
Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

Fakultät Technik und Informatik
Studiendepartment Informatik

Bachelor Thesis

Truong Vinh Phan

Development of a custom application for the Tobii Eye
Tracker

Truong Vinh Phan

Development of a custom application for the Tobii eye

trackers.

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung

im Studiengang Angewandte Informatik

am Department Informatik

der Fakultät Technik und Informatik

der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer : Prof. Dr. Olaf Zukunft

Zweitgutachter : Prof. Dr. Stefan Sarstedt

Abgegeben am 24. August 2011

Truong Vinh Phan

Thema der Bachelor Thesis
Entwicklung einer Softwarekomponente für den Tobii Eye-Tracker
Stichworte
Software, Komponente, Customapplikation, Tobii, Eye Tracker, Usability, Tobii Studio™, Tobii
SDK, Tobii Technology GmbH, Tobii API, Microsoft Visual Basic
Kurzzusammenfassung
Der Eyetracker ist einer der wichtigsten Komponenten in jedem Usability-Labore (der
Eyetracker, der in dieser Bachelorarbeit referenziert wird, greift auf den Tobii X-Series
Eyetrackers zurück). Die Eye-gaze Daten werden mit Hilfe der Tobii Studio™ Suite aus der
Firma Tobii GmbH. verarbeitet und visualisiert. Das Tobii Studio™ spielt auch die Rolle
eines Clients zur Kommunikation mit dem Tobii Eye Tracker Server. Diese Software kostet
viel jedoch, hat auch manchmal überflüssige Funktionalitäten und erfüllt nicht immer die
Anforderungen des Benutzers. Deshalb werden die so genannten „Customapplikationen”
benötigt. Für diesen Zweck bietet Tobii GmbH. den Entwicklern und Benutzern einen SDK,
der so-genannte Tobii SDK. Der Ziel dieser Bachelorarbeit ist es, eine Customapplikation für
den Tobii X120 Eyetracker, die ein einfaches Interface hat und allgemeinen Tasks in jeder
Usability-Studie erleichtern soll, zu entwerfen und mit Hilfe des Tobii SDK zu implementieren.

Truong Vinh Phan

Title of the paper
Development of a custom application for the Tobii Eye Tracker
Keywords
software, component, custom application, Tobii, Eye Tracker, usability, Tobii Studio™, Tobii
Technology Inc., Tobii SDK, Tobii API, Microsoft Visual Basic
Abstract
The eye tracker is one of the core components in every usability labs (the eye tracker men-
tioned in this report is of the Tobii X-Series Eyetrackers). Until now the software that handles
the processing and visualization of eye-gaze data is the Tobii Studio™ suite from Tobii Inc..
This software plays also the roll of a client to communicate with the Tobii Eye Tracker Server,
which is the firmware that resides inside the hardware. This Tobii Studio™ suite, however,
costs pretty much, has sometimes excessive functionalities and not always can fulfill all the
different demands of end users. Therefore highly customized applications are necessary.
For this purpose does Tobii Inc. provide application developers and end users with an SDK,
which is called Tobii SDK. The aim of this thesis is to design a customized application that
has a simple interface and simplifies common tasks that a basic user would normally do
when participating in an usability study.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 The Tobii Eye Tracker custom application overview 2
1.3 Objectives and scope of this report . 3
1.4 Structure of this report . 3

2 Used Technologies 5
2.1 Tobii Studio™ at a glance . 5

2.1.1 Test design . 6
2.1.2 Recording . 7
2.1.3 Replay . 8
2.1.4 Analysis and visualisation . 8

2.2 Tobii™ X120 Eye Tracker . 8
2.2.1 Overall dimensions . 9
2.2.2 Technical specification . 11

2.3 Tobii™ SDK . 11
2.3.1 TETServer and Eyetracking firmware 12
2.3.2 TET API . 12
2.3.3 TETComp API . 12
2.3.4 TTime API . 13
2.3.5 TCVTrigger API . 14

2.4 Microsoft Visual Studio and Microsoft Visual Basic.NET 14

3 Software Requirements 16
3.1 Use cases . 16

3.1.1 Use case „Design a test” . 18
3.1.2 Use case „Record and visualize data” 19

3.2 Functional requirements . 20
3.2.1 Test design . 20

3.2.1.1 Test subject . 20

CONTENTS iv

3.2.1.2 Stimulus . 20
3.2.2 Calibration and recording . 20

3.2.2.1 Calibration . 20
3.2.2.2 Recording . 21

3.2.3 Visualization and analysis . 21
3.2.4 Saving and restoring work data . 21
3.2.5 Import and export of data . 21

3.3 Non-functional requirements . 21
3.3.1 Application usability . 22
3.3.2 Application reliability . 23
3.3.3 Application efficiency . 23
3.3.4 Application maintainability . 23

3.4 Base functions . 24
3.5 Prospects/Expansion possibilities . 25

4 Application Design and Implementation 26
4.1 Application design . 26

4.1.1 Some concepts . 27
4.1.2 Functional architecture . 27
4.1.3 Technical architecture . 29
4.1.4 Component „TestDesignModule” . 32

4.1.4.1 Task and responsibility of the component 32
4.1.4.2 External view of the component 32
4.1.4.3 Internal view of the component 32

4.1.5 Component „RecordModule” . 33
4.1.5.1 Task and responsibility of the component 33
4.1.5.2 External view of the component 33
4.1.5.3 Internal view of the component 33

4.1.6 Component „HeatMapModule” . 35
4.1.6.1 Task and responsibility of the component 35
4.1.6.2 External view of the component 36
4.1.6.3 Internal view of the component 36

4.1.7 Component „FixationsModule” . 37
4.1.7.1 Task and responsibility of the component 37
4.1.7.2 External view of the component 37
4.1.7.3 Internal view of the component 37

4.1.8 Component „ImportExportModule” 37
4.1.8.1 Task and responsibility of the component 37
4.1.8.2 External view of the component 38
4.1.8.3 Internal view of the component 38

CONTENTS v

4.1.9 Component „DatabaseModule” . 39
4.1.9.1 Task and responsibility of the component 39
4.1.9.2 External view of the component 39
4.1.9.3 Internal view of the component 40

4.1.10 Database layout . 40
4.2 Class diagram and business processes . 43

4.2.1 Class diagram . 44
4.2.2 Business Processes . 45

4.2.2.1 Business process „Design a test” 45
4.2.2.2 Business process „Record a test” 45
4.2.2.3 Business process Visualize data” 48

4.3 Implementation . 48
4.3.1 Setting up the working environment 48
4.3.2 General workflow . 50
4.3.3 Storage files . 50
4.3.4 Fixation detection . 50
4.3.5 Implementing the modules. 53

4.3.5.1 Namespace „MainWindow” 54
4.3.5.2 Namespace „Module.TestDesign ” 55
4.3.5.3 Namespace „Module.Recording” 59
4.3.5.4 Namespace „Module.Database” 69
4.3.5.5 Namespace „Module.Fixations” 71
4.3.5.6 Namespace „Module.Heatmap” 76
4.3.5.7 Namespace „Module.ImportExport” 79

4.3.6 Implementing the Web stimulus . 80
4.3.7 Exception handling . 83

5 Application Testing 84
5.1 Testing functional requirements . 84

5.1.1 Test case 1: Create a new experiment 84
5.1.2 Test case 2: Slideshow design and record 86
5.1.3 Test case 3: Heat map generation 86

5.2 Testing non-functional requirements . 86

6 Summary 90
6.1 Conclusion . 90
6.2 Future work . 91

7 Glossary 92

CONTENTS vi

A Tobii’s Gaze Data 94
A.1 Data Fields . 95
A.2 Time Stamp . 95
A.3 Gaze Target Position . 96
A.4 Eye Position . 96
A.5 Distance . 97
A.6 Pupil Size . 97
A.7 Validity Code . 97

B Time Synchronization 99
B.1 Background . 99
B.2 Selected Methods . 100
B.3 Available Synchronization Options . 100
B.4 What Synchronization To Be Used . 102

C Finding Available Trackers On The Network 105
C.1 Introduction . 105
C.2 Redistribution Considerations . 105
C.3 Using the Eyetracer Browser Interface . 106

D CD-Rom Contents 107

Chapter 1

Introduction

1.1 Motivation

Software developed in recent years has been devoting a large portion of the code to the
user interface. It would thus seem reasonable to allocate a good amount of effort in software
development projects to ensuring the usability of those user interfaces. Any object, product
or system that will be used by humans is subjected to usability problems and should undergo
some form of usability engineering. There are several different methods of usability testing
that can be used for the development of user interfaces to any kind of interactive system, in-
cluding most consumer electronics products. Today, almost every usability labs are equipped
with at least a device called the eye tracker, since eye tracking is one of the most popular and
essential ways to achieve various usability studies and is widely used in research on visual
system, computer software, psychology, product design, etc . . .

Eye tracking is the process of measuring or determining either the point of gaze, i.e where
the user is looking, or the motion of the eyes relative to the head. An eye-tracker is thus a
device for measuring eye positions and eye movement. Eye-trackers are divided into several
categories, the broadest of which uses some non-contact, optical approaches to measure
eye motion. Light, typically infrared, is reflected from the eyes and sensed by a video camera
or a special optical sensor. Eye-gaze data is then extracted and delivered to the eye tracking
application.

Based on these eye-gaze data, the application then analyzes and forms visual represen-
tations, such as a map of eye movements or a heat map, of the data. The developer can gain
valuable information and knowledges about the behaviors and the habits of the user and/or
the problems/difficulties that a user faced when using a specific interface from these visual
representations. The developer can then improve the usability of the user interface based
on the gained knowledge and thus the value of the software to serve a wider range of users.

CHAPTER 1. INTRODUCTION 2

This process of usability studying and improving is rather effective since it is mostly based
on the end-user’s point of view and feedbacks.

The eye tracker that is equipped in the usability Lab of the Department of Computer
Science at the Hamburg University of Applied Sciences is of the model X120, manufactured
by Tobii Technology, Inc.1 . The software that is required to interact with the eye tracker is
also from the hardware manufacturer, the Tobii Studio™. It is the cost for the software, cost
of updates and the lack/superfluousness of certain functionalities that lead to the need of
custom applications.

The author’s work on a custom application which is aimed mainly at the Tobii X120 Eye
Tracker serves as the main focus of this report.

1.2 The Tobii Eye Tracker custom application overview

This custom application for the Tobii X120 Eye Tracker aims at providing software develop-
ers and usability testers with a simple-to-use interface and basic functionalities for tracking,
analysing and visualizing eye-gaze data.

The application is a Microsoft Windows application and interacts with users through a
GUI 2. It is conceptually divided into these functional units:

• Frontend: is the GUI that exposes the application’s functionalities and provides visu-
alisation of eye-gaze data and display of results to the users. It is user-friendly in that
the user is guided through a three-steps workflow. The user - i.e the test leader - first
creates a test project, to which tests and test participants are added. The user then
designs the tests in the project by adding stimuli to them. After the tests are all set
up and ready, the recording phase can follow. Before the actual recording can take
place, the eye gaze of the test participant is calibrated. The test participant is then
shown another GUI for the calibration process. Calibration is performed by having the
test participant simply look at a dot that moves across the screen for a a few seconds
a few times. Afterwards the eye tracker handles all recordings automatically, which
include keystrokes, mouse clicks, screen contents, etc . . . After each recording, the
user can have the result, i.e the eye movements of the test participant visualised for
better analysis. Data can be visualised as, for example, a heat map.

1Tobii Technology AB. - http://www.tobii.com
2Graphical User Interface

CHAPTER 1. INTRODUCTION 3

• Backend: Behind the scene resides the Tobii™ API that acts as a client (TETClient) to
communicate, i.e exchange messages, with the eye tracker server (TETServer). The
server delivers gaze data periodically to the client. The client handles them including
calibration process automatically and sends to the GUI for visualisation.

1.3 Objectives and scope of this report

The main objective of this work is to design and implement a custom application (the front-
end and the back-end) for the Microsof Windows platform using Microsoft Visual Basic tech-
nology. The custom application’s main purpose is to provide a mean to collect eye-gaze
data and visualise them. This is the main task of the author of this report. This application
supports firstly only the Webpage stimulus, but it can be expanded with more stimuli and
functionalities later as well. The TETServer technology and implementation is beyond the
scope of this report, but general information concerning it will be also provided for better
understanding of the whole matter.

1.4 Structure of this report

This report is organized in six chapters. The first chapter is an introduction, which gives an
overview on this report’s purpose, motivation and scope.

Chapter 2 is about the technologies that act as references or are actually required to
implement the custom application. We first take a look on the commercial, all-in-one software
solution from the Tobii company itself, the Tobii Studio™, and after that the hardware, which
is manufactured also by Tobii, the Tobii X120 Eye Tracker. We will then get to know about
the core logic that powers most of the eye tracker’s functionalities, the Tobii™ API, which
is part of the Tobii™ SDK. Finally we shall be introduced to one of Microsoft’s technologies
for building Windows applications, also one of the platforms that Tobii™ SDK supports, the
Microsoft Visual Basic platform.

In chapter 3 we talk about the requirements for the custom application being built. These
include functional requirements and technical requirements. A prospect of the custom appli-
cation’s future expansion possibilities will also be given.

Within chapter 4 is the in-detail discussion on the application’s design. A brief explanation
on the author’s decision for the concret implementation of the custom application will also be
given. The second part of chapter 4 is the discussion on the process of building up the
custom application based on the design in the earlier part of the chapter.

CHAPTER 1. INTRODUCTION 4

In Chapter 5 we discuss about application testing. This include functionality testings and
usability testings on the application to ensure the custom application fulfils the requirements.

Chapter 6 is the conclusion of this report. A summary on the custom application (pur-
pose, functionalities) as well as possible future work will be given.

At the end of the report is an appendix, a glossary, a list of all figures and abbreviations
used in this report, as well as an index and CD with source codes and documentations of
this work.

Chapter 2

Used Technologies

2.1 Tobii Studio™ at a glance

„Tobii Studio™ now brings new unique benefits to your research and busi-
ness by providing such features as support for Retrospective Think Aloud (RTA),
integrated questionaries, automatic E-Prime scene generation and much more.”
(Technology, 2010)

Tobii Studio™, a commercial software product of the company Tobii Technology, Inc., is a
comprehensive platform for recording and analysis of eye gaze data, facilitating interpreta-
tion of human behavior, consumer responses and physiology. It combines preparation of
test procedures and advanced tools for visualization and analysis into a powerful tool, which
offers easy eye tracking data processing for useful comparison, interpretation and presenta-
tion.

Tobii Studio™ features a large variety of stimuli and allows both multiple and different
types of stimuli to be combined in one single recording. A deep and thorough view of behavior
is achieved by intergrating eye gaze data with user videos, sound, keystrokes, mouse clicks,
etc . . . and other data sources in a single solution.

A broad rage of studies can be achieved using the eye tracker hardwares from Tobii Tech-
nology, Inc. in combination with the Tobii Studio™ software, ranging from usability testing and
market research to psychological experiments and vision research, thus ideal for evaluating
interactive media such as websites, software, e-mail campaigns, computer games as well as
print and online advertising, TV commercials, etc With its comprehensive workflow and
multiple tools, Tobii Studio™ enables test leaders to gather data from a large number of test
participants cost-efficiently. Recorded data is then easily taken to a high level for in-depth

CHAPTER 2. USED TECHNOLOGIES 6

analysis to extract invaluable knowledge of individual user behavior and statistical results
from a group of users.

Its large variety and complexity of features and tools, however, might lead to confusion for
most novice users. Basic users will find at the first use of Tobii Studio™ that its user interface
is not so intuitive and self-explained, therefore it takes time for the users to get acquainted
with the software, how long depends on the users’ needs, experience and knowledge in the
field of usability.

The wide range of features available in the software makes them sometimes to be exces-
sive (for most basic users). The Studio comes therefore in three editions: Basic, Professional
and Enterprise. Most of the times all that a basic user needs is just about 1/3 of the function-
alities that the Tobii Studio™ offers.

The Tobii Studio™, just like most other commercial softwares, costs (lots of money), not
to mention the eye tracker hardware that is required to operate with the Studio software (the
hardware costs even more). The users will receive after purchase an account with login
information in order to download the software direct from Tobii website.

The basic workflow of the Tobii Studio™ consists of four parts, which are briefly described
below:

• Test design

• Recording (including Calibration)

• Replay

• Statistical analysis and visualisation

2.1.1 Test design

In this first step, a new project is created to which tests and test participants are assigned. A
single project may include multiple tests and test participants.

One or several stimuli are then added to each test. A stimulus can be for example an
image, a website, or a movie, etc Different types of stimuli can be combined in one
single test.

CHAPTER 2. USED TECHNOLOGIES 7

Figure 2.1: Tobii Studio™’s test design interface

For each test participant, a user profile which contains name and personal eye tracking
calibration is saved. Independent variables such as age and gender can also be associated
with the participant, providing more filtering possibilities for later analysis.

The Tobii™ Studio’s user interface for test design is outlined in Figure 2.1.

2.1.2 Recording

Recording procedure begins when the user clicks on „Start Recording” button, then create
or select one of the participants in the projects.

Before the recording is actually started, the eye gaze of the selected participant is cali-
brated. The stimuli is then shown on the monitor and the test participant will view it while the
test leader can control the experiment and watch the eye gaze and user camera in real-time
on a different monitor. Typical events (keystrokes, mouseclicks, screen contents, etc . . .) are
automatically registered for later analysis. Events can also be explicitly logged by the test
leader.

CHAPTER 2. USED TECHNOLOGIES 8

2.1.3 Replay

Right after the test, the recordings can be reviewed using the Replay tool. Logged events
can be searched and new events can be logged. Segments of the recordings can be defined
and video highlights can be exported.

2.1.4 Analysis and visualisation

With the analysis tool the test leader can visualise and analyse the eye movements of an
individual recording or a group of recordings. Gaze data can be visualised as gaze plots,
heat maps, clusters, animated visualisation or bee swarms. Specific area of interest (A.O.I)
can be defined and data can be presented in a statistical tool. Results can then be exported
into different kind of format.

2.2 Tobii™ X120 Eye Tracker

This is the target hardware that the custom application aims to interact with. The Tobii X120
Eye Tracker is a stand-alone eye tracking unit, which is designed for eye tracking studies
relative to any surfaces. It is rather flexible, therefore ideal for visual testing of physical, real-
world objects among many other things, which include TVs, monitors, projection screens. . .

The eye tracker’s basic operating principle is to use infrared diodes to generate reflec-
tion patterns on the corneas of the user’s eyes. Built-in image sensors will collect these
patterns along with visual information about the person. It then utilizes sophisticated image
processing algorithms to identify relevant features, such as eyes and corneal reflection pat-
terns. Three-dimensional position of each eyeball and finally the gaze point (where the user
is looking) are calculated using complex mathematics and delivered to client applications.

Tobii X120 Eye Tracker is a single, plug-and-play unit with no moving tracking component,
thus allows large freedom of head movement for long studies without fatigue. It can track
people regardless of age, ethnic, glasses or contact lenses. The hardware configuration can
be done with little efforts and tracking is fully automatic. The eye tracking server (TETServer),
which is the eye tracker’s firmware, is already embedded in the eye tracker and requires
TCP/IP connectivity in order to communicate with client applications over LAN.

CHAPTER 2. USED TECHNOLOGIES 9

2.2.1 Overall dimensions

Figure 2.2: The length of the Tobii X120 Eye Tracker

Figure 2.3: The width and height of the Tobii X120 Eye Tracker

CHAPTER 2. USED TECHNOLOGIES 10

Figure 2.4: Tobii X120 Eyetracker side-view

Figure 2.5: Tobii X120 Eyetracker front-view

CHAPTER 2. USED TECHNOLOGIES 11

2.2.2 Technical specification

Models X120

Data rate 60 or 120Hz
Accuracy typical 0.5 degrees

Drift typical 0.1 degrees
Spatial resolution typical 0.3 degrees

Head movement error typical 0.2 degrees
Head movement box (width x height) 30 x 22 cm at 70 cm

Tracking distance 50 - 80 cm
Max. gaze angle 35 degrees

Top head-motion speed 25 cm/second
Latency max. 33 ms

Blink tracking recovery max. 8 ms
Time to tracking recovery typical 300 ms
Weight (excluding case) ~ 3 kg (7 lbs)
Eye tracking technique both bright and dark pupil tracking

Eye tracking server embedded

Table 2.1: Tobii X120 Eye Tracker technical specification

2.3 Tobii™ SDK

The Tobii™ SDK, which contains the Tobii API, enables the development of application soft-
ware for controlling and retrieving data from most Tobii eye trackers. These softwares are
mostly highly customized applications as well as various interaction applications based on
eye tracking. The Tobii API consists of the following sub APIs :

• TET API : Tobii EyeTracker API

• TETComp API : Tobii EyeTracker Components API

• TTime API : Tobii Time API

• TCVTrigger API : Tobii ClearView Trigger API

A brief overview for each of the APIs will be given below.

CHAPTER 2. USED TECHNOLOGIES 12

2.3.1 TETServer and Eyetracking firmware

The Tobii EyeTracker server (TETServer) is the component that handles all eye tracking and
calibration calculations. For Tobii T and X series eye trackers (which include the X120),
these calculations are done inside the embeded firmware, which acts as a kind of server.
This means with the T/X-series eye trackers, no software installation is needed on the com-
puter. For Tobii 50-series eye trackers, the TETServer must be installed as a software on
the computer that is attached to the eye tracker hardware (it then runs as a service on that
computer)

2.3.2 TET API

The TET API provides full access to the TETServer. Its interface provides a variety of function
calls, including those to connect to the TETServer, start, stop, as well as calibrating it. The
TET API does not enforce any GUI in order to allow full freedom of implementation. The user
of the API therefore has to implement his own GUI if necessary.

The communication internally between the API and the TETServer is built on a propri-
etary protocol that works on TCP/IP communication layer. Thus any host computer running
on Windows platforms (Windows 2000 or later) with a TCP/IP connection, i.e a network con-
nection, to the TETServer can access it. To achieve programming language freedom, i.e the
user can access the TET API using almost any programming language, it is provided as a
standard Windows Dynamic Linked Library (DLL), the TET.dll.

2.3.3 TETComp API

The TETComp API provides COM and ActiveX objects that help to simplify and fasten appli-
cation implementation process. Programming languages that consume COM objects include
VB 6, VB.NET, C#, C++, and more. This API contains the following objects:

• TetClient : COM object used to simplify communication with the TETServer.

• TetCalibProc : ActiveX object which simplify calibration procedure.

• TetCalibProcWin : COM object providing a full-screen calibration window.

• TetCalibPlot : ActiveX object showing a graphical plot of the quality of the calibration.

• TetTrackStatus : ActiveX object showing the current tracking ability of the user.

• TetTimeManager : COM object used to communicate with the Tobii Time API (TTime
API).

CHAPTER 2. USED TECHNOLOGIES 13

Figure 2.6: Tobii Eyetracking APIs

• TetServiceBrowser : COM object that automatically detects Tobii hardware on the net-
work (currently only Tobii T/X series).

The component hierarchy is outlined in Figure 2.5.

2.3.4 TTime API

The TTime API is provided as a DLL, the TTime.dll. Its job is to provide high resolution
synchronised common time for all applications interacting with Tobii Eyetrackers. If the TET-
Server and the TTime.dll reside on different computers, each computer must have an in-
stance of TTime.dll, which will automatically synchronize time with each other.

CHAPTER 2. USED TECHNOLOGIES 14

Figure 2.7: Tobii ClearView Trigger APIs

2.3.5 TCVTrigger API

This API is used to send triggering signals over TCP/IP to ClearView3. The triggering signals
can be used to start and stop the recording or send time stamped data. This API is also
provided as a DLL, the CV.dll, which can reside on the same host as ClearView or on another
host with TCP/IP access.

The component hierarchy is outlined in Figure 2.6

2.4 Microsoft Visual Studio and Microsoft Visual Ba-
sic.NET

To have full freedom in developing algorithms and their fast implementation, and more impor-
tant because this application is a GUI-oriented one: to have fast and powerful tools for the
graphical output, especially the user-modules, Microsoft Visual Studio® 2010 development
kit together with the programming language Visual Basic.NET was taken into considera-
tion. It enables real-time support and fast data access due to its performance. It is also

3An older software solution from Tobii, replaced by the newer Tobii Studio™

CHAPTER 2. USED TECHNOLOGIES 15

the programming language that was used as an example in Tobii® SDK. Below is a quick
introduction to the language.

Visual Basic (VB) is the third-generation event driven programming language and inte-
grated development environment (IDE) from Microsoft for the COM programming model.

Visual Basic is derived from BASIC and enables things such as rapid application devel-
opment of GUI applications, access to databases by using Data Access Objects, Remote
Data Objects or ActiveX Data Objects and creation of ActiveX controls and objects.

Programs written in Visual Basic can also use the Windows API by declaring external
functions.

The final release was version 6 in 1998 and the designated successor is called Visual
Basic.NET, which is now known simply as Visual Basic.

Chapter 3

Software Requirements

This custom application aims at providing an alternative, simpler software solution that sup-
ports Tobii’s hardware eyetrackers in usability studies. This part provides a look into the
software’s requirements specification. It includes use cases, functional and non-functional
requirements.

3.1 Use cases

A use case in software engineering and systems engineering, is a description of steps or
actions between a user (or "actor") and a software system which leads the user towards
something useful.Bittner und Spence (2003)

Use cases are a software modeling technique that helps developers determine which
features to implement and how to gracefully resolve errors.Adolph (2002)

CHAPTER 3. SOFTWARE REQUIREMENTS 17

Figure 3.1: Use case diagram of the application

CHAPTER 3. SOFTWARE REQUIREMENTS 18

3.1.1 Use case „Design a test”

Actors application user (experimenter)

Goal a new project is created, a test with at least a web
stimulus is added to it.

Summary the experimenter can use the application to create a
new project and use the TestDesign module to design
and add tests to this new project.

Triggers the experimenter decided to make a new project and
start designing stimuli.

Pre-conditions the types of stimulus that the experimenter wants to
use and design are supported by the application.

Post-conditions a new project is created, a test with the desired stimuli
are added to it.

Basic course of events 1. the experimenter launches the application.
2. the experimenter chooses to make a new project
from the initial dialog.
2. the experimenter configures the initial project
settings following the project settings dialog.
3. the experimenter clicks on the „Design a test” button
from the start task dialog.
4. the application launches the TestDesign module.
5. the experimenter selects a desired stimulus type
and configures it following the according stimulus
setup dialog.
6. the experimenter clicks on the „Save” button.
7. the application adds the designed test with the
stimulus to the new project and saves all the changes.

Alternative paths/Exceptions n/a
Requirement 3.2.1

Table 3.1: Use case „Design a test”

CHAPTER 3. SOFTWARE REQUIREMENTS 19

3.1.2 Use case „Record and visualize data”

Actors application user (experimenter), test subject

Goal record a test and visualize the result (raw gaze data)
as heat maps.

Summary the user can use the application to record the designed
test, which will deliver eye gaze data and save those
data into a database , then visualize them as heat
maps.

Triggers the test subject is ready to record the designed test.
Pre-conditions the test is properly designed and ready for recording,

i.e. all stimuli are set up and there is at least a subject
available to record the test.

Post-conditions the test session is recorded, a calibration profile for the
test subject is produced, a heat map bitmap of the
recorded data is produced and shown to the user.

Basic course of events 1. the experimenter clicks on the „RecordModule”
button to launch the module.
2. the experimenter chooses a tracking device and
configures it following the instructions on the setting
dialog.
3. the experimenter clicks on the „Connect” button.
4. the experimenter chooses the test subject to be
recorded by clicking on the „Subject” button.
5. the experimenter clicks on the „Calibrate” button to
start the calibration process for the chosen test subject.
6. the experimenter clicks on the „Record” button to
start the record session.
7. after recording finished, the experimenter runs the
FixationModule tool against the newly recorded data to
detect and calculate fixations.
8. the experimenter runs the HeatMapModule tool
against the newly produced fixation data to generate
heat maps.

Alternative paths/Exceptions
Requirements 3.1.2.3

Table 3.2: Use case „Record and visualize data”

CHAPTER 3. SOFTWARE REQUIREMENTS 20

3.2 Functional requirements

3.2.1 Test design

The user can opt for already existing data, i.e. import data into into the application to be
analyzed and visualized, or create a new project and then add tests to it. A test can have
at least one or as many stimuli as the user wishes added to it. The application provides the
user with a wide range of stimuli to choose from. The user will then have to configure each
of the added stimuli in order for the test to be carried out properly as a whole.

3.2.1.1 Test subject

Test subject is the participant of the test, i.e. the person with whom the test should be carried
out and therefore one of the key elements of the application. Each participant will have
his/her own unique profile with personal data like name, age and gender. The application’s
workflow should have the test subject as one of the key elements and thus should associate
the test subject’s data with each of the functionality and actions it performs.

3.2.1.2 Stimulus

Stimuli are different types of media that can be visually delivered to testers. They are the
objects to be tested and one of the key elements in every tracking and analyzing software.
Commercial eye-tracking and analysis applications normally provide users with a wide variety
of stimuli to choose from . For the scope of this report, the application should aim mainly at
the „Web” stimulus that enables usability testing for web pages.

3.2.2 Calibration and recording

The application is able to interact with hardware trackers in order to receive tracking data.
For these data to be accurate the application should firstly guide the user to go thourgh a
calibration process.

3.2.2.1 Calibration

Every measuring devices need to be calibrated before they can properly function, so are eye
trackers. Each participant will go through the calibration process before their gaze movement
can be actually and properly tracked. The calibration data should be then saved and associ-
ated with the participant’s profile for future reuse. The calibration tool is normally provided by
the eye tracker hardware manufacturer. The application will prompt the user for calibration
before each recording should no calibration profile found for the user.

CHAPTER 3. SOFTWARE REQUIREMENTS 21

3.2.2.2 Recording

The application will signal the eye tracker to start tracking the participant and start recording
the screen contents itself. For the scope of this report, the application will only record web
page contents, i.e screenshots and collect eye gaze data. The application should be able
to receive data that the tracking hardware returns and stores them into a database for later
analysis.

3.2.3 Visualization and analysis

The application can visualize the gaze data collected during the test by various means. Ex-
isting data can also be imported into the project for visualize and analysis. For the scope of
this report, data will be visualized by heat maps4 and fixations maps.

3.2.4 Saving and restoring work data

The application is able to save data that the user is currently working on into the project
file, should there be any problem that may cause the application to crash or when the user
finishes some editing tasks. The user is then able to restore the file that he/she was working
on at a later time.

3.2.5 Import and export of data

The application is capable of importing existing data for analysis and visualization and ex-
porting them once the user finished with his/her tasks.

3.3 Non-functional requirements

This is the non-functional requirements specification for the custom eye-tracking and visu-
alizing application. It consists of software usability, efficiency, reliability and maintainability.
It includes a set of use cases that should describe all the interactions the user will have
with the software. These requirements are sometimes called supplementary5 requirements
and are after ISO-9126Wikipedia (2011a) international standard for software quality. Those
are requirements which impose constraints on the design or implementation, for example
engineering requirements, quality standards or design constraints.

4Also called attention maps.
5Non-functional requirements

CHAPTER 3. SOFTWARE REQUIREMENTS 22

3.3.1 Application usability

The user interface is key to application usability. The application should include content
presentation, application navigation and user assistance. While a comprehensive discussion
of effective user interface design is beyond the scope of this report, this section provides
some guidelines on how the application’s user interface should be look like.

The first thing to take into consideration is the targeted user groups. Users often have
different usability requirements. This application aims for every users that have a need to
perform usability studying through eye-tracking. This targeted user group, however, might be
divided into two groups : a Basic group and an Advanced group. Therefore the application
should come with a step-by-step installation procedure and ready-to-use6 settings to help
the Basic group to start using it right out-of-the-box without putting much efforts on setting
up and configuring it. To satisfy the Advanced group with the need of fine-tuning the user
experience, the application should include a control panel-like settings interface which let the
user adjust all the details of the parameters that the software depends on to function.

The second thing to come is the content presentation, and with it comes also a graphical
user interface. The application should enable users to control content presentation.

The application also assists users in using it properly by providing help documents that
include instructions on setting up the hardware, using the functionality of the application and
software documentations.

Next thing to consider is the user navigation. In order to minimizing user’s effort on learn-
ing the interface thus maximizing user’s productivity, the functionality of the application should
be clearly separated. Graphical computer applications with a MDI7 are those whose windows
reside under a single parent window (usually except for modal windows), as opposed to all
windows being separate from each other (single document interface). Such systems often
allow child windows to embed other windows inside them as well, creating complex nested
hierarchies.Wikipedia (2011b).

So each module should be on a child window that resides separately in a main parent
window.

6Default settings
7Multiple-Document-Interface

CHAPTER 3. SOFTWARE REQUIREMENTS 23

3.3.2 Application reliability

The application’s desired and undesired behaviours should be known in advance. The appli-
cation should provide error handling mechanisms to be able to resist crashing, i.e. continue
to work properly even in the situation when a bug or error occurs at various degree of seri-
ousness.

The application should provide the user with enough documentation, help information
and instruction to assist the user in using the program properly. A fool-proof mechanism
should be available to ensure data integrity and stability.

Last but not least, users performing complex analyses often want to save their work at
a certain point. The application should therefore provide users with the ability to save and
restore work.

3.3.3 Application efficiency

The application should strive at reducing time and resource consume as much as possible,
so that it might be able to run on low-resource and older machine. The application should
also aim at delivering fast and accurate calculations and results.

The application should provide the user with only required functionality, according to the
purpose of the program. Extra features may become superfluous and lead to confusion or
distract the user from main functionality.

3.3.4 Application maintainability

The functionality and behaviours of the application should be easy for every developers to
understand and restructure. Software builds also play an important role here. Many pro-
gramming languages like C and Java require the source code to be translated into machine
code through a tool called a complier. Additional operations may be involved to associate,
bind, link or package files together in order to create a usable runtime configuration of the
software application.

The software build is critical because if any of the generated files are incorrect or cor-
rupted, all the software is likely to fail. Also if the incorrect version of the program is acciden-
tally used, it may lead to false results if the software is to be tested.

Software deployment is also important because it involves technical parameters, which,
if set incorrectly, may also prevent software testing from the beginning.

CHAPTER 3. SOFTWARE REQUIREMENTS 24

Figure 3.2: Base function diagram of the custom application

3.4 Base functions

The aforementioned requirements are mapped into the following base functions of the appli-
cation, which are depicted in the diagram in Figure 3.2 below.

The user interacts directly with the application, which acts as a client to request and re-
ceive eye-gaze data8 from the eye tracker, which is the TETServer, using proprietary protocol
from Tobii. The communication is achieved by utilizing methods from the Eyetracker API.

The user can, via the application, create a new test, add media (stimulus) to it, then
initiate the calibration process, or redo this process in case the last calibration was not good
enough (recalibrate the bad points). The user can then start record the test, the application
will fire up the browser with the pre-defined webpage so that the participant can start solving
his tasks right away. The user can stop recording the test at any time. The eye-gaze data of

8More information about gaze data is shown in Appendix A at the end of the report.

CHAPTER 3. SOFTWARE REQUIREMENTS 25

the participant will then be visualized as heat maps/fixation maps, which serve the purpose
of studying the usability of the webpage via user behaviors.

3.5 Prospects/Expansion possibilities

In this part we discuss on the matter how the application can be easily extended in the future.
To answer this question, we should take several facts into consideration.

Firstly, the main target hardware for this application is the Tobii X120 Eyetracker. The
back-end of the application, however, is built on Tobii API, which can be used to control a
wide range of eye tracker hardware of different series from Tobii as well. The application is
therefore extensible to other eye tracker hardware from Tobii as well.

Secondly, the applicatin currently supports „the Web” as its only media type (stimulus). It
can be, however, expanded to support other types of stimulus as well, such as PDF, movie,
text, image . . .

Thirdly, the application can be extended with more options in visualization and analysis,
which can range from a gaze plot, bee swarm map, to user video cam and flash contents.
Also the software can be expanded to collect more kind of data, such as mouse movements,
mouse clicks, sound, video, etc. . .

Fourthly, the application can be expanded with another module for the replay function.
With this module, the entire recorded section will be replayed on a timeline and can also be
exported as a movie (video format can be various, as long as the correspondent codec is
available).

Fifthly, the application can be extended in such a way that additional participants can be
added and also have their own profiles, also test project that can consist of several tests, and
test that can consist of several stimuli are thinkable. We can achieve this by having some
sort of database files coupled with the application.

Sixthly, one of the restrictions of the application is that it can target only the eye tracker
hardwares from Tobii Technology, Inc., having the Tobii API as its back-end. Nevertheless, if
we can somehow employ some sort of an standardized open-source eye gaze API instead
of proprietary APIs like the Tobii API, then we can think of an application that targets all eye
tracker hardwares from different manufacturers as long as they comply with the standard
API. (Hennessey und Duchowski, 2010)

Chapter 4

Application Design and Implementation

4.1 Application design

This section specifies the design of the application, as well as the considerations and deci-
sions made when designing the application in order to meet the requirements.

First of all, we need to consider about the objects and components which the application
will require. There are a few criteria which we will take into consideration when designing the
objects and components.

• Objects should be reusable.

• Clear distinction between different component’s functionalities.

• Separation between static code and code that will be likely to change.

• The development process is normally carried out by a team of developers, but in this
case it will be a one-man development process.

This section describes the design of this custom application for the Tobii eye trackers,
which includes design decisions as well as the according architecture (functional architec-
ture, technical architecture, component descriptions, database design).

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 27

Figure 4.1: Abstract view of the application.

4.1.1 Some concepts

This part explains a few concepts that will be used throughout the application. An experiment
can be thought of as a test project that can consist of one or multiple test(s). Each test
represents a sequence of stimuli that are to be presented to the test participant. Those
stimuli can be considered as the displayed slides in a slideshow. Each test also represents
a recording unit. We define a test, which we shall call a „Trial”, to be the default and smallest
unit for display and analysis in the application. By default, each trial consists of only one
single slide, but one can add multiple slides within one trial. Imagine a situation in which
three web pages should be displayed one after another during analysis, but have moving
areas of interest (AOIs). In that case one would create three web stimuli with the start URLs
and concatenate them into one trial. During analysis, one can select a trial and then switch
on the timeline between the different slides. The visualization output will be aggregated over
the three stimuli contained in the trial.

4.1.2 Functional architecture

This core functionality of the application is separated into modules, according to the function
of each module. There are six components: ImportExportModule, RecordModule, Fixation-
sModule, HeatMapModule, DatabaseModule and TestDesignModule, as depicted in Figure
4.2. These components are categorized into two groups: Design and Record group, which
contains the RecordModule and TestDesignModule, and Visualization and Analysis group,
which contains the remaining components. They are members of the „Modules” namespace.
The following is a brief description of what each component does:

The FixationsModule detects and calculates fixation and saccade patterns, based on the
gaze data available in the database.

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 28

The HeatMapModule is designed to calculate and generate heat maps, which is a bitmap
image computed from aggregated data and superimposed over the stimulus image, from the
fixation patterns.

With the TestDesignModule, new trial and slides can be created, designed, existing
slideshow can be modified and prepared for recording. Design activities include, amongst
other things, adding and naming stimuli, naming the trial, configure and arrange the stimuli
within a slide and slides within a trial, etc. . .

The RecordModule is used to interact with the hardware tracker and start a record ses-
sion, which guides the user through a four-steps procedure from connecting to the hardware
to actually collecting gaze data from the subject and writing data to the database once the
session finished.

The DatabaseModule displays the content of the database in table format. With this
component, the user can revise all data within the databse, ranging from test subjects to raw
gaze data and modify them on demand.

The last component, ImportExportModule does nothing else than, as its name implies,
to enable the user to import various kind of existing data into the application, ranging from
existing project, slideshow with trials. . . , to raw gaze data for visualization and analysis, as
well as to export the same kind of data back into files.

There is a package named „Common” which contains mostly custom types, forms, di-
alogs and controls, custom events, static classes and utility tools made ready to be used by
other components.

The application is mostly GUI-based9, and so are the components.

The component model of the functional architecture and the functional data model dia-
gram is depicted in Figure 4.2 and Firgure 4.3, respectively.

9Graphical User Interface.

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 29

Figure 4.2: Component model of the functional architecture.

4.1.3 Technical architecture

The overall structure of the application consists of six namespaces, which are the followings:
MainWindow, Properties, DataSet, ExceptionHandling, Help and Modules, as depicted in
Figure 4.4 and Figure 4.5.

The MainWindow namespace contains the main GUI form and support classes. This
main form acts as a MDI10 parent, which hosts all the modules windows as children forms.

The Properties namespace contains data classes to store and retrieve all the setting
parameters that are application-wide valid and a list of recent files.

The DataSet namespace contains the DataSet class and a DatabaseTemplate, whi to
provide fast access and interact with the external SQL database through data adapters,
because it represents an in-memory cache of data MSDN (2011).

The Help namespace contains help documents and explanations which assist the user
in learning and using the application properly.

The ExceptionHandling namespace contains utility classes that handle all errors and
exceptions that may possibly occur during runtime.

10Multiple Document Interface.

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 30

Figure 4.3: Functional architecture of the application.

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 31

Figure 4.4: Technical architecture of the application.

Finally the Modules namespace contains the core functionalities of the application. De-
tails on these modules will be discussed in the next section.

The following section describes each of the components in details,

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 32

Figure 4.5: Component model of the technical architecture.

4.1.4 Component „TestDesignModule”

4.1.4.1 Task and responsibility of the component

The TestDesignModule enables the user to create and design new slideshow, adding stimuli,
as well as importing existing slideshow and stimuli. This component has a GUI and aims to
provide user with a WYSIWYG tool. This is one of the core components of the application
and the first step in the workflow.

4.1.4.2 External view of the component

The TestDesignModule interfaces with the DataSet via DataAdapter, ImportExport compo-
nent and enables the user to create and design (e.g add stimuli, name slides and trials)
a new slideshow or import existing slideshows and trials to be revised and finally save the
slideshow to the database.

4.1.4.3 Internal view of the component

The TestDesignComponentConfig class initializes the TestDesignManager and the use case
class TestDesignMgmt. The TestDesignManager uses the entity classes StimuliTypes,

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 33

Figure 4.6: TestDesignModule, external view.

BrowserTreeNode to enable the Web stimulus, as well as Slideshow and Trial classes to
represent a project with a sequence of tests internally.

4.1.5 Component „RecordModule”

4.1.5.1 Task and responsibility of the component

The RecordModule delivers mainly the ability of interacting with the hardware tracker, e.g.
telling it to start or stop tracking, start the calibration procedure, as well as receiving gaze
data returned by the eye tracker and storing them into database.

Another main task of this component is to present the ready-made slideshow with stimuli
to the participant, only then the actual recording can begin.

4.1.5.2 External view of the component

The RecordModule uses the DataAdapter interface through the DataSet class to load the
slideshow and trials from the database to be presented, and to write the recorded gaze data
into the database. It is a GUI-based component.

4.1.5.3 Internal view of the component

The RecordingComponentConfig class initializes the recording module and the use-case
class RecordingMgmt. The module uses the entity class TobiiSettings and TobiiTracker,
which is backed by the library TetComp.dll by the Tobii API to be able to interact and commu-
nicate with the Tobii eye tracker. The GazeData class wraps the GazeData structure which
is originally returned by the Tobii eye tracker and transform it into a format readable by the
application.

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 34

Figure 4.7: TestDesignModule, internal view.

Figure 4.8: RecordModule, external view.

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 35

Figure 4.9: RecordModule, internal view.

The Presenter module and container classes wrap each slide of a slideshow and present
them to the participant before triggering the record function.

The DataToTable class provides mapping information about which raw data will be written
to which table of the database. The RecordModule also provides the user with a graphical
interface to interact with.

4.1.6 Component „HeatMapModule”

4.1.6.1 Task and responsibility of the component

The HeatMapModule delivers one of the visualization capabilities of the application: the heat
map. Its task is to generate a bitmap image visualizing aggregated fixation data overlaid one
the stimulus image.

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 36

Figure 4.10: HeatMapModule, external view.

Figure 4.11: HeatMapModule, internal view.

4.1.6.2 External view of the component

The HeatMapModule uses the DataAdapter interface through the DataSet class to load fixa-
tion data from the database to calculate the heat map. It is a GUI-based component.

4.1.6.3 Internal view of the component

The configurator class HeatMapComponentConfig initializes the use-case class HeatMap-
Mgmt and the HeatMapModule class, which uses the entity class AttentionMaps and Palet-
teBitmap to calculate heat maps from the fixation data and apply a colored gradient. The
AttentionMapPicture class serves as a control to display the generated heat maps.

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 37

Figure 4.12: FixationsModule, external view.

4.1.7 Component „FixationsModule”

4.1.7.1 Task and responsibility of the component

The FixationsModule handles the detection and calculation of fixation patterns from raw gaze
data. A fixation is defined when the user rests his eyes on a specific spot with a pre-defined
radius over a pre-defined period of time. The fixation patterns are necessary to generate
heat maps.

4.1.7.2 External view of the component

As depicted in Figure 4.12, the FixationsModule uses the DataAdapter interface through the
DataSet class to fetch raw gaze data from the database / write calculated fixation data into
the database and ImportExport module to load data from external files / export calculated
fixation data to files.

4.1.7.3 Internal view of the component

The „FixationsComponentConfig” configurator class initiates the manager class Fixations-
Module and use-case class FixationsMgmt. The manager class uses the entity class Fixa-
tionCalculation to initiate fixation calculation on the gaze data it loaded from the database or
external files, as depicted in Figure 4.13. The ExportOptions and Dialogs classes provide
the user with options that will affect the fixation calculation algorithm via dialogs.

4.1.8 Component „ImportExportModule”

4.1.8.1 Task and responsibility of the component

The ImportExportModule enables the application to read and write settings as well as var-
ious data from/to files. This functionality is an approach to stability, reliability and usability
requirements. User can save his work for later use and export various tables of the experi-

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 38

Figure 4.13: Fixations component, internal view.

Figure 4.14: ImportExport component, external view.

ment database (which are the result of various calculation of the modules, e.g fixation data,
raw data. . .) to external files.

4.1.8.2 External view of the component

The ImportExportModule interfaces with the DataAdapter interface through the DataSet class
to be able to interact with the underlying database, and offers an interface for other compo-
nents to be able to use the ImportExport functionality, as depicted in Figure 4.14.

4.1.8.3 Internal view of the component

The import mechanism is a multiple steps process, each of which is a procedure respon-
sible for different types of data that the application can imported. Each step will require

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 39

Figure 4.15: ImportExportModule, internal view.

a set of user defined rules in order to parse data correctly. The configurator class ImEx-
portComponentConfig initiates the manager class ImportExportModule and use-case class
ImExportMgmt. The ImExportModule class unifies these child procedures into one logical
unit, and exposes it through ImportExportMgmt, as depicted in Figure 4.15.

4.1.9 Component „DatabaseModule”

4.1.9.1 Task and responsibility of the component

The DatabaseModule enables the user to revise the data that is in the database tables in
the underlying database and also allows the user to modify this data and reflect the changes
back to the database. This enables user to have fine granular control over the data that will
be used throughout the application.

4.1.9.2 External view of the component

The DatabaseModule interfaces with the DataAdapter interface through the DataSet class
to read and write data from/to the database and ImportExportMgmt to import/export data
from/to external files.

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 40

Figure 4.16: DatabaseModule, external view.

4.1.9.3 Internal view of the component

The DatabaseComponentConfig configurator class initializes the use case class
DatabaseMgmt and the DatabaseManager class. The DatabaseManager class uses
various entity classes to wrap different types of data internally, as depicted in Figure 4.17.

4.1.10 Database layout

The application stores the collected gaze tracking data in a .mdf file, which is a SQL-
Server database file extension. These files are separately created for each test. The under-
lying database layout is shown in Figure 4.18. The whole database is sub-divided into seven
tables. The following section describes each of the tables in details.

The „Subjects” table holds the list of participants with their associated descriptive at-
tributes like category, sex, age, etc. . . . These pre-defined attributes can also be extended
with custom variables. These custom variables will be stored in the „SubjectParameters”
table, which contains the participant’s name and a key-value pair for the parameter.

The „Trials” table holds the (meta) information of all trials. Information of each trial of the
test, for each participant is stored with associated variables, such as Id, name, sequence,
start time, duration, etc. . . along with a column indicating the validity of the recorded data.

For each participant a „RawGazeData” table is created which contains the imported or
real-time eye-gaze tracking data and the corresponding timing information. For each time
stamp it can include up to two columns for pupil diameter data (PupilDiaX, PupilDiaY), two
columns for gaze position data (GazePosX, GazePosY) and a column associated with an
occurred trial event.

All the events that occurred during recording are stored onto the „TrialEvents” table, which

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 41

Figure 4.17: DatabaseModule, internal view.

holds the event’s time, task, type and parameter. The application records for the scope of this
report key, scroll, marker and user response events, but additional events, such as mouse,
video, usercam, etc. . . can also be added. With them the trial timeline is separated and
interesting points in time during the recording session can be marked.

Finally, a table lists the gaze fixation information for each participant and trial with its
associated variables, such as the number of fixation in a trial (CountInTrial), the starting time
(StartTime), duration of the fixation (Length) and the coordinate of the fixation (PosX, PosY).

All the above seven tables resides in a locally stored SQL-database file, which is created
separately for each test. Data integrity is ensured over foreign key constraints between these
tables as shown in Figure 4.18.

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 42

Figure 4.18: Database design of the application.

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 43

4.2 Class diagram and business processes

This section describes the class diagram as well as main business processes of the appli-
cation. These processes included „Design a test”, „Record a test” and „Visualize data” ,
depicted as EPC11 diagrams.

11Event-driven process chain.

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 44

4.2.1 Class diagram

Figure 4.19: Class diagram of the application.

The MainForm class (acts as MDI parent) of the application derives from the base class
FormWithAccellerators, which inherits from Window.Form and adds support to shortcut keys.

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 45

The FormWithInterface class derives from FormWithAccellerators and is the base class for
forms with controls like DataGridView, ListView, TreeView, etc. . . with a data source. The
FormWithPicture class inherits from FormWithInterface to add support for a Picture, which is
a control to show dynamic content.

There are two more types of form that derive from FormWithPicture, which are FormWith-
SubjectAndTestSel and FormWithTestSel, which add support for drop-down boxes to select
participant and test. There are a few static classes, e.g Queries, ExceptionHandling which
provides utility methods. DatabaseModule makes use of the static methods in the Queries
class to send SQL commands to the DataSet.

The RecordModule makes use of the TobiiTracker class, which represents the Tobii eye
tracker and provides methods to interact with the Tobii API. The TobiiTracker class inherits
from the TrackerWithStatusCtrl class, which in turns inherits from the abstract class Tracker,
which implements the ITracker interface. The ITracker interface contains the basic methods to
interact with an hardware tracker device. The TrackerWithStatusCtrl implements this interface
and extends the tracker with a status control window, as in Tobii eye trackers.

The PresenterModule class is a component that presents the stimuli to test subjects on
the presentation screen.

The Document class is a singleton class that represents an active project together with
its settings and states.

The Program class contains the Main() method that starts the application.

4.2.2 Business Processes

4.2.2.1 Business process „Design a test”

Description: First, the experimenter has to create and name a new project, or open an
existing project. For the case of new project, the experimenter then has to specify project
settings. Next, the experimenter starts the TestDesign module and begins adding stimuli to
the test. After that, the experimenter can choose to save the whole project.

4.2.2.2 Business process „Record a test”

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 46

Figure 4.20: „Design a test” business process.

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 47

Figure 4.21: „Record a test” business process

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 48

Description: The experimenter has to set up and configure a project, design at least a
test which contains at least one stimulus, starts the record module and assigns at least one
test subject to the test. If this is a new subject, a profile will be created, otherwise the ex-
perimenter can choose from a list of existing profiles. Then the experimenter chooses the
eye tracker that is to be used and clicks the record button. In the case of new subject, a
calibration procedure will be fired up immediately to gather eye-gaze data and produce a
calibration profile for that particular test subject. Existing test subject can decide for a recali-
bration process. Afterwards, the record module will present the stimuli to the test subject and
record process will begin.

4.2.2.3 Business process Visualize data”

Description: When a record session is finish, raw gaze data will be available in the
database. To visualize those data, the experimenter first decides a visualization method,
then starts the according module. The experimenter then chooses a test subject and/or a
recording, whose data is to be visualized. After the visualization process has finished, the
result is shown to the experimenter.

4.3 Implementation

4.3.1 Setting up the working environment

• Installing the .NET Framework 3.5 (with Service Pack 1) and 4.0.

• Installing the Microsoft Visual Studio 2010 with the IDE settings configured to Visual
Basic Development Settings.

• Installing the Tobii SDK and all the components required for the development, Tet-
Comp.dll, tet.dll and ttime.dll, using the standard installer of the Tobii SDK.

• Installing the Tobii Studio 2.0.

• Getting access to the Tobii Eyetracker X120 for testing purpose (in the usability lab.).

When the above steps are done and the development environment is ready on the ma-
chine, then the next thing to do is to start the Visual Studio and create a new VB project
(Windows application).

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 49

Figure 4.22: „Visualize data” business process

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 50

4.3.2 General workflow

The general workflow of the application is depicted in Figure 4.23. One would first either
design a test with the TestDesignModule, then move on to record the test with the Record-
Module, or switch on the ImportExport module to import existing data into the application.
Either way, when the application had some data in the database (first survey), then the user
can move on to use the visualization and analysis tools over these data (using the other
modules).

4.3.3 Storage files

The application creates a folder named „VinhBAThesisExperiments” in the „MyDocuments”
folder of the current user. Each project has its own folder with at least three sub-directories.
The .va file, which has an XML layout, stores the metadata and description for each of the
test. This metadata and description include the database files, the path to stimuli, sampling
rates, screen size, parameters for fixation calculation and a complete description of the tests
of the project. The application can import this file to restore a previously saved session.
The Database subfolder contains two MSSQL database files. Because of the pure MSSQL
standard, these two file can be accessed with any MSSQL enabled language or application,
such as Microsoft Access or SQLExpress. All stimuli resources that are used in the test will
be placed in the SlideResources folder.

4.3.4 Fixation detection

In order to move on further visualization capabilities, we must create a basis from the raw
gaze data. There are a variety of taxonomy and models of eye movements, such as smooth
pursuits, nystagmus, extraocular muscles, etc Fixations and saccades are two most
important of them and will lay the foundation for other visualization and analysis modules in
the scope of this application. To be precise, fixation patterns calculated in the FixationsMod-
ule will be the basis for the HeatMapModule to generate heat maps. We define fixation and
saccade as follow:

• Fixations are eye movements that stabilize the retina over a stationary object of inter-
est. It seems intuitive that fixations should be generated by the same neuronal circuit
controlling smooth pursuits with fixations being a special case of a target moving at
zero velocity. This is probably incorrect (Leigh & Zee, 1991, pp. 139-140). Fixa-
tions, instead, are characterized by the miniature eye movements: tremor, drift, and
microsaccades. Duchowski (2007)

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 51

Figure 4.23: Application’s workflow with the supporting modules.

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 52

• Saccades are rapid eye movements used in repositioning the fovea to a new location
in the visual environment. This term comes from an old French word meaning „flick of
a sail” (Gregory, 1990). Saccadic movements are both voluntary and reflexive. Sac-
cades range in duration from 10 ms to 100 ms, which is a sufficiently short duration to
render the executor effectively blind during the transition (Shebilske & Fisher, 1983).
Duchowski (2007)

With the knowledge about fixations and saccades, the next thing to do is to implement some
algorithms to detect and calculate fixations. In Eye Tracking Methodology, we have the fol-
lowing information:

The dwell-time fixation detection algorithm depends on two characterization criteria:

1. Identification of a stationary signal (the fixation).

2. Size of time window specifying an acceptable range (and hence temporal threshold)
for fixation duration.Duchowski (2007)

For the scope of this report (also implemented in the application), we will do the fixation
calculation using the fixation detection algorithm published by LC Technologies. It is a dis-
persion type algorithm with a moving window Salvucci und Goldberg (2000). The source
code was ported to VB.NET but the working principal stayed the same. The source code
documentation of this algorithm describes the working principle as follows: „The function de-
tects fixations by looking for sequences of gaze-point measurements that remain relatively
constant. If a new gaze point lies within a circular region around the running average of an
on-going fixation, the fixation is extended to include the new gaze point. (The radius of the
acceptance circle is the above user specified maximum distance.) To accommodate noisy
measurements, a gaze point that exceeds the deviation threshold is included in an on-going
fixation if the subsequent gaze point returuns to a position wihin the threshold. If a gaze point
is not found, during a blink for example, a fixation is extended if:

1. The next legitimate gaze point measurement falls within the acceptance circle, and

2. There are less than the above minimum numbers of samples of successive missed
gaze points. Otherwise, the previous fixation is considered to end at the last good
gaze point measurement.” (LC Technologies 2006)

Prior to the calculation, the detection algorithm applies a two steps filter. In the first step,
empty values will be ignored and filtered out. This is necessary due to the different sampling
rates of the gaze (and possibly mouse) data. The second step involves omitting samples with
both X- and Y- coordinates equal to zero, which often marks the eye tracker output during an
eye blink, and omitting also samples that lies out of the screen.

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 53

The application provides the possibility for the user to specify two parameters that will be
used to fine-tune this algorithm:

• the maximum distance (in pixels) that a point may vary from the average fixation point
and still be considered to be part of the fixation, and

• the minimum number of samples that defines a fixation.

These two parameters will be chosen based on the experimental sampling rate and the
research domain. (Karsh & Breitenbach 1983.)

4.3.5 Implementing the modules.

This section contains a dicussion on the implementation of the different modules of the ap-
plication. The workflow of the application is depicted in Figure 4.32. A new project is started
either by designing a test (section 4.3.5.1) and recording new data (section 4.3.5.2), or by
importing existing raw sampling data using the application’s import wizard (section 4.3.5.3).
When raw data are available in the application, using one of the two possible means dis-
cussed above, the user can let the application visualize or analyze them with the support
of different modules, which, in the scope of this report, are the fixations, database and heat
map modules. Each of these modules is specialized on its intended purpose. They can be
grouped into two sets, one for visual data analysis which are Fixations and Heatmap, and
one used for underlying data control, which is Database module.

The following feature depicts the VB project file structure of the custom application on
Visual Studio 2010.

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 54

Figure 4.24: Visual Studio solution explorer for the custom application’s VB project.

4.3.5.1 Namespace „MainWindow”

This namespace contains the main frame of the application, which is a Multi-document-
interface window. All other modules reside in this window, which also hosts a menu, a tool-
strip, a status strip and a context panel. The menu provides the basic functionality for the
application like opening, saving, closing and creating new project (File menu), copy and paste
methods for table and module content (Edit menu), creating and showing different modules
(View menu), modification of project settings, application settings, database connection set-
tings (Options menu) and a help section (Help menu). The toolstrip enables control over
the functionality of the modules and the status strip is there to show current workflow and
progress information. The main window is designed so, that the interface stays intuitive to
basic users, and yet still provides enough information and fine-tuning possibility to more ad-
vanced users.

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 55

Figure 4.25: User interface of the main window, with a menu (1), a toolstrip (2), a status bar
(3) and the context menu (4).

The main window is also equipped with a context panel on the right hand, which shows
list of participants and all the designed tests in a project, so that the user can easily select
a particular test and/or a specific participant for analysis in the current active module. The
following sections describe each of the modules in detail and give an examplary screenshot
created with a demo project.

4.3.5.2 Namespace „Module.TestDesign ”

The TestDesign module enables the creation of test with stimuli to be presented to the par-
ticipant during an experiment. For the scope of the report, the application supports only one
type of stimulus, which is the Browser (or Web) stimulus. The application supports creation
of a sequence of stimuli, which is visualized by a TreeView and a TimeLine. Selecting a
stimulus display its content in the preview window.

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 56

Figure 4.26: TestDesign module with tree view, timeline and preview.

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 57

Figure 4.27: The dialog for Web stimulus creation.

The user start adding stimuli to the test by selecting from a variety of stimulus types rep-
resenting by the buttons on the toolstrip. This will open a dialog with the settings necessary
for that particular stimulus type. There is also a folder import mode, which will facilitate the
import of a lot of stimuli files. The user can specify general stimuli properties for all imported
stimuli and can later modify them via custom dialogs.

The stimuli can be reordered or grouped in a hierarchical order that is visualized via the
tree view on the left side of the module. The „PreviewTest” button helps the user to preview
the complete presentation for testing purposes. In this case the complete test is validated
but no recording is made.

’ S t a r t s the PresenterModule w i th the given s t i m u l i .
Private Sub btnPrev iewTest_Cl ick (ByVal sender As Object , ByVal e As

System . EventArgs) Handles btnPreviewTest . C l i c k
I f Not RecordModule .

CheckForCorrectPresentat ionScreenResolut ion () Then

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 58

Exit Sub
End I f
Dim ob jPresenter As New PresenterModule ()
’ Create a newly randomized t r i a l l i s t .
Dim t r i a l s As T r i a l C o l l e c t i o n = Me. sl ideshow .

GetRandomizedTrials
’ Create a hardcopy of the t r i a l s .
Dim copyOfTr ia ls As T r i a l C o l l e c t i o n = Di rec tCas t (t r i a l s .

Clone () , T r i a l C o l l e c t i o n)
’ Set s l i d e l i s t o f presenter
ob jPresenter . T r i a l L i s t = copyOfTr ia ls
’ Show presenter form , t h a t s t a r t s p resen ta t i on .

ob jPresenter . ShowDialog ()
End Sub

The user also has the option to modify the stimuli by double-clicking on it in the time line
to open the stimulus properties dialog, in this case, the Add New Web Element dialog in
Figure 4.36, again.

The properties needed to add a Web Element will be covered in details below:

The most essential and basic information for a Web Element is the web URL, so this piece
of information is not allowed to be null, in that case the application will show a message box
telling the user that the URL field cannot be empty and stay on the same dialog for retry. The
same rule applies for the name field of the Web Element. The Category field is optional.

Private Sub btnOK_Click (ByVal sender As Object ,
ByVal e As System . EventArgs) Handles btnOK . C l i c k
I f Me. txbURL . Text = String . Empty Or Me. txbName . Text =

String . Empty Then
MsgBox(" The URL f i e l d cannot be empty ! " , vbOKOnly ,

" Empty URL")
Me. Dia logResu l t = Dia logResu l t . Retry

Else
Me. Dia logResu l t = Dia logResu l t .OK

End I f
End Sub

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 59

In the Timing tab, the user has the option to control when to end the stimuli show, either
after a specific time elapse, or when the user press a particular key. The Browse Depth tab
enables the user to restrict the browsing at a specific depth level.

The Preview panel hosts a web browser control that is updated in realtime, as the user
types in the URL. If the URL field is invalid, it waits for a valid one.

The application tries to provide the user with a WYSIWYG process, i.e each modification
is reflected instantly in the preview window on the right side of the TestDesign dialog. This
feature has not been working properly at the moment, though.

The application can save the work of the user, storing them in Xml format in the project
.va file. Each test can also be exported separately to other project in a special Xml format
with the extension .vas

4.3.5.3 Namespace „Module.Recording”

The Recording module is designed to capture the participant - subject of the test ’s view
during the presentation of the stimuli in the experiment. The application is built to control and
record from Tobii eye tracking systems.

To start a recording, the application’s workflow involves foursteps:

1. Connecting: build the communication between the application and the hardware eye
tracker.

2. Participant assigning: prompt user for participant’s information and assign to the
recording.

3. Calibration: start the calibration process for the Tobii eye trackers.

4. Recording: show the stimuli on the presentation screen and start collecting gaze data.

User can change the settings associated with Tobii eye trackers via a customized dialog.
These settings include the eye tracker’s IP address, host name, port number, the number of
calibration points, their size and color. The settings that user specified in this dialog are then
stored in TobiiSetting class, which encapsulates them. At the end of a recording session, the
collected gaze data is stored into the application’s database and is immediately available for
analysis and visualization.

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 60

Figure 4.28: Screenshot of the Recording module.

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 61

Figure 4.29: Tobii trackers-specific settings dialog.

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 62

The TobiiSetting class looks as follows:

’ Class to save s e t t i n g s f o r the t o b i i eye t r a c k i n g system .
’ I t i s XML s e r i a l i z a b l e and can be stored i n a f i l e v ia
’ the XmlSe r i a l i ze r c lass .
Public Class T o b i i S e t t i n g

Private _tetServerAddress As String
Private _ te tServe rPor t As In tege r
’ Number o f c a l i b r a t i o n po in t s

Private te tNumCal ibPoints As TetNumCalibPoints
’ C a l i b r a t i o n po in t s ize

Private t e t C a l i b P o i n t S i z e As TetCa l ibPo in tS ize
’ C a l i b r a t i o n speed

Private te tCa l ibPo in tSpeed As TetCal ibPointSpeed
’ Color o f c a l i b r a t i o n po in t s

Private t e t P o i n t C o l o r As Color
’ Saves the background co lo r o f the c a l i b r a t i o n procedure .
Private tetBackgroundColor As Color
’ Saves the f l ag , whether the c a l i b r a t i o n po in t order should
’ be randomized

Private _tetRandomizeCal ibPointOrder As Boolean
.

End Class

During load, the Recording module scans for connected Tobii eye trackers and does the
following works: it updates a list of available eye trackers and displays the control panel asso-
ciated with them. Starting with SDK version 2.0, Tobii enhances the user with a new feature
called the Eyetracker Browser Interface, which simplifies greatly the eye tracker hardware
discovery process and thus saves the user much effort from having to enter the correct IP
address and port number for the eye tracker manually. The main component of this feature
is the TetServiceBrowser class. We implement this feature as follows:

First we declare a variable that holds the reference to an instance of the TetService-
Browser class and a list that holds all the discovered eye trackers:

Private WithEvents _serviceBrowser As TetComp . TetServiceBrowser
Private Shared _ s e r v i c e L i s t As L i s t (Of TETServiceEntryWrapper)

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 63

We start the service browser during the load event of the form, and stop the service again
during the closing event of the form.

The TETServiceEntryWrapper, as its name implies, is used as a wrapper class to encap-
sulate a TETServiceEntry, which represents an eye tracker, and is declared as follows:

Public Class TETServiceEntryWrapper
Private _ent ry As TetServ iceEnt ry

Private _serviceName As String
.

End Class

This class overrides the ToString(), Equals() and GetHashCode() methods, as well as
provides two properties which returns the host name of the eye tracker and a flag indicating
whether this eye tracker is running:

Public ReadOnly Proper ty Hostname As String
Public ReadOnly Proper ty IsRunning As Boolean

Next, we implements three event handlers to handle the events that the TetService-
Browser class might generate, which are listed below in pseudo code:

Private Sub ServiceBrowser_OnServiceRemoved (ByVal serviceName As
String) Handles _serviceBrowser . OnServiceRemoved

/ / remove the se rv i ce en t ry from the serv i ce l i s t .
/ / update the eye t r a c k e r combo box

End Sub
Private Sub ServiceBrowser_OnServiceUpdated (ByRef se rv i ceEn t ry As

TetServ iceEnt ry) Handles _serviceBrowser . OnServiceUpdated
I f the se rv i ce l i s t does not conta in the serv i ce en t ry Then

/ / Add serv i ce en t ry to the serv i ce l i s t
Else

/ / F i r s t remove the en t ry from the serv i ce l i s t .
/ / then re−add the (newer) en t ry to the serv i ce

l i s t
End I f

/ / update the eye t r a c k e r combo box
End Sub

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 64

Private Sub ServiceBrowser_OnServiceAdded (ByRef se rv i ceEn t ry As
TetServ iceEnt ry) Handles _serviceBrowser . OnServiceAdded

/ / Cal l the ServiceBrowser_OnServiceUpdated procedure and pass
/ / the se rv i ceEn t ry as i t s parameter
/ / update the eye t r a c k e r combo box

End Sub

Finally, we provide a method to update the eye tracker combo:

Private Sub UpdateEyetrackerCombo ()
/ / clear the eye t r a c k e r combo ’ s l i s t
/ / for each eye t r a c k e r detected , check i f i t is
/ / running , i f yes then add to the combo .

End Sub

The central point of interest of this Recording module is, of course, how the module com-
municates with the Tobii eye tracker and how the module treats new raw gaze data, once it
arrives. We know that the communication is enabled by the Tobii API, and the implementa-
tion in details lies within the TobiiTracker class, which inherits the TrackerWithStatusControl
class, which in turn inherits the abstract class Tracker, which in turn implements the ITracker
and IDisposable interfaces. The abstract class Tracker is thus the base class for all the hard-
ware trackers. This is done in order to enable more different hardware trackers at a later time
to be added to the application. The ITracker interface looks as follows:

Public I n t e r f a c e IT racker
’ Send the new sampling data a t each sampling t ime i n t e r v a l

.
Event GazeDataChanged As GazeDataChangedEventHandler

’ Gets a value i n d i c a t i n g whether the t r a c k e r i s connected
ReadOnly Proper ty IsConnected As Boolean
’ Do a l l connect ion rou t i nes f o r the s p e c i f i c hardware .
Function Connect () As Boolean
’ Do the c a l i b r a t i o n r o u t i n e f o r the s p e c i f i c hardware .
Function C a l i b ra t e (ByVal i s R e c a l i b r a t i n g As Boolean) As

Boolean
’ S t a r t the record ing f o r the s p e c i f i c hardware .
Sub Record ()
’ Stop the record ing f o r the s p e c i f i c hardware .

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 65

Sub StopRecord ()
’ Do a clean up f o r the s p e c i f i c hardware .
Sub CleanUp ()
’ Show a d ia log to change s e t t i n g s o f a s p e c i f i c hardware .
Sub ChangeSettings ()

End I n t e r f a c e

More hardware trackers can be added later to the system by adding entries to the Hard-
wareTracker enumeration and inheriting the Tracker class.

Public Enum HardwareTracker
’ No t r a c k e r a v a i l a b l e
None = 0
’ Tob i i t r acke rs a v a i l a b l e
Tob i i = 2

End Enum

The TobiiTracker class inherits from the TrackerWithStatusControl class, which repre-
sents all the eye trackers that provide a status control window to indicate live track status, i.e
the track quality so that the experimenter has complete control over the recording. This code
snippet demonstrates how we communicate with the Tobii eye tracker and start the tracking
status control:

Public Class Tob i iT racker
I n h e r i t s TrackerWi thSta tusCont ro ls
Public Overr ides Function Connect () As Boolean

Try
’ Connect to the TET server i f necessary

I f Not Me. te tT rackS ta tus . IsConnected () Then
Me. te tT rackS ta tus . Connect (Me.

t o b i i S e t t i n g . TetServer
Address , Me. t o b i i S e t t i n g .

TetServerPor t)
End I f
I f Not Me. te tT rackS ta tus . I sTrack ing Then

Me. te tT rackS ta tus . S t a r t ()
End I f

Catch ex As Except ion

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 66

Dim d lg As New Connect ionFai ledDia log
d lg . ErrorMessage = ex . Message
Me. CleanUp ()
Return False

End Try
Return True

End Function
.

Next, we handle the calibration routine:

Public Overr ides Function C a l i b ra t e (ByVal i s R e c a l i b r a t i n g As
Boolean) As Boolean

/ / Connect the c a l i b procedure i f necessary
Me. te tCa l i bP roc . WindowTopmost = True
Me. te tCa l i bP roc . WindowVisible = True
Me. te tCa l i bP roc . S t a r t C a l i b r a t i o n (

I f (i s R e c a l i b r a t i n g ,
TetCal ibType . TetCal ibType_Recal ib ,

TetCal ibType . TetCal ibType_Cal ib) ,
Me. t o b i i S e t t i n g s .

TetRandomizeCalibPointOrder)
r e t u r n t rue
/ / Catch except ion i f necessary and r e t u r n f a l s e

End Function

Next, we handle the recording routine:

Public Overr ides Sub Record ()
/ / Connect to the TET server i f necessary
I f Not Me. t e t C l i e n t . I sT rack ing Then

’ S t a r t t r a c k i n g gaze data
Me. t e t C l i e n t . S ta r tT rack ing ()

End I f
/ / Catch except ion i f necessary , d i sp lay error / / message

and stop record ing .
End Sub

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 67

Then the stop record routine:

Public Overr ides Sub StopRecord ()
Try

I f Me. te tCa l i bP roc . IsConnected Then
I f Me. te tCa l i bP roc . I s C a l i b r a t i n g Then
Me. te tCa l i bP roc . I n t e r r u p t C a l i b r a t i o n ()

End I f
End I f

I f Me. t e t C l i e n t . IsConnected Then
I f Me. t e t C l i e n t . I sT rack ing Then

Me. t e t C l i e n t . StopTracking ()
End I f

End I f
/ / Catch except ion i f necessary and d i sp lay error

/ / message .
End Sub

Next, we discuss about how the application handles newly arrived gaze data. The appli-
cation defines its own structure for gaze data and converts Tobii eye tracker’s internal gaze
data structure to this structure, once it arrives. The application will write into the database its
own internal format for eye gaze data.

Public St ruc tu re GazeData
’ Time i n m i l l i seconds from the s t a r t o f the record ing .
Public Time As Long
’ x−diameter o f p u p i l
Public Pupi lDiaX As Sing le?
’ y−diameter o f p u p i l
Public Pupi lDiaY As Sing le?
’ x−coord ina te o f gaze p o s i t i o n i n values ranging between

0 . . 1
Public GazePosX As Sing le?
’ y−coord ina te o f gaze p o s i t i o n i n values ranging between

0 . . 1
Public GazePosY As Sing le?

End St ruc tu re

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 68

Then we handles the newly arrived gaze data

Private Sub tetCl ientEvents_OnGazeData (ByRef t o b i i D a t a As Object)
Dim myGazeData As New GazeData
Dim tobi iGazeData As GazeDataHolder = tobi iGazeData
/ / Convert Tob i i gazestamp i n t o m i l l i seconds

I f V a l i d i t y L e f t E y e = 0 AndAlso Va l i d i t yR igh tEye = 0 Then
/ / Let the x , y and d is tance be the r ight and
/ / l e f t eye average and assign ca l cu la ted
/ / values to myGazeData

E l s e I f V a l i d i t y L e f t E y e = 4 AndAlso Va l i d i t yR igh tEye = 4
Then

/ / Set a l l to 0 for gaze data is i n v a l i d
E l s e I f V a l i d i t y L e f t E y e = 2 AndAlso Va l i d i t yR igh tEye =

2 Then
/ / Set a l l to 0 for gaze data is i n v a l i d
E l s e I f V a l i d i t y L e f t E y e = 1 AndAlso Va l i d i t yR igh tEye =

3 Then
/ / Set gazePos is of l e f t eye , pup i l d iaX is of

/ / l e f t eye and pup i ld iaY is n u l l
E l s e I f V a l i d i t y L e f t E y e = 3 AndAlso Va l i d i t yR igh tEye =

1 Then
/ / Set gazePos is of r ight eye , pup i l d iaX is

/ / n u l l and pupi lD iaY is of r ight eye
E l s e I f V a l i d i t y L e f t E y e = 0 AndAlso Va l i d i t yR igh tEye =

4 Then
/ / the same as 1 & 3 case
E l s e I f V a l i d i t y L e f t E y e = 4 AndAlso Va l i d i t yR igh tEye =

0 Then
/ / the same as 3 & 1 case

Else
/ / set ever th ing n u l l

End I f
/ / Raise the gaze data changed event

End Sub

The new raw gaze data will be written into the database for further analysis and visual-

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 69

ization. The application then immediately calculates gaze fixations according to the current
settings.

4.3.5.4 Namespace „Module.Database”

With the Database module, the user can manually views and revises all tables which are
associated with a project. These tables are: Subjects table which holds information about
test participants, SubjectParameters table which holds extra, user-defined parameters asso-
ciated with a participant, Trial and TrialEvent table which hold information about testss and
events that occurred during a test, GazeFixations table which holds information about fixa-
tions of eye gaze during a test, along with RawData tables which contains gaze data received
from the eye tracker. This module enables user to review and revise each single entry. The
data by default is filtered by participant and test, in order to avoid long loading time in large
tables. The main component of this module is the DataGridViews, which is used to display
and revise data from the database. Each of which is bound to a DataSource table in the
database.

If the user clicks on a participant in the SubjectDataGridView, we load the gaze data into
RawDataGridView with no filter set.

Private Sub PopulateRawDataFromCurrentSubject ()
/ / Set the se lec ted sub jec t to be the f i r s t

/ / sub jec t on the l i s t i f no sub jec t is chosen
Dim currentRow As DataGridViewRow =

Me. dgvSubjects . Rows(Me. dgvSubjects . SelectedRows (0) . Index)
Dim subjectName As String =

currentRow . Ce l l s (" colSubjectsSubjectName ") . Value . ToStr ing
Dim t ab l e As DataTable =

Queries . GetRawDataBySubject
(subjectName)

Me. bsoRawData . DataSource = tab le
End I f
End Sub

If the user selects a particular test in the TrialsDataGridView, we load the gaze data into
RawDataGridView with filter set.

Private Sub LoadRawDataIntoDataGridView (ByVal t r ia lTab leRowIndex As
In tege r)

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 70

I f Me. dgvTr i a l s . DataSource IsNot Nothing Then
Try

Me. Cursor = Cursors . WaitCursor
I f Me. dgvTr i a l s . Rows . Count > t r ia lTab leRowIndex Then

Dim currentRow As DataGridViewRow =
Me.

dgvT r i a l s
. Rows(
t r ia lTab leRowIndex
)

Dim subjectName As String =
currentRow . Ce l l s (" co lTr ia lsSubjectName ") . Value .

ToStr ing
Dim t r i a l I D As In tege r =

CInt (currentRow . Ce l l s ("
c o l T r i a l s T r i a l I D ") . Value)

Dim t r ia lSequence As In tege r =
CInt (currentRow . Ce l l s ("

co lT r i a l sT r ia lSequence ") . Value)
Dim t ab l e As DataTable =

Queries . GetRawDataBySubjectAndTrialSequence (subjectName ,
t r ia lSequence)

’ Setup the data source
Me. bsoRawData . DataSource = tab le

Catch ex As Except ion
ExceptionMethodsModule . HandleException (ex)

F i n a l l y
Me. Cursor = Cursors . De fau l t

End Try
End I f
End Sub

Finally, we commit the changes made by the user on the DataGridView back to the
database by calling the update method on each table adapter:

Private Sub UpdateDatabase ()
Try

Me. Va l i da te ()
Me. BsoSubjects . EndEdit ()

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 71

Me. BsoSubjectParameters . EndEdit ()
Me. BsoParams . EndEdit ()

Me. BsoTr ia ls . EndEdit ()
Me. BsoTr ia lEvents . EndEdit ()
Me. BsoGazeFixations . EndEdit ()

Dim dataset As DataSet1 = Document . ActiveDocument .
DocDataSet

Dim affectedRows As In tege r =
dataset .

SubjectsAdapter .
Update (dataset .
Subjects)

/ / c a l l the same update method of the adapters
/ / for other tab les .
dataset . AcceptChanges ()

Catch ex As Except ion
/ / Process the error message

End Try
End Sub

Additionally, the Database module also support import/export functionality for selected
participant. This is done via a BackgroundWorker thread:

’ Background worker thread working method f o r expor t i ng the
database Pr i va te Sub bgwExport_DoWork (ByVal sender As Object
,

ByVal e As System . ComponentModel . DoWorkEventArgs) Handles
bgwExport . DoWork

/ / Code to write database data to f i l e .
End Sub

4.3.5.5 Namespace „Module.Fixations”

The Fixations module is designed to calculate, store and display the gaze fixations made
by participants. The fixations information is stored in the application’s database and made
available to the Heatmap module for further calculation of heat maps.

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 72

Figure 4.30: Screenshot of the Database module.

The components of this module consist of a canvas for visualization and a data table for
each gaze fixation. There are five display modes available, each of them also has the option
to display along fixation numbers and connections.

• Dots: fixations are drawn as filled, round dots.

• Circles: fixations are drawn as empty circles with circumference proportional to the
duration of the fixation.

• Spotlight: fixations are drawn as cirles of original image of the stimulus, overlaid on
grayed background, with circle’s circumference proportional to the duration of the fixa-
tion.

• Heatmap: fixations are drawn as a colored heat map. For the scope of this report,
heat maps are implemented as superimposed Gaussian distributions of all fixations in
a recording. A description of the algorithm is discussed later.

• None: if selected then display only fixation numbers and/or connections.

The DataGridView below the module gives information about a fixation for the current
recording, such as its number, belong to which participant, position, start time of the calcula-
tion. The user can filter the recording to be displayed according to its number or participant’s

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 73

Figure 4.31: Screenshot of the Fixations module.

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 74

name, can adjust the parameters used for fixation detection in the Project Options dialog
in the main window. The parameters will then be used consistently throughout the whole
project. Futher options on the dialog include deletion of fixations, exclusion of a recording
from further analysis by marking it as invalid (this could be the case when the calibration has
a remarkable drift) and some to adjust the look and feel of the graphical elements.

The user can also filter the fixations by limiting the time range, this is done by moving the
caret thumbs on the timeline.

The main component that does most of the work on this module is a BackgroundWorker
thread, which calls the procedure:

Private Sub Ca lcu la teF i xFo rA l lSub jec t s (
ByVal worker As BackgroundWorker ,
ByVal e As DoWorkEventArgs)

/ / Get a l i s t o f a l l sub jec ts
/ / For each sub jec t i n the l i s t
’ Get t r i a l data o f cu r ren t sub jec t
Dim t r i a l s T a b l e As DataTable =

Document . ActiveDocument . DocDataSet . T r i a l sAdap te r . GetDataBySubject (
s t r S u b j e c t)

Dim c a l c u l a t i o n O b j e c t As New F i x a t i o n C a l c u l a t i o n ()
’ Ca lcu la te f i x a t i o n s

c a l c u l a t i o n O b j e c t . Ca lcF ixa t ions (
SampleType . Gaze ,
s t rSub jec t ,
t r i a l s T a b l e , worker , e)
I f e . Cancel Then Exit For
Next
End Sub

This procedure calls in the CalcFixations procedure, which is a member of the Fixation-
Calculation class. The FixationCalculation class post-processes the fixation patterns de-
tected by the FixationDetection class, which is the implementation of the algorithm by LC
Technologies we have discussed in the earlier section. When new raw data is added or
existing raw data is changed or deleted, a recalculation of the fixations is recommended.

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 75

Figure 4.32: Settings that are valid for the whole project.

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 76

4.3.5.6 Namespace „Module.Heatmap”

With the Heatmap module, fixation data from selected participant can be merged and calcu-
lated. This is useful in pinpointing the regions of special attention in a stimulus. The heat
map allows a quick visualization of a landscape of „visited” and „unvisited” locations on the
stimulus Spakov und Miniotas (2007)

The heat map is calculated as aggregated Gaussian distributions of each fixation in a
stimulus. The summed Gaussian distributions are then overlaid on the image of the original
stimulus. By using a two-dimensional Gaussian kernel with an adjustable size, the distri-
bution landscape of fixation can be smoothed at will. The Gaussian kernel is given by the
following formula:

f (x,y) =
e
−x2+y2

2σ2

2Πσ2 ,x,yε [−s,s]

with µ = 0 as mean value, standard deviation of σand an isotropic distribution.

σby default is set to s/5, for each fixation, the algorithm then multiplies each value of this
template kernel with a factor that is proportional to the duration of the fixation. We can also
call this factor the weight of the fixation.

’ M u l t i p l y kerne l w i th a sca l i ng f a c t o r
Fr iend Shared Function M u l t i p l y K e r n e l (ByVal f a c t o r As Single ,
ByVal s ize As In tege r) As Sing le (,)

The multiplied kernels are then added to an array which size is equal to that of the stim-
ulus, at the position of the associated fixations,

’ Add a sized gaussian kerne l to a d i s t r i b u t i o n ar ray o f s ize (
width , he igh t) a t the ’ p o s i t i o n (PosX , PosY)

Fr iend Shared Sub AddKernelToArray (
ByVal d i s t r i b u t i o n A r r a y As Sing le (,) ,

ByVal posX As In teger ,
ByVal posY As In teger ,
ByVal width As In teger ,
ByVal he igh t As In teger ,
ByVal s ize As In teger ,

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 77

ByVal kerne l As Sing le (,)
)

. . . .
End Sub

with distributionArray is an existing gaussian distribution sum array, (posX; posY) is the
position for the kernel to be added, (width, height) is the two dimensions of the distribution
array, size is the size of the kernel and kernel is an array with gaussian kernels.

The whole array is then normalized to give a height or landscape map Spakov und Min-
iotas (2007) of size of the stimulus as the result. This map can be easily transformed into a
colored heat map using a colored gradient bitmap for pixel mapping. The calculation should
be handled in the background by a BackgroundWorker thread.

’ Returns a bitmap wi th a g rad ien t co lored
’ d i s t r i b u t i o n A r r a y o f a given s ize
Fr iend Shared Function CreateHeatMap (

ByVal heatMapBmp As Palet teBi tmap ,
ByVal gradientBmp As Palet teBi tmap ,
ByVal s ize As Size ,
ByVal d i s t r i b u t i o n A r r a y As Sing le (,)
)

’ This f u n c t i o n c a l c u l a t e s the heatmap and
’ updates the view accord ing ly .
Private Sub DrawHeatMap (

ByVal weightened As Boolean ,
ByVal worker AsBackgroundWorker ,

ByVal e As DoWorkEventArgs)

The calculation of the heat map relies on the fixation data, so it is important that by the
time using the HeatMap module for visualization, the fixations table should be ready and
available for use, i.e the user had to run the fixation calculation algorithm on the raw gaze
data in the Fixation module beforehand.

The user can opt to generate heat maps for a particular participant or a group of partici-
pants, depending on the data available. Heat maps in general help answer sorts of question
like „Where would normal users normally have the first look”, or „What regions do people
often ignore or got the least attention on average”

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 78

Figure 4.33: Screenshot of the Heatmap module.

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 79

4.3.5.7 Namespace „Module.ImportExport”

The application aims to support users in their workflow and also strives at improving stability
and reliability by adding import/export functionality. This module is designed as a wizard-
style assistant that helps users importing existing data and exporting their current work step
by step.

The kind of data that the ImportExport module currently supports is raw gaze data, fix-
ations data and project files that are created using the application, with the extension (.va).
The import process involves six steps:

1. Select data file to import: this file should be in Ascii format with delimiter-separated
columns.

2. Define parsing rules: these rules contain information like what the column delimiter
(e.g tab, semicolon), decimal separator is and strings that should be ignored. The user
can also define rules to skip lines that don’t meet a specific requirement and specify
whether the first row contains column names. After each change, the module updates
a result table to reflect detected columns and user has the option to change column
names there.

3. Map columns: if the columns from the imported file different from those in the ap-
plication’s database, the user will have the option to manually select the columns of
the imported file from a drop-down list and map them to those of the application’s
database. If there is no ParticipantName column specified, the application assumes
that the data is from one participant and asks for a unique participant name.

4. Define rules to distinguish different tests in a project: for example, using a table which
contains the test IDs and starting time. This table can be imported in a separated file
(e.g Tobii 1750 EVD file), or entered manually.

5. Define rules to read stimulus images for each test: to extract the file names of stimulus
images from the imported file and assign them to the test IDs. The process is similar
to that of step 4, with a preview table to reflect the parsed information. This helps user
to verify that the data file is correctly parsed and information is wholely extracted.

6. Start importing: The application tries its best to parse all data in the file, including zero
values and invalid values (e.g out-of-screen gaze data) and store them into database.
Those zero and invalid values are handled later in fixation detection algorithms and
during visualization process.

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 80

The ImportExport module can saves/loads setting files so that they can be quickly reused
for further imports.

Private Shared Function
S e r i a l i z e S e t t i n g s (ByVal f i l e P a t h As String) As Boolean
Private Shared Function
D e s e r i a l i z e S e t t i n g s (ByVal f i l e P a t h As
String) As Boolean
Public Function ParseFi le (

ByVal i m p o r t F i l e As String ,
ByVal numberOfImportLines As In teger ,
ByRef columnHeaders As L i s t (Of String)

) As L i s t (Of String ())
Private Shared Function
SaveImportIntoTablesAndDB () As Boolean
Private Shared Sub
GenerateRawDataList (ByVal numberOfImportLines As In tege r)
Private Shared Sub GenerateTests (

ByVal de tec tonSet t i ngs As
Detec t ionSet t ings ,
ByVal mainWindow As MainForm
)

Private Shared Sub
Genera tePar t i c ipan tAndTes tL is t ()

4.3.6 Implementing the Web stimulus

Applications that make use of eye trackers and deal with eye gaze data often have various
types of stimulus available to choose from. Amongst them are instruction stimulus, rich text
stimulus, image stimulus, flash, sound, video stimulus. . . . For the scope of this report, the
application offers the Web stimulus, which is one of the most popular media types that are
used in usability studies.

The core of the web stimulus is a browser object. For this, the application makes use of
the web browser control which is part of the .NET controls. This browser object is wrapped
by the serializable class VGBrowser. We define a web stimulus as a stimulus which contains
a web browser object. So for each new web stimulus instance, we add a web browser object
to the ActiveX collection of that stimulus

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 81

Private Function CreateWebStimulus (
ByVal browserStimu As BrowserTreeNode) As S l ide
Dim s t imu lus As S l ide =
Di rec tCas t (browserStimu . S l i de . Clone , S l i de)
s t imu lus . VGStimul i . Clear ()
Dim browser As New VGBrowser (
ShapeDrawAction . None , _
browserStimu . OriginURL , _
Pens . Black , _
Brushes . Black , _
SystemFonts . Defaul tFont , _
Color . Black , _
PointF . Empty , _
Document . ActiveDocument . Presentat ionSize , _
VGStyleGroup . ACTIVEX , _
browserStimu .Name, _
String . Empty)
s t imu lus . Ac t i veXSt imu l i .Add(browser)
Return s t imu lus
End Function

We then define the BrowserTreeNode class as a node in the tree view hierarchy to wrap
the web browser stimulus. This class inherits from the SlideshowTreeNode class, which in
turns inherits from the base class TreeNode, and is XML-Serializable.

< S e r i a l i z a b l e () >
Public Class BrowserTreeNode

I n h e r i t s SlideshowTreeNode
Public Sub New()
Me.Name = "−1"
Me. Text = "Webpage"
Me. Category = "Webpage"
Me. OriginURL = " about : b lank "
Me. ImageKey = " Browser "
Me. BrowseDepth = 0

End Sub
. . . .

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 82

This is the type that the Web Element dialog returns when the user has completed adding
and setting up a web stimulus.

One of the problem with the web stimulus is moving content, identified as scrolling com-
pensation. Often web pages are long and have contents that are off-screen. Scrolling makes
the data on the web page become a literal moving target and the gaze position of the test
subject no longer absolute, but becomes relative.

Because of this, when the test subject interact with a web page, it is not sufficient to
merely store the relative offset of the gazepoint in the browser window. If the test subject is
looking at the web page, then the page may have been scrolled. Storing the gazepoint with
no indication of where the browser is currently scrolled to is useless, for the gaze data would
not be able to actually identify where the subject was looking. Lankford (2000)

To compensate for scrolling, the application communicates with the web browser and
obtain the current scroll position.

Dim htmlElement As HtmlElement =
browserContro l . Document . GetElementsByTagName (
"HTML") (0)

Dim bodyElement As HtmlElement =
browserContro l . Document . Body

Dim sc ro l lTop As In tege r =
I f (htmlElement . Scro l lTop >

bodyElement . Scro l lTop , _
htmlElement . Scro l lTop ,

bodyElement . Scro l lTop)
Dim s c r o l l L e f t As In tege r =

I f (htmlElement . S c r o l l L e f t >
bodyElement . S c r o l l L e f t , _

htmlElement . S c r o l l L e f t ,
bodyElement . S c r o l l L e f t)

When the user scrolls the web page, the scroll event handler records this as a web
browser event, which we call a scroll event and send it to the recorder with scroll offsets
and a timestamp to mark it. When the recorder module receives new gaze data, then it first
scales the gaze point position to screen coordinate - for Tobii eye trackers normalize gaze
point position as values between 0 and 1 - and then adds optional scale offsets.

CHAPTER 4. APPLICATION DESIGN AND IMPLEMENTATION 83

I f newRawData . GazePosX IsNot Nothing Then
newRawData . GazePosX =

newRawData . GazePosX * Me. xResolu t ion +
Me. x S c r o l l O f f s e t

End I f
I f newRawData . GazePosY IsNot Nothing Then

newRawData . GazePosY =
newRawData . GazePosY * Me. yResolu t ion +

Me. y S c r o l l O f f s e t
End I f

This allows us to determine whether or not a participant did look at a particular region
on the web page regardless of where the web page was scrolled during recording or anal-
ysis. The compensation process works behind the scene, thus is hidden from the user. No
intervention from user is needed.

4.3.7 Exception handling

The exception handling mechanism for the whole application is centralized in the Exception-
MethodsModule module. This module contains static methods that will deal with runtime
errors occurred throughout the application during run by showing various error dialogs with
details of the error (e.g error source, target site, stack trace. . .) and writing the log file.

’ Handles the except ion by showing a d ia log wi th e r r o r message and
logs to f i l e .

Pub l i c Sub HandleException (ByVal e As Except ion)
’ Handles the except ion and logs to f i l e but not showing any d ia log
Pub l i c Sub HandleExcept ionSi lent (ByVal e As Except ion)

Chapter 5

Application Testing

5.1 Testing functional requirements

5.1.1 Test case 1: Create a new experiment

The purpose of this test is to ascertain that the application handles all the work upon creating
a new project correctly, these works include creating project files and folders in the applica-
tion’s directory, moving the database files into the project folder and then saving the project’s
settings to project file.

Expected result would be:

• a call to Document.ActiveDocument and Document.ActiveDocument.ExperimentSettings
will not return Null.

• a folder named VBAThesisExperiments in the MyDocuments folder on the user’s ma-
chine,

• inside this folder, for each of the newly created project: a folder named <ProjectName>,
which contains the following subfolders: Database, Slideresources and Thumbs, to-
gether with the <ProjectName>.va project file.

• Inside the Database folder would be two database files: <ProjectName>.mdf and <Pro-
jectName>_log.ldf.

The test is executed by starting the application, go through the steps necessary to create a
new project and then check for the expected results on the file system. The result would be
as depicted in the snapshots in Figure 5.1

CHAPTER 5. APPLICATION TESTING 85

Figure 5.1: Test result for correct project file structure creation.

CHAPTER 5. APPLICATION TESTING 86

5.1.2 Test case 2: Slideshow design and record

The purpose of this test is to assure the functionality of the TestDesignModule and Record-
Module, i.e the user can create and add new stimuli into a test, then record the test with Tobii
eye tracker.

Expected results would be a new trial with a Web stimulus added to it, and once the
recording is finish, a raw data table filled with gaze data.

The test is executed by starting the application, creating a new project and launching the
TestDesignModule. After adding and configuring the stimuli, click on Save to finish designing
the slideshow.

Then launch the RecordModule and follow the four-steps recording procedure.

5.1.3 Test case 3: Heat map generation

The purpose of this test is to assure the functionality of the HeatMapModule, i.e heat maps
can be generated from the recorded data.

Expected results would be heat maps with correctly overlaid fixation patterns (i.e with
scrolling compensation).

To prepare for this test, follow the Test case 2 to get gaze data, then:

• Start the FixationsModule

• Review all the fixation data available and let fixation patterns recalculated if necessary.

• Launch the HeatMapModule, choose the participant whose data is to be visualize,
choose the desired color gradient and click on Recalculate Heatmap button.

5.2 Testing non-functional requirements

For usability testing, there must be at least one test subject available to test the software. For
the scope of this report, though usability testing with a test subject was not in reality executed,
below are a few considerations about the attempt to fulfil the non-functional requirements.

To improve usability, the application has been divided into modules and use the multi-
document interface approach. For one module, such as RecordModule , a step-by-step

CHAPTER 5. APPLICATION TESTING 87

Figure 5.2: Test result for correct slideshow and stimuli design.

CHAPTER 5. APPLICATION TESTING 88

Figure 5.3: Test result for correct heat map generation from fixation data.

CHAPTER 5. APPLICATION TESTING 89

design would simplify the record procedure. For another module like ImportExportModule,
a wizard style interface approach would assist the user better in a complicated workflow.
The TestDesignModule strives to provide the user with a WYSIWYG style interface (with a
preview window upon adding Web stimulus)

The DatabaseModule is there to contribute to the usability and reliability of the application
by enabling the user to revise all the data that the application uses.

There are a lot of places in the application where a hint would be useful and helps provide
the user with explanation and instruction. This is achieved with the ToolTip control of the .NET
framework. Also there are help documents available for the user in the Help tab of the context
panel.

During the development process, static code has been separated from codes that are
likely to change, if-statement and loops are kept at a minimum level to reduce the workload
of the CPU, thus increasing the speed of the application.

Finally, the development environment was configured to do code analysis on every build
with the Microsoft All Rules rule set.

Chapter 6

Summary

6.1 Conclusion

This custom application is a stand-alone application running on Microsoft Windows® plat-
form and is developed with the Microsoft .NET framework. .NET is a large and powerful
platform which provides various tools for different purposes, when use in combination with
Visual Studio® environment enables us to create fast and powerful Windows GUI applica-
tions. The Visual Studio® has a rich set of tools and controls to support building applications
with database back-end. This custom application is designed with users of the field of us-
ability research in mind and work specifically with Tobii eye trackers, since it uses the Tobii
API.

The application is GUI-based and separated into modules, according to their functional-
ity. This approach helps making the source code more reusable through separating stable
code from frequently changing code, aims at improving the maintainability and makes the
application more easily to be extended. To record gaze data using Tobii eye trackers, one
would use the RecordModule, to import external data for analysis and visualization / export
result using the application’s import-export mechanism, one would choose the ImportExport-
Module. In order to work with eye gaze data, one must first understand the structure of the
data, which is included in Appendix A, then know how to call into the API to capture data.
The Tobii API can also be used at low level with low level programming languages, in which
case, time synchronisation is also a problem to consider (see Appendix B).

Screen-based eye tracking studies have much potential of research capabilities. Usability
and psychology are among research fields that utilise eye tracking the most. Even though,
eye gaze tracking and studying is still in its early stage in computer science and thus poses
a lot of interesting problems and challenges.

CHAPTER 6. SUMMARY 91

6.2 Future work

This application can be continue to be extended in various ways. First, this application is
currently designed to work with Tobii eye trackers, but support for hardware trackers of other
manufacturers, as well as software trackers e.g for mouse data, can also be added by imple-
menting the ITracker interface. Additionally, the application would deliver a richer experience
if more stimulus types are added. Amongst a few popular stimuli are: text, rich text, sound,
movie, flash, pdf, etc. . . .

Finally, because each of the functionality of the application is on its own module, adding
more modules to extend the application in term of capability is easy. A few thinkable sug-
gestions are ReplayModule, in which the user’s eye movement is recorded and the gaze
patterns can be played back and exported as a movie file, or StatisticsModule in which Ar-
eas of Interest (AOIs) and empirical parameters can be defined and calculated. One can
further develop his own custom statistical variables to incorporate into the application by
adapting the application’s source code.

CHAPTER 7. GLOSSARY 93

Chapter 7

Glossary

Concept Definition

custom application an application that is developed and built on
customer-side to address one’s own purposes and

problems and fill the gap between commercial software
and personal requirements

eye tracker a hardware device that can track human’s eye
movements (often using infrared)

experiment a single work project (e.g usability study/research)
slideshow a sequence of slides that are presented to the test

subject during recording
slide a single stimulus that is added into a trial. Represents

a sequence in a trial
trial basic unit for visualization and analysis. Each

experiment can contain multiple trials. Each trial can
have multiple slides.

test subject (participant) the person that takes part in the study/research
experimenter the person that leads/executes the study/research

heat map a graphical representation of data where the values
taken by a variable in a two-dimensional table are

represented as colors
fixation or visual fixation is the maintaining of the visual gaze

on a single location
saccade a saccade is a fast movement of an eye, head or other

part of an animal’s body or device
stimulus a kind of media that will be presented to the user

during recording. Can be thought as the object of the
experiment.

.NET framework a software platform from Microsoft to develop and run
applications

Visual Studio a software development kit from Microsoft
MDI multiple document interface is an interface that acts as

the parent and can contain multiple child windows
usability usability is the ease of use and learnability of a

human-made object. This object can be a software
application

Appendix A

Tobii’s Gaze Data

Taken from Tobii developer’s guide.

This appendix gives a description of how to interpret the fields given in the gaze data.
The description is valid for all Tobii APIs from where the gaze data can be received; Tobii Eye
Tracker Low Level API and Tobii Eye Tracker Components API.

Error estimations; accuracy and precision of the data are not within scope of this ap-
pendix.

APPENDIX A. TOBII’S GAZE DATA 95

A.1 Data Fields

Figure A.1: Gaze data fields quick reference.

A.2 Time Stamp

This is the time when the gaze was sampled by the eye tracker. The first part is the seconds
and the next field is the microseconds, ranging from 0 to 999999. For instance, if the first
field is 123 and the second field is 78098, the time stamp is 123.078098 seconds.

APPENDIX A. TOBII’S GAZE DATA 96

There is no way to restart the time. The time is implicitly started first time the ttime DLL
is loaded by any application. If the time stamp offset is important, store your own start time
and subtract from all following time stamp.

Dependent on the time synchronize option given when eye tracker connection was made,
it will be compatible with the Tobii system time either on the host running the eye tracker or
on the API caller host. If they are running on the same host, this is of course not a problem.

A.3 Gaze Target Position

This is the position where the subject’s gaze is at. Each eye has its own data, independent
of the other eye. From the subject’s perspective, it normally increases to the right and down-
wards. However, the range and resolution is dependent of the current calibration set. For the
calibration software made by Tobii to track gaze on a computer screen for instance, the upper
left corner of the screen is point (0,0) and lower right corner is (1,1). It is a good practice
to follow this coordinate system when building your own calibration tool. See the sections
describing the calibration process for details.

The major conditions affecting the quality of the gaze target position are:

• How good the calibration was.

• If the light conditions of target and surrounding environment are close to the conditions
during calibration.

• If the gaze target is near the area that was used for calibration.

• Head and pupil motion. Less is better.

A.4 Eye Position

This is the position of the eye as seen by the eye tracker. This position has nothing to do
with the gaze target position. Each eye has its own data, independent of the other eye. The
upper left corner of the eye tracker sensor is (0, 0) and lower right sensor is (1, 1). Note that
the values are from the eye tracker point of view. If subject is moving to the right, the values
are decreasing. The purpose of this data is mainly to give a good idea of how to place the
subject to make the tracking conditions at best.

APPENDIX A. TOBII’S GAZE DATA 97

A.5 Distance

This is the shortest distance between the eye tracker sensor and the eye, measured in mil-
limeter. Each eye has its own data, independent of the other eye. The values given are
best used as a set of relative values, not absolute. If absolute values are required by the
application being built, have in mind that following parameters will highly affect the accuracy:

• Glasses.

• How much the cornea of the subject’s eye is diverting from the assumed average
human being eye cornea. It is normal that a person wearing glasses and have a cornea
that diverts by a few percent will have an error of 100 mm when distance measure is
600 mm.

A.6 Pupil Size

This is the longest possible chord of the ellipse fitted to the pupil of the eye, measured in
millimeter. Each eye has its own data, independent of the other eye. The values given are
dependent of the distance measure, so there are the same accuracy uncertainties. There-
fore, the values given are best used as a set of relative values, not absolute.

A.7 Validity Code

This is an estimate of how certain the eye tracker is that the data given for an eye really
belongs to that eye. The validity code takes one of five values for each eye ranging from 0 to
4, with the following interpretation:

• 0 - The eye tracker is certain that the data for this eye is right. There is no risk of
confusing data from the other eye.

• 1 - The eye tracker has only recorded one eye, and has made some assumptions and
estimations regarding which is the left and which is the right eye. However, it is still
very likely that the assumption made is correct. The validity code for the other eye is
in this case always set to 3.

• 2 - The eye tracker has only recorded one eye, and has no way of determining which
one is left eye and which one is right eye. The validity code for both eyes is set to 2.

• 3 - The eye tracker is fairly confident that the actual gaze data belongs to the other
eye. The other eye will always have validity code 1.

APPENDIX A. TOBII’S GAZE DATA 98

Figure A.2: All possible combinations of validity codes.

• 4 - The actual gaze data is missing or definitely belonging to the other eye.

Hence, there are a limited number of possible combinations of validity codes for the two
eyes:

A pair of gaze data with validity code 4 on both eyes, followed by a number of gaze data
with validity code 0 on both eyes, is usually a sure sign of a blink.

It is recommended that the validity codes are always used for data filtering, to remove
data points which are obviously incorrect. Normally, we recommend removing all data points
with a validity code of 2 or higher.

Appendix B

Time Synchronization

Taken from Tobii developer’s guide.

This appendix will explain how to use the eye tracker time synchronization feature and
briefly describe why time synchronization and other time issues are a problem.

Implementation details are targeting the Tobii Eye Tracker Low Level API user, but may
give the Tobii Eye Tracker Components API user a good understanding of how things work
as well.

B.1 Background

There are several APIs in Windows that deals with time. In practice there are only two un-
derlying methods used. One is relies on the onboard system clock. The access of this
clock implicitly depends on the operating system context switching interrupt interval, which is
normally 10 ms – 15 ms for Windows 2000 and Windows XP. The time functions using this
method are of high accuracy and low precision kind, which means the average of a set of
time stamps are ok, but each time stamp can be very inaccurate. Examples of functions that
fall into this first category are; GetTickCount, timeGetTime and GetSystemTimeAsFileTime.
Some of them return a millisecond or even 100-nanoseconds fraction, which is pointless
when comparing two time stamps for instance. There are also a hardware dependent drift
against the real time. This drift is normally small and many operating systems are set up to
compensate for this drift by synchronization services. WinXP, for instance, has this synchro-
nization built in.

The second method relies on a hardware high resolution counter found in many, but not
all, Intel compatible processors since a couple of years. The benefit of this counter is the
microsecond precision. However, this counter suffers from a high hardware dependent drift

APPENDIX B. TIME SYNCHRONIZATION 100

against both the system clock and the real time. It also may change frequency if the system
is set to hibernation or standby, and it has a known tendency to occasionally make a counter
jump on some buggy hardware platforms.

No matter what source of time chosen, there will be two synchronization issues; first
the one between software and real time, second the one between applications running on
different hosts.

B.2 Selected Methods

Since the time precision between two gaze data points is more important than minimizing
the real world time drift, the method chosen for the Tobii eye trackers is to use the processor
high resolution counter. The Window API functions used are QueryPerformanceCounter
and QueryPerformanceFrequency, which wraps the processor instruction rdtsc. See the
Microsoft and Intel documentation for details.

The real time synchronization is ignored to avoid introducing possible error causing com-
plexity to the system. It is more important to be able to synchronize different applications
possible running on different hosts and to be able to compare time stamp, with high precision
and accuracy.

For synchronization, there is a Tobii proprietary communication protocol implemented
that is running in as a background thread taking care of the offset error and compensates
for time drift between hosts. The synchronization may be shared among all processes and
threads on a host that are connected to the same TETServer and is using the same ttime
DLL.

The background synchronization is dependent on a good communication channel be-
tween the server and host. Therefore channels like modem or an Ethernet with high network
load will likely give bad accuracy of the output time stamp data.

B.3 Available Synchronization Options

When applications using the tet API and the ttime API are running on another host than
the Tobii Eye Tracker Server (TETServer) and gaze data time stamps must be matched with
time stamp on the client side host, there is an option available to use the background time
synchronization.

APPENDIX B. TIME SYNCHRONIZATION 101

This option is selected by passing a parameter to the Tobii Eye Tracker Low Level API
function call Tet_Connect. Three modes are available:

Figure B.1: Synchronization modes.

Hence, the modes will have affect on following time stamps within the same thread that
called Tet_Connect:

Figure B.2: Synchronization modes.

Note that this is not applicable for the Tobii Eye Tracker Components API, where there
is only one call: GetTimeStamp, that returns the right time stamp dependent of the mode
selected when the Connect call was made.

APPENDIX B. TIME SYNCHRONIZATION 102

B.4 What Synchronization To Be Used

The system setup regarding time synchronization can be divided into following three cate-
gories:

• The first category is where background synchronization is not needed. This may hap-
pen when running applications on different hosts and none of the applications bother if
time stamps are compatible or not. Another situation that falls into this category is if all
applications, including the TETServer is running on the very same host. In this case,
there is a perfect synchronization by default. Any process or thread, using the same
ttime DLL, shares the same time. In either one of these two cases call Tet_Connect
with TET_SYNC_NONE and use TT_GetLocalTimeStamp on the client host. See the
example in figure below.

Figure B.3: No background time synchronization. Application 1 and TETServer share the
same ttime the same time stamp by default.

• Synchronization is required and there are different threads or processes on the same
client host that needs the same time base. Call Tet_Connect with TET_SYNC_LOCAL
and TT_GetLocalTimeStamp on the client host. Any process or thread, using the same
ttime DLL, shares the same time compatible with the gaze data time stamp. See the
example in figure below.

APPENDIX B. TIME SYNCHRONIZATION 103

Figure B.4: Synchronization is required and Application 2 is not connected to the TETServer
but needs to use compatible time stamp format. The synchronization to use on Host 1 is
TET_SYNC_LOCAL.

• Synchronization is required and processes that needs to share the same time base
is running on different hosts. Call Tet_Connect with TET_SYNC_SERVER and
TT_GetServerTimeStamp on the client host. Only processes and threads that are
connected to the same TETServer share the same time. That is, a thread call-
ing TT_GetServerTimeStamp must have made a successful Tet_Connect with the
TET_SYNC_SERVER parameter. See the example in figure below.

Warning! Be aware of that the threads within a process have their own time
context. This means that if one thread is connected to a TETServer using the
TET_SYNC_SERVER and another one is not, they do not have compatible time
stamps (if the server is running on another host). The figure above is still valid if
Application 2 and Application 4 is threads within Application 1 and Application 3
respectively, for instance.

Warning! Some hardware platforms can never run in a hibernation mode or
system sleep mode, since they alter the way the hardware behind the Tobii time
stamps runs.

APPENDIX B. TIME SYNCHRONIZATION 104

Figure B.5: Synchronization is required and Application 1 , Application 3 and Applica-
tion 5 have compatible time stamp. The synchronization to use on Host 1 and Host 2 is
TET_SYNC_SERVER. Note that Application 2 and Application 4 are not Connected to the
server and are not compatible with any other application in this figure.

Appendix C

Finding Available Trackers On The
Network

Taken from Tobii developer’s guide.

This appendix will explain how to use the eye tracker time synchronization feature and
briefly describe why time synchronization and other time issues are a problem.

Implementation details are targeting the Tobii Eye Tracker Low Level API user, but may
give the Tobii Eye Tracker Components API user a good understanding of how things work
as well.

C.1 Introduction

Tobii eyetracker generation TX (e.g. Tobii T60) introduced a new level of plug-and-play eye-
tracker experience. Once plugged in the eyetracker is automatically detected and can be
presented to the user in a list to choose from. This removes the burden from the user to
manually enter an IP address. Access to this functionality for third party programs is avail-
able through both the Tobii Eyetracking Low Level SDK (tet.dll) and the Tobii Eyetracking High
Level SDK (TetComp). The interfaces used to access this functionality are called “Eyetracker
Browser interface”.

C.2 Redistribution Considerations

The document titled “Tobii SDK Redistribution Manual” (redist-manual.pdf) lists the special
steps which need to be taken when redistributing applications using the browser interfaces.

APPENDIX C. FINDING AVAILABLE TRACKERS ON THE NETWORK 106

C.3 Using the Eyetracer Browser Interface

In order to present your user with a list of available eyetrackers your application must start
the Browser service. It is recommended that the service be running for as long as possible
during your application

Appendix D

CD-Rom Contents

Below is the list of what is included in the CD-Rom:

• Readme.txt

• Source code

• Demo project

• Installation guide

Bibliography

[Adolph 2002] ADOLPH, Steve et a.: Patterns for effective use cases. Addison-Wesley,
2002. – ISBN 9780201721843

[Bittner und Spence 2003] BITTNER, Kurt ; SPENCE, Ian: Use case modelling. Addison-
Wesley, 2003. – ISBN 9780201709131

[Cornell 1998] CORNELL, Gary: Visual Basic 6 from the Ground Up. McGraw Hill Profes-
sional, 1998. – ISBN 0-07-882508-8

[Duchowski 2007] DUCHOWSKI, Andrew: Eye Tracking Methodology, Theory and Practice.
Springer, 2007

[Hennessey und Duchowski 2010] HENNESSEY, Craig ; DUCHOWSKI, Andrew T.: An Open
Souce Eye-gaze Interface: Expanding the Adoption of Eye-gaze in Everyday Applications
/ Association for Computing Machinery, Inc. 2010. – Forschungsbericht

[Lankford 2000] LANKFORD, Chris: Gazetracker: Software designed to facilitate eye move-
ment analysis. 2000. – URL http://www.cnbc.cmu.edu/~tai/readings/
active_vision/gaze_tracker.pdf

[MSDN 2011] MSDN, Microsoft: DataSet Class. 2011. – URL http://msdn.
microsoft.com/en-us/library/system.data.dataset.aspx

[Nielsen 1994] NIELSEN, Jakob: Usability Engineering. Morgan Kaufmann, 1994. – ISBN
0-12-518406-9

[Salvucci und Goldberg 2000] SALVUCCI ; GOLDBERG: Identifying fixations and saccades
in eye-tracking protocols. 2000. – URL http://portal.acm.org/citation.
cfm?id=355028

[Spakov und Miniotas 2007] SPAKOV, O. ; MINIOTAS, D.: Visualization of Eye Gaze Data
using Heat Maps. 2007. – URL http://itc.ktu.lt/itc362/Spakov362.pdf

http://www.cnbc.cmu.edu/~tai/readings/active_vision/gaze_tracker.pdf
http://www.cnbc.cmu.edu/~tai/readings/active_vision/gaze_tracker.pdf
http://msdn.microsoft.com/en-us/library/system.data.dataset.aspx
http://msdn.microsoft.com/en-us/library/system.data.dataset.aspx
http://portal.acm.org/citation.cfm?id=355028
http://portal.acm.org/citation.cfm?id=355028
http://itc.ktu.lt/itc362/Spakov362.pdf

BIBLIOGRAPHY 109

[Technology 2010] TECHNOLOGY, Tobii: Tobii Studio(tm) Brochure. 2010.
– URL http://www.tobii.com/archive/files/18996/Tobii+Studio+
Brochure.pdf.aspx

[Technology 2011a] TECHNOLOGY, Tobii: Support Page for Tobii X120 Eyetracker. 2011.
– URL http://www.tobii.com/en/analysis-and-research/global/
support-and-downloads/?product=771

[Technology 2011b] TECHNOLOGY, Tobii: Tobii Support and Downloads Page.
2011. – URL http://www.tobii.com/en/eye-tracking-integration/
global/support/

[Technology 2011c] TECHNOLOGY, Tobii: Tobii X120 Eyetracker Product Page. 2011.
– URL http://www.tobii.com/en/analysis-and-research/global/
products/hardware/tobii-x60x120-eye-tracker/

[Technology 2011d] TECHNOLOGY, Tobii: Tobii.com. 2011. – URL http://www.
tobii.com

[Wikipedia 2011a] WIKIPEDIA: ISO/IEC 9126. 2011. – URL http://en.wikipedia.
org/wiki/ISO/IEC_9126

[Wikipedia 2011b] WIKIPEDIA: Multi Document Interface. 2011. – URL http://en.
wikipedia.org/wiki/Multiple_document_interface

http://www.tobii.com/archive/files/18996/Tobii+Studio+Brochure.pdf.aspx
http://www.tobii.com/archive/files/18996/Tobii+Studio+Brochure.pdf.aspx
http://www.tobii.com/en/analysis-and-research/global/support-and-downloads/?product=771
http://www.tobii.com/en/analysis-and-research/global/support-and-downloads/?product=771
http://www.tobii.com/en/eye-tracking-integration/global/support/
http://www.tobii.com/en/eye-tracking-integration/global/support/
http://www.tobii.com/en/analysis-and-research/global/products/hardware/tobii-x60x120-eye-tracker/
http://www.tobii.com/en/analysis-and-research/global/products/hardware/tobii-x60x120-eye-tracker/
http://www.tobii.com
http://www.tobii.com
http://en.wikipedia.org/wiki/ISO/IEC_9126
http://en.wikipedia.org/wiki/ISO/IEC_9126
http://en.wikipedia.org/wiki/Multiple_document_interface
http://en.wikipedia.org/wiki/Multiple_document_interface

List of Figures

2.1 Tobii Studio™’s test design interface . 7
2.2 The length of the Tobii X120 Eye Tracker 9
2.3 The width and height of the Tobii X120 Eye Tracker 9
2.4 Tobii X120 Eyetracker side-view . 10
2.5 Tobii X120 Eyetracker front-view . 10
2.6 Tobii Eyetracking APIs . 13
2.7 Tobii ClearView Trigger APIs . 14

3.1 Use case diagram of the application . 17
3.2 Base function diagram of the custom application 24

4.1 Abstract view of the application. 27
4.2 Component model of the functional architecture. 29
4.3 Functional architecture of the application. 30
4.4 Technical architecture of the application. 31
4.5 Component model of the technical architecture. 32
4.6 TestDesignModule, external view. 33
4.7 TestDesignModule, internal view. 34
4.8 RecordModule, external view. 34
4.9 RecordModule, internal view. 35
4.10 HeatMapModule, external view. 36
4.11 HeatMapModule, internal view. 36
4.12 FixationsModule, external view. 37
4.13 Fixations component, internal view. 38
4.14 ImportExport component, external view. 38
4.15 ImportExportModule, internal view. 39
4.16 DatabaseModule, external view. 40
4.17 DatabaseModule, internal view. 41
4.18 Database design of the application. 42
4.19 Class diagram of the application. 44
4.20 „Design a test” business process. 46

LIST OF FIGURES 111

4.21 „Record a test” business process . 47
4.22 „Visualize data” business process . 49
4.23 Application’s workflow with the supporting modules. 51
4.24 Visual Studio solution explorer for the custom application’s VB project. 54
4.25 User interface of the main window, with a menu (1), a toolstrip (2), a status bar

(3) and the context menu (4). 55
4.26 TestDesign module with tree view, timeline and preview. 56
4.27 The dialog for Web stimulus creation. 57
4.28 Screenshot of the Recording module. 60
4.29 Tobii trackers-specific settings dialog. 61
4.30 Screenshot of the Database module. 72
4.31 Screenshot of the Fixations module. 73
4.32 Settings that are valid for the whole project. 75
4.33 Screenshot of the Heatmap module. 78

5.1 Test result for correct project file structure creation. 85
5.2 Test result for correct slideshow and stimuli design. 87
5.3 Test result for correct heat map generation from fixation data. 88

A.1 Gaze data fields quick reference. 95
A.2 All possible combinations of validity codes. 98

B.1 Synchronization modes. 101
B.2 Synchronization modes. 101
B.3 No background time synchronization. Application 1 and TETServer share the

same ttime the same time stamp by default. 102
B.4 Synchronization is required and Application 2 is not connected to the TET-

Server but needs to use compatible time stamp format. The synchronization
to use on Host 1 is TET_SYNC_LOCAL. 103

B.5 Synchronization is required and Application 1 , Application 3 and Application 5
have compatible time stamp. The synchronization to use on Host 1 and Host
2 is TET_SYNC_SERVER. Note that Application 2 and Application 4 are not
Connected to the server and are not compatible with any other application in
this figure. 104

List of Tables

2.1 Tobii X120 Eye Tracker technical specification 11

3.1 Use case „Design a test” . 18
3.2 Use case „Record and visualize data” . 19

Hiermit versichere ich, dass ich die vorliegende Arbeit im Sinne der Prüfungsordnung nach
§22(4) bzw.§24(4) ohne fremde Hilfe selbständig verfasst und nur die angegebenen Hilfsmit-
tel benutzt habe.

Hamburg, 24.02.2011 Truong Vinh Phan

	1 Introduction
	1.1 Motivation
	1.2 The Tobii Eye Tracker custom application overview
	1.3 Objectives and scope of this report
	1.4 Structure of this report

	2 Used Technologies
	2.1 Tobii Studio™ at a glance
	2.1.1 Test design
	2.1.2 Recording
	2.1.3 Replay
	2.1.4 Analysis and visualisation

	2.2 Tobii™ X120 Eye Tracker
	2.2.1 Overall dimensions
	2.2.2 Technical specification

	2.3 Tobii™ SDK
	2.3.1 TETServer and Eyetracking firmware
	2.3.2 TET API
	2.3.3 TETComp API
	2.3.4 TTime API
	2.3.5 TCVTrigger API

	2.4 Microsoft Visual Studio and Microsoft Visual Basic.NET

	3 Software Requirements
	3.1 Use cases
	3.1.1 Use case ,,Design a test''
	3.1.2 Use case ,,Record and visualize data''

	3.2 Functional requirements
	3.2.1 Test design
	3.2.1.1 Test subject
	3.2.1.2 Stimulus

	3.2.2 Calibration and recording
	3.2.2.1 Calibration
	3.2.2.2 Recording

	3.2.3 Visualization and analysis
	3.2.4 Saving and restoring work data
	3.2.5 Import and export of data

	3.3 Non-functional requirements
	3.3.1 Application usability
	3.3.2 Application reliability
	3.3.3 Application efficiency
	3.3.4 Application maintainability

	3.4 Base functions
	3.5 Prospects/Expansion possibilities

	4 Application Design and Implementation
	4.1 Application design
	4.1.1 Some concepts
	4.1.2 Functional architecture
	4.1.3 Technical architecture
	4.1.4 Component ,,TestDesignModule''
	4.1.4.1 Task and responsibility of the component
	4.1.4.2 External view of the component
	4.1.4.3 Internal view of the component

	4.1.5 Component ,,RecordModule''
	4.1.5.1 Task and responsibility of the component
	4.1.5.2 External view of the component
	4.1.5.3 Internal view of the component

	4.1.6 Component ,,HeatMapModule''
	4.1.6.1 Task and responsibility of the component
	4.1.6.2 External view of the component
	4.1.6.3 Internal view of the component

	4.1.7 Component ,,FixationsModule''
	4.1.7.1 Task and responsibility of the component
	4.1.7.2 External view of the component
	4.1.7.3 Internal view of the component

	4.1.8 Component ,,ImportExportModule''
	4.1.8.1 Task and responsibility of the component
	4.1.8.2 External view of the component
	4.1.8.3 Internal view of the component

	4.1.9 Component ,,DatabaseModule''
	4.1.9.1 Task and responsibility of the component
	4.1.9.2 External view of the component
	4.1.9.3 Internal view of the component

	4.1.10 Database layout

	4.2 Class diagram and business processes
	4.2.1 Class diagram
	4.2.2 Business Processes
	4.2.2.1 Business process ,,Design a test''
	4.2.2.2 Business process ,,Record a test''
	4.2.2.3 Business process Visualize data''

	4.3 Implementation
	4.3.1 Setting up the working environment
	4.3.2 General workflow
	4.3.3 Storage files
	4.3.4 Fixation detection
	4.3.5 Implementing the modules.
	4.3.5.1 Namespace ,,MainWindow''
	4.3.5.2 Namespace ,,Module.TestDesign ''
	4.3.5.3 Namespace ,,Module.Recording''
	4.3.5.4 Namespace ,,Module.Database''
	4.3.5.5 Namespace ,,Module.Fixations''
	4.3.5.6 Namespace ,,Module.Heatmap''
	4.3.5.7 Namespace ,,Module.ImportExport''

	4.3.6 Implementing the Web stimulus
	4.3.7 Exception handling

	5 Application Testing
	5.1 Testing functional requirements
	5.1.1 Test case 1: Create a new experiment
	5.1.2 Test case 2: Slideshow design and record
	5.1.3 Test case 3: Heat map generation

	5.2 Testing non-functional requirements

	6 Summary
	6.1 Conclusion
	6.2 Future work

	7 Glossary
	A Tobii's Gaze Data
	A.1 Data Fields
	A.2 Time Stamp
	A.3 Gaze Target Position
	A.4 Eye Position
	A.5 Distance
	A.6 Pupil Size
	A.7 Validity Code

	B Time Synchronization
	B.1 Background
	B.2 Selected Methods
	B.3 Available Synchronization Options
	B.4 What Synchronization To Be Used

	C Finding Available Trackers On The Network
	C.1 Introduction
	C.2 Redistribution Considerations
	C.3 Using the Eyetracer Browser Interface

	D CD-Rom Contents

