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1 Introduction and project definition 

High Intensity Discharge (HID) lamps are light generating devices made of a ceramics 

or quartz arc tube also called burner which confines a gas mixture, usually mercury with 

some additives, and two electrodes. The imposition of current between these electrodes 

leads to the ionization of the gas, bringing it to temperatures between 5000 and 6000 K 

in a light-emitting region named the arc (see Figure 1 left). HID lamps find common 

applications in expansive outdoor spaces like streets, roadways, parking lots, stadiums, 

etc. The indoor applications, such as shop lighting, are on their side optimally operated 

at an alternate current frequency of around 300 kHz which can lead to an unstable 

plasma arc (lamp flicker in Figure 1 right) and even to an early lamp failure (paper 

Baumann). Acoustic resonance has been presumed for some years now to be the effect 

behind this arc instability [15]. For an accurate description of the effect’s onset we refer 

to [14] and references therein. Since a new approach is undertaken, where an overlap-

ping of the acoustic resonance with the temperature driven gas hydrodynamic instability 

is presumed.  

In order to understand the phenomenon of hydrodynamic instability itself a more gen-

eral problem of this kind has been chosen and an eigenvalue-problem has been set to be 

resolved in this work. It is the “Taylor-Couette” instability problem.  

 

Figure 1: Structure of a HID lamp (left) and arc disturbed by acoustic resonance (right) 

[15] 
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Goal of the project is to analyse the stability of a Taylor-Couette-flow between differen-

tially rotating concentric cylinders (inner cylinder rotating and outer cylinder fixed). 

Herefor a stability differential equations system is intended to be solved through devel-

opment of a velocity field into first-kind Chebyshev polynomials at any order. This ei-

genvalue problem need be solved repetitively, each time for a different angular velocity 

(and thus different Reynolds number) over a broad wavenumber range. 

The expected diagrams are:  

- real part of maximal eigenvalue over wavenumber for each Reynolds number 

and   

- maximum of the  real part of maximal eigenvalue over Reynolds number 

- influence of the choice of collocation points on the solution 

Those should be compared with literature together with the resulting critical wavenum-

ber, Reynolds number, at which the maximal eigenvalue turns positive (the fluid flow 

becomes unstable).  
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2 Hydrodynamic Instability 

2.1 The Taylor-Couette-flow  

The Taylor-Couette-flow is the name of the flow that occurs in the annulus between 

differentially rotating concentric cylinders, most often with the inner cylinder rotating 

and the outer cylinder fixed. The carried researches on this type of annular gap flow can 

be traced back 300 years ago where Isaac Newton started some studies on the topic. 

Building on the works of excellent theoreticians, like Max Margules or George Gabriel 

Stockes, Maurice Couette, a stellar Instrument builder, published 1888 the first experi-

mental results of his viscosimeter. These results were then theoretically confirmed 

through the results of the linear stability theory of Geoffrey Ingram Taylor in 1923. In-

deed the resulting stability diagram matched the experimental results in an unpreceden-

tal manner, which makes the Stability theory of Taylor one of the most influencial dis-

coveries of the 20th century.  His investigation was a key development in the modern 

study of fluid mechanics for three reasons (Donnelly 1991): 

• It was taken by many as convincing proof of the no-slip boundary condition 

wherein the velocity of a particle in contact with a wall moves at the same veloc-

ity as the wall. Although this concept has become a fundamental tenet for the 

study of fluid flow, it was questioned until Taylor used it with such success in 

his analysis of the stability of Taylor-Couette flow. 

• It offered convincing proof that the Navier-Stokes equations indeed accurately 

describe the flow of a Newtonian fluid, not just at the base flow level, but at a 

level that permitted the analysis of secondary flows and instabilities. 

• It was the first successful application of linear stability analysis that accurately 

predicted experimental results, namely the transition from stable flow to vortical 

Taylor-Couette flow. 

For scientists studying instabilities and transition phenomena this small closed system is 

appealing for experiments. Besides the Reynolds can be accurately controlled by cylin-

drical rotation rate and the use of glass tubes for the outer cylinder gives the flow visu-

alization techniques access to the occurring flow pattern.  

 

Fundamentals: 

The shear flow arising from the mentioned rotation between the cylinders goes from a 

stable basic state to an unstable state at a critical ratio of cylinders’ angular velocities. In 

its simplest form we let the inner cylinder rotate, while the outer cylinder is at rest and 

obtain the basic state flow, named Couette flow. Crosses the angular velocity of the in-
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ner cylinder a “critical” number, instability occurs resulting in a pair of counter rotating, 

axisymmetric, toroidal vortices, which fill the annulus. This state is superimposed on 

the Couette flow. 

Each pair of vortices has a wavelength of approximately , where  is the 

gap between the cylinders.  

Within a vortice a redistribution of angular momentum occurs through outward pushing 

of near inner wall high speed fluid, which carry the low speed outer wall fluid inwards. 

The solution of the NSE for the stable state (Couette flow) gives us the radial velocity 

distribution over the annulus and states furthermore, that this stable state prevails thanks 

to the balance between the centrifugal force and the radial pressure within the fluid. 

However, if a fluid particle is perturbed, that is, if it moves slightly outward from its 

initial status, it comes into a region of less pressure gradient arising, restoring force 

compared to the outward inertia of the particle. As a result the outward perturbed parti-

cle will continue outward. Likewise an inner perturbed fluid particle will continue in-

ward. Thus, with the mass conservation insuring a return flow, a vortex in form of a 

toroid arises (see Figure 2). This instability is suppressed at low angular velocity by the 

viscosity through damping. 

Would we rotate the outer cylinder and hold the inner one fixed, the flow would remain 

stable because the instability occurs only, when the pressure gradient force decreases 

with increasing radius.     

Therefore the origin of the vortical flow is the centrifugal instability. 

 

 

 

 

 

 

 

 

 

 

 

λ 

Figure 2: Axisymmetric Taylor vortices with inner cylinder rotating only [20] 
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Being already above the critical number, if we still increase the angular velocity of the 

inner cylinder, we than reach a secondary instability state, where the axisymmetric vor-

tex flow (primary instability) become unstable. The new flow is called wavy vortex 

flow, which is characterized by azimuthal waviness of the vortices as shown schemati-

cally in Figure 3. The waves travel around the annulus at a speed that is 30-50% of the 

surface speed of the inner cylinder (King et al. 1984) and depend strongly on a dimen-

sionless, radius ratio and angular velocity related number called “Taylor number”. 

a)               b) 

           Figure 3: Counter-rotating wavy vortices, a)[20]      b)[8]  

This state is followed by even higher order instabilities, as the modulated wavy vortex 

flow (see Figure 4), twisted vortex flow (see Figure 5) or spiral turbulence (see Figure 

6). 

 

Figure 4: Modulated wavy vortex flow for Ri = 350, Ro = −100 [8] 
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Figure 5: Twisted vortex flow [8] 

 

a)                         b)   

Figure 6: Spiral turbulence [8] 

In Taylor-Couette geometries there are further instability modes. In the literature we 
find up to 74 different states (Coles 1965) depending on magnitude and orientation 
(counter or same rotating) of the cylinder. A few of these states are shown in Figure 7 
together with the stable regime (Couette flow) 
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Figure 7: Flow regimes in a circular Couette system with independently rotating cylind-

ers (Anderek et al. 1986) 
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3 Hydrodynamic Instability theory 

3.1 Linear stability  

Stability means physically the behaviour of a dynamical system toward a light perturba-

tion from its equilibrium. It is clearly represented by the example of the behaviour of a 

sphere subjected to gravity and lying on differently formed surfaces (see Figure 8 ). On 

concave surfaces the sphere remains stable around its equilibrium. That is, through 

damping effects it returns autonomously to its point of equilibrium after having been 

displaced. On a horizontal surface we have an “indifferent” case, since the sphere 

doesn’t oppose any reaction to the displacement. In the case of convex surfaces the 

sphere leaves its point of equilibrium by the slightest perturbation. The last case depicts 

the case of local stability, where the behaviour of the sphere depends on the magnitude 

of the perturbation. 

 

Figure 8: Definition of stability in the point mechanics [10] 

For continua (fluids) the stability theory analyses (describes/predicts) the growth (or 

decay) of undulating perturbations lower amplitudes from a stationary (basic) state of 

the fluid. This definition means mathematically, that to the unknowns of the differential 

equation describing the dynamics of the physical phenomenon a small perturbation is 

added. By adding to an arbitrary basic state fluid velocity U and pressure P the perturba-

tion u and p, respectively in the dimensionless, incompressible Navier-Stokes equation, 

we obtain for the perturbation the nonlinear differential equation system:  

 , 

. 

With the boundary condition u = 0 or u = periodic.  

In order to mathematically describe the term “stable” 3 approaches exist: 
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- Lyapunov stability, which requires that the norm of a perturbation around a basic state 

remains at all time less than a limit. The norm need not tend to 0 with growing time, but 

the solution never departs from the basic state in order to be named “stable”.  

- Asymptotic stability, which requires with the Lyapunov condition, that the norm of the 

perturbation should tend to 0 with growing time. 

- Exponential stability, which exists when the norm of the perturbation follows the 

graph of an exponential function with growing time. The constant in the exponent de-

fines the stability. 

We focus our interest on the Lyapunov stability with the application of small perturba-

tions. Thus, the quadratic, non linear term (u.Nab(u)) within the equation can be ne-

glected and we obtain the linear stability problem:     

, 

. 

With the boundary condition u=0 or u =periodic.  

Depending on the problem, we can make an assumption regarding a possible solution 

for the equations. In most cases the normal mode ansatz is used. It is a separation 

ansatz, which describes the time component of the solution as an exponential function, 

separating it from the space solution’s components  and : 

 

The complex growth rate  consists of a real growth rate  and an 

angular frequency . In general a complex normal mode is either real or ap-

pears as conjugated couple of complex numbers. In both cases the physically “real” so-

lution is always the real part of the complex number.  

For the space term of the normal mode a complex assumption follows, written in polar 

coordinates:    where  is the absolute value and  

is the phase. 

The disturbance u can thus be rewritten: 

-   in case of the Rayleigh-Bénard problem with  

 and  the wave number in x and y direction.  
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-   in case of the Taylor-Couette problem with (r, φ, z) as 

polar cylindrical coordinates and m as the azimuthal wave number. 

For reasons of simplicity we will insert the normal mode ansatz only with time separa-
tion into the linear stability equations and generalize for all problems. After the inser-
tion, we obtain:  

 

 
With fixed or periodical boundary conditions for . 

The stability equation turns into an eigenvalue problem, which eigenvalues γ and be-

longing eigenvectors . Existence of symmetry and periodicity in the solution, ob-

served through experiments, can be translated into mathematical relations, which 

strongly simplify the equations. 

Using numerical methods such as the shooting method or the one of the matrix methods 
(spectral, finite difference, etc) we will compute for a set of parameters (for example 
Re, phi(x)) the eigenvalues’ spectrum of the equation of the form: 

 
with A, B ∈ Rn x Rn are 2 real matrices and  the unknowns’ discrete values 

at the nodes of the domain. 
 
Let’s observe a few possibilities: 

If ℑ(γ) = ±ω ≠ 0, than  2 counter circulating waves  propagates through the domain. 

If ℑ(γ) = 0, than the waves behave exponentially and no more oscillatory. 

Depending on the sign of  ℜ(γ) we reach different states, which are: 

  

  

3.2 Bifurcation and pattern classification  

A bifurcation is a sudden 'qualitative' or topological change in the behaviour of a system 
occurring when a small smooth change is made to the parameter values (the bifurcation 
parameters) of that system. It is a strong evidence for crossing into instability. 
The parameter value, at which it occurs, is called “critical parameter” or “critical point”    
The demonstration of bifurcation can be made with help of the Taylor-Couette problem.  
That is, we want in this case to draw a 2D-graph with a control parameter, a parameter 
we can experimentally vary at will, on the horizontal axe and an order parameter, a 
fluid flow variable we can measure. Such a flow variable needs to be one, which drasti-
cally changes with the transition to instability. 
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Now let’s observe the stable state of our experiment. The Couette-flow remains un-
changed along its rotational axe and thus shows a high degree of translational invari-
ance, called continuous translational invariance along the hole cylinder height (see Fig-
ure 9a). 
The fluid flow velocity measured at any point of the domain remains 0 in the axe direc-
tion (w=0). 
A steady raise of angular velocity yields at a certain value, a critical value, to the forma-
tion of Taylor vortices (see Figure 9b). The flow shows a periodical change along its 
rotational axe and is called discrete translational invariant along L. The fluid flow ve-
locity at the measurement point shows now a nonzero value, which increases with the 
angular velocity. 
The representation on a diagram of the velocity w in axe direction in terms of angular 
velocity is called a bifurcation diagram (see Figure 10) and reveals the critical velocity 
for transition (Ω1c) . The control parameter is the angular velocity Ω1 and the order pa-
rameter is the axial velocity w. 
 

a)                                           b)  
Figure 9: Couette flow (a) and Taylor vortex flow (b) [18] 

The critical Reynolds number and its related wave number have been computed through 

out the literature using different numerical approaches for different ratio of radii. Reck-

tenwald et al. have obtained to following here shortened table:  

Radii ratio 0.975  0.90 0.80 0.70 0.60 0.50 

Re_crit       260.9 131.6 94.7 79.5 71.7 68.2 

k_crit          3.13 3.13 3.13 3.14 3.15 3.16 

Table 1:  Critical wave and Reynolds numbers for different radii ratios 



  

                                                                                                                               16 

 
Figure 10: Bifurcation's diagramm of the axial velocity with respect of the angular inner 

wall velocity. Ω1c is the critical point [5] 

If we write a complex eigenvalue near the critical point in its most general form, the 

occurring unstable mode can be classified according to its eigenvalue. 

The general form is:   with the real frequency w and the real 

growth rate Λ, both functions of the wave number k [17].  

- For  and   the instability is spatially homogeneous and monoton in 

time around the critical point. The category name is “Hm” and the related equation is 

the real Ginzburg-Landau equation describing for examples gradient systems in physics. 

- For  and   the instability is spatially homogeneous and oscillating in 

time around the critical point. The category name is “Ho” and the related equation is the 

complex Ginzburg-Landau equation describing for example Hopf-bifurcations. 

- For  and  with   the instability is spatially periodical (we call 

it “ Turing”), and monoton in time around the critical point. The category name is “Tm” 

and requires a system of minimum 2 equations. The related equation is the Swift-

Hohenberg equation describing for example Taylor-Couette, convection or Faraday in-

stabilities. 

- For  and  with  the instability shows a spatial “Turing”-

structure while oscillating in time around the critical point. The category name is “To” 

and requires a system of minimum 3 equations. The related equation is the Swift-

Hohenberg equation describing for example wave instabilities and some convection 

instabilities of binary mixtures. 

- Furthermore there is a category named K0 related to the Cahn-Hilliard equation for the 

description of thin film and Kelvin-Helmholtz instabilities. 
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A graph of the real part of the eigenvalue with respect to the wave number for the dif-
ferent bifurcation families (Type H, Type T and Type K0), each at different control pa-
rameters can be seen in Figure 11 with ε = current control parameter – critical control 
parameter. 
  
Through analysis of the Taylor-Couette problem in this work, we expect the results of 
our numerical solution to match the type H 

 
Figure 11: Real part of eigenvalue with respect to the wave number for different bifur-

cation types [17] 

3.3 Application on the Taylor-Couette problem 

We start with the usual NS equations in dimensionless form: 

 

We then add a disturbance u to the basic state Uo and obtain: 

. 

From the symmetry properties of the basic flow, which are the translational invariance 

, the rotation invariance and the time invariance only the 

translational invariance in a discrete form (periodicity in axial direction) remains. We, 

thus, consider axisymmetric disturbances, we can decompose u as: 

 

This automatically enforces incompressibility by fulfilling the continuity equation. 

For the velocity components we apply the normal mode separation ansatz of the form: 

,     

This ansatz supposes a sinusoidal variation of the disturbance in the z-direction with 

axial wave number k (k є R), a growth rate or amplification factor σ (σ є C) for the dis-
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turbance, and amplitudes of the disturbance [v(r) and ψ(r)], which are dependent on the 

radial position.  

The (Φ) component of (*) and rot (*) now become [8]: 

 

 

with the associated boundary conditions: 

 at  

And the operators: 

 

(’) denotes  

A dimensionalization of the system of equations is carried through replacement of 1/Re 

by ν. So the parameter terms can be inserted in SI unit and the computed terms are col-

lected in SI unit as well. This choice of suppressing the dimensionless Reynolds number 

from the equations let the angular velocity as direct control parameter, from which the 

related Reynolds number can be computed, if wanted.  

It leads to an eigenvalue problem with σ being the eigenvalue to be determined and 

Ω(r), Re (through the boundary angular velocity Ωi) and k being the input parameters. 

The computed eigenvalues will predict the growth or decay rate of the mode.  

The numerical procedure to be developed enables a stability test from a basic state (a 

given Ω(r) profile) and finding the smallest value that yields to instability (eigenvalue 

with positive real part). Since the combination of a given Ω(r) and Re is stable only if it 

is stable for all wavenumbers k, a scan over a broad range of k for a given boundary 

angular velocity Ωi is necessary.  

We will, thus, gradually increase Re, through increasing Ωi and vary for each Ωi the 

axial wave number k over a broad range until a positive real eigenvalue occurs. 

The tested velocity profile originates from the solving of the cylindrical NS equations 

under the assumption related to the “Couette flow”. The occurring differential equations 

system leads to the basic state velocity profile:  

 

With :  
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This eigenvalue system of equations will be solved numerically using a class of tech-

niques known for its fast convergence. It is the spectral method with Chebyshev poly-

nomials. 
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4 Spectral method for numerical solving 

Spectral methods are a family of methods used in applied mathematics and scientific 

computing for solving numerically PDEs. In order to find an approximation to the un-

known solution, the methods utilize approximations defined in terms of truncated series 

expansions of orthogonal polynomials (Lagrange, Legendre or Chebyshev) or trigono-

metric functions (Fourier), substitute the unknows of the PDE with these series and 

compute the residual of the approximation using either the Galerkin approach or the 

collocation approach. 

Galerkin Approach: 

In the Galerkin approach the approximation need to be found so that the residual is or-

thogonal to the origin space of the unknown, that is to each of the basis functions. 

Mathematically it means that the integral of the residual-basis function product over the 

domain must vanish. The following example shows the application: 

Consider the PDE:    .  

We choose the following approximation: .  

We define the residual:  

We require that:  

 

It leads to: 

   

 

For . Here  denotes the derivative of  with respect to time t 

To obtain the Galerkin approximation  we need to solve the ODE 

 for the coefficients . In this case we can do this analytically, of 

course, but in general we do this using some ODE solver. 
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Collocation approach: 

For the collocation approach this residual has to be computed at a set of domain points, 

which number equals the number of undetermined coefficients of my series. These 

points are called “collocation points”. The residual equation is required to vanish at 

those points, which turns the differential equation into a matrix equation. This method is 

also called “pseudospectral approach” 

As example we choose the linear, one-dimensional boundary value problem: 

 

 

In order to satisfy the boundary conditions independently of the unknown spectral coef-

ficients, it is convenient to write the approximation as 

, where the decision to keep only three degrees 

of freedom is arbitrary. 

The residual for this approximation is:  

and yields:  

 

To minimize the approximation error, we choose to make the residual zero at a set of 
points (collocation points) equal in number to the undetermined coefficients in u2(x). 
Let’s arbitrarily choose the points xi = (-1/2; 0; 1/2), we obtain the three equations: 
 

 

 

 

The coefficients are then determined by solving  and yields: 

,   ,   

The solution can be reconstructed by substituting the constants in u2. 
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Collocation points within the collocation approach: 

The first idea we might have is to use equispaced interpolation points. It has turned out 
to be catastrophically bad in general, because a problem know as “Runge phenomenon” 
encounters. Discovered by Carl David Tolmé Runge, wenn exploring errors’ behaviour 
by polynomial interpolation of functions, it describes the problem of oscillation at the 
edges of an interval that occurs when using polynomial interpolation with polynomials 
of high degree. This phenomenon corresponds to the Gibbs phenomenon in Fourier se-
ries approximations (see Figure 12).  

 
Figure 12: The red curve is the Runge function. The blue curve is a 5th-order interpolat-

ing polynomial (using six equally-spaced interpolating points).The green curve is a 9th-

order interpolating polynomial (using ten equally-spaced interpolating points) 

This means, that for equally spaced points the residuals at the edges not only fail to 
converge in general with increasing N (degree of polynomial), but the residual even 
diverges at a rate of up to 2N. 
Optimal interpolation points should therefore be unevenly spaced and yield to a rapid 
vanishment of the residual.  
The solution has been found for the particular case of Lagrangian polynomials and can 
be applied without restriction to all types of polynomials. It says that the OPTIMAL 
INTERPOLATION POINTS are the ROOTS of the CHEBYSHEV POLYNOMIAL of 
DEGREE (N +1) [9]. Although this family of polynomials will be presented in an up-
coming chapter, we anticipate in the explanation of “root of Chebyshev polynomials” 
also named “Chebyshev grid points”. 
 
If a semicircle of unit radius is cut into evenly spaced segments, and then vertical lines 
are drawn from these “Fourier” grid points to the line segment [-1; 1], which is the base 
of the semicircle, the vertical lines will intersect the horizontal line at the Chebyshev 
grid points. 
The polar coordinates of the grid points on the semicircle are unit radius and angle θ = 
п(2i - 1)/(2N) where i = 1,…, N. The Chebyshev grid points are xi = cos(θi). 
We derive thus only two optimal sets of interpolation points, the Gauss-Chebyshev 
points and the Gauss-Lobatto points.  
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[“Roots” or “Gauss-Chebyshev”] 

 [“Extrema-plus-Endpoints or “Gauss-Lobatto”] 

 
 

 
Figure 13: Chebyshev points are projections onto the x-axis of equally spaced points on 

the unit circle [13] 

The use of the Chebyshev points reduces strongly the Runge phenomenon (see Figure 

14):  

 

Figure 14: Degree N interpolation of  in N+1 equispaced and 

Chebyshev points. With increasing N, the errors increase exponentially in the equis-

paced case (Runge Phenomenon) whereas in the Chebyshev case they decrease expo-

nentially [13] 

 

Both approaches have an excellent, so called “exponential convergence”, which is the 

fastest possible among the numerical techniques [9]. The reason lies in the whole do-

main overlapping expansion (global approach) of the approximated solution in compari-

son to other algorithm families. Figure compares the regions of direct dependency in 

derivative formulas for the three families of algorithms, where for the finite difference 

and finite element methods only those points which lie within a given subdomain con-

tribute directly to the derivative approximations in that subdomain (local approach). 
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Figure 15: Three types of numerical algorithms. The thin, slanting lines illustrate all the 
grid points (black circles) that directly affect the estimates of derivatives at the points 
shown above the lines by open circles. The thick black vertical lines in the bottom grid 
are the subdomain walls [9]   
 

This global approach requires that the solution to be computed remains smooth over its 

entire domain for an accurate result (no shock capturing method). Depending on 

whether a problem is bounded and periodic or bounded and non-periodic, the Fourier 

series or the polynomial expansion approach is more suitable.   

4.1 Chebyshev polynomials 

Chebyshev polynomials, named after Pafnuty Chebyshev, are a sequence of recursively 

defined orthogonal polynomials. Polynomials are orthogonal, when their inner product 

on the vector space of all polynomials equals zero. One distinguishes between Cheby-

shev polynomials of first kind (Tn) and of second kind (Un), as well as a pair of related 

(Jacobi) polynomials, which are called Chebyshev polynomials of third kind (Vn) and 

of fourth kind (Wn). All these polynomials haven taken an important position in the 

field of approximation theory, numerical integration and spectral methods for partial 

differential equations. We will focus on the Chebyshev polynomials of first kind (Tn) to 

construct spectral methods for our bounded, non-periodic eigenvalue problem. 

Chebyshev polynomials Tn(x) of the first kind is a polynomial in x of degree n, defined 

in the interval [-1, 1] by the recurrence relation: 
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We show a short list of developed polynomials until degree 9: 

 

 

 

 

 

 

 

 

 

 

Chebyshev polynomials of degree 0 till 5 in a graph: 

 

Figure 16: The first few Chebyshev polynomials of the first kind in the domain −1 < x < 

1: The flat T0, T1, T2, T3, T4 and T5. 
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The necessary orthogonality condition of the polynomial is fulfilled with respect to the 

weight function: . 
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5 Solving the eigenvalue problem 

We recall the eigenvalue differential equations system with its boundary conditions 

                                           

                                             

    at  

We rewrite the equations in matrix form: 

 

At first we write explicitly: 

 

 

(’) denotes  

 

We expand the unknows (v and ψ) according to the spectral collocation method with 

Chebyshev polynomials, where N stands for the number of internal points (Roots) to be 

computed. The number of roots needs to be increased by 2 and 4 respectively for v and 

ψ according to the number of boundary conditions related to v and ψ. 

 

We carry a coordinate transformation within the polynomials from x to r according to 

the linear transformation:  with r є [ri, ro] and x є [−1, 1]. That is, the 

interval is mapped to the standard interval for the Chebyshev polynomials. Table 3 

shows such a transformation applied to polynomials of degree 0 till 5, where  

and  , together with their derivatives.  

We insert the expanded polynomials into the equations, which yields algebraic equa-

tions depending on the coefficients vi, ψi and r. 
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The collocations points (roots) are developed according to the Gauß-Lobatto-method 

(see Chapter 20), linearly transformed from x to r (see Table 2) and truncated from the 

first and last point (boundary points) before their insertion into the algebraic equations. 

This step converts the algebraic equation into a  matrix problem. 

For the case of N=4 we obtain the system in Figure 17, where for each matrix the rows 

correspond to the collocation points, the columns to the Chebyshevs Ti and the green 

rows to the boundary conditions’ equations, which are also written as a linear combina-

tion of the coefficients vn and ψn. 

 

Figure 17: Eigenvalue problem in matrix form for N=4 with labelled submatrices [8]   

We remind here, that a dimentionalization of the system is carried as mentioned in 

chapter 3.3 (underlined passage).   

 xj rj   xj rj 

T0 0 a 

T4 
 

 

 

 

T1 
  

T2 

  

T5 
 

 

 

 

T3  

 

 

 

Table 2: Non-truncated Gauß-Lobatto collocation points related to the grade of the po-

lynomial before and after linear transformation with a=(ro+ri)/2 and b=(ro-ri)/2 
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T
5  

T
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T
3 

T
2 

T
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T
0 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

  

 

 

 

   

 

 

 

    

 

Table 3: The first few Chebyshev polynomials in their original form (T(x), x є [−1, 1]) 

and after the coordinate transformation (T(r), r є [ri, ro] ) with the belonging derivatives.  
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6 Numerical set-up  

The MATLAB environment has been used for computation, where a series of functions 

have been implemented to support the main program.  

Function ChebT(N): computes the coefficients of the Nth Chebyshev polynomial of the 

first kind. These coefficients are stored in the descending order of powers (see Table 4). 

Chebyshev polynomials ChebT(N)-results 

 
[1] 

 
[1 0] 

 
[2 0 -1] 

 
[4 0 -3 0] 

 
[8 0 -8 0 1] 

 
[16 0 -20 0 5 0] 

Table 4: Results of function ChebT(N) in comparison to few Chebyshev polynomials 

Function Subst_D(N, ri , ro): uses the coefficients of ChebT(N) to build the Nth Cheby-

shev polynomial T(x) with help of the MATLAB-Symbolic-toolbox. It, then, substitutes 

the x-variable with the r-variable using the linear relationship between x and r. The lin-

ear equation is:   and the results for a few Chebyshev poly-

nomials with ri= 0.8and ro=1 can be seen in Table 5. 

Chebyshev polyno-

mials 

Re_Subst_D(N,0.8,1)-results 

  

  

  

  

Table 5: Results of function Re_Subst_D(N,0.8,1) in comparison to few Chebyshev 

polynomials 
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Main program: 

The main program computes meanwhile the x-collocation-vector after Gauß-Lobatto 

using the input "N", truncates and transforms this vector into the r- collocation-vector.  

In the MATLAB environment it looks like this: 

x = -cos(pi*(0:n+1)/(n+1));  % Computation of the x-collocation points 
x = x(2:n+1);               % Truncation to lose the boundary points     
r_a = x*(b-a)/2 + (b+a)/2;  % Transformation into r-collocation points  
 

Keeping ri=0.8 (here "a") and ro=1 (here "b") and considering N=5, the points computed 

with the those MATLAB lines are respectively:   

x = -1.0000    -0.8660    -0.5000    0.0000   0.5000   0.8660   1.0000 

x = 0.8660    0.5000    0.0000   -0.5000   -0.8660    

r_a = 0.8134    0.8500    0.9000    0.9500    0.9866 

A loop is conceived, so that the function Subst_D(N, ri , ro) computes the Tj(r)-

polynomials in ascending order. We substitute for each new polynomial the unknown 

"r" of the polynomial by the vector "r_a" and store the row vector in a dynamic matrix. 

In order to keep the matrix quadratic, we need to extend the vector "r_a" according to 

the requirement of the series. That means an addition of 2 elements for series of v and 

an addition of 4 elements for the series of ψ. We, then, have: 

• r_a_v = 0.8134    0.8500    0.9000    0.9500    0.9866     0        0  

• r_a_ψ = 0.8134    0.8500    0.9000    0.9500    0.9866     0       0      0      0 

If we keep N = 5, we thus obtain for each of the unknowns of the differential equation 

the Chebyshev-matrix: 

 

 

Staying in the same logic, a differentiation of the unknows would simply mean: 

 

 



  

                                                                                                                               32 

 

 

which by usage of for example the operators  

 

 on the unknown v leads to the conclusion: 

 

 

Because we start with the Tj(r)-polynomial (result of the function Subst_D(N, ri , ro)) we 

can easily compute the differentiation matrices of any order by differentiating the poly-

nomial to the required order and substituting the unknown "r" with the extended vector 

"r_a", as previously done for the Chebyshev matrix. 
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Adding the boundary conditions to the equations requires the overwriting of the 2 ex-

tended rows of v(r) with the 2 equations: 

 

and the overwriting of the 4 extended rows of ψ(r) with the 4 equations: 

 

 

We then rebuild our matrices according to Figure 1Figure 17 an  use the built-in "eig"-

function of MATLAB to obtain the eigenvalues of the system for the chosen rotational 

frequency of the inner wall Ωi and k the chosen wave number. One question remains: 

If we discretize the system with the amount N of inner collocation points for each of the 

unknows, we obtain an eigenvalue vector with (2*N+6) elements. Which eigenvalues 

are "real-existent" and which are "artefact”? 

N=3 N=4 N = 5 
61,25481109 264,8349055 630,457737 
41,38233975 154,0798383 556,828054 

-41,88030239 
-

81,79466514 
-

239,678155 

-25,36682377 
-

108,4525213 
-

200,327503 
8,06618E-14 2,1325E-11 4,1687E-10 

-2,66276729 -2,7170386 
-

44,1332341 

-8,963157049 
-

9,988425828 
-

2,70708263 

-1,9015E-12 -12,2970891 
-

21,8420432 

-6,6572E-15 
-

18,83656199 
-

26,8901804 

-5,17022E-15 5,01191E-12 
-

10,5500427 

-4,8931E-16 
-1,51748E-

13 
-

10,7859461 

0 -1,7884E-13 
-2,8273E-

11 

3,84253E-15 
-1,1298E-

13 
0 3,3872E-13 

2,4686E-17 
0 

Table 6: Eigenvalues for different collocation numbers. The artefacts are coloured. 

 

Artefact-eigenvalues 
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The artefact-eigenvalues have the property to be smaller than 10-6 (absolute value) and 

are exactly 6 in number (see Table 6). This number corresponds to the number of 

boundary conditions added to the equations for internal points. Their analytical value is 

0. Therefore a filter λ has been built in, which goes through the computed eigenvalues 

and erases the values between - λ and +λ. The filter value can be set at will.      

6.1 Simulation and results 

The main goal of this simulation is to find at which collocation number N the critical 

values for the input parameter (here the rotational velocity of the inner wall) match with 

the literature values. A study had been carried for N=1 (we refer to [19]) and brought 

the following result: 

 Reynolds number (Re) Wave number (k) 

Literature values 94.7 15.65 

Computed values for N =1 87.44 13.7 

Residual  
7.26 

 

               
1.95 

Table 7: Comparison between literature values and computed values of the critical Rey-

nolds number and related wave number for N = 1 

To roughly localize the critical velocity with its related wave number, a first simulation 

will be carried out with generously broad ranges for the wave number and near-critical-

Re ranges for the Reynolds number. The following simulation parameters have been 

implemented in SI units: 

• Inner radius 0.8 [m]  and Outer radius = 1 [m].  

• Gap width = 0.2 [m]. 

• Fluid viscosity ν = 1 [m2/s]. 

• Inner radius frequency related Reynolds number Re = [92, 96] with an in-

cremental step size of 1. 

• Wave number k = [0.5, 25] with an incremental step size of 1. 

• Number of inner points N = 5. 

• Artefact-Filter λ =10-2 
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The computed diagrams are:  

- real part of maximal eigenvalue over wavenumber for each Reynolds number 

and   

- maximum of the  real part of maximal eigenvalue over Reynolds number 

Those should be compared with literature together with the resulting critical wavenum-

ber, Reynolds number, at which the maximal eigenvalue turns positive (the fluid flow 

becomes unstable).  

6.1.1 Maximal eigenvalue-wave number diagram for N = 5 

The following diagram shows for Reynolds numbers between 85 and 100 a similar 

curve shape of the maximal real eigenvalue with respect to the wave number. We in-

crease Re by 1 every loop and obtain 20 curves. 

 

Figure 18: Maximal real eigenvalue with respect to the wave number for different Rey-

nolds number (92≤Re≤96) 

Re 
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We recall the expected qualitative graphs for the problems’ family, to which the Taylor-

Couette instability belongs (see Figure 19). We conclude that the computed graph 

shapes show similarities with the theoretical ones. The critical values are reached as 

soon as the curve is tangent to the x-axe. That is, for the Reynolds number as control 

parameter, ε = current Re – critical Re. This occurs for Re between 87 and 88. 

  

Figure 19: Theoretical maximal eigenvalue-wave number graphs of type “Turing”  

The related wave number lies between 15 and 17. 

A range refinement of the 2 control variables between [94, 95] for Re and [15, 17] for k 

would bring accurate results. 

6.1.2 Maximal real eigenvalue-Reynolds number diagr am for N = 5 

 

Figure 20: Maximum of the maximal real eigenvalue with respect to the Reynolds num-

ber 
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If we plot the maximum of each curve from figure over its respective Reynolds number, 

we obtain the maximum of maximal eigenvalue with respect to Re. It shows a linear 

relation between the two terms with a slope of 5.7267871. It allows a linear interpola-

tion for the computation of the exact critical Reynolds number for Max-eigenvalue = 0. 

 Reynolds number (Re) Maximal real eigenvalue  

94.0000000000000 -5.15581706639940 

95.0000000000000 1.72633064234536 

Linear interpolation 
 

94.7491582 

 

               
0 

Table 8: Linear interpolation for the critical point 

The critical Reynolds number is, thus, 94.75. 

This number confirms the readjustment of our range for Re from [92, 96] to [94, 95], in 

order to obtain the related wave number. A scan within the latter range would confirm 

the critical value of Re, forcing a comparison between the graphical critical number 

with the interpolated one and at the same time give the related wave number.   

6.1.3 Maximal eigenvalue-wave number diagram for N = 5 (revisited) 

For Re [94, 95] with a step size of 0.1 and k [15, 17] with a step size of 0.1, we obtain 

the diagram of Figure 21. The curves shows, that the critical Re lies between 94.7 

(fourth curve from the highest) and 94.8 (third curve from the highest) which complies 

with the interpolated value 94.75. The corresponding wave number k =15.7.   
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Figure 21: Truncated diagram of the maximal real eigenvalue with respect to the wave 

number for different Reynolds number for N = 5  

6.1.4 Critical values of the Reynoldsnumber for N >  5 and Runge 

phenomenon  

We assume that with increasing number of collocation points (N), the accuracy of the 

critical Reynolds number (Re) increases. Simultaneously the simulation time increases 

rapidly with N. Instead of varying Re and scanning over multiple wave numbers (k), we 

will fix Re = 94.7 and k = 15.65, which are the critical values in the literature, and vary 

N (N= 10, 20, 30....)     

Table 9 shows for different N the maximum of the real-eigenvalues. These eigenvalues 

increase rapidly with N, which is proof of the Runge phenomenon. The challenge in the 

use of Chebyshev polynomials is to choose the number of collocation points, so that this 

effect doesn't occur. 

N  10 20 30 40 50 60 

real(σ) -0.2331 -0.2441 -0.0346 0.1672 4.3e07 2.8e08 

Table 9: Real eigenvalues with respect to collocation number at the critical point 

(Re=94.7; k=15.65) 

Re 

Critical point 

for k = 15.7 
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6.1.5 Influence of the position of the collocation points 

As mentioned earlier the collocation points are computed after Gauß-Lobatto (see Fig-

ure 13 and Chapter 6/main programm). We are interested in the influence of uniformly 

distributed points on the results. Therefore we compare the results of a simulation based 

on the values of chapter 6.1.3 (Re [94, 95] with a step size of 0.1 and k [15, 17] with a 

step size of 0.1) for N=5 but equally spaced.  

Figure 22 shows extremely high maximal real eigenvalue compared to Figure 13. This 

wrong solution confirms the theoretical approach, which predicts accurate results 

through usage of Chebyshev polynomials only and only if the collocation points are the 

Gauß-Chebyshev or the Gauß-Lobatto points. Explanations can be read in [9, p.3]   

 

Figure 22: Truncated diagram of the maximal real eigenvalue with respect to the wave 

number for different Reynolds number for N = 5 equally spaced points 

    

 

 

 

 

Re 
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6.1.6 Representation of the flow field 

A routine has been written which plots the vec-

tor field for a chosen maximal eigenvalue. This 

routine takes the eigenvector related to the cho-

sen eigenvalue and recontructs the velocity 

field through building the chebyshev series, 

The following plots (see Figure 24) show this 

vector field for an overcritical flow. In this case 

flow the eigenvector looks as presented in Fig-

ure 23. It shows that v and ψ are out of phase as 

expected. 

 

             

a)

b)  c) 

Figure 24: Vector field plot (N=5) of an overcritical eigenvector in overview a), from 

the top b), with zoom on the vector c) 

Figure 23: Eigenvector in an over-

critical flow 
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Figure 24a) shows to a certain extend the expected vortices. Figure 24b) and c) show 

that the vectors captured on a plane have a component that show out of it, which is a 

clue for a toroidal behavior of the flow.  
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7 Discussion and further work 

The results of carried computation of the Taylor-Couette eigenvalue problem for grades 

higher than 1 of Chebyshev-polynomials must be compared with literature results. As 

the following table shows, the computed results match really good with the literature 

values. It confirms the well known rapid convergence of the spectral collocation meth-

ods.  

 Reynolds number (Re) Wave number (k) 

Literature values 94.7 15.65 

Computed values (N = 5) 94.75 15.7 

Table 10: Comparison between literature and computed values for the critical values of 

the Reynolds number  

This analysis requires Gauss-Chebyshev or Gauß-Lobatto points instead of uniformly 

distributed points over the domain (results from chapter 6.1.5). 

The developed routine can be adapted to any (system of) differential equation problems. 

Problem can arise in the choice of the artifact-filter value λ, when approaching the criti-

cal zone. Also the choice of N should be taken carefully in order to avoid the Runge 

phenomenon (see Table 9) 

Further work could be: 

• The implementation of stop-subroutine, which would interpolate the maximal 

eigenvalues scanned over the wave number k and check, whether the interpo-

lated function is tangent to the x-axe or not before the next Reynolds number is 

inserted in the equation. 

• The implementation of a more accurate artifact-filter for near-critical-point 

cases.  

• The implementation of a more general post processing routine, which allows the 

representation of any states (eigenvector) at any time.  



  

                                                                                                                               43 

Bibliography 

[1] Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Oxford 
University Press (1961), New York. 

[2] Drazin, P. G.; Reid, W. H.: Hydrodynamic Stability. Cambridge University 
Press (1981). 

[3] Taylor, G.I.: Stability of a viscous fluid contained between two rotating 
cylinders. Philos. Trans. R. Soc. London, Ser. A 223, 29 (1923). 

[4] Mason, J.C; Handscomb, D.C.: Chebyshev Polynomials. Chapman & 
Hall/CRC (2003).   

[5] Kuhlmann, H.: Hydrodynamische Instabilität. Vorlesungsunterlagen an 
der TU Wien (2009). (http://www.fluid.tuwien.ac.at) 

[6] Kuhlmann, H.: Hydrodynamische Instabilität. Vorlesungsunterlagen an 
der Uni Bremen (1994). 

[7] Swinney, H.L.; Gollub, J.P.: Hydrodynamic Instabilities and the Transition 
to Turbulence. Springer Verlag (1985). 

[8] Hydrodynamic Stability Theory. Lecture note of MAGIC group in UK, 
spring 2007/08. (http://maths.dept.shef.ac.uk/magic/course.php?id=93) 

[9] Boyd, J.P: Chebyshev and Fourier Spectral Methods. Dover Publications, 
Inc, 2nd edition (2000). 

[10] Oertel, H; Delfs, J: Strömungsmechanische Instabilitäten. Springer 
(2005). 

[11] Taylor, M.E: Partial Differential Equations 3, Nonlinear Equations. Sprin-
ger (1996).     

[12] Strogatz, S.H.: Nonlinear Dynamics and Chaos. Perseus Books Publish-
ing, L.L.C (1994). 

[13] Trefethen, L.N: Spectral Methods in Matlab. SIAM (2000).  
[14] Baumann, B et al.: Finite Element Estimation of Acoustic Response 

Functions in HD Lamps. J. Phys D: Appl. Phys. 42 (2009). 
[15] Dreeben, T.D.: Modeling of Fluid-mechanical Instability in Pure-Mercury 

HID Lamps. Proceed. Comsol Conf. Boston (2007). 
[16] Schweizer, W.: MATLAB kompakt. Oldenbourg Verlag (2008). 
[17] Bestehorn, M.: Hydrodynamik und Strukturbildung. Springer Verlag 

(2006). 
[18] Rehberg, I: Phasenübergänge und Hydrodynamische Instabilitäten. Phy-

sik in unserer Zeit 12, Nr. 5, 131 (1981). 
[19] Diffo, P.: Untersuchung der linearen Stabilität der  Taylor-Couette-

Strömung mittels Polynomentwicklung höherer Ordnung. Master project 
(in English), HAW Hamburg (2011).  

[20] http://www.scholarpedia.org/article/Taylor-Couette_flow 
 

 

 


