

Faculty of Engineering and Computer Science Fakultät Techchnik und Informatik

Department of Computer Science Department Informatik

EADS Innovation Works UK

Master Thesis

Parham Vasaiely

Model-Based Design, Verification and Validation of Systems

using SysML and Modelica

II

Parham Vasaiely

Model-Based Design, Verification and Validation of Systems

using SysML and Modelica

 Masterarbeit eingereicht im Rahmen der Masterprüfung

im Studiengang Master Informatik

am Department Informatik

der Fakultät Technik und Informatik

der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer : Prof. Dr. Bettina Buth

Zweitgutachter : Prof. Dr. Zhen Ru Dai

Abgegeben am 24.08.2011

III

Parham Vasaiely

Title of the thesis

Model-Based Design, Verification and Validation of Systems using SysML and Modelica

Keywords

SysML, Modelica, Simulation, System, Model-based Engineering, Systems Engineering,

Verification, Validation, Test, Test Framework, TTCN-3, UTP

Abstract

The increasing complexity of modern technical systems is challenging the system engineering domain

extremely. Therefore the International Council on Systems Engineering (INCOSE) identified the Model-

Based Systems Engineering (MBSE) as the key technology for successful systems engineering in the future.

This work is a step towards the MBSE paradigm. The approach presented in this work is to combine the

descriptive power of SysML and the simulation capabilities of Modelica, to develop an executable design

model, for early prototyping, verification and validation of systems. A test specification and implementation

language will be developed in Modelica, based on the standardized test specification language TTCN-3. It

can be used as a test model framework. As a second objective, this work is based on well defined standard

technologies. The reuse of existing technologies will not only support their global understanding and

dissemination, but also reduce time and cost of developing and of finding acceptance by developers in

projects.

Parham Vasaiely

Thema der Masterarbeit

Model-basiertes Design, Verifikation und Validierung von Systemen unter Verwendung der SysML

und Modelica

Stichworte

SysML, Modelica, Simulation, System, modell-basierte Entwicklung, Systementwicklung,

Verifikation, Validierung, Test, Test Framework, TTCN-3, UTP

Kurzzusammenfassung

Die steigende Komplexität von modernen, technischen Systemen stellt eine extreme Herausforderung für die

Systementwicklung dar. Deshalb hat das International Council on Systems Engineering (INCOSE) die

model-basierte Systementwicklung (MBSE) als die Schlüsseltechnologie für die erfolgreiche Entwicklung von

Systemen in der Zukunft identifiziert. Diese Arbeit kombiniert die Modellierungssprache SysML und die

Simulationssprache Modelica, um ein ausführbares Design Model zu entwickeln, welches für erste

Prototypen und der Verifikation und Validierung von Systemen verwendet werden kann. Eine Test

Spezifikations- und Implementierungssprache in Modelica wurde auf der Basis von TTCN-3 Konzepten

entwickelt. Diese kann als Test Model Framework verwendet werden. Des Weiteren werden in diesem

Ansatz ausschließlich standardisierte Technologien verwendet. Die Verwendung von Standards reduziert

nicht nur die Projektzeit und Kosten, sondern hilft deren Verständnis zu erhöhen und steigert damit die

Chancen dieses Ansatzes in Projekten akzeptiert zu werden.

IV

Acknowledgments

First of all I must thank my family because of their support and love. Especially my mom,

Soudabeh has always believed in me. Her optimism and positivity is my moving spirit. Over all

these years, she has been my most important source of support.

I must thank EADS Germany as well as EADS UK, for their very professional support. Joining the

EADS was surely the best decision I ever made, since this company is responsible for many

important inventions of our modern world and is pioneer in so many aspects.

Finally, I am grateful for the tools and academic software licenses provided by Microsoft, IBM, the

Eclipse Foundation and OpenModelica.

V

Table of Contents

I. List of Figures .. VII

II. List of Tables .. IX

III. Glossary ... XI

1. Introduction .. 1

1.1. Background ... 1

1.2. Objective .. 2

1.3. Thesis Structure .. 4

2. State of the Art ... 5

2.1. Modelica .. 5

2.1.1. The Modelica application area ... 5

2.1.2. OpenModelica .. 6

2.2. SysML .. 6

2.2.1. IBM Rational Rhapsody ... 7

2.3. Verification and Validation ... 8

2.3.1. The Testing and Test Control Notation version 3 (TTCN-3) ... 9

2.3.2. V-Model XT .. 9

2.3.3. Black-Box Testing .. 10

3. Demonstration System ... 12

3.1. The Aircraft Water Tank System ... 12

3.2. Possible System and Liquid Tank States ... 13

3.2.1. System states represented in the SysML State Machine Diagram 15

3.3. Use Case: Filling Tanks of the Aircraft Water Tank System .. 16

3.3.1. Use Case Specification as Text ... 16

3.3.2. Use Case Specification as SysML Diagram .. 17

4. System Design with SysML and Modelica .. 18

4.1. Transformation Approach between SysML and Modelica .. 19

4.1.1. SysML and Modelica Mapping of Language Elements ... 20

4.1.2. Additional Modelica Syntax as SysML Stereotypes .. 24

4.1.3. SysML Parametric to Modelica Equation .. 26

4.2. SysML to Modelica Transformation Application using the Example Model 28

4.2.1. System structure with SysML Package Diagram .. 28

4.2.2. System structure with SysML Block Definition Diagram ... 29

4.2.3. System structure with SysML Internal Block Diagram .. 36

4.2.4. Block Definition Diagrams of the constraint blocks ... 38

4.2.5. Parametric Diagrams of the parametric structure ... 41

4.3. Automated Modelica Code Generation ... 45

VI

5. Modelica as Test Specification and Implementation Language.. 46

5.1. Modelica and TTCN-3 ... 46

5.2. TTCN-3 Core Language Definitions and Concepts .. 47

5.2.1. TTCN-3 Built-In Data Types and Values ... 47

5.2.2. TTCN-3 Test Structure Definitions .. 49

5.2.3. TTCN-3 Test Behaviour Definitions ... 50

5.3. Modelica4Testing: A Test Model Framework for Modelica .. 51

5.3.1. Modelica4Testing Test Structure Definitions ... 53

5.3.2. Modelica4Testing Test Behaviour ... 58

5.3.3. Modeica4Testing Verdict Type and Values ... 62

5.3.4. The Verdict Mechanism ... 62

5.4. Modelica4Testing Meta-Model and Scope ... 65

5.5. The Modelica4Testing Test Model Framework .. 67

5.5.1. Modelica4Testing_Library .. 67

5.5.2. Modelica4Testing Verification and Validation Model Skeletons 68

6. Application Example of System Level Testing .. 71

6.1. OpenModelica as Simulation and Test Execution Tool .. 72

6.2. Test Case Specification .. 73

6.2.1. Test Case Specification as Text .. 73

6.2.2. Test Case implemented in Modelica4Testing ... 74

6.3. System Simulation and Test Execution .. 75

6.3.1. System under Test Preparation ... 75

6.3.2. Test Execution and Evaluation Process .. 76

7. Conclusions and Future Work ... 79

7.1. Conclusions ... 79

7.2. Future Work ... 80

IV. References .. XI

V. Appendix .. XVI

Appendix A. Modelica design model code of Aircraft Water Tank System XVI

Appendix B. Test model code developed in Modelica4Testing .. XIX

Appendix C. Approach of mapping UTP to Modelica4Testing ... XXIII

a. UTP to Modelica4Testing Test Structure ... XXV

b. UTP to Modelica4Testing Test Behaviour ... XXV

c. UTP to Modelica4Testing Test Data and Time Mechanism ... XXVII

VII

I. List of Figures

Figure 1-1 High Level Approach of the Model-Based Design, Verification & Validation Process 3

Figure 2-1 OMG Illustration of the Relationship between SysML 1.2 and UML2 6

Figure 2-2 OMG Illustration of the SysML Diagram Types ... 7

Figure 2-3 V-Model XT... 10

Figure 2-4 Black-Box Testing Environment and Components .. 11

Figure 3-1 Aircraft water tanks with continuous controllers connected together 13

Figure 3-2 Possible states of tanks during the filling process ... 13

Figure 3-3 System states represented as a SysML state machine .. 15

Figure 3-4 SysML Use Case Diagram: Filling up Tanks with Fresh Water from a Tanker 17

Figure 4-1 Level of Abstraction in Systems- Engineering using the V-Modell XT 18

Figure 4-2 SysML and Modelica transformation approach ... 19

Figure 4-3 List of Stereotypes in Rhapsody .. 26

Figure 4-4 Aircraft Water Tank System Package Structure using SysML Package Diagrams 28

Figure 4-5 ReadSignal FlowSpecification ... 29

Figure 4-6 ActuatorSignal FlowSpecification .. 30

Figure 4-7 LiquidFlow FlowSpecification ... 30

Figure 4-8 ModeSignal FlowSpecification ... 30

Figure 4-9 StatusSignal FlowSpecification .. 31

Figure 4-10 FlowLevelSignal FlowSpecification .. 31

Figure 4-11 BaseController Block .. 31

Figure 4-12 PIDcontinuousController Block .. 32

Figure 4-13 PIcontinuousController Block ... 32

Figure 4-14 LiquidTank Block .. 34

Figure 4-15 ControlUnit Block .. 34

Figure 4-16 AircraftWaterTankSystem Block .. 35

Figure 4-17 BBD Aircraft Water Tank System with PID continuous controllers 35

Figure 4-18 IBD Aircraft Water Tank System using PID ... 36

Figure 4-19 BDD Constraint Blocks of Control Unit .. 38

Figure 4-20 BDD Constraint Blocks of Liquid Tank... 39

Figure 4-21 BDD Constraint Blocks of BaseController ... 40

Figure 4-22 BDD Constraint Blocks of PID Continuous Controller ... 40

Figure 4-23 PAR Liquid Tank .. 41

Figure 4-24 PAR Control Unit .. 43

Figure 4-25 PAR BaseControler and PIDcontinuousController .. 44

Figure 4-26 Automated Code Generation as a Key Feature for the Application in Practice 45

VIII

Figure 5-1 JUnit and TTCN-3 in relation to the V-Model XT ... 46

Figure 5-2 Modelica and Modelica4Testing Modelling Layers .. 51

Figure 5-3 MathModelica Simple Modelica Meta-Model ... 52

Figure 5-4 Modelica4Testing Overview of SUT and its Components ... 55

Figure 5-5 Modelica4Testing Overview of Test System Configuration ... 57

Figure 5-6 Modelica4Testing Overview of Test Case and its Stimulation and Observation Parts ... 59

Figure 5-7 Modelica4Testing Verdict Mechanism to assign a local test case verdict 63

Figure 5-8 Modelica4Testing Assigning Overall Verdict: Single Test Case 64

Figure 5-9 Modelica4Testing Assigning Overall Verdict: Test Suite with independent Test Cases 65

Figure 5-10 Modelica4Testing Assigning Overall Verdict: Test Suite with dependent Test Cases . 65

Figure 5-11 Modelica4Testing Meta-Model: Test Model Framework for Modelica 66

Figure 5-12 Modelica4Testing Hierarchical Scope ... 67

Figure 6-1 Black-Box view of the Aircraft Water Tank System as the SUT 71

Figure 6-2 Executing the Test Model and the SUT using the Modelica Tool OpenModelica 72

Figure 6-3 Eclipse based Simulation and Test Environment for OM: Management View 72

Figure 6-4 Eclipse based Simulation and Test Environment for OM: Result View 73

Figure 6-5 Copy of AWTS State Machine described in section 3.2.1. .. 73

Figure 6-6 Simulation Results for a correct Model, Test Case is Pass .. 77

Figure 6-7 Simulation Results for a incorrect Model, the Test Case is Fail 77

Figure 6-8 Simulation Results for the first test session in detail ... 78

Figure 6-9 Simulation Results for the second test session in detail ... 78

Figure 7-1 Illustration of the test model used in the M4T approach ... 79

Figure 7-2 Including the UML2 Testing Profile as Future Work .. 80

Figure V-1 OMG illustreation of the UTP Meta-Model (Test Architecture and Behavior)XXIV

IX

II. List of Tables

Table 1 SysML Package  Modelica Package .. 20

Table 2 SysML Block  Modelica Block ... 21

Table 3 SysML Attribute  Modelica Variable .. 21

Table 4 SysML Part  Modelica Variable (Part) .. 21

Table 5 SysML Association (Part)  Modelica Syntax Element .. 21

Table 6 SysML FlowSpecification  Modelica Connector ... 22

Table 7 SysML Flow Port Node  Modelica Instance of Connector .. 22

Table 8 SysML Atomic Flow Port Node  Modelica Instance of Connector 22

Table 9 SysML Connector  Modelica Connection ... 22

Table 10 SysML Flow (FlowDirection)  Modelica Causality of connector instance 23

Table 11 SysML Inheritance (Gen/Spec)  Modelica extends .. 23

Table 12 SysML Datatype Double  Modelica Datatype Real .. 23

Table 13 SysML Description  Modelica Comment ... 23

Table 14 SysML Stereotype <<abstract>> for Modelica partial .. 24

Table 15 SysML Stereotype <<variable>> for Modelica variability and unit 25

Table 16 SysML Stereotype <<extendsRelation>> Modelica modification of inherit variable value 25

Table 17 SysML Stereotype <<composite>> for Modelica instance modification 26

Table 18 SysML Parametric elements .. 27

Table 19 TTCN-3 Basic Type Integer .. 47

Table 20 TTCN-3 Basic Type Float ... 47

Table 21 TTCN-3 Basic Type Boolean .. 48

Table 22 TTCN-3 Basic Type Verdicttype ... 48

Table 23 TTCN-3 Structured Type Record ... 48

Table 24 TTCN-3 Structure Definition: Module ... 49

Table 25 TTCN-3 Structure Definition: System under Test (SUT) ... 49

Table 26 TTCN-3 Structure Definition: Main Test Component ... 49

Table 27 TTCN-3 Structure Definition: Parallel Test Component ... 49

Table 28 TTCN-3 Structure Definition: Test System Interface ... 49

Table 29 TTCN-3 Structure Definition: Test Configuration ... 49

Table 30 TTCN-3 Structure Definition: Part Mappings ... 50

Table 31 TTCN-3 Structure Definition: Port Connections ... 50

Table 32 TTCN-3 Behaviour Definition: Test Case ... 50

Table 33 TTCN-3 Behaviour Definition: Module Control Part ... 50

Table 34 TTCN-3 Behaviour Definition: Test Execution ... 50

Table 35 TTCN-3 Behaviour Definition: Test Verdict (local and overall) .. 51

X

Table 36 Modelica4Testing Test Model .. 53

Table 37 Modelica4Testing Test Context .. 53

Table 38 Modelica4Testing Design Model .. 54

Table 39 Modelica4Testing Test System Interface ... 54

Table 40 Modelica4Testing SUT ... 55

Table 41 Modelica4Testing Test System .. 55

Table 42 Modelica4Testing Test Component ... 56

Table 43 Modelica4Testing MTC ... 56

Table 44 Modelica4Testing PTC ... 57

Table 45 Modelica4Testing Test Configuration ... 57

Table 46 Modelica4Testing Port Connection .. 58

Table 47 Modelica4Testing Test Case .. 58

Table 48 Modelica4Testing Test Case Stimulator .. 59

Table 49 Modelica4Testing Test Case Stimulator Function ... 60

Table 50 Modelica4Testing Test Case Evaluator ... 60

Table 51 Modelica4Testing Test Case Evaluator Function .. 61

Table 52 Modelica4Testing Test Case Evaluator Model .. 62

Table 53 Modelica4Testing Verdicttype .. 62

Table 54 Modelica4Testing Verdicttype possible Values .. 62

Table 55 Modelica4Testing Test Case Verdict Precondition .. 63

Table 56 Modelica4Testing Test Case Verdict Post-Condition .. 63

Table 57 Modelica4Testing Test Case Verdict SUT Behaviour .. 63

Table 58 Modelica4Testing Overwriting Rules for the Verdict .. 64

Table 59 Modelica4Testing Verdict Mechanism element order and implementation in Modelica ... 64

Table 60 Test Case implementation in Modelica4Testing, Stimulator Part 74

Table 61 Test Case implementation in Modelica4Testing, Evaluator Part 75

Table 62 Liquid Tank with correct implemented tank mode equation .. 76

Table 63 Liquid Tank with incorrect implemented tank mode equation.. 76

Table 64 Attributes as graphs in the simulation result plot ... 76

Table 65 UTP to Modelica4Testing Test Structure .. XXV

Table 66 UTP to Modelica4Testing Test Behaviour ... XXVII

Table 67 UTP to Modelica4Testing Test Data and Time Mechanism .. XXVII

XI

III. Glossary

AWTS Aircraft Water Tank System

BBD Block Definition Diagram

DASSL Differential/Algebraic System Solver

EADS European Aeronautic Defence and Space Company

EMF Eclipse Modeling Framework

ETSI European Telecommunications Standards Institute

FSM Finite State Machine

GUI Graphical User Interface

IBD Internal Block Diagram

IEEE The Institute of Electrical and Electronics Engineers

INCOSE International Council on Systems Engineering

IS Interactive Simulation

M4T Modelica4Testing

MBSE Model-Based Systems Engineering

MTC Main Test Component

OM OpenModelica

OMC OpenModelica Compiler

OMG Object Management Group

OMI OpenModelica Interactive

OSMC Open Source Modelica Consortium

PAR Parametric Diagram

PID proportional–integral–derivative

PoC Point of Control

PoO Point of Observation

PTC Parallel Test Component

SM State Machine

SRS System Requirements Specification

SUT System under Test

SysML Systems Modelling Language

TC Test Case

TSI Test System Interface

TTCN-3 The Testing and Test Control Notation version 3

TTCN-3 CL TTCN-3 Core Language

UC Use Case

UI User Interface

UP Unified Software Development Process

UTP UML2 Testing Profile

VVT Verification, Validation and Test

XML Extensible Markup Language

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 1

1. Introduction

1.1. Background

The increasing complexity of modern technical systems, for example used in the aerospace or

defence industry, and the fact that these systems are designed and manufactured in distributed,

collaborative engineering teams, issue a challenge to the systems engineering discipline. The

higher level of complexity is coupled to the increasing number of involved technologies, the

increasing degree of automation, and the fact that software and hardware components are strongly

coupled. For example the Airbus A380-800, as one of the largest passenger aircrafts in the world,

has about 4.5 million components and parts distributed over 73 m of length. Not only is the aircraft

built in a distributive manner in France, Germany, Spain, and the United Kingdom, it also has many

suppliers involved in the development process.

The International Council on Systems Engineering (INCOSE) [26] identified the Model-Based

Systems Engineering (MBSE) [7] as the key technology for successful system engineering in the

future. But model-based engineering was already in use, as a standard method of engineering, in

many areas. However, each domain does have its own representation of domain specific data. For

example, the control system and electrical engineering disciplines are using block diagrams,

representing special elements like resistors and conductors and their relations [33], or the software

engineering discipline which is using the Unified Modelling Language (UML) [28] to describe

software components and their operations graphically. All these models are very efficient and

useful when communicating a problem within the same domain, but when trying to communicate

with engineers from other disciplines, these representations are getting useless to communicate a

problem. So there was the need for a standardized notation. This notation should describe system

requirements and system design at any level of abstraction. In 2007, the Object Management

Group [27], as the leading consortium aimed at setting standards for model-based engineering,

announced the availability of such a language. The Systems Modelling Language (SysML) [29]

was developed in order to support communication among the domains involved in the same

engineering process by defining a standardized graphical modelling language.

Another main benefit of the MBSE approach is the simulation of systems. The simulation of system

models in term of early prototyping or verification and validation, is one of its most powerful

features [2]. Since SysML does not describe an action language it is up to a SysML modelling tool

to provide the translation to an executable programming language, in order to make SysML models

executable. For example, the IBM SysML tool Rational Rhapsody provides code generation from

SysML models and enables simple interactive simulation of models. But default programming

language are not dedicated to provide continues simulation of complex equation systems. In turn,

Modelica [23] is a well-defined object oriented modelling language which is dedicated to the

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 2

simulation of physical systems. Putting together SysML and Modelica gives a powerful combination

for modelling and simulation of complex systems at any stage of system development.

The application of this combination in term of early prototyping using simulation has been proved in

the work [8]. The work presents an approach of translating a SysML model into Modelica, to be

simulated non-interactively as well as interactively. However a specification of using SysML and

Modelica in the term of verification and validation is missing. Many technologies and methods to be

used in the term of verification and validation of systems do already exist and have been

standardized, so there is no need to develop new ones as long as the existing methods have not

been used exhaustively. These standards are defined by IT standardization organizations like the

Institute of Electrical and Electronic Engineers (IEEE) [30] or the Object Management Group

(OMG) [27]. Since these standards are designated for re-use, they are specified for a more general

term rather than a domain specific problem.

1.2. Objective

This work will support the application of the model-based systems engineering (MBSE) paradigm

in the subareas of model-based design as well as model-based verification and validation. It

combines the descriptive power of OMG SysML with the simulation power of Modelica. The

approach developed in this work enables the creation of executable system design models, in

order to confirm a system model and a prototype against the system specification requirements.

The verification and validation process is done by test simulation. Based on various definitions

available in the literature, we define test simulation as the process of designing and creating a

computerised model of a system for the purpose of conducting various tests in order to evaluate

the behaviour of the corresponding real system under a given set of conditions. These tests will be

executed using a specially developed Modelica based test specification and implementation

language, which has adopted TTCN-3 Core Language concepts for testing. The application of this

approach will focus on technical systems, used in the aerospace or defence industry. The

verification and validation approach aims the functional system design level of a system [9].

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 3

Figure 1-1 High Level Approach of the Model-Based Design, Verification & Validation Process

The Figure 1-1 illustrates the whole approach to make the concepts more visual. The developed

Model-Based Design, Verification & Validation process, presented in Figure 1-1, can be divided

into the following tasks:

1. Create a system design in SysML using the system requirements specification (SRS).

2. Generate Modelica code in order to have an executable design model.

3. Define or derive a system test model in the Modelica4Testing Language using the SRS and

the Requirements and Behavior diagrams of the SysML design model, in parallel to the first

task. This test model can be used as an executable test model.

4. Execute the test model in order to confirm the implemented prototype against the SRS

using functional test methods like black-box testing.

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 4

1.3. Thesis Structure

This work can be divided into four logical parts containing different chapters and a set of

appendices as described below:

Part I: Introduction and Project Overview

Chapter 1. Introduction starts by describing the system engineering discipline and its

challenges. It represents the purpose, the content and the structure of the paper.

Chapter 2. “State of the Art” is a short introduction to the technologies and languages

used in the context of model-based design, verification and validation of technical systems.

Chapter 3. “Demonstration System” represents the used demonstration system and its

components. Also testable, respectively simulative requirements and use cases of the

example system will be presented in SysML.

Part II: Model-Based System Design

Chapter 4. “System Design with SysML and Modelica” represents the system design in

SysML and includes the translation from SysML into Modelica, in order make the design

model executable. This approach will be applied by translating the demonstration model.

Part III: System Verification and Validation

Chapter 5. “Modelica as Test Specification and Implementation Language” presents

an approach to use Modelica as a test execution language. In addition a test model

framework will be presented. This model framework adopts standardized TTCN-3 Core

Language concepts to Modelica, in order to make the test specification more acceptable.

Part IV: Application Example and Conclusion

Chapter 6. “Application Example of System Level Testing” shall represent the

developed approaches to be applied in the verification and validation of the example

system. This includes dynamic testing of the functional requirements with black-box tests.

Chapter 7. “Conclusions and Future Work” summarizes the paper and provides future

work directions.

Appendix A: “Modelica design model code of Aircraft Water Tank System” includes the entire

 Aircraft Water Tank System as a design model, represented in Modelica code.

Appendix B: “Test model code developed in Modelica4Testing” includes the entire

 Aircraft Water Tank System test model, represented in Modelica4Testing.

Appendix C: “Approach of mapping UTP to Modelica4Testing” represents a mapping

 approach to translate UML2 Testing Profile structure and architecture elements into

 Modelica4Testing elements. This approach can be used to derive a test model from UTP.

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 5

2. State of the Art

The purpose of this chapter is to list the state of the art applications, technologies, methods and

languages which are used in the context of model-based design, verification and validation in the

systems engineering discipline. This is done by presenting the methods, techniques and

technologies and afterward setting them in context.

2.1. Modelica

The following shall give a short introduction to the Modelica language, its features and some

application area examples. In addition, an open source Modelica simulation environment will be

introduced. This environment offers non-interactive as well as interactive real-time simulation.

Modelica is an object oriented programming language. It is based on the declarative programming

paradigm which expresses the logic of a computation by describing what the application should

accomplish without describing its control flow. This minimizes side effects which are absolutely

unrequested during a simulation phase [2].

Models in Modelica are described mathematically using differential, algebraic and discrete

equations. Modelica tools will have enough information to solve every particular variable

automatically, at assigned the given equations. Therefore the Modelica system and component

models are perfectly suited to be simulated by a simulation environment.

By the “Simulation in Europe Basic Research Working Group” the endeavours for the Modelica

language started in 1996 within ESPRIT Project. The final language specification was submitted in

1999. The Modelica Association was founded for further development and promotion of Modelica

which is an open source language [32]

In addition to programming Modelica code, graphical modelling capabilities are given using the

Modelica Standard Library [33]. To do so components from the standard Modelica library can be

used or especially constructed domain specific components.

2.1.1. The Modelica application area

Modelica can be used for modelling large, complex and heterogeneous physical systems, for

example automotive or aerospace applications involving mechanical, electrical, hydraulic and

control subsystems or process oriented applications and generation.

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 6

2.1.2. OpenModelica

Since this work uses Modelica as a textual based programming language there is a need for a

compiler and a simulation runtime to execute the code.

There are several modelling and simulation environments on the market, which offer a code and

component based modelling as well as the simulation of a created model. The most popular

candidates are Dymola [34], MathModelica [35] and OpenModelica latter is the only open source

and non-commercial tool on the market.

OpenModelica (OM) is developed and supported by the Linköping University [38] and the Open

Source Modelica Consortium (OSMC) [37]. The OpenModelica environment consists of several

interconnected subsystems. The goal of the project is to create a complete modelling, compilation

and simulation environment based on free software distributed in source code and executable form

which is intended for use in research, teaching, and industry. The OpenModelica environment is a

collection of tools, OpenModelica Tools. After instantiating the models can be simulated and the

results plotted as a chart. A full tutorial is available based on the Modelica book by Peter Fritzson

[2] which introduces the Modelica language, and an Eclipse plug-in (MDT) supports professionals

while creating Modelica models. For more information on components please refer to the

OpenModelica website [10] or “OpenModelica System Structure” [11].

2.2. SysML

The Systems Modeling Language (SysML) [29] is a general-purpose graphical modelling language

for the Systems-Engineering domain. It is used for specifying, analyzing, designing, and verifying

complex systems. The language provides graphical representations with a semantic foundation for

modelling system requirements, behaviour, structure, and parametric, which is used to integrate

with other engineering analysis models.

Figure 2-1 OMG Illustration of the Relationship between SysML 1.2 and UML2

The SysML is a profile of the Unified Modeling Language 2 (UML) [1] and represents a subset of

extensions needed to satisfy the requirements of the UML for Systems Engineering. The Figure

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 7

2-1 presents a subset of UML which is not used by SysML, a subset of UML which is used without

extensions (UML4SysML) and a set of elements which are only available in the SysML 1.2 profile.

Figure 2-2 OMG Illustration of the SysML Diagram Types

The taxonomy of SysML diagrams is presented in Figure 2-2 OMG Illustration of the SysML

Diagram Types.

The following are the major extensions of SysML Diagrams compared to UML Diagrams [1]:

- The Requirements diagram supports requirements presentation in tabular or in graphical

notation, allows composition of requirements and supports traceability, verification and

satisfaction of requirements by other system elements.

- The Block diagram extends the Composite Structure diagram of UML 2. This diagram is to

capture system components, their parts and connections between parts. Connections are

handled by means of ports which may contain data flows.

- The Parametric diagram helps perform engineering analysis such as performance analysis.

Parametric diagram contains constraint elements, which define mathematical equation,

linked to properties of model elements.

- Activity diagrams show system behaviour as data and control flows. Activity diagram is

similar to Enhanced Functional Flow Block diagram (EFFBDs), which is already widely

used by system engineers. Activity decomposition is supported by SysML.

For more information about SysML see the OMG SysML website [29] or “A Practical Guide to

SysML” by Sanford Friedenthal, Alan Moore and Rick Steiner [1].

2.2.1. IBM Rational Rhapsody

IBM Rational Rhapsody is part of the IBM Rational tools family, IBMs successful effort to provide

collaborative design and development for systems engineers and software developers [39].

Rational Rhapsody supports users to create real-time or embedded systems and software using

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 8

modelling and simulation techniques. Rational Rhapsody 7.6 is using industry standard languages

for example UML, SysML, AUTOSAR [40] and DoDAF [41]. It can be used to validate functionality

early in development. Rational Rhapsody does have its own SysML Profile implementation which

can differ in some particular ways from the OMG SysML 1.2 specification [12].

In the following the "IBM Rational Rhapsody 7.6" will be designated as "Rhapsody".

2.3. Verification and Validation

The following section should introduce the general verification and validation (V&V) process and its

definition in the systems engineering process, as well as the test process. In addition a test

specification languages and a system development model will be introduced.

The different fields of engineering do have different definitions for Verification, Validation and Test.

For example the Institute of Electrical and Electronic Engineers (IEEE) [30], the world's largest

professional association for the advancement of technology, defines verification, validation and test

(VVT) for hardware and software systems as follows (IEEE – 610 [13]):

- Verification is the process of evaluating a system or component, to determine whether the

products of a given development phase satisfy the conditions imposed at the start of that

phase.

- Validation is the process of evaluating a system or component during or at the end of the

development process, to determine whether it satisfies specified requirements.

- Testing is an activity in which a system or component is executed under specified

conditions, the results are observed or recorded, and an evaluation is made of some aspect

of the system or component.

In the context of modelling there are also variations of definitions. Balci, a noted researcher in the

Modelling and Simulation field, extended the Department of Defence definition for V&V and Test as

follows [24]:

- Model verification is substantiating that the model is transformed from one form into

another, as intended, with sufficient accuracy. Model verification deals with building the

model correctly. The accuracy of transforming a problem formulation into a model

specification or the accuracy of converting a model representation from a micro flowchart

form into an executable computer program is evaluated in model verification.

- Model validation substantiates that the model, within its domain of applicability, behaves

with satisfactory accuracy, consistent with the M & S objectives. Model validation deals with

building an accurate model. An activity of accuracy assignment can be labelled as

verification or validation based on an answer to the following question: In assigning the

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 9

accuracy, “Does the model’s behaviour compare well to the corresponding system

behaviour?” Even if the answer to the question of accuracy is “yes” that does not answer

the question of whether the model is the right one.

- Model testing is determining whether inaccuracies or errors exist in the model. In model

testing, the model is subjected to test data or test cases to determine if it functions properly.

Test failure implies the failure of the model, not the test. A test is devised, and testing is

conducted to perform either validation or verification or both. Some tests are designed to

evaluate the behavioural accuracy or validity of the model, and some other tests are

intended to determine the accuracy of model transformation from one domain into another

(verification).

In this work some additional definitions for testing are used from the IEEE Standards 829 [14] and

1012 [15], as follow:

- Test Run is the execution of a model between a defined interval (t0 – tn) using start and

stop or in real time.

- Test Simulation is defined as the process of designing and creating a computerised model

of a system for the purpose of conducting various tests in order to evaluate the behaviour of

the corresponding real system under a given set of conditions.

2.3.1. The Testing and Test Control Notation version 3 (TTCN-3)

The Testing and Test Control Notation version 3 (TTCN-3) is an international standardized

language, having its roots in the area of testing hardware and software components of IT and

telecommunications systems [16]. The international standard has been developed by the European

Telecommunications Standards Institute (ETSI). TTCN-3 is a test specification and implementation

language to define test procedures for black-box testing of distributed systems.

2.3.2. V-Model XT

The V-Modell is a process model for planning and executing systems engineering projects [9]. The

V-Modell improves project transparency, project management and the probability of success by

defining concrete practices with associated results and responsible Roles. The V-Modell XT is a

further development of the V-Modell 97. In the following the "V-Modell XT" will be designated as

"V-Modell". The V-Modell is designed as guidance for planning and executing development

projects, taking into account the entire system life cycle. It defines the results to be achieved in a

project and describes the actual approaches for developing these results. In addition the V-Modell

specifies the responsibilities of each participant. In addition the V-Model gives guidelines for the

system verification and validation process, by dividing the system in different levels of abstraction.

Each level contains a development task and a parallel test task.

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 10

Figure 2-3 V-Model XT

V stands for "Verification and Validation". The left side of the "V" represents the decomposition of

requirements and creation of system specifications. The right side of the “V” represents the

corresponding test levels for integration of parts and their verification and validation [9].

The following test levels are described by the right side of the V-Model:

Acceptance testing

(A) Formal testing conducted to determine whether or not a system satisfies its acceptance criteria

and to enable the customer to determine whether or not to accept the system.

(B) Formal testing conducted to enable a user, customer, or other authorised entity to determine

whether to accept a system or component.

System testing

Testing conducted on a complete, integrated system to evaluate the system’s compliance with its

specified requirements. The developed methods in this work will mainly range in this level.

Integration testing

Testing in which software components, hardware components, or both are combined and tested to

evaluate the interaction between them.

Component testing

Testing of individual hardware or software components, or groups of related components.

2.3.3. Black-Box Testing

The IEEE is defining Black-Box and Black-Box Testing using the following terms (IEEE 610, [13]):

- Black-Box: A system or component whose inputs, outputs, and general function are known

but whose contents or implementation are unknown or irrelevant.

- Black-Box Testing: Testing that ignores the internal mechanism of a system or component

and focuses solely on the outputs generated in response to selected inputs and execution

conditions.

Black-Box testing is testing using the functional requirements of a SUT, without knowledge of the

internal structure. It uses the SUT inputs as the point of control (PoC) and its outputs as the point

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 11

of observation (PoO). The fundamental difference between Black- and White-Box testing is the fact

that tests do not deal with how a given output is produced, only whether it is the desired and

expected output. The verification, validation and test (VVT) engineer, therefore, focuses only on

the outputs generated in response to selected inputs and execution conditions and ignores the

internal mechanism of the system. Therefore, the VVT engineer does not required any specific

knowledge of the underlying system, and the testing is carried out at the system or individual

subsystem level where the partitioning criteria is based on the system functional specifications [3].

Figure 2-4 Black-Box Testing Environment and Components

Figure 2-4 illustrates the general view of the Black-Box testing over the system under test and the

position of the used artefacts. In the Black-Box view the PoC, which will be used to stimulate the

SUT, as well as the point of observation PoO, which is used to observe the results, are outside of

the SUT.

Finite State Machine Testing

Finite State Machine testing is a possible application of the Black-Box testing approach.

The IEEE is defining Finite State Machines using the following term (IEEE 610, [13]):

- A computational model consisting of a finite number of states and transitions between those

states, possibly with accompanying actions.

The purpose of Finite State Machine (FSM) testing method is mostly to evaluate systems for

proper execution of control functions [3]. FSM modelling is based on automata theory, which

involves the concepts of system states, events, transitions and activities. Engineered systems that

embody FSM philosophy are characterized by a behaviour pattern where, under each state or

mode, the system behaves (e.g., performs activities and generates outputs) in a specified and

unique manner. The system remains in that state until a specific external input or internal event

occurs. When that occurs, and certain conditions are fulfilled, the system transitions into another

state, under which it may perform an entirely different and unique, set of tasks.

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 12

3. Demonstration System

A technical system will be used through this work as an example system, since this work focuses

mainly on this kind of systems. In the following this system is described based on its system

requirements specification (SRS) [14], usually created by a customer or system user. In most

cases this specification is written in an informal natural language, which is not computable. In

chapter 0 of this section, parts of the SRS will be modelled in a formal way using SysML State

Machine Diagrams.

The example of a system is selected based on the following criteria:

- The example system should not be too complex. It should be understandable by readers

without requiring specific technical background.

- The demonstration system should represent a natural physical problem which is not domain

specific.

- The example shall address basic concepts of the Modelica and SysML languages (such as

object-orientation, component-based approach and time-continuous behaviour modelling).

- The demonstration system will be used as proof of concepts throughout this thesis.

- The functional system requirements are suitable to be verified and validated by tests.

3.1. The Aircraft Water Tank System

A passenger aircraft has portable water tanks to provide fresh potable water for washing rooms

and toilets on board. This system will be called aircraft water tank system (AWTS) [42]. The system

contains two tanks which are connected together. The output of the first tank is connected with the

input of the second tank. A liquid source fills the first tank with liquid. Each tank has a continuous

control system, connected to it, which controls the level of liquid contained in the tank to a given

reference level. A proportional–integral- differential (PID) control system [43] will be used by

default. While a liquid source fills liquid into the first tank its continuous controller regulates the

outflow depending on its actual tank liquid level. The same applies to the second tank. In addition a

control unit observes and controls the entire system to prevent fatal failures. The whole process

will be initiated over a user interface. This interface regulates the liquid source flow and the overall

system status.

http://www.dict.cc/englisch-deutsch/passenger.html
http://www.dict.cc/englisch-deutsch/aircraft.html

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 13

Figure 3-1 Aircraft water tanks with continuous controllers connected together

The coupled tank system depicted in Figure 3-1 is the core problem of the demonstration system. It

is based on a frequently used demonstration model, which targets applied physics as well as

control system engineering, among other disciplines [43]. It is also given in the Modelica book by

Peter Fritzson [[2], Page 386]. The simple example model has been enhanced with the

components specified above, to offer more observable, testable and controllable elements, to be

used during the different parts of this work.

3.2. Possible System and Liquid Tank States

A typical technical system, for example from the fields aerospace or defence, has various states

during its life cycle. A system that embodies the state based philosophy behaves under each state

or mode, in a specified and unique manner [1]. The system remains in that state until a specified

event occurs. When that event occurs and expected conditions are fulfilled, the system transitions

into another state.

Figure 3-2 Possible states of tanks during the filling process

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 14

The following list presents the different states of a tank and their impact over the system and the

liquid source if occurred:

- Offline: System is offline and is waiting to be connected with a liquid source.

- Normal: The system tank is in normal condition.

o Liquid Source: The valve is open, so water can flow into the first tank.

o Tank: The level is under the reference level of 70%. In this case only the output from

the tank should be regulated to control this level and to keep it stable.

- Tolerance Margin: Since a control system can’t regulate the level of liquid immediately after

passing the reference level, there is a need for a tolerance margin which can be reached while

the controller is trying to regulate [43]. The tolerance margin is from 70% - 80%.

o In this case the behaviour is the same as the normal state.

- Error Margin: If the liquid level of a tank reaches this margin some error handling tasks must be

initiated.

o Liquid Source: The valve will be closed immediately, so no water can flow into the tank

system anymore until the level is in tolerance or normal again.

o Tank: The level has reached 80% - 95% of the maximum tank level. In this case the

input flow should be closed immediately using a signal to a control unit. But the system

is still online so the tank and its controller can still try to regulate the level.

- Absolute Error Margin: If the liquid level reaches this margin, all emergency tries has been

failed and the system must go offline immediately.

- Liquid Source: The valve will be closed immediately, so no water can flow into the tank system

anymore.

o Tank: No more regulation of the tank level, since the control unit is shutting down the

system.

o System Status: The shut down process will be initialized, so the system can go to the

offline mode. An attendant must regulate the tank levels manually using the output

valve.

o Liquid Source: The valve will be closed immediately, so no water can flow into the tank

system anymore.

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 15

3.2.1. System states represented in the SysML State Machine Diagram

A state machine contains all available system states, transitions and events and their relation to

each other. It is a way to represent the dynamic behaviour of complex systems. In addition a finite

state machine has a finite number of states and transitions between those states. A state machine

diagram represents this information graphically.

Figure 3-3 System states represented as a SysML state machine

A SysML State Machine Diagram, presented in Figure 3-3, is used to specify the runtime behaviour

of a SysML Block, in our case the Aircraft Water Tank System, in terms of its possible states [1].

As the name implies, the main element is a state. A state declares a condition during the runtime of

a system. In addition states have specialisations as initial or final stats. To change between states

a transition is used. Transitions will be collected as paths through the different states. As the last

main element of this diagram, an event dictates which messages are passed on these transitions.

Events can also be implemented as guards, which react if a special condition is reached. A guard

condition is represented in square bracket, for example the condition

“[StatusMonitor.modeOut.value >= 3]” from Figure 3-3. This state chart diagram will be used to

specify a test case later in chapter 6.

The implemented control unit indentifies the different states as the following:

States: Online, Offline

Modes: Normal = 0, Tolerance = 1, Error = 2, Absolute Error = 3

stm [block] Aircraf tWaterTankSystemUsingPID [Aircraf tWaterTankSystemStatesAndModes]

online on off line

of f

on

of f
increaseFlow

normal

increaseFlow

[statusMonitor.modeOut.value >= 1.0]
tolerance

[statusMonitor.modeOut.value >= 1.0]

[statusMonitor.modeOut.value == 0.0][statusMonitor.modeOut.value == 0.0]

[statusMonitor.modeOut.value >= 2.0]
error

[statusMonitor.modeOut.value >= 2.0]

[statusMonitor.modeOut.value <= 1.0][statusMonitor.modeOut.value <= 1.0]

absolute error[statusMonitor.modeOut.value == 3.0]

of f

[statusMonitor.modeOut.value == 3.0]

of f

shutdow nshutdow n

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 16

3.3. Use Case: Filling Tanks of the Aircraft Water Tank System

A use case represents expected functionalities of a system, in order to use this system to perform

a business case. This is done from the respective actor’s user point of view. A use case should

have a predefined goal, in general a business process. Preconditions and post-conditions will

define the conditions to start a business case and the expected results respectively.

This section will represent one main use case, first as natural text and later as a SysML use case

diagram. This use case diagram will be used to specify a test case later in chapter 6.

3.3.1. Use Case Specification as Text

Title: Filling Tanks

Actor: Liquid Tank, Airport Staff

Goal: Filling up tanks with fresh water from a tanker

Trigger: Aircraft enters rendezvous point at the airport area

Preconditions: Aircraft is connected to a docking station. One of the two tanks is not filled with

liquid.

Post conditions: Both water tanks are filled with fresh potable water.

Main Path:

1. One of the two tanks is not filled with fresh water, so the airport staff will call the fresh water

service to send a truck with fresh water.

2. A water tanker will arrive to a rendezvous point near the aircraft.

3. The airport staff connects the water tanker valve to the aircraft water tank system.

4. The airport staff starts the system using a user interface, implemented at the aircraft

fuselage.

5. The first tank will be filled with water. A controller (PI- or PID- controller) is responsible to

control the water level in relation to a reference level. After reaching a specified level water

will also flow into the second tank.

6. The liquid source will be closed if the user set the input flow to zero manually.

7. The system signals to close the valve which is connected to the first tank automatically.

8. The airport staff disconnects the liquid tanker valve from the first tank.

9. The truck driver will drive away from the rendezvous point.

Alternative Path 01:

7. a) The maximum tank level of one tank has been reached.

Alternative Path 02:

7. a) The liquid tanker goes empty.

8. b) The system does not close the valve automatically the airport worker has to close it

manually.

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 17

3.3.2. Use Case Specification as SysML Diagram

This section introduces use case diagrams, which realize a behavioural aspect of the model [1].

The behavioural view has an emphasis on functionality, rather than the control and logical timing of

the system. The use case diagram represents the highest level of abstraction of a view that is

available in the SysML and it is used, primarily, to model requirements and contexts of a system.

Not all steps listed in 3.3.1 will be depicted in a use case diagram, since the purpose of such a

diagram is a more abstract view of the business case.

Figure 3-4 SysML Use Case Diagram: Filling up Tanks with Fresh Water from a Tanker

uc [Package] AWTS_UseCases [ucd_FillTanksWithWaterFromTanker]

Aircraft Water Tank System

Connect liquid

source to

system

Start the

system

Fill system with

liquid

«include» «include»«include» «include»

External_Systems::UserInterface

«external system»

External_Systems::UserInterface

«external system»

External_Systems::UserInterface

«external system»

External_Systems::LiquidSource

«external system»

External_Systems::LiquidSource

«external system»

External_Systems::LiquidSource

«external system»

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 18

4. System Design with SysML and Modelica

As part of the model-based system engineering approach, a system design will be developed as a

model in the OMG SysML. In the area of systems development modelling is a widely accepted part

of engineering. It is used in order to shift complexity and to focus only on particular aspects of a

problem. This level of abstraction makes it easier to solve problems for this aspect. An additional

benefit is that, a model can be used for early prototyping, verification and validation of the system

design [3]. This can be done by ignoring some real world problems, such as cost and time aspects

for developing physical elements or safety critical tasks. Furthermore the fact that things are more

easily un-done, since a model will be created as software, is essential. For example in the

development process of the aircraft water tank system, two different control systems were

available, whereas one controller system was more suitable as the other. Using modelling and

simulation, the incompatible controller could easily be identified and replaced. However, ignoring

real world problems also have its disadvantages, as for instance complex physical laws which can’t

be represented by models and will affect after developing the system in the real world.

When looking at the V-Model XT, the system design used in this work can be assigned to the level

of Functional System Design [9]. In this level more functional aspects of the system requirements

are covered, rather than technical or implementation details. This allows a higher level of

abstraction. Figure 4-1 presents the left hand side of the V-Model and the level of abstraction.

Figure 4-1 Level of Abstraction in Systems- Engineering using the V-Modell XT

A modelling environment is needed to offer a component based rather than visual component

based modelling of systems. IBM Rational Rhapsody is a widely used engineering tool and

available in the version 7.6 [39]. The SysML models in this work are created using Rhapsody.

Since SysML is just a language specification, a tool will implement its own SysML meta-model.

Therefore the used SysML elements are part of the Rhapsody-SysML meta-model. This is

important to know in case of discrepancies with the SysML 1.2 specification.

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 19

4.1. Transformation Approach between SysML and Modelica

As mentioned above the SysML standard does not define any action language 2.2, so that by

default the created model is not executable. However, this work will not just present the system

design as static SysML diagrams, it will also present the design in Modelica, in order to make it

executable for simulation.

Modelica and SysML, like UML, follow the object-oriented paradigm. Since both languages are well

suited and adapted for the modelling of physical systems, the resulting structure is similar [1]. For

example, the main structural unit in SysML is Block (a sub-type of the UML Class) which

corresponds to the Modelica Class in object-oriented sense. However, there are concepts that are

different and have no correspondence between the two languages. In order to enable capturing of

contents that are not present in SysML its extension mechanism (profiles) is used. Profiles allow

extension of the UML/SysML meta-model by means of stereotypes. But since the focus of this

work is to use standardized concepts, the amount of used stereotypes is minimal.

The transformation between the SysML and Modelica languages is based on mapping, which is

one possible formal and systematic approach [17]. The transformation approach focuses on both

languages using their standardized semantic or meta-model, without enhancing or modifying them.

This allows a bi-directional mapping [17], and as a result bi-directional transformation of models,

for example used in reversed engineering [45]. Especially defining a new meta-model respectively

UML profile will be avoided. For this must be mentioned by not focusing on one language to be

prioritises translated, both languages will lose special features. A similar but much simpler

approach was developed in the paper [8], so the actual approach can be seen as a completion and

extension of this work, in order to cover the new SysML 1.2 and Modelica 3.2 specification, as well

as a more generic approach of creating a system design with SysML and Modelica.

Figure 4-2 SysML and Modelica transformation approach

In parallel to this work an OMG working group is developing a further approach of integrating

SysML and Modelica, which can be seen as a related work [44]. The SysML-Modelica Integration

Group is developing an approach of modelling Modelica models with SysML. This means that the

prior translated language is Modelica. Since SysML does not support all Modelica concepts, this

will result in a new SysML profile called “SysML4Modelica”.

The SysML4Modelica approach does have its advantages, as well as disadvantages compared to

the approach of using pure SysML as developed in this work:

- SysML4Modelica is domain specific to physical systems engineering, pure SysML is

domain independent.

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 20

- Using SysML4Modelica a designer or architect must already have knowledge of Modelica.

Using pure SysML it is possible to shift this problem to the tester or developer level where

Modelica equations must be implemented as constraints.

- SysML4Modelica will result in a new profile, this is a risk when thinking of user acceptance

in projects and missing tool support.

- A positive aspect of the SysML4Modelica approach is that many features of modelling with

Modelica are covered, but by trying to bring pure SysML and Modelica together without any

enhancements, some features may get lost, because there is no correspondent element in

SysML and vice versa.

As a summery, SysML4Modelica is very similar to the approach in this work. It is a wider approach,

but not applicable yet.

The following sections present the basic mapping between the SysML and Modelica as well as

additional stereotypes that are defined in order to enable the capturing of Modelica specific

concepts.

4.1.1. SysML and Modelica Mapping of Language Elements

As part of the translation process, mapping is a key task. Mapping two languages means to find

commonalities in both. This process requires a full understanding of the involved languages and

their elements. Therefore a well defined mapping is very important.

The tables below list a selected subset of SysML 1.2 elements, which are used for modelling the

“Aircraft Water Tank System” demonstration model. The mapping table between SysML 1.2 and

Modelica 3.2 consist of four sections:

1. ID of a mapping rule to be referenced at its application in chapter 4.2.2 and 4.2.3. The ID

for mapped elements does have the form “1.x”.

2. SysML (Rhapsody) element which should be mapped.

3. Modelica element which matches at most with the SysML element.

4. The commonality between these elements to confirm the correspondence.

Rule SysML (Rhapsody) Modelica Commonality

ID Package package Packages partition

model elements into

logical groupings.

1.1 A package is the basic unit of

partitioning. SysML packages partition

model elements into logical groupings

to minimize circular dependencies and

support modularisation among them.

In the following mentioned sub

packages are also packages.

Packages in Modelica are used

for logical groupings. Packages

may contain classes such as

model and block, and sub

packages. In the following

mentioned sub packages are

also packages

Table 1 SysML Package  Modelica Package

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 21

Rule SysML (Rhapsody) Modelica Commonality

ID Block block Component

representation as

model element. This

may include both

structural and

behavioural features

as well as containing

all its parts and

properties.

1.2 SysML Blocks defines composite

system entities in SysML. Blocks are

modular units. Each block defines a

collection of features to describe a

component, sub component or system

of interest.

In Modelica an element such as

a component is a class. The

basic class concept is “model”. A

Modelica “block” has the same

properties as a “model” but with

some restrictions. A block

connector instance must have a

specified direction (input, output)

Table 2 SysML Block  Modelica Block

Rule SysML (Rhapsody) Modelica Commonality

ID Attribute Variable Property which contains

data and has a

specified data type.

1.3 Property of a block which contains

data. Since SysML is an executable

language independent of the attribute

type it can be a pre defined basic or a

user defined data type.

Property of a class which

contains data and is from a pre

defined data type. The

variability can be defined as

constant, parameter, continuous

or discrete.

Table 3 SysML Attribute  Modelica Variable

Rule SysML (Rhapsody) Modelica Commonality

ID Part Variable (Part) Property which

represents a sub

component or sub

system.

1.4 A SysML Block may contain a sub

component or sub system which is

also a Block. This sub system is a part

of the higher level Block.

Property of a class which

represents a sub component or

sub system.

Table 4 SysML Part  Modelica Variable (Part)

Rule SysML (Rhapsody) Modelica Commonality

ID Association (Part) Association to

represent the

relationship between

components.

1.5 A connection between a SysML Block

and its internal part. In addition the

multiplicity and type of association is

also given. This type of association

can also be called cardinality.

No corresponding element, but

part of the Modelica syntax to

specify a sub component

relationship.

Table 5 SysML Association (Part)  Modelica Syntax Element

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 22

Rule SysML (Rhapsody) Modelica Commonality

ID Flow Specification connector Definition of ports and

the data flow. This port

can be used to connect

components to each

other.

1.6 A flow Specification defines a set of

input and/or output flows for a non

composite flow port.

A class with restrictions, which

defines a port. This port can be

used to connect components to

each other.

Table 6 SysML FlowSpecification  Modelica Connector

Rule SysML (Rhapsody) Modelica Commonality

ID Flow Port Node Instance of connector Instance of a port

definition, which is part

of a component. It

specifies an interaction

point for a component.

1.7 A flow port node is the actual instance

of a flow specification. It presents an

interaction point where items can flow

into or out of a block. The direction is

indicated by the direction of the arrow

in the Flow Port Node.

The actual port is an instance of

a connector. It is part of a

component and is used to

describe interaction points. Its

direction has to be defined in

the owner class as input or

output.

Table 7 SysML Flow Port Node  Modelica Instance of Connector

Rule SysML (Rhapsody) Modelica Commonality

ID Atomic Flow Port Node Input, Output Definition of a port and

instantiating it without

defining a special type.

This element can be

used if there is only one

data to flow and the

type of the needed

interaction point is only

used once in the model.

1.8 An atomic flow port defines a port and

is also used as its instance. This

element can be used if there is only

one data to flow and the type of the

needed interaction point is only used

once in the model. The direction is

indicated by the direction of the arrow

in the Atomic Flow Port Node.

In Modelica one can define a

variable using a basic type and

specify if it shall be used as a

port by defining the prefix input

or output. But this is not a

recommended solution.

Table 8 SysML Atomic Flow Port Node  Modelica Instance of Connector

Rule SysML (Rhapsody) Modelica Commonality

ID Connector

flow(x,y) (between flowPorts)

Connection

equation connect(x,y)

Specifies interaction

between elements, by

connecting their ports. 1.8 A connector is used to bind two parts

(or ports) and provides the opportunity

for those to interact, although the

connector says nothing about the

nature of the interaction.

The connection equation is a

special equation which specifies

an interaction between

connectors or values of different

components.

Table 9 SysML Connector  Modelica Connection

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 23

Rule SysML (Rhapsody) Modelica Commonality

ID Flow (FlowDirection) Causality of connector instance Specifies the flow

direction between two

connected components

or ports.

Note: Bidirectional flow

is not possible.

1.9 A Flow specifies the direction and type

of exchanged information between

system elements. It allows you to

specify the flow of data and

commands. The direction describes

the flow direction.

In Modelica the available

directions are “input” or “output”.

A port used in a “block” must

have causality.

Table 10 SysML Flow (FlowDirection)  Modelica Causality of connector instance

Rule SysML (Rhapsody) Modelica Commonality

ID Generalisation/Specialisation Inheritance (extends) To support reuse of an in

general specified

component. The definition

can be enhanced to specify

a new component.

Generalisation/Specialisation

may have the same impact

as inheritance.

1.10 To support reuse of an in general

specified component. The definition

can be enhanced to specify a new

component. To do so generalisation

describes a relationship between a

general classifier and a specialized

classifier. The specialised classifier

inherits structure and behaviour of

the general classifier.

To support reuse the

general specification of a

component can be

enhanced to specify a new

component. A block can

inherit structure and

behaviour of another block.

Table 11 SysML Inheritance (Gen/Spec)  Modelica extends

Rule SysML (Rhapsody) Modelica Commonality

ID Double Real A pre defined data type

which to represent

floating point number

values.

1.11 A pre defined basic data type which

represents floating point number

values.

A pre defined data type which

represents floating point number

values. In addition a real

variable may has a set of

attributes such as unit of

measure, initial value, minimum

and maximum value.

Table 12 SysML Datatype Double  Modelica Datatype Real

Rule SysML (Rhapsody) Modelica Commonality

ID Description Comment Describes an element

further more in an

informal way.

1.12 Describes a SysML element further

more in an informal way.

Describes a Modelica element

further more in an informal way.

Table 13 SysML Description  Modelica Comment

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 24

4.1.2. Additional Modelica Syntax as SysML Stereotypes

As mentioned above SysML Stereotypes can be used to adapt and satisfy some semantics of the

executable language.

A stereotypes table may consist of several sections:

1. Rule: ID of a stereotype to be referenced at its application in chapter 4.2.2. The ID for

stereotype elements does have the form “2.x”

2. Applicable to SysML (Rhapsody) element: Since Stereotypes must been applied to

specified language elements this column gives the corresponding SysML element

3. Needed Modelica addition: The reason why this additional stereotype will be needed

4. Benefit/Effect: Describes the benefit of using this additional information and the effect on a

SysML or a Modelica model element.

5. Stereotype name: Represents the name of the created stereotype

6. Tags: A stereotype may contain tags as additional information for example the unit of a

value.

7. Effect: Real impact on an element. This may result as code for example as a prefix.

a. Since Rhapsody 7.2 does not support a SysML abstract block, a Stereotype has to be defined

to specify a block as abstract.

Rule Applicable to SysML

(Rhapsody) element

Needed Modelica addition Benefit/Effect

ID Class (SysML block) partial A block which offers

general structure and

behaviour for a group of

specialised block. This

block can’t be instantiated

as a component.

2.1

Stereotype name Tags Effect

Prefix

<<abstract>> non partial

Table 14 SysML Stereotype <<abstract>> for Modelica partial

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 25

b. There are four variability levels of attributes in Modelica, so a SysML “attribute” needs an

additional Stereotype to recognise its variability. This variability indicator is necessary for

parameter and constant but not for continuous and discrete attributes since Modelica can

identify this automatically. In addition the optional unit of a value will also be adopted and

presented by a tag of this Stereotype. In rhapsody there is also a need for a DataType called

“variability_type” which supports enumeration of the different identifiers.

Rule Applicable to SysML

(Rhapsody) element

Needed Modelica addition Benefit/Effect

ID Attribute variability Depending on its type an

attribute will get a type

prefix. The type also

specifies how the

initialisation will be defined.

2.2

Stereotype name Tags Characteristic Effect

<<variable>> variability

(variability_type)

parameter Prefix

“parameter”

initialValue

interpretation

“…=x;”

constant Prefix “constant” initialValue

interpretation

“…=x;”

discrete-time

(usage is optional)

Prefix -non- initialValue

interpretation

“(start = x, …)”

continuous-time

(usage is optional)

Prefix -non- initialValue

interpretation

“(start = x, …)”

unit String (…, unit=”…”)

Table 15 SysML Stereotype <<variable>> for Modelica variability and unit

c. A Stereotype is needed to modify the values of an extended class.

Rule Applicable to SysML

(Rhapsody) element

Needed Modelica addition Benefit/Effect

ID Generalisation Modify inherit variable values Set default values for

inherited attributes. 2.3

Stereotype name Tags Characteristic Effect

<<extendsRelation>> typeModification String with Dot-Notation extends…(…=x, …=x);

Table 16 SysML Stereotype <<extendsRelation>> Modelica modification of inherit variable value

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 26

d. Modelica provides a method to modify variable values of instances by using the dot notation.

Rule Applicable to SysML (Rhapsody)

element

Needed Modelica addition Benefit/Effect

ID Object (SysML Part) Instance modification The value of inherited

variables can be modified

for instances.

The variable name and its

new value in brackets will

be appended to the

instance declaration.

2.4

Stereotype name Tags Characteristic Effect

<<composite>> instanceModification String with Dot-Notation Instance… (…=x, …=x);

Table 17 SysML Stereotype <<composite>> for Modelica instance modification

Figure 4-3 List of Stereotypes in Rhapsody

4.1.3. SysML Parametric to Modelica Equation

SysML parametric diagrams are used to create systems of equations that can constrain properties

of blocks. This diagram and a combination of the below described elements are used to generate a

Modelica confirm equation.

The tables below list parametric elements from SysML 1.2, which are used to represent

mathematical constraint for modelling the “Aircraft Water Tank System” demonstration model. The

table consists of three sections:

1. ID of a constraint element to be referenced at its application in chapter 0. The ID does have

the form “3.x”.

2. SysML (Rhapsody) constraint element.

3. Description of the element.

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 27

Rule

ID

SysML (Rhapsody) element Description

3.1 Constraint Block Node A constraint block encapsulates a constraint to

enable it to be defined once and then used in

different contexts. The block contains

Constraints and Constraint parameters which

are used in the constraints.

3.2 Constraint Property Node Constraint properties are defined by constraint

blocks and used to bind parameters. This

enables complex systems of equations to be

composed from more primitive equations, and

for the parameters of the equations to explicitly

constraint properties of blocks.

3.3 Constraint Parameter Node A special kind of property that is used in the

constraint expression of a constraint block.

Constraint parameters do not have direction.

3.4 Value Binding Path Binding connectors connect constraint

parameters to each other and to value

properties. They express an equality

relationship between their bound elements.

3.5 Constraint Generic mechanism for expressing constraints

on a system as text expression that can be

applied to any model element. A constraint

includes an equation as text expression.

Table 18 SysML Parametric elements

The following is an approach to translate a SysML parametric into a Modelica equation using the

above depicted parametric elements:

- An equation which is represented as a constraint has to confirm to the Modelica syntax and

semantic for equations.

- A parameter name in the constraint equation expression should be general; this supports

the reuse approach of SysML.

- A constraint block contains only a single constraint and all its used constraint parameters.

This is easier to understand and translate.

- A constraint property represents this constraint block in a parametric diagram.

- Binding connectors allocate the general constrain parameters to specific block values, so

that the equation can be translated into Modelica equation code with the required value

names.

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 28

4.2. SysML to Modelica Transformation Application using the

Example Model

The following is a full SysML 1.2 model of the demonstration system. The model has been created

using IBM Rational Rhapsody 7.6 [39] As mentioned above Rational Rhapsody has its own SysML

Profile implementation which can differ in some particular ways from the OMG SysML 1.2.

However, while creating the model such variations of the OMG SysML 1.2 specification have been

avoided.

System structure is depicted in Package Diagrams (Pkg), Block Definition Diagrams (BBD),

Internal Block Diagrams (IBD) and in Parametric Diagrams (PAR). Every SysML element may

represent in a diagram and will be translated into corresponding Modelica code. The coherent

Modelica model code can be found in the Appendix A.

Note: Since the translation will be demonstrated step by step the resultant code for each step will

be highlighted in green.

4.2.1. System structure with SysML Package Diagram

Figure 4-4 Aircraft Water Tank System Package Structure using SysML Package Diagrams

SysML elements such as blocks should be grouped in packages. For the OpenModelica (OM) it is

important to signal a package membership for each element, so that OM can load all components

included in a specified package and its sub packages. In order to do so there is a need for a high

level class, Modelica type “package”, in the project folder. Furthermore a Modelica class element

needs a “within…” declaration in its first code line including a full qualified package name to signal

its membership. A Rhapsody project package will result into a high level Modelica package. Each

SysML package and sub package will result into sub packages of the high level Modelica package.

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 29

Resultant Modelica code using rule 1.1:

High level Modelica package.

<<package>> AircraftWaterTankSystem  package.mo (Modelica)

package AircraftWaterTankSystem

end AircraftWaterTankSystem;

Sub packages of the high level Modelica package.

<<package>> AircraftWaterTankSystem  package.mo (Modelica)

package AWTS_Structure

end AWTS_Structure;

<<package>> Model_Library  package.mo (Modelica)

package Model_Library

end Model_Library;

<<package>> AircraftWaterTankSystem  package.mo (Modelica)

package External_Systems

end External_Systems;

4.2.2. System structure with SysML Block Definition Diagram

A SysML block defines a composite system entity which represents a real physical component, sub

system or system. The SysML Block Definition Diagram can be used to define relationships

between blocks such as generalizations, associations with types and multiplicity, and

dependencies. Since Rhapsody allows creating elements like blocks and flow specifications

manually using the project browser, the BDD will also be used to display a block and its properties.

Figure 4-5 ReadSignal FlowSpecification

A flow specification may have attributes which has the Stereotype “flowProperty”. Each flow

property has a data type and a direction (in, out, or inout). Since a flow specification can be reused

by different instances with different flow directions the attribute direction should not be fix at

declaration time. However SYSMOD recommends defining an initial direction which can be

redirected when this value is used in a parametric diagram. As an addition one can also select the

Stereotype “variable” for a flow property to assign a variability type and a unit for it. Component

descriptions from Rhapsody will also be respected.

Resultant Modelica code using rule 1.3, 1.6, 1.11, 1.12, 2.1:

ReadSignal

«flow Specification»

Flow Properties

«flowProperty,variable» val(In):double

val

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 30

<<flowProperty>> ReadSignal  ReadSignal.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Structure;

connector ReadSignal //Reading fluid level in m

 Real val(unit = "m");

end ReadSignal;

Figure 4-6 ActuatorSignal FlowSpecification

Resultant Modelica code using rule 1.3, 1.6, 1.11, 1.12, 2.1:

<< flowProperty >> ActuatorSignal  ActuatorSignal.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Structure;

connector ActuatorSignal // Signal to an actuator for setting valve position

 Real act;

end ActuatorSignal;

Figure 4-7 LiquidFlow FlowSpecification

To support reuse model elements such as this flow specification can be stored in the

“Model_Library” package.

Resultant Modelica code using rule 1.3, 1.6, 1.11, 1.12, 2.1:

<< flowProperty >> LiquidFlow  LiquidFlow.mo (Modelica)

within AircraftWaterTankSystem.Model_Library;

connector LiquidFlow // Real liquid flow at inlets or outlets

 Real lflow(unit = "m3/s");

end LiquidFlow;

Figure 4-8 ModeSignal FlowSpecification

Resultant Modelica code using rule 1.3, 1.6, 1.11, 1.12, 2.1:

ActuatorSignal

«flow Specif ication»

Flow Properties

«flowProperty,variable» act(In):double

act:double

Model_Library::LiquidFlow

«flow Specification»

Flow Properties

«flowProperty» lflow(In):double

lflow

Model_Library::ModeSignal

«flow Specification»

Flow Properties

«flowProperty,variable» value(In):double...

value:double

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 31

<< flowProperty >> ModeSignal  ModeSignal.mo (Modelica)

within AircraftWaterTankSystem.Model_Library;

connector ModeSignal // Signal to represent the system or component mode

 Real value; // 0=normal, 1=tolerance, 2=error, 3=abs. error

end ModeSignal;

Figure 4-9 StatusSignal FlowSpecification

Resultant Modelica code using rule 1.3, 1.6, 1.11, 1.12, 2.1:

<< flowProperty >> StatusSignal  StatusSignal.mo (Modelica)

within AircraftWaterTankSystem.Model_Library;

connector StatusSignal // Signal to represent the system or component status

 Real value; // 0=offline, 1=online

end StatusSignal;

Figure 4-10 FlowLevelSignal FlowSpecification

Resultant Modelica code using rule 1.3, 1.6, 1.11, 1.12, 2.1:

<< flowProperty >> FlowLevelSignal  FlowLevelSignal.mo (Modelica)

within AircraftWaterTankSystem.Model_Library;

connector FlowLevelSignal // Liquid flow level as measurement

 Real value (unit = "m3/s");

end FlowLevelSignal;

Figure 4-11 BaseController Block

Model_Library::StatusSignal

«flow Specif ication»

Flow Properties

«flowProperty,variable» value(In):double...

value:double

Model_Library::FlowLevelSignal

«flow Specification»

Flow Properties

«flowProperty,variable» value(In):double

value:double

BaseController

«block ,abs tract»

Values

«variable» Ts:double=0.1

«variable» K:double=2.0

«variable» T:double=10.0

«variable» ref:double

«variable» error:double

«variable» outCtr:double

cOut:~ActuatorSignal

cIn:ReadSignal

statusControlIn:StatusSignal

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 32

The BaseController is a SysML block and has the Stereotype abstract which signals that it is a

partial Modelica block. The block does have the depicted attributes in the Values section. The

package membership is given by the package structure in Figure 4-4.

Resultant Modelica code using rule 1.2, 1.3, 1.4, 1.11, 1.12, 2.1, 2.3:

<<block>> BaseController  BaseController.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Structure;

partial block BaseController

 AircraftWaterTankSystem.Model_Library.StatusSignal statusControlIn;

 AircraftWaterTankSystem.AWTS_Structure.ReadSignal cIn;

 AircraftWaterTankSystem.AWTS_Structure.ActuatorSignal cOut;

 Real Ts(unit = "s") = 0.1;

 Real K = 2; // Gain

 Real T(unit = "s") = 10; // Time constant

 Real ref; // Reference level

 Real error; // Deviation from reference level

 Real outCtr; // Output control signal

equation

end BaseController;

Figure 4-12 PIDcontinuousController Block

Resultant Modelica code using rule 1.2, 1.3, 1.4, 1.11, 1.12, 2.1:

<<block>> PIDcontinuousController  PIDcontinuousController.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Structure;

block PIDcontinuousController

 Real x; // State variable of continuous PID controller

 Real y; // State variable of continuous PID controller

equation

end PIDcontinuousController;

Figure 4-13 PIcontinuousController Block

PIDcontinuousController

«block»

Values

x:double

y:double

inFlow:double

cOut:~ActuatorSignal

cIn:ReadSignal

statusControlIn:StatusSignal

PIcontinuousController

«block»

Values

x:double

cOut:~ActuatorSignal

cIn:ReadSignal

statusControlIn:StatusSignal

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 33

Resultant Modelica code using rule 1.2, 1.3, 1.4, 1.11, 1.12, 2.1:

<<block>> PIcontinuousController  PIcontinuousController.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Structure;

block PIcontinuousController

 Real x; // State variable of continuous PID controller

equation

end PIcontinuousController;

To cover also a part of the object oriented approach the control systems “PIcontinuousController”

and “PIDcontinuousController” are specializations of “BaseController”. To modify attribute values

from a partial block the Stereotype “extendedRelation” offers a tag “typeModification”. In This case

“K” and “T” are inherited variables to be modified.

Resultant Modelica code using rule 1.10, 2.2:

<<block>> PIcontinuousController  PIcontinuousController.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Structure;

block PIcontinuousController extends BaseController(K = 2, T = 10);

...

end PIDcontinuousController;

<<block>> PIDcontinuousController  PIDcontinuousController.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Structure;

block PIDcontinuousController extends BaseController(K = 2, T = 10);

...

end PIDcontinuousController;

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 34

Figure 4-14 LiquidTank Block

Resultant Modelica code using rule 1.2, 1.3, 1.4, 1.11, 1.12, 2.1:

<<block>> LiquidTank  LiquidTank.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Structure;

block LiquidTank

 AircraftWaterTankSystem.Model_Library.ModeSignal modeOut;

 AircraftWaterTankSystem.AWTS_Structure.ReadSignal tSensor;

 AircraftWaterTankSystem.AWTS_Structure.ActuatorSignal tActuator;

 AircraftWaterTankSystem.Model_Library.LiquidFlow qIn;

 AircraftWaterTankSystem.Model_Library.LiquidFlow qOut;

 Real area(unit = "m2") = 1; //Will be given as a parameter

 Real maxTankHight (unit = "m") = 1.0; //Will be given as a parameter

 Real flowGain (start = 1.99, unit = "m2/s") = 0.05;

 Real minV = 0; // Minimum for output valve flow

 Real maxV = 10; // Limit for output valve flow

 Real h(start = 0.0, unit = "m"); //Tank level

equation

end LiquidTank;

Figure 4-15 ControlUnit Block

Resultant Modelica code using rule 1.2, 1.4:

<<block>> ControlUnit  ControlUnit.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Structure;

block ControlUnit

 AircraftWaterTankSystem.Model_Library.ModeSignal modeIn1;

 AircraftWaterTankSystem.Model_Library.ModeSignal modeIn2;

 AircraftWaterTankSystem.Model_Library.StatusSignal statusControlIn;

 AircraftWaterTankSystem.Model_Library.ModeSignal modeOut;

 AircraftWaterTankSystem.Model_Library.StatusSignal statusControlOut1;

 AircraftWaterTankSystem.Model_Library.StatusSignal statusControlOut2;

 AircraftWaterTankSystem.Model_Library.StatusSignal statusOut;

 equation

end ControlUnit;

LiquidTank

«block»

Values

«variable» area:double=1.0

«variable» maxTankHight:double=1.0

«variable» flowGain:double=0.05

«variable» minV:double=0.0

«variable» maxV:double=10.0

«variable» h:double
modeOut:ModeSignal

qOut:~LiquidFlow

qIn:LiquidFlow

tActuator:ActuatorSignaltSensor:~ReadSignal

ControlUnit

«block»

V alues
statusOut:~StatusSignal

statusControlOut2:~StatusSignalstatusControlOut1:~StatusSignal

statusControlIn:StatusSignal modeOut:~ModeSignal

modeIn2:ModeSignalmodeIn1:ModeSignal

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 35

Figure 4-16 AircraftWaterTankSystem Block

Resultant Modelica code using rule 1.2, 1.4:

<<block>> AircraftWaterTankSystemUsingPID  AircraftWaterTankSystemUsingPID.mo (M.)

within AircraftWaterTankSystem.AWTS_Structure;

block AircraftWaterTankSystemUsingPID

 AircraftWaterTankSystem.Model_Library.LiquidFlow qIn;

 AircraftWaterTankSystem.Model_Library.LiquidFlow qOut;

 AircraftWaterTankSystem.Model_Library.StatusSignal statusControlIn;

 AircraftWaterTankSystem.Model_Library.StatusSignal statusOut;

 AircraftWaterTankSystem.Model_Library.ModeSignal modeOut;

equation

end AircraftWaterTankSystemUsingPID;

Figure 4-17 BBD Aircraft Water Tank System with PID continuous controllers

The BDD in Figure 4-17 presents the “Aircraft Water Tank System” and its relationship to other

system components which are connected using the association type composition.

Resultant Modelica code using Rule 1.4, 1.5:

AircraftWaterTankSystemUsingPID.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Structure;

block AircraftWaterTankSystemUsingPID

 AircraftWaterTankSystem.AWTS_Structure.ControlUnit statusMonitor;

 AircraftWaterTankSystem.AWTS_Structure.LiquidTank tank1;

 AircraftWaterTankSystem.AWTS_Structure.LiquidTank tank2;

 AircraftWaterTankSystem.AWTS_Structure.PIDcontinuousController pidContinuous1;

 AircraftWaterTankSystem.AWTS_Structure.PIDcontinuousController pidContinuous2;

...

end AircraftWaterTankSystemUsingPID;

AircraftWaterTankSystemUsingPID

«block»

V alues
qOut:~LiquidFlow

statusControlIn:StatusSignal

qIn:LiquidFlow statusOut:~StatusSignal

modeOut:~ModeSignal

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 36

4.2.3. System structure with SysML Internal Block Diagram

To get a more detailed view on a component and its subcomponents (parts) a new diagram has

been implemented in SysML. The Internal Block Diagram (IBD) captures the internal structure of a

block in terms of parts, properties and connectors between properties. The primary purpose of

internal block diagrams, in conjunction with block definition diagrams, is to express system

structural decomposition and interconnection of its parts.

Figure 4-18 IBD Aircraft Water Tank System using PID

The IBD in Figure 4-18 displays the parts of the AWTS and their associations to each other. The

value of first level attributes of instantiated parts can be modified in Rhapsody directly in the Tab

“Attributes”  “Value”, for example “area” from “tank1”. However to set a value of an inherited

attribute or a nested attribute the Stereotype “composite” must be used. A textual expression

containing the attribute name and value finds place in the tag “instanceModification”, for example

“ref” or “K” from PIDcontiuousControler. The parts are connected with SysML flow ports. As an

addition this diagram finally defines the flow direction.

Resultant Modelica code using rule 1.5, 1.9, 2.4:

<<block>> BaseController  BaseController.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Structure;

partial block BaseController

 input AircraftWaterTankSystem.Model_Library.StatusSignal statusControlIn;

 input AircraftWaterTankSystem.AWTS_Structure.ReadSignal cIn;

 output AircraftWaterTankSystem.AWTS_Structure.ActuatorSignal cOut;

...

end BaseController;

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 37

<<block>> LiquidTank  LiquidTank.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Structure;

block LiquidTank

 output AircraftWaterTankSystem.Model_Library.ModeSignal modeOut;

 output AircraftWaterTankSystem.AWTS_Structure.ReadSignal tSensor;

 input AircraftWaterTankSystem.AWTS_Structure.ActuatorSignal tActuator;

 input AircraftWaterTankSystem.Model_Library.LiquidFlow qIn;

 output AircraftWaterTankSystem.Model_Library.LiquidFlow qOut;

...

end LiquidTank;

<<block>> ControlUnit  ControlUnit.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Structure;

block ControlUnit

 input AircraftWaterTankSystem.Model_Library.ModeSignal modeIn1;

 input AircraftWaterTankSystem.Model_Library.ModeSignal modeIn2;

 input AircraftWaterTankSystem.Model_Library.StatusSignal statusControlIn;

 output AircraftWaterTankSystem.Model_Library.ModeSignal modeOut;

 output AircraftWaterTankSystem.Model_Library.StatusSignal statusControlOut1;

 output AircraftWaterTankSystem.Model_Library.StatusSignal statusControlOut2;

 output AircraftWaterTankSystem.Model_Library.StatusSignal statusOut;

 equation

end ControlUnit;

AircraftWaterTankSystemUsingPID.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Structure;

block AircraftWaterTankSystemUsingPID

...

 ... tank1 (area = 0.5, maxTankHight = 1);

 ... tank2 (area = 1, maxTankHight = 1);

 ... pidContinuous1 (ref = 0.5);

 ... pidContinuous2 (ref = 0.5);

 input AircraftWaterTankSystem.Model_Library.LiquidFlow qIn;

 output AircraftWaterTankSystem.Model_Library.LiquidFlow qOut;

 input AircraftWaterTankSystem.Model_Library.StatusSignal statusControlIn;

 output AircraftWaterTankSystem.Model_Library.StatusSignal statusOut;

 output AircraftWaterTankSystem.Model_Library.ModeSignal modeOut;

equation

 connect(statusMonitor.statusControlOut1, pidContinuous1.statusControlIn);

 connect(statusMonitor.statusControlOut2, pidContinuous2.statusControlIn);

 connect(tank1.modeOut, statusMonitor.modeIn1);

 connect(tank2.modeOut, statusMonitor.modeIn2);

 connect(tank1.qOut, tank2.qIn);

 connect(tank2.qOut, qOut);

 connect(tank1.tSensor, pidContinuous1.cIn);

 connect(pidContinuous1.cOut, tank1.tActuator);

 connect(tank2.tSensor, pidContinuous2.cIn);

 connect(pidContinuous2.cOut, tank2.tActuator);

 connect(statusMonitor.modeOut, modeOut);

 connect(statusControlIn, statusMonitor.statusControlIn);

 connect(statusMonitor.statusOut, statusOut);

 connect(qIn, tank1.qIn);

end AircraftWaterTankSystemUsingPID;

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 38

4.2.4. Block Definition Diagrams of the constraint blocks

As mentioned above, in Modelica behaviour is expressed in a mathematical form using equations.

Expressing pure mathematical equations in diagrams are not part of the UML or SysML language.

In UML, as well as in SysML, one can use an “opaque expressions” to write a textual statement

which is uninterpreted. The expression can be associated to a model by using variable identifiers

from the model context, this can be evaluated (Chapter 7.3.36, [18]). However, using opaque

expressions is a very informal way and basically a workaround. SysML offers a powerful concept

which provides expressing generic or basic mathematical equations as constraints. A constraint

block encapsulates a constraint to support its reuse. The block contains the actual constraint and

constraint parameters. Constraint parameters are used in the constraint as model independent

variables, to be linked with real model elements using SysML binding connectors. However, a

particular constraint is also specified in an informal language, but a more formal language such as

OCL or MathML could also be used (Chapter 10, [19]).

In Rhapsody a constraint block will be defined once for a package and can be instantiated as a

constraint property. A block definition diagram will be used to represent the relationship between a

block and a constraint block. But the actual translation into Modelica equations is not possible by

just using this information. Only when the real model properties are linked to a constraint property,

the complete equation can be translated from SysML to Modelica.

The following diagrams show the relationship, between constraint blocks and blocks.

Figure 4-19 BDD Constraint Blocks of Control Unit

bdd [block] ControlUnit [bdd_ConstraintBlocksControlUnit]

statusControlOut

«ConstraintBlock»

Constraints

x = a

statusControlOut

«ConstraintBlock»

Constraints

x = a

1

ControlUnit

«block»

Values

Operations

1 11

systemMode

«ConstraintBlock»

Constraints

x = if (a >= b) then a else b

11 1

systemStatus

«ConstraintBlock»

Constraints

x = if (a >= 3.0) then 0.0 els...

1

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 39

Since the control unit represents the overall system status its constraints are mainly condition

based. As you can see in Figure 4-19 the constraint block “statusControlOut” is used twice, since

this supports the reuse.

- The “statusControlOut” constraint is used a simple equation, since it is associating two

variables, in order to allocate the value from “a” to “x”.

- The “systemMode” constraint is assigning the overall mode using the modes received from

all tanks.

- The “systemStatus” constraint assigns if the system goes online or offline by using the

results from “systemModel”. As mentioned in chapter 0 the system will shut down if the

mode is in the absolute error margin.

Figure 4-20 BDD Constraint Blocks of Liquid Tank

- The “sensorValue” constraint passes the tank level “h” value to the flow port which is

connected to the “PIDcontinuousController”.

- The “MassBalance” constraint describes how the tank level “h” is calculated. This is a

special equation, since the “der(x)” operator is special in Modelica.

- The “tankMode” constraint will assign the model of a tank in relation on its level h.

- The “OutFlow” constraint defines the value of the out flow level depending on the result of

the controller. The result will be checked to be in a value range of minimum and maximum.

bdd [block] LiquidTank [bdd_ConstraintBlocksLiquidTank]

Mass_Balance

«ConstraintBlock»

Constraints

der(h) = (x - y) / a

sensorValue

«ConstraintBlock»

Constraints

x = a

OutFlow

«ConstraintBlock»

Constraints

x = if (-a * b) > max then max else if (-a * b) ...

tankMode

«ConstraintBlock»

Constraints

x = if h <= (maxH * 0.7) then 0.0 else if h <= ...

1

LiquidTank

«block»

Values

Operations1 1

11

1

11

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 40

Figure 4-21 BDD Constraint Blocks of BaseController

Figure 4-22 BDD Constraint Blocks of PID Continuous Controller

The constraints of the BaseController and the PIDcontinuousController belong together, since the

PIDcontinuousController inherits its structure and behaviour from BaseController.

The constraints are very specific to control systems, therefore their equations won’t be discussed

future, but can be inspected in the [43].

bdd [«abstract» block] BaseController [bdd_ConstraintBlocksBaseControler]

BaseController

«block,abstract»

Values

Operations

1

cout_act

«ConstraintBlock»

Constraints

x = if(a > 0.0) th...

1 1

errorValue

«ConstraintBlock»

Constraints

error = nominal ...

1

bdd [block] PIDcontinuousController [bdd_ConstraintBlocksPID]

PIDcontinuousController

«block»

Values

Operations

1

state_variable_x

«ConstraintBlock»

Constraints

der(x) = e...

1

outCtr_PID

«ConstraintBlock»

Constraints

z = K * (e...

11

state_variable_y

«ConstraintBlock»

Constraints

y = T * de...

11

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 41

4.2.5. Parametric Diagrams of the parametric structure

As mentioned in chapter 4.2.4 a constraint parameter needs to be linked to model elements in

order to bring them in context. The SysML parametric diagram shows, as constraints represented,

mathematical expressions in context to the designed system elements. Therefore parametric

diagrams cannot exist in isolation. The result in Modelica will be the actual equation expression

used in an equation section. Another very useful aspect of using constraints and parametric

diagrams, instead of UML opaque expression, is the fact that a Modelica model has to be balanced

with regard to the number of unknown variables and equations [4.7 Balanced Models]. A

parametric diagram can easily be evaluated in order to determine missing links between a

variables and constraints.

The following diagrams represent the relationship of constraint parameters of design model

elements, such as attributes or flow ports. The translation into Modelica code will be done as

described in chapter 4.1.3 with respect to the Modelica equation syntax and semantic ([23], 8).

Figure 4-23 PAR Liquid Tank

In Figure 4-23 you can see all constraints and their parameters in relation to design model

elements, such as block attributes or flow port attributes.

As mentioned in chapter 4.2.4 the constraint property “Mass_Balance” describes a special

equation type. As depicted in Figure 4-23 the derivative of “h” will be allocated to the model

attribute “h”, but the result of a differential calculation of a value is different to its real value.

par [block] LiquidTank [par_LiquidTank]

itsMass_Balance:Mass_Balance

1 «ConstraintProperty»

C ons traints

der(h) = (x - y) / a

h

y

x

a:double

itsSensorValue:sensorValue

1 «ConstraintProperty»

C ons traints

x = a

x:doublea:double

area:double=1.0

«variable»

LiquidTank.tSensor:ReadSignal1

val:doubleh:double

«variable»

LiquidTank.qIn:LiquidFlow1

lflow:double

LiquidTank.qOut:LiquidFlow1

lflow:double

LiquidTank.tActuator:Ac tuatorSignal1

act:double

flowGain:double=0.05

«variable»

minV:double=0.0

«variable»

maxV:double=10.0

«variable»

maxTankHight:double=1.0

«variable»

LiquidTank.modeOut:ModeSignal1

value:double

itsOutFlow:OutFlow

1 «ConstraintProperty»

C ons traints

x = if (-a * b) > max then max .. .
max

min

ba

x

itsTankMode:tankMode

1 «ConstraintProperty»

C ons traints

x = if h <= (maxH * 0.7) then 0.0 .. .

maxH

h
x

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 42

However, this is possible because expressed as a Modelica equation the result of “der(h)” will be

integrated automatically to get the value for “h”, so there is no need for a separate equation for this.

Resultant Modelica code using rule 3.1 – 3.5:

LiquidTank.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Structure;

block LiquidTank

...

equation

 der(h) = (qIn.lflow - qOut.lflow)/area; // Mass balance equation

 qOut.lflow = if (-flowGain*tActuator.act) >maxV then maxV

 else if (-flowGain*tActuator.act) <minV then minV

 else (-flowGain*tActuator.act);

 tSensor.val = h;

 modeOut.value = if h <= (maxTankHight * 0.7) then 0.0

 else if h <= (maxTankHight * 0.8) then 1.0

 else if h <= (maxTankHight * 0.95) then 2.0

 else if h > (maxTankHight * 0.95) then 3.0

 else -1.0;

end LiquidTank;

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 43

Figure 4-24 PAR Control Unit

Resultant Modelica code using rule 3.1 – 3.5:

ControlUnit.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Structure;

block ControlUnit

...

equation

 modeOut.value = if (modeIn1.value >= modeIn2.value) then modeIn1.value

 else modeIn2.value;

 statusOut.value = if (modeOut.value >= 3.0) then false else

statusControlIn.value;

 statusControlOut1.value = statusOut.value;

 statusControlOut2.value = statusOut.value;

end ControlUnit;

par [block] ControlUnit [par_ControlUnit]

ControlUnit.statusControlOut1:StatusSignal1

value:double

ControlUnit.statusControlOut2:StatusSignal1

value:double

ControlUnit.modeOut:ModeSignal1

value:double

ControlUnit.modeIn1:ModeSignal1

value:double

ControlUnit.modeIn2:ModeSignal1

value:double

ControlUnit.statusOut:StatusSignal1

value:double

ControlUnit.statusControlIn:StatusSignal1

value:double

itsSystemStatus:systemStatus

1 «ConstraintProperty»

Constraints

x = if (a >= 3.0) then 0.0 else b

b
a

x

itsStatusControlOut:statusControlOut

1 «ConstraintProperty»

Constraints

x = a

a:doublex:double

itsStatusControlOut_1:statusControlOut

1 «ConstraintProperty»

Constraints

x = a
a:doublex:double

itsSystemMode:systemMode
1 «ConstraintProperty»

b

a

x

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 44

Figure 4-25 PAR BaseControler and PIDcontinuousController

As mentioned in chapter 4.2.4 the constraints of the “BaseController” and

“PIDcontinuousController” are coupled, since a PID controller is using the base controller as its

core functionality of regulating values to a reference level. Therefore one parametric diagram will

be used to illustrate their relationship.

Resultant Modelica code using rule 3.1 – 3.5:

BaseController.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Structure;

partial block BaseController

...

equation

 error = ref - cIn.val;

 cOut.act = if(statusControlIn.value) then outCtr else 0.0;

end BaseController;

PIDcontinuousController.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Structure;

block PIDcontinuousController extends BaseController(K = 2, T = 10);

...

equation

 der(x) = error/T;

 y = T*der(error);

 outCtr = K*(error + x + y);

end PIDcontinuousController;

The whole Modelica model code can be found in the Appendix A.

par [block] PIDcontinuousController [par_BaseController_PID]

error:double

«variable»

ref:double

«variable»

BaseController.cIn:ReadSignal1

val:double

BaseController.statusControlIn:StatusSignal1

value:double

BaseController.cOut:ActuatorSignal1

act:double

T:double=10.0

«variable»

outCtr:double

«variable»

K:double=2.0

«variable»

i tsCout_act:cout_act
1 «ConstraintProperty»

b:double

a:double

x:double

itsErrorValue:errorValue
1 «ConstraintProperty»

actual:double

nominal:double

error:double

itsOutCtr_PID:outCtr_PID
1 «ConstraintProperty»

K:double

error:double y:double

x:double

z:double

itsState_variable_y:state_variable_y
1 «ConstraintProperty»

T:double

y:double

error:double

itsState_v ariable_x:state_v ariable_x
1 «ConstraintProperty»

T:double

error:double
x:double

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 45

4.3. Automated Modelica Code Generation

Having a transformation approach which can be used to generate code for system components

automatically is the key feature to its successful application in practice [20].

Figure 4-26 Automated Code Generation as a Key Feature for the Application in Practice

Since the transformation presented in 4.1 is self-contained, regarding the used SysML and

Modelica language elements, this feature is given. So a full (100%) transformation from one

language into the other is possible.

Since it is possible to present a model in the different levels of its implementation [9], the model,

whether implemented in SysML or Modelica, mustn’t be complete, regarding its components or the

component functions. This means that a code generator won’t force a developer to implement the

model completely, but consistently. And it is also possible to translate just parts of a model, as

longs as the related elements are available and consistent in the level of implementation.

By using IBM Rational Rhapsody 7.6, one can adapt and enhance an existing code generator [45],

by implementing the transformation rules given in 4.2. Rhapsody allows generating code for the

following elements:

- Entire configuration

- Several components

- Entire project

- Selected classes

But in general any SysML modelling tool with code generation capabilities can be used, for

example the eclipse based open-source modelling tool Papyrus [46] in combination with Acceleo

[47]. Acceleo is also an open-source software tool based on eclipse. A user can easily implement

transformation rules using a special script language or the programming language Java [48].

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 46

5. Modelica as Test Specification and Implementation

Language

Testing is part of the verification and validation process, since its purpose is to confirm parts of the

design or implementation against the system specifications [3]. In general testing will help to

improve quality, since it detects failures to minimize existing faults. In the context of dynamic

systems, testing is an activity in which a system or component is executed under specified

conditions. The results are observed or recorded, and an evaluation is made of some aspect of the

system or component [13]. Tests are implemented as test cases. A test case consists of a set of

test inputs, execution conditions, and expected results developed for a particular objective, such as

to verify compliance with a specific requirement [13].

A test specification language will be used to define tests in a more formal way, which is

computable. In addition a test implementation language will be used to make the specified tests

executable using a programming language. In the case of software it makes sense to implement

the tests in the same language as the application is written. This will prevent the implementation of

interfaces to ensure that the application and the test system understand each other. As an

instance, in case of Java applications the test cases will be implemented in JUnit, a Java based

test specification and implementation language [50]. Since the design model is implemented in the

programming language Modelica, it makes sense to have a Modelica based test specification and

implementation language.

5.1. Modelica and TTCN-3

Using Modelica as a test language assumes a test concept included in Modelica. So why not adopt

such a concept from existing or standardised languages such as JUnit or the Testing and Test

Control Notation (TTCN-3)? JUnit is specialized for testing Java based applications. In contrast

TTCN-3 is a widely used, international standard language for testing software and hardware. In

addition JUnit is more suitable for the low-level tests, such as component or integration level

testing, TTCN-3 is more suitable for high-level testing [31]. This fits into the scope of this work.

Figure 5-1 JUnit and TTCN-3 in relation to the V-Model XT

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 47

However, TTCN-3 is domain specific, since it has its roots in testing hardware and software

components of IT and telecommunication systems. It is rather more suitable to be used with

software and communication protocols than model-based systems. Modelica could fill the gap of

having a model-based language especially for system testing.

This chapter shows an approach of adopting some TTCN-3 Core Language (CL) concepts and

elements into Modelica, which are needed in the terms of testing. This is done by an informal

mapping, more than adopting, of TTCN-3 CL concepts and elements.

5.2. TTCN-3 Core Language Definitions and Concepts

For the purposes of the present TTCN-3 (CL) concepts which have to be adapted to Modelica, the

following terms and definitions given in ITU-T Recommendation X.290 [21], ITU-T

Recommendation X.292 [22] and the ETSI ES 201 873-1 V4.3.1 [16] apply:

5.2.1. TTCN-3 Built-In Data Types and Values

TTCN-3 provides a set of basic types and values, like many other classical programming

languages. A basic type does have predefined features, a specific usage and range.

Simple Basic Types

TTCN-3 provides the following simple basic types [6.1.0 Simple basic types and values]:

Name Description

integer A type with distinguished values which are the positive and negative

whole numbers, including zero. Values of type integer can be

arbitrarily large. Values of integer type shall be denoted by one or

more digits; the first digit shall not be zero unless the value is 0.

Example

var integer v_number = 1;

Table 19 TTCN-3 Basic Type Integer

Name Description

float A type to describe floating-point numbers and special float values.

In TTCN-3, the floating-point number value notation is restricted to a

base with the value of 10.

Example

var float v_fp = 2.0;

Table 20 TTCN-3 Basic Type Float

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 48

Name Description

boolean A type consisting of two distinguished values. TTCN-3 has a

genuine boolean built-in type, which can assume the two truth

values “true” and “false”. The Boolean operators “and”, “or”, “xor”,

and “not” can be used to form Boolean expressions.

Example

var boolean v_isActive = true;

Table 21 TTCN-3 Basic Type Boolean

Name Description

verdicttype TTCN-3 has a type to represent the possible outcomes – verdicts –

of a test case, which is called verdicttype. A type for use with test

verdicts consisting of five distinguished values. Values of

verdicttype shall be denoted by “pass”, “fail”, “inconc”, “none” and

“error”.

Example

var verdicttype v_localVerdict;

Table 22 TTCN-3 Basic Type Verdicttype

User-Defined Structured Types

TTCN-3 provides the following simple basic types [6.1.0 Simple basic types and values]:

Name Description

record TTCN-3 supports ordered structured types in general known as

record. Records can be used to group related fields into a single

type. The data types used as fields in a record may be any of the

basic types or user-defined data types. The values of a record shall

be compatible with the types of the record fields.

Example

type record MyRecordType

{

integer id,

boolean active

};

var MyRecordType v_process := {4711, true};

Table 23 TTCN-3 Structured Type Record

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 49

5.2.2. TTCN-3 Test Structure Definitions

The following TTCN-3 language elements and definitions shall be used to specify a test structure.

Name Description

Module A module is a top-level element containing all other elements and

the main definitions of test behaviour. All TTCN-3 code must be

specified within a module. A module is defined by the keyword

“module” followed by a unique name. It contains a definitions part

and an optional control part. The definition part defines the test

cases and test components. The control part of a module executes

the test cases.

Table 24 TTCN-3 Structure Definition: Module

Name Description

System under Test (SUT) A real open system which is to be studied by testing. In this

example the Aircraft Water Tank System is the System under Test.

Table 25 TTCN-3 Structure Definition: System under Test (SUT)

Name Description

Main Test Component (MTC) Single Test Component in a Test Component Configuration

responsible for creating and controlling Parallel Test Components

and computing and assigning the test verdict. In this example the

User Interface is the main test component.

Table 26 TTCN-3 Structure Definition: Main Test Component

Name Description

Parallel Test Component (PTC) Test component created by the main test component.

Table 27 TTCN-3 Structure Definition: Parallel Test Component

Name Description

Test System Interface (TSI) The (abstract) interface of the test system towards the SUT. In our

example the MTC is the only test component communicating with

the SUT. The component configurations will completely be defined

by the ports of the main test component. Therefore, there is no

need to define the test system interface separately. In addition a

TTCN-3 abstract TSI is used to communicate over a protocol

without implementing the concrete communication language.

Table 28 TTCN-3 Structure Definition: Test System Interface

Name Description

Test Configuration Ports of the test system interface and ports of components need to

be connected together in order to provide communication. TTCN-3

allows to connect test component ports to other test component

ports and to map a test component port to a port of the test system

interface.

Table 29 TTCN-3 Structure Definition: Test Configuration

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 50

Name Description

Port Mappings A port of a test component is mapped to a port of the test system

interface by using the map operation. This is part of the test

configuration.

Table 30 TTCN-3 Structure Definition: Part Mappings

Name Description

Port Connections The ports of test components can be connected directly to

exchange messages between the two test components. However,

whereas in the map operation one of the component references

must be system, in a connect statement both references are

referring to test components and not to the test system interface.

This is part of the test configuration.

Table 31 TTCN-3 Structure Definition: Port Connections

5.2.3. TTCN-3 Test Behaviour Definitions

The following TTCN-3 (CL) elements and concepts specify the behaviour of tests.

Name Description

Test Case A test case is a behaviour description of how to stimulate the SUT

using inputs and the expected reactions of the SUT to this

stimulations using observing the outputs. A test case is also

condition dependant (precondition, post condition). Depending on

the reactions, a verdict can be assigned. For example, a test case

can pass or fail.

Table 32 TTCN-3 Behaviour Definition: Test Case

Name Description

Module Control Part The control part of a module executes test cases and controls their

behaviour from outside. The control part may also declare (local)

variables. Control statements such as if-else or do-while may be

used to specify the selection and execution order of test cases.

Table 33 TTCN-3 Behaviour Definition: Module Control Part

Name Description

Test Case Execution After defining a test case in the definitions part of a module one can

execute the test case using the “execute()” operation in the control

part. The test case will be executed with actual parameters.

Program statements can be used to specify the selection and

execution order of the test cases. A test case execution returns a

test verdict.

Table 34 TTCN-3 Behaviour Definition: Test Execution

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 51

Name Description

Test Verdict Each test component has an implicitly defined variable of type

verdicttype. This implicit variable is called the “local verdict” of a test

component. Per default its value is “none”. In addition to the local

verdicts of the test components, there is the “overall verdict” of the

test case which will be returned after it terminates.

Table 35 TTCN-3 Behaviour Definition: Test Verdict (local and overall)

For more details about TTCN-3 CL please see [16].

5.3. Modelica4Testing: A Test Model Framework for Modelica

In order to adopt TTCN-3 CL concepts into Modelica the presented language elements from

Chapter 5.2 will be compared and adapted to available standard Modelica v3.2 elements. This will

result in a test specification and implementation language, future stated as Modelica4Testing

(M4T). Modelica4Testing can be used as a test model framework. In this work the term model

framework can be described as follow: A model framework is an abstraction in which generic

functionality and structure can be enhanced by user and domain specific elements. It is a collection

of libraries providing reusable and adaptable elements. However the semantic given by a model

framework is not alterable in any case, since its semantic is expressed in this way and it shall be

used as a guideline.

The Modelica4Testing framework bases on the Modelica meta-model without any enhancements

or modifications. Meta modelling is a key technology to support the understanding and usage of

modelling languages, since it allows defining a more abstract view on a model [17]. This includes

for example the structure of the information been modelled. Figure 5-2 presents the different layers

used in the context of Modelica and Modelica4Testing.

Figure 5-2 Modelica and Modelica4Testing Modelling Layers

Modelica4Testing is located in the model level (M1) since it bases on the Modelica meta-model

(M2) and it describes the test model instance (M0). However M4T shall be used as a test

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 52

specification and implementation language, furthermore as a test model framework, it has also its

own ontology to be used in the context of model-based system tests with Modelica.

For more details about the used Modelica elements please see [23].

Figure 5-3 MathModelica Simple Modelica Meta-Model

A simple Modelica meta-model is presented in the Figure 5-3. However, as mentioned above,

Modelica4Testing has an additional meta-model, but is based on the standard Modelica meta-

model without exceptions. The elements specified in Modelica4Testing are neither special

languages elements or keywords nor restricted classes in Modelica.

The following chapters compare available standard Modelica elements to be matched with the

TTCN-3 Core Language concepts, presented in Chapter 5.2. The principal approach towards the

mapping to TTCN-3 consists of one major step:

- Take Modelica elements and associations and assign them to TTCN-3 CL testing concepts.

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 53

5.3.1. Modelica4Testing Test Structure Definitions

The test structure section contains the concepts needed to describe the elements which defined a

test.

Test Model

Since we are in the context of model-based systems engineering the definition of “test model” will

be used to represent the overall Modelica system model, which is used to realize model testing

[24]. This system model contains all model elements, such as the design-model and test

components.

Name (Short) Description

Test Model The main Modelica system model. Contains all system model elements.

Note This is an implicit language element.

Table 36 Modelica4Testing Test Model

Test Context

A test context is the top-level element of a test model, similar to a TTCN-3 Module. A test context

shall be implemented as singleton in a test model. It is the overall control unit which controls and

observes all test model elements (Test Cases, SUT, MTC, etc.) as well as the simulation and its

results. In addition a test configuration will be defined within a test context. The test context will be

the top level class of the instantiation hierarchy. In the Modelica program this will be executed as a

kind of “main” class that is always implicitly instantiated. To avoid malapropism the term “test

context” has been adopted from the UML2 Testing Profile, since Modelica has a very similar calling

language element to the TTCN-3 “module”, called “model”.

Name (Short) Description

Test Context Top-level element of a test model. Controls and observes all test

elements, such as test cases, the SUT and test components.

TTCN-3 Element Module (see Table 24)

Modelica4Testing Type TestContext

Modelica Type Model

Multiplicity 1, A test model contains just one test context.

isAbstract False

Note By default this element is incomplete, but defines a general structure. The

user must complete the body with domain and test specific data.

Table 37 Modelica4Testing Test Context

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 54

Design Model

A model which represents a real physical system and is to be studied by testing shall be used in

the system under test. The design model (DM) offers inputs to be stimulated and outputs to be

observed, in order to interact with test components over a specified test system interface (Table

28). In addition an output is used by a test case to observe the reactions of the design model.

However, there is no direct connection to the test system, since the SUT (Table 25) is used as the

design model interface.

Name (Short) Description

Design Model System model which is to be studied by testing.

TTCN-3 Element SUT (see Table 25)

Modelica4Testing Type DesignModel

Modelica Type Class

Multiplicity 1, A test model contains just one design model.

isAbstract False

Note By default this element is not defined. The user has to define it.

Table 38 Modelica4Testing Design Model

Test System Interface

Since test components are not allowed to communicate directly with a design model, there is a

need for an interface. A test system interface is the link between the test system and the system

under test. A test system interface configuration connects test dependent ports together.

To avoid overloading of model elements the TSI configuration can be implemented within the SUT.

But thinking of an abstract interface to communicate with real physical devices, it is also possible to

implement the TSI as a separate component of the test model. This scenario will not be described

future more in this work. The TSI offers the same inputs and outputs as the design model.

Name (Short) Description

Test System Interface The interface of a test system towards the SUT, respectively design

model.

Note This is an implicit language element. An abstract TSI element must be

implemented separately.

Table 39 Modelica4Testing Test System Interface

System under Test (SUT)

A system under test is used as a wrapper over the real design model. All communication between

the design model and the test system will happen via this component. The SUT offers the same

inputs and outputs as the design model.

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 55

Name (Short) Description

System under Test System model which is to be studied by testing.

TTCN-3 Element SUT (see Table 25), TSI (see Table 28)

Modelica4Testing Type SUT

Modelica Type Model

Multiplicity 1, A test model contains just one SUT.

isAbstract False

Note By default this element is incomplete, but defines a general structure. The

user must complete the body with domain and test specific data.

Table 40 Modelica4Testing SUT

The figure below represents the relationship between the design model, the TSI and the SUT.

Figure 5-4 Modelica4Testing Overview of SUT and its Components

Test System

A test system represents test components which interact with a SUT. A test component emulates

an actor or an external system. The level of implementation can be list as follow:

- Dummy: A very rudimentary implementation with no functionality or intelligence. In most

cases a dummy is just used to proved ports and to pass data or messages to the SUT.

- Stub: Provides functionality for testing. It may be implemented for a special test, so it

provides the exact reactions expected when getting results from a SUT.

- Mock Object: Has some intelligence implemented, in order to react more autonomous, so it

may emulate a more complex system or actor.

When thinking of integration level testing, component or system integration, a test component can

also be another design model, providing full functionality. However, this is not a recommended

strategy, since the design model used as a test component may has its own failures, and this will

lead the results of the test in the wrong direction.

The test system interface is the interaction point used by test components to communicate with the

SUT.

Name (Short) Description

Test System Represents test components which interact with a SUT.

Note This is an implicit language element.

Table 41 Modelica4Testing Test System

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 56

Test Component

Test components interact with the SUT, and will be controlled and configured by a test case. It

realizes the behaviour defined by a test case. Modelica4Testing offers two kinds of test

components, one main test component (MTC) and zero or many parallel test components (PTC). A

local verdict represents the state of the component and is observed by a test case. Since this is a

general behaviour of any test component this can be implemented as an abstract language

element of M4T.

Name (Short) Description

Test Component Actor or system which interacts with a SUT in order to stimulate it.

TTCN-3 Element Test Component (see Table 26, Table 27)

Modelica4Testing Type TestComponent

Modelica Type Class

Multiplicity 1…*, A test model contains one MTC and zero or many PTC.

isAbstract True

Note This element will be implemented as an abstract class. The user has to

define a specific test component element as MTC or PTC.

Table 42 Modelica4Testing Test Component

Main Test Component

A main test component (MTC) is the only test component which interacts directly with the SUT, in

terms of controlling it. Therefore the MTC will be implemented separately. The MTC controls one or

many parallel test components, whereas itself will be controlled and configured by a test case. A

MTC inherits its general test component behaviour from the abstract Test Component class.

Name (Short) Description

Main Test Component Actor or system which interacts with a SUT in order to stimulate it.

TTCN-3 Element MTC (see Table 26)

Modelica4Testing Type MTC

Modelica Type Model

Multiplicity 1, A test model contains one MTC.

isAbstract False

Note By default this element is not defined. The user has to define it at least as

a dummy.

Table 43 Modelica4Testing MTC

Parallel Test Component

A parallel test component may only exchanges data or objects with a SUT. It will not control the

SUT directly. A PTC will be controlled by the MTC and not by a test case. A PTC inherits its

general test component behaviour from the abstract Test Component class.

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 57

Name (Short) Description

Parallel Test Component Actor or system which may exchange data with a SUT.

TTCN-3 Element PTC (see Table 27)

Modelica4Testing Type PTC

Modelica Type Model

Multiplicity 0…*, A test model contains zero or many PTC.

isAbstract False

Note By default this element is not defined. The user has to define it at least as

a dummy.

Table 44 Modelica4Testing PTC

Test Configuration

A port is an interaction point used by the SUT or test components to interact with their

environment. In order to connect ports of a test system interface or test component to available

SUT ports, or test component ports amongst themselves, a user may define an individual port

configuration within a test context. Unlike software systems, real physical systems do not allow a

dynamic connection of ports at runtime, so this behaviour is not given in Modelica at all.

Name (Short) Description

Test System Represents a user defined configuration of interaction points.

Note This is an implicit language element.

Table 45 Modelica4Testing Test Configuration

The Figure 5-5 shows the test system its components and the test configuration between the test

system and the SUT.

Figure 5-5 Modelica4Testing Overview of Test System Configuration

Port Connection

TTCN-3 allows to “connect” a test component port to another test component port and to “map” a

test component port to a port of the test system interface or SUT as mentioned in Table 31. Since

“connect” and “map” will have the same result, in M4T one element represents this concept. A SUT

or test component must have at least one Modelica connector component, since a model element

without any connectors can’t interact with its environment, and as a consequence it can’t be used

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 58

in a Modelica test. A M4T port connection is a Modelica connection equation class, so it has exact

two connection ends, as shown in Figure 5-3.

Name (Short) Description

Port Connection Actor or system which may exchange data with a SUT.

TTCN-3 Element Port Connection (see Table 31), Port Mapping (see Table 30)

Modelica4Testing Type PortConnection

Modelica Type Connection Equation

Multiplicity 1…*, A SUT or test component contains one or many port connections.

isAbstract False

Note By default this element is not defined. The user has to define it.

Table 46 Modelica4Testing Port Connection

5.3.2. Modelica4Testing Test Behaviour

The test behaviour section contains concepts to specify the behaviour of tests.

Test Case

A test case is a behaviour description of how to stimulate a SUT using its inputs and the expected

reaction of the SUT by observing the outputs. A test case is also condition dependent

(precondition, post-condition). Unlike TTCN-3 test cases a Modelica4Testing test case can’t be

implemented as an operation which simply stimulates and observes the SUT sequentially and

simultaneously at runtime, since a system in Modelica is simulated over time, and most models

have time dependent behaviour [23]. Therefore a M4T test case consists of two parts. The first part

will stimulate the MTC in order to pass this stimulus to the SUT and other test components, while

the second part observes their reactions. In addition a test case has a verdict variable and also an

optional test objective as a description, these variables shall be implemented in the test context

definitions part. The local verdict of the test case will be assigned using the SUT reactions and

verdict, as well as the verdict of test components.

Name (Short) Description

Test Case A set of test inputs, execution conditions, and expected results developed

to confirm an implementation against its requirements.

TTCN-3 Element Test Case (see Table 32)

Modelica4Testing Type TestCase

Modelica Type None – since implicit –

Multiplicity 1…*, A test context contains one or many test cases.

isAbstract True – in the context of an implicit language element –

Note This is an implicit language element, since it will be represented by a

stimulation part and an observation part.

Table 47 Modelica4Testing Test Case

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 59

The Figure 5-6 describes the test case parts and the involved elements, as well as the data flow

direction to stimulate and to evaluate the elements.

Figure 5-6 Modelica4Testing Overview of Test Case and its Stimulation and Observation Parts

Test Case Stimulator

This element will describe the concrete behaviour of a test case by stimulating the MTC in order to

pass these stimuli to the SUT or test components at a specified simulation time or condition. But

prior it checks if the test model is confirming specified preconditions, for example by checking the

actual state of a SUT. This check will result in a local verdict variable. A stimulator should be

aborted early if the verdict returns a bad result (inconc, fail, error, see 5.3.3). In this case the

observation part should not be executed, since its preconditions are not satisfied.

Name (Short) Description

Test Case Stimulator Stimulates the SUT and the test components.

TTCN-3 Element Test Case Behaviour (see Table 34)

Modelica4Testing Type TestCaseStimulator

Modelica Type Class

Multiplicity 1, A test case consists of one stimulator part.

isAbstract True

Note By default this element is incomplete, but defines a general structure. The

user must complete the body with model and test specific data.

Table 48 Modelica4Testing Test Case Stimulator

Test Case Stimulator Function

The actual stimulation part will be implemented as a Modelica function using its algorithm section,

see (Chapter 12, [23]) Although equations are eminently suitable for modeling physical systems,

there are situations where non-declarative algorithmic constructs are needed. This is typically the

case for algorithms, i.e., procedural descriptions of how to carry out specific computations, usually

consisting of a number of statements that should be executed in the specified order. In Modelica,

algorithmic statements can occur only within algorithm sections, starting with the keyword

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 60

algorithm. It may not contain any condition statements, since the behaviour of a test case and its

usage should be determined before its start time. The Modelica function return-statement will be

used to terminate the stimulator function if the precondition verdict fails [Modelica]. As a feature the

actual stimulation part body can be empty, to support just the observation of system behaviour

without manipulating it.

Name (Short) Description

Test Case Stimulator Stimulates the SUT and the test components.

TTCN-3 Element Test Case Behaviour (see Table 34)

Modelica4Testing Type TestCaseStimulatorFunction

Modelica Type Function

Multiplicity 1, A test case consists of one stimulator part.

isAbstract True

Note By default this element is incomplete, but defines a general structure. The

user must complete the body with model and test specific data.

Table 49 Modelica4Testing Test Case Stimulator Function

Test Case Evaluator

After stimulating the MTC using its inputs, a set of test case dependent outputs will be observed, in

order to evaluate the SUT, MTC and PTC reactions. Modelica4Testing supports two different

evaluation methods, which are natural in the terms of system simulations over time. The reaction

can be evaluated at a specified time (tn) or during a specified time interval (tn – tn+m). The result of

this evaluation will be returned as a local verdict, calculated using the verdict mechanism described

in 5.3.3. In addition to the expected output values or states of an SUT, the local verdicts of all

involved components will be requested. This covers the evaluation of a post condition, which is

expected by a test case. As a feature, a test case can have multiplied evaluation parts, in order to

check the system several times.

Name (Short) Description

Test Case Stimulator Evaluates the SUT and the test components.

TTCN-3 Element Test Case Verdict Operation

Modelica4Testing Type TestCaseEvaluator

Modelica Type Model, Function

Multiplicity 1…*, A test case consists of one or many evaluation part.

isAbstract True

Note This element will be implemented as an abstract class. The user has to

define a test case evaluator model or function. An evaluation process shall

not have any side effects.

Table 50 Modelica4Testing Test Case Evaluator

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 61

Test Case Evaluator Function

In some cases an expected behaviour may occur and be evaluated at a specified time (tn) of the

simulation. In this case the expected output values of a SUT and the local verdicts of the test

components at this time (tn) can be evaluated, using a Modelica function. The actual evaluation

part will be implemented as a Modelica algorithm section, see (Chapter 12, [23]). The Modelica

function return-statement will be used to terminate the evaluator [Modelica].

Name (Short) Description

Test Case Stimulator Evaluates the SUT and the test components at a specified time (tn).

TTCN-3 Element Part of the Test Case Verdict Operation

Modelica4Testing Type TestCaseEvaluatorFunction

Modelica Type Function

Multiplicity 1…*, A test case consists of one or many evaluation part.

isAbstract False

Note By default this element is incomplete, but defines a general structure. The

user must complete the body with model and test specific data.

Table 51 Modelica4Testing Test Case Evaluator Function

Test Case Evaluator Model

Unlike expected behaviour at one specified time, a test case can expect behaviour during a time

interval or without any knowledge of the actual occurrence time. In this case the evaluation will be

implemented as a Modelica model. Its actual evaluation part takes place in a Modelica algorithm

section or an equation section respectively. Since behaviour expressed in a Modelica model will be

evaluated continuously after starting a test model, and the local verdict will only be returned at its

termination, additional start (tn) and stop (tn+m) time variables will limit the execution time. The

minimum start time (tn) is the test case stimulus execution time. The termination time is at least one

time step after the start time (tn+1), but at an outside estimate one time step below the overall

simulation stop time (tstop-1), since the overall test case verdict value must also be evaluated from

the top-level test context. In addition to the stop time an expected state can terminate the model

execution early.

Name (Short) Description

Test Case Stimulator Evaluates the SUT and the test components during a specified time

interval (tn – tn+m).

TTCN-3 Element Part of the Test Case Verdict Operation

Modelica4Testing Type TestCaseEvaluatorModel

Modelica Type Model

Multiplicity 1…*, A test case consists of one or many evaluation part.

isAbstract False

Note By default this element is incomplete, but defines a general structure. The

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 62

user must complete the body with model and test specific data.

Table 52 Modelica4Testing Test Case Evaluator Model

5.3.3. Modeica4Testing Verdict Type and Values

A verdict variable represents the possible outcomes of a test case, future stated as Verdicttype. A

Verdicttype consists of five distinguished values. Values of Verdicttype shall be denoted by “pass”,

“fail”, “inconc” (inconclusive), “none” and “error”. This type is implemented as a Modelica

enumeration type. Since “fail” is a Modelica keyword the prefix “t_” has been attached to the

values. Each test case, SUT and test component of the active configuration shall maintain its own

local verdict, be collected at the top-level text context as an overall verdict.

Name (Short) Description

Verdicttype Represents the possible outcomes of a test case. Values shall be denoted

by “t_none”, “t_pass”, “t_inconc”, “t_fail” and “t_error”.

TTCN-3 Element Verdicttype

Modelica4Testing Type Verdicttype

Modelica Type Enumeration

isAbstract False

Note By default this element is complete and ready to be used as a variable

type.

Table 53 Modelica4Testing Verdicttype

The following table will list the single possible verdict values and describe them shortly:

Verdicttype Description

t_none This is the default value at start time. When a SUT or test component is

instantiated, its local verdict variable is set to the value none. This value

should change at runtime otherwise this signals an unaffected behaviour.

t_pass If everything goes correctly, this value will return as a verdict of test cases,

test components, the system under test and finally the test context.

t_inconc The inconc value means an inconclusive verdict.

t_fail This signal is the opposite of pass. It will appear if a test case failed.

t_error The error verdict is special in that it is set by the test system to indicate

that a test case or component error has occurred. No other verdict value

can override an error verdict. This means that an error verdict can only be

a result of an execute test case operation.

Table 54 Modelica4Testing Verdicttype possible Values

5.3.4. The Verdict Mechanism

A verdict mechanism is used to assign and update the value of a verdict variable, in order to

represent different levels of verdicts, such as an overall test context verdict or a local test case

verdict.

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 63

Test Case Verdict

In order to evaluate a test case its local verdict is assigned collection the following data:

Name (Short) Description

Precondition Represents a required test model state, to run a test case correctly. The

precondition check will run in the test case stimulus.

Involved Components SUT, MTC and PTC

Involved Variable Type local verdict

Impact if pass Starts actual stimulation part of a TestCaseStimulator (Table 48).

Impact if none, inconc, fail or

error

Terminates the whole TestCase early.

Table 55 Modelica4Testing Test Case Verdict Precondition

Name (Short) Description

Precondition Represents a required test model state after stimulating a component, in

order to check unexpected behaviour. The post-condition check will run in

the test case evaluator.

Involved Components SUT, MTC and PTC

Involved Variable Type local verdict

Impact if pass Check expected behaviour of the SUT (Table 48).

Impact if none, inconc, fail or

error

Terminates the TestCaseStimulator early, since the results are corrupt.

Table 56 Modelica4Testing Test Case Verdict Post-Condition

Name (Short) Description

Evaluate Behaviour Expected behaviour of a SUT in order to confirm a requirement. The

behaviour check runs in the test case evaluator part.

Involved Components SUT

Impact if pass or fail Terminates a test case correctly.

Impact if inconc, or error Terminates the whole TestCase early.

Table 57 Modelica4Testing Test Case Verdict SUT Behaviour

Figure 5-7 Modelica4Testing Verdict Mechanism to assign a local test case verdict

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 64

In Figure 5-7 all elements are depicted which are involved to assign the test case local verdict. As

depicted in the figure above different verdict values can occur for a test case, so there is a need to

prior the values. These overwriting rules are directly adopted from TCCN-3 CL (Chapter 24.1, [16]).

Current value of Verdict New verdict assignment value

pass inconc fail none

t_none t_pass t_inconc t_fail t_none

t_pass t_pass t_inconc t_fail t_pass

t_inconc t_inconc t_inconc t_fail t_inconc

t_fail t_fail t_fail t_fail t_fail

t_error t_error t_error t_error t_error

Table 58 Modelica4Testing Overwriting Rules for the Verdict

The actual assigning algorithm can be implemented using the Modelica reduction function max(A)

(Chapter 10.3.4, [23]). The “max(A)” function returns the largest element of array expression “A”. This

is useful since the verdict type is a Modelica enumeration and the ordinal number will represent the

value. This requires requesting the verdict element ordinal number by using the Modelica type

conversion of enumeration values into integer (Chapter 4.8.5.2, [23]). It returns the ordinal number

of a verdict element. To confirm the overwriting rules from Table 58, the verdict enumeration

elements order in Modelica must implemented as follow:

//test_none = 1, test_pass = 2, test_inconclusive = 3, test_fail = 4, test_error = 5

type Verdicttype = enumeration(t_none, t_pass, t_inconc, t_fail, t_error);

max(i for i in {Integer(componentVerdict2),...,Integer(localVerdict)});

Table 59 Modelica4Testing Verdict Mechanism element order and implementation in Modelica

Test Context Verdict

- Single Test Case

Unlike software or service oriented tests, where many standalone test cases can simply be

executed together without any side effects, system tests in Modelica are different, since a

simulation is running overtime and changes in the past will affect the future. As a result not related

test cases can only be implemented as standalone in a test context.

Figure 5-8 Modelica4Testing Assigning Overall Verdict: Single Test Case

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 65

- Test Suite

A test suite is a collection of test cases running together in order to speed up testing or use related

behaviour in the same test run. As mentioned above it is not suitable to execute unrelated test

cases sequentially, because of side effects and unexpected behaviour. This feature should be

implemented by a test tool, since a tool can restart tests and execute tests in a loop and so on.

However as mentioned in section 0 a test case stimulator body can be empty, in order to use a

observer test case without any stimulations of the SUT. In this case not related test cases can be

collected together as a test suite. Figure 5-9 shows such a test suite implemented in a test context.

Figure 5-9 Modelica4Testing Assigning Overall Verdict: Test Suite with independent Test Cases

Far more interesting, is the situation to related test cases, as depicted in Figure 5-10. Related test

cases can be executed sequentially in order to use the result of a previous test case as the

precondition of a follower test case. However it should be noted, that in this constellation a failed

test case will affect its follower test case negatively. The test run should be aborted.

Figure 5-10 Modelica4Testing Assigning Overall Verdict: Test Suite with dependent Test Cases

5.4. Modelica4Testing Meta-Model and Scope

In order to bring all concepts from chapter 5.3 in a context and to illustrate the ontology of

Modelica4Testing in an understandable, more visual way, one can use meta-models. In the context

of this work ontology is the explicit specification of the Modelica4Testing conceptualisation. In

software engineering and model-based engineering ontology is represented using a meta-model. A

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 66

meta-model is an abstract view of data used in a domain. The Modelica4Testing meta-model will

be illustrated in an “Ecore” diagram using the Eclipse Modelling Framework Technology (EMFT)

[51]. The Ecore meta-model contains the information about the defined abstract classes.

The following elements can be represented within the Ecore model:

- The EClass element represents an abstract class, with zero or many attributes and zero or

many references to other Ecore classes.

- The EAttribute element represents an attribute, its name and type.

- An EReference represents the association between two classes. Associations can also be

specified as a containment relation.

- The EDataType elements allow creating user defined data types used with attributes.

However, Ecore contains a set a very basic data types, such as integer, Boolean and float.

Figure 5-11 Modelica4Testing Meta-Model: Test Model Framework for Modelica

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 67

The M4T meta-model presented in Figure 5-11 shall represent the abstract structure of a test

model defined in Modelica. A tool can adopt this meta-model to provide a simple but powerful

framework for model-based testing using Modelica.

Illustrating the hierarchical scope of language elements, can help to classify elements. The scope

represented in Figure 5-12 contains implicit language elements, as well as concrete elements,

since it should support the user to understand the semantic of Modelica4Testing.

Figure 5-12 Modelica4Testing Hierarchical Scope

5.5. The Modelica4Testing Test Model Framework

To support the understanding and usage of Modelica4Testing by a user, a Modelica4Testing tool

should provide the following Modelica files, as a test model framework. This will also support the

reuse and gives at least a useful starting point for a user. A tool should separate the test model

framework elements into different packages. For example the partial classes and final data types

shall be implemented within a package called “Modelica4Testing_Library”. And the reusable

skeletons should be implemented in a “verification and validation” package.

5.5.1. Modelica4Testing_Library

A language library contains predefined language elements. A library element shall not be

changeable in its structure. Common elements are special data types, predefined interfaces and

abstract classes.

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 68

Build-In Datatype Verdicttype

TestVerdict.mo (Modelica Type)

within Modelica4Testing_Library;

//test_none = 1, test_pass = 2, test_inconclusive = 3, test_fail = 4,

test_error = 5

type TestVerdict = enumeration(test_none, test_pass, test_inconclusive,

test_fail, test_error);

Abstract Test Component

TestComponent.mo (Modelica)

within Modelica4Testing_Library;

partial model TestComponent

 Modelica4Testing_Library.Verdicttype componentVerdict (start =

Modelica4Testing_Library.Verdicttype.t_none);

end TestComponent;

Abstract Test Case Evaluator

TestCaseEvaluator.mo (Modelica)

within Modelica4Testing_Library;

partial class TestCaseEvaluator

 output Modelica4Testing_Library.Verdicttype localVerdict (start =

Modelica4Testing_Library.Verdicttype.t_none);

end TestCaseEvaluator;

Abstract Test Case Stimulator

TestCaseStimulator.mo (Modelica)

within Modelica4Testing_Library;

partial class TestCaseStimulator

 output Modelica4Testing_Library.Verdicttype localVerdict (start =

Modelica4Testing_Library.Verdicttype.t_none);

end TestCaseStimulator;

5.5.2. Modelica4Testing Verification and Validation Model Skeletons

Unlike library elements which are fixed, a set of predefined model skeletons can be used as a

framework for a test model and as a development guideline. Indeed the structure of a skeleton is

also fixed, but the user can complete the body with test and domain specific code. Below a set of

predefined skeletons will be presented, which can be adopted by a Modelica4Testing tool.

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 69

System under Test (SUT)

SUT.mo (Modelica)

within Verification_and_Validation;

//A model containing the system under test

model SUT "System Under Test"

 output Modelica4Testing_Library.Verdicttype componentVerdict (start =

Modelica4Testing_Library.Verdicttype.t_none);

 //Test System Interface

 input TypeX in;

 output TypeY out;

 //Design Model to be tested as a system under test

 Type designModel;

equation

 //Test System Interface Configuration

 connect(in, designModel.in);

 connect(designModel.out, out);

algorithm

 //TBD use full component verdict impl.

 componentVerdict := Modelica4Testing_Library.Verdicttype.t_pass;

end SUT;

Main Test Component (MTC)

MTC.mo (Modelica)

within Verification_and_Validation;

model MTC "Main Test Component" extends Modelica4Testing_Library.TestComponent;

 //Ports

equation

algorithm

 //TBD use full component verdict impl.

 componentVerdict := Modelica4Testing_Library.Verdicttype.t_pass;

end MTC;

Parallel Test Component (PTC)

PTC.mo (Modelica)

within Verification_and_Validation;

model PTC "Parallel Test Compo." extends Modelica4Testing_Library.TestComponent;

 //Ports

equation

algorithm

 //TBD use full component verdict impl.

 componentVerdict := Modelica4Testing_Library.Verdicttype.t_pass;

end PTC;

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 70

Test Context

TestContext.mo (Modelica)

within Verification_and_Validation;

model TestContext

//Definition Part

 //Test Context Overall Verdict

 Modelica4Testing_Library.Verdicttype overallVerdict (start =

Modelica4Testing_Library.Verdicttype.t_none);

 //Test Case verdicts

 Modelica4Testing_Library.Verdicttype tc01_verdict (start =

Modelica4Testing_Library.Verdicttype.t_none);

 //System under Test

 Verification_and_Validation.SUT mySUT; //A model containing the SUT

 //Test Components

 Verification_and_Validation.MTC myMTC; //A model representing the MTC

 Verification_and_Validation.PTC myPTC; //A model representing a PTC

 //Local Variables

 Boolean b_var1 (start = true);

 Real r_var2 (start = 0.00);

 //Test Configuration

equation

 connect(mySUT.Out1, myPTC.In);

 connect(mySUT.Out2, myMTC.In);

 connect(myMTC.Out1, mySUT.In);

 myMTC.status.value = status;

 myMTC.flowLevel.value = flowLevel;

//Control Part

algorithm

 when time >= xx then

 (tc01_verdict, status, flowLevel) :=

TestCase_01_StimulatorFunction(mySUT.componentVerdict, myMTC.componentVerdict,

myPTC.componentVerdict);

 myMTC.status := status;

 myMTC.flowLevel := flowLevel;

 end when;

 when time >= 100 then

 if(tc01_verdict == 1) then (tc01_verdict) :=

TestCase_01_EvaluatorFunction(mySUT.componentVerdict, myMTC.componentVerdict,

myPTC.componentVerdict, mySUT.qOut, mySUT.modeOut, mySUT.statusOut); end if;

 end when;

 //Same for test case 02

 //Assigning Overall Verdict

 overallVerdict := max(i for i in

{Integer(componentVerdict_SUT),Integer(componentVerdict_MTC),Integer(componentVe

rdict_PTC)});

end TestContext;

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 71

6. Application Example of System Level Testing

Finally, the approach to generate an executable design model from chapter 4 and the test model

framework developed in chapter 5 can be combined to test the system implementation, of the

Aircraft Water Tank System, against its functional specification, defined in chapter 3.

As mentioned above this approach focuses on the functional system design level, illustrated in

Figure 2-3 V-Model XT on the left side. The correspondent test activity is the system level test. The

goal of system level testing, in the term of early verification and validation, is to confirm a system

model and a simulation prototype against the system specification requirements [9]. Since the

system design level uses a more abstract view on the system, the validation is done using

functional testing, also referred to as Black-Box testing. Black-Box testing is testing against the

functional requirements of a SUT, without knowledge of the internal structure. It uses the SUT

inputs as the point of control (PoC) and its outputs as the point of observation (PoO). The decision

if a test case passes or fails mainly depends on the results given by the SUT outputs. Figure 6-1

represents the aircraft water tank system as Black-Box. The used inputs and outputs are

represented as SysML ports.

«SUT»

AircraftWaterTankSystem

StatusMonitor.mode

Tank01.hTank02.h

Tank01.mode

Tank02.mode

StatusMonitor.status

PoO

PoC

qIn : Liquid Source

StatusControlIn : User Interface

Figure 6-1 Black-Box view of the Aircraft Water Tank System as the SUT

Derived from the State Machine (SM) developed in chapter 0, a test case will be developed to test

for errors in the system. From a testing point of view, a system may fail a test if it is exposed to an

event, the guard conditions are not appropriated or the system either does not transition to another

or to a wrong state [3]. This chapter will test the system based on the following typical SM tests:

- Test for state fault: There might be either extra or missing states.

- Test for action fault: The actions on a transition are incorrect or missing.

- Test for transition fault: The transition on a legal event is incorrect or missing.

- Test for guard condition fault: The guard condition on a transition is incorrect.

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 72

6.1. OpenModelica as Simulation and Test Execution Tool

A simulation tool is needed to execute the Modelica models. As mentioned in chapter 2.1.2

OpenModelica is an open-source and free available modelling and simulation environment for

Modelica. Its Modelica compiler generates an executable file, including the model as C/C++ code

and different solvers to simulate the model behaviour. The Figure 6-2 illustrates the used

simulation environment, the SUT and the test model.

Figure 6-2 Executing the Test Model and the SUT using the Modelica Tool OpenModelica

In order to manage test sessions and to demonstrate the results more efficiently an Eclipse 3.6 [49]

based simulation and test environment has been developed as an Eclipse Plug-In [52]. The

environment is implemented in Java [48]. The developed simulation and test environment will use

the OpenModelica Compiler [29] functionality, provided by OM to compile the model. A simulation

and test configuration system provides the management of created simulation projects, test

models, simulation sessions and their results.

Figure 6-3 Eclipse based Simulation and Test Environment for OM: Management View

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 73

Figure 6-4 Eclipse based Simulation and Test Environment for OM: Result View

The tool and a full documentation are available for download on the OpenModelica.org website

[36]. However by using the tools provided in the OM tools set, one can get the same result, but

more inconvenient and without the mentioned configuration management features.

6.2. Test Case Specification

As mentioned above, the test case defined in this chapter will validate the expected system

behaviour, described in section 0. The state machine depicted in Figure 6-5, expects that the

system changes its internal state, when the control unit recognizes a different “mode” signal as a

guard condition (see event definition in section 0.). The simple test case will not cover the correct

implementation of the “online” and “offline” states, since the result is redundant.

Figure 6-5 Copy of AWTS State Machine described in section 0.

6.2.1. Test Case Specification as Text

The following specification describes the needed test case as text:

- Name: State Machine Testing for correct Modes

- Objective: In this test case the user interface will increase the out flow level of the liquid

source, in order to increase the level of liquid in the tanks. A liquid tank assigns its mode

stm [block] Aircraf tWaterTankSystemUsingPID [Aircraf tWaterTankSystemStatesAndModes]

online on off line

of f

on

of f
increaseFlow

normal

increaseFlow

[statusMonitor.modeOut.value >= 1.0]
tolerance

[statusMonitor.modeOut.value >= 1.0]

[statusMonitor.modeOut.value == 0.0][statusMonitor.modeOut.value == 0.0]

[statusMonitor.modeOut.value >= 2.0]
error

[statusMonitor.modeOut.value >= 2.0]

[statusMonitor.modeOut.value <= 1.0][statusMonitor.modeOut.value <= 1.0]

absolute error[statusMonitor.modeOut.value == 3.0]

of f

[statusMonitor.modeOut.value == 3.0]

of f

shutdow nshutdow n

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 74

using the actual tank level “h” and guard conditions. A control unit collects the modes of all

tanks and assigns an overall mode for the system. In the given configuration the SUT

should not went into the absolute error mode. Otherwise this test is failed. But a change

from normal into tolerance and then error is allowed, and will be accepted as pass. The

result after 250s can be observed using the “StatusMonitor.status”, “StatusMonitor.mode”

and “Tank1.h”, “Tank2.h” outputs.

- Precondition (At Simulation Time = 50s):

o System status is “Online” = “StatusMonitor.status” = true

o “StatusMonitor.mode” = Normal

o “Tank1.h” = 0.0 m, “Tank2.h” = 0.0 m

- Input: UserInterface.flowOut = 0.02 l/m3;

- Post-Condition (At Simulation Time = 350s):

o System status is “Online” = “StatusMonitor.status” = true

o “StatusMonitor.mode” = Normal.

- Output: “Tank1.h” = 0.5 m, “Tank2.h” = 0.5 m

6.2.2. Test Case implemented in Modelica4Testing

The following is the test case implemented in Modelica using the developed test model framework

Modelica4Testing from chapter 5.3. The test case is implemented as a single test case (5.3.4). As

mentioned in section 5.3.2, a test case in Modelica4Testing is divided into two parts. The stimulator

part is checks the preconditions and defines needed values. The evaluation part checks the post-

conditions and evaluates the outputs to decide if a test is pass or fail.

TestCase_01_StimulatorFunction.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Verification_and_Validation;

function TestCase_01_StimulatorFunction extends

Modelica4Testing_Library.TestCaseStimulator;

 input Modelica4Testing_Library.Verdicttype componentVerdict_SUT;

 input Modelica4Testing_Library.Verdicttype componentVerdict_MTC;

 input Modelica4Testing_Library.Verdicttype componentVerdict_PTC;

 output Boolean status "false=offline, true=online";

 output Real flowLevel;

algorithm

 localVerdict := max(i for i in

{Integer(componentVerdict_SUT),Integer(componentVerdict_MTC),Integer(componentVe

rdict_PTC)});

 if(localVerdict == 1) then //only at pass the test case can proceed

 status := true;

 flowLevel := 0.02;

 return;

 end if;

 return;

end TestCase_01_StimulatorFunction;

Table 60 Test Case implementation in Modelica4Testing, Stimulator Part

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 75

TestCase_01_EvaluatorFunction.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Verification_and_Validation;

function TestCase_01_EvaluatorFunction extends

Modelica4Testing_Library.TestCaseEvaluator;

 input Modelica4Testing_Library.Verdicttype componentVerdict_SUT;

 input Modelica4Testing_Library.Verdicttype componentVerdict_MTC;

 input Modelica4Testing_Library.Verdicttype componentVerdict_PTC;

 input Real tank1h;

 input Real tank2h;

 input Model_Library.ModeSignal modeOut;

 output Modelica4Testing_Library.Verdicttype localVerdict;

algorithm

 localVerdict := max(i for i in

{Integer(componentVerdict_SUT),Integer(componentVerdict_MTC),Integer(componentVe

rdict_PTC)});

 if(localVerdict == 1) then // is pass?

 if (modeOut.value == 3.0 and (tank1.h > 0.95 and tank2.h > 0.95)) then

Modelica4Testing_Library.Verdicttype.t_pass

 else if ((modeOut.value == 2.0 and ((tank1.h > 0.8 and tank1.h <=

0.95) and (tank2.h >= 0.8 and tank2.h <= 0.95))) and localVerdict ==

Modelica4Testing_Library.Verdicttype.t_pass) then

Modelica4Testing_Library.Verdicttype.t_pass

 else if ((modeOut.value == 1.0 and ((tank1.h > 0.70 and tank1.h <=

0.80) and (tank2.h >= 0.70 and tank2.h < 0.80))) and localVerdict ==

Modelica4Testing_Library.Verdicttype.t_pass) then

Modelica4Testing_Library.Verdicttype.t_pass

 else if ((modeOut.value == 0.0 and ((tank1.h >= 0.0 and tank1.h <=

0.7) and (tank2.h >= 0.0 and tank2.h <= 0.7))) and localVerdict ==

Modelica4Testing_Library.Verdicttype.t_pass) then

Modelica4Testing_Library.Verdicttype.t_pass

 else localVerdict := Modelica4Testing_Library.Verdicttype.t_fail;

 end if;

 else localVerdict := Modelica4Testing_Library.Verdicttype.t_fail;

 end if;

 return;

end TestCase_01_EvaluatorFunction;

Table 61 Test Case implementation in Modelica4Testing, Evaluator Part

The complete test model can be found in the Appendix B.

6.3. System Simulation and Test Execution

In order to demonstrate the test case defined in section 6.2, once passed and once failed, the

design model is implemented once correctly and with a fault respectively. The failure is

implemented in the liquid tank when assigning its “mode” based on the tank level value “h”. As

mentioned above, the correct system behaviour is to transit to another mode based on the level of

liquid in a tank and guard conditions.

6.3.1. System under Test Preparation

The equation code presented in the Table 62 calculates the tolerance mode correctly, by assigning

the tolerance mode when the level is smaller or equal 80% of the maximum tank height. Whereas

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 76

the equation used in Table 63 assigns an incorrect value. Since the test case checks the dynamic

behaviour in terms of compliance with the requirements expressed as a state machine, it should

fail when using the fault equation.

LiquidTank.mo (Modelica) - correct -

within AircraftWaterTankSystem.AWTS_Structure;

block LiquidTank

 ...

Equation

 ...

 modeOut.value = if h <= (maxTankHight * 0.7) then 0.0

 else if h <= (maxTankHight * 0.8) then 1.0  Correct

 else if h <= (maxTankHight * 0.95) then 2.0

 else if h > (maxTankHight * 0.95) then 3.0

 else -1.0;

end LiquidTank;

Table 62 Liquid Tank with correct implemented tank mode equation

LiquidTank.mo (Modelica) - incorrect -

within AircraftWaterTankSystem.AWTS_Structure;

block LiquidTank

 ...

Equation

 ...

 modeOut.value = if h <= (maxTankHight * 0.7) then 0.0

 else if h <= (maxTankHight * 0.8) then 0.0  Incorrect

 else if h <= (maxTankHight * 0.95) then 2.0

 else if h > (maxTankHight * 0.95) then 3.0

 else -1.0;

end LiquidTank;

Table 63 Liquid Tank with incorrect implemented tank mode equation

6.3.2. Test Execution and Evaluation Process

Using the developed eclipse application one can load the Modelica code and start the simulation.

Using the verdict type definition from chapter 5.3.3 a test is pass if the verdict value is “2”, and fail if

the value is “4”. The figures below are representing the test results as graphs. The following lines

are represented:

Attribute Description Color

tank1.h Level of water in the first tank. Yellow

tank2.h Level of water in the second tank. Green

statusMonitor.mode System mode to represent the different states.

Normal=0, Tolerance=1, Error=2, Abs.Error=3.

Red

overallVerdict The overall verdict of the system. Where among

others, pass=2 and fail=4

Blue

Table 64 Attributes as graphs in the simulation result plot

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 77

Figure 6-6 Simulation Results for a correct Model, Test Case is Pass

Figure 6-7 Simulation Results for a incorrect Model, the Test Case is Fail

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 78

The results of the first test session, where the correct system was in use, are presented in the

Figure 6-6. The test is pass, since the system transition at ~21s, ~50s and ~90s is changing to the

tolerance mode.

The second test session, using the incorrect system model, is presented in Figure 6-7. The system

transition to the tolerance state is not happening at ~20s. Once a test is failed it can’t be pass

anymore, therefore the missing transition at ~50s and ~90s are not respected.

The Figure 6-6 and the Figure 6-7 are presenting the reason why the second test session failed in

more detail.

Figure 6-8 Simulation Results for the first test session in detail

Figure 6-9 Simulation Results for the second test session in detail

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 79

7. Conclusions and Future Work

7.1. Conclusions

The approach presented in this work proved the possibility to translate an entire SysML system

design model into the programming language Modelica, in order to make it executable for early

prototyping, verification and validation. An aircraft water tank system is used as a concrete system

example, to illustrate this approach. But the used subset of SysML and Modelica language

elements has to be extended to fulfil the needs of real engineering project. The results of the

SysML-Modelica Integration Group can support to fill this gap, since it is a wider approach.

The test specification and implementation language Modelica4Testing has been developed in

Modelica by using existing concepts from the standardized test specification language TTCN-3. A

testing tool can implement this specification language as a test model framework, to support users

by developing tests in Modelica. Figure 7-1 illustrates the testing approach given by the test model

framework.

Figure 7-1 Illustration of the test model used in the M4T approach

In addition the work shows that existing IT standards, defined by the IEEE and the OMG, used as a

basis for new technologies in research, will not only support their global understanding and

dissemination, but also reduce time and cost of developing new technologies and of finding

acceptance by developers when used in projects.

Master Thesis
Model-Based Design, Verification and Validation of Systems using SysML and Modelica 80

7.2. Future Work

As mentioned in section 4.3, automated code generation is the key feature to make a model-based

approach more applicable and useful in operational field. A major improvement to the presented

approach in this work will be the implementation of a graphical and model-based test specification

language, such as the OMG UML2 Testing Profile (UTP), to specify tests and to generate

Modelica4Testing code automatically. UTP provides extensions to UML to support the design,

visualization, specification, analysis, construction, and documentation of the artefacts involved in

testing. It has been standardized by the OMG [25].

In our case, SysML is the language for specifying models and UTP will be the formalism to

describe the derived tests. Using UTP, test relevant behaviour described by SysML behaviour

diagrams, like Sequence or Activity Diagrams can be used to derive these tests more

automatically. In addition tests can be communicated more efficient between the system design

team and a test engineering team.

Figure 7-2 Including the UML2 Testing Profile as Future Work

The Appendix C will present an approach of mapping UTP to Modelica4Testing, in order to support

future research projects from this field.

References

XI

IV. References

[1] Sanford Friedenthal, Alan Moore and Rick Steiner, 2008, Practical Guide to SysML: The

Systems Modeling Language, Morgan Kaufmann.

[2] Fritzson Peter, 2004, Principles of Object-Oriented Modeling and Simulation with Modelica 2.1,

Wiley-IEEE Press.

[3] Avner Engel, 2010, Verification, Validation, and Testing of Engineered Systems, Wiley Press

[4] Andrew S. Tanenbaum and Maarten Van Steen, 2006, Distributed Systems: Principles and

Paradigms, Prentice Hall

[5] Baker, P., Dai, Z.R., Grabowski, J., Schieferdecker, I., Williams, C., 2007, Model-Driven

Testing: Using the UML Testing Profile, Springer

[6] Ralf Reussner und Wilhelm Hasselbring, 2006, Handbuch der Software-Architektur, dpunkt

Verlag.

[7] Friedenthal, Sanford, Greigo, Regina, and Mark Sampson, INCOSE MBSE Roadmap, in

“INCOSE Model Based Systems Engineering (MBSE) Workshop Outbrief” (Presentation

Slides), presented at INCOSE International Workshop 2008, Albuquerque, NM, pg. 6, Jan. 26,

2008

[8] EADS Innovation Works, HAW Hamburg, Parham Vasaiely, Bachelor Thesis:

“Interactive Simulation of SysML Models using Modelica.pdf”, August 2009.

http://opus.haw-hamburg.de/volltexte/2009/842/

[9] THE V-MODELL® XT Version 1.3, 2009, http://v-modell.iabg.de/dmdocuments/V-Modell-XT-

Gesamt-Englisch-V1.3.pdf

[10] PELAB, Peter Fritzson, “OpenModelica Users Guide, Version 2011-06-13 for OM 1.7.0”,

http://www.ida.liu.se/labs/pelab/modelica/OpenModelica/releases/current/doc/OpenModelicaUs

ersGuide.pdf, June 2011.

http://opus.haw-hamburg.de/volltexte/2009/842/
http://v-modell.iabg.de/dmdocuments/V-Modell-XT-Gesamt-Englisch-V1.3.pdf
http://v-modell.iabg.de/dmdocuments/V-Modell-XT-Gesamt-Englisch-V1.3.pdf
http://www.ida.liu.se/labs/pelab/modelica/OpenModelica/releases/current/doc/OpenModelicaUsersGuide.pdf
http://www.ida.liu.se/labs/pelab/modelica/OpenModelica/releases/current/doc/OpenModelicaUsersGuide.pdf

References

XII

[11] PELAB, Peter Fritzson, “OpenModelica System Documentation, Ver. 2011-04-19 for OM 1.7.0”,

http://www.ida.liu.se/labs/pelab/modelica/OpenModelica/releases/current/doc/OpenModelicaSy

stem.pdf, April 2011.

[12] IBM Systems Engineering Tutorial for Rational Rhapsody, Rhapsody 7.4,

http://publib.boulder.ibm.com/infocenter/rsdp/v1r0m0/topic/com.ibm.help.download.rhapsody.d

oc/pdf76/tutorial_Systems_Eng.pdf, 2009

[13] The Institute of Electrical and Electronic Engineers, IEEE Std. 610, IEEE Standard Computer

Dictionary, http://ieeexplore.ieee.org/servlet/opac?punumber=2267, 1991

[14] The Institute of Electrical and Electronic Engineers, IEEE Std. 829-2008,

IEEE Standard for Software and System Test Documentation,

http://ieeexplore.ieee.org/servlet/opac?punumber=4578271, 2008

[15] The Institute of Electrical and Electronic Engineers, IEEE Std. 1012-2004, IEEE Standard for

Software Verification and Validation, http://ieeexplore.ieee.org/servlet/opac?punumber=9958,

2005

[16] The Testing and Test Control Notation v3, TTCN-3 Core Language, ETSI ES 201 873-1 V4.3.,

http://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.03.01_60/es_20187301v0403

01p.pdf, 2011

[17] Object Management Group MOF QVT, Meta Object Facility (MOF) 2.0 Query / View /

Transformation Specification, Version 1.0, http://www.omg.org/spec/QVT/1.0/PDF/, 2008

[18] Object Management Group UML, “OMG Unified Modeling Language (OMG UML),

Superstructure, V2.3, http://www.omg.org/spec/UML/2.3/Superstructure/PDF/, 2010

[19] Object Management Group SysML, “OMG Systems Modeling Language 1.2 (OMG SysML™)

Specification, Version 1.2”, http://www.omg.org/spec/SysML/1.2/PDF/, 2010.

[20] Sparx Systems Pty. Ltd and ICONIX, Doug Rosenberg, Sam Mancarella,

Embedded Systems Development using SysML,

http://www.sparxsystems.com/downloads/ebooks/Embedded_Systems_Development_using_S

ysML.pdf, 2010

http://www.ida.liu.se/labs/pelab/modelica/OpenModelica/releases/current/doc/OpenModelicaSystem.pdf
http://www.ida.liu.se/labs/pelab/modelica/OpenModelica/releases/current/doc/OpenModelicaSystem.pdf
http://publib.boulder.ibm.com/infocenter/rsdp/v1r0m0/topic/com.ibm.help.download.rhapsody.doc/pdf76/tutorial_Systems_Eng.pdf
http://publib.boulder.ibm.com/infocenter/rsdp/v1r0m0/topic/com.ibm.help.download.rhapsody.doc/pdf76/tutorial_Systems_Eng.pdf
http://ieeexplore.ieee.org/servlet/opac?punumber=2267
http://ieeexplore.ieee.org/servlet/opac?punumber=4578271
http://ieeexplore.ieee.org/servlet/opac?punumber=9958
http://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.03.01_60/es_20187301v040301p.pdf
http://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.03.01_60/es_20187301v040301p.pdf
http://www.omg.org/spec/QVT/1.0/PDF/
http://www.omg.org/spec/UML/2.3/Superstructure/PDF/
http://www.omg.org/spec/SysML/1.2/PDF/
http://www.sparxsystems.com/downloads/ebooks/Embedded_Systems_Development_using_SysML.pdf
http://www.sparxsystems.com/downloads/ebooks/Embedded_Systems_Development_using_SysML.pdf

References

XIII

[21] ITU-T Study Group VII - Data networks and open system communications, Open Systems

Interconnection – Conformance testing, ITU-T Recommendation X.290, http://www.itu.int/ITU-

T/recommendations/rec.aspx?rec=X.290, 1995

[22] ITU-T Study Group VII - Data networks and open system communications, Open Systems

Interconnection – Conformance testing, ITU-T Recommendation X.292, http://www.itu.int/ITU-

T/recommendations/rec.aspx?rec=X.292, 2002

[23] Modelica Association, "Modelica Language Specification Version 3.2”,

www.modelica.org/documents/ModelicaSpec32.pdf, March, 2010.

[24] Department of Defense, DoD Modeling and Simulation (M&S) Management,

http://www.cotf.navy.mil/files/ms/dodd%20m&s%20mgt%205000.59.pdf, 1994

[25] Object Management Group UTP, UML 2.0 Testing Profile Specification version 2.0,

http://www.fokus.fraunhofer.de/u2tp/documents/UMLTestingProfile_FinalAdoptedSpecification.

pdf, 2004

[26] The International Council on Systems Engineering (INCOSE), Last Accessed: 2011

http://www.incose.org/

[27] Object Management Group (OMG), Last Accessed: 2011

http://www.omg.org/

[28] Object Management Group (OMG) Unified Modeling Language (UML), Last Accessed: 2011

http://www.uml.org/

[29] Object Management Group (OMG) Systems Modelling Language, Last Accessed: 2011

http://www.omgsysml.org/

[30] The Institute of Electrical and Electronic Engineers IEEE, Last Accessed: 2011

www.ieee.org/

[31] The Testing and Test Control Notation Version 3 (TTCN-3), Last Accessed: 2011

www.ttcn-3.org/

[32] Modelica and the Modelica Association, Last Accessed: 2011

http://www.modelica.org/

http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=X.290
http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=X.290
http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=X.292
http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=X.292
http://www.modelica.org/documents/ModelicaSpec32.pdf
http://www.cotf.navy.mil/files/ms/dodd%20m&s%20mgt%205000.59.pdf
http://www.fokus.fraunhofer.de/u2tp/documents/UMLTestingProfile_FinalAdoptedSpecification.pdf
http://www.fokus.fraunhofer.de/u2tp/documents/UMLTestingProfile_FinalAdoptedSpecification.pdf
http://www.incose.org/
http://www.omg.org/
http://www.uml.org/
http://www.omgsysml.org/
http://www.ieee.org/
http://www.ttcn-3.org/
http://www.modelica.org/

References

XIV

[33] Modelica and the Modelica Association, Modelica Libraries, Last Accessed: 2011

http://www.modelica.org/libraries

[34] Dynasim AB, Dymola, Last Accessed: 2009

http://www.dynasim.se/

[35] MathCore Engineering AB, MathModelica, Last Accessed: 2009

http://www.mathcore.com/products/mathmodelica/

[36] OpenModelica, Modelica Modeling and Simulation Tool, Last Accessed: 2009

http://www.openmodelica.org/

[37] Open Source Modelica Consortium, Last Accessed: 2009

http://www.ida.liu.se/labs/pelab/modelica/OpenSourceModelicaConsortium.html

[38] Linköping University, Last Accessed: 2009, http://www.liu.se

[39] IBM Rational Rhapsody, Systems-Engineering Tool Rhapsody 7.6, Last Accessed: 2011

http://www-01.ibm.com/software/awdtools/rhapsody/

[40] AUTomotive Open System Architecture (AUTOSAR), Last Accessed: 2011

www.autosar.org/

[41] Department of Defense Architecture Framework, DoDAF, Last Accessed: 2011

http://cio-nii.defense.gov/sites/dodaf20/

[42] SmartCockpit, Airbus A330 Water & Waste System, Last Accessed: 2011

http://www.smartcockpit.com/data/pdfs/plane/airbus/A330/

[43] Control-Systems-Principles Organisation, Last Accessed: 2011

http://www.control-systems-principles.co.uk/

[44] SysML and Modelica Integration, OMG Working Group, Last Accessed: 2011

http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-

modelica:sysml_and_modelica_integration

http://www.modelica.org/libraries
http://www.dynasim.se/
http://www.mathcore.com/products/mathmodelica/
http://www.openmodelica.org/
http://www.ida.liu.se/labs/pelab/modelica/OpenSourceModelicaConsortium.html
http://www.liu.se/
http://www-01.ibm.com/software/awdtools/rhapsody/
http://www.autosar.org/
http://cio-nii.defense.gov/sites/dodaf20/
http://www.smartcockpit.com/data/pdfs/plane/airbus/A330/
http://www.control-systems-principles.co.uk/
http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-modelica:sysml_and_modelica_integration
http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-modelica:sysml_and_modelica_integration

References

XV

[45] IBM Rational Rhapsody 7.6 Tutorial and Users Guide, Last Accessed: 2011

http://publib.boulder.ibm.com/infocenter/rhaphlp/v7r6/index.jsp?topic=/com.ibm.rhapsody.desig

ning.doc/topics/rhp_c_dm_system_eng_reqmts_rhap.html

[46] Papyrus UML2 Modeling Tool, Last Accessed: 2011, http://www.papyrusuml.org/

[47] Acceleo, Model 2 Code Transformation, Code Generator, Last Accessed: 2011,

http://www.acceleo.org/pages/home/en

[48] Oracle, Java, Last Accessed: 2011, http://www.oracle.com/us/java/index.html

[49] Eclipse 3.6, Multi-Language Software Development Environment, Last Accessed: 2011

http://www.eclipse.org/

[50] JUnit, unit testing framework for Java, Last Accessed: 2011

https://www.junit.org/

[51] Eclipse Modeling Framework Project (EMF), Last Accessed: 2011,

http://www.eclipse.org/modeling/emf/

[52] The Eclipse Plug-in Development Environment (PDE), Version 3.6, Last Accessed: 2011

http://www.eclipse.org/pde/

http://publib.boulder.ibm.com/infocenter/rhaphlp/v7r6/index.jsp?topic=/com.ibm.rhapsody.designing.doc/topics/rhp_c_dm_system_eng_reqmts_rhap.html
http://publib.boulder.ibm.com/infocenter/rhaphlp/v7r6/index.jsp?topic=/com.ibm.rhapsody.designing.doc/topics/rhp_c_dm_system_eng_reqmts_rhap.html
http://www.papyrusuml.org/
http://www.acceleo.org/pages/home/en
http://www.oracle.com/us/java/index.html
http://www.eclipse.org/
https://www.junit.org/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/pde/

Appendix

XVI

V. Appendix

Appendix A. Modelica design model code of Aircraft Water Tank System

package.mo (AircraftWaterTankSystem)

package AircraftWaterTankSystem

end AircraftWaterTankSystem;

package.mo (AWTS_Structure)

package AWTS_Structure

end AWTS_Structure;

package.mo (Model_Library)

package Model_Library

end Model_Library;

package.mo (External_Systems)

package External_Systems

end External_Systems;

ReadSignal.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Structure;

connector ReadSignal //Reading fluid level in m

 Real val(unit = "m");

end ReadSignal;

ActuatorSignal.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Structure;

connector ActuatorSignal // Signal to an actuator for setting valve position

 Real act;

end ActuatorSignal;

LiquidFlow.mo (Modelica)

within AircraftWaterTankSystem.Model_Library;

connector LiquidFlow // Real liquid flow at inlets or outlets

 Real lflow(unit = "m3/s");

end LiquidFlow;

ModeSignal.mo (Modelica)

within AircraftWaterTankSystem.Model_Library;

connector ModeSignal // Signal to represent the system or component mode

 Real value; // 0=normal, 1=tolerance, 2=error, 3=abs. error

end ModeSignal;

Appendix

XVII

<< flowProperty >> StatusSignal  StatusSignal.mo (Modelica)

within AircraftWaterTankSystem.Model_Library;

connector StatusSignal // Signal to represent the system or component status

 Real value; // 0=offline, 1=online

end StatusSignal;

<< flowProperty >> FlowLevelSignal  FlowLevelSignal.mo (Modelica)

within AircraftWaterTankSystem.Model_Library;

connector FlowLevelSignal // Liquid flow level as measurement

 Real value (unit = "m3/s");

end FlowLevelSignal;

<<block>> BaseController  BaseController.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Structure;

partial block BaseController

 input AircraftWaterTankSystem.Model_Library.StatusSignal statusControlIn

"status control signal to turn the controller on or off";

 input AircraftWaterTankSystem.AWTS_Structure.ReadSignal cIn "Input sensor

level, connector";

 output AircraftWaterTankSystem.AWTS_Structure.ActuatorSignal cOut "Control to

actuator, connector";

 Real Ts(unit = "s") = 0.1;

 Real K = 2 "Gain";

 Real T(unit = "s") = 10 "Time constant";

 Real ref "Reference level";

 Real error "Deviation from reference level";

 Real outCtr "Output control signal";

equation

 error = ref - cIn.val;

 cOut.act = if(statusControlIn.value) then outCtr else 0.0;

end BaseController;

<<block>> PIDcontinuousController  PIDcontinuousController.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Structure;

block PIDcontinuousController extends BaseController(K = 2, T = 10);

 Real x; // State variable of continuous PID controller

 Real y; // State variable of continuous PID controller

equation

 der(x) = error/T;

 y = T*der(error);

 outCtr = K*(error + x + y);

end PIDcontinuousController;

<<block>> LiquidTank  LiquidTank.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Structure;

block LiquidTank

 input AircraftWaterTankSystem.AWTS_Structure.ActuatorSignal tActuator; //

Connector, actuator controlling input flow

 input AircraftWaterTankSystem.Model_Library.LiquidFlow qIn; // Connector, flow

(m3/s) through input valve

Appendix

XVIII

 output AircraftWaterTankSystem.AWTS_Structure.ReadSignal tSensor; //

Connector, sensor reading tank level (m)

 output AircraftWaterTankSystem.Model_Library.ModeSignal modeOut; // 0.0 when

system is in normal mode otherwise 1.0

 output AircraftWaterTankSystem.Model_Library.LiquidFlow qOut; // Connector,

flow (m3/s) through output valve

 //output Real h(start = 0.0, unit = "m"); //Tank level

 Real h(start = 0.0, unit = "m"); //Tank level

 Real area(unit = "m2") = 1; //Will be given as a parameter

 Real maxTankHight (unit = "m") = 1.0; //Will be given as a parameter

 Real flowGain (start = 1.99, unit = "m2/s") = 0.05;

 Real minV = 0; // Minimum for output valve flow

 Real maxV = 10; // Limit for output valve flow

equation

 der(h) = (qIn.lflow - qOut.lflow)/area; // Mass balance equation

 qOut.lflow = if (-flowGain*tActuator.act) >maxV then maxV

 else if (-flowGain*tActuator.act) <minV then minV

 else (-flowGain*tActuator.act);

 tSensor.val = h;

 modeOut.value = if h <= (maxTankHight * 0.7) then 0.0

 else if h <= (maxTankHight * 0.8) then 1.0

 else if h <= (maxTankHight * 0.95) then 2.0

 else if h > (maxTankHight * 0.95) then 3.0

 else -1.0;

end LiquidTank;

<<block>> ControlUnit  ControlUnit.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Structure;

block ControlUnit

 input Model_Library.ModeSignal modeIn1;

 input Model_Library.ModeSignal modeIn2;

 input Model_Library.StatusSignal statusControlIn; // status control signal

from a user interface to turn the system on or off

 output Model_Library.ModeSignal modeOut;

 output Model_Library.StatusSignal statusControlOut1; // status control signal

to turn a controller on or off

 output Model_Library.StatusSignal statusControlOut2; // status control signal

to turn a controller on or off

 output Model_Library.StatusSignal statusOut;

 equation

 modeOut.value =

 if (modeIn1.value >= modeIn2.value) then modeIn1.value

 else modeIn2.value;

 statusOut.value = if (modeOut.value >= 3.0) then false else

statusControlIn.value;

 statusControlOut1.value = statusOut.value;

 statusControlOut2.value = statusOut.value;

end ControlUnit;

AircraftWaterTankSystemUsingPID.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Structure;

block AircraftWaterTankSystemUsingPID

 AircraftWaterTankSystem.AWTS_Structure.ControlUnit statusMonitor;

 AircraftWaterTankSystem.AWTS_Structure.LiquidTank tank1(area = 0.5,

maxTankHight = 1);

 AircraftWaterTankSystem.AWTS_Structure.LiquidTank tank2(area = 1,

maxTankHight = 1);

Appendix

XIX

 AircraftWaterTankSystem.AWTS_Structure.PIDcontinuousController

pidContinuous1(ref = 0.5); //1 = 100% of maxTankHight

 AircraftWaterTankSystem.AWTS_Structure.PIDcontinuousController

pidContinuous2(ref = 0.5); //1 = 100% of maxTankHight

 input AircraftWaterTankSystem.Model_Library.LiquidFlow qIn; // Connector, flow

(m3/s) through input valve

 input AircraftWaterTankSystem.Model_Library.StatusSignal statusControlIn; //

status control signal from a user interface to turn the system on or off

 output AircraftWaterTankSystem.Model_Library.LiquidFlow qOut;

 output AircraftWaterTankSystem.Model_Library.ModeSignal modeOut;

 output AircraftWaterTankSystem.Model_Library.StatusSignal statusOut;

 //output Real h(start = 0.0);

equation

 connect(statusMonitor.statusControlOut1, pidContinuous1.statusControlIn);

 connect(statusMonitor.statusControlOut2, pidContinuous2.statusControlIn);

 connect(tank1.modeOut, statusMonitor.modeIn1);

 connect(tank2.modeOut, statusMonitor.modeIn2);

 connect(tank1.qOut, tank2.qIn);

 connect(tank2.qOut, qOut);

 connect(tank1.tSensor, pidContinuous1.cIn);

 connect(pidContinuous1.cOut, tank1.tActuator);

 connect(tank2.tSensor, pidContinuous2.cIn);

 connect(pidContinuous2.cOut, tank2.tActuator);

 connect(statusMonitor.modeOut, modeOut);

 connect(statusControlIn, statusMonitor.statusControlIn);

 connect(statusMonitor.statusOut, statusOut);

 connect(qIn, tank1.qIn);

end AircraftWaterTankSystemUsingPID;

Appendix B. Test model code developed in Modelica4Testing

SUT.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Verification_and_Validation;

model SUT "System Under Test"

 output Modelica4Testing_Library.Verdicttype componentVerdict (start =

Modelica4Testing_Library.Verdicttype.t_none);

 //Test System Interface

 input Model_Library.LiquidFlow qIn;

 input Model_Library.StatusSignal statusControlIn;

 output Model_Library.LiquidFlow qOut;

 output Model_Library.ModeSignal modeOut;

 output Model_Library.StatusSignal statusOut;

 //Design Model to be tested as a system under test

 AWTS_Structure.AircraftWaterTankSystemUsingPID designModel;

equation

 //Test System Interface Configuration

 connect(qIn, designModel.qIn);

 connect(statusControlIn, designModel.statusControlIn);

 connect(designModel.qOut, qOut);

 connect(designModel.modeOut, modeOut);

 connect(designModel.statusOut, statusOut);

algorithm

 //TBD use full component verdict impl.

 componentVerdict := Modelica4Testing_Library.Verdicttype.t_pass;

end SUT;

Appendix

XX

MTC.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Verification_and_Validation;

//The MTC will be the user interface

model MTC "Main Test Component" extends Modelica4Testing_Library.TestComponent;

 input Model_Library.StatusSignal statusIn "System status signal from a control

unit";

 input Model_Library.ModeSignal modeIn "System status signal from a control

unit";

 input Model_Library.StatusSignal status"false=offline, true=online";

 input Model_Library.FlowLevelSignal flowLevel;

 output Model_Library.StatusSignal statusControlOut "status control signal to

turn the system on or off";

 output Model_Library.FlowLevelSignal fLevelOut "Control to actuator, connector

in m3/s";

 constant Real maxFlowLevel = 0.12 "m3/s";

 constant Real minFlowLevel = 0.00 "m3/s";

equation

 statusControlOut.value = status.value;

 fLevelOut.value = if(statusIn.value) then flowLevel.value else 0.0;

algorithm

 componentVerdict := if(flowLevel.value >= minFlowLevel and flowLevel.value <=

maxFlowLevel) then Modelica4Testing_Library.Verdicttype.t_pass else

Modelica4Testing_Library.Verdicttype.t_fail;

end MTC;

PTC.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Verification_and_Validation;

//The PTC will be the liquid source

model PTC_01 "Parallel Test Component" extends

Modelica4Testing_Library.TestComponent;

 input AircraftWaterTankSystem.Model_Library.ModeSignal modeIn "if this signal

is >1.0 than the system is in error mode and the qOut must been closed during a

process is running";

 input AircraftWaterTankSystem.Model_Library.FlowLevelSignal fLevelIn

"m3/s";

 output AircraftWaterTankSystem.Model_Library.LiquidFlow qOut;

 constant Real maxFlowLevel = 0.12 "m3/s";

 constant Real minFlowLevel = 0.00 "m3/s";

 Real flowLevel(start = 0.0, unit = "m3/s");

equation

 flowLevel = if(fLevelIn.value < minFlowLevel) then minFlowLevel

 else if (fLevelIn.value > maxFlowLevel) then maxFlowLevel

 else fLevelIn.value;

 qOut.lflow = if (modeIn.value <= 1.0) then flowLevel else 0.0;

algorithm

 componentVerdict := if(flowLevel >= minFlowLevel and flowLevel <=

maxFlowLevel) then Modelica4Testing_Library.Verdicttype.t_pass else

Modelica4Testing_Library.Verdicttype.t_fail;

end PTC_01;

Appendix

XXI

TestContext.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Verification_and_Validation;

model TestContext

//Definition Part

 //Test Context Overall Verdict

 Modelica4Testing_Library.Verdicttype overallVerdict (start =

Modelica4Testing_Library.Verdicttype.t_none); //an build-in Arbiter will collect

all

 //Test Case verdicts

 Modelica4Testing_Library.Verdicttype tc01_verdict (start =

Modelica4Testing_Library.Verdicttype.t_none);

 Modelica4Testing_Library.Verdicttype tc02_verdict (start =

Modelica4Testing_Library.Verdicttype.t_pass);

 //System under Test

 AWTS_Verification_and_Validation.SUT mySUT; //A model containing the system

under test

 //Test Components

 AWTS_Verification_and_Validation.MTC myMTC; //A model representing the main

test component

 AWTS_Verification_and_Validation.PTC myPTC; //A model representing a parallel

test component

 //Local Variables

 Boolean status (start = true) "false=offline, true=online";

 Real flowLevel (start = 0.02);

 //Test Configuration

equation

 connect(mySUT.modeOut, myPTC.modeIn);

 connect(mySUT.modeOut, myMTC.modeIn);

 connect(myMTC.statusControlOut, mySUT.statusControlIn);

 connect(mySUT.statusOut, myMTC.statusIn);

 connect(myPTC.qOut, mySUT.qIn);

 connect(myMTC.fLevelOut, myPTC.fLevelIn);

 myMTC.status.value = status;

 myMTC.flowLevel.value = flowLevel;

 status = true;

 flowLevel = 0.05;

//Control Part

algorithm

 tc01_verdict := Modelica4Testing_Library.Verdicttype.t_none;

 tc02_verdict := Modelica4Testing_Library.Verdicttype.t_inconc;

 overallVerdict := Modelica4Testing_Library.Verdicttype.t_none;

end TestContext;

Appendix

XXII

TestCase_01_StimulatorFunction.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Verification_and_Validation;

function TestCase_01_StimulatorFunction extends

Modelica4Testing_Library.TestCaseStimulator;

 input Modelica4Testing_Library.Verdicttype componentVerdict_SUT;

 input Modelica4Testing_Library.Verdicttype componentVerdict_MTC;

 input Modelica4Testing_Library.Verdicttype componentVerdict_PTC;

 output Boolean status "false=offline, true=online";

 output Real flowLevel;

algorithm

 localVerdict := max(i for i in

{Integer(componentVerdict_SUT),Integer(componentVerdict_MTC),Integer(componentVe

rdict_PTC)});

 if(localVerdict == 1) then //only at pass the test case can proceed

 status := true;

 flowLevel := 0.02;

 return;

 end if;

 return;

end TestCase_01_StimulatorFunction;

TestCase_01_StimulatorFunction.mo (Modelica)

within AircraftWaterTankSystem.AWTS_Verification_and_Validation;

function TestCase_01_StimulatorFunction extends

Modelica4Testing_Library.TestCaseStimulator;

 input Modelica4Testing_Library.Verdicttype componentVerdict_SUT;

 input Modelica4Testing_Library.Verdicttype componentVerdict_MTC;

 input Modelica4Testing_Library.Verdicttype componentVerdict_PTC;

 output Boolean status "false=offline, true=online";

 output Real flowLevel;

algorithm

 localVerdict := max(i for i in

{Integer(componentVerdict_SUT),Integer(componentVerdict_MTC),Integer(componentVe

rdict_PTC)});

 if(localVerdict == 1) then //only at pass the test case can proceed

 status := true;

 flowLevel := 0.02;

 return;

 end if;

 return;

end TestCase_01_StimulatorFunction;

Appendix

XXIII

Appendix C. Approach of mapping UTP to Modelica4Testing

The OMG UML2 Testing Profile provides extensions to UML to support the design, visualization,

specification, analysis, construction, and documentation of the artefacts involved in testing [25]. It

is independent of implementation languages and technologies, and can be applied in a variety of

domains of development. UTP addresses concepts like test suites, test cases, test configuration,

test component and test results, thus enabling the specification of different types of testing like,

functional, interoperability, scalability and even load testing.

Since TTCN-3 was one basis for the development of the UML 2 Testing Profile and the UTP

developers created a well defined mapping between these languages [5], it is useful for future

research projects to create also a mapping between Modelica4Testing and UTP. The fact that, the

M4T concepts are derived from TTCN-3 and some of its concepts bases on UTP makes this step

even more reasonable. However it should be noted that, the UML2 Testing Profile is targeted at

UML based software and protocol tests, but the basic test concepts of software and systems are

similar in the meaning of verification and validation [14].

Appendix

XXIV

Figure V-1 OMG illustreation of the UTP Meta-Model (Test Architecture and Behavior)

The core concepts of UTP and M4T are quite similar, since both bases on TTCN-3 and are suited

for testing. The Figure V-1 represents the UTP meta-model of test structure and behaviour

elements illustrated at the UTP website [25]. When comparing to the M4T meta-model in Figure

5-11, one can see the similarities.

A mapping from the Testing Profile to Modelica4Testing is possible but not the other way around.

The principal approach towards the mapping to M4T consists of two major steps:

- Take Testing Profile stereotypes and associations and assign them to M4T concepts

- Define procedures how to collect required information for the generated M4T elements.

The following tables compare UTP concepts with existing M4T concepts. Not all UTP language

elements have direct correspondence or can be mapped to Modelica4Testing concepts yet.

The mapping table between UTP and M4T consist of four sections:

1. ID of a mapping rule. The ID for mapped elements does have the form “4.x”.

2. UTP element which should be mapped.

Appendix

XXV

3. Modelica4Testing element which matches at most with the UTP element.

a. UTP to Modelica4Testing Test Structure

Rule UTP Modelica4Testing Reference

ID Test Context Test Context (Definition Part) Table 37

4.1 Contains the test cases as operations, its

composite structure defines the test

configuration.

The definition part covering all test cases,

components and related definitions of a test

context.

ID Test Configuration Test Configuration Table 45

4.2 Compositional structure of the test context

element and associations between other

components.

Test configuration part within the test context. It

connects variables and ports of the, test system

interface and the design model together.

ID Test Component Test Component Table 42

4.3 A test component is a structured classifier

participating in test behaviors.

Is responsible to stimulate the SUT. A test

component can be implemented as a dummy.

Test components will be divided into main a

parallel test components.

ID System under Test (SUT) System under Test (SUT) Table 40

4.4 System model which is to be studied by testing.

The interaction is running over operation calls.

Contains the design which is to be studied by

testing. A test system interface (TSI) is the only

connection between the SUT and test

components. A TSI configuration defines the

same pots as the design model and connects

them to the corresponding TSI ports.

ID Arbiter Test Case Termination Chapter 5.3.4

4.5 The purpose of an arbiter implementation is to

determine the final verdict for a test case.

Since a simulation is running over time the last

time to determine the final verdict is the

simulation stop time (tn-1). An arbiter is used after

the test case evaluation.

ID Scheduler Modelica Tool build-in, MTC

4.6 The purpose of a scheduler implementation is to

control the execution of the different test

components.

A scheduler is a Modelica build-in mechanism. In

addition the test system contains all test

components. The main test component is the

main point of contact which controls the other

components.

Table 65 UTP to Modelica4Testing Test Structure

b. UTP to Modelica4Testing Test Behaviour

The section of test behavior includes concepts to specify the behavior of tests in the context of a

test context.

Appendix

XXVI

Rule UTP Modelica4Testing Reference

ID Test Control Test Context (Control Part) Table 37

4.7 A test control is a specification for the invocation

of test cases within a test context. It is a

technical specification of how the SUT should be

tested with the given test context.

The control part of a M4T test context. Control

execution and assigns the overall test verdict

using a verdict mechanism.

ID Test Case Test Case Table 47

4.8 A test case is a specification of one case to test

the system, including what to test with which

input, result, and under which conditions.

A test case is a specification of one case to test

the system, including what to test with which

input, result, and under which conditions. In M4T

a test case is divided into a simulation and

evaluation part.

ID Test Invocation Test Case Part Call Table 47

4.9 A test case can be invoked with specific

parameters and within a specific context. The

test invocation leads to the execution of the test

case. The test invocation is denoted in the test

log.

Using the Modelica function call a test case can

be invoked. In addition parametrisation is also

possible. A test case part call shall not have any

side effects.

ID Test Objective Test Objective Table 47

4.10 A test objective is a named element describing

what should be tested. It is associated to a test

case.

A test case does have an optional test objective

as a description. This variable can be

implemented in to test context definitions part.

ID Stimulus Test Case Stimulator Table 48

4.11 Test data sent to the SUT in order to control it

and to make assessments about the SUT when

receiving the SUT reactions to these stimuli.

A test case stimulator part checks the test case

preconditions and returns test case dependent

values for the input variables of the MTC.

 It will be implemented as a function or a model.

ID Observation Test Case Evaluator Table 50

4.12 Test data reflecting the reactions from the SUT

and used to assess the SUT reactions which are

typically the result of a stimulus sent to the SUT.

The evaluator part of an test case checks the

post-conditions of all used components and also

the actual test results. Its verdict result will

assign the value of the test case verdict.

ID Validation Action Verdict Mechanism Chapter 5.3.4

4.14 An action to evaluate the status of the execution

of a test case by assessing the SUT

observations and/or additional

characteristics/parameters of the SUT. A

validation action is performed by a test

component and sets the local verdict of that test

component.

A verdict mechanism is used to assign and

update the value of a verdict variable, in order to

represent different levels of verdicts, such as an

overall test context verdict or a local test case

verdict.

Appendix

XXVII

Table 66 UTP to Modelica4Testing Test Behaviour

c. UTP to Modelica4Testing Test Data and Time Mechanism

The Test Data section contains concepts additional to UML data concepts needed to describe test

data.

Rule UTP Modelica4Testing Reference

ID Verdict Verdict Table 53

4.13 The verdict is a predefined enumeration datatype

which represents a test case, component or

overall test result.

The verdict is a predefined enumeration datatype

which represents a test case, component or

overall test result.

ID Timer Simulation Time

4.16 Timers are mechanisms that may generate a

timeout event when a specified time value

occurs. This may be when a pre-specified time

interval has expired relative to a given instant

(usually the instant when the timer is started).

Modelica tool simulation time. This is important

since the actual version of M4T uses timer to cal

a test case stimulator function at a specified time

in the simulation.

Table 67 UTP to Modelica4Testing Test Data and Time Mechanism

Appendix

XXVIII

Versicherung über Selbstständigkeit

Hiermit versichere ich, dass ich die vorliegende Arbeit im Sinne der Prüfungsordnung nach §24(5)

ohne fremde Hilfe selbstständig verfasst und nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, 24.08.2011

Ort, Datum Unterschrift

	I. List of Figures
	II. List of Tables
	III. Glossary
	1. Introduction
	1.1. Background
	1.2. Objective
	1.3. Thesis Structure

	2. State of the Art
	2.1. Modelica
	2.1.1. The Modelica application area
	2.1.2. OpenModelica

	2.2. SysML
	2.2.1. IBM Rational Rhapsody

	2.3. Verification and Validation
	2.3.1. The Testing and Test Control Notation version 3 (TTCN-3)
	2.3.2. V-Model XT
	2.3.3. Black-Box Testing
	Finite State Machine Testing

	3. Demonstration System
	3.1. The Aircraft Water Tank System
	3.2. Possible System and Liquid Tank States
	3.2.1. System states represented in the SysML State Machine Diagram

	3.3. Use Case: Filling Tanks of the Aircraft Water Tank System
	3.3.1. Use Case Specification as Text
	3.3.2. Use Case Specification as SysML Diagram

	4. System Design with SysML and Modelica
	4.1. Transformation Approach between SysML and Modelica
	4.1.1. SysML and Modelica Mapping of Language Elements
	4.1.2. Additional Modelica Syntax as SysML Stereotypes
	4.1.3. SysML Parametric to Modelica Equation

	4.2. SysML to Modelica Transformation Application using the Example Model
	4.2.1. System structure with SysML Package Diagram
	4.2.2. System structure with SysML Block Definition Diagram
	4.2.3. System structure with SysML Internal Block Diagram
	4.2.4. Block Definition Diagrams of the constraint blocks
	4.2.5. Parametric Diagrams of the parametric structure

	4.3. Automated Modelica Code Generation

	5. Modelica as Test Specification and Implementation Language
	5.1. Modelica and TTCN-3
	5.2. TTCN-3 Core Language Definitions and Concepts
	5.2.1. TTCN-3 Built-In Data Types and Values
	Simple Basic Types
	User-Defined Structured Types

	5.2.2. TTCN-3 Test Structure Definitions
	5.2.3. TTCN-3 Test Behaviour Definitions

	5.3. Modelica4Testing: A Test Model Framework for Modelica
	5.3.1. Modelica4Testing Test Structure Definitions
	Test Model
	Test Context
	Design Model
	Test System Interface
	System under Test (SUT)
	Test System
	Test Component
	Main Test Component
	Parallel Test Component
	Test Configuration
	Port Connection

	5.3.2. Modelica4Testing Test Behaviour
	Test Case
	Test Case Stimulator
	Test Case Stimulator Function
	Test Case Evaluator
	Test Case Evaluator Function
	Test Case Evaluator Model

	5.3.3. Modeica4Testing Verdict Type and Values
	5.3.4. The Verdict Mechanism
	Test Case Verdict
	Test Context Verdict

	5.4. Modelica4Testing Meta-Model and Scope
	5.5. The Modelica4Testing Test Model Framework
	5.5.1. Modelica4Testing_Library
	Build-In Datatype Verdicttype
	Abstract Test Component
	Abstract Test Case Evaluator
	Abstract Test Case Stimulator

	5.5.2. Modelica4Testing Verification and Validation Model Skeletons
	System under Test (SUT)
	Main Test Component (MTC)
	Parallel Test Component (PTC)
	Test Context

	6. Application Example of System Level Testing
	6.1. OpenModelica as Simulation and Test Execution Tool
	6.2. Test Case Specification
	6.2.1. Test Case Specification as Text
	6.2.2. Test Case implemented in Modelica4Testing

	6.3. System Simulation and Test Execution
	6.3.1. System under Test Preparation
	6.3.2. Test Execution and Evaluation Process

	7. Conclusions and Future Work
	7.1. Conclusions
	7.2. Future Work

	IV. References
	V. Appendix
	Appendix A. Modelica design model code of Aircraft Water Tank System
	Appendix B. Test model code developed in Modelica4Testing
	Appendix C. Approach of mapping UTP to Modelica4Testing
	a. UTP to Modelica4Testing Test Structure
	b. UTP to Modelica4Testing Test Behaviour
	c. UTP to Modelica4Testing Test Data and Time Mechanism

