
Masterarbeit

Valentin Stanev

Abtastratenumsetzung nach dem Direct-Down-
Conversion Prinzip als FPGA-IP-Core für
nachfolgende Auswertung durch Matlab

Fachhochschule Westküste
Fachbereich Technik

Fachhochschule Westküste - University of Applied Sciences
Faculty of Engineering

Hochschule für Angewandte Wissenschaften Hamburg
Fakultät Technik und Informatik

Department Informations- und Elektrotechnik

Hamburg University of Applied Sciences
Faculty of Engineering and Computer Science

Department of Information and Electrical Engineering

Valentin Stanev

Abtastratenumsetzung nach dem Direct-Down-
Conversion Prinzip als FPGA-IP-Core für
nachfolgende Auswertung durch Matlab

Masterarbeit eingereicht im Rahmen der Masterpüfung
im gemeinsamen Studiengang Mikroelektronische Systeme
am Fachbereich Technik
der Fachhochschule Westküste
und
am Department Informations- und Elektrotechnik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer : Prof. Dr. Jürgen Reichardt
Zweitgutachter : Prof. Dr.-Ing. Stephan Hußmann

Abgegeben am 02. Februar 2011

Valentin Stanev

Title of the master thesis

Sample rate conversion using the Direct-Down-Conversion principle as FPGA-IP-Core and Matlab
evaluation of the results

Keywords

Software-Defined-Radio, Field Programmable Gate Array, Digital Signal Processing , Softcore
Microprocessor, System-on-Programmable-Chip, USB, Microblaze

Abstract

The evolution of digital electronics allowed the realtime processing of radio frequencies and the
implementation of demodulation circuits directly on a single chip and by thus creating flexible
solutions for different digital communication problems. With the refinement of today's signal
processing chips, such as Field Programmable Gate Arrays and Digital Signal Processors, topics like
Software-Defined-Radio are not any more part of the theoretical discussion but can be directly
implemented in digital hardware.

This paper discusses the implementation of the DDC algorithm, a well defined principle with respect
to Radio Frequency signal recovery, as an Intellectual Property Core and its integration in a
Microblaze softcore microprocessor-based embedded system responsible for the USB data
transmission of the incoming data stream.

Valentin Stanev

Thema der Masterarbeit

Abtastratenumsetzung nach dem Direct-Down-Conversion Prinzip als FPGA-IP-Core für
nachfolgende Auswertung durch Matlab

Stichworte

Software-Defined-Radio, Field Programmable Gate Array, Digitale Signalverarbeitung , Softcore
Mikroprozessor, System-on-Programmable-Chip, USB, Microblaze

Kurzzusammenfassung

Die Entwicklung der digitalen Elektronik erlaubt die Echtzeit-Verarbeitung von Funkfrequenzen und
die Umsetzung der Demodulationsschaltungen direkt auf einem einzigen Chip und schafft damit
flexible Lösungen für unterschiedliche Probleme aus dem Bereich der digitalen Übertragungstechnik.
Mit der Verfeinerung der heutigen Signalverarbeitungs-Chips, wie Field Programmable Gate Arrays
und digitalen Signalprozessoren, Themen wie Software-Defined-Radio sind nicht mehr Teil der
theoretischen Diskussion, sondern können direkt in digitaler Hardware umgesetzt werden.
Dieser Arbeit behandelt die Implementierung von dem DDC-Algorithmus, ein definiertes Verfahren in
Bezug auf die RF Signalverarbeitung, als Intellectual Property Core und seine Integration in einem
Microblaze softcore Mikroprozessor-basierte Embedded-Systems die für die USB-Datenübertragung
von den eingehenden Datenstrom verantwortlich ist.

Page 3 of 102

Acknowledgement

Acknowledgement

I wish to express my appreciation to Prof. Dr. Jürgen Reichardt for supervising my master

thesis and giving me the opportunity to work on this impressive project. The provided support

and motivation have been very rewarding for me and the valuable experience, earned during

the development process, allowed me to extend my engineering knowledge. Also, I would like

to thank Prof. Dr.Ing. Stephan Hußmanm for his engagement as second examiner and for the

provided guidance during this thesis.

Additionally, I would like to express my gratitude to Professor Sauvagerd for providing me

with valuable information in the field of signal processing and filter design.

Special thanks go to Dipl.-Ing. J. Neugebauer, Dipl.-Ing. G. Volkmann and Mr. G. Wolff for

their contribution and engagement during the test phase of the project.

Last but not least, I would like to thank my parents for the constant support and inspiration,

without which I could have never made it. Also, I am very thankful to my girlfriend for

motivating me throughout the hard moments I experienced with this thesis. Finally, I thank all

my friends for their faith and support.

Hamburg, February 2011 Valentin Stanev

Page 4 of 102

Table of Contents

Table of Contents

Acknowledgement..4
Table of Contents...5
List of Figures..7
Index of Tables...8
List of Acronyms..9
 1 Introduction...10

 1.1 The aim of this project..11
 1.2 Outline of this paper..11

 2 Concept...13
 2.1 Software Defined Radio..13
 2.2 DSPs and FPGAs compared...14
 2.3 The Current State..17
 2.4 Block diagram and requirements specification..21

 3 Theory...25
 3.1 Realtime Digital Signal Processing..25
 3.2 Direct Down Conversion...26

 3.2.1 Mixing...27
 3.2.2 Digital Filters...31
 3.2.3 Decimation...37

 3.3 I/Q signal generation...40
 3.4 Sampling, Undersampling..41
 3.5 Analog to Digital Conversion..43

 4 Hardware Implementation...46
 4.1 Hardware Configuration..47

 4.1.1 ML507 Evaluation Board..47
 4.1.2 DC918C demonstration circuit..49
 4.1.3 SMSC EVB_USB_3300_XLX Transceiver..50

 4.2 Hardware synthesis...52
 4.2.1 System Generator model of the DDC algorithm...52

 4.2.1.1 CIC Filter...54
 4.2.1.2 Droop compensation and channel selection...54
 4.2.1.3 DDC Model Summary...56

 4.2.2 Base system builder and User-IP core integration...58
 4.2.2.1 Multi Port Memory Controller...60
 4.2.2.2 XPS Universal Serial Bus 2.0 IP Core...65
 4.2.2.3 DDC IP Core ...66

 4.2.3 Design summary..75
 5 Software Implementation..76

 5.1 USB Firmware extension..76
 5.2 Data Acquisition Application..80

 6 Results...85
 6.1 Hardware Validation...85
 6.2 Signal Quality Estimation...87

 6.2.1 Spectrum of the input signal..87

Page 5 of 102

Table of Contents

 6.2.2 Test case 1 → Single-tone input..88
 6.2.3 Test case 2 → AM-modulated input..90
 6.2.4 Test case 3 → FM-modulated input...92

 7 Conclusion and Recommendations..96
Bibliography...98
Attachment A – List of the CD-contents..100
Declaration...101

Page 6 of 102

List of Figures

List of Figures
Figure 2.1: C6713 CPU overview, ALU units and cache memories....................................17
Figure 2.2: Virtex II architecture overview..18
Figure 2.3: DSP48E slice architecture overview..19
Figure 2.4: Cool USB Radio block diagram...21
Figure 2.5: "Perseus" project block diagram...22
Figure 2.6: Overview of the design concept..24
Figure 3.1: Signal Processing overview...28
Figure 3.2: Direct Down Conversion Block..32
Figure 3.3: Frequency mixing results in two new signals; a lowpass filter may be used to
reject the unwanted components...34
Figure 3.4: DDS architecture overview...34
Figure 3.5: DDS "phase increment value" Programming Interface..................................36
Figure 3.6: Integrator <-> Comb filter cascade..40
Figure 3.7: 8-weight Moving average Filter, Structure and Frequency Response............44
Figure 3.8: CIC filter structure..45
Figure 3.9: CIC Pass-band droop change with respect to the order of the filter..............45
Figure 3.10: Cascade CIC filter, optimizide structure...46
Figure 3.11: Block diagram of a decimator with an AAF filter..47
Figure 3.12: Polyphase decomposition for decimation with a factor of 3..........................48
Figure 3.13: I/Q signal generation, filter cascade and sampling rate change....................51
Figure 3.14: The effect of aliasing if the Nyquist theorem is not satisfied.........................52
Figure 3.15: DDC Principle, processing sequence and spectral modifications..................53
Figure 4.1: ML507 Board...57
Figure 4.2: DC918C Board, source: [dc918]...60
Figure 4.3: Complete Model of the DDC Algorithm..69
Figure 4.4: Estimation of the differential delay on the overall CIC magnitude response70
Figure 4.5: Transition band reduction..71
Figure 4.6: Overall Frequency Response of the filter cascade..74
Figure 4.7: Passband ripple of the filter cascade..74
Figure 4.8: DDC filter cascade Magnitude and Phase response...75
Figure 4.9: Overview of the hardware design...76
Figure 4.10: 8-Word Write Cacheline Transaction..80
Figure 4.11: NPI core diagram...82
Figure 4.12: USB core structure..84
Figure 4.13: DDC IP core overview...90
Figure 4.14: Flow concept of the DDC IP Core..94
Figure 4.15: Regional Clock Buffers...98
Figure 5.1: Overview of the DDC software project..101
Figure 5.2: FAT Table overview...104
Figure 5.3: Software handshake diagram...106
Figure 5.4: Overview of the desktop application structure...108
Figure 6.1: Design overview...110
Figure 6.2: Spectrum of the input signal, two tone input, 89.35 MHz and 89.45 MHz. .112
Figure 6.3: Single-tone measurement, FPGA DCM as clock source................................113
Figure 6.4: Single-tone measurement, R&S signal generator as clock source.................113
Figure 6.5: AM-modulated signal..115
Figure 6.6: AM-modulated signal, degree of modulation 30%...116

Page 7 of 102

List of Figures

Figure 6.7: FM modulation, spectral components and connection between the Bessel
function and index of modulation..118
Figure 6.8: Bessel functions and relation to the index of modulation..............................119
Figure 6.9: FM-modulated signal, modulation index m = 0.5...120
Figure 7.1: Sample diagram of the Microblaze-free data management...........................122

Page 8 of 102

Index of Tables

Index of Tables
Table 1: Virtex5 XC5VFX70T resource overview..25
Table 2: Design specifications...26
Table 3: Summary of the design tools, used in this project...27
Table 4: DDS core signals legend...37
Table 5: DDS block resource estimation with different noise shapping options...............37
Table 6: Overview of the hardware implementation steps ...56
Table 7: Pin layout of the FPGA <-> ADC connection..58
Table 8: Pin layout voltage supply FPGA <-> SMSC daughter card.................................59
Table 9: Pin layout FPGA <-> SMSC daughter card...61
Table 10: Resource Estimation for the Filter Cascade excluding the CIC Filter..............72
Table 11: IP cores, instantiated in this project..77
Table 12: Summary of the NPI core..81
Table 13: Component description..82
Table 14: NPI state description..83
Table 15: Software Register 1...95
Table 16: Software Register 2...95
Table 17: Software Register 3...95
Table 18: Overview of the NPI interface connection configuration between the MPMC
and the DDC cores..99
Table 19: Resource Consumption..100
Table 20: USB transmission validation..111
Table 21: Comparison of the peak-to-peak voltage samples, taken by the DDC sysetm114
Table 22: Measurement results for the Amplitude Modulation test.................................117
Table 23: Measurements for the FM-modulated signal...120

Page 9 of 102

List of Acronyms

List of Acronyms

ADC Analog-to-Digital-Converter

DAC Digital-to-Analog-Converter

DDC Direct Down Conversion

IQ In Phase/Quadrature

FPGA Field Programmable Gate Array

DSP Digital Signal Processor

SDR Software Defined Radio

USB Universal Serial Bus

BBB Bulk Only

FIR Finite Impulse Response

IIR Infinite Impulse Response

CIC Cascaded Integrator Comb

VLIW Very Long Instruction Word

MPMC MultiPort Memory Controller

XCL Xilinx CacheLink

FAT File Allocation Table

PLB Processor Local Bus

SPLB Slave PLB Interface

MPLB Master PLB Interface

UTMI Universal Transceiver Macrocell IF

ULPI UTMI + Low Pin Interface

RTL Register Transfer Level

UCF User Constraint File

SoPC System-on-Programmable-Chip

SNR Signal-to-Noise Ratio

SINAD Signal-to-Noise-and-Distortion

SFDR Spurious Free Dynamic Range

FFT Fast Fourier Transform

AAF Anti-Aliasing Filter

IP Intelectual Property

CPU Centrla Processing Unit

ISR Interrupt Service Routine

NPI Native Port Interface

GPIO General Purpose IO

SIE Serial Interface Engine

DMA Direct Memory Access

DDS Direct Digital Synthesizer

NCO Numerically Controlled Oscillator

VCO Voltage Controlled Oscillator

LUT Look Up Table

GUI Graphical User Interface

MPD Microprocessor Peripheral Definition

MHS Microprocessor HW Specification

PAR Place And Route

USRP Universal Software Radio Peripheral

MIPS Million Instructions Per Second

MSS Mass Storage Support

Page 10 of 102

 1 Introduction

 1 Introduction

During the last decades the world of digital electronics and mobile communications has

undergone a massive evolution. Not only is nearly every device of today's everyday life

controlled by a simple microprocessor, but even more and more standards have been shifted

to the digital domain. One such example is the conversion of the Television Broadcasting

system to Digital Video Broadcasting Terrestrial(DVB-T) for the whole European Union by

the end of 2012 which will leave Analog Television Broadcasting in history. Digital

Broadcasting will eventually ensure better signal quality and bring additional benefits with it.

Furthermore, more and more people use the Internet to listen to radio or watch television. One

topic which gains popularity very fast is the concept of Software-Defined-Radio(SDR).

A SDR system is a radio communication system where the processing part is shifted to a

personal computer or embedded system. Different hardware components, such as mixers,

filters and modulators, are integrated either in software or by means of hardware synthesis.

The rapidly evolving capabilities of digital electronics render practically many processes

which used to be only theoretically possible1. In order to retrieve the signal, different

algorithms may be adopted to suite the project specifications. One way of recovering the

Radio Frequency(RF) signal in baseband is the so called Direct-Down-Conversion(DDC)

principle. This algorithm performs the three main signal processing operations required to

retrieve the signal in baseband, namely down-mixing, filtering and decimation. In particular,

the incoming signal will be shifted to baseband so that an optimal sampling rate reduction can

be adopted. This is regarded as crucial, because of the fact that today's mobile devices are

battery operated and by reducing the sampling frequency improved battery life and longer

recharge intervals may be guaranteed. Once the data is recovered , there are numerous ways

of processing it. In the case of real-time algorithms immediate refinement is desired and the

data must be available in a given time frame. If, on the other side, the data is offloaded to a

special storage then the evaluation may be done at any time and the stream can be reproduced

without any timing constraints.

1 Reference: http://en.wikipedia.org/wiki/Software-defined_radio [14.11.2011]

Page 11 of 102

http://en.wikipedia.org/wiki/Software-defined_radio

 1 Introduction

 1.1 The aim of this project

The aim of this project is to create a system which allows efficient RF signal recovery. It

should provide the basic communication link between the analog and digital domain as well

as establish a transmission layer between the evaluation platform and analysis software. The

hardware implementation of the Direct-Down-Conversion algorithm together with the

construction of a softcore microprocessor environment are the two main topics in the

specification of this project. Likewise, the software design of the firmware and the analysis

application play a vital role in the signal quality and the achieved transmission rates. The

main objective will be to setup the hardware configuration and perform initial data transfers

using simplified measurement conditions. The failure-free low level communication between

the different components as well as the lossless data transfer must be assured. Finally, an off-

board Matlab analysis should aid the evaluation of the received data stream and will serve as

the main criteria in the measurement quality estimation. This approach reduces the design

time because the complete test algorithm must not be developed and tested. Moreover, the fact

that the output sequence is permanently stored, allows the execution of extensive evaluation

tests.

 1.2 Outline of this paper

The practical activity of this master thesis consists of the development and design of a FPGA-

based softcore microprocessor embedded system with respect to the outlined requirements

and criteria. The following work-flow will serve as a reference and lists the main topics to be

covered throughout the work:

➔ Theoretical analysis of the Direct-Down-Conversion method

This part will touch the main theory required for the Direct-Down-Conversion

algorithm. Also, Chapter 3 focuses on Analog-to-Digital conversion topic.

➔ Hardware platform evaluation and selection

Chapter 4.1 brings up a short overview of the used hardware platforms.

Page 12 of 102

 1 Introduction

➔ Design concept of the project

Chapter 2 will present the design concept to be implemented. All decisions done in

this part have the purpose to optimize the proposed solution and minimize the

hardware consumption.

➔ Hardware implementation of the softcore microprocessor system

The main topic in this part will be the design of a Intellectual Property(IP) Core,

which encapsulates the complete DDC algorithm and may be used as a standalone

system. Also, the complete embedded system, created during this master thesis, is

described in Chapter 4 .

➔ Software development of the firmware and analysis application

The software development process focuses on the USB firmware extension as well as

the design of the data acquisition application. Chapter 5 handles also the Matlab

analysis script and the synchronization between the FPGA and the desktop PC.

➔ Evaluation of the results

As a conclusion, diverse test measurement conditions should prove the functionality of

the embedded system and serve as an estimate for the success of the design. The

results are listed in Chapter 6 .

Page 13 of 102

 2 Concept

 2 Concept

This chapter will make the reader familiar with the design concept of this master thesis.

Additionally, a summary of the current state of the technology, concerning the Software-

Defined-Radio topic, will be presented and the relationship between this project and the

currently available solutions will be done.

 2.1 Software Defined Radio

As digital hardware is keeping up with Moore's Law2 the term Software-Defined-Radio is

drawing more and more attention. By increasing the maximum achievable operating

frequencies as well as memory capacities of today’s embedded systems, the idea of

performing the complete RF signal recovery in the digital domain is adopted much faster that

one would expect. The flexibility of digital hardware allows the implementation of functions,

which were kept in the analog world for a long time. As chip prices are going down and

semiconductor technologies improve, a digital platform would be the cost-efficient choice for

the market. Not only allow Field Programmable Gate Arrays(FPGAs) and Digital Signal

Processors(DSPs) high data processing throughput, but also Analog-to-Digital

Converter(ADC) chips ensure the fluent transition between the analog and digital domain.

Most of the disadvantages of analog components are not present when compared with their

digital counterparts, which is another argument for considering this kind of processing. Once

an analog signal is converted by the ADC, the designer is free to setup the optimal accuracy

for the arithmetic operations and storage elements of the system. Numerous sophisticated

tools allow the creation of simulation models which reduce the chance of error propagation in

the design phase as well as provide evaluation data for further research topics. This reduces

the time-to-market issue which could be a vital factor in the product's success.

2 For more information on the topic please visit: http://en.wikipedia.org/wiki/Moore%27s_law

Page 14 of 102

http://en.wikipedia.org/wiki/Moore's_law

 2 Concept

 2.2 DSPs and FPGAs compared

Digital signal processing algorithms typically require a large number of mathematical

operations to be performed quickly and repetitively on a set of data. To perform this in real-

time, all calculations should be done in a given amount of cycles. That is why all DSP

applications have constraints on latency. Due to this issue, the main difference between a

general purpose processor and a DSP is the hardware architecture chosen. While a RISC

microprocessor, such as the PowerPC 750, achieves 5253 Million Instructions Per

Second(MIPS) at 233 MHz , a TMS320C6713 DSP from Texas Instruments is capable of

doing 18004 MIPS at 225 MHz. This optimization effort boosts the calculation capacity of the

DSP and allows the implementation of complex mathematical expressions. This approach

requires the implementation of the Harvard Architecture5, which separates code and memory

space. This way the CPU can access instruction and data memory simultaneously. The so

called Very Long Instruction Word(VLIW) instruction set provides the possibility of driving

multiple arithmetic cores at the same time, see Figure 2.16.

3 Information source: http://en.wikipedia.org/wiki/Instructions_per_second, [24.01.2011]
4 Information source: http://focus.ti.com/docs/toolsw/folders/print/tmdsdsk6713.html [24.01.2011]
5 Wikipedia, http://en.wikipedia.org/wiki/Harvard_architecture, [20.12.2010]
6 Image reference: [DSK]

Page 15 of 102

Figure 2.1: C6713 CPU overview, ALU units and cache memories

http://en.wikipedia.org/wiki/Harvard_architecture
http://focus.ti.com/docs/toolsw/folders/print/tmdsdsk6713.html
http://en.wikipedia.org/wiki/Instructions_per_second

 2 Concept

This way it is possible to concurrently multiply two pairs of numbers, load new data from

memory and evaluate different flags. Addressing modes are also a feature which can bring

benefits to the system. By using "Modulo Addressing", it is possible to implement circular

buffers without check condition for the wrap around case.

These benefits provide enhanced arithmetic capabilities for the DSP, but it is often up to the

compiler support, which is responsible for optimal translation of the source code to the

machine level of execution. Often the generated code overhead requires the hand optimization

of the generated assembly instructions to provide better timing. This demands that the

developer is familiar with the design environment and the DSP architecture used. Writing the

machine code by hand would require more time than developing a C code application, but if

compiler optimization does not achieve the desired timing results, it is most probably the only

way of extracting better results.

Alternatively, there is another type of signal processing chips which compete with DSPs. A

Field Programmable Gate Array(FPGA) is an integrated circuit, designed to be configured by

modifying the available internal components. The elements of the FPGA are normally inferred

using Hardware Description Languages. The description is then translated into logic

components such as memories, registers, embedded multipliers and the like. As seen on

Figure 2.27, FPGAs consists of logic blocks, which provide certain functionality.

7 Image reference: [DS083]

Page 16 of 102

Figure 2.2: Virtex II architecture overview

 2 Concept

By interconnecting the logic cells it is possible to perform complex combinatorial functions

and implement a vast majority of algorithms. Furthermore, the evolution of the so called

DSP48E components, depicted on Figure 2.38, have provided fast arithmetic power and is the

main advantage of FPGAs over DSPs in terms of signal processing. Each DSP48E slice

contains a 25x18 multiplier as well as an adder and an accumulator.

While a DSP can be clocked faster, its structure still has only a limited number of multipliers.

Each device of the Virtex5 FPGA family, on the other side, contains at least 249 of these block

elements which results in at maximum 24 parallel multiplications. This flexibility makes

FPGAs suitable for nearly any kind of problems, especially in the field of signal processing.

On the other hand, the development process, involving both hardware and software design, is

much more complex with respect to other architectures. While a DSP comes with a fixed

hardware architecture, in the case of an FPGA design, it is the developer, who defines the

structure and evaluates the interfaces to be implemented. An optimal FPGA design would

consume only a certain amount of the available resources by leaving the rest for another

application. By using techniques such as Resource and Register Sharing it is possible to

pipeline a design and this way one could split a number of calculations in several clock

8 Image reference: Chapter 1 of [DS193]
9 A complete list of the hardware resources is available in Table 1 of [DS100]

Page 17 of 102

Figure 2.3: DSP48E slice architecture overview

 2 Concept

cycles. That is why a FPGA solution is always a tradeoff between Speed and Area

requirements. In order to tackle this problem, development tools, such as Matlab/Simulink,

Xilinx ISE and System Generator, have emerged to provide optimal implementation results.

The supplied vendor-specific libraries ensure that no hardware resources are wasted which

permits the integration of more logic on a single chip.

 2.3 The Current State

Although the main purpose of a SDR system is to recover a RF signal, different methodes can

be employed to achieve this. For this reason, a number of projects exist, which provide

flexible solutions and can serve as a reference during the design phase of this project. It is

obvious that the implementation of a complete SDR solution would expect knowledge in the

field of hardware and software development as well as layout design and verification. With

this in mind, it is clear that proprietary solutions, such as the those of “Software Radio

Laboratory LLC” and “GE Intelligent Platforms”10, would provide remarkable results at the

cost of a higher price. The former company offers the “SRL QuickSilver QS1R Receiver”, an

advanced direct sampling receiver which features a LTC2208 16-bit ADC as well as an Altera

EP3C25 Cyclone III FPGA. Connectivity to the PC is done through a USB 2.0 interface and

the spectral range, covered by the board is from 15 KHz up to 62 MHz in its standard

configuration. Furthermore, if the so called "undersampling" method is selected then

frequencies up to 500 MHz can be processed. Additionally, a SDRMAX Software is supplied

for data analysis and visualization11.

The “GE Intelligent Platforms”, on the other side, provides a dozen of solutions for specific

applications which include both FPGA and DSP components, responsible for handling the

high data throughput. All boards are designed for multi-channel processing and include a

number of Analog-to-Digital converters. The processed data is transmitted using high-speed

serial I/O and a sample rate conversion using the Direct-Down-Conversion algorithm is

performed12.

Besides those two products, the “LYRTECH SFF SDR Development board” is also worth

10 Source: http://www.designspark.com/content/software-defined-radio-sdr [21.01.2011]
11 Furhter information on the product: http://www.srl-llc.com/ [21.01.2011]
12 For a list of the "GE Intelligent Platforms" products visit: http://www.ge-ip.com/products/family/software-

defined-radio [21.01.2011]

Page 18 of 102

http://www.ge-ip.com/products/family/software-defined-radio
http://www.ge-ip.com/products/family/software-defined-radio
http://www.srl-llc.com/
http://www.designspark.com/content/software-defined-radio-sdr

 2 Concept

mentioning. This complex device integrates a DSP, FPGA and a general-purpose-processor

which makes it versatile solution for nearly any signal processing task. An 10/100 Mbps

Ethernet interface is used for the data transmission. Additionally, the SFF SDR evaluation

module comes with a stereo codec and various power management capabilities as well as

Simulink model-based design environment for fast design and evaluation13.

In comparison to the proprietary solutions, more and more open-source projects, focusing on

the SDR topic, gain popularity. One such approach is the “Cool USB Radio” coming from

“Commgenuity Inc”14. The design, shown on Figure 2.415, makes use of a Altera Cyclone II

FPGA, which performs the digital Up- and Down-conversion, whereas a Cypress FX2LP

USB 2.0 chip is used to transmit the digital information between the board and a desktop

computer. Both 10-bit AD and 12-bit DA converters are provided and run at 105 and 210

MHz respectively. Moreover, both analog inputs are provided with user-configurable 7-pole

filters for band selection. The software development kit comes with a Windows XP GUI for

data analysis.

13 For information http://www.ceanet.com.au/Products/Lyrtech/SFFSDRDevelopment/tabid/290/Default.aspx [21.01.2011]
14 Official website: http://www.coolusbradio.com/About_Us.html [21.01.2011]
15 Image source: http://www.coolusbradio.com/uploads/coolusbradio_detailed_block.pdf [24.01.2011]

Page 19 of 102

Figure 2.4: Cool USB Radio block diagram

http://www.coolusbradio.com/uploads/coolusbradio_detailed_block.pdf
http://www.coolusbradio.com/About_Us.html
http://www.ceanet.com.au/Products/Lyrtech/SFFSDRDevelopment/tabid/290/Default.aspx

 2 Concept

Another interesting solution is the GNU Radio, an open-source project initiated by Eric

Blossom. The reason for this project was to move the complexity of the hardware components

to the software domain and relocate the signal processing algorithms as near as possible to the

antenna. The project makes use of the Universal Software Radio Peripheral, USRP, which

can host a wide selection of daughter boards, each of which implements a signal processing

block found in the GNU Radio software package The original USRP is a low cost software

radio device which connects to the host computer through a USB 2.0 interface, and can send

up to 16 MHz of RF bandwidth in both directions. It hosts an FPGA which can be

reprogrammed, 4 high-speed Analog to Digital Converters (ADCs), 4 high-speed Digital to

Analog Converters DACs), and many auxiliary analog and digital I/Os16.

As last, the “PERSEUS” project from Nico Palermo deserves some comment. This SDR

platform, depicted on Figure 2.517, uses a LTC2206 14-bit ADC which feeds the signal

directly in a XC35250E FPGA board which performs the DDC computations. The covered

spectrum range of the input signal lies between 10 KHz and 30 MHz. A low-pass filter

attenuates any frequency above this level. An internal Direct Digital Synthesizer (DDS),

generates the quadrature components, required for the I/Q signal generation. An Anti-

Aliasing-Filter (AAF) follows the mixer and prepares the newly constructed signals for

decimation.

16 Product overview: http://dev.emcelettronica.com/gnu-radio-open-source-software-defined-radio [21.01.2011]
17 Image source: http://www.funkempfang.de/funkempfang/8service/pdf/PERSEUS.pdf [24.01.2011]

Page 20 of 102

Figure 2.5: "Perseus" project block diagram

http://www.funkempfang.de/funkempfang/8service/pdf/PERSEUS.pdf
http://dev.emcelettronica.com/gnu-radio-open-source-software-defined-radio

 2 Concept

As a digital interface, a Cypress CY768013A Chip is selected to emulate a USB 2.0

connection to the outer world. The transferred information is visualized with an application-

specific software which also allows the configuration of the DDC using different USB control

strings.

These example projects are just a small part of the available devices which handle the SDR

issue, but due to the fact that the approach used is similar to the one which is adopted in this

master thesis. In fact, some conclusions can be drawn based on the introduced products which

directly influence the platform selection and concept for this project.

• First of all, it is obvious that due to the high sampling rates, required by the ADC

components, a FPGA chip would be much more suitable to handle the high data

bandwidth than a DSP. The benefits of embedded multipliers as well as the possibility

to select the optimal bit-resolution for every single computation favors this choice.

Moreover, performing extensive digital filtering at frequencies of some Megahertz can

often lead to bottlenecks if executed by a DSP. Consequently, the output can be

directly sent to a desktop PC for evaluation and analysis or further processed on-

board.

• Another important feature of the above mentioned devices is the interface, used for

data transmission. The majority of the products go for the high-speed USB 2.0

standard, not only because it provides high bandwidth, up to the theoretical value of

60 MB/s, but also allows for flexible integration of the module. Both Cypress

Semiconductors as well as Future Technology Devices International Ltd. provide

dedicated solutions for USB interfaces. On the other side, The Xilinx Embedded

Development Kit, EDK, comes with a hardware IP core which implements the USB

standard and, with the help of a dedicated UTMI + Ultra Low Pin Interface(ULPI)

interface board, responsible for the physical layer of the transmission, can create a

complete USB solution.

• Additionally, the vast majority of the products goes for the Linear Technology Analog-

to-Digital converters, which can operate at high sampling rates and provide good

conversion characteristics.

• Finally, some words about the method, used to recover the signal, should be said. All

current proposals adopt the Direct-Down-Conversion(DDC) principle, a simple-to-

understand but highly efficient algorithm when high sample rate change is desired.

Page 21 of 102

 2 Concept

Because of the fact that the implementation steps, such as mixing and filtering, are

done in the digital domain, this method provides noticeable results together with small

hardware footprint. A more elaborate discussion on the topic, done in Chapter 3.2 ,

should point out its benefits.

 2.4 Block diagram and requirements specification

After discussing the SDR topic together with the available hardware platforms, this chapter

will provide an overview of the approach, adopted in this master thesis. A top-down analysis

of the system should aid for better understanding of the implementation flow.

First of all, the hardware platform, together with the external devices, must be selected. The

main components of the system can be found on Figure 2.6.

1. Signal processing chip

After Chapter 2.2 has pointed out the main differences between the DSP and

FPGA devices, and the fact that the majority of the SDR solutions, available

nowadays, select an FPGA chip to perform the down conversion, it is clear that the

FPGA approach is the beneficial one. For this reason, this master thesis makes use

Page 22 of 102

Figure 2.6: Overview of the design concept

 2 Concept

of a Virtex5 FPGA, integrated in a ML507 evaluation board. An overview of the

starter kit can be found in Chapter 4.1.1 . Table 1 summarizes the available

resources of the device.

Available Slices BlockRAMs DSP48E slices Clock Management Tile,
contains two DCMs and

one PLL18Kb 36Kb

11200 296 148 128 6

Table 1: Virtex5 XC5VFX70T resource overview

Notable is the fact that the FPGA contains 128 embedded multipliers, which aid

the high speed digital signal processing at high frequencies. The available

resources permit the integration of a soft-core microprocessor with optional

peripherals, which can be used during the development phase. Moreover, the CPU

can be used to configure the dynamically reconfigure diverse design parameters.

2. Analog-to-Digital converter

This component will sample the signal and provide the converted values to the

FPGA. Most of the presented SDR projects make use of the LTC2206 and LTC

2207 ADC converters, which offer high sampling frequencies, up to 80 MHz and

105 MHz, respectively. For this reason, a DC918C demonstration circuit with an

LTC2206 16-bit ADC has been selected as sampling circuit. The chip has a full

power bandwidth of 700 MHz and is capable of sampling higher frequencies than

the Nyquist theorem allows. The advantage of this feature is explained in

Chapter 3.4 .

3. Output interface of the system

All the proposed examples employ a digital interface to off-load the data from the

processing device to a desktop processor. This allows the extensive evaluation of a

large amount of data. Moreover, the DDC design is kept small and storage issues

do not play any role during the development phase. Most of the developers go for

the high-speed USB 2.0 interface, because it offers a high bandwidth, theoretically

limited to 60 MB/s, as well as flexibility by means of the "Plug and Play" feature.

Although the there is an on-board Cypress CY7C67300 USB 1.1 full-speed

controller, its bandwidth of 1.5MB/s is not sufficient to the specifications, listed in

Page 23 of 102

 2 Concept

Table 2. That is why, a Xilinx hardware USB 2.0 IP core will be integrated in the

design. The firmware, which controls the USB transactions, will be run on the

soft-core microprocessor and a physical interface chip is required to translate the

data packets into electrical impulse on the bus. A special version of the SMSC

EVB-USB3300 Daughter card, suitable for any designs involving the Virtex4 and

Virtex5 devices, will be adopted in this project. Chapter 4.1.3 contains a summary

of the board.

4. Clock management

A very important feature of the sampling process is the ADC clock source. Any

distortions in this signal directly influence the output of the converter. Due to the

fact that the LTC2206 clock input can be driven by a sinus as well as rectangular

wave, two clock sources have been evaluated in this design. The first possibility is

to generate a sine wave using an external signal generator. This has the drawback

that the flexibility of the system is reduced. Another option is the usage of a

Digital Clock Manager(DCM), which generates a rectangular clock signal that can

be used internally in the FPGA or be routed to an output pin. The main

disadvantage of this approach is that available jitter in the signals as well as the

imperfect duty cycle. A comparison between the output of the ADC with both

clock sources can be found in Chapter 6.2.2 .

Subsequent to the hardware outline, the design specifications, found in Table 2, together with

the design tools, summarized in Table 3, are presented.

Parameter Specified value
ADC resolution 16 bit

Initial sampling frequency, FS 80 MHz

Output sampling frequency, FOUT 1.25 MHz

Channel Bandwidth, cut-off frequency 200 KHz

Stop-band attenuation At least 70 dB

DDS Frequency step (32-bit phas accu) 0.018626 Hz

Decimation Ratio, R 64

Digital interface data rate 5 MB/s

Table 2: Design specifications
Because of the fact that a FM radio channel is located between 88 MHz and 108 MHz and the

Page 24 of 102

 2 Concept

maximum sampling frequency is limited to 80 MHz, the undersampling method may be used

to sample frequencies above the Nyquist range. How this is done is explained in Chapter 3.4 .

It can be seen that the used sampling frequency, FS is much higher that the required one,

FS,optimal = 2 * Bandwidth = 400 KHz. Because oversampling will result in better signal quality,

the selected output frequency, 1.25 MHz, is kept above the optimal. Because of the fact that

the I/Q approach doubles the data rate, the minimum data throughput of the system equals

1.25MHz * 16 bit * 2 = 40 Mb/s = 5 MB/s.

Design tool Version Description

Matlab/Simulink 2009a Used to create a simulation model for the
DDC algorithm and perform output
evaluation

Xilinx System Generator 11_04 Used to synthesize the simulation model
and create a hardware component out of it

Xilinx Embedded Development Kit (EDK) 11_04 Used to generate the complete embedded
system (allows the integration of the
Microblaze soft-core microprocessor, the
USB IP core and a number of free
peripheral cores), hardware synthesis as
well as VHDL implementation of the
DDC core;

Xilinx Software Development Kit (SDK) 11_04 Used to develop and manage the software
application, running on the Microblaze
microprocessor

Xilinx Core Generator 11_04 Used to create Xilinx-specific hardware
components, such as a dual-sided First In
First Out (FIFO) element, used for clock
domain synchronisation

Linear Technology PScope 6 An application software, provided with
the DC918C demonstration circuit, used
for ADC output evaluation

Microsoft Visual Studio 2005 8 Used to design the acquisition software,
used to read out the samples out of the
FPGA

Table 3: Summary of the design tools, used in this project

Page 25 of 102

 3 Theory

 3 Theory

This chapter will provide the theory needed to cope with the problems concerning this project.

The techniques, described in this chapter, will be analyzed, documented and justified by

examples.

 3.1 Realtime Digital Signal Processing

Digital Signal Processing is concerned with the representation of signals by a sequence of

numbers and the processing of these numbers. The goal of DSP is usually to measure and/or

filter continuous real-world analog signals. The first step is usually to convert the signal from

an analog to a digital form, by sampling it using an Analog-to-Digital Converter(ADC) which

turns the analog signal into a stream of numbers. Even though this process is more complex

than analog processing and has a discrete value range, the computational power to digital

signal processors brings many advantages over analog processing in many applications, such

as error detection and correction in transmission18. The usual approach of handling signal

processing problems is depicted on Figure 3.1.

As technology evolved, the DSP algorithms have been shifted from standard computers to

more powerful systems called Digital Signal Processors which adopt an optimized

architecture required for the extensive calculations. As an alternative to DSPs today's market

18 Wikipedia, http://en.wikipedia.org/wiki/Digital_signal_processing , [20.12.2010]

Page 26 of 102

Figure 3.1: Signal Processing overview

http://en.wikipedia.org/wiki/Digital_signal_processing

 3 Theory

offer Field Programmable Gate Arrays and it is up to the engineer to select the optimal device

for a certain project. The main differences between those architectures will be discussed in the

next subsections.

 3.2 Direct Down Conversion

In terms of signal processing, narrowband systems are generally characterized by the fact that

the bandwidth of the signal of interest is significantly less than the sampled bandwidth; that is,

a narrow band of frequencies must be selected and filtered out from a much wider spectral

window in which the signal might occur. This means that large sample rate changes must be

undertaken to efficiently process the signal for either transmission or reception.[XAPP1113]

A Digital Down Converter(DDC) is supposed to translate a given pass-band signal down to

base-band which would reduce the processing effort tremendously. This is achieved by

mixing the signal, low-pass filtering to prevent aliasing and decimation of the sampling rate.

During this process the proper channel selection must be implemented and all filters should be

designed with respect to the channel's bandwidth. Generally, the DDC input is sampled at a

very high sampling rate while the output operates at a much lower frequency. As depicted on

Figure 3.2, the signal is first shifted by a mixer to a certain frequency range and then

decimated by a predefined factor.

Page 27 of 102

Figure 3.2: Direct Down Conversion Block

 3 Theory

Four major steps are undertaken so that the signal is down converted in base-band:

(1) frequency mixing

An easy way to shift the spectrum of a signal is by multiplying it with a sine wave,

which then corresponds to convolving the spectra of both signals in frequency domain.

The generation of the mixing signals is explained in Chapter 3.2.1 .

(2) I/Q signal generation

Quadrature signal recovery is beneficial for the case of down conversion. More on this

topic can be found in Chapter 3.3 .

(3) low-pass filtering of the mixer output

The two most common structures, namely the Finite Impulse Response(FIR) and

Cascaded Integrated Comb(CIC) filter structures will be considered in the following

subsections.

(4) sampling rate decimation

This is the process of reducing the sampling frequency. No hardware component is

required, but the decimation factor must be carefully considered, otherwise aliasing

may occur.

 3.2.1 Mixing

The main purpose of the mixing circuit in a DDC system is to shift the spectrum of the input

signal to a predefined spectrum region, generally in base-band. Moreover, by varying the

mixer's frequency it is possible to select different channels, which would be the desired effect

when more then one source is to be recovered. The easiest way to implement the mixer in

digital hardware is by creating a Direct Digital Synthesizer (DDS). The generated wave, is a

function of the configured phase step, which can be used to modify the output frequency. That

is why this block is the digital equivalent of the Voltage Controlled Oscillator (VCO), an

analog circuit, used to control the mixing frequency.

The best way to describe the effects of mixing is by reviewing the multiplication of two sine

waves in time domain:

Page 28 of 102

 3 Theory

In the general case the important component is the difference of the frequencies and the high

frequency element is suppressed by filtering the output of the mixer. If the carrier frequency

of the signal of interest is known, an easy way to recover the signal into base-band is by

setting the local oscillator at this value and low-pass filtering the output sequence. Figure 3.3

represents this simple method of relocating the signal of interest into base-band.

As soon as the incoming signal is sampled it is fed into the DDC block, the conversion

process begins with mixing the signal to a suitable frequency. Not only is the DDS

responsible for the shift of the input's spectrum, but it also influences the quality of the output

signal with the quantization of the sine/cosine pair. To address this issue one should take a

closer look in the data sheet of the employed DDS Compiler V4.0 and its architecture,

depicted on Figure 3.4.

Page 29 of 102

Figure 3.3: Frequency mixing results in two new signals; a lowpass filter may be used to
reject the unwanted components

cos a ∗cos b=1/2∗[cos abcos a−b]

 3 Theory

The following subjects must be considered so that the DDS output wave can be evaluated:

• Output frequency derivation and resolution

Generally speaking, the output frequency is a function of the system clock, Fclk,

which triggers the core. Also, the resolution of the phase accumulator, B, and the

phase increment value, ∆Q, are involved in the calculation of the output. The

following equation depicts the dependencies between the variables.

In the normal case, all parameters except for the phase increment value are known.

Because of the fact that the system clock can be regarded as a constant, it is up to the

size of the phase accumulator to calculate the achievable phase resolution, which is

just the value of the system clock divided by the maximum value of the phase

accumulator. Because of the fact that the soft-core microprocessor operates on 32-bit

registers, it has been considered to synthesize one software register which holds the

DDS phase increment. For this reason, the resolution of the NCO, calculated with

respect to above eqution, is 0.018626 Hz, which does not limit the range of operation

of the designed system. The phase accumulator register is then quantized and only a

portion of it is used to address the Look-Up Table (LUT), holding the samples. The

number of bits, used to address the table, as well as the resolution of the output

directly influence its spectral purity.

• Spectral purity considerations

As explained in [DS558], both the phase and amplitude quantization influence the

Page 30 of 102

Figure 3.4: DDS architecture overview

Fout=Fclk∗∆Q
2B

 3 Theory

DDS generated signal. The size of the look-up table, together with the size of the

samples, determine the phase angle resolution, which result in a time-base jitter and

affect the spectral purity of the output. Two different correction algorithms can be used

to enhance the quality, a Taylor Series correction or Phase Dithering.

◦ Phase dithering

This approach makes use phase error, introduced by the quantizer, to optimize the

Spurious Free Dynamic Range (SFDR) of the output. This error, distorts the

output spectrum and repeats itself periodically. By breaking this periodicity by

using a random sequence, called dither, it is possible to achieve additional 12 dB

of SFDR. The noise is added to the phase accumulator before being quantized.

◦ Taylor series corrections

The second method takes the discarded phase accumulator bits and calculate a

correction which are added to the LUT output. This has the effect of increased

SFDR rate compared to the previous discussed principles. The drawback of this

method is the usage of DSP48E slices for the computations.

• Dynamic reconfiguration of the phase step

Lastly the programming interface of the DDS core is enabled. This allows for the

dynamic reconfiguration of the mixer frequency and keeps the system flexible. Figure

3.519 shows the programming interface of the DDS core and Table 4 holds the

description of the signals.

19 [DS558], figure 18

Page 31 of 102

Figure 3.5: DDS "phase increment value" Programming Interface

 3 Theory

Signal Description
CLK Source clock
CE Chipe Enable, active high, must be set during normal operation, but is

irrelevant during the reconfiguration process
SCLR Synchronous clear, active high, resets the logic
WE Write Enable, active high, must be set for at least one CLK cycle
REG_SELECT If both phase shift and phase increment are programmable, this pin is used

to select the register to be written
DATA Holds the value to be written to the internal registers
RDY Ready, active high, designates that the DDS output is valid
PHASE_OUT Optional, outputs the internal phase accumulator
COSINE Output, cosine wave
SINE Output, sine wave

Table 4: DDS core signals legend

Optimization level Slices FlipFlops BRAMs LUTs Embedded Multipliers
None 33 66 8 92 0

Phase Dithering 49 89 2 132 0
Taylor Series

Corrected
23 64 1 52 3

Table 5: DDS block resource estimation with different noise shapping options

Due to the fact that the Phase dithering method consumes no embedded multipliers, see

Table 5, and produces the same SNR performance as the Taylor Series correction method, it

has been implemented in this project.

 3.2.2 Digital Filters

By defining the filter specifications in Chapter 2.4 , it is very important to select the proper

filter design. A filter structure consists of a number of multipliers and a certain memory space,

which holds the delayed samples. This leads to the problem that if a real time implementation

is required, the time available for one filter calculation is limited by the sampling frequency. It

is up to the available cycle count between two samples which could define the filter structure

to be used.

Page 32 of 102

 3 Theory

Another important feature of a digital filter is the phase response. This specification describes

the filter reaction to different input frequencies. In some signal processing problems, like

demodulation, a linear phase is desired for the correct reconstruction of a signal. As next, the

two suitable filter structure, the FIR and CIC filters, will be discussed.

• FIR filter

A FIR filter can be mathematically described using the following equation:

y k =∑
m=0

N−1

h k−m∗x m ●--○ H  z =∑
k=0

N−1

h k ∗z−k 

If the impulse response, h(k), is symmetric or antisymmetric then the phase of the filter is

linear. Because the length of h(k) can be either even or odd, four different types of symmetry

exist. The most preferable one is type 1, a symmetric impulse response with odd number of

filter coefficients. This type is suitable for nearly any filter type.

Additionally to the type 1 filter structure, a poly-phase decomposition of an FIR filter can be

performed to reduce the computation effort. The following example for a decomposition in 2

branches should show the benefits of this technique:

H  z =h 0h 1∗z−1h 2∗z−2h 3∗z−3h 4∗z−4

h 5∗z−5h 6∗z−6h7∗z−7h 8∗z−8

H  z =h0h2∗z−2h4∗z−4h6∗z−6h 8∗z−8
h1∗z−1h3∗z−3h5∗z−5h7∗z−7

H  z =h 0h 2∗z−2h4∗z−4h 6∗z−6h8∗z−8
z−1∗h 1h3∗z−2h 5∗z−4h7∗z−6

H  z =E0 z 2 z−1∗E1 z2

and the general description fo a polyphase decomposition in M bands is:

H  z = ∑
k=0

N−1/M

 z−k∗E K  z M 

The poly-phase approach has the benefit of reducing the length of the computation sequence

and could be used to efficiently implement decimation and interpolation. How exactly this is

Page 33 of 102

 3 Theory

done is explained in 3.2.3 , Decimation .

The main disadvantage of FIR filters is the fact that their coefficient vector grows rapidly if a

sharp transition band of the frequency response at a high sampling rate is assumed. An

efficient way of reducing the computational effort is by using the suggested Poly-phase

Decomposition method as described in [SP] Chapter 11 and by this distributing the

computations in several stages.

• CIC filter

As an alternative to FIR filters another type of filter structure, called Cascaded Integrator-

Comb(CIC) or Hogenauer filter, is referred as suitable for the case of DDC. The main

advantage of this type is that it does not involve any multiplications in its structure, but is

based on cascading Integrator and Comb blocks and by this achieving a low-pass filter

response. Because of the fact that no embedded multipliers are required for implementing this

filter, this could turn out to be an efficient way of creating a large sampling rate change. If the

magnitude response of the integrator and comb elements, depicted on Figure 3.6, is examined,

it is easy to see that they are inverse to each other. While the former one introduces an infinite

gain at DC, the comb component can be seen as a high-pass filter with an infinite attenuation

at DC. For this reason, a cascade of both should result in no amplitude change of the input

signal, an the overall frequency response is as follows:

Page 34 of 102

H tot  z =H INT  z ∗H DIFF  z =[1
1−z−1

]∗[1−z−1]=1

 3 Theory

Another filter structure, which must be mentioned before considering the CIC system, is the

Moving-Average order. Its structure, depicted on Figure 3.7, results in a low-pass filter

characteristic with N-1 spectral zeros form 0 to Fs, where N is the number of filter delays and

Fs is the sampling frequency.

Page 35 of 102

Figure 3.6: Integrator <-> Comb filter cascade

Figure 3.7: 8-weight Moving average Filter, Structure and Frequency Response

 3 Theory

After discussing the Integrator, Comb and Moving-Average filters, it is time to take a closer

look on the CIC system, which can be found on Figure 3.8. This network differs from the one,

shown on Figure 3.6, in that the differentiator is not of 1st order, but of 8th. Because of this, the

transfer function of the component is:

In fact, the frequency response of the N Comb weight CIC filter is equal to a N-1 weight

Moving-Average filter. Furthermore, by cascading CIC filters it is possible to achieve much

better attenuation in stop-band. However, this influences the pass-band characteristics of the

filter and introduces the so called “ baseband droop”. As it can be seen on Figure 3.9, the

pass-band flatness decreases with every additional CIC stage.

As a result, a trade-off between attenuation and pass-band droop may reduce the undesired

effects. On the other side, another filter may be introduced to equalize this effect and by this

recover the flatness of the transfer function. Additionally, this compensation filter can relax

the sample rate change specifications of the CIC filter if it is designed as a decimator and by

this optimizing the resource utilization.

Page 36 of 102

Figure 3.8: CIC filter structure

H CIC  z =H INT  z ∗H COMB z = 1−z−8
1−z−1

=1 z−1z−2 z−3z−4z−5z−6z−7

 3 Theory

Besides that, the structure of the Cascade CIC filter can be reviewed and the rate changer can

be shifted through the Comb elements which results in reduction of the memory requirements.

Figure 3.10 represents the required changes in the cascade network.

Page 37 of 102

Figure 3.9: CIC Pass-band droop change with respect to the order of the filter

Figure 3.10: Cascade CIC filter, optimizide structure

 3 Theory

Finally, the topic of “Bit Growth” must be discussed as it concerns both arithmetic accuracy

as well as resource consumption. It can be proven that the gain of the CIC filter is G = R N, R

being the rate change and N being the number of sections. Hence, the output of the filter, in

bits, is calculated as shown in the following equation.

Additional information on the CIC filter topic can be found in [CIC1].

 3.2.3 Decimation

As already mentioned, a system would require a sampling rate which is at least twice the

highest fundamental frequency component of the input signal. If the signal is sampled at a

higher sampling rate than needed, it is possible to decimate the signal an this way reduce the

data throughput of the system. As a result, both memory and computation savings are

achieved. In general the DDC principle is applied when high decimation rates are to be

designed. In order to perform decimation in the right way, the input sequence should be pre-

filtered with an Anti-Aliasing Filter, as shown in Figure 3.11. The AAF ensures that no

aliasing will occur after the signal is being decimated.

The filter specification depends on the decimation factor and system requirements. If a steep-

slope filter is required, a cascade of filters could be also considered. This part will show an

efficient way of implementing a decimator taking advantage of the poly-phase decomposition,

discussed in Chapter 3.2.2 .

Page 38 of 102

Figure 3.11: Block diagram of a decimator with an AAF filter

BOUT=B IN[log2 G]=B IN[N∗log2 R]

 3 Theory

The following example20, depicted on Figure 3.12, will be used to explain how poly-phase

decomposition can be beneficial when a decimator must be designed.

20 Reference to the complete example can be found in [SVG].

Page 39 of 102

Figure 3.12: Polyphase decomposition for decimation with a factor of 3

 3 Theory

• Initial condition

The first assignment is to compute the filter and split it to the value of the rate changer,

in this case 3, poly-phase components. It is important that the initial FIR filter must be

designed at the higher sampling frequency!

• Step 1

Due to the fact that the transfer functions are of 3rd order, it is possible to use the noble

identities and shift the rate changer through the filters. This results in the fact that the

filters now will be running at the lower sampling frequency.

• Step 2

This simple test using a simple sequence has the purpose to show how the samples are

split between the different poly-phase components.

• Step 3

The final step shows how the delay blocks can be translated to a de-interleaver

structure, which rotates counter-clock wise. As a result, it can be seen that only one

poly-phase component must be computed per cycle. After a total of 3 cycles an output

can be produced at the adder output. Additionally, the filters operate at the output

sampling frequency.

Compared to a direct structure, this implementation has a higher output latency, but the

significant computation and memory savings, it brings, are overwhelm this disadvantage.

Still, if the direct FIR filter is too long and the sampling frequency is too high, even this

approach may not capable of producing a suitable solution. Recalling the specification of the

required filter in Chapter 2.4 , a filter running at 80 MHz and having a transition band of less

than 0.002525 with respect to the sampling frequency, would result in a coefficient count of a

few thousand. A Matlab computation of a sample filter, with less than the required attenuation

and a transition band 10 times larger than the desired one, returns a filter length of 2418. Even

though that a decimation factor of 64 would reduce the computations dramatically, it is still

required to perform ~40 multiplications per cycle at this high frequency. For this reason a FIR

solution is not suitable for this project. A cascade of a CIC filter with another FIR filter would

require much less resources and achieve better characteristics.

Page 40 of 102

 3 Theory

 3.3 I/Q signal generation

As stated in [AN1298], using Quadrature signals for demodulation brings important benefits

regarding the system design. InPhase/Quadrature(I/Q) signals are known also as orthogonal to

each other which means that they have a phase shift of 90 degree. For this reason the scalar

product of both is equal to 0. The main advantage of quadrature signals is that they do not

interfere with each other. When recombined, they are summed to a composite output signal.

There are two independent signals in I and Q that can be sent and received with simple

circuits. This simplifies the design of digital radios. The benefit of I/Q modulation is the

symmetric ease of combining independent signal components into a single composite signal

and later splitting such a composite signal into its independent component parts.

The profit of performing I/Q detection in the digital domain, instead of using analog

components, are the absence of the gain-balancing problem as well as the impedance

matching issue. Also, sampling the signal before being shifted into baseband results in no DC

gain errors. Because of the fact that both the InPhase and Quadrature branches are generated

by the same component in the digital domain, the Direct Digital Synthesizer, these error

sources does not exist.

As it can be seen on Figure 3.13, soon after the input is being sampled, it is multiplied with a

sine/cosine pair and two branches processing branches are established. Due to the fact that the

I/Q pair is generated by the same components both signals are in 90 degree out of phase and

power loss occurs. Afterwards, a low-pass filter rejects the unwanted high-frequency

components outside the band of interest as well as prevents aliasing. At last, the sampling

frequency is reduced and the decimated output sequence is stored for later processing. At this

point, different demodulation techniques may be adopted to recover the information with

respect to the I/Q pair of signals. For the reason that the initial signal analysis will be done

off-board, the I/Q outputs will be transmitted on a desktop computer and any processing will

be done in software.

Page 41 of 102

 3 Theory

 3.4 Sampling, Undersampling

Based on the Nyquist Sampling Theorem, in order to get a unique representation of a

frequency content of a signal, the signal should be sampled at a rate at least twice the value of

the highest frequency component of the signal. If the signal of interest is considered to be in

baseband then the required sampling frequency would be also the lowest one achievable for

sampling this signal. A problem arises if a given signal is modulated at a higher frequency.

This would mean that the required sampling frequency will be higher than the optimal value.

As a drawback, the data rate to be processed increases and the memory, required to store the

samples, would also grow. Because all the unnecessary information, sampled together with

the signal of interest, must be discarded, a solution to tackle this kind of problem is required.

An efficient way of sampling signals at a frequency, lower than the Nyquist value, is the so

called Undersampling or Bandpass Sampling method.

Undersampling takes advantage of the main problem which arises if the sampling rate does

not satisfy the Nyquist theorem – Aliasing. As it can be seen on Figure 3.14, a high frequency

component, sampled at a lower frequency than required, would appear as low frequency

signal. In the worst case this will result in aliasing, which would mean that it is not possible to

recover the signal. But if the signal is mapped to a frequency range, which is free of spectral

components, then it can be completely recovered.

Page 42 of 102

Figure 3.13: I/Q signal generation, filter cascade and sampling rate change

 3 Theory

The parameters required for calculating a suitable sampling frequency, so that the sampled

signal is moved to an free intermediate frequency range, are the lower and upper frequencies

of the signal of interest. As stated in [DAC], „If a (real) bandpass waveform has a nonzero

spectrum only over the frequency interval f1 < |f| < f2, where the transmission bandwidth BT is

taken to be the absolute bandwidth BT = f2 – f1, then the waveform may be reproduced from

sample values if the sampling rate is fs ≥ 2*BT“. The condition of the waveform being only

non-zero in the given interval can be achieved by introducing a band-pass filter with a suitable

specification.

To meet this condition, the sampling frequency should satisfy the following equality:

, where

If an adequate value is found then the ADC can be supplied with this frequency and the signal

Page 43 of 102


2∗ f2 

n
 fs

2∗ f1 
n−1



1n[f2
 f2− f1

]

Figure 3.14: The effect of aliasing if the Nyquist theorem is not satisfied

 3 Theory

can be reconstructed with a lower sampling rate than required by the Nyquist theorem.

Figure 3.15 illustrates how the DDC principle takes advantage of the undersampling method,

together with frequency mixing and low-pass filtering, to retrieve a RF signal in baseband.

 3.5 Analog to Digital Conversion

In the case of digital signal processing, the first step performed is to digitize the signal. By

doing this, the signal is converted to a digital bit string, which is then processed by the

algorithm implemented on the DSP or FPGA. There are different ways of converting and

Page 44 of 102

Figure 3.15: DDC Principle, processing sequence and spectral modifications

 3 Theory

representing the data. Generally the ADC selection process is driven by the cost and timing

requirements of the end product. If a high frequency signal is to be sampled then a flash ADC

may be the right choice. If, on the other side, a slowly changing signal is to be converted, it

would be possible to use an ADC with a simpler structure. In the case of DDC and SDR

applications, the signals of interest are located in the HF range, between 3 and 30 MHz, as

well as VHF range, between 30 and 300 MHz, which would require fast conversion timings.

For this reason, a flash ADC could be the right choice. The main advantage of this ADC type

is that the analog value is converted to a binary string and all bits are evaluated in parallel.

This technique provides the fastest conversion time but also has the drawback that the

hardware requirements grow exponentially with an increase in the resolution. The following

subsections elaborate on three of the most important quality measurement values, describing

an ADC chip.

• Spurious Free Dynamic Range(SFDR)

It is not only the bit resolution and conversion time which specify how good one ADC

is, but there are also important parameters which describe the signal quality and must

be taken into consideration when selecting the proper chip. Because of the fact that the

converter has a finite precision, it is obvious that a certain quantization error is

introduced during the conversion process. Another important characteristic is the

SFDR, which is the ratio of the rms value of the signal to the rms value of the worst

spurious signal regardless of where it falls in the frequency spectrum. The worst spur

may or may not be a harmonic of the original signal. SFDR is an important

specification in communications systems because it represents the smallest value of

signal that can be distinguished from a large interfering signal (blocker)21.

• Signal-to-Noise-and-Distrortion(SINAD)

Another important parameter of a ADC is the SINAD value. This is the ratio of the

rms signal amplitude to the mean value of the root-sum-square (rss) of all other

spectral components, including harmonics, but excluding DC. SINAD is a good

indication of the overall dynamic performance of an ADC because it includes all

components which make up noise and distortion22.

21 [AD_ADC] SFDR
22 [AD_ADC] SINAD

Page 45 of 102

 3 Theory

• ADC clock jitter

Last but not least, the topic of ADC clock jitter will be reviewed. This measure

represents the time variation of the clock time period. If the clock edges are not stable

then a poor Signal-to-Noise-Ratio (SNR) will be the result. According to [JIT], two

types of jitter exist:

 Deterministic jitter

this is the effect of cross-coupling different signals, as well as overshoots of the

signal

 Random jitter

Sources of this type of jitter are thermal noise and electron flow

The phase noise, introduced by an unstable ADC clock signal, does not keep the frequency

stable and it varies around the fundamental value. This spectral distortion will be added to the

spectrum of the sampled signal and will reduce the SNR. Also, the phase shift of the clock

signal results in sampling the signal at different points, thus acquiring different amplitudes. In

the case of a SDR application, as well as other communication applications, the importance of

jitter-free sample clock will allow the correct digitizing of low-amplitude signals. If, on the

other hand, jitter is present, then the spectrum of the sampled signal is distorted and

information is lost.

The effect of ADC clock jitter can be seen in Chapter 6.2.2 , where two different clock sources

have been compared:

• Rohde & Schwarz signal generator of type SMG

Generates a sine wave with 50% duty cycle.

• Virtex5 FPGA internally generated clock signal

Generates a rectangular wave using a DCM component. The duty cycle of the signal

varies between 45% and 50% which, as stated in the datasheet of the LTC2206 ADC,

may result in conversion distortions. Moreover, the Xilinx CoreGenerator report

estimates a period jitter of 0.174 nanoseconds. These constraints result in poor signal

quality, compared to the results, measured with the generator's clock signal.

Page 46 of 102

 4 Hardware Implementation

 4 Hardware Implementation

This chapter summarizes the most important issue concerning the implementation process.

Table 6 is an overview of the implementation flow for this project. Summarizes the

implementation steps performed.

Implementation step Description
Matlab/Simulink model of the
DDC algorithm

The first step is to create a simulation model for the DDC
component. Using the Xilinx blockset for Simulink, it is
possible to evaluate the hardware performance of the
components in the Simulink environment. The DDS block,
together with the low-pass filter cascade, are configured.

Synthesis of the model using the
Xilinx System Generator tool

After an adequate model is generated, it can be synthesized
to create a hardware description template, which will be
later included in the user IP core.

Base system builder design of
the Microblaze system

A Microblaze system is created using the Xilinx EDK
environment. This includes the soft-core microprocessor
itself as well as all relevant peripherals, such as the USB
2.0 IP Core, the MPMC memory controller, Interrupt
controller and debug interfaces.

Design of dedicated IP cores
using the Xilinx Core Generator

The clock domain synchronization between the ADC clock
and the FPGA internal reference clock is done using a
dedicated FIFO, generated by this tool. Also, the DCM,
which generates the evaluation clock signal for the ADC,
is configured with this environment.

Development of the DDC IP
Core

All of the above mentioned components are integrated in
the Microblaze system as a user-defined IP core, labeled
DDC IP Core. The System Generator component and the
synchronization FIFO are inferred in this module and their
behavior can be modified using memory-mapped software
registers, accessible by the microprocessor. A hardware
interrupt is generated by this core and must be handled in
software. The DCM block is modeled as a separate IP Core
because it is only used for evaluation.

Synthesis of the complete design Finally, the complete design is synthesized and can be
loaded in the FPGA.

Table 6: Overview of the hardware implementation steps

Page 47 of 102

 4 Hardware Implementation

 4.1 Hardware Configuration

In order to get familiar with the design, this section will provide an overview of the main

components of the DDC project. A short summary of the selected FPGA as well as the ADC

board and the ULPI physical interface chip, required for the USB packet transmission, should

serve the reader as the basis for understanding the concept of the system.

 4.1.1 ML507 Evaluation Board

The Xilinx ML507 FPGA board, depicted on Figure 4.123, is a highly versatile development

board supplied with a number of interfaces. It can be used for high speed transmission designs

as well as perform intense arithmetical computations. In the case of Direct Down Conversion,

a system with fast multipliers as well as great memory capabilities is required.

The ML507 board contains expansion headers for easy connection of external components.

Different standards are supported by these and must be configured over the provided jumpers.

Because of hte fact that both the DC918C demonstration circuit and the SMSC daughter card

23 Source http://www.impulseaccelerated.com/Tutorials/Xilinx/ML507/images/ML507.jpg , [29.12.2010]

Page 48 of 102

Figure 4.1: ML507 Board

http://www.impulseaccelerated.com/Tutorials/Xilinx/ML507/images/ML507.jpg

 4 Hardware Implementation

must be connected to those, additional effort must be spent on selecting the proper

IOSTANDARD for the signals. A closer look on the data sheets of the DC918C board and the

SMSC 3300 XLX board shows that they operate on different CMOS Voltage levels. For the

reason that the layout of the SMSC Daughter card is already configured with respect to the J5

connection of the ML507 board, the only suitable location for the DC 918C board would be

on the connector J4. The configured pin locations are listed in Table 7.

J4 Connector pin number FPGA pin ADC pin
2 XXX Not connected
4 L34 ADC clock out
6 XXX Not connected
8 K33 ADC output bit 15 (MSB)
10 N32 ADC output bit 14
12 P32 ADC output bit 13
14 R34 ADC output bit 12
16 T33 ADC output bit 11
18 R32 ADC output bit 10
20 R33 ADC output bit 9
22 T34 ADC output bit 8
24 U33 ADC output bit 7
26 U31 ADC output bit 6
28 U32 ADC output bit 5
30 V33 ADC output bit 4
32 V32 ADC output bit 3
34 V34 ADC output bit 2
36 W34 ADC output bit 1
38 AA33 ADC output bit 0 (LSB)
40 Y33 Active high, enable the ADC, controlled by

software

Table 7: Pin layout of the FPGA <-> ADC connection

The voltage level of all expansion headers is controlled using the J20 jumper and can be either

2.5V or 3.3V. Based on the fact that the ADC is the more sensitive component a decision to

set the voltage level to 2.5V, which matches its output, has been done. Due to the high

Page 49 of 102

 4 Hardware Implementation

operating frequency of the ADC board any uncertainties in the voltage levels may degrade the

output signal. On the other side, the SMSC Daughter card does not show any malfunctioning

using the 2.5V level instead of the specified 3.3V on its pins. Moreover, as it can be seen on

Table 8, the supply voltage pins of the SMSC daughter card match the layout of the J5

connector and are not influenced by the overall pin configuration.

FPGA J5 connector pin number SMSC pin Voltage level
1 1 +5V
2 4 +5V
3 7 +5V
4 10 +5V
5 13 Not connected
6 16 +3.3V
7 19 +3.3V
8 22 +3.3V
9 25 +3.3V

Table 8: Pin layout voltage supply FPGA <-> SMSC daughter card

Lastly, the DCM output clock is routed to the differential pin pair H14, H15. The H15 is tied

to ground and the single-ended output is forward to H14.

 4.1.2 DC918C demonstration circuit

The DC918C board, as shown on Figure 4.2, comes with SMA connectors for both the

ANALOG and ENC clock inputs. Both are matched with 50Ω so that no reflections occur.

The converted value is forwarded to the 2.5V CMOS digital output pins which are connected

to the ML507 J4 connector as listed in Table 7. The LTC2206 generates a digital clock out of

the analog ENC clock input, which is then output on Pin 3 of the demonstration circuit. As a

result, the clock signal can be fed in the FPGA and part of the design can be synchronized

with respect to this signal. This way, the incoming data processing stream may be separated

from the internal clock domain of the FPGA. If the FPGA design has more than one clock

Page 50 of 102

 4 Hardware Implementation

domain, as is the case for this project, then clock domain synchronization must be performed

to prevent metastability as well as preserve data consistency. For full specification of the

DC918C board, please consider [DC918].

 4.1.3 SMSC EVB_USB_3300_XLX Transceiver

In order to obey the USB electrical standard, a physical interface is required to translate the

messages to be transferred in electrical impulses as defined in [USB20]. In general, there are a

number of ways to organize the data packets. One way is to use a dedicated microprocessor

which handles the complete USB requests together with the frame organization. This

technique is used by most of the example projects, presented in Chapter 2.3 . Most of the

projects make use of a Cypress controller, which handles the USB traffic. Another choice, as

selected for this project, is to use the USB 2.0 Device Hardware IP Core provided with the

Xilinx Embedded Development Kit, which handles the USB communication by generating

special interrupts to the embedded microprocessor whenever a certain event on the USB bus

has occurred. If the later approach is selected, a SMSC EVB USB 3300 daughter card or a

Page 51 of 102

Figure 4.2: DC918C Board, source: [DC918]

 4 Hardware Implementation

similar device must be used as physical interface. The USB IP Core, described in

Chapter 4.2.2.2 , supports the UTMI(Universal Transceiver Macrocell Interface) + Low Pin

Interface(ULPI) interface [XPS_USB]. It communicates with the daughter card using the

ULPI interface, which generates the bus protocol signals. The IP Core generates interrupts

upon certain conditions, determined from the control and status signals of the communication

link. The daughter card is an effective way of minimizing the development effort, because it

carries out all low level protocol issues. The board is powered by the FPGA and voltage

connections are listed in Table 8. Furthermore, the data and control signals, toured to the J6

connector of the FPGA, are summarized in .

J6 connector pin number FPGA pin SMSC J1 pin Description
2 H33 3 Reset
4 F34 6 NXT
6 9 CLKOUT
8 G33 12 DIR
10 G32 15 STP
12 H32 18 DATA7
14 J32 21 DATA6
16 J34 24 DATA5
18 L33 27 DATA4
20 M32 30 DATA3
22 P34 33 DATA2
24 N34 36 DATA1
26 AA34 39 DATA0

Table 9: Pin layout FPGA <-> SMSC daughter card

Page 52 of 102

 4 Hardware Implementation

 4.2 Hardware synthesis

This chapter will provide an overview of the hardware synthesis process, which includes the

design of the Matlab/Simulink model of the DDC as well as its integration in the Microblaze

embedded system.

 4.2.1 System Generator model of the DDC algorithm

An evaluation of the overall structure of the DDC model, shown in Figure 4.3, should point

out the specific components. As already discussed in Chapter 3.2, three operations must be

performed prior to storing the samples:

• I/Q signal generation and down-mixing, marked as Step 1

• low-pass filtering for channel selection and alias term rejection, marked as Step 2

• decimation

The I/Q signal generation is achieved by mixing the input sample with a sine/cosine pair.

Page 53 of 102

 4 Hardware Implementation

Page 54 of 102

Figure 4.3: Complete Model of the DDC Algorithm

 4 Hardware Implementation

 4.2.1.1 CIC Filter

By substituting the desired rate change and attenuation level, listed in the project

specifications from Chapter 2.4 , R = 32, N = 5 and M = 2, the first spectral zero, computed

with respect to the magnitude response description in Chapter 3.2.2 , is expected at

f = 1
RM

= 1
64 of the sampling frequency FS, equal to 1.25MHz. The number of stages, N,

is set to the maximum value, available in the CIC Compiler V1.3 model. This, together with a

differential delay M = 2, provides the highest possible attenuation. The magnitude response

on Figure 4.4 clearly shows, that all spectral components, located to the right of this point are

attenuated with more than 100 dB. In comparison, the CIC filter design, which has the

differential delay configured to 1, provides a lower attenuation and wider main lobe.

 4.2.1.2 Droop compensation and channel selection

The "fdesign" method of the Matlab Filter Design Toolbox offers a vast range of filter

structures among which a "ciccomp", a CIC compensation filter design, which computes an

equalizer with respect to the R, N and M parameters of a the filter. CIC filters present a

Page 55 of 102

Figure 4.4: Estimation of the differential delay on the overall CIC magnitude response

 4 Hardware Implementation

(sinx/x) profile in the passband and relatively wide transitions. To compensate for this fall off

in the passband, and to try to reduce the width of the transition region, a CIC compensator

filter can be used that demonstrates an (x/sinx) profile in the passband. By taking the number

of sections, passband, and differential delay from the previously designed CIC filter and using

them in the definition of the CIC compensator, the resulting compensator filter effectively

corrects for the passband droop of the CIC filter, and narrows the transition region24. The

compensation filter can also be designed as a decimator and by this introduce additional

sampling rate reduction. Because of the fact that the CIC filter design is limited to a maximum

of 5 stages, a decimation factor of two is integrated in the compensation filter.

The final component of the filter cascade, shown on Figure 4.3, is used to implement the

channel selection and the final level of attenuation. This way the final stage operates at the

lowest sampling frequency. This will reduce the filter length, guarantee shorter transition band

and optimize resource utilization. The proposed solution with 3-stage filter cascade reduces

the transition band of the design by 42,3% at the expense of one embedded multiplier and 40

additional Slices. As seen on Figure 4.5, the transition band shrinks from 39 KHz to 22.5

KHz. Table 10 summarizes the resource utilization of both cascade component.

24 Functional description provided by the Filter Design Toolbox

Page 56 of 102

Figure 4.5: Transition band reduction

 4 Hardware Implementation

Component Slices FlipFlops BRAMs LUTs Embedded
Multipliers

Single CFIR 175 293 0 312 3
CFIR-FIR 218 459 0 442 4

Table 10: Resource Estimation for the Filter Cascade excluding the CIC Filter

 4.2.1.3 DDC Model Summary

As shown on Figure 4.6 the CIC↔CFIR↔FIR filter cascade fulfills the desired design

specifications listed in Chapter 2.4 . The overall magnitude response, marked as "DDC

Cascade", provides the required level of attenuation and transition band size. The passband

ripple of the filter chain is depicted on Figure 4.7 and is less then the specified 0.1 dB. Last

but not least, the desired linear phase response, shown on Figure 4.8, ensures the error-free

demodulation of the signal.

Page 57 of 102

Figure 4.6: Overall Frequency Response of the filter cascade

 4 Hardware Implementation

Page 58 of 102

Figure 4.7: Passband ripple of the filter cascade

Figure 4.8: DDC filter cascade Magnitude and Phase response

 4 Hardware Implementation

 4.2.2 Base system builder and User-IP core integration

Figure 4.9 depicts the main components of the DDC embedded system. The project consists

of several Xilinx-specific cores as well as the self-developed DDC IP core and DCM DRP

module. The marked data path outlines that the memory-write process is independent of the

Microblaze. For this reason, the microprocessor executes the USB firmware and moves the

samples from the memory controller to the internal dual-ported, DP, BRAM component of the

USB IP core. Furthermore, the Microblaze controls the DDC core using software registers,

which hold different parameters. Table 15, Table 16 and Table 17 contain an extensive

description of them.

The functionality of each IP core is listed in Table 11. Besides this, the MPMC, USB IP core

and DDC IP core will be extensively analyzed in following sections.

Page 59 of 102

Figure 4.9: Overview of the hardware design

 4 Hardware Implementation

IP Core Description
Microblaze soft-core CPU The microprocessor executes the USB

firmware and handles the read requests, done
by the USB IP core

MPMC The Multi Port Memory Controller (MPMC)
provides access to the 256 MB DDR2
memory, available on the ML507 board. 3 out
of the 6 ports are configured to allow
simultaneous access of multiple devices.
Chapter 4.2.2.1 provides more information
about the structure of this core.

USB 2.0 Device IP core This IP core translates the received ULPI
packets from the SMSC daughter card and
handles them. Also, it requests the
Microblaze to move the next block of
samples, which is to be sent over the USB.
For more information consider Chapter
4.2.2.2

DDC IP core This core is generated using the "Create or
Import peripheral" wizard of EDK. The DDC
model, as well as the later discussed NPI
core, are instantiated here. Also, the clock
domain synchronization is performed in this
module. Refer to Chapter 4.2.2.3 for more
elaborate overview.

DCM DRP The CoreGenerator DCM core is inferred in
this IP and can be configured for different
output frequencies. It outputs the test ADC
clock.

INTC The interrupt controller handles multiple IRQ
requests and prioritize them. Due to the fact
that the Microblaze has only one interrupt
port, this core queues the pending IRQs until
the microprocessor is ready to handle them.

RS232 This interface has been used for debug
purposes during the software development.

Timer This interface has been used for debug
purposes during the software development.

GPIO A number of GPIO modules, such as LEDs,
buttons and an LCD display have been
instantiated for debug purposes

Table 11: IP cores, instantiated in this project

Page 60 of 102

 4 Hardware Implementation

 4.2.2.1 Multi Port Memory Controller

The the MultiPort Memory Controller(MPMC) IP core interfaces the 256 MB DDR2

memory, available on the ML507 board. This IP Core supports up to 6 different subscribers,

requesting data independently of each other. Moreover, different Bus interfaces are offered for

design flexibility. The following two types enhance the memory managemnet of the project:

• Xilinx CacheLink (XCL)

If the Microblaze makes use of data and instruction caches for accessing an external

memory chip then the dedicated Xilinx CacheLink(XCL) interface may be

synthesized and by this separating the data flow from the PLB Bus, which connect all

peripherals to the processor, reference Figure 4.9. Since this project requires large

memory blocks to be manipulated by the CPU, it may be wise to spare resources on

cache interfaces. The cache feature should be used with caution, because it consumes a

number of BlockRAM elements. Sometimes it is reasonable to evaluate the resource

requirements because in particular cases it may be easier and cheaper in terms of

BlockRAMs to extend the internal memory than synthesizing caches.

• MPMC Native Port interface (NPI)

Besides the XCL interface, the MPMC offers the Native Port Interface(NPI). This is

an easy to implement interface which provides low latency read/write memory

requests. Since the incoming data stream will be at rate of some megabits per second,

the user IP core may implement it and by means of NPI transactions write the samples

without the need of the Microblaze. If, on the other side, Microblaze is involved, then

an interrupt must be generated out of the user core to signal new data. The interrupt

response has a specific latency which may lead to data loss, if not enough processing

time for the Interrupt Service Routine (ISR) is available. Furthermore, the interrupt

rate will be considerably high and this is not desirable. The user IP core will use the

NPI interface to perform similar behavior as a Direct Memory Access (DMA) device.

Page 61 of 102

 4 Hardware Implementation

Before discussing the implementation of the NPI interface, there are several points which

need to be mentioned regarding it:

• Ratio between the NPI core clock and the MPMC clock

As described in [MPMC], an important design restriction is the allowed clock ratio

between the MPMC memory clock and the NPI interface clock. In comparison to the

PLB bus interface of the MPMC, the core, using a NPI interface to the MPMC, must

run at a 1:1 clock ratio with respect to the clock specified at the MPMC_Clk0 port of

the MPMC core. For this reason, the user IP core must provide a dedicated port for

feeding the clock source and synchronizing the NPI interface implementation to it.

• Data width of the NPI interface

Another point to discuss would be the NPI data width used throughout the design. The

MPMC Version 5.04.a allows two different values for this parameter, namely a 32- or

64-bit implementation. If the interface is configured for 64-bit operation then the

implementation would consume more FPGA resources then the 32-bit version. As the

width of an ADC sample is 16 bit and the InPhase and Quadrature components both

result in two 16-bit values, it may be beneficial to implement the NPI size as 32-bit

version. This will eventually allow to combine the two outputs to a four byte value and

use it as one data portion of the NPI write cycle. With this in mind, the state machine,

which will implement the NPI interface, can be designed without wait states for data

collection. If, on the other side, a 64-bit data width is selected, a state for buffering the

samples before placing them on the data line of the NPI bus must be inserted.

• NPI transcation type

Finally, the type of NPI transaction must be selected. The MPMC core allows variable

data packet sizes among which a Byte, Half-Word, Word as well as Burst transfers.

Furthermore, 8-Word Cacheline Write transaction is allowed. This approach pushes 8

data packets in the Write FIFO of the corresponding MPMC port and generates an

Address Request with the last push. A sample 8-Word Cacheline Transaction is

depicted on Figure 4.1025.

25 Image source: [MPMC]

Page 62 of 102

 4 Hardware Implementation

In order to implement the NPI interface in VHDL, an example project, such as the [AR24912]

has been used as reference. A simple NPI Read/Write state machine implements the signal

timings, shown on Figure 4.10. For the reason that the DDC core only writes in the memory

there is no need for a Read support, only the signals, relevant to the Write process, are

synthesized and connected to the MPMC. The state machine automatically processes the

incoming data. Among the NPI state machine, which will be explained in detail, this core

handles the following tasks:

Page 63 of 102

Figure 4.10: 8-Word Write Cacheline Transaction

 4 Hardware Implementation

Task Description
Memory address

management

Because of the fact that the NPI interface is not supposed to use the
complete DDR2 memory, a region limit must be selected. This is done
using the software registers of the DDC IP core. The start address, as well
as the size of the total memory available, are provided to the core. The
address is incremented with 32 bytes, 8 values times 4 bytes each, after
every successful NPI 8-word cacheline transaction. This project uses 20
MB of the DDR2 memory which is divided into 4 blocks of 5 MB
packets. Each packet corresponds to a buffer time of nearly 1 second.
The memory is organized as a ring buffer and as soon as the last possible
address, is written the write pointer wraps around and starts at the
beginning of the NPI memory block. This way the desktop application
must be able to read each block in less than 3 seconds. Every increase in
the output sampling frequency of the DDC model must be carefully
examined because it will shorten the write time of each IRQ block and by
this reducing the overall readout time available for the desktop
application.

Interrupt

generation

The NPI block is responsible for the interrupt generation of the DDC

model. This is due to the fact that the complete address computation is

managed in this component. The purpose of the generated interrupt is to

announce to the Microblaze that a certain amount of data is already

written in memory. To reduce the interrupt rate, a request is set when a

32-KB block has been written. The IRQ is generated directly from the

internal address counter of the core. Each address line is used as an input

to a number of LUTs which logically determine if the address has reached

a 32-KB boundary. As a result, an IRQ is flagged every

 1
80e6/64

∗ 32768
4 Bytes 

=6.5536 ms . The Microblaze waits until a

total of 10240 blocks (5MB / 10240 sectors = 512 bytes per sector) have

been written and then issues a USB transfer. This way the protocol

overhead, generated during the initialization phase of the transfer, is

performed only once.

Link to the

synchronization

FIFO

The NPI state machine generates a READ_ENABLE signal, which
requests data from the synchronization FIFO. The fifo_valid_flag
Figure 4.13, is used to test if the current FIFO output should be
processed.

Table 12: Summary of the NPI core

Page 64 of 102

 4 Hardware Implementation

The structure of the VHDL component, responsible for the NPI timings, can be found on

Figure 4.11. As it can be seen, a state machine is used to control the sub components such as

the IRQ generator, address generator and the sample counter.

Table 13 summarizes the tasks of each block.

Component Description
address
generator

This process generates the next valid NPI address after a successful transaction
has been made. It takes the offset value, stored in „slv_reg1in“, which is the
beginning of the data storage region.

IRQ
generator

This process observes the address vector and an IRQ is generated whenever a
32KB boundary is reached.

sample
counter

This element is used during the „BUFFER_SAMPLES“ and „TX_DATA“
states. It counts the received samples as well as how much data is pushed in
the MPMC FIFO.

sample
buffer

This array buffers the samples, coming from the synchronization FIFO until a
total number of 8 is received. If this condition is met, the NPI state machine
starts a transaction.

Table 13: Component description

Page 65 of 102

Figure 4.11: NPI core diagram

 4 Hardware Implementation

Furthermore, Table 14 contains the description of the NPI transition states.

State Description
RST Reset state, the state machine enters it if the DDC core is disabled

or the MPMC is not ready.
IDLE Wait state for the case that the system is initialized but no

information is found in the synchronization FIFO.
BUFFER_SAMPLES This state requests data from the synchronization FIFO until 8

samples have been received. If this is the case then a NPI
transaction is initiated

TX_DATA During this state, the data to be written in memory is pushed in the
MPMC FIFOs. At the end, an „address request“ is initiated.

TX_ADDR The system awaits an address acknowledge and if successful,
returns in the IDLE state.

Table 14: NPI state description

 4.2.2.2 XPS Universal Serial Bus 2.0 IP Core

Another component of interest is the XPS Universal Serial Bus 2.0 Device v2.00a IP Core.

This core is fully compliant with the USB Specification and supports High Speed as well as

Full Speed USB. As already discussed, an ULPI interface creates a link to an ULPI compliant

USB 2.0 PHY device, such as the SMSC daughter card, and enables the translation of the data

packets to the correct USB electrical characteristics. A total of eight endpoints are supported,

whereas endpoint 0 is preserved as Control Endpoint. Double buffering is included for

endpoints 1 to 7. A Direct Memory Access(DMA) may be also configured.

Figure 4.1226 represents the internal organization of the USB IP Core. A dual ported

BlockRAM, marked as DPRAM, contains all frames which are currently processed. The

Microblaze can access the memory over the PLB Bus by using Port B, whereas the USB 2.0

Serial Interface Engine(SIE) uses the Port A.

26 Image source: [XPS_USB]

Page 66 of 102

 4 Hardware Implementation

The SIE component is responsible for the serialization and de-serialization of USB traffic at

the byte level and multiplexing and demultiplexing of USB data to and from the endpoints of

the core. The SIE also handles USB 2.0 state transitions, such as suspend, resume, USB reset

and remote wake-up signaling. The SIE interfaces to the PHY using a ULPI interface that

requires 12 pins. Data to the FPGA from the USB is received from the PHY, error checked

and loaded into the appropriate area of the DPRAM. Data from the FPGA that is to be sent

over the USB, is loaded from the DPRAM, protocol wrapped, then when the protocol allows,

presented to the PHY, one byte at a time. The status of the current USB transactions is

signaled by the SIE to the Interrupt Status Register. The primary job of the PHY is to manage

the bit level serialization and de-serialization of USB 2.0 traffic. In order to meet the USB

requirements of 480 Mb/s, the PHY interface operates on a byte-level and uses a 60 MHz

clock..

 4.2.2.3 DDC IP Core

This section describes the design of the User IP Core which performs the DDC algorithm and

handles the NPI memory transactions. Besides this, a Slave PLB interface ensures that status

information as well as control flags can be manipulated by the Microblaze microprocessor

using Software Registers. Figure 4.9 gave already a detailed overview of the communication

Page 67 of 102

Figure 4.12: USB core structure

 4 Hardware Implementation

links between the main components in the design. As it can be seen from the drawing, the

write process is independent of the read process. The DDC Core performs the complete signal

preprocessing and writes the samples over the NPI Interface in the DDR2 Memory. In

comparison, the Microblaze communicates with the USB 2.0 IP Core over the PLB Bus and

transfers the data blocks over it. To acquire the data from the memory, both the Data and

Instruction memory paths of the microprocessor are cached. To sum up, there are three

independent paths between the cores which simplify the data transfer:

• DDC IP Core and MPMC using the NPI interface

• Microblaze and MPMC using Xilinx CacheLink interface

• Microblaze and USB 2.0 IP Core using the PLB Bus

The separation of the different data paths permits high data rates and prohibit bus collisions.

Figure 4.13 should provide a deeper evaluation of the DDC core functionality.

Page 68 of 102

Figure 4.13: DDC IP core overview

 4 Hardware Implementation

After the processed sample leaves the System Generator DDC component, it must be stored in

memory. Because of the fact that the ADC and the Microblaze run at different clock

frequencies, both clock domains must be synchronized at this point. As proposed in

[CLK_DOM], one possibility to solve this problem is to use an Asynchronous First-In-First-

Out(FIFO) component. This way two independent clock regions can write data synchronous

to the relevant clock and all synchronization issues are carried by the FIFO itself. Different

flags provide information of the FIFO status in both domains and new read/write transactions

must take these into account. Some remarks should be made with respect to the show

diagram:

• As it can be seen from Figure 4.13, the core logic of the DDC block provides the

"fifo_wr_en_sig" signal as well as the data to be written in the FIFO, whereas the NPI

Core logic generates the "fifo_rd_en_sig" pulses and performs the write memory

requests. Consequently, the NPI block wraps the incoming samples as shown on

Figure 4.10 and routes the data to the MPMC. The memory controller then serves the

request and the data is written on the provided address. Immediately after this the

Microblaze can access the memory region and fetch the data for further processing.

• With these assumptions in mind, the last step to perform would be to notify the

Microblaze microprocessor of the available data block. To reduce the sample rate of

the system only a block of samples would be reported to the CPU instead of a single

value. Moreover, it is better to transfer larger blocks of information so that the USB

Bus negotiation is done only once. If the Microblaze receives an IRQ request coming

form the DDC IP core then the corresponding ISR must update all relevant flags

together with the value of the current sector being written. Due to the fact that one

USB transfer block is larger than a single IRQ write size, it is important to buffer the

data until a complete USB block is ready. Then, while buffering the next USB block,

the already complete information packet is sent over the USB to the desktop PC. This

ring buffer concept27 allows for optimal memory utilization. Instead of reserving the

complete DDR2 memory for the DDC Application, it is possible to allocate just a

piece of it, 20MB in this case, and by dividing it into 4 sectors implement a ring

27 More information in [LDT], Chapter "FIFO Speicher"

Page 69 of 102

http://www.asic-world.com/tidbits/clock_domain.html

 4 Hardware Implementation

buffer. This concept would work iff the desktop application is capable of reading a

block before the write pointer of the ring buffer has reached its region again.

• For the sake of flexible software control a set of software registers, marked as

"slv_reg0", "slv_reg1" and "slv_reg2" on Figure 4.13, which contain the most

important DDC IP Core parameters, will be synthesized so that the Microblaze CPU

can modify them. The DDC block starts operating as soon as the ADC is enabled over

slv_reg0. The first step is to read a sample and send it through the DDC model. As

next, the output value is written in the synchronization FIFO and after a certain

amount of cycles the FIFO flags are updated. The NPI state machine is constantly

generating a read strobe using the "fifo_rd_en_sig" and the "fifo_valid_sig" is used to

determine the data validity. A counter is used to count the number of samples already

buffered by the NPI state machine. If a block of 8 samples is available then a NPI

transaction is issued to the memory controller and the NPI state machine recovers in

the IDLE state. Furthermore the destination address of the NPI is increase by, 8 pairs

of samples times 4 byte, 32 bytes so that the next transaction is correctly aligned.

Subsequently, the interrupt generation logic observes the address counter and, based

on the address value, produces an interrupt pulse if a 32KB boundary has been

reached. By managing a software counter, the firmware is capable of evaluating how

much memory has been already written.

The block diagram on Figure 4.14 depicts the introduced flow concept. As long as the

DC918C board is enabled, the system is running and data is stored in the DDR2 memory. No

flow-control is implemented between the hardware system and the desktop application and

any data, not read on-time, will be overwritten after the ring buffer write pointer overflows.

Page 70 of 102

 4 Hardware Implementation

Page 71 of 102

Figure 4.14: Flow concept of the DDC IP Core

 4 Hardware Implementation

• Device Register Description

The ddc_core has been synthesized with three 32-bit software registers which hold important

DDC configuration parameters. Table 15, Table 16 and Table 17 contain a description of the

register flags.

Bit Name Reset Value Description

0-15 FAT Data Sectors 0 Provides the maximum address of the FAT Table, the
NPI interface uses this value by the address
generation

16-29 Reserved 0

30 DDS synced 0 This bit is used to check if the DDS has recovered
after being reconfigured

31 ADC Enable 0 Use this bit to enable/disable the DC918C board.
When this bit is set, the DDC core starts operation
and data is buffered in the DDR2 memory

Table 15: Software Register 1

Bit Name Reset Value Description

0-31 Start address of
the storage space

in the DDR2
memory

0 This value provides the start address of the memory
buffer. The samples are written and all previous data
located on this address is LOST! The NPI interface
uses this value together with the "FAT Data Sectors"
to manage the NPI transactions and to generate an
Interrupt whenever a certain amount of memory has
been written.

Table 16: Software Register 2

Bit Name Reset Value Description

0-31 DDS output
frequency

configuration

0 This value in Hertz provides the DDS output
frequency which is to be configured. A
reconfiguration of the DDS block is issued as soon as
a new value is written to this field. The corresponding
phase increment value is calculated and a
WriteEnable pulse is sent to the DDS Block in the
SystemGenerator model. The "DDS synced" field in
Register 1 may be used to determine if the DDS
output is stable.

Table 17: Software Register 3

Page 72 of 102

 4 Hardware Implementation

• ADC Clock integration and Clock domain crossing

Due to the fact that the ADC Clock is seen as external source from the FPGA point of view,

special considerations must be done to ensure the proper integration in the design. Generally

speaking, the internal FPGA structure contains a global clock tree which is used to distribute

the clock signal(s) over the complete chip. During the implementation step, Place And

Route(PAR) collects all the information regarding the clock structure and then tries to route

the design. As already mentioned, the ADC_CLK signal is fed into the FPGA from an

external chip and must be properly attached to the global clock tree. As described in Chapter 1

"Clock Resources" of [UG190], there are two different clocking sources independent of the

global clock network:

• BUFR

All regional clock networks are independent of the global one and the regional clock

source, BUFR, spans over only three regions. The usage of a BUFR is suitable for

source-synchronization designs, where part of the implemented logic must be driven

by the external source.

• BUFIO

The I/O clock, which is the alternative to the BUFR, is limited to driving a single

region only. A BUFIO component is restricted to only driving I/O Logic. This is due to

the fact that the I/O clock network only reaches the I/O column in the same bank or

clock region.

One constraint, which must be met in order to be able to integrate the external clock source, is

that the signal must be routed to a "Clock Capable I/O" pin. Those specific pins are the only

way to access a clock region of the FPGA with an external signal. Because of the fact that the

clock source will be used to drive some logic components of the FPGA, a regional clock

buffer, BUFR, must be instantiated. Figure 4.15 28 shows the main differences between the

BUFR and BUFIO components. Once integrated in the FPGA , the BUFR clock can be spread

to control the logic in the adjacent regions.
28 Image source: [UG190]

Page 73 of 102

 4 Hardware Implementation

• MPD configuration

After the VHDL implementation is accomplished, the interface information of the DDC IP

core must be updated. Because of the fact that during the invocation of the "Create or Import

Peripheral" Wizard no information is provided regarding the input/output ports of the system,

a way must be found to make the configurations of the IP core global to the Microblaze

system. This can be done by modifying the default Microprocessor Peripheral

Definition(MPD) file. As described in [PSF] the MPD file lists the ports and default

connectivity for the bus interfaces as well as provide different parameters and default values.

Those values can be diverse VHDL generics which can be used to control the synthesis .

Although the PLB interface is already defined in the MPD file of the IP core, it is still

required to list the NPI interface support. This way the EDK system will know that this IP is

capable of connecting to a device with this kind of bus interface. The definition is done using

the following notation:

BUS_INTERFACE BUS = SPLB, BUS_STD = PLBV46, BUS_TYPE = SLAVE

BUS_INTERFACE BUS = MPMC_PIM1, BUS_STD = XIL_NPI, BUS_TYPE = INITIATOR

Page 74 of 102

Figure 4.15: Regional Clock Buffers

 4 Hardware Implementation

Table 18 gives an overview of the MPD parameters and how exactly the hardware connection

takes place.

Hardware IP
core

BUS macro, as defined
in the corresponding
MPD file

BUS_STD macro, as
defined in the
corresponding MPD file

BUS_TYPE macro, as
defined in the
corresponding MPD file

MPMC29 MPMC_PIM1 XIL_NPI TARGET
DDC IP Core30 MPMC_PIM1 XIL_NPI INITIATOR

Table 18: Overview of the NPI interface connection configuration between the MPMC and
the DDC cores

After the bus interfaces are configured, all port signals of the bus architecture must be listed

and linked. As it can be seen in the following MPD code snippet30 it is possible to define

different types of ports and configure them with respect to the desired behavior.

...

PORT ADC_CLK = "", DIR = I, SIGIS = CLK

PORT ADC_DIN = "", DIR = I, VEC = [15:0]

PORT ADC_EN_OUT = "", DIR = O

PORT XIL_NPI_clk = "", DIR = I, SIGIS = CLK

PORT XIL_NPI_rst = "", DIR = I

PORT XIL_NPI_InitDone = InitDone, DIR = I, BUS = MPMC_PIM1

PORT XIL_NPI_Addr = Addr, DIR = O, VEC = [(C_PI_ADDR_WIDTH-1):0], BUS = MPMC_PIM1

...

One way of connecting a signal is to leave the MPD definition empty and then manipulate it

using the EDK user interface. Another way is to use the BUS command and specify the bus

label, which should absorb this signal. For the case of the XIL_NPI_InitDone signal, for

example, the bus label is set to MPMC_PIM1 which means that it will be automatically

associated with the corresponding signal from the bus specification. Hence, the connection is

established in the background. All NPI relevant signals coming from the DDC IP Core must

be configured to match the corresponding MPMC definition. The XIL_NPI_Clk signal is left

29 Information taken from mpmc_v2_1_0.mpd
30 Information taken from ddc_core_v2_1_0.mpd

Page 75 of 102

 4 Hardware Implementation

unconnected due to the fact that it must be the same as the MPMC_Clk0 configuration. This

association has been done using the EDK GUI. Finally, the ADC_CLK and ADC_DIN signals

must be configured as external and all relevant pins must be listed in the UCF file of the

project.

 4.2.3 Design summary

As it can be seen from the values in Table 19, the design consumes a moderate part of the

Virtex5 FPGA hardware resources available on the FPGA-chip. Furthermore, due to the

extensive structure of the filters and the mixer, the DDC IP Core itself absorbs 11 of the 14

DSP48E macros that are used in the design.

Resource
Type

Slice
Registers

Slice LUTs BlockRAMs BUFG DSP48E

DDC_IP_Core 3207 2313 3 1 11

MPMC 4525 2791 15 0 0

XPS_USB_IP 740 1770 4 0 0

Microblaze 1644 1629 4 0 3

lmb_bram 0 0 16 0 0

Entire Design 11754 9976 42 14 14

Available in the
Virtex5 FPGA

44800 44800 148 32 128

Consumed in % 26 22 28 43 10

Table 19: Resource Consumption

Also, the design consumes 42 embedded BlockRAMs. This is due to the fact that a larger

microprocessor internal memory has been synthesized. In fact, 16 BRAMs are consumed by

the Microblaze so that the complete execution code of the application can be located there.

This allows faster execution and removes the need of a boot-loader. In addition, the MPMC

instantiates 15 embedded BRAMs, which are mostly used for the Microblaze CacheLink

Interface. Moreover, the complete array, managed by the file system, is allocated in the DDR2

memory, and thus the expansion of this sector does not concern the FPGA fabrics.

Page 76 of 102

 5 Software Implementation

 5 Software Implementation

Main topics of this chapter will be the design of a file-system as well as its integration in the

Mass Storage Support example project, provided with the Xilinx EDK. Also, the Windows

application for data acquisition from the FPGA will be presented.

 5.1 USB Firmware extension

Figure 5.1 shows an overview of the DDC software application. As it can be seen, the Xilinx

Mass Storage Support (MSS) example application has been used as a basis for this project.

Page 77 of 102

Figure 5.1: Overview of the DDC software project

 5 Software Implementation

The extension features the following two components:

• Interrupt handling for the DDC IP core

The service routine should mark the number of interrupts received since the system is

working. Each interrupt denotes that 64 sectors, each 512 bytes in size, have been

written in memory. If a complete USB block, consisting of 10240 written sectors, is

ready for transfer then the marker for the current block to be transferred should be

updated. This should indicate to the desktop application that a new block is available.

• File-system implementation

In order to make the DDR2 memory available to the USB interface, it should be

managed by a file-system. This way, the desktop application can use the file, created

by Microblaze, to transfer the data.

The software application configures two user endpoints and one control endpoint on the USB

device. Endpoint 0 is configured as the control endpoint. Endpoint 1 is configured as BULK

OUT and endpoint 2 is configured as BULK IN. Both endpoints are configured for a

maximum packet size of 512 bytes. The remaining five endpoints are not used. According to

[USBS], the benefits of Bulk only transfers are:

• Can be used to transfer large chunks of data

• CRC error detection

• Stream Pipe – unidirectional

• File Allocation Table (FAT) and Data representation

The initial state of the MSS example application is that the USB device is displayed as an

unformatted one when connected to a host. This is due to the fact that the USB memory array

is unmanaged. As a result, a file-system31 should be introduced which will be responsible for

the data management. Starting point here would be to implement a FAT table so that the

complete memory is allocated and can be accessed by the desktop PC.
31 Mroe information on this topic can be found on Wikipedia, http://en.wikipedia.org/wiki/File_system

[03.01.2011]

Page 78 of 102

http://en.wikipedia.org/wiki/File_system

 5 Software Implementation

This type of file-system is characterized with a simple configuration interface. Every available

sector is listed in a table and can be configured using the following markers:

• 0x0000 → marks a free cluster

• 0x0002 – 0xFFEF → value of the next cluster in the cluster chain

• 0xFFF0 – 0xFFF6 → reserved cluster

• 0xFFF7 → BAD cluster

• 0xFFF8 – 0xFFFF → used, last cluster in file

It has a limited sector count which is normally the label of the FAT version, 12, 16 or 32. This

is the number of bits used to represent the maximum number of clusters supported. The total

memory managed by the file system is simply the number of available clusters multiplied by

the size of each sector. Some of the sectors are reserved and store status information used by

the operating system when accessing the FAT table. Figure 5.2 provides a better overview of

the FAT16 file system. As explained in [FAT16] there are several control blocks holding the

complete information in a FAT:

• Boot Sector

this sector holds the initialization code for the FAT table. Information such as sector

size and count, as well as file-system type, is stored here.

• FAT Tables

the size of the FAT table varies with the number of available sectors. The total number

cannot go beyond 2^16, thus the name of the file-system – FAT16. Each available

sector has a 16-bit pointer in the FAT table. The pointer contains one of the previously

listed markers. For the case of this project, the table does not undergo any changes and

as a results it is hard-coded during the initialization of the system.

• Root directory

This section lists all created files and directories. Information such as filename, size,

create date and create time are located there.

Page 79 of 102

 5 Software Implementation

The easiest way to create the Boot Sector of the file-system is to let the operating system

format the device. As a result, the Boot Sector is initialized with the required code and, if

stored until the next plug in, the memory will appear in a formatted structure. Therefore, the

first sector of the FAT table is always initialized with this code on start up. As next, a partition

is configured with respect to the information located in the Boot Sector and a file is generated.

This structure stores all relevant parameters of the file-system and provide easy software

access.

As next, a file must be created. It will be used to transfer the data between the FPGA nad the

desktop PC. The size of the file is 40961 Sectors * 512 Bytes = 20972032 Bytes. This value

corresponds to the 20 MB, allocated for the ring buffer, discussed in Chapter 4.2.2.3 , as well

as a 512 byte long configuration sector, located at the very beginning of the memory, used to

transfer control and status information. The following parameters, each 4 byte long, can be

configured:

• Synchronization marker

This field holds the system condition. Software can write this value to start the DDC

system. Upon application termination, this marker should be updated to stop the

hardware configuration.

Page 80 of 102

Figure 5.2: FAT Table overview

 5 Software Implementation

• Current label of the sector to be transmitted

This flag is updated directly in the DDC ISR. As soon as a new block is ready for

transfer, its label is written in this field. The desktop application compares this value

with its internal marker of the last read sector. If a change has been detected then the

sector is read.

• DDS output frequency

The desktop software application can use this field to set the DDS output frequency.

This way, the mixer can be dynamically reconfigured and nearly any spectral region

can be used as IF frequency.

The start address of the NPI interface and address limit of the DDR2 memory region are

initialized and written to the registers of the core. The setup phase is then concluded by the

USB IP core initialization settings and the interrupt configuration. The software then enters in

an endless loop which processes any incoming commands.

The compiled application is used to initialize the internal BRAM memory of the Microblaze

and it is loaded together with the hardware design. As soon as the system is started the

hardware is ready for use and can be connected to a USB 2.0 compliant port.

 5.2 Data Acquisition Application

After the overview of the Microblaze application it is time to pay attention to the software,

responsible for the data acquisition. Not only is it important to make the DDR2 storage of the

FPGA available to the USB bus, but additional timings regarding the operating system must

be obeyed. Although the desktop PC is the master on the USB bus and issues all transactions,

this is not the only task which consumes CPU power.

In general, when trying to establish a high performance communication between a device and

a given operating system, the only choice is to design a device driver. Because this will .

exceed the scope of this project and would result in long development period, another

approach has been adopted. Given the fact that today’s operating systems provide basic USB

support, a generic driver can be used to manage the USB requests on the PC side. Because of

Page 81 of 102

 5 Software Implementation

the fact that the DDC project requires only basic read/write USB support, using a generic

driver would be sufficient. The communication files, created in the FPGA, will be then

accessible by the operating system and data can be transferred.

The communication between the FPGA and the desktop PC is depicted on Figure 5.3.

Page 82 of 102

Figure 5.3: Software handshake diagram

 5 Software Implementation

As it can be seen, the desktop application configures the communication with one of the

specific markers:

• DDC_MARKER_START

This macro forces the Microblaze to enable the DC918C board so that new samples

are acquired. The system is running as long as this marker is set.

• DDC_MARKER_STOP

When the application software would like to terminate the data reception, it issues this

command to the FPGA which stops the ADC device.

The next step concerning the data transmission is the design of the Acquisition software. For

this purpose a Microsoft Visual Studio 2005 project has been created.

First of all, the application parameters, which are passed when the application is invoked,

must be discussed. A total of three elements are required:

• Mixer frequency

This allows the dynamic reconfiguration of the DDS at every run. The value must be

in Hertz. The FPGA then internally calculates the new phase step and writes it in the

DDC core.

• Destination filename

In order to store different measurements, it has been considered useful to label them at

every run. If the same filename is used twice then the former data is LOST!

• Runtime

Due to the fact that the desktop application is the one, which trigger the data

transmission process, a way must be found to terminate the communication link. For

this reason, a runtime value, in milliseconds, is passed at the beginning of the

application and the transfer process continues until a timeout has been detected.

Page 83 of 102

 5 Software Implementation

Figure 5.4 depicts the flow of the desktop application.

After the application is invoked, simple parameter checking is performed and the program

terminates if any of the values is considered wrong. If all parameters are correct then the

application searches for a filename called "HAW_DATA.txt", which is the one created in the

FPGA. If the search is successful then heap memory is allocated for both the control and the

data buffers. Furthermore, the storage file is created and its filename is extended to the

maximum number of characters so that all filenames have the same length. This limitation is

Page 84 of 102

Figure 5.4: Overview of the desktop application structure

 5 Software Implementation

necessary, because the Matlab script, which will be used to analyze the data, requires that all

filenames have the same length. Moreover, an index at the end of the name is introduced,

which is used to mark the files if their size exceed 100MB. A new file with the same name but

incremented index is generated and the transmission process is not interrupted. The index is

limited to 99 which means that if the received data exceeds 10GB or 33 minutes then a

modification of the application is necessary.

One important remark, regarding the USB file access, must be mentioned. Due to the fact that

the operating system assumes that it controls the FAT file-system, implemented in the FPGA,

it is possible that changes, done by the Microblaze, may not be detected. For this reason, the

following two attributes of the MSDN library function "CreateFileA" must be used:

• FLAG_NO_BUFFERING

This flag removes any caching of information for the corresponding file, in this case

"HAW_DATA.txt". This way, the operating system is forces to load the information

every time it accesses the file. As a result, any change, done by the microprocessor,

will be noticed and can be processed.

• FILE_FLAG_WRITE_THROUGH

This attribute is used to directly route the data to the storage media. If omitted, the

operating system uses intermediate caches before writing the information on the hard

disc. For the reason that this is not required, this flag optimizes the data transfer.

As soon as the source file has been detected, heap memory is allocated and

"DDC_MARKER_START" is written in the control block. This enables the FPGA algorithm and

triggers the data transfer. As soon as the FPGA has gathered one block of data it sets the

"current label" field with the acual value of the block and announces to the operating system

that new data is available. The desktop application, on the other side, continuously polls the

control block and compares the last processed label with the actual one. If a change has been

detected then the corresponding block is read. As soon as the runtime-thread returns a timeout

then the main loop is terminated and the "DDC_MARKER_STOP" is written in the control block.

By doing this the FPGA is aware that no more data will be read and the ADC Enable bit can

be cleared in Software Register 1. Eventually the desktop application closes all handles and

frees the allocated heap memory. The application terminates and the data can be analyzed.

Page 85 of 102

 6 Results

 6 Results

First of all, the hardware configuration, consisting of the ADC↔FPGA↔SMSC Dauther

card link, must be examined and the error-free transmission of information must be

guaranteed. Furthermore, the DDC algorithm itself should be evaluated. Finally, the complete

embedded solution must be examined and results should be compared with the theory.

 6.1 Hardware Validation

Figure 6.1 depicts the interconnection layout of the system. As explained in Chapter 4.1 , both

the ADC and SMSC components are located on the expansion connectors J4 and J5,

respectively.

Page 86 of 102

Figure 6.1: Design overview

 6 Results

Two signal generators of the type “Rohde & Schwarz SMG 0.1 MHz↔1000 MHz” have been

employed to generate the ADC sampling clock and the input signal to be sampled. The

sampling frequency has been set to 80 MHz and the complete DDC block is set up to that

value. The DDS Compiler generates the mixing signals with respect to the sampling clock and

the Undersampling principle, discussed in Chapter 3.4 . Evaluating the listed equations for "n

= 3" shows that the selected FS = 80 MHz is in the allowed range.

A simple counter has been synthesized to demonstrate that all packets, sent over the USB bus,

are received correctly. In contrast to the actual implementation, where the 16-bit InPhase and

Quadrature components are concatenated, the counter generates a 32-bit value which is

written to a single memory cell. With this in mind, there must be 1310720 values per block:

5MBaddress space
4 bytes per value

=1310720values per USB sector .

Table 20 summarizes the size and limit values of the test blocks transmitted over the USB bus.

Sector Number Start Address in
HEX

Start Value in
HEX

End Value in
HEX

[(End – Start) *
4] in Bytes

0 0x00000000 0x00000000 0x0013FFFF 5242880
1 0x00500000 0x00140000 0x0027FFFF 5242880
2 0x00A00000 0x00280000 0x003FFFFF 5242880
3 0x00F00000 0x003C0000 0x004FFFFF 5242880
4 0x01400000 0x00500000 0x0063FFFF 5242880

Table 20: USB transmission validation
As it can be seen, the difference between the upper and lower address boundary of a 5MB

sector equals 5*1024*1024 Bytes = 524288010 = 0x0050000016, compare Table 20, column 2.

Furthermore, due to the fact that a 32-bit, 4 Bytes, value is written at an address cell, a total of

5*1024*1024 Bytes / 4 Bytes = 131072010 = 0x14000016 values are found in each sector,

compare Table 20, columns 3 and 4.

Page 87 of 102

 6 Results

 6.2 Signal Quality Estimation

Since the transmission link has been verified, the next step would be to apply diverse RF test

signals to the ADC board and validate their correct reception. First, the input signal will be

visualized using the demonstration circuit DC718, which connects directly to the LTC

DC918C board and together with an application-specific software provides good evaluation

options. Additionally, measurement of an AM- as well as FM-modulated input waves should

serve as a reference of how good the system performs.

 6.2.1 Spectrum of the input signal

Before evaluating the test results, the spectrum of the input signal has been measured. As it

can be seen on Figure 6.2, the SNR is 65dB and the two signals are clearly distinguished.

Page 88 of 102

Figure 6.2: Spectrum of the input signal, two tone input, 89.35 MHz and 89.45 MHz

 6 Results

 6.2.2 Test case 1 → Single-tone input

The first test to be performed is a measurement of a single-tone signal with the two different

clock sources using the PScope software. Figure 6.3 and Figure 6.4 show the results.

Page 89 of 102

Figure 6.3: Single-tone measurement, FPGA DCM as clock source

Figure 6.4: Single-tone measurement, R&S signal generator as clock source

 6 Results

Both measurements have been done using a Hanning window and an FFT size of 32768. As it

can be seen, the spectrum of the input signal is distorted when sampled with the FPGA DCM

clock. The leakage effect, seen around the main spectral component on Figure 6.3, has the

effect that the original signal cannot be recovered and its energy "leaks" in the adjacent bins.

In comparison, the second case provides a clear FFT plot and a SNR value of 45 dBc, which

is with 10dB more then the former one. This reduction of the SNR can be justified with the

duty cycle uncertainty as well as the period jitter, which were introduced in Chapter 3.5 . For

this reason, all further measurements have been taken using the R&S signal generator as

source for the ENCODE input of the ADC circuit.

• Amplitude measurements for a single-tone signal

As next, several measurements have been taken to evaluate the amplitude deviation compared

to the input signal. Table 21 lists the tested voltage levels. The same input sine wave with

frequency fsin = 89.45 MHz has been used for all test cases. The values for the input signal

have been measured using the DC718 demonstration circuit and the PScope software,

provided with the board, has been employed to visualize the measurements. The output of the

DDC system has been evaluated using Matlab.

Input Voltage of the
ADC Sine Wave(fsin =
89.45 MHz) / mVRMS

PScope Measurement /
converted value

min/max

Output of the DDC
system / converted

value min/max

DDC system output
deviation / in %

101 -3539/3583 -3786/3787 ~6.20
500 -17536/17625 -18785/18783 ~6.43
682 -23905/23953 -25583/25581 ~6.45
931 -32640/32687 -32768/32767 --
942 -32768/32767 -32768/32767 --

Table 21: Comparison of the peak-to-peak voltage samples, taken by the DDC sysetm

As it can be seen, the output of the DDC system, which is the sampled binary value of the

peak-to-peak voltage of the input, deviates from the PScope measurements in about 6%. One

reason for this is the rounding error which is introduced during the filter cascade computation.

Page 90 of 102

 6 Results

 6.2.3 Test case 2 → AM-modulated input

Amplitude modulation results in a variation of the carrier amplitude in proportion to the

amplitude of the modulating signal. Figure 6.5 depicts an AM-modulted sine wave.

The parameters AMAX and AMIN refer to the maximum and minimum of the signal's amplitude

during the modulation. AC denotes the amplitude in the unmodulated case. As it can be seen,

the complex envelope of the signal is influenced by the modulating signal m(t). The degree of

modulation, m, can be calculated using the following equation [DAC]:

m%=
AMAX−AMIN 

2∗AC 
∗100

Due to the characteristics of the modulated signal, it contains three different spectral

components, the carrier and both lower and upper sidebands, which are the difference and the

sum of the carrier and modulating frequency.

Page 91 of 102

Figure 6.5: AM-modulated signal

 6 Results

Figure 6.6 represents the AM-modulated signal which has been retrieved using the DDC

system. The same input sine wave with frequency fsin = 89.45 MHz and amplitude

AC = 500mVRMS has been used for all test cases. The AM modulation has been achieved using

the internal 1 KHz source of the signal generator. For this reason three are three relevant

spectral components and their ratio represents the degree of modulation.

The upper part of the image visualizes the time-domain representation of the I and Q

components. The signal diagram is similar to the one, shown on Figure 6.5. the lower part

represents the magnitude of the signal after a 192K FFT. In order to reduced the leakage effect

a Hanning window has been applied before computing the FFT. The first pair of sideband

peaks is located at ±1KHz with respect to the carrier frequency.

Different tests have been performed by varying the degree of modulation. A comparison

between the expected and the measured values is listed in Table 22. The columns 2 and 3

contain the maximum and minimum measured values whereas columns 1 and 4 represent the

configured and measured degree of modulation, respectively.

Page 92 of 102

Figure 6.6: AM-modulated signal, degree of modulation 30%

 6 Results

Degree of modulation,
in %

Amax of the signal, 2's
complement value

Amin of the signal, 2's
complement value

Measured degree of
modulation, in %

10 20508 16300 11,43
15 21551 15350 16,8
20 22483 14640 21,12
30 23119 12230 30,8

Table 22: Measurement results for the Amplitude Modulation test

The measurement values of the AM test show that there is a slight deviation of the theoretical

value. One explanation for this error is the sampling process, which can only take a finite

number of samples per period.

 6.2.4 Test case 3 → FM-modulated input

Frequency modulation, together with Phase modulation, are commonly known as Angle

modulation. This type of modulation is used in radio and television broadcasting as well as

other signal transmission applications. Its advantage to provide increased noise immunity,

even at the expense of higher bandwidth requirements, compared to AM modulation has been

the main reason for FM being used in so many fields of analog and digital communication

systems.

Frequency modulation can be defined as the instantaneous output frequency of a transmitter

with respect to the modulating signal. The instantaneous voltage of a FM wave can be

represented by the following equation [FM]:

The equation depends on both the carrier and modulating frequencies ωC and ωM, respectively,

as well as on the rest-frequency peak amplitude, AC, defined as the output frequency with no

modulating signal applied. Furthermore, the value is influenced by the index of modulation,

mf. In contrast to AM, the amplitude of a FM-modulated signal is kept constant but an infinite

Page 93 of 102

eFM  t =AC∗sinC∗tm f∗sin M∗t 

 6 Results

number of sidebands, equally spaced from each other by the modulation frequency,

complement the spectrum. The amplitudes of the sidebands change with respect to the

selected modulation index. The total power can be computed by evaluating the sum of the

power values of the spectral components and should equal the power of the unmodulated

signal. Figure 6.7 shows the spectrum of a FM-modulated signal for some modulation indices.

The complex envelope of the output can be represented as follows:

Due to its periodicity with respect to the modulating frequency, the envelope can be expressed

as a Fourier series [DAC, Chapter 5]:

Page 94 of 102

g t =AC∗e
 j∗m f∗sin wm∗t 

Figure 6.7: FM modulation, spectral components and connection between the Bessel
function and index of modulation

 6 Results

with Fourier coefficients:

For this reason, a way to express the relationship, between the carrier and the sidebands

amplitudes, is to use the Bessel function representation, Jn(mf) in the above equation, depicted

on Figure 6.8. As a matter of fact, each Bessel function contains a certain amount of the

signal's energy. Plotting the magnitude of each Bessel function as a function of the index of

modulation yields the power magnitude, contained in each spectral component, beginning

from the carrier peak.

The values from Table 23, marked as "expected", have been taken directly from Figure 6.8.

Page 95 of 102

g t =∑
n=−∞

n=∞

cn∗e
 j∗n∗m∗t 

cn=
AC

T m
∗[ ∫

−T m /2

Tm /2

e j m f∗sin m∗t ∗e− j∗n∗m∗t ∗dt ]=AC∗J n m f 

Figure 6.8: Bessel functions and relation to the index of modulation

 6 Results

Figure 6.9 shows a sample view of the FM-modulated input signal after being processed by

the DDC system.

As it can be seen on the lower Magnitude plot, the carrier and sidebands are clearly

distinguished and the measured amplitudes, summarized in Table 23, approach the theoretical

expectations. The “Expected” values represent the theoretical estimation, whereas the

“Measured” sections hold the data extracted using Matlab.

Bessel Func. → J0(mf) J1(mf) J2(mf) J3(mf) J4(mf)
Mod. index, mf

↓
Expected Measured Expected Measured Expected Measured Expected Measured Expected Measured

0.5 0.9385 0.9431 0.2423 0.2402

1 0.8652 0.7745 0.4401 0.4368 0.1149 0.1058

2 0.2239 0.2417 0.5767 0.5786 0.3528 0.3250 0.1289 0.1105

3 0.2601 0.2465 0.3391 0.3551 0.4861 0.4539 0.3091 0.2684 0.1320 0.1238

Table 23: Measurements for the FM-modulated signal
The measured results show that the system can detect the FM-modulated signal and that all

relevant spectral information is received without significant losses.

Page 96 of 102

Figure 6.9: FM-modulated signal, modulation index m = 0.5

 7 Conclusion and Recommendations

 7 Conclusion and Recommendations

As a conclusion, the main topics of this project will be summarized. At the beginning, the

term “Software Defined Radio” has been used to introduce the reader to the field of real-time

signal processing and Radio Frequency data transmission. The idea of a system, that manages

the complete demodulation operation without using IF has been the main reason for

establishing this master thesis. This work had the purpose to lay down the fundamentals of a

SDR embedded system which should be able to recover a RF-signal and store it for further

desktop processing. As the evolution of FPGA-based digital signal processing allowed for

real-time computation of complex algorithms, the idea of shifting the appropriate processing

blocks from the analog to the digital domain has been considered beneficial. The design of the

complete communication link together with the implementation of the associated hardware

components had the highest priority. A crucial role in the design plays the Direct-Down-

Conversion algorithm, which has been employed because of its simplicity and efficiency.

After Chapter 2 presented the concept of this master thesis, Chapter 3 of this document

introduced the theory concerning the DDC topic. Chapter 4 , Hardware Implementation and

Chapter 5 , Software Implementation, had the purpose to enlighten the used methodologies

and programming tools to achieve the desired behavior of the hardware system, among which

the VHDL implementation of the DDC IP Core and the microprocessor firmware extension.

Finally, comprehensive tests have been performed to estimate the functionality of the

architecture. Based on the measured results, listed in Chapter 6.2 , it can be concluded that the

design meets the project specifications, listed in Chapter 2.4 . However, the estimated signal

quality still differs from the theoretical values and an evaluation of the distortions may be

necessary.

As already stated, this solution can be modified so that the resource utilization as well as

design concept can be optimized. First of all, the filter cascade can be enhanced in a way that

it consumes less resources but provides higher attenuation, which would result in better

channel selection. An option for this would be a poly-phase FIR design, which may extract

better filter characteristic and also lower the computation effort. Different combinations of a

CIC and poly-phase FIR structures may yield better results in a particular case.

Furthermore, if additional flexibility is desired, then instead of using a function generator as

Page 97 of 102

 7 Conclusion and Recommendations

clock source, a Digital Clock Manager fabric may be used to clock the ADC board. Simple

tests have been accomplished, compare Chapter 6.2.2 , but due to jitter effects and duty cycle

deviation the measured SNR degraded with 10dB. If, in contrast, the jitter is reduced then the

ML507 Board can be used as a clock source for the DC918C demonstration circuit.

Eventually, if enhancement in the USB throughput is necessary, then the optional DMA

interface of the core may be synthesized. A Master PLB interface allows the USB IP Core to

take control of the PLB bus while the Microblaze is not active, compare Figure 7.1. This way,

large chunks of memory can be moved independently of the microprocessor and by this leave

the complete memory flow independent of the microprocessor.

Finally, if the Mass Storage variant does not provide the required transmission speed then a

USB streaming interface can be considered. This will come at the expense of a application-

specific device-driver design, which may then optimize the communication between the

FPGA board and the desktop computer.

Page 98 of 102

Figure 7.1: Sample diagram of the Microblaze-free data management

Bibliography

Bibliography

AD_ADC: Analog Devices, Understand SINAD, ENOB, SNR, THD, THD + N, and SFDR so You
Don't Get Lost in the Noise Floor ,
http://www.analog.com/static/imported-files/tutorials/MT-003.pdf , [12.01.2011]

AN1298: Agilent, Digital Modulation inCommunications Systems—An Introduction ,
http://cp.literature.agilent.com/litweb/pdf/5965-7160E.pdf , [12.01.2011]

AR24912: , 11.1 EDK, MPMC v5.00.a - How do I create an NPI Core and connect it to MPMC
in EDK? ,
http://www.xilinx.com/support/answers/24912.htm , [12.01.2011]

CIC1: Matthew P. Donadio, CIC Filter Introduction ,
http://www.mikrocontroller.net/attachment/51932/cic2.pdf , [12.01.2011]

CLK_DOM: , Interfacing Two Clock Domains ,
http://www.asic-world.com/tidbits/clock_domain.html , [12.01.2011]

DAC: Leon W. Couch, Digital and Analog Communication Systems,
2006, ISBN 0-13-142492-0

DAC, Chapter 5: Leon W. Couch, Digital and Analog Communication Systems, 2006,

DC918: Linear Technology, QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 918 ,
http://cds.linear.com/docs/Reference%20Design/dc918C_A-L.pdf , [12.01.2011]

DS558: Xilinx, LogiCORE IP DDS Compiler v4.0 ,
http://www.xilinx.com/support/documentation/ip_documentation/dds_ds558.pdf , [12.01.2011]

DS083: Xilinx, Virtex-II Pro and Virtex-II Pro X Platform FPGAs:Complete Data Sheet ,
http://www.xilinx.com/support/documentation/data_sheets/ds083.pdf , [26.01.2011]

DS100: , Virtex-5 Family Overview ,
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf , [12.01.2011]

DS193: Xilinx, Virtex-5 FPGA XtremeDSP Design Considerations ,
http://www.xilinx.com/support/documentation/user_guides/ug193.pdf , [26.01.2011]

DSK: Texas Instruments, TMS320C6713 Floating-point Digital Signal Processor ,
http://focus.ti.com/lit/ds/symlink/tms320c6713.pdf , [26.01.2011]

FAT16: Jack Dobiash, FAT16 Structure Information ,
http://home.teleport.com/~brainy/fat16.htm , [12.01.2011]

FM: , Frequency Modulation ,
http://webtools.delmarlearning.com/sample_chapters/MU-04.PDF , [19.01.2011]

JIT: Bill Odom, National Semiconductors, Understand ADC clock jitter ,
http://www.eetindia.co.in/STATIC/PDF/200712/EEIOL_2007DEC17_SIG_TA_01.pdf?

Page 99 of 102

http://www.eetindia.co.in/STATIC/PDF/200712/EEIOL_2007DEC17_SIG_TA_01.pdf?SOURCES=DOWNLOAD
http://webtools.delmarlearning.com/sample_chapters/MU-04.PDF
http://home.teleport.com/~brainy/fat16.htm
http://focus.ti.com/lit/ds/symlink/tms320c6713.pdf
http://www.xilinx.com/support/documentation/user_guides/ug193.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds083.pdf
http://www.xilinx.com/support/documentation/ip_documentation/dds_ds558.pdf
http://cds.linear.com/docs/Reference%20Design/dc918C_A-L.pdf
http://www.asic-world.com/tidbits/clock_domain.html
http://www.mikrocontroller.net/attachment/51932/cic2.pdf
http://www.xilinx.com/support/answers/24912.htm
http://cp.literature.agilent.com/litweb/pdf/5965-7160E.pdf
http://www.analog.com/static/imported-files/tutorials/MT-003.pdf

Bibliography

SOURCES=DOWNLOAD , [27.01.2011]

LDT: Juergen Reichardt, Lehrbuch Digitaltechnik,
2009, ISBN 978-3-486-58908-5

MPMC: Xilinx, Multi-Port Memory Controller(MPMC) (v5.04.a) ,
http://gogo.jksw.cz/downloads/mpmc.pdf , [12.01.2011]

PSF: Xilinx, Platform Specification Format Reference Manual ,
http://www.xilinx.com/support/documentation/sw_manuals/edk10_psf_rm.pdf , [12.01.2011]

SP: John Proakis, Dimitris Manolakis, Digital Signal Processing, principles, algorithms and
applications,
2007, ISBN 0-13-187374-1

SVG: Prof. Dr. Ulrich Sauvagerd, Interpolators_and_Decimators ,
http://users.etech.haw-hamburg.de/users/Sauvagerd/DSV_MES/protected/MES_DV_Decs_Ints.pdf ,
[01.02.2011]

UG190: Xilinx, Virtex-5 FPGA User Guide ,
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf , [13.01.2011]

USB20: , Universal Serial Bus Specification ,
http://www.usb.org/developers/docs/usb_20_081810.zip , [12.01.2011]

USBS: , USB in a Nutshell ,
http://www.beyondlogic.org/usbnutshell/usb3.shtml#USBProtocols , [12.01.2011]

XAPP1113: Xilinx, Designing Efficient Digital Up and Down Converters for Narrowband Systems ,
http://www.xilinx.com/support/documentation/application_notes/xapp1113.pdf , [12.01.2011]

XPS_USB: Xilinx, LogiCORE IP XPS UniversalSerial Bus 2.0 Device (v5.00a) ,
http://www.xilinx.com/support/documentation/ip_documentation/xps_usb2_device.pdf , [12.01.2011]

Page 100 of 102

http://www.xilinx.com/support/documentation/ip_documentation/xps_usb2_device.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1113.pdf
http://www.beyondlogic.org/usbnutshell/usb3.shtml#USBProtocols
http://www.usb.org/developers/docs/usb_20_081810.zip
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://users.etech.haw-hamburg.de/users/Sauvagerd/DSV_MES/protected/MES_DV_Decs_Ints.pdf
http://www.xilinx.com/support/documentation/sw_manuals/edk10_psf_rm.pdf
http://gogo.jksw.cz/downloads/mpmc.pdf
http://www.eetindia.co.in/STATIC/PDF/200712/EEIOL_2007DEC17_SIG_TA_01.pdf?SOURCES=DOWNLOAD

Attachment A – List of the CD-contents

Attachment A – List of the CD-contents

 1. VS_Masterthesis.pdf →

 a) Master thesis document

 2. Project CoreGen →

 a) Contains the cores, designed by the Xilinx CoreGenerator

 3. Project XPS →

 a) Hardware project of the DDC system

 b) Software project of the Microblaze software application

 4. Projext SysGen →

 a) System Generator project for the DDC model

 b) Initialization script of the DDC model

 c) Matlab script, used to analyze the data

 d) a simple file-search application, designed by Maximilien Chaumon

 5. Project VS2005 →

 a) Contains the Data Acquisition software application

 6. References →

 a) Contains the refenreces, used in this master thesis in PDF format

Page 101 of 102

Declaration

Declaration

I declare that this Master Thesis has been completed by myself independently without outside

help and only the defined sources and study aids were used. Sections that reflect the thoughts

or works of others are made known through the definition of sources.

Hamburg, February 2011

Location, Date Signature

Page 102 of 102

	Acknowledgement
	Table of Contents
	List of Figures
	Index of Tables
	List of Acronyms
	 1 Introduction
	 1.1 The aim of this project
	 1.2 Outline of this paper

	 2 Concept
	 2.1 Software Defined Radio
	 2.2 DSPs and FPGAs compared
	 2.3 The Current State
	 2.4 Block diagram and requirements specification

	 3 Theory
	 3.1 Realtime Digital Signal Processing
	 3.2 Direct Down Conversion
	 3.2.1 Mixing
	 3.2.2 Digital Filters
	 3.2.3 Decimation

	 3.3 I/Q signal generation
	 3.4 Sampling, Undersampling
	 3.5 Analog to Digital Conversion

	 4 Hardware Implementation
	 4.1 Hardware Configuration
	 4.1.1 ML507 Evaluation Board
	 4.1.2 DC918C demonstration circuit
	 4.1.3 SMSC EVB_USB_3300_XLX Transceiver

	 4.2 Hardware synthesis
	 4.2.1 System Generator model of the DDC algorithm
	 4.2.1.1 CIC Filter
	 4.2.1.2 Droop compensation and channel selection
	 4.2.1.3 DDC Model Summary

	 4.2.2 Base system builder and User-IP core integration
	 4.2.2.1 Multi Port Memory Controller
	 4.2.2.2 XPS Universal Serial Bus 2.0 IP Core
	 4.2.2.3 DDC IP Core

	 4.2.3 Design summary

	 5 Software Implementation
	 5.1 USB Firmware extension
	 5.2 Data Acquisition Application

	 6 Results
	 6.1 Hardware Validation
	 6.2 Signal Quality Estimation
	 6.2.1 Spectrum of the input signal
	 6.2.2 Test case 1 → Single-tone input
	 6.2.3 Test case 2 → AM-modulated input
	 6.2.4 Test case 3 → FM-modulated input

	 7 Conclusion and Recommendations
	Bibliography
	Attachment A – List of the CD-contents
	Declaration

