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1 Introduction and project definition

High Intensity Discharge (HID) lamps are light geateng devices made of a ceramics
or quartz arc tube also called burner which cosfimgas mixture, usually mercury with
some additives, and two electrodes. The impostifocurrent between these electrodes
leads to the ionization of the gas, bringing itdmperatures between 5000 and 6000 K
in a light-emitting region named the arc (see Feglirleft). HID lamps find common
applications in expansive outdoor spaces like &re@eadways, parking lots, stadiums,
etc. The indoor applications, such as shop lightarg on their side optimally operated
at an alternate current frequency of around 300 lHrh can lead to an unstable
plasma arc (lamp flicker in Figure 1 right) and ewe an early lamp failure (paper
Baumann). Acoustic resonance has been presumenbrioe years now to be the effect
behind this arc instability [15]. For an accuraésdfiption of the effect’'s onset we refer
to [14] and references therein. Since a new appragaandertaken, where an overlap-
ping of the acoustic resonance with the temperattiven gas hydrodynamic instability
IS presumed.

In order to understand the phenomenon of hydrodimamstability itself a more gen-
eral problem of this kind has been chosen and genealue-problem has been set to be
resolved in this work. It is the “Taylor-Couetteistability problem.

—_—— 14%[

-
Electrodes
~

Figure 1: Structure of a HID lamp (left) and arstdrbed by acoustic resonance (right)
[15]




Goal of the project is to analyse the stabilityaofaylor-Couette-flow between differen-
tially rotating concentric cylinders (inner cylindeotating and outer cylinder fixed).
Herefor a stability differential equations systesrinitended to be solved through devel-
opment of a velocity field into first-kind Chebyshpolynomials at any order. This ei-
genvalue problem need be solved repetitively, ¢ach for a different angular velocity
(and thus different Reynolds number) over a broademumber range.

The expected diagrams are:

- real part of maximal eigenvalue over wavenumberdach Reynolds number

and
- maximum of the real part of maximal eigenvaluerd®eynolds number
- influence of the choice of collocation points oe golution

Those should be compared with literature togeth#r the resulting critical wavenum-
ber, Reynolds number, at which the maximal eigare/alirns positive (the fluid flow

becomes unstable).




2  Hydrodynamic Instability

2.1 The Taylor-Couette-flow

The Taylor-Couette-flow is the name of the flowttlsacurs in the annulus between
differentially rotating concentric cylinders, masften with the inner cylinder rotating
and the outer cylinder fixed. The carried reseadrethis type of annular gap flow can
be traced back 300 years ago where Isaac Newtoredtsome studies on the topic.
Building on the works of excellent theoreticiankelMax Margules or George Gabriel
Stockes, Maurice Couette, a stellar Instrumentdewjlpublished 1888 the first experi-
mental results of his viscosimeter. These resuksewthen theoretically confirmed
through the results of the linear stability theofyGeoffrey Ingram Taylor in 1923. In-
deed the resulting stability diagram matched thgeerental results in an unpreceden-
tal manner, which makes the Stability theory of [bapne of the most influencial dis-
coveries of the 20th century. His investigationrsveakey development in the modern
study of fluid mechanics for three reasons (Doryn&d91):

« It was taken by many as convincing proof of theshp-boundary condition
wherein the velocity of a particle in contact watlwall moves at the same veloc-
ity as the wall. Although this concept has beconfaralamental tenet for the
study of fluid flow, it was questioned until Taylased it with such success in
his analysis of the stability of Taylor-Couettewio

» It offered convincing proof that the Navier-Stokeguations indeed accurately
describe the flow of a Newtonian fluid, not justtlae base flow level, but at a
level that permitted the analysis of secondary #@nd instabilities.

» It was the first successful application of linetalslity analysis that accurately
predicted experimental results, namely the tramsitiom stable flow to vortical
Taylor-Couette flow.

For scientists studying instabilities and transitghenomena this small closed system is
appealing for experiments. Besides the Reynoldsbeaaccurately controlled by cylin-
drical rotation rate and the use of glass tubesherouter cylinder gives the flow visu-
alization techniques access to the occurring flattgon.

Fundamentals:

The shear flow arising from the mentioned rotati@ween the cylinders goes from a
stable basic state to an unstable state at aatntido of cylinders’ angular velocities. In

its simplest form we let the inner cylinder rotatgile the outer cylinder is at rest and
obtain the basic state flow, named Couette flovas€es the angular velocity of the in-
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ner cylinder a “critical” number, instability ocairesulting in a pair of counter rotating,
axisymmetric, toroidal vortices, which fill the anlos. This state is superimposed on
the Couette flow.

Each pair of vortices has a wavelength of approteiyezd, whered = r, — r; is the
gap between the cylinders.

Within a vortice a redistribution of angular momantoccurs through outward pushing
of near inner wall high speed fluid, which carrg tbw speed outer wall fluid inwards.

The solution of the NSE for the stable state (Ceuiédw) gives us the radial velocity
distribution over the annulus and states furtheantirat this stable state prevails thanks
to the balance between the centrifugal force aadddial pressure within the fluid.

However, if a fluid particle is perturbed, that i5jt moves slightly outward from its
initial status, it comes into a region of less pugs gradient arising, restoring force
compared to the outward inertia of the particle.aA®sult the outward perturbed parti-
cle will continue outward. Likewise an inner pelied fluid particle will continue in-
ward. Thus, with the mass conservation insuringtarn flow, a vortex in form of a
toroid arises (see Figure 2). This instability upgressed at low angular velocity by the
viscosity through damping.

Would we rotate the outer cylinder and hold theemone fixed, the flow would remain
stable because the instability occurs only, whenpressure gradient force decreases
with increasing radius.

Therefore the origin of the vortical flow is thentefugal instability.

Cylinger

Adeall

Figure 2: Axisymmetric Taylor vortices with inneylinder rotating only [20]




Being already above the critical number, if wel stitrease the angular velocity of the
inner cylinder, we than reach a secondary instgtstate, where the axisymmetric vor-
tex flow (primary instability) become unstable. Thew flow is called wavy vortex
flow, which is characterized by azimuthal wavine$she vortices as shown schemati-
cally in Figure 3. The waves travel around the &mhat a speed that is 30-50% of the
surface speed of the inner cylinder (King et aB4)%and depend strongly on a dimen-
sionless, radius ratio and angular velocity relatechber called “Taylor number”.

Figure 3: Counter-rotating wavy vortica20]  b)[8]

a) b)

This state is followed by even higher order indiaé$, as the modulated wavy vortex
flow (see Figure 4), twisted vortex flow (see Fig&) or spiral turbulence (see Figure
6).

Figure 4: Modulated wavy vortex flow for, R 350, R = —100 [8]




Bl ol P

Figure 5: Twisted vortex flow [8]

a)

Figure 6: Spiral turbulence [8]

In Taylor-Couette geometries there are furtherinidity modes. In the literature we
find up to 74 different states (Coles 1965) depegdin magnitude and orientation
(counter or same rotating) of the cylinder. A feldhese states are shown in Figure 7
together with the stable regime (Couette flow)
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3  Hydrodynamic Instability theory

3.1 Linear stability

Stability means physically the behaviour of a dyi@insystem toward a light perturba-
tion from its equilibrium. It is clearly represedtby the example of the behaviour of a
sphere subjected to gravity and lying on differgfdrmed surfaces (see Figure 8 ). On
concave surfaces the sphere remains stable ardsirehuilibrium. That is, through
damping effects it returns autonomously to its pahequilibrium after having been
displaced. On a horizontal surface we have an ffexdint” case, since the sphere
doesn’'t oppose any reaction to the displacementhéncase of convex surfaces the
sphere leaves its point of equilibrium by the digg perturbation. The last case depicts
the case of local stability, where the behaviouthef sphere depends on the magnitude

of the perturbation.

©
e

Amplitude

Figure 8: Definition of stability in the point meahics [10]

For continua (fluids) the stability theory analyqeescribes/predicts) the growth (or
decay) of undulating perturbatioh@ver amplitudes from a stationary (basic) state of
the fluid. This definition means mathematicallyattho the unknowns of the differential
equation describing the dynamics of the physicaneimenon a small perturbation is
added. By adding to an arbitrary basic state fugildcity U and pressure P the perturba-
tion u andp, respectively in the dimensionless, incompresdidgier-Stokes equation,
we obtain for the perturbation the nonlinear défgral equation system:

e L UVu+u.VU+uVu= —Vp+ 1 vty )
at Re

V.u = 0.

With the boundary condition u = 0 or u = periodic.

In order to mathematically describe the term “sta3l approaches exist:
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- Lyapunov stability, which requires that the norm of a perturbatiavuad a basic state
remains at all time less than a limit. The normcdheet tend to O with growing time, but
the solution never departs from the basic stateder to be named “stable”.

- Asymptotic stability, which requires with the Lyapunov condition, tha norm of the
perturbation should tend to O with growing time.

- Exponential stability, which exists when the norm of the perturbatiohofes the
graph of an exponential function with growing tinidne constant in the exponent de-
fines the stability.

We focus our interest on the Lyapunov stabilityhatite application of small perturba-
tions. Thus, the quadratiopn linear term (u.Nab(u)) within the equation can be-
glected and we obtain thienear stability problem:

A 1 7
E_I_ UVu+u. VU= —‘Fp-I-E‘F u,

V. = 0.

With the boundary condition u=0 or u =periodic.

Depending on the problem, we can make an assumgganding a possible solution
for the equations. In most cases tioemal mode ansatz is used. It is @eparation

ansatz, which describes the time component of the saluti® an exponential function,
separating it from the space solution’s compon#id andp(x):

[u{x,tj ] _ E}rt[ﬂ{x]]

p(x,t) B(x)

The complex growth ratg = ¢ + iw consists of a real growth rate= E(y) and an
angular frequency = R(y). In general a complex normal mode is either reahm

pears as conjugated couple of complex numbersotim dases the physically “real” so-
lution is always the real part of the complex numbe

For the space term of the normal mode a complexngstson follows, written in polar
coordinatesfi(x) = i(x)e'®*™ whereii(x) € R is the absolute value ad{x) € R

is the phase.
The disturbance u can thus be rewritten:

ul(x,t) i(z)
- | p(x,t) | = evfe=¥ei®» | (2) |in case of the Rayleigh-Bénard problem with
T(x,t) F(2)

andk,, the wave number in x and y direction.
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_ ii(r, =
u(x, tj] = gltgm® l (r:2) in case of the Taylor-Couette problem withg(rz) as

(x, )] ~ ¢ B(r.z)

polar cylindrical coordinates and m as the azimutlzve number.

For reasons of simplicity we will insert the normabde ansatz only with time separa-
tion into the linear stability equations and gefhieesfor all problems. After the inser-
tion, we obtain:

1
i+ U.Vi+4.VU = —Vp+— V-
Re

Vau=0
With fixed or periodical boundary conditions fé(x ).

The stability equation turns into an eigenvaluebfgm, which eigenvalugsand be-
longing eigenvectorii, §). Existence of symmetry and periodicity in the $iolu, ob-

served through experiments, can be translatedniatthematical relations, which
strongly simplify the equations.

Using numerical methods such as the shooting methtite one of the matrix methods
(spectral, finite difference, etc) we will compuite a set of parameters (for example
Re, phi(x)) the eigenvalues’ spectrum of the equatif the form:

yA.B=B.X

with A, B € R" x R" are2 real matrices an& = (i, )i the unknowns’ discrete values
at the nodes of the domain.

Let’s observe a few possibilities:
If 3(y) = tw # 0, than 2 counter circulating waves propagatesuiin the domain.

If 3(y) = 0, than the waves behave exponentially and no osxidatory.

Depending on the sign afi(y) we reach different states, which are:
linear stabil = 0,
neutral stabil I £ max g, [= 0,

linear instabil = 0.

3.2 Bifurcation and pattern classification

A bifurcation is a sudden 'qualitative’ or topolmajichange in the behaviour of a system
occurring when a small smooth change is made tpan@meter values (the bifurcation
parameters) of that system. It is a strong evidémcerossing into instability.

The parameter value, at which it occurs, is cdltetical parameter” or “critical point”
The demonstration of bifurcation can be made wlp lof the Taylor-Couette problem.
That is, we want in this case to draw a 2D-grapt &icontrol parameter, a parameter
we can experimentally vary at will, on the horiznaxe and amrder parameter, a
fluid flow variable we can measure. Such a flowialsle needs to be one, which drasti-
cally changes with the transition to instability.

14



Now let's observe the stable state of our experim&he Couette-flow remains un-
changed along its rotational axe and thus showgta degree of translational invari-
ance, called continuous translational invarianca@lthe hole cylinder height (see Fig-
ure 9a).

The fluid flow velocity measured at any point oéttlomain remains 0 in the axe direc-
tion (w=0).

A steady raise of angular velocity yields at aaervalue, a critical value, to the forma-
tion of Taylor vortices (see Figure 9b). The flolow/s a periodical change along its
rotational axe and is called discrete translationa&riant along L. The fluid flow ve-
locity at the measurement point shows now a nonzahee, which increases with the
angular velocity.

The representation on a diagram of the veloaityn axe direction in terms of angular
velocity is called aifurcation diagram (see Figure 10) and reveals the critical velocity
for transition {2;¢) . The control parameter is the angular veloghiyand the order pa-
rameter is the axial velocity.

0

——

= -

LG

L4

@
(@

a)
Figure 9: Couette flow (a) and Taylor vortex floy (18]

The critical Reynolds number and its related wawalner have been computed through
out the literature using different numerical appites for different ratio of radii. Reck-
tenwald et al. have obtained to following here sdvoed table:

Radii ratio | 0.975 0.90 0.80 0.70 0.60 0.50
Re_crit 260.9 131.6 94.7 79.5 71.7 68.2
k_crit 3.13 3.13 3.13 3.14 3.15 3.16

Table 1: Critical wave and Reynolds numbers féfedent radii ratios
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Figure 10: Bifurcation's diagramm of the axial \@p with respect of the angular inner
wall velocity. Qi is the critical point [5]

If we write a complex eigenvalue near the critipaint in its most general form, the
occurring unstable mode can be classified accoring eigenvalue.

The general form isr(k?) = iw(k*) + A(k?) with the real frequency w and the real

growth rateA, both functions of the wave number k [17].

- Fore =0 and z—nE = 0 the instability is spatialljnomogeneous and_monotorin

k=0
time around the critical point. The category nasiéHm” and the related equation is
the real Ginzburg-Landau equation describing f@megles gradient systems in physics.

di
- Forw # 0 and —;

dk

= 0 the instability is spatialljnomogeneous and_oscillatingn

k=0

time around the critical point. The category nam#&Ho” and the related equation is the
complex Ginzburg-Landau equation describing fomexia Hopf-bifurcations.

df
- Forw =0 and—
ik

= 0 with k_ = 0 the instability is spatiallperiodical (we call

it “Turing”), and monotorin time around the critical point. The categorynaais “Tm”
and requires a system of minimum 2 equations. Ehated equation is the Swift-
Hohenberg equation describing for example Tayloué€l®, convection or Faraday in-
stabilities.

-Forw=10 andj—f" = 0 with k_ = 0 the instability shows a spatialltring”-

structure while_oscillatingn time around the critical point. The categoryneais ‘To”
and requires a system of minimum 3 equations. Eiated equation is the Swift-
Hohenberg equation describing for example waveabbties and some convection
instabilities of binary mixtures.

- Furthermore there is a category nard@delated to the Cahn-Hilliard equation for the
description of thin film and Kelvin-Helmholtz ingtidities.
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A graph of the real part of the eigenvalue wittpexg to the wave number for the dif-
ferent bifurcation families (Typl, TypeT and TypeKO0), each at differentontrol pa-
rameters can be seen in Figure 11 with= current control parameter — critical control
parameter.

Through analysis of the Taylor-Couette problemhis twork, we expect the results of
our numerical solution to match the tyide

AL e>0 A A
0 K e>0 K K
- - -
€= e>0
<0 ]
e<0 e=0
Typ H Typ T e<0 TypK

Figure 11: Real part of eigenvalue with respe¢htowave number for different bifur-
cation types [17]

3.3 Application on the Taylor-Couette problem

We start with the usual NS equations in dimensssferm:
au ﬂ
En +U.VU = —Vp+uV-U

We then add a disturbance u to the basic stasnd obtain:
du —_ 1 o2
E-i— Uy Vu +u. VU, = ‘Fp—FRE Vou.
From the symmetry properties of the basic flow, alihare the translational invariance
(i = ﬂj, the rotation invarianc{i = D]and the time invarianc-(ei = ﬂjonly the
d= dge dt

translational invariance in a discrete form (peiedag in axial direction) remains. We,
thus, consider axisymmetric disturbances, we caprdpose u as:

u=vey+ VX ['qré‘tf_,)

This automatically enforces incompressibility b¥fifling the continuity equation.

For the velocity components we apply the normal eneeparation ansatz of the form:
= v[rjeikzeﬁt’ 1,!1=1,E;[’r‘]eikzeﬁ

This ansatz supposes a sinusoidal variation ofdtbirbance in the z-direction with
axial wave numbek (k ¢ R), a growth rate or amplification facter(c ¢ C) for the dis-
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turbance, and amplitudes of the disturbance [v{d&r)], which are dependent on the
radial position.

The @) component of (*) and rot (*) now become [8]:
ov = Re D%y 4 ikr 1 (QrY) Y

gDy = Re YD)y — 2ikOw

with the associated boundary conditions:

v=yY=19 =0atr=r,n

And the operators:

. L 1 14 o] 1 .
proprLo12(,0) 1,

& rdr\ gr) rt

) denotesdi

A dimensionalization of the system of equationsagied through replacement of 1/Re
by v. So the parameter terms can be inserted in Slamdithe computed terms are col-
lected in Sl unit as welllhis choice of suppressing the dimensionless Rdgnaumber
from the equations let the angular velocity asaicontrol parameter, from which the
related Reynolds number can be computed, if wanted.

It leads to an eigenvalue problem withbeing the eigenvalue to be determined and
Q(r), Re (through the boundary angular veloci®y) andk being the input parameters.
The computed eigenvalues will predict the growtldecay rate of the mode.

The numerical procedure to be developed enablésbdity test from a basic state (a
given Q(r) profile) and finding the smallest value that yietdsinstability (eigenvalue
with positive real part). Since the combinatioragdiven2(r) andRe is stable only if it
is stable for all wavenumbers k, a scan over adraage ofk for a given boundary
angular velocity; is necessary.

We will, thus, gradually increase Re, through iasiegQ; and vary for eacl®; the
axial wave numbek over a broad range until a positive real eigervalccurs.

The tested velocity profile originates from thevsad of the cylindrical NS equations
under the assumption related to the “Couette floMie occurring differential equations
system leads to the basic state velocity profile:

Qr)=Ug/r=A+ E/7*

With :

18



2, re—ar? ri—r?
A=2000 p=1"1 (Q,-Q,)
T o T

This eigenvalue system of equations will be solaaderically using a class of tech-
niques known for its fast convergence. It is thecsfal method with Chebyshev poly-
nomials.
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4  Spectral method for numerical solving

Spectral methods are a family of methods used pliexp mathematics and scientific
computing for solving numerically PDEs. In orderfitad an approximation to the un-
known solution, the methods utilize approximatiole§ined in terms of truncated series
expansions of orthogonal polynomials (Lagrange,ebelge or Chebyshev) or trigono-
metric functions (Fourier), substitute the unknosisthe PDE with these series and
compute the residual of the approximation usingegithe Galerkin approach or the
collocation approach.

Galerkin Approach:

In the Galerkin approach the approximation neeldetdound so that the residual is or-
thogonal to the origin space of the unknown, tisatol each of the basis functions.
Mathematically it means that the integral of theideal-basis function product over the
domain must vanish. The following example showsaiglication:

Eul:rr] Eul::r,ﬂ

Consider the PDE: -

We choose the following approximatien;(x,t) = Zy=_y a;(t)e™™.

Buylxzt) Auylxt)

We define the residuak,, = — =

We require that:

[y = [ (22020 o

dat dx

It leads to:

J du y(x,t) Su.\[x t)
— dt O

) e U dx = j [ak (£)e™ — tka, (t)e'™ )e ™ dx
= (a;(&) —gja;(8)) =0
For—n < j = N. Hereaé;.[r] denotes the derivative af(t) with respect to time t

To obtain the Galerkin approximatien,(x,t) we need to solve the ODE

d—‘;ri} = ija;(t)for the coefficienta;(t). In this case we can do this analytically, of

course, but in general we do this using some OINeEB0O
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Collocation approach:

For the collocation approach this residual haset@dmputed at a set of domain points,
which number equals the number of undeterminedficeaits of my series. These

points are called “collocation points”. The resideguation is required to vanish at
those points, which turns the differential equatitio a matrix equation. This method is
also called “pseudospectral approach”

As example we choose the linear, one-dimensionahdary value problem:

u, —(x®+3x%u=0

u(—1)=u(1) =1

In order to satisfy the boundary conditions indejfesrily of the unknown spectral coef-
ficients, it is convenient to write the approxinoatias

u,=1+ (1—x*)(ay +a,x +a,x*), where the decision to keep only three degrees
of freedom is arbitrary.

The residual for this approximation EE:[x; Qg Ay, a,z) = Ug,, — (x® + 3x%)u,

and yields:

R = (2a, + 2a,) —6a;x —(3+ 3a, + 12a,)x* — 3a,x° 4+ 3(a, — a,)x* + 3a,x°

+(—1—a, —|—3a2]x6— rxlx?—l- (ag— azjxa—l-alxg—l- 100:2:(1“

To minimize the approximation error, we choose aikenthe residual zero at a set of
points (collocation points) equal in number to timeletermined coefficients in u2(x).
Let’s arbitrarily choose the points xi = (-1/2;12), we obtain the three equations:

. 659 . 1683 1171 49
= = ——3d ——{dqy ———— dq — —
g 256 ° 512 1 1024 % 64

eq2 = —E[rxﬂ, — azj

659 1683 1171 49
eq3 = GQp T — -4 T4y — —
256 512 1024 = 64

The coefficients are then determined by soh#ga = eq2 = eg3 = 0 and yields:

784

g, = ———
o 3207’

a, =0, a, =a,

The solution can be reconstructed by substitutiegconstants inau
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Collocation points within the collocation approach:

The first idea we might have is to use equispanggtpolation points. It has turned out
to be catastrophically bad in general, becaus®llgm know as “Runge phenomenon”
encounters. Discovered by Carl David Tolmé Rungenmexploring errors’ behaviour
by polynomial interpolation of functions, it dedms the problem of oscillation at the
edges of an interval that occurs when using polyabmterpolation with polynomials
of high degree. This phenomenon corresponds t&thbs phenomenon in Fourier se-
ries approximations (see Figure 12).

1.2

=04 0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 12: The red curve ise Runge functianThe blue curve ia 5th-order interpolat-
ing polynomial(using six equally-spaced interpolating pointsg Tneen curve ig 9th-
order interpolating polynomigusing ten equally-spaced interpolating points)

This means, that for equally spaced points thedueds at the edges not only fail to
converge in general with increasing N (degree dymmmmial), but the residual even
diverges at a rate of up t8.2

Optimal interpolation points should therefore bewenly spaced and yield to a rapid
vanishment of the residual.

The solution has been found for the particular addeagrangian polynomials and can
be applied without restriction to all types of podynials. It says that the OPTIMAL
INTERPOLATION POINTS are the ROOTS of the CHEBYSHP®OLYNOMIAL of
DEGREE (N +1) [9]. Although this family of polynoals will be presented in an up-
coming chapter, we anticipate in the explanatiorirobt of Chebyshev polynomials”
also named “Chebyshev grid points”.

If a semicircle of unit radius is cut into evenlyased segments, and then vertical lines
are drawn from these “Fourier” grid points to theelsegment [-1; 1], which is the base
of the semicircle, the vertical lines will intersgbe horizontal line at the Chebyshev
grid points.

The polar coordinates of the grid points on theiseate are unit radius and andle=

n(2i - 1)/(2N) where i = 1,..., N. The Chebyshev gomints are x= cosf)).

We derive thus only two optimal sets of interpaatipoints, the Gauss-Chebyshev
points and the Gauss-Lobatto points.
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] i=1,..,N [‘Roots” or “Gauss-Chebyshev’]

X; = COS L— i=0,..,N— 1[*Extrema-plus-Endpoints or “Gauss-Lobatto”]

TN = —‘l I ‘ Ty =10 ‘ :‘r:[, =1
Figure 13: Chebyshev points are projections orgacthxis of equally spaced points on
the unit circle [13]

The use of the Chebyshev points reduces stronghRimge phenomenon (see Figure
14):

equispaced points Chebyshev points

15 1.5
1 1

0.5} 05
o1 1 0

—0.5¢ max ermor = 59001 -05 max emror = 0017523

T o5 0 05 i T4 a5 © w08 4

Figure 14: Degree N interpolation ef(x) = 1/(1+ 16x%) in N+1 equispaced and

Chebyshev points. With increasing N, the errorgdase exponentially in the equis-
paced case (Runge Phenomenon) whereas in the @leebyase they decrease expo-
nentially [13]

Both approaches have an excellent, so called “extaal convergence”, which is the
fastest possible among the numerical techniquesT}® reason lies in the whole do-
main overlapping expansion (global approach) ofajeroximated solution in compari-
son to other algorithm families. Figure compares tégions of direct dependency in
derivative formulas for the three families of algfams, where for the finite difference
and finite element methods only those points whielwithin a given subdomain con-
tribute directly to the derivative approximationstihat subdomain (local approach).
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Spectral
One high-order polynomial for WHOLE domain

Finite Difference
Multiple Overlapping Low-Ovrder Polynomials

Finite Element/Spectral Element
Non-Overlapping Polynomials,
One per Subdomain

Figure 15: Three types of numerical algorithms. e, slanting lines illustrate all the
grid points (black circles) that directly affecietlestimates of derivatives at the points
shown above the lines by open circles. The thigklolertical lines in the bottom grid
are the subdomain walls [9]

This global approach requires that the solutiobeéacomputed remains smooth over its
entire domain for an accurate result (no shock wapgj method). Depending on

whether a problem is bounded and periodic or bodiredel non-periodic, the Fourier

series or the polynomial expansion approach is reoitable.

4.1 Chebyshev polynomials

Chebyshev polynomials, named after Pafnuty Chelwsdre a sequence of recursively
defined orthogonal polynomials. Polynomials ardhogbnal, when their inner product
on the vector space of all polynomials equals z&me distinguishes between Cheby-
shev polynomials of first kind (Tn) and of seconddk(Un), as well as a pair of related
(Jacobi) polynomials, which are called Chebyshelynmmials of third kind (Vn) and
of fourth kind (Wn). All these polynomials haverkém an important position in the
field of approximation theory, numerical integratiand spectral methods for partial
differential equations. We will focus on the Chetg polynomials of first kind (Tn) to
construct spectral methods for our bounded, norogiereigenvalue problem.

Chebyshev polynomials Tn(x) of the first kind ip@ynomial in x of degree n, defined
in the interval [-1, 1] by the recurrence relation:
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To(x) =1
T, (x)=x

Tn+1(xj

=2xT, (x)—

T._,(x) x & [-1,1]

We show a short list of developed polynomials uhéigjree 9:

Ty(x)=1

Ty (x)= x

T,(x)=2x*—1

Ty(x) = 4x3 — 3x

T,(x)=8x*—8x*+1

T.(x) = 16x° — 20x? + 5x

T.(x)=32x*—48x*+18x% -1

T.(x) = 64x7 — 112x5% + 56x3 — 7x

Ty(x) = 128x°% — 256x% + 160x* - 32x* + 1

Ty(x) = 256x° — 576x’ +432x° —120x% + 9x

Chebyshev polynomials of degree 0 till 5 in a graph

1.0 7\

T

0.5

s

X\

—______._»
Lolad gl

T, ()
=
°
T T T
-!—L____—

"g‘—{

-0.5F

[ ]

-1.0

'\.

I N T A Y

Figure 16: The first few Chebyshev polynomialshe first kind in the domain -1 x<
1: The flatTo, Ty, Ty, T3,

andTs.
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The necessary orthogonality condition of the pohgrad is fulfilled with respect to the
o1

weight function
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5  Solving the eigenvalue problem
We recall the eigenvalue differential equationdesyswith its boundary conditions
ov = Re 1D%v L ikr 1 (Qr?) ¢
oD% = Re 1 (D%)% — 2ikQv
v=1y =1 =0atr=r,7
We rewrite the equations in matrix form:
-1n2 : -1 2"
dr | M v e |
At first we write explicitly:

o 1 15( ) )
=V T e U TN Tt ey

DH_&“JFESE (3+2k1)af+ 3 2k° a+ —3+2k2+k4
O R I Al Fr-il P iy P s

r g73 ¥ 7t

() denotesdi

LI LR

2 n z_ﬂz' z: ; — 2'2 2
Q=Q(r)=Uy/r=A+B/r" = (M) + (T” - (ﬂf—ﬂDJ)Ir‘
— T

We expand the unknows éndy) according to the spectral collocation method with
Chebyshev polynomials, where N stands for the nurabeternal points (Roots) to be
computed. The number of roots needs to be increag@dand 4 respectively farand
w according to the number of boundary conditionatesl tov andy.

N+2 NEa

v() = ) () W) = ) Ty ()

m=1

We carry a coordinate transformation within theypoimials from x to r according to
T

the linear transformation: = ?"”—J”"‘ + x 2L with re [r;, r)] and xe [-1, 1]. That is, the

=

interval is mapped to the standard interval for @leebyshev polynomials. Table 3

-
&

shows such a transformation applied to polynonoéldegree O till 5, wherge =

T~ T

ot

and= —=— , together with their derivatives.

T

We insert the expanded polynomials into the eqoatievhich yields algebraic equa-
tions depending on the coefficiemsy; andr.
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The collocations points (roots) are developed atingrto the Gaul3-Lobatto-method
(see Chapter 20), linearly transformed freno r (see Table 2) and truncated from the
first and last point (boundary points) before thegertion into the algebraic equations.
This step converts the algebraic equation infam+ 2) x (2N + 2) matrix problem.

For the case of N=4 we obtain the system in Figutewhere for each matrix the rows
correspond to the collocation points, the colummshe Chebyshevs; Bnd the green
rows to the boundary conditions’ equations, whiah &so written as a linear combina-
tion of the coefficients,, andyp.

ov=Re ' D*v + ikr (Qr?) 4
oD* ¢ = Re™"(D?)* ¢ — 2ikQuv

-1'1-

000000007 [wo1]

00000000 ve vs

Ti(zp) 00000000 v3 Re™ D21y ikr=t(r?)'Ty v3
00000000 vy vy
00000000 vs 00000000 vs
0000O0OO0OO0OO vg 0O000O0ODO0OO0OO vg

o |oo0000 e 1
000000 p2g(, ) Y2 “2ikQT;  Re~Y(D2)2Ty 2
000000 g 3
000000 D D
000000 s 000000 s
000000 g 000000 g
00000O0 el 000000 kg
_O 00000 i _r;';g_ _l) 00000 i _r;';S_

Figure 17: Eigenvalue problem in matrix form for ANwith labelled submatrices [8]

We remind here, that a dimentionalization of theteym is carried as mentioned in
chapter 3.3underlined passage).

il 7 Xj Iy
To 0 a —_; a—b _
—2/2 a—bV2/2
0 a
—1 a—b T4
T T1 a+b V272 a-+bvV2/2
1 1
—1 a—b
L a+b —0.809 a — 0.809k
- 5 —0.309 a— 0.309b
_ﬁ_ L) _1 _l_;..-l TS H N | 1
-05 |a—>b/2 0.309 a+ 0.309b
Ts 0.5 Jatb/z 0.809 | a+0.809b/2
1 at+b
- at+ b

Table 2: Non-truncated Gauf3-Lobatto collocatiomfmrelated to the grade of the po-
lynomial Hefore andafterlinear transformation with a=f¥r;)/2 and b=(-r;)/2
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T(x) T(r) d 70 8* . a° . at .
=iy £ £ i
iy Ay () drd () Ayt ()
To 1 1 0 0 0 0
T x cr —e C 0 | 0
T, 2xt—1 2(er—e)* —1 de(er —e) 4c? 0 0
Ts 4 — 3y Afer —e)? —3(ef 12c({er —e)? — 3¢| 24c(cr — e) 24¢7 0
T, et —8x? 1| 8ler—e)* —8(c] 32c(er—e)? — 16 96 (cr —e)? — 16| 192¢%(cr — &) 192¢*
Ts lox" = 20x 4| 16(cr —e)” — 20 80c(cr — e)* — 60| 320 (cr — e)? — 6| 960c¢* cr — e)* 1920c¢*(cr — )

Table 3: The first few Chebyshev polynomials initleeiginal form (I'(x), x e [-1, 1])

and after the coordinate transformatioiry, r € [r;, o] ) with the belonging derivatives.
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6  Numerical set-up

The MATLAB environment has been used for computgtishere a series of functions
have been implemented to support the main program.

Function ChebT(N): computes the coefficients of the Nth Chebyshevmpmtyial of the
first kind. These coefficients are stored in theamding order of powers (see Table 4).

Chebyshev polynomials ChebT(N)-results
To(x) =1 [1]
T, (x)=x [1 0]
T,(x) =2x*—1 [20-1]
Ty(x) = 4x3 — 3x [4 0-30]
T,(x)=8x*—8x*+1 [80-801]
T.(x) = 16x° — 20x° + 5x [16 0-20 05 0]

Table 4: Results of function ChebT(N) in comparisofew Chebyshev polynomials

Function Subst D(N, r;, ro): uses the coefficients @hebT(N) to build the Nth Cheby-
shev polynomial T(x) with help of the MATLAB-Symholtoolbox. It, then, substitutes
the x-variable with the r-variable using the linealationship between x and r. The lin-

-

2 ro i
P o— [l

e e

ear equation ist = ¢cr —e = and the results for a few Chebyshev poly-

nomials with = 0.8and g=1 can be seen in Table 5.

Chebyshev polyno- Re_Subst_D(N,0.8,1)-results
mials
Telx) =1 To(r)=1
T(x)==x T,(r)= 10r—9
T,(x) = 2x? — 1 T,(r) = 200r? — 360r + 161
Ty(x) = 4x® — 3x T,(r) = 40003 — 10800+* + 9690r — 2889
T,(x)= 8x*—8x*+{ T,(r) = 80000r* — 2880007° + 388000r? — 2318407 + 518
T.(x) = 16x° — 20x? | T (1) = 1.6e°r° — 7.2e°r* 4+ 12.94e°r® — 11.61e°r* 4+ 5200

Table 5: Results of function Re_Subst_D(N,0.8,19amparison to few Chebyshev
polynomials
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Main program:

The main program computes meanwhile the x-collooatiector after GauRR-Lobatto
using the input "N", truncates and transforms Weistor into the r- collocation-vector.

In the MATLAB environment it looks like this:

X
X
r

-cos(pi*(0:n+1)/(n+1)); % Conputation of the x-collocation points
X(2:n+l); % Truncation to | ose the boundary points
= x*(b-a)/2 + (b+a)/2; % Transformation into r-collocation points

D Il

Keeping =0.8 (here "a") and,+1 (here "b") and considering N=5, the points cotagu
with the those MATLAB lines are respectively:

X =-1.0000 -0.8660 -0.5000 0.0000 00>00.8660 1.0000
X =0.8660 0.5000 0.0000 -0.5000 -0.8660
ra=0.8134 0.8500 0.9000 0.9500 (986

A loop is conceived, so that the functi@bst_ D(N, ri , ro) computes the ;ir)-
polynomials in ascending order. We substitute fachenew polynomial the unknown
"r" of the polynomial by the vector "r_a" and stdhe row vector in a dynamic matrix.
In order to keep the matrix quadratic, we needxtered the vector "r_a" according to
the requirement of the series. That means an additi 2 elements for series wfand
an addition of 4 elements for the seriegyo¥We, then, have:

* r_av=0.8134 0.8500 0.9000 0.9500 0.9866 0
* rawy=0.8134 0.8500 0.9000 0.9500 09866 O O O

If we keep N = 5, we thus obtain for each of th&nawns of the differential equation
the Chebyshev-matrix:

= T,(0.8134) - T,(0.8134)\ /v
v(r) = Z Ty (7) =( : ; )( : )

TDI[':'] Tsl[':']

n=1 2

N+a Tﬁ(ﬂ.5134] TS [0.8134] wi
Y(r) = Z Y, T, (r) = ( s : )( : )

n=1 T,(0) To(0) Y

Staying in the same logic, a differentiation of thknows would simply mean:

a a
3 N+2 3 ar [Tu (Tj] r=0.3134 " ar [Ts [Tj] r=0.5134 1;:1
av[r]=z:;vng[ﬂ!_1(r]]= . S (Q?)
5 [To(7)],=0 g [Te(r)]=o
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N+2

d d
—w(r) = Zw pRLENO)

d d

a [T, (Tj.] r=0.8134 e [Tg (T:?] r=0.2134 (wl)
a 8 "

E [TD[T]]?'CD E [TB(T]]?":I} ?

which by usage of for example the operators

. 8* 19 1,
D= —+-————k’

on the unknownw leads to the conclusion:

) - D¥[Ty(M)]r=oszs DPP[Ts(Mr=os3s | (V1
D2u(r) = Z v, D2[T,_, (r)] = = - :

DT (]ey  ~  DATe(hoo [ \¥

n=1

L:_:_ [TI} (rj]r=l}.8134 L:___ [Ts (T"j]r:ul.smn;

L:__ [To(m)]r=0 EI: [Te(r)]r=0
[5m0] [
N -I : r=0.813.4 . _I : r=0.8134
G I E G I
[; To (T]] F=0.5134 [_ Te (T:]] r=0.8134
EOI IO

Because we start with the(il-polynomial (result of the functioBubst_D(N, ri, o)) we
can easily compute the differentiation matriceqy order by differentiating the poly-
nomial to the required order and substituting thknown "r" with the extended vector
"r_a", as previously done for the Chebyshev matrix.
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Adding the boundary conditions to the equationsiireg the overwriting of the 2 ex-
tended rows o¥(r) with the 2 equations:

N+2 N+2
o(r)= ) %l (D=0 and  v(r)= ) vl () =
n=1 n=1
and the overwriting of the 4 extended rows/(f) with the 4 equations:
N+a2 N+4
w(r) = Z v, Ty (r) = and  w(r) = z v,T, (1)
P N+4 P 3 N+4 3
— () = Zv@a_l{n} =0 and  —u(n)= Zvﬂg T, (r)=0
mn= n=

We then rebuild our matrices according to Figurgdfe 17 an use the built-in "eig"-
function of MATLAB to obtain the eigenvalues of thgstem for the chosen rotational
frequency of the inner wadb; andk the chosen wave number. One question remains:

If we discretize the system with the amount N @fencollocation points for each of the
unknows, we obtain an eigenvalue vector with (2*Ne&ments. Which eigenvalues
are "real-existent" and which are "artefact”?
N=3 N=4 N=5

61,25481109  264,8349055  630,457737

41,38233975 154,0798383  556,828054

-41,88030239  81,79466514  239,678155

108,4525213 200,327503

- 806618E-14  21325E-11  41687E-10 |

-8,963157049  9,988425828  2,70708263 Artefact-eigenvalues

-25,36682377

-12,2970891 21,8420432

18,83656199 26,8901804
10,5500427

10,7859461

~

_J
Table 6: Eigenvalues for different collocation nwerg The artefacts are coloured.
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The artefact-eigenvalues have the property to balsnthan 16 (absolute value) and
are exactly 6 in number (see Table 6). This nundmeresponds to the number of
boundary conditions added to the equations formadepoints. Their analytical value is
0. Therefore a filter has been built in, which goes through the compeigdnvalues
and erases the values betweérand #. The filter value can be set at will.

6.1 Simulation and results

The main goal of this simulation is to find at whicollocation nhumber N the critical
values for the input parameter (here the rotatiopldcity of the inner wall) match with
the literature values. A study had been carried\fel (we refer to [19]) and brought
the following result:

Reynolds number (Re) Wave number (k)

Computed values for N =1 87.44 13.7

Residual 7.26 1.95

Table 7: Comparison between literature values anapcited values of the critical Rey-
nolds number and related wave number for N = 1

To roughly localize the critical velocity with itelated wave number, a first simulation
will be carried out with generously broad rangestfi® wave number and near-critical-
Re ranges for the Reynolds number. The followingusation parameters have been
implemented in S| units:

e Inner radius 0.8 [m] and Outer radius = 1 [m].
» Gap width = 0.2 [m].
« Fluid viscosityv = 1 [nf/s].

* Inner radius frequency related Reynolds number R@2:=96] with an in-
cremental step size of 1.

* Wave number k = [0.5, 25] with an incremental stize of 1.
* Number of inner points N = 5.

« Artefact-Filteri =107
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The computed diagrams are:

- real part of maximal eigenvalue over wavenumberdach Reynolds number

and
- maximum of the real part of maximal eigenvaluerd®eynolds number

Those should be compared with literature togethdr the resulting critical wavenum-
ber, Reynolds number, at which the maximal eigare/ailirns positive (the fluid flow

becomes unstable).

6.1.1 Maximal eigenvalue-wave number diagramforN =5

The following diagram shows for Reynolds numbersnveen 85 and 100 a similar
curve shape of the maximal real eigenvalue witlpeesto the wave number. We in-
crease Re by 1 every loop and obtain 20 curves.

MWax-Eigenwert = fiWellenzahl) fir versch. Re
50 T ! ! 5

-a0

-100

Mazx. reeller Eigenwert

-150

-200

260 LS
]

Wellenzahl k

Figure 18: Maximal real eigenvalue with respectht® wave number for different Rey-
nolds number (92Re<96)
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We recall the expected qualitative graphs for tebdlems’ family, to which the Taylor-
Couette instability belongs (see Figure 19). Wectade that the computed graph
shapes show similarities with the theoretical orfldse critical values are reached as
soon as the curve is tangent to the x-axe. Thdblighe Reynolds number as control
parameterg = current Re — critical Re. This occurs for Renssn 87 and 88.

A
e>0 K
e=0
e<0
TypT

Figure 19: Theoretical maximal eigenvalue-wave nengraphs of type “Turing”

The related wave number lies between 15 and 17.

A range refinement of the 2 control variables bemvf94, 95] for Re and [15, 17] for k
would bring accurate results.

6.1.2 Maximal real eigenvalue-Reynolds number diagr amforN=5

Max-Eigenwert = f(Reynoldszahl)

Max. reeler Eigenwert
(4]

-20¢ ‘ ; ‘ . ‘
91 92 93 94 95 96 97
Reynoldszahl Re

Figure 20: Maximum of the maximal real eigenvaluthwespect to the Reynolds num-
ber
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If we plot the maximum of each curve from figuresoits respective Reynolds number,
we obtain the maximum of maximal eigenvalue withpext to Re. It shows a linear
relation between the two terms with a slope of 67871. It allows a linear interpola-

tion for the computation of the exact critical Relgs number for Max-eigenvalue = 0.

Reynolds number (Re) Maximal real eigenvalue
94.0000000000000 -5.15581706639940
95.0000000000000 1.72633064234536
Linear interpolation 94.7491582 0

Table 8: Linear interpolation for the critical pbin

The critical Reynolds number is, thus, 94.75.

This number confirms the readjustment of our raiogdre from [92, 96] to [94, 95], in
order to obtain the related wave number. A scahiwithe latter range would confirm
the critical value of Re, forcing a comparison betw the graphical critical number

with the interpolated one and at the same time tiggelated wave number.

6.1.3 Maximal eigenvalue-wave number diagram for N =5 (revisited)

For Re [94, 95] with a step size of 0.1 and k [1B] with a step size of 0.1, we obtain
the diagram of Figure 21. The curves shows, thatdfitical Re lies between 94.7
(fourth curve from the highest) and 94.8 (thirdveufrom the highest) which complies
with the interpolated value 94.75. The correspogavave number k =15.7.
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Max-Eigenwert = f(Wellenzahl) flr versch. Re

Re

Max. reeller Eigenwert

A\ =4

s Critical point
> for k=157

_10 Il 1 Il 1 Il 1 Il 1
15 152 154 156 ~158 16 162 164 166 16.8 17
Wellenzahl k

Figure 21: Truncated diagram of the maximal regéevalue with respect to the wave
number for different Reynolds number for N =5

6.1.4 Critical values of the Reynoldsnumber for N > 5 and Runge
phenomenon

We assume that with increasing number of collocagioints (N), the accuracy of the
critical Reynolds number (Re) increases. SimultasBothe simulation time increases
rapidly with N. Instead of varying Re and scannavgr multiple wave numbers (k), we
will fix Re = 94.7 and k = 15.65, which are thetical values in the literature, and vary
N (N= 10, 20, 30....)

Table 9 shows for different N the maximum of thal+eigenvalues. These eigenvalues
increase rapidly with N, which is proof of the Renghenomenon. The challenge in the
use of Chebyshev polynomials is to choose the nuwibeollocation points, so that this
effect doesn't occur.

N 10 20 30 40 50 60

real() -0.2331 -0.2441 -0.0346 0.1672 4.3e07 2.8e08§

Table 9: Real eigenvalues with respect to collecatiumber at the critical point
(Re=94.7; k=15.65)
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6.1.5 Influence of the position of the collocation points

As mentioned earlier the collocation points are poted after Gaul3-Lobatto (see Fig-
ure 13 and Chapter 6/main programm). We are irteetén the influence of uniformly
distributed points on the results. Therefore we gara the results of a simulation based
on the values of chapter 6.1.3 (Re [94, 95] wilitep size of 0.1 and k [15, 17] with a
step size of 0.1) for N=5 but equally spaced.

Figure 22 shows extremely high maximal real eigekrev@ompared to Figure 13. This
wrong solution confirms the theoretical approacticl predicts accurate results
through usage of Chebyshev polynomials only ang trihe collocation points are the
Gaul3-Chebyshev or the Gaul3-Lobatto points. Exptamsatan be read in [9, p.3]

Max-Eigenwert = f(Wellenzahl) fur versch. Re
428 T T T T

426

424

422

420

418

Max. reeller Eigenwert

416

414

412

410

408 1 1 1 Il 1 Il 1
15 152 154 156 1538 16 162 164 166 168 17
Wellenzahl k

Figure 22: Truncated diagram of the maximal regéevalue with respect to the wave
number for different Reynolds number for N = 5 dtyuspaced points
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6.1.6 Representation of the flow field

A routine has been written which plots the ve [v; ] 0.9241
tor field for a chosen maximal eigenvalue. Th | 2 oo
routine takes the eigenvector related to the cl | v4 0.0528
. U5 0.0759
sen eigenvalue and recontructs the veloc | g _0.0078
field through building the chebyshev serie ‘;; 0 + 0.01201
. ) ';‘ 0 - 0.00101
The following plots (see Figure 24) show th | v3 0 - 0.01604
vector field for an overcritical flow. In this cas: w: 0 % 0:0016
. ) ) 7 0 + 0.0040i1
flow the eigenvector looks as presented in Fi | 6 0 - 0.00061
YT 0 - 0.0000i
ure 23. It shows thatandy are out of phase as | vs | o0 4 0. 0000%
expected. Figure 23: Eigenvector in an over-
critical flow
a o :é‘t’.’"ﬁ"i#lji
04 . E .
e : % : oS 1 7 b o5 o7 [0 08 | ] C)

Figure 24: Vector field plot (N=5) of an overcraiceigenvector in overview a), from
the top b), with zoom on the vector c)
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Figure 24a) shows to a certain extend the expeateiites. Figure 24b) and c) show
that the vectors captured on a plane have a compdnat show out of it, which is a
clue for a toroidal behavior of the flow.
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7 Discussion and further work

The results of carried computation of the Taylo€te eigenvalue problem for grades
higher than 1 of Chebyshev-polynomials must be @eg with literature results. As

the following table shows, the computed resultscmaeally good with the literature

values. It confirms the well known rapid convergemnd the spectral collocation meth-
ods.

Reynolds number (Re) Wave number (k)
Literature values 94.7 15.65
Computed values (N =5 94.75 15.7

Table 10: Comparison between literature and contpwaies for the critical values of
the Reynolds number

This analysis requires Gauss-Chebyshev or GaulRHioopaints instead of uniformly
distributed points over the domain (results froraptler 6.1.5).

The developed routine can be adapted to any (sysfedifferential equation problems.

Problem can arise in the choice of the artifat¢efilvaluel, when approaching the criti-
cal zone. Also the choice of N should be takenfadyein order to avoid the Runge
phenomenon (see Table 9)

Further work could be:

* The implementation of stop-subroutine, which woulterpolate the maximal
eigenvalues scanned over the wave nunkband check, whether the interpo-
lated function is tangent to the x-axe or not befibre next Reynolds number is
inserted in the equation.

 The implementation of a more accurate artifacefilfor near-critical-point
cases.

* The implementation of a more general post procgssintine, which allows the
representation of any states (eigenvector) atiams. t
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