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Abstract

A new realization of a membrane-type acoustic metamaterial (MAM) with ad-

justable sound transmission properties is presented. The proposed design dis-

tinguishes itself from other realizations by a stacked arrangement of two MAMs

which is inflated using pressurized air. The static pressurization leads to large

non-linear deformations and, consequently, geometrical stiffening of the MAMs

which is exploited to adjust the eigenmodes and sound transmission loss of the

structure. A theoretical analysis of the proposed inflatable MAM design using

numerical and analytical models is performed in order to identify two important

mechanisms, namely the shifting of the eigenfrequencies and modal residuals due

to the pressurization, responsible for the transmission loss adjustment. Analyt-

ical formulas are provided for predicting the eigenmode shifting and normal

incidence sound transmission loss of inflated single and double MAMs using

the concept of effective mass. The investigations are concluded with results

from a test sample measurement inside an impedance tube, which confirm the

theoretical predictions.
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1. Introduction

The so-called acoustic metamaterials have received much attention by re-

searchers in physics and acoustical engineering during the last two decades. The

term “metamaterial” has originally been coined in the late 1990s for composite

materials specifically designed to yield physically unusual electromagnetic prop-5

erties, such as negative permittivity and/or negative permeability [1]. Realiza-

tions of such extraordinary electromagnetic materials were proposed by Pendry

et al. [2, 3] and first experimental evidence of metamaterials with negative per-

mittivity and permeability was later provided by Smith et al. [4] and Shelby

et al. [5], 30 years after Veselago [6] studied theoretically the physical conse-10

quences of such materials, such as negative refraction and a reversed Doppler

effect. These findings initiated the emergence of a variety of electromagnetic

metamaterials with powerful applications, e.g. a perfect lens overcoming the

diffraction limit [7] or electromagnetic cloaks [8].

Light and sound waves are both governed by the wave equation. Therefore,15

most concepts of electromagnetic metamaterials can be transferred to acoustical

problems. Consequently, Liu et al. [9] presented the first acoustic metamate-

rial with sub-wavelength-sized periodically arranged rigid spheres coated by an

elastic material. This so-called locally resonant sonic material exhibited low-

frequency bands with strongly reduced transmission of sound, caused by the20

effective density of the structure – i.e. the density “seen” by the acoustic wave

passing through it – becoming negative in these band gaps [10]. Since then,

many different types of acoustic metamaterials with negative density [11–16],

negative bulk modulus [17–20], and double-negative properties [21–24] as well as

various extraordinary applications of these metamaterials, like acoustic diodes25

[25], cloaks [26], near-unity absorbing surfaces [27], or acoustic superlenses [28],

have been investigated.

From this wide range of different acoustic metamaterials developed by vari-

ous research groups, the so-called membrane-type acoustic metamaterials (MAMs),

originally proposed by Yang et al. [12], provide some features that are partic-30
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ularly useful in some engineering applications (e.g. aeronautical engineering),

where lightweight structures and compact installation spaces are critical for the

design of noise protection measures: MAMs are composed of thin pre-stressed

membranes with one or more small rigid masses attached to the membrane ma-

terial. These two-dimensional structures provide narrow frequency bands at35

low frequencies where the sound transmission through the MAM is reduced by

several orders of magnitude below the corresponding mass-law [12, 29]. These

frequency bands can be tuned during manufacturing of the MAM structures by

choosing suitable values for the membrane pre-stress [30, 31], the magnitude

of the added masses [12, 30, 31], the mass location [31–33], and the number of40

added masses [34, 35].

Once these parameters have been determined and the MAMs have been

manufactured, however, it is not possible to re-tune the location of the high

transmission loss frequency bands to account for shifting tonal components in-

side the spectrum of the noise source during operation (e.g. different rotational45

speeds of a propeller engine) or changes of the membrane pre-stress due to tem-

perature changes or aging effects. There have been several efforts to increase the

high transmission loss bandwidth using passive assemblies of MAMs: It is possi-

ble to stack multiple layers with differently tuned MAMs to achieve a broadband

MAM panel with a high transmission loss over a wide frequency range that is50

more robust to changes in the operational conditions or material parameters

[29, 36]. This, however, leads to a heavier structure requiring more installation

space which might not be available in some applications. Alternatively, a single

MAM layer with multiple MAM cells in a parallel arrangement and different

added masses in each cell can be used to introduce multiple transmission loss55

peaks without increasing the size and weight of the MAM structure significantly

[37, 38]. Nevertheless, this design also introduces additional resonances inside

the frequency range of interest that may reduce the noise shielding capability

of such a structure.

A substantially different approach to overcome the problematic narrow band60

characteristics of MAMs is to use active methods to adjust the MAM properties
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during operation. Active acoustic metamaterials have first been investigated

by Baz [39, 40] and Akl and Baz [41, 42], who used piezoelectric materials to

tune the effective density and bulk modulus of acoustic metamaterials. On this

basis, Popa et al. [43] developed a tunable active acoustic metamaterial with65

effective properties that can be adjusted over a wide range of values, which

was later extended to realize an active acoustic diode [44]. Chen et al. [45]

applied the principles of active acoustic metamaterials to MAMs by using a

magnetorheological membrane material and an external gradient magnetic field

to control the pre-stress inside the membrane material. This enables the shifting70

of the membrane eigenfrequencies during operation by selecting appropriate

external magnetic field gradients. However, in the experiments by Chen et al.

[45] a large permanent magnet was used to generate the required magnetic

field, which greatly increases the overall mass and size of this active membrane-

type metamaterial (AMAM). A different realization of an AMAM was recently75

proposed by Xiao et al. [46], who used a setup similar to that of a condenser

microphone with an acoustically transparent fishnet electrode and the added

mass on the MAM acting as the counter electrode. By applying an external

DC voltage the eigenfrequency of the MAM could be decreased due to the

additional attractive force between the electrodes. This new design requires80

the supply of a constant voltage in every unit cell of the AMAM. For possible

fields of application, where a big surface needs to be covered with such AMAMs,

large amounts of wiring are required for providing each unit cell with the suitable

amount of voltage, thus increasing the mass and installation effort of the AMAM

structures. Furthermore, in some cases it might be infeasible to use electrical85

wirings inside noise protection devices due to safety regulations.

To overcome the limitations of these designs, a new realization of an AMAM,

that employs a centralized actuation principle for adjusting the dynamic MAM

properties without requiring individual electrical circuits in each MAM unit cell,

is presented in this contribution. The unit cell of the proposed AMAM is shown90

in Fig. 1. It consists of two vertically stacked MAMs that are mounted onto a

frame. The MAMs investigated here have a square shape with one circular mass
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Figure 1: A unit cell of the proposed AMAM with an inflatable double MAM element. (a)

Isometric view of the square AMAM unit cell; (b) Cross-sectional view through the AMAM

unit cell.

attached in the center of each membrane layer. However, the basic principle of

the proposed design can readily be applied to different MAM geometries (e.g.

circular) and mass configurations (e.g. multiple masses per membrane layer).95

The materials of the membrane and the frame need to be airtight so that the

air volume between the MAMs and the frame can be pressurized with a static

differential pressure ∆p0 using an external source of pressurized air connected

to the MAM by tubings or channels inside the frame. Pressurized air is usually

readily available in passenger transport vehicles with air conditioning, such as100

trains or airplanes, which makes this concept particularly applicable to such

fields of engineering. If ∆p0 is large enough, the deflection characteristic of the

membranes due to the applied pressure difference becomes geometrically non-

linear and the stiffness of the membranes increases [47, 48]. This geometrical

stiffening leads to an increase of the eigenfrequencies, which can be exploited to105

tune the acoustic properties of the double MAM element.

The present contribution is structured as follows: First, a theoretical anal-

ysis of the proposed AMAM based upon analytical and numerical models is

presented to investigate the effect of the static inflation on the eigenfrequen-

cies and, consequently, the normal incidence sound transmission loss (TL) of110
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the structure. Then, the results of an experimental investigation of the pro-

posed AMAMs inside an impedance tube are presented in order to validate the

theoretical predictions made in the first part of the paper.

2. Theoretical investigation

In this section a first theoretical investigation of the eigenfrequency shift and115

the adjustment of the normal incidence sound transmission loss by inflating the

MAM is presented. In the first sub-section the shifting of the eigenfrequencies of

a pre-pressurized MAM is examined using numerical simulations and an explicit

equation for the eigenfrequency shifting is developed by performing a non-linear

regression with the numerical results. The second sub-section deals with the120

effect of the pressurization on the eigenmode shapes of the MAM and the ana-

lytical calculation of the normal incidence sound transmission factor based upon

the concept of effective surface mass density. In the final part of this section a

theoretical model for the normal incidence sound transmission factor calculation

of the inflatable double MAM element, as shown in Fig. 1, is presented and the125

results are compared to numerical simulation data.

2.1. Eigenfrequency shift of the inflated MAM

Previous investigations by other authors have shown that the large deflection

of a membrane subjected to a uniform pressure difference ∆p0 leads to an overall

increase of the in-plane stress resultant T inside the membrane [47, 48]. This130

phenomenon is known as geometrical stiffening and results in a shift of the

eigenfrequencies fi of the membrane to higher frequencies. A theoretical analysis

by Plaut [47] has shown that the eigenfrequencies of a circular membrane are

proportional to 3
√

∆p0 in the geometrically non-linear regime, where the static

transversal deflection w0 of the membrane is much larger than the membrane135

thickness tm (w0 � tm). These findings for ordinary membranes motivate the

assumption that the eigenfrequencies of a MAM undergoing large deflections due

to a uniform static pressure difference ∆p0 are related to the eigenfrequencies of
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the unpressurized MAM, denoted with f̄i, by an eigenfrequency shifting function

φi:140

fi(∆p0) ≈ φi(∆p0)f̄i. (1)

The eigenfrequency shifting function φi in Eq. (1) can be determined by per-

forming a theoretical analysis of the non-linear static deflection of the pressur-

ized MAM, taking into account the locally increased stiffness of the membrane

in the area of the attached masses. Here, however, an empirical approach based

upon numerically obtained results is adopted in order to obtain an explicit ex-145

pression for φi to further investigate the effect of the eigenfrequency shifting on

the transmission loss of the AMAM.

The non-linear deformation of a pressurized membrane leads to a some-

what complex non-linear stress state, where the in-plane stress resultant T is

no longer homogenous across the membrane surface. In the case of rectangu-150

lar membranes, which are considered in the present contribution, the in-plane

stresses in the corners of the membrane can even be lower than before the pres-

surization [49]. This inhomogeneity of T inside a pressurized membrane affects

each eigenmode of the membrane differently and therefore the frequency shifting

function φi in Eq. (1) is expected to be different for every mode i in general.155

From the theoretical model in Eriksson et al. [48] it can be deduced that the

average in-plane stress resultant Tav inside a pressurized circular membrane is

given by

Tav = T̄

(
1 +A

(
1

ψ(β0)
− ψ(β0)

)2
)
, (2)

with the in-plane stress resultant of the unpressurized membrane T̄ , the non-

dimensional static pressure load β0 = (∆p0L/T̄ )
√
Emtm(7− νm)/(T̄ (1− νm)),160

where L is a length scale of the membrane (i.e. the membrane radius, in case of

a circular membrane), Em and νm are the Young’s modulus and Poisson ratio

of the membrane material, respectively, and tm is the membrane thickness. In

this particular case the coefficient A equals to A = (3 − νm)/(7 − νm) and the
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function ψ(β0) is defined as165

ψ(β0) =
3

√√
1 +B2β2

0 −Bβ0, (3)

where B is another parameter that equals to B = 0.1875 for a circular membrane

[48].

In order to obtain an explicit expression for the eigenfrequency shifting func-

tion φi, it is assumed that the squared eigenfrequencies of the pressurized MAM

f2i are following the same functional dependence on β0 as the average in-plane170

stress resultant Tav, given by Eq. (2). The coefficients A and B given above,

however, cannot be used for two reasons: First, the present contribution con-

siders rectangular MAMs, i.e. rectangular membranes with attached small rigid

masses, which are considerably different from the circular membranes investi-

gated by Eriksson et al. [48]. Second, the non-homogenous part of the non-linear175

in-plane stress resultant T also affects the eigenfrequencies fi for each eigenmode

i differently. Hence, the coefficients A and B in Eqs. (2) and (3) are assumed to

be dependent on both the membrane configuration and the mode index i, thus

leading to the following form of the empirical frequency shifting function φi:

φi(β0) =
fi
f̄i

=

√
1 +Ai

(
1

ψi(β0)
− ψi(β0)

)2

, (4)

with180

ψi(β0) =
3

√√
1 +B2

i β
2
0 −Biβ0 (5)

and the coefficients Ai and Bi, which may be different for each MAM configu-

ration and mode index i.

The unknown coefficients Ai and Bi in Eqs. (4) and (5) for the MAM con-

figuration considered here are obtained from numerical simulations using the

finite element method (FEM). The simulations have been performed to acquire185

the eigenfrequencies of the first two symmetric eigenmodes of the MAM, which

have been shown to be most relevant for the low-frequency sound transmission

through the MAM [50], at different pressure differences ∆p0. The basic setup

of the numerical model is sketched in Fig. 2. The geometry and material of the
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Figure 2: Setup of the finite element model for the determination of the eigenfrequencies of a

MAM pressurized by a static differential pressure ∆p0.

square shaped membrane are chosen to be the same as the experimental test190

sample that was investigated in an impedance tube (see section 3). Hence, the

MAM has an edge length of L = 46 mm and the edges of the membrane are

assumed to be simply supported. The material that was used for the membrane

is an iron-on film (Oracover), which is airtight and was pre-stressed by applying

a temperature of 200 ◦C with a hot-air blower during manufacturing. A circu-195

lar steel mass with a diameter of DM = 6 mm and a thickness of tM = 2 mm

(resulting in a mass magnitude of M = 0.45 g) is attached to the membrane

in the center of the MAM. Numerical values for the material properties of the

membrane and mass, including the membrane pre-stress force resultant T̄ and

the structural loss factor ηs, used in all simulations for the present contribution200

are given in Table 1. The surface mass density of the membrane material is

given by m′′m = ρmtm = 103 g/m2, which lies in the typical range of mem-

brane materials used by other researchers in the context of MAMs, e.g. rubber

(m′′m = 274 g/m2, [12, 27]) or PEI (m′′m = 91 g/m2, [30]). The total surface

mass density of the MAM samples used in the present investigation is given by205

m′′tot = m′′m +M/L2 = 316 g/m2. The resulting relationship between the static

pressure differential ∆p0 acting on the MAM with the properties in Table 1 and

the non-dimensional pressure difference β0 is shown graphically in Fig. 3.
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numerical analysis.

ρ E ν t T̄ ηs

Component Material (kg/m3) (GPa) (mm) (N/m)

Membrane Oracover 1450 2.5 0.4 0.071 235 0.02

Mass Steel 7860 210 0.33 2 – –

0

200

400

600

800

1000

1200

0 5 10 15 20

∆
p
0

in
P

a

β0

Figure 3: Numerical relation between the non-dimensional static pressure load β0 and the ac-

tual value of the static differential pressure ∆p0 for the MAM sample configuration considered

in the numerical simulations.

10



Acce
pte

d Man
usc

rip
t

In order to investigate the influence of the mass diameter DM on the fre-

quency shifting, additional simulations with mass diameters of DM = 3 mm and210

12 mm have been performed. The density of the mass was adjusted to retain

an added mass magnitude of M = 0.45 g. All other parameters were kept the

same in these additional simulations.

The membrane was discretized using first-order triangular shell elements

with an average edge length of ∆m = 1 mm, leading to nearly 5000 finite215

elements on the membrane. The added mass was discretized by first-order

prismatic volume elements connected to the membrane via coincident nodes.

A grid-sensitivity study showed that the selected element sizes delivered suffi-

ciently accurate results.

The numerical procedure for obtaining the eigenfrequencies of the discretized220

MAM pressurized by a static pressure difference ∆p0 is as follows: First, the

pre-stress inside the membrane material is applied by performing a linear static

calculation of the membrane elements under a uniform temperature load of

∆ϑm = − T̄ (1− νm)

Emtmαm
, (6)

where the thermal expansion coefficient of the membrane material, without loss

of generality, has been chosen as αm = 1 1/K [51]. Then, the geometrically non-225

linear problem of the MAM loaded by a uniform static pressure difference ∆p0

is solved using an adaptive load stepping scheme with a full Newton-Raphson

algorithm to iteratively determine the non-linear displacements of the MAM.

In the final step, the differential stiffness matrix of the system, based upon the

displacements due to the non-linear static preloading in the previous step, is230

calculated and used in a normal mode analysis to obtain the eigenmodes of the

pressurized system.

The numerically obtained eigenfrequency shifts φi for the first two sym-

metric modes of the MAM with the three different mass diameters (given in

non-dimensional form: δM = DM/L = 0.065, 0.13, and 0.261) are shown in235

Fig. 4. The non-dimensional pressure difference β0 has been varied between

0 and 17.84, corresponding to a maximum ∆p0 of 1000 Pa (see Fig. 3). As
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Figure 4: Eigenfrequency shift φi for the first two symmetric modes of the rectangular MAM

shown in Fig. 2 with different non-dimensional mass diameters δM . The solid lines are the

empirical frequency shifting functions φi(β0) given in Eq. (4).
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suggested by linear theory, the numerical results for all three mass diameters

confirm that the frequency shifting is negligible at very low pressure differences

β0. For values of β0 > 2, however, geometrical stiffening becomes dominant and240

the frequency shifting φi increases almost linearly with respect to β0 within the

investigated range of pressure differences, leading to frequency shifts of up to

35%. By comparing the results for the three different mass diameters in Fig. 4

it is evident that the sensitivity of the frequency shifting with respect to the

pressure difference depends upon the mass diameter as well as the mode index i:245

For the largest mass diameter (δM = 0.261), shown in Fig. 4a, the first eigenfre-

quency increases faster than the frequency of the second symmetric eigenmode

of the MAM. In case of the smallest mass diameter (δM = 0.065), as shown in

Fig. 4c, however, this behavior is reversed with the second eigenfrequency rising

faster than the first eigenfrequency. Assuming a continuous progression of the250

eigenfrequency shifting behavior between these two mass diameters it can be ex-

pected that there is a certain mass diameter, where the shifting behavior is the

same for both eigenmodes. In fact, this is nearly the case for a non-dimensional

mass diameter of δM = 0.13, shown in Fig. 4b, where the eigenfrequencies of

both modes are shifted equally. Hence, in this particular case the frequency255

shifting function φi is, at least for the first two symmetric eigenmodes, which

are most relevant for the low-frequency transmission loss of MAMs, independent

of the mode index i.

Based upon the numerical results shown in Fig. 4, non-linear regression

analyses have been performed for each non-dimensional mass diameter δM and260

mode index i to determine the coefficients Ai and Bi in the empirical frequency

shifting function Eq. (4). The resulting functions are shown as solid curves in

Fig. 4 and the corresponding numerical values of the coefficients are given in

Table 2. The summed squares of residuals were less than 10−6 for all curve

fits, which indicates that the empirically chosen frequency shifting function in265

Eq. (4) yields very good agreement with the numerical simulations inside the

investigated range of pressure differences as observed in Fig. 4.

When comparing the numerical values for the coefficients Ai and Bi, given in
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Table 2: Numerical values for the coefficients Ai, Bi, and Ci in Eqs. (4) and (18) for different

non-dimensional mass diameters δM .

First mode

δM 0.065 0.13 0.261

A1 0.4787 0.5571 0.6788

B1 0.1242 0.1237 0.1248

C1 1.354 1.0069 0.6036

Second mode

δM 0.065 0.13 0.261

A2 0.7262 0.6727 0.5755

B2 0.1052 0.1055 0.1084

C2 0 0 0

Table 2, it can be seen that both coefficients are affected differently by the mass

diameter δM and the mode index i: A1 and A2 are depending on the dimen-270

sionless mass diameter δM in different directions. In case of the first mode, A1

is increasing with increasing mass diameter, which indicates that the frequency

shifting of the first eigenfrequency becomes less pronounced for smaller masses

(as observed in Fig. 4). For the coefficient A2 of the second mode’s eigenfre-

quency shifting function this behavior is inverted. The coefficients B1 and B2,275

on the other hand, are nearly independent of the mass diameter with a relative

standard deviation of less than 2%. Hence, the mean values B̄1 = 0.1242 and

B̄2 = 0.1064 can be used for all δM inside the investigated range of mass di-

ameters to yield a sufficiently accurate representation of the frequency shifting

function φi.280

The different behavior of the coefficients Ai and Bi with respect to the mass

diameter, as given in Table 2, can be interpreted physically as follows: The co-

efficient Bi in Eq. (5) serves as a scaling factor for the non-dimensional pressure

14
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difference β0. Hence, for a given value of β0, the value of the bracketed term in

Eq. (4) increases as the value of Bi increases. Since Bi is nearly independent of285

the mass diameter within the investigated range of diameters, it can be under-

stood as a mode-dependent non-linearity parameter. In case of the non-linear

loading of an annular membrane, the highest stresses are found at the inner

radius [52]. Hence, for the rectangular MAM with circular added mass it can be

expected that the highest stresses are found at the circumference of the mass.290

In the first symmetric eigenmode of the MAM the vibration of the added mass

dominates the mode shape, while in the second symmetric MAM eigenmode the

added mass is nearly at rest (see Fig. 6). Thus, the increased stress at the mass

circumference caused by the pressurization of the MAM leads to an increase of

the effective stiffness for the mass-dominated first eigenmode, while the effect295

on the second eigenmode is smaller. This is reflected by the coefficients B1 and

B2, with B1 > B2 indicating that the effect of the pressurization on the first

eigenfrequency is larger than on the second eigenfrequency.

Since the coefficient Bi does not change with the mass diameter, the influence

of δM is reflected in the variation of the parameter Ai in Table 2. For the first300

eigenmode, the numerical values of A1 increase as the mass diameter gets larger.

From Eq. (4) it can be deduced that this leads to a stronger eigenfrequency

shifting as observed in Fig. 4. This can again be explained by considering the

pressurized MAM approximately as a non-linearly deformed annular membrane.

Plaut [52] has shown that in this case the stress at the inner radius increases as305

the inner radius increases. From this it can be deduced that a large mass radius

leads to larger stresses at the mass circumference which in turn results in a larger

shifting of the first eigenfrequency as indicated by the variation of A1 in Table 2.

In case of the second mode, on the other hand, a reduction of the eigenfrequency

shifting is observed in Fig. 4 as the mass diameter increases. The coefficient310

A2 in Table 2 reflects this behavior with decreasing values for increasing mass

diameters. It is possible that this is a consequence of the rectangular shape of the

MAM: As mentioned above, pressurized rectangular membranes exhibit reduced

in-plane stresses at the corners [49]. Thus, the membrane stiffness is reduced
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in these particular regions. Since the second MAM mode is characterized by315

strong vibrations of the membrane material with the added mass being mostly

at rest, this stiffness reduction diminishes the eigenfrequency shifting of the

second mode. For larger masses the corner regions with reduced stiffness become

more significant for the remaining unloaded membrane surface. Therefore, the

frequency shifting of the second mode and, consequently, the values for the320

coefficient A2 are reduced as the mass diameter increases.

2.2. Transmission factor of the inflated MAM

In order to investigate the effect of the shifted eigenfrequencies on the sound

transmission properties of the inflated MAM, the normal incidence sound trans-

mission factor t of the structure is calculated using the effective surface mass325

density m̃′′, which is defined as [12, 33]:

m̃′′ =
〈∆P̂ 〉
〈âz〉

=
〈∆P̂ 〉
−ω2〈ŵz〉

, (7)

where ∆P̂ is the amplitude of the harmonic sound pressure difference along the

membrane surface, âz = −ω2ŵz is the vibrational acceleration amplitude in

normal direction of the membrane surface, ŵz is the vibrational displacement

amplitude, and330

〈v〉 =
1

S

∫
S

v dS (8)

denotes the surface average of a quantity v performed over the membrane surface

S. The normal incidence sound transmission factor t, defined as the pressure

amplitude ratio of the transmitted and incident sound wave, is obtained from

the effective surface mass density of the MAM m̃′′ by applying the well-known

mass law relationship:335

t =
1

1 + iωm̃′′

2ρ0c0

, (9)

where ρ0 and c0 are the density and speed of sound of the surrounding medium,

respectively. The normal incidence sound transmission loss is then given by

TL = −20 log |t| = 20 log

∣∣∣∣1 +
iωm̃′′

2ρ0c0

∣∣∣∣ . (10)
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For the theoretical investigations in the present contribution, Eq. (7) is trans-

formed into the non-dimensional form

m̃′′

m′′m
= − β

ν2
1

〈u〉
, (11)

where β = ∆P̂L/T̄ is the non-dimensional acoustic pressure difference along340

the membrane surface, which is constant, because only normally incident sound

waves are considered here, ν2 = (m′′m/T̄ )ω2L2 is the squared non-dimensional

frequency, and u = ŵz/L is the non-dimensional membrane displacement am-

plitude. The non-dimensional components of the membrane coordinate system

(see Fig. 2) are given by ξ = x/L, η = y/L, and ζ = z/L, so that the non-345

dimensional surface averaged membrane displacement amplitude in Eq. (11)

becomes

〈u〉 =

1∫
0

1∫
0

u(ξ, η) dξ dη. (12)

According to Yang et al. [50], the effective surface mass density in Eq. (7)

can be rewritten in terms of the eigenfunctions Φi(ξ, η) of the MAM as

m̃′′

m′′m
= − 1

ν2
∞∑
i=1

Ri

ν2
i−ν2

, (13)

where structural damping of the membrane material has been neglected, νi are350

the non-dimensional eigenfrequencies fi, and the residuals Ri are related to the

MAM eigenfunctions Φi in the following way:

Ri =
〈Φi〉〈Φ∗i 〉
〈Φiµ′′Φ∗i 〉

, (14)

where Φ∗i denotes the complex conjugate of the eigenfunction Φi, µ′′ is the

dimensionless surface mass density distribution along the membrane surface,

defined as355

µ′′ =

1 on the membrane surface

1 + µ′′M on the mass surface,
(15)

and µ′′M = M/(0.25πD2
Mm

′′
m). The infinite series in the denominator of Eq. (13)

is truncated after a sufficient number of eigenmodes K. Thus, Eq. (13) can be

17



Acce
pte

d Man
usc

rip
t

written in matrix form as

m̃′′

m′′m
= − 1

ν2 rT (Λ− ν2I)
−1

r
, (16)

where rT =
(√
R1, . . . ,

√
RK
)
∈ RK , Λ ∈ RK×K is a diagonal matrix with

the squared non-dimensional eigenfrequencies ν2i , and I is the K by K identity360

matrix.

It can be expected that, due to the inhomogenous stress distribution inside

the non-linearly deformed MAM, the eigenfunctions Φi, just like the eigenfre-

quencies fi, are depending on the static pressure difference load ∆p0. Conse-

quently, the residuals Ri in Eq. (13) are a function of β0 and can be expressed365

in terms of the residuals of the unpressurized MAM, R̄i, via a residual shifting

function χi(β0) as

Ri(β0) = χi(β0)R̄i. (17)

To analyze the influence of the static pressurization on the modal residuals

Ri of the MAM, the residual shifts χi are calculated from the eigenfunctions Φ1

and Φ2 that have been obtained from the numerical modal analysis described in370

the preceding section. The results are provided in Fig. 5 for the same three mass

diameters that were investigated in Fig. 4. It can be seen that in all three cases

the modal residual of the first eigenmode of the MAM is reduced with increasing

pressure difference β0. Furthermore, the numerical simulations indicate that

this effect becomes more pronounced as the mass diameter decreases, with the375

residuals being reduced to almost 60 % at β0 = 17.84 in case of the smallest

investigated mass diameter δM = 0.065. The residuals of the second mode,

on the other hand, are nearly unaffected by the pressurization – the residual

shift χ2 is near unity in all three mass diameter cases. This indicates that

the eigenfunction of the first mode Φ1 is significantly altered as a result of the380

inflation, while the second mode eigenfunction Φ2 is the same, regardless of

the applied external pressure (at least within the investigated pressurization

range). These findings are confirmed in Fig. 6, where, for the medium-sized

mass with δM = 0.13, the first two mode shape functions Φ1 and Φ2 at η = 0.5

18



Acce
pte

d Man
usc

rip
t

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

χ
i

β0

0.2

0.4

0.6

0.8

1

1.2

χ
i

0.2

0.4

0.6

0.8

1

1.2

χ
i

(c) δM = 0.065

(b) δM = 0.130

1st mode
2nd mode
Fits

(a) δM = 0.261

Figure 5: Residual shift χi for the first two symmetric modes of the rectangular MAM shown

in Fig. 2 with different non-dimensional mass diameters δM . The solid lines are the empirical

frequency shifting functions χi(β0) given in Eq. (18).
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are shown for the unpressurized case (β0 = 0) and the largest investigated static385

pressure difference (β0 = 17.84). In case of the first mode shape function Φ1,

the pressurization leads to an elongated shape with the membrane displacement

dropping off much steeper between the mass (where the displacement is the

largest for this mode) and the membrane edges. The second mode shape function

Φ2, however, does not change much as a result of the inflation. Consequently,390

the residual shift for the second mode is χ2 ≈ 1, as has been observed in Fig. 5.

A more detailed analysis of the first mode residual shifts in Fig. 5 reveals

that the reciprocal value of χ1 follows the same qualitative dependence on β0

as the corresponding frequency shift φ1. Therefore, a reasonable ansatz for a

residual shifting function χi(β0) takes the following form:395

χi(β0) =
Ri
R̄i

=
1√

1 + Ci

(
1

ψi(β0)
− ψi(β0)

)2 , (18)

where Ci is a coefficient, depending on the mode index i and mass diameter δM ,

and ψi(β0) is given by Eq. (5).

The coefficient C1 in Eq. (18) for the first mode is determined by performing

a non-linear regression analysis with the numerical data shown in Fig. 5. Since

the second mode residuals are nearly unaffected by the pressurization of the400

MAM, C2 is set to zero, so that χ2(β0) = 1. The resulting numerical values for

C1 and C2 are given in Table 2 and the corresponding curves are shown as solid

lines in Fig. 5 for comparison with the simulation results. Eq. (18) provides

a reasonably good agreement with the FEM results for the first mode, where

a strong dependence of the residuals on β0 has been observed, as well as the405

second mode, where χ2(β0) ≈ 1.

The effective mass density m̃′′ of the inflated MAM, given by Eq. (16), can

now be formulated in terms of the unpressurized MAM eigenfrequencies Λ̄ and

residuals r̄:
m̃′′

m′′m
= − 1

ν2 r̄TX
(
Φ2Λ̄− ν2I

)−1
Xr̄

, (19)

where X = diag(
√
χ1, . . . ,

√
χK) and Φ = diag(φ1, . . . , φK). The expression in410

Eq. (19) shows that two different mechanisms are responsible for manipulating

20



Acce
pte

d Man
usc

rip
t

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

Φ
1

ξ

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

Φ
2

ξβ0 = 17.84 β0 = 0

(a) (b)

Figure 6: Simulated mode shapes of the first two symmetric MAM eigenmodes with δM = 0.13

at η = 0.5 for the non-dimensional pressure differences β0 = 17.84 (1000 Pa pressurization,

solid lines) and β0 = 0 (no pressurization, dashed lines). The mode shape functions are scaled

with the corresponding maximum value. (a) Mode 1; (b) Mode 2.

the effective surface mass density and, via the relationships in Eqs. (9) and (10),

the sound transmission properties of the inflatable MAM: The eigenfrequency

shifting Φ, as discussed in the previous sub-section, directly affects the zeros of

the effective surface mass density in Eq. (19), i.e. the eigenfrequencies of the415

inflated MAMwhere the transmission loss goes to zero. The peak frequencies νP ,

i.e. the frequencies where m̃′′ and the transmission loss TL go to infinity, on the

other hand, are influenced by both the eigenfrequency shifting and the residual

shifting, denoted by the diagonal matrix X. In general, the peak frequencies

can be obtained from solving the equation420

r̄TX
(
Φ2Λ̄− ν2P I

)−1
Xr̄ =

K∑
i=1

χi
R̄i

φ2i ν̄
2
i − ν2P

!
= 0, (20)

which shows that there is a somewhat complex relationship between the peak

frequencies νP and the modal eigenfrequency and residual shifts φi and χi.

To analyze the shifting of the first peak frequency νP1, finite element simula-

tions of the normal incidence sound transmission through the pressurized MAM

have been performed. A general overview of the model setup is given in Fig. 7.425

The finite element model consists of the same MAM model that was used for the
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Figure 7: Setup of the finite element model for the calculation of the normal incidence sound

transmission factor t of a MAM pressurized by a static differential pressure ∆p0.

normal modes analysis in the previous section (see Fig. 2) with a mass diameter

of DM = 6 mm. A fluid cavity with a length of LF = L = 46 mm is attached to

each side of the MAM and terminated by absorbing elements. The cavity side

walls are assumed to be sound hard in order to provide the same conditions as430

inside an impedance tube. The fluid volume is discretized using tetraeder ele-

ments with an average element edge length of ∆f = 5 mm. Full vibro-acoustic

coupling between the membrane and the fluid elements is ensured by using co-

incident grid points at the fluid-structure interfaces. The density and speed of

sound of the fluid are ρ0 = 1.225 kg/m3 and c0 = 340 m/s, respectively, corre-435

sponding to standard values of air at sea level. The first two steps of the analysis

procedure (temperature load for pre-stressing and non-linear static pressure load

with ∆p0) are the same as in the normal modes analysis described in the pre-

vious sub-section. In the final step, however, a direct frequency response of the

MAM under a harmonic uniform pressure load with amplitude P̂ is calculated440

for frequencies ranging from f = 100 to 1000 Hz. This approach yields normally

incident plane acoustic waves inside the fluid cavities and therefore the ampli-

tude of the transmitted wave p̂t is extracted from a field point at a distance of

0.75LF away from the membrane surface. Thus, the normal incidence sound
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transmission factor is given by445

t =
p̂t

0.5P̂
eik00.75LF , (21)

where k0 = ω/c0 is the acoustic wave number. It has to be noted that the

investigated range of static pressurizations (∆p0 = 0 . . . 1 kPa) is two orders of

magnitudes lower than the static pressure of the ambient air (p0 = 101.15 kPa)

and the pressurization process is assumed to be isothermal. Hence, the speed of

sound c0 is constant in the pressurized air volume and the density ρ0 increases by450

only up to 1 %. Therefore, the characteristic impedance of the fluid Z0 = ρ0c0

is assumed to be equal on both sides of the MAM, even when the pressurization

is applied.

Additionally to the numerical simulations the normal incidence sound trans-

mission factor has been calculated analytically by using Eq. (19) and the empir-455

ical eigenfrequency and residual shifting functions in Eqs. (4) and (18) with the

corresponding numerical values for the coefficients given in Table 2 to obtain the

effective surface mass density m̃′′ of the MAM. The unshifted non-dimensional

eigenfrequencies ν̄i and residuals R̄i of the first K = 2 symmetric eigenmodes of

the MAM are calculated using an analytical model for MAMs, which employs460

a point-matching approach to couple the membrane vibration with the mass

vibration and expands the membrane displacement in the eigenfunctions of the

membrane without added masses [33]. To account for the bending stiffness of

the membrane material, the analytical model has been extended to include this

effect into the assembly of the stiffness matrix for the calculation of the MAM465

eigenmodes.

The transmission loss results for the investigated inflatable MAM configu-

ration are shown in Fig. 8a at three different pressure difference levels β0 = 0

(unpressurized), β0 = 8.92 (∆p0 = 500 Pa), and β0 = 17.84 (∆p0 = 1000 Pa).

Additionally, the phase of the calculated complex sound transmission factors is470

given in Fig. 8b. The lines correspond to the analytically obtained results using

Eq. (19) and the symbols are the results from the numerical simulation. Both

analytical and numerical results for the transmission loss as well as the trans-
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Figure 8: Analytical results (lines) and numerical results (symbols) for the single MAM

at different inflation pressure differences β0. (a) Normal incidence sound transmission loss;

(b) Phase of the sound transmission factor t; (c) Shifting of the first transmission loss peak

frequency fP1.

mission factor phase show very good agreement with each other. Especially in

the unpressurized case both methods yield identical results, which shows that475

the first two symmetric modes are sufficient for the analytical transmission loss

calculation. For β0 > 0 small deviations between both methods become visible,

most notably around the transmission loss peaks, where the shifting of the peaks

is slightly overestimated by the analytical calculations. This can be explained

by the fact that the eigenfrequency and residual shifting functions in Eqs. (4)480

and (18), respectively, have been obtained by a non-linear regression method,

which, especially in the case of the residual shifting function shown in Fig. 5,

introduces some error into the analytical predictions. This error, however, is

acceptable, because the deviations of the analytical and numerical results are

within acceptable bounds. When comparing the transmission loss results in485

Fig. 8a for the three different pressure differences, it becomes apparent that

the pressurization of the MAM leads to a nearly uniform shifting of the whole

transmission loss spectrum to higher frequencies. This shifting is not perfectly

uniform, because the relative shifting of the transmission loss peak is not as

large as compared to the shifting of the two eigenfrequencies. The same shifting490

effect can be observed for the phase of the sound transmission factor t, as shown

in Fig. 8b.

Fig. 8c shows the shifting of the first peak frequency fP1 in dependence of

the non-dimensional pressure difference β0. When comparing this plot with the
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eigenfrequency shifts shown in Fig. 4b, it can be seen that at e.g. β0 = 17.84 the495

eigenfrequencies are shifted by 28 %, while the first peak frequency is increased

by only 17 % (or 20 %, in case of the analytical results). The reason for this

different behavior is found in the residual shifting χi, which does not affect the

eigenfrequencies of the MAM, but tends to retard the shifting of the transmission

loss peak.500

In summary, the results presented in this sub-section show that the pres-

surization of a MAM is a suitable method for adjusting the transmission loss

peak of the MAM during operation. The shifting is nearly linear above a cer-

tain value of the non-dimensional pressure difference β0 and can be estimated

fairly accurately with the effective surface mass density in Eq. (19) and suitable505

eigenfrequency and residual shifting functions (Eqs. (4) and (18)).

2.3. Transmission factor of the inflated double MAM

In most potential application fields for inflatable MAMs it is not feasible

to pressurize a large air volume on one side of the MAM in order to create

the static pressure difference ∆p0. Therefore, a double AMAM structure, as510

shown in Fig. 1, is proposed, where two MAMs are separated vertically by

a frame of height H and the enclosed air volume is pressurized to inflate both

MAMs simultaneously. In addition, further benefits of this configuration are the

increased reduction of sound transmission due to the stacking of two MAMs [36]

and that both MAM layers can be tuned differently (i.e. by choosing different515

added massesM1 andM2) to create two different transmission loss peaks, which

can be adjusted during operation by the inflation mechanism.

As shown in Appendix A, the normal incidence sound transmission factor of

the double MAM arrangement at low frequencies can be obtained by treating

the system as a double wall with the two non-dimensional wall impedances520

X1 =
iωm̃′′1
2ρ0c0

and X2 =
iωm̃′′2
2ρ0c0

, (22)

where m̃′′1 and m̃′′2 are the effective surface mass density (see Eq. (19)) of the top

and bottom MAM layer, respectively. Taking into account the impedance of the
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fluid cavity between the two MAMs, the normal incidence sound transmission

factor is given by [53]

t =
1

1 +X1 +X2 +X1X2 (1− e−2ik0H)
. (23)

At low frequencies the MAM spacing H typically is much smaller than the525

acoustic wavelength (k0H � 1), so that Eq. (23) can be simplified into the

following low-frequency approximation form:

t =
1

1 +X1 +X2 + 2ik0HX1X2
. (24)

Finite element simulations of the normal incidence sound transmission factor

through an inflatable double MAM element are used to evaluate the results from

the analytical model given by Eq. (24). It is possible to calculate the sound530

transmission properties of the given coupled double MAM structure with the

method developed by Yang et al. [50] using only the first few eigenmodes of a

double MAM element. In order to verify the analytical double MAM model,

however, the numerical setup is chosen to be mostly identical to the setup for

the single MAM model (see Fig. 7). In this case, two MAMs with identical535

properties according to Table 1 separated by an air gap of height H = 15 mm

are analyzed inside the rectangular acoustic waveguide. This way, a direct

frequency response algorithm can be employed in the simulations and possible

errors due to the modal truncation in the analytical model can be evaluated by

comparing both analytical and numerical results.540

The calculated results are shown in Fig. 9 for the same three non-dimensional

pressure differences β0 as already shown in Fig. 8 for the single MAM. The lines

represent the analytical data and the symbols correspond to the simulation

results. In the unpressurized case (β0 = 0, solid line/square symbols) the trans-

mission loss is greatly increased by the stacked MAM arrangement with peak545

values greater than 60 dB, which confirms the results of previous investigations

on stacked MAMs [36]. Apart from the two resonance frequencies correspond-

ing to the single MAM resonances visible as minima of the transmission loss

at 200 Hz and 1100 Hz (outside the range of Fig. 8a), an additional resonance
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appears at a frequency slightly below the peak frequency. This resonance can550

be attributed to the monopole resonance of the coupled double MAM system,

as discussed in [54], while the other two resonances are the dipole resonances

of the system. The analytical and numerical results for the transmission loss

TL (Fig. 9a) as well as the transmission factor phase (Fig. 9b) at β0 = 0 are

in excellent agreement within the investigated range of frequencies. Eq. (24) in555

combination with the effective surface mass densities of the MAMs based upon

the first two symmetric eigenmodes (Eq. (19)) therefore is a suitable method for

predicting the normal incidence sound transmission factor of stacked MAMs.

In the pressurized cases the same tendencies as in the pressurized single MAM

investigations (see Fig. 8) can be observed: With increasing pressure difference560

β0 the whole transmission loss spectrum is moved in the direction of higher

frequencies.

From Fig. 9c it can be seen that the shifting of the double MAM transmission

loss peak follows the same dependence on β0 as the transmission loss peak of

the single MAM given in Fig. 8c, because both stacked MAMs have identical565

properties. Since the analytical model delivered a slight overprediction of the

peak shifting in the single MAM case, the same overprediction can be observed

here as well. Still, both numerical and analytical calculations are in very good

agreement – even at the highest investigated pressure difference – and it can

be concluded that the proposed inflatable double MAM element is suitable for570
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Figure 9: Analytical results (lines) and numerical results (symbols) for the double MAM

at different inflation pressure differences β0. (a) Normal incidence sound transmission loss;

(b) Phase of the sound transmission factor t; (c) Shifting of the first transmission loss peak

frequency fP1.
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adjusting the transmission loss of MAMs during operation.

3. Impedance tube measurements

The present theoretical investigations of the proposed AMAM design are

concluded with sound transmission factor measurement results of a test sample

obtained inside an impedance tube. The first part of this section gives a brief575

description of the experimental setup for obtaining the normal incidence sound

transmission factor using the 4-microphone technique. Then, a description of the

measured test sample and the pressurization method is provided. The third sub-

section, finally, presents the measurement results at different pressure differences

∆p0 and compares them to the values obtained from the theoretical model that580

was developed in the previous section.

3.1. Experimental setup

The normal incidence sound transmission factor of the AMAM test sample

has been measured inside an impedance tube for different pressurizations ∆p0.

The measurement procedure followed the 4-microphone technique based on the585

transfer matrix method, as described in ASTM E2611-09 [55]. The schematical

experimental setup with the impedance tube is shown in Fig. 10. In this setup,

a Brüel & Kjær type 4206 impedance tube with a diameter of D = 100 mm is

used and four 1/4
′′ pressure-field microphones are flush mounted at the tube wall

to measure the acoustic pressure inside the tube. The microphone pairs 1 and590

2 as well as 3 and 4 are equally spaced with s = 100 mm, the spacing between

microphones 2 and 3 is given by l = 350 mm. This setup allowed a sufficiently

accurate measurement of the sound transmission factor in the frequency range

from f = 50 to 1600 Hz. A loudspeaker driven by a white noise signal gener-

ates plane waves that propagate inside the impedance tube. The sample with595

thickness H = 15 mm is mounted inside the tube between the microphones 2

and 3 with the front plane of the sample being positioned at l1 = 223 mm,

measured from the location of the second microphone. The microphone signals
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Figure 10: Schematical overview of the experimental setup with the impedance tube and

pressurization system.

were collected with a digital data acquisition front-end that was connected to a

computer, which calculated the microphone transfer functions H11, H21, H31,600

and H41 by performing a FFT analysis of the acquired microphone time signals.

The reference signal for the transfer functions is provided by microphone 1.

According to the two-load method described in ASTM E2611-09 [55], two

different termination conditions per sample configuration are required in order

to obtain the sample’s transmission factor. In the present experiments, the fol-605

lowing termination conditions were used: (1) open termination with a 75 mm

thick layer of foam at the end of the tube and (2) sound hard. For each termi-

nation condition the four microphone transfer functions are measured and the

transfer matrix

T =

T11 T12

T21 T22

 (25)

is obtained according to ASTM E2611-09 [55] from those measurements. Finally,610

the sound transmission factor can be obtained from the elements of the transfer

matrix using

t =
2eik0H

T11 + T12

ρ0c0
+ ρ0c0T21 + T22

. (26)

3.2. Test sample

A photograph of the measured AMAM sample is shown in Fig. 11a. It

consists of a rectangular fibreboard frame with an inner edge length of L =615
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Figure 11: Experimental sample of the proposed AMAM. (a) Photograph of the sample; (b)

Drawing of the impedance tube adapter and the AMAM sample positioned inside it.

46 mm and a height of H = 15 mm. The membrane material was ironed on onto

each side of the frame, thus forming a double membrane unit cell. Then, the

membrane material was pre-stressed by using a hot-air blower set at 200 ◦C. The

resulting membrane pre-stress has been determined to be T̄ = 260 N/m which is

slightly higher than the pre-stress in the numerical model, as given in Table 1.620

However, Eqs. (4), (5), and (18) can still be applied to this sample with the

numerically obtained coefficients given in Table 2, because these equations are

given in non-dimensional form and the influence of the membrane pre-stress T̄

on the eigenfrequency and residual shifting is contained in the non-dimensional

static pressure difference β0, which, in this case, ranges from 0 (∆p0 = 0 Pa)625

to 15.33 (∆p0 = 1000 Pa). Finally, identical circular steel masses (DM = 6 mm

and M1 = M2 = 0.45 g) were glued to the center of each membrane, which

yielded the proposed double MAM structure shown in Fig. 1. The material

properties (except for the pre-stress, which, as explained above, is given by

T̄ = 260 N/m) of both membrane layers and added masses are given in Table 1.630

Since the impedance tube has a circular cross-section with a diameter of D =

100 mm, a test sample adapter made of steel was used to mount the sample

inside the impedance tube (see Fig. 11b). The mass of the adapter (0.5 kg) was

much larger than the mass of the double MAM element and the edges of the
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adapter have been sealed using O-rings and sealing tape to ensure that the sound635

transmission through the adapter is negligible and acoustic leakage effects are

avoided. To account for the smaller size of the sample, the measured transfer

matrix elements in Eq. (25) have been corrected with

T =

 T11 σT12

T21/σ T22

 , (27)

where σ = L2/(0.25πD2) is the ratio of the sample surface area to the cross-

sectional area of the tube and zero transmission of sound via the sample adapter640

is assumed.

The pressurization of the double MAM element is carried out via a tubing

that is attached to the sample through a nozzle, which guides the pressurized

air via drillings inside the fibreboard frame into the air cavity between the two

MAMs. The tubing leaves the impedance tube through a hole in the side wall of645

the impedance tube and is attached to a T-junction, which connects a pressure

sensor for measuring and monitoring the pressure difference ∆p0 and a pressure

reservoir to the tubing system (see Fig. 10). The pressurization ∆p0 is kept at a

constant value during measurement by manually compensating minor leakages

in the setup using a plunger.650

3.3. Experimental results

The measured normal incidence sound transmission loss TL and the trans-

mission factor phase of the test sample are shown in Figs. 12a and 12b, respec-

tively, for zero pressurization (β0 = 0, solid line) and the highest investigated

pressure difference of ∆p0 = 1000 Pa (β0 = 15.33, dotted line). Additionally,655

theoretical results of the double MAM setup using Eq. (24) with the corre-

sponding expressions for the effective surface mass density as well as the eigen-

frequency and residual shifting functions of both MAM layers are given in Fig. 12

(grey curves) to evaluate the capabilities of the analytical model.

At β0 = 0 it can be seen that both the measurements as well as the analytical660

results compare reasonably well. In Fig. 12a, both results exhibit a very sharp
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Figure 12: Experimental and theoretical results for the double MAM at two different inflation

pressure differences β0. (a) Normal incidence sound transmission loss; (b) Phase of the sound

transmission factor t.

peak with high transmission loss values over 60 dB and then the TL reduces to

nearly zero at the second eigenfrequency around 1000 Hz. In case of the results

for the transmission factor phase shown in Fig. 12b good agreement between

the experimental and analytical results can be observed as well. Around the665

frequency of the transmission loss peak, where the phase of the transmission

factor undergoes a large change, some quantitative differences can be observed

which can be attributed to measurement errors due to the high TL values in this

frequency band. Nevertheless, the good agreement of these results confirms that

the impedance based model in Eq. (24) is suitable for the sound transmission670

factor calculation of the double MAM arrangement considered here.

In the pressurized case (β0 = 15.33) the measured transmission loss shifts to

higher frequencies as expected from the theoretical investigations in the previous

section. As in the unpressurized case, the qualitative agreement between the

measurements and the analytical results is good. The transmission loss peak675

frequency, however, is slightly overpredicted by the theory. This has already

been observed in the comparisons with the FEM simulations and can be linked

to the slight inaccuracies of the empirical residual shifting function given in

Eq (18). It can be expected that a more thorough theoretical derivation of the

shifting functions will further improve the accuracy of the analytical model.680

In summary, the experimental results confirm the theoretical results in the

previous section. It is possible to adjust the normal incidence sound transmission

loss of the AMAM shown in Fig. 1 by applying a suitable pressure difference ∆p0
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inside the air cavity between both MAM layers. Given a suitable set of eigenfre-

quency and residual shifting functions for the first two symmetric eigenmodes685

of the MAMs, the analytical model is able to provide an accurate prediction of

the sound transmission factor of the AMAM for given pressurizations ∆p0.

4. Conclusions

In the present contribution a new design for an adjustable membrane-type

acoustic metamaterial was proposed and theoretically, numerically, as well as690

experimentally investigated. The design consists of two MAM cells separated by

an air cavity, which is statically pressurized in order to create large deformations

with geometrical stiffening of the MAMs. This effect can be exploited to adjust

the eigenmodes and sound transmission loss of the MAMs during operation.

The biggest difference of the proposed design compared to other realizations695

[45, 46] is that no electrical components are necessary near the MAM struc-

tures and the adjustment can be controlled centrally using an air pressurization

unit (e.g. air conditioning and distribution system). The numerical investi-

gations revealed that two mechanisms are important for the transmission loss

adjustment: First, the eigenfrequency shifting, which accounts for the increase700

of eigenfrequencies due to the geometrical stiffening, and second, the so-called

modal residual shifting, which is caused by the change of the mode shapes of

the pressurized MAMs. From the simulations it could be concluded that these

shiftings are different for each eigenmode and different mass sizes. For analyt-

ical normal incidence sound transmission factor calculations using the effective705

mass density of the MAMs empirical formulas for both shifting mechanisms

were derived based upon the numerically obtained data. The analytical models

showed a very good agreement with the numerical calculations in both single

and double MAM configurations, indicating that the pressurization is a suitable

measure for adjusting the sound transmission loss of MAMs. Finally, impedance710

tube measurements of an inflatable double MAM test sample confirmed the the-

oretical predictions and the analytical model showed good agreement with the
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experimental data.

The analytical models in the present contribution are based upon empirical

formula for the eigenfrequency and residual shiftings φi and χi, respectively,715

which have been fitted to numerical results. Although these equations delivered

a very good agreement with the FEM calculations, a more thorough theoreti-

cal derivation of these shifting functions based upon an analytical model of the

large deflections of pressurized MAMs could deliver additional insights into the

influence of several parameters of the MAM on the eigenfrequency and residual720

shiftings. Also, only the normal incidence sound transmission factor of a sin-

gle AMAM cell was investigated. In most applications, however, the incident

sound fields are diffuse and large surfaces need to be covered with multiple paral-

lel AMAM cells. Therefore, subsequent investigations of the proposed AMAMs

should consider the diffuse field sound transmission loss of large-scale struc-725

tures. Some recent investigations [27, 36, 37] suggest that the normal incidence

properties of a single AMAM cell can be transferred to more realistic conditions.

In addition, the transmission loss adjustment of the AMAM cell could be

further improved by allowing the pressure inside the air cavity to be adjusted

dynamically. With a microphone positioned on the transmission side of the730

AMAMmeasuring the transmitted sound pressure level and a suitable controller

that dynamically actuates the pressure inside the AMAM air cavity to generate

sound waves cancelling out the transmitted sound wave, the sound transmission

factor of the AMAM could be – in theory – modified nearly arbitrarily.
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Appendix A. Impedance based calculation of the double MAM sound740

transmission factor

This section provides a theoretical background for the derivation of Eq. (23),

where the normal incidence sound transmission factor t of a double MAM ele-

ment is obtained using the effective surface mass densities m̃′′1 and m̃′′2 of both

MAM layers coupled by the sealed air cavity with height H between the MAMs.745

In the basic setup of the fully coupled vibro-acoustic problem, as shown in

Fig. A.13, the double MAM element is positioned inside a rectangular acous-

tic waveguide with edge length L and sound-hard side walls. Both ends of

the waveguide are presumed to be non-reflecting so that the acoustic pressure

amplitude field inside the incident side fluid cavity p̂1(x, y, z) is given by [56]750

p̂1(x, y, z) = p̂ie
−ik0z +

∞∑
p=0

∞∑
q=0

p̂r,pq cos (kpx) cos (kqy) eikpqz, (A.1)

where p̂i is the amplitude of the incident plane acoustic wave, p̂r,pq are the

amplitudes of the reflected waveguide modes, given by the indices p and q as well

as the lateral wavenumbers kp = πp/L and kq = πq/L, and kpq =
√
k20 − k2p − k2q

is the modal wavenumber component in z-direction. By splitting up the double

infinite sum into a zero order part, i.e. the reflected plane wave with amplitude755

p̂r, and a higher order part, Eq. (A.1) can be written as

p̂1(x, y, z) = p̂ie
−ik0z + p̂re

ik0z + δp̂r, (A.2)

H

p̂1(x, y, z) p̂3(x, y, z)p̂2(x, y, z)

p̂i

p̂r

Â00

B̂00

p̂t

z
y

x

MAM1 MAM2

L

L

Figure A.13: Geometrical setup and definitions for the theoretical derivation of the impedance

based double MAM element model.
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where δp̂r is the higher order reflected pressure field given by

δp̂r = p̂r,10 cos (k1x) eik10z+p̂r,01 cos (k1y) eik01z+

∞∑
p=1

∞∑
q=1

p̂r,pq cos (kpx) cos (kqy) eikpqz.

(A.3)

Similarly, the pressure field transmitted through the double MAM p̂3(x, y, z) is

given by

p̂3(x, y, z) = p̂te
−ik0z + δp̂t, (A.4)

where p̂t is the transmitted plane acoustic wave amplitude and the higher order760

transmitted pressure field δp̂t is

δp̂t = p̂t,10 cos (k1x) e−ik10z+p̂t,01 cos (k1y) e−ik01z+

∞∑
p=1

∞∑
q=1

p̂t,pq cos (kpx) cos (kqy) e−ikpqz,

(A.5)

with the amplitudes p̂t,pq of the higher order transmitted waves. Because the

edge length L of the MAMs considered here is much smaller than the small-

est wavelength inside the frequency range of interest, the higher order normal

wavenumbers kpq are imaginary in this frequency range and therefore the higher765

order reflected and transmitted pressure fields consist only of evanescent waves

which do not transport acoustic energy into the far-field [12]. Thus, the normal

incidence sound transmission factor t = p̂t/p̂i can be used to characterize the

sound power transmitted through the double MAM element.

The pressure field p̂2(x, y, z) inside the sealed cavity between the two MAM770

layers can be written as

p̂2(x, y, z) =

∞∑
p=0

∞∑
q=0

cos (kpx) cos (kqy)
(
Âpqe

−ikpqz + B̂pqe
ikpqz

)
= Â00e

−ik0z+B̂00e
ik0z+δp̂2,

(A.6)

where the field has been split into a part with plane waves propagating in

positive and negative z-direction with amplitudes Â00 and B̂00, respectively,

(see Fig. A.13) as well as an evanescent wave field δp̂2.

The z-components of the particle velocity inside those three fluid regions are775
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given by

v̂z1(x, y, z) = − 1

iωρ0

∂p1
∂z

=
p̂i
ρ0c0

e−ik0z − p̂r
ρ0c0

eik0z + δv̂z,r, (A.7)

v̂z2(x, y, z) = − 1

iωρ0

∂p2
∂z

=
Â00

ρ0c0
e−ik0z − B̂00

ρ0c0
eik0z + δv̂z2, and (A.8)

v̂z3(x, y, z) = − 1

iωρ0

∂p3
∂z

=
p̂t
ρ0c0

e−ik0z + δv̂z,t, (A.9)

where δv̂z,r, δv̂z2, and δv̂z,t correspond to the particle velocities of the evanescent

fields within each cavity, respectively. The velocity amplitudes of the MAMs,

on the other hand, can be expressed as

v̂z,MAM1(x, y) = 〈v̂z,MAM1〉+ δv̂z,MAM1 and (A.10)

v̂z,MAM2(x, y) = 〈v̂z,MAM2〉+ δv̂z,MAM2, (A.11)

with 〈v̂〉 representing the surface averaged part of the velocity amplitude and780

δv̂ denoting the spatially varying deviation from the surface average. Using the

definition of the effective surface mass density in Eq. (7), these expressions can

be rewritten as

v̂z,MAM1(x, y) =
〈∆p̂MAM1〉

iωm̃′′1
+ δv̂z,MAM1 and (A.12)

v̂z,MAM2(x, y) =
〈∆p̂MAM2〉

iωm̃′′2
+ δv̂z,MAM2. (A.13)

The surface averaged pressure differences along the MAMs are given by

〈∆p̂MAM1〉 = 〈p̂1 − p̂2〉|z=0 = p̂i + p̂r − Â00 − B̂00 and (A.14)

〈∆p̂MAM2〉 = 〈p̂2 − p̂3〉|z=H = e−ik0HÂ00 + eik0HB̂00 − e−ik0H p̂t, (A.15)

respectively, because the surface average of the higher order pressure fields δp̂r,785

δp̂2, and δp̂t is zero.

For the coupling between the two MAM layers and the fluid domains, the
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continuity of the velocity amplitudes at the MAM layer surfaces is required with

〈∆p̂MAM1〉
iωm̃′′1

+ δv̂z,MAM1 =
p̂i
ρ0c0

− p̂r
ρ0c0

+ δv̂z,r|z=0, (A.16)

〈∆p̂MAM1〉
iωm̃′′1

+ δv̂z,MAM1 =
Â00

ρ0c0
− B̂00

ρ0c0
+ δv̂z2|z=0, (A.17)

〈∆p̂MAM2〉
iωm̃′′2

+ δv̂z,MAM2 =
Â00

ρ0c0
e−ik0H − B̂00

ρ0c0
eik0H + δv̂z2|z=H , and (A.18)

〈∆p̂MAM2〉
iωm̃′′2

+ δv̂z,MAM2 =
p̂t
ρ0c0

e−ik0H + δv̂z,t|z=H . (A.19)

Since the surface average of the higher order parts is, by definition, zero, the

plane wave and higher order wave parts in the continuity conditions (A.16) to790

(A.19) can be considered separately [32]. Therefore, using Eqs. (A.14) and

(A.15) as well as the definition for the non-dimensional wall impedance in

Eq. (22) the velocity amplitude continuity conditions are rewritten as

p̂i + p̂r − Â00 − B̂00

2X1
= p̂i − p̂r, (A.20)

p̂i + p̂r − Â00 − B̂00

2X1
= Â00 − B̂00, (A.21)

e−ik0HÂ00 + eik0HB̂00 − e−ik0H p̂t
2X2

= e−ik0HÂ00 − eik0HB̂00, and (A.22)

e−ik0HÂ00 + eik0HB̂00 − e−ik0H p̂t
2X2

= e−ik0H p̂t, (A.23)

for the plane wave parts of the acoustic pressure fields, and

δv̂z,MAM1 = δv̂z,r|z=0 = δv̂z2|z=0 and (A.24)

δv̂z,MAM2 = δv̂z2|z=H = δv̂z,t|z=H , (A.25)

for the higher order acoustic pressure fields. Eqs. (A.20) to (A.23) form a linear795

system of equations for the four unknown pressure amplitudes p̂r, p̂t, Â00, and

B̂00, which can be solved for the transmitted pressure amplitude p̂t to yield the

following expression for the sound transmission factor

t =
p̂t
p̂i

=
1

1 +X1 +X2 +X1X2 (1− e−2ik0H)
, (A.26)

which is equivalent to the expression given in Eq. (23).
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