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Abstract

In this CFD study, the variation of the parameters of the dual time-stepping

method implemented in the DLR-Tau Code for the computation of unsteady simula-

tions are investigated. Two dimensional and three dimensional cases were calculated

to �nd the best combination of parameters for the acceleration of the simulations in

terms of calculation time. With the 2-D Cases (Pitching oscillation of a NACA 0012

airfoil and laminar �ow over a circular cylinder), it could be proven, that by using

a variation of the time steps from a quick parameter setting to an accurate setup,

a reduction of almost 50% in the calculation time is achievable without observing

a major impact on the accuracy of the relevant force coe�cients versus the use of

a constant time step with a considerable number of inner iterations. Furthermore,

advantages of the initialization of the �ow through a steady-state simulation can be

observed especially for the circular cylinder case. The experiences gained from the

2-D cases were applied to the 3-D cases (Pitching oscillation of a transport aircraft

con�guration DLR-F12 and a rotating installed AGARD propeller). The results

obtained for the 3-D Cases are in agreement with those of the 2-D Cases, as a re-

duction of the calculation time by almost 50% could be achieved. Analogous to the

cylinder case, the installed propeller case shows the advantages of the initialization

of the �ow with a steady-state simulation, which leads to a notable acceleration of

the convergence.
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Motivation

Computational Fluid Dynamics (CFD) has become an established design and anal-

ysis tool in aeronautical engineering. Rapid advances in the required computer

hardware as well as in the algorithms and methods employed have led to this dis-

ciplines wide applicability for a signi�cant amount of the �ight regimes of interest

in the aerospace industry. Modern CFD codes, such as the DLR TAU-Code [16],

have been thoroughly validated through the comparison of numerical results with

wind tunnel and �ight test data and have achieved a high degree of maturity. The

increasing use of CFD in aircraft design allows for relatively quick trade studies on

aircraft con�guration variations and greatly helps in the optimization of the �ight

vehicles performance characteristics.

CFD is based on the numerical solution of the Navier-Stokes equations, which are

a system of non-linear equations applicable to viscous �uid �ows. For the types of

�ows of interest in aerospace no closed-form solution of these so-called conservation

laws are available. Thus an iterative solution approach using so-called computa-

tional grids, which discretize the �ow domain of interest, is necessary. Due to the

aerospace industries push for simulation methods that allow for increasing �delity

and geometric complexity, unstructured CFD methods like the DLR TAU-Code were

developed [16]. Thanks to the �exibility of these codes with respect to the types of

elements permitted in the computational grid, the previously quite time-consuming

process of grid generation for structured CFD methods can be automated to a great

extent and high-quality meshes are obtained in a much quicker time-frame. However

the algorithms needed to be able to compute �ows using these unstructured grids are

inherently less e�cient than those applicable for structured CFD solvers. Coupled

with the desire to analyze more and more complex geometries, this can lead to quite

substantial computational costs and turn-around times, making e�cient numerical

methods and approaches a necessity.

Recently, the simulation of unsteady �ow phenomena is becoming progressively

more important to the aerospace industry [17], [15]. This trend is driven in part

12



MOTIVATION

by the continuously increasing use of numerical methods in aircraft design beyond

the hitherto typical design point �ight conditions towards the edges of the �ight

envelope. Here unsteady �ow separation phenomena occur, the understanding of

which can be vital to improve the o�-design performance of �ight vehicles. The

move towards increasing geometric complexity and �delity in the simulations also

makes the treatment of control surface de�ections and maneuvers, both coupled

with unsteady �ow phenomena, an area that will become an important capability

for industry [21]. Furthermore, the recent renewed interest in propeller propulsion

for civil aircraft due to this powerplants superior e�ciency versus the turbofan leads

to the need for an unsteady analysis of the aerodynamics [22], [23].

While an e�cient and established time-accurate solution scheme for the CFD

simulation of such �ows based on the unsteady Reynolds-Averaged Navier-Stokes

equations (uRANS) exists in the dual time approach [8], the computational costs of

these types of computations are still quite high and typically beyond the turn-around

times required in the aerospace industry. Despite the continuous performance im-

provement of computer hardware and the use of large-scale parallel compute clusters,

it is nevertheless essential to develop and establish an e�cient approach to unsteady

CFD simulations through the use of appropriate algorithms, models and settings

[17], [15].

In the scope of this thesis, a number of 2D- and 3D-test cases from literature [12],

[18], [19] are numerically investigated to determine an optimal setting of parameters

of the dual time stepping scheme as implemented in the DLR TAU-Code with the

aim of �nding a good balance of computational cost and solution quality.

Tasks

The following tasks are to be performed in this thesis:

1. Familiarization with the CentaurSoft Centaur mesh generation software and

the DLR TAU-Code

2. Selection of the preferred 2D- and 3D-test cases for the parameter study from

literature

3. Generation of hybrid meshes for the selected 2D- and 3D-test cases

4. Reference uRANS simulations for the selected 2D and 3D-test cases

13



MOTIVATION

5. uRANS computations with variations of the relevant parameters of the dual

time method

6. Comparison and validation of the numerical results

7. Analysis of the impact of the parameter variation on solution accuracy and

computational cost

8. Establishment of guidelines and recommendations for the e�cient and accurate

CFD simulation of unsteady �ows with the DLR TAU-Code

The results of this study are to be documented in a detailed report according to

the guidelines set for master theses. The report is to be submitted both in electronic

form on a CD or DVD as well as in a form suitable for reproduction and will remain

the property of DLR.

Supervising Tutors

Deutsches Zentrum für Luft- und Raumfahrt e.V.

Institut für Aerodynamik und Strömungstechnik, Abt. Transport�ugzeuge

Prof. Dr.-Ing. habil. C.-C. Rossow

Dipl.-Ing. A. Stuermer
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Duration: 6 months
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Introduction

The German Aerospace Centre (DLR) (German: Deutsches Zentrum für Luft- und

Raumfahrt e.V.) is the national research center for aeronautics and space �ight of

the Federal Republic of Germany. Its extensive research and development projects

are included in national and international cooperative programs. In addition to

its research projects, the DLR is the assigned space agency of Germany bestowing

headquarters of german space �ight activities and its associates. Its mission is

the exploration, application, and assessment of advanced aerodynamics and �ow

technologies for e�cient air and space transportation [33].

The DLR Institute of Aerodynamics and Flow Technology is a leading research

institute in the �eld of aerodynamics/aeroacoustics of airplanes and aerothermo-

dynamics of space vehicles. It has two main sites at Braunschweig and Göttingen

and has a division at Cologne. The institute coordinates its e�orts with the Ger-

man/European Aerospace industry and with a large number of universities. It is

acting as a link between the basic research at the universities and industrial appli-

cation. This results in a large number of cooperative national/European research

projects [33].

One of the investigation �elds of the DLR is the numerical aerodynamic analysis

of modern commercial and transport aircraft. For this purpose, a tool for the simu-

lation of the �ow phenomena around an aircraft-con�guration was developed. The

DLR TAU-Code developed in the Institute of Aerodynamics and Flow Technology

is a �nite-volume Euler/Navier-Stokes solver which allows the simulation of the �ow

around complex geometric con�gurations. This code has been thoroughly validated

through the comparison of numerical results with wind tunnel and �ight test data

and has achieved a high degree of maturity [16].

In most �uid dynamics applications, unsteady �ow is a natural phenomenon and

steady-state modeling is just a simpli�cation of the real physics. As computing

power increases, the number and complexity of unsteady �ow simulations grows,

too. While an e�cient and established time-accurate solution scheme for the CFD
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INTRODUCTION

simulation of unsteady �ows based on the uRANS-equations is implemented in the

Tau-Code [8], the computational costs of these types of computations are still quite

high and typically beyond the turn-around times required in the aerospace industry.

The purpose of the present study is to analyze the parameters for the acceleration of

unsteady simulations with the use of the dual time stepping method. The method

is based on an implicit scheme which utilizes a pseudo-time step for the temporal

discretization. The e�ciency of the method depends on the balance between time

steps and inner iterations for each step. An optimization of these parameters to

reduce the time needed for the calculations is required. In the present Master thesis

several 2-D and 3-D con�gurations are computed with the purpose of �nding the

best setting of parameters for the optimization of the method.

The �rst part of this report deals with the theory of the numerical solution of the

Navier-Stokes equations. The spatial as well as the temporal discretization of the

equations used by the DLR Tau-Code for the calculations in the present investigation

are described. These include the integral form of the governing equations for static

and moving grids, the Finite Volume Method for the spatial discretization, the

Central Di�erence Scheme including Arti�cial Dissipation for the calculation of the

inviscid �uxes, and the description of the temporal discretization by means of the

Dual Time-Stepping Scheme. For all the numerical computations the one-equation

Spalart-Allmaras turbulence model with Edwards modi�cation [9] is used. Anyhow,

due to the focus of this project on the temporal discretization method, no detailed

description of the model is provided here. For more information about the Spalart-

Allmaras turbulence model refer to [25] and [6].

The second part involves the investigation of the parameters for the acceleration

of unsteady simulations with the evaluation of two standard 2-D cases of unsteady

�ow, and the insights gained are applied to two 3-D cases. The �st 2-D case is a

NACA0012 airfoil with a periodic oscillating movement around the pitch axis located

at 25% of the chord. The second case is the analysis of the �ow over a blunt body

with cylindrical circular area. The third case deals with the calculation of a modern

transport aircraft con�guration (DLR-F12) simulating a periodic oscillating pitch

movement. Finally, the fourth case focuses on the simulation of a rotating AGARD-

propeller mounted on a wing section.
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Chapter 1

Flow solver and Grid generation

1.1 DLR Tau-Code

The DLR-TAU-Code developed in the Institute of Aerodynamics and Flow Technol-

ogy is a �nite-volume Euler / Navier-Stokes solver working with hybrid, unstructured

or structured grids. The code is composed of three independent modules: the pre-

processing module, the solver and the grid adaptation module. The preprocessing is

decoupled from the solver in order to allow grid partitioning and calculation of the

metrics on a di�erent platform than used by the solver. This provides the possibility

to run the solver independently, which is in terms of CPU-time requirements the

most critical part of the system. Thus it is possible to run large scale calculations

also on distributed memory machines with limited memory on each node. The third

module is for grid adaptation. It detects regions with insu�cient grid resolution and

performs local grid re�nement. The initial solution is interpolated onto the adapted

grid. Although just the preprocessing- and solver modules are used in the present

project, a brief description of the three modules including the adaptation module is

provided in this chapter.

1.1.1 Preprocessing Module

The governing equations are solved on a dual grid of control volumes, which has to

be determined from the initial primary grid.

For multigrid computations, coarse grids are constructed by agglomerating the

control volumes of the dual grid in order to create a new grid of coarser control

volumes. The coarse grid control volumes can be fused again in order to achieve an
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even coarser grid.

For parallel computations the initial grid is partitioned into as many sub-domains

as processors will be used. Only a simple initial partitioning is employed, which di-

vides the grids according to the point coordinates. Grid points from neighboring

domains connected by edges which have been cut by the partitioning are stored in

addition to the points owned by the domain. The variables for these additional

points have to be transferred from the corresponding domain. If this is guaranteed

by the communication each domain can be computed independently. The commu-

nication tables are set up in the preprocessing to ensure this feature.

In order to enable the vectorization of the code in each sub domain a coloring

algorithm is used. Looping over the colors, eliminates the possibility that two edges

sharing a common endpoint are processed within the same vector; thereby reducing

memory bank con�icts.

1.1.2 Flow Solver

The �ow solver is a three-dimensional parallel hybrid multigrid code. It is based on

a �nite volume scheme for solving the Reynolds-averaged Navier-Stokes equations.

The �ow variables are stored in the vertices of the initial grid. The temporal

gradients are discretized using a multi-step Runge-Kutta scheme. For accelerating

the convergence to steady state a local time-stepping concept is employed. The

calculation of the inviscid �uxes is performed using either, a central method with

scalar or matrix dissipation, or alternatively an AUSM (Advection Upstream Split-

ting Method) or a Roe type 2nd-order upwind scheme. The gradients of the �ow

variables are determined by employing a Green-Gauÿ formula. The viscous �uxes

are discretized using central di�erences.

For turbulence modeling, the Tau-Code provides two classes of turbulence models:

The RANS turbulence models and the DES models (coupling RANS in boundary

layers and LES in separation regions). Several RANS models with various versions

are available: 1-equation turbulence models based on the Spalart-Allmaras model,

2-equation turbulence models based on the Wilcox k-ω model and Explicit algebraic

Reynolds stress models (EARSM) based on the k-ω model. Of these models, the

1-equation Spalart-Allmaras model with Edwards modi�cation [9] is used for all the

calculations performed in the present study.

The data structure provided by the preprocessing allows to run the solver in

several sub-domains in parallel. The only additional work to be performed in mul-

18



FLOW SOLVER AND GRID GENERATION

tiprocessor mode is the communication required to update the point-data for the

additional points. This communication between the di�erent concurrent processes is

carried out using the above mentioned communication tables and the MPI-library.

Since this library supports non-blocking sends and receives, all data to be sent is

copied into send bu�ers and all receive/sends are started together. The communi-

cation is hidden by an interface routine such that inside the solver only calls of this

interface appear in addition.

For time-accurate solutions, a global as well as a dual time-stepping scheme is

implemented. The dual time stepping scheme follows the approach of Jameson [14],

where the Runge-Kutta scheme is slightly modi�ed in order to avoid instabilities

for small physical time-steps. The time discretization can be chosen to be �rst,

second or third order (where a higher order implies increased overhead but also

better temporal accuracy).

For moving or deforming meshes, grid speeds are considered in speci�c �ux cal-

culations and reconstruction schemes.

1.1.3 Grid Adaptation Module

The primary grid can be adapted to the �ow solution by cell division if a better

resolution of the �ow �eld is required in certain regions of the computational domain.

The description given in this section concentrates on tetrahedral and prismatic cells.

Either a residual-based error indicator or an indicator based on the equidistribu-

tion principle can be used to compute a measure for the necessary grid resolution in

the inviscid �ow �eld. The latter indicator (which operates on edges), is however,

also used for viscous �ows.

The adaptation is only employed on tetrahedral or prismatic elements. While

the tetrahedra can be divided along all edges, the prismatic elements are presently

re�ned only on their triangular faces similar to the re�nement of tetrahedra. This

concept leads to the introduction of new wall-normal grid lines through the whole

prismatic layer when a single prismatic element is re�ned. The new grid lines are

de�ned by the mid points of the re�ned edges of the a�ected prismatic elements.

The re�nement strategy used ensures that the quality of the grid is not degraded

by numerous divisions of one edge of a triangle without an according re�nement

of neighboring edges. Since all points introduced by the algorithm are located on

the middle of an edge of the initial grid, interpolating all variables of the �ow �eld

solution to the new points linearly along the edge is a straightforward process.
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A re�nement of the wall-normal grid resolution inside the prismatic layer is

presently not implemented in the automatic procedure. It requires the start of

an additional program that replaces the old prismatic layers by new ones. Thus the

wall-normal marching steps from one cell layer to the next change, eventually also

the number of prismatic layers, both depending on the user input. Wall-normal grid

lines and the local overall height of all prismatic layers are left unchanged. Thus,

also the initial surface triangulation is not a�ected.

1.2 Centaur Mesh Generation Software

For most of the unstructured grid generation requirements, the DLR uses the soft-

ware CentaurSoft [31]. The system consist mainly of two parts: an interactive pro-

gram which reads in CAD data in IGES format and performs some CAD cleaning

if necessary, and the automatic computation of the complete grid.

Centaur also allows the speci�cation of boundary conditions and element sizes

if the user does not prefer the default values [4]. Di�erent parameters control the

surface, prismatic and tetrahedral element sizes. A selection of user de�nable sources

o�er the possibility to generate grids of the desired density in certain areas.

The �rst step after the geometry data from the CAD package has been processed

(via the CAD conversion engine) is to triangulate the portions of the surface from

which prisms will be marched. The surface input �le (*.sin �le) allows the user

to change manually the parameters for the surface grid generation if the default

values do not satisfy the user requirements. Thus values like for instance the overall

stretching ratio, or the element length scale can be manipulated.

The next step after the surface triangulation is to march nodes away from the

body surface to create prismatic elements which normally are used in the so called

Navier-Stokes meshes. These kind of meshes are used to calculate viscous �ows which

need an adapted grid at the vicinity of the wall to allow for a good resolution of

the boundary layer. They are characterized by a structured prismatic or hexahedral

mesh in the vicinity of the wall using an initial marching step size which increases

exponentially after each prismatic layer. The parameters for the initial prismatic

marching step, the number of prismatic layers and the stretching factor, among

other parameters, can be manually modi�ed in the prismatic input �le (*.pin �le).

The remainder of the computational domain (after prisms generation) is �lled

with tetrahedral elements because of the ease with which these elements �ll arbitrary
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volumes in a single block; the parameters for the tetrahedral grid generation are

de�ned by the tetrahedral input �le (*.tin �le).

Centaur allows to introduce sources to re�ne zones which require more resolution

of the solution. The source input �le (*.lin �le) is where user de�ned sources are

speci�ed. Sources are used to add nodes to the mesh in either the mesh generation

or grid adaptation process, where extra resolution is needed, or where automatic

measures (curvature, proximity, and CAD clustering) do not place enough points to

adequately resolve the geometry or �ow features [31]. The Centaur grid generator

allows the user the ability to specify mesh clustering in regions where the mesh would

not automatically cluster due to geometric features or in areas where the user would

like additional mesh clustering. Both geometric (line, sphere, cylinder, hexahedron)

and CAD-based (curve, panel, group) types of sources are supported. The sources

can control the clustering either by specifying a length scale in the source region or

by specifying an additional amount of clustering relative to the preexisting clustering

[31]. Relative sources can also be used to locally coarsen the mesh. Sources can be

used to create anisotropic elements in the surface mesh. Anisotropy allows for a

smaller number of points to be used in directions where the �ow does not vary while

allowing for su�cient clustering in the directions with large �ow gradients. Sources

can also be used to locally control other aspects of the prismatic mesh generation

such as stretching and the number of layers [31].
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Chapter 2

Governing Equations and Spatial

Discretization

CFD methods are based on the fundamental governing equations of �uid dynamics.

They are mathematical statements of three fundamental physical principles:

• Mass Conservation ⇒ Continuity equation

• Momentum Conservation ⇒ Momentum equation

• Energy Conservation ⇒ Energy equation

These principles can be modeled in mathematical form with the so called Navier-

Stokes (NS) -equations. These equations can be simpli�ed by removing terms de-

scribing viscosity to yield the Euler equations. Further simpli�cations, by removing

terms describing vorticity yields the full potential equations. Finally these equations

can be linearized to yield the linearized potential equations [32]. For the types of

�ows of interest in aerospace no closed-form solution of these so-called conservation

laws are available. Thus an iterative solution approach using so-called computational

grids, which discretize the �ow domain of interest, is necessary.

In the present chapter, the NS-equations and the discretization method for the

approximation to their solution are described.

2.1 Navier-Stokes Equations

The NS-equations describe a viscous �ow where the transport phenomena of friction,

thermal conduction, and/or mass di�usion are included. These transport phenom-
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ena are dissipative, i.e. they always increase the entropy of the �ow [2].

The NS-equations can be represented in di�erential or integral form in conserva-

tion and non-conservation form. The integral form of the equations allows for the

presence of discontinuities inside the �xed Control Volume (see de�nition in section

2.3.1). However, the di�erential form of the governing equations assumes the �ow

properties are di�erentiable, hence continuous. This is a strong argument for the in-

tegral form of the equations to be considered more fundamental than the di�erential

form [2].

The conservation and non-conservation form of the equations lend themselves to

the approach using a �nite control volume. This can be �xed in space with the

�uid moving through it (Conservation form or Euler representation) or the control

volume may be moving with the �uid such that the same �uid particles are always

inside it (Non-conservation form or Lagrange representation).

2.1.1 Integral Form of the NS- Equations

Continuity Equation

Conservation form

∂

∂t

∫∫∫
Ω

ρdΩ +

∫∫
S

ρ~V · d~S = 0 (2.1)

Here dΩ denotes the control volume and dS the control surface.

Momentum Equation

Conservation form

x- component:

∂

∂t

∫∫∫
Ω

(ρu)dΩ +

∫∫
S

(ρu~V ) · d~S

=

∫∫
S

(−p~n ·~i+ σn~n ·~i+ σs ~m ·~i)dS +

∫∫∫
Ω

(ρfx)dΩ

(2.2)

y- component:
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∂

∂t

∫∫∫
Ω

(ρv)dΩ +

∫∫
S

(ρv~V ) · d~S

=

∫∫
S

(−p~n ·~j + σn~n ·~j + σs ~m ·~j)dS +

∫∫∫
Ω

(ρfy)dΩ

(2.3)

z- component:

∂

∂t

∫∫∫
Ω

(ρw)dΩ +

∫∫
S

(ρw~V ) · d~S

=

∫∫
S

(−p~n · ~k + σn~n · ~k + σs ~m · ~k)dS +

∫∫∫
Ω

(ρfz)dΩ

(2.4)

Here ~n is a unit vector perpendicular to the in�nitesimal control surface dS and

~m is a unit vector tangent to the surface and pointing in the direction of the viscous

shear stress that acts on the surface. The terms σn and σs represent the normal

shear stress and the viscous shear stress respectively.

Energy Equation

Conservation form

∂

∂t

∫∫∫
Ω

EtdΩ +

∫∫
S

Et~V · d~S =

∫∫∫
Ω

(ρ~̇q + ρ~f · ~V )dΩ

=

∫∫
S

(~̇qc · ~n− p~n · ~V + σn~n · ~V + σs ~m · ~V )dS

(2.5)

Here ~̇q denotes the volumetric rate of heat addition per unit mass and ~̇qc denotes

the heat conduction where:

q̇cx = k ∂T
∂x
, q̇cy = k ∂T

∂y
and q̇cz = k ∂T

∂z

Et represents the total energy inside the control volume
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Et = ρ

(
e+

V 2

2

)
. (2.6)

And �nally the equation of state for the �uid to relate p, ρ, and e. The most common

example is the perfect gas law

p = (γ − 1)cvρT (2.7)

where,

e = cvT (2.8)

γ = cp
cv
. (2.9)

The integral form of the NS-equations in conservative form can be summarized as:

∂

∂t

∫∫∫
Ω

WdΩ +

∫∫
S

F · ndS =

∫∫∫
Ω

QdΩ (2.10)

In Equation 2.10 the �ux density tensor F is composed of the �uxes Fx, Fy and

Fz, which include the viscous (Fv) and convective (Fc) components of the �uxes,

W represents the vector of conservative variables, and Q the source term vector

where,

W =


ρ

ρu

ρv

ρw

Et

 , (2.11)

Fx = (Fcx − Fvx) =


ρu

ρu2 + px

ρvu

ρwu

Etu+ pu

−


0

τxx

τxy

τxz

q̇cx + uτxx + vτxy + wτxz

 , (2.12)
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Fy = (Fcy − Fvy) =


ρv

ρuv

ρv2 + py

ρwv

Etv + pv

−


0

τyx

τyy

τyz

q̇cy + uτyx + vτyy + wτyz

 , (2.13)

Fz = (Fcz − Fvz) =


ρw

ρuw

ρvw

ρw2 + pz

Etw + pw

−


0

τzx

τzy

τzz

q̇cz + uτzx + vτzy + wτzz

 , (2.14)

and

Q =


0

ρfx

ρfy

ρfz

ρ(ufx + vfy + wfz) + ρq̇

 . (2.15)

2.2 Navier-Stokes Equations for Moving Grids

In certain cases, where for instance �uid-structure interaction is investigated or

where store separation is simulated, it is necessary to solve the governing equations

on a moving and possibly a deforming grid [3]. Written in time-dependent integral

form for a moving and/or deforming control volume Ω with a surface element dS,

the NS- equations read

∂

∂t

∫∫∫
Ω

WdΩ +

∫∫
S

(FMc − Fv)dS =

∫∫∫
Ω

QdΩ, (2.16)

where the vector of the convective �uxes FMc becomes on dynamic grids

FMc = Fc − VtW, (2.17)
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with Vt being the contravariant velocity of the face of the control volume. Hence,

Vt = nx
dx

dt
+ ny

dy

dt
+ nz

dz

dt
, (2.18)

here nx, ny and nz denote the components of the outward facing unit normal

vector of the surface dS. The convective �uxes can be written in the form

FMc =


ρVt

ρuVr + nxp

ρvVr + nyp

ρzVr + nzp

 . (2.19)

Furthermore, Vr represents the contravariant velocity relative to the motion of

the grid,

Vr = nxu+ nyv + nzw − Vt = V − Vt. (2.20)

The viscous �uxes and the source term retain the same forms as in Eq. 2.10.

Thomas and Lombard [26] concluded that beside the conservation of mass, mo-

mentum and energy, the so called Geometric Conservation Law (GCL) must be

satis�ed in order to avoid errors induced by deformation of control volumes. In this

case the integral form of the GCL reads

∂

∂t

∫∫∫
Ω

dΩ−
∫∫
dS

VtdS = 0. (2.21)

The CGL results from the requirement that the computation of the control vol-

umes or of the grid velocities must be performed in such a way that the resulting

numerical scheme preserves the state of a uniform �ow, independently of the defor-

mation of the grid [3].

2.3 Spatial Discretization

After choosing the mathematical model, one has to choose a suitable discretization

method for the approximation of the di�erential equations by a system of algebraic

equations for the variables at some set of discrete locations in space and time. The

most important approaches for this purpose, are the Finite Di�erence (FDM) ,
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Finite Volume (FVM) and Finite Element (FEM) methods. Since the DLR Tau-

Code utilizes a FV method due to its suitability for complex geometries as in the

aerospace industry, only the FV method is described in this chapter. A detailed

explanation of the FD method is given in Reference [2], while information about the

FE method can be found in [10].

2.3.1 Finite Volume Method

The Finite Volume Method uses the integral form of the conservation equations

as its starting point. The solution domain is subdivided into a �nite number of

Control Volumes (CVs) , and the conservation equations are applied to each CV.

At the centroid of each CV lies a computational node at which the variable values

are to be calculated. Interpolation is used to express the variable values at the CV

surface in terms of the nodal (CV- center) values. The surface and volume integrals

are approximated using suitable quadrature formulae. As a result, one obtains an

algebraic equation for each CV, in terms of the CV- center and neighbor nodal values

[10].

The surface integrals can be approximated as the sum of integrals over the k

number of faces of the CV. In this form, the second term of Eq.(2.10) is approximated

as

∫∫
S

fdS =
∑
k

∫∫
Sk

fdSk =
∑
k

fk∆Sk, (2.22)

where f is the component of the convective or di�usive �ux vector in the direction

normal to the CV face and Sk the approximation of the k number of face surfaces.

Some terms in the transport equations require integration over the volume of

the CV. The simplest second-order accurate approximation is to replace the volume

integral by the product of the mean value of the integrand and the CV volume and

approximate the former as the value at the CV center:

∫∫∫
Ω

qdΩ = q∆Ω ≈ qpΩ, (2.23)

where qp stands for the value of q at the CV center. Applying equations (2.22)

and (2.23) in (2.10) the approximation of the governing equation can be written as
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d

dt
W = − 1

Ω

[∑
k

Fk∆Sk −QΩ

]
. (2.24)

The term in brackets on the right-hand side is also generally termed the residual of

the continuity, momentum and energy equations. Hence Eq. 2.24 can be abbreviated

as

d

dt
Wi = − 1

Ωi

Ri. (2.25)

2.3.2 Central Di�erence Scheme

The approximations to the integrals require the values of variables at locations other

than the CV centers. To calculate the convective and di�usive �uxes, the value of

the conservative variables and its gradients normal to the cell face at one or more

locations on the CV surface are needed. They have to be expressed in terms of the

nodal values by interpolation [10]. This can be done using the cell-centered scheme,

where the �uxes at the face of the CV can be expressed with Equation 2.26 [3],

(F∆S)i+1/2,j,k ≈ F(Wi+1/2,j,k)∆Si+1/2,j,k, (2.26)

where the conservative variables at the face ~ni+1/2,j of the CV are de�ned as the

arithmetic average of values at the two adjacent cells, i.e.:

Wi+1/2,j,k =
1

2
(Wi,j,k +Wi+1,j,k) (2.27)

The subscripts (i, j, k) denotes the CV- center, (i + 1/2, j, k) the values at the

CV- face, and (i+ 1, j, k) represents the values at the neighboring CV- center.

2.3.3 Arti�cial Dissipation

Since the central scheme would allow for odd-even decoupling of the solution and

overshoots at shocks, arti�cial dissipation has to be added for stability. In this form

the arti�cial dissipation term is added to Eq.(2.26) as follows [3], [14]:

(F∆S)i+1/2,j,k ≈ F(Wi+1/2,j,k)∆Si+1/2,j,k −Di+1/2,j,k (2.28)
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The arti�cial dissipation �ux consists of a blend of adaptive second- and fourth-

order di�erences which result from the sum of �rst- and third-order di�erence oper-

ators.

Di+1/2,j,k =
1

2
α̃[ε

(2)
i+1/2,j,k(Wi+1/2,j,k −Wi,j,k)

− ε(4)
i+1/2,j,k(Wi+2,j,k − 3Wi+1,j,k + 3Wi,j,k −Wi−1,j,k)]

(2.29)

where α̃ describes the scaling of dissipation either scalar dissipation or matrix dissi-

pation. The coe�cients ε
(2)
i+1/2,j,k and ε

(4)
i+1/2,j,k contain shock switches for the second

and fourth order dissipation, and control the amount of dissipation to be added.
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Chapter 3

Temporal Discretization

In computing unsteady �ows, we have a fourth coordinate direction to consider:

time. In general the algorithms for computing unsteady �ows are of two main types,

explicit and implicit. The DLR Tau-Code allows the use of explicit algorithms

like the global time stepping scheme which is based on the k -step low-storage Runge

Kutta scheme (see [14]). Nevertheless explicit methods are subject to severe stability

restrictions. This often limits the time step size for stability reasons to values that

are much smaller than those required to obtain accuracy, hence leading to a large

number of time steps.

Another method for the time discretization, is the implicit dual time stepping

scheme implemented in the DLR Tau-Code. Implicit methods help to bypass the

time step limitations, which is specially important for the simulation of viscous high

Reynolds number �ows.

3.1 Dual Time-Stepping Scheme

The Time-Stepping Scheme parts from the separation of spatial and temporal dis-

cretization of the governing equations. This leads for each CV to a system of coupled

ordinary di�erential equations in time. Recalling Eq. (2.25), the system has to be

integrated in time either to obtain a steady-state solution or to reproduce the time

history of an unsteady �ow. The solution of the equation system for explicit and

implicit methods can be derived from a basic non-linear scheme [3], which reads

(ΩM̄)i
∆ti

∆Wn
i = − β

1 + ω
Rn+1
i − 1− β

1 + ω
Rn+1
i +

ω

1 + ω

(ΩM̄)i
∆ti

∆Wn−1
i (3.1)
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where

∆Wn
i = Wn+1

i −Wn
i (3.2)

stands for the update (correction) of the solution. The superscripts n and (n+1 )

denote the time levels with n representing the present time t and (n+1 ) the time

t + ∆t respectively. The parameters β and ω determine the discretization type

(explicit or implicit) and temporal accuracy.

The dual time-stepping approach is based on the second- order time accurate

version of the basic non-linear scheme in Eq. (3.1). For this purpose β = 1 and

ω = 1/2, hence

3(ΩM̄)n+1
i Wn+1

i − 4(ΩM̄)niW
n
i + (ΩM̄)n−1

i Wn−1
i

2∆t
= −Rn+1

i . (3.3)

In order to solve the system of non-linear equations, a Newton�s method or a

time-stepping methodology can be applied. The time-stepping methodology can be

written as

∂

∂t∗
(
Ωn+1
i W∗

i

)
= −R∗iW∗ (3.4)

where W∗ is the approximation to Wn+1 and t∗ denotes a pseudo-time variable.

The unsteady residual is de�ned as

R∗i (W
∗) = Ri(W

∗) +
3

2∆t
(ΩM̄)n+1

i W∗
i −Q∗i . (3.5)

All terms which are constant during the time-stepping are gathered in a source

term, i.e.,

Q∗i =
2

∆t
(ΩM̄)niW

n
i −

1

2∆t
(ΩM̄)n−1

i Wn−1
i . (3.6)

3.1.1 Explicit Multistage Scheme

The concept of explicit multistage schemes (Runge-Kutta) was �rst presented by

Jameson (see [14]). The multistage scheme advances the solution in a number of

steps (stages) which can be viewed as a sequence of updates according to Eq. (3.4).

An m-stage explicit scheme for the solution of the pseudo-time problem reads:
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W
(0)
i = (W∗

i )
l

W
(1)
i = W

(0)
i −

α1∆t∗i
Ωn+1

i

R∗i (W
(0)
i )

W
(2)
i = W

(0)
i −

α2∆t∗i
Ωn+1

i

R∗i (W
(1)
i )

...

(W∗
i )
l+1 = W

(0)
i −

αm∆t∗i
Ωn+1

i

R∗i (W
(m−1)
i )

(3.7)

where αk represents the stage coe�cients. The stage coe�cients can be tuned to

increase the maximum time step and to improve the stability for a particular spatial

discretization. For consistency, it is only required that αm = 1. Here l denotes the

actual and (l+1) the new pseudo-time level, respectively. The time-marching process

is started either with (W∗
i )
l = Wn

i or with a value extrapolated from previous

physical time steps. It is continued until (W∗
i )
l+1 approximatesWn+1

i with su�cient

accuracy. After that, the next physical time step is conducted. The pseudo-time

step ∆t∗ is computed as

∆t∗ = σ
∆x

|Λc|
(3.8)

where ∆x/ |Λc| represents the time necessary to propagate information over the

cell size ∆x with the velocity Λc. The velocity Λc corresponds to the maximum

eigenvalue of the convective �ux Jacobian. The positive coe�cient σ denotes the

CFL number .
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Chapter 4

2-D Cases

4.1 Case 1: Pitching Oscillation of a NACA0012

Airfoil

The �rst case analyzed is a NACA0012 airfoil (see Fig. 4.1) oscillating in pitch at

transonic speed. The airfoil oscillates around the pitch axis located at 25% of the

chord. The angle of attack α varies in time according to Eq. (4.1)

α(t) = αm + α0sin(2πft), (4.1)

where αm is the mean incidence and α0 is the pitch amplitude, f represents the

frequency and t the time. This expression can be simpli�ed using the DLR Tau-

Code de�nition for the reduced frequency k and the non-dimensional time τ (see

[6]), where

k =
ω · c
U∞

(4.2)

and

τ =
2 · U∞ · t

c
, (4.3)

as

α(τ) = αm + α0sin(kτ). (4.4)
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Here, c represents the chord length and U∞ the free stream velocity.

The physical parameters of the simulation are listed below, as they appear in the

DLR-Tau script:

Reference Mach number 0.755

Angle of attack αm 0.0◦

Fourier coe�cient for rotation pitch α0 2.51◦

Frequency f 62.5 Hz

Reduced frequency for rotation k 0.1628

Reynolds number 5.5 · 106

Reference Temperature 288.15 K

Prandtl number 0.72

Sutherland constant 110.4

Sutherland reference viscosity 1.716 · 10−5

The �ow conditions and the oscillation parameters correspond to the parameters

used in the experiments described in Case CT5 of the AGARD investigation in

Ref. [18]. However, some di�erences need to be noted for the numerical simulation.

The mean angle of attack given in [18] as αm = 0.016◦ is approximated to zero.

This assumption is also performed in [8] where it was con�rmed that this does not

have a major in�uence on the results. The reduced frequency is doubled in order

to remain consistent with the oscillation frequency performed in the experiments,

whose de�nition di�ers from the one implemented in the DLR Tau-Code. The

de�nition of the reduced frequency given in [18] di�ers from the one given in [6] as

follows:

kAGARD =
ω · c

2 · U∞
(4.5)

The geometry of the airfoil was taken from the NACA 4-Digit Series de�nition

with a chord length of 101.6 mm.

Figure 4.1: NACA0012 airfoil geometry
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4.1.1 Grid Generation

The grid generated for the �rst case is a hybrid grid with structured quadrilateral

elements in the vicinity of the wall and unstructured triangles in the far �eld. The

structured grid has an initial layer thickness of 0.0011684 mm with 32 prismatic

layers and a stretching factor of 1.2. This yields a maximum Y +- value of 2.9 at the

leading edge and a minimum Y +- value of 1.0 at the trailing edge of the airfoil (see

Fig. 4.2). The complete input �les used in CentaurSoft for the grid generation are

listed in Appendix A.1. The total grid has 26, 724 points.

a) b)

Figure 4.2: a) NACA0012 hybrid mesh, b) Y + distribution

4.1.2 Numerical Parameters for the Unsteady Simulations

The purpose of the present investigation, is the acceleration of the simulations by

varying the number of physical time steps and the number of inner iterations for each

time step. All other numerical parameters are retained unvaried. A central scheme

is applied for the convective RANS �ux discretization, with scalar dissipation for

stability using the values for the coe�cients ε(2) = 1/2 and ε(4) = 1/64. Temporal

discretization is done using the dual time stepping scheme in combination with

a 3 stage Runge-Kutta scheme. A 3v Multigrid cycle is applied for convergence

acceleration and a CFL number of 1.8 for the calculation of the pseudo-time step

is set. The run is performed using the 1-Equation turbulence of Spalart-Allmaras

with Edwards modi�cation [9]. The numerical solutions are generated based on the

DLR TAU-Code version 2007.1.0. The complete setting of parameters used in TAU

for the simulation are listed in Appendix A.1.

Unless otherwise speci�ed, the default parameters are used for the computations.
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All the calculations were performed on the same Intel Pentium IV Workstation using

a 3.00 GHz processor.

4.1.3 Results

The strategy for the parameter analysis is �rst of all to get a reference solution in

order to gauge the quality of the CFD results. For this purpose a reference calcula-

tion is performed and compared with the experiments and with previous numerical

analysis of a similar case as in Ref. [8] Case 1.1. The �rst calculation can be con-

sidered as the longest calculation with 180 physical time steps per period and 150

inner iterations for each step. Furthermore 5 physical cycles are computed in order

to achieve the periodic state of the solution. Compared to these results, the sim-

ulations employing optimization of the dual-time stepping parameters should not

show dramatic changes in the accuracy but in the time needed for the calculation.

All the calculations are performed beginning from scratch, which means that no

initialization of the �ow through a steady simulation is performed and far�eld con-

ditions are set throughout. For this particular case, an initialization of the �ow does

not represent a real advantage against the simulation without initialization of the

�ow beginning with a restart. This is observed in Figure 4.3 where the results of

a simulation with a steady state initialization of the �ow (red line in the �gure) is

compared with a simulation without initialization of the �ow (dashed black line in

the �gure).

Figure 4.3: NACA 0012 periodic pitching motion with and without initialization of
the �ow
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The results of the simulation show a periodic development of the relevant force

coe�cients after 4 physical cycles. Figure 4.4 shows the CN - values which correspond

to the lift coe�cients plotted as a function of the angle of attack α compared with the

experiments and with the available data from [8] for each physical cycle. The results

obtained agree reasonably well with the experiments in the last half of the cycle and

show slightly greater di�erences in the �rst half of the cycle. This is attributed in

Ref. [8] to an asymmetry in the experimental setup which was observed through a

pronounced deviation of the values from a symmetry line plotted through the Origin

at the coordinates (0,0) (see Ref. [8]). The TAU results compared with Ref. [8]

show a larger amplitude of the CN - values which can be attributed to di�erences

in the computational grid. The grid used in the GARTEUR studies had boundary

layer resolution adapted for Y +- values between 0.3 and 1.0, which represents a �ner

grid in the vicinity of the wall.

a) b)

c) d)

Figure 4.4: CN -α results compared with Ref. [18] and Ref. [8], a) 1st cycle, b) 2nd
cycle, c) 3rd cycle, d) 4th cycle

The di�erences in the amplitude of the lift coe�cients can also be found in the

inverse cP distribution after the 5th physical cycle in Figure 4.5. Here, the position
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a) b)

Figure 4.5: a) -cP distribution after 5 physical cycles b) Isotachs showing the position
of the shock

of the shock in Ref. [8] appears further downstream than seen in the experiments

and the present study.

To ensure that the inner iterations for each physical time step are su�cient, the

convergence history of the density and turbulence residuals as function of the number

of inner iterations are observed. Figure 4.6 shows the density residuals as red line

and the turbulence residuals as black line, as well as the lift convergence history as

the blue line for the �rst quarter of the 4th period. The residuals are reduced by

more than one order of magnitude which ensures a su�cient accuracy of the solution

[3]. It can also be observed that the lift coe�cients converge in each physical time

step creating the typical plateaued distribution of the aerodynamic coe�cients of

an unsteady numerical calculation.

Figure 4.6: NACA 0012 residuals convergence history at the beginning of the 4th
Period
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For the purpose of the parameter analysis for the acceleration of the simulations

with the dual time stepping scheme, the obtained results with these settings show

su�cient accuracy, and can thus be taken as a point of reference in the present case.

Variation of the Relevant Parameters of the Dual Time Step Scheme

In addition to the validation results, 3 more simulations are performed with a varia-

tion of the physical time steps per period. The parameters used for these simulations

are listed in Table 4.1.

time steps
per physical cycle [-]

Variant 1.1 180
Variant 1.2 90
Variant 1.3 45
Variant 1.4 25

Table 4.1: Setting of parameters analyzed for Case 1

The next step of the analysis is to vary the number of inner iterations per time

step. For this, the number of inner iterations are varied until convergence of the

normalized CNmax-values as a function of the inner iterations (n) per time step is

obtained. The reference setting with n = 150 showed a reasonably good conver-

gence of the residuals with a reduction of more than one order of magnitude in each

physical time step, and an acceptable agreement with the experiments. In order

to get accurate results, this reduction should not be less than one order of magni-

tude, otherwise the results would not ful�ll the stability criteria, and they would be

dominated by numerical errors.

Since the real time needed for the calculations depends on the total number

of inner iterations, it is expected that by reducing the number of time steps per

oscillation period, the time needed for the calculation should be also reduced. This

is con�rmed when observing Figure 4.7, which shows the CPU-Time as function of

the number of inner iterations for each variant. The time for the di�erent variants

was normalized by the time t = 19760.3 [s], the total runtime of the simulation per

Variant 1.1. It can be observed that the time is linearly reduced by decreasing the

inner iterations per time step. In Fig. 4.7, Variant 1.4 (black line in the �gure)

shows the cheapest calculation in time compared with Variant 1.1 (red line in the

�gure) showing a reduction of the run time of almost 70% at the settings with the

largest number of inner iterations. Furthermore it can be observed that even setting
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a larger number of inner iterations than the reference, the time necessary for the

calculation would be much lower than the one needed for the reference computation.

Figure 4.7: CPU- time as function of inner iterations per time step (n)

Figure 4.8 shows the deviation of the CNmax results for all the computations

performed. Here the CNmax- values are extracted directly from the 5th period of

the oscillatory lift distribution and depicted as a function of the inner iterations per

time step. For a better analysis of the results, the CNmax- values are normalized

by the CNmax,ref = 0.34857 given in Variant 1.1. Even though Variant 1.4 is the

cheapest in terms of time, it delivers the largest di�erence compared with the other

variants. It shows a notable discrepancy in the CNmax- plot of approximately 2.71%,

at the converged values which are achieved at the largest number of inner iterations,

compared with the reference.

The CN -α diagrams for the settings with the largest number of inner iterations

are depicted in Fig. 4.9. The largest discrepancy in the coe�cients is observed in

Variant 1.4, where the amplitude of the oscillatory lift distribution is larger than

that obtained in the reference. This can be better observed in Fig. 4.10, where the

normalized CNmax- values as function of the time steps per period for the settings

with the largest number of inner iterations are depicted. Here it is clearly seen how

the di�erent setting of parameters vary from each other.

The −cP distribution after 5 cycles do not reveal major di�erences among the

di�erent parameter settings, except for a little �uctuation of the pressure distribution

on the suction side at the position of the shock. Here the values obtained di�er

gradually from one setting to another. The values with the most number of time
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Figure 4.8: CNmax as function of inner iterations per time step (n)

a) b)

c) d)

Figure 4.9: CN -α results for Variants 1.1-1.4 with nmax, a) 1st cycle, b) 2nd cycle,
c) 3rd cycle, d) 4th cycle
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Figure 4.10: CNmax results for Variants 1.1-1.4 with nmax

steps are located closer to the experimental data and Variant 1.4 shows the worst

accordance with the experiments. This is observed in Figures 4.11-a and 4.11-b.

a) b)

Figure 4.11: a)−cP -distribution Variants 1.1-1.4 with nmax, b)Zoom-in on shock
region

Now, in a further test for the acceleration of the calculations, the cheapest pa-

rameter setting in time is combined with a setting which delivers a better accuracy

of the results. Thus, for the initialization of the run, a portion of a quick setting is

calculated, i.e. Variant 1.4 (black line in Figure 4.12-a), and the rest is performed

with an accurate setting, i.e. Variant 1.1 (red line in Figure 4.12-a). As in the other

calculations, a total of 5 physical cycles are calculated.
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With the �rst variant, an initial approximation of the solution is achieved and

initial disturbances are propagated out of the �ow �eld. After this initialization

of the �ow, the second variant improves the quality of the results giving a better

agreement with the reference values (see Fig. 4.12-a). This can also be observed in

the residuals history at the transition point from Variant 1.4 to Variant 1.1 in Fig.

4.12-b. The left side in Fig. 4.12-b depicts the residuals from the �rst variant with

a reduction of the density residuals partly just under one order of magnitude (red

line in the �gure) but with a poor resolution of the periodic development of the lift

coe�cients (blue line in the �gure). On the right side of the �gure, comparisons

based on Variant 1.1 show a better resolution of the periodic development of the lift

coe�cients and a larger reduction of the density and turbulence (black line in the

�gure) residuals.

a) b)

Figure 4.12: a) CN as function of time for Variant 1.4-1.1 b) Transition of the
residuals in Variant 1.4-1.1

With this method, the calculation time can be reduced to almost half of the

reference time using a constant time step as in the �rst variants attempted. Figures

4.13 and 4.14 show the results of this approach. Here the initialization of the run

for all the calculations is performed with Variant 1.4 using 150 inner iterations, and

it is completed with Variants 1.1 and 1.2 with variation of the inner iterations until

a convergence of CNmax as a function of the inner iterations is achieved.

Figure 4.13, which plots the CPU-time as function of the inner iterations per

physical cycle, shows that Variant 1.4-1.1 reduces the calculation time by almost

45% compared with the reference, while Variant 1.4-1.2 by approximately 60%. The

assessment of the quality of the results is depicted in Figure 4.14. The CNmax-

values vary approximately 0.08% and 0.18% respectively for Variants 1.4-1.1 and

1.4-1.2 compared with the reference. These deviations of the results are minimal
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and con�rms that the method delivers better results than using a constant time

step, since the time needed for the calculations is notably reduced without a�ecting

the quality of the results.

Nevertheless, this statement should be con�rmed with the following 2-D and 3-

D cases studied in the present project. For this purpose, the same methodology

described in this section is applied for Cases 2-4.

Figure 4.13: CPU-time for Variants 1.4-1.1 and 1.4-1.2

Figure 4.14: CNmax-values for variants 1.4-11 and 1.4-1.2
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4.2 Case 2: Laminar Flow over a Circular Cylinder

The second case analyzed is focused on the unsteady laminar �ow over a circular

cylinder. The in�ow is uniform with a Mach number of 0.2 and a Reynolds number

of 150. At this Reynolds number, the �ow is essentially laminar with periodic vortex

pairs shed from the downstream side of the cylinder.

The physical parameters of the simulation are listed below, as they appear in the

DLR Tau-script:

Reference Mach number 0.2

Angle of attack 0.0◦

Reynolds number 150

Reference Temperature 277.78 K

Prandtl number 0.72

Sutherland constant 110.4

Sutherland reference viscosity 1.716 · 10−5

4.2.1 Grid Generation

The cylinder has a diameter d = 1.0 m. The hybrid grid concentrates a structured

grid in the vicinity of the wall with quadrilateral elements and triangles outside

the boundary layer. A re�nement over ten diameters downstream of the body is

performed in order to get a good resolution of the expected vortex street in the

wake �ow. The structured grid has an initial layer thickness of 5.022 mm with 20

prismatic layers and a stretching factor of 1.175. This yields a maximum Y +- value

of 0.3 and a minimum Y +- value of 0.05 (see Fig. 4.15). For the grid generation, one

half of the total grid domain was generated and mirrored along the x axis exploiting

the symmetry of the geometry. The complete input �les used in CentaurSoft for

the grid generation are listed in Appendix A.2. The total grid comprehends 24, 572

points.

4.2.2 Numerical Parameters for the Unsteady Simulation

A central scheme is applied for the convective RANS �ux discretization, with scalar

dissipation for stability using the values for the coe�cients ε(2) = 1/2 and ε(4) = 1/64.

Temporal discretization is done using the dual time stepping scheme in combination

with a 3 stage Runge-Kutta time integration method. A 3v Multigrid cycle is
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a) b)

Figure 4.15: a) Cylinder hybrid mesh, b) Y + distribution

applied for convergence acceleration and a CFL number of 1.0 is set. The run is

performed using the 1-equation turbulence model of Spalart-Allmaras with Edwards

modi�cation. The numerical solutions are generated based on the DLR TAU-Code

version 2007.1.0. The complete setting of parameters used in TAU for the simulation

are listed in Appendix A.2.

Unless otherwise speci�ed, the default parameters are used for the computations.

All the calculations were performed on the same Intel Pentium IV Workstation using

a 3.00 GHz processor.

4.2.3 Results

For this case, the same strategy is followed as in section 4.1. According to [20],

for these �ow conditions, the dimensionless frequency of the vortex shedding, called

Strouhal number, should be equal to 0.18. With this, the frequency of the peri-

odic shedding vortex street downstream of the cylinder can be calculated with the

de�nition of the Strouhal number

Sr =
f · d
V

. (4.6)

With a reference velocity of V = 66.8284m/s, the frequency results to f = 12.029

Hz, giving a period T = 0.08313s. In order to have a good accuracy of the results, a

time step size of 5 · 10−4s is chosen which leads to 166.26 time steps per period, and

100 inner iterations for each time step. To reduce the time needed for the calculation

to get the periodic-state solution of the aerodynamic coe�cients, an initialization

of the �ow is performed with a steady calculation. For this, TAU is run using
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an explicit 3 stage Runge-Kutta time stepping scheme for 5000 cycles. After the

initialization of the �ow, 1.5 seconds in physical time are calculated.

Figure 4.16 shows the CL- and CD-values which correspond to the lift (black

lines in the �gure) and drag (red lines in the �gure) coe�cients respectively as

a function of the time. The computations with and without initialization of the

�ow are compared, and they show a considerable di�erence in the time needed to

get the periodic-state of the �ow. It can be observed, that the variant without

initialization needs 2.5 seconds until a periodic-state is achieved, while the variant

with initialization needs only 0.5 seconds. Fully periodic �uctuations in the force and

drag coe�cients are obtained after 0.8 seconds. The period between the lift peaks

can be extracted as T = 0.083167, resulting in a Strouhal number of Sr = 0.17875,

which di�ers by about 0.69% from the value speci�ed in [20] for the experimental

analysis.

a) b)

Figure 4.16: Periodic development of the aerodynamic coe�cients a) without ini-
tialization, b) with initialization of the �ow

Figure 4.17-a displays the isotachs after t = 1.5 seconds, which show the von

Kármán shedding vortex street downstream of the cylinder. Here it can be observed

how the boundary layer separates from the surface and becomes highly unstable.

This instability emerges as the shear layer vortices shed from both the top and

bottom surfaces interact with one another. They shed alternatively from the cylinder

and generate a regular vortex pattern in the wake [20].

The boundary layer separates at an angle of separation φS ≈ 98◦ in clockwise

direction from the stagnation point located at 0 degrees as shown in Figure 4.17-b.

There, it can be observed how the stream lines separate from the surface contour due

to the adverse pressure gradients on the downside of the cylinder. At this point, the

reverse �ow coming from the lower side of the circumference gives rise to a vortex,
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whose size is increased still further. Similar phenomena occur at the lower side at

an angle of approximately φ ≈ 215◦ of the circumference at the vortex core posi-

tion. The vortex detaches shortly afterwards and moves downstream of the body,

forming the vortex pattern which move alternately clockwise and counterclockwise

as observed in Figure 4.17-a. In the range of dimensionless frequency of the vortex

shedding 0.14 < Sr < 0.21 no experimental information about the angle of separa-

tion is available, but it can be assumed to be in a range between 80◦ < φS < 115◦

according to the information provided in [20]. According to [20], for a �ow condition

with Re = 90, in a laminar �ow with stable wake, the separation of the boundary

layer occurs at an angle φS ≈ 115◦. For �ows with Reynolds number up to 150 in

the sub-critical range with instabilities in the vortex street, the separation of the

boundary layer is expected at an azimuthal angle φS ≈ 80◦.

a) b)

Figure 4.17: a)Mach number contours showing the von Kármán vortex street,
b)Stream lines after t = 1.5 sec showing the stagnation and separation point around
the circular cylinder

As in section 4.1, the residual convergence history is also monitored. The density

residuals shown in Figure 4.18 as a black line decrease more than one order of

magnitude, while the turbulent residuals shown as a red line, are reduced by almost

5 orders of magnitude. The periodic development of the lift coe�cients (blue line in

the �gure) shows a plateaued distribution with a su�cient convergence of the values

for each time step.

Since the residuals ful�ll the stability- and accuracy criteria, and the non-dimensional

frequency accords reasonably with [20], the results obtained are taken as the point

of reference for the present case.
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Figure 4.18: Residuals convergence history after t = 0.75 sec

Variation of the Relevant Parameters of the Dual Time Step Scheme

In addition to the validation results, 5 more settings of parameters are calculated

with variations of the physical time step size per period. These variants are listed

in Table 4.2.

The CPU-Time needed for the calculations in this case is much longer than in the

�rst case. To calculate 1.5 seconds, i.e. for the reference variant, with a time step size

of 0.0005 seconds and 100 inner iterations per time steps, a total of 300000 iterations

need to be performed. This exempli�es the cost needed for each calculation.

time step size time steps
per physical cycle [s] per physical cycle [-]

Variant 2.1 0.0005 166.26
Variant 2.2 0.001 83.13
Variant 2.3 0.002 41.57
Variant 2.4 0.003 27.71
Variant 2.5 0.004 20.78
Variant 2.6 0.005 16.63

Table 4.2: Setting of parameters performed for Case 2

Figure 4.19 depicts the CPU-Time results as a function of the inner iterations

per time step for Variants 2.1 to 2.6. Here, the time for the di�erent variants was

normalized by the time t = 115397.1[s] required in Variant 2.1.

As expected, a linear development of the CPU-Time is observed. The cheapest

calculation resulted for Variant 2.6 (light blue line in Figure 4.19) which reveals

a reduction of 85% of the calculation time compared with the reference setting of
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parameters (black line in Figure 4.19) at the settings with the most number of inner

iterations.

Despite being the cheapest variant in time, the results obtained in Variant 2.6

show a di�erence in the CLmax- values of 10.23% compared with the reference variant,

and even a shift in the global distribution of the dynamic coe�cients, resulting in

a shift of the vortex shedding frequency. This is observed in Figures 4.20 and 4.21

where the CLmax- values were normalized by the CLmax,ref - value obtained in Variant

2.1 (CLmax,ref = 0.55543). The di�erences in the Strouhal number are depicted in

Figure 4.22. The Strouhal numbers are normalized by the reference given in the

experiments in [20].

Figure 4.19: CPU- time as function of inner iterations per time step

The same methodology for the acceleration of the unsteady simulations used in

section 4.1 is applied. After the initialization of the �ow with a steady calculation,

0.75 seconds using the parameters in Variant 2.5 are computed. After this, the rest

of the calculation is performed with the parameters of Variants 2.1 and 2.2. As in

the initial calculations, a total of 1.5 seconds are simulated.

Figure 4.23-a shows the CL and CD coe�cients for the complete run performed

with Variant 2.5 (left side in the �gure) and 2.1 (right side in the �gure) with

100 inner iterations. Variant 2.5 approximates the values of the coe�cients and

accelerates the adaptation of the �ow towards the �nal periodic state. After an

initial convergence of the values due to the �rst variant, the results are improved by

running the simulation with the parameters in Variant 2.1. Figure 4.23-b plots the

convergence behavior of the initial setting which shows a reduction of the density
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Figure 4.20: CLmax as function of inner iterations per time step

a) b)

Figure 4.21: a) CL and b) CD as function of time at 0.75s ≤ t ≤ 0.92s
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Figure 4.22: Strouhal number as function of time step size

residuals (black line in the �gure) of almost one order of magnitude, while Variant

2.5 shows a reduction of almost 2 orders of magnitude for each physical time step

∆t.

a) b)

Figure 4.23: a) CL and CD as function of time for Variant 2.5-2.1 b) Transition of
the residuals in Variant 2.5-2.1

As observed in section 4.1, the CPU-time for the calculation is reduced by using

a variable time step through the modi�cation of the parameters from a quick to

an accurate parameter setting. In this case for the Variant 2.5-2.1, the reduction

of the CPU-time is approximately 45% with a deviation of CLmax of approximately

|∆CLmax| = 10−04 among the settings with constant time step size values and the

ones with variable time step size. These results are depicted in Figures 4.24 and

4.25.
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Figure 4.24: CPU-time for Variants 2.5-2.1 and 2.5-2.2

Figure 4.25: CLmax- values for Variants 2.5-2.1 and 2.5-2.2
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With this case, it was con�rmed that varying the parameter settings from a quick

calculation to an accurate calculation, by changing the time steps per period and

the number of inner iterations, the time needed for the simulations can be reduced

by almost 50% compared with the time necessary for the simulations with constant

parameter settings without adversely a�ecting the accuracy of the results. Further-

more, the advantages of an initialization of the �ow through a steady simulation

were clearly illustrated. The experiences obtained in the 2-D cases will be adopted

for the 3-D cases to be examined in Chapter 5.
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Chapter 5

3-D Cases

5.1 Case 3: Pitching Oscillation of the DLR-F12

Transport Aircraft Con�guration

The �rst 3-D case investigated is the DLR-F12 wind tunnel model of a transport

aircraft con�guration of Airbus type (Fuselage, Wing, HTP, VTP) . The case studied

is for an oscillatory pitch movement around the axis located at the coordinates

[1.04882, 0.0, -0.03029] in a cartesian coordinate system with origin at the model

nose (see Figure 5.2). The �ow represents a subsonic �ow with a reference velocity

of V = 70m/s. The oscillatory movement is described by change of the angle

of attack α according to Eq. 4.1. The simulation parameters correspond to test

conditions described in [12], where an investigation of unsteady dynamic derivatives

for transport a/c is performed.

The physical parameters of the simulation are listed below, as they appear in the

DLR-Tau script:

Reference Velocity 70 m/s

Angle of attack αm 0.0◦

Fourier coe�cient for rotation pitch α0 4.5◦

Frequency f 3 Hz

Reduced frequency for rotation k 0.0680267

Reynolds number 1.18 · 106

Reference Temperature 293.15 K

Sutherland constant 110.4

Sutherland reference viscosity 1.716 · 10−5

56



3-D CASES

Figure 5.1: DLR-F12 aircraft con�guration geometry

Figure 5.2: DLR-F12 aircraft con�guration pitch axis
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5.1.1 Grid Generation

The computational model treats half of the aircraft con�guration with a symmetry

plane along the cartesian coordinates xz. For this case, yaw- and roll motions are

not simulated, thus the symmetry assumption should have no major in�uence on

the results obtained. Furthermore with the simulation of only half of the model,

a reduction in the dimensions of the grid is achieved, and with it a reduction of

the calculation time. The grid generated is a hybrid grid with structured prismatic

elements in the vicinity of the wall, and tetrahedral elements outside of the bound-

ary layer. The structured grid has an initial layer thickness of 0.005 mm with 30

prismatic layers and a stretching factor of 1.2. The complete input �les used in

CentaurSoft for the grid generation are listed in Appendix A.3. The total grid has

5, 983, 556 computational nodes.

Figure 5.3: DLR-F12 unstructured mesh

For a �rst validation of the grid and the �ow conditions, a steady simulation of

the �ow was performed to calculate the drag polar for the α-range between −5◦

and 5◦, with a velocity V = 70 m/s and a Reynolds number Re = 1.18 Mio. The

computation was performed on the DLR HPC-cluster (Gauss) with 24 processors

distributed on 12 computational nodes. The cluster consists of 210 computational

nodes with a total of 516 processors and 1 Tera-byte main memory resulting in a
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performance of 2.5 Tera-FLOPS . The system is based on a Server-Serie Sun Fire

V20z system using V20z and X4100 Opteron-Type processors from AMD [33].

The numerical solution was generated using TAU 2007.1.0. The run was per-

formed using the 1-equation turbulence of Spalart-Allmaras with Edwards modi�-

cation. Spatial discretization is done using a central scheme in combination with

a 3 stage Runge-Kutta scheme for time integration. A 3v multigrid cycle is also

applied, and a total of 5000 iterations are calculated.

The residuals convergence history depicted in Figure 5.4 shows a full convergence

of the relevant aerodynamic coe�cients CL as the red line, and CD as the blue line

after 5000 cycles for the angle α = 0◦ and approximately 2500 for all other angles of

attack. The density residuals shown as a black line in Figure 5.4 also show a good

degree of convergence, with a reduction of almost 3 orders of magnitude. The peaks

appear due to the restart with a di�erent angle of attack α.

Figure 5.4: Steady convergence history for the range 0◦ ≤ α ≤ 5◦

Figures 5.5-a and 5.5-b show the results for the Y +-contours on a top/bottom

view of the model at α = 0◦. These values represent a range between 0.005 and 2.5,

which allows for a good resolution of the �ow in the boundary layer at the vicinity

of the wall. The lowest Y +-values (in blue) are observed in the wing-fuselage and

HTP-fuselage junctions.

As a small validation of the results, the pressure distribution at the spanwise

positions of η = 0.457 for the wing and at η = 0.171 for the HTP are extracted for

the simulation at α = 0◦. To get the values η, the position of the cuts in y- direction

were normalized by the half wingspan width b/2 = 1.01926 m. The position of the

cuts is shown in Figures 5.6 and 5.7, where also the pressure coe�cient contours at

the surface are illustrated. In Figure 5.8 the cP distribution along the wing and HTP
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a) b)

Figure 5.5: Y +- values top/bottom view, Re=1.18 Mio, V=70 m/s, α = 0◦

chords are compared with experimental values from WTT data and with previous

results obtained in [12]. The results accord reasonably well with the experiments

and show nearly no di�erences with [12].

Figure 5.6: cP contours and position of the cut at η = 0.457 top/bottom view,
Re=1.18 Mio, V=70 m/s, α = 0◦

The lift and drag polars are depicted in Figure 5.9, where the coe�cients are

compared with WTT values reported in [12]. The lift coe�cients show good accor-

dance with the experiments, however a very slight di�erence of the gradient dCL/dα

between experiment and simulation is observable. The drag polar shows an under

prediction of approximately 20 drag counts (dc=10−4) versus the experiments at

α = 0◦ and almost 100 drag counts for α ≤ −5◦. These deviations between the

CD-values could be reduced by adapting the grid in order to have a better repre-

sentation of the induced drag at high α-angles (see [4]). Nevertheless, the grid was

found to be suitable for the analysis planned on the present study.
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Figure 5.7: cP contours and position of the cut at η = 0.171 top/bottom view,
Re=1.18 Mio, V=70 m/s, α = 0◦

Figure 5.8: DLR-F12 cP distribution at η = 0.457 from wing and η = 0.171 from
HTP, Re=1.18 Mio, V=70 m/s, α = 0◦

Figure 5.9: DLR-F12 lift and drag polars, Re=1.18 Mio, V=70 m/s

61



3-D CASES

For the unsteady calculations, the steady solution at α = 0◦ is used as a restart,

which serves as an initialization of the �ow and should speed up the achievement of

a periodic state, as discussed in the previous cases.

5.1.2 Numerical Parameters for the Unsteady Simulation

The purpose of the present investigation, is the acceleration of the simulations by

varying the number of physical time steps and the number of inner iterations for each

time step. All other numerical parameters are retained unvaried. A central scheme

is applied for the convective RANS �ux discretization, using matrix dissipation for

stability. Temporal discretization is done using the dual time-stepping scheme in

combination with a 3 stage Runge-Kutta approach. A 3v multigrid cycle is applied

for convergence acceleration and a CFL number of 1.0 for the calculation of the

pseudo-time step is set. The run is performed using the 1-equation turbulence

model of Spalart-Allmaras with Edwards modi�cation. The numerical solutions are

generated based on the DLR TAU-Code version 2007.1.0. The complete setting of

parameters used in TAU for the simulation are listed in Appendix A.3.

Unless otherwise speci�ed, the default parameters are used for the computations.

All the calculations were performed on the Gauÿ-cluster with 24 processors dis-

tributed in 12 computational nodes.

5.1.3 Results

Because of the dimensions of the grid, the cost of the calculations is higher than in

the 2-D cases treated here. For the 3-D cases, the �rst step is to �nd a combination

of parameters which deliver a good accuracy of the results. The �rst trial is a

variant with the numerical settings mentioned above with 360 time steps per physical

period and 150 inner iterations. This variant represents the longest simulation to

be performed, and sets the limit for the total number of inner iterations.

An analysis of the results obtained with the �rst variant, showed that these pa-

rameters do not deliver stable results and no accurate representation of the periodic

development of the relevant aerodynamic coe�cients could be obtained. The num-

ber of inner iterations per cycle proved to be too low for an adequate resolution of

the periodic coe�cient development. The next variant studied was a setup with 180

time steps per period and 300 inner iterations. This parameter setting is equivalent

to the previous calculation in terms of total iterations and time. Despite delivering
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better results with a better resolution of the coe�cients, the simulation becomes un-

stable around the fourth quarter of the second oscillation period, where especially

the periodic CD development shows big �uctuations. The best results were obtained

for a parameter setting with 90 time steps and 600 inner iterations. This number of

inner iterations per time step is enough for an overall convergence of the results in

each time step.

Table 5.1 and Figure 5.10 show the results obtained for the �rst three setups of

the parameters. In Table 5.1 the parameters for each variant are listed with the

respective time needed for the simulation to complete 2 periodic cycles. It can be

observed, that despite having the same number of total inner iterations, the times

needed for the calculations with the setting in Variants 3.1 and 3.3 di�er considerably

from Variant 3.2. Figure 5.10 shows the results for the overall CL (red line), CD (blue

line) and Cmy (green line) coe�cient developments as a function of the number of

cycles, obtained through the normalization of the physical time t with the duration

of the oscillation period T .

time steps inner iterations CPU-Time after
per physical cycle [-] per time step (n) [-] two cycles [s]

Variant 3.1 360 150 916 899.7
Variant 3.2 180 300 882 073.9
Variant 3.3 90 600 912 362

Table 5.1: Setting of parameters for Case 3

(a) Variant 3.1 (b) Variant 3.2 (c) Variant 3.3

Figure 5.10: Periodic distribution of the aerodynamic coe�cients for 3 di�erent
parameter settings

Variant 3.3 presents the most stable simulation, since the periodic development of

the relevant aerodynamic coe�cients shows the fewest erratic oscillations. For these

parameter settings, one more physical period was calculated to simulate a total of

three physical periods. The results of the simulation show a periodic development
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of the relevant force coe�cients after 3 physical cycles. Figure 5.11 shows the CL-

and Cm-values which correspond to the lift and pitching moment coe�cients plotted

as a function of the angle of attack α for each physical cycle.

(a) 1st Cycle (b) 2nd Cycle (c) 3rd Cycle

Figure 5.11: CL − α and Cm − α results for Variant 3.3 after 3 physical cycles

The results obtained were compared with experimental results reported in [12].

For the third physical cycle the computed periodic development of the lift coe�cient

agrees reasonably well with the experiments in the last half of the cycle and show

slightly greater di�erences in the �rst half of the cycle. These results are depicted

in Figure 5.12, where also the results for the CD and Cmy developments are shown.

The computed Cmy evolution agrees with the experiments with slight di�erences

in the amplitude of approximately |∆Cmy| ≈ 0.018. For this case no experimental

information about the periodic behavior of the drag coe�cients is available.

Figure 5.12: DLR-F12 periodic distribution of the aerodynamic coe�cients com-
pared with experiments reported in [12]

To ensure that the inner iterations for each physical time step are su�cient, the

convergence history of the density and turbulence residuals as function of the number
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of inner iterations are checked. Figure 5.13 shows the density residuals as a green line

and the turbulence residuals as a black line, as well as the lift convergence history as

the red line for the �rst half of the 2nd period. The residuals are reduced by more

than one order of magnitude which ensures a su�cient accuracy of the solution

[3]. It can be observed also, that the lift coe�cient converges in each physical time

step creating the typical plateaued distribution of the aerodynamic coe�cients of

an unsteady numerical calculation.

Figure 5.13: DLR-F12 residuals convergence history at the beginning of the 4th
Period

For the purpose of the parameter analysis for the acceleration of the simulations

with the dual time-stepping scheme, the obtained results with these settings show

su�cient accuracy, and can thus be taken as a reference in the present case.

Variation of the Relevant Parameters of the Dual Time Step Scheme

In Cases 1 and 2, it could be demonstrated that the use of variable time steps reduce

the time needed for the simulations considerably. For this case, three calculations

with quick initial parameter settings are performed as a restart from the steady

computation. With these parameters, one and a half physical periods are calculated

before an accurate parameter setting is adopted for the remainder of the simulation

through the 3rd physical period. The variants performed for the initialization of the

unsteady calculation are listed in Table 5.2.

After the initialization of the unsteady simulation, all the simulation variants

listed in Table 5.2 were continued with the parameter setting used in Variant 3.3.

The development of the coe�cients during the computations with the quick parame-

65



3-D CASES

time steps inner iterations
per physical cycle [-] per physical cycle [-]

Variant 3.4 90 300
Variant 3.5 45 600
Variant 3.6 45 300

Table 5.2: Setting of parameters for the initialization of the unsteady �ow

ter setting show notable erratic �uctuations, in particular for the drag (see Fig.5.14).

At 1.5 periodic cycles, the parameters were switched to the ones used in the refer-

ence parameter setting. The calculation then requires approximately 0.6 cycles to

achieve the force developments obtained in the reference with Variant 3.3. Figure

5.14-a shows the CL (in red), the CD (in blue) and the Cmy (in green) developments

as function of the number of periods for Variant 3.4-3.3. In Figure 5.14-b, the values

obtained are compared with the reference values shown as the dash-dotted black

line for the last 1.5 cycles.

a) b)

Figure 5.14: DLR-F12 force development with the use of variable time steps

After about 2.125 cycles, the variants with variable time steps, exhibit nearly no

di�erence in the periodic coe�cients versus the reference calculation. Figure 5.15

shows the development of CL and Cmy as a function of the angle of attack α for

Variant 3.4-3.3 (dash-dotted lines in the �gure) compared with Variant 3.3 (solid

lines in the �gure) for each physical cycle.

The advantage of the methodology is observed in Figure 5.16, where the normal-

ized time is plotted as a function of the inner iterations for all the variants performed.

The time was normalized by the reference computation time t = 1362844.2 seconds.

The CPU-time needed to simulate 3 physical periods can be reduced by almost

40% using the Variant 3.6-3.3 combination compared with the reference calculation
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(a) 1st Cycle (b) 2nd Cycle (c) 3rd Cycle

Figure 5.15: CL − α and Cm − α results for Variant 3.4-3.3 after 3 physical cycles

obtained with Variant 3.3 only.

The assessment of the quality of the result is depicted in Figure 5.17. The re-

sulting maximum values of the relevant aerodynamic coe�cients were normalized

by the maximum values obtained in the reference calculation and are depicted in

Figure 5.17 as a function of the inner iterations per time step. The maximum am-

plitudes of the lift coe�cients plotted on the left in the �gure, show the greatest

di�erence of |∆CLmax| ≈ 0.0002 between Variant 3.5-3.3 and the reference, which

represents a deviation of approximately 0.04%. The CD values show no di�erence

between Var. 3.6-3.3 and Var. 3.4-3.3 which represent a variation of approximately

0.22% compared with the reference values. The maximum deviation of the pitch-

ing moment coe�cients plotted on the right side in the �gure, is observed between

Variant 3.5-3.3 and the reference at 0.074%. As it can be observed, the deviations

are minimal and can be neglected. This con�rms that with the use of variable time

steps, a considerable reduction of the CPU-time can be obtained also for more com-

plex con�gurations as in Case 3. Even having a bad resolution of the representative

periodic aerodynamic forces in the initialization of the unsteady simulation, the re-

sults can be improved by re�ning the resolution of the force developments through

an accurate parameter setting. Furthermore, the time needed to improve the peri-

odic behavior of the coe�cients after the unsteady-initialization is still lower than

computing the full simulation with a constant computationally expensive parameter

setting. Now the experiences obtained in the previous cases will be applied to Case

4, which represents the most expensive case to be examined in the present project.
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Figure 5.16: DLR-F12 CPU-Time

Figure 5.17: DLR-F12 max. coe�cient amplitude
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5.2 Case 4: Installed AGARD Propeller

The last case to be examined is the simulation of a rotating AGARD propeller

installed in tractor con�guration on a representative wing section according to the

test setup described in [19], where the slipstream aerodynamic e�ects at low speed

conditions were investigated. The geometry represents a propeller con�guration with

four blades, an axis symmetric nacelle and a generic wing layout with a wing span of

about 3.2 propeller diameters. The 1:5 scaled propeller with a diameter d=640 mm

is considered to be typical of modern medium speed turboprop commuter aircraft

[19]. The propeller rotates with a speed n = 39900 [deg/s], which can be expressed

in terms of the reduced frequency k de�ned in Eq. 4.2 as k = 8.9130 where c

is substituted by the propeller diameter d. This is equal to an advance ratio of

J = 0.70488, which is de�ned as

J =
U∞
n · d

. (5.1)

The con�guration was simulated for an angle of attack α = 10◦. The blade pitch

angle at 75% of the blade radius (measured from the propeller center to blade-tip),

is set to β75 = 29◦. The physical parameters of the simulation are listed below, as

they appear in the DLR-Tau script:

Reference Velocity 50 m/s

Angle of attack αm 10.0◦

Reduced frequency for rotation k 8.9138

Propeller rotational speed n 39900 deg/s

Reynolds number 1.7 · 106

Reference Temperature 276.53 K

Sutherland constant 110.4

Sutherland reference viscosity 1.7647 · 10−5

The geometry of the airfoil is taken from the NACA 6-Digit Series (NACA 63(10)A-

012, scaled up NACA 63A-010) with a chord length of c = 500 mm. The wingspan is

b = 2060 mm with constant airfoil section without twist and blending. The nacelle

has a length of 985 mm from the blade root to the nacelle end wall. A gap of 1

mm between nacelle and spinner is modeled. Figure 5.18 shows the geometry of the

complete con�guration.
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Figure 5.18: AGARD propeller geometry
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5.2.1 Grid Generation

Several steps were needed for the AGARD propeller grid generation. Due to the

required relative motion between the propeller and the nacelle, the grid is based on

the chimera technique. The basic idea is to generate �rst the grids separately around

each geometrical entity in the domain (i.e. the propeller (blades-spinner) separately

from nacelle-wing geometries). After that, the grids are combined together in such

a way that they overlap each other where they meet [3]. In this way, the �rst

step for the grid generation was to generate the hybrid grid around the nacelle-

wing geometries. For this 1st grid the symmetry condition was exploited by only

generating a mesh for half of the domain (Figure 5.19-a). This was then duplicated

through a mirroring along the xz-plane (Figure 5.19-b). Here, a re�nement of the

propeller wake over 3.125 propeller diameters downstream of the blade position is

performed. The second step for the grid generation was to generate the hybrid grid

around a single blade-spinner domain which represents a quarter of the 2nd grid

(Figure 5.19-c). After the grid generation with Centaur, the grid was duplicated

three times and rotated around the x-axis to complete the four blade-propeller of

the 2nd grid (Figure 5.19-d). Finally the two grids were combined together with at

least 2 elements in the overlapping region.

a) b)

c) d)

e) f)

Figure 5.19: AGARD propeller grid generation
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The overlapping region was introduced during the creation of the CAD geometry,

where a chamfering of the 1st grid boundary towards the surface of the spinner

in the 2nd grid was introduced (see Figure 5.19-f). This was done to ensure the

nacelle-wing grid extends far enough into the propeller grid block to allow for an

adequate overlap region while avoiding possible Chimera interpolation problems near

the surfaces of the geometry [24].

The prismatic grid at the vicinity of the wall of block 1 was set up with an

initial layer thickness of 0.01 mm using 25 prismatic layers and a stretching factor

of 1.3. For block 2 an initial layer thickness of 0.0025 mm, 25 prismatic layers and a

stretching factor of 1.275 were used. The nacelle-wing grid block contains 4, 802, 643

nodes, while the propeller grid block has 6, 307, 636, making for a total of 11, 110, 279

computational nodes for the complete grid. The input �les used in CentaurSoft for

the grid generation for both grid blocks are listed in Appendix A.4.

For a �rst validation of the grid and the �ow conditions, a steady simulation of the

�ow was performed with a velocity of V=50 m/s, a Reynolds number Re = 1.7 ·1006

and an angle of attack α = 10◦. The computation was performed on the DLR

CASE-cluster with 48 processors distributed on 12 computational nodes. The cluster

consists of 768 computational nodes with a total of 3072 2.6 GHz Dual-Core Opteron

processors from AMD [33].

The numerical solution was generated using TAU 2007.1.0. The run was per-

formed using the 1-equation turbulence of Spalart-Allmaras with Edwards modi�-

cation. Spatial discretization is done using a central scheme in combination with

a 3 stage Runge-Kutta scheme for time integration. A 3v multigrid cycle is also

applied, and a total of 3000 iterations are calculated.

With these parameters, the Y +-values vary in a range between 0.01 at the spin-

ner end wall, and 5.34 at the wing leading edge. The minimum Y +-values at the

blade are observed in the middle leading edge zone with 0.021, while the largest are

observed in the leading edge tip region. This can be observed in Figure 5.20 which

shows a top/bottom view of the Y +-contours of the steady solution at an angle of

attack α = 10◦.

5.2.2 Numerical Parameters for the Unsteady Simulation

A central scheme is applied for the convective RANS �ux discretization, using matrix

dissipation for stability. Temporal discretization is done using the dual time-stepping

scheme in combination with a 3 stage Runge-Kutta approach. A 3v Multigrid cycle
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Figure 5.20: AGARD propeller Y +- values after the steady simulation in a
top/bottom view at α = 10◦

is applied for convergence acceleration and a CFL number of 1.2 for the calculation

of the pseudo-time step is set. The run is performed using the 1-equation turbulence

model of Spalart-Allmaras with Edwards modi�cation. The numerical solutions are

generated based on the DLR TAU-Code version 2007.1.0. The complete setting of

parameters used in TAU for the simulation are listed in Appendix A.4.

Unless otherwise speci�ed, the default parameters are used for the computations.

All the calculations were performed on the CASE-Cluster with 48 processors dis-

tributed on 12 computational nodes.

5.2.3 Results

For the reference simulation, one propeller revolution was resolved with 90 physical

time steps, resulting in a rotation of the propeller relative to the nacelle of 4◦/∆t

and a physical time step size of ∆t = 1.0025 · 10−04 s with 300 inner iterations for

each time step. The same time steps per physical period were applied for the refer-

ence variant in Case 3, where it was observed that this number of time steps lead to

a good resolution of the periodic force developments. This statement is supported

when observing the results obtained in Case 1 and 2, where the simulations with 90

time steps and 83.15 respectively, also showed a good representation of the periodic

force developments. In the previous cases, it was also observed that 300 inner iter-

ations for each time step, ensure stability and a good convergence of the coe�cient

developments with a reduction of the numerical residuals of more than 1 order of

magnitude.

The convergence of the computation was monitored using the thrust-coe�cient
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CT , as well as the lift- and lateral- force coe�cients (Cz and Cy respectively) based

on the forces acting on the 4 blades and the spinner including the spinner end wall

located in the gap between nacelle and propeller. Figure 5.22 shows the temporal

development of the force coe�cients as function of the azimuth angle Φ. The azimuth

angle Φ refers to a blade position, where the angle Φ = 0◦ indicates a blade station

extending directly upward from the nacelle [24]. An angle Φ = 90◦ indicates a blade

position extending out to the left when looking downstream. Figure 5.21 shows the

de�nition of the azimuth angle Φ. The monitoring of the coe�cients is evaluated in

a rotating coordinate system located at the propeller center.

Figure 5.21: Azimuth angle de�nition

In Figure 5.22, the Cy- and Cz-developments (the blue and green line respec-

tively), show a periodic-state after approximately six propeller revolutions. The

coordinate system used for the monitoring, rotates together with the propeller and

shows the y- and z- components of the total axial force produced by the propeller

rotation. Thus, a sinusoidal evolution of Cy and Cz with equal amplitudes of ap-

proximately ±0.01995 and a shift phase between them is obtained. In contrast,

the CT -development required 22 rotations to achieve a fully periodic state. After

12 rotations the thrust coe�cient is seen to increase from which appeared to be a

periodic state. Periodicity is then established at a higher thrust coe�cient mean

value after 5 additional propeller rotations. The total increment of approximately

|∆CT | ≈ 0.001 is attributed to the interaction between the propeller and wing on

this particular con�guration at α = 10◦. The simulation needs approximately 17

rotations to fully resolve the complex mutual interaction between the propeller and

wing. When the new convergence level is achieved, the thrust coe�cient �uctuates

in a range of 0.2396 ≤ CT ≤ 0.2402. For the simulation of the required 22 revolu-

tions an e�ective calculation time of 1100.7 hours was needed, which is equivalent

to 45.86 days.

In addition, to check that the number of inner iterations for each physical time

step is su�cient, the convergence history of the density residuals as function of the
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Figure 5.22: AGARD propeller force coe�cients development Variant 4.1

number of inner iterations are observed. Figure 5.23 shows the density residuals as

a black line, as well as the thrust and lift coe�cient history as the red and blue

lines respectively for the �rst half of the 11th propeller revolution. The residuals are

reduced by more than two orders of magnitude which ensures a su�cient accuracy of

the solution. It can also be observed that the thrust and lift coe�cients converge in

each physical time step, creating the typical plateaued distribution of aerodynamic

coe�cients in an unsteady numerical calculation.

Figure 5.23: AGARD propeller convergence history as a function of the inner iter-
ations per time step

For the last revolution, an analysis of the forces acting on the propeller compo-

nents is performed using the tool AeroForce [28], developed in the DLR Institute

of Aerodynamics and Flow Technology. The forces are evaluated in a non-rotating
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and stationary coordinate system located at the propeller center. The results of the

analysis are plotted in Figure 5.24. The CT -, Cz- and Cy-developments plotted in

the �gure represent the thrust-, lift- and lateral force coe�cients as a function of the

azimuth angle Φ during a full revolution of the propeller for the di�erent propeller

components (blades, spinner and spinner end wall).

The lift component of the blade forces at axial �ow (solid blue line in the �gure)

exhibits a periodic evolution with maximum values of Cz = −0.01550 (negative sign

due to the z-axis pointing downwards in this coordinate system) at the positions

Φ = 2◦, 92◦, 182◦, 272◦. According to [24] the maximum values of the lift forces per

blade are produced at Φ = 90◦, where the maximal relative velocities are achieved

due to the vector sum of the free stream velocity components in the plane of rotation

and the velocity resulting from the rotation of the propeller at the incidence angle

α = 10◦. The dashed blue line shows the lift forces produced by the blades with

consideration of the spinner. The spinner in�uence increases the lift coe�cients by

approximately 27.5% (|∆Cz| = 3.6293 · 10−03), resulting in a periodic development

with maximal values of Cz = −0.01982 at the same azimuth angles mentioned before.

The spinner end wall does not have any in�uence on the lift forces.

The lateral force component of the blade forces are plotted as solid green line in

the �gure. The Cy-development shows a periodic development with a phase shift of

approximately ∆Φ = 23◦ compared with the lift coe�cient curve. In Figure 5.24,

the maximum Cy-values are observed at the positions Φ = 24◦, 114◦, 204◦, 294◦ with

values of Cy = 4.1193 ·10−03. The in�uence of the spinner decreases the lateral force

coe�cients by approximately 6.97% (|∆Cy| = 2.8729 · 10−04). The spinner end wall

does not in�uence the lateral force coe�cients.

The thrust component of the blade forces are plotted as solid red line in the �gure.

The CT -development shows a periodic development with a phase shift of approxi-

mately ∆Φ = 51◦ compared with the lift coe�cient curve. The maximum CT -values

are observed at the positions Φ = 8◦, 98◦, 188◦, 278◦ with values of CT = 0.2377.

The in�uence of the spinner increases the thrust coe�cients by approximately 0.45%

(|∆CT | = 1.0859 ·10−03). The dynamic pressure produced in the gap region between

the propeller and nacelle, increases the thrust coe�cients when including the spinner

end wall. The coe�cients increase by 1.04%, with the di�erence between the blades

only value, and the blades-spinner-spinnerendwall value of |∆CT | = 2.4897 · 10−03.

The experimental data in [19], reported a thrust coe�cient of CT = 0.235 for an

advance ratio of J = 0.699 for the con�guration at α = 10◦. This value di�ers from

the numerical results by 1.49%, in comparison with the mean value obtained from
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the thrust produced by the propeller without considering the end wall in�uence. In

addition in [22], where Euler-simulations of the �ow for the same installed-propeller

con�guration were conducted, the average thrust coe�cient, shows an overpredic-

tion of 13% compared with the experimental data. These results re�ect the impact

of the viscous e�ects acting on the propeller, and the advantages of a NS-simulation

versus an Euler-calculation.

Figure 5.24: AGARD propeller force components

The obtained results with these parameter settings (called Variant 4.1 up to this

point) show su�cient accuracy, and can thus be taken as a reference in the present

case.

Variation of the Relevant Parameters of the Dual Time Step Scheme

The �rst action to be taken for the acceleration of the calculation was to begin

the unsteady run from a restart after an initialization of the �ow through a steady

simulation. In Case 2, it was observed that the initialization of the �ow accelerates

the convergence of the coe�cients to a periodic state considerably. In this way the

simulation performed for the validation of the grid was taken as a restart for the run,

and a new calculation with the same parameters used in Variant 4.1 was performed.

Figure 5.25 plots the time history of the relevant force coe�cients. The develop-

ment of the lift and lateral force coe�cients shows a periodic state after six propeller

revolutions as occurred in Variant 4.1. However, due to the initialization of the �ow

with a steady-state solution, the aerodynamic interactions between the propeller and

wing are already fully resolved after 15 propeller revolutions. This can be seen in the

mean value of the thrust coe�cient in Figure 5.25, which is identical to that seen for
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Variant 4.1 after 22 propeller revolutions. This represents a reduction of 7 rotations

which can be translated into a reduction of the calculation time by approximately

32.91% versus the reference calculation.

Figure 5.25: AGARD propeller force coe�cients development Variant 4.2

Now, as performed in the previous cases, a calculation with quick initial param-

eter settings is performed as a restart from the steady computation. With these

parameters, eight propeller revolutions are performed before an accurate parame-

ter setting is adopted. Thus, the quick parameter setting was performed with 45

physical time steps, resulting in a rotation of the propeller relative to the nacelle of

8◦/∆t and a physical time step size of ∆t = 2.005 · 10−04 s with 300 inner iterations

for each time step. After the completion of 8 rotations with the quick parameter

setting, the parameters were switched to the parameters performed in Variants 4.1

and 4.2 through 15 propeller revolutions.

Figure 5.26 shows the temporal development of the relevant force coe�cients as

a function of the azimuth angle. In the �gure it can be observed that the simulation

requires 2 cycles to achieve the thrust development obtained with Variant 4.2 after

the accurate parameter setting is adopted. The lift and lateral force coe�cient

developments present practically no di�erence with the the developments observed

in the reference case. After 10 cycles the force developments of Variant 4.2 and 4.3

show good accordance and almost no di�erence in the temporal evolution of the

forces. The time needed for this Variant was of 554.36 hours, which represents a

reduction of 49.63% compared with the reference in Variant 4.1, and 25% compared

with Variant 4.2.

The results obtained for the last propeller revolution for each Variant (22nd rota-
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Figure 5.26: AGARD propeller force coe�cients development Variant 4.3

tion of Variant 4.1 and the 15th of Variants 4.2-4.3) were extracted and compared.

The diagram in Figure 5.27 shows the lift and lateral force coe�cients as a func-

tion of the azimuth angle for all the variants during the �nal propeller revolution,

where nearly no di�erence among the di�erent setups can be observed. Since it was

observed that the spinner end wall does not in�uence the Cy and Cz developments,

only the blades-spinner-developments are compared. Only minor di�erences among

the variants can be found, which con�rms the good accuracy of the results. The

maximum di�erence of the Cy-developments is observed between Variant 4.1 and

Variant 4.2 with 0.2104%, considering the in�uence of blades and spinner. The

maximum di�erences of the Cz-developments are also found between Variant 4.1

and Variant 4.2 with 0.0444%.

Figure 5.27: AGARD propeller lift- and lateral force coe�cients for Variants 4.1-4.3
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In Figure 5.28 the thrust development as a function of the azimuth angle for

the di�erent variants is plotted. The diagram in the �gure shows the development

during a complete revolution. Again, the maximum di�erences are observed between

Variant 4.1 and 4.2 with 0.0224% for the blades-spinner-curve.

Figure 5.28: AGARD propeller thrust coe�cients for Variants 4.1-4.3

These results con�rm the �ndings obtained in Cases 1-3, and thus the methodol-

ogy used here for the acceleration of unsteady simulations is found to be applicable

for a wide range of di�erent con�gurations.
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P.1 Cauchy Convergence Criterion

The DLR Tau-Code o�ers the option of a Cauchy convergence criterion for the

determination of the number of inner iterations to be performed in each time step. If

this function is activated, then the inner iterations are stopped if the relative changes

in drag and lift coe�cients during a certain number of previous inner iterations

speci�ed by the number of samples for the Cauchy convergence are smaller than

this tolerance value, i.e., if

ε =

∣∣cnl − cn−kl

∣∣
|cnl |

≤ total_lift (5.2)

for all k = 1, ...n_sample_inner. Here the upper index denotes the inner pseudo

time step. The number of samples gives the number of previous inner iterations that

are considered to check whether Cauchy convergence of the integral coe�cients of

lift and drag has been reached.

With this criterion, the time for the calculations can be reduced, since the number

of inner iterations varies for each time step until the criteria are ful�lled, possibly

avoiding unnecessary additional iterations. As an introduction, which could lead to

further investigations of this method, three setting of parameters were calculated

using the Cauchy convergence criteria. Using the same physical and numerical

parameters as in section 4.1 Variant 1.1, three simulations were performed with a

variation of the relative drag and lift changes ε. The variations attempted were with

the values ε = 1 · 10−6, 1 · 10−5, 1 · 10−4, each with 20 samples for the convergence

veri�cation. The tolerance of the criterion is increased if the relative change is also

increased, but with the consequence of having a sensitivity to unstable behaviors in

the calculation. A recommended value in the DLR Tau User guide for relative lift

and drag coe�cients is 1 · 106. Using this tolerance, the advantage of the method is
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very limited, since the minimal number of inner iterations needed for each time step

is close to the 150 inner iterations for almost each time step, which con�rms the

accuracy in the convergence of the results obtained in the reference simulation in

Case 1. For this reason coarser values were investigated, showing that the time for

the calculations can be reduced, but with the tendency of getting unstable behavior.

Figure 5.29 shows CPU-Time as a function of the relative CL and CD changes ε.

The values were normalized by the time obtained for the reference calculation in

section 4.1. Here it can be observed that using the recommended value given in [7],

the computation time is reduced by approximately 4% compared with the reference

in Case 1. Furthermore, with a value ε = 1 ·10−4 the time can be reduced by almost

50%.

Figure 5.29: CPU-time with the use for the Cauchy convergence criterion with
variation of the relative error for convergence

The values obtained for the periodic lift coe�cient distribution are depicted in

Figure 5.30. The Figure depicts the periodic CL-values as a function of the physical

time. Here it can be observed, that the results obtained for the coe�cients do not

vary dramatically by varying the Cauchy convergence criteria. The CLmax-values

obtained in the last physical cycle were extracted and normalized by the reference

values in Case 1, and �nally plotted as function of the relative coe�cient changes for

Cauchy convergence criterion as shown in Figure 5.31. The largest discrepancy of

the coe�cients is found for the simulation with ε = 1 · 10−6, showing a di�erence of

5.6 · 10−4 compared with the reference, which still represents a negligible di�erence.

The results obtained with the Cauchy convergence criterion provide an insight

into the method, which might lead to further investigations of the dual time-stepping

scheme using these criteria for more complex con�gurations.
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Figure 5.30: CPU-time with the use for the Cauchy convergence criterion with
variation of the relative error for convergence

Figure 5.31: CNmax-values with the use for the Cauchy convergence criterion with
variation of the relative error for convergence
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Conclusions

Through the cases studied in the present project, a methodology for the acceleration

of unsteady simulations was developed and validated.

The main conclusion drawn from the 2-D cases studied here, is that the use of

a time steps variation from a rough resolution of the temporal development of the

relevant forces (quick parameter settings) to a �ner resolution (accurate parameter

settings), decreases the cost of the simulations without having a major impact on

the accuracy of the results. Thus, the time needed for the calculations can be

reduced by almost 50% with negligible deviations of the results versus the reference

calculation with the use of a constant time step. The experiences obtained from the

2-D cases were applied to the 3-D cases, obtaining similar results which validate the

methodology.

The cases studied, especially Cases 2 and 4 showed the advantages of the initial-

ization of the �ow through a steady calculation before the simulation of the unsteady

�ow is started. For these cases it was clearly shown that the steady simulation, which

can be performed in a relatively short time (3000-5000 iterations), enables a much

quicker attainment of a periodic state in the subsequent time-accurate computations

leading to a clear reduction in computational cost.

For the acceleration of unsteady simulations it is thus recommendable to run a

steady computation of the �ow as a restart before the unsteady simulation is per-

formed. After the steady simulation is completed, a �rst unsteady computation

should be performed with parameters which lead to a quick simulation of the �rst

physical periods (i.e. 25-45 time steps per period with 150-300 inner iterations). The

quick simulation may not necessarily deliver the required accuracy, but allows for a

quicker propagation of the initial �ow disturbances out of the computational domain

and a more rapid establishment of at least an approximation of the unsteady �ow

�elds. After 2-5 physical cycles with the quick parameter settings are performed,

the parameters should be switched to a setup that delivers the required resolution of

the temporal development of the relevant aerodynamic phenomena (i.e. 90-180 time
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steps per period with 150-300 inner iterations). In the present study approximately

0.75-1.5 cycles were required to obtain fully periodic and su�ciently accurate aero-

dynamic forces using this subsequent accurate parameter setting. This approach of

employing a variation of the time-step size from the quick to the accurate settings

leads to a signi�cant reduction in the computation time

Although the Cauchy convergence criterion option still needs to be improved for a

wider applicability (i.e. use of changes in drag and lift instead of relative changes in

drag and lift coe�cients for the tolerance ε evaluation) to the calculation of the entire

diversity of challenges in the aerospace industry, further investigations of the dual

time-stepping scheme using these criteria for more complex con�gurations should

be performed.
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Appendices

A.1 Case 1

Centaur input �les

Surface parameter �le (*.sin)

1 ! Output Level(0-none, 1-normal, 2-detailed)

0 ! Desired number of surface triangles (0=off)

1.8 ! Stretching ratio (1.5-2.1)

1.0 ! Scaling parameter (0.25-4.0)

F ! Use constant spacing

38.184 ! Initial/Constant spacing value

10 ! Length Scale in absence of any features

1.591 ! Minimum Length scale for analytic curvature clustering

T ! Activate interpanel curvature clustering

100. 8. ! Angle and factor for interpanel curvature clustering

100. ! Factor for analytic curvature clustering interior to panels

2. ! Factor for proximity clustering

2. ! Factor for CAD clustering

Prisms parameter �le (*.pin)

1 ! Output Level (0-none, 1-normal, 2-detailed)

F ! Read in prismatic gap/cavity detection file (T/F)

0.4 ! Proportion of gaps to be filled by tets (0.2 - 0.8)

0 ! No. of passes for extending cavity area (0-4)

T ! Automatic curve pullback activation(T/F)

100. 0.33 ! Min. angle(degrees) at curve for activation; ratio

20.0 ! Ramp angle(deg)� growth rate on final layer (5-30)

32 ! No. of prismatic layers to be generated (5-30)

0.0115 ! Initial layer thickness (case dependent)

1.2 ! Stretching factor (1.1-1.5)

T ! Chop prismatic layers (T/F)

0.0025 ! Minimum layer thickness (case dependent)

Tetrahedral parameter �le (*.tin)
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1 ! Output Level(0-none, 1-normal, 2-detailed)

F ! Restarting (T/F)?

1.9 ! Stretching ratio (1.5-2.1)

1.0 ! Scaling parameter (0.25-4.0)

T ! Limit maximum tetrahedral size

2500 ! Maximum tet. length scale (if limit is True)

0.8 ! Thickness matching ratio(0.-1.)

2.0 ! Tet./prism interface ratio(1.-3.)

5 ! Tet. Grid Quality (1-lowest � 10-highest)

DLR Tau-Code parameter setting

���������������������������������������-

BOUNDARY MAPPING:

���������������������������������������-

Markers: 1

Type: farfield

Name: Farfield

Angle alpha (degree): 0.0

Vortex correction (0/1): 0

Chord length: 1

Mach number: 0.755

block end

������������������������-

Markers: 2

Type: viscous wall

Subtype: turbulent

Name: SS

Write surface data (0/1): 1

Cutting plane allowed (0/1): 1

Monitor forces (0/1): 1

block end

�������������-

Markers: 3

Type: viscous wall

Subtype: turbulent

Name: PS

Write surface data (0/1): 1

Cutting plane allowed (0/1): 1

Monitor forces (0/1): 1

block end

�������������-

Markers: 4

Type: viscous wall

Subtype: turbulent

Name: LE

Write surface data (0/1): 1

Cutting plane allowed (0/1): 1

Monitor forces (0/1): 1

block end

�������������-

Markers: 5

Type: symmetry plane

Name: Side1

Write surface data (0/1): 1
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Cutting plane allowed (0/1): 1

Monitor forces (0/1): 1

block end

�������������-

Markers: 6

Type: symmetry plane

Name: Side2

Write surface data (0/1): 1

Cutting plane allowed (0/1): 1

Monitor forces (0/1): 1

block end

�������������-

���������������������������������������

REQUIRED PARAMETERS

���������������������������������������

Boundary mapping filename: naca0012.para

Primary grid filename: naca0012.tau

Reference Mach number: 0.755

���������������������������������������

IO

���������������������������������������

Grid/Solution �����������������-: -

Grid prefix: naca0012.dualgrid

Output files prefix: naca0012.sol

Restart-data prefix: (none)

Chimera grid info filename: chimgridinfo

Controls ��������������������: -

Automatic parameter update (0/1): 1

Write pointdata dimensionless (0/1): 0

���������������������������������������

MOVING GRID

���������������������������������������

Type of grid movement: rigid

Motion description filename: (thisfile)

Motion hierarchy filename: (thisfile)

Geometric conservation law (0/1): 0

Number of time steps per period: 180

Evaluate forces and moments at node: block_1

Extended motion monitoring (0/1): 1

Node name: block_1

Node reference frame: inertial

Node controls grid block: 1

Node motion description id: block_1

hdf end

������������������������-

Motion description id: block_1

Type of movement: periodic

Origin of local coordinate system: 0.0 0.0 0.0

Degree of Fourier series for rotation: 1

Reduced frequency for rotation: 0 0.1628 0

Reduced frequency reference length: 0.1016 0.1016 0.1016

Fourier coefficients for rotation (sin) pitch: 0.0 2.51

mdf end

������������������������-

��������������������������-

PREPROCESSING

��������������������������-
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Output level: 100

Cache-coloring (0/max_faces in color): 50

Compute/store wall distances: 0

Number of multigrid levels: 3

Partitioning ������������������: -

Number of primary grid domains: 1

Number of domains: 1

Type of partitioning (name): private

Additionals ������������������-: -

Compute exact whirlflux (0/1): 1

Compute lusgs mapping (0/1): 1

2D offset vector (0 / x=1,y=2,z=3): 2

���������������������������������������

SOLVER->GENERAL

���������������������������������������

Convective RANS flux discretization type: central

Order of basic equations (1/2): 2

Order of additional equations (1/2): 2

Increase memory (0/1): 1

�-Timestepping Start/Stop �����������: -

Output period: 45

Maximal time step number: 5000

Minimum residual: 1e-10

Project time steps (0/1): 1

�-MG����������������������: -

MG description filename: 3v

�-MG-Smoothing ����������������-: -

Residual smoother: Point_explicit

Correction smoother: Point_explicit

Interpolate corrections (0/1): 0

Correction smooth epsilon: 0.2

Residual smooth epsilon: 0.2002

Correction smoothing steps: 2

Residual smoothing steps: 2

Smoothing relaxation steps: 2

�-MG Start up �����������������: -

SG start up steps (fine grid): 0

Multigrid start level: 1

Maximal time step number (coarse grids): 50

Minimum residual (coarse grids): 0.0001

�-Monitoring �����������������-: -

Monitor history (0/1): 1

Residual monitoring type (0/1): 1

Monitor history (0/1): 1

�-Dual time ������������������: -

Unsteady time stepping: dual

Unsteady show pseudo time steps (0/1): 1

Unsteady physical time steps: 900

Minimum number of inner iterations per time step: 50

Unsteady inner iterations per time step: 150

Unsteady implicit scheme order: 2

Unsteady extrapolation order: 1

Variable timestepping (0/1/2): 0

Timestep data filename: (none)

Compute DES solution(0/1): 0

DES constant: 0.65

�-References �����������������-: -
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Reference Mach number: 0.755

Reference temperature: 288.15

Prandtl number: 0.72

Gas constant gamma: 1.4

Gas constant R: 287.1

�-Transport coefficients �����������-: -

Reynolds number: 5.5e6

Reynolds length: 0.1016

Prandtl number: 0.72

Sutherland constant: 110.4

Sutherland reference viscosity: 1.716e-05

Sutherland reference temperature: 273

�-Geometry ������������������-: -

Grid scale: 1

Reference relation area: 0

Reference length (pitching momentum): 0.1016

Reference length (rolling/yawing momentum): 1

Origin coordinate x: 0

Origin coordinate y: 0

Origin coordinate z: 0

���������������������������������������

SOLVER->DISSIPATION: SCALAR

���������������������������������������

Central dissipation scheme: Scalar_dissipation

2nd order dissipation coefficient: 0.5

Inverse 4th order dissipation coefficient: 64

���������������������������������������

SOLVER->TIME-STEPPING: RUNGE-KUTTA

���������������������������������������

Relaxation solver: Runge_Kutta

Number of Runge-Kutta stages: 3

CFL number: 1.8

CFL number (coarse grids): 1.8

���������������������������������������

SOLVER->PRECONDITIONING

���������������������������������������

Preconditioning (0/1/2): 0

Cut-off value: 2

���������������������������������������

SOLVER->TURBULENCE: SPALART-ALLMARAS

���������������������������������������

Monitoring values: Residual_Max-res_X-max-res_Z-max-res_dnue/dt_C-lift

_C-drag_C-my_Max-y+_Max-eddyv_Angle-a

Monitoring significant figures: 4_4_4_4_4_9_9_9_4_4_4

�-Turbulence ������������������: -

Turbulence model version: SAE

Turb. Prandtl number: 0.9

Ratio mue-t/mue-l: 0.1

Maximum limit mue-t/mue-l: 20000

Turbulent intensity: 0.001

Reference bl-thickness: 1e+22

Maximum turbulence production/destruction: 20

Turbulence equations use multigrid (0/1): 1

Positivity scheme: 0

EARSM expansion order: 1

Rotational correction (0/1): 0

Rotational correction model: 0
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Work space for rotational correction smoother (0/1): 0

Smooth rotational correction eps: 1e-05

Number of Smoothing steps for rotcorr: 0

���������������������������������������

EXTRA FIELD POINTDATA OUTPUT

���������������������������������������

Field output description file: naca0012.para

Field output values: xyzgeod_temp_Ptot_mach_vort_vxyzgeod_wxyz_vxyzmoving

Field output period: 45

���������������������������������������

SURFACE OUTPUT

���������������������������������������

Surface output description file: naca0012.para

Surface output files prefix: surf

Surface output values: xyzgeod_xyz_rho_cp_v_mach_vort_yplus_vxyzgeod_wxyz

_vxyzmoving

Surface output period: 45

���������������������������������������

TAU2PLT

���������������������������������������

Bounding Box ������������������: -

Volume element options �������������: -

Volume data output (0/1): 1

Element types for zone: (none)

One zone for all volume elements: 0

Surface element options �������������: -

Surface data output (0/1): 1

Output Control �����������������: -

Output format: tecplot

Ascii (0/1): 0

Precision : 9

Title of output file: (none)

���������������������������������������

UPDATES

���������������������������������������

A.2 Case 2

Centaur input �les

Surface parameter �le (*.sin)

1 ! Output Level(0-none, 1-normal, 2-detailed)

0 ! Desired number of surface triangles (0=off)

1.5 ! Stretching ratio (1.5-2.1)

1.0 ! Scaling parameter (0.25-4.0)

F ! Use constant spacing

628.119 ! Initial/Constant spacing value

1256.24 ! Length Scale in absence of any features

26.1716 ! Minimum Length scale for analytic curvature clustering

T ! Activate interpanel curvature clustering

100. 8. ! Angle and factor for interpanel curvature clustering

160. ! Factor for analytic curvature clustering interior to panels
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2. ! Factor for proximity clustering

2. ! Factor for CAD clustering

Prisms parameter �le (*.pin)

1 ! Output Level (0-none, 1-normal, 2-detailed)

F ! Read in prismatic gap/cavity detection file (T/F)

0.4 ! Proportion of gaps to be filled by tets (0.2 - 0.8)

0 ! No. of passes for extending cavity area (0-4)

F ! Automatic curve pullback activation(T/F)

100. 0.33 ! Min. angle(degrees) at curve for activation; ratio

10.0 ! Ramp angle(deg)� growth rate on final layer (5-30)

20 ! No. of prismatic layers to be generated (5-30)

10.044 ! Initial layer thickness (case dependent)

1.175 ! Stretching factor (1.1-1.5)

T ! Chop prismatic layers (T/F)

0.2088 ! Minimum layer thickness (case dependent)

Tetrahedral parameter �le (*.tin)

1 ! Output Level(0-none, 1-normal, 2-detailed)

F ! Restarting (T/F)?

1.8 ! Stretching ratio (1.5-2.1)

1.0 ! Scaling parameter (0.25-4.0)

T ! Limit maximum tetrahedral size

100000.0 ! Maximum tet. length scale (if limit is True)

0.8 ! Thickness matching ratio(0.-1.)

2.0 ! Tet./prism interface ratio(1.-3.)

5 ! Tet. Grid Quality (1-lowest � 10-highest)

DLR Tau-Code parameter setting

���������������������������������������-

BOUNDARY MAPPING:

���������������������������������������-

Markers: 1

Type: farfield

Name: Farfield

Angle alpha (degree): 0.0

Vortex correction (0/1): 0

Chord length: 1

Mach number: 0.2

block end

������������������������-

Markers: 2

Type: viscous wall

Subtype: laminar

Name: Cylinder

Write surface data (0/1): 1
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Cutting plane allowed (0/1): 1

Monitor forces (0/1): 1

block end

�������������-

Markers: 4

Type: symmetry plane

Name: Side1

Write surface data (0/1): 1

Cutting plane allowed (0/1): 1

Monitor forces (0/1): 1

block end

�������������-

Markers: 5

Type: symmetry plane

Name: Side2

Write surface data (0/1): 1

Cutting plane allowed (0/1): 1

Monitor forces (0/1): 1

block end

�������������-

���������������������������������������

REQUIRED PARAMETERS

���������������������������������������

Boundary mapping filename: cylinder180.para

Primary grid filename: cylinder180.tau

Reference Mach number: 0.2

���������������������������������������

IO

���������������������������������������

Grid/Solution �����������������-: -

Grid prefix: cylinder180.dualgrid

Output files prefix: cylinder180.sol

Restart-data prefix: (none)

Chimera grid info filename: chimgridinfo

Controls ��������������������: -

Automatic parameter update (0/1): 1

Write pointdata dimensionless (0/1): 0

��������������������������-

PREPROCESSING

��������������������������-

Output level: 100

Cache-coloring (0/max_faces in color): 50

Compute/store wall distances: 0

Number of multigrid levels: 3

Partitioning ������������������: -

Number of primary grid domains: 1

Number of domains: 1

Type of partitioning (name): private

Additionals ������������������-: -

Compute exact whirlflux (0/1): 1

Compute lusgs mapping (0/1): 1

2D offset vector (0 / x=1,y=2,z=3): 2

���������������������������������������

SOLVER->GENERAL

���������������������������������������

Convective RANS flux discretization type: central

Order of basic equations (1/2): 2
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Order of additional equations (1/2): 2

Increase memory (0/1): 1

�-Timestepping Start/Stop �����������: -

Output period: 3000

Maximal time step number: 5000

Minimum residual: 1e-10

Project time steps (0/1): 1

�-MG����������������������: -

MG description filename: 3v

�-MG-Smoothing ����������������-: -

Residual smoother: Point_explicit

Correction smoother: Point_explicit

Interpolate corrections (0/1): 0

Correction smooth epsilon: 0.2

Residual smooth epsilon: 0.2002

Correction smoothing steps: 2

Residual smoothing steps: 2

Smoothing relaxation steps: 2

�-MG Start up �����������������: -

SG start up steps (fine grid): 0

Multigrid start level: 1

Maximal time step number (coarse grids): 50

Minimum residual (coarse grids): 0.0001

�-Monitoring �����������������-: -

Monitor history (0/1): 1

Residual monitoring type (0/1): 1

Monitor history (0/1): 1

�-Dual time ������������������: -

Unsteady time stepping: dual

Unsteady show pseudo time steps (0/1): 1

Unsteady physical time step size: 5.0e-004

Unsteady physical time steps: 3000

Minimum number of inner iterations per time step: 50

Unsteady inner iterations per time step: 100

Unsteady implicit scheme order: 2

Unsteady extrapolation order: 1

Variable timestepping (0/1/2): 0

Timestep data filename: (none)

Compute DES solution(0/1): 0

DES constant: 0.65

�-References �����������������-: -

Reference Mach number: 0.2

Reference temperature: 277.78

Prandtl number: 0.72

Gas constant gamma: 1.4

Gas constant R: 287.1

�-Transport coefficients �����������-: -

Reynolds number: 150

Reynolds length: 1

Prandtl number: 0.72

Sutherland constant: 110.4

Sutherland reference viscosity: 1.716e-05

Sutherland reference temperature: 273

�-Geometry ������������������-: -

Grid scale: 1

Reference relation area: 0

Reference length (pitching momentum): 1
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Reference length (rolling/yawing momentum): 1

Origin coordinate x: 0

Origin coordinate y: 0

Origin coordinate z: 0

���������������������������������������

SOLVER->DISSIPATION: SCALAR

���������������������������������������

Central dissipation scheme: Scalar_dissipation

2nd order dissipation coefficient: 0.5

Inverse 4th order dissipation coefficient: 64

���������������������������������������

SOLVER->TIME-STEPPING: RUNGE-KUTTA

���������������������������������������

Relaxation solver: Runge_Kutta

Number of Runge-Kutta stages: 3

CFL number: 1.0

CFL number (coarse grids): 1.0

���������������������������������������

SOLVER->PRECONDITIONING

���������������������������������������

Preconditioning (0/1/2): 0

Cut-off value: 2

���������������������������������������

SOLVER->TURBULENCE: SPALART-ALLMARAS

���������������������������������������

Monitoring values: Residual_Max-res_X-max-res_Z-max-res_dnue/dt

_C-lift_C-drag_C-my_Max-eddyv

Monitoring significant figures: 4_4_4_4_4_9_9_9_4_4_4

�-Turbulence ������������������: -

Turbulence model version: SAE

Turb. Prandtl number: 0.9

Ratio mue-t/mue-l: 0.1

Maximum limit mue-t/mue-l: 20000

Turbulent intensity: 0.001

Reference bl-thickness: 1e+22

Maximum turbulence production/destruction: 20

Turbulence equations use multigrid (0/1): 1

Positivity scheme: 0

EARSM expansion order: 1

Rotational correction (0/1): 0

Rotational correction model: 0

Work space for rotational correction smoother (0/1):0

Smooth rotational correction eps: 1e-05

Number of Smoothing steps for rotcorr: 0

���������������������������������������

EXTRA FIELD POINTDATA OUTPUT

���������������������������������������

Field output description file: cylinder180.para

Field output values: Ptot_mach_vort_wxyz

Field output period: 3000

���������������������������������������

SURFACE OUTPUT

���������������������������������������

Surface output description file: cylinder180.para

Surface output files prefix: surf

Surface output values: xyz_rho_cp_v_mach_vort_yplus_wxyz

Surface output period: 3000
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���������������������������������������

TAU2PLT

���������������������������������������

Bounding Box ������������������: -

Volume element options �������������: -

Volume data output (0/1): 1

Element types for zone: (none)

One zone for all volume elements: 0

Surface element options �������������: -

Surface data output (0/1): 1

Output Control �����������������: -

Output format: tecplot

Ascii (0/1): 0

Precision : 9

Title of output file: (none)

���������������������������������������

UPDATES

���������������������������������������

A.3 Case 3

Centaur input �les

Surface parameter �le (*.sin)

1 ! Output Level(0-none, 1-normal, 2-detailed)

0 ! Desired number of surface triangles (0=off)

1.8 ! Stretching ratio (1.5-2.1)

1.0 ! Scaling parameter (0.25-4.0)

F ! Use constant spacing

35 ! Initial/Constant spacing value

70 ! Length Scale in absence of any features

1.25 ! Minimum Length scale for analytic curvature clustering

T ! Activate interpanel curvature clustering

100. 8. ! Angle and factor for interpanel curvature clustering

15. ! Factor for analytic curvature clustering interior to panels

2. ! Factor for proximity clustering

1. ! Factor for CAD clustering

Prisms parameter �le (*.pin)

1 ! Output Level (0-none, 1-normal, 2-detailed)

F ! Read in prismatic gap/cavity detection file (T/F)

0.4 ! Proportion of gaps to be filled by tets (0.2 - 0.8)

0 ! No. of passes for extending cavity area (0-4)

T ! Automatic curve pullback activation(T/F)

100. 0.33 ! Min. angle(degrees) at curve for activation; ratio

7.0 ! Ramp angle(deg)� growth rate on final layer (5-30)

30 ! No. of prismatic layers to be generated (5-30)

0.005 ! Initial layer thickness (case dependent)
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1.2 ! Stretching factor (1.1-1.5)

T ! Chop prismatic layers (T/F)

0.0005 ! Minimum layer thickness (case dependent)

Tetrahedral parameter �le (*.tin)

1 ! Output Level(0-none, 1-normal, 2-detailed)

F ! Restarting (T/F)?

1.8 ! Stretching ratio (1.5-2.1)

1.1 ! Scaling parameter (0.25-4.0)

F ! Limit maximum tetrahedral size

800 ! Maximum tet. length scale (if limit is True)

0.5 ! Thickness matching ratio(0.-1.)

1.3 ! Tet./prism interface ratio(1.-3.)

5 ! Tet. Grid Quality (1-lowest � 10-highest)

DLR Tau-Code parameter setting

���������������������������������������-

BOUNDARY MAPPING

���������������������������������������-

Markers: 1

Type: viscous wall

Subtype: turbulent

Name: Surface-Fuselage

Write surface data (0/1): 1

Monitor forces (0/1): 1

Structured layer refinement (0/1): 0

block end

�������������-

Markers: 2

Type: farfield

Name: far

Angle alpha (degree): 0

Angle beta (degree): 0

Vortex correction (0/1): 0

block end

�������������-

Markers: 3

Type: symmetry plane

Name: sym

Write surface data (0/1): 1

Monitor forces (0/1): 1

block end

�������������-

Markers: 4

Type: viscous wall

Subtype: turbulent

Name: FUSELNOSE

Write surface data (0/1): 1

Monitor forces (0/1): 1

Structured layer refinement (0/1): 0
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block end

�������������-

Markers: 5

Type: viscous wall

Subtype: turbulent

Name: Surface-Wing

Write surface data (0/1): 1

Monitor forces (0/1): 1

Structured layer refinement (0/1): 0

block end

�������������-

Markers: 6

Type: viscous wall

Subtype: turbulent

Name: Surface-HTP

Write surface data (0/1): 1

Monitor forces (0/1): 1

Structured layer refinement (0/1): 0

block end

�������������-

Markers: 7

Type: viscous wall

Subtype: turbulent

Name: Surface-VTP

Write surface data (0/1): 1

Monitor forces (0/1): 1

Structured layer refinement (0/1): 0

block end

�������������-

���������������������������������������

REQUIRED PARAMETERS

���������������������������������������

Boundary mapping filename: (thisfile)

Primary grid filename: dlrf12hm.tau

Reference velocity: 70

���������������������������������������

IO

���������������������������������������

�-Grid/Solution ����������������: -

Grid prefix: dlrf12hm.dualgrid

Output files prefix: dlrf12hm.sol

Restart-data prefix: (none)

Chimera grid info filename: chimgridinfo

�-Controls �������������������-: -

Automatic parameter update (0/1): 1

Write pointdata dimensionless (0/1): 0

Reference system of forces and moments (tau/ln9300): ln9300

���������������������������������������

MOVING GRID

���������������������������������������

Type of grid movement: rigid

Motion description filename: (thisfile)

Motion hierarchy filename: (thisfile)

Geometric conservation law (0/1): 0

Number of time steps per period: 90

Evaluate forces and moments at node: block_1

Extended motion monitoring (0/1): 1
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Initialize deformation (0/1): 0

Flutter parameters description filename: (none)

Extern motion filename: (none)

Node name: block_1

Node reference frame: inertial

Node controls grid block: 1

Node motion description id: block_1

hdf end

������������������������-

Motion description id: block_1

Type of movement: periodic

Degree of polynomial for rotation: 1

Origin of local coordinate system: 1.048816832 0.0 -0.030285319

Degree of Fourier series for rotation: 1

Reduced frequency for rotation: 0 0.0680267 0

Reduced frequency reference length: 0.252625 0.252625 0.252625

Fourier coefficients for rotation (cos) pitch: 0.0 0.0

Fourier coefficients for rotation (sin) pitch: 0.0 4.5

mdf end

������������������������-

���������������������������������������

PREPROCESSING

���������������������������������������

Read partitioning filename: (none)

Write graph filename: (none)

Preprocessing for incompressible solver (0/1): 0

Number of blocks: 1

Cache-coloring (0/max_faces in color): 200000

Number of multigrid levels: 3

Point fusing reward: 1.2

Structured grid coarsening: 0

Sharp edge angle (degrees): 0

�-Partitioning ����������������-: -

Number of primary grid domains: 24

Number of domains: 24

Type of partitioning (name): private

�-Additionals �����������������: -

2D offset vector (0 / x=1,y=2,z=3): 0

Compute exact whirlflux (0/1): 1

Compute exact surface(0/1): 1

Bandwidth optimisation (0/1): 0

Compute/store wall distances: 50

Control volume edge weight (0/1): 1

Change boundary control volumes (0/1): 0

Output level: 5

Parameter-Update: 1

Compute DES scale(0/1): 0

Periodic translation vector: 0 0 0

Periodic angle: 0

Periodic epsilon value: 1e-2

�-Extensions �����������������-: -

Preprocessing for incompressible solver (0/1): 0

Correct metric for boundary control volumes (0/1): 0

Project boundary control volumes coordinates (0/1):0

Translation factor for shifted boundary points: 1

Compute parent faces (0/1): 0

���������������������������������������
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SOLVER->GENERAL

���������������������������������������

�-Viscous �������������������: -

Viscous calculation (0/1): 1

�-Flux���������������������: -

Convective RANS flux discretization type: central

Order of basic equations (1/2): 2

Order of additional equations (1/2): 2

Increase memory (0/1): 1

Fix negative values (0/1): 0

Viscous flux type TSL/Full (0/1): 1

Hold static velocity field (0/1): 0

Set mixed upwind/central inviscid fluxes (0/1): 0

Compute exact whirlflux (0/1): 0

�-Limiter �������������������: -

Limiter freezing convergence: 0

�-Timestepping Start/Stop �����������: -

Output period: 180

Maximal time step number: 5000

Minimum residual: 1e-10

Project time steps (0/1): 1

Accumulate queue time (0/1): 0

Matching period: 150

�-MG����������������������: -

MG description filename: 3v

�-MG-Smoothing ����������������-: -

Residual smoother: Point_explicit

Correction smoother: Point_explicit

Interpolate corrections (0/1): 0

Correction smooth epsilon: 0.2

Residual smooth epsilon: 0.2002

Correction smoothing steps: 2

Residual smoothing steps: 2

Smoothing relaxation steps: 2

No smoothing near shocks (0/1): 0

�-MG Start up �����������������: -

SG start up steps (fine grid): 250

Multigrid start level: 1

Maximal time step number (coarse grids): 50

Minimum residual (coarse grids): 0.0001

�-Monitoring �����������������-: -

Monitor history (0/1): 1

Residual monitoring type (0/1): 0

�-References �����������������-: -

Reference velocity: 70

Reference temperature: 293.15

Prandtl number: 0.72

Gas constant gamma: 1.4

Gas constant R: 287

�-Transport coefficients �����������-: -

Reynolds number: 1.1866e+6

Reynolds length: 0.252625

Prandtl number: 0.72

Gas constant gamma: 1.4

Sutherland constant: 110.4

Sutherland reference viscosity: 1.716e-05

Sutherland reference temperature: 293.15
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�-Geometry ������������������-: -

Grid scale: 1

Reference relation area: 0.22207

Reference length (pitching momentum): 0.252625

Reference length (rolling/yawing momentum): 0.252625

Origin coordinate x: 1.048816832

Origin coordinate y: 0

Origin coordinate z: -0.030285319

���������������������������������������

SOLVER->DISSIPATION: MATRIX

���������������������������������������

Central dissipation scheme: Matrix_dissipation

Matrix dissipation terms coefficient: 1

Minimum artificial dissipation for acoustic waves: 0.2

Minimum artificial dissipation for velocity: 0.2

Reconstruction of gradients: Green_Gauss

���������������������������������������

SOLVER->TIME-STEPPING: DUAL TIME

���������������������������������������

�-Dual time ������������������: -

Unsteady time stepping: dual

Unsteady show pseudo time steps (0/1): 1

Unsteady physical time steps: 23

Minimum number of inner iterations per time step: 50

Unsteady inner iterations per time step: 600

Unsteady implicit scheme order: 2

Unsteady extrapolation order: 1

Variable timestepping (0/1/2): 0

Timestep data filename: (none)

Compute DES solution(0/1): 0

DES constant: 0.65

Unsteady residual type (0/1): 1

���������������������������������������

SOLVER->TIME-STEPPING: RUNGE-KUTTA

���������������������������������������

Relaxation solver: Runge_Kutta

Number of Runge-Kutta stages: 3

CFL number: 1.0

CFL number (coarse grids): 1.0

���������������������������������������

SOLVER->PRECONDITIONING

���������������������������������������

Preconditioning (0/1/2): 0

Cut-off value: 2

���������������������������������������

SOLVER->TURBULENCE: SPALART-ALLMARAS

���������������������������������������

Monitoring values: Residual_Max-res_X-max-res_Y-max-res_Z-max-res_dnue/dt

_T/tperiod_C-drag_C-lift_C-my_Fx_Fy_Fz_Mx_My_Mz_Phi_Psi_Xi_Angle-a

�-Turbulence ������������������: -

Turbulence model version: SAE

Turb. Prandtl number: 0.9

Ratio mue-t/mue-l: 0.1

Maximum limit mue-t/mue-l: 20000

Turbulent intensity: 0.001

Reference bl-thickness: 1e+22

Maximum turbulence production/destruction: 20
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Turbulence equations use multigrid (0/1): 1

Positivity scheme: 0

EARSM expansion order: 1

Rotational correction (0/1): 0

Rotational correction model: 0

Work space for rotational correction smoother (0/1): 0

Smooth rotational correction eps: 1e-05

Number of Smoothing steps for rotcorr: 0

���������������������������������������

EXTRA FIELD POINTDATA OUTPUT

���������������������������������������

Field output description file: (thisfile)

Field output values: cp_mach_vort_xyzgeod_Ptot

_cf_yplus

Field output period: 180

���������������������������������������

SURFACE OUTPUT

���������������������������������������

Surface output description file: (thisfile)

Surface output values: xyz_vxyzaero_xyzgeod_rho_p

_cp_Ptot_cf_cfxyz_yplus

Surface output period: 180

���������������������������������������

CUT PLANE OUTPUT

���������������������������������������

Plane output description file: (thisfile)

Plane output values: xyz_rho_p_cp_Ptot

Plane output period: 180

Number of planes: 3

Boundary type (euler/ns): ns

Plane support x: 0 0 0

Plane support y: 0.01 0.1712 0.4578

Plane support z: 0 0 0

Plane normal x: 0 0 0

Plane normal y: 1 1 1

Plane normal z: 0 0 0

���������������������������������������

TAU2PLT

���������������������������������������

�-Output Control ���������������-: -

Output format: tecplot

Ascii (0/1): 0

Precision : 9

Title of output file: (none)

���������������������������������������

UPDATES

���������������������������������������

A.4 Case 4

Centaur input �les propeller-spinner block

Surface parameter �le (*.sin)
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2 ! Output Level(0-none, 1-normal, 2-detailed)

0 ! Desired number of surface triangles (0=off)

1.8 ! Stretching ratio (1.5-2.1)

1.0 ! Scaling parameter (0.25-4.0)

F ! Use constant spacing

4.68277 ! Initial/Constant spacing value

9.36553 ! Length Scale in absence of any features

0.05 ! Minimum Length scale for curvature clustering

T ! Activate interpanel curvature clustering

100. 8. ! Angle and factor for interpanel curvature clustering

36. ! Factor for curvature clustering interior to panels

2. ! Factor for proximity clustering

2. ! Factor for CAD clustering

Prisms parameter �le (*.pin)

2 ! Output Level (0-none, 1-normal, 2-detailed)

F ! Read in prismatic gap/cavity detection file (T/F)

0.4 ! Proportion of gaps to be filled by tets (0.2 - 0.8)

0 ! No. of passes for extending cavity area (0-4)

T ! Automatic curve pullback activation(T/F)

100. 0.33 ! Min. angle(degrees) at curve for activation; ratio

20.0 ! Ramp angle(deg)� growth rate on final layer (5-30)

25 ! No. of prismatic layers to be generated (5-30)

0.0025 ! Initial marching step (case dependent)

1.275 ! Stretching factor (1.1-1.5)

T ! Chop prismatic layers (T/F)

0.001 ! Minimum nominal marching step (case dependent)

Tetrahedral parameter �le (*.tin)

2 ! Output Level(0-none, 1-normal, 2-detailed)

F ! Restarting (T/F)?

2.0 ! Stretching ratio (1.5-2.1)

0.85 ! Scaling parameter (0.25-4.0)

F ! Limit maximum tetrahedral size

98.1738 ! Maximum tet. length scale (if limit is True)

0.85 ! Thickness matching ratio(0.-1.)

1.6 ! Tet./prism interface ratio(1.-3.)

5 ! Tet. Grid Quality (1-lowest � 10-highest)

Centaur input �les wing-nacelle block

Surface parameter �le (*.sin)

2 ! Output Level(0-none, 1-normal, 2-detailed)
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0 ! Desired number of surface triangles (0=off)

1.8 ! Stretching ratio (1.5-2.1)

1.0 ! Scaling parameter (0.25-4.0)

F ! Use constant spacing

9.57403 ! Initial/Constant spacing value

19.1481 ! Length Scale in absence of any features

0.398918 ! Minimum Length scale for analytic curvature clustering

T ! Activate interpanel curvature clustering

100. 8. ! Angle and factor for interpanel curvature clustering

40. ! Factor for curvature clustering interior to panels

2. ! Factor for proximity clustering

2. ! Factor for CAD clustering

Prisms parameter �le (*.pin)

2 ! Output Level (0-none, 1-normal, 2-detailed)

F ! Read in prismatic gap/cavity detection file (T/F)

0.4 ! Proportion of gaps to be filled by tets (0.2 - 0.8)

0 ! No. of passes for extending cavity area (0-4)

T ! Automatic curve pullback activation(T/F)

100. 0.33 ! Min. angle(degrees) at curve for activation; ratio

20.0 ! Ramp angle(deg)� growth rate on final layer (5-30)

25 ! No. of prismatic layers to be generated (5-30)

0.01 ! Initial marching step (case dependent)

1.3 ! Stretching factor (1.1-1.5)

T ! Chop prismatic layers (T/F)

0.001 ! Minimum nominal marching step (case dependent)

Tetrahedral parameter �le (*.tin)

2 ! Output Level(0-none, 1-normal, 2-detailed)

F ! Restarting (T/F)?

2.0 ! Stretching ratio (1.5-2.1)

0.85 ! Scaling parameter (0.25-4.0)

F ! Limit maximum tetrahedral size

7853.66 ! Maximum tet. length scale (if limit is True)

0.85 ! Thickness matching ratio(0.-1.)

1.6 ! Tet./prism interface ratio(1.-3.)

5 ! Tet. Grid Quality (1-lowest � 10-highest)

DLR Tau-Code parameter setting

���������������������������������������-

BOUNDARY MAPPING BLOCK 1: Farfield

���������������������������������������-

Markers: 2,3,4

Chimera block: 1

Type: farfield

Name: farfield

Angle alpha (degree): 10
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Angle beta (degree): 0

Vortex correction (0/1): 0

Chord length: 1

Temperature : 276.53

Mach number : 0.15

block end

������������������������-

Markers: 5, 6, 7, 8, 9

Chimera block: 1

Type: chimera

Name: nacelle_chimera

block end

������������������������-

Markers: 10

Chimera block: 1

Type: viscous wall

Subtype: turbulent

Name: nacelle_endwall

Write surface data (0/1): 1

Cutting plane allowed (0/1): 0

Monitor forces (0/1): 0

block end

������������������������-

Markers: 11

Chimera block: 1

Type: viscous wall

Subtype: turbulent

Name: nacelle

Write surface data (0/1): 1

Cutting plane allowed (0/1): 0

Monitor forces (0/1): 0

block end

������������������������-

Markers: 12

Chimera block: 1

Type: viscous wall

Subtype: turbulent

Name: nacelle_endplane

Write surface data (0/1): 1

Cutting plane allowed (0/1): 0

Monitor forces (0/1): 0

block end

������������������������-

Markers: 13

Type: viscous wall

Subtype: turbulent

Name: wing_te

Write surface data (0/1): 1

Cutting plane allowed (0/1): 0

Monitor forces (0/1): 0

block end

�������������-

Markers: 14

Type: viscous wall

Subtype: turbulent

Name: wing_ps

Write surface data (0/1): 1
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Cutting plane allowed (0/1): 0

Monitor forces (0/1): 0

block end

�������������-

Markers: 15

Type: viscous wall

Subtype: turbulent

Name: wing_le

Write surface data (0/1): 1

Cutting plane allowed (0/1): 0

Monitor forces (0/1): 0

block end

�������������-

Markers: 16

Type: viscous wall

Subtype: turbulent

Name: wing_ss

Write surface data (0/1): 1

Cutting plane allowed (0/1): 0

Monitor forces (0/1): 0

block end

�������������-

Markers: 17

Type: viscous wall

Subtype: turbulent

Name: wing_tip

Write surface data (0/1): 1

Cutting plane allowed (0/1): 0

Monitor forces (0/1): 0

block end

�������������-

���������������������������������������-

BOUNDARY MAPPING BLOCK 2: Prop

���������������������������������������-

Markers: 18, 19, 20

Chimera block: 2

Type: chimera

Name: prop_chimera

block end

������������������������-

Markers: 21

Type: viscous wall

Subtype: turbulent

Name: spinner

Write surface data (0/1): 1

Cutting plane allowed (0/1): 0

Monitor forces (0/1): 1

block end

�������������-

Markers: 22

Type: viscous wall

Subtype: turbulent

Name: spinner_endwall

Write surface data (0/1): 1

Cutting plane allowed (0/1): 0

Monitor forces (0/1): 1

block end
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�������������-

Markers: 23

Type: viscous wall

Subtype: turbulent

Name: bld_te_r

Write surface data (0/1): 1

Cutting plane allowed (0/1): 0

Monitor forces (0/1): 1

block end

�������������-

Markers: 24

Type: viscous wall

Subtype: turbulent

Name: bld_te_m

Write surface data (0/1): 1

Cutting plane allowed (0/1): 0

Monitor forces (0/1): 1

block end

�������������-

Markers: 25

Type: viscous wall

Subtype: turbulent

Name: bld_te_t

Write surface data (0/1): 1

Cutting plane allowed (0/1): 0

Monitor forces (0/1): 1

block end

�������������-

Markers: 26

Type: viscous wall

Subtype: turbulent

Name: bld_ps

Write surface data (0/1): 1

Cutting plane allowed (0/1): 0

Monitor forces (0/1): 1

block end

�������������-

Markers: 27

Type: viscous wall

Subtype: turbulent

Name: bld_le_r

Write surface data (0/1): 1

Cutting plane allowed (0/1): 0

Monitor forces (0/1): 1

block end

�������������-

Markers: 28

Type: viscous wall

Subtype: turbulent

Name: bld_le_m

Write surface data (0/1): 1

Cutting plane allowed (0/1): 0

Monitor forces (0/1): 1

block end

�������������-

Markers: 29

Type: viscous wall
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Subtype: turbulent

Name: bld_le_t

Write surface data (0/1): 1

Cutting plane allowed (0/1): 0

Monitor forces (0/1): 1

block end

�������������-

Markers: 30

Type: viscous wall

Subtype: turbulent

Name: bld_ss

Write surface data (0/1): 1

Cutting plane allowed (0/1): 0

Monitor forces (0/1): 1

block end

�������������-

Markers: 31

Type: viscous wall

Subtype: turbulent

Name: bld_tip

Write surface data (0/1): 1

Cutting plane allowed (0/1): 0

Monitor forces (0/1): 1

block end

�������������-

���������������������������������������

REQUIRED PARAMETERS

���������������������������������������

Boundary mapping filename: agardprop.para

Primary grid filename: agardprop.tau

Reference Mach number: 0.15

���������������������������������������

IO

���������������������������������������

�-Grid/Solution ����������������: -

Grid prefix: agardprop.dualgrid

Output files prefix: agardprop.sol

Restart-data prefix: (none)

Chimera grid info filename: chimgridinfo

�-Controls ������������������-: -

Automatic parameter update (0/1): 1

Write pointdata dimensionless (0/1): 0

���������������������������������������

MOVING GRID

���������������������������������������

Type of grid movement: rigid

Motion description filename: (thisfile)

Motion hierarchy filename: (thisfile)

Geometric conservation law (0/1): 0

Number of time steps per period: 90

Evaluate forces and moments at node: block_2

Extended motion monitoring (0/1): 1

Node name: block_1

Node reference frame: inertial

Node controls grid block: 1

Node motion description id: block_1

hdf end
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������������������������-

Node name: block_2

Node reference frame: block_1

Node controls grid block: 2

Node motion description id: block_2

hdf end

������������������������-

Motion description id: block_1

Type of movement: static

Origin of local coordinate system: 0.0 0.0 0.0

Degree of polynomial for rotation: 0

Polynomial coefficients for rotation roll: 0 0

mdf end

������������������������-

Motion description id: block_2

Type of movement: rotate

Degree of polynomial for rotation: 1

Origin of local coordinate system: 0.0 0.0 0.0

Hinge - specify vector: -1 0 0

Hinge - reduced frequency for rotation: 8.913799989847377101

Hinge - reduced frequency reference length: 0.64

mdf end

������������������������-

���������������������������������������

PREPROCESSING

���������������������������������������

Output level: 50

Cache-coloring (0/max_faces in color): 200000

Compute/store wall distances: 0

Number of multigrid levels: 3

�-Partitioning ����������������-: -

Number of primary grid domains: 96

Number of domains: 96

Type of partitioning (name): private

�-Additionals �����������������: -

2D offset vector (0 / x=1,y=2,z=3): 0

Compute exact whirlflux (0/1): 1

Compute exact surface(0/1): 1

Bandwidth optimisation (0/1): 0

���������������������������������������

SOLVER->GENERAL

���������������������������������������

Convective RANS flux discretization type: central

Order of basic equations (1/2): 2

Order of additional equations (1/2): 2

Increase memory (0/1): 1

�-Timestepping Start/Stop �����������: -

Output period: 45

Maximal time step number: 3000

Minimum residual: 1e-10

Project time steps (0/1): 1

Accumulate queue time (0/1): 0

�-MG����������������������: -

MG description filename: 3v

�-MG-Smoothing ����������������-: -

Residual smoother: Point_explicit

Correction smoother: Point_explicit
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Interpolate corrections (0/1): 0

Correction smooth epsilon: 0.2

Residual smooth epsilon: 0.2002

Correction smoothing steps: 2

Residual smoothing steps: 2

Smoothing relaxation steps: 2

�-MG Start up �����������������: -

SG start up steps (fine grid): 250

Multigrid start level: 1

Maximal time step number (coarse grids): 50

Minimum residual (coarse grids): 0.0001

�-Monitoring �����������������-: -

Monitor history (0/1): 1

Residual monitoring type (0/1): 1

Monitor history (0/1): 1

�-References �����������������-: -

Reference Mach number: 0.15

Reference temperature: 276.53

Prandtl number: 0.72

Gas constant gamma: 1.4

�-Transport coefficients �����������-: -

Reynolds number: 1.7e6

Reynolds length: 0.5

Prandtl number: 0.72

Gas constant gamma: 1.4

Sutherland constant: 110.4

Sutherland reference viscosity: 1.7647e-05

Sutherland reference temperature: 276.53

�-Geometry ������������������-: -

Grid scale: 1

Reference relation area: 1

Reference length (pitching momentum): 1

Reference length (rolling/yawing momentum): 1

Origin coordinate x: 0

Origin coordinate y: 0

Origin coordinate z: 0

���������������������������������������

SOLVER->DISSIPATION: MATRIX

���������������������������������������

Central dissipation scheme: Matrix_dissipation

Matrix dissipation terms coefficient: 1

Minimum artificial dissipation for acoustic waves: 0.33

Minimum artificial dissipation for velocity: 0.33

Reconstruction of gradients: Green_Gauss

���������������������������������������

SOLVER->TIME-STEPPING: DUAL TIME

���������������������������������������

�-Dual time ������������������: -

Unsteady time stepping: dual

Unsteady show pseudo time steps (0/1): 1

Unsteady physical time steps: 45

Minimum number of inner iterations per time step: 50

Unsteady inner iterations per time step: 300

Unsteady implicit scheme order: 2

Unsteady extrapolation order: 1

Variable timestepping (0/1/2): 0

Timestep data filename: (none)
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Compute DES solution(0/1): 0

DES constant: 0.65

���������������������������������������

SOLVER->TIME-STEPPING: RUNGE-KUTTA

���������������������������������������

Relaxation solver: Runge_Kutta

Number of Runge-Kutta stages: 3

CFL number: 1.2

CFL number (coarse grids): 1.2

���������������������������������������

SOLVER->PRECONDITIONING

���������������������������������������

Preconditioning (0/1/2): 0

Cut-off value: 2

���������������������������������������

SOLVER->TURBULENCE: SPALART-ALLMARAS

���������������������������������������

Monitoring values: Residual_Max-res_X-max-res_Y-max-res_Z-max-res_dnue/dt_C-lift

_C-drag_C-sidef_C-mx_C-my_C-mz_Max-y+_Max-eddyv_Fx_Fy_Fz

Monitoring significant figures: 4_4_4_4_4_4_9_9_9_9_9_9_4_4_9_9_9

�-Turbulence ������������������: -

Turbulence model version: SAE

Turb. Prandtl number: 0.9

Ratio mue-t/mue-l: 0.1

Maximum limit mue-t/mue-l: 20000

Turbulent intensity: 0.001

Reference bl-thickness: 1e+22

Maximum turbulence production/destruction: 20

Turbulence equations use multigrid (0/1): 1

Positivity scheme: 0

EARSM expansion order: 1

Rotational correction (0/1): 0

Rotational correction model: 0

Work space for rotational correction smoother (0/1): 0

Smooth rotational correction eps: 1e-05

Number of Smoothing steps for rotcorr: 0

���������������������������������������

EXTRA FIELD POINTDATA OUTPUT

���������������������������������������

Field output description file: agardprop.para

Field output values: gidx_xyz_rho_v_p_cp_mach_Ptot_yplus_xyzgeod_vxyzgeod

_wxyz_vxyzmoving

Field output period: 45

���������������������������������������

SURFACE OUTPUT

���������������������������������������

Surface output description file: agardprop.para

Surface output values: gidx_xyz_rho_v_p_cp_temp_mach_Ptot_cf_cfxyz_yplus_xyzgeod

_vxyzgeod_wxyz_vxyzmoving_cfxyzgeod

Surface output period: 45

���������������������������������������

TAU2PLT

���������������������������������������

�-Volume element options �����������-: -

Volume data output (0/1): 1

Element types for zone: (none)

One zone for all volume elements: 0
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Specify tetrahedral list: (none)

Specify phyramide list: (none)

Specify prism list: (none)

Specify hexaeder list: (none)

�-Surface element options �����������-: -

Surface data output (0/1): 1

Create surface zone for surface element: (none)

Create one boundary: 0

Create surface zone for triangular elements: (none)

Create surface zone for quadrilateral elements: (none)

�-Output Control ���������������-: -

Output format: tecplot

Ascii (0/1): 0

Precision : 9

Title of output file: (none)

���������������������������������������

UPDATES

���������������������������������������
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