, die stellen sicher, dass fiir jeden Hash-Wert nur ein einziger
Eintrag existiert. Bei Konflikten wird ein Mechanismus wie die Open Addressing-Strategie
(z.B. Linear Probing) eingesetzt, um Konflikte zu l6sen und den Speicherplatz effizient zu
verwalten. Hierbei wird versucht, Konflikte direkt innerhalb der Hash-Tabelle zu bewéltigen,
anstatt auf zusatzliche Datenstrukturen wie verkettete Listen zuriickzugreifen. Jedoch werden
die eindeutigen Hash-Indizes nicht von der Memory-Engine in MySQL unterstiitzt.

Ahnlich wie der B-Baum-Index hat aber auch der Hash-Index einige Einschrinkungen. Zum
einen enthélt der Index nur Hash-Werte und Zeiger auf Zeilen (engl. row pointers), jedoch
nicht die Werte selbst. Deshalb kann MySQL den Index nicht verwenden, um das Einlesen der
Zeilen zu vermeiden. Zum anderen konnen Hash-Indizes, anders als B-Baum-Indizes, nicht
fur Sortierungen verwendet werden, da die Werte nicht in einer geordneten Reihenfolge
gespeichert sind. Dariiber hinaus ermoglichen Hash-Indizes keine partiellen Schliisseliiberein-
stimmungen, da der Hash-Wert aus dem gesamten indexierten Wert berechnet wird. Bei einem
Index aus den Spalten (A, B) und einer WHERE-Klausel, die nur auf A verweist, ist dies daher
nicht hilfreich. Ein weiterer Nachteil von Hash-Indizes ist, dass sie keine Bereichsabfragen
unterstiitzen und nur fiir Gleichheitsvergleiche wie =, <=> und IN() geeignet sind.

Als Nachstes werden die Benchmarks mit Hash-Indizes betrachtet. Dazu wird erneut die
Kundentabelle verwendet und diesmal nur ein Index fiir die Spalte NAME erstellt. Am Ende
des CREATE INDEX-Befehls muss USING HASH hinzugefiigt werden, damit statt des standardma-
Bigen B-Tree-Index der Hash-Index verwendet wird. Danach befiillen wieder die Tabelle mit
Testdaten. Diesmal wird beim ersten Benchmark der Einfluss von Hash-Kollisionen auf die
Performance untersucht. Um den Grad der Kollisionen zu verandern, wird eine Variable ver-
wendet, die die obere Grenze fiir die zuféllige Generierung einer Zahl darstellt. Anschlielend
werden alle Zeilen mit dem Wert Kunde_1 fiir die Spalte NAME abgefragt und die Tests werden
mit den Kollisionswahrscheinlichkeiten von 25%, 10%, 5% und 1% durchgefiihrt.

37

Reads over Time by Script Writes over Time by Script

4 | | Script 1750 script
4750 —— selectivity_changes_prob_1 —— selectivity_changes_prob_25
— selectivity_changes_prob_5 — selectivity_changes_prob_5
4500 selectivity_changes_prob_10 1700 selectivity_changes_prob_10

—— selectivity_changes_prob_25 —— selectivity_changes_prob_1

1650
4250 W

1600

4000

1550

Reads
Writes

3750

1500
3500

1450
3250

1400
3000

1350

10 20 30 40 50 60 10 20 30 40 50 60
Time (s) Time (s)

Abbildung 4.4: Vergleich der Auswirkungen von Hashkollisionen

An den Ergebnissen in Abbildung 4.4 ist zu erkennen, dass je geringer die Wahrscheinlichkeit
fiir eine Kollision ist, desto schneller fallt die Select-Abfrage aus. Es fallt auch auf, dass die
Unterschiede zwischen den verschiedenen Kollisionswahrscheinlichkeiten sehr grof; sind.
Hingegen die Einfiige-Performance ist bei allen 4 Varianten auf einem &hnlichen Niveau.
Als zweiten Test soll iiberpriift werden, ob der Index bei bestimmten Select-Queries benutzt
wird oder nicht. Dazu wird erneut die Kundentabelle verwendet, der gleiche Index wie in
Beispiel 4.2 erstellt, die Testdaten eingefiigt und die Select-Befehle aus 4.4 genutzt. Dieses
Mal werden aber nicht alle Select-Befehle verwendet, sondern nur die aus folgender Tabelle:

Select-Query Anzahl an Zeilen | Faktor | Index benutzt?
full_match 0 2.96 ja
combined_match_with_range | 9 1.16 nein
exact_with_prefix 42 1.13 nein
leftmost_prefix 204 1.22 nein

Tabelle 4.3: Ergebnisse der COUNT(*)-Abfragen fiir Hash-Index

Anhand der Spalten Faktor und Index benutzt? kann erkannt werden, dass der Index nur
bei der full_match-Abfrage benutzt wird. Das stimmt auch mit den Ergebnissen aus der
Abbildung 4.5 tiberein, da ohne Index alle Abfragen auch einem &hnlichen Niveau liegen, aber
mit Index sticht eine deutlich hervor. Interessant ist, dass die Query mit 206 zuriickgegebenen
Zeilen nur unwesentlich langsamer ist als die anderen. Die Reihenfolge ist wieder bei beiden
identisch und hangt von der Anzahl der zuriickgegebenen Zeilen ab.

Reads over Time by Script Reads over Time by Script

Script
—— full_match_no_index

4500 1700

—— combined_match_with_range_no_index
exact_with_prefix_no_index
4000 1600 1 jeftmost_prefix_no_index

3500 1500
Script

" —— full_match

B 3000 —— combined_match_with_range 1400

& exact_with_prefix PN
2500 1300 /\‘

Reads

— leftmost_prefix

2000 1200

1500 1100

10 20 30 40 50 60 10 20 30 40 50 60
Time (s) Time (s)

Abbildung 4.5: Grafik visualisiert Select-Queries mit (links) und ohne (rechts) Index

38

4.4 Vergleich zwischen B-Tree- und Hash-Index

In den vorherigen Kapiteln wurden der B-Tree-Index und der Hash-Index jeweils getrennt
voneinander betrachtet. Dabei wurde auch analysiert, bei welchen Select-Queries die Indizes
Vorteile bieten und bei welchen nicht. Damit fehlt noch der Vergleich zwischen B-Tree- und
Hash-Index.

Um die Unterschiede zwischen beiden Indexstrukturen genauer zu analysieren, wird ein
neuer Benchmark durchgefiihrt, der die Skripte aus Kapitel 4.2 und 4.3 wiederverwendet. Da
der Hash-Index aber nur 4 unterschiedliche Select-Queries aufruft, sollen auch nur diese mit
dem B-Tree-Index ausgefithrt werden. Dazu wird einfach der Parameter selects beim Aufruf
des Orchestrator-Skripts hinzugefiigt und das Skript anschlieffend ausgefiihrt.

Reads over Time by Script Writes over Time by Script
4500 T 0
1800

4000 1700

script

1600
3500 full_match_hash_index

“ ree_index ,, 1500 script
2 3000 o}
&

1400

2500
1300

2000
1200

1500 1100

10 20 30 40 50 60 10 20 30 40 50 60
Time (s) Time (s)

(a) Anzahl der Lesezugriffe (b) Anzahl der Schreibzugriffe

Abbildung 4.6: Vergleich der Select-Query-Performance von B-Tree- und Hash-Index

In der Abbildung 4.6a sehen die Performance fiir die unterschiedlichen Select-Befehle. Die
hochste Transaktionsrate erzielt der Hash-Index, sofern der vollstandige Schliissel angegeben
wird (full_match). Dicht darauf folgt der B-Tree-Index mit derselben Abfrage, allerdings
mit etwa 10% weniger Zugriffen. Bei den iibrigen Abfragen schneidet hingegen der B-Tree-
Index deutlich besser ab, in einigen Fallen sogar bis zu dreimal schneller als der Hash-Index.
Der Grund dafiir ist bereits aus den anderen Kapiteln bekannt. Da der Hash-Index nur bei
exaktem Schliisselabgleich zum Einsatz kommt, wird er bei den anderen Abfragen nicht
verwendet. Mithilfe des EXPLAIN-Operators wurde festgestellt, dass stattdessen der B-Tree-
Index verwendet wird, was die starken Unterschiede erklirt.

Betrachtet man die Schreibperformance (Abbildung 4.6b), zeigt sich, dass der Hash-Index etwa
30-40% schneller ist als der B-Tree-Index. Wenn eine Anwendung also eine hohe Schreiblast
hat, konnte der Hash-Index eine bessere Wahl sein, da er weniger Mehraufwand verursacht.
Zusammenfassend lasst sich festhalten, dass der Hash-Index einen leichten Vorteil hat, wenn
beide Indexe greifen. Andernfalls iiberwiegen die Starken des B-Tree-Indexes.

39

5 Views

Im folgenden Kapitel werden die Performancevorteile von Sichten (engl. Views) in SQL be-
trachtet. Zunachst wird auf virtuelle Sichten, ihre Vor- und Nachteile, das Verhalten bei Inserts
sowie auf mogliche Szenarien eingegangen, in denen sie besonders vorteilhaft sein konnen.
Anschlieflend wird sich mit materialisierten Sichten beschéftigt, die physisch in der Daten-
bank gespeichert werden. Zunéchst wird eine Version mit Triggern implementiert, da MySQL
keine native Unterstiitzung fiir materialisierte Sichten bietet, bevor die native Implementie-
rung in PostgreSQL genutzt wird. In den letzten beiden Kapiteln wird die Durchfithrung der
Benchmarks naher betrachtet und die entstandenen Ergebnisse interpretiert.

5.1 Virtuelle Views

Grundlegend existieren Relationen, bzw. Tabellen, die durch das CREATE TABLE-Statement
definiert werden, physisch in der Datenbank. Damit sind sie persistent, was bedeutet, dass
sie dauerhaft existieren und sich nicht dndern, es sei denn, sie werden explizit durch eine
SQL-Anderungsanweisung dazu aufgefordert. Es gibt jedoch eine weitere Klasse von SQL-
Relationen, die nicht wie Tabellen physisch gespeichert werden (Garcia-Molina et al., 2008,
S. 341-349, 353-366). Sie werden als virtuelle Sichten bezeichnet.

~A view is a table whose rows are not explicitly stored in the database but are
computed as needed from a view definition.” (Ramakrishnan und Gehrke, 2002,
S. 86)

Virtuelle Sichten werden durch einen Ausdruck definiert, der einer Abfrage dhnelt. Sie konnen
auch so abgefragt werden, als ob sie tatsdchlich physisch existierten (vgl. Ramakrishnan und
Gehrke, 2002, S. 87). In einigen Féllen lassen sich sogar Datensétze iiber die Sicht 4ndern.

Codeblock 5.1: Allgemeine View-Deklaration

CREATE VIEW <name> AS <view-definitiony;

In dem Codeblock 5.1 wird die Struktur der Definition einer View gezeigt. Als Néachstes muss
die view-definition mit einer SQL-Abfrage ersetzt werden, die den Inhalt der virtuellen Sicht
abbilden soll. Um dieses Vorgehen mit einem Beispiel ndher zu veranschaulichen, werden die

40

0 N N U s W N =

Tabellen Kunden (2.4) und Bestellung (2.5) genutzt. Nun wollen wir, dass die beiden Tabellen
iiber die KUNDEN_ID in der Sicht zusammengefiigt werden, da sie sowohl der Primarschliissel in
der Kundentabelle als auch der Fremdschliissel in der Bestellung ist. Um in die SQL-Abfrage
noch etwas mehr Komplexitat zu bringen, soll neben der Join-Operation auch der Umsatz
pro Jahr und pro Land aggregiert werden. Die View KUNDEN_OVERVIEW hat folgende Struktur:

Codeblock 5.2: View Deklarierung

CREATE VIEW KUNDEN_OVERVIEW AS
SIELLECT
EXTRACT (YEAR FROM B.BESTELLDATUM) AS Jahr,
K.LAND AS Land,
SUM(B.UMSATZ) AS Gesamtumsatz
FROM KUNDEN K
JOIN BESTELLUNG B ON K.KUNDEN_ID = B.FK_KUNDEN
GROUP BY EXTRACT(YEAR FROM B.BESTELLDATUM), K.LAND;

Diese Aggregation konnte beispielsweise von einem Marketingteam genutzt werden, um
schwache Regionen pro Jahr zu identifizieren und gezielt in diesen nachzusteuern. Wenn die
Daten dieser virtuellen Sicht abgefragt werden sollen, wird der Name in der FROM-Klausel
adressiert und es wird darauf vertraut, dass das Datenbankmanagementsystem die benétigten
Tupel erzielt (siehe 5.3). Dabei operiert das DBMS direkt auf den Relationen, die die virtuelle
Sicht definieren. In diesem Fall handelt es sich um die Kunden- und Bestelltabelle.

Codeblock 5.3: SQL-Befehl mit verwendeter View

SELECT % FROM KUNDEN_OVERVIEW
ORDER BY Jahr ASC, Gesamtumsatz DESC;

Eine weitere Moglichkeit, die Funktionsweise einer Sicht besser zu verstehen, besteht darin,
sie in einer FROM-Klausel durch eine Unterabfrage zu ersetzen, die identisch mit der Sicht-
definition ist. Damit Bezug auf die Tupel genommen werden kann, muss die Unterabfrage
noch mit einer Tupelvariablen erganzt werden. Die SQL-Abfrage aus 5.4 liefert das gleiche
Ergebnis wie die aus 5.3, wenn die View wie im Beispiel 5.2 definiert wird. Zu dem Einfluss
auf die Performance wird im Unterkapitel 5.3 eingegangen.

Codeblock 5.4: Select-Befehl ohne Sicht

SELECT YEAR(B.BESTELLDATUM) AS Jahr, K.LAND AS Land, SUM(B.UMSATZ) AS Gesamtumsatz
FROM KUNDEN K
JOIN BESTELLUNG B ON K.KUNDEN_ID = B.FK_KUNDEN
GROUP BY YEAR(B.BESTELLDATUM), K.LAND
ORDER BY Jahr ASC, Gesamtumsatz DESC;

41

Man kann den Attributen einer Sicht auch eigene Namen vergeben, indem man sie in Klam-
mern hinter dem Namen der Sicht aus der CREATE VIEW-Anweisung auflistet. Die Definition
einer Sicht kann mit DROP VIEW <view-name> geloscht werden, wodurch keine Abfragen mehr
auf dieser Sicht ausgefithrt werden konnen. Das Loschen der Sicht hat jedoch keine Auswir-
kungen auf die Tupel der zugrundeliegenden Tabellen. Im Gegensatz dazu wiirde DROP TABLE
<table-name> die Tabelle 16schen und damit auch die darauf basierenden Sichten unbrauchbar
machen, da ihre Definitionen auf der geloschten Tabelle beruhen.

Abgesehen vom Loschen der Tabellen kann man auch Einfiigungen an der View durchfiihren.
Dies ist aber nicht uneingeschriankt moglich und nur unter bestimmten Bedingungen erlaubt.
Zum einen muss die Sicht durch eine einfache Abfrage aus nur einer einzigen Relation
definiert sein. Zum anderen muss die SELECT-Klausel ausreichend Attribute umfassen, sodass
fehlende Werte bei Einfiigungen mit NULL oder anderen definierten Standardwerten ergénzt
werden kénnen. Die Anderungen werden dann direkt auf die Basistabelle angewendet, wobei
nur die in der Sicht definierten Attribute beriicksichtigt werden. Wenn die eben beschriebenen
Bedingungen erfiillt sind, werden auch bei Léschungen und Aktualisierungen die Anderungen
auf die zugrundeliegende Relation R tibertragen. Dabei wird die WHERE-Bedingung der View
zu den Bedingungen der Anderung im WHERE-Block hinzugefiigt. Wenn die Bedingungen nicht
erfillt sind, wie im Beispiel (5.2), weil mehrere Relationen in der View verwendet werden,
miissen Anderungen direkt an den zugrunde liegenden Tabellen vorgenommen werden. In
diesem Fall kann die View nur fiir Select-Abfragen genutzt werden.

Das Einfiigen iiber die Sicht ist jedoch nicht die intuitivste Moglichkeit, um Anderungen
an den unterliegenden Tabellen durchzufithren. Das liegt vor allem an dem Umgang mit
den nicht definierten Werten, weshalb sich das Konzept von Triggern anbietet. Trigger in
SQL sind Datenbankobjekte, die mit einer Tabelle verkniipft sind und sobald bestimmte
Ereignisse eintreten, fithren sie eine Reihe von Anweisungen aus (vgl. Silberschatz et al.,
2011, S. 180). Die Auslosung eines Triggers kann entweder vor (BEFORE) oder nach (AFTER)
einem bestimmten Ereignis erfolgen, wie INSERT, UPDATE oder DELETE. Bei Triggern auf Sichten
kénnen auch INSTEAD-OF-Trigger verwendet werden, die Anderungsversuche an der Sicht
abfangen und stattdessen eine frei definierbare Aktion ausfithren.

Codeblock 5.5: Allgemeine Trigger Deklaration

CREATE TRIGGER trigger_name

{BEFORE | AFTER | INSTEAD OF} {INSERT | UPDATE | DELETE}
ON {table_name | view_name}

FOR EACH ROW

trigger_body;

Das Problem in MySQL mit Triggern ist aber, dass sie nur auf Tabellen angewendet werden
konnen. Spater wird dazu im Kapitel 5.3 noch ein genaueres Beispiel betrachtet. Um Werte

42

AN G W N -

in eine virtuelle Sicht einzufiigen, bietet sich jedoch das Konzept der Stored Procedures an.
Stored Procedures sind Funktionen, die direkt im DB-Server hinterlegt werden und wie andere
integrierte Funktionen, wie z.B. round(), aufgerufen werden konnen. Sie ermoglichen es,
geschéftslogische Prozesse in der Datenbank zu speichern und direkt tiber SQL-Anweisungen
auszufiihren (vgl. Silberschatz et al., 2011, S. 173).

Codeblock 5.6: Allgemeine Prozedur Deklaration

CREATE PROCEDURE stored_procedure_name(IN parami INT, IN param2 VARCHAR(255))
BEGIN

-- smth
END

Damit fiir die Sicht aus dem Beispiel 5.2 Daten eingefiigt werden kénnen, muss die Prozedur
die gleichen Parameter wie die Spalten der View erhalten. Die Parameter werden in der
Funktion verarbeitet und die ermittelten Daten in die zugrunde liegenden Tabellen eingefiigt.
Wenn die Prozedur korrekt ist, dann werden die Anderungen bei der nichsten SELECT-Abfrage
der View sichtbar.

Codeblock 5.7: Deklaration der Prozedur

CREATE PROCEDURE insert_view(IN Jahr INT, IN Land VARCHAR(255), IN Umsatz INT)
BEGIN
INSERT INTO BESTELLUNG (BESTELLDATUM, FK_KUNDEN, UMSATZ)
VALUES (STR_TO_DATE (CONCAT(Jahr, '-01-01'), '%Y-%m-%d'),
(SELECT K.KUNDEN_ID FROM KUNDEN K WHERE K.LAND = Land LIMIT 1), Umsatz);
END:

!

Jetzt kann die Methode insert_view einfach mit dem CALL-Befehl aufgerufen werden und die
Werte fiir die drei Parameter werden in Klammern iibergeben. Auf diese Weise erfolgt das
Einfiigen der Werte in die Bestelltabelle. Materialized Als Bestelldatum wird stets der erste
Tag des Jahres verwendet und als Kunde wird einer gewahlt, der in dem jeweiligen Land lebt.

Im Vergleich zum direkten Einfiigen in die Bestelltabelle geht jedoch Datenprazision verloren.
Einerseits fehlt das genaue Datum und andererseits sind die Informationen zur KUNDEN_ID und
ARTIKEL_ID nicht vorhanden. Zusammengefasst lasst sich sagen, dass je nach Definition der
Sicht Daten entweder direkt eingefiigt oder mithilfe von Stored Procedures befiillt werden
konnen. Es ist dabei jedoch nicht ausgeschlossen, dass es in den zugrunde liegenden Tabel-
len zu einer geringeren Datenqualitdt kommen kann, da beispielsweise NULL-Werte oder
andere Standardwerte verwendet werden. Deshalb sollten virtuelle Sichten grundsatzlich nur
zur Abfrage von Daten benutzt werden und nicht fiir Anderungen. Stattdessen sollten die
zugrunde liegenden Tabellen direkt angepasst werden.

43

X NN N Gk W N =

5.2 Materialisierte Views

Allgemein werden Sichten so definiert, dass sie eine neue Relation aus den Basistabellen
erzeugen, indem sie eine Abfrage auf diese Tabellen ausfithren. Bisher wurden Sichten aus-
schlieBlich als logische Beschreibungen von Relationen betrachtet. In bestimmten Féllen kann
es jedoch aus Performancegriinden sinnvoll sein, sie zu materialisieren, also die Ergebnisse
physisch zu speichern.

,Materialized views constitute redundant data, in that their contents can be infer-
red from the view definition and the rest of the database contents. (Silberschatz
et al, 2011, S. 607)

Durch die physische Speicherung verringert sich der Rechenaufwand fiir Abfragen, da fiir das
Beispiel (siehe 5.2) der Join nicht erneut ausgefithrt werden muss. Die bereits gespeicherten
Ergebnisse sind damit direkt abrufbar, was zu einer schnelleren Antwortzeit der Query fiihrt.
Passend zu der virtuellen Sicht (5.2) sieht die Materialisierte wie folgt aus:

Codeblock 5.8: Materialized View

CREATE MATERIALIZED VIEW UmsatzProJahrLand AS
SELECT
EXTRACT (YEAR FROM B.BESTELLDATUM) AS Jahr,
K.LAND AS Land,
SUM(B.UMSATZ) AS Gesamtumsatz
FROM KUNDEN K
JOIN BESTELLUNG B ON K.KUNDEN_ID = B.FK_KUNDEN
GROUP BY EXTRACT(YEAR FROM B.BESTELLDATUM), K.LAND;

Wie zu sehen ist, unterscheidet sich die materialisierte Sicht nur in der ersten Zeile von
der Virtuellen. Einen Nachteil der materialisierten Sicht gegeniiber der Virtuellen ist der
zusitzliche Aufwand, dhnlich wie bei Indizes. Wenn Anderungen an der zugrunde liegenden
Basistabelle vorgenommen werden, ist die materialisierte Sicht nicht mehr aktuell. Die
einfachste Losung besteht darin, bei jeder Anderung eine vollstindige Neuberechnung der
Sicht durchzufithren (vgl. Silberschatz et al., 2011, S. 608). Dies kann explizit mit dem folgenden
Befehl durchgefiihrt werden:

Codeblock 5.9: Aktualisierung der materialisierten Sicht

REFRESH MATERIALIZED VIEW KUNDEN_MAT_OVERVIEW;

Die Anzahl an Neuberechnungen hat einen grofien Einfluss auf die Performance, weshalb
man sich ein Konzept tiberlegen, mit dem die Anzahl auf ein Minimum begrenzt wird.

44

Ansonsten kann es durch Sperren auf die zugrunde liegenden Tabellen zu Einschrankungen
in der Produktivumgebung kommen. In PostgreSQL erlaubt die Option CONCURRENTLY beim
Aktualisieren einer materialisierten Sicht den gleichzeitigen Zugriff durch andere Prozesse,
da die Sicht erst ersetzt wird, wenn die neue Version fertig ist (siehe 5.9).

Eine materialisierte Sicht kann wie eine virtuelle Sicht in der FROM-Klausel einer Abfrage
verwendet werden. In Oracle gibt es zusétzlich noch eine Funktionalitat, die es ermdglicht,
Abfragen automatisch umzuschreiben. Damit kann die materialisierte Sicht auch verwendet
werden, wenn sie nicht explizit in der Abfrage referenziert wird. Fir diese Funktionalitat
muss die materialisierte Sicht mit der Funktion ENABLE QUERY REWRITE aktiviert werden. Die
Abfrage wird aber nur dann umformuliert, wenn alle Relationen in der Sicht enthalten sind
und die Bedingungen entsprechend angepasst werden.

Codeblock 5.10: Select mit Materialized View

SELECT Land, Jahr, Gesamtumsatz
FROM KUNDEN K JOIN BESTELLUNG B ON K.KUNDEN_ID = B.FK_KUNDEN
WHERE LAND = 'Deutschland' AND JAHR = 2024;

Die Abfrage 5.10 konnte intern so umgeschrieben werden, dass sie nicht auf den angegebenen
Tabellen erfolgt, sondern direkt auf die materialisierte Sicht UnsatzProJahrLand. Die materiali-
sierte Sicht enthélt bereits die aggregierten Umsétze und muss daher weniger Berechnungen
durchfithren. Bei der zweiten Abfrage 5.11 wird die materialisierte View nicht verwendet, da
sie nicht die Spalten STADT und MONAT enthélt. Wie in PostgreSQL bei beiden Befehlen erfolgt
in diesem Fall auch in Oracle keine automatische Abfrageumschreibung, weshalb die Abfrage
explizit auf die Tabellen zugreifen muss.

Codeblock 5.11: Select nicht mit Materialized View

SELECT Stadt, Monat, Gesamtumsatz
FROM KUNDEN K JOIN BESTELLUNG B ON K.KUNDEN_ID = B.FK_KUNDEN
WHERE STADT = 'Hamburg' AND EXTRACT(MONTH FROM K.GEBURTSTAG) = 8;

Neben der Verwendung der Option CONCURRENTLY gibt es noch weitere Optimierungen, um
nicht jedes Mal die gesamte Sicht vollstandig neu erstellen zu miissen. Dafiir muss man sich
vor Augen fiihren, dass alle Anderungen an der zugrunde liegenden Tabelle inkrementell sind.
Auf diese Weise konnen Einfiigungen, Loschungen und Aktualisierungen in einer Basistabelle
mit minimalem Abfrageaufwand durchgefithrt und anschlieflend in der materialisierten
Sicht aktualisiert werden. Diese inkrementelle Aktualisierung der materialisierten Sicht
ist damit deutlich effizienter als die stindige Neuberechnung der Sicht. Aber nicht jedes
Datenbankmanagementsystem unterstiitzt die inkrementelle Auffrischung. Oracle bietet
diese Funktion nativ mithilfe von Materialized View Logs an, wihrend in PostgreSQL eine
manuelle Planung erforderlich ist, da keine automatische Auffrischung unterstiitzt wird

45

1
2
3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18
19

(Ouko, 2025). MySQL hingegen bietet gar nicht erst eine Moglichkeit an, um materialisierte
Sichten nativ zu erstellen. Allerdings kann man die Funktionsweise mithilfe einer physischen
Tabelle und Triggern wie folgt nachstellen nachstellen.

Zunachst muss eine physische Tabelle, z.B. mit dem Namen KUNDEN_MAT_OVERVIEW, erstellt
werden. Diese Tabelle besteht, dhnlich wie die materialisierte Sicht 5.8, aus den Spalten JAHR,
LAND und GESAMTUMSATZ, wobei die Kombination aus Jahr und Land der Schliissel der Tabelle
ist. Wenn nun Daten in die zugrundeliegenden Tabellen KUNDEN und BESTELLUNG eingefiigt
werden, bleibt die KUNDEN_MAT_OVERVIEW-Tabelle unverandert, da bisher keine Verbindung
zur neuen Tabelle hergestellt wurde. Dieses Problem kann gelost werden, indem Trigger
definiert werden, die bei Anderungen in der Bestell- oder Kundentabelle ausgeldst werden.
Durch die Verkniipfung tiber KUNDEN_ID und ON DELETE CASCADE werden beim Loschen eines
Kundeneintrags automatisch auch die Bestelleintrige entfernt, sodass nur die Anderungen in
der Bestelltabelle fiir den Trigger beriicksichtigt werden miissen.

In MySQL kann ein Trigger nur fiir einen Datenbankmanipulationsoperator gleichzeitig
verwendet werden (Oracle, 2025d), weshalb fiir INSERT und DELETE jeweils ein Trigger definiert
werden muss. Da keine Datensitze aktualisiert werden, wird aus Simplizitatsgriinden der
Trigger fiir UPDATE vernachlassigt. Fiir das Beispiel sieht der INSERT-Trigger wie folgt aus:

Codeblock 5.12: Insert Trigger fiir die Tabelle Bestellung

CREATE TRIGGER UPDATE_BESTELLUNG_MAT_OVERVIEW_AFTER_INSERT
AFTER INSERT ON BESTELLUNG
FOR EACH ROW
BEGIN
DECLARE v_land VARCHAR(255);
DECLARE v_jahr INT;
SELECT LAND INTO v_land FROM KUNDEN WHERE KUNDEN_ID = NEW.FK_KUNDEN;
SELECT EXTRACT(YEAR FROM NEW.BESTELLDATUM) INTO v_jahr;
IF EXISTS (
SELECT 4 FROM KUNDEN_MAT_OVERVIEW WHERE LAND = v_land AND JAHR = v_jahr
) THEN
UPDATE KUNDEN_MAT_OVERVIEW
SET GESAMTUMSATZ = GESAMTUMSATZ + NEW.UMSATZ
WHERE LAND = v_land AND JAHR = v_jahr;
ELSE
INSERT INTO KUNDEN_MAT_OVERVIEW (JAHR, LAND, GESAMTUMSATZ)
VALUES (v_jahr, v_land, NEW.UMSATZ);
END IF;
END;

46

Nach dem Einfiigen eines Datensatzes in die Bestelltabelle wird der Trigger aktiviert und
iiberpriift, ob fiir das Land und Jahr bereits ein Eintrag in KUNDEN_MAT_OVERVIEW vorhanden ist.
Ist dies der Fall, wird der Gesamtumsatz angepasst, andernfalls wird ein neuer Datensatz mit
den entsprechenden Werten eingefiigt. Ein Nachteil des Ansatzes mit einer normalen Tabelle
in Kombination mit Triggern ist der erhohte Aufwand fiir jede materialisierte Sicht. Zudem
variiert dieser Aufwand stark, da er individuell vom jeweiligen Anwendungsfall abhangt.

Ein Anwendungsfall fiir die Nutzung von aggregierten Daten in einer materialisierten Sicht
ist die Analyse von Daten, um Vorhersagen zu treffen. Wenn Analysten eines Motorrad-
unternehmens beispielsweise den Einkauf fiir die Zukunft planen méchten, miissen sie oft
auf aggregierte Daten aus der Vergangenheit zuriickgreifen. Diese Entscheidungen werden
jedoch nicht taglich abgefragt, sondern nur in regelméafligen Abstdnden. Damit wird die
materialisierte Sicht eher selten abgefragt, wihrend Anderungen an den zugrundeliegenden
Tabellen, wie z.B. der Bestand an Motorrddern oder die Anzahl der Motorradteile im Lager,
sehr hiufig vorkommen. Wenn man die Sicht bei jeder Anderung im Lager aktualisieren
wirde, wirde dies zu einem enormen Aufwand fuhren. Daher kann es sinnvoll sein, die
Daten nur einmal taglich zu aktualisieren, beispielsweise durch einen Cron-Job in der Nacht.
Zu dieser Zeit ist zusatzlich die Systemlast in der Regel gering. In diesem Fall haben die
Analysten zwar nur den Stand des Vortages, aber da sie in der Regel mit vergangenen Daten
arbeiten, ist dieses Risiko vertretbar. Anders ist es bei einer schnellen Lieferung an den
Kunden, da es fiir den Verkauf entscheidend ist, tiber aktuelle Bestandsdaten zu verfiigen.

Zusammengefasst lasst sich sagen, dass materialisierte Sichten und Indizes dhnliche Vorteile
bei der Optimierung der Abfrageleistung bieten.

sndices are just like materialized views, in that they too are derived data, can
speed up queries, and may slow down updates. Thus, the problem of index
selection is closely related to that of materialized view selection, although it is
simpler.” (Silberschatz et al., 2011, S. 613)

Allerdings ist die Auswahl von materialisierten Sichten deutlich komplexer ist als die von
Indizes, da potenziell jede Abfrage eine Sicht definieren konnte. Damit gibt es potenziell
deutlich mehr mogliche Sichten als Indizes. Es sollten aber nur Sichten erstellt werden,
die mindestens eine Abfrage der erwarteten Workload verbessern, wobei Kriterien wie
Relationen, Bedingungen und Attribute beriicksichtigt werden. Zudem muss der Nutzen
einer Sicht nicht nur anhand der Laufzeitverbesserung, sondern auch im Verhéltnis zu ihrem
Speicherbedarf bewertet werden, da materialisierte Sichten oft nicht nur erheblich mehr
Speicherplatz beanspruchen kénnen, sondern sich untereinander deutlich von der Grofle
unterscheiden.

47

5.3 Durchfiithrung der Benchmarks

Das Ziel fir die Durchfithrung ist es den Performanceunterschied zwischen einer virtuellen
und einer materialisierten Sicht darzustellen. Dafiir wird zuallererst mit der Umsetzung der
virtuellen Sicht begonnen, fiir die, wie bei den anderen Sichten auch, zunéachst die Basista-
bellen erstellt werden miissen. Als Basis werden die Tabellen Kunden (2.4) und Bestellung
(2.5) verwendet und die View (5.2) erstellt, die bereits in Kapitel 5.1 beschrieben wurde.
Anschlieflend werden die Testdaten direkt die beiden physischen Tabellen eingefiigt und
nicht tiber die virtuelle Sicht. Bei den Select-Befehlen wird die Sicht explizit angesprochen
und es werden mehrere Select-Befehle (siehe 5.13) auf verschiedenen Spalten untersucht, um
die Unterschiede in der Lesegeschwindigkeit reprasentativ zu erfassen.

Codeblock 5.13: Select-Abfragen auf alle Spalten der View

SELECT Jahr, SUM(Gesamtumsatz) AS UmsatzProJahr FROM KUNDEN_OVERVIEW GROUP BY Jahr;
SELECT % FROM KUNDEN_OVERVIEW WHERE Jahr = 2020;

SELECT % FROM KUNDEN_OVERVIEW WHERE Land = 'Germany';

SELECT % FROM KUNDEN_OVERVIEW WHERE Gesamtumsatz > 2500;

Wie schon im Kapitel (5.1) erklart, lassen sich die Abfragen auf die virtuelle Sicht in direkte
Abfragen auf die Kundentabelle umwandeln. Um den Einfluss der virtuellen Sicht auf die
Performance zu untersuchen, wird ein Benchmark mithilfe der Sicht durchgefiihrt, wihrend
bei der anderen Variante keine Sicht deklariert wird und alle Befehle auf die Sicht direkt
in SQL-Befehle auf die zugrunde liegenden Tabellen umgewandelt werden. Zusétzlich miis-
sen die Ergebnisse mit und ohne virtualisierte Sicht mit dem im Kapitel 5.2 beschriebenen
Ansatz von Triggern in MySQL verglichen werden. Dafiir miissen neben der Kunden- und
Bestelltabelle auch die Tabelle KUNDEN_MAT_OVERVIEW sowie die Trigger fiir die INSERT- und
DELETE-Operationen erstellt werden. Das Befiillen der Testdaten erfolgt, wie bei der virtuellen
Sicht, in den ersten beiden Tabellen und bei den Select-Befehlen aus 5.13 muss der Tabellen-
bezeichner angepasst werden. Damit sind alle Voraussetzungen fiir den Vergleich zwischen
keiner View, der virtuellen View und dem Ansatz mit Triggern in MySQL erfiillt.

Reads over Time by Script Writes over Time by Script

4000

950 4
3500

3000
Script 900
8 with_trigger 8

—— without_view s R
— virtual_view with_trigger

H
& 2500
2000

1500

1000

10 20 30 40 50 60 10 20 30 a0 50 60
Time (s) Time (s)

Abbildung 5.1: Vergleich zwischen keiner View, der virtuellen und Triggeransatz in MySQL

48

Bei den Ergebnissen fallt auf, dass die Unterschiede zwischen der virtuellen Sicht und den
direkten SQL-Befehlen (without_view) nur minimal sind. Dennoch weist virtual_view eine
leicht schlechtere Performance auf, sowohl bei Lese- als auch bei Schreiboperationen (5.1).
Einen klaren Performancevorteil kann man beim Trigger-Ansatz erkennen, da die Lesewerte
etwa um den Faktor 4 hoher sind. Das liegt daran, dass direkt die Tabelle mit den aggregierten
Werten abgefragt wird, wodurch weniger Rechenaufwand erforderlich ist. Anders hingegen
sieht es bei der Schreibperformance aus, da die Trigger ausgelost werden und zusatzliche
Aktualisierungen an der Tabelle KUNDEN_MAT_OVERVIEW durchfiihrt werden miissen. Dadurch
sehen wie einen deutlichen Unterschied zu den anderen beiden Ansitzen, da die Werte bei
den Schreibvorgiangen etwa 10-15% langsamer sind.

Im letzten Benchmark sollen unterschiedliche Implementierungen von materialisierten Sich-
ten getestet werden. Dazu wird der Ansatz mit Triggern in MySQL mit der nativen Imple-
mentierung in PostgreSQL verglichen. Die materialisierte Sicht in Postgres kann mithilfe
des Befehls aus 5.8 direkt erstellt werden. Da Postgres die inkrementeller Auffrischung nicht
unterstutzt, muss die materialisierte Sicht nach den INSERT und DELETE-Befehlen auf der Kun-
dentabelle immer vollstdndig aktualisiert werden. Da der Einfluss auf die Performance des
Befehls 5.9 untersucht werden soll, wird dieser einmal nach der Einfiigung jeder Zeile in die
Kundentabelle und einmal, nachdem alle Datensétze eingefiigt wurden, ausgefiihrt.

Um die Performanceunterschiede zwischen PostgreSQL und MySQL zu ermitteln, wird der
Trigger-Ansatz auch in PostgreSQL implementiert. Die Implementierungen fiir die Insert- und
Select-Befehle sind bei beiden DBMS identisch, bei der Erstellung der Tabellen und Trigger
gibt es aber Unterschiede. Zum einen unterscheiden sich die Mechanismen zur automati-
schen Generierung von Primérschliisseln, da PostgreSQL SERIAL und MySQL AUTO_INCREMENT
verwendet. Zum anderen kann MySQL die Logik eines Triggers direkt in der CREATE TRIGGER-
Anweisung angeben, wahrend in PostgreSQL ein Trigger eine separate Funktion aufruft,
die die Logik enthalt und mit RETURNS TRIGGER definiert ist Auch die Deklarierung der Varia-
blen unterscheidet sich, da in PostgreSQL mehrere Variablen in einem DECLARE-Block und in
MySQL jede Variable einzeln im BEGIN. . .END-Block deklariert werden muss.

Reads over Time by Script Writes over Time by Script

5600

3000

2500

8 2000

\gger_|
—— mysal_with_trigger

1500

4200 1000

e I R B R I

10 20 30 a0 50 60 10 20 30 0 50 60
Time (s) Time (s)

Abbildung 5.2: Vergleich zwischen Triggeransatz in MySQL und Postgres, sowie zwei nati-
ven Implementierungen in Postgres

49

Bei der Grafik 5.2 wird zuallererst ein sehr deutlicher Performanceunterschied beim Ansatz
mit den Triggern zwischen PostgreSQL und MySQL sichtbar. Begriindet werden kann dieser
Unterschied mit den verschiedenen Vorteilen des jeweiligen DBMS und dessen Umgebung.
Interessant ist auch, dass der Trigger in Postgres nach etwa 25 Sekunden einen starken Per-
formanceanstiegt erfahrt. Dieser Trend zeigte sich bei mehrfacher Ausfithrung sowohl lokal
auf dem Rechner als auch im Workflow. MySQL und PostgreSQL wurden mit dem gleichen
Ansatz gebenchmarkt, um die Implementierung der nativen materialisierten Sicht, die nur in
PostgreSQL moglich ist, besser vergleichen zu kénnen. Die Ergebnisse der nativen Implemen-
tierung sind in Bezug auf die Abfragegeschwindigkeit tatsachlich am performantesten und
die Anzahl an Aktualisierungen (5.9) hat dabei keinen Einfluss. Anders hingegen sieht es bei
der Einfuge-Geschwindigkeit aus, da dort die Implementierung, die nach jedem Insert-Befehl
aktualisiert nicht am schnellsten, sondern am langsamsten ist. Damit wird noch einmal deut-
lich wie stark die Einfiigedauer bei den materialisierten Sichten von der Anzahl an Refreshs
abhangig ist, da mat_view_refresh_every sogar unterhalb der Performance von with_trigger
liegt. Hingegen schneidet die einmalige Aktualisierung der Sicht im vorliegenden Beispiel
besser ab als die Triggern in Postgres.

Es lasst sich also zusammenfassen, dass virtuelle Sichten wenig Auswirkungen auf die Perfor-
mance haben. Dies ist im eigentlichen Sinne aber auch nicht der Absicht der virtuellen Sicht,
denn sie ist besser geeignet, um beispielsweise die Organisation der Rechte fiir unterschiedli-
che Nutzer der Datenbank zu gewéhrleisten. Wenn in OLTP-Systemen die Notwendigkeit
besteht, haufig aggregierte Daten fiir analytische Auswertungen zu nutzen, erweisen sich
materialisierte Sichten als niitzlich. Man sollte allerdings vor allem die Performanceauswir-
kungen von diesen Sichten nicht unterschatzen und sich gut iberlegen, wie hdufig und zu
welcher Zeit die Daten aktualisiert werden miissen.

50

6 Partitionen

In diesem Kapitel wird die Funktionsweise von Partitionen und das Verhalten des Abfrage-
optimierers untersucht. Partitionierte Datenbanken existieren bereits seit den 1980er Jah-
ren, haben jedoch in jingerer Zeit durch NoSQL-Datenbanken und Hadoop-basierte Data
Warehouses eine erneute Aufmerksambkeit erfahren (vgl. Kleppmann, 2017, S. 200). Auch
in relationalen Datenbanken besteht die Moglichkeit, Daten auf verschiedene Partitionen
zu verteilen. In MySQL stehen dabei verschiedene Partitionierungstypen zur Verfiigung,
darunter RANGE-, LIST-, HASH- und KEY-Partitionierung. Fiir jeden dieser Typen werden
Anwendungsbeispiele prasentiert und mogliche Verwendungszwecke erldutert. Abschlieflend
werden Benchmark-Tests durchgefiihrt, um die jeweiligen Vor- und Nachteile zu bewerten.

6.1 Grundlagen

Zunichst muss geklart werden, was mit Partitionen gemeint ist.

LPartitioning is a general term used to describe the act of breaking up data and
distributing it across different hosts.” (Da Silva und Tavares, 2015, S. 148)

In NoSQL-Datenbanken werden diese Partitionen haufig auf verschiedene Server verteilt,
konnen jedoch auch innerhalb eines einzelnen Servers gespeichert werden. Im Gegensatz
dazu bezieht sich die Partitionierung in MySQL ausschliefilich auf die Verteilung von Tabellen-
daten innerhalb einer einzigen Datenbankinstanz. Dabei werden die Daten auf verschiedene
physische oder logische Partitionen innerhalb desselben Servers verteilt. Zur Verteilung auf
mehrere Server kann in relationalen Datenbanken Replikation eingesetzt werden, die im
nachsten Kapitel 7 ausfiihrlicher erldutert wird.

Das System verwaltet Partitionen intern so, dass der Benutzer nicht bemerkt, wie genau die
Daten organisiert sind (Schwartz et al., 2012, S. 265-273). Damit eine Tabelle die Partitio-
nierung nutzt, muss bei ihrer Erstellung die PARTITION BY-Klausel angegeben werden, die
festlegt, in welcher Partition jede Datenzeile gespeichert wird. Dies fiihrt zu einer erhéhten
Komplexitit des CREATE TABLE-Befehls. In der Partitionsklausel selbst konnen nicht nur Aus-
driicke und Berechnungen zur Bestimmung der Partitionierung eingesetzt werden, sondern

51

auch Funktionen. Wenn Funktionen verwendet werden, miissen sie eine nicht-konstante und
deterministische Ganzzahl zuriickgeben, wie z.B. YEAR().

Um Partitionen ordnungsgemaf} definieren zu kénnen, sind bestimmte Einschrankungen
zu beachten. Zum einen missen alle Spalten, nach denen die Partitionierung erfolgt, im
Primarschliissel oder Unique-Index enthalten sein. Andernfalls ist es nicht moglich, die
Partitionen korrekt zu erstellen oder zu verwalten. Als logische Schlussfolgerung ergibt sich
ein zusatzlicher Aufwand fiir die Pflege der neuen Indizes. Zudem konnen Fremdschliissel-
Bedingungen (engl. foreign key constraints) nicht verwendet werden. Ein weiteres Limit
betrifft die maximale Anzahl an Partitionen pro Tabelle. Bei dlteren MySQL-Versionen liegt
dieses Limit bei 1024 und seit der MySQL-Version 8.0 bei 8192 Partitionen (Oracle, 2025¢). Wie
spater noch festgestellt wird, sollte aus verschiedenen Griinden die Anzahl der Partitionen so
gering wie moglich gehalten werden. Aus diesem Grund ist diese Grenze nicht sehr relevant,
sollte sie dennoch beachtet werden.

Nachdem die grundlegenden Bedingungen nun geklart sind, wird im Folgenden die Funk-
tionsweise erlautert. Wie bereits erwahnt, bestehen partitionierte Tabellen aus mehreren
zugrunde liegenden Tabellen, die durch sogenannte Handler-Objekte verwaltet werden. Das
Handler-Objekt fungiert als Schnittstelle, die es dem Datenbankmanagementsystem ermdog-
licht, mit den Partitionen zu interagieren. Dabei leitet es Anfragen an die Storage Engine
weiter, die die Daten verwaltet. Aus Sicht der Storage Engine sind Partitionen normale Ta-
bellen, unabhéngig davon, ob sie eigenstindig oder Teil einer partitionierten Tabelle sind.
Abhiangig vom jeweiligen DBMS konnen einzelne Partitionen entweder direkt oder, wie
beispielsweise in MySQL, nicht direkt angesprochen werden. In Oracle ist dies wie folgt

moglich:

SELECT % FROM your_table PARTITION (your_partition_name);

Die Verwendung von Indizes bei der Partitionierung wird von den verschiedenen DBMS
unterschiedlich gehandhabt. In MySQL werden Indizes fiir jede Partition separat definiert,
anstatt sie iiber die gesamte Tabelle hinweg zu erstellen. Dabei werden die Indizes identisch auf
jede Partition angewendet. In Oracle hingegen gibt es neben den lokalen Indizes auch globale,
die Uiber die gesamte Tabelle hinweg erstellt werden, unabhéngig von den Partitionen. Diese
Methode erméglicht eine effizientere Suche, erfordert jedoch eine komplexere Verwaltung.

Als Néchstes ist es wichtig zu verstehen, wie der Abfrageoptimierer (engl. Query Optimizer)
arbeitet. Beim Ausfithren von Abfragen versucht er, Giberfliissige Partitionen auszuschlieflen
und sich gezielt auf diejenigen zu konzentrieren, die die relevanten Daten enthalten. Damit
das sogenannte Pruning funktioniert, muss die WHERE-Klausel mit dem Partitionsausdruck
iibereinstimmen. Der Query Optimizer entscheidet bei SELECT-Abfragen, welche Partitionen
ignoriert werden konnen und leitet die Anfrage gezielt weiter. Bei einer DELETE-Abfrage
wird die betroffene Zeile lokalisiert und die Anfrage an die passende Partition Gibermittelt.

52

Fur INSERT-Abfragen wird zunéchst die Zielpartition fiir die neue Zeile ermittelt. Erfolgt
ein UPDATE innerhalb einer Partition, wird die Anfrage ebenfalls an die jeweilige Partition
tbermittelt. Wenn aber Teile der Partitionslogik verdndert werden, dann stellt UPDATE eine
Kombination von INSERT und DELETE dar, da eine Einfiigungsanfrage an die Zielparti-
tion und eine Loschanfrage an die Quellpartition weitergeleitet wird. Die meisten dieser
Operationen unterstiitzen Pruning, wahrend, einige, wie z.B. INSERT-Abfragen von Natur
aus ausschlieBend (engl. self-pruned) sind. Durch die Funktionsweise des Pruning lassen
sich schon einige Vorteile der Partitionierung erkennen, die im Folgenden néaher betrachtet
werden.

Wie bei der Indexierung und der Datenclusterung einer Tabelle, tragt Partitionierung dazu
bei, grofie Teile der Tabelle vom Zugriff auszuschlieffen und zusammengehdrige Zeilen nahe
beieinander zu speichern. Daher bietet es sich an, anstelle von indexierten Tabellen parti-
tionierte Strukturen zu verwenden, um einen schnellen Zugriff auf die gewiinschten Zeilen
zu ermdglichen. Durch die korrekte Verteilung der Partitionen befindet man sich, wie bei
Indizes, nahe der gewiinschten Daten und kann von dort aus entweder das relevante Daten-
gebiet sequentiell scannen oder es in den Speicher laden und indexieren. Im Gegensatz zu
Indizes hat die Partitionierung aber zwei entscheidende Vorteile. Zum einen ist keine separate
Datenstruktur erforderlich, auf die verwiesen werden muss und die standig aktualisiert wird.
Stattdessen legt eine mathematische Formel fest, welche Partitionen welche Kategorien von
Zeilen enthalten konnen, wodurch nur geringer Mehraufwand verursacht wird. Zum anderen
lassen sie sich auch physisch verteilen, sodass der Server mehrere Festplatten effizienter
nutzen kann. Besonders vorteilhaft ist dies, wenn die Tabellen sehr grof3 sind und nicht mehr
vollstdndig in den Speicher passen.

»The goal of partitioning is to spread the data and query load evenly across

multiple machines, avoiding hot spots (nodes with disproportionately high load)
(Kleppmann, 2017, S. 217)

Auflerdem steigt die Effizienz der Partitionierung, je mehr Partitionen durch die WHERE-Klausel
in der Abfrage ausgeschlossen werden. Die Effizienz basiert aber auf zwei wesentlichen
Annahmen. Erstens muss die Suche durch das Pruning von Partitionen bei der Abfrage
eingegrenzt werden konnen. Zweitens darf die Partitionierung selbst keine hohen Kosten
verursachen. Diese Annahmen sind jedoch nicht immer giiltig, weshalb drei Anwendungsfille
mit moglichen Fehlern im Umgang mit Partitionen vorgestellt werden.

Zunichst sollte beriicksichtigt werden, dass das Ergebnis einer Partitionierungsfunktion,
wie z.B. YEAR(), den Wert NULL annehmen kann. Selbst wenn eine zeitbasierte Spalte als
NOT NULL deklariert wird, konnen ungiiltige Datumswerte auftreten, die in MySQL in der
ersten definierten Partition gespeichert werden. Eine Abfrage, die Jahre auler 2020 herausfil-
tert, muss daher zwei Partitionen durchsuchen, was insbesondere grofleren Partitionen die
Performance beeintrachtigt. Aus diesem Grund empfiehlt es sich, entweder eine dedizierte

53

Partition fiir solche Sonderfalle einzufithren oder eine Erweiterung wie RANGE COLUMNS zu
verwenden, die auf Funktionen in der Partitionsdefinition verzichtet. Des Weiteren muss
man bei der Definition von Indizes vorsichtig sein, wenn diese nicht mit der Partitionsklausel
ubereinstimmen, da sie unerwartet zu umfassenderen Suche der Partitionen fithren konnen.
Daher sollte man es vermeiden, Indizes auf nicht partitionierten Spalten zu erstellen. Dies
gilt nur dann nicht, wenn sichergestellt ist, dass die Abfragen Ausdriicke enthalten, die das
Pruning der Partitionen unterstiitzen. Zuletzt sollte die Anzahl der definierten Partitionen
begrenzt werden, da der Server die Partitionsdefinitionen linear durchsuchen muss, was
mit steigender Partitionenzahl zunehmend ineffizient wird. Zusatzlich entsteht ein nicht
vermeidbarer Mehraufwand durch das Offnen und Sperren von Partitionen vor dem Pruning,
was die Abfrageleistung weiter beeintrachtigen kann. Wie genau die Partitionen fiir die
verschiedenen Typen definiert werden konnen, wird im Folgenden erldutert.

6.2 Partitionierungstypen

In diesem Unterkapitel werden die verschiedenen Partitionierungsarten, die von MySQL
unterstiitzt werden, jeweils mit einem Beispiel ndher erldutert. Die Analyse der Ergebnisse
erfolgt in Abschnitt 6.3.

Als Grundlage dienen die Kundentabelle (2.4) und die Bestelltabelle (2.5), die bereits in frithe-
ren Kapiteln verwendet wurden. Die Tabelle, die auf unterschiedliche Partitionen verteilt
werden soll, ist die Kundentabelle. Allerdings miissen beide Tabellen noch angepasst werden,
da es auch Einschréankungen fiir partitionierte Tabellen gibt. Zum einen muss bei der Bestellta-
belle bei allen Typen die Fremdschliissel-Bedingung entfernt werden und zum anderen muss
der Priméarschliissel der Kundentabelle angepasst werden. Wie genau das passieren muss,
wird an den Beispielen ersichtlich. Die Insert-Befehle sind bei allen Typen der Partitionierung
gleich, bei den Select-Queries gibt es jedoch Unterschiede.

Der erste Typ, der betrachtet wird, ist die RANGE-Partitionierung. Bei dieser erfolgt die
Zuordnung von Zeilen zu Partitionen basierend auf Spaltenwerten, die in einen definierten
Wertebereich fallen. Fiir das Beispiel sollen unterschiedliche Partitionen je nach Alter des
Kunden gebildet werden. Alle fiinf Jahre wird eine neue Partition gebildet.

Damit es zu keinen Fehlern kommt, muss hier der Geburtstag auch Teil des Primarschliissels
der Kundentabelle sein. Auflerdem muss die Spalte GEBURTSTAG bei der Bestelltabelle hinzu-
gefiigt werden, damit das Joinen der Tabellen tiber den Primarschliissel effizienter ist. Seit
MySQL 5.5 kann fiir Datumsspalten auch die Erweiterung RANGE COLUMNS verwendet werden,
wodurch bei der Partitionsklausel die Funktion YEAR() nicht erforderlich ist. Um die Perfor-
mance der beiden Ansétze zu vergleichen, werden beide Varianten bei der Tabellenerstellung
verwendet. Die Tabelle mit der Funktion YEAR() wird wie folgt erstellt:

54

O 00 NN N Uk W =

11
12

Codeblock 6.1: Kundetabelle mit Range-Partitionierung

CREATE TABLE IF NOT EXISTS KUNDEN (
KUNDEN_ID INT NOT NULL,

GEBURTSTAG DATE NOT NULL,
-- other attributes
PRIMARY KEY (KUNDEN_ID, GEBURTSTAG)

) PARTITION BY RANGE (YEAR(GEBURTSTAG)) (
PARTITION p1 VALUES LESS THAN (1955),
PARTITION p2 VALUES LESS THAN (1960),
-- other partitions
PARTITION p15 VALUES LESS THAN (2025),
PARTITION pmax VALUES LESS THAN MAXVALUE

)i

Bei der Range-Partitionierung werden mehrere Select-Befehle getestet, da das Pruning je
nach Art der Datumsabfrage besser oder schlechter funktioniert (siehe Abschnitt 6.1). Dazu
wird zunéchst die Kundentabelle mit der Bestelltabelle tiber die Attribute KUNDEN_ID und
GEBURTSTAG gejoint. Die Testkunden werden so generiert, dass sie immer zuféllig zwischen
den Jahren 1950 und 2020 geboren sind. Die verschiedenen Select-Befehle unterscheiden sich
in den folgenden WHERE-Bedingungen:

Codeblock 6.2: Unterschiedliche WHERE-Bedingungen

WHERE YEAR(k.GEBURTSTAG) = 1985; —— year_1985.5sql
WHERE k.GEBURTSTAG BETWEEN '1985-01-01' AND '1985-12-31"'; -— between_1985.5sql
WHERE k.GEBURTSTAG = '1985-01-01"; —— first_day_1985.sql

Um zu iberpriifen, ob der Optimierer die Partitionen pruned, wird der SQL-Befehl EXPLAIN
vor dem SELECT-Befehl in 6.2 verwendet. Als Riickgabe des Befehls erhilt man eine Uber-
sicht, wie MySQL die Abfrage ausfithrt und welche Partitionen dabei verwendet wurden.
Zunéachst wird eine Select-Query analysiert, bei der keine WHERE-Klausel angegeben ist. Im
Ergebnis von EXPLAIN sehen wir, dass der Abfragemechanismus alle Partitionen durchsuchen
muss. Bei der WHERE-Klausel der Abfrage in Zeile 1 wird eigentlich erwartet, dass nur eine
Partition abgefragt wird, jedoch wird das gleiche Resultat wie bei der vorherigen Abfrage
zuriickgegeben. Die Query aus der zweiten Zeile verweist direkt auf die Partitionsspalte und
nicht auf einen Ausdruck. Und tatsichlich wird hier nur die Partition untersucht, die alle
Kunden mit Geburtsdaten zwischen den Jahren 1985 und 1990 enthéilt. Diese Partition wird
auch ausschliefilich in der Abfrage der letzten Zeile benutzt. Daraus lasst sich schlief3en,
dass MySQL nur dann Partitionen effizient prunen kann, wenn die Abfrage direkt auf die
Partitionsspalte zugreift und keine Ausdriicke verwendet. Dieses Verhalten dhnelt dem von

55

O 0 NN N A W DN

11
12
13

indexierten Spalten, die ebenfalls im Abfrageausdruck isoliert sein miissen, damit der Index
zum Einsatz kommt.

Als Nachstes wird die LIST-Partitionierung betrachtet, bei der die Partitionen anhand von
Spaltenwerten ausgewahlt werden, die einem der vordefinierten diskreten Werte entsprechen.
Zur Veranschaulichung soll pro Land eine eigene Partition erstellt werden. Dafiir muss die
Spalte LAND Teil des Primérschliissels sein. Beim Befiillen der Tabellen wird fiir jeden Kunden
ein zufalliges Land aus der Liste der 20 einwohnerreichsten Lander der Welt ausgewahlt.
Daher miissen bei der Erstellung der Tabelle auch 20 Partitionen sowie eine zusatzliche fiir
sonstige Werte erstellt werden (6.3).

Codeblock 6.3: Kundetabelle mit List-Partitionierung

CREATE TABLE IF NOT EXISTS KUNDEN (
KUNDEN_ID INT NOT NULL,
LAND VARCHAR(10@) NOT NULL,
-- other attributes
PRIMARY KEY (KUNDEN_ID, LAND)

) PARTITION BY LIST COLUMNS(LAND) (
PARTITION p_china VALUES IN ('China'),
PARTITION p_india VALUES IN ('India'),
PARTITION p_united_states VALUES IN ('United States'),
-- other partitions
PARTITION p_thailand VALUES IN ('Thailand'),
PARTITION p_other VALUES IN ('Other')

)i

Im Rahmen der List-Partitionierung wird ebenfalls die Performance unterschiedlicher Select-
Befehle iiberpriift. Zunachst wird, wie zuvor, die Kundentabelle mit der Bestelltabelle gejoint.
Anschlieflend wird in der WHERE-Bedingung aber so gefiltert, dass nur Kunden aus Deutschland
ausgewahlt werden. Zusétzlich soll die Performance untersucht werden, wenn aus der Liste
der Lander zuféllig fiinf ausgewahlt werden und alle Kunden nur aus einem dieser fiinf Lander
stammen. Dazu werden drei verschiedene Ansitze getestet. Zum einen tiber den OR-Operator,
zum anderen mithilfe des IN-Operators und zuletzt werden die 5 Lander, wie im ersten Beispiel,
einzeln abgefragt und die Ergebnisse der 5 Abfragen mithilfe des UNION-Operators verbunden.
Mithilfe von EXPLAIN wird sichtbar, dass bei allen Varianten nur die Partitionen der 5 Lander
genutzt werden. Damit kann der Optimierer Bereiche in Listen diskreter Werte umwandeln,
Elemente prunen und wihrend der Abfrageverarbeitung Partitionen gezielt entfernen. Im
Zusammenhang mit Joins ist der Effekt besonders stark, da MySQL bei einem partitionierten
Schliissel in der Join-Bedingung nur in den relevanten Partitionen nach iibereinstimmenden
Zeilen sucht. Welche der Varianten jedoch am effizientesten ist, wird erst bei der Analyse
ersichtlich sein.

56

Zum Schluss wird die HASH-Partitionierung betrachtet, bei der die Partition anhand eines
Hash-Werts zugewiesen wird, der aus den Spaltenwerten der Zeilen berechnet wird. Dadurch
kann eine gleichméaflige Verteilung der Daten auf die Partitionen garantiert werden.

~Because of this risk of skew and hot spots, many distributed datastores use a
hash function to determine the partition for a given key.” (Kleppmann, 2017, S.
203)

Zur Umsetzung der Tabelle miissen ausschlief3lich die Zeilen aus dem Codeblock 6.4 am Ende
des Create-Kunden-Befehls hinzugefiigt werden. In diesem Fall wird auch nur eine einzige
Select-Query getestet, die wieder beide Tabellen joined und in der WHERE-Bedingung tiberpriift,
ob die KUNDEN_ID zwischen den Werten 1000 und 2000 liegt. Um mehr Werte miteinander zu
vergleichen, werden verschiedene Varianten der Hash-Partitionierung getestet, indem die
Anzahl der Partitionen variiert wird. Die Anzahl der Partitionen betragt in den Benchmarks
5, 50 und 500.

Codeblock 6.4: Hash-Partitonierung

PARTITION BY HASH(KUNDEN_ID)
PARTITIONS 5;

Die KEY-Partitionierung &hnelt der Hash-Partitionierung, verwendet jedoch die interne
Hash-Funktion von MySQL und bendtigt nur die Angabe einer oder mehrerer Spalten. Um
die Performance zu iiberpriifen, wird genau das Gleiche wie bei der Hash-Partitionierung
gemacht. Dafiir muss im Codeblock 6.4 das Signalwort HASH mit KEY ersetzt werden und das
Ergebnis wird mit dem von HASH verglichen. Die Erkenntnisse aus diesem Benchmark werden
im nachsten Kapitel zusammengefasst.

6.3 Auswertung der Benchmarks

Im vorherigen Abschnitt wurden die verschiedenen Arten von Partitionen erldutert. Nun
sollen fiir jedes dieser Beispiele Benchmarks durchgefiihrt und die Ergebnisse untersucht
werden. Um den Einfluss der Partitionierung auf die Abfragen zu verdeutlichen, werden
jeweils partitionierte mit nicht partitionierten Tabellen verglichen. Beide Varianten stellen
die gleichen Insert-Befehle, wahrend sich die Select-Queries je nach Partitionierungstyp
leicht unterscheiden konnen. Die Ergebnisse des Referenzbenchmarks sollten weitgehend
mit denen der partitionierten Varianten iibereinstimmen. Es konnen jedoch kleinere Unter-
schiede auftreten, da jeweils zufallig generierte Daten eingefiigt werden. Bei signifikanten
Abweichungen sind die Performancemessungen jedoch schwerer miteinander vergleichbar.

57

Im ersten Benchmark mit der Range-Partitionierung fallt auf, dass die Benutzung von RANGE
oder RANGE COLUMNS keinerlei Einfluss auf die Performance hat. Daher stellt sich bei der Ver-
wendung nicht die Frage nach der Performance, sondern nach der Praferenz des Nutzers. Bei
der Analyse der Abbildung 6.1 wird sichtbar, dass die between_1985-Query mit Partitionierung
deutlich schneller ist als die anderen. Damit funktioniert das Pruning besonders gut, wenn die
Geburtstage zwischen dem ersten und letzten Tage des Jahres abfragt werden. Als Nachstes
kommt first_day_1985 mit der Range-Partitionierung, bei der nur die Kunden abgerufen
werden, die am 1. Januar 1985 geboren wurden. Wenn die Ergebnisse von EXPLAIN betrachtet
werden, zeigt sich, dass bei dieser Abfrage auch nur eine Partition verwendet wurde. Etwas
langsamer sind die Skripte ohne Partitionierung, die aber etwa 50% ineflizienter sind, als
das schnellste Skript. Die Varianten mit YEAR() und dem ersten Tag liegen auf einem sehr
ahnlichen Niveau, wihrend die Abfrage mit dem Operator BETWEEN leicht darunter liegt. Als
Letztes kommen die beiden Select-Queries, die alle Partitionen durchsuchen. Bei der einen
Abfrage wurde keine WHERE-Bedingung angegeben und bei der anderen wurde die Funktion
YEAR() verwendet. Es lasst sich also feststellen, dass Pruning mithilfe von YEAR() offensicht-
lich nicht funktioniert. Dies hat auch der Ausfithrungsplan fiir die Query bestatigt (siehe
Kapitel 6.2). Bei den Insert-Befehlen ist die Partitionierung geringfiigig schneller, jedoch sind
sie nahezu gleich.

Reads over Time by Script Writes over Time by Script

script _ script
—— with_partition_between_1985 —— range_partitioning
t_da 7400

—— without_partitioning

7300

7200
2 400 £ 7100

300 7000

200 6900

100 6800

o 6700
10 20 30 40 50 10 20 30 40 50
Time (s) Time (s)

Abbildung 6.1: Vergleich zwischen der Range-Partitionierung und ohne Partition

Bei der List-Partitionierung 6.2 konnen ebenfalls einige interessante Beobachtungen ge-
macht werden. Beim ersten Fall ist nur ein Land in der WHERE-Bedingung vorhanden.
Wenn dies so ist, dann hat die Partitionierung einen erheblichen Vorteil gegeniiber der
Version ohne Partitionierung (siehe rote Linie von with_pruning_simple und braune von
without_list_pruning_simple). Wenn statt nur eines Landes mehrere abgefragt werden, zei-
gen sich fiir die verschiedenen Operatoren unterschiedliche Ergebnisse. Die beste Performance
erzielt der IN-Operator. Dicht darauf folgt der OR-Operator, wahrend der Fall ohne Partitio-
nierung mit etwas grofierem Abstand kommt. Deutlich abgeschlagen ist die Verbindung der
Ergebnisse mit dem UNION-Operator. Die Performance beim Einfiigen der Daten ist bei der
Partitionierung und dem Referenzfall sehr dhnlich, wobei letzterer einen leichten Vorteil hat.

58

Reads over Time by Script Writes over Time by Script

Seript. 1180 Script
—— with_pruning_simple —— without_partitioning
—— without_list_pruning_simple —— list_partitioning

— in_multiple_countries
200 or_multiple_countries

—— without_list_pruning_multiple
—— union_multiple_countries
350 1140

1160

Reads

1120

Writes

1100

200

150 1080

100

1060

10 20 30 40 50 60 10 20 30 40 50 60
Time (s) Time (s)

Abbildung 6.2: Vergleich zwischen der List-Partitionierung und ohne Partition

Bei der Key-Partitionierung fallt auf, dass es keinen signifikanten Performance-Unterschied
zur Hash-Partitionierung gibt, sofern derselbe Datensatz und die gleiche Anzahl von Partitio-
nen verwendet werden. Generell ist die Key-Partitionierung haufig stabiler und optimierter,
insbesondere wenn es um Primérschliissel geht. Bei der Hash-Partitionierung in 6.3 fallt auf,
dass die Werte der Abfragen nicht sehr konstant sind. Nur bei der Variante mit 500 Partitionen
gibt es keine deutlich sichtbaren Schwankungen. Diese liegen aber nicht an dem Pruning,
denn mit dem SQL-Befehl EXPLAIN sehen wir, dass immer alle Partitionen benétigt werden und
keine Partitionen zufallig geprunt werden. Die Hash-Partitionierung berechnet aus dem Wert
einer bestimmten Spalte mithilfe einer Hash-Funktion einen Hash-Wert und anhand dessen
wird die Zeile einer der Partitionen zugewiesen. Bei 500 Partitionen wird der Hash-Wert mit
modulo 500 gebildet, weshalb jeder 500-ste Wert in der gleichen Partition landet. Damit ist
klargestellt, dass immer alle Partitionen benutzt werden, was die folgenden Ergebnisse zeigen.
Was die Performance angeht, zeigt sich, dass die Abfrage ohne Partitionierung am schnellsten
ist. Danach lasst sich die Regel ableiten, dass eine hohere Anzahl an Partitionen zu einer
langsameren Abfrage fiihrt. Dies liegt daran, dass mehr Partitionen die Suche innerhalb der
Struktur komplexer machen und dadurch die Performance beeintrachtigen. Der Unterschied
zwischen ohne Partitionen und 5 Partitionen ist noch iiberschaubar, aber bei 500 Partitionen
sieht man einen sehr deutlichen Unterschied. Damit wurde die Regel aus dem Kapitel 6.1
bestatigt.

Reads over Time by Script Writes over Time by Script
\/\/—/’\/\’— nee
1050

240
1000

900

210 script Script

—— without_hash_pruning_range —— without_hash_pruning_range

—— hash_partitioning_partitions_size_5 —— hash_partitioning_partitions_size_5
hash_partitioning_partitions_size_50 850 hash_partitioning_partitions_size_50

—— hash_partitioning_partitions_size_500 —— hash_partitioning_partitions_size_500

Reads

Writes
©
]
g

10 20 30 40 50 60 10 20 30 40 50 60
Time (s) Time (s)

Abbildung 6.3: Vergleich zwischen der Hash-Partitionierung und ohne Partition

59

7 Replikation

In diesem Segment wird das Thema Replikation behandelt. Replikation kann die Grundlage fiir
den Aufbau grofler, leistungsstarker Anwendungen auf der Basis von MySQL sein. Es verfolgt
dabei die sogenannte ,Scale-Out“-Architektur, bei der mehrere Storage-Knoten parallelisiert
arbeiten (vgl. Schwartz et al., 2012, S. 531). Nach auflen hin wirkt es trotzdem wie ein einziges
Gesamtsystem. Bei dieser Architektur ist die Skalierbarkeit nahezu unbegrenzt, da man
durch einfaches Hinzufiigen weiterer Speicherknoten die Performance verbessern kann. Im
Gegensatz dazu ist Scale-Up durch die Systemgrenzen eines einzelnen Geréts limitiert. Mit
Scale-Out sind allerdings auch Nachteile verbunden, die spater in diesem Abschnitt behandelt
werden. Wie schon in den vorherigen Kapiteln werden zunichst die Grundlagen erldutert,
gefolgt von der Betrachtung der Konfiguration, die die Basis fiir die Benchmarks bildet und
abschlieflend erfolgt eine Analyse der Ergebnisse.

7.1 Grundlagen

Replikation ermoglicht die Konfiguration eines oder mehrere Server als Replikate eines
anderen Servers, auch Master genannt. Sowohl die Begrifflichkeit Master-Replikat als auch
die Varianten Primary-Secondary und Primary-Replica sind gebrauchlich.

~Replication means keeping a copy of the same data on multiple machines that
are connected via a network.” (Kleppmann, 2017, S. 151)

Das grundlegende Problem, das die Replikation 16st, besteht darin, die Daten eines Servers mit
denen eines anderen synchron zu halten. Es kénnen sich auch mehrere Replikate mit einem
einzigen Master verbinden und dessen aktuellen Zustand widerspiegeln. Sie sind aber nicht
dazu geeignet, richtige Backups zu ersetzten. Auflerdem lassen sich Master und Replikate in
anderen Konfigurationen anordnen. Neben der klassischen Variante konnen Replikate selbst
als Master fiir weitere Replikate dienen. Zudem ist eine Master-Master-Kombination denkbar.
Die Datenreplikation kann aus verschiedenen Griinden vorteilhaft sein:

~Replicas are very useful in a master failure scenario because they contain all
of the most recent data and can be promoted to master.” (Da Silva und Tavares,
2015, S. 148)

60

Zusétzlich sorgt sie dafiir, dass die Daten naher an den Nutzern liegen, wodurch die Latenz
verringert wird (vgl. Kleppmann, 2017, S. 151). Auflerdem verbessert sie die Verfiigbarkeit
und ermoglicht eine bessere Skalierbarkeit. Effizienzvorteile gibt es insbesondere durch die
Lastverteilung, bei der Leseanfragen auf mehrere Server verteilt werden. Daher ist Replikation
besonders fiir leselastige Anwendungen vorteilhaft ist.

Im folgenden Abschnitt wird die Funktionsweise der Replikation erklart, wobei der Fall mit
einem Master und einem oder mehreren Replikaten betrachtet wird (Schwartz et al., 2012,
S. 447-477). Unmittelbar bevor eine Transaktion, die Daten aktualisiert, auf dem Master
abgeschlossen wird, zeichnet der Master die Anderungen in seinem Binirlog (engl. binary
log) auf. MySQL schreibt die Transaktionen seriell ins Binary-Log und informiert die Storage
Engines nach dem Schreiben der Ereignisse dariiber, die Transaktionen zu committen. Zu
diesen Anderungen konnen beispielsweise neu deklarierte Tabellen oder Trigger sowie
Einfiigeoperationen in bestehende Tabellen gehoren. Im néachsten Schritt muss das Replikat
die Verdnderungen auf dem Master mitbekommen. Dazu wird ein Worker-Thread gestartet,
der als I/O-Replikations-Thread (engl. I/O-Slave-Thread) bezeichnet wird und eine Client-
Verbindung zum Master 6ffnet (siehe Abbildung 7.1). Darauthin wird ein spezieller Prozess
gestartet, der die Ereignisse aus dem Binary-Log des Masters liest (engl. binlog dump process).
Nach dem Verarbeiten schreibt der Thread die Werte auf seine eigene Festplatte in das
sogenannte Relay-Log. Wenn er alle Ereignisse auf diesem Log verarbeitet hat, geht er in
einen passiven Zustand und wartet auf Aktualisierungen. Den letzten Teil des Prozesses
tibernimmt der SQL-Slave-Thread. Dieser liest und spielt Ereignisse aus dem Relay-Log ab
und aktualisiert die Daten der Replikate, sodass sie mit denen des Masters iibereinstimmen.
Wenn beide Threads eine etwa gleich schnelle Verarbeitung haben, dann bleibt das Relay-Log
normalerweise im Cache des Betriebssystems und es gibt nur sehr geringe Mehrkosten (engl.
Overhead). Die Ereignisse, die der SQL-Thread ausfiihrt, konnen optional zuséatzlich in das
eigene Binary-Log der Replikate geschrieben werden.

Master Replica

i 1/0 thread M~
P

7

OO SQL thread

Read

¢ Data
i changes

Replay

Abbildung 7.1: Darstellung der unterschiedlichen Threads

61

Die Abbildung 7.1 zeigt die beiden Replikation-Threads, die auf dem Replikat laufen. Zusétz-
lich gibt es jedoch einen weiteren Thread auf dem Master, der die vom Replikat zum Master
geoffnete Verbindung auf dem Master startet.

Die Replikationsarchitektur entkoppelt die Prozesse des Abrufens und Schreiben von Ereig-
nissen auf dem Replikat. Dadurch kénnen die beiden Threads asynchron arbeiten, sodass
der I/O-Thread unabhéngig vom SQL-Thread agieren kann. Dies hat jedoch zur Folge, dass
Anderungen, die auf dem Master parallel in verschiedenen Threads ausgefiihrt werden, auf
dem Replikat nicht parallelisiert werden kénnen. Das liegt daran, dass die Veranderungen
auf dem Replikat in einem einzigen Thread abgearbeitet werden. Generell gibt es auch keine
Garantie fiir die Latenz des Replikats und grofle Abfragen konnen dazu fithren, dass das
Replikat Sekunden, Minuten oder sogar Stunden hinter dem Master zuriickbleibt. Der Fla-
schenhals (engl. bottleneck) des gesamten Systems stellt die Anzahl der Schreibvorgénge dar,
die der langsamste Thread ausfithren kann.

Wie aus der Funktionsweise der Replikation hervorgeht, verursacht der Master nur einen
geringen Mehraufwand. Wenn das binédre Logging fiir Backups und Point-in-Time-Recovery
genutzt wird, kann es jedoch deutlich mehr Ressourcen beanspruchen. Jedes angeschlossene
Replikat verursacht nur eine geringe zusatzliche Last (hauptsachlich Netzwerk-1/0) auf dem
Master. Trotzdem sollten die Auswirkungen vieler Replikate nicht unterschatzt werden, da
sie im Wesentlichen zu unnétiger Daten-Duplikation fithren.

Als Nachstes werden die zwei verschiedenen Arten der Replikation betrachtet, die von MySQL
unterstiitzt werden: die anweisungsbasierte (engl. statement-based) und die zeilenbasierte
(engl. row-based) Replikation. Die anweisungsbasierte Replikation wird seit MySQL 5.0 und
alter unterstiitzt und funktioniert, indem die Abfrage, die die Daten auf dem Master geédndert
hat, protokolliert wird. Wenn ein Replikat das Ereignis aus dem Relay-Log liest und ausfiihrt,
wird die tatsidchliche SQL-Abfrage erneut ausgefiihrt, die der Master ausgefiihrt hat. Der
offensichtlichste Vorteil davon ist, dass sie relativ einfach zu implementieren ist und das
Protokollieren sowie Wiederholen der Anweisungen das Replikat logischerweise mit dem
Master synchron halten sollte. Auflerdem sind die Binary-Log-Ereignisse in der Regel recht
kompakt und verbrauchen nicht viel Bandbreite. In der Praxis gibt es jedoch Anderungen
auf dem Master, die von Faktoren abhingen, die iiber den reinen Abfragetext hinausgehen.
Beispielsweise werden Anweisungen zu leicht oder sogar deutlich unterschiedlichen Zeiten
auf dem Master und dem Replikat ausgefiihrt. Deshalb muss das Binary Log nicht nur
den Abfragetext, sondern auch Metadaten wie den aktuellen Zeitstempel enthalten. Einige
Anweisungen kann MySQL nicht korrekt replizieren, wie zum Beispiel Abfragen, die die
Funktion CURRENT_USER() verwenden. Auch gespeicherte Routinen und Trigger stellen bei
dieser Art der Replikation ein Problem dar.

Die zeilenbasierte Replikation speichert die tatsachlichen Datendanderungen im Binary-Log.
Ein grofler Vorteil, der daraus folgt, ist, dass MySQL jede Anweisung korrekt replizieren kann.

62

Zudem konnen einige Anderungen mithilfe der zeilenbasierte Replikation effizienter sein,
da das Replikat die Abfragen, die die Zeilen auf dem Master gedndert haben, nicht erneut
ausfithren muss. Zum Beispiel, wenn eine Abfrage viele Zeilen in der Quelltabelle scannt,
aber nur drei Zeilen in der Zieltabelle bearbeitet. Bei der anweisungsbasierten Replikation
miisste ein Replikat die Anweisung erneut ausfiithren, nur um ein paar Zeilen zu erstellen,
wihrend dies bei der zeilenbasierten Replikation effizient und trivial ist. Andererseits ist das
folgende Ereignis deutlich giinstiger mit statement-basierter Replikation zu replizieren:

UPDATE master_table SET coll = 0;

Die Verwendung der zeilenbasierten Replikation fiir diese Abfrage wire sehr teuer, da jede
Zeile geandert und somit ins Binary-Log geschrieben wird. Dadurch wiirde das Binary-Log-
Ereignis extrem grofy werden, was sowohl beim Protokollieren als auch bei der Replikation
zu einer hoheren Last auf dem Master fithren wiirde. Damit werden nun weitere Vor- und
Nachteile der unterschiedlichen Arten betrachtet.

Die anweisungsbasierte Replikation eignet sich besser, wenn das Schema auf Master und Re-
plikat unterschiedlich ist und unterstiitzt Szenarien mit unterschiedlichen, aber kompatiblen
Datentypen oder Spaltenreihenfolgen. Zudem erleichtert sie Schemaénderungen auf Replika-
ten, die spater als Master dienen sollen, wodurch Ausfallzeiten reduziert werden konnen. Im
Gegensatz dazu kann die zeilenbasierte Replikation bei Schemaédnderungen auf einem Repli-
kat bestimmte Operationen nicht ausfiithren, bietet jedoch eine zuverlassige Funktionalitat
mit allen SQL-Konstrukten. Sie stoppt auch bei Fehlern, z.B. wenn eine erwartete Zeile auf
dem Replikat fehlt und weist damit auf Inkonsistenzen hin, wahrend der andere Typ keine
Hinweise auf fehlende Eintrage gibt. Die Fehlersuche und das Verstandnis von Problemen sind
bei der anweisungsbasierten Replikation einfacher, da die Anderungen iiber verstandliche
SQL-Anweisungen erfolgen. Bei der zeilenbasierten Replikation ist die Nachvollziehbarkeit
der Anderungen dagegen schwieriger, jedoch gibt es dafiir weniger Locking-Probleme. Die
zeilenbasierte Replikation erleichtert die Datenwiederherstellung durch das Speichern alter
Daten, wobei eine Wiederherstellung zu einem bestimmten Zeitpunkt mit einem Binary-Log
im zeilenbasierten Format zwar schwieriger, aber mdoglich ist. Auflerdem benétigt sie haufig
weniger CPU-Ressourcen, da keine komplexe SQL-Ausfiithrungslogik erforderlich ist.

Da kein Format in jeder Situation perfekt ist, kann MySQL dynamisch zwischen statement-
basierter und row-basierter Replikation wechseln. Standardmaf3ig wird die statement-basierte
Replikation verwendet, aber wenn MySQL ein Ereignis erkennt, das nicht korrekt als State-
ment repliziert werden kann, wechselt es automatisch zur row-basierten Replikation. Al-
ternativ kann das Format auch durch Setzen der Variable binlog_format manuell gesteuert
werden.

63

7.2 Konfiguration der Master-Replika-Architektur

Um Benchmarks ausfithren zu kénnen, muss der Master-Replika-Ansatz in MySQL konfi-
guriert werden. Zunachst gilt es, das Szenario der Replikation festzulegen, das umgesetzt
werden soll. In diesem Kapitel wird das Modell mit einem Master und einer beliebigen Anzahl
an Replikaten betrachtet. Die erforderlichen Schritte umfassen das Erstellen der Master- und
Replikationsknoten und der anschlielenden Anweisung an das Replikat, sich mit dem Master
zu verbinden. Abschlieffend muss die Replikation gestartet werden.

Nach dem Starten der Knoten miissen einige spezielle MySQL-Privilegien beriicksichtigt
werden, die erforderlich sind, damit die Replikationsprozesse ordnungsgemafl ausgefithrt
werden konnen. Dazu muss ein Benutzer auf dem Master erstellt werden und diesem die
richtigen Privilegien zugewiesen werden, damit der I/O-Thread sich als dieser Benutzer
verbinden und das Binary-Log des Masters lesen kann. Auflerdem darf nicht vergessen
werden, die Datenbank zu erstellen, auf der die Benchmarks ausgefithrt werden (wie in 2.1).

Codeblock 7.1: Datenbank- und Nutzererstellung sowie Rechtevergabe

CREATE DATABASE sbtest;
CREATE USER 'repl'@'%' IDENTIFIED WITH sha256_password BY 'repl_password';
GRANT REPLICATION SLAVE ON x.x TO 'repl'@'%';

Diesen Nutzer muss nur auf dem Master erstellt werden, ist jedoch auch fiir die Verbindung
der Replikate mit dem Master erforderlich. Im néchsten Schritt miissen einige Einstellungen
auf dem Master und den Replikaten vorgenommen werden. Zum einen muss die Binérpro-
tokollierung aktiviert und zum anderen eine einzigartige ID mit dem Parameter server_id
angegeben werden. Wenn die Bindrprotokollierung in der Konfigurations-Datei nicht bereits
angegeben wurde, muss MySQL neu gestartet werden. Alternativ kénnen die Einstellun-
gen auch direkt beim Starten des Containers angegeben werden. Um zu tiberpriifen, ob die
Binary-Logdatei auf dem Master erstellt wurde, kann man abhéngig von der MySQL-Version
folgende Befehle ausfithren:

Codeblock 7.2: Anzeige der Konfiguration

SHOW BINARY LOG STATUS; —-MySOQL »8.0.23
SHOW MASTER STATUS; --MySQL <8.0.23

Die wichtigste Einstellung fiir das Bindr-Logging auf dem Master ist sync_binlog, wobei
der Wert auf 1 gesetzt werden muss. Diese Option sorgt dafiir, dass MySQL den Inhalt
des Binary-Logs, bei jedem Transaktions-Commit auf die Festplatte synchronisiert. Ist die
Option deaktiviert, verringert sich der Arbeitsaufwand des Servers, jedoch kénnten Binary-
Log-Eintrage bei einem Absturz verloren gehen. Auf einem Replikat, das nicht als Master

64

A U s W N =

dient, erzeugt diese Option unnétigen Mehraufwand. Es wird auflerdem empfohlen, einen
Basisnamen fiir das Binary-Log explizit anzugeben, um einheitliche Namen auf allen Servern
zu gewihrleisten und Anderungen bei einem Hostnamenwechsel zu vermeiden. Dazu muss
ein Argument fiir die log_bin-Option angegeben werden.

Es gibt noch weitere optionale Konfigurationsparameter, die hinzugefiigt werden kénnen.
Einer davon ist der Parameter relay_log, der den Speicherort und den Namen des Relay-
Logs festlegt. Ein weiterer wichtiger Parameter ist log_slave_updates, der es dem Repli-
kat ermoglicht, replizierte Ereignisse in sein eigenes Binary-Log zu schreiben. Die Option
skip_slave_start sorgt dafiir, dass das Replikat nach einem Absturz automatisch startet, was
die Moglichkeit offenlasst, den Server im Falle eines Problems zu reparieren. Zudem sorgt
die Option read_only dafiir, dass die meisten Benutzer keine nicht-temporéren Tabellen &n-
dern konnen. Die einzigen Ausnahmen bilden der Replikation-SQL-Thread und Threads mit
dem SUPER-Privileg, weshalb dieses Privileg normalen Benutzern nicht zugewiesen werden
sollte. In dem Anwendungsfall haben die Replikate die Option read_only aktiviert. Wenn das
Replikat stark im Riickstand ist, kann der I/O-Thread den Festplattenspeicher fiillen. Mit
der Option relay_log_purge kann verhindert werden, dass der Replikation-SQL-Thread diese
entfernt diese, sobald er mit deren Verarbeitung fertig ist.

Der néchste Schritt besteht darin, dem Replikat mitzuteilen, wie es sich mit dem Master
verbinden und dessen Binary-Logs abspielen kann. Umgesetzt kann das mit der Ausfithrung
des folgenden Befehls auf allen Replikaten:

Codeblock 7.3: Verbindung des Replikats zum Master

CHANGE MASTER TO
MASTER_HOST="'YOUR_HOST_NAME ',
MASTER_USER="YOUR_USER",
MASTER_PASSWORD="YOUR_PASSWORD ',
MASTER_LOG_FILE="mysql-bin.000001 ',
MASTER_LOG_P0S=0;

Die Spalten MASTER_LOG_FILE und MASTER_LOG_POS miissen mit dem Ergebnis von dem Befehl
aus 7.2 ibereinstimmen. Um sicherzustellen, dass die Datenbank sbtest und der Benutzer
mit den entsprechenden Privilegien tatsichlich existieren, muss der Befehl aus 7.2 bereits
vor der Ausfithrung des Befehls in 7.1 ausgefithrt werden. Um die eigentliche Replikation zu
starten, muss man den folgenden Befehl auf den Replikaten ausfiihren:

Codeblock 7.4: Starten der Replikation

START SLAVE;

Mit dem folgenden Befehl lasst sich tiberpriifen, ob die Durchfithrung erfolgreich war:

65

Codeblock 7.5: Status des Replikats

SHOW PROCESSLIST\G;

Die Spalten Slave_IO_State, Slave_I0_Running und Slave_SQL_Running zeigen an, ob die Re-
plikationsprozesse laufen oder nicht. Wenn Seconds_Behind_Master nicht mehr NULL ist,
bedeutet das, dass der I/O-Thread bereits alle Binary-Logs abgerufen hat und nun auf ein
Ereignis vom Master wartet. Man sollte auch beobachten konnen, dass die verschiedenen
Datei- und Positionswerte auf dem Replikat inkrementiert werden, wenn man Anderungen
an dem Master vornimmt. Aulerdem sollten zwei Threads auf dem Replikat aktiv sein, die
unter dem Benutzer ,system user” laufen.

Bei den bisherigen Setup-Anweisungen wurde von einer frischen Installation ausgegangen.
Es gibt aber auch andere Moglichkeiten, um ein Replikat von einem anderen Server zu
initialisieren. Zum einen kann man bereits existierende Daten von einem Master kopieren,
ein Replikat von einem anderen Replikat klonen oder ein Replikat aus einem aktuellen Backup
starten. Um ein Replikat mit einem Master zu synchronisieren, sind drei Elemente erforderlich:
eine Momentaufnahme der Master-Daten zu einem bestimmten Zeitpunkt, die Log-Datei des
Masters mit dem entsprechenden Byte-Offset (ermittelbar durch den Befehl 7.2) sowie die
Binary-Logs des Masters ab diesem Zeitpunkt. Eine kalte Kopie erfordert das Herunterfahren
des Masters, um dessen Dateien zu kopieren, bevor er mit einem neuen Binary-Log neu
gestartet wird, was jedoch zu Ausfallzeiten fiihrt. Bei einer warmen Kopie konnen die Dateien
iibertragen werden, wahrend der Server weiterhin l4uft.

7.3 Untersuchung der Replikation

Im vorherigen Abschnitt wurde erklart, wie man den Master und vor allem die Replikate
korrekt konfiguriert und den Prozess der Replikation startet. Fiir die Durchfithrung der
Benchmarks werden erneut die Kundentabelle und die Bestelltabelle aus Kapitel 2.2 benétigt.
Die einzigen erforderlichen Anpassungen betreffen das Festlegen des Binlog-Formats, das
iiber die Variable binlog_format definiert wird und die Werte STATEMENT, ROW oder MIXED an-
nehmen kann. Diese Einstellung kann entweder global fiir den gesamten Server oder lokal
fur die aktuelle Sitzung mithilfe des Befehls SET SESSION gedndert werden. Damit lassen
sich die Performanceunterschiede zwischen den einzelnen Arten, insbesondere bei den Ein-
fugeoperationen, vergleichen. Der eigentliche Aufwand bei diesen Benchmarks besteht in
der Einrichtung der Replikation auf dem lokalen Rechner und im Workflow, wéhrend die
Verdanderungen an den Lua-Skripten minimal sind.

Im ersten Vergleich sollen die Performanceunterschiede zwischen dem Master-Replikat-
Ansatz und dem Ansatz mit einem einzelnen MySQL-Server festgestellt werden. Beim Master-

66

Replikat-Ansatz wird mit ROW immer der Standardwert des Binlog-Formats verwendet. Damit
keine Fehler auftreten, miissen die beiden Ansétze miteinander kompatibel gemacht werden.
Das Problem dabei ist, dass der Standardport von MySQL (3306) nicht gleichzeitig verwendet
werden darf. Daher wird der Master auf Port 3307 gestartet und jedes Replikat erhalt einen um
1 erhohten Wert. Somit nutzt das dritte Replikat den Port 3310. Die Anzahl der Replikate lasst
sich in der envs. json-Datei tiber die Variable REPLICAS_COUNT festlegen. Die Voraussetzung
dafiir ist, dass es lokal mindestens diese Anzahl an gestarteten und konfigurierten Replikate
gibt. Innerhalb des Workflowjobs muss nichts anpasst werden, da dort REPLICAS_COUNT dazu
genutzt wird, die exakte Anzahl an Replikate zu starten. Wichtig ist noch zu erwahnen, dass
die Insert-Befehle nur auf dem Master, also Port 3307, ausgefithrt werden. Die Select-Befehle
werden sowohl auf dem Master als auch auf die Replikate ausgefiihrt.

Beim Betrachten der Ergebnisse aus Abbildung 7.2 fallt auf, dass die Version ohne Replikation
deutlich am schnellsten ist. Die tibrigen Varianten sind nur halb so schnell, liegen jedoch auf
einem ahnlichen Niveau. Damit wurde auch festgestellt, dass die Select-Performance auf dem
Master genauso effizient ist wie bei den Replikaten. Bei der Schreibgeschwindigkeit gibt es
allerdings keinen deutlichen Unterschied zwischen den beiden Varianten, da die Replikation
nur ungefahr 5% langsamer ist.

Reads over Time by Script Writes over Time by Script

450

Script
875 —— mysql_single_server_no_replication
—— mysql_master_slave

350 —— mysql_si
-l mysql_r
H
g —— mysql_r
— mysql_r L
—— mysql_master_slave_with_port_3310

Writes

10 20 30 0 50 60 10 20 30 a0 50 60
Time (s) Time (s)

Abbildung 7.2: Vergleich zwischen Master mit 3 Replikaten und Single-Server-Ansatz

Bei dem ersten Vergleich betrug der Threads-Wert bei Einfiigungen und Abfragen 1, sodass
die Leistung eines einzelnen Threads ersichtlich wurde. Aus den Ergebnissen lasst sich
schlussfolgern, dass der Single-Server am effizientesten ist und der Master-Replikat-Ansatz in
diesem Fall keine Vorteile bietet. Anders verhilt es sich, wenn die Last auf den Server erhoht
wird, indem die Anzahl der Threads gesteigert wird. Die Threadanzahl kann beim Auffithren
des Sysbench-Befehls mit dem Parameter —-threads festgelegt werden. Die Prozesse sollen
die Last durch Nutzer in der Datenbank simulieren. Um den Vergleich zwischen dem Single-
Server und dem Master-Replikat-Ansatz zu verdeutlichen, wird der Benchmark mit 8 und 16
Threads durchgefiihrt. Beim Single-Server werden alle Threads auf einem Server ausgefiihrt,
wiahrend sie beim Master-Replikat-Ansatz auf den Master und die drei Replikate gleichmaflig
aufgeteilt werden. Bei 8 Threads wird die Last so aufgeteilt, dass der Master und alle Replikat

67

je 2 Threads verarbeiten (8/4 = 2). Nach diesem Prinzip wird der Benchmark auch mit 16
Threads durchgefiihrt (siehe Abbildung 7.3a).

Reads over Time by Script Reads over Time by Script

—
2000 900 1 :

1750

1500 Script

—— mysal_master_slave_sel_thr_16_replication

]
& 1250

1000

10 20 30 40 50 60 10 20 30 40 50 60

(a) Mit Replikation (b) Ohne Replikation
Abbildung 7.3: Vergleich von 8 Threads an Single-Server und jeweils 2 an die unters. Ports

Zunichst ist in der linken Grafik zu erkennen, dass beide Kurven des Single-Server-Ansatzes
sehr dhnlich verlaufen. Auf den ersten Blick konnte das iiberraschen, da man erwarten wiirde,
dass eine Verdopplung der Threadanzahl auch zu einer Verdopplung der Leseabfragen fiihrt.
Deshalb wurde noch ein weiterer Vergleich durchgefiihrt, bei dem die Threadanzahlen der 2er-
Potenzreihe bis einschlieBlich 2° nur fiir den Single-Server-Ansatz getestet wurden. Zusitzlich
wurde bei diesem Vergleich die CPU-Auslastung mit dem folgenden Befehl gemessen:

Codeblock 7.6: Messen der CPU-Auslastung

top -1 1 | grep 'CPU usage' | awk '{print $3 + $5}' %Fir Mac
top -bnt | grep 'Cpu(s)' | sed 's/.x, *x\\([0-9.]%\\)%* id.x/\\1/' | awk '{print 100 - $1}' %Fir Linux

Die Ergebnisse der CPU-Auslastung und der Anzahl der Leseabfragen sind in Tabelle 7.1
dargestellt, sortiert nach aufsteigender Threadanzahl. Die Abbildung 7.3b zeigt, dass sich
die Leseperformance beim Anstieg von 1 auf 2 Threads nahezu verdoppelt. Zwischen 2 und
4 Threads fallt der Unterschied schon geringer aus, liegt aber dennoch bei etwa 25%. Die
Kurve mit 4 Threads weicht nur geringfiigig von den anderen Threadanzahlen ab. Begriinden
lasst sich das durch die CPU-Auslastung. Bei einer geringeren Anzahl an Threads ist die
CPU-Auslastung niedriger, was die starken Anstiege erklart. Irgendwann ist die CPU jedoch
voll ausgelastet, sodass die Performance nicht mehr weiter steigt. Dies trifft hier bei 4 bzw. 8
Threads zu, da die CPU-Auslastung dort zwischen 72 und 97% liegt.

Anzahl an Threads | Durchschnittliche CPU-Auslastung | Anzahl an Leseabfragen
1 1.73 24975
2 26.91 45972
4 72.99 55528
8 97.51 56884
16 100.00 56507
32 100.00 56133

Tabelle 7.1: Auslastung mit unterschiedlichen Threadanzahlen

68

Wenn nun wieder das Ergebnis aus 7.3a betrachtet wird, werden die Vorteile der Replikation
deutlich sichtbar. In beiden Féllen liegen die Werte mit Replikation stets deutlich iiber denen
des Single-Server-Ansatzes. Die Performance des Single-Servers bleibt unabhéngig von der
Threadanzahl gleich. Bei der Replikation zeigt sich, dass ein Anstieg an Threads auch zu einer
Steigerung der Leseabfragen fiihrt. So ist die Kombination von 16 Threads, verteilt auf den
Master und die 3 Replikate, am effizientesten. Danach folgt mit etwas Abstand die Version
mit 8 Prozessen, die etwa 10% langsamer ist. Aber selbst diese ist deutlich schneller als alle
Varianten des Single-Server-Ansatzes, sodass festgestellt werden kann, dass die Replikation
bei héherer Last klare Vorteile bietet. Wenn die Threadanzahl beim Replikationsansatz weiter
erhoht wird, wiirde auch hier irgendwann die zuvor erwéhnte Grenze des Single-Server-
Ansatzes erreicht werden. Der Vorteil der Replikation liegt jedoch darin, dass die erhchte
Last auf zusatzliche Replikate verteilt werden kann.

Im letzten Vergleich wird ausschliellich der Master-Replikat-Ansatz verwendet, um die
unterschiedlichen Binlog-Formate zu vergleichen. Zur Begrenzung der Variationen wird nur
ein Replikat pro Master betrachtet. Daraus ergeben sich sechs unterschiedliche Leseergebnisse,
da fiir jedes der drei Formate sowohl der Master- als auch der Replikat-Port abgefragt wird.
In der Grafik 7.4 ist zu erkennen, dass es bei den verschiedenen Binlog-Formaten und Ports
kaum Unterschiede gibt. Und auch die Schreibgeschwindigkeiten verhalten sich bei beiden
Varianten sehr dhnlich. Das lasst sich auch mit dem Hexagon-Chart bestatigen, da dort alle
Werte sehr nahe beieinander liegen.

— with_port_3307_format_mixed

Comparison of Me ™ x::fz::i;g‘j—: d Writes over Time by Script

Transactions (max: 23 3 Aths . 870

—— format_statement
—— format_mixed

Queries (max: 77/16298rs

Total Events (max:23,

Time (s)

Abbildung 7.4: Vergleich zwischen den unterschiedlichen Binlog-Typen

Die Schlussfolgerungen aus den Messungen sehen dabei wie folgt aus. Es zeigt sich, dass
durch Replikation, anders als beispielsweise mit Indexen oder Partitionen, mit einem einzel-
nen Thread keine deutlichen Performancevorteile gewonnen werden kénnen. Wenn aber
mehrere Nutzer auf der Datenbank interagieren und ausschlie8lich Lesezugriffe benétigen,
dann konnen die Abfragen auf die unterschiedlichen Ports aufgeteilt werden. In diesen Szena-
rien mit hoherer Parallelitdt und intensiveren Leseoperationen kann Replikation signifikante
Vorteile bieten. Die Auswahl des Binlog-Formats hat beim Benchmark zu keinen Performanz-
gewinnen gefithrt. Moglicherweise konnte sich jedoch ein anderer Einfluss zeigen, wenn
Schreiboperationen ins Spiel kommen oder die Konsistenzanforderungen geandert werden.

69

8 Fazit

Die vorliegende Bachelorarbeit ging der Frage nach, wie die Performance einer relationalen
Datenbank verbessert werden kann. Thr Aufbau orientiert sich am Prozess des Datenentwurfs.
Beim Datenbankentwurf muss man die ermittelten Anforderungen aus den Interviews mit
Stakeholdern verwenden, um einen konzeptionellen Entwurf, beispielsweise in Form eines
ER-Modells, zu erstellen. Danach wird aus dem konzeptionellen Entwurf ein Logischer in
Form eines Relationenschemas. Dieses Kapitel dient dazu, eine allgemeine Zusammenfassung
der wesentlichen Erkenntnisse zu bieten.

Zuallererst wird der logische Entwurf betrachtet, bei dem neben der Normalisierung der
Tabellen auch die Auswahl der korrekten Datentypen eine Rolle spielt. Das erste Kapitel
behandelte dieses Thema im Detail. Mithilfe der Benchmarks wurde festgestellt, dass der
kleinstmogliche Datentyp fiir eine Spalte deklariert werden sollte. Dazu muss zunédchst
festgelegt werden, welcher Bereich an Werten abgebildet werden soll, um darauf basierend
den geeigneten Typ auszuwéhlen. Dabei ist durchaus von Vorteil, dass der Typ bei einer
falschen Einschatzung des Wertebereichs ohne viel Aufwand verandert werden kann. Beim
Betrachten der numerischen Datentypen fiel auf, dass je grof3er der Wertebereich und damit
der Speicherbedarf ist, desto schlechter wird die Leistung. Deshalb zahlen DECIMAL und BIGINT
zu den ineflizientesten. Bei den zeichenkettenbasierten Typen ist die Wahl einfach zu treffen,
da in den meisten Féllen der Typ VARCHAR am schnellsten ist. Nur wenn eine Spalte haufiger
aktualisiert als abgefragt wird, kann es sinnvoll sein, den Typ CHAR in Erwégung zu ziehen.
Ein weiterer Leitsatz bei der Wahl der Datenformate ist, eine simplere Datenstruktur zu
bevorzugen, was sich im Vergleich zeigte, da INT schneller als CHAR ist. Zu guter Letzt sollte
beriicksichtigt werden, dass die Spalten nicht nur aus Performancegriinden, sondern auch
zur Wahrung der Datenintegritat und -konsistenz an mdoglichst vielen Stellen als NOT NULL
definiert werden sollten. Nach dem logischen Entwurf einer Datenbank kommt als néchster
Schritt die physische Implementierung. Bei diesem Schritt spielen auch die anderen Aspekte,
die betrachtet wurden, wie Indexierung, Sichten, Partitionen oder Replikation, eine Rolle.

Bei der Indexierung wurde gezeigt, wie effektiv sie sein kann, indem der Aufbau und die
Funktionsweise der B-Tree- und Hash-Indexe erlautert und getrennt voneinander untersucht
wurden. Der Vergleich beider Varianten hat ergeben, dass der Hash-Index in bestimmten
Féllen effektiver ist als der B-Baum-Index. Auf der anderen Seite kann der B-Baum-Index bei
deutlichen mehr Abfragen eingesetzt werden, insbesondere auch bei Bereichsabfragen oder

70

Filtern von Teilen des Indexes. Im Gegensatz dazu funktioniert der Hash-Index nur bei einem
exakten Schliisselabgleich. Aulerdem ist beim Hash-Index auch die Anzahl an Hashkollisio-
nen relevant fiir die Performance. Der grofte Nachteil der Verwendung von Indizes ist der
hohere Pflegeaufwand, da bei jeder Datendanderung der Index ebenfalls angepasst werden
muss. Wenn Performanceprobleme bei einer Datenbankumgebung auffallen, dann sollte
man in den Logs nach Abfragen suchen, die zum einen besonders haufig vorkommen und
zum anderen viel Zeit benotigen. Bei der Analyse kann man moglicherweise eine sinnvolle
Nutzung von Indizes identifizieren und diese erstellen. Nach einigen Tagen oder Wochen
bietet es sich an, eine Kontrolle durchzufithren und abhéngig vom Ergebnis konnen einige
Indizes entfernt und andere neue hinzugefiigt werden. Ein dhnliches Vorgehen ist auch beim
Einsatz von Views niitzlich.

Wie bei den Benchmarks fiir die Sichten festgestellt wurde, wirken sich virtuelle Views
nicht auf die Performance aus. Dafiir eignen sich virtuelle Sichten hervorragend fiir Ge-
wihrleistung von Rechtemanagement in einer Organisation, denn sie haben den Vorteil,
dass die Daten nicht physisch gespeichert werden und somit keine Redundanzen entste-
hen. Materialisierte Sichten hingegen werden auf der Festplatte gesichert und bieten dafiir
ein erhebliches Performancepotenzial. Besonders geeignet sind sie in Szenarien, in denen
haufig auf aggregierte oder komplexe Abfragen zugegriffen wird, wie zum Beispiel in OLTP-
Systemen. Es ist durchaus sinnvoll, sich bereits beim Datenbankentwurf Gedanken iiber
Sichten zu machen, doch es ist auch méoglich, diese, wie bei Indizes, erst im Laufe der Zeit zu
erganzen. Wie genau die Implementierung von materialisierten Sichten umgesetzt werden
kann, hangt vom jeweiligen Datenbankmanagementsystem ab. Einige DBMS unterstiitzen
materialisierte Sichten, wiahrend andere sogar eine inkrementelle Auffrischung erméglichen.
In MySQL hingegen miissen materialisierte Sichten durch dedizierte Tabellen in Kombination
mit Triggern nachgebildet werden. Bei den Tests ist jedoch deutlich geworden, dass die
native Implementierung, z.B. in Postgres, einen klaren Performancevorteil gegentiiber der
Implementierung mit Triggern bietet. Daher sollte dieser Aspekt bei der Auswahl des DBMS
beriicksichtigt werden. In Bezug auf die Schreibperformance muss ebenfalls erwahnt werden,
dass die Pflege von materialisierten Sichten die Effizienz negativ beeinflusst.

Bei Partitionen fallt der Mehraufwand geringer aus als bei Indizes oder Sichten, da keine
zusitzlichen Datenbankobjekte verwaltet werden miissen. Stattdessen werden die Datensétze
auf mehrere Partitionen verteilt und nicht in einer einzelnen Tabelle gespeichert. Wenn eine
Datenbankoperation ausgefithrt wird, muss zunachst die Partition oder die entsprechenden
Partitionen ermittelt werden, die die angeforderten Daten enthalten. Normalerweise ist ein
Merkmal, das fiir die Partitionierung spricht, ein natiirliches Trennkriterium wie ein Zeitstem-
pel oder geografische Regionen, da dadurch eine logische Aufteilung der Daten ermoglicht
wird. Abhédngig vom Trennkriterium muss man sich fiir einen der Partitionierungstypen
entscheiden: Range, List, Hash oder Key. Der Vorteil der Partitionierung liegt darin, dass nur
die relevanten Partitionen durchsucht werden miissen, anstatt die gesamte Tabelle zu scannen.

71

Dieser Vorgang wird als Pruning bezeichnet und fiihrt zu einer erheblichen Steigerung der
Abfragegeschwindigkeit. Allerdings gibt es einige Einschrankungen beim Pruning. Bei der
Range-Partitionierung mit einem Zeitstempel konnen bei einigen Operatoren unerwartete
Probleme auftreten. Ein solches Beispiel stellt der YEAR()-Operator dar, der zwar dasselbe
Ergebnis wie eine Bereichsabfrage liefert, jedoch nicht fiir das Partition-Pruning verwendet
werden kann. In einem solchen Fall mussen alle Partitionen durchsucht werden, was die
Abfrage sogar langsamer macht als ohne Partitionierung. Fiir die List-Partitionierung hat sich
gezeigt, dass der Operator IN am effizientesten ist, gefolgt von OR, wahrend UNION deutlich
weniger effizient ist, weshalb von seiner Verwendung abgeraten werden sollte. Die Hash-
Partitionierung tragt zu einer gleichméafligen Verteilung der Daten bei. Dariiber hinaus wurde
festgestellt, dass bei dieser sowie den anderen Typen die Komplexitit der Suche innerhalb
der Partitionierungsstruktur mit einer steigenden Anzahl von Partitionen zunimmt, was zu
einer entsprechenden Verschlechterung der Performance fiihrt.

Zum Schluss wurde der Einfluss der Replikation im Rahmen des Master-Replikat-Ansatzes
analysiert. Anders als bei der Partitionierung werden bei der Replikation vollstindige Ko-
pien der gesamten Datenbank auf mehreren Servern erstellt. Wenn Anderungen am Master
vorgenommen werden, werden diese durch verschiedene Threads an die Replikate iiber-
tragen. Dadurch wird die Verfiigbarkeit und Ausfallsicherheit erh6ht, weshalb Replikation
haufig in Verbindung mit Backups eingesetzt wird. Um die Performance zu testen, wurde die
Leistung eines Single-Servers mit der eines Systems aus Master- und Replikaten verglichen.
Dabei wurde festgestellt, dass der Single-Server bei Verwendung eines einzelnen Threads
einen Leistungsvorteil hat. Sobald jedoch mehrere Threads die CPU-Auslastung auf dem
Single-Server erhohen und gleichzeitig die Last auf die Master- und Replikatknoten verteilt
wird, zeigt sich der Vorteil der Replikationsverteilung. In Bezug auf die Verteilung zeigt die
Replikation Ahnlichkeiten mit den grundlegenden Konzepten von NoSQL-Datenbanken, die
ebenfalls horizontale Skalierung einsetzen, um die Effizienz zu optimieren. Allerdings treten
auch Nachteile beim Einfiigen von Daten mit Replikation auf, da das erneute Kopieren der
Daten auf die Replikate die Performance negativ beeinflusst.

Zusammenfassend lasst sich festhalten, dass es keine allgemeingiiltige Losung fiir optimale
Performance gibt, sondern verschiedene Konzepte, deren Effizienz vom jeweiligen Anwen-
dungsfall abhéngt. Oft fithrt eine gezielte Kombination mehrerer Techniken zu den besten
Ergebnissen. Ein bewdhrter Ansatz ist die Verbindung von Partitionierung und Replikation.
Hierbei wird jede Partition auf mehreren Knoten repliziert, wodurch die Datensétze weiter-
hin einer bestimmten Partition zugeordnet bleiben, gleichzeitig aber redundant gespeichert
werden. Dariiber hinaus wirkt sich die Verwendung kleinerer Datentypen positiv auf die
Index-Performance aus. Indizes konnen effektiv mit Partitionierung oder materialisierten
Views kombiniert werden und optimieren in replizierten Systemen die Lesezugriffe auf die
Replikate. Letztlich zeigt sich, dass das Zusammenspiel der verschiedenen Strategien eine
nachhaltige Antwort bietet.

72

Literatur

Da Silva, M. D., & Tavares, H. L. (2015). Redis Essentials. Packt Publishing Ltd.

Difallah, D. E., Pavlo, A., Curino, C., & Cudré-Mauroux, P. (2013). OLTP-Bench: An Extensible
Testbed for Benchmarking Relational Databases. PVLDB, 7(4), 277-288. http://www.
vldb.org/pvldb/vol7/p277-difallah.pdf

Garcia-Molina, H., Ullman, J. D., & Widom, J. (2008). Database systems: the complete book.
Pearson Education India.

GitHub. (2025a). Caching dependencies to speed up workflows. Verfiigbar 7. Januar 2025 unter
https://docs.github.com/en/actions/writing - workflows/ choosing - what - your -
workflow-does/caching-dependencies-to-speed-up-workflows#comparing-artifacts-
and-dependency-caching

GitHub. (2025b). Understanding GitHub Actions. Verfiigbar 20. Januar 2025 unter https://docs.
github.com/en/actions/about-github-actions/understanding-github-actions

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Enginee-
ring, 9(3), 90-95. https://doi.org/10.1109/MCSE.2007.55

Kleppmann, M. (2017). Designing data-intensive applications: The big ideas behind reliable,
scalable, and maintainable systems. O’Reilly Media.

Kopytov, A. (2024). Sysbench Github Repository. Verfugbar 28. Oktober 2024 unter https:
//github.com/akopytov/sysbench

Microsoft. (2024). Database snapshots (SQL Server). Verfiigbar 12. Marz 2025 unter https:
//learn.microsoft.com/en-us/sql/relational-databases/databases/database-snapshots-
sql-server?view=sql-server-ver16

Oracle. (2025a). 10.3.1 How MySQL Uses Indexes. Verfuigbar 28. Februar 2025 unter https:
//dev.mysql.com/doc/refman/8.4/en/mysql-indexes.html

Oracle. (2025b). 13.1.2 Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT,
MEDIUMINT, BIGINT. Verfiigbar 7. Mérz 2025 unter https://dev.mysql.com/doc/
refman/8.4/en/integer-types.html

Oracle. (2025c). 26.6 Restrictions and Limitations on Partitioning. Verfugbar 17. Februar 2025
unter https://dev.mysql.com/doc/refman/8.4/en/partitioning-limitations.html

Oracle. (2025d). 27.3.1 Trigger Syntax and Examples. Verfiigbar 27. Januar 2025 unter https:
//dev.mysql.com/doc/refman/8.4/en/trigger-syntax.html

Oracle. (2025e). MySQL 8.0 Release Notes. Verfiigbar 1. Mérz 2025 unter https://dev.mysql.
com/doc/relnotes/mysql/8.0/en/

73

http://www.vldb.org/pvldb/vol7/p277-difallah.pdf
http://www.vldb.org/pvldb/vol7/p277-difallah.pdf
https://docs.github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/caching-dependencies-to-speed-up-workflows#comparing-artifacts-and-dependency-caching
https://docs.github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/caching-dependencies-to-speed-up-workflows#comparing-artifacts-and-dependency-caching
https://docs.github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/caching-dependencies-to-speed-up-workflows#comparing-artifacts-and-dependency-caching
https://docs.github.com/en/actions/about-github-actions/understanding-github-actions
https://docs.github.com/en/actions/about-github-actions/understanding-github-actions
https://doi.org/10.1109/MCSE.2007.55
https://github.com/akopytov/sysbench
https://github.com/akopytov/sysbench
https://learn.microsoft.com/en-us/sql/relational-databases/databases/database-snapshots-sql-server?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/databases/database-snapshots-sql-server?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/databases/database-snapshots-sql-server?view=sql-server-ver16
https://dev.mysql.com/doc/refman/8.4/en/mysql-indexes.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-indexes.html
https://dev.mysql.com/doc/refman/8.4/en/integer-types.html
https://dev.mysql.com/doc/refman/8.4/en/integer-types.html
https://dev.mysql.com/doc/refman/8.4/en/partitioning-limitations.html
https://dev.mysql.com/doc/refman/8.4/en/trigger-syntax.html
https://dev.mysql.com/doc/refman/8.4/en/trigger-syntax.html
https://dev.mysql.com/doc/relnotes/mysql/8.0/en/
https://dev.mysql.com/doc/relnotes/mysql/8.0/en/

Ouko, A. (2025). SQL Materialized View: Verbesserung der Abfrageleistung. Verfugbar 26. Januar
2025 unter https://www.datacamp.com/de/tutorial/sql-materialized-view

pandas development team, T. (2020, Februar). pandas-dev/pandas: Pandas (Version latest).
Zenodo. https://doi.org/10.5281/zenodo.3509134

Ramakrishnan, R., & Gehrke, J. (2002). Database management systems. McGraw-Hill, Inc.

Reimers, N. (2017). Virtuelle, dezidierte und Cloud-Server: MySQL-Benchmark mittels sysbench.
Verfiigbar 28. Oktober 2024 unter https://www.webhosterwissen.de/know-how/
server/mysql-benchmark-mittels-sysbench/

Reinboth, C. (2020). Grundlagen der Statistik: LagemafSe — Median, Quartile, Perzentile und
Modus. Verfiigbar 4. Marz 2025 unter https://wissenschafts-thurm.de/grundlagen-der-
statistik-lagemasse-median-quartile-perzentile-und-modus/

Schwartz, B., Zaitsev, P., & Tkachenko, V. (2012). High performance MySQL: optimization,
backups, and replication. O’Reilly Media.

Shopify. (2022a). Detailed design documentation. Verfiigbar 28. Oktober 2024 unter https:
// shopify.github.io/mybench/detailed - design - doc. html #live - monitoring - user -
interface

Shopify. (2022b). What is mybench? Verfiugbar 28. Oktober 2024 unter https://shopify.github.
io/mybench/introduction.html

Shopify. (2024). Mybench Github Repository. Verfiigbar 28. Oktober 2024 unter https://github.
com/Shopify/mybench

Silberschatz, A., Korth, H. F., & Sudarshan, S. (2011). Database system concepts. Development.

Vogel, M. (2009). EDV-Lexikon: Bottleneck. Verfiigbar 28. Oktober 2024 unter https://martinvogel.
de/lexikon/bottleneck.html

Williams, T., Kelley, C., & many others. (2010, Mérz). Gnuplot 4.4: an interactive plotting
program.

Winand, M. (2011). SQL performance explained. Development.

74

https://www.datacamp.com/de/tutorial/sql-materialized-view
https://doi.org/10.5281/zenodo.3509134
https://www.webhosterwissen.de/know-how/server/mysql-benchmark-mittels-sysbench/
https://www.webhosterwissen.de/know-how/server/mysql-benchmark-mittels-sysbench/
https://wissenschafts-thurm.de/grundlagen-der-statistik-lagemasse-median-quartile-perzentile-und-modus/
https://wissenschafts-thurm.de/grundlagen-der-statistik-lagemasse-median-quartile-perzentile-und-modus/
https://shopify.github.io/mybench/detailed-design-doc.html#live-monitoring-user-interface
https://shopify.github.io/mybench/detailed-design-doc.html#live-monitoring-user-interface
https://shopify.github.io/mybench/detailed-design-doc.html#live-monitoring-user-interface
https://shopify.github.io/mybench/introduction.html
https://shopify.github.io/mybench/introduction.html
https://github.com/Shopify/mybench
https://github.com/Shopify/mybench
https://martinvogel.de/lexikon/bottleneck.html
https://martinvogel.de/lexikon/bottleneck.html

Anhang

Codeblock 1: Konfiguration des Master-Replikat-Ansatzes

number _of_replicas=${1:-3}
docker network create mysql-network

Start Primary Container
docker run -d --name mysql-primary --network mysql-network -e MYSQL_ROOT_PASSWORD=password -p 3307:3306 mysql:8 —-
server-id=1 --log-bin=mysql-bin
until docker exec mysql-primary mysqladmin ping -uroot -ppassword --silent &> /dev/null; do
echo "Waiting for MySQL Primary to be ready..."; sleep 5

G W DN =

(el B

done

O

10 # Start Replica Containers

11 for ((i=1; i<=number_of_replicas; i++)); do

12 docker run -d --name mysql-replica-${i} --network mysql-network -e MYSQL_ROOT_PASSWORD=password -p $((3307 + i))
13306 mysql:8 --server-id=$((i + 1)) --log-bin=mysql-bin --read-only=1

13 until docker exec mysql-replica-${i} mysqladmin ping -uroot -ppassword --silent &> /dev/null; do

14 echo "Waiting for MySQL Replica ${i} to be ready..."; sleep 5
15 done

16 done

17

18 MASTER_STATUS=$(docker exec mysql-primary mysql -uroot —ppassword —e "SHOW BINARY LOG STATUS\G")
19 BINLOG_FILE=$(echo "$MASTER_STATUS" | awk '/File:/ {print $2}")

20 BINLOG_POS=$(echo "$MASTER_STATUS" | awk '/Position:/ {print $2}')

21

22 # Setup Primary

23 echo "Configuring primary MySQL server..."

24 docker exec -i mysql-primary mysql -uroot -ppassword -e "

25 CREATE DATABASE sbtest;

26 CREATE USER 'repl'@'%' IDENTIFIED WITH sha256_password BY 'repl_password';
27 GRANT REPLICATION SLAVE ON . TO 'repl'@'%';

28 FLUSH PRIVILEGES;

29 v

30

31 # Setup Replicas

32 for ((i=1; i<=number_of_replicas; i++)); do

33 docker exec -i mysql-replica-${i} mysql -uroot -ppassword -e
34 CHANGE REPLICATION SOURCE TO

"

35 SOURCE_HOST = 'mysql-primary',

36 SOURCE_USER = 'repl’,

37 SOURCE_PASSWORD = 'repl_password',
38 SOURCE_LOG_FILE = '$BINLOG_FILE',
39 SOURCE_LOG_POS = $BINLOG_POS;

40 START REPLICA;

41

42 done

43 echo "MySQL replication setup completed."

75

Eigenstandigkeitserklarung

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit mit dem Titel
Performance - Optimierung von Datenbanken

selbststandig und nur mit den angegebenen Hilfsmitteln verfasst habe. Alle Passagen, die ich

wortlich aus der Literatur oder aus anderen Quellen wie z. B. Internetseiten iibernommen
habe, habe ich deutlich als Zitat mit Angabe der Quelle kenntlich gemacht.

Hamburg, 13. Marz 2025

	Abbildungsverzeichnis
	Einleitung
	Benchmarks
	Kennzahlen
	Auswahl der Tools

	Grundlagen
	Überblick über die Tools
	Projektaufbau
	GitHub Actions
	Optimierung des Workflows

	Optimierungen von Datentypen
	Allgemeine Faktoren
	Funktionsweise individueller Datentypen
	Analyse der Benchmarks

	Indizes
	Grundlagen
	B-Baum-Index
	Hash-Index
	Vergleich zwischen B-Tree- und Hash-Index

	Views
	Virtuelle Views
	Materialisierte Views
	Durchführung der Benchmarks

	Partitionen
	Grundlagen
	Partitionierungstypen
	Auswertung der Benchmarks

	Replikation
	Grundlagen
	Konfiguration der Master-Replika-Architektur
	Untersuchung der Replikation

	Fazit
	Literatur
	Anhang

