
1. Introduction ... 3
1.1. Motivation ..3
1.2. Project Description..3

2. System Overview .. 5
2.1. Hardware Description...5

2.1.1. GASB Gas Sensor .. 5
2.1.2. GASB Sensor Platform... 5
2.1.3. EZ430-RF2500 Evaluation Kit... 7
2.1.4. The CC2500.. 8

2.2. Software Description...9
2.2.1. SimpliciTi: Low Power RF Network... 9
2.2.2. User Application.. 11

3. Design Considerations.. 13
3.1. Assumptions and Dependencies..13

3.1.1. Board Support Package.. 13
3.1.2. Access Point and End Devices... 13

3.2. General Constraints ..13
3.2.1. Hardware Constraints .. 13
3.2.2. Network Topology Constraints.. 14

3.3. Goals and Guidelines ...14
3.4. Development Methods ..15

4. Architectural Strategies.. 16
4.1. Code Composer Studio 4 ..16
4.2. CCS Project Structure ...16

4.2.1. File Structure... 16
4.2.2. Linked Resources .. 17
4.2.3. Applications... 19
4.2.4. Project Configurations ... 20

4.3. Debug methods ..22
4.3.1. The CCS Debugger .. 22
4.3.2. Serial-to-USB Interface.. 22

5. System Architecture ... 23
5.1. System Functionality Overview..23
5.2. Access Point Program Flow ...24
5.3. End Device Program Flow..25
5.4. Other System Devices...25

6. Policies and Tactics .. 27
6.1. Coding Guidelines ..27
6.2. Testing...27
6.3. Communication Interface...27

7. Detailed System Design.. 29
7.1. Access Point Software Implementation.......................................29

7.1.1. Main Program Loop.. 29
7.1.2. Auxiliary Functions... 33

7.2. End Device Software Implementation...34
7.2.1. Main Program Loop.. 35
7.2.2. RF Synchronization Function ... 38
7.2.3. Auxiliary Functions... 42

7.3. Common Libraries ...45
8. Conclusion and Outlook .. 47
9. Bibliography .. 48
A1. Source Codes.. 49

A3. Definitions...49

Chapter 1 Introduction 3

1. Introduction

1.1. Motivation
Gas sensors can be used in a great number of situations [1], and,

if the technology is applied correctly, can lead to better results than
other types of sensors (for example in fire detection). Another aspect of
gas sensors is that they are most of the time sensitive to more than 1
type of gas which makes them very versatile. The GASB gas sensor, one
of the hundreds of types of gas sensors in existence, is the focus point of
the project described in this document. Its primary function is that of a
smoke and fire detector but other usages are possible. The GASB gas
sensor contains integrated electronics that facilitate controlling.
However, even in this advanced form it is far from being able to
provide raw measurement data in a digital easy-to-use form (for
example as data on the PC). It is because of this reason that, as any
type of sensor for that matter, the GASB gas sensor needs to be used
together with controlling electronics. Given the versatility of the sensor
and the multitude of its uses the best way to control it is via attached
microcontroller (because microcontrollers are relatively fast, have a lot
of available peripherals and interfaces and can be reprogrammed at
will). This is how the GASB Sensor Platform was born. It is a complete
microcontroller based system that houses four GASB sensors and sends
the measurement data to a PC.

In practice the 1-to-1 Platform-PC connection leads to the need
of a PC for every GASB Board which, in turn, causes setups of
measurements to be difficult. An easier data transfer system is thus
desired, preferably using radio links instead of cables.

This is the goal of the GASB Extension Project. Having Sensor
Platforms connect wirelessly to a PC implies an increased degree of
portability which leads to another desired feature: battery operated
systems. The second goal of the project is, thus, to improve power
consumption on the targeted devices.

1.2. Project Description
The “GASB Sensor Platform Wireless Capability Extension and

Power Consumption Optimization” Project was started in order to allow
multiple GASB Sensor Platforms to be used in different measurement
scenarios while having the capability of collecting all the measurement
data in a centralized way to facilitate later model-based calculations.
The task is to use the existing hardware with certain extensions such as
RF chip and antenna and develop software that would allow multiple
devices to be connected to a single computer. As having multiple
cabled connections would be cumbersome, a radio link between the
computer and all the devices is preferred. Since a battery-powered

Chapter 1 Introduction 4

operation is desired, special attention has been given to low-power
capabilities of the radio link.

The main goal of this project is to design and implement the
software for the given hardware in such a way that the task mentioned
above is achieved but also the solution can be adapted to other
similar platforms. The desired result is to have a flexible software design
that can be adapted to future hardware with ease.

Chapter 2 System Overview 5

2. System Overview

2.1. Hardware Description

2.1.1. GASB Gas Sensor
The GAS 85xyB gas sensor (short GASB) developed by Micronas is

a hybrid Flip Chip setup using floating gate field effect transistors
produced in CMOS technology [2]. Since CMOS technology enables
low power operation GASB sensors are well suited for battery-operated,
wireless applications. Due to the hybrid setup it serves as a versatile gas
sensing platform adaptable to numerous applications [1].

 One of the best suited applications for this sensor is the
detection of fires, because in this application the sensor has to be
operated with very low power consumption in the mW range over time
[3]. Here conventional optical smoke detectors will be replaced by
highly integrated gas sensors “sniffing” the fire. A complex mixture of
various compounds can be detected in fire gases, but the gases which
arise amongst humidity in the higher concentration levels are CO, NO2
and CO2. These gas components are used as main target gases. For
the detection of CO in fire detectors, electrochemical cells are already
used in commercial products and European standards exist for their
qualification, but their range of application is restricted by lifetime and
price.

Figure 2-1: Floating Gate FET based gas sensor [4]

A second major application for GASB sensors is the reliable

detection of CO2 [3] as a key for demand controlled ventilation (DCV)
in buildings, which allows energy savings up to 30%. Presently, optical
detection methods are only in use for a small percentage of building
ventilation systems due to the relatively high cost of these sensing
systems. A reliable low cost CO2 sensor would allow for widespread use
of DCV.

2.1.2. GASB Sensor Platform
The GASB Sensor Platform is a sensor development and testing

platform that provides all the hardware necessary to test and evaluate
the GASB gas sensors. The GASB Platform houses a total of four GASB
sensors and is able to execute commands such as measurement or

Chapter 2 System Overview 6

calibration for each sensor individually. The commands are supplied via
PC using a Serial-to-USB interface from a LabView program that both
controls the four sensors and logs the data into graphs.

Figure 2-2: GASB Sensor Platform with RF Extension

The GASB Sensor Platform has at its core the Texas Instruments
MSP430F1611 Microcontroller and it has been also extended with the
Texas Instruments CC2500 RF Modem and an antenna. The
combination of the two chips is able to run the Texas Instruments
SimpliciTi RF protocol [6] in order to achieve radio communication.
However, the MSP430F1611 belongs to a family that is slightly different
than the MSPs used in most of the SimpliciTI examples and also does
not have a Board Support Package readily available from TI. Therefore
custom support drivers must be developed for the GASB Sensor
Platform in order to be able to use SimpliciTi.

Figure 2-3: The MSP430F1611 mounted on the GASB PCB

Chapter 2 System Overview 7

The GASB Sensor Platform can be reprogrammed by making use
of the JTAG port (seen in the picture above, to the left) and a Texas
Instruments MSP-FET430UIF T programming tool.

2.1.3. EZ430-RF2500 Evaluation Kit
The eZ430-RF2500 is a complete USB-based MSP430 wireless

development tool providing all the hardware and software to evaluate
the MSP430F2274 microcontroller and CC2500 2.4-GHz wireless
transceiver.

The eZ430-RF2500 uses the IAR Embedded Workbench Integrated
Development Environment (IDE) or Code Composer Essentials (CCE) to
write, download, and debug an application. The debugger is
unobtrusive, allowing the user to run an application at full speed with
both hardware breakpoints and single stepping available while
consuming no extra hardware resources. The eZ430-RF2500T target
board is an out-of-the box wireless system that may be used with the
USB debugging interface, as a stand-alone system with or without
external sensors, or may be incorporated into an existing design. The
new USB debugging interface enables the eZ430-RF2500 to remotely
send and receive data from a PC using the MSP430 Application UART.

eZ430-RF2500 features:
• USB debugging and programming interface featuring a

driverless installation and application
• backchannel
• 21 available development pins
• Highly integrated, ultra-low-power MSP430 MCU with 16-MHz

performance
• Two general-purpose digital I/O pins connected to green

and red LEDs for visual feedback
• Interruptible push button for user feedback

Figure 2-4: eZ430-RF2500 Evaluation Kit [5]

The eZ430-RF2500 Evaluation Kit contains two target boards and

a programming tool (above only one of each). This provides the
opportunity of testing networks with more than just an Access Point and

Chapter 2 System Overview 8

an End Device if the same End Device program from the GASB Sensor
Platform is running on one of the eZ430-RF2500 boards. Connecting
GASB sensors to the eZ430-RF2500 would be difficult but for testing it is
not needed as we are more interested in the network functionality so
we can just feed dummy data to the Access Point.

Since the programming tool included in the kit also has the ability
to bridge UART information from the RF module to the PC via Serial-to-
USB, it will be used with the Access Point RF module at all times to
facilitate data connection between the AP and the PC without the
need of developing special hardware.

2.1.4. The CC2500
The CC2500 is a low-cost 2.4 GHz transceiver designed for very

low-power wireless applications. The circuit is intended for the 2400-
2483.5 MHz ISM (Industrial, scientific and Medical) and SRD (Short
Range Device) frequency band. The RF transceiver is integrated with a
highly configurable baseband modem. The modem supports various
modulation formats and has a configurable data rate up to 500 kBaud.
CC2500 provides extensive hardware support for packet handling,
data buffering, burst transmissions, clear channel assessment, link
quality indication, and wake-on-radio. The main operating parameters
and the 64-byte transmit/receive FIFOs of CC2500 can be controlled
via an SPI interface. In a typical system, the CC2500 will be used
together with a microcontroller and a few additional passive
components.

Figure 2-5: The CC2500 mounted on PCB

The features of the CC2500 that are essential for our application
are enumerated below:

Chapter 2 System Overview 9

RF Performance
• High sensitivity (–104 dBm at 2.4 kBaud, 1% packet error rate)
• Low current consumption (13.3 mA in RX, 250 kBaud, input well

above sensitivity limit)
• Frequency range: 2400 – 2483.5 MHz

Analog Features
• Suitable for frequency hopping and multichannel systems due to a

fast settling frequency synthesizer with 90 us settling time
• Automatic Frequency Compensation (AFC) can be used to align

the frequency synthesizer to the received centre frequency

Digital Features
• Digital RSSI output
• Support for automatic Clear Channel
• Assessment (CCA) before transmitting (for listen-before-talk systems)

Low-Power Features
• 400 nA SLEEP mode current consumption
• Fast startup time: 240 us from SLEEP to RX or TX mode (measured on

EM design)
• Wake-on-radio functionality for automatic low-power RX polling
• Separate 64-byte RX and TX data FIFOs (enables burst mode data

transmission)

General
• Few external components: Complete on-chip frequency synthesizer,

no external filters or RF switch needed
• Small size (QLP 4x4 mm package, 20 pins)
• Support for asynchronous and synchronous serial receive/transmit

mode for backwards compatibility with existing radio
communication protocols

Aside from the SPI connection that interfaces the CC2500 with

the microcontroller, there is a digital input that can be connected to
an interrupt-able port on the microcontroller. The CC2500 will set this
line high whenever a frame has been received. This connection is very
important as it is used to trigger an Interrupt Service Routine from within
the communication protocol.

2.2. Software Description

2.2.1. SimpliciTi: Low Power RF Network
SimpliciTI™ is a low-power RF protocol aimed at simple, small RF

networks. This software is open-source and it provides an easy way to
build a network of battery-operated devices using one of TI’s low-

Chapter 2 System Overview 10

power RF System-on-Chips (SoC) or the MSP430 ultra-low-power MCU
and a TI RF transceiver.

SimpliciTI was designed for easy implementation and
deployment out-of-the-box on several TI RF platforms such as the
MSP430 MCUs and the CC1XXX/CC25XX transceivers and SoCs.
SimpliciTI supports 2 basic topologies. The first is a Star topology which
contains an Access Point as the hub and the second involves using
default tokens for connecting different End Devices with one another
(peer to peer).

Figure 2-6: Example of SimpliciTi Star and Peer to Peer Network [5]

The previous picture shows the two main network topologies of

SimpliciTi. For the Star network there are several types of End Devices
such as repeaters (RE), devices that transmit and receive normally (D),
sleeping devices (SD) and transmit only devices (TD).

The Access Point is used primarily for network management
duties. It supports such features and functions as store-and-forward
support for sleeping End Devices, management of network devices in
terms of membership permissions, linking permissions, security keys, etc.
the Access Point can also support End Device functionality, i.e., it can
itself instantiate sensors or actuators in the network. The protocol
support is realized in a small number of API calls.

Chapter 2 System Overview 11

Figure 2-7: SimpliciTi API

These APIs support Customer application peer-to-peer

messaging. The association between two applications, called linking, is
done at run time. The linking process creates a connection based
object through which the application peers can send messages. When
a connection is established it is a bi-directional connection. The End
Devices can also have special features like Sleeping End Device or
Transmit Only End Device. The network can be extended by use of
Repeaters who simply repeat incoming messages (with limitations) and
are completely transparent to the network otherwise.

2.2.2. User Application
The user application is in fact the main program that will run on

the system. It is comprised of two parts: a program that will be
implemented on the End Device boards and a program that will run on
the Access Point. It should be mentioned that it is desired to implement
the RF SimpliciTi functionality into more sensor platforms in the future,
not just the GASB Sensor Platform so it would help if the End Device
program is tailored to contain a base template that can easily be
adapted to other platforms and solutions. The user application
represents the main focus of this project.

Chapter 2 System Overview 12

The user application interfaces with SimpliciTi in the following
way:

Figure 2-8: SimpliciTi Architectural Overview [5]

As show above the user application can use the SimpliciTi API

(join, link, etc...) or implement new network functions using the
underlying SimpliciTi protocol stack. For the purpose of this project the
standard SimpliciTi API should suffice. One must keep in mind, however,
that an extension to this API is possible and greatly increases the
flexibility of the desired concept to design.

Chapter 3 Design Considerations 13

3. Design Considerations

3.1. Assumptions and Dependencies

3.1.1. Board Support Package
The EZ430-RF2500 Evaluation Kit has its own Board Support

Package (BSP) which makes it directly usable with SimpliciTi. The GASB
Sensor Platform however does not. Therefore a custom BSP was
developed for the GASB Sensor Platform by using the EZ430-RF2500 one
as example.

The most notable changes are to define the SPI interface with
which the MSP controller communicates with the RF modem and to
different pins and signals connections such as LEDs or the RF modem’s
interrupt signal.

It should be noted that since the aim of the Board Support
Packages is to present hardware functions to the user application in an
abstract way, having BSP defined for each platform or device that is
used helps implementing the same programs on different hardware
configurations with little to no modifications in software.

3.1.2. Access Point and End Devices
Since the aim of the project is that the Access Point collects real

time data from all available End Devices it is required that the Access
Point is directly connected with the End Devices. In the network
topology of the SimpliciTi protocol this means in fact that the device
that will receive the Access Point functionality will have End Device
capabilities aswell.

3.2. General Constraints
The use of the chosen hardware and as well the SimpliciTi

protocol will impose some constraints on the whole system.

3.2.1. Hardware Constraints
SimpliciTi requires RAM to allocate whenever opening a new

connection. Given the fact that the Access Point and End Devices are
implemented on microcontrollers with limited RAM the default upper
limit of 30 simultaneous connections for SimpliciTi will become a fixed
limitation. This translates to the fact that the Access Point will be able to
connect to a maximum of 30 Sensor Platforms. This represents no
problem for the planned initial tasks for the sensor network system but
may become one in the future. One way to solve this is to use End
Devices as network hubs. Because all they will do is forward messages
to the Access Point, their hardware and software structure should be
relatively simple, however if each of the 30 connections of the AP is
taken by a hub or node and then each node’s remaining 29

Chapter 3 Design Considerations 14

connections are taken by End Devices with sensors then one can
achieve a maximum of 29*30=870 connections. Moreover, using this
solution to expand the network may not even cause data transfer to
slow down if one considers the possibility of having the nodes compress
multiple End Device frames into one and then forward it to the Access
Point. If this should still not be enough one can apply another level of
network nodes. For this project however the default 30 connections
limit will suffice.

3.2.2. Network Topology Constraints
Another constraint imposed by the chosen network topology

(Star network) is that the Access Point can only handle synchronization
with one End Device at a time. Because the End Devices are mostly in
low power mode the Access Point cannot tell when they have woken
up so the End Devices must send a message on each wake up to
signal the Access Point. Once the message is received the Access
Point has a small time window to send back the command message
and receive the outcome of the command’s execution. This means
that any other End Devices that are trying to notify the Access Point
they have awaken from low power mode during this time window must
and will be ignored. As far as the internal mechanics of SimpliciTi go
there is no way to receive and send frames simultaneously from the
same peer (full duplex) nor is there a way to send two different frames
to two different peers in the same time. Receiving more frames at once
from multiple peers is also not possible, however the odds that they
arrive in the same time are minimal and even a small time difference
will ensure that they both end up in the received frame queue. The
problem that arises in this case is that if an acknowledgement is
required for the received frames, the Access Point will probably not be
able to send both acknowledgements in sufficient time. A way to
quickly solve this issue is to have the End Devices send synchronization
frames periodically with a large enough interval so that the chances
that two of them will send at the same time are negligible.

3.3. Goals and Guidelines
The main goal of the project is to achieve radio connection

between a PC and multiple Sensor Platforms in order to receive real-
time measurement data. The PC will be able to receive and transmit RF
frames with the help of an Access Point device that is attached via USB
and is able to communicate with the PC via Serial-to-USB and as well
with the End Devices via its RF Modem. From the available network
topologies of SimpliciTi, the one that suits these needs the best is the
Star Network. In the Star Network however the Access Point handles
only network management such as joining and forwarding frames,
while the peers link themselves to other peers. This aspect is undesired
in our solution, so the Star network topology will be customized. The

Chapter 3 Design Considerations 15

Access Point device will receive the ability to link to End Devices thus
gaining End Device capabilities itself.

Because one of the goals is to develop a base template that
uses SimpliciTi and only handles the connection and data transfer part
of the program so that this template can later be ported to other
sensor platforms the software to be developed will focus on those
aspects. Since real-time measurement is desired but the result of the
measurement may arrive at the Access Point and then on the
computer at a later point in time given the network transfer delays, the
following idea seems practical for a first implementation:

• The Access Point will have its own clock that will provide for a system

time
• The End devices will also have a clock that drives their own system

time and will report this value on each synchronization frame
• The Access Point will reply with it’s own system time (which should be

the most accurate since it doesn’t go into low power mode at all)
and optionally with a command that depends on the later usage of
this application

• The End Device will store the received time and use it with their
internal clock while entering low power mode

Next time the End Device wakes up it will send in the

synchronization frame a time value that represents the time received
from the Access Point plus the delay measured by the End Device itself.
By comparing these two values one can tweak the different required
delays in communication to ensure that all devices have the same
notion of time. This means it does not matter when exactly the
measurement result arrives at the computer as it will come together
with the time when the measurement was taken.

3.4. Development Methods
The programming will be done in C language using Texas

Instruments’ Code Composer Studio 4 as IDE. For debugging, the
hardware debuggers can be used to step through programs and
check internal mechanics, and as for real time functionality (since
stepping through the program of two different devices in the same
time is impossible with a single computer) a terminal program will be
used to display text messages with runtime information received on the
PC through the Serial-To-USB interfaces of each device.

Chapter 4 Architectural Strategies 16

4. Architectural Strategies

4.1. Code Composer Studio 4
Code Composer Studio 4 (CCS4) was used for code

development and debugging. Since all the microcontrollers in use
belong to TI MSP families it makes sense to use their recommended
IDEs. In comparison to the IAR Compiler which has a built in limitation of
4kb program size, Code Composer Studio 4 has a limit of 16kb. This
makes Code Composer Studio 4 the better choice for development as
using the SimpliciTi API will increase program size considerably. Other
advantages of using Code Composer Studio 4 reside in the fact that
CCS4 is based on the Eclipse IDE which provides many tools for code
creation and maintenance.

4.2. CCS Project Structure
CCS4 allows projects with sophisticated file structures to be built.

This advantage will be exploited in order to provide a single project
that should contain all the necessary resources to implement programs
on both of our platforms.

4.2.1. File Structure
Since one of the goals is ease of porting to other platforms it

makes sense to separate the actual project folder from the different
resources used by it.

Figure 4-1: Code Composer Project File Structure

Chapter 4 Architectural Strategies 17

As it can be seen in the picture above, the project folder is under

\\GASB_CCS_Project\GASB_Wireless_Workspace\GASB_Wireless. In
order to load the project in CCS4 one must first open the workspace in
\\GASB_CCS_PROJECT\GASB_WIRELESS_WORKSPACE. The actual
source files for the applications are to be placed in the
\\GASB_CCS_PROJECT\Applications folder and should be linked from
there. The same goes for the SimpliciTi components found under
\\GASB_CCS_Project\Components.

4.2.2. Linked Resources
SimpliciTi has a complicated file structure that is very hard to

adapt or include to projects. The easiest way to add SimpliciTi to a
project is by linking certain files into the project, however, the SimpliciTi
source files cannot be in the project’s workspace or they will be
compiled as objects independent of the include rules and the linker will
report duplicates. Code Composer Studio 4 has the ability to link files
outside the workspace to a project.

Figure 4-2: Linking a file to a CCS4 Project

However, if an exact path is given then the project will not be

portable anymore (which means it must always be placed in a fixed
location on each computer it will be used). This is not desired so a
different approach was used.

Chapter 4 Architectural Strategies 18

Figure 4-3: Linking files using variable paths

By defining a path as a variable we can create all file links based

on that single variable. This means that if the project is moved to
another computer in a different location, all that needs to be changed
is the path variable called DEV_ROOT.

Figure 4-4: Changing a path variable in CCS4

As shown in the picture above, the DEV_ROOT variable can be

changed to the new project location and all the linked resources will
be updated to the correct paths.

It goes without saying that setting up a project in a way that
makes it easy for more people to use and removing all dependencies

Chapter 4 Architectural Strategies 19

to a specific computer or environment speeds up development by a
great amount.

4.2.3. Applications
The reason the application source files have been added as

linked resources to the project structure as well is the following: if the
components used are common for multiple platforms running multiple
programs, then the actual programs can also be made into cross-
platform compatible resources. With the current structure, one simply
needs to define a new project in the workspace (or, even better, a
new configuration in the current project), link the appropriate resources
such as application to be used and SimpliciTi configuration and only
care about the platform specific definitions in the Board Support
Package. Once that is done all that is needed is to compile and
upload to target board. With all options correctly set up, choosing X
type of network device with the Y program variant on the Z target
board where X,Y and Z can be any of the available resources in the
respective categories, should take less time than the compile and
upload process (not more than a minute).

One thing to mention is that one must care for this aspect when
writing new applications. Since the Board Suport Packages are a fixed
requirement of SimpliciTi, a feature they provide can be used. One of
the definitions in the BSP of a board is the board’s name. This can be
used to choose the specific parts of the application that apply only to
a certain target board automatically at compile time.

For example:

#if defined(BSP_BOARD_EZ430RF)
#pragma vector=TIMERB0_VECTOR
__interrupt void TB0_ISR (void)
{
 systemTimeID++;
 systemTimer++;
 if(systemSleep == 1){
 systemSleep = 0;
 }
 else{
 __bic_SR_register_on_exit(LPM3_bits);
 }
}
#elif defined(BSP_BOARD_GASB)
#pragma vector=WDT_VECTOR
__interrupt void WDT_ISR(void)
{
 systemTimeID++;
 systemTimer++;
 if(systemSleep == 1){
 systemSleep = 0;
 }
 else{
 __bic_SR_register_on_exit(LPM3_bits);
 }

Chapter 4 Architectural Strategies 20

}
#endif

As shown above, depending on which target board is used in

the active configuration of the project, the system timer will be driven
by either Timer B in case of the EZ430RF or the Watchdog Timer in case
of the GASB board. It should be noted that such code constructions do
not lower performance as the choice is made at compile time and the
code that was not chosen is simply discarded and unused.

4.2.4. Project Configurations
Project configurations allow a single project with a great number

of linked resources such as components or applications to produce
different programs (by using different combinations of components
and applications from the ones available) and also build them for
different target boards. This feature is essential when considering cross-
platform software.

As a short example, the following set of pictures will show how
easy it is to change between programs or platforms.

Figure 4-5: Project configuration for EZ430RF as ED

The picture above shows that the target platform has been

chosen as the EZ430RF and the application as that of an End Device.
Using this configuration a copy can be created and then the

target device options can be changed. The new configuration will be
the same as the old one but will apply to a different device.

Chapter 4 Architectural Strategies 21

Figure 4-6: Project configuration for the GASB Platform as ED

The new configuration allows the GASB Sensor Platform to be

used as End Device. If special care was taken in setting up the
resources file structure and definitions there should be no errors in trying
to recompile the application for the GASB board.

Changing applications or components for the same device is

even easier. Again, a copy of the specific configuration has to be
made, but afterwards in order to choose a different application one
must simply define which files will be excluded from build and which
not.

Figure 4-7: Changing applications using project configurations

In the example above, the EZ430RF has two defined

configurations, one as Access Point and one as End Device. For each

Chapter 4 Architectural Strategies 22

of them there is a list of files to exclude so in either case the complete
program that results after compilation will be a different one.

4.3. Debug methods

4.3.1. The CCS Debugger
Coupled with the debugging tools, the Code Composer Studio

debugger can help stepping through a program, setting key
breakpoints and also viewing variable and register contents.

In the early stages of program development it can be
successfully used to check if register settings and algorithms are
correct. This method is not very good in checking program functionality
when testing radio communication as all triggers come from interrupts
and some of the waiting procedures involve entering low power modes
which in turn remove the ability of the programming tool to keep track
of what the MSP is doing.

4.3.2. Serial-to-USB Interface
Since all the used hardware has the ability to send text data to a

PC via a Serial-to-USB interface and the transmission itself, if carefully
planned, does not disrupt time critical sections of the tested programs,
one can use this feature in order to perform more accurate testing
compared to using the CCS Debugger. This method allows for real-time
testing and also gives the possibility of viewing output information from
more than one device in the same time (essential in testing network
connectivity and reliability).

Chapter 5 System Architecture 23

5. System Architecture

5.1. System Functionality Overview
The following flow-chart shows the planned network traffic

between the Access Point and at least two End Devices.

Access Point End Device 1 End Device 2

Wake Up Wait

Wait

Send

Receive

Send

Sleep

Wake Up

Wait

Send

Receive

Send

Sleep

Receive

Send

Receive

Wait

Wait

Receive

Send

Receive

Wait

Sleep

Figure 5-1: System connectivity

Chapter 5 System Architecture 24

In the previous flow chart the dotted arrows represent radio
communications. The main objective is to let the End Devices transmit
to the Access Point when they come out of low power mode so that
the Access Point can initiate a command/result transfer. Unlike
presented in the flow chart in real life attempts End Devices may make
an attempt to synchronize while the Access Point is already busy with
another End Device. To prevent this, the exchange time has to be kept
short and the Access Point must ignore extra requests when a transfer is
underway.

5.2. Access Point Program Flow
The Access Point must be ready to answer End Device

synchronization requests at all times as it cannot tell when End Devices
come out of low power mode. The basic program flow is presented in
the flowchart below. Please note that for a decision block the right
choice represents “true” and the down choice represents “false”. The
dotted line at the end of the interrupt path means that the loop is
conditioned by outside triggers (implied by an interrupts definition).

Power on

Start Network

Infinite Loop

New
Peer

Link Peer

New
Frame

Receive

Send

Interrupt

Known
Peer

Set New Peer

Set New Frame

Figure 5-2: Access Point Program Flow

The flowchart above has been over-simplified but it still holds the

most important information: the main loop of the program will take

Chapter 5 System Architecture 25

care of linking peers, reading frames and sending replies based on
semaphores set by the SimpliciTi Interrupt Service Routine which can
distinguish between a new peer that attempts to connect and an
already connected peer that has just sent a frame to the AP.

5.3. End Device Program Flow
End Devices attempt to minimize the time they spend out of low

power mode so they try to synchronize periodically with the Access
Point on wake up and wait a short time for a reply.

Power On

Infinite Loop

Counter Send

Receive

Send

SLEEP

SLEEP

Interrupt

Timer

Frame

SLEEP OFF

Figure 5-3: End Device Program Flow

The End Device has the ability to stop program flow and enter

low power (or sleep) mode until an interrupt wakes it up again. Waking
up from sleep is done in case a frame has been received or the system
timer has sent another interrupt (once every second).

5.4. Other System Devices
Aside from the Access Point and the End Devices, other types of

devices can be implemented such as Repeaters or Network Nodes

Chapter 5 System Architecture 26

(basically End Device for an AP that has its own connected End
Devices and works as a gateway). This is not required nor is it planned
for the current project but since it may become a valuable advantage
to extend the network with such devices, all measures must be taken to
facilitate any eventual implementation of said devices into the existing
network. A simple example from Texas Instruments can prove the
complexity level that can be achieved using multiple types of devices
in a SimpliciTi network:

Figure 5-4: SimpliciTi Network Example [5]

It should be noted that Texas Instruments’ concept of the Range

Extender does not solve the problem of limited ports and that the
before mentioned network node is, in fact, different in concept. It is the
author’s belief that this concept is easy to implement using the
SimpliciTi protocol.

Chapter 6 Policies and Tactics 27

6. Policies and Tactics

6.1. Coding Guidelines
In order to improve the readability of the created code several

conventions have been set in place:

• Variables and functions are to be named in a distinctive way

starting with small letters and each subsequent word
beginning with a capital letter.

• Macros are to be named using capital letters and each
subsequent word should be separated by an underscore.

• If/else statement branches are to always contain an
underlying block even if they lead to a single statement.

• Constants are to be defined as macros and they should be
placed in an easily accessible section of the code (e.g. near
the top of the file) separated from the rest of the variable and
prototype declaration. This facilitates changing program
parameters.

• Flags and switches must be defined using meaningful names.
In the case a collection of flags is compressed bitwise into a
single variable macros must be defined to address the
respective flag in a descriptive way.

Another aspect worth mentioning is that using function calls in

other function calls’ parameter list is allowed even though it works
against code readability because this method saves the use of an
intermediary variable.

Finally, the use of local variables is discouraged with the
exception of internal function variables that are defined as static.
Global variables have the advantage that they are initialized only
once and are accessible from all function scopes. The only other
reason against using global variables is when a module type of
behavior is desired for a certain function in order to improve portability
and reusability.

6.2. Testing
Implementation of extra functions and variables in order to

measure different test results is allowed as long as the removal of these
additions is not complicated and they do not interfere with the main
program.

6.3. Communication Interface
The Serial-to-USB interfaces of the used platforms were used to

provide real-time data output in text form. The example below shows
the output for an End Device communicating with the Access Point.

Chapter 6 Policies and Tactics 28

Figure 6-1:Example of debugging in real-time

Above the output of the Access Point (down) and End Device
(up) is shown. Information on what network related task is performed is
given together with contents of sent and received frames and transmit
and receive success ratio for ED. The timestamp is the actual system
time of each device.

Chapter 7 Detailed System Design 29

7. Detailed System Design

7.1. Access Point Software Implementation
As previously mentioned the Access Point will have End Device

capability such as linking and transmitting/receiving as well. At the time
this software was written the main goal was to have a template that
can also be transferred across multiple sensor platforms using SimpliciTi
and not just be used for the GASB Sensor Platform. Because the Access
Point would be used to connect all these devices together the
software attempts to test the functionality of the radio communication
by having the Access Point synchronize its system time with the End
Devices. While just a test, this will still be useful later as, in case of
measurements, the time the measurement was taken is required and
not the time the Access Point received the result. Therefore we need to
send the actual time to the End Devices and allow them to use this
value for their internal clock and report back the time together with
each measurement result.

7.1.1. Main Program Loop
The main program loop of the Access Point will call the

appropriate SimpliciTi functions in order to retrieve data and send
commands to the End Devices. In the future the received data will be
sent to the computer via the serial interface and the commands will
originate from the computer as well. The Access Point’s role is that of a
gateway to a centralized control and data hub running on a PC.

The following section contains code snippets and explanation.

Please note that the snippets put together constitute the whole
function, thus explaining the different indentation used in each of
them. They are to be seen as a whole which was broken and
separated by text explanations.

First the Board Support Package, the serial interface and the

system timer are initialized.

/***\
 MAIN
***/

void main (void)
{
 /* Initialise */
 BSP_Init();
 COM_Init();
 START_TIMER();
 /* Start SimpliciTi network */
 LED_ALL_ON();
 SMPL_Status = MPL_Init(sCB); S
 LED_ALL_OFF();

Chapter 7 Detailed System Design 30

The classic while(1) loop starts by checking the new peer

semaphore and attempting to link to newly connected peers or
attempts a link every loop run if there are no peers connected.

 while(1){
 /* If new peer found or no peers connected listen for peers */
 if(newPeer > 0 || connectedPeers < 1){
 LED_ALL_ON();
 TXString(stringBuffer,sprintf(stringBuffer,"\r\n"));
 if(connectedPeers < 1){
 TXString(stringBuffer,
 sprintf(stringBuffer,"Waiting for peers.. "));
 }
 if(newPeer > 0){
 TXString(stringBuffer,
 sprintf(stringBuffer,"New peer, listening.. "));
 }
 SMPL_Status = SMPL_LinkListen(&sLID[connectedPeers]);
 if(SMPL_Status == SMPL_SUCCESS){
 newPeer--;
 TXString(stringBuffer,sprintf(stringBuffer,"Peer linked "));
 connectedPeers++;
 }
 LED_ALL_OFF();
 }

The new peer semaphore is incremented in the SimpliciTi

callback function every time a new peer attempts to link. On each
successful link this semaphore is decremented. In this way it is made
clear that each of the End Devices that attempted to link will have
their chance to catch the Access Point in listening mode.

Next the program enters another loop that executes until the
frame semaphore becomes zero. Just like before, the frame
semaphore is incremented on each received frame in the SimpliciTi
callback function. On each successful read of the frame from the
frame queue the semaphore is decremented.

 /* Try to read frames and reply until
 frame semaphore is 0 again */
 while(newFrame > 0){
 LED_RED_ON();
 NWK_DELAY(BLINK_DELAY);
 LED_RED_OFF();
 /* try to receive frames for all peers */
 for(currentPeer = 0;
 currentPeer < connectedPeers; currentPeer++){
 SMPL_Status=SMPL_Receive(sLID[currentPeer],
 receiveBuffer,
 &receiveBufferlength);
 if(SMPL_Status == SMPL_SUCCESS){
 /* Print system time to the serial interface */
 TXString(stringBuffer,
 sprintf(stringBuffer,

Chapter 7 Detailed System Design 31

 "\n\r[%u:%02u:%02u]",
 TID_HOURS(systemTimeID),
 TID_MINUTES(systemTimeID),
 TID_SECONDS(systemTimeID)));
 newFrame--;

Because part of the received information is the End Device’s

system clock the Access Point’s system clock is printed first in order to
easily compare. This is also useful to mark the point in time when the
message was received.

The first byte of the application data part of the message shows
what kind of frame was received, whether it is a synchronization frame
or the result frame following a command sent by the AP.

 /* If the frame received is a sync
 frame reply with apropiate command */
 if(receiveBuffer[0] == 1){
 uint8_t tryCount = MAX_RETRIES;
 /* Decode received frame */
 frameTimeID=((uint32_t)receiveBuffer[1])+
 (((uint32_t)receiveBuffer[2])<<8)+
 (((uint32_t)receiveBuffer[3])<<16)+
 (((uint32_t)receiveBuffer[4])<<24);
 TXString(stringBuffer,
 sprintf(stringBuffer,
 "Received frame: peer=%u port=%u
 type=%u timeID=%u:%02u:%02u ",
 currentPeer,sLID[currentPeer],
 receiveBuffer[0],TID_HOURS(frameTimeID),
 TID_MINUTES(frameTimeID),
 TID_SECONDS(frameTimeID)));

The AP also prints the End Device’s time to the serial interface in

order to compare it to its own system time. It is known that the End
Device’s system time comes from the last synchronization with the
Access Point and we want to check if during the time spent sleeping
the End Device measured time correctly.

Next we prepare the command frame to be sent and attempt to
send it a number of times. If the send fails every time then a message is
printed to the serial interface stating that the send failed. Depending
on what the exact usages of this application will be when applied to a
different system or situation, in this point one can implement a fail
policy but in the present example no error handling is required as the
Access Point is going to wait for the End Device to try again. Since the
End Devices need to perform measurements once every few seconds
over extended periods of time (in the range of days or weeks) it
doesn’t matter if a small percentage of attempts fails.

Chapter 7 Detailed System Design 32

 /* Prepare send frame */
 sendBuffer[0] = 0;
 sendBuffer[1] = (uint8_t)systemTimeID;
 sendBuffer[2] = (uint8_t)(systemTimeID>>8);
 sendBuffer[3] = (uint8_t)(systemTimeID>>16);
 sendBuffer[4] = (uint8_t)(systemTimeID>>24);
 frameTimeID = ((uint32_t)sendBuffer[1])+
 (((uint32_t)sendBuffer[2])<<8)+
 (((uint32_t)sendBuffer[3])<<16)+
 (((uint32_t)sendBuffer[4])<<24);
 /* Try sending frame until successful or MAX_RETRIES */
 do{
 LED_GREEN_ON();
 SMPL_Status = SMPL_SendOpt(sLID[currentPeer],
 sendBuffer,
 sizeof(sendBuffer),
 SMPL_TXOPTION_ACKREQ);
 tryCount--;
 NWK_DELAY(BLINK_DELAY);
 LED_GREEN_OFF();
 }while(tryCount && SMPL_Status != SMPL_SUCCESS);
 if(SMPL_Status == SMPL_SUCCESS){
 TXString(stringBuffer,
 sprintf(stringBuffer,
 "Sent frame: type=%u
 timeID=%u:%02u:%02u ",
 sendBuffer[0],
 TID_HOURS(frameTimeID),
 TID_MINUTES(frameTimeID),
 TID_SECONDS(frameTimeID)));
 }
 else{
 TXString(stringBuffer,
 sprintf(stringBuffer,"Send frame failed "));
 }
 }

It should be noted that the frame sent by the Access Point in

response to the synchronization frame received from an End Device
has its own type (header or first byte of the application data in the
frame). Also, while in this example we are only trying to synchronize
time, there is always the possibility of adding more information to be
sent such as a command. Using an extra byte would yield the possibility
of sending a command encoded as an unsigned short integer which
allows for 255 separate commands to be distinguishable by the End
Device.

If the frame followed a result, in this example we don’t need to
do anything but in the case of a measurement request that might be
later implemented we must handle the incoming data.

Chapter 7 Detailed System Design 33

 /* If the frame received was a result frame
 process the information acoordingly */
 if(receiveBuffer[0] == 2){
 //SPACE RESERVED FOR: result processing
 }
 }
 }
 }

Lastly in case the system timer (note: not system time) has

reached the desired tick rate we reset it. Later when calculation based
on received results is to be performed it will be desired that the
calculation runs once every n second. In order to achieve this one must
simply call those specific functions from inside the following if
statement.

 /* This part of loop is synchronised
 with system hardware timer */
 if(systemTimer >= TICK_RATE){
 systemTimer = 0;
 }
 }
}

7.1.2. Auxiliary Functions
Aside from the main function the Access Point program contains

two other functions that are worth mentioning.

The first is the Timer B Interrupt Service Routine. Timer B is set to

produce an interrupt each second and the function simply drives the
system time.

#pragma vector=TIMERB0_VECTOR
__interrupt void TB0_ISR (void)
{
 systemTimeID++;
 systemTimer++;
}

Apart from the system time represented by the variable

systemTimeID we also have a system timer. The timer can be used to
produce periodic execution paths with 1 second precision. For
example if we want to execute a certain function in the main program
loop once every three seconds we simply must check if the timer >= 3
and execute the function then set the systemTimer variable to 0 again.

Chapter 7 Detailed System Design 34

The second function to mention in the Access Point program is
the SimpliciTi callback function.

static uint8_t sCB(linkID_t newLinkID)
{
 receiveLinkID = newLinkID;
 if(newLinkID){
 newFrame++;
 }
 else{
 newPeer++;
 }
 return 0;
}

This function runs under ISR context and is called by the Interrupt

Service Routine belonging to the CC2500 interrupt pin connected to
the MSP430F1611. The function is called every time a frame is received.
The parameter newLinkID is either 0 if the peer that sent the frame is not
yet linked with the Access Point, or non-zero in which case it represents
the local link ID of one of the already linked peers. By saving this value
into a variable one can identify exactly which of the connected peers
sent the frame. Based on whether the peer is linked or not, the function
activates either the new frame semaphore or the new peer semaphore
which will trigger the respective program paths in the main loop. The
function returns 0 which means the frame will be stored in the received
frames queue for later processing (e.g. by using SMPL_Receive in the
main loop). It is also possible to return 1 in which case the frame will
simply be discarded. While not really useful for this example, this option
can prove useful in a large network of fast sending End Devices to limit
their access to the AP by ignoring some of their frames. It should also
be noted that if the End Device has sent the frame with the auto-
acknowledge option activated, if one wishes to discard the frame but
still acknowledge that it was received one must send the acknowledge
manually from this function before calling return 1. This way this case
distinguishes itself from the case where on the End Device the frame
receive was not acknowledged which would mean the send failed.

7.2. End Device Software Implementation
The End Device program is designed to allow easy porting to

other platforms. This is why the connection and data transfer related
code was separated from the main program. It should also be noted
that the contents of the frames to be sent are easily modifiable but
should be maintained in the present sequence.

Chapter 7 Detailed System Design 35

7.2.1. Main Program Loop
The main program loop example calls the synchronizeWithAP()

function and sets different contents for the buffer of the frame to be
sent. It uses a timer to execute each loop every 3 seconds (this can be
changed via a macro) and it puts the CPU to sleep otherwise. Note
that once the CPU has entered low power mode, program execution
will stop in that specific point and will be resumed after an interrupt (the
only code that will still execute under sleep) has cleared the low power
mode bits.

Please note that the following section contains code that has
been broken down into snippets to allow text explanations in between.
It should however be considered as a whole as implied by the different
indentation of each line.

As the main function begins, the Board Support Package, serial

interface and system timer are initialized. The statusFlags variable, local
to the main function, will be used to store the different flags provided
by the synchronizeWitAP function that handles the network
communication. It is desired to know the status of the connection in the
main function in order to implement dependencies to other type of
code such as calculations without having to access variables that
belong to the SimpliciTi part of the code directly (library-oriented style).

void main (void)
{
 uint8_t statusFlags = 0; /* Local flag byte for the
 synchronise function */
 BSP_Init();
 COM_Init(); /* Initialise serial communication */
 START_TIMER();
 while(1){
 if(systemTimer >= TICK_RATE){ /* Run main loop each
 TICK_RATE seconds */
 /* Reset main timer */
 systemTimer = 0;
 /* The timeID of the next frame to be sent is our
 system's timeID */
 frameTimeID = systemTimeID;
 /* Prepare send buffer for next transfer
 (frame type and time ID) */
 sendBuffer[0] = 1;
 sendBuffer[1] = (uint8_t)frameTimeID;
 sendBuffer[2] = (uint8_t)(frameTimeID>>8);
 sendBuffer[3] = (uint8_t)(frameTimeID>>16);
 sendBuffer[4] = (uint8_t)(frameTimeID>>24);
 /* Count attempts of the next transfer */
 receiveAttempt++;
 sendAttempt++;

After the initialization, the while(1) loop begins and the main part

of its code will be executed based on the system timer (once every 3
seconds in this case). The system timer is set to 0 again and the

Chapter 7 Detailed System Design 36

contents of the buffer of the frame to be sent (a synchronization frame
in this case) are filled with the End Device’s system time in an encoded
form. The variables receiveAttempt and sendAttempt are increased
prior to the next part where a send attempt and a receive attempt will
take place. These variables are used to form statistics such as send and
receive success ratio which are used in testing the reliability of the
connection.

The synchronization frame is sent and a frame is received by

calling the synchronizeWithAP function with the SEND_RECEIVE switch.
Based on the different flags returned by this function (encoded bitwise
in a single byte) the receiveSuccess and sendSuccess variables are
incremented in case of successful send and receive. These are used in
order to form statistics on the connection’s functionality coupled with
the statistics variables from before (e.g. receiveSuccess /
receiveAttempt x 100 gives the success rate of receiving a frame in
percentages).

 /* Run main synchronisation function and
 save returned flag byte */
 /* The sent frame is ment to let the AP know we are awake.
 In the received frame we expect a command and the AP time */
 statusFlags=synchroniseWithAP(sendBuffer,
 sizeof(sendBuffer),
 receiveBuffer,
 &receiveBufferlength,
 SEND_RECEIVE);
 /* Check flags and count successful receive and/or send */
 if(GET_FLAG(FRAME_RECEIVED,statusFlags) == TRUE){
 receiveSuccess++;
 }
 if(GET_FLAG(FRAME_SENT,statusFlags) == TRUE){
 sendSuccess++;
 }
 /* Output serial text information based on status flags */
 outputStatus(statusFlags);
 /* Build frame time ID from last received frame */
 frameTimeID = ((uint32_t)receiveBuffer[1])+
 (((uint32_t)receiveBuffer[2])<<8)+
 (((uint32_t)receiveBuffer[3])<<16)+
 (((uint32_t)receiveBuffer[4])<<24);
 /* The time ID received from the Access Point
 becomes the new system time */
 systemTimeID = frameTimeID;
 /* If frame exchange was successful send command
 result in a send only synchronisation */

The function outputStatus was implemented for debugging

purposes and sends the current status of the connection together with
the accumulated statistics to the serial interface so that it may be
displayed on a PC connected to the End Device via USB.

The time received in the command frame is decoded and stored
as the ED’s system time. This is not done in a single step but by making

Chapter 7 Detailed System Design 37

use of the intermediary variable frameTimeID to allow eventual time
comparison policies such as duplicate frame detection.

If the previous synchronization succeeded the send buffer will be

loaded with a result frame (for this example the received time from the
previous step). The sendAttempt variable is increased prior another
synchronization attempt, this time with the switch SEND_ONLY as the ED
does not expect a reply in this case and if the send was successful,
based on flag check, the sendSuccess variable will also be
incremented.

 /* If frame exchange was successful send command result in
 a send only synchronisation */
 if(GET_FLAG(FRAME_RECEIVED,statusFlags) == TRUE){
 /* Prepare send buffer for next transfer
 (frame type and time ID) */
 sendBuffer[0] = 2;
 sendBuffer[1] = (uint8_t)frameTimeID;
 sendBuffer[2] = (uint8_t)(frameTimeID>>8);
 sendBuffer[3] = (uint8_t)(frameTimeID>>16);
 sendBuffer[4] = (uint8_t)(frameTimeID>>24);
 /* Count send attempt */
 sendAttempt++;
 /* The sent frame should be the result to
 the command previously received */
 statusFlags=synchroniseWithAP(sendBuffer,
 sizeof(sendBuffer),
 receiveBuffer,
 &receiveBufferlength,
 SEND_ONLY);
 /* Check flag for successful send */
 if(GET_FLAG(FRAME_SENT,statusFlags) == TRUE){
 sendSuccess++;
 }
 /* Output serial text information based on status flags */
 outputStatus(statusFlags);
 }

The status of the last communication attempt is displayed as text

using the serial interface by calling the outputStatus again.

Following the if part of the first if statement (that checks the

system timer) the else part will put the system to sleep.

 else{
 /* If timer interval not met go to sleep. Will
 wake up on next timer interrupt */
 SLEEP();
 }
 }
}

Chapter 7 Detailed System Design 38

This makes sure that the previously described code section runs
each 3 seconds and should it complete execution before the 3
seconds are up the whole system goes into low power mode and will
be woken up on the next 3 second interval by the timer interrupt.

7.2.2. RF Synchronization Function
The synchronizeWithAP function is responsible for creating and

maintaining a data transfer connection with the Access Point. This is the
main function that should be implemented in a way that makes porting
to other platforms easier. It does not work with any of the global
variables and the function body provides everything needed to
implement the function (considering that the SimpliciTi API is already
included, of course). The function has the ability to execute a 2 way
transfer (first send and then receive) by using provided data buffers in
its parameter list, and, by changing a simple switch, a 1 way transfer
(send only). It fits, thus, the End Device implementation strategy of
waking up from sleep, letting the Access Point know it is ready to
receive commands via sending a frame, receiving a command frame,
optionally executing command and sending the result back to the AP.
Worth mentioning is that the function performs LED control to show the
current network operation visually.

/**\
Function: synchroniseWithAP

Description Executes send/receive transfer with the AP
 and also controls green/red (send/receive) LEDs

Input Parameters: sendBuffer - pointer to the data to be sent
 sendBufferlength - length of the send data
 array
 receiveBuffer - pointer to the data array where
 received message will be stored
 receiveBufferlength - pointer to the variable
 where the length of the
 received message will be
 stored
 mode - switch to choose between send/receive or
 send only (receive wait will be skipped)

Return: 1 byte containing status flags (each flag is a
 set or cleared bit)
***/

uint8_t synchroniseWithAP(uint8_t* sendBuffer,
 uint8_t sendBufferlength,
 uint8_t* receiveBuffer,
 uint8_t* receiveBufferlength,
 uint8_t mode)

The function employs several static variables. This is of great

importance as locally declared static variables in a function will

Chapter 7 Detailed System Design 39

receive their initialization value when the space is allocated and will
keep the value they contain between different function calls. That is to
say that if a variable is set to 1 for example on 1 function run, the next
time the function will be called that variable will still hold the value 1.
This helps a great deal in keeping the status of the connection in
between synchronizations.

 #define TRUE 1
 #define FALSE 0
 #define CLEAR_FLAG(flag,byte) st(byte &= ~flag;)
 #define SET_FLAG(flag,byte) st(byte |= flag;)
 #define GET_FLAG(flag,byte) (((byte & flag) == flag)?TRUE:FALSE
 #define JOINED 1
 #define LINKED 2
 #define FRAME_SENT 4
 #define FRAME_RECEIVED 8
 smplStatus_t SMPL_Status = SMPL_SUCCESS;
 /* Static variables will maintain their value from one function
 call to the next */
 static linkID_t APLinkID = 0;
 static uint8_t statusByte = 0;
 static uint8_t failedAttempts = 0;

Several helper macros are defined for this function in order to

facilitate flag control from within the status byte (keep in mind that the
flags are bitwise encoded).

The function will perform several tasks based on whether specific

flags are set in the statusByte variable. The first task to perform is to
check if the End Device has already joined a network and if not, to do
so.

 /* Switch on radio, starts in idle state */
 SMPL_Ioctl(IOCTL_OBJ_RADIO, IOCTL_ACT_RADIO_AWAKE, 0);
 /* Check for joined flag and attempt join as needed */
 if(GET_FLAG(JOINED,statusByte) == FALSE){
 uint8_t tryCount = MAX_RETRIES;
 LED_ALL_ON();
 /* Attempt join several times until successful or MAX_RETRIES */
 do{
 SMPL_Status = SMPL_Init(sCB);
 tryCount--;
 }while(tryCount && SMPL_Status != SMPL_SUCCESS);
 /* If successfuly joined set flag */
 if(SMPL_Status == SMPL_SUCCESS){
 SET_FLAG(JOINED,statusByte);
 }
 }

After turning the radio on, the function will attempt to join a

network a certain number of times (MAX_RETRIES) and if successful set

Chapter 7 Detailed System Design 40

the appropriate flag in the status byte. By not setting the flag on next
function execution a new join attempt will be made.

If the End Device has already joined a network but is not yet

linked a link attempt will take place. Again the function will try several
times before giving up and if successful will set the link flag. However if
the whole procedure is not successful more times in a row eventually
the joined flag will be removed and the End Device will try to join a
new network (or rejoin the old one).

 /* If joined check for link flag and link with AP */
 if((GET_FLAG(JOINED,statusByte) == TRUE) &&
 (GET_FLAG(LINKED,statusByte) == FALSE)){
 uint8_t tryCount = MAX_RETRIES;
 /* Attempt link several times until successful or MAX_RETRIES
 with a delay between attempts */
 do{
 LED_ALL_ON();
 SMPL_Status = SMPL_Link(&APLinkID);
 tryCount--;
 NWK_DELAY(BLINK_DELAY);
 LED_ALL_OFF();
 }while(tryCount && SMPL_Status != SMPL_SUCCESS);
 /* If successfuly linked set flag and clear failed attempts*/
 if(SMPL_Status == SMPL_SUCCESS){
 SET_FLAG(LINKED,statusByte);
 failedAttempts = 0;
 }
 /* If all link attempts have failed clear the flag and count a
 complete fail of the function */
 else{
 CLEAR_FLAG(LINKED,statusByte);
 failedAttempts++;
 /* If function has failed several times AP is not online
 anymore so retry to join */
 if(failedAttempts > MAX_RETRIES){
 failedAttempts = 0;
 CLEAR_FLAG(JOINED,statusByte);
 }
 }
 }

If the End Device has joined the network and is already linked to

the AP, the function will attempt to send the frame provided by the
send buffer received as input parameter. After attempting several
times the FRAME_SENT flag will be set on successful send or cleared if
the send failed.

 /* If successfuly connected try to send */
 if((GET_FLAG(JOINED,statusByte)&&
 GET_FLAG(LINKED,statusByte))==
 TRUE){
 uint8_t tryCount = MAX_RETRIES;
 do{
 LED_GREEN_ON();

Chapter 7 Detailed System Design 41

 SMPL_Status = SMPL_SendOpt(APLinkID,
 sendBuffer,
 sendBufferlength,
 SMPL_TXOPTION_ACKREQ);
 tryCount--;
 NWK_DELAY(BLINK_DELAY);
 LED_GREEN_OFF();
 }while(tryCount && SMPL_Status != SMPL_SUCCESS);
 /* On successful send set the flag and clear failed attempts */
 if(SMPL_Status == SMPL_SUCCESS){
 SET_FLAG(FRAME_SENT,statusByte);
 failedAttempts = 0;
 }
 /*If send has failed clear the flag and count a complete fail*/
 else{
 CLEAR_FLAG(FRAME_SENT,statusByte);
 failedAttempts++;
 /* If the function has failed to send several times in a row
 AP is down so retry to link */
 if(failedAttempts > MAX_RETRIES){
 failedAttempts = 0;
 /* If AP doesnt respond to ping also try to rejoin */
 if(SMPL_Ping(APLinkID) == SMPL_SUCCESS){
 CLEAR_FLAG(JOINED,statusByte);
 }
 CLEAR_FLAG(LINKED,statusByte);
 SMPL_Unlink(APLinkID);
 APLinkID = 0;
 }
 }
 }

If the send procedure fails multiple times in a row the End Device

will try to see if the Access Point is still online using the SMPL_Ping
function and if that fails as well the function will unset the JOINED and
LINKED flags. On the next function run the End Device will try to re-join
and re-link.

If the SEND_RECEIVE switch was used and the last send

procedure was successful the function will also attempt to receive a
reply from the Access Point (waiting for a frame in case the send failed
makes no sense as nothing will be received). First the radio will be
switched to receive mode and then the End Device will enter low
power mode. This is essential as it allows just the right time to be spent
waiting (because the exact duration varies and cannot be known
beforehand). After the End Device has entered low power mode it can
only be woken up by interrupts that explicitly clear low power mode
status. In the case of this program there are 2 such functions. One is
called on each received frame by the SimpliciTi underlying protocols
and the other is from the system timer module. The exact mechanics of
these two will be explained in the next section. For now it is only
important to know that the End Device will wake up either on the next
received frame or latest after at least one second of sleep.

Chapter 7 Detailed System Design 42

 /* If frame has been sent successfuly (implies fully connected as
well) try to receive */
 if(GET_FLAG(FRAME_SENT,statusByte) == TRUE && mode ==
SEND_RECEIVE){
 /* Turn on receive mode */
 SMPL_Ioctl(IOCTL_OBJ_RADIO, IOCTL_ACT_RADIO_RXON, 0);
 /* Enter low power mode, once the message is received an
interrupt will wake up the CPU */
 SLEEP();
 SMPL_Status = SMPL_Receive(APLinkID, receiveBuffer,
receiveBufferlength);
 if(SMPL_Status == SMPL_SUCCESS){
 SET_FLAG(FRAME_RECEIVED,statusByte);
 }
 else{
 CLEAR_FLAG(FRAME_RECEIVED,statusByte);
 }
 }
 else{
 CLEAR_FLAG(FRAME_RECEIVED,statusByte);
 }
 /* All work done, put radio to sleep */
 SMPL_Ioctl(IOCTL_OBJ_RADIO, IOCTL_ACT_RADIO_SLEEP, 0);
 /* Return the status flags */
 return statusByte;
}

If the frame is successfully received the FRAME_RECEIVED flag is

set, otherwise it is cleared. At the end of the function the radio is
switched back to low power mode (note that the CPU remains active)
and the status byte is given as return value.

7.2.3. Auxiliary Functions
Several auxiliary functions are used by the End Device program.

Some of them are Interrupt Service Routines while others help with
debugging.

Because the End Devices have to be energy consumption

efficient they must frequently enter low power modes. For this purpose
a macro has been defined in order to improve code readability.

/* Turn on Low Power mode */
/* Set a flag to indicate sleep mode to interrupt routines */
/* Enter low power mode */
#define SLEEP() \
st(\
 systemSleep = 1; \
 __bis_SR_register(LPM0_bits + GIE);\
)

The global variable systemSleep is set to 1 to prevent the timer

interrupt service routine from waking up the End Device before a full
second of sleep has passed. Because waiting for a frame to be

Chapter 7 Detailed System Design 43

received is done in sleep mode it may happen that the timer ISR is
triggered before the receive frame ISR. By making the timer ISR wait
one more second before waking up the system this problem is avoided
and the correct time is spent waiting for a frame.

#pragma vector=WDT_VECTOR
__interrupt void WDT_ISR(void)
{
 systemTimeID++; /* Increment time counters */
 systemTimer++;
 if(systemSleep == 1){ /* Check sleep mode flag */
 systemSleep = 0; /* Reset the flag but dont wake the
 CPU. It will be woken up the next ISR run */
 }/* This guarantees at least a second of sleep without the need of
 shifting the 1 second interval */
 else{
 __bic_SR_register_on_exit(LPM3_bits); /* Wake up the CPU */
 }
}

The timer used on the GASB Sensor Platform is actually the

watchdog timer set in interval mode because the MSP430F1611 that
resides on the board only has two normal timer modules, one is used by
SimpliciTi and one is used by the measuring software that will be
implemented. The timer ISR guarantees at least a second of sleep by
checking the global flag systemSleep.

/**\
Function: sCB

Description: SimpliciTi callback function. Runs in ISR context
 on each frame received

Input Parameters: newLinkID - the link ID from which the frame was
 received (will be 0 if the frame comes
 from a peer that tries to link the
 first time)

Return: 0 if frame will be processed by application or 1 if
 frame should be discarded
**/

static uint8_t sCB(linkID_t newLinkID)
{
 LED_RED_ON();
 NWK_DELAY(BLINK_DELAY);
 LED_RED_OFF();
 return 0;
}

The SimpliciTi callback function is much simpler than in the case

of the Access Point. All it does is signal the frame that was received via
LED blink and stores the received frame in the queue for later
processing.

Chapter 7 Detailed System Design 44

The outputStatus function, while not really essential for the

functionality of the device, helps a great deal while debugging in
order to check incoming and outgoing messages and send this
information to a PC via serial interface.

/**\
Function: outputStatus

Description: Uses the flags byte to output text
 information through the serial interface
 concerning connection status (for debugging
 purpouses)

Input Parameters: statusFlags - byte containing connection
 flags

Return: nothing
**/

void outputStatus(uint8_t statusFlags){
 /* First print the system time and receive and transfer success
rates */
 TXString(stringBuffer,
 sprintf(stringBuffer,
 "\n\r [%u:%02u:%02u] ",
 TID_HOURS(systemTimeID),
 TID_MINUTES(systemTimeID),
 TID_SECONDS(systemTimeID)));
 TXString(stringBuffer,
 sprintf(stringBuffer,
 "[R:%5.1f%% T:%5.1f%%] ",
 ((float)receiveSuccess)/((float)receiveAttempt)*100,
 ((float)sendSuccess)/((float)sendAttempt)*100));
 /* Print relevant information for each connection state */
 switch(statusFlags){
 case 0:
 TXString(stringBuffer,
 sprintf(stringBuffer,"Joining network.. "));
 break;
 case JOINED:
 TXString(stringBuffer,
 sprintf(stringBuffer,"Linking to AP.. "));
 break;
 case JOINED+LINKED:
 TXString(stringBuffer,
 sprintf(stringBuffer,"Send frame failed "));
 break;
 case JOINED+LINKED+FRAME_SENT:
 frameTimeID=((uint32_t)sendBuffer[1])+
 (((uint32_t)sendBuffer[2])<<8)+
 (((uint32_t)sendBuffer[3])<<16)+
 (((uint32_t)sendBuffer[4])<<24);
 TXString(stringBuffer,
 sprintf(stringBuffer,
 "Sent frame: type=%u timeID=%u:%02u:%02u ",
 sendBuffer[0],
 TID_HOURS(frameTimeID),
 TID_MINUTES(frameTimeID),
 TID_SECONDS(frameTimeID)));
 break;
 case JOINED+LINKED+FRAME_SENT+FRAME_RECEIVED:

Chapter 7 Detailed System Design 45

 TXString(stringBuffer,
 sprintf(stringBuffer,
 "Sent frame: type=%u timeID=%u:%02u:%02u ",
 sendBuffer[0],
 TID_HOURS(frameTimeID),
 TID_MINUTES(frameTimeID),
 TID_SECONDS(frameTimeID)));
 TXString(stringBuffer,
 sprintf(stringBuffer,
 "Received frame: type=%u timeID=%u:%02u:%02u ",
 receiveBuffer[0],
 TID_HOURS(frameTimeID),
 TID_MINUTES(frameTimeID),
 TID_SECONDS(frameTimeID)));
 break;
 default:
 break;
 }
}

The outputStatus function can easily be removed as it only uses

global variables and the statusByte defined in the main program. While
debugging one can connect both the End Device and the
AccessPoint to a PC and use a terminal software that can display
information from two separate COM ports in the same time to check
the data traffic in real time.

7.3. Common Libraries
Since the Access Point needs to communicate with the PC via a

Serial-to-USB interface, a library must be developed to handle this
connection. It also makes sense to implement this library on the End
Devices in order to send debugging information to the PC also via
Serial-to-USB. The library is composed of two files: virtual_com_cmds.h
and virtual_com_cmds.c. In order to add the library to a project one
must simply include the library’s header file where function prototypes
are defined. The implementation of these functions is shown below.

void COM_Init(void)
{
 U1CTL |= SWRST;
 U1CTL |= CHAR;
 U1CTL &= ~(SYNC + SPB + PENA);
 U1TCTL |= SSEL1;
 U1BR0 = 0x80;
 U1BR1 = 0x00;
 UMCTL1 = 0x00;
 ME2 |= (URXE1 + UTXE1);
 U1CTL &= ~SWRST;
}

The COM_Init function initializes the UART of the microcontroller in

SPI mode with a baud rate of 9600, no parity bits and one stop bit.
Depending on the platform the library is used on this function needs to
be modified in terms of register names and register value macros.

Chapter 7 Detailed System Design 46

void TXString(char* string, int length)
{
 int pointer;
 for(pointer = 0; pointer < length; pointer++)
 {
 volatile int i;
 U1TXBUF = string[pointer];
 while (!(IFG2&UTXIFG1)); // USCI_A0 TX buffer ready?
 }
}

The TXString function receives a pointer to a string and its length

as parameters and sends that to the UART TX buffer. It also waits for the
ready flag to be set by the microcontroller. It can be used very easily in
combination with sprintf() which prints formatted data to a string of
choice and returns the number of successfully written characters.

TXString(stringBuffer,sprintf(stringBuffer,"A test string "));

As seen in the example above the first parameter is a char array

and the second parameter is the string length. This is because the
parameters are evaluated in C from last to first so sprintf() will be
executed first and gets a chance to modify stringBuffer and return the
number of correctly written characters which can be used as string
length. Passing the length is necessary even though stringBuffer is
actually a char array because passing arrays to functions causes arrays
to decay into char pointers meaning they still contain information
about where the string begins but the information about the size of the
string is lost.

Chapter 8 Conclusion and Outlook 47

8. Conclusion and Outlook
At the time of writing this document, the main goal of the project

has been completed and as such many doors have been opened in
the further development of both the software framework concept and
the hardware configurations and usages.

The hardware provided at the start of the project, namely the
GASB Sensor Platform together with the GASB sensors and the
ez430RF2500 target boards, has been configured according to the
project plan and, together with the developed software, the sensor
platforms are able to communicate with the computer using radio links
and the received data from the Access Point is available for processing
on the PC.

By combining the low power characteristics of the MSP
controllers with those of the CC2500 RF modem the control and radio
part of the platform is optimized with respect to power consumption.
Considering that the GASB gas sensors also have low power
consumption capabilities all there is left to do is to optimize the
peripheral hardware on the devices. Testing the power consumption
change only makes sense when the complete platform has been
optimized.

The software framework that has been developed works as
intended and has been thoroughly tested. It has proven to be quite
stable, though it is hard to predict that that would not change after
adding new user application content. However having a solid base to
start on the next project should provide a big step in early
development.

While the developed software may not seem to have a very
precise form, one should consider that having flexibility as purpose has
as end effect a structure with many undefined paths which in turn
allow a great variation in usages. The framework developed in this
project was born out of a great quantity of research performed on the
used hardware and software protocols, and without this research most
of this implementation would have been cumbersome and time-
consuming. Given the current advancements in both hardware and
software, basing new ideas on existing knowledge and technical
information is not only recommended, but most of the time required, in
order to shorten development time.

For the author the project has provided a great source of
knowledge regarding wireless communication protocol concepts,
hardware set-ups of remote communication devices and, in general,
hardware platform development and software design.

In closing, the author would like to thank his supervisor, Dr Roland
Pohle together with all the colleagues of the Siemens Corporate
Technologies HW2 Department for their great support and aid in the
project and for providing a friendly working environment.

Chapter 9 Bibliography 48

9. Bibliography

[1] M. Fleischer, Advances in application potential of
adsorptive-type solid state gas sensors. 2008 Meas. Sci.
Technol. 19 042001.

[2] Ch. Wilbertz, H.-P. Frerichs, I. Freund, M. Lehmann,

Suspended-Gate- and Lundstrom-FET integrated on a
CMOS-chip, Sens. Actuators A 123-124 (2005) 2–6

[3] CO2 sensors based on workfunction readout using floating

gate FET devices with polysiloxanes sensing layers by R.
Pohle, A. Tawil, O. von Sicard, M. Fleischer, H.-P. Frerichs, Ch.
Wilbertz, I. Freund

[4] Sensors and Actuators B 120 (2007) 669–672 – Fire detection

with low power fet gas sensors by R. Pohle, E. Simona, R.
Schneider, M. Fleischer, R. Sollacher, H. Gaoa, K. Müller, P.
Jauch, M. Loepfe, H.-P. Frerichs, C. Willbertz.

[5] Texas Instruments Online Documentation

http://focus.ti.com/general/docs/techdocs.tsp?siloId=1
SimpliciTi Overview (REV. B) datasheet, MSP430 1xxx and
2xxx family datasheets, CC2500 RF Module datasheet.

http://focus.ti.com/general/docs/techdocs.tsp?siloId=1

Chapter A1 Source Codes 49

A1. Source Codes

Due to size and formatting issues the complete source code

solution will be attached in digital format on the CD containing the
digital form of this document.

A2. Figure Index

Figure 2-1: Floating Gate FET based gas sensor [4] ...5
Figure 2-2: GASB Sensor Platform with RF Extension ..6
Figure 2-3: The MSP430F1611 mounted on the GASB PCB6
Figure 2-4: eZ430-RF2500 Evaluation Kit [5]...7
Figure 2-5: The CC2500 mounted on PCB ..8
Figure 2-7: Example of SimpliciTi Star and Peer to Peer Network [5]10
Figure 2-8: SimpliciTi API...11
Figure 2-9: SimpliciTi Architectural Overview [5] ...12
Figure 4-1: Code Composer Project File Structure ..16
Figure 4-2: Linking a file to a CCS4 Project ...17
Figure 4-3: Linking files using variable paths ...18
Figure 4-4: Changing a path variable in CCS4 ..18
Figure 4-5: Project configuration for EZ430RF as ED..20
Figure 4-6: Project configuration for the GASB Platform as ED.................................21
Figure 4-7: Changing applications using project configurations.................................21
Figure 5-1: System connectivity ...23
Figure 5-2: Access Point Program Flow...24
Figure 5-3: End Device Program Flow ...25
Figure 5-4: SimpliciTi Network Example [5] ...26
Figure 6-1:Example of debugging in real-time ...28

A3. Definitions
Below is a list of important terms used throughout this document

and their respective definitions:

• AP – Access Point
• ED – End Device
• BSP – Board Support Package
• Frame – A message sent with the SimpliciTi protocol
• API – Application programming interface
• MSP – Mixed Signal Processor
• ISR – Interrupt Service Routine

	1. Introduction
	1.1. Motivation
	1.2. Project Description

	2. System Overview
	2.1. Hardware Description
	2.1.1. GASB Gas Sensor
	2.1.2. GASB Sensor Platform
	2.1.3. EZ430-RF2500 Evaluation Kit
	2.1.4. The CC2500

	2.2. Software Description
	2.2.1. SimpliciTi: Low Power RF Network
	2.2.2. User Application

	3. Design Considerations
	3.1. Assumptions and Dependencies
	3.1.1. Board Support Package
	3.1.2. Access Point and End Devices

	3.2. General Constraints
	3.2.1. Hardware Constraints
	3.2.2. Network Topology Constraints

	3.3. Goals and Guidelines
	3.4. Development Methods

	4. Architectural Strategies
	4.1. Code Composer Studio 4
	4.2. CCS Project Structure
	4.2.1. File Structure
	4.2.2. Linked Resources
	4.2.3. Applications
	4.2.4. Project Configurations

	4.3. Debug methods
	4.3.1. The CCS Debugger
	4.3.2. Serial-to-USB Interface

	5. System Architecture
	5.1. System Functionality Overview
	5.2. Access Point Program Flow
	5.3. End Device Program Flow
	5.4. Other System Devices

	6. Policies and Tactics
	6.1. Coding Guidelines
	6.2. Testing
	6.3. Communication Interface

	7. Detailed System Design
	7.1. Access Point Software Implementation
	7.1.1. Main Program Loop
	7.1.2. Auxiliary Functions

	7.2. End Device Software Implementation
	7.2.1. Main Program Loop
	7.2.2. RF Synchronization Function
	7.2.3. Auxiliary Functions

	7.3. Common Libraries

	8. Conclusion and Outlook
	9. Bibliography
	A1. Source Codes
	A3. Definitions

