
Bachelor Thesis
Daniel Lee

Robust wireless data communication for Android
Smartphones using Fountain Codes

Fakultät Technik und Informatik Faculty of Engineering and Computer Science
Department Informatik Department of Computer Science

Hochschule für Angewandte Wissenschaften Hamburg
Hamburg University of Applied Sciences

Daniel Lee

Robust wireless data communication for Android
Smartphones using Fountain Codes

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung
im Studiengang Technische Informatik
am Department Informatik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer : Prof. Dr. rer. nat. habil. Dirk Westhoff
Zweitgutachter : Prof. Dr. -Ing. Martin Hübner

Abgegeben am 2. November 2011

Daniel Lee

Thema der Bachelorarbeit
Robust wireless data communication for Android Smartphones using Fountain Codes

Stichworte
Android, Smartphone, Fountain Codes, rauschbehaftetes Medium, kabellose Kom-
munikation, mehrfache Empfänger

Kurzzusammenfassung
Android Smartphones werden stetig beliebter. Die Kommunikation zwischen die-
sen Smartphones läuft ausschließlich kabellos. Und kabellose Verbindungen können
leicht durch externe Störquellen behindert werden. Es wäre also wünschenswert, ei-
ne Möglichkeit zu haben, effizient kommunizieren zu können, auch wenn mal das eine
oder andere Paket verloren geht. Das Ziel dieser Bachelorarbeit ist es, eine Applika-
tion für Android Smartphones zu schreiben, die mit Hilfe der Fountain Codes Daten
effizient an mehrere Empfänger gleichzeitig verschicken kann. Fountain Codes bieten
eine spezielle Kodierungsart, die es ermöglicht, Packetverluste zu kompensieren und
sind daher ideal für kabellose Verbindungen.

Daniel Lee

Title of the paper
Robust wireless data communication for Android Smartphones using Fountain Codes

Keywords
Android, Smartphone, Fountain Codes, unreliable medium, wireless communication,
multiple receivers

Abstract
Android Smartphones keep getting more popular. The communication between these
smartphones is exclusively done wirelessly. Wireless connections can easily be dis-
turbed by external sources. That is why it would be beneficial to have a possibility
to efficiently communicate with other smartphones even though some packets might
get lost. The goal of this bachelor thesis is to implement an application for Android
Smartphones, which distributes files to multiple recipients using the Fountain Codes.
Fountain Codes offer a special coding scheme which makes it possible to compensate
packet losses. Therefore, they are ideal for wireless communication.

Contents

List of Tables 7

List of Figures 8

1 Introduction 10
1.1 Motivation . 10
1.2 Thesis Overview . 11
1.3 Organizing of Report . 11

2 Fountain Codes 13
2.1 What are Fountain Codes . 13

2.1.1 Principle of operation . 14
2.2 LT Codes . 15

2.2.1 LT encoding process . 15
2.2.2 LT decoding process . 16

2.3 Use of Fountain Codes . 17
2.3.1 Wireless sensor networks (WSN) 18
2.3.2 Automobile Industrie . 20

3 Analysis 24
3.1 Scenarios . 24

3.1.1 User wants to distribute data . 24
3.1.2 User wants to receive data . 27
3.1.3 Scenarios for security measures . 28

3.2 Requirements . 31
3.2.1 Requirements for sender . 31
3.2.2 Requirements for receiver . 32
3.2.3 Requirements for security . 33

3.3 Summary . 33

4 Android 34
4.1 What is Android? . 34
4.2 Android System Architecture . 35

Contents 5

4.2.1 Android Security . 36
4.3 Android Programming Fundamentals . 37

4.3.1 UI programming . 38

5 Application Design 39
5.1 Wireless Local Area Network . 39
5.2 Architecture Overview . 40
5.3 Security Design . 42

5.3.1 Data integrity . 43
5.3.2 Establishing a session key . 47
5.3.3 Data encryption . 49

5.4 Sender Design . 49
5.4.1 Sender . 50
5.4.2 Fountain Encoder . 50

5.5 Receiver Design . 54
5.5.1 Receiver . 55
5.5.2 Information Packet Listener . 55
5.5.3 Fountain Decoder . 56

5.6 Summary . 58

6 Application Implementation 59
6.1 Sender . 59

6.1.1 SenderTab . 59
6.1.2 FountainSender . 60
6.1.3 Other classes . 61

6.2 Receiver . 62
6.2.1 ReceiverTab . 63
6.2.2 DataInformationListener . 64
6.2.3 FountainReceiver . 64

7 Test and Evaluation 66
7.1 Test . 66

7.1.1 Sending files . 66
7.1.2 Receiving files . 71

7.2 Evaluation . 74
7.2.1 Fountain Codes . 74
7.2.2 Application performance . 80

8 Summary and Future Work 81
8.1 Summary . 81
8.2 Future Work . 82

Contents 6

Bibliography 84

List of Tables

7.1 Initially implemented degree distribution. 75
7.2 Time listing of receiver. 77
7.3 Listing of encoded packets needed to encode the file. File is split into 4257

data blocks. 77
7.4 Implemented degree distribution . 77
7.5 Listing with new degree distribution from table 7.4. 78
7.6 Listing with the new degree distribution from table 7.4 and the new selection

scheme from figure 7.12. 79

List of Figures

2.1 Sender generates and broadcasts code word. Receiver gets code word and
decodes. 14

2.2 LT Codes decoding process [1]. 17
2.3 Possible realization of a wireless sensor network [2]. 18
2.4 One sensor node receiving a code image from two senders. 20
2.5 Audi A8 navigation system with integrated Google Earth [3]. 21
2.6 Different firmwares deployed to cars using Fountain Codes. 22
2.7 Files are being sent from one smartphone to multiple devices simultaneously. 23

3.1 Sender broadcasting file to everybody in the ad-hoc network. 25
3.2 Sender multicasting file to members of his project team. 27
3.3 Adversary creating own data packet and sending at higher rate. 29

4.1 Android system architecture [4]. 35

5.1 First possible application architecture. 40
5.2 Sequence diagram of architecture to implement. 42
5.3 5 steps to generate the key pair in the Digital Signature Algorithm [5]. 44
5.4 Sender signs message and receiver verifies the signature [5]. 45
5.5 User interface for application. 51
5.6 Flowchart showing procedure of the Fountain Encoder. 53
5.7 Table showing found degree distributions and their results [6]. 54
5.8 User interfaces and dialogs for receiver. 55
5.9 Flowchart of Information Packet Listener. 56
5.10 Flowchart of Fountain Decoder as a whole. 56
5.11 Detailed flowchart of mode Process new packet. 57
5.12 Detailed flowchart of mode New plaintext added. 58

6.1 UML diagram of the sender. 60
6.2 UML diagram of the receiver. 62

7.1 Sender tab configuration UI. 67
7.2 Screenshot of the browse and progress dialog. 68
7.3 Screenshot of abort dialog and receive dialog from MacBook receiver. 69

List of Figures 9

7.4 Toast messages informing the user that information is missing. 70
7.5 MacBook receives encrypted file. 71
7.6 Initial ReceiverTab user interface and UI when receiver is listening for data

information. 72
7.7 Data information dialogs for supported file types. 73
7.8 Receive progress dialog, abort dialog, and changed UI after reception of files. 74
7.9 Individual dialogs shown depending on file type. 75
7.10 Dialog promting user for password. 76
7.11 Initial scheme to select random data blocks. 78
7.12 Improved scheme to select random data blocks. 79

1 Introduction

1.1 Motivation

Nowadays almost one out of four people in Germany own a smartphone and the amount of
owners keep increasing rapidly [7]. A lot of those smartphones run the Android Operating
System. Data communication on smartphones is mainly achieved wirelessly. Communi-
cations include files being shared via Bluetooth, Wi-Fi, or UMTS. Furthermore, software
updates that are downloaded to increase the usability of the smartphone, make it run more
robust or to add new features. Especially the communication over Wi-Fi is very popular as it
is very fast. Another important reason is that Wi-Fi is mostly free of charge. Be it at home or
one of the many free hot spots offered in the cites.

Often it is desired to send a file to multiple receivers simultaneously. Currently, inspired by
services like Facebook, a lot of people want to share their private data like pictures, music
tracks, or videos with the public. Even with people they do not know. Another motivation
to send data to multiple recipients could be a software update. Users that have already
downloaded the update could send the code image to smartphone owners who did not yet
have the opportunity do download it. In the course of distributing the data, it is important
that almost every recipient does get the complete data correctly. However, establishing a
reliable connection-oriented connection to let us say hundreds of recipients is a heavy ad-
ministrative workload for the sending side. Apart from the overhead which would occur since
the recipients send feedback about successfully received and lost packets. That is why it is
more efficient to send the data by using the UDP protocol and thus broadcast the data. But
there is one problem when using UDP. The datagrams may or may not reach the target. And
particularly using an unreliable medium such as Wi-Fi could lead to a recurring data loss. Of
course, Wi-Fi itself is not unreliable. Wi-Fi uses protocols of the network stack which offer
mechanisms that assure reception of sent packets with high probability. But due to inter-
fering sources in big crowded cities, there is a higher probability that more packets are lost
along the way than is usually the case. That is why Wi-Fi will be referred to as an unreliable
medium in this bachelor thesis. So to ensure that every recipient receives the complete file,
every datagram must be sent redundantly. Disadvantageous however is that data packets,
which have already been received and sent again by the sender, do not feature any new
useful information. Thus, an unnecessary transmission was performed. Therefore, it would

1 Introduction 11

be desirable to reduce unnecessary transmissions as far as possible by encoding different
data parts in such a way that the recipients are able to extract information relevant to them.
Of course given that the information was encoded into the datagram. Such an encoding
scheme is offered by the Fountain Codes (Description of Fountain Codes in 2.1).

1.2 Thesis Overview

This bachelor thesis is focused on designing and implementing an application for the Android
platform. The goal of the application is to send and receive files like pictures, music, or code
images for software updates over a wireless medium, such as Wi-Fi, using the Fountain
Codes. The sender can choose to send the file to every recipient in the same network or
to a selected subset of receivers. If the sender chooses to target only a subset of clients in
the network, he must encrypt the file accordingly. Only the targeted recipients should then
be able to successfully receive the file. Upon reception of a datagram from the sender, the
recipient can choose to accept or decline the file. In case of an encrypted file, the receiver
must own the secret key to decrypt the file. As the application will offer the distribution of
code images which install new applications or update installed applications on the Android
Smartphone, the application must offer the option to install those code images. Security
aspects such as key agreement, data integrity, and encryption as already mentioned, will
also be part of the application.

In bachelor thesis [8] the author also focused on Fountain Codes. But his main focus was
on the security aspect of Fountain Codes. This bachelor thesis is about the realization of
efficient Fountain Codes for file distribution. An important part of the bachelor thesis is to
find a good Degree Distribution so that the overhead of needed packets is kept as low as
possible.

1.3 Organizing of Report

The remainder of the bachelor thesis will be organized as follows:
Chapter 2 gives a detailed description of the Fountain Codes and their principle of work. Also
LT Codes are explained which are one possible realization of Fountain Codes. At the end of
chapter 2 there will be some examples of fields of application where Fountain Codes could
be useful.
Chapter 3 is about the analysis of the application which is going to be implemented in this
bachelor thesis. Scenarios for use of the application will be given. Based on those scenarios,
requirements will be extracted to give an overview of the functionality of the application.

1 Introduction 12

Chapter 4 is about the Android Operating System. The chapter gives an insight into the
Android system and the fundamentals of Android application development.
Chapter 5 is about designing the application. The requirements extracted in chapter 3 will
be taken into account to see how the application can be designed and structured.
Chapter 6 is about the implementation. The important classes and their function will be
explained. Furthermore, their main methods will be listed and described.
Chapter 7 will focus on testing and evaluating the implemented application. The evaluation
will focus on the performance of the Fountain Codes and if needed their adaption to work
more efficiently.
Chapter 8 will summarize the important aspects of the bachelor thesis and point out topics
for future works.

2 Fountain Codes

2.1 What are Fountain Codes

Fountain Codes are a type of erasure codes. They are also known as rateless erasure
codes. The term rateless refers to the fact that Fountain Codes do not have a fixed code
rate. Fountain Codes are often used when communicating over an unreliable medium such
as wireless communication channels. When using Fountain Codes, the sender is able to
generate potentially unlimited amounts of code words from any data he wants to distribute.
Those code words are broadcasted to any receiver listening. The receiver can obtain the
complete source data by decoding any subset of encoded packets equal or slightly larger
than the number of source packets. Successfully decoding the source data with only slightly
more or even exactly the number of source packets highly depends on how the sender en-
codes those code words. Choosing an inefficient encoding scheme can lead to unwanted
effects. The result is that there is the possibility that the receiver needs almost twice the
amount of source packets to retrieve the complete data. In worst cases even more than that.
Therefore, the decoder receives a lot of packets that are useless because the information en-
coded into the packet have already been received and thus no new information is extracted
and computing the packet was needless.

Fountain Codes are advantageous due to the fact that they belong to the class of Forward
Error Correction codes. In contrast to Backward Error Correction, where receivers send a
request for retransmission to the sender if they receive a corrupt packet or no packet at all,
since the data is shared over an unreliable medium, Forward Error Correction codes work
differently. Instead of listening for retransmission requests and sending packets accordingly,
the sender just broadcasts different random linear combinations of the split source data.
The receivers can individually extract the missing data from that packet, provided that the
missing data chunk was XORed into the encoded packet (Figure 2.1). One detail that should
be pointed out is the fact that the receivers could be missing different packets and still be
able to extract useful information from one and the same encoded packet. In conclusion,
the error correction is done on the receiver’s side. In case the missing data is not part of
the code word, the receiver tries the next packet. If the communication between sender and
receiver was based on some sort of acknowledgement packets (NACK-Packets), informing
the sender of missed packets, the sender would be flooded with such information and the

2 Fountain Codes 14

overhead of coping with those information would heavily slow down the communication. Even
normal broadcasting without any feedback from the receivers would be less efficient than
using Fountain Codes as, due to the unreliable medium, the sender would have to consider
data loss and send the source data at least twice to ensure complete reception of the data.
With Fountain Codes, and given an efficient encoding scheme, the sender would only have to
broadcast about one and a half times the data and actually be sure that with high probability
the complete data is assembled at the receiver’s side.

Figure 2.1: Sender generates and broadcasts code word. Receiver gets code word and
decodes.

2.1.1 Principle of operation

Encoding process: The code words are generated by splitting the original source data into
equal data chunks. Uniformly at random chosen data chunks are then XORed to
encode the data. Along with the encoded data, a coefficient vector is generated and
sent. The coefficient vector holds the information about which data chunks where
XORed into the code word so that the receiver knows which already received data can
be used to decode the encoded packet. A detailed description of an encoding process
will be given in 2.2.1

2 Fountain Codes 15

Decoding process: The receiver decodes the data by solving the linear equation system
t = A ∗ s for s [9]. The vector t contains the received encoded packet. A is a m x
m matrix where the ms are the coefficient vectors which already have been received
successfully. The time complexity of the decoding algorithm is O(k3). The variable k
contains the amount of equal data chunks that the source data is split into.

The procedures described above are the basic principles of encoding and decoding when
using Fountain Codes. However, as the decoding algorithm is not very efficient, other algo-
rithms have been developed and should be used when working with Fountain Codes.

There are different practical realizations of Fountains Codes such as LT Codes [10] or Raptor
Codes. To develop the application in this bachelor thesis, the coding principles of LT Codes
will be used to implement the Fountain Codes.

2.2 LT Codes

LT Codes are the first practical realization of Fountain Codes. They were invented by Michael
Luby. As is the definition of Fountain Codes, LT Codes are rateless and the number of code
words that can be generated are limitless. The main difference to basic Fountain Codes
is the way, data is decoded by the receiver (See 2.2.2). While solving the linear equation
system t = A ∗ s (Equation explained in Decoding process of section 2.1.1) to decode the
data has a time complexity of O(k3), the decoding algorithm of LT Codes just has a time
complexity of O(k ∗ ln(k/δ)) when the receiver is successfully recovering the data with a
probability of 1 − δ from k + O(

√
k ∗ ln2(k/δ)) received packets. k is the amount of data

blocks the data is split into and δ is a small value that determines the probability of failure of
the decoding process.

2.2.1 LT encoding process

The encoding process of LT Codes does not differ from the basic encoding scheme of Foun-
tain Codes. First the source data has to be divided into k equal parts. In applications using
Fountain Codes, k is often chosen to be close to the size of a datagram payload to optimally
exploit the network protocol and avoid unnecessary traffic. After the source data is divided,
it takes the sender three steps to generate the encoded packet.

1. A degree d is chosen from a degree distribution p(d). The degree d defines how
many random data chunks are XORed together to encode the packet. p(d) is the
probability that an encoded packet has the degree d. Designing and finding a good
degree distribution is very important regarding the efficiency of the LT Codes and all

2 Fountain Codes 16

other rateless erasure codes. Working with a poorly designed degree distribution can
lead to slow or incomplete data distribution as the decoder has to receive almost twice
or even more encoded packets to retrieve the complete source data.

2. Out of the k data packets d parts are uniformly chosen at random.

3. The chosen packets are then XORed together to form the encoded packet.

As mentioned earlier a coefficient vector is needed to make the decoding possible. There
are a lot of different possibilities to realize the coefficient vector. Two possibilities are:

1. The coefficient vector is directly communicated to the decoder with every encoded
packet, i.e., the coefficient vector is sent along with the encoded packet.

2. The coefficient vector is separately computed on the encoder and decoder side. The
computation could be based on the indices of each data chunk encoded into the
packet being calculated with a formula. For example, the encoder chooses uniformly
at random two integers a, b ∈ (1, ..., k − 1) and sends the two integers along with the
encoded symbol. The i-th index then, is the (a ∗ i + b mod k)-th data part out of the k
source symbols [11].

Having gone through all necessary operations to complete the encoded symbol, the sender
is now ready to broadcast the datagram. The encoding operations can be repeated on the fly
and thus the sender can generate potentially unlimited encoded symbols containing different
degrees and coefficients.

2.2.2 LT decoding process

The LT Codes decoding process (Figure 2.2) is different from basic Fountain Codes. The
decoder does not solve the linear equation system t = A ∗ s but works with two buffers
A and B containing packets which are not completely decoded and packets that have been
successfully decoded, respectively. The decoding process described here presumes the
coefficient vector being sent along with the encoded symbol. When the decoder receives an
encoded packet (X, C) he first extracts the code symbol X and the coefficient vector C and
tries to decode the code symbol with the help of buffer B. The decoder iterates the coefficient
vector and crosschecks every coefficient against buffer B. If B contains a plaintext pi at the
index corresponding to the coefficient, that plaintext its XORed into the code symbol and
the degree is decremented. Afterwards the degree of the packet is checked. If the degree
D(C) > 1 then the code symbol is not yet fully decoded and the pair X, C is stored in buffer
A for a subsequent try. If the condition is not met andD(C) = 1, meaning the codes symbol
is a plaintext, pi is stored in buffer B, provided that the i-th plaintext was not already stored.
After successfully decoding one packet and storing the plainetext pi in buffer B, another

2 Fountain Codes 17

Figure 2.2: LT Codes decoding process [1].

attempt to decode code symbols in buffer A is started and repeated until no new plaintext is
retrieved and stored in B. By the time no new code symbol X is able to be decoded, another
Packet (X, C) is received and processed.

2.3 Use of Fountain Codes

Fountain Codes can be used in many areas. Almost any application field, involving commu-
nication over an unreliable medium, can benefit from the characteristics of Fountain Codes.
Even if packets are lost to interference on the channel, only slightly more packets are neces-
sary for a successful distribution to every recipient. Furthermore, the sender does not need
to keep track of the clients and their status of missing packets. Thus, the use of Fountain
Codes can also be advantageous in cases where sending sources change during distribu-
tion. There are two important main preconditions that must be met for Fountain Codes to
work and be useful to work with. First of all Fountain Codes are only useful in cases where a
lot of data is distributed. It makes no sense to use Fountain Codes when a data of 10 Bytes
is sent. That data can be sent in one UDP datagram and thus there is no need to encode
anything. Secondly the data to distribute must be completely available at the sender before
encoding can start. A reason for that condition is, for example, the degree distribution. The
degree distribution is crucial for the performance of Fountain Codes and must also be chosen
before the encoding starts. If data blocks are encoded during aggregation of data and the

2 Fountain Codes 18

degree is of higher value than the current data size, the Fountain Coding process will fail with
an exception.

2.3.1 Wireless sensor networks (WSN)

A wireless sensor network (Figure 2.3) consists of sensor nodes which are deployed around a
large area. They monitor the surrounding conditions and collect required data. Sensor nodes

Figure 2.3: Possible realization of a wireless sensor network [2].

often monitor data like temperature, pressure, sound, and other physical or environmental
conditions of the area. Sensor nodes have a limited energy source and computing power.
They do not analyze the sensed data. Each node solely gathers information and sends his

2 Fountain Codes 19

data to a central aggregator node. That node sends the aggregated data to a central location,
called the sink. The sink collects the data from all aggregator nodes deployed and analysis
the data. The sink can also initiate an update process of the sensor nodes by sending a code
update image.
Not every WSN has to have an aggregator node. There are different realizations of WSN.
This is just on possible realization.

Use in WSN

Fountain Codes can be used in wireless sensor networks since they are beneficial to almost
every aspect of wireless communication done in a WSN. Let us look at the example of an
code update process. In this WSN there is no aggregator node. Sensor Nodes communicate
directly with the sink.

In wireless sensor networks occasionally there is the need to reprogram the sensor nodes.
A code image is loaded into the sensor nodes and they can execute the code image which
brings them up to date. But wireless sensor networks often consist of hundreds or thousands
of sensor nodes. Loading the code image into all the nodes by hand takes a very long time
and is therefore out of the question. Fortunately, the sensor nodes are also able to receive
data.

The code update process is initiated by the sink. The sink broadcasts the code image to the
sensor nodes wirelessly. But the sink cannot reach every node deployed due to the fact that
most of the sensor nodes are spread very widely in the area. The extent of radio waves are
limited and if the distance between the sink and a sensor node is too big, the code image
never reaches the node. That is why those sensor nodes that do get the code image have
to forward the image to the nodes that are in their broadcasting scope. However, doing so
will drain their limited power sources. But unfortunately there is no other way to avoid that
the sensor nodes are burdened with additional work. The only option is to try to minimize
the extra task. By using Fountain Codes for code image distribution, additional processing
time can be reduced. When broadcasting in the classical way, the sensor node has to send
the code image more than once to assure that the surrounding sensor nodes receive the
complete data. But as described in 2.1, when using Fountain Codes, the sender only has to
send the code image slightly more than once. In optimal situations the sender even needs to
send less than the total amount of data packets. If a sensor node receives the code image
from say two other sensor nodes, the two nodes must only send slightly more than half of
the total amount, due to the Fountain characteristic (Figure 2.4).

If two senders broadcasted the code image in the classical way, they would have to agree on
who will send the first half of data and which one the second half. In that case, unnecessary
overhead would be the result.

2 Fountain Codes 20

Figure 2.4: One sensor node receiving a code image from two senders.

2.3.2 Automobile Industrie

In recent years automobiles have changed. Automobiles used to be just simple vehicles that
transported people from one location to another. Now however, as loads of new technologies
in IT have emerged, they find their way into the automobile industry. Probably every higher
class limousine from any automobile manufacturer has some sort of computing device inte-
grated into the automobile. Be it just a navigation system or a multimedia system that can
play music or even play videos. There are even automobiles that are equipped with built
in game consoles. Figure 2.5 for example shows a navigation system of an Audi A8 with
integrated Google Earth service.

Software update for moving automobiles

With all the new services integrated into automobiles, there comes a problem. Those ser-
vices must be kept up to date. Navigation systems manufacturers may release updated maps
or the automobile manufacturer wants to add new features to their multimedia systems that
come with the car. As mentioned above and shown in Figure 2.5, there are services pro-
vided by external corporations like Google. And Google keeps to enhance its Google Earth
service continuously. Forcing the customer to check in a garage every few months to update
the system is not very service orientated. Many customers would neglect the monthly check

2 Fountain Codes 21

Figure 2.5: Audi A8 navigation system with integrated Google Earth [3].

and drive around with out of date system version. Such service would lead to bad publicity
for the automobile manufacturer. So the manufacturer could choose to update the system
wirelessly.

Let us assume that the automobile is equipped with some sort of UMTS receiver. System up-
dates are received over that receiver. To deploy the update, the automobile manufacturer has
to set up several locations from where the system update is broadcasted via UMTS. Each
location covers a limited area due to the limited wave lengths. Since it is the main charac-
teristic of automobiles, they keep moving from one location to another. Therefore, with high
probability the automobile will switch between different update locations. If classical broad-
casting was used and say the first one hundred out of one thousand packets were received
and the automobile switched into another update location area, some negative effects could
arise. Assuming the new update location just started broadcasting the system update, the
receiver would receive the first one hundred packets redundantly without gaining any new in-
formation. If the receiver is really unlucky he switches yet again into another area with a new
broadcaster that started the update again. One can see that a different, better distribution
solution should be used. And again Fountain Codes are a very efficient solution. Each up-

2 Fountain Codes 22

date broadcasting location is initialized with the same degree distribution and started. They
keep encoding packets on the fly and sending them to every client in the network. With very
high probability the automobile will receive a data packet that has information useful to him,
because the data parts are chosen at random. Now it does not matter that update broad-
casting locations are changed during travel. With slightly more packets than the total amount
of data blocks, the automobile’s multimedia system will be able to execute the update and
afterwards be up to date.

Firmware update for sold cars

Another scenario for the use in the automobile field is the firmware update of cars that are for
sale. Nowadays cars are not equipped with different engines anymore which have different
performance specification like horse power (HP). It is more economical for the automobile
manufacturer to produce only one engine of a specific type, like diesel engines, and control
the HP and other characteristics with different firmwares. Meaning that one car could be
programmed with a firmware which sets the performance to 75 HP and another car with the
same engine is programmed to have 110 HP.

Figure 2.6: Different firmwares deployed to cars using Fountain Codes.

Let us take a car dealership that has a lot of cars of the same type parking on the sales area.
All cars are connected to the same WLAN. Using Fountain Codes, different firmwares could
be programmed into different cars simultaneously from a central location. To achieve that
cars get the targeted firmware they could be preconfigure with a key. If customers buy a car
with a specific configuration, that configuration can be deployed by encrypting the encoded
packets of the firmware with the targeted key and therefore only the cars with that key are
programmed with the firmware (Figure 2.6).

2 Fountain Codes 23

File distribution at home

The two use examples described above are very special and therefore may not be that
interesting to some readers. That is why a last short example shall show when Fountain
Codes could be used.
The majority of households nowadays have a flatscreen tv, a desktop computer, and maybe
also a notebook. And as was already mentioned in the introduction section, the majority of
people owns a smartphone. The cameras of the smartphones today keep getting better and
better. And a lot of users start taking many pictures or record videos with the smartphone.
At home the user maybe wants to copy the files to the desktop computer, the tv, and the
notebook to have multiple copies and if needed, to be able to show them from anywhere.
Connecting the smartphone to every device is very annoying. But if the smartphone was
able to distribute the files to all of those devices simultaneously and on top of that efficiently
no matter how many interfering sources are nearby, the user can save a lot of time. He just
has to open an application on his smartphone that offers the service and send it to every
device in his home. Figure 2.7 depicts the process.

Figure 2.7: Files are being sent from one smartphone to multiple devices simultaneously.

3 Analysis

The goal of this analysis is to examine scenarios where one person tries to broadcast or
multicasts data to multiple receivers over an unreliable medium using Fountain Codes. Fur-
thermore, on the basis of the scenarios, needed requirements are extracted to help get an
overview of components and their characteristics. With the analysis completed, the applica-
tion required for the bachelor thesis can be designed and afterwards implemented.

3.1 Scenarios

Coping with the unreliable medium

When broadcasting data somewhere outside in public or in a big company, there are a lot
of sources that can interfere with the transmission. Especially in big cities where a lot of
shops often offer wireless internet connectivity through free hot spots, there are jamming
signals that can prevent data to be transmitted successfully. But not only hot spots but other
big electrical devices standing nearby can disrupt the sending process. So, unless avoided
somehow, the sender must send the data for a very long time to ensure that everybody
receives the picture completely. To bypass the long transmission times, Fountain Codes are
used to optimize the broadcasting and multicasting in all scenarios.

In the scenarios described below the users want to send a picture and a document. But
sending other filetypes, like music, short videos, or application updates, could be possible as
well.

3.1.1 User wants to distribute data

Broadcast

Somewhere in the city a user holding an Android handset takes a picture of something inter-
esting. He wants to share the picture with people that might find whatever he took a picture
of interesting, too. That is why he needs his Android Smartphone to offer an application that

3 Analysis 25

lets him send the picture to other people holding an Android device. In order to broadcast
data, a connection to other peers is necessary. Connectivity can be achieved in two ways.
The sender can establish a private ad-hoc network which enables other smartphone users
to log into. The second possibility is to connect to a wireless access point. Of course, not
every access point can be used to share the file. If the router has disabled broadcasting, the
sent packets will be dropped and no receiver will see any packet. Nowadays, probably every
open wireless lan in shops disables its broadcasting. It is because activating broadcast can
lead to people trying to harm the network by, e.g., rendering the router useless by broad-
casting useless data at a very high rate. With too many packets arriving, the router is busy
broadcasting them and therefore unable to process the important data. But in the scenarios
we assume that broadcasting is enabled.

Figure 3.1: Sender broadcasting file to everybody in the ad-hoc network.

The sender activates his Wi-Fi module and establishes an ad-hoc network. Receivers can

3 Analysis 26

log into the ad-hoc network and listen for data. The sender can now choose to broadcast
the file to everybody in the same network or to multicast to a chosen subset of receivers
(Multicast scenario described in 3.1.1). He chooses broadcast as he wants to release the
file to the public. Now the sender needs to select the picture he wants to send. He browses
through his smartphone to select the file. Now the user can start broadcasting the file by
clicking a send button.
The sender must send an information packet along with the data packet to let the receiver
know what kind of file he is about to receive. The Information could include filename, size,
and filetype. Furthermore, the sender must label the information packet in some way to
avoid multiple reception on the receiver side. In case a receiver finished receiving one file
and afterwards wishes to receive another one, he must not be bothered by old file information
packets. They need to be filtered out, so that the user is only prompted to accept or decline
new files that are being broadcasted.

Multicast

Another scenario is the sender wanting to send some data only to a subset of receivers.
Let us assume the application is used in some research project in a company. There are
access points dedicated for multicasting researched data. A company can have several
teams working on different projects.
In this scenario a researcher of a project wants to send analyzed data to only his project team.
To do so, a session key between the team members must be established to ensure that only
the selected employees are able to receive and decrypt the data (Detailed description of key
agreement in section 3.1.3).

Just like in the broadcast scenario, the smartphone has to be connected to a network. In this
scenario the sender connects to a wireless lan that is set up to offer a communication channel
dedicated to exchange researched data between the project members. The user chooses
the multicast option, offered by the application. He selects the data he wishes to share with
his colleagues and pushes a send button to start a key agreement process and afterwards
the transmission. First the sender waits until he receives some feedback about who will
participate in the session then he starts a key agreement process with the members that
gave the feedback. After agreeing on a session key, the data is encrypted and multicasted to
the other members of the session.

3 Analysis 27

Figure 3.2: Sender multicasting file to members of his project team.

3.1.2 User wants to receive data

Broadcast

A person holding an Android Smartphone wants to listen for data that is broadcasted. The
receiver certainly has to be connected to a local area network, to be able to listen for any
data. That is why the user activates his Wi-Fi module. He sees the ad-hoc network that was
established by the sender in 3.1.1 and connects to it. The user then pushes the receive button
and starts listening for data. As the sender is broadcasting a picture, the application gets an
information packet. The information packet informs the receiver that the data, he is about
to receive, is a picture. It also includes the filename and size. The user can now choose to
accept or decline the file. Maybe the phone offers limited memory space and the information

3 Analysis 28

shows that the picture is too big. Accepting the file is illogical because the reception will fail
anyways. So in case he declines, the information is stored and further packets belonging to
that picture are ignored. But in this scenario the user accepts. The application now listens
for the data and assembles the data packets until the whole file is received. Upon successful
reception of the data, the application offers the user to open the received picture by providing
an open button. In addition, the information about the data packets is stored to avoid multiple
reception. When the user clicks the open button a preview is shown along with the file path
to the picture or the document. If the file is a code update, the user is asked to allow the
installation or to abort.

Multicast

The receive multicast scenario is linked to the multicast scenario of the sender in 3.1.1. The
user connects to the same wireless lan as the sender. He starts the reception process by
clicking the receive button. Since the sender is sending a file, an information packet is re-
ceived. The information show that the file will be sent via multicast and that a key agreement
is required before the actual send process can begin. In case the receiver accepts, he in-
forms the sender that he will take part in the key exchange and the process is started. After
a successful key was agreed upon, the data packets are received, decrypted, and assem-
bled.

3.1.3 Scenarios for security measures

When an application is used by a lot of people and that application distributes data to mul-
tiple recipients, there are always people trying to intercept data, manipulate data to spread
malware, or to harm users in some other way. That is why it is important to analyze the
application in regard to security holes that could be used to harm the sender or receiver.

Data integrity

In this scenario an adversary tries to prevent the receiver from completely or correctly receiv-
ing the file by sending corrupt data packages on his own that are identified as packets from
the actual sender (Figure 3.3).

The sender takes a picture and wants to share that picture with the public, like described in
scenario 3.1.1. The application does not offer any security measures to ensure the integrity
of the data packet. Therefore, an adversary has no problem intercepting the packet and
manipulating the data as he wishes without the recipient knowing that the data has been

3 Analysis 29

Figure 3.3: Adversary creating own data packet and sending at higher rate.

changed.
Let us assume the adversary listens for a data packet and receives one. He does not need
to put in much of an effort to intercept packets as the file is broadcasted and everyone in
the network can see it. He extracts the information that are needed to identify the packet,
like filename, size and the packet label that specifies which session that packet belongs to.
The adversary then computes his own data packet with the extracted information. Finally he
appends some faulty random byte code that represents the data and broadcasts the packet.
He can keep changing the data to avoid being identified as an attacker, in case the receiver
has some kind of primitive algorithm filtering such identical packets. If the network is flooded
by the corrupt packets and the receiver assumes that the received packets are genuine,
then he will assemble a file that is useless. Depending on other information changed by
the interceptor the recipient may not even be able to construct the file and keep listening for
genuine data until the user aborts the process having failed to receive any file.

3 Analysis 30

In conclusion, the sender must implement some mechanism that ensures the data’s in-
tegrity.

Key agreement

Like described in the multicast section of 3.1.1 there are scenarios where files must not be
read by strangers. In the multicast scenario the application is used in a company’s research
project team. Of course, the company and the project team do not want the researched
data to be seen by everyone. That is why the data has to be encrypted by the sender. The
team members agree on a symmetric session key and encrypt the data with that key. But a
security issue has to be considered when agreeing on a key.

Using a strong and secure key is of great importance when encrypting data. To secure the
researched data, the project team must posses a key secure enough to multicast the data
without having to worry about an adversary intercepting the file and reading it. Thus, the team
members have to agree on a secure key. A popular key agreement is the Diffie-Hellman Key
Exchange (DHKE) Algorithm. The principle of DHKE is that two or more members agree on
two very big numbers, one of them being a prime number. Then each participant chooses his
own big secret number and computes an output that he then sends to the other members.
A shared secret session key can be generated by computing the chosen secret number and
the received numbers. But there is no assurance that only the team members of the project
participate in the key exchange. In the multicast scenario above, the receiver participates in
the key agreement by accepting the file. That is why an adversary could also accept the file
and therefore be part of the key exchange. In conclusion there must be a security measure
to exclude strangers from the key agreement process.

One could argue, why not generate a secure key and give it to every team member before
they start working. Then no key agreement is necessary and the data can be encrypted
with the pre-generated key. But there are some problems that can occur. If the generated
key is not as secure as it is supposed to be, then figuring out the key could be very easy.
Such a key would probably be used more than one day because handing out a secure key
every day and inserting the key into the application is annoying. So if the key is used over
a longer period of time, hundred of thousands of data packets would be encrypted with that
key. If the adversary intercept enough packets, he could analyze the encrypted data and thus
extract the key. Another problem could occur if a few researched data shall be shared with
another team. The other team would have to get the secret key to encrypt the files. However,
owning the secret key enables the other team to listen to any data subsequently exchanged.
Therefore, a new key would have to be generated and inserted into the smartphone after the
data has been shared.

3 Analysis 31

3.2 Requirements

This section will list the requirements needed for the application that is implemented for
this bachelor thesis. The requirements are extracted from the aforementioned scenarios in
3.1. The requirements are differentiated between requirements for the sending part of the
application, the receiving part and the security measures needed to ensure save data com-
munication. The requirements are divided into functional and non-functional requirements.
Functional requirements specify what functions the system must offer. Non-functional re-
quirements specify how the system offers the functional requirements. They are used to list
quality details.

3.2.1 Requirements for sender

The sender tries to send a file to multiple receivers (Scenario 3.1.1). The communication
should be optimized for communication over an unreliable medium. Security aspects must be
considered to ensure flawless file distribution. Services, such as taking pictures, recording
videos, or any service creating the files, which are about to be sent, are assumed to be
already supported by the Android Smartphone.

Therefore, following requirements are necessary:

Functional requirements

1. Application should offer a dialog to select a file. The sender must be able to
browse through his smartphone to search for files he wants to share.

2. Application should offer selection between broadcast and multicast. Sender
can choose if he wants everybody in the network to receive the file or only a
selected subset of clients. To guarantee that only a selected subset of clients in
the network are able to receive the data, security mechanisms are needed which
will be listed later.

3. Application should be able to establish an ad-hoc network Very useful, as every
sender can create his own private network and spare a public access point to be
flooded by his data packets.

4. Application should encode data before sending. Due to the unreliable medium an
optimized coding scheme is necessary to cope with the data loss.

3 Analysis 32

Non-functional requirements

1. The Dialog should hide files that are not supported by the application. If the ap-
plication does not support, for example, docx-files the user should not be able to
select those files. That is why they must not be listed.

2. Fountain Codes should be used to encode data. To cope with data loss, Fountain
Codes should be used.

3.2.2 Requirements for receiver

When a receiver gets the notification that a file is being distributed, he must be able to
see some information about the file (Scenario 3.1.2) and get the chance to choose how to
proceed. He must also know how to handle packets that where secured in some way.

Requirements for a receiver are:

Functional requirements

1. Application should show dialog with information about the file. Shows filename,
filetype, and file size. Other necessary information are possible.

2. Application should offer dialogs for user input. The application has to know how
to proceed when getting a notification.

3. Application should be able to decode encoded data. As the sender will use some
coding scheme to encode data packets, the receiver must have an algorithm to
process the encoded data packets.

Non-functional requirements

1. User must be able to accept or decline the reception. After the user is shown the
file information, the application must be directed to accept or decline the file.

2. Fountain Codes should be used to decode data. Must be able to decode encoded
data from sender.

3 Analysis 33

3.2.3 Requirements for security

There are multiple security measures needed, to ensure save and complete data distribution
(Sections 3.1.1, 3.1.2, 3.1.3).

Functional requirements

1. Application should encrypt and decrypt data. For secure multicast, the application
must encrypt and decrypt data.

2. Application should offer a key agreement procedure To encrypt or decrypt data a
key is necessary. As the users are in different locations, a secure secret key must
be agreed on over the air

3. Application should ensure involvement of genuine members in key agreement .
To ensure that only chosen users can participate in the key agreement, a security
measure should be offered to exclude unwanted participants.

4. Application should ensure data integrity. To identify manipulation of data, a secu-
rity measure is needed to ensure data integrity.

3.3 Summary

In this chapter we created some scenarios which showed how the application could be used
and how it could work. Going through the scenarios, we were able to extract some security is-
sues that must be considered and most importantly we were able to extract the requirements
for the application. Now that the requirement are set, it is time to design the application.
During the design we will see what requirement are possible to be implemented and what
requirements should be changed.

4 Android

4.1 What is Android?

Most of the following information is extracted from [4].

Android is an operating system for handheld devices such as smartphones and tablets,
hosted by Google. It was developed by Google and the Open Handset Alliance (OHA). The
OHA is a business alliance comprised of many successful companies , software developers,
and service providers. Its biggest members are companies like Samsung, Motorola, HTC,
LG, Intel, Texas Instruments, and NVIDIA. The Open Handset Alliance was formed in 2007.
Its target was to think about how to make mobile phones better.
Android is a the first complete, open, and free mobile platform there is.

• Complete because the developers took a comprehensive approach to create the An-
droid platform. It has a secure operating system as its base and a robust software
framework built on top.

• Open means that the Android platform is provided through open source licensing. The
underlaying operating system is licensed under the GNU General Public License Ver-
sion 2 and the Android framework is licensed under the Apache Software License
(ASL/Apache2). Android lets developers have unprecedented access to the features
when applications are implemented.

• At last Android is free since developing applications is free to everybody. No licensing
or royalty fees have to be paid and also no membership fees are required. Every
developer can distribute and commercialize his product in a variety of ways.

The first Android handset was released in October 2008. It was the T-Mobile G1 by HTC.
Since then six other Android SDK’s have been released. Every Android SDK has a different
project name. It is named alphabetically after sweets. The first version was named Cupcake
and the latest version of Android is codenamed Honeycomb. As of the second quarter of
2011 Android leads the worldwide shares of operating systems run on smartphones with
43.4% [12].

4 Android 35

4.2 Android System Architecture

Figure 4.1: Android system architecture [4].

When developing the Android platform, the designers wanted the system to be more fault-
tolerant than many of its predecessors. That is why Android runs a Linux operating system
upon which Android applications are securely executed (Figure 4.1). The devices running
Android are much less likely to crash due to the fact, that each Android application runs
in its own virtual machine, the Dalvik VM. The applications are managed code. Therefore,
Android devices show fewer instances of device corruption. The Dalvik VM is based on the
Java VM. It was optimized to run on mobile devices. The Dalvik VM executes files in the
Dalvik Executable format (.dex). The .dex-files are optimized to have a minimal memory
footprint, so that multiple instances of the VM running an Android application are executed
very efficiently.

4 Android 36

The Dalvik VM relies on functions provided by the underlying Linux kernel. Some of the core
functions the kernel handles are:

• Enforcement of application permissions and security.

• Managing the memory on a low-level bases.

• Managing processes and threading.

• Handling the network stack

• Managing Display, keypad input, camera, Wi-Fi, audio and flash memory driver.

4.2.1 Android Security

Android tries to maintain its integrity through a variety of security arrangements so that user’s
data is protected and the device is not infected with malware. But obviously, security mea-
sures still need some improvement, since recently a lot of Android devices where infected
with different malware downloaded from the Android market.
Every time an application is installed on the Android handsets, a new user is created. That
user profile is associated with only that application being installed. By managing applications
with their own user profiles, each application has its own private files on the file system,
its own unique user ID, and a secure operating environment. The private files cannot be
accessed by other applications unless specifically configured. In order to access shared
resources on the file system specific privileges are required. Those privileges are called Per-
missions. Permissions are registered for needed privileges when the application is installed.
Some of these privileges enable the application to make phone calls, control the camera, ac-
cess the network, or access information such as personal information, contact information,
or user’s location information.
Another method to secure the system is the signing of applications to built a trust relation-
ship between developer and user. All Android applications are signed with a private key. The
private key for the certificate is held by the developer. Self-signed applications are accepted
and there is no Certificate Authority (CA) necessary that manages the certificates. If an ap-
plication is not signed, the Android operating system does not allow the application to be
installed. Furthermore, the signatures must always be the same for one application. If an
application update has a different key than the current version, the update is not installed.

4 Android 37

4.3 Android Programming Fundamentals

Android applications are implemented in the Java programming language. But there are
some differences to normal applications developed for personal computers. Android has
four important components that most applications implement. The Context, the Activity, the
Intent, and the Service.

Context

The context is the most important part of an Android application. With the help of the Context,
application-specific functionalities can be accessed. Retrieving a Context object, enables the
application to gain access to application resources like layouts or strings that are stored in
external files (Application resources will be explained later). Furthermore, application prefer-
ences can be retrieved, Activities can be launched, system services like the location service
can be requested, and Permissions can be inspected and enforced, using the Context.

Activities

The Android Activity class is the core of an Android application. Each screen of an appli-
cation is mostly implemented extending the Activity class. An application can have multiple
screens and thus multiple Activities. For example, an application can have different tabs
for different operations. Every class that extends the Activity must override the onCreate()
method. The onCreate() method is like the main() method of a normal Java application. It is
the first method that is called when a new Activity is started.

Intents and Services

Intents and Services will not be used in this application. Intents are asynchronous messages
used to start other Activities of other applications. An Intent can include data that the called
Activity can use or data that an Activity returns after finishing some computation. As we do
not intent to user other applications for this bachelor thesis, Intents will not be used.

An Android Service is a process that runs in the background of an application. A Service is
mostly used if some operation takes a long time and therefore should be decoupled from the
main Activity. Furthermore, it offers the possibility to be repeated periodically. An example
for a Service is a thread that checks for new mails every 5 minutes.

4 Android 38

4.3.1 UI programming

Another difference to a standard Java application is the way the user interface is pro-
grammed. In normal Java applications the user interface is implemented programmatically
using SWING or AWT. But Android approached the user interface differently. The UI is cre-
ated using resources. These resources are stored in a separate folder of the application
project, named res. The basic appearance of an application is defined in a XML file which
is stored in /res/layout/. In this layout XML file, text fields or buttons can be defined and
positioned. The Activity then uses these XML layouts to create the actual UI.

Strings that are used to fill a text field are mostly included in another XML file stored in
/res/values/. The advantage of this approach is the very comfortable adjustment for different
languages. The /res/values/ folder can have multiple subfolders of different countries. Each
folder of a country has the same string values only written in their language. The Android
handset checks the local preferences and calls the right language folder according to the set
language.

Another important folder is the res/drawable-*/ folder for pictures or icons. Since there are
a lot of different Android smartphones on the market which have different display sizes, the
application must be adjusted to the display. That is why there is one folder for high definition
(/res/drawable-hdpi), one for middle definition (/res/drawable-mdpi), and one for low definition
(/res/drawable-ldpi) screens. The smartphone again checks in which category the display
falls and gets the right picture.

Programming the UI this way, makes the application highly flexible. The developer can add
a new language without any great effort. He just adds a new folder and deploys the update.
Other developers that are new to an application know where to go, if the UI must be changed
or an icon has to be exchanged.
Despite the mentioned, very comfortable way to create user interfaces in Android, there is
also still the possibility to implement the UI programmatically. But it is not recommended.

5 Application Design

In chapter 3, Analysis, scenarios where described which showed an application distribut-
ing files through broadcasting and multicasting. The scenarios where devided into three
sections. By reference to those scenarios desirable requirements for the application were
extracted.

This chapter is about designing the application based on the extracted requirements. In
almost the same manner of chapter 3, this chapter will be sectioned into the components
of the sender, the receiver, and the aspect of security measures needed to ensure flawless
distribution. But before the designing of the three components is started, a short explanation
regarding the connection of sender and receiver is given.

5.1 Wireless Local Area Network

Like described in the scenarios in chapter 3, the sender and receiver must be connected to
the same network to communicate. There are two possibilities to achieve such connectivity.
The first one is that the sender establishes an ad-hoc network. And the recipient can connect
to that ad-hoc network. The second possibility is to connect to an access point that allows
broadcast and multicast. The ad-hoc network is the preferred solution to establish a network
because this way the sender can distribute files at all times. He does not need to depend on
an access point being nearby. And as already mentioned in the Analysis chapter, nowadays
the free hot spots do not allow the broadcasting of files.
Unfortunately, the Android OS does not support the establishment of an ad-hoc network yet.
The only service the Android OS offers, regarding ad-hoc networks, is the ability to connect
to an existing network. But the service must be unlocked first to use it. That is why the only
way to distribute files with the application developed in this bachelor thesis, is to have an
access point nearby and connect to it.
The upcoming Android Version, named Ice Cream Sandwich, probably will offer the possibil-
ity to establish an ad-hoc network.

5 Application Design 40

5.2 Architecture Overview

Before starting to design the individual components in detail, it is beneficial to look at the
application architecture as a whole. From the scenarios we know that the application needs
two main components. The sender and the receiver. Other important aspects of the appli-
cation are the security measure like data integrity, data encryption, and key distribution. And
of course, as it is the basis of this bachelor thesis, the Fountain Codes and their integration
into the application. Let us take a look at a first possible application architecture based on a
sequence diagram (Figure 5.1).

Figure 5.1: First possible application architecture.

In Figure 5.1 one can see that the application has only two components. One component for
the sender and one for the receiver. The problem with this simple architecture is that if a new
more efficient derivative of Fountain Codes is developed and is suitable for an application like

5 Application Design 41

the one being developed in this bachelor thesis, then implementing it would be complicated.
New developers would have to understand the code and integrate the new derivative of
Fountain Codes into the code. Deleting the majority and most important part of an already
written class and replacing it with core functionalities of a new encoding scheme can result
in failure or an unstable application. Furthermore, if sending or receiving is done in the main
activity, then user input will not be possible anymore since the sending or receiving process
is running. Thus, the operation cannot be aborted. That is why it is a better solution to swap
the Fountain Codes and the security measures into a dedicated class. This way the user
interface and the user inputs are processed in the main sender activity and are not blocked
by continuously running coding procedures. After processing the user input and therefore,
for example, knowing if the file is broadcasted or multicasted, the computing and sending of
the data is delegated to another object.

Almost the same principle should be used with the receiver’s component. But there is an-
other aspect with the receiver that should be considered. When the receiver is listening for
a file, the first thing he is interested in is an information packet telling the receiver what kind
of file the sender is sending. The information is shown to the user who can accept or decline
the file. If he accepts, the Fountain decoding is started. Considering the process sequence,
there is one question. If no file is being distributed or if the file is declined, then why should
decoding resources be allocated. To avoid unnecessary allocation of memory and other re-
sources, there should be a thread that is started by the main receiver activity to listen only for
information packets. If an information packet is received and the user accepts the transmis-
sion, then the Fountain Decoder is started. Another advantage of saving resources is that
when changing applications in the Android system and therefore pausing this application,
the probability that the application is terminated by the Android OS is lower due to minimal
resource allocation.

Keeping the disadvantages and their improvement possibilities in mind, the application’s ar-
chitecture and the communication between the individual components could be like Figure
5.2.

Now that an architecture of components is established, it is time to focus on the individual
components and the security aspects. In the following first section the design of the security
aspects are explored and explained. It is better to start with the security aspects because
the sender and receiver use the security measures and therefore there is no need give
references to upcoming explanations. After the security aspects, the Sender and its Fountain
Encoder are designed in detail. At last the Receiver and its Fountain Decoder and Packet
Information Listener are designed.

5 Application Design 42

Figure 5.2: Sequence diagram of architecture to implement.

5.3 Security Design

Now it is time to focus on the design of the main components. Let us start with the security
aspects of the application. The requirements extracted from the scenarios in 3.2.3 concern-
ing the security measure needed to secure data in multiple ways are:

• Encryption and decryption of data

• Secure key agreement with only genuine members

• Data integrity

The first security issue that is going to be designed is the assurance of data integrity. After-
wards, the security aspect regarding the key agreement and its problems will be approached.
There are some issues that must be considered when agreeing on a key in a broadcast envi-
ronment. At last, after all members share the same key, the data is encrypted and decrypted
by sender and receiver, respectively.

5 Application Design 43

5.3.1 Data integrity

Data integrity means the recipient can be sure that the received data was not altered by an at-
tacker and is therefore the original data the sender sent (See section 3.1.3). Data integrity is
achieved by signing the data before distribution. The so called Digital Signature can then be
verified by the recipient. The Digital Signature requires the following steps. First a message
digest out of the data must be computed with a hash function. After generating the digest,
it must be signed using asymmetric cryptography like the Digital Signature Algortihm (DSA).
Let us now turn to the details of hash functions and Digital Signatures with the DSA.

Hash Functions

In cryptography hash functions are widely used cryptographic primitives [5]. The principle
of hash functions is, that they compute a digest of a data input. The output is a short,
fixed length bit string. The message digest, or hash value, can be seen as an almost unique
fingerprint of a message. So just like humans, messages can be identified by their fingerprint.
Hash values are only almost unique as the output is of a fixed length but the possibilities of
different inputs is bigger than that. So eventually there are messages that produce the same
output. But good hash functions must make it computationally infeasible to find two or more
messages that have the same output. Hash functions, in contrary to most cryptographic
algorithms, do not require a key. The output is computed only through a save algorithm.
Further requirements of hash functions are that they hash any data of any length to a fixed
length hash value. So it does not matter if the data is 100 Bytes or 100 MBytes. The output
length must be the same. Hash functions should also be performant because the input length
can be very big. Furthermore, the hash function must be highly sensitive to input changes.
If the message is changed in only a few places, the output must show a big change in the
hash value.

Hash functions are necessary for Digital Signatures because of the subsequent crypto-
graphic algorithm needed to completely sign the message, like the DSA. The DSA algorithm
only allows a limited input length. 1024 Bits were mostly used in the past. 1024 Bits equal
124 Bytes. And most messages and files are much bigger than that. The message to sign
could be split into equal blocks and each block could then be signed individually. But that
would take to much time with a message of 1000 MB. In addition to the long processing time,
the message overhead must be considered. When sending a signed message, the data will
be twice the normal size due to the signed message blocks. And the integrity of the message
would not really be given as the attacker could just remove, reorder or add individual blocks
and their corresponding signatures. To avoid all of those problems, hash functions are used.
The most widely used message digest function is the Secure Hash Algorithm (SHA-1). It be-
longs to the MD4 family and produces an output of 160 Bits. But as the security of SHA-1 will

5 Application Design 44

probably be broken some day, a new algorithm, the SHA-2, was already developed. SHA-2
has outputs of up to 512 Bits of length (For more details see [5]).

Digital Signature Algorithm - DSA [5]

DSA is the algorithm used in this bachelor thesis to sign and verify the communicated data.
DSA is a federal US government standard which was proposed by the National Institute of
Standards (NIST). The signature output that is computed is 320 Bits long. DSA belongs to
the asymmetric cryptography and therefore works with a key pair. The public key kpub and
the secret key kpr . The key pair is generated by the person signing the data. The public key
is made public so that everybody has access to the key. The secret key however, is kept
secret by the one who generated the key pair. He uses the secret key to sign the data and
the recipient can use the public key to verify the data. If the verification is successful, the
recipient can be sure that the data he just received is indeed from the sender and that the
data was not tampered with because only the sender owns the secret key which is compatible
with the public key.

Followingthe DSA will be described in more detail. Figure 5.3 shows the steps, the one
signing the data has to go through to generate the key pair kpub and kpr .

Figure 5.3: 5 steps to generate the key pair in the Digital Signature Algorithm [5].

The computation and verification is shown in Figure 5.4. According to the standard of DSA,
SHA(x) has to be the SHA-1 hash function that computes the message digest of the message
x. When the recipient receives the signature (r,s) he computes v. The signature is only valid

5 Application Design 45

if v ∼= r mod q. Otherwise, the signature is not valid and the verification fails. In this case,
the receiver can be sure that the data or the signature was manipulation in some way.

Figure 5.4: Sender signs message and receiver verifies the signature [5].

Signing the data in application

Now that the basis of data integrity is explained, the explicit design for the application can
start.

The sender uses Fountain Codes to encode the data. That is why signing only the encoded
data is not enough. As was described in section 2.2, much more information is needed to
decode the data. The recipient needs to have the degree of the code word, the coefficient
vector, and the code word itself. If only the code word was signed, an attacker could just

5 Application Design 46

change the degree or the coefficient vector and thus the receiver would again not be able to
decode the data correctly. With a changed coefficient vector, the decoder would XOR false
data blocks into the code symbol and consequently get a useless result. The recipient would
not know that the result is useless, though. Only after the full reception of the data he would
realize that he assembled a damaged file. Therefore, the degree, the coefficient vector, and
the encoded data must be signed. The only information the attacker can change is the label
linking the packet to a session. But that does not matter. If the label is changed, the receiver
filters the packet out anyway.

The next issue regarding the signature is how the public key kpub can be made public so it
can be accessed by the recipients. When working with asymmetric cryptography the public
keys are often provided in the internet by some server. A user wanting to verify signed data,
downloads the sender’s public key and verifies the signature. But that approach cannot be
taken in this application. There is no assurance that the network, the communicating users
are logged into, is actually connected to the internet. If no internet is available, then no
verification is possible. That is why the easiest and only solution is to send the public key
along with the information packet. After the key pair is generated by the sender, he includes
kpub in the information packet. If the receiver accepts the file he can verify all data from the
sender with that key.

Conclusion

In this section the aspect of data integrity was addressed. The data’s integrity in this ap-
plication can be achieved by using a hash function like SHA-1 and signing the hash with
the signature algorithm DSA. The sender sends an information packet with necessary file
information and his public key kpub. The recipient can extract the public key and verify the
signatures of incoming data with it.
The question is if data integrity is assured completely. The answer is, not completely. In
case the file is broadcasted and therefore not encrypted, some users can still be fooled. An
attacker could create his own information packet with the information extracted from an orig-
inal packet and insert his public key. He then generates encoded packets and signs them
with his private key. Users who get the adversary’s information packet first, will verify the fake
encoded packets successfully and the verification of original packets will fail due to the wrong
public key they are holding. Affected are user who join the session a little later. But users
who already received the original information packet are no longer affected by manipulated
data.

5 Application Design 47

5.3.2 Establishing a session key

This section of the security design is about finding a way to agree on a key. The objective
is that only selected members share the key and that attackers who wish to obtain the key
are excluded. The best known key agreement protocol probably is the Diffie-Hellman-Key-
Exchange (DHKE) protocol. The principle of DHKE is that two or more members agree on
two public parameters. The first parameter is a very large prime number p. The second pa-
rameter is an integer α ∈ (2, 3, ..., p − 2). The agreement of the public parameters can be
achieved by one member choosing the parameters and sending them to the other members.
The following description is for two members agreeing on a key.
Member A chooses a secret integer x ∈ (2, ..., p−2) and computes a public key kpub,A = αx

mod p. A then sends kpub,A to member B. B does the process vice versa. He chooses
y ∈ (2, ..., p − 2), computes kpub,B = αy mod p, and sends it to A. The secret session key
kAB is then computed by each member with kAB = kxpub,B mod p for A and kAB = kypub,A
mod p for B. Now A and B have computed the same secret session key.
An attacker intercepting the public key, kpub,A, and kpub,B cannot extract the secret key be-
cause he does not know which x and y were chosen by A and B. The function that is used for
DHKE is a one-way function. That means that f (x) = y is easy to compute but computing
the inverse f −1(y) = x is computationally infeasible. It is based on the Discrete Logarithm
Problem (DLP) (For more information see [5]).

Issues with DHKE

The question is, can this protocol be used in this application. There are some problems
with this approach of key agreement. One problem was already explained in section 3.1.3.
Without any additional mechanism everyone in the same network could participate in the
key agreement. They would just have to choose a secret integer, compute the public key
kpub,attacker and send it to the other members. Therefore, his public key would be part of
the protocol and he would generate the same key. Another already known issue with DHKE
is the Man-in-the-Middle attack (MitM). But the MitM-attack is less likely to be used in this
particular application. The attacker does not have to pretend to be to member A or B as he
can simply participate in the key agreement.

A far more troubling problem is the communication of the participating members between
each other. Each participant must receive the others public keys to generate the same secret
key. But the users do not communicate using a reliable protocol like TCP but an unreliable
protocol. And on top of that the data is shared over an unreliable medium with possibly many
interfering sources. So there is a high probability that some of the agreement members
generate a secret key based on incomplete public keys. In addition to just sending the public
key once, each participant must send further data if more that two users are taking part in

5 Application Design 48

the key agreement.
When three members are participating, following procedure steps could be traversed - Steps
4 to 6 could differ if the participants compute other public key combinations:

1. p and α must be chosen.

2. Members A, B, and C choose secret x, y , and z, respectively.

3. Everyone computes their public key kpub,member = αchosenSecret mod p and sends the
key to the other members.

4. A computes the subkey kAB = kxpub,B mod p, B computes the subkey kBC = kypub,C
mod p, and C computes the subkey kCA = kzpub,A mod p.

5. Now A needs the result of B because the function to generate the shared key kABC is
kABC = αxyz mod p. Since kBC = αyz mod p, computing kxBC mod p = αxyz mod
p. That is why every member has to communicate his computed subkey to another
member.

6. B and C do the same, i.e., B: kABC = k
y
CA mod p, C: kABC = kzAB mod p.

One can see that additional communication must be done when several members are in-
volved in the key agreement. Furthermore, additional information is needed. Each recipient
must identify himself in case he takes part in the key agreement. The participants must
synchronize themselves so that everybody knows which public key they must compute to
help other participants. With four people agreeing on a key, A, for example, must get subkey
kBC to compute another subkey kABC which he then sends to D so that he can compute the
shared secret key kABCD. With increasing members the necessary sub keys that must be
computed and shared over the unreliable medium increase too. With 20 people involved in
the agreement process a lot of data must be shared before the actual transmission of the
file can be started. And to make sure that everybody has received the necessary keys from
the other members, the key agreement must go on for a very long time. In conclusion, using
the DHKE with an unreliable connection such as UDP over an unreliable medium is very
inefficient and thus not recommendable.
Another solution to make sure that every genuine member holds the same secret key must
be found.

Design of key distribution

Keeping the issues described above in mind, a design must be found that avoids those prob-
lems.
A solution to the problem concerning the authenticity of session members could be to sim-
ply add encryption to the basic DHKE. The public parameters and public keys could be

5 Application Design 49

encrypted. A password is used as a key and the public values are encrypted with that pass-
word. That way, only users who are in possession of the key are able to decrypt the public
parameters and keys. As the amount of public values that must be sent over the air is not
very much, the password does not need to be very strong. An attacker cannot extract the
password with only a few packets to analyze. Of course provided that the password is not
too simple.

Regarding the problem with the communication burden created by the DHKE protocol, an-
other way to distribute the secret session key is used. In cases where all members actively
take part in the key agreement, there is no way to avoid additional communication. That is
why an agreement of a key is not optimal for this application. Instead, a more centralized
solution is the smarter way to go. The sender generates a strong and secure key kpr,session.
He adds the key to the information packet and signs the information and the key, Afterwards,
the information, the secret session key, and the public key for the signature verification are
encrypted with the password. Now the information packet is ready to be broadcasted. Only
members who know the password are able to decrypt the information of the file and the two
keys. As the sent information packet is always the same for one session, an attacker can
only do crypto analysis on one packet. That is surely not enough to extract the password.

5.3.3 Data encryption

The last part of the security aspect is the encryption and decryption of data. It is the simplest
part of the security measures because all basics for securing the data are already provided
in the previous section. The data is encrypted and decrypted with the secure key kpr,session
generated by the sender. Each member who receives the information packet and is in pos-
session of the password, which was used to encrypt that packet, is able to extract kpr,session
and thus decrypt the incoming data. The only question left is which parts of the encoded
packet must be encrypted. Luckily not much. It is sufficient to just encrypt the coefficient
vector of the encoded packet. The data itself is already encrypted since it was XORed to-
gether with other data blocks. And if a recipient does not know which data blocks are included
in the encoded symbol, he cannot decode the packet correctly. To encrypt and decrypt the
data the Advanced Encryption Standard (AES) should be used. It is still very secure and
executes the cryptography procedures efficiently.

5.4 Sender Design

This section is dedicated to the design of the sender. The sender consists of two main
classes. More than these two classes will be needed to build the complete sender but the

5 Application Design 50

following two classes are the important ones. The fist class, the Sender, is the main class.
It is the activity that controls the sender. It accepts user inputs and starts the Fountain en-
coding. The second class is the Fountain Encoder class. It executes the encoding, secures
all necessary data like described in the previous section, and it sends the data. The task is
stopped by the main activity when the user aborts the file distribution.

5.4.1 Sender

The first aspect to design is the user interface. From the analysis chapter and the security
design section the following is known:

• User must be able to enter session name.

• User must be able to choose between broadcast and multicast.

• User must be able to browse through file system.

• User must be able to enter password for secure key distribution.

• User must be able to start the send process.

• User must be abet to abort the send process.

The user interface could look like Figure 5.5.

If the option broadcast is selected, the password text field is not used even if a password
was entered. A password is only needed in multicast sessions. In case multicast is selected
and no password is entered, a dialog must inform the user to do so. Without the necessary
information the sending process is not started.
As soon as the mode and its necessary inputs are chosen, the user can start the sending
process by clicking the Send button. Clicking the Send button starts the Fountain encoding
and all connected procedures, like signing the data. The main sender activity and thus the
user interface is decoupled from the Fountain Encoder. Therefore, if the user aborts the send
process by clicking a button, the application is able to react to that user input and cancel the
Fountain encoding process.

5.4.2 Fountain Encoder

The Fountain Encoder class is the most important class of the sender. The Fountain En-
coder should be implemented as a thread because it executes long running operations like
encoding data, signing data, encrypting data, and sending necessary information for the
receiver.

5 Application Design 51

Figure 5.5: User interface for application.

Information Packet

There are two kinds of information packets needed. The first one is a simple information
packet. It is created and send when the file is being broadcasted to everybody in the same
network. The information packet holds the session name, file name, file size, file type, and
the public key which is needed to verify the signature of the encoded packets. This informa-
tion packet does not include any security measures. Its content is not encrypted in any way.
The second information packet is for multicast sessions. It holds all the information that the
first one holds. But on top of the basic information, the generated secure session key to
encrypt the data is included in the packet. Furthermore, all the information is signed with
the included public key and encrypted with the password that the sender entered into the
password field of the user interface.
One of these two information packets is sent periodically to all listening receivers depending
on the mode selected.

Fountain encoding process

Now it is time to focus on the important part of the Fountain Encoder. The actual Fountain
encoding.

5 Application Design 52

Before the sender can start encoding the data, it has to be split into equal data blocks. The
data cannot simply be split into one byte blocks because doing so would take too long to
distribute the data. We will choose a data block of about 1000 Bytes. The router will probably
have an MTU(Maximum Transmission Unit) of maximal 1500 Bytes because we use the
wireless lan to connect the devices. We could choose a bigger block size but that would
require fragmentation of the encoded packet since an ethernet frame can only hold as many
bytes as are available through the MTU. If the channel is noisy and part of the fragmented
encoded packet gets lost during transmission and must be retransmitted, the receiver has
to wait until he has the whole encoded packet. With a block size fitting into one frame, the
receiver instantly has data he can work with. The block size cannot be the complete MTU
since some space must be available to add the additional data like the coefficient vector
which is sent along with the encoded symbol. The split data blocks should be represented
by their own class to make it easier to handle them. In conclusion, a class Data is needed
which represents the data blocks.

After the data is split into appropriately big data blocks and available for encoding, the en-
coding can start. To encode the data blocks, from now on referred to as data, a degree
distribution and a scheme to uniformly select data at random is needed.
The encoding process is done according to the LT Encoding process in 2.2.1. A degree d
is taken from the degree distribution. Corresponding to the value of the degree, d data are
chosen at random and encoded. A coefficient vector holding the index of each data picked
is created simultaneously. Now the encoded symbol and the coefficient vector are ready to
be sent. The flowchart in Figure 5.6 shows the procedure. To send both objects in one UDP
datagram another class is needed that encapsulates them. The EncodedPacket class. A En-
codedPacket object includes the coefficient vector, the data, and the degree. Furthermore,
a session name is needed to link the packet to a session.

Before the degree distribution is described, the encoding and sending sequence should be
dealt with in more detail. As described in 2.1, Fountain Codes are rateless and therefore
unlimited amounts of code words can be generated. As a consequence the sender can
generate new encoded packets on the fly and keep sending them until the user aborts the
process. But one must keep in mind that the application is run on a smartphone. And
unfortunately the smartphones today barely run two days with one full charged battery. The
average smartphone user must even recharge his handset everyday. Certainly, the encoding
itself does not take that much computation time and effort but the encoded symbol must be
signed and, when chosen, encrypted. Traversing all the necessary steps for an encoded
packet hundreds of thousands of times over and over again, can heavily strain the battery
and even damage it. That is why it is smarter to pre-generate a sufficient amount of encoded
packets and send them iterating through that packet pool. So only the send process of
encoded packets is done in a loop.

5 Application Design 53

Figure 5.6: Flowchart showing procedure of the Fountain Encoder.

Degree Distribution and random selection of data blocks

Like described in section 2.2, the degree distribution is of utmost importance. Without a good
degree distribution the Fountain decoding can take a very long time because the receiver
could need much more encoded packets to decode the data than the actual amount of data
blocks the complete data is split into. That is why a degree distribution has to be found that
leads to efficient encoding so that the decoding process is completed with only slightly more
received encoded packets than the amount of data blocks. In addition to that, finding the
right scheme to select the data blocks is very important as well. Having found an optimal
degree distribution but choosing the data blocks unluckily can be as inefficient as choosing a
bad distribution. If the data blocks are selected at random without any system, the same data
blocks could be selected several times. As a result the decoder would receive an encoded
packet which he decodes and subsequently discards since the information encoded into the
packet were already received through a previous packet.

In [6] the authors of the paper optimized their degree distribution for small messages. Using
an importance sampling approach they tried to find a degree distribution that is optimal for
messages that are split into 16, 32, 64, or 128 blocks. As one can see in Figure 5.7 the
value of the degree starts with 1 and is doubled until half the data block amount is reached.
Each degree is given a probability pi of occurrence. The probability of the degree decreases
with the increasing degree value which results in an average degree that is rather low than
high. A low average degree is beneficial since it reduces the amount of operations that must
be performed. Taking the degree distributions in Figure 5.7, leads to an overhead of only
25%-40% which is very good.

5 Application Design 54

Figure 5.7: Table showing found degree distributions and their results [6].

We will take the findings of [6] as the basis for the degree distribution of the application. The
question probably is, why consider results that are based on a maximal length of 128 data
blocks. The files distributed in the application are much bigger than that. But as one can see
in Figure 5.7 there is a pattern in the degree distribution. Small degrees are distributed more
often than the bigger degrees. We will take the degree distribution of K = 128 and adjust
the probabilities for the degrees and combine them with an appropriate selection scheme to
see if such a pattern can be used to distribute data with different sizes efficiently. After the
implementation is completed the performance and efficiency of the degree distribution will
be evaluated.

5.5 Receiver Design

The receiver is comprised of the three classes as was elaborated in section 5.2, Figure
5.2. The three classes are the Receiver, the Packet Information Listener, and the Fountain
Decoder.

5 Application Design 55

5.5.1 Receiver

Let us start with the Receiver class. Just like the class Sender in the previous chapter, the
Receiver handles the user inputs and starts another thread, the Information Packet Listener.
The receivers initial user interface is very simple because only one button is needed to start
the listening process (User interface and dialogs shown in Figure 5.8). If an information
packet arrives, a dialog is created that shows the information and waits for the user to accept
the file or decline it. In case the information packet is encrypted, a dialog asks the user to
enter the password before the accept dialog is shown. After a file is received, a new view
item is added to the initial user interface. It shows information about the file and a button to
open the file in a preview if the file is a picture or music file, or install the application update
if the file is a code image.

Figure 5.8: User interfaces and dialogs for receiver.

5.5.2 Information Packet Listener

The Information Packet Listener (IPL) is the task that is started by the Receiver. Its purpose
is to listen for information packets, analyze them, and update the user interface accordingly.
When an information packet arrives, the Information Packet Listener first checks if the same
information was received earlier. If it was received, meaning that the session name is already
stored, the information is discarded and the listening process continues. But if the informa-
tion is new, the IPL starts analyzing the information. First it checks if the file is encrypted. In
case of an encrypted information packet, the IPL updates the user interface with the pass-
word dialog of Figure 5.8. After the correct password is entered, the IPL must verify the

5 Application Design 56

information’s signature to assure the integrity of the information packet. The user is informed
of an incorrect password submission if necessary and the password dialog is shown again.
Unless the verification fails, the accept dialog is presented to the user and the packet’s infor-
mation is shown. Otherwise the user is informed that the verification was unsuccessful and
the IPL starts listening for new information packets again. When the user finally accepts the
file, the Fountain Decoder is started. The flowchart in Figure 5.9 visualizes the procedure of
the IPL.

Figure 5.9: Flowchart of Information Packet Listener.

5.5.3 Fountain Decoder

The Fountain Decoder (FD) is the last class of the receiver. Objects created from this class
listen for encoded packets and decode them using the LT Codes decoding algorithm (See
Section 2.2.2).

Figure 5.10: Flowchart of Fountain Decoder as a whole.

5 Application Design 57

The Fountain Decoder works in two different modes which are marked blue and shown in
Figure 5.10. The first mode, the Process new encoded packet mode , is the initial mode that
the FD works in (Figure 5.11). The FD listens for encoded symbols from the sender. As
soon as an encoded packet is received, the FD checks if the packet belongs to the actual
session. In case of an packet belonging to another session the packet is dropped and the
listening process is started again. Otherwise, the encoded packet can be processed. First,
the signature is validated. Only if the verification was successful the analysis is continued.
After the verification, the packet is checked for encryption. If the packet is encrypted, the FD
uses the session key, which was generated by the sender and extracted from the information
packet, to decrypt the data. Now that the plain encoded packet is available the decoding is
started (Detailed decoding process described in section 2.2.2). After the encoded packet is
decoded as far as possible, the packet degree is checked. A degree bigger than one indicates
that the packet was not fully decoded yet and is therefore stored in buffer A. A degree that
equals one indicates that the packet was completely decoded. Thus, the plaintext is stored
in buffer B. Furthermore, the mode is switched to New plaintext added.

Figure 5.11: Detailed flowchart of mode Process new packet.

The FD in mode New plaintext added works as depicted in figure 5.12. First the mode is
set to Process new packet. Before the decoding of encoded packets in buffer A can start
the FD must assure that there indeed are packets stored in buffer A. With no packets stored
in A the mode is switched back to Process new packet. But if the buffer is not empty, the
decoding procedure can start. The FD iterates through the buffer one by one. He takes a
packet and tries to decode it. If the degree equals one, the plaintext is stored in buffer B. Of
course, the plaintext is only stored if it was not completely decoded in a previous decoding

5 Application Design 58

step and therefore already in buffer B. Furthermore, the packet is removed from A and the
mode is set back to New plaintext added again. In case the packet degree equals zero, the
packet is removed from buffer A. Having completely iterated the buffer A, buffer B is checked
for completeness of contents (Figure 5.10). If plaintexts in B are still missing the procedure
of figure 5.10 is repeated.

Figure 5.12: Detailed flowchart of mode New plaintext added.

5.6 Summary

In this chapter we designed all necessary components of the application. On the one hand
we focused on the security aspects of the application and evaluated their feasibility. That is
why, for example, we found out that using the Diffie-Hellman-Key-Exchange protocol in this
particular application would not be very efficient and thus we approached the key distribu-
tion differently. On the other hand we designed the main two sides of the application. The
Sender and the Receiver. We acquired that swapping the Fountain Coding to an external
class is much clearer and more maintainable for later developers extending or changing the
application. We also realized that some resources should only be allocated when necessary.
With the help of the flowcharts the particular classes were visualized to better understand
the procedures described.

Now that the design is finished, the implementation of the application can finally start.

6 Application Implementation

This chapter is about the implementation of the application. The implementation is based on
the design from chapter 5. The implemented classes, their member fields, and the important
methods will be explained. UML class diagrams are shown in figure 6.1 and figure 6.2.

The application is made up of two tabs. One tab is for the sender and the other tab is for the
receiver. Only one tab can be chosen at a time. Each tab is an Activity. Like described in the
Android chapter, an Activity is an instance that is running actively when a new view is shown
in the Android OS.

6.1 Sender

6.1.1 SenderTab

The main sender class is named SenderTab. The SenderTab extends the Activity class.
An object created from this class is processing user inputs, updating the user interface, and
starting the Fountain encoding. Its main two methods are sendMessage and onCreateDia-
log. The onCreateDialog method is an inherited method from the super class Activity and
must be overridden. It is called when the showDialog method is called. By reference to the
parameter given from the showDialog method, a different dialog is created. There are three
different parameters and thus three different dialogs that are created. The first dialog is for
showing the file list of the smartphone. The user can browse through his smartphone using
this dialog. The second dialog is for showing a progress window. Showing the progress
dialog ensures the user that the application is currently sending the file. The last dialog is
shown when the user presses the Back button. The dialog asks the user if he really wants
to abort the send process or not. The sendMessage method is called when the Send button
is pressed. In this method all necessary information are extracted from the user inputs and
the Fountain encoder is started with the extracted information as parameters.

6 Application Implementation 60

Figure 6.1: UML diagram of the sender.

6.1.2 FountainSender

The Fountain Encoder class is named FountainSender. It extends the Thread class as
is must run simultaneously to the SenderTab. The FountainSender has four important
methods. The run, initDegreeDistribution, initDataToEncode, and the initEncodedPacketList
method. The run method is the method that is called when the thread is started. The proce-
dure done in this class is the same as depicted in Figure 5.6. In run the following methods
are called.

The initDegreeDistribution is the first method that is called. It initializes the degree distribu-
tion. The second method call is the initDataToEncode method. This method splits the file into

6 Application Implementation 61

equal data blocks. The data blocks are represented by the class Data. The class Data offers
the method xor which encodes two data blocks. The last method, initEncodedPacketList, ini-
tializes an ArrayList that holds all encoded packets represented by the class EncodedPacket.
The encoded packets are then taken in the run method and sent. In the initEncodedPack-
etList method the encoded packets are signed and, if chosen by the user, encrypted. The
signature is created by using the SHA-1 message digest and the DSA algorithm. The key
pair created for signing the data is 512 Bits long. Some may think that 512 is too short and
thus insecure but taking a bigger key results in longer signing and verification times. And
as a new key pair is generated with each file send, 512 Bits are sufficient. The encryption
is done using an AES Key and an AES Cipher. The cipher works in the ECB (Electronic
Code Book) mode with PKCS5Padding and encrypts only the coefficient vector. After the
necessary initializations are completed the FountainSender sends the encoded packets and
data information packets.

6.1.3 Other classes

EncodedPacket

The EncodedPacket has five member fields. Most of the member fields are information that
are needed for the Fountain Codes to work like the coefficient vector or the degree. But there
are two member fields that need some additional explanation. The first is the mSignature
variable. It is the signature created by the method generateSignature from the same class.
To sign the encoded packet the coefficient vector, the data block, and the degree are used
to create the message digest. Afterwards the digest is signed and the signature is stored
in mSignature. Another member field is the mEncryptedCoefficientVector. When the file
is multicasted and therefore encrypted the encrypted coefficient vector must be stored in a
different member field since the result of the encryption done by the cipher is a byte array.
The plain coefficient vector must be reset before the encoded packet is send as it otherwise
is not an encrypted encoded packet anymore.

DataInformation and EncryptedDataInformation

Like described in section 5.4.2 two different data information classes are needed. One that is
not secured in any way and another that is encrypted using a password. The DataInformation
class is the class for the plain data information. It holds all the information mentioned in 5.4.2.
One difference to the design is that the secret session key for decryption of the encoded
packets is included in this class. If the data information is not encrypted, making the secret
key unnecessary, the member field is left out. Otherwise the secret key is set.

6 Application Implementation 62

The encrypted data information is represented by the class EncryptedDataInformation. It
has three member fields. mSessionname and mDataSize are necessary as the receiver
must get some information about the file being send. The third member field mEncrypted-
DataInfo holds a password encrypted instance of the DataInformation class which in this
case does hold an secret key, set and generated in the run method of the SenderTab class.
The DataInformation object is encrypted in the run method as well.

6.2 Receiver

Figure 6.2: UML diagram of the receiver.

In section 5.5 the receiver was designed to be made up of three classes. One Receiver
class, one Data Information Listener class, and one Fountain Decoder class. That is the way
the receiver is implemented in this application.

6 Application Implementation 63

6.2.1 ReceiverTab

The receiver’s Activity is the counterpart of the sender’s Activity and is named ReceiverTab.
It is the first object instantiated when the receiver tab is selected. Just like the SenderTab
the ReceiverTab overrides the onCreateDialog. There are seven dialogs that can be created
within the ReceiverTab.

1. No password dialog: Shows the file information extracted from the plain data infor-
mation packet. Starts the Fountain Decoder when the file is accepted.

2. Password dialog: Shows the session name and file size and prompts the user for
a password. Starts the no password dialog when the correct password was in-
serted. Takes the encrypted data information packet and decrypts it with the
getDecryptedDataInfo method from the same class. If the password is incorrect
the same dialog is shown again. On abort the dialog is removed and the receive
process is aborted.

3. Show picture dialog: Shows the received picture in a preview and the storage path
on the smartphone. Closed with the close button

4. Show music dialog: Plays the received music file in a preview and shows the storage
path on the smartphone. Closed with the close button

5. Show update dialog: Shows a dialog that asks the user if he really wants to in-
stall/update the application. If accepted, the application is installed. If declined
the dialog is removed.

6. Progress dialog: Shows a progress dialog that ensures the user that receiving and
decoding is still in progress.

7. Cancel dialog: Is created when the user presses the back button while the file is be-
ing received and decoded. Clicking the Yes button aborts the Fountain Decoding
and the No button removes the cancel dialog and the process dialog is shown
again.

The important method in the ReceiverTab class is the receiveMessage method. It is called
when the Listen for Data/Stop button is clicked by the user. When the method is called
the Data Information Listener is started if the button was set to Listen for Data or the Data
Information Listener is aborted if the button was set to Stop. The method switches the button
from Listen for Data to Stop and vice versa.

6 Application Implementation 64

6.2.2 DataInformationListener

The class DataInformationListener is implemented as an inner class of the ReceiverTab. It
had to be implemented as an inner class since the DataInformationListener must update the
user interface of the application. And the user interface can only be updated if the object has
access to the Activity object of the ReceiverTab and the onCreateDialog method. Further-
more the ReceiverTab’s Context must be accessed to acquire a multicast lock which enables
the receiver to receive multicast packets. Otherwise they are filtered and dropped. Another
feature that makes the DataInformationListener spacial is the fact that it does not extends
the class Thread but an Android specific class named AsyncTask.

AsyncTask

The AsyncTask class is a generic class that is able to perform background operations like
a normal thread [13]. On top of that the AsyncTask is able to change the user interface of
the application. An AsyncTask works a little different from a normal thread. Unlike threads,
it is started by calling the execute method and not the start method. An AsyncTask has four
methods than can be called and worked with. The onPreExecute, doInBackground, onPro-
gessUpdate, and the onPostExecute method. The onPreExecute method is not used in this
application as it is mostly used to setup a task by showing a progress bar which is not needed.
When the task is started the first method that is called is doInBackground. In this method all
necessary computation is done. In case of this application, the listening and processing of
the data information packets. After analyzing the data information the No password dialog or
the Password dialog is created depending on the information packet. Creating a dialog can
be achieved by calling the publishProgess method which in turn calls the onProgressUpdate
method. In that method the dialog is created by calling the showDialog method. Figure 5.9
shows the procedure of the DataInformationListener.
After the doInBackground method is completed onPostExecute is called automatically. In
onPostExecute the user interface of the receiver is extended with the view that shows infor-
mation about the received file and offers a button to open the file in a preview, like shown in
Figure 5.8. But the view can only be updated if the reception of the file was completed. That
is why the Fountain Decoder acquires and locks a binary semaphore which the doInBack-
ground method blocks on. When the file is received completely, the semaphore is released
and doInBackground can finish.

6.2.3 FountainReceiver

The Fountain Decoder class is named FountainReceiver. Like the FountainSender, the Foun-
tainReceiver extends the Thread class to run concurrently to the ReceiverTab. The principle

6 Application Implementation 65

of operation of the run method is shown in Figures 5.10, 5.11, and 5.12. According to the
FountainSender the receiver verifies the signature by generating a message digest with the
SHA-1 and verifying the hash value with the DSA algorithm. The decryption of the encoded
packet is achieved by calling the method decryptEncryptedPacket. A cipher working in the
AES/ECB/PKCS5Paddin mode is initialized with the secure key extracted from the decrypted
DataInformation packet.

7 Test and Evaluation

7.1 Test

After the application was designed and implemented, it is now time to test and evaluate
the application. The scenarios from the analysis in chapter 3 will be applied to see if the
requirements are fulfilled and that the application works properly. The hardware used to test
the application is a Samsung Galaxy S2 smartphone running the Android OS and a MacBook
Pro. The MacBook can be used for testing since the application was implemented in Java.
Therefore the implemented FountainSender and FountainReceiver classes can be reused
in a separate Java application to send files to the smartphone and receive files sent from the
smartphone.

7.1.1 Sending files

First we will test the application in regard to the send process.
There are two possibilities to send a file. The first possibility is to send the file by broadcasting
it to every user in the same network. The second possibility is to choose multicast and
encrypt the file using a shared secret session key which the sender generates and sends
along with the data information. In the following test scenarios the MacBook will serve as the
receiver listening for files.

In Figure 7.1 picture a the initial user interface of the sender tab is shown. At the top the user
can enter a session name. Under the session name text field two radio buttons are available
for Broadcast or Multicast selection. Only one option can be chosen at a time. Selecting
one option deselects the other option automatically. The radio buttons are followed by a text
field for the password which encrypts the EncryptedDataInformation (See 6.1.3), a button to
browse through the smartphone, and a button to start encoding and sending the file. The
Send button is deactivated at first. It only is clickable if a file was chosen.

7 Test and Evaluation 67

(a) Initial UI for the sender tab. (b) UI after broadcast selection.

Figure 7.1: Sender tab configuration UI.

Broadcast

If the user wants to broadcast a file to everybody in the network, he selects the Broadcast
radio button like depicted in Figure 7.1 picture b. Like described in the Design section, the
user does not need to enter a session name when the file is broadcasted. If no session
name is entered, the filename is chosen instead. Now the user must choose a file which he
wants to send. Clicking the Browse button opens a browse dialog which is shown in Figure
7.2 picture a. The dialog lists all the files that the current folder stores. The folders are not
filtered but the files are. One of the non-functional requirements of the sender is to filter
out files that are not supported by the application (See 3.2.1). That is why only files with
.jpg(picture), .png(picture), .mp3(music), .m4a(music), or .apk (Android application) suffixes
are listed in the dialog. When a file is chosen, the path to the file is shown in the user
interface above the Browse button (Figure 7.1 picture b). Furthermore the Send button is set
to be clickable since all necessary user inputs where identified. Figure 7.2 picture b displays
the dialog shown to the user when the Send button is clicked. The dialog ensures the user
that the application is currently distributing the file. In Figure 7.3 picture b you can see the

7 Test and Evaluation 68

information shown on the MacBook application. As already mentioned, the MacBook is the
receiver in this test scenario. The session name shows that the file chosen in Figure 7.1
picture b, which is currently being sent by the sender, is the one the MacBook is receiving.
After the user accepts the file by entering Y, the receiving process is started and after a while
completed.

(a) Browse dialog. (b) Progress dialog showing that application
is sending.

Figure 7.2: Screenshot of the browse and progress dialog.

If the user wants to abort the send process because every recipient received the file suc-
cessfully or he wants to change the configuration, the Back button can be pressed. Every
Android handset offers such a Back button. A dialog asks the user if he really wants to abort
the process or not (Figure 7.3 picture a).

Conclusion

The test scenario for broadcasting shows that the application sends the file successfully to
the receiver. The application offers the option to select Broadcast so that every recipient is

7 Test and Evaluation 69

(a) Abort dialog. (b) Receiver on MacBook receives data in-
formation from sender.

Figure 7.3: Screenshot of abort dialog and receive dialog from MacBook receiver.

able to receive the file. A session name can be entered and the smartphone can be browsed
using the browse dialog. The Send button starts the send process and pressing the Back
button, while sending is in progress, displays a dialog that offers the user to abort the process
or to keep sending the file.

Multicast

After the broadcast scenario was successfully tested is it time to test the multicast scenario.
The user must be able to encrypt the file using a password and only recipients who know the
password must be able to receive the file.

The initial user interface is the same. The only difference is that the Multicast option is
selected instead of the Broadcast option (Figure 7.1). There is no difference in the way
the user browses through his smartphone. Clicking the Browse button, opens the browse
dialog (Figure 7.2 picture a). The difference to the broadcast scenario is shown after a file is

7 Test and Evaluation 70

selected. In contrast to the broadcast scenario the user cannot just start the send process
after a file was selected. When the Multicast option is chosen, the user must enter a session
name and a password. Otherwise the send process is not started. The session name is
necessary because in this case the data information is encrypted. But the receiver needs
some information about the session to link the session to the sender. Taking the filename
would reveal too much about the file. That is why a session name is needed. A password is
needed to encrypt the data information as explained in section 5.3.2. Entering no password,
would not make any sense. Therefore, if no session name and/or password was entered,
the user is informed by the application. Figure 7.4 picture a shows a Toast notification that
pops up if no session name was entered. Figure 7.4 picture b shows the Toast notification
informing the user that no password was entered.
A Toast notification is a message that is only displayed for a limited time.

(a) Toast message hinting that session
name is missing.

(b) Toast message hinting that password is
missing.

Figure 7.4: Toast messages informing the user that information is missing.

After the user enters all necessary information into the application and chooses a file, the
send process can start. Figure 7.5 picture a shows that the recipient receives an encrypted
data information packet. The information was encrypted using the password password. You

7 Test and Evaluation 71

(a) Wrong password entered. (b) Correct password entered.

Figure 7.5: MacBook receives encrypted file.

can see that the password wrong password was entered on the receiver’s side. The applica-
tion informs the user that the password was incorrect. Figure 7.5 picture b depicts that the
user enters the right password. Thus the reception and decoding is started until the complete
file is received. You can also see that at first only the session name and the file size can be
extracted from the encrypted data information.

Conclusion

The test scenario shows that the Multicast option works properly. The user is notified by a
Toast notification if the session name or the password are missing. Furthermore, the test
scenario shows, that the file can only be received by recipients who know the password. In
case a wrong password in entered, the file cannot be received as the secret session key that
is included in the data information cannot be extracted. But if the right password is entered,
the file is received successfully.

7.1.2 Receiving files

Now that we know that files can be successfully distributed using Broadcast or Multicast, it
is time to test the receiving part of the application.

Session not encrypted

In this test scenario the file is being distributed without any encryption. Every user in the
network can receive the file.

Figure 7.6 picture a depicts the initial user interface of the ReceiverTab. By pressing the
Listen for data button the receiver starts listening for files. The button changes to Stop as
is shown in Figure 7.6 picture b. If the user wants to stop listening the Stop button can be
pressed.

7 Test and Evaluation 72

(a) Initial UI of ReceiverTab. (b) Receiver listening for data information.

Figure 7.6: Initial ReceiverTab user interface and UI when receiver is listening for data
information.

If a data information is received, a dialog pops up that displays the information about the file.
You can see in Figure 7.7 that the dialog shows the session name, the size of the file, the
file type, and the file name. The user can accept and thus start the receive and Fountain
decode process by pressing the Accept button or decline the file by pressing Ignore. In case
the user wants to ignore the file, the dialog is removed and the user is never informed about
that file again until the application is restarted.

Accepting the file, opens the receive progress dialog which indicates that the receive process
is in progress (See figure 7.8 picture a). The reception can be quit by pressing the Back
button. The quit dialog asks the user if he really wants to quit (See figure 7.8 picture b).
Figure 7.8 picture c shows the user interface after a picture, a music track, and an application
were successfully received. You can see that the information about the file is displayed along
with a button that can be pressed to open the received file in a preview or to install the
received application.

Figure 7.9 depicts the individual dialogs that are opened depending on the file type. A picture
or a music file are opened in a preview showing or playing the received file. In case of an
application, a dialog is shown asking the user if he really wants to install the application.

Session encrypted

In case the session in encrypted, the application displays a dialog that informs the user that
a password is needed to decrypt the data information. Figure 7.10 depicts the dialog shown

7 Test and Evaluation 73

(a) Data information for picture. (b) Data information for music. (c) Data information for application.

Figure 7.7: Data information dialogs for supported file types.

to the user. If the user enters an incorrect password the dialog is shown again. If a correct
password was entered an accept dialog is shown like in figure 7.7.

Conclusion

The tests show that the application is able to receive broadcasted and multicasted files and
assemble them correctly. The user is informed about the file that is about to be received
through a dialog. If the file is being multicasted, the user is prompted with a password
dialog. The user can accept or decline the file. The UI is updated so that the user can
open the received files. The pictures and music tracks can be opened in a preview and the
applications can be installed while being in the application.

7 Test and Evaluation 74

(a) Receive progress dialog. (b) Dialog asking user if he really
wants to quit.

(c) Changed UI after reception of
several files.

Figure 7.8: Receive progress dialog, abort dialog, and changed UI after reception of files.

7.2 Evaluation

7.2.1 Fountain Codes

This section of the Test and Evaluation chapter is about evaluating the implemented Fountain
Codes. The objective of the evaluation is to find out how efficient the Fountain Codes work
in this application. To evaluate the Fountain Codes a picture of about 4.257 MB is sent. As
each data block has a size of 1000 Bytes (See 5.4.2), the file is split into 4257 data blocks.

The efficiency of the Fountain Codes is influenced by the degree distribution like explained
in chapter 2. For the initial implementation of the application the degree distribution from [6]
was chosen. Table 7.1 shows the degree distribution.

Implementing the application using the degree distribution from Table 7.1, results in the re-
ceiver needing almost twice the amount of data blocks to decode the file completely. Such
a result, of course, is not acceptable. Changing the degree distribution does not change the
efficiency of the application. That is why there has to be another reason for the miserable
results.

7 Test and Evaluation 75

(a) Received picture opened in pre-
view.

(b) Received music track played in
preview.

(c) Dialog asking user to proceed
with installation or cancel.

Figure 7.9: Individual dialogs shown depending on file type.

Degree p(d)
1 0.19
2 0.34
4 0.27
8 0.10

16 0.5
32 0.3
64 0.2

Table 7.1: Initially implemented degree distribution.

The reason is the time the receiver needs to compute the received encoded packet. When
an encoded packet is received the decoder traverses through the coefficient vector to see
if there are decoded data blocks which could help to decode the current encoded packet.
And that takes some time. It takes the sender much less than a millisecond to send a
new encoded packet if the packets are sent in a simple while loop. Therefore, the receiver
misses a lot of encoded packets. The special characteristic of Fountain Codes certainly is
the fact that packets can be missed and the recipient decodes the complete data very fast
nevertheless. But the assumption with Fountain Codes is that the majority of the encoded

7 Test and Evaluation 76

Figure 7.10: Dialog promting user for password.

packets do reach the recipient. That means if too many following packets get lost, the actual
degree distribution is not applied anymore. That is why the sender must wait for a short
period of time between each send process to assure that the receiver is ready to receive
the next packet. But how long does the sender have to wait? To find out a small addition is
implemented into the application that measures the time the receiver needs to decode one
encoded packet.

Table 7.2 shows a snippet of a time listing which was created by the application. The time
listing continues in almost the same pattern. There are not many discrepancies. You can see
that the receiver mostly needs less than 25 milliseconds to process one encoded packet.

Keeping the result in mind, the implementation of the FountainSender is changed. Between
each send process the thread waits for 25 milliseconds. With the FountainSender changed,
the Fountain Codes work much better. You can see in table 7.3 that the FountainReceiver
now only needs about 60 % more encoded packets to decode the complete file.

60% is already a big improvement to the previous 90-100% off additional encoded packets
needed to decode the complete data. But it still is not satisfying enough. Now that the timing
issue is fixed, a better performance can probably be obtained by finding a better degree
distribution. That is why the initial degree distributions has to be changed and tested.

7 Test and Evaluation 77

Packet Nr Time in ms
1 17
2 11
3 7
4 7
5 1
6 13
7 36

Packet Nr Time in ms
8 11
9 10
10 33
11 19
12 35
13 18
14 14

Packet Nr Time in ms
15 23
16 97
17 7
18 10
19 21
20 15
21 22

Table 7.2: Time listing of receiver.

Packets in total Additional rate
6861 61%
7003 65%
6950 63%
6605 55%
6744 58%

Packets in total Additional rate
6810 60%
6593 61%
6912 62%
6757 59%
6930 63%

Table 7.3: Listing of encoded packets needed to encode the file. File is split into 4257 data
blocks.

After a couple of changes, the degree distribution in table 7.4 shows the best performance
yet as you can see in table 7.5. That is why that degree distribution is implemented in the
final version of the application.

Degree p(d)
1 0.23
2 0.27
4 0.19
8 0.12

16 0.8
32 0.6
64 0.5

Table 7.4: Implemented degree distribution

We were able to reduce the additional packets to about 50%. A lot of different combinations
of degree distributions were tested but we were never able to go under 50%. The question
is how to further optimize the Fountain Codes.

As was described in section 5.4.2, the way encoded packets are chosen at random is another

7 Test and Evaluation 78

Packets in total Additional rate
6314 48%
6405 50%
6484 52%
6453 52%
6399 50%

Packets in total Additional rate
6526 53%
6422 51%
6376 50%
6449 51%
6552 54%

Table 7.5: Listing with new degree distribution from table 7.4.

factor that influences the efficiency of Fountain Codes. The initial implementation was to
jump a fixed length with each new encoded packet and then jump, depending on the degree
d, d − 1 times a random length with the Math.random method from the standard Java library
to the next data block. Figure 7.11 shows the process.

Figure 7.11: Initial scheme to select random data blocks.

There is one little issue with the selecting scheme explained above. No assurance is given
that the data blocks overlap. The idea of Fountain Codes is, that encoded symbols are de-
coded with plain data blocks that were already completely decoded. Meaning, that encoded
symbols include data blocks that are included in other encoded symbols as well. The re-
ceiver cannot combine three encoded symbols, if the first one includes data blocks (1,3,5),
the second (2,6), and the third (4). But if the first one included (1,3,5), the second (3,4), and
the third (4), then the decoder would be able to combine the symbols so that (3) and (4) are
extracted successfully and the first symbol is reduced to just (1,5). Keeping that in mind the
following selection scheme was designed and implemented.

The first index of the following encoded symbol is the second at random chosen index from
the previous encoded symbol. That way it is ensured that at least one data block does
overlap with a data block of the following code symbol. Figure 7.12 visualizes the scheme.

7 Test and Evaluation 79

Figure 7.12: Improved scheme to select random data blocks.

With the new selection scheme implemented, the application is tested again. Table 7.6 shows
the results of the test.

Packets in total Additional rate
5879 38%
5745 35%
6018 41%
5763 35%
5946 40%

Packets in total Additional rate
5795 36%
5866 38%
5722 34%
5822 37%
5888 38%

Table 7.6: Listing with the new degree distribution from table 7.4 and the new selection
scheme from figure 7.12.

You can see that using the new selection scheme results in a big drop of additional packets
needed, again. Now the receiver needs only 34% more encoded packets to decode the
complete file in the best case scenario and about 41% in the worst case. Certainly, there will
be cases where the additional packet rate will be higher than that. But on average the results
from table 7.6 will be applicable.

Some may think that 35-40% of additional packets are pretty much considering that not a lot
of packets will be lost due to the reliable WLAN. But as was already mentioned, the issue
with the decoding time could still occur with some received packets. Remember that a delay
of 25 milliseconds was implemented into the sender so that the receiver has time to decode
the encoded symbol. When you look at table 7.2, you can see that there are four packets that
needed more than 25 millisecond of decoding time (Packet nr. 7, 10, 12, 16). That means
that just considering these 21 packets almost 20% of the packets are already missed by the
receiver. Keeping that in mind the 35-40% do not seem too bad. Furthermore, its worth
mentioning that even files bigger than 8 MB and smaller than 2 MB were distributed with the

7 Test and Evaluation 80

application. And the additional packet rate was almost round about 35-40% with every file.
In conclusion the implemented degree distribution and selection scheme is efficient enough
no matter what file sizes are distributed.

7.2.2 Application performance

Time

This section is about evaluating the performance of the application in a whole. In the previous
section we saw that the Fountain Codes work very efficiently. But now we must evaluate the
usability of the application in regard to the overall computing time. How long does it take to
distribute one file?

In section 5.4.2 the application was designed to split the file into 1000 Byte blocks. When
the file from the test scenarios is send, it will be split into 4257 data blocks. Distributing the
file now takes the application 2-3 minutes to receive the whole file. Waiting 2-3 minutes for
one picture is unacceptable from the user’s point of view. The design choice to use 1000
Byte blocks was made since we wanted to cope with the possible noise on the transmission
channel. But first of all, the current test environment does not have such a noisy channel and
second of all, looking at the test results it probably is faster to split the file into bigger data
blocks and rather let the Ethernet protocol do the retransmission then split the file into small
blocks and let the application do the computation.

Choosing a data block size of 7000 Bytes and thus splitting the test file into 568 data blocks,
results in a distribution time of only 20 seconds. Waiting 20 seconds is much more acceptable
than 2-3 minutes.

File size

Another performance limitation that should be mentioned is the supported maximal file size.
The current realization of the application only allows files that are smaller than 50 MB to
be distributed. Choosing files that are bigger than that results in an Out of memory error
exception since the heap space of the virtual machine is overloaded. But the application
was designed to distribute photos, music tracks, and applications. And such files seldom are
bigger than 10-15 MB.

8 Summary and Future Work

8.1 Summary

The goal of this bachelor thesis was to design and implement an application that allows
users of Android Smartphones to distribute files to multiple recipients simultaneously. The
foundation of the application are the Fountain Codes. They are beneficial in cases where
the data is shared over an unreliable medium or a channel that is very noisy. Due to the
characteristic of the share medium, there is a higher probability that data is lost along the
way to the recipient. To compensate the data loss the data is Fountain encoded. At random
chosen data blocks are XORed together to make up an encoded packet that holds multiple
information in one packet. Each recipient can extract the information he needs individually.
Even if the recipients miss different packets, one encoded packet could hold information for
all of them.

When developing an application, the first thing to do is to find out what the application should
be able to do and where it could be used. That is why we first started to analyze the ap-
plication. The goal of the analysis was to find requirements so that we could design the
application and subsequently implement it. With the help of three scenarios we were able to
extract the requirements. The first scenario helped us get the basic requirements for the ap-
plication like the possibility to browse through the phone or the need of an information packet
that lets the recipient know what kind of file is being shared. The second scenario was about
a user wanting to share the file with only a subset of the connected users. It helped us realize
that some sort of encryption is needed to ensure that only targeted users are able to get the
file. Furthermore, the need of a key agreement was extracted. The last scenario was about
security holes that must be considered. It pointed out that a mechanism was required that
ensured the data’s integrity and the assurance that only genuine members take part in the
key agreement.

The next step was to design the application with the requirements extracted from the analysis
chapter. We first looked at the application as a whole. By analyzing the processes the sender
and the receiver have to go through, we were able to find the most important classes the
application should implement. We elaborated that the Fountain Codes should be swapped
to an external class to prepare the application for future development. Furthermore, we saw

8 Summary and Future Work 82

that some resources should only be allocated when really needed. Afterwards we focused
on the three main components of the application. The sender, the receiver, and the security
measures both use to ensure flawless file distribution. The work on the sender and receiver
was focused on their user interfaces and the steps each one has to take to send files or
receive them. With the help of flowcharts the procedures were visualized. While designing
the security measures we noticed that agreeing on a key for encryption was not the optimal
way for this specific application. Too many information had to be exchanged between the
participants to make the agreement possible. And that was a problem. So we decided to let
the sender generate a secret session key and let him spread the key by encrypting it with a
password. Only members who were in possession of the password were able to receive the
file.

The last step of the bachelor thesis was to test and evaluate the application. Especially the
performance of the Fountain Codes were an important part of the evaluation.
First the application was tested to see if all requirements were implemented correctly. The
sender was able to send files by broadcasting them or multicasting them to a subset of users
who were in possession of the password. Testing the receiver, showed us that the reception
of files was successful. Several dialogs offered the opportunity to interact with the application.
If the file was meant for only a subset, and thus was encrypted, the user was prompted with
a password dialog. Inserting the right password resulted in extraction of the secret session
key and the decryption of the encoded packets. After the successful reception, the user was
able to open the files in a preview or install the application that was received.

8.2 Future Work

When the Fountain Codes were evaluated in the preceding section, we saw that there are
a lot of aspects that influence the performance of the Fountain Codes. First we found out
that the sender had to delay his sending cycles since too many packets were missed on the
receiver’s side. The receiver was still decoding a packet and thus was not able to listen for
the next packet. Delaying the sender, resulted in the Fountain Codes working much better.
But not good enough. That is why the degree distribution and the selection scheme were
optimized. After editing the aforementioned aspects, we were able to optimize the Fountain
Codes to the point that only 35-40% additional packets were needed to completely decode
the file.

35-40% additional packets are not bad considering that some packets do get lost due to the
decoding time on the receiver’s side. But certainly the Fountain Codes and the application
can be further optimized.
First of all there are a lot of different ways to realize the degree distribution. In this bach-
elor thesis we took the findings of [6] as the basis for the degree distribution and adapted

8 Summary and Future Work 83

them. But going a different way could be and probably is more efficient. Finding a degree
distribution that works efficiently with all data sizes, is an interesting topic for future works.
Furthermore, an efficient selection scheme must be found that works well together with the
degree distribution. The goal is to find a degree distribution and a suitable selection scheme
with which only 10-20% of additional packets are needed to decode the data.
Future work in regard to the application’s performance could be to optimize the decoding
process. As was already mentioned, decoding one packet takes round about 10-30 millisec-
onds. Optimizing the decoding algorithm, could lead to shorter decoding times and thus to
a faster distribution of files. Another enhancement could be the file size. Right now only
files that are smaller than 50 MB are allowed. It would be beneficial if the application could
efficiently share bigger videos that were recorded with the smartphone.

Bibliography

[1] M. Luby, “Information additive code generator and decoder for communication systems,”
US Patent No. 6,373,406, April 16 2002.

[2] D. Westhoff, J. Girao, and A. Sarma, “Security solutions for wireless sensor networks.”

[3] [Online]. Available: http://www.netzwelt.de/news/
81417-audi-a8-navigation-google-earth.html

[4] S. Conder and L. Darcey, Android Wireless Application Development, 2nd ed. Addison-
Wesley, 2011.

[5] C. Paar and J. Pelzl, Understanding Cryptography. Springer, 2010.

[6] M. Rossi, G. Zanca, L. Stabellini, R. Crepaldi, A. F. H. III, and M. Zorzi, “Synapse: A
network reprogramming protocol for wireless sensor networks using fountain codes.”

[7] [Online]. Available: http://www.comscore.com/ger/Press_Events/Press_Releases/
2011/1/Google_Android_Shows_Fastest_Growth_Among_Smartphone_Platforms_in_
Germany

[8] H. Perrey, “Untersuchung der vertraulichkeit nach obfuskierung durch fountain codes,”
Master’s thesis, Hochschule für Angewandte Wissenschaften Hamburg, 2010.

[9] J.-M. Bohli, A. Hessler, O. Ugus, and D. Westhoff, “Security enhanced multi-hop over
the air reprogramming with fountain codes.”

[10] M. Luby, “Lt codes.”

[11] C. Harrelson, L. Ip, and W. Wing, “Limited randomness lt codes.”

[12] [Online]. Available: http://www.gartner.com/it/page.jsp?id=1764714

[13] [Online]. Available: http://developer.android.com/reference/android/os/AsyncTask.html

http://www.netzwelt.de/news/81417-audi-a8-navigation-google-earth.html
http://www.netzwelt.de/news/81417-audi-a8-navigation-google-earth.html
http://www.comscore.com/ger/Press_Events/Press_Releases/2011/1/Google_Android_Shows_Fastest_Growth_Among_Smartphone_Platforms_in_Germany
http://www.comscore.com/ger/Press_Events/Press_Releases/2011/1/Google_Android_Shows_Fastest_Growth_Among_Smartphone_Platforms_in_Germany
http://www.comscore.com/ger/Press_Events/Press_Releases/2011/1/Google_Android_Shows_Fastest_Growth_Among_Smartphone_Platforms_in_Germany
http://www.gartner.com/it/page.jsp?id=1764714
http://developer.android.com/reference/android/os/AsyncTask.html

Versicherung über Selbstständigkeit

Hiermit versichere ich, dass ich die vorliegende Arbeit im Sinne der Prüfungsordnung nach
§24(5) ohne fremde Hilfe selbstständig verfasst und nur die angegebenen Hilfsmittel benutzt
habe.

Hamburg, November 2, 2011
Ort, Datum Unterschrift

	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Thesis Overview
	1.3 Organizing of Report

	2 Fountain Codes
	2.1 What are Fountain Codes
	2.1.1 Principle of operation

	2.2 LT Codes
	2.2.1 LT encoding process
	2.2.2 LT decoding process

	2.3 Use of Fountain Codes
	2.3.1 Wireless sensor networks (WSN)
	2.3.2 Automobile Industrie

	3 Analysis
	3.1 Scenarios
	3.1.1 User wants to distribute data
	3.1.2 User wants to receive data
	3.1.3 Scenarios for security measures

	3.2 Requirements
	3.2.1 Requirements for sender
	3.2.2 Requirements for receiver
	3.2.3 Requirements for security

	3.3 Summary

	4 Android
	4.1 What is Android?
	4.2 Android System Architecture
	4.2.1 Android Security

	4.3 Android Programming Fundamentals
	4.3.1 UI programming

	5 Application Design
	5.1 Wireless Local Area Network
	5.2 Architecture Overview
	5.3 Security Design
	5.3.1 Data integrity
	5.3.2 Establishing a session key
	5.3.3 Data encryption

	5.4 Sender Design
	5.4.1 Sender
	5.4.2 Fountain Encoder

	5.5 Receiver Design
	5.5.1 Receiver
	5.5.2 Information Packet Listener
	5.5.3 Fountain Decoder

	5.6 Summary

	6 Application Implementation
	6.1 Sender
	6.1.1 SenderTab
	6.1.2 FountainSender
	6.1.3 Other classes

	6.2 Receiver
	6.2.1 ReceiverTab
	6.2.2 DataInformationListener
	6.2.3 FountainReceiver

	7 Test and Evaluation
	7.1 Test
	7.1.1 Sending files
	7.1.2 Receiving files

	7.2 Evaluation
	7.2.1 Fountain Codes
	7.2.2 Application performance

	8 Summary and Future Work
	8.1 Summary
	8.2 Future Work

	Bibliography

