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Abstract

A new analytical model is proposed to calculate the resonance frequency and the input impedance of a

Helmholtz resonator with multiple necks. Such resonators occur in practice, for example, when leaks are

introduced as additional necks inside the wall of the resonators. The model uses a lumped representation of

the air volumes enclosed by the necks to derive an explicit formula for the resonance frequency. Using this

formula, it can be explained that the low reactance of the air volumes inside leaks of thin-walled Helmholtz

resonators leads to the strong increase of the resonance frequency, as observed in previous studies. The

results of the analytical model are validated with the help of experimental data available in the literature

and impedance tube measurements. The analytical model as well as the measurements clearly show, that

even small holes in the Helmholtz resonator lead to a significant increase in the resonance frequency and the

absorption performance can be considerably reduced. The simple model can be applied to design Helmholtz

resonators with multiple necks or estimate the impact of leaks.
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1. Introduction

Helmholtz resonators are widely applied in many different noise control environments for the reduction

of low-frequency sound. Typically, Helmholtz resonators are used as side branches in ducts or pipes in order

to mitigate sound propagation along the waveguide [1]. Other applications involve Helmholtz resonators, for

example, as sound absorbers in room acoustics [2], for improving sound transmission loss of aircraft sidewalls5

[3] or payload fairings [4], and as acoustic metamaterials exhibiting negative effective bulk modulus [5]. The

resonance frequency of a Helmholtz resonator is primarily determined by the size of the cavity volume and the

neck geometry (cross-sectional area and length). In the literature, numerous recent studies have investigated

the impact of different aspects of the resonator geometry on the acoustic performance of Helmholtz resonators

(e.g. [6–10]).10
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Another critical aspect for the acoustical properties of Helmholtz resonators is the ability of the cavity to

sustain the high sound pressure levels that occur inside the cavity at resonance. Photiadis [11], for example,

has shown that a Helmholtz resonator with elastic cavity walls exhibits a reduced resonance frequency and

bandwidth, as compared to a rigid cavity. Selamet et al. [12] have investigated both experimentally and com-

putationally the effect of leaks and gaps (i.e. additional necks) in Helmholtz resonators. They observed that15

the resonance frequency is increased and the peak transmission loss can be greatly reduced when additional

necks are introduced into the internal baffle of a Helmholtz resonator. The same effect can be observed when

the necks are introduced on the outer surface of the resonator [13]. Since in many practical applications,

leaks or gaps in Helmholtz resonators cannot be avoided due to manufacturing tolerances [12] or are even

necessary, e.g. to allow drainage of moisture accumulating inside the cavity [3], it is important to understand20

and take into account the impact of multiple necks in the design of Helmholtz resonators.

This contribution provides a simple theoretical model of the acoustical properties of Helmholtz resonators

with multiple necks. In contrast to the extensive multi-dimensional boundary element model presented by

Selamet et al. [12], the proposed model, based upon a lumped representation of the resonator parts, provides

an explicit formula for the resonance frequency and input impedance of such resonator configurations. It can25

therefore be employed to better understand and quickly estimate the impact of multiple necks (e.g. due to

leaks) in different Helmholtz resonator configurations.

2. Theory

Consider the Helmholtz resonator depicted in Fig. 1. The resonator consists of a cavity with the volume

V0 and a total of N necks connected to the cavity. Each neck i, with 1 ≤ i ≤ N , is characterized by a neck30

length li and a cross-sectional area Si. As indicated by the shaded areas in Fig. 1, every neck encloses a

V0

p0

· · ·l1
lN

ū1 ūN

S1

SN

p

ū2

S2

l2

· · ·

Figure 1: Schematic representation of a Helmholtz resonator with multiple necks. Here, only three necks are shown for clarity,
but the number of necks N can be any integer number N ≥ 1. The shaded areas represent the fluid volumes that are enclosed
by the resonator necks.
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certain fluid volume which acts as a mass resting upon the spring stiffness of the cavity volume V0. The

average displacements ūi of the neck air volumes (with the positive direction of ūi defined as pointing inside

the cavity) lead to a volume change ∆Vi = −Siūi of the cavity volume V0. This volume change causes a

compression of the fluid inside the cavity resulting in a pressure amplitude p0, which can be substantially35

different to the pressure amplitude p outside the cavity. It is assumed that the dimensions of the Helmholtz

resonator cavity are smaller than the acoustic wavelength at the resonance frequency. Thus, p0 can be

assumed to be uniform inside the cavity and calculated with the bulk modulus of the fluid ρ0c20 according to

[14, p. 192] as

p0 = −ρ0c20
∆V

V0
= −ρ0c

2
0

V0

N∑
i=1

∆Vi =
ρ0c

2
0

V0

N∑
i=1

Siūi, (1)

where ρ0 and c0 are the density and speed of sound of the fluid inside the cavity.40

The average displacements ūi of the neck air volumes are related to the pressure difference ∆p = p− p0

via the acoustic impedance of the necks Zi as follows:

Zi =
∆p

iωūi
=
p− p0
iωūi

, (2)

where, assuming a harmonic time dependency of the form exp(iωt), iωūi corresponds to the average velocity

of the neck air volumes. Rearranging Eq. (2) and substituting Eq. (1) for p0 yields the following coupled

equations for the displacements in each resonator neck:45

iωZiūi = p− p0 = p− ρ0c
2
0

V0

N∑
j=1

Sj ūj . (3)

This can also be expressed in matrix form as the system of equations

iω


Z1

. . .

ZN

+
ρ0c

2
0

V0


S1 · · · SN
...

. . .
...

S1 · · · SN




ū1
...

ūN

 =


p
...

p

 . (4)

For the further analysis it is convenient to decompose the neck impedance Zi into a resistance part Ri

and a reactance part ωMi as

Zi = Ri + iωMi, (5)

where Ri describes the damping due to viscous losses in the acoustic boundary layer andMi can be interpreted

as the inertial mass of the neck air volume. Typically, both quantities depend on the shape of the neck, the50

neck integration on the resonator, and the fluid properties. In the case of cylindrical necks with diameter di,

the neck air volume mass Mi can be approximated as

Mi = ρ0 (li + αidi) , (6)
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where αi is the so-called end correction coefficient, taking into account the inertia of a certain fluid volume

surrounding the neck [12]. Thus, Eq. (4) can be rewritten as

(
−ω2M + iωD + C

)
ū = p1, (7)

with the mass matrix M = diag(M1, . . . ,MN ), damping matrix D = diag(R1, . . . , RN ), stiffness matrix55

C = (ρ0c
2
0/V0)11TS, 1 = (1, . . . , 1)T , S = diag(S1, . . . , SN )T , and ū = (ū1, . . . , ūN ).

For the calculation of the resonance frequencies of the Helmholtz resonator, the damping matrix D and

the outside pressure amplitude p are neglected. Therefore, the resonance frequencies ω0 can be obtained as

the eigenvalues ω2
0 solving the eigenvalue problem

ρ0c
2
0

V0
M−111TS︸ ︷︷ ︸

A

ū0 = ω2
0ū0. (8)

Since the system matrix A is a N -by-N matrix of rank one, it has N − 1 eigenvalues with ω2
0 = 0 and60

one non-zero eigenvalue with ω2
0 = (ρ0c

2
0/V0)1T (SM−1)1 [15]. Consequently, a Helmholtz resonator with

multiple necks exhibits one non-zero resonance frequency at

f0 =
c0
2π

√
ρ0
V0

1T (SM−1)1 =
c0
2π

√√√√ρ0
V0

N∑
i=1

Si
Mi

. (9)

It should be noted that the zero eigenvalues and corresponding eigenvectors can be interpreted physically

as different stationary airflows through the Helmholtz resonator with no net volume change (i.e. a certain

volume flow flowing in through one set of perforations and leaving the resonator cavity through the other65

perforations). These stationary modes have no particular influence on the acoustic properties of the Helmholtz

resonator at non-zero frequencies.

In order to evaluate the acoustic performance of the Helmholtz resonator, the input impedance Z has to

be determined. This quantity is defined as

Z =
p

v
, (10)

i.e. the ratio of the acoustic pressure amplitude and the particle velocity on top of the resonator (see Fig. 1).70

At low frequencies, the surface particle velocity v can be obtained from the continuity of flow through the

perforations as

v =
iω

S0

N∑
i=1

Siūi =
iω

S0
1TSū, (11)

where S0 is the total area of all necks. The neck volume displacements ū are calculated from solving the
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system of equations (7), which, after several algebraic steps, yields for Z the expression

Z =
S0

iω1TS
(
−ω2M + iωD + (ρ0c20/V0)11TS

)−1
1

=
S0

N∑
i=1

Si

Zi

+
S0

iω

ρ0c
2
0

V0
. (12)

Note that Eq. (12) is applicable if all necks are connected to the exterior fluid domain with pressure p. In the75

case that, for example, only the primary neck (i = 1) is connected to the exterior fluid domain, the expression

changes to

Z =
S0(
S1

Z1

) +
S0

N∑
i=2

Si

Zi
+ iω V0

ρ0c20

(13)

and S0 = S1. In general, the denominator of the left summand of Eq. (13) contains the summation of Si/Zi

for all necks connected to the exterior fluid domain, while the summation in the right summand is over all

necks not connected to it. The neck surface area S0 is obtained from the areas of all necks connected to the80

exterior fluid.

Fig. 2 shows two typical applications of Helmholtz resonators in noise reduction. Fig. 2(a) illustrates

a Helmholtz resonator acting as a silencer on a duct. In this case, the transmission loss TL can then be

calculated via

TL = −10 lg

∣∣∣∣ptpi
∣∣∣∣2 = 20 lg

∣∣∣∣1 +
1

2

S0

S

ρ0c0
Z

∣∣∣∣ , (14)

where S is the cross-sectional area of the duct [16]. The usage of Helmholtz resonators as sound absorbers on85

a rigid wall is shown in Fig. 2(b). The absorption coefficient α can be obtained using the so-called matching

S
pi

pr

pt

Additional neck

Primary neck

S0

(a)

(b)

Primary neck S

pr

pi Additional neck

Figure 2: Illustration of different Helmholtz resonator configurations for noise reduction. (a) Silencer on a duct with transmission
loss TL given by Eq. (14); (b) Sound absorber on a rigid wall with sound absorption coefficient α given by Eq. (15).
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law from

α = 1 −
∣∣∣∣prpi
∣∣∣∣2 =

4ρ0c0
S
S0
ZRe(

S
S0
ZRe + ρ0c0

)2
+ S2

S2
0
Z2
Im

, (15)

where S is the surface area of the resonator unit cell and ZRe and ZIm denote the real and imaginary parts,

respectively, of Z [16].

3. Results and discussion90

The proposed theoretical model for calculating the resonance frequency of a Helmholtz resonator with

multiple necks via Eq. (9) is validated using experimental data available in the literature. Table 1 provides an

overview of the resonator and neck parameters in the experiments. The neck diameter and length d1 and l1,

respectively, are attributed to the primary neck of the resonator. d2 and l2, on the other hand, represent the

geometry of the additional necks in the resonator walls (which, in this context, can be understood as leaks)95

and Nleaks is the number of investigated leaks, so that the total number of necks is given by N = Nleaks + 1.

In the theoretical calculations, ρ0 = 1.2 kg/m3, c0 = 343 m/s, and η0 = 18.5 µPa s are specified for the air

density, speed of sound, and dynamic viscosity, respectively. According to [12], end correction coefficients of

α1 = 0.6133 for the primary neck and α2 = 0.8271 for the additional necks are prescribed. The resistance

parts Ri of the necks are obtained using the analytical formulas given by Maa [17].100

Fig. 3 shows a comparison of the analytical values from Eq. (9) and the measured resonance frequencies by

Selamet et al. [12], who investigated the acoustic properties of a Helmholtz resonator with different numbers

of additional necks within the resonator baffle. The results from Eq. (9) are in very good agreement with

the experimental values and confirm the dramatic effect of additional necks on the resonance frequency of

a Helmholtz resonator. It should be noted that the Helmholtz resonator investigated by Selamet et al.105

[12] employed necks extending into the inside of the cavity. Although this design is geometrically different

from the configuration showed in Fig. 1 (where the necks extend to the outside of the cavity), the good

agreement between the analytical predictions and the experimental results demonstrate that the proposed

model can also accurately predict the resonance frequencies of Helmholtz resonators with necks extending to

the inside of the cavity. In addition, the dashed line in Fig. 3 indicates the calculated resonance frequencies,110

if the surface area of the additional necks is simply added to the surface area of the primary neck, i.e.

f0 = c0/(2π)
√

(S1 +NleaksS2)/(V0M1). This clearly shows that it is not accurate to account for the additional

Table 1: Summary of experimental setups for Helmholtz resonators with multiple necks.

Experiment V0 d1 l1 d2 l2 Nleaks

Selamet et al. [12] 3071 36 89 5 1.4 0–13
Lee et al. [13] 1761 48 104 2.5–10 2 0–1
Present work 33.5 5.5 28 0.5–2 0.4 0–1

cm3 mm mm mm mm
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Figure 3: Comparison of the analytical results with the experimental data by Selamet et al. [12] for the resonance frequencies
of a Helmholtz resonator with different numbers of additional necks.

necks in the Helmholtz resonator walls by simply adding the combined surface area of the additional necks

to that of the primary neck, as already pointed out by Selamet et al. [12].

In fact, Eq. (9) provides a simple explanation for the inaccuracy of this approach: The summation over115

all necks does not only include the surface areas of all resonator openings, but also the reciprocals of Mi, i.e.

the neck air volume masses. This can be physically understood as the effective mass of all necks combined

being a parallel connection of the individual neck masses Mi, weighted by the factor 1/Si. In such a parallel

assembly of masses, the lowest individual mass value dominates the effective mass of the whole system. Since

leaks typically occur at the relatively thin walls of a resonator, their throat length li is in most cases much120

smaller than that of the primary neck. Thus, resonator leaks have a significantly lower air volume mass than

the primary neck and therefore have a considerable effect on the Helmholtz resonance frequency, as observed

in Fig. 3.

Fig. 4 shows experimental results from Lee et al. [13] and the corresponding theoretical results for a

Helmholtz resonator with a single additional neck (i.e. N = 2 necks in total) and different diameters of125

this additional neck ranging from 0 to 10 mm (see Table 1). In these investigations, the additional neck

is located on the bottom of the cavity, opposite to the location of the primary neck (similar to what is

shown in Fig. 2(a)). This is different to the situation illustrated in Fig. 1, but since the acoustic wavelength

generally is much larger than the resonator dimensions, the acoustic pressure inside the cavity can be assumed

to be uniform and it can be expected that the neck positions are not significantly affecting the resonance130

frequencies. For this case, a good agreement between the predictions of Eq. (9) and the experimental data

can be observed as well. If very small diameters of the second neck are considered, the frequency increase

is small because the area S2 is proportional to d22 and therefore diminishes the effect of the low air volume

mass in the second neck. If d2 > l2, however, the resonance frequency increases considerably as the second

neck diameter becomes larger.135

Finally, it should be noted that Eq. (9) can be expressed in a more compact form by introducing the
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Figure 4: Comparison of the analytical results with the experimental data by Lee et al. [13] for the resonance frequencies of a
Helmholtz resonator with two necks and different diameters d2 of the second neck.

resonance frequencies fi = c0/(2π)
√
ρ0Si/(V0Mi), which correspond to the Helmholtz resonance frequencies

with all, except the i-th, openings closed. Thus, Eq. (9) becomes

f0 =

√√√√ N∑
i=1

f2i =
√
f21 + f2leaks, (16)

where, in addition to f1, the resonance frequency fleaks has been defined as the resonance frequency of the

resonator with only the primary neck (i = 1) closed:140

fleaks =
c0
2π

√√√√ρ0
V0

N∑
i=2

Si
Mi

. (17)

Eq. (16) shows that the resonance frequency of a Helmholtz resonator with multiple necks (e.g. primary neck

and additional necks due to leaks) is given by the square root of the sum of the squared resonance frequency

without leaks f21 and the squared resonance frequency with leaks only f2leaks. Since the geometry of leaks

typically is such (i.e. small neck length) that the resulting Helmholtz resonance frequency is relatively high,

they will contribute significantly to the radicand in Eq. (16). Therefore, leaks in thin-walled resonators always145

increase the resonance frequency f0 compared to the case with only the primary neck f1. Fig. 5 illustrates

the shifting of f0 relative to f1 for different values of fleaks/f1. It can be seen that additional necks always

lead to an increase of the Helmholtz resonance frequency, especially when fleaks > f1. In order to keep the

Helmholtz resonance frequency relatively unchanged, it is, on the other hand, required that fleaks � f1. For

example, to achieve a resonance frequency f0 which is at most 10 % higher than f1, the frequency fleaks must150

be below 46 % of the value of f1. In the case of the resonator investigated by Selamet et al. [12], this would

require an additional neck diameter of d2 ≤ 3.1 mm.

The effect of multiple necks on the sound absorption of a Helmholtz resonator has been studied using
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Figure 5: Shifting of the Helmholtz resonance frequency f0 compared to the resonance frequency without additional necks f1
for different values of fleaks/f1.

impedance tube measurements with a two-microphone setup according to ISO 10534-2. Fig. 6(a) shows a

schematical drawing of the experimental setup with the impedance tube. The diameter of the tube was155

given by D = 100 mm, so that S = 0.25πD2 = 78.54 cm2. The test sample was a spherical resonator with

a diameter of 40 mm and a wall thickness of l2 = 0.4 mm (see Table 1). A neck with d1 = 5.5 mm and

l1 = 28 mm was attached on top of the resonator. Additional necks were realized through drilled holes in

the Helmholtz resonator cavity. The diameter of the holes varied from d2 = 0.5 to 2 mm. A photograph

of the Helmholtz resonator is shown in Fig. 6(b). In order to measure the sound absorption coefficient α,160

the resonator sample was attached to the rigid back wall of the tube using putty (similar to the absorber

configuration shown in Fig. 2(b)).

The influence of the hole diameter on the absorption behavior of the Helmholtz resonator and the resonance

frequency is depicted in Fig. 7. The lines show the analytical absorption coefficient from Eq. (15), while

the symbols represent the impedance tube measurements. Overall, the analytically calculated absorption165

coefficient is corresponding well with the measured values. Besides the increase of the resonance frequency,

holes with a small diameter d2 < 2 mm also lead to a significant loss in absorption. The absorption coefficient

is reduced because of damping effects arising at the acoustic boundary layer of the holes. The viscous

Amplifier

Digital front-end

Signal
Generator

D

M
ic

.1

Loudspeaker Helmholtz resonator

Additional neck

Primary neck

M
ic

.2

(a) (b)

Hole

Figure 6: Illustration of the experimental setup for the sound absorption measurement of a Helmholtz resonator with multiple
necks. (a) Drawing of the impedance tube setup with the Helmholtz resonator attached to the tube back wall; (b) Photograph
of the resonator used in the experiments with a hole in the resonator wall acting as the second neck.
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Figure 7: Comparison of the analytically calculated and experimentally measured absorption coefficients α of a Helmholtz
resonator with two necks and different diameters d2 of the second neck.

boundary layer between 250 and 350 Hz has a thickness of δv =
√

2η0/ω = 0.12 to 0.14 mm [18] and is

therefore relatively large compared to the small hole diameter of d2 = 0.5 mm to 1 mm. These large boundary170

layers lead to high resistive parts of the neck impedance, reducing the absorption coefficient according to

Eq. (15).

It is to observe, that the calculated resonance frequencies of the Helmholtz resonator with the additional

neck having a diameter d2 greater than 0.5 mm do slightly underestimate the measured resonance frequency,

while the calculated absorption coefficient overestimates the measured absorption coefficient. This can be175

attributed to inaccuracies in the modelling of the resistance of the second neck using the model by Maa [17].

In general, however, Fig. 7 confirms the drastic increase of resonance frequency due to the additional neck

and shows that small holes have an undesired effect on the absorption behavior of Helmholtz resonators.

In order to further investigate the influence of the additional neck on the sound absorption, Fig. 8 shows

the real and imaginary parts of the input impedance Z of the Helmholtz resonator calculated using Eq. (12)180

for the different values of d2. The curves in Fig. 8 indicate the normalized input impedance (S/S0)Z/(ρ0c0),

which is equal to unity if the sound absorption is 100 % (i.e. the impedance is perfectly matched to the

characteristic impedance of the surrounding fluid) and the imaginary part is zero at the maxima of the

absorption spectrum (i.e. at the Helmholtz resonance).

In the case of no additional neck (i.e. d2 = 0 mm), the real part of the normalized Helmholtz resonator185

input impedance, as shown in Fig. 8(a), is between 1.5 and 4 within the frequency range of interest. Therefore,

the corresponding absorption peak in Fig. 7 is quite high, but α = 1 cannot be achieved. If the additional

neck is introduced with a very small diameter of d2 = 0.5 mm, the real part of Z increases rapidly to

much higher values. Due to the high resistance of small perforations (Ri is proportional to 1/d2i [17]), the

impedance matching to the incident sound wave becomes poorer and the maximum absorption coefficient190

is reduced. As soon as d2 is further increased, the real part of Z is reduced, because the resistance of the

additional neck diminishes. For d2 = 2 mm, the curve for ZRe is below that of the Helmholtz resonator
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Figure 8: Normalized input impedance Z of the experimentally investigated Helmholtz resonator with two necks and different
diameters d2 of the second neck calculated using Eq. (12). (a) Real part; (b) Imaginary part.

without additional neck and close to the optimum value of (S/S0)ZRe/(ρ0c0) = 1. Thus, due to the larger

open surface introduced by the additional neck, the impedance matching is improved and the absorption

coefficient reaches nearly α = 1.195

For the imaginary part of the normalized impedance shown in Fig. 8(b), it can be seen that each increase of

the additional neck diameter d2 reduces the slope of the curve. Consequently, the frequencies for which ZIm =

0 (corresponding to the Helmholtz resonance frequencies) are increased. This is in line with the previous

results within this section, that additional necks always lead to an increase of the Helmholtz resonance

frequency.200

4. Conclusions

In the present contribution, a theoretical model for predicting the resonance frequency and the input

impedance of a Helmholtz resonator with multiple necks has been presented. The resulting explicit equations

can be applied to estimate and physically understand the effect of leaks (i.e. additional necks) on the acoustic

performance of Helmholtz resonators. Experimental data available in the literature was used to validate the205

proposed model. It could be shown that additional necks in the Helmholtz resonator walls always lead to
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an increase of the resonance frequency of the resonator. By analyzing the resulting equation (9) it could be

shown, that the small neck length of the leaks in thin-walled resonators and the corresponding small effective

mass of these additional necks is primarily responsible for the significant impact of additional necks on the

resonance frequency. This result can be used in the design of Helmholtz resonators, for which leaks or gaps210

cannot be fully avoided.

In addition to that, the impact of multiple necks on the sound absorption of Helmholtz resonators has been

investigated using the theoretical model and impedance tube measurements. The analytical and experimental

investigations clearly showed the increase of the Helmholtz resonator resonance frequency due to a small

additional neck. Furthermore, small holes with a relatively large acoustic boundary layer compared to the215

hole dimensions lead to a reduced absorption behavior of the Helmholtz resonator.
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