
Fakultät Technik und Informatik Faculty of Engineering and Computer Science
Department Informations- und Department of Information and
Elektrotechnik Electrical Engineering

Arnold Kemoli

Design and Implementation of a Dynamic

Component based Web Application Framework

Master Thesis

Arnold Kemoli

Design and Implementation of a Dynamic

Component based Web Application Framework

Master thesis based on the examination and study regulations for the
Master of Engineering degree programme
Information Engineering
at the Department of Information and Electrical Engineering
of the Faculty of Engineering and Computer Science
of the University of Applied Sciences Hamburg

Supervising examiner : Prof. Dr. Hans-Jürgen Hotop

Second examiner : Prof. Dr. Henning Dierks

Day of delivery October 21st 2010

Arnold Kemoli

Title of the Master Thesis

Design and Implementation of a Dynamic Component based Web Application
Framework

Keywords

OSGi, JSF, Facelets, Jetty, Equinox, Modular Web Applications, Spring DM

Abstract
This thesis describes the development of a web based dynamic modular
application framework for hosting JSF based web applications. The framework
makes it possible to add or remove functional modules from an application during
runtime without having to temporarily shut down the framework.

End of text

Arnold Kemoli

Thema der Masterarbeit
Design und Implementierung eines dynamischen komponentenbasierten Web
Application Frameworks.

Stichworte

OSGi, JSF, Facelets, Jetty, Equinox, Modular Web Applications, Spring DM

Kurzzusammenfassung

Diese Arbeit beschreibt die Entwicklung eines web-basierten dynamischen
modularen Application Frameworks für JSF-basierte Web Anwendungen. Das
Framework ermöglicht das dynamische Hinzufügen und Entfernen von
Funktionsmodulen einer Application zur Laufzeit, ohne dass das Framework dazu
heruntergefahren werden muss.

Ende des Textes

i

Table of Contents

Abbreviations ... 1

1. Introduction ... 2

1.1. Objectives ... 3

1.2. Thesis Outline ... 3

2. Clintweb Framework Overview .. 5

2.1. Web container (Tomcat layer) ... 5

2.2. JSF Layer ... 6

2.3. Facelets Layer ... 8

2.4. Applications Layer .. 9

2.5. Challenges in Clintweb ... 10

3. Modular Web Applications .. 11

3.1. Modular Application Design Principles .. 11

3.2. Introduction to OSGi .. 13

3.2.1. Why choose OSGi? ... 16

3.2.2. OSGi Web Implementations ... 18

3.3. Web Application Deployment Topologies.. 24

3.3.1. Web container in OSGi ... 25

3.3.2. OSGi in Web container ... 28

3.4. Session State Management .. 30

3.5. Summary .. 31

4. Requirements Analysis ... 34

4.1. Framework Requirements .. 34

4.2. User Requirements ... 38

4.3. Administrator Requirements .. 39

5. System Design .. 42

5.1. Framework Architecture .. 43

5.2. Application Architecture .. 43

5.3. User Requests Processing .. 46

5.4. Resolving Facelet Resources .. 53

5.5. Application Session Listeners ... 54

5.6. JSF Functionality ... 55

5.7. Session State Preservation ... 60

ii

5.8. Client and Administrator Test Application Design ... 65

5.9. Design Constraints .. 66

6. System Implementation ... 68

6.1. Development Tools .. 68

6.2. Framework and Application Architecture .. 69

6.3. Session State Management .. 86

7. Testing and Evaluation ... 91

7.1. Framework Functionality Tests .. 91

7.2. Performance Tests ... 97

7.3. Summary .. 100

8. Conclusion .. 102

8.1. Recommendations ... 103

8.2. Outlook ... 104

9. References .. 106

10. Appendix .. 109

iii

List of Figures

Figure 2.1: Clintweb framework…………………..……….………………………………….…………………………….5

Figure 2.2: Navigation Rules example………….………………….………………………………………………………7

Figure 3.1: Module size…………….………………………………………………………………………………………..…12

Figure 3.2: Module ability to reuse………………………...…………………………………………………………….13

Figure 3.3: OSGi architecture……………………………………..…………………………………………………………14

Figure 3.4: Bundle lifecycle……………………….....................…………..………………………….…………..….15

Figure 3.5: Tightly coupled JARs……….………………………………………………………………….……………….16

Figure 3.6: Eclipse architecture………………..…………………………………………………….……………………..18

Figure 3.7: Plug-ins in Eclipse…………..….……….……………………………………………….……………...…..…20

Figure 3.8: Extension point processing………………….………………………………………………………………21

Figure 3.9: Spring DMK topology…………………..…..……………………………………………………….………..26

Figure 3.10: Jetty web server……………….…………………………………………………………………….……........28

Figure 3.11: Equinox in Tomcat………………………..…………………………………….……………………….……..29

Figure 4.1: Resource navigation………………….…….………………….…………………………………..……..…..36

Figure 4.2: Administrator use-case diagram…….……………………..…………………….………………..……39

Figure 4.3: Module swapping sequence diagram…………………………….……………………………………40

Figure 5.1: System overview…………………………….………………….………………………………….…..……….42

Figure 5.2: Framework architecture…………….……………………………………………………………….……...43

Figure 5.3: Application required bundles……………….……………………………………………………….....…44

Figure 5.4: Jetty’s functional parts……………….……….……………………………………………….……..….…..44

Figure 5.5: New bundle format……………….…………………………………………………………………….….…..45

Figure 5.6: User request forwarding sequence diagram (bundle perspective)………..………..……46

Figure 5.7: Servlet extension point.……….…………………………………………………………....….…………….47

Figure 5.8: Application Servlet classes…………….…………………………………………..………..……..………48

Figure 5.9: HttpContext extension point………………….…………………………………………….…….…...….50

Figure 5.10: HttpContext class diagram…………………………….…………………………………………...….…..50

Figure 5.11: User request forwarding class diagram…………..…………………………………..........……...52

Figure 5.12: Resource resolver extension point……………….…………….……………………………………..…53

iv

Figure 5.13: Resource locator interface…………….………………………….…………………………………………54

Figure 5.14: Session listeners class diagram…….…………….………..………………………………………….....55

Figure 5.15: Manage bean processing class diagram…..….……….…………………………………..…....….56

Figure 5.16: Manage beans extension point…………………………………………...…………………..………...57

Figure 5.17: Loading Managed Beans class diagram………………………………………………………………57

Figure 5.18: Navigation Rules extension point…………………………………………………………..……………58

Figure 5.19: Tag library classes………………………………………………………………..……………………………..59

Figure 5.20: Object serialization sequence diagram…………….….……………………….…..…………………61

Figure 5.21: Serialization class diagram…………………….……………………………….………..…………………62

Figure 5.22: Managed Bean restoration sequence diagram………….…………………………………………63

Figure 5.23: De-serializer classes………………….………………………………..…..……………………………….….64

Figure 5.24: Test application UI layout…………………………………………………….……………………………..65

Figure 5.25: Administrator application layout….…………………………………………..…………………………65

Figure 5.26: Cyclic dependencies……………………….……………………….………………………………….…..…..66

Figure 6.1: Application architecture……….…………………………….……………………………………………….70

Figure 6.2: FacesServletAdapter registration……………….…………………………………………….…….…..71

Figure 6.3: ResourceHttpServlet registration……………………………….……………..………………………..72

Figure 6.4: FacesHttpContext registration……….…………….………………………..……………….…………..73

Figure 6.5: FacesHttpContext registration…….…………………….………………..…………………………..….73

Figure 6.6: Loading tag libraries……………….…………………………………………………………………………..74

Figure 6.7: Namespaces for UI components………….…….…………………………..……………………………75

Figure 6.8: JSF Resource resolver declaration…………….………………..……………………………….………75

Figure 6.9: Resolving facelets URL…………………………….…….………………….………………………………..76

Figure 6.10: Resource locator extension point……………….………………….…………………………………...76

Figure 6.11: Resolving Managed Bean objects…………....…………………………………………………….…..79

Figure 6.12: Managed Bean extension point………….……………………………………………………………….80

Figure 6.13: Resolving custom components………….…………………………….………………………….………83

Figure 6.14: Session class registration class diagram………….…………………………..…….…….…………84

Figure 6.15: Session listener extension poin..……………….………………………….…………….……….………85

Figure 6.16: De-serializing Managed Beans……….…………………………………………….…………………..…87

v

Figure 6.17: Resolving Managed Beans……….………………………..…………………………..…………………..88

Figure 6.18: OSGiObjectInputStream resolveClass function……….……………………………………………89

Figure 7.1: Application front page version 1…….……………………….….………………………………………90

Figure 7.2: Storing values in Managed Beans…….……………….………….…………………………….………92

Figure 7.3: Custom component…………………….…………………….………….…………………………….….…..93

Figure 7.4: Administrator application……….…………….………….……………………………………….…….….94

Figure 7.5: Home page version 2…………………………………..…….……………………………………..….……..95

Figure 7.6: User input data page version 2……………………..….……………………………………….…..……96

Figure 7.7: Configuration page……………………………………………………………………………..……….……..96

Figure 7.8: Machine specifications…………………….……………………………………….…………………..…….98

Figure 7.9: Test case 1………………………………………………………………….……………………………….……..98

Figure 7.10: Test case 2 line graph……………………………………………….……………………………….………..99

Figure 7.11: Test case 3 line graph……………………………………………….………………………………..……..100

1 | P a g e

Abbreviations

API Application Programming Interface

AJAX Asynchronous JavaScript

CODA Component Oriented Development and Assembly

CSS Cascading Style Sheets

e.g. Example given

HTTP Hyper Text Transfer Protocol

IDE Integrated Development Environment

JAR Java Archive

JRE Java Runtime Environment

JSF Java Server Faces

JSP Java Server Pages

JVM Java Virtual Machine

MVC Model View Controller

OSGi Open Source Gateway Initiative

UEL Unified Expression Language

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

WAR Web Archive

WTP Web Tools Platform

XHTML Extensible Hypertext Markup Language

XML Extensible Markup Language

2 | P a g e

1. Introduction

Nowadays web applications are essential tools for companies to easily reach customers and

provide internal services to their workforce. Companies have opted to employ solutions for

hosting large and complex web based applications to be able to provide services to users without

having to install an application on every computer (web browsers are installed in all work

stations). As a company based in the telecommunication market, Clintworld GmbH specializes in

offering tariff management and optimization advice to mobile service providers. Users are able to

access Clintworld’s services via a framework called Clintweb. Clintweb is a Java web based

framework which hosts a range of applications offering different kinds of services to users. Users

just require a web browser and a network/internet connection to access these applications at any

place and any time.

Clintweb has been successful in offering stable services to users. However the dynamic

developments in the telecommunication industry have led to challenges affecting applications on

Clintweb. The challenges in Clintweb come from the fact that users very often request the

addition of features to applications. Such changes need to be in cooperated into applications as

soon as they are required because they may be critical to requesting user. Changes may include

creation of new web pages or the addition of extra text fields for inputting information on a

certain web page. Changes may also come from the developer’s side in the form of optimization

of a process in an application. In such scenarios, Clintweb’s architecture requires an application to

be stopped and then changes can be applied. Thereafter the application can be redeployed. This

means that for an undefined amount of time, an application will be offline and users will not have

access to it. Since Clintweb is used by clients across the world, users can be online at all times of a

day. It is therefore difficult to find a time slot where no user is online in order to carry out

maintenance of an application. On the developer side, a whole application has to be re-packaged

and redeployed only to accommodate the required changes. Developers have to put in vast

amounts of time in this process and users lose access to an application when it is needed.

The above identified problems led to the search of solutions for allowing applications on Clintweb

to be serviced whilst keeping them online and accessible to users. Therefore users will never have

to be inconvenienced when maintenance is taking place, leading to a better user experience while

using applications on Clintweb. The popular idea of solving such a problem is by distributing an

application into different components, with each component representing some functionality.

The main challenge lies in making an application fully dynamic, where changes can be made to it

during runtime without losing user inputted information.

3 | P a g e

1.1. Objectives

The objective of this thesis is derived from the above mentioned problems affecting Clintweb. It is

the aim of this thesis to research and develop a web application framework1 which can support

servicing of applications during runtime without affecting user experience. Instead of researching

on methods which update single Java classes on the fly, this thesis will focus on methods in which

a web application is split into different functional components which can be individually

manipulated during runtime. Research will be done on solutions which support modular web

application2 architectures, where applications are deployed as a collection of dynamic modules.

After identifying possible solutions, considerations will be made on which solution would be the

most optimal for Clintweb. This decision will be based on the migration efforts from the current

Clintweb framework to the new system and the scalability of the new system. Thereafter the new

framework will be designed and created; the framework will demonstrate its support for

Clintweb’s important features3. Finally this thesis will discuss the benefits and drawbacks of the

new system, and provide recommendations4 on whether the current Clintweb framework should

be migrated into the new framework.

The research done by this thesis will assist web developers in the deployment stages of web

applications. It will lead to the elimination of application downtimes during the deployment and

maintenance stages of an application. By splitting applications into modules, it will be easier for

developers to isolate errors when they occur and quickly solve them.

1.2. Thesis Outline

This thesis starts by discussing the current Clintweb framework and its building blocks in Chapter

2. The challenges of the Clintweb framework are identified in order to emphasis the need for a

framework which supports dynamic modular web applications. Thereafter, Chapter 3 presents an

1 A Web Application Framework is a software that provides services to a web based application. Such services may

include: session management, provide libraries for database access etc. See:
http://docforge.com/wiki/Web_application_framework and http://en.wikipedia.org/wiki/Web_application_framework
[Accessed June 2010]
2 See chapter 3
3
 See chapter 2

4 See section 8.1

http://docforge.com/wiki/Web_application_framework
http://en.wikipedia.org/wiki/Web_application_framework

4 | P a g e

insight on technologies which support the deployment of dynamic web based modular

applications. A description of how these technologies function is presented and comparisons are

drawn between them in order to identify the best technology for realizing the desired framework.

Chapter 4 lists the requirements of the framework to be developed and its applications. It further

identifies the user and administrator requirements that have to be fulfilled by the new

framework. For each requirement, a potential solution based on the information presented in

chapter 3 is outlined. At the end of this chapter a solution for creating the new framework is

selected.

Chapter 5 discusses the design of a web based modular framework which fulfills the requirements

stated in chapter 4. These design principles aim to address the problems of the Clintweb

framework that were stated in chapter 2. Chapter 6 will thereafter discuss how the design

specifications in chapter 5 were implemented.

Chapter 7 will then present a test application aimed at demonstrating the capability of the new

framework to support modular applications and fulfilling the requirements stated in chapter 4.

This chapter will include screen shots of the test application demonstrating its functionality.

Finally chapter 8 states a brief summary of the objectives of the thesis and how they were

accomplished. It further states the recommendations on how the new framework can be adopted

by Clintweb and future work that can be done on the new framework.

5 | P a g e

2. Clintweb Framework Overview

This chapter discusses the building blocks of the Clintweb framework. It is necessary to discuss the

features of Clintweb because they will be included in the design of the new framework which will

be developed during this thesis. Figure 2.1 illustrates the layers of the Clintweb framework:

JVM

Applications

Facelets

JSF

Tomcat

Figure 2.1: Clintweb framework

2.1. Web container (Tomcat layer)

Web container functionality is based on Servlets and JSP technologies. Servlets are Java

classes which run in Java based web application servers5 and are used for handling client requests.

Servlets provide dynamic response to a client request and also manage state information6 on

top of the stateless HTTP. According to Java SUN specification7, JSP is a technology which provides

a simplified way for generating dynamic web content. JSP provides a means for Java code to be

integrated into static web markup content, with the resulting page being compiled and executed

on the server to deliver an HTML or XML document which can be viewed on a standard browser.

Tomcat is a Servlet container which is the official reference implementation of Java Servlets

and Java Server Pages technologies8. Tomcat is composed of three parts (Catalina, Coyote and

Jasper) which implement different functionalities. Catalina is the Servlet container which is an

implementation of the SUN Microsystems specification for Servlet and JSP. It handles the

5 An Application server is a software which executes procedures (programs, routines, scripts) for supporting the

construction of applications. See: http://en.wikipedia.org/wiki/Application_server [Accessed 20 June 2010]
6
 Servlet and JSP, Available at: http://www.apl.jhu.edu/~hall/Java/Servlet-Tutorial/ [Accessed 21 June 2010]

7 JSP Technology, Available at: http://Java.sun.com/products/jsp/ [Accessed 21 June 2010]
8 Tomcat Overview by Wellhouse Consultant, Available at: http://www.wellho.net/downloads/A651.pdf [Accessed 21

June 2010]

http://en.wikipedia.org/wiki/Application_server
http://www.apl.jhu.edu/~hall/java/Servlet-Tutorial/
http://java.sun.com/products/jsp/
http://www.wellho.net/downloads/A651.pdf

6 | P a g e

management of user sessions and services client requests and responses. Coyote is the HTTP

connector which listens for connections on a defined port on the server. It additionally receives

HTTP requests and forwards them to the web server for processing. Jasper is the JSP engine which

is responsible for compiling a JSP page into a Servlet.

Applications in Tomcat are deployed as WAR (Web Application Archive) files, which are files

consisting of a packaged web application.

2.2. JSF Layer

On an abstract level, JSF is an implementation of the Model View Controller9 (MVC) architecture.

This architecture separates application concerns to UI, business logic and their connector which

allows communication between the UI and business logic. JSF is a server-side UI component

framework for Java based web applications. The framework provides the following main

features10:

 JavaBean11 management

 Standard UI components defined by JSF tag libraries

 Page navigation specification

 User Input validation

 Event handling

JSF framework provides the wiring of web applications using the above stated features. A typical

JSF application contains a deployment descriptor (a web.xml file), which sets the properties12 a JSF

application will adopt during runtime. Furthermore, a JSF application contains a configuration file

(faces-config.xml) which defines Managed Beans, Navigation Rules, Custom components and

other application components, as explained below:

9 MVC, Available at: http://www.oracle.com/technetwork/java/mvc-140477.html and

http://en.wikipedia.org/wiki/Model_view_controller [Accessed 21 June 2010]
10

 JSF KickStart, Available at: http://www.exadel.com/tutorial/JSF/JSFtutorial-kickstart.html [Accessed 21 June 2010]
11 JavaBean is a portable, platform-independent component model written in the Java programming language, see:

http://download.oracle.com/javase/tutorial/javabeans/index.html [Accessed 21 June 2010]
12 These properties include Java Session listeners (see section 5.5) and Servlets (see section 2.1)

http://www.oracle.com/technetwork/java/mvc-140477.html
http://en.wikipedia.org/wiki/Model_view_controller
http://www.exadel.com/tutorial/jsf/jsftutorial-kickstart.html
http://download.oracle.com/javase/tutorial/javabeans/index.html

7 | P a g e

2.2.1. Managed Beans

Managed Beans are JavaBeans which are be used by JSF applications to store the state of an

application. They contain attributes and functions which are referenced by JSF components within

a JSF page using Expression Language (EL) syntax. For a Managed Bean to be instantiated in JSF,

the following information is required:

 Managed Bean name: The reference name assigned to a bean which JSF components will

use to access a bean’s attributes and call its functions.

 Managed Bean class: The class implementation of the Managed Bean.

 Managed Bean scope: The lifecycle span of the Managed Bean. This determines if a bean

is valid during request or during the span of a session.

2.2.2. Navigation Rules

JSF supports the definition of navigation paths between pages within a web application. These

navigation paths are called Navigation Rules in JSF and are defined in the faces-config.xml file.

Figure 2.2 shows an example of a Navigation Rule:

Figure 2.2: Navigation Rules example

The <from-view-id> tag defines the source page URI13 (the page where the link is prompted).

The <navigation-case> defines the destination page of the Navigation Rule depending on the

value in the <from-outcome> tag. The <from-outcome> defines a String value that prompts

the JSF framework to navigate to the page declared in the <to-view-id> tag. Each Navigation

13 URI is a string of characters which identify a resource, see: http://labs.apache.org/webarch/uri/rfc/rfc3986.html

[Accessed 20 June 2010]

http://labs.apache.org/webarch/uri/rfc/rfc3986.html

8 | P a g e

Rule can have more than one <navigation-case>, which navigate to various pages depending

on the <from-outcome> and <to-view-id> attributes.

A Navigation Rule can be invoked as an output action of a component (for example, a button).

Such an action will prompt JSF to navigate to a page defined in a Navigation Rule.

2.2.3. Custom Components

In JSF, a component is a group of interacting classes that provide a reusable web based UI code. A

component is made up of three classes which co-operate together. The renderer class is

responsible for creating a client-side representation of a UI component and it serves as an

interface for receiving user input14. The renderer usually generates HTML code to represent the UI

component and it transforms the values in the HTML form posts into values it can understand.

The second class is the UIComponent15 subclass. This class is controls the component behavior on

the server side. The last class, known as the tag library class, declares how the custom component

is referenced within a JSF page. The tag library class combines the reference name of the custom

component with its UI component class and its renderer class.

2.3. Facelets Layer

Facelets is the view definition framework which is a page declaration language developed for

JSF16. Facelets has become the standard presentation technology for JSF; previously JSF was only

designed to work with JSPs. Facelets was adopted by JSF because JSP had limitations whereas it

was not able to support new features provided in the recent versions of JSF. Facelets provides a

language for constructing JSF views using XHTML files. A view is the object tree in memory,

14 JSF custom components, Available at: http://today.Java.net/pub/a/today/2004/07/16/JSFcustom.html [Accessed 20

June 2010]
15 UIComponent specification, Available at:

http://java.sun.com/javaee/javaserverfaces/1.2/docs/api/javax/faces/component/UIComponent.html [Accessed 16
August 2010]
16 Oracle Facelets, Available at: http://download.oracle.com/docs/cd/E17410_01/Javaee/6/tutorial/doc/gijtu.html

[Accessed 20 June 2010]

http://today.java.net/pub/a/today/2004/07/16/jsfcustom.html
http://java.sun.com/javaee/javaserverfaces/1.2/docs/api/javax/faces/component/UIComponent.html
http://download.oracle.com/docs/cd/E17410_01/javaee/6/tutorial/doc/gijtu.html

9 | P a g e

created from parsing an XHTML page. In order to apply Facelets to JSF, a ViewHandler17 has to

be defined. A ViewHandler is a JSF plug-in that handles the Render Response and Restore View

phases of the JSF request-processing life cycle18. A page that is rendered by the ViewHandler is

referred to as a ‘view’. A view is associated with a view ID, which is a unique identifier referring to

an XHTML page.

Facelets can additionally process Unified Expression Language (UEL) statements, which are used

to reference JSF Managed Beans properties.

Note that from chapter 3 onwards, the term ‘facelets’ will refer to XHTML pages containing JSF

components and ‘JSF-Facelets’ will refer to the libraries providing the facelets functionalities.

2.4. Applications Layer

This layer refers to applications which are deployable on the entire framework. Clintweb’s

applications utilize Tomcat as their web container and JSF combined with Facelets framework to

provide functionality to users.

The applications are composed of small sized libraries (JARs19) where each library implements

unique functionality. For example, a single library may be responsible for handling user

management related processes. In order to support JSF and Facelets functionality, each library

contains a JSF faces-config.xml20 file which declares Navigation Rules, Managed Beans and

Custom Components contained within them. For deployment, all libraries associated with an

application are packed into a WAR21 file and deployed in Tomcat web container22 as a web

application.

17 ViewHandler specification, Available at:

http://download.oracle.com/docs/cd/E17824_01/dsc_docs/docs/jscreator/apis/jsf/javax/faces/application/ViewHandl
er.html [Accessed 20 July 2010]
18 IBM, Facelets fits like a glove: Available at: http://www.ibm.com/developerworks/java/library/j-facelets/ [Accessed

20 June 2010]
19 A JAR file is a file format which packs multiple files into a single archive file. Typically a JAR contains the class files and

auxiliary resources associated with java applications. See:
http://java.sun.com/developer/Books/javaprogramming/JAR/basics/ [Accessed 20 June 2010]
20 See section 2.2
21 See section 2.1
22 See section 2.1

http://download.oracle.com/docs/cd/E17824_01/dsc_docs/docs/jscreator/apis/jsf/javax/faces/application/ViewHandler.html
http://download.oracle.com/docs/cd/E17824_01/dsc_docs/docs/jscreator/apis/jsf/javax/faces/application/ViewHandler.html
http://www.ibm.com/developerworks/java/library/j-facelets/
http://java.sun.com/developer/Books/javaprogramming/JAR/basics/

10 | P a g e

2.5. Challenges in Clintweb

Applications in Clintweb have performed effectively in providing their services to users. However,

these applications do provide some areas where improvements are necessary. For instance, users

very often require new features to be added to applications. Since the applications are launched

as a single WAR file containing JARs (libraries), during maintenance or while adding new features,

the modified libraries have to be recompiled and packed into a new WAR file. The running

application has to be stopped and the new updated WAR file is deployed in its place. This causes

an application to be offline for a certain amount of time which inconveniences users who would

like to access it at that time. For critical changes, the updating of an application is done

immediately otherwise updates have to wait until the next application release date. Another issue

is that, although applications in Clintweb are based on a modular architecture, where functionality

is separated into different JARs, these applications do not take full advantage of this modularity.

They are still confined to behaving like normal web application where all functionalities are

packed into one file. Therefore application parts cannot be manipulated during runtime.

A solution is needed to convert Clintweb into a framework which supports the updating of

applications during runtime. Such a solution will improve user experience when interacting with

the framework because they will not be inconvenienced during application updates. The approach

taken by this thesis is to find means in which applications can be split into different modules,

therefore allowing them to be independently deployed and manipulated. It is the intention of this

thesis to investigate the available technologies which can provide an environment for launching

such dynamic modular applications and at the same time provide supports the features offered by

Clintweb.

11 | P a g e

3. Modular Web Applications

The aim of this research is to investigate how the Clintweb framework cited in chapter 2 can be

converted to a framework that supports dynamic modular web applications. This chapter will give

a brief introduction of the general meaning of dynamic modular web applications. It will

thereafter outline the available popular technologies used for hosting and managing these types

of applications. Comparisons will be made between these technologies in order to determine the

most efficient and effective technologies that can be used in designing a new framework for

applications in Clintweb.

3.1. Modular Application Design Principles

In software engineering, modularity is a design technique where an application is divided into

smaller functional parts. Each functional part is referred to as a module, which adds unique

functionality to an application. Modules have a clean separation of functionality between them

whereas the functionality of a module does not interfere with the functionality of other modules

in an application. The partitioning of application functionality is important because it ensures the

plug-in nature of a modular application, where modules are loosely coupled and can be plugged in

and out (in other words, modules can be added to and removed from an application). The

following rules apply to modular applications23:

 Modules should not be allowed to directly reference other modules in an application. The

communication between modules should be done via shared services24, shared

resources25 or other loosely coupled communication techniques in order to maintain a

clean separation of functionality between modules.

 Modules should not manage their own dependencies26. Dependencies should be

managed externally by the runtime environment which hosts the modular applications.

23 Modularity by Microsoft msdn, Available at: http://msdn.microsoft.com/en-us/library/ff648404.aspx [Accessed 20

June 2010] and http://en.wikipedia.org/wiki/Modular_programming [Accessed 20 June 2010]
24 Shared services refer to a common interface which is used to define the communication between modules whilst

maintaining the independence of modules.
25 Shared resources can be in a form of a web service or a database, which modules can access to communicate with

other modules
26 Dependencies in a modular application refer to how modules can be dependent on other modules. For example,

Module A may require services from Module B, therefore making Module A dependent on Module B.

http://msdn.microsoft.com/en-us/library/ff648404.aspx
http://en.wikipedia.org/wiki/Modular_programming

12 | P a g e

 Modules should be dynamic by allowing them to be added and removed from

applications during runtime. This feature is known as Hot Swapping27 which refers to

plugging-in or plugging-out of modules during runtime without having to stop an

application

The size of modules plays a big role in application design. Modules should neither be too small nor

too large. The size of the modules affects the ease of application maintenance28, as shown in the

chart below:

Module size

Ease of

Maintenance and

extension

Figure 3.1: Module size

As seen in the Figure 3.1, the increase in module size leads to a decrease in ease of maintenance

and extension. Large modules are difficult to maintain and extend because they contain a huge

amount of an application’s functionality. This makes it difficult to separate a module from an

application without having a large impact on an application’s overall functionality. However,

making modules too small increases module dependencies; which contradicts an important

requirement stating that modules should have minimal dependencies in order to keep them

loosely coupled. The center arrow in Figure 3.1 suggests the optimal value, where modules are

not too large or too small. By optimizing modules sizes, it becomes easier to identify impacts of

change within a modular application and perform maintenance on modules.

Modules in applications should be reusable. The reusability property is directly dependent on the

module size, as shown in the chart below:

27 Hot swapping, Available at: http://en.wikipedia.org/wiki/Hot_swapping [Accessed 20 June 2010]
28 Modularity patterns, Available at: http://techdistrict.kirkk.com/2009/08/05/modularity-patterns/ [Accessed 20 June

2010]

http://en.wikipedia.org/wiki/Hot_swapping
http://techdistrict.kirkk.com/2009/08/05/modularity-patterns/

13 | P a g e

Ability to

reuse

Heavyweight

modules

Ease

of use

Lightweight

modules

Figure 3.2: Module ability to reuse29

As shown in Figure 3.2, the ability to reuse modules increases for small sized modules because

they can be easily replaced. However, heavyweight modules have a high ease of use but they are

difficult to reuse. Large modules require more effort to decouple from an application, because

they contain a large portion of an application’s logic. Therefore, it is a requirement for modules to

be of optimal size (the middle arrow in Figure 3.2) in order to fulfill the reusability requirement.

As discusses in this section, there are many considerations which have to be kept in mind when

designing modular applications. Modules have to follow the above stated rules in order to allow

Hot Swapping. In this thesis the term swapping-in and swapping-out will be used to refer to

adding and removing modules from an application.

The next section discusses a framework specification that is designed to support modular

applications which follow the module characteristics discussed in this section.

3.2. Introduction to OSGi

OSGi (Open Source Gateway initiative) is a Java based framework specification allowing small,

reusable and collaborative Java modules to run collectively on a single Java virtual machine30.

OSGi is an open source universal middleware which provides a service oriented, component-

based environment for applications and offers ways to manage an application’s components

lifecycles. OSGi has gained popularity and has been widely acceptanced by many web

29 Modularity patterns, Available at: http://techdistrict.kirkk.com/2009/08/05/modularity-patterns/ [Accessed 20 June

2010]
30 OSGi and Equinox: Creating Highly Modular Java™ Systems – chapter 2 (OSGi concepts) [2] and OSGi alliance,

Available at: http://www.OSGi.org/Main/HomePage [Accessed 10 June 2010]

http://techdistrict.kirkk.com/2009/08/05/modularity-patterns/
http://www.osgi.org/Main/HomePage

14 | P a g e

frameworks, which include: Apache Felix31, Equinox32 and Knopflerfish33. The OSGi specification is

composed of a set of services represented as layers that an OSGi implementation container (e.g.

Apache Felix) must implement. Figure 3.3 shows the layers of the OSGi framework:

Figure 3.3: OSGi architecture34

According to Figure 3.3, Bundles are application modules which follow the module specifications

discussed in section 3.1. Bundles are in form of JARs35 containing identity information and

dependencies declarations, which are described in a manifest file located inside a bundle. The

service layer provides a means for bundles to communicate with each other via a specified

service. A service involves an interface offered by a bundle which other bundles can access to

provide their custom implementation of the interface. Services create a clean separation of code

specification and implementation; they additionally allow bundles which offer a service to execute

processes defined in other bundles which provide an implementation of a specified service.

The Life cycle layer provides control over the lifecycles of application bundles. Bundles lifecycles

can be dynamically changed over the lifetime of an application. Bundles can be in any of the

following states (Figure 3.4) during runtime:

31 See section 3.2.2.2
32 See section 3.2.2.1
33 See section 3.2.2.3
34 OSGi Alliance, OSGi architecture, Available at: http://www.OSGi.org/About/WhatIsOSGi [Accessed 20 June 2010]
35 JAR: see section 2.4

http://www.osgi.org/About/WhatIsOSGi

15 | P a g e

Figure 3.4: Bundle lifecycle36

A bundle’s state can be changed to any of the above depicted states using simple OSGi

commands.

The modules layer defines how packages belonging to bundles can be imported and exported.

Java packages can be selectively exported, allowing other bundles to import and utilize classes in

the exported packages. Bundles may also have dependencies between each other. A bundle

requiring classes or functionality provided by another bundle will be dependent on the bundle

hosting the classes/functionality. Therefore the dependent bundle can only be activated when the

bundles it depends on are active. No circular dependencies between bundles in OSGi are allowed.

A bundle’s dependencies, exported and imported packages are defined in a manifest file

(MANIFEST.MF file) which is located in the base directory of a bundle.

The security layer handles the security aspects of OSGi. Each bundle has its own memory space,

and there are strict security rules governing access of a bundle’s memory spaces. A bundle is not

allowed to directly access resources and classes in another bundle. This ensures bundle security

and enforces the loosely coupled property of bundles. The Execution environment layer defines

the methods and classes that are provided by the OSGi platform37.

OSGi implementations function by creating a bundle context, which is the environment of an

active OSGi based application where bundles are deployed. Within the bundle context, a bundle

can be started; in this case, the OSGi framework must resolve a bundle’s dependencies, by

checking if its dependent bundles are active. A bundle can be stopped or uninstalled, however

bundles dependent on the stopped bundle will still be able to reference its classes which are

specified in its exported packages. The bundles which reference the stopped bundle have to be

updated in order to update their imported packages. When an update is performed, OSGi

36

 OSGi - bundle lifecycle, Available at: http://en.wikipedia.org/wiki/OSGi and

http://www.osgi.org/javadoc/r4v42/org/osgi/framework/Bundle.html [Accessed 20 June 2010]
37 OSGi Alliance – OSGi platform: Available at: http://www.OSGi.org/About/WhatIsOSGi [Accessed 20 June 2010]

http://en.wikipedia.org/wiki/OSGi
http://www.osgi.org/javadoc/r4v42/org/osgi/framework/Bundle.html
http://www.osgi.org/About/WhatIsOSGi

16 | P a g e

basically re-wires the application bundles references again. When a bundle is uninstalled, it is

completely removed from the framework’s context and it will no longer be available to an

application. Hence to make it available, it must be re-installed. When a bundle is stopped, it

remains in the framework’s context but it is no longer ACTIVE; it remains in a RESOLVED state.

In OSGi, each bundle has its own class loader which is instantiated during bundle start up. The

class loader is responsible for resolving a bundle’s classes and imported package stated in its

manifest file. The bundle class loaders are not visible to each other, therefore a class loader is

only able to locate and instantiate classes located within its host bundle.

3.2.1. Why choose OSGi?

OSGi is preferable over the conventional implementation of applications which stack JARs38

together. Conventional applications which use JARs have tight coupling between JARs without any

formal structure
39

. This is because when all JARs are in the same class path, they reference classes

within other JARs without any restriction (unless methods are set to private), which leads towards

a tightly coupled structure, as shown below:

JAR

package

class

class

package

class

class

JAR

package

class

class

package

class

class

Figure 3.5: Tightly coupled JARs40

As seen in Figure 3.5, in a normal JARs scenario, there are no definitions of dependencies and

each class has access to classes located in other JARs. In OSGi, packages in a bundle are hidden

from other bundles unless explicitly exported. Bundles have to explicitly import an exported

38 See section 2.4
39 OSGi alliance, about OSGi, Available at: http://www.OSGi.org/About/Technology and ‘OSGi and Equinox: Creating

Highly Modular Java™ Systems’ chapter 2
40 OSGi and Equinox – Creating Highly Modular Java Systems – chapter 2

http://www.osgi.org/About/Technology

17 | P a g e

package for it to have access to the classes within the package. This preserves the loosely coupled

property of bundles in OSGi. In modular applications, modules must be loosely coupled so that

managing of individual modules can be realized. If application modules are tightly coupled, it is

difficult to do module replacement without having to stop a running application.

OSGi additionally uses services to enforce dynamic collaboration between bundles. According to

the OSGi service specification, bundles providing services are not aware of the bundles using their

services. Bundles using a service need only to know the service interface which is provided as part

of the service registration to the OSGi service layer. Such a feature is not found in conventional

applications consisting of JARs.

Based on the features offered by OSGi, it is a suitable candidate for implementing a modular web

application which offers control over the lifecycle each module. As much as OSGi provides the

desired functionality required by a modular application, it does have a major disadvantage. In

exceptional cases, OSGi can lead to redundant code in an application environment. This scenario

can happen when a bundle is uninstalled, and a new one is installed, to replace the uninstalled

bundle. All bundles importing packages from the uninstalled bundle must be updated in order to

import the packages of the new bundle. If this update is not done, the class loader of the package

importing bundle still reference the old imported package which it loaded from the uninstalled

bundle during application start up. During an update, a bundle’s class loader disposes old

imported packages and imports packages afresh; therefore the new versions of exported

packages will be imported by a bundle. A system administrator must initiate the update process

for all bundles referencing a bundle that has modified exported packages41, otherwise bundles

will be referencing the old set of packages and the correct packages will not be used. Therefore

there will be two sets of exported packages, one from the uninstalled bundle and the other from

the newly installed bundle. This is the redundancy which has to be avoided when changes are

made to an application, by calling the UPDATE command on all bundles which are dependent on

the uninstalled bundle. It is important to have a clear outline of the structure of an application

which contains a listing of bundles and their dependencies, therefore making it easy to identify

area of impact within an application when changes are applied on a specific bundle.

41 OSGi Alliance, Importance of Importing and Exporting, Available at:

http://www.OSGi.org/blog/2007_04_01_archive.html [Accessed 20 July 2010]

http://www.osgi.org/blog/2007_04_01_archive.html

18 | P a g e

3.2.2. OSGi Web Implementations

OSGi was originally intended for running in embedded devices and home service gateways, but

developers have used the OSGi specification to create web frameworks which are based on its

principles of modularity, component orientation and service orientation42. This section lists

discusses three popular OSGi based web application frameworks.

3.2.2.1. Equinox

Equinox is the module runtime at the core of the Eclipse IDE which implements the OSGi

specification features43. According to Eclipse org44, Equinox is a plug-in system that allows the

implementation of applications consisting on a set of bundles using common services and

infrastructure. The following sections discuss how Eclipse implements the Equinox framework in

order to get an insight on how Equinox functions.

3.2.2.1.1. Eclipse Plug-in Architecture

A prime example of how a modular application can be built is Eclipse IDE, where the application is

built on a collection of plug-ins which are resolved by a plug-in loader during start-up. A plug-in in

Eclipse is an OSGi bundle containing a manifest file where dependencies, exported and imported

packages are defined. Figure 3.6 shows the structure of plug-ins in eclipse:

JVM

Plug-in Loader Java Class Library

Plug-in A Plug-in B

Plug-in D Plug-in C

Figure 3.6: Eclipse architecture45

42 Apache Felix, Available at: http://felix.apache.org/site/index.html [Accessed 20 June 2010]
43 Java World OSGi tutorials, Available at: http://www.Javaworld.com/Javaworld/jw-03-2008/jw-03-OSGi1.html

[Accessed 20 June 2010]
44 Equinox Home, Available at: http://www.eclipse.org/Equinox/ [Accessed 20 June 2010]
45 ‘Eclipse plug-ins (Third edition - 2008) by Eric Clayberg and Dan Rubel – Chapter 3: Eclipse infrastructure

http://felix.apache.org/site/index.html
http://www.javaworld.com/javaworld/jw-03-2008/jw-03-osgi1.html
http://www.eclipse.org/equinox/

19 | P a g e

The direction of the arrows in the above figure represents dependencies between plug-ins. In an

eclipse installation, a plug-in folder is created in the root path of the eclipse application. All plug-

ins are stored in this folder. When eclipse starts, it searches the plug-in folder for available plug-

ins and loads them. Each plug-in contains a manifest file which tells eclipse what is needed prior

to activation of a plug-in. The plug-in manifest file also contains entries of the bundle name,

unique identifier, version, Activator class and provider46. The bundle name is a qualified name

given to a plug-in which allows the developer to recognize a plug-in. The plug-in identifier

uniquely identifies the plug-in in the runtime environment. In eclipse, the plug-in identifiers are

based on the Java package naming convention, where plug-ins which have related functionality

have identifiers starting with the same name sequence (for example:

org.eclipse.equinox.registry and org.eclipse.equinox.preference). The plug-in

version is used to differentiate multiple versions of a plug-in. The version usually contains three

numbers: the major version, the minor version and the service level (e.g. 1.2.0).

The plug-in Activator class is an optional entry for referencing a class which is invoked when a

plug-in is started or stopped. Activators are useful for registering events and services during plug-

in’s startup. The Activator must implement start() and stop() functions which are

respectively called when starting or stopping a plug-in.

i. Extension points

Equinox extended OSGi’s specification by adding an Extension Registry layer on top of the OSGi

service layer. The Equinox Extension Registry is a mechanism for supporting inter-bundle

collaboration. This mechanism allows bundles to open themselves for extension or configuration

by declaring an extension point47. A bundle is in essence telling other bundles that if they offer it

certain information, it will perform a specific task. Bundles may contribute information to an

extension point in the form of extensions. The main advantage of the extension registry is that a

plug-in is not aware of the plug-ins connecting to its extension point.

Extension points are declared in a plugin.xml file located in the base directory of a bundle (each

bundle has a plugin.xml file). As bundles are resolved by Equinox, their extensions and extension

points are loaded into the Extension registry, therefore making them available to other bundles

46 Similar ideas are also stated in the Eclipse Org, Notes on the Eclipse plug-in Architecture article, Available at:

http://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html [Accessed 10 June 2010]
47 ‘OSGi and Equinox – Creating Highly Modular Java Systems’ chapter 2 – section 2.7.2.

http://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html

20 | P a g e

during runtime48. The Figure 3.7 shows how plug-ins connect with each other using extension

points and extensions:

 Plug-in A

extension point

Plug-in B

extension

Plug-in C

extension

Figure 3.7: Plug-ins in Eclipse

In the figure above, plug-in A has defined an extension point where plug-in C and plug-in B can

extend (the arrows in the above figure also depict dependencies between the plug-ins). For plug-

ins to extend an extension point, they must define an extension in their plug-in.xml file by

referencing the extension point which they are extending. This extension must explicitly define

the ID of the extension point it is extending. An extension point defines its own XML vocabulary in

an XML schema49, which specifies the information an extending plug-in has to supply when

contributing to an extension point. Depending on the extension point requirements, the XML

schema can be defined to request bundles to provide a resource name (image, file), Boolean

value, String or a Java class. If a Java class is to be defined in an extension point, its interface or

super class must be specified. This allows the host plug-in (the plug-in which defines the extension

point) to recognize the classes supplied at its extension points and call functions within them.

When defining an extension point, the ID is necessary in order to allow other plug-ins to identify

an extension point. The ID must be unique within an application; this helps in creating a clearly

organized set of extensions and extension points.

The extension registry feature of Equinox can be visualized as follows: the plug-in which provides

an extension point creates a contract and plug-ins willing to extend this extension point have to

fulfill the requirements of the contract. Otherwise, if extending plug-ins violate the contract, the

extension will not function. The host plug-in of an extension point has the responsibility of

defining how an application should deal with faulty extensions. The best option is to ignore faulty

extension.

48 ‘OSGi and Equinox – Creating Highly Modular Java Systems’ chapter 2 – section 2.7.2.
49

 An XML schema describes the structure of an XML document, see: http://www.w3schools.com/schema/default.asp

[Accessed 20 June 2010]

http://www.w3schools.com/schema/default.asp

21 | P a g e

The declaration of extensions and extension points is at the surface of the eclipse architecture.

The processing of the extensions is done programmatically as specified in Figure 3.8:

Figure 3.8: Extension point processing

The information collected from an extension point is stored in objects which are of type

IConfigurationElement interface. The getConfigurationElementsFor method reads

extensions from a specified extension point which is reference using an ID. Using a for-loop, each

extension object is accessed and its attributes are extracted using the getAttribute method by

providing the attribute name as a String parameter. To extract a class from an extension, the

createExecutableExtension method is used. Extension points in the new framework were

processed using the above depicted code.

As seen above the implementation of classes from different plug-ins can be executed without the

host plug-in having any knowledge of the extension provider plug-in. This just adds more

emphasis on the modularity of this type of architecture. For plug-ins to use an extension point of

another plug-in (host plug-in) there must be a dependency between the plug-ins.

The Equinox plug-in architecture would be ideal for a modular application, where communication

between bundles can be done via extension points. Applications on the current version of

Clintweb50 utilize the extension point mechanism to allow libraries to be extended by other

libraries. Clintweb does not use the Equinox extension registry classes but custom created classes

which serve to do the same task as the Equinox extension registry classes. Each application library

has a plugin.xml file which may declare extensions and/or extension points. However, applications

in Clintweb function in a single class loader environment; therefore classes referenced by an

extension point are easily resolved because they are visible to the class loader. The Clintweb

extension registry feature cannot function in an OSGi based modular application environment

because of it contains multiple class loaders. Classes declared by an extension point will not be

resolvable if they are located in a bundle other than the extension point host bundle. The

50 See chapter 2

22 | P a g e

Clintweb extension registry feature must be fully replaced by the Equinox’s extension registry in

order to be able to use extension point in an OSGi based modular application.

3.2.2.2. Apache Felix

Apache Felix implements the OSGi51 service platform and other OSGi related technologies under

the Apache license. Apache Felix has sub projects which specifically handle the functionality of the

OSGi platform. The following are some of the sub projects according to the Apache Felix

functionality documentation:

 Configuration Admin52: A service for management of bundle configuration properties.

 Dependency manager: A service for managing bundle dependencies during runtime. This

project additionally manages the services and package dependencies between bundles.

Unlike other OSGi implementations, service dependencies are specified in a declarative

way in order to make monitoring and managing services easier.

 Apache Felix HTTP Service53: An implementation of the standard OSGi HTTP Service

specification, which provides a simplified means of registration of Servlets and

resources to a Servlet container.

 Apache Felix web console54: A tool for inspecting and managing OSGi framework instances

using a standard browser.

Apache Felix extends the OSGi specifications with unique additional features which make it easier

to create modular applications. For example, other OSGi implementations (e.g. Equinox) do not

provide the dependency management feature of Apache Felix which manages services and

packages. However, Equinox has the advantage over Apache Felix because it provides the

extension registry feature, which eases communication between bundles. Equinox is not shipped

with a web administration console like Apache Felix, but there are available external applications

which can be used to manage the Equinox framework (for example: mBs Prosyst Console55).

51 See section 3.2
52

 Apache Felix sub projects, Available at: http://felix.apache.org/site/index.html [Accessed 20 June 2010]
53 Apache Felix HTTP service, Available at: http://felix.apache.org/site/apache-felix-http-service.html [Accessed 20 June

2010]
54 Apache Felix Web Console, Available at: http://felix.apache.org/site/apache-felix-web-console.html [Accessed 20

June 2010]
55 Prosyst, see: http://www.prosyst.com/ [Accessed 20 June 2010]

http://felix.apache.org/site/index.html
http://felix.apache.org/site/apache-felix-http-service.html
http://felix.apache.org/site/apache-felix-web-console.html
http://www.prosyst.com/

23 | P a g e

3.2.2.3. Knopflerfish

Knopflerfish is an implementation of the OSGi specification described in section 3.2. It contains

the following components:

 Components defined by OSGi: This includes the base OSGi framework which enables

bundles to be managed (started, stopped, uninstalled etc.) and the HTTP service for

providing a web server where Servlets can be published.

 Knopflerfish Components: This includes a desktop application and a console for remotely

managing bundles.

Knopflerfish can be used to deploy modular web applications however it only provides few

additional features on top of the OSGi specification in comparison to Equinox and Apache Felix.

Knopflerfish has the ability to support web applications due to its HTTP service, which supports

the registration of Servlets. The Knopflerfish desktop application is advantageous in allowing

the remote management of applications; it however does not entail a web based remote

application management tool. It is preferable to have a web based management tool, which is

more convenient in managing applications because no application installations are required.

3.2.3. Summary

Modular applications can be developed using the above stated OSGi implementations. Equinox56

has an advantage over the other implementations because it is light weight (consumes the least

memory) and its bundles are small sized. Equinox is more scalable in running many applications

on the same machine. Performance is boosted under Equinox as compared to using the other

frameworks (Apache Felix and Knopflerfish) because system memory is efficiently utilized due to

Equinox’s minimal memory requirements. Furthermore, Equinox introduces a unique way of

building and deploying applications called Component Oriented Development and Assembly

(CODA)57. CODA is advantageous because it gives developers more flexibility in assembling and

customizing their applications. Developers can select components from different component

producers, customize them to meet specific requirements and finally use them to create

individual solutions58. CODA will allow templates for Clintweb applications to be created, so that

56 See section 3.2.2.1
57 CODA, Available at: http://www.eclipse.org/equinox-portal/whitepaper/20080310_equinox.php [Accessed 20 June

2010]
58 Equinox advantages, Available at: http://java.sys-con.com/node/520844 [Accessed 20 June 2010]

http://www.eclipse.org/equinox-portal/whitepaper/20080310_equinox.php
http://java.sys-con.com/node/520844

24 | P a g e

developers will not have to always start from scratch when creating applications for the new

framework. This will ensure application development is done quicker and with least amount of

configurations.

Equinox also provides the Extension Registry59 feature which is helpful for inter-bundle

communication. Equinox is compatible with many web frameworks for hosting web applications

as compared to Apache Felix and Knopflerfish; it can be easily placed into a web server by

applying minimal configurations. Lastly, the Eclipse IDE demonstrates how a stable modular

application can function using Equinox; new plug-ins can be deployed during runtime and they

will be activated without an application restart. Therefore, Equinox is the preferred OSGi

implementation in comparison to Apache Felix and Knopflerfish.

It is possible to switch between different OSGi implementations but this process requires

configurations depending on the frameworks involved. For example, in order to deploy Equinox

bundles in Knopflerfish, the Knopflerfish framework must be configured to support the Equinox’s

specific features like the Extension Registry. Such configurations include the addition of specific

libraries.

3.3. Web Application Deployment Topologies

After investigating the different types of OSGi implementations60, the next step is to discuss

deployment topologies of modular web applications which are based on the OSGi

implementations discussed in section 3.2.2. There are two types of deployment topologies which

will be discussed in this section, the web container in OSGi and OSGi in web container

deployments. Furthermore, functional implementations of each topology will be discussed and

comparisons between them will be made, in order to decide which topology is suitable for the

objectives of this thesis.

59 See section 3.2.2.1
60 See section 3.2.2

25 | P a g e

3.3.1. Web container in OSGi

This deployment architecture packages a web server into the OSGi based framework61. There are

several frameworks which use this architecture to create an environment for deploying dynamic

modular web applications62. This section discusses three frameworks which have this type of

deployment profile.

3.3.1.1. Spring DM

Spring DM (Dynamic Modules) is an OSGi based framework where Spring powered bundles can be

deployed
63

. Spring DM dynamically manages application modules using OSGi. To convert ordinary

bundles to Spring powered bundles, a /Spring folder must be added under a bundle’s META-

INF64 directory. This folder must contain the necessary configuration XML files required by the

Spring framework for instantiation of a bundle and its properties (e.g. Services).

The core of the Spring DM framework is the org.springframework.osgi.bundle.extender

bundle; it handles the instantiation and management of application bundles during runtime.

During start-up the extender bundle attempts to load bundles under a specified directory by first

checking if they are Spring powered. The extender bundle thereafter loads a bundle’s

configuration files from its META-INF/Spring directory and creates an application context for that

specific bundle. The extender also checks if a bundle has registered services in its Spring

configuration files. A bundle’s Activator class65 must also be registered in a configuration file. In

a conventional OSGi bundle, the Activator class implements the BundleActivator interface

to provide a bundle’s start and stop methods. In Spring DM, the bundle Activator class does

not have to implement an OSGi specific interface, but the functions of the Activator class have

to be registered in a configuration XML file as a bean. OSGi services have to also be declared in a

configuration file as beans. The Spring DM framework passes the bean information to the OSGi

runtime during bundle start-up.

61 See section 3.2
62 See chapter 3
63 Introduction to Spring Dynamic Modules by JavaWorld, Available at: http://www.Javaworld.com/Javaworld/jw-04-

2008/jw-04-OSGi2.html?page=2 *Accessed 22 June 2010+ and ‘Spring Dynamic Modules in Action’ by Arnaud
Cogoluegnes and Thierry Templier
64 The META-INF directory stores the manifest file of a bundle. It is located in the base directory of a bundle. See section

3.2
65 The Activator class manages the lifecycle of a bundle and it is instantiated when a bundle is started and stopped.

Available at: http://fusesource.com/docs/esb/4.1/OSGi/activator.html [Accessed 22 June 2010]

http://www.javaworld.com/javaworld/jw-04-2008/jw-04-osgi2.html?page=2
http://www.javaworld.com/javaworld/jw-04-2008/jw-04-osgi2.html?page=2
http://fusesource.com/docs/esb/4.1/osgi/activator.html

26 | P a g e

Spring DM can provide a suitable environment for a modular application. It runs on an OSGi

framework implementation (e.g. Apache Felix, Equinox) which allows it to deploy and manage

Spring DM modular applications. However, bundle properties (Activator class and Services)

have to be declared in Spring configuration XMLs. If these configurations are not included in a

bundle then it cannot function in the Spring environment. Extra efforts are required in order to

make application modules compliant with Spring DM.

3.3.1.2. Spring DMK

Another deployment topology of Spring DM is shown below:

Equinox

WAR
personality

Management

Spring DMK

Deployer Tomcat

Bundle
personality

Web Module
personality

Figure 3.9: Spring DMK topology 66

The Spring DMK (Dynamic Module Kernel) is the OSGi based kernel which takes advantage of the

modularity and versioning of OSGi and extends its capabilities by adding more functionality to the

DM server. Equinox67 is the OSGi implementation used in the kernel. This gives provisions for

modules to be deployed in Spring DM and managed like in an ordinary OSGi environment. On top

of the kernel, there is a deployer which converts different deployment profiles into bundles and

runs them in Equinox. This allows, for applications in WAR68, bundle and web module formats to

be deployable in the Spring DM framework. Additionally, this Spring DMK deployment uses the

66 Spring DM Server by Springsource, Available at: http://static.Springsource.org/s2-dmserver/2.0.x/programmer-

guide/html/ch02s02.html [Accessed 22 June 2010] and http://static.Springsource.org/s2-dmserver/2.0.x/programmer-
guide/html/ch02s03.html [Accessed 22 June 2010]
67

 See section 3.2.2.1
68 See section 2.1

http://static.springsource.org/s2-dmserver/2.0.x/programmer-guide/html/ch02s02.html
http://static.springsource.org/s2-dmserver/2.0.x/programmer-guide/html/ch02s02.html
http://static.springsource.org/s2-dmserver/2.0.x/programmer-guide/html/ch02s03.html
http://static.springsource.org/s2-dmserver/2.0.x/programmer-guide/html/ch02s03.html

27 | P a g e

Tomcat web server to provide web container functionalities to applications. Spring DMK supports

three deployment formats69:

 Standard WAR – which the deployer converts into a bundle and launches it on tomcat. In

this setting, the WAR file does not have to be modified to run in the Spring DM kernel.

The problem with this deployment is that it does not consider the modularity of an

application. Applications in this setting are deployed as a single WAR file.

 Shared Libraries – In this deployment the DM server contains a manifest file declaring

dependencies and imported/exported packages. The dependency declarations in the

Spring manifest file are OSGi compliant, meaning that the Spring DM kernel can resolve

dependency classes when required. This deployment format is ideal for modular

application in WAR file formats.

 Shared services WAR – In this format, interfaces can be programmed which provide

services to bundles running within the same application.

Spring DM can be used as a platform for deploying a modular application. It offers a web server

that manages deployment of modules as bundles and it provides communication between

bundles during runtime. An application can be kept in WAR format and still be deployed.

However, this topology requires configurations to be done on web applications; WAR files have to

be made OSGi compliant by having to manually declare dependencies and package

imports/exports within them.

3.3.1.3. Equinox - Jetty

This deployment profile launches the Jetty web server in an Equinox framework. Jetty is a light

weight HTTP server and Servlet70 container which can be deployed as a bundle in Equinox71.

Jetty is a fully featured web server for static and dynamic content72. Jetty combines server and

69 Deployment Architecture by Springsource, Available at: http://static.Springsource.org/s2-

dmserver/2.0.x/programmer-guide/html/ch03.html [Accessed 22 June 2010]
70 See section 2.1
71 See section 3.2.2.1
72

Jetty - Available at: http://Java-source.net/open-source/web-servers/jetty [Accessed 20 June 2010]

http://static.springsource.org/s2-dmserver/2.0.x/programmer-guide/html/ch03.html
http://static.springsource.org/s2-dmserver/2.0.x/programmer-guide/html/ch03.html
http://java-source.net/open-source/web-servers/jetty

28 | P a g e

container solutions to run within the same process, without interconnection overheads and

complications. Jetty has a simple structure which is illustrated in the figure below73:

 Jetty

HTTP Connector

Servlet Handler

Servlets

Server

Figure 3.10: Jetty web server

An instance of the server is created during start-up. A server can have multiple connectors which

declare properties like the access port of the application, the HTTP request header size and

timeout length. The connector passes HTTP requests to the Servlet handler which is used to

examine requests and responses. The Servlet handler can then forward requests to Servlets

for processing.

Equinox - Jetty is capable of running a modular application. Equinox is used to control the Jetty

web server bundle and other application bundles. The advantage of this deployment is that all

components including the web server are managed as bundles, and they have full access to

Equinox’s functionality. The extension point74 functionality provided by Equinox allows for

properties like Servlets, to be registered and retrieved from any bundle within the framework.

Equinox - Jetty is easy to install and requires minimal configuration efforts for bundles to be

deployed within the framework as compared to the Spring DM architectures where bundles must

be packed with Spring configuration files.

3.3.2. OSGi in Web container

In this topology, OSGi is embedded within a web container. The web container has to instantiate

OSGi and thereafter application components can be started. The web container has to forward

user requests to the OSGi container using a bridge Servlet (further explained in section 3.3.2.1).

73 Embedding Jetty, Available at: http://wiki.eclipse.org/Jetty/Tutorial/Embedding_Jetty [Accessed 20 June 2010]
74 See section 3.2.2.1

http://wiki.eclipse.org/Jetty/Tutorial/Embedding_Jetty

29 | P a g e

3.3.2.1. Equinox in Tomcat

In an alternative deployment topology, Equinox can be deployed into a Tomcat container75. Other

OSGI implementations (e.g. Apache Felix) can be used in this topology but they require more

configuration efforts than Equinox. Equinox provides a simple Servlet bridge between itself and

a web container as shown in the figure below76:

 Equinox

Servlet bridge

HTTP Service
Servlet

Application
bundle

Register
Servlet

Delegate
Requests

Web container

Bridge
Servlet

Delegate
Requests

Start
framework

Figure 3.11: Equinox in Tomcat

The Bridge Servlet receives HTTP requests from the web container (Tomcat) and forwards it to

Servlets registered on its Servlet registry extension point. On the web container side, there is

bridge Servlet, in the form of a WAR77 file (called bridge.war). The bridge Servlet is

responsible for:

 Embedding and launching Equinox within the tomcat container

 Tunneling Servlet requests from Tomcat to the Equinox runtime’s Servlet bridge

Tomcat instantiates the bridge.war it in order to launch Equinox. Thereafter the Equinox console

will be displayed on the Tomcat console. OSGi commands can be inputted in the Tomcat console

to control application component. Client requests going to the Equinox based application will

initially be received by the Tomcat web container and then tunneled to Equinox via the bridge

Servlet component. In order to support JSP in this architecture, additional configurations have

to be done on the Tomcat container. Since all application modules are controlled by Equinox, the

Tomcat JSP compiler cannot be used to service JSPs. Instead an external JSP compiler like Jasper

has to be used
78

.

75 See section 2.1
76 Mit OSGi Webanwendung entwickeln – Was geht, was nicht? - 2009 P. Roßbach, G. Wütherich, M. Lippert
77 See section 2.1
78 Embedded OSGi, Available at: http://techdistrict.kirkk.com/2009/02/16/embedding-OSGi-in-tomcat/ [Accessed 20

June 2010]

http://techdistrict.kirkk.com/2009/02/16/embedding-osgi-in-tomcat/

30 | P a g e

An example of this type of deployment is the eclipse BIRT 79(Business Intelligence and Reporting

Tools) project. BIRT is an open source Eclipse-based reporting system that can be integrated into a

Java application to create and deploy reports. BIRT is constructed as a composite of components

(Eclipse plug-ins) which offer different functionality. These components can be dynamically

deployed into a Tomcat web container as WAR files. BIRT has however suffered from memory

related problems80. Many users have complained of memory leaks and high memory usage

occurring in BIRT applications which causes the Tomcat server to crash. In this configuration,

object references are not properly cleaned when objects are destroyed which therefore leads to

memory leaks. The object references problem is a result of a configuration problem between

Tomcat and Equinox. The Tomcat web server may reference an object which was already

destroyed by the Equinox framework, which leads to crashes the Tomcat server. The architecture

stated in Figure 3.11 is not stable as compared to the other topologies (Web server in OSGi)

discussed in this chapter.

The Equinox in Tomcat approach is successful in creating an environment for a modular

application but it does require vast amount of configurations. Depending on the operating

system, Tomcat has to be configured in order to allow Equinox to function in the Tomcat

console81. Furthermore, the Equinox runtime is dependent on Tomcat, so if a problem occurs in

the web container, Equinox will be affected. Furthermore, the BIRT implementation of this

architecture demonstrates that this architecture is not stable because it is prone to serious

memory problems.

3.4. Session State Management

One of the most important issues in a dynamic modular application is the preservation of session

objects when Hot Swapping82 occurs. The term ‘session objects’, refers to the objects which hold

user inputted information during the span of a session. In an ideal case, when modules are

dynamically swapped in and out, their session objects should be restored in order for users to not

79 Eclipse Org, BIRT project, Available at: http://www.eclipse.org/birt/phoenix/ [Accessed 28 July 2010]
80 Memory leaks are caused by referencing objects that are no longer in use. This happens when references to

destroyed objects are not cleared. See: http://java.sys-con.com/node/1071319 for Java memory problems [Accessed 20
June 2010]
81 Embedded OSGi, Available at: http://techdistrict.kirkk.com/2009/02/16/embedding-OSGi-in-tomcat/ [Accessed 20

June 2010]
82 See section 3.1

http://www.eclipse.org/birt/phoenix/
http://java.sys-con.com/node/1071319
http://techdistrict.kirkk.com/2009/02/16/embedding-osgi-in-tomcat/

31 | P a g e

have to input information again. Some web containers are able to persistently store session

objects (e.g. Tomcat) by serializing them on to the disk. So that when a new application module is

swapped in, the session objects can be restored into it. However some web containers, like Jetty,

do not have this functionality. In an OSGi environment, there are no in-built mechanisms for

saving session objects after a bundle swap occurs. The session objects must be manually serialized

into an application’s memory or on the disk. Writing objects to the disk requires more time as

compared to storing them in the application’s memory. This is because the hardware I/O

operation is slower compared to accessing RAM memory83.

There are tools which can be used to preserve session objects when module swaps occur.

XStream84 serializes objects into XMLs, which can later be parsed into Java objects and placed

back into a running application. The disadvantage of storing session objects as XMLs is that,

depending on the structure of the Java object being serialized, the XML file can increase in

memory storage size. The alternative method of preserving session objects is using the Java

Serializable
85 API, which converts objects into byte streams. In this case, serialization of an

object is enabled by a class implementing the java.io.Serializable interface. Classes that

do not implement this interface will not have any of their state serialized. The Serializable

API also manages class versioning of serialized object especially during migration between

different class versions. This is necessary when a serialized object with an old data structure has

to be converted to an object with a different data structure during de-serialization. Java

Serialization is relatively stable when fields are added to or removed from a class. It is easier to

place the serialization code into a class as compared to the Object-XML converter code.

3.5. Summary

The discussed modular web application deployment architectures (Spring DM and Equinox -

Jetty86) provide functional solutions for deploying modular applications. They only differ in setup

configurations. Spring DM solutions require vast configurations to be done on application bundles

83 Java I/O performance, Available at: http://java.sun.com/developer/technicalArticles/Programming/PerfTuning/

[Accessed 10 May 2010]
84 XStream object serializer, Available at: http://xstream.codehaus.org/ [Accessed 10 May 2010]
85 Serialization at Java SUN, Available at: http://Java.sun.com/developer/technicalArticles/Programming/serialization/,

http://www.tutorialspoint.com/Java/Java_serialization.htm and Java World serialization at:
http://www.Javaworld.com/community/node/2915 [Accessed 10 May 2010]
86

 See section 3.3.1

http://java.sun.com/developer/technicalArticles/Programming/PerfTuning/
http://xstream.codehaus.org/
http://java.sun.com/developer/technicalArticles/Programming/serialization/
http://www.tutorialspoint.com/java/java_serialization.htm
http://www.javaworld.com/community/node/2915

32 | P a g e

in order to make them compatible. In Spring DM and Spring DMK architectures, bundles have to

be packed with Spring configuration XMLs to make them Spring powered. The process of having

to create configuration files for each bundle is tedious. In the Servlet bridge configuration, an

external JSP compiler has to be configured into the framework and the bundle profile may have to

be changed to a WAR file instead of a JAR. It is therefore recommended to use the Equinox - Jetty

approach because it does not require vast amount of configurations. In Equinox, a bundle just has

to fulfill the OSGi bundle specification and it can thereafter be deployed in to the framework. The

Jetty web server is deployed as an ordinary bundle in Equinox, and its lifecycle can be controlled

like any other bundle. Additionally, Equinox provides the Extension Registry functionality which

allows creation of extensions and extension points. This feature will be advantageous in allowing

bundles to offer functionality to other application bundles while still maintaining application

modularity. Using extension points, bundles can be able to exchange resources and execute code

located within other bundles.

Based on the analysis presented in this chapter, it is best to deploy a web server in an OSGi

container than vice-versa because it is stable and bundle deployment formats can remain as the

standard JAR format. In terms of application web servers, Jetty is a preferable web server as

compared to frameworks offering other web servers. According to a Jetty vs. Tomcat comparative

analysis study87, Jetty has better scalability than the Tomcat web server when there are many

client connections. Additionally, Jetty has a small memory footprint compared to other web

servers, therefore less memory and CPU cache is used by the Jetty web server. The Jetty vs.

Tomcat comparative analysis article further states that Jetty has better performance when

serving static content because it uses advanced memory mapped file buffers combined with NIO88

to instruct the operating system to send file contents at maximum DMA89 speed without entering

user memory space or the JVM. Furthermore, Jetty can handle HTTP session security by providing

authentication and user access control for applications. Jetty is therefore the memory efficient

and stable choice for the new framework in comparison to other web servers.

This chapter outlined that the best solution for hosting dynamic modular web application is the

Equinox - Jetty framework. However, further considerations have to be made before a framework

87 Jetty vs. Tomcat, A comparative analysis, Available at: http://www.webtide.com/choose/jetty.jsp [Accessed 10 May

2010]
88

NIO: Non-blocking I/O is a form of input/output processing that allows other processing to continue before

transmission is finished. See: http://en.wikipedia.org/wiki/Asynchronous_I/O and http://msdn.microsoft.com/en-
us/library/aa365683%28VS.85%29.aspx [Accessed 10 May 2010]
89 Direct Memory Access: A feature of modern computers that allows certain hardware subsystems within a computer

to access system memory for reading and/or writing independently of the CPU. See:
http://en.wikipedia.org/wiki/Direct_memory_access and http://www.pcguide.com/ref/mbsys/res/dma/index.htm
[Accessed 20 June 2010]

http://www.webtide.com/choose/jetty.jsp
http://en.wikipedia.org/wiki/Asynchronous_I/O
http://msdn.microsoft.com/en-us/library/aa365683%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa365683%28VS.85%29.aspx
http://en.wikipedia.org/wiki/Direct_memory_access
http://www.pcguide.com/ref/mbsys/res/dma/index.htm

33 | P a g e

can be selected for this thesis. In order for applications be fully dynamic, the Serializable API

has to be built into the web framework (Spring DM or Equinox - Jetty) so that user session state

information can be preserved and restored during bundle swaps. Furthermore, JSF has to be

made functional in the web framework. JSF was not designed for OSGi based application

environments. Since OSGi implementations use multiple class loaders, it becomes problematic for

JSF to resolves its components because it is designed to function under a single class loader

environment. The next chapter will outline the possible ways in which JSF can be configured to

function in the Equinox - Jetty and Spring DM frameworks.

34 | P a g e

4. Requirements Analysis

Chapter 2 discussed Clintweb’s architecture and the main challenges it faces. It was noted that

Clintweb is to be migrated to a framework which supports deployment of dynamic modular web

applications in order to allow maintenance of applications during runtime. Chapter 3 discussed

the available technologies which can be used to realize the desired framework. This chapter

continues to identify the requirements related to the new Clintweb framework and its

applications. These requirements include the features which the new framework must offer to

applications. The system user and administrator requirements will also be discussed in this

chapter.

4.1. Framework Requirements

This section discusses the requirements which are to be fulfilled in relation to the current

Clintweb framework90. These requirements include features offered by the current Clintweb that

must also be present in the new framework.

4.1.1. Application Requirements

Applications in the new framework will have to be distributed into independent modules. The

modules should follow the module specification outlined in section 3.1, where each module

contains unique functionality and can communicate with other modules via predefined interfaces

and/or services. The modules should be dynamic by allowing them to be swapped in and out of an

application during runtime (This feature is referred to as hot swapping).

This modular architecture can be realized using the OSGi framework91. Applications in Clintweb

can be split into sets of OSGi bundles. In a Spring DM92 implementation, bundles will have to be

extended to contain Spring configuration XML files to make them compatible with the Spring DM

framework. In the Equinox framework, bundles do not need any extra configurations to make

90 See chapter 2
91 See section 3.2
92 See section 3.3.1

35 | P a g e

them deployable. Equinox additionally provides bundles with the extension registry feature93,

which allows them to have another means of exchanging resources and providing functionality

between each other.

It is a requirement that when a module is removed from an application and replaced with another

module, the objects containing user inputted information in the swapped-out module should not

be lost. The data should be present in the swapped-in module so that a user will not have to input

his data again. The only method of fulfilling this requirement is that the objects storing user

information in the swapped-out module have to be temporarily saved at a predefined location

and then restored when the replacement module is swapped-in. These objects can either be

saved in an application’s memory or on the disk, so that when the new module is swapped in, the

saved objects can be restored into it. As discussed in section 3.4, the Serializable API can be

used to preserve session objects. In comparison to other object preservation techniques, storing

objects as XMLs using XStream94 requires more Java code and additional libraries to be packed

into an application to support this functionality. The Serializable API is easy to build into an

application and it is very stable in preserving and recovering Java objects.

4.1.2. Resource Requirements

Each module should be able to independently contribute resources to an application. When a

module is deployed into an application, its resources should be resolvable upon user request.

Furthermore, when a module is removed from an application, its resources should no longer be

available to the application. Modules should be able to reference resources in other modules.

Therefore, linking of resources in different modules should be made possible as shown in the

figure below:

93 See section 3.2.2.1
94 See section 3.4

36 | P a g e

Figure 4.1: Resource navigation

Resources are in the form of XHTML files as depicted in the figure above. A resource should be

able to declare a reference name to a resource located in another module without knowing of its

location and what information it contains. As seen in the above diagram, Module C can declare a

reference to a resource in Module A without having knowledge of where the resource is located.

The process of resolving referenced resources should be handled by a central bundle. This

requirement should be implemented in a way that modules should still maintain the loosely

coupled property. It should also be noted that navigation between resources in different bundles

should be clearly outlined in order to avoid circular dependencies between modules. Circular

dependency occurs if Module A references a resource in Module C and Module C also references a

resource in Module A. If Module C is swapped out, then Module A will have a null reference to

Module C (because Module C has been swapped out). It is therefore a requirement that resources

should only reference resources within their host module or modules it is dependent on. For

example in figure 4.1 Module B should only be allowed to reference resources in Module A and

itself.

The resources requirements can be solved using OSGi, where bundles can contain resources

which are accessible during the span of their lifecycles95. When a bundle is uninstalled, its

resources will no longer be available to an application. However, bundles cannot be able to

directly access a resource in another bundle. This is because communication between bundles can

only be conducted via an interface or an OSGi service. The Equinox framework’s extension registry

feature supports registration of resources under an extension point. This feature allows bundles

to reference resources in other bundles. In Spring DM96, resolving of resources is done by the

95 See section 3.2
96

 See section 3.3.1

37 | P a g e

framework; they do not have to be explicitly registered in order for them to be resolved like in the

Equinox framework.

4.1.3. JSF Requirements

JSF97 components must be resolvable. As discussed in section 2.2, Clintweb98 uses the JSF

framework to implement some of its functionalities. Each library in Clintweb provides unique JSF

components like Managed Beans, Navigation Rules and custom UI components to an application.

JSF components are declared in a faces-config XML files which are contained in Clintweb’s

application libraries. Since all application libraries are packed in a single WAR99 file under Tomcat’s

webApp directory, Tomcat is able to access all faces-config XML files (in all libraries) and

instantiate their declared components. In OSGi, JSF functionality cannot be split into individual

bundles using the faces-config files. Each bundle has its own class loader, therefore all faces-

config files will be loaded under different class loaders and they will not be visible to the JSF

system. JSF cannot resolve these files in all application bundles because it is not designed to

function in an environment with multiple class loaders. The following solutions can be used to

solve the problem of resolving JSF components in a modular application

 In the Equinox - Jetty environment100, the JSF components can be externalized to

extension points where they can be registered. Bundles can provide their JSF components

as extensions on extension points, therefore allowing them to be resolvable by JSF in the

Equinox framework.

 In a Spring DM environment101, the JSF components must be registered as Spring Beans in

XML configuration files. Each bundle must contain these configuration files which declare

the components located inside them.

In this case, the configuration efforts of registering JSF components in Spring DM and Equinox are

the same. The main disadvantage with Spring DM is that, each JSF component class will have to be

defined in an XML file. If a bundle has many JSF components, the number of XML files required

will increase.

97 See section 2.2
98 See section 2
99 See section 2.1
100 See section 3.3.1.3
101 See section 3.3.1

38 | P a g e

The usage of JSF components by resources (facelets102) in a modular application must be governed

by rules. Resources should only be allowed to reference JSF components in their host modules

and in modules which their host module is dependent on. This will allow JSF components to be

consistent with module dependencies in an application, therefore avoiding null references caused

by resources referencing JSF components located in modules that are not visible to the resource’s

host module.

All application modules will require access to JSF and JSF-Facelets libraries. Considerations need to

be made on where these libraries will be stored without having any file redundancies. It is not

memory efficient to allow each module in an application to store its own libraries. This will lead to

an increase in the size of modules and a redundancy of the library files. Therefore the libraries

must be stored in a centralized point where modules can be able to access their functionality. The

most efficient way to fulfill this requirement in OSGi, is by assigning the JSF libraries to a single

bundle in an application which will export the library’s classes in order for other bundles to import

and utilize them.

4.2. User Requirements

The user should be able to request and view resources in an application on the framework.

Additionally, during the occurrence of a module swap, the user should not notice that the module

swap process has been initiated. The user’s interaction with the application should not be

suspended but it should continue as if the application was running normally. During module swap,

slight delays on the client side can be tolerated but it should not take more than a few seconds.

An application will have to delay a user’s response until the module swapping103 process is done,

thereafter the application can continue processing a user’s request.

102 See section 2.3
103 See section 3.1

39 | P a g e

4.3. Administrator Requirements

The application will require an administrator to control its modules as shown in the use case

diagram below:

System

Framework

Application

Modules

<<starts>>

<<uses>>

<<includes>>

<<stops>>

<<manages>>Adminstrator

<<uses>>

User

Figure 4.2: Administrator use-case diagram

The administrator should have a platform where he can manage the modules of an application.

The management of the modules includes:

 Add and remove application modules

 Update modules

The management of modules can be done by a desktop application or a web based application.

Modules of same name but different versions should be swappable. This swapping process should

be done as fast as possible so as to avoid delays in processing user requests. Scenarios may occur

such as, a user requests a resource in a module that has just been swapped out but is also

available in a module that is to be swapped in. The application has to wait for the module

containing the resource to be swapped in, in order to deliver the requested resource to the

requesting user. Therefore the faster the execution of the swapping process, the less

inconvenienced the user will be. The updating of modules is vital to applications because during

updates, the inter-module references need to be updated.

The user and administrator processes described in Figure 4.2 should occur concurrently. The

following sequence diagram (Figure 4.3) depicts a scenario where modules are being swapped

while a user interacts with an application:

40 | P a g e

module A module C v.1 module C v.2

getResource(URI)

returnResource

getResource(URI)

returnResource

request(URI)

returnResource

request(URI)

returnResource

Swap out

Swap in

:User :Administrator

Figure 4.3: Module swapping sequence diagram

In the beginning, all application required modules should be available, in the above case, module

A and C (Either version 1 or version 2 should be available but not necessarily both). The

application should allow only the activation of one of the versions of module C during runtime. In

OSGi the bundle with the highest version number is usually activated first. According to Figure 4.3,

the user sends a resource request to the application which is received by module A. Module A

then retrieves the requested resource from module C v.1. The administrator thereafter removes

module C v.1 and replaces it with module C v.2, which can be considered as an extended version

of module C v.1. Next time the user requests the resource that was requested earlier, it will be

retrieved from module C v.2. If a module swap occurs during a resource request, the response will

have to be delayed until the module containing the resource is swapped into the running

application. The module swapping delay should be kept as low as possible so that users will not

have to incur long delays while waiting for the application to respond to their requests.

41 | P a g e

4.4. Summary

This chapter discussed the requirements which the new framework must fulfill. According to the

analysis conducted in this chapter, both Spring DM and Equinox - Jetty104 can fulfill the stated

requirements. However, based on the discussion in section 3.5, the Equinox - Jetty framework has

more benefits than other frameworks. Furthermore, JSF105 functionality can be easily integrated

into the Equinox - Jetty framework. JSF in Spring DM requires vast amount of configurations in

order to use JSF components (these configurations refer to the creation of Spring XML files).

Bundles will have to be packed with additional XML files declaring JSF components which will

increase the size of a bundle. Migration of applications in the current Clintweb framework to

Spring DM will require more configuration efforts and code changes as compared to Equinox -

Jetty. Therefore, the new framework design will be based on the Equinox - Jetty framework.

104 See section 3.3.1
105 See section 2.2

42 | P a g e

5. System Design

This chapter discusses the conceptual design principles of a framework that supports the

deployment of dynamic modular applications. The term ‘framework’, refers to the tools and

technologies which will support the deployment of modular applications, whilst ‘application’

refers to the collection of modules which will utilize the framework’s services to provide

functionality to users. It is the intention of this chapter to outline how the technologies presented

in chapter 3 will be applied to fulfill the requirements stated in chapter 4.

The overall structure of the system is shown below:

user

network

useruser

Web server

browser browser

browser

Administrator

adminstration

program

Figure 5.1: System overview

The web server will host the framework where dynamic modular applications will be deployed.

Users will access applications on the web server using a standard browser. Applications will be

managed by an administrator via a Client based desktop application.

The following section will outline the framework architecture for hosting modular applications.

Thereafter the design of an application which fulfills the requirements stated in section 4.1 will be

discussed.

43 | P a g e

5.1. Framework Architecture

As outlined in section 4.4, the new framework is based on Equinox - Jetty framework. Figure 5.2

outlines the structure of the new framework:

OS

Facelets

JSF

Jetty

Equinox

Applications

Figure 5.2: Framework architecture

Applications will be represented by a set of bundles which are deployed on Equinox106. The

Equinox layer will provide the functionality of controlling the lifecycle of each bundle in the

application layer. The Jetty web server107 will be deployed as a bundle. It will serve to manage

user sessions and security for applications. The JSF layer108 will provide an environment where

application bundles containing JSF components can be deployed. The Facelets109 layer will be

applied on to JSF in order for applications to support JSF-Facelets functionality.

5.2. Application Architecture

This section describes the design specifications of applications which will be deployed in the

application layer of the framework described in section 5.1.

106 See section 3.3.2.1
107 See section 3.3.1.3
108 See section 2.2
109 See section 2.3

44 | P a g e

An application will consist of a set of bundles which follow the OSGi specification110. The following

bundles will be mandatory for applications:

 org.eclipse.equinox.http.jetty

org.eclipse.equinox.http.registry

org.mortbay.jetty

de.clintworld.clintweb.core

Figure 5.3: application required bundles

The org.eclipse.Equinox.http.jetty (referred to as Equinox - Jetty bundle) bundle is an

Equinox bundle which instantiates the Jetty web server located in the org.mortbay.jetty

bundle. The org.mortbay.jetty bundle contains the implementation classes of the Jetty web

server which are split into the following three functional parts:

Figure 5.4: Jetty’s functional parts

The Connector represents classes which accept HTTP connections for receiving client requests and

forwards them to the Handler classes. A Handler receives an HTTP request and either services

it or passes it on to other registered handlers like Servlets. The ThreadPool is a container of

threads which are used by the handlers to service requests. The ThreadPool has a limit on the

number of threads which can be assigned to a handler class. Usually when the maximum number

of threads have been already assigned to handler, then no more client requests can be accepted.

The maximum number of Threads can be manually configured to suit the framework’s host

server machine capabilities.

The org.eclipse.equinox.http.registry bundle (referred to as the Equinox registry

bundle) is an Equinox bundle providing extension points for registering Servlets, Filter and

110 See section 3.2

Jetty

ThreadPool

Connector

Handler

45 | P a g e

HttpContext class implementations (These classes will be explained in section 5.3). All bundles

in Figure 5.3 apart from the de.clintworld.clintweb.core bundle (referred to as the core

bundle) are Equinox - Jetty implementation bundles. The de.clintworld.clintweb.core

bundle will be the core of an application. It will provide the following functionalities to

applications:

 Processing of user requests

 Registering of session events

 Resolving of facelet111 resources in all application bundles

 Registration of JSF Managed Beans, Navigation Rules and Custom tag libraries

 Exporting of JSF classes to other application bundles

 Preservation and restoration of session objects after a bundle swap112 occurs

Other application bundles will set their dependencies on the core bundle in order access the

above listed functionalities.

The core bundle and other application bundles will have the following format:

Application bundle

-----class packages

----------Java classes

-----resource folder

----------WebContent folder

-----META-INF

----------manifest.mf

-----schema folder

----------extension points schema

-----plugin.xml

Figure 5.5: New bundle format

The class packages will contain bundle classes stored under various packages. Packages will group

classes providing specific functionalities. The resource folder will contain the static resources

which include facelets, images and cascading style sheets. The META-INF folder will contain the

bundle’s manifest file which describes a bundle’s dependencies, import and export packages. The

Equinox runtime will use the manifest file to resolve a bundle’s dependencies when a bundle is

111 See section 2.3
112 See section 3.1

46 | P a g e

started. The plugin.xml file defines a bundle’s extensions and extension points113. The schema

folder stores the XML schemas114 which provide XML vocabulary for extension points. The core

bundle will contain a faces-config.xml115 file where the application property resolver class116 will

be defined. No other application bundle will contain a faces-config.xml file.

5.3. User Requests Processing

The core bundle will be responsible for processing user requests and generating responses. The

sequence diagram in Figure 5.6 shows how requests will be routed to the core bundle as soon

they are dispatched by a user:

org.eclipse.equinox.http.

jetty

org.eclipse.equinox.http.

registry
de.clintworld.clintweb.

core

request(URI)
request(URI)

request(URI)

resource
resource

resource

:User

Figure 5.6: User request forwarding sequence diagram (bundle perspective)

The Equinox - Jetty117 bundle will receive user requests for resources with a specified URI. The

requests will be forwarded to the Equinox registry bundle which will forward them to handler

classes provided by the core bundle. The core bundle will resolve the requested resource and

deliver it to the user as a response. For the above delegation of user requests to function, the

core bundle will have to set its dependencies on the Equinox - Jetty and Equinox registry

113 See section 3.2.2.1
114 See section 3.2.2.1
115 See section 2.2
116 See section 5.6.1
117 See section 3.3.1.3

47 | P a g e

bundles118. Therefore, these two bundles will have to be active before the core bundle can be

activated.

In order to process requests, a Java web server requires a Servlet119
 class which receives

requests and generates responses. Servlets utilize an HttpContext object to locate and load

requested resources to a client response object. In order to filter requests (e.g. for security

purposes), a Filter class may be implemented which will intercept requests before they are

processed by a Servlet. According to the Java SUN specification120, a Filter is an object that

performs filtering tasks on a resource request and/or response. Filters may be in the form of

authentication filters, encryption filters, etc. Filter functionality will be available in the new

framework but a Filter class will not be implemented in this thesis. The Filter specification in

the new framework can be viewed in appendix A.

5.3.1. Servlet and HttpContext Class Registration

The core bundle will provide two Servlet class implementations for processing user requests.

These Servlet classes will be registered to the Equinox registry bundle121 for them to receive

user requests. The registry bundle provides a Servlet extension point which follows the HTTP

Service specification122. The core bundle will provide the following information to the Servlet

extension point:

 Servlet extension point

alias

class

httpContextId

Figure 5.7: Servlet extension point

118 See section 5.2
119 See section 2.1
120 Java SUN, Filter specification, Available at:

http://Java.sun.com/products/servlet/2.3/Javadoc/Javax/servlet/Filter.html [Accessed 20 June 2010]
121 See section 5.2
122 OSGi Alliance, HTTP Service specification, Available at:

http://www.OSGi.org/Javadoc/r4v42/org/OSGi/service/http/HttpService.html [Accessed 20 June 2010]

http://java.sun.com/products/servlet/2.3/javadoc/javax/servlet/Filter.html
http://www.osgi.org/javadoc/r4v42/org/osgi/service/http/HttpService.html

48 | P a g e

The alias attribute refers to the request URI pattern which will be handled by the declared

Servlet class. A request for a resource with a URI which matches the alias parameter value will

be forwarded to the specified Servlet class. The class attribute is the Servlet class

implementation which must be an instance of javax.servlet.Servlet123. Finally, the

httpcontextId is a unique identifier which is mapped to an HttpContext object (HttpContext is

explained later in this section). This object is assigned to the declared Servlet class in order to

locate and load requested resources as streams.

The Equinox registry bundle contains a ServletManager class which is responsible for

instantiating Servlet objects registered as extensions on the Servlet extension point124. Jetty

passes user requests to the registry bundle’s ServletManager class, which matches a request

URI to the alias attribute declared in Servlet extensions. If a match is found, the class in the

extension is extracted and the request is forwarded to its service() method, as shown in the

following class diagram (Figure 5.8):

Figure 5.8: Application Servlet classes

123 Java SUN, Servlet specification, Available at:

http://Java.sun.com/products/Servlet/2.1/api/Javax.Servlet.Servlet.html [Accessed 20 June 2010]
124 See section 3.2.2.1

http://java.sun.com/products/servlet/2.1/api/javax.servlet.Servlet.html

49 | P a g e

The classes with dashed line borders are Java classes contributed by bundles or libraries; the

other classes are will be created in this thesis. The FacesServletAdapter and

ResourceHttpServlet classes will be located in the core bundle. The

FacesServletAdapter will receive requests for facelets125 and forward them to a

FacesServlet object for processing. The FacesServlet cannot process requests for other file

types because it is specifically designed for processing requests for facelets. Requests for other

file types (e.g. images, CSS, pdf) will be forwarded to the ResourceHttpServlet class.

Servlet classes are associated with HttpContext126 objects which allow them to share a

ServletContext object. According to Jakarta Apache127, a ServletContext is a class which

defines a set of methods that a Servlet uses to communicate with its Servlet container (in the

Equinox - Jetty configuration128, Jetty provides the Servlet container), for example to retrieve

the MIME type of a requested file. The HttpContext objects are important for Servlet classes

for the following reasons129:

 ServletContext sharing policy: In traditional Java based web applications, Servlets

in the same web application had the same ServletContext. In the Equinox

framework130, different ServletContexts can be assigned to different Servlets, so

that not all Servlets in an application share the same ServletContext.

 Resource retrieving logic: An HttpContext class implementation defines logic for

retrieving resources. For example, if resources are stored under a specific application

path, the HttpContext class can be programmed to search for resources in a particular

path.

 Security validation: The handleSecurity() method of the HttpContext class can be

implemented to provide request authentication and resource authorization logic. This is

useful in cases when requests do not pass security requirements, then the response

object can be filled with error description messages and request processing can be

stopped.

125 See section 2.3
126 OSGi Org, HttpContext specification, Available at:

http://www.OSGi.org/Javadoc/r4v42/org/OSGi/service/http/HttpContext.html [Accessed 20 June 2010]
127 Jakarta Apache, Available at: http://jakarta.apache-korea.org/cactus/api/framework-

13/Javax/Servlet/ServletContext.html [Accessed 20 June 2010]
128 See section 3.3.1.3
129 Dynamic Java Org, HTTP Service specification explained, Available at: http://www.dynamicJava.org/articles/OSGi-

compendium/http-service [Accessed 20 June 2010]
130 See section 3.2.2.1

http://www.osgi.org/javadoc/r4v42/org/osgi/service/http/HttpContext.html
http://jakarta.apache-korea.org/cactus/api/framework-13/javax/servlet/ServletContext.html
http://jakarta.apache-korea.org/cactus/api/framework-13/javax/servlet/ServletContext.html
http://www.dynamicjava.org/articles/osgi-compendium/http-service
http://www.dynamicjava.org/articles/osgi-compendium/http-service

50 | P a g e

It must also be noted that if an HttpContext object is not specified, then a default one is

provided by Equinox HTTP Service. As previously stated, HttpContext classes can be registered

under an extension point provided by the Equinox registry bundle. The extension point expects

the core bundle to provide the following information:

 HttpContext extension point

id

class

Figure 5.9: HttpContext extension point

The Id attribute is a unique identifier referring to the specified HttpContext class. The class

attribute refers to a class which implements the org.osgi.service.http.HttpContext

interface. The core bundle will provide an implementation of the HttpContext as specified in

the following diagram (Figure 5.10):

Figure 5.10: HttpContext class diagram

The FacesHttpContext will be assigned to the two stated Servlet class implementations

(FacesServletAdapter and ResourceHttpServlet). These Servlet classes will call the

FacesHttpContext object to resolve the URL of requested resources. The FacesHttpContext

will delegate the task of retrieving resources to the ServletContextAdapter, which will use

the ServletContext to load resources as streams and forward them to the request handling

51 | P a g e

Servlet classes. The ServletConfig131 object is required for the web server132 to pass

information to a registered Servlet during initialization. It should be noted that the

ServletConfig, ServletContext and HttpContext classes are Java classes contributed by

bundles or libraries.

5.3.2. Handling User Requests

The FacesServletAdapter will receive requests for facelets133 and load the requested facelet

view134 by:

 building a component tree of JSF UI components declared on the requested facelet page

 applying the appropriate values to the JSF components

 rendering a response to the client

Figure 5.11 shows the classes involved in carrying out the above discussed process:

131 Jakarta Apache, Available at: http://jakarta.apache-korea.org/cactus/api/framework-

13/Javax/Servlet/ServletConfig.html [Accessed 20 June 2010]
132 See section 2.1
133 See section 2.3
134 See section 2.3

http://jakarta.apache-korea.org/cactus/api/framework-13/javax/servlet/ServletConfig.html
http://jakarta.apache-korea.org/cactus/api/framework-13/javax/servlet/ServletConfig.html

52 | P a g e

Figure 5.11: User request forwarding class diagram

The FacesServlet will delegate the task of rendering a facelet view to the

ClintwebViewHandler
135. The ClintwebViewHandler is responsible for rendering a

response to a request by calling a ClintwebFaceletFactory136 object which generates the

view for a given view ID (the view ID is the URI of a facelet). The ClintwebFaceletFactory will

attempt to associate the requested view to a facelet using the ClintwebResourceResolver,

which will resolve URLs of facelets located in application bundles. The URL (Universal Resource

Locator) is a URI that specifies where a resource is located whilst the URI (Universal Resource

Identifier) specifies the ID of a resource

135 FaceletViewHandler is an extension of the ViewHandler class, which is the pluggablity mechanism for allowing

applications using the JSF specification to provide their own handling of the activities in the Render Response and
Restore View phases of the request processing lifecycle. See:
http://www.docjar.com/docs/api/Javax/faces/application/ViewHandler.html [Accessed 20 July 2010]
136 The ClintwebFaceletFactory extends FaceletFactory, see specification:

http://www.docjar.com/docs/api/com/sun/Facelets/FaceletFactory.html [Accessed 20 July 2010]

http://www.docjar.com/docs/api/javax/faces/application/ViewHandler.html
http://www.docjar.com/docs/api/com/sun/facelets/FaceletFactory.html

53 | P a g e

5.4. Resolving Facelet Resources

Users will interact with facelets in order to receive services from an application. To include JSF-

Facelets137 into JSF in Equinox - Jetty138, the Servlet extension139 which registers the

FacesServletAdapter class will be configured with JSF-Facelets initialization parameters.

These parameters will associate JSF views (the view is the page that is rendered to the user) with

XHTML files.

The process of resolving resource URLs in an application will be done by the

ClintwebResourceResolver class. Applications will consist of more than one bundle; facelet

resources in all application bundles will have to be resolvable by the core bundle during runtime.

The core bundle cannot directly reference resources in other bundles; resource access between

bundles can only be done via specified interfaces. Therefore an extension point140 for resolving

resource URLs141 in application bundles will be implemented in the core bundle. This extension

point will require the following information from bundles willing to make their resources available

to an application:

 Resource resolver extension point

pattern

class

Figure 5.12: Resource resolver extension point

The pattern attribute refers to the unique URI associated with a facelet resource. The class

attribute is an implementation of an interface provided by the core bundle142 which specifies a

function for resolving a URL for a requested resource, as shown below:

137 See section 2.3
138

 See section 3.3.1.3
139 See section 5.3.1
140 See section 3.2.2.1
141 See section 5.35.3.2
142 See section 5.2

54 | P a g e

+getResourceUrl(in URI : string) : object

IResourceLocator

Figure 5.13:Resource locator interface

Bundles will provide implementations of the above interface, where the declared method will

specify logic for locating resources and generating their URLs. The method will receive a URI as an

input parameter and it will output an object of type URL, which will contain a valid URL of the

resource matching the URI. The core bundle will use the custom implementations of the above

stated interface provided by application bundles to resolve a requested resource’s URL.

By using extension points for the resolving resources process, an application is able to adapt to

dynamic changes within the runtime environment. New facelets will be registered at the resource

extension point; therefore making it possible for the core bundle to resolve resources upon

request. Bundles will be able to register multiple resources (facelets). However, the resource’s URI

must be unique within an application. This can be ensured by using a unique path prefix for

facelets, e.g. /db/ for database related pages.

5.5. Application Session Listeners

According to Java SUN specification143, a session listener is a class which set to be notified when

changes occur to active sessions (e.g. Session started or destroyed). A listener must be registered

to the web container in order to receive session event notifications. Session listeners are required

by applications when certain processes have to be conducted after a session event occurs. In the

new framework, session listeners are required in the session objects serialization process stated

in section 5.7. The core bundle will contain one session listener class implementation with the

following specification:

143 Java SUN, HttpSessionListener, Available at:

http://Java.sun.com/j2ee/sdk_1.3/techdocs/api/Javax/Servlet/http/HttpSessionListener.html [Accessed 20 July 2010]

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/servlet/http/HttpSessionListener.html

55 | P a g e

Figure 5.14: Session listeners class diagram

The ClintwebSessionListener will forward session events to listener classes registered on a

listener class extension point144. This extension point will only contain one attribute, which

specifies a class that implements the HttpSessionListener interface. Bundles which require a

session event to initiate a specified process will have to provide a listener class implementation on

the listener extension point.

5.6. JSF Functionality

JSF145 is required to generate the UI components on an application’s frontend. The JSF and JSF-

Facelets libraries will be stored in the core bundle, making the core bundle the access point of

application bundles to JSF functionality. Since the core bundle will be handling most of the JSF

related processing, it is not efficient to store multiple instances of JSF libraries in other bundles.

The core bundle will export some JSF packages to allow other bundles to utilize the JSF

functionality.

In this new architecture, the rendering and processing of JSF components will be centralized to

the core bundle. The core bundle will collect and instantiate JSF related components (e.g.

Managed Beans, Navigation Rules, Custom tag libraries) from other bundles using extension

points. Bundles in an application will use the extension points provided by the core bundle to

register their own JSF components.

144 See section 3.2.2.1
145 See section 2.2 and 2.3

56 | P a g e

5.6.1. Managed Beans registration

JSF contains a resolver class, which is responsible for receiving Managed Beans requests and

creating Managed Bean objects by calling a JSF RuntimeConfig object. The RuntimeConfig

class handles the creation of Managed Beans and Navigation Rules from the faces-config XML. In

order to externalize the registration of JSF components to an extension point, a custom

implementation of the Managed Bean resolver class and RuntimeConfig has to be created. In

OSGi based frameworks, the default JSF mechanism would not find Managed Bean classes in

application bundles other than the core bundle, because the core bundle’s class loader cannot

directly access classes in other bundles146. Therefore a class called,

ClintwebManagedBeanResolver (the Bean resolver class implementation) will be

implemented, which will receive Managed Bean requests and delegate the creation of Managed

Bean objects to a class called OSGiRuntimeConfig as shown in the class diagram below:

Figure 5.15: Managed bean processing class diagram

Note that the ClintwebManagedBeanResolver object is called only when a facelet containing

a reference to a Managed Bean is requested. The OSGiRuntimeConfig extends the

RuntimeConfig class, which will contain the logic of resolving Managed Beans and Navigation

Rules from extension points. The OSGiRuntimeConfig will create Managed Bean objects which

are instances of OSGiManagedBean. The OSGiManagedBean class will be able to load Managed

146 See section 3.2

57 | P a g e

Bean classes from their host bundles. The Managed Bean extension point will have the following

specification:

 Managed bean extension point

simple-name

class

scope

Figure 5.16: Managed beans extension point

The simple-name of the Managed Bean is the EL syntax facelets use to call a Managed Bean’s

properties. The scope property is of type String and it is for declaration of the lifecycle of a

Managed Bean. The class attribute refers to a Managed Bean class implementation. Each bundle

will be able to register multiple unique Managed Beans.

In order to fully externalize the Managed Bean functionality to an extension point, additional JSF

classes have to be customized. In a normal JSF setting, a Managed Bean class instance is loaded

using a DefaultLifecycleProviderFactory147 object when it is requested for the first time

in an application’s lifecycle. In order to load Managed Bean classes from application bundles in an

OSGi environment, a custom implementation of the DefaultLifecycleProviderFactory will

be created according to the following class diagram (Figure 5.17):

Figure 5.17: Loading Managed Beans class diagram

147 Apache MyFaces, DefaultLifeCycleProviderFactory specification, Available at:

http://myfaces.apache.org/core12/myfaces-
impl/apidocs/org/apache/myfaces/config/annotation/DefaultLifecycleProviderFactory.html [Accessed 16 June 2010]

http://myfaces.apache.org/core12/myfaces-impl/apidocs/org/apache/myfaces/config/annotation/DefaultLifecycleProviderFactory.html
http://myfaces.apache.org/core12/myfaces-impl/apidocs/org/apache/myfaces/config/annotation/DefaultLifecycleProviderFactory.html

58 | P a g e

The OSGiLifecycleProviderFactory will create an instance of the

OSGiLifecycleProviderAdapter which creates an instance of a Managed Bean class

registered in an extension point.

5.6.2. Navigation Rules registration

Navigation Rules148 are important for managing navigation between resources in a JSF based web

application. The new framework will support the registration of Navigation Rules by application

bundles via an extension point provided by the core bundle. The core bundle will instantiate and

process Navigation Rules. Navigation Rules will be split into two parts, the from-view and the

navigation case. The from-view property of type String is the URI of the source page of the

Navigation Rule (the page where the navigation link will be placed). The navigation case is the

target page of the Navigation Rule (the page the Navigation Rule will lead to). Figure 5.18 shows

the specification of the Navigation Rules extension point:

Navigation rules extension point

from-view-ID

Navigation case

from-outcome

to-view-ID

Figure 5.18: Navigation Rules extension point

The from-view-ID is an optional property; Navigation Rules will only be required to specify

navigation cases. A Navigation Rule will allow the declaration of more than one navigation case.

The from-outcome and to-view-id are both of type String.

The OSGiRuntimeConfig149 class is responsible for instantiating Navigation Rules registered on

the Navigation Rule extension point. The OSGiRuntimeConfig class will create JSF

NavigationRule objects for each provided extension and for each NavigationRule object,

JSF NavigationCase objects will be created based on the information provided at the extension

148 See section 2.2
149 See Figure 5.15: Managed bean processing class diagram

59 | P a g e

point. Thereafter all created NavigationRule objects will be stored in a list for the application

to access them when they are requested during the lifetime of an application.

Navigation Rules can be activated by returning a String at the end of a Managed Bean function or

by specifying a value of type String as an action output of a JSF UI component. The returned String

value will be detected by JSF which will prompt execution of a Navigation Rule based on the String

value.

5.6.3. Custom tag libraries

Custom tag libraries will allow custom JSF UI components to be used on facelets. In order to

support custom tag libraries, the core bundle will contain an XML file, where the qualified name

of a tag library class will be defined. The ClintwebTagLibrary class will contain tag names of

custom UI components which can be used on facelets. For facelets to reference custom

components, ClintwebTagLibrary class will define a namespace which facelets must declare

for them to use the custom components defined in the ClintwebTagLibrary. The specification

of the ClintwebTagLibrary is shown below:

Figure 5.19: Tag library classes

The ClintwebTagLibrary will derive its functions from JSF’s AbstractTagLibrary150 class.

The addComponent() method will add a custom UI component, its renderer class and a

reference tag name to the tag library. UI Components require a renderer class in order for them

to be rendered on a facelet. A renderer class is responsible for encoding and decoding

components. Encoding refers to displaying the component so that it is visible to the user and

decoding means translation of the user’s input to a component value151. The addFunction()

method will add a method specified by a class and a function reference name to the tag library.

The method will define the parameter type which should be supplied when it is called.

150 See AbstractTagLibrary specification, Available at: http://myfaces.apache.org/core20/myfaces-

impl/apidocs/org/apache/myfaces/view/Facelets/tag/AbstractTagLibrary.html [Accessed 20 July 2010]
151 RoseIndia, JSF Renderers, Available at: http://www.roseindia.net/JSF/JSFrenderers.shtml [Accessed on 20 July 2010]

http://myfaces.apache.org/core20/myfaces-impl/apidocs/org/apache/myfaces/view/facelets/tag/AbstractTagLibrary.html
http://myfaces.apache.org/core20/myfaces-impl/apidocs/org/apache/myfaces/view/facelets/tag/AbstractTagLibrary.html
http://www.roseindia.net/jsf/jsfrenderers.shtml

60 | P a g e

The core bundle will contain a tag library extension point where application bundles will register

tag library classes which reference custom UI components located within the respective bundles.

The registered tag library classes will have to implement the

com.sun.facelets.tag.TagLibrary interface. The tag library classes will define tag names

which reference UI components located in the bundles extending the tag library extension point.

The usage of custom components will be governed by the following rules:

 A bundle’s custom components will only be valid on facelets belonging to the custom

component’s host bundle and its child bundles. So that when a component’s host bundle

is uninstalled, other bundles that are not dependent on the components host bundle will

not be affected because they will not be utilizing its components.

 The core bundle is allowed to provide custom components which are valid application

wide because all application bundles will have dependencies on the core bundle and it

will always be active during the lifecycle of an application.

In order for bundles to register their custom UI components to JSF, an extension point for

registering the component classes will be implemented. This extension point will define an

attribute named ‘class’ which requests extending bundles to supply a class instance of

javax.faces.component.UIComponent. Therefore when a custom component located

outside the core bundle is referenced by a facelet, JSF will search for the component on the

component extension point and instantiate it.

5.7. Session State Preservation

In JSF152, the state of an application is stored in its Managed Beans. When a bundle is swapped

out, its Managed Beans have to be preserved and restored when another version of the swapped

out bundle is deployed in an application. The core bundle will handle the preservation of

Managed Beans. In OSGi implementations, when a bundle is updated or uninstalled, the user

inputted data contained in the bundle is lost and cannot be recovered unless programming logic

for preserving the bundle state is implemented. In order to preserve a bundle’s state, the core

152 See section 2.2

61 | P a g e

bundle must detect bundles initiating OSGi UPDATE or UNINSTALL events153 and then persistently

preserve their Managed Beans. The Managed Bean preservation process is split into two parts:

 Saving a Managed Bean’s state

 Restoring a Managed Bean into an application

5.7.1. Saving a Managed Bean’s State

The recommended method for preserving Java objects is by serialization. In Java, serialization of

an object is enabled by a class implementing the Java.io.Serializable interface. This

interface allows an object’s state to be stored as a byte stream.

Before serialization can be done, the core bundle will have to detect the bundles whose Managed

Beans have to be serialized. In order for this functionality to be implemented, a bundle event

listener is required to notify the core bundle of events occurring in an application environment.

OSGi provides a bundle event listener interface which when implemented, receives all bundle

events when they occur. The core bundle will contain a bundle event listener class which will be

notified when an OSGi event of type UNINSTALL or UPDATE. The core bundle will thereafter

extract the Managed Beans belonging to the event initiator bundle and preserve their state as

shown in the following sequence diagram (Figure 5.20):

de.clintworld.clintweb.

core
appl.bundle.version.1

UNINSTALL (Bundle ID)

storage

store managed beans

UNINSTALL event

get managed beans

managed beans

:User

Figure 5.20: Object serialization sequence diagram

153 See section 3.2

62 | P a g e

The ‘storage’ object in the above figure refers to either the disk or the application memory (RAM).

The storage destination will be set on a configuration page. To further refine the above sequence

diagram to a class level, Figure 5.21 shows how the core bundle will handle the process of

Managed Bean serialization:

Figure 5.21: Serialization class diagram

The EnvironmentChangeListener class will listen for bundle events and forward the qualified

name of a bundle which requires serialization of its Managed Beans to the

SessionObjectSerializer class. This class will request a list of Managed Bean simple-names

belonging to the bundle which caused the UNINSTALL or UPDATE event from the

ClintwebManagedBeanResolver. Thereafter the SessionObjectSerializer will retrieve

the Managed Bean objects for each active user from the application session map154, serialize

them and store them in the application memory or write them onto the disk. The serialized

Managed Beans will thereafter be deleted from an application’s session map155. On the

application memory, the serialized Managed Beans will be stored in a hash map, where the user

session ID will be the key, and an additional hash map will be the value. The hash map which is

referenced by a session ID, will map a Managed Bean simple-name (key) to a Managed Bean

object (value). The other option is to store the serialized objects on the disk under a specified

path. The base path (the folder where the session objects will be stored) will be hard coded into

the core bundle and it will be configurable during application runtime using a configuration page.

On the file system, serialized objects will be stored in folders named according to active user

sessions IDs. The serialized Managed Bean objects will be stored in session ID folders according to

the session ID which they belong to. The serialized objects will have .SER extension and they will

be named according to their Managed Bean simple-name property.

154 A session map is an object which maps session IDs to objects belonging to a session ID. In web applications each user

is assigned a session ID and the objects created during the lifetime of a session are stored in the session map under the
user session ID.
155 See section 5.7.1

63 | P a g e

5.7.2. Managed Bean Restoration

After a bundle is replaced with another bundle of a different version, the serialized session

Managed Beans will be restored from their storage location and placed back into a running

application, in accordance to the following sequence diagram (Figure 5.22):

application storage

request(URI)
getBean(simple-name)

returnBean()

deleteBeans(simple-name)
response

:User

Figure 5.22: Managed Bean restoration sequence diagram

According to the sequence diagram above, serialized Managed Beans will only be restored when a

request for a facelet156 page which references a Managed Bean is received by the application.

During the serialization process, a Managed Bean will be deleted from the application session

map after it is serialized. The next time a Managed Bean is requested, JSF will not be able to find

it in the session map. Therefore a new instance of a Managed Bean will have to be created once

again. The OSGiLifecycleProviderAdapter will be called by JSF to create a new instance of

a Managed Bean from the bean extension point. The OSGiLifecycleProviderAdapter will

initially check if the requested Managed Bean has been previously serialized by calling the class

responsible for de-seriliazation, as shown in the following diagram (Figure 5.23):

156 See section 2.3

64 | P a g e

Figure 5.23: De-serializer classes

The de-serializer will receive the simple-name of the Managed Bean object. Using the session ID

of the user where the Managed Bean request originated from and the simple-name property of

requested Managed Bean, the de-serializer will attempt to retrieve the serialized Managed Bean

from its storage location (the disk or application memory). If it is found, it will be de-serialized and

then forwarded to JSF as the new Managed Bean class containing its original session variable

values. Otherwise if no serialized Managed Bean is found then a new instance of the Managed

Bean will be created from the Managed Bean extension point and forwarded to JSF. Note that the

java.io.Serializable interface157 will manage the migration of Managed Bean classes

between different versions. This is necessary when a serialized Managed Bean with an old data

structure has to be converted to a Managed Bean object with a different data structure during

de-serialization.

It should also be noted that during a bundle swap, the user should not notice changes taking place

in an application. An application will not be temporarily suspended but its client response will be

delayed until the bundle swap158 process is complete (when a swapped out bundle is replaced by

a new bundle).

157 See section 3.4
158 See section 3.1

65 | P a g e

5.8. Client and Administrator Test Application Design

A test application which demonstrates the design specifications discussed this chapter will be

created. The application will contain two bundles in addition to the bundles outlined in section

5.2. One of the two bundles will have two versions with different implementations. Versions of

the same bundle will be replaceable during runtime. Each bundle will offer facelets (XHTML files

containing JSF components) which will demonstrate JSF159 functionality according to the design

specifications in section 5.4. The layout of the facelets resources will be as follows:

XHTML Page

Menu bar

content Navigation

panel

Figure 5.24: Test application UI layout

The menu bar will contain links to home page of the application, and to a properties page

contained in the core bundle. The content part will consist of text, images, JSF custom

components, Navigation Rules components and information contained in the application’s

Managed Beans. The navigation panel will contain links to pages in the application. The navigation

panel will only be available on facelets in one bundle version.

There already exist applications for managing an Equinox framework (e.g. Prosyst mB-SDK web

admin tool160), which can later be used for management of the framework. For test purposes, an

administrator application will be created which will provide the basic administrator requirements

defined in section 4.3. The application will have the following layout:

Menu bar

Active

bundles

Installed/
Resolved/
Stopped
bundles

Control

panel

Figure 5.25: Administrator application layout

159

 See section 2.2
160 Prosyst mB-SDK. Available at: http://dz.prosyst.com/devzone/Home/ [Accessed 28 July 2010]

http://dz.prosyst.com/devzone/Home/

66 | P a g e

The menu bar will contain options for starting/stopping the application. The Active bundles panel

will display the qualified name and version of active bundles in the application. The control panel

will provide buttons for starting, stopping, updating and swapping bundles. The panel on the right

side of Figure 5.25 will display bundles in the application context which are not active but

installed. This administrator application will connect to the Equinox framework161 via the Java

socket connection162. The framework will be running on a server which will be listening for

connections from the administrator application. All administrator requests will be forwarded to

the server and the server will notify the administrator application on the current state of the

application bundles.

5.9. Design Constraints

In this deployment architecture, the core bundle is the center of an application. It was set to be

the central provider for services for all application bundles so that each bundle will only have to

set its dependencies on one bundle in order to access the essential framework functionality. The

core bundle must always be active and any changes to its runtime state will affect all other

application bundles. Failure of operation of the core bundle could lead to unprocessed user

requests, a collapse of the framework’s JSF functionality and other application bundles will also

not be resolvable. Therefore the core bundle must be made stable and reliable.

No cyclic dependencies can be set between bundles. Therefore there can be no cyclic usage of

extension points163, as shown in the figure below:

de.clintworld.clintweb.core

extension point

de.clintworld.clintweb.appl

extension point

Figure 5.26: Cyclic dependencies

161 See section 3.3.1.3
162 Java Sockets, Available at: http://www.javaworld.com/jw-12-1996/jw-12-sockets.html [Accessed 10 August 2010]
163 See section 3.2.2.1

http://www.javaworld.com/jw-12-1996/jw-12-sockets.html

67 | P a g e

Bundles cannot extend extension points and use services bi-directionally. For a bundle to use an

extension point or a service, it must set the bundle providing the extension point and service as a

dependency. The OSGi specification states that two bundles are not allowed to have

dependencies on each other. If two bundles depend on each other, then there is no way of

determining which bundle should be resolved first. This emphasizes the fact that developers

should clearly plan dependencies between bundles so as to avoid complications.

Another limitation is that when bundles are swapped or uninstalled, Equinox does not clean up

after the bundles. For example, if a database connection is opened by a bundle and then the

bundle is swapped out, Equinox will not close the database connection. Such problems can be

severe to the framework. They can cause memory leaks which can cripple the server. Therefore

bundles must be created while keeping in mind that they must clean up after themselves. A

bundle’s Activator class contains a stop() method where the cleaning up code can be placed,

so that when a bundle is stopped, the clean up process can be executed.

In term of migration of the current Clintweb framework164 to the new framework, some of the

current Clintweb application classes will have to be changed to adapt to this architecture. For

example, JSF components will have to be externalized to extension points. Extension points will

also have to be implemented in some classes in order to take full advantage of application

modularity. These changes are a requirement which must be fulfilled in order for current Clintweb

applications to function in the new framework.

The design principles described in this chapter are the preferred solution for Clintweb because

they provide minimal migration efforts as compared to other solutions and at the same time they

assure the fulfillment of the requirements stated in chapter 4.

The next chapter discusses how the design principles stated in this chapter were realized.

164 See chapter 2

68 | P a g e

6. System Implementation

This chapter discusses how the design specifications stated in the previous chapter were realized.

The required development software and tools will be listed followed by a detailed explanation of

how they were used in fulfilling the requirements stated in chapter 4.

6.1. Development Tools

For development, the Eclipse Java EE IDE for Web Developers was used which requires a minimum

of Java JRE version 5. This version of Eclipse contains the necessary tools for building Java based

web applications. It furthermore provides a graphical HTML/JSP/JSF editor, database

management tools and support for popular application servers165. The mentioned Eclipse version

needs to be equipped with the Web Tools Platform166 (WTP). The WTP contains a JSF Tools project

which provides an extensible tooling infrastructure for building JSF-based, web-enabled

applications. The JSF project is required because the new framework must support JSF

functionality.

The mentioned version of Eclipse provides an environment for developing Equinox167 based plug-

ins (bundles in Equinox) which are created from an Eclipse plug-in project.

For setting up the Equinox - Jetty168 architecture, the following bundles were downloaded from

Eclipse Org Equinox site169:

 org.eclipse.equinox.http.jetty version 1.1.0: Creates a bridge from Equinox to Jetty

 org.eclispse.equinox.http.registry version 1.1.0: Enables Equinox to registers web

descriptor components to the web server

 org.mortbay.jetty version 5.1.11: The Jetty web server

165 Eclipse org, Eclipse IDE for Java developers, Available at: http://www.eclipse.org/downloads/moreinfo/jee.php

[Accessed 16 June 2010]
166 Web Tools Platform, Available at: http://www.eclipse.org/projects/project_summary.php?projectid=webtools

[Accessed 16 June 2010]
167 See section 3.2.2.1
168 See section 3.3.1.3
169 Equinox – Jetty bundles, Available at: http://www.eclipse.org/Equinox/server/http_in_Equinox.php [Accessed 16

June 2010]

http://www.eclipse.org/downloads/moreinfo/jee.php
http://www.eclipse.org/projects/project_summary.php?projectid=webtools
http://www.eclipse.org/equinox/server/http_in_equinox.php

69 | P a g e

The versions of the above listed bundles must be compatible with each other because different

versions have different implementations which may be incompatible with one another. The

versions stated above are fully compatible and can be imported into an Eclipse workspace.

For setting up the JSF and JSF-Facelets170 environment, the following libraries were utilized171:

 myfaces-api-1.2.2.jar: Implementation of the JSF classes defined in the JSF specification

 myfaces-impl-1.2.2.jar: the "invisible" classes that are needed for a JSF implementation

but are not part of the public API.

 JSF-Facelets.jar: Implementation of the JSF-Facelets classes

 tomahawk-1.1.1.jar: Implementation of JSF components and utilities that can be used

with any JSF implementation.

 tomahawk-facelets-taglibs.jar: contains JSF tag libraries.

For setting up the runtime configuration for Equinox, additional bundles must be included in the

runtime environment. A list of these bundles has been specified in the appendix B. Most of the

required bundles are available in the Eclipse IDE but few of them were found by extensively

searching the internet.

6.2. Framework and Application Architecture

Figure 6.1 shows the structure of the developed framework and test application. The arrows in

the figure outline the dependencies between bundles. The arrow direction means ‘requires’; for

example, the org.eclipse.equinox.http.jetty requires the org.mortbay.jetty for it to

be deployed.

170 See section 2.2 and 2.3
171 Apache MyFaces, Available at: http://myfaces.apache.org/core20/index.html [Accessed 16 June 2010]

http://myfaces.apache.org/core20/index.html

70 | P a g e

Figure 6.1: Application architecture

The framework contains the above depicted bundles and the test application is represented by

the UI bundle. The UI bundle has two versions which are distinguishable by their minor version

number. There are implementation differences between the different bundle versions. The

1.0.0.2 bundle versions contain more facelets and extended Managed Bean172 classes as

compared to the 1.0.0.0 versions. When Equinox is started, the bundle with the highest version

number is automatically activated and smaller bundle versions remain in the OSGi INSTALLED173

state. The core bundle and Equinox bundles will remain active for the lifetime of the application

because they are required for the application to function and other bundles have their

dependencies set on them. As seen in figure above, the UI and Users bundle are dependent on

the core bundle and the UI is also dependent on the User bundle. The UI bundle imports packages

from the Users bundle, therefore when the Users bundle is updated; the UI imported packages

must also be updated.

The core bundle is dependent on the Jetty bundle because it provides it with the necessary classes

for accessing user session information. The Equinox registry bundle provides the core bundle with

the mechanism for registration of Servlet174 class implementations which enables the core

bundle to receive user requests.

172 See section 112.2
173 See section 3.2
174 See section 5.3

71 | P a g e

6.2.1. Servlet classes initialization

As stated in section 5.3.1, the core bundle provides two Servlet175 class implementations which

are registered as extensions176 on the Equinox registry bundle Servlet extension point. When

processing requests, the Equinox registry bundle contains a ServletManager177 class which

forwards requests to the service() method of either one of the two Servlet classes

registered as extensions. The figure below shows how the FacesServletAdapter class was

registered on the Servlet extension point:

Figure 6.2: FacesServletAdapter registration

The point attribute specifies the ID of the Servlet extension point which is based in the

Equinox registry bundle. The alias attribute was set to ‘/*.jsf’ so that requests for any

resource with a .jsf extension are forwarded to the FacesServletAdapter class which is

specified in the class clause. The load-on-startup property declares if the Servlet class

should be loaded when the web server is started. By setting it to false, the Servlet is only

loaded when a request is received by the application. The httpcontextId refers to the

FacesHttpContext object which is used by the FacesServletAdapter to resolve JSF tag

libraries178 and the faces-config.xml file179 in the core bundle.

When the application is started, the FacesServletAdapter calls an initialize() function

which is required to perform the following initialization tasks:

 Replacement of JSF’s DefaultLifecycleProviderFactory
180 in the system

properties with the OSGiLifecycleProviderFactory class, which is responsible for

creating new Managed Bean instances when they are requested.

175 See section 2.1
176 See section 3.2.2.1
177 See section 5.3.1
178 See section 5.6.3
179 See section 2.2
180 See section 5.6.1

72 | P a g e

 Creation of a StartupServletContextListener181 object which initializes the JSF

system.

 Creation of a ServletConfig182 object which is required by the Jetty Servlet

container to pass initialization parameters to a Servlet during initialization.

 Creation of a ServletContextAdapter object which is required by the application

Servlets to load requested resources into a Servlet response object as streams.

Note that the above process is only conducted once in an application’s lifecycle, during start up.

Figure 6.3 shows the extension for the above stated extension point which registers the

ResourceHttpServlet
183 for servicing image, style sheets or any other none XHTML file types

requests. The current Clintweb framework uses a DefaultServlet class to resolve requests for

non XHTML file types. The DefaultServlet functions only in Tomcat’s Catalina web server and

it therefore cannot be implemented in Equinox - Jetty.

Figure 6.3: ResourceHttpServlet registration

According to the alias attribute stated in Figure 6.3, requests which are under the

"/ClintwebStyles" path are serviced by the Servlet class declared under the class

attribute. The resources in the specified path are images and CSS style sheets. It should be noted

that, if resources are to be stored outside the path specified in the alias attribute then an

additional Servlet extension is required for mapping the external resources file types to a

Servlet class; otherwise the resources will not be resolved.

When a request for an image or style sheet is received, the ResourceHttpServlet uses the

FacesHttpContext class specified in the httpcontextId attribute to resolve the requested

181 StartupServletContextListener specification, Available at: http://myfaces.apache.org/core11/myfaces-

impl/apidocs/org/apache/myfaces/webapp/StartupServletContextListener.html [Accessed 16 June 2010]
182 See section 5.3.1
183 See section 5.3.1

http://myfaces.apache.org/core11/myfaces-impl/apidocs/org/apache/myfaces/webapp/StartupServletContextListener.html
http://myfaces.apache.org/core11/myfaces-impl/apidocs/org/apache/myfaces/webapp/StartupServletContextListener.html

73 | P a g e

resources. The FacesHttpContext class is specified under an extension point provided by the

Equinox registry bundle, as shown below:

Figure 6.4: FacesHttpContext registration

The id is used to associate the above mentioned Servlet classes to the specified

httpcontext class.

6.2.2. Applying JSF-Facelets to the Framework

To support JSF-Facelets184 in the new framework, the FacesServletAdapter was configured to

allow XHTML files to be used in JSF. The FacesServletAdapter extension on the Servlet

extension point contains the following initialization parameters for JSF-Facelets configuration:

Figure 6.5: FacesHttpContext registration

The init-param clause refers to the declaration of the initialization parameter. The name clause

refers to the property name and the value clause refers to the value assigned to the specified

property. The above parameter tells JSF to assume a prefix of .xhtml, which the Facelets

renderer can interpret185. When users request to view a facelet on a browser, the extension of the

requested resource must be inputted as .jsf instead of .xhtml. JSF will associate the .jsf

184 See section 2.2 and 2.3.
185 JSF facelets, Available at: http://www.ibm.com/developerworks/java/library/j-facelets/ [Accessed 20 June 2010]

http://www.ibm.com/developerworks/java/library/j-facelets/

74 | P a g e

request with an .xhtml file using the ClintwebViewHandler186 (the ViewHandler class

implementation) which was registered to the application in the core bundle’s faces-config.xml file.

In order for JSF tag libraries to be used on facelets, they have to be loaded into the facelets

compiler. Normally the tag libraries are stored in the JSF JARs187 outlined in section 6.1, however

in the Equinox188 environment, these tag libraries cannot be found because the core bundle’s

class loader does not search for these resources in the JSF tag libraries. Therefore, the tag library

XML files were extracted from the JSF libraries and stored in the META-INF (under the

WebContent package) folder of the core bundle. The ClintwebViewHandler directs the facelet

compiler to load the tag libraries from this folder as shown in the code snippet below:

Figure 6.6: Loading tag libraries

As seen in Figure 6.6, the list of tag library names in the META-INF folder of the core bundle is

initially generated. The bundle class loader (referred to as classLoader in the above figure) is

used to retrieve the URL of each tag library and thereafter the tag library is added to the facelets

compiler. The TagLibraryConfig class creates a TagLibrary189 class instance from a tag

library XML file. Note that the tag library files are searched for only in the META-INF directory of

the core bundle. Therefore, for tag library XMLs to be found, they have to be stored under the

META-INF directory.

After setting the above configurations, for facelets to use tags referenced by the available tag

libraries, they must declare the namespace belonging each tag library in their <html tags, as

shown in the figure below:

186 See section 5.3.1
187 JAR explained, see section 2.4
188 See section 3.2.2.1
189 DocJar TagLibrary Interface, Available at: http://www.docjar.com/docs/api/com/sun/Facelets/tag/TagLibrary.html

[Accessed 22 June 2010]

http://www.docjar.com/docs/api/com/sun/facelets/tag/TagLibrary.html

75 | P a g e

Figure 6.7: Namespaces for UI components

The namespace contains a prefix, which is used to reference the objects within the specified tag

library. A component can be referenced in the following way:

<cw:selectDate/>

Where the cw prefix is a reference to the namespace of the tag library and selectDate is a

component in the referenced tag library. Components can only be referenced via their

namespaces, therefore all application facelets must contain the above listed namespace

declarations in order to utilize JSF components.

6.2.3. Resolving Facelets resources

The task of resolving facelet190 resources is handled by the ClintwebResourceResolver191

class. This class was specified as the resource resolver in the FacesServletAdapter

extension’s initialization parameters, as shown below:

Figure 6.8: JSF Resource resolver declaration

The above declaration sets the facelet resolver class to ClintwebResourceResolver, which is

called by the ClintwebViewHandler class when facelets are requested. The

ClintwebResourceResolver is programmed to resolve facelets in all application bundles via

an extension point192 defined in the core bundle. The resource resolver extension point requests

extending bundles to provide the URI of their facelets and a class which implements logic for

190 See section 2.3
191 See section 5.4
192 See section 3.2.2.1

76 | P a g e

resolving the facelet URLs. The supplied class must be an implementation of the core bundle’s

IResourceLocator interface as described in section 5.4. This interface defines one method

called getResourceUrl() which contains an input parameter specifying a resource’s URI. The

getResourceUrl method is implemented as shown in the following figure (Figure 6.9):

Figure 6.9: Resolving facelets URL

The class loader is used to retrieve the URL of the requested resource by searching for it in the

WebContent folder of the resource host bundle. If the resource is found, a URL pointing to the

requested resource will be returned to the ClintwebResourceResolver. Otherwise if no

resource matches the requested URI, then a null is returned. As seen in Figure 6.9, resources are

only searched for in specified paths. In the new framework, resources are located in a

Webcontent folder.

In order for the ClintwebResourceResolver to resolve URLs, it must iterate through all

extensions in the resource extension point until it finds an extension where the requested

resource’s URI matches the pattern attribute of the extension, as shown in the figure below:

Figure 6.10: Resource locator extension point

The above code extracts the pattern attribute in the registered extension, which corresponds to

a resource name, and compares it to the requested URI. When a match is found, the

77 | P a g e

IResourceLocator class implementation is extracted from the extension and the requested URI

is passed to its getResourceUrl() method. The output of this procedure call is a valid URL for

the requested resource.

JSF creates a Facelet object for each requested resource matching a URI. These objects are

cached in the ClintwebFaceletFactory
193. During a resource request, the

ClintwebFaceletFactory will initially check if a Facelet object matching the requested URI

exists in its cache. If the Facelet object is found, it is then forwarded to the user; otherwise, JSF

will resolve the requested resource from the resource extension point194 and create a new

Facelet object for it. The problem with a cache is that, when facelets are updated or removed

from an application, JSF will instead search for a requested resource in the cache. The updated

facelets which are available on the resource extension point will not be referenced and facelets

belonging to bundles which are no longer in the application will still be available. Therefore, a

scheme of clearing the cache was implemented. This scheme is executed in the following steps:

 When a new bundle is uninstalled or activated, the Activator class of the core bundle

has a static Boolean flag which is set to true.

 When a request for a facelet is received by the core bundle, the

ClintwebFaceletFactory class instance checks the value of the Boolean flag in the

above step. If the flag is set to true, then the facelet cache is cleared and the Boolean flag

is set to false.

The ClintwebFaceletFactory references a DefaultFaceletFactory object which stores

the cache of facelets. To clear the cache, the ClintwebFaceletFactory must be re-initialized

in order to clear the cached facelets. When this re-initialization process is done, the facelet

resource resolver will not be able to find requested resources in the empty cache; it will have to

load the resources from the resource extension point. This technique keeps the resource resolving

functionality dynamic and responsive to changes in an application’s environment.

The ResourceHttpServlet195 is used to resolve non facelet resources (non XHTML resources)

by initially calling the FacesHttpContext object to resolve the MIME type of a resource and

then loading it into the client response object. In order to resolve images and other non XHTML

files in other application bundles, the files (images/pdf/CSS) must be registered on the resource

extension point, otherwise, they will not be resolved. The FacesHttpContext will initially

193 See section 5.3.2
194 See section 5.4
195 See section 5.3

78 | P a g e

search for the resources in the core bundle, and if they are not found, it will attempt to resolve

them using the resource extension point.

6.2.4. Resolving JSF Components

This section discusses how the design specifications of JSF features stated in section 5.6 were

implemented in the new framework. The JSF features include, Managed Beans, Navigation Rules

and custom components.

6.2.4.1. Managed Beans

The ClintwebManagedBeanResolver class is responsible for resolving Managed Bean classes.

To set this class as the application bean resolver, the following entry was declared under the

application settings of the core bundle’s faces-config.xml file:

<el-resolver>de.clintworld.Clintweb.ClintwebManagedBeanResolver</el-resolver>

When a Managed Bean is requested, JSF delegates the task of resolving a Managed Bean class to

the above specified resolver class. Figure 6.11 depicts how the Managed Beans requests are

resolved:

79 | P a g e

no

no

yes

yes

Request managed

bean from session map

Is bean

found?

Return

null

Request managed

bean from extension

point

Is bean

found?

Create managed bean

instance

Return

managed bean

instance

Return managed

bean in session

map

Figure 6.11: Resolving Managed Bean objects

The ClintwebManagedBeanResolver checks the session map196 for the requested Managed

Bean object. If the Managed Bean is found in the session map, it is forwarded to JSF. Otherwise, if

the Managed Bean object is not in the session map, the resolver delegates the task of creating the

Managed Bean to the OSGiRuntimeConfig197. The OSGiRuntimeConfig class instance

receives a String parameter denoting the simple-name of the requested Managed Bean and it

creates a Managed Bean from an extension point198 as shown in the code below:

196 See section 5.7.1
197 See section 5.6.1
198 See section 3.2.2.1

80 | P a g e

Figure 6.12: Managed Bean extension point

The Managed Bean’s scope, class name and simple-name are extracted from the extension and

using this information, a new instance of OSGiManagedBean is created. The bundle instance

which hosts a Managed Bean is required because the OSGiManagedBean implements a

mandatory getClass() function for loading a Managed Bean class from a bundle instance.

Managed Bean classes are loaded from their host bundles otherwise they cannot be found. The

created Managed Bean is thereafter passed to the ClintwebManagedBeanResolver199 which

passes control of processing Managed Bean properties to JSF.

The algorithm for creating and resolving Managed Beans is dynamic. Managed Beans belonging to

newly installed bundles can be instantiated by the ClintwebManagedBeanResolver and made

available to an application. Furthermore, when a bundle is uninstalled, its Managed Beans are

deleted from the application session map so that they will no longer be available to a running

application.

6.2.4.2. Navigation Rules

Just like the Managed Beans, Navigation Rules200 are created by the OSGiRuntimeConfig class.

When the first Navigation Rule request is received, the OSGiRuntimeConfig reads the

199 See section 5.6.1
200 See section 2.2.2

81 | P a g e

extensions available at the Navigation Rule extension point; instantiates a NavigationRule

object for each registered extension and stores it in a list. From then onwards, JSF will be

requesting Navigation Rules from the created list of NavigationRule objects.

The registration of Navigation Rules is dynamic depending on the behavior of application bundles.

New bundles which contain new Navigation Rules may be installed during the lifetime of an

application; therefore their Navigation Rules must be detected and in-cooperated into a running

application. A procedure for handling this situation was programmed as follows:

 When a new bundle is updated or uninstalled, the Activator201 class instance of the

core bundle202 receives a bundle-changed event. This class contains a static Boolean

resetFaceletCache flag which is set to true when a bundle changed event occurs.

 When a facelet request is received, the FacesServletAdapter class checks if the

resetFaceletCache flag in the above step is set to true, and if so, the framework

assumes that there has been a change in a bundle’s state therefore the Navigation Rules

have to be updated. The next time a Navigation Rule is requested, the current Navigation

Rules list is cleared and the Navigation Rules extensions203 will be instantiated again to

create new Navigation Rules objects.

The Navigation Rule resolving process can adapt to application changes; the only disadvantage of

this method is that all Navigation Rules are deleted when a bundle is uninstalled or updated. For

example, if a bundle containing one Navigation Rule is activated; all application Navigation Rules

in the application must be reloaded.

6.2.4.3. Custom JSF UI Components

As discussed in section 5.6.3, in order for the new framework to support custom components, a

tag library XML file (clintweb.taglib.xml) which defines the qualified name of a tag library

class (ClintwebTagLibrary) was created. This XML file (located in the META-INF folder of the

core bundle) was loaded into the facelets204 compiler to allow facelets to reference components

defined in the ClintwebTagLibrary class. In order to specify custom components in the

ClintwebTagLibrary class, the following method was utilized:

201 See section 3.2
202 See section 5.2
203 See section 5.6.2
204 See section 2.3

82 | P a g e

The addComponent() method is inherited from JSF’s

com.sun.facelets.tag.AbstractTagLibrary class; it requires the reference tag name of

the UI component, followed by the name of component class and the renderer class name as

input parameters of type String.

The core bundle contains an extension point for bundles to register TagLibrary class

implementations. A TagLibrary is a class which associates a collection of tags with a

namespace. Bundles can provide an implementation of the TagLibrary which declares tag

names associated with custom UI components that are located within the respective bundles.

When a request for a custom component located outside the core bundle is received, the

ClintwebTagLibrary initially searches the tag library extension point for a registered

TagLibrary class which is associated with the requested component’s namespace. Upon finding

the required TagLibrary class implementation, the ClintwebTagLibrary creates a

TagHandler object that will be responsible for the rendering of the custom component

belonging to the specified namespace. From then on, when the custom component is referenced

during the lifecycle of an application, the created TagHandler class instance will resolve the

component and its values.

The ApplicationImpl class is used by JSF to create UIComponents class instances. This class is

only able to resolve UIComponent classes located in the core bundle because it uses the core

bundle’s class loader to resolve the classes. Since component classes defined in other application

bundles are out of scope for the core bundle’s class loader, the ApplicationImpl will throw an

exception when a component located in another application bundle is requested. Therefore, in

order to resolve UIComponent classes defined in other application bundles (excluding the core

bundle), an extension point for registering custom UIComponent classes was implemented. The

extension point allowed bundles to register their UI component classes as extensions.

Furthermore, a custom implementation of the JSF ApplicationFactory
205 called

ClintwebFacesApplicationFactory was created. The ApplicationFactory creates and

205 ApplicationFactory, see: http://java.sun.com/javaee/javaserverfaces/1.2/docs/api/index.html [Accessed on 20

August 2010]

http://java.sun.com/javaee/javaserverfaces/1.2/docs/api/index.html

83 | P a g e

returns instances of a JSF Application206. JSF applications must contain at least a default

implementation of the ApplicationFactory. During start-up the

ClintwebFacesApplicationFactory creates an instance of the

ClintwebFacesApplication by calling the getApplication() function as shown in the

following class diagram:

Figure 6.13: Resolving custom components

The ClintwebFacesApplication extends the

org.apache.myfaces.application.ApplicationImpl class, which is the default

implementation of the JSF Application class. In order to resolve custom UIComponent classes

located in application bundles, the ClintwebFacesApplication must override the

createComponent() function of the ApplicationImpl class. The createComponent()

function receives requests for creating UI components and it calls the

getComponentFromExtensionPoint() function to search for the requested component class

in the component extension point. If the requested UI component is registered on the extension

point, an instance of the component is created and passed to the JSF system. Otherwise, if the

requested component is not found in the extension point, the request is forward to the

createComponent() function of the super class (ApplicationImpl). JSF thereafter attempts

to search for the requested UI component in the core bundle.

To set the ClintwebFacesApplicationFactory as the ApplicationFactory, the following

code was added to the start() function of the core bundle’s Activator class.

206 Application specification, see: http://java.sun.com/javaee/javaserverfaces/1.2/docs/api/index.html [Accessed on

20 August 2010]

http://java.sun.com/javaee/javaserverfaces/1.2/docs/api/index.html

84 | P a g e

The above code ensures that the ApplicationFactory class will always be set to

ClintwebFacesApplicationFactory.

6.2.5. Session listeners

To register a session listener class to the Jetty web server207, the core bundle contains

RegisterSessionListeners
208 class, which accesses the Jetty session manager during

application start up in order to register the ClintwebSessionListener class to the session

manager as shown in the following class diagram (Figure 6.14):

Figure 6.14: Session class registration class diagram

The RegisterSessionListeners class delegates the task of registering the

ClintwebSessionListener listeners to Jetty’s AbstractSessionManager as shown in

207

 See section 3.3.1.3
208 See section 5.5

85 | P a g e

Figure 6.14. The following points explain the uses of each class mentioned in the above class

diagram:

 The HttpServerManager object is provided by the

org.eclipse.equinox.http.jetty bundle as an OSGi service209 that is referenced

using a ServiceReference210 object. The HttpServerManager contains a list of active

servers which are instances of HttpServer211.

 An application can have one HttpServer instance, which references an HttpContext

object in order to get the web server’s HttpHandler object. The HttpHandler class is

for handling requests from the HttpServer.

 The HttpHandler has access to the AbstractSessionManager class where event

listener classes can be registered using a addEventListener() method.

The RegisterSessionListeners class is called by the ClintwebViewHandler212 during

application initialization. The core bundle contains a session listener class extension point213 which

the ClintwebSessionListener uses to notify other bundles of session events. The received

session events are passed on to the registered listener class implementations provided as

extensions, as shown below:

Figure 6.15: Session listener extension point

209 See section 3.2
210 OSGi org, ServiceReference interface, Available at:

http://www.OSGi.org/Javadoc/r4v42/org/OSGi/framework/ServiceReference.html [Accessed 20 July 2010]
211 HttpServer specification, Available at: http://api.dpml.net/jetty/5.1.6/org/mortbay/http/HttpServer.html [Accessed

20 July 2010]
212 See section 5.3.2
213 See section 5.5

http://www.osgi.org/javadoc/r4v42/org/osgi/framework/ServiceReference.html
http://api.dpml.net/jetty/5.1.6/org/mortbay/http/HttpServer.html

86 | P a g e

The code above shows how a listener class provided as an extension is accessed. The listener class

is casted to an HttpSessionListener object. Thereafter a method in the listener class is called

(sessionCreated()) and the HttpSessionEvent object is passed on to it. Therefore newly

installed bundles containing session listener classes can receive session events from the core

bundle via the session extension point.

6.3. Session State Management

This section discusses how session objects are preserved during bundle swaps. The preservation

process is done by serialization of Managed Beans214 belonging to a bundle because the Managed

Beans hold the state of a JSF application.

6.3.1. Managed Bean Serialization

Managed Bean serialization only occurs when the core bundle receives a bundle UPDATE or

UNINSTALL event from the Equinox framework215. To receive notification of these events, an

EnvironmentChangeListener
216 class was implemented which contains a bundleChanged()

method for receiving bundle events. This method captures bundle events that are of type OSGi

UPDATE or UNINSTALL and stores the qualified name of the bundle which initiated the events in a

list. Thereafter a SessionObjectSerializer217 object is created to serialize the Managed

Beans belonging to the bundle which caused the events.

The SessionObjectSerializer class accesses Jetty’s AbstractSessionManager class in

order to retrieve the application session map. The session map is required to get Managed Bean

objects belonging to an uninstalled or updated bundle so that they can be serialized. The

Managed Beans are stored in the session map where the Managed Bean reference name is the

key and the Managed Bean object is the value. The SessionObjectSerializer additionally

calls the ClintwebManagedBeanResolver218 class instance to retrieve a list of Managed Bean

214 See section 5.7
215 See section 3.2.2.1
216 See section 5.7.1
217 See section 5.7.1
218 See section 5.6.1

87 | P a g e

names which belong to the bundle which caused the UNINSTALL/UPDATE event. This list is used

to reference the Managed Bean objects in the session map. For each active session, the required

Managed Beans objects are serialized into byte streams and saved in a storage location (RAM or

disk). After a Managed Bean is serialized, its entry in the session map is removed. This conserves

application memory and reduces redundancy of data.

The serialization process is a batch process, meaning that Managed Beans belonging to all active

user sessions are serialized at once. The Managed Bean preservation task is time costly. During

this process, user requests received by the framework are delayed until bundle swaps are

successfully completed.

6.3.2. Managed Bean De-serialization

When a bundle is swapped out, its Managed Beans are serialized and removed from the

application session map. Shortly after, another version of the swapped out bundle is installed and

the attribute values of the serialized Managed Beans are supposed to be restored into the

swapped in bundle’s Managed Beans. The core bundle219 handles the restoration of the serialized

of Managed Beans. When a Managed Bean is not found in the session map, JSF calls the

OSGiLifecycleProviderAdapter
220 to create a new instance of the requested Managed

Bean class. When a new Managed Bean instance is requested, the application initially checks if a

version of the Managed Bean belonging to the requesting user has been previously serialized. This

process is done by the SessionObjectDeserializer221 class as shown in the following figure:

Figure 6.16: De-serializing Managed Beans

219 See section 5.2
220 See section 5.6.1
221 See section 5.7.2

88 | P a g e

The loadObject() function belonging to the SessionObjectDeserializer, takes the

requested bean simpleName (provided by the Managed Bean extension point) as an input

parameter and uses it to search for a serialized Managed Bean which matches the specified

simpleName parameter. Figure 6.17 describes the process flow of de-serializing a Managed Bean:

 Check if serialized

managed bean

exists

yes

no Is bean

found?

Read managed

bean from its

storage location

Return

null

Return

managed bean

instance

Figure 6.17: Resolving Managed Beans

The SessionObjectDeserializer first obtains the session ID222 and the name of the bundle

which hosts the referenced Managed Bean class. Using the session ID, the

SessionObjectDeserializer checks if the requested serialized Managed Bean is in the

storage location. If it is found, the requested Managed Bean is read into an Object using an

OSGiObjectInputStream class instance. The OSGiObjectInputStream is an extension of the

standard Java ObjectInputStream class. The ObjectInputStream could not be used in de-

serializing a Managed Bean because it requires the Managed Bean class to be located in the core

bundle where it can be associated with the serialized object; otherwise it throws a

ClassNotFoundException exception. The OSGiObjectInputStream class uses the following

code to associate serialized objects with their classes located in their host bundles:

Figure 6.18: OSGiObjectInputStream resolveClass function

222 The session ID refers to a unique identifier assigned to active session by the web container

89 | P a g e

The loadClass method takes the bean class name as an input parameter and gets the

requested Managed Bean class from its host bundle. After the Managed Bean class is resolved by

the OSGiObjectInputStream, it is stored into an object and its originating serialized object is

deleted. In the case where the serialized Managed Bean is to be casted into an object with a

different class structure (different class version), the de-serializer maps the values of variables

which are present in both class versions to the new object and ignores the variables which are not

in both class structures. If the recovered Managed Bean object (denoted as ‘obj’ in Figure 6.16) is

null, then no Managed Bean was found in the storage location, therefore a new Managed Bean

can be created from the Managed Bean extension point using the

createExecutableExtension function. Otherwise, if the object is not equal to null, the

recovered Managed Bean will be forwarded to JSF. Note that the recovered beans will contain the

variables values it previously had when the swapped out bundle was active.

Another consideration that had to be made was how serialized objects belonging to a user should

be handled when a user session abruptly ends. According to the above described serialization

process, the serialized data is only deleted when a Managed Bean request is received by an

application. The main complication lies in, what should happen when a serialized Managed Bean

was never requested before a user’s session was abruptly ended. It is not efficient to allow the

server to continue storing session objects that are no longer valid within an application. To

address this problem, a procedure was programmed where a session listener object listens for

session-destroyed events and as soon as they occur, it extracts the session-id of the user who

initiated the session-destroyed event. The application thereafter deletes all preserved session

objects belonging to the user with the extracted session ID. If a user’s network connection breaks

down abruptly but the browser remains open, his session can be later resumed and no session

information will have been lost during the break down. The user’s browser application must not

be closed because it stores the session information which is required to reconnect to the

framework and resume the old session. Since the state of an application in JSF is stored on the

server, it is certain that session information cannot be lost when connectivity problems occur on

the client side.

90 | P a g e

6.4. System Constraints

Class versioning has to be taken into consideration when swapping bundles. In different bundle

versions, Managed Bean classes may change in structure and content. Considerations had to be

made on the rules governing how old Managed Bean classes can be converted to new Managed

Bean classes when a bundle swap occurs. In order to successfully recover a serialized Managed

Bean, the new Managed Bean class must have the same qualified class name as the serialized

Managed Bean object. The new Managed Bean may contain additional attributes and methods;

these attributes will not affect the casting of the restored Managed Bean to the new Managed

Bean. Static and transient variables will not be restored because the serialization API does not

support them.

Another constraint is that, when changes are made to a bundle’s exported classes then all

dependent bundles must be updated. Changes are not taken automatically by the dependent

bundles. If the dependent bundles are not updated, they will continue referencing the old

exported packages stored in their caches. It is therefore important to have a clear application

outline, denoting the bundle dependencies and exported packages, so that when updates are

made affected bundles can also be updated.

91 | P a g e

7. Testing and Evaluation

After the framework and test application were created, they had to be tested to check if they

meet the requirements stated in chapter 4. The application was tested to demonstrate its

functionality and performance. The functionality refers to the dynamics of application bundles223

and JSF features. The performance refers to the preservation of session objects when bundles are

hot swapped224.

7.1. Framework Functionality Tests

These functionality tests were carried out for sixteen users. These tests were meant to

demonstrate that users can be able to use applications even when changes are being made to

application components.

7.1.1. Resolving resources

Figure 7.1 shows how the front page provided by the de.clintworld.clintweb.ui bundle225

version 1.0.0.2. The layout of the page was created using CSS and images which are rendered

by the ResourceServlet as stated in section 5.3. The entire facelet226 shown in Figure 7.1 was

rendered by the FacesServletAdapter.

It was stated in the requirements227 that facelets should be able to reference other facelets within

their host bundles and also in other application bundles. Figure 7.1 shows the application main

page, the tab navigates to a facelet located in the de.clintworld.clintweb.ui bundle

and the tab is linked to a facelet located in the de.clintworld.clintweb.core

bundle. Upon clicking the tabs, the user was directed to the requested page located within their

respective bundles.

223

 See section 3.2
224 See section 3.1
225 See section 6.2
226 See section 2.3
227 See section 4.1.2

92 | P a g e

Figure 7.1: Application front page version 1

It can therefore be concluded that facelet resources can be resolved in the new framework

regardless of where they are located within an application. Furthermore, resources like images

and style sheets (CSS) are also resolved by the framework.

7.1.2. JSF functionality

In order to test the functionality of Managed Beans228, the facelets of the

de.clintworld.clintweb.ui bundle was made to reference Managed Bean properties. User

inputted information on JSF UI components (e.g. Radio button and text boxes) and the inputted

values were stored in Managed Beans. Figure 7.2 shows a facelet in the

de.clintworld.clintweb.ui bundle which contains text boxes where users can input text

which is stored in a Managed Bean object on the server side.

228 See section 2.2

93 | P a g e

Figure 7.2: Storing values in Managed Beans

Text was inputted on the text boxes shown above and by clicking on the button; the text

was stored in a Managed Bean. The stored information was displayed on another facelet which

can be navigated to by clicking on the button.

For testing the Navigation Rules functionality, the home page contains a link which prompts a

Navigation Rule to be executed. When this link was clicked, the application was able to

successfully navigate to the facelets specified by the Navigation Rule.

Custom components229 were also implemented in the application. A radio button component

(Figure 7.3) was created and declared on a facelet to display values stored in a Managed Bean.

Figure 7.3: Custom component

As seen in Figure 7.3, the values inputted in the facelet displayed on Figure 7.2 were used by the

custom radio button component. Users were able to select one of the values displayed by the

Radio buttons component. By clicking the button, the selected radio button value was

229 See section 6.2.4.3

94 | P a g e

stored in a Managed Bean. The framework was additionally able to resolve custom UI

components located in application bundles other than the core bundle.

According to the tests conducted in this section, it can be concluded that JSF components are fully

functional in the new framework. Application bundles can provide Managed Beans, Navigation

Rules and Custom Components which can be resolved by the framework.

7.1.3. Dynamic Bundles

Figure 7.4 shows the UI of the administrator software230 which was created for managing

application bundles within the Equinox - Jetty Framework231. The administrator functions are

displayed in the middle panel of the application window.

Figure 7.4: Administrator application

When the framework is started, the active bundles are displayed on the list on the left panel of

Figure 7.4. The panel on the right side specifies bundles which are INSTALLED, STOPPED or

RESOLVED. The button is for hot swapping232 bundles which are of the same name but

different versions. In order to test the swapping of bundles feature, the

de.clintworld.clintweb.ui bundle version 1.0.0.2 was swapped out and the bundle

version 1.0.0.1 was swapped in. When bundles are being swapped, user requests are delayed

until the swapping process is done. In this test, the bundle swap process was quick; therefore

active users were not able to notice any delays in the application response. They noticed the

230 See section 5.8
231 See section 3.2.2.1
232 See section 3.1

95 | P a g e

immediate effects233 of the bundle swap, which was represented by the change in the facelets

layout and style.

When the framework was started, if the user requested the application home page, the facelet in

Figure 7.1 would be displayed. However after the bundle swapping process, upon requesting the

home page, the following facelet was displayed:

Figure 7.5: Home page version 2

Figure 7.5 shows that the above facelet is different from the one shown in Figure 7.1. The text has

changed and there is an additional panel on the right side of the facelet. The facelet in Figure 7.1

belonged to the de.clintworld.clintweb.ui version 1.0.0.2 which was replaced by the

bundle version 1.0.0.1. The facelets in both bundle versions have the same name (view ID234)

but their contents are different as shown in Figure 7.5.

After the bundle swap, the user inputted information contained in the Managed Beans belonging

to the swapped out bundle was restored into the swapped in bundle. The name of the facelet

shown in Figure 7.6 is the same as the facelet shown in Figure 7.3; however the contents in the

facelets are different:

233 The term “immediate effects” means that the effects were seen right after clicking on a button or refreshing the

page. It does not mean “automatically“ (via Javascript)
234 See section 2.3

96 | P a g e

Figure 7.6: User input data page version 2

It can be seen in Figure 7.6, that the information in Figure 7.3 has been restored in the newly

installed bundle. Furthermore, the table on Figure 7.6 contains a new column called ‘provider’

which is not available in the table in Figure 7.3. The addition of this new column corresponds to

the fact that the data structure of the new Managed Bean class is different from the data

structure of the Managed Bean class contained in the bundle version 1.0.0.2. The new Bean

class contains more functionality as compared to the Bean in the bundle version 1.0.0.2.

In order to preserve the Managed Beans belonging to a bundle. The core bundle contains a

configuration page where the user can specify whether the Managed Beans should be preserved

on the disk or on the application memory (RAM). The following figure shows the configuration

page:

Figure 7.7: Configuration page

97 | P a g e

The check box in Figure 7.7 specifies whether session objects are stored on the disk under a

specified directory or application memory.

According to the tests conducted in this section, it was concluded that bundles can be swapped in

and out of an application without disrupting a user’s interaction with the application. Managed

Beans in swapped out bundles which contain user data are always restored in a swapped in

bundle. The Managed Bean restoration process is successfully able to adapt to changes in the

class structure of a Managed Bean during the Bean restoration process.

7.2. Performance Tests

When bundles swaps occur, the Managed Beans belonging to a bundle can either be stored on

disk or application memory (RAM)235. Tests were conducted to investigate the duration of writing

Bean objects to RAM and disk in order to determine which storage method is quicker. The

following test cases were conducted:

 Serialization of many small sized (size refers to memory size) Beans

 Serialization of many large sized Beans

It must be noted that the serialization process on the disk consists of creating a folder for each

active session and then writing the serialized Managed Beans belonging to the active session into

the created folder. It was not necessary to evaluate the duration of the restoration process236 of

Managed Beans from the disk or RAM because the process does not occur concurrently for all

active sessions. Managed Beans are only restored from the disk/RAM when individual users

request a page that references them. In these tests, a Managed Bean represents a user.

For the tests a machine with the following specifications was used:

235 See section 6.3
236 See section 6.3.2

98 | P a g e

Operating System Windows Vista Home edition

RAM 2GB

Processor Intel core 2 Duo -2.2 GHz

Figure 7.8: Machine specifications

7.2.1. Test case 1

For the following test case, 100 Managed Beans were serialized to the disk and RAM. The size of

the Beans varied. The following results were collected from this test case:

of Managed

Beans

Size of Managed

Bean (KB)

Serialize to disk

time (ms)

Serialize to RAM

time (ms)

100 2.18 457 73

100 18.7 1878 418

100 197 16280 3104

Figure 7.9: Test case 1

As seen in Figure 7.9, the increase in Managed Bean size does not necessarily mean a linear

increase in serialization time. For small sized Beans, the serialization process to the disk is very

quick. It can be seen that as the object size increases, the disk serialization time increases to a

high value, meaning that users would have to wait for up to 16 seconds for the application to be

responsive. On the other hand, serialization to the RAM is faster for all Bean sizes, therefore users

would not have to wait for long periods of time during serialization.

7.2.2. Test case 2

For the following test case the number of serialized Beans was gradually increased while keeping

the size the same (2.06 MB). The following chart shows the results collected in this test case:

99 | P a g e

Figure 7.10: Test case 2 line graph

Due to RAM memory limitations of the test machine, it was not possible to conduct tests for

serialization of more than 50 Beans to the RAM that are 2.06 MB in size. According to the results

collected from this test case, serialization of Beans to the RAM is the fastest method. The time

increase after 40 beans on the RAM is because the RAM of the test machine has been used up

and the system is using virtual memory on the disk. Since virtual memory is located on the disk, it

takes longer to access it which leads to an increase in serialization time delay. The time delay for

serialization to the disk exceeds the delay requirements for the framework, it was therefore not

necessary to consider the serialization time on disk for more than 50 beans. In both cases, the

application will be delayed for long periods of time, but serialization to RAM will be more time

efficient. Based on the test results, it can also be concluded that the serialization of few large

sized Beans generates long delays as compared to many small sized beans.

7.2.3. Test case 3

For this test case, the number of Beans was incremented while keeping their memory size the

same (4.16 MB). The following chart shows the results from this test case:

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50

Ti
m

e
 (

se
co

n
d

s)
Disk

RAM

of beans

100 | P a g e

Figure 7.11: Test case 3 line graph

Due to memory limitations of the test machine, this test case could only be conducted for up to

30 Beans. According to the results in Figure 7.11, serialization to the RAM is much faster than

serialization to the disk. The line in Figure 7.11 which represents the serialization on disk, shows

as the number of large sized Beans increase, the serialization time delay is very high. It is not

acceptable to allow users to wait for up to 150 seconds during serialization. In the case of

serializing to the RAM, the time delay is attributed to the fact that the RAM was depleted and the

system had to utilize virtual memory, which requires more time to serialize the Beans to.

The results from this test case conclude that for large sized Beans, more time is required for

serialization regardless of their quantity. The tests results show that the serialization on RAM is

the most time efficient solution, however, for many large sized Beans, it can result in long delays

depending on the machine’s memory capacity as seen in Figure 7.11.

7.3. Summary

The functionality test results in section 7.1 clearly conclude that the developed framework meets

the framework and application requirements stated in chapter 4. Bundles can be added and

removed from an application without having to shutdown the framework. Facelet resources in

application bundles are resolvable. The JSF and Facelets feature are also fully supported in the

new framework, which make it possible to deploy JSF based applications.

101 | P a g e

According to the performance tests, it can be concluded, for many small sized Beans, the process

of serialization on disk and RAM is fast. However, as the Bean size increases, the serialization

process becomes slower even when there are a few beans to be serialized, as observed in test

case 7.2.3. For many large sized Beans, the delay is noticeable to users. Figure 7.10 shows that it

takes 40 seconds to serialize 50 large sized Beans. Such a delay is not optimal for users but the

time delay is much faster than serializing to disk. The delay in serialization to the RAM occurs

because as the number of serialized beans increases, the RAM in the test machine is depleted.

Therefore the system must use virtual memory on the disk to store the serialized beans, which

causes delays because of the I/O operations involved. On a server machine with more RAM and

higher processing power, the serialization time will be much faster because the framework will

have more memory at its disposal. This serialization time on disk by far exceeds the requirements

expectations stated in section 4.2. Users cannot be expected to wait for minutes while application

changes are being made. The serialization delays on disk are caused by the I/O operations when

writing to disk.

In general, the serialization performance values are expected to improve when running the

framework on a server machine because servers have greater processing speeds as compared to

the test machine used in this thesis. According to the tests conducted in this chapter, beans

should be serialized to the RAM in order to minimize user delays. It must be noted that

serialization delays cannot be completely avoided; in order to preserve user Managed Beans, a

slight compromise in time delay has to be made. If the size of Managed Beans and active users

increases, the serialization process time delay will increase.

102 | P a g e

8. Conclusion

The objective of this thesis was to design and implement a dynamic component based web

application framework which was required to support features offered by the current Clintweb

framework237. In order to implement the desired framework, various technologies were

investigated and the differences between them were outlined so as to select the most suitable

technology to use for the new framework. It was therefore concluded that the Equinox - Jetty

framework238 was the best technology for creating a framework for hosting modular web

applications because it is memory efficient, scalable and required the least configuration efforts

as compared to other frameworks like, Spring DM and the Servlet Bridge configuration239.

Using Equinox - Jetty, a framework which supports the deployment of JSF240 based dynamic

modular web applications241 was successfully designed and realized. Its dynamic module handling

capabilities were demonstrated in chapter 7, where modules in the form of OSGi bundles242 were

swapped243 in and out of an application during runtime. However user session state information

contained in bundles is lost when a bundle is swapped out of an application. Therefore a solution

was required to preserve a user’s session state when a bundle swap occurs, so that user

information in a swapped out bundle can be transferred to a newly swapped in bundle. This

problem was solved using the Serializable API244, which demonstrated (in chapter 7) its

capabilities of successfully preserving and restoring user session state during bundle swaps.

According to the tests conducted in chapter 7, it was recommended that user session state should

be preserved in an application’s memory (RAM) so that the preservation and restoration process

can be done faster as compared to storing the session state on disk. Writing the information to

the disk incurred long delays, which as a result contradicts an important requirement stating that

the bundle swapping process should be done as fast as possible in order not to delay user

requests for too long.

The developed framework will benefit web application developers, by allowing them to add and

removes features from an application without incurring any downtimes. Minor application bugs

can be corrected immediately as soon as they are discovered and new features can be added to

237 See chapter 2
238 See section 3.3.1.3
239 See section 3.3
240 See section 2.2
241 See chapter 3
242 See section 3.2
243 See section 3.1
244 See section 3.4

103 | P a g e

applications, without having to wait for major application release dates. Furthermore, when

errors occur in an application, the bundle which is the source of the error can always be replaced

by a more stable bundle version. This will ensure that an application remains fully functional while

bugs in other bundle versions are being fixed. User experience when using an application on the

developed framework will be drastically improved, because users will not be inconvenienced

when application maintenance is being done.

8.1. Recommendations

Due to the above stated advantages of the new framework, it is therefore recommended that

applications on the current Clintweb framework be migrated to the new framework. In terms of

migration efforts, there are several changes which will have to be made to applications in order to

take full advantage of the new framework’s functionality. JSF components will have to be

declared on extension points245 instead of the face-config.xml246 file because the Equinox

framework is not able to resolve faces-config.xml files located in multiple application bundles.

Application bundles will have to declare their facelet247 resources on an extension point in order

for them to be resolved. According to the OSGi specification, bundles are not able to directly

reference resources in other bundles. Using an extension point, bundles are able to register their

resources making it possible for them to be resolved when they are referenced by other bundles.

Other file types located outside the core bundle (e.g. images, cascading style sheets) must also be

registered to an extension point or else they will not be resolvable.

The Jetty web server will replace the Tomcat web container248 because it is more scalable and

lightweight. Therefore application classes which utilize Tomcat’s functionality to access session

information will have to be changed to use Jetty. Servlet249 class implementations in Clintweb

will have to be replaced by the ones provided by the new framework.

In order to manage applications in the Equinox - Jetty framework, it is recommended that the

ProSyst250 Web Administrator console be used. This console is easy to install, secure and it offers

245 See section 3.2.2.1
246 See section 2.2
247 See section 5.4
248 See section 3.3.1.3 and section 2.1
249 See section 2.1
250 Prosyst mToolkit, Available at: http://www.prosyst.com/index.php/de/html/content/99/Other-FOU-|-Products-|-

OSGi-SDK/ [Accessed 2 August 2010]

http://www.prosyst.com/index.php/de/html/content/99/Other-FOU-|-Products-|-OSGi-SDK/
http://www.prosyst.com/index.php/de/html/content/99/Other-FOU-|-Products-|-OSGi-SDK/

104 | P a g e

remote access to an Equinox framework, where a user can easily control the framework. Users

just require a standard browser to use the web administrator. Another alternative is to use the

Apache Felix web console, which can be configured to run on the Equinox framework. The Apache

Felix console251 is easy to use and it allows administration of Equinox based bundles. Note that if

no remote console is used for framework administration, then the framework can only be

controlled from its host server machine.

8.2. Outlook

The framework developed during this thesis is a fundamental framework for hosting JSF based

dynamic modular web applications. The framework can be extended to support the registration of

more JSF components on extension points (for example, UI components render classes).

Rich Faces or ICE Faces can be integrated into the new framework to enable the integration of

AJAX capabilities in JSF based web applications. AJAX enables interactive and dynamic interfaces

of a web page. Resources can be dynamically retrieved from the server side without interfering

with the page displayed on the client frontend. AJAX can benefit the framework by allowing

information on pages to be dynamically updated from the sever side.

Server load balancing must also be researched in order to efficiently manage applications on a

server. Processes within an application can be allocated to multiple processors on a server in

order to conduct them faster. Another server related issue which can be further developed is data

integrity. In case problems such as power failure occur on the server, the user inputted data must

have a back up, so that there is no loss of sensitive user information. A solution to this problem

may be that the backup data could be serialized to the disk by a thread running in the

background. If the user session ends, then the data on disk can be deleted in order to efficiently

use system memory.

The development of the current Clintweb252 version is done on the Eclipse IDE, where application

projects are launched on a Tomcat web server and their build process is managed by Apache

251 Apache Felix Web console, Available at: http://www.osgilook.com/2009/07/31/monitor-your-osgi-container-with-

the-apache-felix-web-console/ [Accessed 20 July 2010]
252 See chapter 2

http://www.osgilook.com/2009/07/31/monitor-your-osgi-container-with-the-apache-felix-web-console/
http://www.osgilook.com/2009/07/31/monitor-your-osgi-container-with-the-apache-felix-web-console/

105 | P a g e

Maven253. Research on developing and launching of the new framework in the Eclipse IDE can be

done, so that Eclipse can continue to be used as the development tool for the new framework.

Furthermore using IAM254, Apache Maven can also be integrated into the Eclipse IDE255, so that

the new framework can utilize it to simplify the application build process.

Finally, according to the design specification of the new framework, the core bundle256 must

always be active during the lifecycle of an application. If the core bundle is to be updated, the

entire framework has to be shut down. The core bundle can be further developed to enable it to

be serviced without having to shutdown the entire framework and disrupting active sessions.

253 Apache Maven, Available at: http://maven.apache.org/ [Accessed 10 September 2010]
254 IAM – Integration for Apache Maven, Available at: http://www.eclipse.org/iam/ [accessed 10 September 2010]
255 Eclipse IDE, Available at: http://www.eclipse.org/ [Accessed 10 September 2010]
256 See section 6.2

http://maven.apache.org/
http://www.eclipse.org/iam/
http://www.eclipse.org/

106 | P a g e

9. References

[1] Andreas Grabner, 13 August 2009. Java Memory Problems, Available at: http://java.sys-

con.com/node/1071319 [Accessed 20 June 2010]

[2] Apache Felix. Welcome to Apache Felix, Available at:
http://felix.apache.org/site/index.html [Accessed 20 June 2010]

[3] Apache Maven Project, Introduction to the Dependency Mechanism, Available at:

http://maven.apache.org/guides/introduction/introduction-to-dependency-

mechanism.html [Accessed 2 August 2010]

[4] Apache Software Foundation, Apache MyFaces, Available at:

http://myfaces.apache.org/core20/index.html [Accessed 16 June 2010]

[5] Arnaud Cogoluegnes, Thierry Templier & Andy Piper, August 2010. Spring Dynamic

Modules in Action

[6] Azad Bolour, Bolour Computing, 3 July 2003. Notes on the Eclipse Plug-in Architecture,

Available at: http://www.eclipse.org/articles/Article-Plug-in-

architecture/plugin_architecture.html [Accessed 10 June 2010]

[7] BEA WebLogic Server™, 28 June 2006. Developing Web Applications for WebLogic Server
Version 8.1 Revised, Available at:
http://download.oracle.com/docs/cd/E13222_01/wls/docs81/pdf/webapp.pdf [Accessed
22 June 2010]

[8] Bill Dudney, 16 July 2004. Creating custom components, Available at:

http://today.java.net/pub/a/today/2004/07/16/jsfcustom.html [Accessed 20 June 2010]

[9] Eclipse News Desk, 17 March 2008. Eclipse Announces New Runtime Initiative Around

Equinox, Available at: http://java.sys-con.com/node/520844 [Accessed 20 June 2010]

[10] Eclipse Org, BIRT project, Available at: http://www.eclipse.org/birt/phoenix/ [Accessed 28

July 2010]

[11] Eclipse org, Eclipse IDE for Java EE developers, Available at:

http://www.eclipse.org/downloads/moreinfo/jee.php [Accessed 16 June 2010]

[12] Eclipse org, Embedding an HTTP server in Equinox, Available at:

http://www.eclipse.org/Equinox/server/http_in_Equinox.php [Accessed 16 June 2010]

[13] Eclipse org, Web Tools Platform Project, Available at:

http://www.eclipse.org/projects/project_summary.php?projectid=webtools [Accessed 16

June 2010]

[14] Eclipse Org, Whitepaper: Component Oriented Development and Assembly with Equinox,

Available at: http://www.eclipse.org/equinox-portal/whitepaper/20080310_equinox.php

[Accessed 20 June 2010]

http://java.sys-con.com/node/1071319
http://java.sys-con.com/node/1071319
http://felix.apache.org/site/index.html
http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
http://myfaces.apache.org/core20/index.html
http://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html
http://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html
http://download.oracle.com/docs/cd/E13222_01/wls/docs81/pdf/webapp.pdf
http://today.java.net/pub/a/today/2004/07/16/jsfcustom.html
http://java.sys-con.com/node/520844
http://www.eclipse.org/birt/phoenix/
http://www.eclipse.org/downloads/moreinfo/jee.php
http://www.eclipse.org/equinox/server/http_in_equinox.php
http://www.eclipse.org/projects/project_summary.php?projectid=webtools
http://www.eclipse.org/equinox-portal/whitepaper/20080310_equinox.php

107 | P a g e

[15] Equinox, Available at: http://www.eclipse.org/Equinox/ [Accessed 20 June 2010]

[16] Eric Clayber & Dan Rubel, 22 December 2008. Eclipse: Building Commercial-Quality Plug-

ins (Eclipse (Addison-Wesley)) 3rd Revised edition (REV)

[17] Eric Jendrock, Ian Evans, Devika Gollapudi, Kim Haase and Chinmayee Srivathsa, June

2010. The Java EE 6 Tutorial, Available at:

http://download.oracle.com/docs/cd/E17410_01/Javaee/6/tutorial/doc/gijtu.html

[Accessed 20 June 2010]

[18] Eric Jendrock, Jennifer Ball, Debbie Carson, Ian Evans, Scott Fordin & Kim Haase, June

2010. The Java EE 5 Tutorial For Sun Java System Application Server 9.1, Available at:

http://download.oracle.com/javaee/5/tutorial/doc/index.html), [Accessed 22 June 2010]

[19] Exadel Inc. 2005. JSF KickStart: A Simple JavaServer Faces Application, Available at:

http://www.exadel.com/tutorial/jsf/jsftutorial-kickstart.html [Accessed 21 June 2010]

[20] Glen McCluskey, March 1999. Tuning Java I/O Performance, Available at:

http://java.sun.com/developer/technicalArticles/Programming/PerfTuning/ [Accessed 10

May 2010]

[21] Graham J. Ellis, Well House Consultant Ltd, Tomcat Overview, Available at:
http://www.wellho.net/downloads/A651.pdf [Accessed 21 June 2010]

[22] Greg Wilkins, May 2008. Jetty vs. Tomcat, A comparative analysis, Available at:

http://www.webtide.com/choose/jetty.jsp [Accessed 10 May 2010]

[23] Java serialization, Available at:
http://www.tutorialspoint.com/java/java_serialization.htm [Accessed 10 May 2010]

[24] Jeff McAffer, Paul Vanderlei & Simon Archer, 14 February 2010. OSGi and Equinox:

Creating Highly Modular Java Systems (Eclipse (Addison-Wesley))

[25] Kirk, TechDistrict, 5 August 2009. Modularity patterns, Available at:

http://techdistrict.kirkk.com/2009/08/05/modularity-patterns/ [Accessed 20 June 2010]

[26] Microsoft Developer Network, October 2009. Modularity, Available at:

http://msdn.microsoft.com/en-us/library/ff648404.aspx [Accessed 20 June 2010]

[27] Oracle – Sun Developer Network, JavaServer Pages Technologies, Available at:

http://java.sun.com/products/jsp/ [Accessed June 2010]

[28] OSGi alliance, Available at: http://www.osgi.org/Main/HomePage [Accessed 10 June

2010]

[29] Peter Roßbach (Systemarchitekt), Gerd Wütherich (Freier Softwarearchitekt) & Martin

Lippert (akquinet it-agile GmbH), 22. April 2009. Mit OSGi Webanwendungen entwickeln –

Was geht, was nicht? Available at: http://www.wuetherich.com/public/ruhrjug-2009-

05/mit-OSGi-webanwendungen-entwickeln.pdf [Accessed 10 April 2010]

http://www.eclipse.org/equinox/
http://download.oracle.com/docs/cd/E17410_01/javaee/6/tutorial/doc/gijtu.html
http://download.oracle.com/javaee/5/tutorial/doc/index.html
http://www.exadel.com/tutorial/jsf/jsftutorial-kickstart.html
http://java.sun.com/developer/technicalArticles/Programming/PerfTuning/
http://www.wellho.net/downloads/A651.pdf
http://www.webtide.com/choose/jetty.jsp
http://www.tutorialspoint.com/java/java_serialization.htm
http://techdistrict.kirkk.com/2009/08/05/modularity-patterns/
http://msdn.microsoft.com/en-us/library/ff648404.aspx
http://java.sun.com/products/jsp/
http://www.osgi.org/Main/HomePage
http://www.wuetherich.com/public/ruhrjug-2009-05/mit-osgi-webanwendungen-entwickeln.pdf
http://www.wuetherich.com/public/ruhrjug-2009-05/mit-osgi-webanwendungen-entwickeln.pdf

108 | P a g e

[30] Prosyst mB-SDK, Available at: http://dz.prosyst.com/devzone/Home/ [Accessed 28 July

2010]

[31] Qusay H. Mahmoud, 12 November 1996. Sockets programming in Java: A tutorial,

Available at: http://www.javaworld.com/jw-12-1996/jw-12-sockets.html [Accessed 10

August 2010]

[32] Ramnivas Laddad, Colin Yates, Sam Brannen, Rob Harrop, Christian Dupuis & Andy

Wilkinson, 2008. SpringSource dm Server™ Programmer Guide, Available at:

http://static.Springsource.org/s2-dmserver/2.0.x/programmer-guide/html/index.html,

[Accessed 22 June 2010]

[33] Rick Hightower (ArcMind Inc.), 21 February 2006. Facelets fits like a glove, Available at:

http://www.ibm.com/developerworks/java/library/j-facelets/ [Accessed 20 June 2010]

[34] RoseIndia, JSF Renderers, Available at: http://www.roseindia.net/JSF/JSFrenderers.shtml

[Accessed on 20 July 2010]

[35] Sathiskumar Palaniappan, 5 July 2009. Java serialization algorithm revealed, Available at:
http://www.javaworld.com/community/node/2915 [Accessed 10 May 2010]

[36] Servlets and javaServer Pages (JSP) 1.0: A Tutorial: Available at:

http://www.apl.jhu.edu/~hall/Java/Servlet-Tutorial/ [Accessed 21 June 2010]

[37] Sunil Patil, 22 April 2008. Hello, OSGi, Part 2: Introduction to Spring Dynamic Modules,

Available at: http://www.Javaworld.com/Javaworld/jw-04-2008/jw-04-

OSGi2.html?page=2 [Accessed 22 June 2010]

[38] Tim Berners-Lee (World Wide Web Consortium), Roy T. Fielding (Day Software) and Larry

Masinter (Adobe Systems Incorporated), January 2005. Uniform Resource Locator (URI):

Generic Syntax, Available at: http://labs.apache.org/webarch/uri/rfc/rfc3986.html

[Accessed June 2010]

[39] Todd Greanier, July 2000. Discover the secrets of the Java Serialization API, Available at:
http://Java.sun.com/developer/technicalArticles/Programming/serialization/ [Accessed
10 May 2010]

[40] Valery Abu-Eid, 11 October 2008. HTTP Service specification explained by example,

Available at: http://www.dynamicJava.org/articles/OSGi-compendium/http-service

[Accessed 20 June 2010]

[41] Wikipedia, articles: Web Application Framework, Application server, Modular

Programming, NIO, Direct Memory Access, MVC, Hot Swapping, OSGi, Embedding Jetty,

URI and URL, Available at: http://www.wikipedia.org/ [Accessed 21 June 2010]

[42] w3schools, XML Schema Tutorial, Available at:

http://www.w3schools.com/schema/default.asp [Accessed 20 June 2010]

 [43] XStream, Available at: http://xstream.codehaus.org/ [Accessed 10 May 2010]

http://dz.prosyst.com/devzone/Home/
http://www.javaworld.com/jw-12-1996/jw-12-sockets.html
http://static.springsource.org/s2-dmserver/2.0.x/programmer-guide/html/index.html
http://www.ibm.com/developerworks/java/library/j-facelets/
http://www.roseindia.net/jsf/jsfrenderers.shtml
http://www.javaworld.com/community/node/2915
http://www.apl.jhu.edu/~hall/java/Servlet-Tutorial/
http://www.javaworld.com/javaworld/jw-04-2008/jw-04-osgi2.html?page=2
http://www.javaworld.com/javaworld/jw-04-2008/jw-04-osgi2.html?page=2
http://labs.apache.org/webarch/uri/rfc/rfc3986.html
http://java.sun.com/developer/technicalArticles/Programming/serialization/
http://www.dynamicjava.org/articles/osgi-compendium/http-service
http://www.wikipedia.org/
http://www.w3schools.com/schema/default.asp
http://xstream.codehaus.org/

109 | P a g e

10. Appendix

CD-Contend

The following contents can be found on the included CD:

1. The complete master thesis in PDF and DOC format

2. Project Source Code

3. References (Web, pdf and slides)

The above listed CD has been deposited with Prof. Dr. Hans-Jürgen Hotop.

A. Filter extension specification

According to the Java SUN specification257, a filter is an object that performs filtering tasks on a

resource request and/or response. Filters may be in the form of authentication filters, encryption

filters, etc. The filter extension point provided by the Equinox registry bundle requires the

following information:

 Filter extension point

alias

class

Listings 1: Filter extension point

The alias attribute refers to the URI pattern of requests that should be sent to the specified

Filter class. The Filter class must be an implementation of the javax.servlet.Filter

interface.

257 Java SUN, Filter interface specification: Available at:

http://Java.sun.com/products/servlet/2.3/Javadoc/Javax/servlet/Filter.html [Accessed 20 June 2010]

http://java.sun.com/products/servlet/2.3/javadoc/javax/servlet/Filter.html

110 | P a g e

B. Deployment required bundles

Listings 2: Equinox required bundles

- commons-discovery-0.2.jar

- org.apache.commons.collections_3.2.0.v200803061811.jar

- org.apache.xml.resolver_1.2.0.v200902170519.jar

- javax.xml_1.3.4.v200902170245.jar

- org.eclipse.equinox.common_3.5.1.R35x_v20090807-1100.jar

- org.eclipse.equinox.registry_3.4.100.v20090520-1800.jar

- javax.servlet_2.5.0.v200806031605.jar

- javax.servlet.jsp_2.0.0.v200806031607.jar

- org.eclipse.core.runtime.compatibility.registry_3.2.200.v2009042

91800.jar

- org.eclipse.core.jobs_3.4.100.v20090429-1800.jar

- org.apache.xml.serializer_2.7.1.v200902170519.jar

- org.eclipse.equinox.app_1.2.0.v20090520-1800.jar

- org.apache.commons.logging_1.0.4.v200904062259.jar

- org.eclipse.equinox.preferences_3.2.300.v20090520-1800.jar

- org.eclipse.core.contenttype_3.4.1.R35x_v20090826-0451.jar

- org.eclipse.osgi.services_3.2.0.v20090520-1800.jar

- org.eclipse.equinox.http.servlet_1.0.200.v20090520-1800.jar

- org.eclipse.core.runtime_3.5.0.v20090525.jar

- org.apache.xerces_2.9.0.v200909240008.jar

- org.apache.commons.el_1.0.0.v200806031608.jar

- org.eclipse.persistence.jpa.equinox.weaving_1.1.3.v20091002-

r5404.jar

- javax.transaction_1.1.1.v201002111330.jar

111 | P a g e

Acknowledgements

I would like to thank Prof. Hans-Jürgen Hotop for his support during the writing of this thesis. I

extend my gratitude to my supervisor and colleagues at Clintworld GmbH, Florian Albrecht who

contributed many ideas to this research, Christian von Leesen for his support and all other

colleagues who contributed to this thesis. I am grateful to Sahil Jawa, Zhonglei Zou, Kulathat

Teanjaung and Durga Rajamani for their assistance during my master studies.

I would also like to thank my parents for their moral and financial support throughout my studies.

Finally I thank God for the never ending motivation and inspiration I received from the bible, “And

we know that all things work together for good to them that love God, to them who are the called

according to His purpose” - Romans 8:28.

112 | P a g e

I declare within the meaning of section 25(4) of the Examination and Study Regulations of the

International Degree Course Information Engineering that this Master Thesis has been completed

by myself independently without outside help and only the defined sources and study aids were

used. Sections that reflect the thoughts or works of others are made known through the

definition of sources.

Hamburg, November 3, 2010 Arnold Kemoli

