

Master thesis based on the examination and study regulations for
the Master of Engineering degree programme
Information Engineering
at the Department of Information and Electrical Engineering
of the Faculty of Engineering and Computer Science
of the University of Applied Sciences Hamburg

Supervising examiner : Prof. Dr.rer.nat Hans-Jürgen Hotop
Second examiner : Prof. Dr.rer.nat Henning Dierks

Day of delivery June 7th 2010

Subhakara Valluri

Development and Integration of a Document
Management System in a Modular Web Platform

with Efficient Storage Mechanism

 ii

Subhakara Valluri

Title of the Master Thesis

Development and Integration of a Document Management System in a Modular
Web Platform with Efficient Storage Mechanism.

Keywords
Cuyahoga, Subversion, NHibernate, Inversion of Control, Document
Management System, Role Based Access Control (RBAC).

Abstract

The web based document management system is used for distribution,
submission, review and management of documents. Clients can access the
documents from anywhere in the world by using instantaneous on-line access.
Users submitting documents can update them, reviewers can add comments, and
the interface is designed as per client’s requirements. In this thesis, document
management system is designed and implemented with space-efficient document
storage mechanism and version control using Subversion. Additionally a security
concept of the system is designed and implemented according to client’s specific
requirements using Role Based Access Control (RBAC) techniques.

Subhakara Valluri

Thema der Masterarbeit

Entwicklung und Integration eines Dokumenten-Management-System in einer
modularen Web-Plattform mit effizienten Speicherungsmechanismen.

Stichworte

Cuyahoga, Subversion, NHibernate, Inversion of Control, Document
Management System, Role Based Access Control (RBAC).

Kurzzusammenfassung

Das Web-basierte Dokumenten-Management-System wird für die Verteilung,
Einreichung, Überarbeitung und Verwaltung von Dokumenten verwendet. Clients
können von der ganzen Welt durch Online-Zugang auf die Dokumente zugreifen.
Benutzer können auf ihre Dokumente zugreifen und sie ändern, andere Nutzer
können durch Hinzufügen von Kommentaren Dokumente überarbeiten. Die
Benutzerschnittstelle ist aufgrund der Kundenanforderungen konzipiert. In dieser
Arbeit wurde ein Dokumentenmanagement-System für die Platz sparende
Speicherung und Versionsüberprüfung von Dokumenten mittels subversion
entwickelt und implementiert. Zusätzlich wurde aufgrund der speziellen
Kundenanforderungen mittels Role Based Access Control (RBAC)-Techniken ein
Sicherheitskonzept des Systems entwickelt und umgesetzt.

 iii

Table of Contents
LIST OF TABLES .. v
LIST OF FIGURES ... vi
CHAPTER 1: Introduction ... 1
CHAPTER 2: Background .. 3

2.1 Evolution of Document Management ... 3
2.2 Document Management System ... 3
2.3 Content Management System Vs Document Management System 4
2.4 Importance of Document Management System .. 4
2.5 Limitations of Document Management System ... 6
2.6 Information Security and Access Control ... 6
2.7 Need for Custom made Solution ... 6
2.8 Company’s Introduction and Existing Solution .. 7

CHAPTER 3: Requirements Analysis .. 8
3.1 Drawbacks of Existing Solution ... 8
3.2 Further Choices ... 9
3.3 Benefits of Selected Choice .. 9
3.4 Analysis of Version Control Mechanism .. 10

3.4.1 Access Time Vs Storage Space .. 11
3.4.2 Analysis of Different Schemes .. 12
3.4.3 Comparison of Different Versioning Systems ... 12
3.4.4 Client Server Vs Distributed Repository Models .. 13

3.5 Analysis of Access Control Techniques ... 16
3.5.1 Role Vs Rule based Access Controls ... 17

3.6 Selection of Data Access Strategy .. 17
3.7 Selection of Website Framework .. 21
3.8 Selection of Relational Database .. 22
3.9 Selection of Web Server ... 22
3.10 Selection of Inversion of Control Framework .. 23
3.11 Overview of Selected Database components .. 24
3.12 Overview of Selected Web Server Components ... 25

CHAPTER 4: RELATED TECHNOLOGIES .. 27
4.1 Subversion... 27

4.1.1 The Repository ... 27
4.1.2 The Copy-Modify-Merge Solution .. 27
4.1.3 Subversion Features ... 28

4.2 NHibernate .. 29
4.2.1 Object to Relational Mismatch .. 29
4.2.2 Object Relational Mapping .. 29
4.2.3 NHibernate Architecture .. 30

4.3 Dependency Injection ... 31
4.3.1 Inversion of control (IoC) and Dependency Injection 31
4.3.2 Advantages of Inversion of Control Container .. 33

CHAPTER 5: SYSTEM DESIGN .. 34
5.1 Overview of Complete System Architecture .. 34

5.1.1 In-depth Overview of Platform Component .. 36

 iv

5.1.2 Basic Component Platform Structure .. 36
5.1.3 Site Management by the Platform.. 37
5.1.4 The System’s Directory Layout ... 38

5.2 Functional Requirements Overview of Document Management System 40
5.3 Overview of the Document Management Module .. 41

5.3.1 Subversion.. 42
5.3.2 Sharp SVN ... 43
5.3.3 Database ... 44
5.3.4 Rights Management Module .. 46
5.3.5 Document Management Module .. 51
5.3.6 Workflow of the Document Management System ... 53
5.3.7 Document Management System Interactions .. 54

CHAPTER 6: IMPLEMENTATION ... 56
6.1 Modular Based Approach ... 56
6.2 Layers Based Approach .. 57
6.3 Model-View-Controller Pattern .. 57
6.4 NHibernate Mapping .. 60
6.5 Application Configuration .. 62
6.6 Overview of the total user interface .. 63
6.7 Hierarchical view of the folders .. 63
6.8 Documents Panel .. 64
6.9 Checking Role Permissions .. 66
6.10 Site Administration ... 67
6.11 Role Administration .. 68
6.12 User Management ... 69

CHAPTER 7: TESTING ... 70
7.1 Functionality Testing .. 70
7.2 Unit Testing .. 74
7.3 Evaluation of the Results .. 75

CHAPTER 8: FURTHER WORK .. 76
8.1 Implementing Rule support for Role based access control 76
8.2 Removing reported bugs ... 77
8.3 Remaining Features Implementation .. 77
8.4 Browsers Compatibility .. 78
8.5 Measuring Stress of the Web application ... 78

CHAPTER 9: CONCLUSION ... 79
REFERENCES ... 81
APPENDIX ... 83

 v

LIST OF TABLES

Table Page

Table 1: Comparison of Versioning Systems ... 13
Table 2: Comparison of Persistence Frameworks .. 19
Table 3: Comparison of Website Frameworks ... 21
Table 4: Comparison of Different Databases .. 22
Table 5: Comparison of Web servers .. 23
Table 6: Comparison of IoC Frameworks .. 24

 vi

LIST OF FIGURES

Figure Page

Figure 1: DMS Functionalities at different levels... 5
Figure 2: Centralized Version Control System ... 14
Figure 3: Distributed Version Control System ... 15
Figure 4: Description of RBAC .. 16
Figure 5: Overview of Database Components .. 25
Figure 6: The Repository and Working Copies .. 28
Figure 7: NHibernate Architecture ... 30
Figure 8: Dependency Relationships .. 31
Figure 9: Non IoC Code Style .. 32
Figure 10: IoC Code Style .. 32
Figure 11: Overall Architecture Overview ... 34
Figure 12: The Context of the Platform Component .. 36
Figure 13: Structural overview of the platform component .. 37
Figure 14: Class relationships for Site Management .. 38
Figure 15: The System’s Directory Layout .. 39
Figure 16: Document Management System Use Cases .. 40
Figure 17: Physical overview of the system ... 42
Figure 18: Architecture of Subversion .. 43
Figure 19: Entity Relationship Model... 45
Figure 20: Class diagram for User, Group and Permission .. 47
Figure 21: Workflow to determine if a user has a given permission 49
Figure 22: The Sequence diagram of a session ... 50
Figure 23: DMS Class Diagram .. 51
Figure 24: Download Activity Diagram ... 53
Figure 25: Sequence diagram for various functionalities in System 55
Figure 26: Modular View of the System... 56
Figure 27: Model-View-Controller Pattern .. 57
Figure 28: Inner view of the Document Management Module ... 58
Figure 29: Contents of Domain and Web Folders .. 59
Figure 30: Sample NHibernate Mapping File ... 61
Figure 31: Total overview of the User Interface ... 63
Figure 32: Folder Hierarchy.. 64
Figure 33: Document Panel .. 65
Figure 34: Document Detail-View .. 65
Figure 35: Updating the New Version .. 66
Figure 36: Grid view upon Checking Permissions ... 66
Figure 37: Website Administration ... 67
Figure 38: Roles Administration ... 68
Figure 39: Editing the role .. 69

 vii

Figure 40: Managing the Users ... 69
Figure 41: Login Screen.. 70
Figure 42: Checking folder panel ... 71
Figure 43: Checking document panel ... 72
Figure 44: Checking details-view panel ... 72
Figure 45: Checking Rights .. 73
Figure 46: Document Update page ... 74
Figure 47: Start page Bug ... 77

CHAPTER 1: Introduction

The presence of World Wide Web (WWW) has a great impact on the working style of

every organization. The Web can be used as an inexpensive and powerful medium of

communications. Due to the fact that Web browsers can be run on any type of computer,

electronic information can be accessed consistently and concurrently by all employees

irrespective of their locations. The total corporate information like training materials,

procedures and directories can be converted to electronic form and made available

through the Web. Having a single source for all the information significantly reduces the

maintenance costs and has the benefits of information exchange. It also provides a

companywide system irrespective of the underlying information technology (1).

Due to the benefits associated by having an enterprise wide information management

system. Every company started using a Web based document management system to

manage their documents in electronic form. Thus Web based document management

system’s occupies a point of interest in the current markets. Although there is a wide

range of products available in the market, still there exists a gap between company’s

requirements and the solutions available in the market.

The key aspects that need to be addressed are as follows:

 Often big companies have large number of documents that needs to be available
to their internal or external clients worldwide. Due to increase in number of
documents and their corresponding versions, there is a huge requirement of the
storage space for the documents. Apart from the storage space there is also in
need of better techniques for faster access of the documents.

 There is always a mismatch between the company’s requirements and the
available products in the market. For instance a company wants to have simple
Web-based document management tool, but due to the complex products
available in the market one needs to forcefully buy them. There is wastage of
resources associated with these kinds of situations.

 In any system, security plays a key role for bringing confidence about the
information. Every company wants to have a sophisticated security mechanism
for their information.

1 Introduction

 2

This document discusses an efficient approach to handle the storage space of any Web-

based document management system by eliminating the necessity of storing multiple

versions corresponding to the single document. It also discusses the benefits of an

effective security mechanism named RBAC (Role Based Access Control) and its

applicability to the Web. This thesis also shows an approach to have a well suited

application by selecting each and every component according to the specific needs of the

company. Apart from showing different approaches it also realizes an end-to-end solution

to use.

This thesis is organized as follows. Chapter 2 presents an overview of the background

issues required for this topic. Chapter 3 gives a detailed analysis of the requirements. In

Chapter 4, the explanation of different technologies used in this project is discussed.

Chapter 5 consists of the total design of the web-based document management system. In

Chapter 6, the implementation part is shown by having an overview on the user interface

of the system. Chapter 7 shows the testing techniques and its applicability to the system.

The Chapter 8 gives an overview about the further work. Finally Chapter 9 concludes the

work.

CHAPTER 2: Background

2.1 Evolution of Document Management

The invention of photocopying in the 60’s reduced the cost of duplicating information. In

the 80’s fax became the popular data transfer method and was used for sending offers,

graphics, etc., but not useful for the documents. Thereafter during 80’s, the introduction

of personal computing for the day–to-day work helped to reuse information with the use

of word-processing and other software. Finally, in the late 80’s and early 90’s Internet

made possible the transfer of a document via email which was a great achievement for

today’s document management. The evolution tended to join groups of users,

professionals, etc., in different spaces which were called Portals or Virtual Communities.

Later, companies felt the importance to offer services and improve their contents which

led to the development of Electronic Document Management Systems, where documents

are stored in a web server and users interacts with this web server generally referred as

central repository by the provided web user interface (2).

2.2 Document Management System

Document management is where people spend time and money for the obvious solutions

to the problems. A document management system is generally a database in which some

records contains or index large files. Besides the documents themselves, DMS also stores

data about those documents, which is the main reason building a document management

system rather than storing into a shared directory. This additional data is often called

metadata, because it is data about data. Apart from storage and retrieval of documents,

there are two commonly seen features in the document management systems: version

control, which allows the total history of a document to be captured and tracked and

gives the historical versions of the document; and indexing, which utilizes various tools

to compile information about the location of keywords and phrases within documents to

allow searches being performed on their contents (3).

2 Background

 4

The definition of Document Management System provided by AIIM (4) is as follows:

“Document management, often referred to as Document Management Systems (DMS), is

the use of a computer system and software to store, manage and track electronic

documents and electronic images of paper based information captured through the use of

a document scanner”.

A well-designed document management system controls the life cycle of the documents

in an organization and fits with its culture and goals. It also makes finding and sharing

the information with ease. It also provides features at each steps of a document life cycle.

2.3 Content Management System Vs Document Management
System

A Document Management, while still recognized and utilized independently, it is

typically part of an Enterprise Content Management environment. The definition of

Enterprise Content Management System from AIIM (4):”Enterprise Content

Management is the technologies used to Capture Manage, Store, Preserve and Deliver

content and documents related to organizational processes”. A subsection of Content

Management is Web Content Management .The definition of Web Content Management

from AIIM (4): “A subsection of Content Management is Web Content Management or

WCM. A WCMS is a program that helps in maintaining, controlling, changing and

reassembling the content on a web-page

2.4 Importance of Document Management System

Every company feels the importance of Document Management Systems (DMS) to

control their exponentially increasing number of documents. Companies often resist this

urge because of costs and complexity involved in the implementing a DMS. Using a

DMS effectively, needs a major change in working life cycle. Most of the technical costs

can be reduced using the open source data bases and software’s and integrating to the

windows environment. A best DMS not just provides access to all documents, but also

provides safe access to all internal employees and also clients or other participants of the

project via Internet or Extranet.

2 Background

 5

To increase the productivity of a company, efficient information management is primary

requirement. The standard features of DMS includes searching functionality, red-lining,

printing and workflows, revision and version control, document security, document

linking, status reporting, issue management and remote access. Many of these features

saves time, simplify work, protect the investment made in creating these documents,

enables audit trail, ensures accountability and enforce quality standards. The figure 1

shows the comprehensive workflow of the document management system.

Figure 1: DMS Functionalities at different levels
Source: (5)

The EDMS have following advantages (5):

 Efficient location and delivery of documentation

 Ability to manage documents regardless of originating system or format

 Ability to encompass and integrate with the existing computer based system

 Control of access, distribution and modification of documents

2 Background

 6

 Provisioning tools to edit documents and add markup information whatever the
source of document.

2.5 Limitations of Document Management System

There is also teething problems on the other hand (2).

 The technologies and markets are changing fast, so it is better needed to keep up-
to-date information about new applications, new vendors, new uses, and new
implementation approaches.

 All information must be in electronic format which is created electronically or
scanned in from a paper based version. This includes hand written notes, sketches
and large drawings .Much of the effort is wasted with the incompatible interfaces
especially paper based ones.

 Business and organizational issues such as start-up costs, payback analysis, cost
justification and savings must be addressed

2.6 Information Security and Access Control

Access control is a mechanism by which resources of information system is safe guarded.

This controls the authority of the information system. It is only part of a total computer

security solution. In general risks in the Information security can be classified in to three

types, confidentiality, integrity, and availability (6).

 Confidentiality: It shows the need for the protection of information safety and
making it private. It generally consists of information ranging from financial
information to security information such as passwords and user ID’s

 Integrity: It brings the concept of protecting against the information being altered
by unauthorized users, which helps to avoid modification of data by hackers there
by having full control on the hands of administrator.

 Availability: It means to have required information available for use when needed.
There are many attacks which attempts to overload corporate web servers. This
can be minimized by availability concept.

2.7 Need for Custom made Solution

Currently there are many different tools available in the market to manage documents.

The tools involved are continuously changing or the companies selling them may

2 Background

 7

disappear. This situation always generating costs in terms of updates and the

development of import/export scripts and shows that the users do not really have the

control on their information storage.

Another scenario arises due to complexity of the tools. Often user needs just a simple tool

to manage their documents with minimum features, but the tools available in the market

are generally complex with high number of features .It is known fact that number of

features comes at the cost of complexity. To have one to one match with the users and

their actual needs one needs to develop their own system to reflect their actually work

flow.

2.8 Company’s Introduction and Existing Solution

Alpine Electronics Gmbh (7) is one of the leaders in the car audio, mobile electronics and

navigation systems. They have global research and development facilities in Asia, Europe

and the United States. Alpine is the global leader for in-vehicle navigation systems in

Japan, North America and Europe for the aftermarket and OEM factory installations.

Currently Alpine is using I-Notion (8), which is a product lifecycle management portal. I-

Notion belongs to company named I-Logix (9), which is leading provider of Model-

Driven Development solutions for system design software development focused on real-

time embedded applications. In March 2006 I-Logix was acquired by Telelogic AB and

integrated as a business unit for embedded modeling. In April 2008 Telelogic AB

accepted IBM’s offer for making its products part of IBM’s Rational Software Unit.

The features of I-Notion as stated by its company are as follows, it is a fully scalable and

easily deployable PLM solution. Because it is a web-based portal, any computer with

Internet Explorer can access I-Notion and there is no need of installing any client. As a

central server based system, document submitted are available worldwide without the

need of replications. It has a functionality of multi-language support for languages like

Chinese, Japanese, German and English (10).

CHAPTER 3: Requirements Analysis

After utilization of I-Notion (8) for some consecutive years, Alpine electronics (7)

identified the necessity to change their existing solution for better productivity and

maintainability. Due to the limitations of I-Notion they came across many challenging

issues that need to be addressed.

3.1 Drawbacks of Existing Solution

 End-of-Life: Any software solution to use successfully for longer period, it is
always crucial to have a customer support from the solution provider. Due to
successive acquisition of the parent company by many other companies results the
lack of further customer support. There is no longer marketing, selling or
promotion of I-Notion. It is always problematic to work with a solution, which
reached end-of-life period.

 Bad Storage Solution: Storage space always has very crucial role in the usage of
any document management system. Every user wants to have a solution which
contains minimum space for the storage. Currently I-Notion is occupying
enormous amounts of space for storage due to lack of efficient version
management solution. In I-Notion every version is stored as an extra document,
which is finally resulting thousands of individual documents. This weak solution
is increasing the storage space multiple times.

 Storage Congestion: Apart from weak version management solution for document
storage, it also has every document in the same directory. This leads to dramatic
performance failure in the total system as NTFS1 performs very badly when there
is lot of files in same directory.

 Lack of control: There is always beneficial to link different information systems
to obtain better productivity. Every system must provide a means for data flow
and exchange. I-Notion is quite closed system, where one cannot link with other
corporate information from another information system.

 Lack of Multi Browser Support: From the beginning I-Notion only supports
Internet Explorer2. There are quite a lot of browsers for instance Mozilla Firefox3,
which provides better access over internet. I-Notion has also a drawback of
supporting only older version Internet Explorer 6 due to some security issue
.There is a need of some modifications in order to view on latest versions of
Internet Explorer.

1 http://en.wikipedia.org/wiki/NTFS
2 http://www.microsoft.com/windows/default.aspx
3 http://www.mozilla-europe.org/de/firefox/

3 Requirements Analysis

 9

 Lack of Extendibility: There is no chance for further modification of the system
according to present working requirements because of its quite closed nature.

Due to all these drawbacks there is not much further options left apart from finding a new

solution.

3.2 Further Choices

As the need of new solution is arrived, the choices of options left in front of desk are

determined as follows

Choosing different product: Replacing the existing document management solution by

the new product from another company is one of the possible solutions. Although it can

be carefully selected according to requirements and drawbacks from old system, there is

always possibility of facing old problems back again. Apart from this, there is a huge cost

involved in purchasing new system.

Having own implementation: The creation of new document management system is one

of the possible solutions. It brings the comfort of choosing different components

according to the requirements by keeping in mind the drawbacks of old system. In

general by carefully planning and monitoring, one can reduce the costs involved in the

development. Having an own implementation of system always provides the full control

over the system. At the bottom line one need certain time period to carefully plan and

develop the new system, as implementing the new system is not ready made.

By carefully comparing both solutions one clearly feels that having an own

implementation of document management system is better than buying an existing

product from the market.

3.3 Benefits of Selected Choice

 Ownership: Owning the tool makes it’s easier to maintain. It is easier to perform
any modifications or extensions based on ongoing change in the requirements.

 Efficient Version Control: As the previous solution has weak storage mechanism,
one can find the best approach to manage versioning and minimize the storage
space required.

3 Requirements Analysis

 10

 Freedom on components selection: Because of ownership, one can select any
number of required components based on the budget and other constraints. The
selection of database is very crucial in performance and maintenance of whole
system.

 Browser compatibility: The new implementation can be taken care of necessary
browser compatibility. From the beginning of development one can keep in mind
the probability of using different internet browsing clients and their corresponding
security issues.

 Less expensive: By careful planning and screening, it is easier to obtain a cheaper
solution. It also provides fewer costs for maintenance and future extensions.

3.4 Analysis of Version Control Mechanism

The very first and important aspect of whole development is about finding effective way

to control the document versions and storing them. Many possible mechanisms are

available on the market according to one’s need.

In broad view document management systems includes file systems, (X) HTML4 and

XML5 repositories. There is wide range of practices for version management of object,

XML, HTML, text documents. In general some version management schemes are used to

manage versions in different representation models. Normally all these schemes typically

assume (11):

 An initial expectation of how versions will be manipulated.

 Constant priorities between storage space usage and average access time.

Apart from there is also an adaptive document management versioning scheme. These are

different schemes and their mechanisms are discussed as follows:

Storing Latest version and backward deltas: In this scheme, only the latest version and

backward deltas are stored. In general backward deltas are difference between current

and previous version. In order to generate the previous versions, the backward deltas are

4 http://www.w3.org/TR/xhtml1/
5 http://www.w3.org/XML/

3 Requirements Analysis

 11

necessary. The access to the current version is always faster than the previous version,

because it needs to calculate the previous version on the fly. This scheme is very

appropriate when one needs very efficient mechanism in terms of limited storage space.

Storing every single version

In this simple scheme each and every version is stored as a separate document. But the

main drawback of this scheme is storage overhead. This scheme is useful for whom the

primary importance is historical information and its fastest retrieval.

Adaptive versioning

This is an adaptive document version management scheme, which supports different

management schemes. In this scheme the storing of document depends on the observation

of usage patterns and the utilization level of the document. Every document is

categorized into three different levels named as pertinent, relevant and obsolete (11).

 Pertinent level shows that document is very important. These kinds of versions
must be kept as stored versions, because one needs faster retrieval of them due to
regular usage.

 Relevant level shows that document is not highly important but it is needed some
times. This kind of documents can be maintained as calculated versions, where
only deltas are stored and the document is created on fly upon request.

 Obsolete level shows that document is no longer in use. Normally one can delete
this kind of versions for having better performance and reducing the volume of
document history.

This technique is dynamic and continuously monitors and changes the priority levels of

document according to usage patterns. One needs an effective way to realize this system.

3.4.1 Access Time Vs Storage Space

The main part of selecting version management solution surrounds between the fastest

retrieval of previous versions against using less storage space. According to the

requirements it is quite clear to have a solution with efficient storage mechanism, because

one needs the current version mostly than previous versions. In case of retrieval of

3 Requirements Analysis

 12

previous version one can admit little slower performance in order to achieve best storage

space efficiency.

3.4.2 Analysis of Different Schemes

After observing above different schemes one needs to decide the final scheme depending

on several requirements and constraints. The adaptive versioning scheme is highly

effective but it lacks the prominence in market, so one need to develop it from scratch

which may consume quite a lot of development time and costs. Storing all versions

scheme may brings back the problems associated with the volume of document storage.

In the current scenario Storing latest version and backward deltas scheme will suits best,

because it is highly common practice in market and one can select required versioning

engine from the different systems. Another benefit associated with this decision is chance

of having some open source systems, which reduces the final costs involved in the

development of document management system.

3.4.3 Comparison of Different Versioning Systems

The table 1 clearly shows that CVS6 is very old-fashioned version control system. It is

replaced by Subversion at later times and currently CVS is just maintained without any

additions. Team Foundation Server7 is well maintained and updated by Microsoft. The

main drawback of this system is lacking of Linux8 platform support and very expensive

to buy. Clear Case9 is also actively maintained and developed by IBM Rational by

supporting wide variety of operating systems. The main drawback of IBM Rational is due

to high costs associated in getting of its license. Mercurial10 and Subversion (12) are well

maintained and actively developed, both of them are free. Subversion has even

commercial support upon request. But they use different repository models, one need to

decide on the lines of which repository model better suits their needs.

6 http://www.nongnu.org/cvs/
7 http://msdn.microsoft.com/en-us/library/ms181232(VS.80).aspx
8 http://www.linux.org/
9 http://www-01.ibm.com/software/awdtools/clearcase/
10 http://mercurial.selenic.com/

3 Requirements Analysis

 13

Candidates Maintainer Development
status

Repository
Model

Supported
Platforms

Costs
involved

CVS The CVS
Team

Just
maintained
without
adding
features

Client-
server

Unix-like,
Windows,
Mac OS X

Free

Team
Foundation
server

Microsoft Actively
developed

Client-
server

Server:
Windows
Server
2003;
Clients:
Windows
and Web
included

Non-Free

Mercurial Matt
Mackall

Actively
developed

Distributed Unix-like,
Windows,
Mac OS X

Free

Clear Case IBM
Rational

Actively
developed

Client-
Server

Linux,
Windows,
AIX,
Solaris, HP
UX, i5/OS,
OS/390,
z/OS

Non-Free

Subversion Collabnet
Inc

Actively
developed

Client-
Server

Unix-like,
Windows,
Mac OS X

Free but
commercial
type
services also
available

Table 1: Comparison of Versioning Systems
Source: (13)

3.4.4 Client Server Vs Distributed Repository Models

In its simplest form Client-Server Model is also called as centralized version control. As

its name hints centralized versioning model has single place for check in and check out of

the code. Distributed versioning model is quite different, where it doesn’t have single

base to fetch the code, different branches will have different parts of the code.

Centralized version control highly focuses on synchronizing, tracking and backing up

files. Distributed version control highly focuses on sharing changes.

3 Requirements Analysis

 14

The figure 2 shows clearly how centralized version control works. Here every user

synchronizes and sends the changes to the main trunk. User1 changes must be sent first in

order to be seen by other users.

Figure 2: Centralized Version Control System

 Source: (14)

The figure 3 shows the distributed versioning model; here every person has its own local

repository which one can share with other users. It doesn’t mean that there is no main

repository, if one desires they can add their local content to the main repository. In the

figure 3, it is clearly shown that user1 and user2 is sharing their work and they are also

updating the corresponding changes in the main repository. Similarly user2 and user3

shares their content and also send their changes to the main repository for making it

available to the other users (14).

The key disadvantage associated with distributed model is that there is not really latest

version because anyone can’t immediately know which user has latest version. Again one

needs central location to obtain the latest version of the document.

3 Requirements Analysis

 15

Figure 3: Distributed Version Control System

 Source: (14)

From the observation it is quite clear that distributed and centralized version control

systems addresses different set of problems. In order to have better selection, one needs

to select according to own requirements. It is quite clear from the requirements of the

document management system, the centralized repository model is well suited than the

distributed repository model because one need a way to immediately recognize latest

version. Moreover the use of version control system in this case is not for source code

control. If it is for source code control distributed model may be good choice. Before

taking the final choice it is better to know which type of files can be versioned using

subversion.

Subversion can handle human readable text files, which contains the text in ASCII

format. They also can version the binary files, which might be also executable files.

Apart from these it can also version the directory files which contains the information

3 Requirements Analysis

 16

about how to access other files. Finally from the observation it is evident that the

subversion is better solution for this case (15).

3.5 Analysis of Access Control Techniques

At first user’s account credentials and identity are authenticated using Authentication and

Identification techniques. There after control over access to system’s resources is based

on access control mechanism used. So access control plays a key role in the security of

the web-based document management system. The analysis of different types of access

control techniques is needed in order to select the suitable technique for the web-based

document management system.

There are mainly two types of access control techniques to analyze for the better

suitability

Role Based Access Control: It corresponds to the level of security to close resemble the

organization’s structure. Every user is assigned with one or more roles and each role is

has one or more privileges. This is clearly shown in figure 4.

 Source: (16)

Rule Based Access Control: The grouping of access rights can also be done using rules.

Rules are based on conditions having left hand side (LHS) and one or more actions in

right hand side (RHS). The actions in RHS are executed only, if the conditions in LHS

are satisfied. The simple rule is shown as follows:

IF User-Function = “Thesis Student" AND User-University = “HAW Hamburg"

THEN Get access to Master project room.

 User Roles Permissions

Figure 4: Description of RBAC

3 Requirements Analysis

 17

The above rule gives all users of organization “HAW Hamburg” with the function

“Thesis Student” Execute access to the Master project room. Thus, a rule makes it

possible to give one or more access rights to a whole group of users making rules quite a

powerful and dynamic administration tool (17).

3.5.1 Role Vs Rule based Access Controls

The Role Based Access Control is already well established security concept. Its strong

effectiveness comes from the fact of reflecting business roles without much technical

stuff. It has very useful for auditing. On the other side there is a need of high

administrative effort to assign the roles because of their static nature. Organization

changes might cause the reassignment of some roles.

The Rule Based Access Control is relatively new security concept. The strongest aspect

comes from the fact that it can assign the roles dynamically without much administrative

work. The dynamic calculation of roles is based on user’s attributes. On the other side

these dynamic assignments makes it difficult to audit the functionality as who is allowed

to do what. As a result it is hard to maintain rules for long run because of its difficulty

involved in foreseeing the impact of rule changes (17).

From the analysis of both role and rule based approaches it is clearly shows that the

access control security mechanism of the document management system is well

maintained using role based instead of rule based access control. Role based access

control has clear organizational representation and better auditing capacity. It clearly

shows the impact of each role and one can easily foresee its impact. This makes Role

based access control as better choice for implementation of access control mechanism in

the document management system.

3.6 Selection of Data Access Strategy

The selection of correct data access strategy helps to maintain the stability and

performance of any system, which has a high data needs. The different techniques are as

follows

3 Requirements Analysis

 18

Performing Database Operations Directly:

This model uses a data command object that includes an SQL statement or a reference to

a stored procedure. This model has more control over execution of SQL commands or

stored procedures and their returned values. Despite of this advantage it has a huge draw

back in terms of development time and maintainability of the code. These days software

development is highly undergoing layered approach for modularity and extendibility and

better maintainability. One needs a better approach for data access than directly writing

commands. Directly writing commands makes the data access code to scatter all over the

application code. This makes impossible to maintain code successfully.

Creating Own Data Communication Layer:

This model involves writing own data communication layer’s code using API’s provided

by different programming platform. Here one can have their own implementation and

bring all the data persistence code to one place. The main drawback involves in the

consumption of time for development of the code. It is better approach, if one chooses

already existing frameworks rather than writing form the scratch.

Persistence Frameworks:

Persistence Frameworks addresses the major problem involved in the mismatch between

the object- oriented programming sides to the relational database end. There are many

persistence frameworks available in the market which simplifies the development

process.

The different parameters for analyzing persistence frameworks are described as follows:

Object –to- Data: In this scenario mapping is started from the existing object model and

maps those objects to the database tables. Finally uses persistence API to store and

retrieve objects

3 Requirements Analysis

 19

Data-to-Object: In this scenario mapping is started from the existing database schema

which is in XML or metadata representation, then generates the object model. Finally

uses persistence API to store and retrieve objects.

Object and Data: In this case mapping is generated by using both existing object model

and database schema, and use persistence API to store and retrieve objects.

 Hibernate Cayenne MyBatis

Object-to-Data Yes Yes No

Data-to-Object Yes No Yes

Object and Data Yes Yes No

MySQL11 Yes Yes Yes(custom written)

PostgreSQL Yes No Yes(custom written)

Oracle12 Yes Yes Yes(custom written)

SQL Server13 Yes No Yes(custom written)

Programming

Platform

Java and .NET Java Java ,Ruby on Rails,

.NET

Table 2: Comparison of Persistence Frameworks

There are number of best persistence frameworks available over open source

communities. So comparison is only done among selected open source frame works in

order to reduce the costs involved in development.

The table 2 clearly shows that Cayenne14 persistence framework doesn’t have many

features and it mainly supports only Java platform. Most of the features in Hibernate15

and MyBatis16 are same but further analysis is needed in order to select better one.

11 http://www.mysql.com/
12 http://www.oracle.com/us/products/database/index.html
13 http://www.microsoft.com/hk/sql/default.mspx

3 Requirements Analysis

 20

Simplicity: MyBatis is very simple to use and learning curve is so fast when compared

with Hibernate.

Total ORM Solution: Hibernate is more traditional and regarded as complete ORM

solution. The Hibernate maps objects directly to database tables, whereas MyBatis maps

the objects to the results of SQL queries (18).

SQL dependency: Hibernate is the best option when one doesn’t want to have much SQL

queries. It generates efficient SQL at the runtime. However MyBatis gives complete

control over queries (18).

Using across different databases: Both Hibernate and MyBatis can be used across

different relational databases but the approach is quite different. Hibernate generates

automatically the SQL code and one needs to write explicitly when using MyBatis. The

Hibernate is better choice due to the automatic generation of SQL queries (18).

Performance: The Hibernate has caching facilities for gaining performance where as

MyBatis gains performance by fine tuning the SQL queries

Using across different platforms: MyBatis supports Java17, .NET (19) and Ruby on

Rails18 platforms whereas Hibernate supports both major platforms Java and .NET

The MyBatis is simple to use persistence framework and provides finer control over

queries. Depending on different analyzed parameters and according to the requirements

of the document management system, it is better to have Hibernate as a persistence

framework.

14 http://cayenne.apache.org/doc30/overview.html
15 http://www.hibernate.org/
16 http://www.mybatis.org/
17 http://www.java.com/en/
18 http://rubyonrails.org/

3 Requirements Analysis

 21

3.7 Selection of Website Framework

The Alpine Electronics Gmbh (7) had chosen .NET as their programming platform. The

major Website Framework in .NET platform is DotNetNuke (20) and there is also

framework named Cuyahoga (21) considered for analysis.

 Cuyahoga DotNetNuke

Programming Language C# VB.NET

Costs Free Free

Web Server IIS19 , Apache IIS

Operating System Any Windows

WYSIWYG Editor Yes Yes

Extra Features Very Limited Many

Search Engine Yes Yes

Database PostgreSQL, MySQL, SQL

Server

SQL Server

Mono Support Yes No

Table 3: Comparison of Website Frameworks

 The table 3 is formulated in a way to reflect the main functionalities required for the

document management system. In general DotNetNuke is well known and has better

functionalities than Cuyahoga. As one don’t need much ready-to-use features due to the

development of the own system with specific goals. Cuyahoga uses both IIS and Apache

(22) whereas DotNetNuke uses only IIS. This is very important if one needs to run on

19 http://www.iis.net/

3 Requirements Analysis

 22

inexpensive server Apache. Another major concern is regarding operating system, the

Cuyahoga can run on any operating system where as DotNetNuke can only run on

windows environment. Independence on choosing operating system is always major

advantage. Cuyahoga uses persistence framework as NHibernate (23) so that it can

support any type of database whereas DotNetNuke only can support different versions of

Microsoft’s SQL server. Cuyahoga also can support open source .NET (19) development

environment. It is quite clear that for the specific goal to develop document management

system in very efficient and inexpensive way Cuyahoga is better choice.

3.8 Selection of Relational Database

The table 4 shows the comparison of different databases depending on the functionalities

and costs associated with it. MS SQL server well suits to this environment because of the

decision to use .NET as development platform. As NHibernate is carefully selected as

persistence solution there is no need to have close integration with development

environment. When one consider for open source database with more functionality it is

clear that PostgreSQL (24) is better choice

Table 4: Comparison of Different Databases

3.9 Selection of Web Server

The table 5 shows the comparison of several choices of web servers. Cassini has limited

functionality which makes them out of competition. The main advantage of using MS

SQL Server is due to integration with Microsoft’s technologies. But MS SQL Server is

Candidates Pros Cons

PostgreSQL Open Source + large community

Big functionality

Good performance

A GUI to view tables and make
SQL queries on the fly

MySQL Open Source + large community

Good performance

No GUI that is easy to use

MS SQL
Server

Easy to integrate in IIS / ASP.NET Costs

Closed source solution

3 Requirements Analysis

 23

not open source one needs to invest huge amount of money to obtain license, and it also

limited to Windows20 operating system. Apache (22) is well supported with both

Windows and Linux operating systems; it has big open source community for support.

Apart from that Apache has is use to setup and configure. It is clearly evident that

Apache will be better suited as sever for the document management system.

Candidates Pros Cons

Apache Open Source + large community

Big functionality

Good performance

Highly extendable through
modules

Easy to setup & configure

Can run on windows & Linux

Cassini21 Very small footprint

Integration in .NET

Limited to ASP.NET

MS IIS Well integrated in the OS

Works well with other MS
technologies

Tedious to configure correctly

Closed source product

Only runs on windows

Table 5: Comparison of Web servers

3.10 Selection of Inversion of Control Framework

The table 6 shows analysis on .NET based Inversion of Control (IoC) frameworks, as the

application is to be implemented on .NET programming platform. Sever parameters are

taken for analysis of the suitable framework. Singleton is a software pattern, which

means only one object is instantiated and only one time during the lifetime of the

application. All the selected frameworks are supporting this pattern. Open generics

injection is an ability to register open generic types and receive specific generic types on

demand. This functionality is clearly not supported Spring.NET22. Auto mocking is an

ability to leverage IoC framework to automatically mock dependencies of the tested

component. This feature is available in Structure Map, but it can also be implementable

20 http://www.microsoft.com/windows/
21 http://blogs.msdn.com/b/dmitryr/archive/2008/10/03/cassini-for-framework-3-5.aspx
22 http://www.springframework.net/

3 Requirements Analysis

 24

in future in Spring.NET and Castle (25). Although Structure Map23 and Castle are having

most of features finally Castle is selected basing into wide usage.

 Castle Structure Map Spring.NET
Singleton Yes Yes Yes
Transient Yes Yes Yes
Open generics
Injection

Supported Supported Not supported

Auto-mocking Not included but
implementable

Included Not included but
implementable

Table 6: Comparison of IoC Frameworks

3.11 Overview of Selected Database components

The final phase is reached by identifying different components based on different

parameters like cost, reliability, extendibility, integration etc.,

The figure 5 shows the overview of total database components and the explanation of

each component is stated as follows:

Incoming interface for Database: NHibernate (23) will be the incoming interface for the

queries to the database. Hibernate mappings have to be defined properly so the

persistency layer knows how to cascade the requests.

Outgoing interface for Database: NHibernate will be also the outgoing interface for the

results of the queries to the database. Hibernate mappings have to be defined properly so

the persistency layer knows how to cascade the requests.

PostgreSQL: PostgreSQL will be the database server for the system. It must not be

necessary on the same machine than the web server and the web content. Communication

is done via TCP/IP by using SQL requests.

The only client for PostgreSQL shall be NHibernate that provides an abstraction layer to

the application.

23 http://structuremap.github.com/structuremap/index.html

3 Requirements Analysis

 25

Subversion: Subversion (12) will be used for all data that needs a history. This allows a

rapid implementation of base lining based on tagging and ensures no data loss occurs, all

data can be recovered, as subversion manages sets of changes and is incremental.

NHibernate: NHibernate is used to abstract the database layer. The database is not

directly visible to the web application and can be accessed in a more comfortable manner

by using NHibernate mappings and API calls.

Versioning: Versioning must be well handled there are several versions that must match:

 Version of the tables in the database

 Version of the modules

Figure 5: Overview of Database Components

3.12 Overview of Selected Web Server Components

Apache (22) is the front-end component seen by the web client. It makes use of several

modules for extended functionality. By now, it will make use of Mod_ASP.NET to run

an ASP.NET (26) Web application

3 Requirements Analysis

 26

Incoming Interface: Clients connect to the system by using a browser. The protocol used

for information exchange is HTTP, a standard protocol for the Internet that enables to

keep the requirements on client side low. On the other side the Web application delivers

the responses to the user requests.

Outgoing Interface: The user requests are forwarded to the web application which in

turn computes a response. The response is sent back to the client over HTTP by Apache.

Apache: Apache is the container in which the modules are running and receives the

connections coming over the network and handles them by delegating the functionality to

the modules.

Apache is a complete Web server that makes it possible to quickly and easily deploy

powerful Web sites and applications. When Apache receives a request, it examines the

file-name extension of the requested file, determines which extension should handle the

request, and then passes the request to it.

For ASP.NET (26), it will handle file name extensions such as .aspx, .ascx, .ashx, and

.asmx. File extensions that are not mapped to any module are processed directly by

Apache and returned to the user without any processing.

CHAPTER 4: RELATED TECHNOLOGIES

4.1 Subversion

Subversion is a version control system, which places the tree of files into a central

repository to manage the files and directories at every instant of time. It remembers all

the changes made to the files, directories. This helps to keep track of history of changes,

getting older versions. The main reason for its popularity is due to the availability of

repository across networks, which brings the convenience to be used by people on

different computers. Collaboration is achieved by the modifying and managing same set

of data from their own locations

4.1.1 The Repository

The repository is the central place for the storing of data. It stores information in the form

of a typical hierarchy of files and directories. Clients will connect to the repository in

order to perform read or write operation. Read operation brings the data from others to

client, while write operation makes the data available to the other users by the client.

Although this is function of file server system, the real magic comes from the capability

to remember the changes.

In this typical system there is a possibility of overwriting the data by two concurrent

users. Suppose two coworkers each wants to edit the same repository file at same time if

first person make changes to the repository first, then there are a possibility the second

person may accidentally overwrite with his own new version. Of course the first person’s

changes won’t be lost because system remembers each change. But the changes made by

the first person will not present in the second person’s newer version of the file, while the

second person never knew the changes made by the first person to begin with. This kind

of situation is avoided in subversion by using the Copy-Modify-Merge Solution (15).

4.1.2 The Copy-Modify-Merge Solution

In this solution every user’s clients contacts the project’s repository and creates a

personal working copy, which is a local reflection of the repositories files and directories

this process is known as checking out. Now users can work at the same time modifying

4 Related Technologies

 28

their own local copies. Finally the local or private copies are merged together into a new

final version. The process of saving the changes of local copies back to the repository is

referred as committing. Ultimately human being is responsible to make it happen

correctly. All this mechanism can be seen in the figure 6 (15).

Figure 6: The Repository and Working Copies

4.1.3 Subversion Features

Subversion provides the following features (15):

 Directory Versioning: Subversion has virtual versioned file system that tracks
whole directory trees over time.

 True Version History: The operations add, delete, copy, and rename both files and
directories in subversion. And every newly added file begins with a fresh and
clean history of its own.

 Atomic commits: Any operation will be completely occurs in the repository or not
at all. This allows committing changes as logical chunks, and preventing
problems from sending only part of a set of changes to the repository successfully.

 Versioning of metadata: The set of properties belonging to each file and
directories are also versioned over time along with their contents.

 Consistent data access: In both text and binary files the binary differences are
expressed using binary differencing algorithms. These files are equally
compressed in the repository, and differences are transmitted in both directions
across the network.

4 Related Technologies

 29

4.2 NHibernate

4.2.1 Object to Relational Mismatch

Essentially applications are object-oriented programs and relational databases store data

in a relational form. There is no direct way to persist an object as a database row. This

situation leads to the object-relational paradigm mismatch, which causes many hurdles in

communication between object-oriented and relational environments. Some of the

problems are as follows:

 Identity and equality mismatch: An Object-oriented programming language offers
two distinct definitions for object equality and identity, whereas databases don’t
have corresponding clear distinctions.

 Object inheritance mismatch: Object can be inherited by another object; relational
databases don’t support the concept of inheritance. This results the necessity to
have the own mechanism to translate class hierarchy to database schema

 Problems of associations: In an object-oriented approach, associations represent
the relationships between objects. In relational databases, an association is
represented by the foreign key column, with copies of key values in several
tables. There is a noticeable difference between two representations (27).

4.2.2 Object Relational Mapping

It is a translation layer which can easily transform object into relational data and back

again. This brings the overall solution to the object-relational mismatch. It isolates the

business logic from any relational issues that may appear in the persistence layer. The

main accomplishments using object relational mapping includes following benefits:

 Modeling mismatch: In order to gain development time the relational and object
models must both have same entities. But in reality they may exist differently, the
general solution includes redesigning the object model until it matches with
relational model. This approach will consume time , by using object relational
mapping one can overcome this situation

 Productivity and maintainability: Object relational mapping helps to concentrate
more on business problems. It improves maintainability by reducing the lines of
code and provides buffer between object and relational model.

4 Related Technologies

 30

 Database independence: This abstracts application from underlying SQL database
and SQL dialect. Naturally it supports number of different databases and bringing
portability to the application

 Performance: General claim is that hand-coded persistence is at least as fast as or
faster than automated persistence. In order to be more precise about this fact there
is a need to compare the effort being invested to both of these approaches. Many
experiences have proven that a good object-relational mapping solution has
minimum negative impact on performance. In some cases it even performs better
than classic approaches. The architecture of Object relational mapping framework
must be mature for performance optimizations (28).

4.2.3 NHibernate Architecture

NHibernate is the Object-relational mapping solution for the Microsoft.NET Platform.

The following figure shows the main parts of NHibernate architecture:

As the figure 7 shows, the main components are NHibernate configurations files,

mapping definitions, and persistent objects. The main component of NHibernate is its

configuration. This configuration is always present by an XML, or a properties file

includes the relevant information, such as database username, password, driver class,

SQL dialect that NHibernate needs for connecting to a database, communicating with it,

and performing persistence operations.

Figure 7: NHibernate Architecture

Source: (27)

The other part of NHibernate architecture consists of Persistent objects. These objects are

persisted in the database. These entity objects and their classes follows the POCO (Plain

Old C# Objects) rules.

4 Related Technologies

 31

4.3 Dependency Injection

4.3.1 Inversion of control (IoC) and Dependency Injection

Inversion of control in general context means reversal of responsibilities. In common use

dependency injectors are commonly referred as IoC container. These terms are originated

from the following principles (27).

 Hollywood Principle24: “don't call us, we'll call you”

 Dependency Injector: A framework that follows Hollywood principle

 Dependency Injection: The range of concerns with designing applications built
on these principles

Inversion of control technology does the management of object dependencies by pushing

dependencies into objects at runtime, instead of letting the objects pull their dependencies

from their environment.

A software application consists of interfaces and classes. These together form application

components. To perform functionality they will interact to provide requested services.

These objects are dependent on each other, and object is called as dependent if it uses

other object to perform its action. All other objects used by this object are termed as

dependencies. The above explained dependency relationship can be depicted in the

following figure 8.

Figure 8: Dependency Relationships
Source: (27)

24 http://en.wikipedia.org/wiki/Hollywood_Principle

4 Related Technologies

 32

Figure 9: Non IoC Code Style

Source: (27)

The figure 9 shows the way how code works in non IoC style. The object calls its

dependencies, when the object itself is responsible for providing dependencies from its

environment. The object may carry this work by instantiating dependencies, or asking

outside container object to provide it.

Figure 10: IoC Code Style
Source: (27)

In contrast figure 10 shows the IoC Code style, where object is free from providing its

dependencies and outsourced to another object. This outside object will be responsible

for instantiating the dependency object.

4 Related Technologies

 33

In this scenario, the object A has no longer instantiates the object B. Instead it is taken

care by container object.

4.3.2 Advantages of Inversion of Control Container

 Application classes are designed very simply with minimum behaviors and
required properties

 Application classes are self-documented, and documentation is always up-to-date

 Classes will not have their own configuration management, which in turn results
the more manageable code

 The application leaves configuration management to framework

 There is increase in consistency since configuration management is done by the
framework

 There is no configuration management code as framework handles this in every
application (27)

CHAPTER 5: SYSTEM DESIGN

5.1 Overview of Complete System Architecture

The figure 11 shows an overview of the system architecture. Each of the big green

rectangles represents a server machine. Of course all components may also run on one

and the same machine if wanted.

Figure 11: Overall Architecture Overview

Database Responsibility:

 The database layer provides data persistency. It is the central place where the data
(all content) that does not belong to the framework gets stored. The
communication layer (NHibernate based) also belongs to this component as it is
closely related to it. However NHibernate (23) is used as an API by the client and
therefore must not be installed on the same machine that is running the database
server NHibernate is communicating with.

5 System Design

 35

Database Interfaces:

 Data can be stored and retrieved by using queries (SQL-like) sent over a network
connection.

Web-Server Responsibility:

 The web server provides the run-time environment for the web application and the
connection point for external clients to interact with the system.

Web-Server Interfaces:

 A HTTP25 connection point.

 Web server module API

Platform Responsibility:

 The platform provides a set of reusable components and a plug-in interface. This
enables others to write modules that can be integrated and developed on their own
with minimal invasion into the system.

Platform Interfaces:

 C# (29)Interface / Dynamic libraries

Module Responsibility:

 A module26 provides a specific functionality. The module must use the platform
to communicate with the database and the web-server (to enable central logging
of activities). A module can have some private data associated with itself. In this
case it is document management module.

Module Interfaces:

 C# Interface / Dynamic libraries, must use API provided by Platform

Monitor Responsibility:

 The monitor is responsible of setting up the system, allowing easy upgrades.

 Provides statistical information about the system like up-time, number of hits,
users, …

25 http://www.w3.org/Protocols/
26 http://en.wikipedia.org/wiki/Modular_programming

5 System Design

 36

 Provides ways to stress test the system

Monitor Interfaces:

 TCP/IP27

 OS services

5.1.1 In-depth Overview of Platform Component

The figure 12 shows the platform component context, where component exchanges data

with the database and provides functionality to the modules or plug-ins. These also

generate data that is transferred to the web-server.

Figure 12: The Context of the Platform Component

5.1.2 Basic Component Platform Structure

In the figure 13 gives the structural overview of the platform component. The module

web controls provides standard web controls like calendar, authentication dialog, search

engine dialog and the core module provides core modules to display static HTML, to

27 http://en.wikipedia.org/wiki/Internet_Protocol_Suite

5 System Design

 37

download files, to manage users, where as module management (MOM) loads all plug-

ins and determines which plug-in to call for a given URL. Also checks if the module

version matches the version in the database and calls the update functionality

accordingly.

Figure 13: Structural overview of the platform component

The session management module provides session management, for each client stores the

IP, connection start date/time, generates a session cookie and manages all the other

session related data and module API can be used by all modules to implement their

specific functionality.

5.1.3 Site Management by the Platform

The figure 14 shows the class relationships for the site management. The detailed

description of objects in use is as follows:

 Site Alias: The Site Alias class enables mapping of an alternative URL to an
existing site. Optionally one can specify a Node to where the alias should point.

 Site: The Site describes the website, the email of the webmaster and other site
specific information that relates to the website.

 Template: It represents a template. This is not restricted to one physical file. It's
possible to create multiple template objects based on the same template, user

5 System Design

 38

control and style sheet. The template defines some placeholders for the content
like sidebars, main content. These placeholders can be used to position sections
on the page.

-Parent1

-C
hil

dr
en*Section Node

* 1

Site

-RootNodes *

1

SiteAlias «becomes» Template

*

1
ModuleType

*
1

Figure 14: Class relationships for Site Management

 Node: The Node class represents a node in the page hierarchy of the site. A node
is thus a page with a list of sections. A node has an associated template that
defines the layout of the page and where to display the sections.

 Section: The section describes a section placeholder. It refers to an associated
module which is responsible for displaying the content. The place where the
section gets displayed is determined by a placeholder from the template in use for
that page.

5.1.4 The System’s Directory Layout

The figure 15 shows the directory layout of the system, where by keeping the Monitor in

the root directory, it will know where to find the components by itself and configure them

for a first setup. This will ease the deployment and first installation of a complete system.

5 System Design

 39

Monitor

Apache

PostgreSQL

Subversion

Web

Database

Repository

conf

bin

Templates

conf

bin

bin

ASPX, ASCX, ...

PostgreSQL tables

conf

bin

conf

db

hooks

Figure 15: The System’s Directory Layout

5 System Design

 40

5.2 Functional Requirements Overview of Document
Management System

The figure 16 captures the functional requirements of the system using Use Case diagram

Figure 16: Document Management System Use Cases

 Assign group & user rights: The rights administrator can assign rights to the
respective users. But it can be done only under his limits, which will be monitored
by the check rights use case. The corresponding changes in rights must reflect
immediately in the system. The newly updated rights are stored in the rights table
of the database

5 System Design

 41

 Creates the document: The document manager can creates the document and
uploads it to the subversion repository .The rights of the document manager must
be validated before this operation, which is clearly shown by using include
dependency relation with check rights use case

 Project Management: The project manager administers the project and has rights
to move, delete and create project. In some cases even assign rights to the project
members. All these operations will be done based on his own rights, as shown by
the check rights use case. The corresponding data is updated in the project table in
the database

 Review the document: The reviewer sets the document properties like state. There
is extending dependency on deletion of the document. All these operations has to
be performed by checking the rights

 Browse the document: The User can browse through the list of documents and
read or download them according to his rights.

 Check rights: This is the central point of authorization, where all the use cases
must be validated according to their respective rights. This checking is done
against the roles of the users.

5.3 Overview of the Document Management Module

The figure 17 provides the physical view of the system and shows the system’s building

blocks. The database transactions of the system are controlled by NHibernate component.

So every module will communicate with NHibernate component to store or retrieve the

data. In turn NHibernate communicates with the database component to perform the

actual tasks. The document management and rights management module works together

with the content management system (CMS) platform in order to produce required

website functionality. The access control of the document management module is

monitored by the rights management module. In order to save the actual documents in the

Subversion document management module interacts with the Sharp SVN (30)

component. In turn Sharp SVN performs the required operations against the Subversion.

The in depth explanation of each component is as follows:

5 System Design

 42

Figure 17: Physical overview of the system

5.3.1 Subversion

Subversion repository is used to store the data, which needs revisions. In the solution it is

decided to use subversion as a place to store the actual document content.

 The figure 18 shows the architecture of subversion. Subversion architecture consists of

multiple layers. Each of these layers performs their specialized task with encapsulation

and modularity (15).

 File system: This is the lowest layer and implements the versioned file system

 Repository: This layer implements many helper functions, which are built around
the file system

 mod_dav_svn: It provide WebDAV28 access to the repository

 Repository access: This layer manages the repository access for both local and
remote access

 Working copy: This layer manages the local working copies which are local
reflections of portions of the repository

28 http://en.wikipedia.org/wiki/WebDAV

5 System Design

 43

 Client: This layer uses the working copy library to provide common client tasks
like authenticating the user and comparing versions

Figure 18: Architecture of Subversion
Source: (15)

5.3.2 Sharp SVN

Sharp SVN (30) is a simple to use API for binding with .NET based subversion

applications. It also reduces the need to manually maintain the authentication call backs,

apache portable runtime pools and other low-level things left dealing with while using

other language bindings

Accessing a Subversion repository using Sharp SVN involves three steps:

 Open the repository

 Do the relevant operations (for example get the directory contents of the
repository)

 Close the repository

5 System Design

 44

In order to open a repository, one has to specify how they are going to access the

repository. A Subversion repository can be accessed by any of the following three

protocols:

 file:// To access a repository located on the local machine

 http:// or https:// To access a repository over the Web (using WebDAV protocol)

 svn:// A custom protocol proprietary to Subversion

Sharp SVN currently supports repository access using the file:// protocol

5.3.3 Database

Relational Database is used to store the metadata corresponding to the document

management system, which gives the best way to index the data for search mechanism.

The process of design starts with identifying the purpose of database, there after

organizing the required information and specifying information into tables, filling

columns with corresponding items. The primary key specification helps to uniquely

identify each row. One needs to find out how data in one table is related to other. These

associations play a key role in data retrieving strategies. Normalization rules have to be

applies in order to reduce redundant data.

The Entity Relationship model is shown in figure 19 gives the full overview of the data

model.

 cm_documents: This is the principle table in database where each document is
assigned an ID, title and document path is also stored here in order to retrieve the
document. In this case the document path is the actual subversion path where the
document is stored.

 cm_user: This table stores the required user’s personal information like first
name, last name, email, time zone. The most important information for
authentication of the user like username, password is stored here and checked
against each login.

 cm_folders: It stores the information regarding the folders. The corresponding
folder of the document is obtained by having the association with cm_documents
table using foreign key.

5 System Design

 45

 cm_dmrole: This table has the definition of each role against its ID. This is the
principal entity for defining the roles.

Figure 19: Entity Relationship Model

5 System Design

 46

 cm_dmrolemapping: Here is the central place to link the roles with its
corresponding operations. The bit fields like viewallowed, createallowed,
updateallowed and downloadallowed will be assigned values either true or false
according to the respective role. The association is established with the
cm_dmrole table by means of foreign key.

 cm_dmroleuser: This table acts as intermediate linking table between cm_user
and cm_dmrole. Here each user against its corresponding role is stored. The
associations in either end are achieved by having one-to- many associations with
the help of respective foreign keys.

 cm_dmrolefolder: This table acts as intermediate linking table between
cm_folders and cm_documents. Each folder is associated with a corresponding
role there by with the respective allowed operations. The one-to-many
associations are established on either end.

 cm_dmroledocument: This table is the intermediate linking between cm_dmrole
and cm_documents entities. The principle level of document security is preserved
in this intermediary table. Each document is associated with an ID and similarly
each role is associated with an ID, by interlinking both ID’s one can assign the
role to the document. The role permissions are stored in another table which is
linked with role table. One-to-many association is held between tables as each
role can be associated with many documents similarly in other way around many
documents can have single role.

 cm_authors: Here the information regarding the author of the document is stored.
Each author is held with an ID against corresponding name. There is a one-to-
many relationship with cm_documents table. This relation helps to validate each
document with its author.

 cm_types: In general documents may have different formats; this information is
stored in this table with a type ID against its corresponding format. It has a one-
to-many relationship with cm_documents table in order to show the document
with its corresponding format in the front end.

 cm_status: There is always a review process for each document, which is termed
as status of the document. For example this information can be like accepted,
rejected, updated etc. This table has one-to-many relationship with cm_documents
table to link the document with its corresponding state.

5.3.4 Rights Management Module

Enterprise-scale organizations employ large numbers of internal users, with different

access requirements spanning large numbers of systems, directories and applications. The

5 System Design

 47

dynamic nature of modern enterprises demands that organizations efficiently and securely

provision and deactivate systems access to reflect rapidly changing user responsibilities.

This can be solved by using a hierarchical RBAC on one side that also allows special

users to modify their subordinate’s rights. This delegates the permission-updating task to

several users and doesn’t need a central administrator.

User Group**

User:
 Employee with his associated data (address, title, position, phone number, ...)
 Each User might have several subordinates
 Each employee has at most a chief or none if he is a CEO
 Each user might be specifically assigned or denied a permission (override the group settings)

Group:
 Aggregation of users
 Each group may have several permissions

-subordinates

*

1

Permission

-<<granted>>

*

*

-<<denied>>

*

*

-<<has>>*

*

Figure 20: Class diagram for User, Group and Permission

The relation between user, permission and group can be clearly determined from the

figure 20.

 User: Each individual communicating with system is a user with a user account.
This user account identifies the individual when they log onto the server and
personalizes the interface and data of the server according to the user permissions
associated with the account through the role(s). The user permissions govern what
the user can see and do.

 Group: Grouping users allows a role based access definition as one might set the
permissions for a given group. Later one might decide which users belong to

5 System Design

 48

which group. Groups might contain other groups. Groups defined locally for a
module may only be used within that module. Global groups and users are the
responsibility of the Administrator for the “User Management” Module.

 Permissions: Permissions define what information a user can or cannot view, and
identify the actions the user can perform. These actions include creating, reading,
updating or deleting items. The administrator account is protected against their
permissions being denied to stop accidental lockout from the software.

Access verification: The access rights to the object to be processed have to be verified.

For example, during the display of a given node, following things are checked:

Access to the node must be granted (view permission for the page)

All sections (modules) where the user has view permission are displayed (all others

sections and associated modules remain hidden and are so inaccessible)

 Edit, Administrate and other actions appear if the user has the corresponding
rights for the section (module)

Effective permissions: The permissions calculated after evaluating the groups and the

user’s permissions. For a given permission, the user has the permission of the group

(computed with an OR Boolean operator) if not otherwise directly set (overridden for his

user id).

The workflow to determine if a specific user has a given permission is the shown in the

figure 21. It first checks whether the user has the required permission then it cross checks

if the user is in denied list or not. If the user is not in denied list then it checks against the

granted list otherwise the access is denied for the user. After passing through the denied

list then the system checks whether the user is in granted list from the positive reply, it

goes to next step to check for the presence of user in corresponding group otherwise the

access is denied. If the user also passes through the groups with positive reply then he is

finally granted with the required permission

5 System Design

 49

Figure 21: Workflow to determine if a user has a given permission

Authentication: To gain access to the server, users must log in. This process identifies

and authenticates the person logging in against the user accounts. The user can be

identified using a given authentication method (LDAP29, custom local account). The

method of authentication can be set for each user. The choice of authentication method

will depend on the IT environment the users have, the organizations security policies, and

user preferences.

The authentication sequence is clearly shown in the figure 22 .The interaction is

visualized between client and server with respective interactions. After sending connect

request to the server it checks, if the corresponding user is already authenticated. If the

server sends reply by stating the authorization is needed then the client sends the required

credentials to validate against the user. There after the server checks and creates the

session ID for that particular session. There by the user is authenticated to send further

29 http://en.wikipedia.org/wiki/LDAP

5 System Design

 50

requests and gets the corresponding replies from the server. Finally after logging out

request from the client the server will closes the session ID by making it inactive and

deleted further.

Figure 22: The Sequence diagram of a session

5 System Design

 51

5.3.5 Document Management Module

The figure 23 shows the class diagram, which represents the basic building blocks of

Document Management System in object-oriented way. It is more useful in illustrating

relationships between classes. Aggregations and associations are all valuable in reflecting

composition and connections respectively.

Figure 23: DMS Class Diagram

5 System Design

 52

 User: This class contains the attributes regarding user’s information like
username, password, email and methods for validating password, checking for
permissions and further details.

 DMRole: This class has the defined roles of the system and their descriptions. It is
the central place to the required roles.

 DMRoleUser: This class is an associative class, which relates the User and
DMRole classes. It works as an intermediate linking class.

 DMRoleMapping: This class has definitions of the permissions for all actions
related to DMRole class, like whether download, creation, updating and deletion
of the document is allowed or not for particular role.

 Document: This has primary importance for assembling the total information
required for the document object. This class consists of attributes like document
title, creation date, document size, description and corresponding properties to
provide encapsulation for the attributes. The document class is aggregation of
Status, Type and Author classes.

 Status: After creation of the document it undergoes different levels of
verifications and attains corresponding information named as status. This class
consists of necessary attributes and functionality required for the storing and
retrieving of status of the document. This class has one-to-many relationship with
the Document class because many documents can have single status.

 Type: In general the system can handle different types of documents. All these
types have to be clearly specified and stored for better understanding of the
document. This class has many-to-one relationship with the Document class as
many documents correspond to single type. In fact there is no need of having
separate Type class. One can keep this into the document class itself, but the
application is designed based on persistent entities. It will be easier if the classes
reflects the tables in the database

 Author: The class consists of necessary attributes and methods for storing and
retrieving the information regarding the author of the document. This class has
one-to-many relation with the Document class because many documents can
belong to single author and vice versa.

 DMRoleDocument: This is an Association Class for DMRole and Document
classes. It provides necessary interlinking between these two classes.

 Folder: The Folder class consists of attributes like folder ID, name and Parent ID.
Any folder can have sub folders for the required depth. The relationship has to be

5 System Design

 53

strongly preserved with respect to child and parent folders. This class has one-to–
many relationship with Document class as many documents correspond to single
folder. This class exhibits composite relation with Document class because the
deletion of folder must include the deletion of its contained documents as well.

5.3.6 Workflow of the Document Management System

The figure 24 shows the basic workflow regarding download activity. When the user

wants to download his required document, the system undergoes certain series of actions

beginning from the start operation and then verifying the corresponding download rights

in the database. If the user has corresponding rights then it gets the document stored path

from the database otherwise it shows the message corresponds to the denial of the

download activity and its possible reason. After having the download path, it issues

download command to the subversion, where the physical documents are stored. Finally

it brings the required document and saves it in the local specified folder.

This workflow clearly shows how the document management system, database and

subversion work together to achieve required task. The system follows the similar flow

for other activities like uploading and deletion of the document.

Figure 24: Download Activity Diagram

5 System Design

 54

5.3.7 Document Management System Interactions

The interaction of various functionalities in the document management system is well

viewed by the Sequence diagram shown in the figure 25. In this figure one can have

different actors like user, subversion, database and document management system itself.

The series of interactions and their corresponding replies are well shown here.

The parallel vertical lines shown in the sequence diagram gives the information regarding

different processes or objects that live simultaneously and horizontal arrows gives the

messages exchanged between them .This brings the specification of simple runtime

scenarios in a well structured graphical manner

All the interactions shown in the figure 25 corresponds to the happy path in which one

assumes every action is performed without any allegations.

 Uploading the documents: When a user tries to upload document, corresponding
right is checked by system with the help of database .If the database returns true
then the systems asks subversion to set the document and then system retrieves
the version number from subversion and stores it in the database, thereafter the
system shows success message to the user.

 Download the documents: The primary actor “user” initiates the download
process and corresponding message is passed to the system. The system will
initiates the verification request to the database and waits for its reply. When the
positive reply is fed by the database to the system then it sends the set document
request to the subversion, there by it downloads the corresponding document with
respective success message.

 Creation of folder: The sequence of interaction corresponding to the creation of
folder is initiated by the user request. Now the system will sends the request to the
database in order to verify the respective rights against the corresponding user and
waits for its reply. After receiving positive reply from the database, the system
sends once again request to the database for the creation of the folder object. After
successful creation of the folder object in the database it sends the success
message to the user by confirming the creation of folder.

In the document management system database is used for creation of folder object and

subversion to have actual document and the relationship between folder and its

corresponding documents is well preserved in the database table with the help of

document and folder ID’s.

5 System Design

 55

 Figure 25: Sequence diagram for various functionalities in System

CHAPTER 6: IMPLEMENTATION

6.1 Modular Based Approach

The development of the whole system is modular based, which is part of Domain-driven

design principles (31). A module is a group of features and functionality in the

application. Modules help to organize large and complex domain logic into smaller and

clearer units. In this application there is a core module, which contains the core

functionality of the framework, web module to finally deploy on the server and the

document management module which contains the implementation.

Figure 26: Modular View of the System

In the figure 26, it is clear to see the whole solution of the project with its corresponding

modules. The functionality corresponding to the implementation goes into the module

named Document Manager. Module named Tests contains the test scripts corresponding

to the project and the module ServerControls is for some common controls needed for the

whole framework. Similarly module named Flash has the functionality to use flash

technology in the system.

6 Implementation

 57

6.2 Layers Based Approach

The application will be easier to maintain, when it is structured in to different layers with

separate concerns. Here the module mainly consists of three layers which are

 Presentation: This layer holds everything corresponding to the user interface of
the application- the buttons, links and other controls that a user can click and
interact while using the application

 Business Logic: This is the place for the rules of the application. It will consist of
core functionality related to the document management module.

 Data Access: This layer is responsible for connecting to the data source and
interacting with the data that is stored in that place. In this case the data source
could be a database or subversion. In this layer the system is using NHibernate as
a data persistence engine (31).

6.3 Model-View-Controller Pattern

This is a software architectural pattern, which isolates domain logic from the user

interface and permits individual testing and development of each concern. The core

phenomenon is described as follows

Figure 27: Model-View-Controller Pattern

The figure 27 clearly shows the three different parts names as Model, View and
Controller (32).

 Model: The model is a direct representation of the business logic. It manages and
notifies the information changes to the observers

6 Implementation

 58

 View: The view consists of .aspx and .cs files of the webpage. These files are
responsible for defining the physical items that a user interacts in the web
application. They are responsible for receiving the various events that a user
raises while navigating through the site. The handled events must be passed
immediately to the controller rather being handled in the view. It is the
responsibility of presenter to handle each event. The controller will have the total
control over the view.

 Controller: The controller is responsible for indirectly handling the events raised
by the view and directly controlling what the view displays. It is also part of
controller to communicate with the Model in order to access domain objects.

In the figure 28, it is clearly shown that the module is structured similar to the Model-

View-Controller Pattern. The folder named Domain contains the business logic and

contains the domain objects. The folder Web is similar to the view in the pattern, it

consists of web controls, pages, style sheets and graphics related to the project. The file

named DocumentManagerModule.cs is mostly similar to the controller. It contains or

delegates functionality that doesn’t belong in the .ascx controls or .aspx pages that are in

module.

Figure 28: Inner view of the Document Management Module

6 Implementation

 59

Figure 29: Contents of Domain and Web Folders

The figure 29 has in depth view of Domain and Web folders. Here one can see all the

files corresponding to the business logic in the Domain folder, which are having .cs

extension. When one observes clearly, every domain class has also another file with

similar name but with .hbm.xml extension. These XML files are called as NHibernate

mapping files which plays an important role in storing and retrieving the domain objects.

These files contain the information about how to persist the business classes.

The Web folder consists of two types of files with .aspx and .ascx extension. The files

with .aspx extension are also known as web forms and contains the static (X) HTML

markup, as well as markup defining server side Web Controls and User Controls where

all the required static and dynamic code is placed. In the application the dynamic code is

placed in another file with same name but having .aspx.cs extension. This style is called

6 Implementation

 60

as code behind model where one gets clear separation between HTML tags and dynamic

code. The other type of files is having .ascx extension, which are called as user control

files. These user control files are containers to put markup and web server controls. User

control files are much similarly organized as web forms but the key difference is user

controls cannot run as a stand-alone files. Instead one must add them to existing

ASP.NET (26) pages.

6.4 NHibernate Mapping

In the figure 30, it is clearly shown the basic structure of a mapping file Document class.

This mapping file plays key role for retreiving and persisting the corresponding object in

the database. In order to understand the functionality, it is necessary to know the

metadata written in the XML file. The <hibernate-mapping> root element consists of all

mapping definitions. The <class> is nested inside the root element, which defines the

mapping of an entity class. The attribute name inside the <class> element indicates fully

qualified name of the persistent class. The attribute table determines the name of the

target database table in which the objects of this entity class are persisted. The attribute

lazy enables or disables lazy fetching of associated objects.

The <id> element determines the object identifier and its corresponding primary key

column in the table. This element also specifies how identifiers are generated for new

instances of the class.

The <property> element maps a primitive property of the class, except for the identifier,

to a particular column. The attribute name refers to the property name and column

specifies the table column in which the property is persisted.

The next important concept to observe is mapping associations. The <many-to-one>

element maps a many-to-one relationship. A relationship is called many-to-one when

multiple instances of a class are associated with a single instance of another class. This

relationship is usually carried out in the database by defining a foreign key in the many-

class table which points into the primary key of the one-class table. The attribute name

determines the name of the property inside the many-side class, representing the

6 Implementation

 61

associated object (the one side). The class attribute represents the class name of the

associated object. The default value is the property type determined by reflection. The

attribute column specifies the foreign key column in the many-side table that points to the

primary key of the one side.

<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"
 namespace ="Cuyahoga.Modules.DocumentManager"
 assembly ="Cuyahoga.Modules.DocumentManager">

 <!-- Mappings for class 'Document' -->

 <class name="Document" table="cm_documents" lazy="true">

 <!-- Identity mapping -->
 <id name="docID">
 <column name="doc_ID" />
 <generator class="native" />
 </id>

 <!-- Simple mappings -->

 <property name="docTitle" column ="title" />
 <property name="docDate" column ="date" />
 <property name="docSize" column ="size" />
 <property name="docPath" column ="path" />
 <property name="docDescription" column ="description" />
 <property name="docFilderID" column ="folder_ID" />

 <!-- many-to-one mapping: Folders,Status,Types,Authors-->

 <many-to-one name="Folder" class="Folder" column="folder_ID"
cascade="save-update" />

 <many-to-one name="Status" class="Status" column="status_ID"
cascade="save-update" />

 <many-to-one name="Type" class="Type" column="type_ID"
cascade="save-update" />

 <many-to-one name="Author" class="Author" column="author_ID"
cascade="save-update" />

 </class>

</hibernate-mapping>

Figure 30: Sample NHibernate Mapping File

6 Implementation

 62

6.5 Application Configuration

The configuration setting corresponds to the whole system is described in the web.config

file. It is worthwhile to know the few important elements in the configuration file. This is

XML based text file. At runtime ASP.NET uses the configuration information provided

here to compute the configuration setting for each individual resource.

The connection to the database is described in the configuration file as follows

<configuration>
 <properties>
 <!-- Database -->

 <!-- SQL Server settings -->
 <connectionString>server= \SQLEXPRESS;database=cuyahoga;Integrated
Security=True</connectionString>

<nhibernateDriver>NHibernate.Driver.SqlClientDriver</nhibernateDriver>

<nhibernateDialect>NHibernate.Dialect.MsSql2000Dialect</nhibernateDiale
ct>
 </properties>

</configuration>

The <configuration> element acts as a root element. The sub element <properties>

describes the different setting for the connection of database. In this case the connection

is with MSSQL Server. Due to use of NHibernate as a data persistence engine, one can

literally connect to any database on their wish. The <connectionString> element is used

to specify the type of database server , name and security mechanism. The

<nhibernateDriver> element is used to declare the type of Sql driver.

The other important aspect to observe is the configurations settings of inversion of

control container, which is castle framework in this case.

<configuration>
 <configSections>
 <section name="log4net"
type="log4net.Config.Log4NetConfigurationSectionHandler,log4net" />
 <section name="castle"
type="Castle.Windsor.Configuration.AppDomain.CastleSectionHandler,
Castle.Windsor" />
 </configSections>

</configuration>

6 Implementation

 63

Configuration section handler declarations appear between <configSections> and

</configSections> tags. Each declaration contained in a <section> tag specifies the name

of a section that provides a specific set of configuration data and the name of the .NET

Framework class that processes configuration data in that section. Here Castle Windsor is

the Inversion of Control container and log4net is the tool used to output the log

statements.

6.6 Overview of the total user interface

The figure 31 shows the total overview of the site. The total site is divided into three

parts; the left plane is to display the hierarchical tree of the document folders. The upper

right part is to view the list of documents in each respective folder. The documents will

be loaded according to the User’s selection of the corresponding folder. The below right

plane consists of further properties of the selected document and the buttons to download,

upload the document by the respective user.

Figure 31: Total overview of the User Interface

6.7 Hierarchical view of the folders

The figure 32 shows the hierarchical view of the folders containing the documents.

According to the requirements there must be parent-child hierarchical relationship among

folders, which is clearly realized in the implementation. The implementation of the

6 Implementation

 64

folders is created on the database rather than creating the actual folders and subfolders in

the file system. This approach helps to have more convenience over folder data and

maintaining its relationships. This also helps for making search across folders very easier.

In general every folder has its ID and name corresponding to the folder and its parent

folder ID. The Documents table constitutes the folder ID element against each document

to materialize actual relationships between folder and its documents. This approach is

better maintainable and productive and easier to implement when compared with the

implementation of reflecting the real folders from the file system.

Figure 32: Folder Hierarchy

6.8 Documents Panel

The figure 33 shows the document panel, which populates the documents upon selection

of the corresponding folder from the folders panel. The document panel is a structured as

a grid view and contains various metadata like title, size and type of the documents.

Apart from the properties it also consists of buttons against each document to perform

particular actions like downloading the document or viewing further more information

about the document.

When the user clicks on View button then the system automatically downloads the

document to the system’s folder.

6 Implementation

 65

Figure 33: Document Panel

In the figure 34 the lower panel is known as document detail-view panel. It brings further

more information about the document, upon selecting the respective button located

against the document. It shows the further information like status of the document and its

corresponding author. Apart from this it also has the button named update version, which

is useful to upload the new version of the current document in the system. It also has a

button named previous version to download the previous version of the document.

Figure 34: Document Detail-View

The figure 35 shows the page which will be redirected upon pressing the button named

update version. This page constitutes two buttons for browsing the local document and

uploading to the server. Upon successful upload the page will displays the success

message

6 Implementation

 66

Figure 35: Updating the New Version

6.9 Checking Role Permissions

The document management system is developed in a way that the user interface view

changes dynamically depending on the role of the users. Upon checking the permissions

of the respective role user interface renders its contents according to the credentials. In

this way one can clear filter unauthorized actions of the users.

Figure 36: Grid view upon Checking Permissions

The figure 36 reflects the facts, when the user selects the particular folder to view its

contents. The corresponding documents are loaded in the document panel. The figure 36

shows that grid of the document panel doesn’t have particular buttons activated against

some documents. This is from the fact that the system checks the credentials of the user

and assigns the respective role. When the role doesn’t have the permission to do

6 Implementation

 67

particular action on the system, the corresponding functionalities are disabled from the

user interface. In this way system is well behaved by justifying the roles importance. The

new technique involved in developing this role mechanism is that, the roles can be

individualized in the document level rather than conventional based folder level.

6.10 Site Administration

The document management system is implemented as a module in the content

management website framework. It is worthwhile to know how to administer the module

by using its user interface.

Figure 37: Website Administration

In the figure 37 it shows how to create initial website for each modules using the

administration webpage. Every new module is considered as sections in the total content

management system. At the time of site creation one can assign the role permissions to

6 Implementation

 68

the corresponding section. The content of the newly created section can be positioned

according to the different available placeholders.

6.11 Role Administration

The roles have great responsibility in the security of the content management system. In

the figure 38 one can see the webpage for roles administration. Here one can observe the

current roles inside the system. Next to each role there is button named edit to change the

properties of the current role. There is also another button named add new role, this

button helps to define the new roles in the current system.

Figure 38: Roles Administration

The figure 39 shows the webpage, which appears after pressing the button to add new

role in the system. Here one can assign the name of the role and its corresponding

permissions. These are checked by using the check box against permission name. Upon

successful assignment of corresponding values the operation needs to be saved using the

save button. The deletion of the role can also be achieved by using the delete button.

Similarly one can cancel the operation using the cancel button.

6 Implementation

 69

Figure 39: Editing the role

6.12 User Management

The figure 40 shows the webpage to manage the users. The addition of new users in the

system is carried out by using the user management screen. Here one needs to add the

name of the user, email, time zone and password. The corresponding roles for the user

can also be given by using check boxes against each role. Upon successful completion of

editing the values one needs to be save the values in order makes the action effective.

Figure 40: Managing the Users

CHAPTER 7: TESTING

7.1 Functionality Testing

In this section, the functionality testing of the software application is shown. The

principle components of the total application are cross checked against the expected

functionality. The main part of the document management system is classified into three

principle components. First one is folder panel, which shows the hierarchical list of the

folders in the system. The second component is document panel, which shows the list of

documents in the system along with the buttons to download and to access more

information about the document. The third component is detail view panel, where one

can see the more detailed information about the documents. All these three are very

major components of the system. Functionality test is thoroughly conducted on these

components. Apart from them there are also other components like login page, document

upload page and roles editing page, which are also tested functionally.

Login page

Upon starting the application login screen appears where one needs to provide the

username, password details. Upon checking the authentication the system permits the

user to access the document management system. The figure 41 shows the login page of

the document management system

Figure 41: Login Screen

7 Testing

 71

The functionality of the login page is checked by providing the wrong username and

password. The system clearly identifies the issue and shows the message as “Invalid

username or password” as shown in the right side of figure 41.

Folder panel

The folder panel must clearly shows the parent and child relationship between the folders.

This functionality is checked across the sample data present in the database. The system

is clearly reflecting the actual view of the folders and their relationships as shown in the

figure 42.

Figure 42: Checking folder panel

Document Panel

When the user selects the respective folder then its contents must be loaded on the

document panel. This functionality is cross checked and it behaved well as expected. The

list of documents is also shown in the document panel along with the buttons to

download the document or to see more information about the documents. All these

functionalities are working as expected which can be shown in the figure 43.

7 Testing

 72

Figure 43: Checking document panel

Details-View panel

Upon selecting the “Info” button from the document panel the system must load the

Details view panel with the data corresponding to the respective document. The system

behaves well in this case and the result is shown in the figure 44.

Figure 44: Checking details-view panel

7 Testing

 73

Checking rights

The major concern is to check the access control of the system. System implemented

Role Based Access Control (RBAC) mechanism to control the access to the system. The

system checks the role of the respective users and changes the functionality according to

his credentials. The major important aspect realized in the application is to have control

the access in document wise rather than just folder wise. In many applications the access

is controlled via just folders, which means the rights are fixed in a way that the user can

have access to the contents of the entire folder or not at all. But in this system rights are

controlled both from the view of folders and also documents this is achieved by having a

better realization of the folders virtually in the database rather than actual creating them

in the file system. The functionality is checked and it is behaved correctly in the

application as shown in the figure 45.

Figure 45: Checking Rights

Updating the version and downloading the document:

The functionality of updating the version and download of the document is checked and it

clearly worked as required. The update page is shown in figure 46 and one needs to press

the “Browse” button to locate the files from the local system and then press the

7 Testing

 74

“Upload” button to send the file to the server. This functionality is clearly behaved as

expected.

Figure 46: Document Update page

7.2 Unit Testing

A unit test can be described as something that tests a specific unit of the program. It

thoroughly tests all aspects of every entity in the application. An example of this would

be test for providing that a class works as expected. It is preferable to run the unit tests in

an isolated environment. This means when testing one object, one must reduce the

dependency on other objects as much as possible, or remove all dependencies preferably.

The total application logic is tested from the beginning of the development and refactored

the code several times until it achieves the desired functionality. The different aspects

that are concerned in the application as part of unit testing are as follows (33):

 Boundaries: Boundary checking is a way of testing the application can handle
itself. Suppose the object handles particular range of values as an input, if it
receives beyond those range of values then it should know itself handling the
situation. This test is to make sure that the code handles itself with regards to the
error.

 Success and failure: The test is a way to prove the code works as it should. In the
first step the test is written to make it pass. Then the second step is to write a test
that should fail. This has set of bounds for the application proving what works and
what doesn’t.

 Functionality: The tests are written in order to test the details of the specific
functionality that the widget should perform. For instance checking that data layer
connect to the database or whether the uploading of the file done correctly.

7 Testing

 75

The application is clearly developed by using unit test in order to have consistency and
better productivity of the code. Unit testing avoided the occurrence of bugs at every stage
of development.

7.3 Evaluation of the Results

The following evaluation is done on the results obtained:

 The login page is working as it is expected and clearly reacting in the error
situations

 The folder panel is clearly reflecting the parent and child relationships of the
folders along with its contents

 The documents panel is loading with the list of documents correctly upon
selecting the desired folder

 The details-view panel is clearly reflecting the further information about the
document selected on the documents panel.

 The uploading screen is clearly functioning and the desired document is sent to
the server.

 The downloading of the document is functioning well as expected.

 The document rights are clearly reflected in the user interface by deactivating or
activating the desired options.

 The loading of the document in the Subversion version control system is carried
out as expected.

CHAPTER 8: FURTHER WORK

8.1 Implementing Rule support for Role based access control

Role based access control plays key role in today’s security mechanism. In general roles

consists explicit authorizations. Big organizations may need quite large number of roles.

The role based access control reduces lot of administrative work, but still it needs some

considerable work to assign the roles to users. Rules are well-known technique for

automation. The access rights can be grouped using the rules instead of roles. Normally

rules consists a condition on the left hand side and one or more actions on the right hand

side, when the expression on the left hand side is true then the actions on the right hand

side will occurs.

Although rules have greater advantage of automation, there are some disadvantages due

to its highly dynamic nature. It is difficult to obtain an overview about who is allowed to

do what. It is also difficult to maintain rules in longer run as it is difficult to foresee the

impact of the given rule. The approach of combining rules with roles brings the finer

mechanism by reducing the disadvantages of the both schemes. In this Rule-based

provisioning of Role Based Access Control (RBAC), one doesn’t need to explicitly

assign the roles. Instead rules using user attributes compute the role assignments of users

dynamically. This can be achieved automatically by taking the information from the

human resource databases, corporate directories or other information bases in the

enterprise (17).

The key advantages of the Rule based provisioning of Role Based Access Control can be

described as follows (17).

 This has the major advantages of the role based access control like role
hierarchies.

 Rules can be used for dynamic role assignments based on the user’s information.
This greatly reduces the administrative work associated with assigning roles
statically

8 Further Work

 77

8.2 Removing reported bugs

Directory Listing: Upon running the project, sometimes login page is not visible instead

the lists of web files are shown in the internet browser. One needs to click the starting

page explicitly in order to view the required webpage. This must be fixed in order to have

redundancy on production server. This bug can be clearly shown on the figure 47.

Upload page link: The link between button named update version in the document

management system main page and the upload document page is broken. There is

redirection problem existed, which needs to be rectified.

Figure 47: Start page Bug

8.3 Remaining Features Implementation

List of Revisions: It is nicer to have a list of all the available versions of a particular

document apart from the latest document. This makes easier to select the required version

of the document by the user.

8 Further Work

 78

Base lining: It is highly advised to have a base lining feature of the documents, where all

the documents up to the particular quality gate can be automatically downloaded and

bundled into the zip folder upon request. There can be also feature to send this documents

folder through the email of the desired client.

Viewing the Document in the Web browser: Currently documents are downloaded to the

user’s computer upon request. Sometimes user may not have the software application to

view the downloaded document. It is nicer to have a feature to see the document directly

in the web browser.

Search feature: Currently the search feature is not attached to the document management

module. This feature is actually resided as a service in the framework. One can easily

attach the document search feature to the application. There is no need to develop this

feature.

8.4 Browsers Compatibility

The web application is checked on internet explorer and Mozilla Firefox. The users may

use many different browsers to have an access over the system. It is advisable to check

the functionality of the web application in many other browsers available on the market.

This compatibility tests will help to avoid any possibility of malfunction in any browser

before deploying to the production server.

8.5 Measuring Stress of the Web application

One must employ good optimization methods to handle the stress on the web application

due the high number of concurrent users. There are many tools available on the market to

measure the stress level test on the web server. Without having proper planning about the

usability of website it may leads to the slower performance in the access of web pages. At

the end of the road performance plays key role in the success of any web application.

CHAPTER 9: CONCLUSION

In this project a web application is designed and implemented for storing and retrieving

the documents along with their metadata by having security mechanism as role based

access control. The system stores the documents of the users along with the document

and user’s information. This is created as a web application, where users can access to

their documents from their local system irrespective of their location with the help of

wide varieties of web browsers. The total system is carefully designed and implemented

using sophisticated security architecture with the help of role based access control

mechanism. Every component of the total system is carefully selected depending on

many criteria’s like cost reduction, extendibility and maintainability. During the whole

process of development the following tasks are accomplished.

The total database is divided in to two parts having subversion for the actual documents

and the relational database for the metadata corresponding to the documents and the

user’s information. This division clearly helps for having better search over the system.

The storage space complexity involved in storing the documents are clearly solved using

the versioning control system named subversion to store the raw documents.

The database persistence layer is realized using data persistence engine named as

NHibernate, which brings the capability to use most of the relational databases upon

selection. Layering concept helps for the cleaner separation of the code. The total system

is designed on enterprise scale according to the domain driven design principles in order

to attain better future extendibility and maintainability.

The system’s security mechanism is implemented using widely accepted Role Based

Access Control mechanism. This mechanism is well suited with the requirements of the

system. The total access control mechanism is realized practically according to the

application needs.

The tree view of the folders is virtually created from the values in the database rather than

really creating the folder in the file system of the server. This technique clearly helps for

better maintainability of the parent and the child folders.

9 Conclusion

 80

The total list of documents along with their metadata is clearly visible in a grid view to

the user via the friendly to use user interface. The available functionality or options of the

user interface is dynamically changed according to the calculated roles from the user’s

credentials.

 At each and every stage of development unit-testing is employed in order to employ test-

driven development techniques.

Further work involves solving the reported errors, implementing remaining features and

browser’s compatibility is clearly specified in the chapter named further work.

 81

REFERENCES

1. Role Based Access Control for the World Wide Web. John F. Barkley, Anthony V.
Cincotta,David F. Ferraiolo, Serban Gavrilla,D. Richard Kuhn. 1997. p. 2.
2. MATHEU, NURIA FORCADA. Life Cycle Document Management System For
Construction. 2005.
3. Document Management System. wikipedia. [Online] [Cited: November 10, 2009.]
http://en.wikipedia.org/wiki/Document_management_system.
4. AIIM. [Online] [Cited: Febraury 5, 2010.] http://www.aiim.org/.
5. CONTROL MECHANISM FOR INFORMATION SHARING IN AN INTEGRATED
CONSTRUCTION ENVIRONMENT. M. Sun, G. Aouad. 1999. p. 4.
6. Control, Role-Based Access. David F. Ferraiolo, D. Richard Kuhn, Ramaswamy
Chandramouli. s.l. : ARTECH HOUSE, 2007.
7. ALPINE mobile media solutions. ALPINE GERMANY. [Online] http://www.alpine.de/.
8. INotion. [Online] https://inotion.alpine.de/.
9. I-logix. Wikipedia. [Online] [Cited: December 10, 2009.]
http://en.wikipedia.org/wiki/I-Logix.
10. Alpine Selects I-Logix iNotion Portal for Process Improvement Project. Embedded
star. [Online] [Cited: January 15, 2010.]
http://www.embeddedstar.com/press/content/2004/9/embedded16295.html.
11. An Adaptive Document Version Management Scheme. Boualem Benatallah,
Mehregan Mahdavi, Phuong Nguyen, Quan Z. Sheng, Lionel Port, Bill McIver.
12. Subversion. Subversion. [Online] [Cited: November 29, 2009.]
http://subversion.tigris.org/.
13. Comparision of revision control software. wikipedia. [Online] [Cited: December 20,
2009.] http://en.wikipedia.org/wiki/Comparison_of_revision_control_software.
14. Intro to Distributed Version Control (Illustrated). Better Explained. [Online] [Cited:
January 5, 2010.] http://betterexplained.com/articles/intro-to-distributed-version-control-
illustrated/.
15. Ben Collins-Sussman, Brian W. Fitzpatrick, C. Michael Pilato. Version Control
with Subversion.
16. Role-Based Access Control. Ferraiolo, D., and D. R. Kuhn. 1992.
17. Rule Support for RoleBased Access Control. Axel Kern, Claudia Walhorn. 2005.
18. iBATIS, Hibernate, and JPA: Which is right for you. Javaworld. [Online]
http://www.javaworld.com/javaworld/jw-07-2008/jw-07-orm-comparison.html?page=6.
19. Microsoft .NET. [Online] http://www.microsoft.com/net/.
20. dotnetnuke. [Online] [Cited: December 20, 2009.] http://www.dotnetnuke.com/.
21. CUYAHOGA FRAMEWORK. [Online] http://wiki.cuyahoga-
project.org/BaseArchitecture.ashx.
22. Apache HTTP Server Project. [Online] [Cited: December 3, 2009.]
http://httpd.apache.org/.
23. NHibernate Forge. [Online] [Cited: November 15, 2010.]
http://nhforge.org/Default.aspx.
24. PostgreSQL. [Online] [Cited: November 2, 2009.] http://www.postgresql.org/.
25. castle project. [Online] [Cited: October 20, 2009.] http://www.castleproject.org/.

 82

26. ASP.NET. [Online] http://www.asp.net/.
27. Seddighi, Ahmad Reza. Spring Persistence with Hibernate. s.l. : PACKT
Publishing, 2009.
28. PIERRE HENRI KUATE, TOBIN HARRIS, CHRISTIAN BAUER, GAVIN
KING. NHibernate in Action. s.l. : Manning, 2009.
29. The C# Language. [Online] http://msdn.microsoft.com/en-us/vcsharp/aa336809.aspx.
30. SharpSvn Namespace . sharpsvn. [Online] [Cited: November 8, 2009.]
http://docs.sharpsvn.net/current/.
31. Nilsson, Jimmy. Applying Domain-Driven Design and Patterns: With Examples in
C# and .NET. s.l. : Addison Wesley Professional, 2006.
32. Model-view-controller. wikipedia. [Online] [Cited: December 10, 2009.]
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software.
33. Appendix B Test-Driven Development and Continuous Integration. Packt Publishing.
[Online] [Cited: Febraury 4, 2010.] https://www.packtpub.com/sites/default/files/4787-
Appendix-B-TDD-and-Continuous-Integration.pdf.

 83

APPENDIX

This Master report contains an appendix of Master thesis in PDF-format, Source Code,

Sample Database and Installation help file on a CD. This Appendix is deposited with

Prof. Dr.rer.nat Hans-Jürgen Hotop

 84

 Declaration

I/we declare within the meaning of section 25(4) of the Examination and
Study Regulations of the International Degree Course Information
Engineering that: this Master report has been completed by
myself/ourselves independently without outside help and only the defined
sources and study aids were used. Sections that reflect the thoughts or
works of others are made known through the definition of sources.

Hamburg, June 7th 2010 ---

Subhakara Valluri

