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Kurzzusammenfassung

Intelligente mobile Geräte, wie Smartphones, werden zunehmend in Unternehmen genutzt, um

mobilität in den produktiven Prozess der Arbeit zu integrieren. Korrespondenz, sowie übertragung

von Dokumenten, alsauch eine Verbindung zu Unternehmens-internen daten wird durch den

Einsatz solcher Geräte ermöglicht. Mit diesen möglichkeiten sind sie auch ein lohnendes Ziel

um vertrauliche Informationen sowie Daten zu entwenden oder diese zu manipuliren. Dieses

Ausarbeitung beschreibt die Implementierung sowie die Evaluation eines Sicherheitskonzepts

für Linux Kernel basierte mobile Geräte. Der Schwerpunkt liegt darin, manipulationen an

ausführbarem code zu erkennen und zu verhindern, daß manipulierter code zu Laufzeit ausgeführt

werden kann. Dieses Ziel wird mithilfe einer listen-basierten Überprüfung des ausführbaren

codes erfolgen. Damit wird verhindert, daß manipulierter code Schaden an dem Gerät sowie an

anderen, möglicherweise vertraulichen, Daten verursachen kann.
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Abstract

Sophisticated mobile devices like smartphones are increasingly used in companies to integrate

mobility into the productive process of work. Correspondence, transmission of documents,

as well as the connection to Company-internal data is possible by using such devices. With

these options, they are also a worthwhile target to to steal conVdential information and data, or

manipulate it. This thesis describes the implementation and evaluation of a security concept for

Linux kernel-based mobile devices. The focus is to detect manipulations performed on executable

code and to prevent such manipulated code to be executed at runtime. This will be assured using

a list-based veriVcation of the executable code. Such veriVcation and execution control prevents

damage to the mobile device and to potentially sensitive data.
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1 Problem Statement

Mobile devices like smart-phones and tablet PCs1 are permanently advancing. Due to their

enormous popularity, the number of smart-phone users are increasing constantly. The number

of programs available for smart-phones rises, coming often from an unknown origin, e.g. from

third-party developers. The growing abilities of these devices make them more sophisticated

and usable in a wide range of applications. They can be integrated into the home and business

network topologies, for extending mobility and accessibility of users. These beneVts rise also the

question about the security and secrecy vulnerabilities introduced by these devices. Protecting

sensitive and private data against unauthorised access is a major security requirement for mobile

devices. It is essential to fully integrate a device into a network, dealing with vulnerable data and

services. The devices have to be secured against threats of an environment before integrating

them. An insuXcient protection can be exploited by attackers to corrupt the security of the

whole topology. Such a vulnerability can be used to bypass security mechanisms, to grant

access to sensible data and services, or even to cause serious damage to the device and other

connected units. A protection against system manipulation and other attacks has to be ensured

for mobile devices, mainly because they are capable of running third-party programs from

untrusted origins. Such programs have high exposure, as they can have malicious behaviour.

Desktop PCs and Laptops2 can be protected with anti-virus and cognate programs against attacks.

Such a protection mechanism is not feasible for mobile devices. Their hardware capabilities and

as a result of their compact design, their energy supplies are limited. A comprehensive scan

of system Vles against attacks would absorb a major amount of their computation and energy

resources. Thus, such scans would signiVcantly lower their power-on time. However, no or a less

comprehensive protection is not an option in this scope. As such applied devices without proper

security mechanisms applied are never accepted to be integrated in networks providing access to

conVdent data e.g., company networks. Any kind of installed and executed programs can harm

the device and the interacting environment, as malicious behaviour of an installed program is

not always obvious.

User-sided careless handling or ignorance of possible threat endangers the whole topologies’

1PCs (Personal Computer) is a small computer for individual personal use [Wikg].
2Laptops is a mobile PC with independent power supply.
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1 Problem Statement

security. DiUerent approaches have been established to protect mobile platforms to protect

devices against various vulnerabilities. Symbian3’s trust policy distinguishes between trusted and

untrusted applications and subsequently prevents them from interacting with each other. Data is

as well protected against untrusted applications. This is done by marking data as readable and

editable from trusted and untrusted programs. Symbian distinguishes what type of program tries

to use or edit the marked data and controls the access to it. Apple4’s market-place applications

are exclusively allowed to be executed on an Iphone/Ipad and no third-party programs are

installable or executable on them. However, signing programs for the mobile devices is out

of a local administrator’s control. This situation is unsatisfying as the administrator has no

knowledge about which criteria have been applied to allow the program being signed. To restore

the administrator’s sovereignty over the mobile device, a security architecture is required which

allows the administrator exclusively to sign programs. Moreover, this mitigates the necessity to

scan the device permanently for possible malicious code, because programs are veriVed before

they are executed and uncertiVed programs are prevented from execution. Only if a program

contains a valid signature, providing that the program has not been manipulated, it is allowed

to be executed. A local device administrator is allowed to certify programs and subsequently

stores the certiVcates on the device. Such an approach grants the administrator full control which

programs may run on the administrated device. In addition, programs can be tested in a closed

environment before certiVed as trustworthy and can chosen to be trustworthy or not trustworthy.

Such a distinct classiVcation of programs limits the ground for attacks, and furthermore it reduces

the administrative expense. During power-on time, manipulated programs are prevented from

execution, as they are not matching their certiVcate any-more. This makes the device intangible

for malicious programs and attacks based on malicious code manipulating other programs, even

for yet previously unknown malicious code. The proposed approach assumes secrecy at the

certiVcation process and supposes the possibility to detect manipulations while the device has

been deactivated. The certiVcation check has to be atomic. Moreover, it has to defy attacks

against it. In this work, all the pointed properties are merged into a security concept for mobile

devices. The security concept can be indicated through the following four basis characteristics:

• Activating the device introduces a secured state. (Secure Boot)

• A not conquerable atomic certiVcate veriVcation process is provided. (Program VeriVcation)

• Only certiVed and veriVed programs are allowed to execute. (VeriVed Program Execution)

• Certifying programs is only allowed from within a secured state. (Program CertiVcation)
3Symbian is an operating system for mobile devices [Wikj].
4Apple is a company providing operating systems, mobile devices and home and business computer [Www].
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2 Main Concept of the Security Architecture

This chapter introduces the security architecture applying a hardware based veriVcation to

proof the device integrity. It points out the coverage and the preconditions for a Vrm security

architecture. Similar concepts are partly discussed in [Mtm], [Nau+10] and [UW11]. The

requirements and the boundaries of the introduced security architecture are discussed as well.

The security architecture consists of four major parts or stages establishing a working and Vrm

architecture. These are:

• Secure Startup

• Program CertiVcate VeriVcation

• Program Execution Control

• Program CertiVcation

2.1 Security Goal

The proposed security architecture provides a secure startup (cf. Section 2.2) boot1ing a mobile

device in a trustworthy state. This should prevent uncertiVed code from execution. Altered

programs can be detected by this security architecture and are subsequently prevented from

executing. Moreover, this security architecture provides certiVcate creation and handling directly

on the device, making the certiVcates uniquely usable with it.

Only legitimated users (administrators) are allowed to request certiVcation of programs and such

architecture should be orthogonal to any existing operating system2 policies, restrictions and

should not be possible to be bypassed. It should be hardware based and provide a secure key

storage to secure the keys against extraction or manipulation. However, this security architecture

does not cover the protection against all possible threats. It is designed to aid the present system’s

security mechanisms to lower the computational overhead and with it the power consumption

compared to other solutions like e.g. anti-malware programs.
1boot describes the initial operations a computer performs when switched on [Wika].
2operating system “An operating system is a set of programs that manage computer hardware resources and provide
common services for application software” [Wikf].
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2 Main Concept of the Security Architecture

2.2 Secure Startup

The secure startup implements a monitored startup process beginning from power-on that boots

the mobile device into a well known and trusted state. The secure startup is a basic requirement

for the proposed security architecture. Activating a deactivated mobile device forces security

checks that provide a trust anchor3 for other security related components of the architecture.

These security checks include the following steps. Firstly, the hardware has to be checked for

possible manipulations. Secondly, the devices’ Washed image4 has to be checked and thirdly

the bootloader5 for the operating system needs to be checked. The checks are performed by

comparing calculated metrics. At startup, metrics are taken and calculated from the Washed image,

the bootloader and the operating system. They are compared to metrics taken and calculated

earlier in a secured and trustworthy state. These trustworthy metrics are protected against

manipulation or exchange. They are stored in immutable storage locations and only accessible if

the system is in a secured state. Additionally, the calculated metrics are encrypted to protect them

against recreating equivalent entries matching manipulated or untrusted programs. These checks

and functions require a hardware module to be present, providing measuring, cryptographic

and storing abilities. Such hardware separates the initial trust anchor of the secured startup

completely form the running architecture on the mobile device, as its purpose does not rely

on the running architecture. Even so, the bootloader and the operating system must own and

ensure to provide this trust anchor. After a successful secured startup, the mobile device is

in a traceable trustworthy state. This approach protects a stolen device against undetected

manipulation. An attacker could steal such a device and would have suXcient amount of time to

attempt manipulations which would be revealed at the secure startup.

2.3 Program CertiVcation

The certiVcation process is exclusively allowed to the administrator of a mobile device. This grants

the administrator full control of which programs are allowed to be executed. A certiVcate creation

is performed by the mobile device. Only an authorised administrator can request this process.

This requires an authentication and veriVcation6 interface from the mounted cryptographic

hardware to authenticate and grant a certiVcation request only to them. To create a certiVcate,

3trust anchor describes a reliable well known and trusted state from which a latter state can extend.
4Washed image is a software component stored into a permanent memory [Wikc].
5bootloader manages the boot process [Wika].
6veriVcation is a mathematical operation which veriVes the origin of a message/data [MOV01, ch.11.1].
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2 Main Concept of the Security Architecture

the administrator passes a key representing the program, e.g. a hash7, and other information

about the program to the cryptographic hardware. Then, the cryptographic hardware creates

a certiVcate using these information and signs8 it. The created certiVcates are signed using a

private key only known to the hardware module. The private key is sealed inside it and never

released. The public key is as well sealed inside it. In contrary to the private key, this public key

is released to the system after the secure startup (cf. Section 2.2) to be used at the runtime for

program veriVcations (cf. Section 2.4). The signed certiVcates are used to compare the provided

hash of the program with an actual computed hash value of it. This reveals manipulation on

them if the hash values does not match.

2.4 Program VeriVcation

To verify a program, its hash value is computed. The corresponding certiVcate is then looked up

from a list of all existing certiVcates on the mobile device. As the certiVcates are signed with the

private key known only to the hardware module, the list can be placed on an untrusted storage.

Manipulating the signed certiVcates directly would invalidate them. Assuming the cryptographic

algorithm used for signing as cryptographicly strong, it is not feasible to manipulate or recreate

the certiVcates successfully. The calculated hash value is then veriVed using the certiVcate and

the public key.

2.5 Program Execution Control and VeriVcation at Runtime

To keep the trust chain valid after the secure startup (cf. Section 2.2), programs have to be veriVed

at runtime9 e.g. before they are executed. Every program execution is handled by the operating

system. In this architecture the operating system veriVes the program just before it is executed,

as described in Section 2.4. After a successful veriVcation, the execution will be continued by the

operating system. In case of an unsuccessful veriVcation, the execution is aborted immediately.

This prevents maliciously manipulated programs from execution and from a possible system

manipulation [UW11].

7hash is a function that calculates a key value from a set of data. This key value is typically smaller in size than the
size of the data. It can be used to accelerate sorting and searching operations [KKP09, Ch.5], [MOV01, ch.9.2.1].

8signs is a mathematical operation which assures the origin of a message/data [MOV01, ch.11.1].
9runtime is the time after the boot process until the power oU. During this period of time non operating system
software can be used.
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3 Mobile Trusted Module - MTM

This chapter discusses the Mobile Trusted Module (MTM1). Its main concept is introduced here.

Related to the proposed security architecture, operation modes, key handling and the capabilities

of this hardware are pointed out. Protection mechanisms and approaches for the MTM parts are

also discussed.

The MTM has been speciVed by the Trusted Computing Group (TCG2). It is a tailored version

of the Trusted Platform Module (TPM3) proposed for desktop PCs [Tpm]. The speciVcation of

the MTM describes the MTM as an aggregation of processing functions and services, with the

ability to attest their trust and report its current state [Mtm, p.13-14]. It is a hardware module

which provides integrity measurements for mobile devices. It can take metrics from hardware

and software components, store them and compare them with reference values. All metric results

are stored inside the MTM, separating them completely from other device components. This

makes the stored results intangible to them and protects the metrics against direct access and

manipulation. The MTM is able to measure and ensure its own integrity. It can verify the mobile

device as trustworthy by attesting its integrity4. This provides a remote attestation5, as a remote

entity can trust the measurements and results from the MTM. A remote attestation is required to

protect unauthorised access to conVdential data and services of the mobile device, e.g. online

banking data. The MTM provides trusted services to the mobile device. These services are capable

of performing integrity attestations on calling services. This capability is used and accessed by

the device itself. Services such as an online banking software can proof the device as to be not

manipulated to the banking server which assures e.g. a safe and accurate communication. The

integrity measurements are stored inside the MTM. The storage for these values is a shielded

location where the data can be stored and manipulated safely by the MTM without loosing its

integrity. These shielded storage locations are called Platform ConVguration Registers (PCRs6).

1MTM (Mobile Trusted Module) is a hardware-based integrity assurance for mobile devices [Mtm].
2TCG (Trusted Computing Group) is an organisation for standards.
3TPM (Trusted Platform Module) is an integrity measurement and veriVcation module for desktop PCs and Laptops
[Tpm].

4integrity is a metric that indicates a well known state asumed as healthy.
5remote attestation Remote attestation describes a process where a service provider can attest an entity calling a
service as not manipulated without physically access this entity.

6PCRs (Platform ConVguration Registers) are immutable storing registers only accessible by the MTM.

6



3 Mobile Trusted Module - MTM

The access to the PCRs is exclusively granted and handled by the MTM [Tpm, p.27-28]. The MTM

speciVcation elaborates two core domains for the MTM. They diUer in the utilisation and the

accessibility to the mobile device. These domains are Vtted for two stakeholders. That is, the

local-owner, usually represented by the user of the mobile device, and the remote-owner, usually

represented by the device’s manufacturer and service provider. The local-owner has physical

access to the device and uses its services directly, e.g. the user synchronises the contact data

from the device with the contact data on his home server. The remote-owner provides accessible

remote services and/or data to the mobile device, e.g. transact money through an online banking

service. The MTM is conVgured at manufacturing time with the capabilities and functions

for either stakeholders’ scope. With a set conVguration matching one of the stakeholders, the

MTM is diUerentiated either into the Mobile Local-owner Trusted Module (MLTM7) for the

local-owner, or the Mobile Remote-owner Trusted Module (MRTM8) for the remote-owner. Due

to their diUerent scopes of application, the MLTM and MRTM have diUerent approaches to

handle attestations and veriVcations. The MRTM must protect the trust of the device from the

power-on (cf. Section 3.1), to assure that no manipulation occurred before remote access. This

point is the major diUerence between MRTM and MLTM. The MLTM can provide a secure boot

[Mtm].

3.1 Secure Boot

To establish the trust on the device starting from power-on, and ending in a trustworthy state,

the integrity of the mobile device is measured and compared to reference values stored in the

MTM. If these checks fail, the secure boot terminates the booting process. Secure boot provides a

transitive chain of trust, passing the trust of one attested layer to the next layer above until the

operating system is booted. The secure boot sequence is illustrated in Figure 3.1 and composed of

the following steps:

1 At runtime a piece of code, stored inside the MTM, is executed measuring the MTM’s own

integrity and verifying it

2 The involved modules are called Root-of-Trust-for-VeriVcation (RTV9) and Root-of-Trust-

for-Measurement (RTM10). The RTM calculates metrics of itself and the RTV and these

7MLTM (Mobile Local-owner Trusted Module) is a MTM with local ownership setup.
8MRTM Mobile Remote-owner Trusted Module is a MTM with remote ownership setup.
9RTV (Root-of-Trust-for-VeriVcation) is a veriVcation module inside the MTM.
10RTM (Root-of-Trust-Measurement) is a measurement module inside the MTM.
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3 Mobile Trusted Module - MTM

MRTMRTV+RTM

Bootloader

Operating System

1

MTM

2

3

4

5

6

7

8

Take actual metrics

Report result

Start process

x Sequence Number

Figure 3.1: MTM secure boot sequence (cf. [Mtm, p.15] Figure 2 - Overview of MRTM)

metrics are subsequently veriVed by the RTV. After successful veriVcation, the MTM is

measured and veriVed by RTM and RTV. Finally RTV and RTM measures the bootloader.

3 This check is done by computing and comparing the hash of the actual bootloader’s state

with a computed reference hash taken earlier in a secure state, e.g. at manufacture time.

The reference hash represents a trustworthy state of the bootloader. This hash veriVes the

bootloader to be trustworthy, if it equals the actually taken hash.

4 After the bootloader has been veriVed, the further measuring task is delegated to the

bootloader.

5 The bootloader measures the integrity of the operating system’s kernel11

6 and passes the results to the MTM.

7 The MTM again compares the computed hash with a reference hash computed earlier and

passes the result back to the bootloader.
11kernel is the core software component of the Linux operating system [Lov05, p.32].
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8 Now, the bootloader starts the veriVed kernel.

The kernel then performs the next measurements. It measures the integrity of modules which

have to be loaded during the boot process. Finally, the operating system’s components are veriVed

by the kernel. A failure at any of the above pointed steps results in the termination of the boot

process. This chain leads to a trustworthy state which veriVes a trustworthy and not manipulated

device whose integrity is ensured up to the operating system level [Mtm, p.97].

3.2 Reference Integrity Metric CertiVcate

A Reference Integrity Metric (RIM12) provides reference metrics and other additional information

for its corresponding entity, e.g. a program binary Vle. They are used to verify the integrity of

the measured entity , e.g. the bootloader or the device hardware, according to already taken

metrics. The RIMs are stored in PCRs to protect them against manipulation. A RIM itself is

certiVed to ensure that it is derived from a trusted origin and to protect it against manipulation

before it is stored within a PCR. A RIM-certiVcate can be a signed hash computed of the RIM,

plus some additional information vouching the origin and the trust of this certiVcate, e.g. a

shared secret. RIM-certiVcates can be generated inside or outside the MTM. The internally

generated RIM-certiVcates are automatically assured as a trusted certiVcate. This can be done

because the MTM supervises and protects the creation of RIM-certiVcates. These internal RIM-

certiVcates are bound to their generating MTM and cannot be used in other MTMs (other devices).

Externally generated RIM-certiVcates can be used by a variety of platforms. They are certiVed

by internal RIM-certiVcates, keys or other authenticating methods before they are accepted.

They can be converted into internal RIMs by the MTM if necessary. Each MTM can authorise

and authenticate its RIM-certiVcates. Only authorised parties (RIM_auth parties) can create

authentic RIM-certiVcates. They can be either the MTM or a foreign entity. RIM-certiVcates are

authenticated using digital signatures or keyed message authentication codes (HMACs13) [Mtm,

p.18-19].

3.2.1 Counters

counterRIMprotect

To protect the internal RIM-certiVcates against re-Washing and similar attacks, the MTM provides

the counterRIMprotect counter. A RIM-certiVcate provides a “counter-stamp” Veld. This Veld is
12RIM (Reference Integrity Metric) is a calculated metric of an entity with further information abut this entity [Mtm,

p. 18].
13HMACs (Hash based Message Authentication Code) [MOV01, ch.9.5, 9.67].
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compared to the actual counterRIMprotect counter value vouching the RIM-certiVcates freshness.

The counterRIMprotect is a monotonic counter. It can only be increased and has a proposed

limit of 4095. Increasing this counter causes all internal RIM-certiVcates having a lower value to

become outdated. This causes the corresponding RIMs to be untrusted [Mtm, p.34].

CounterBootstrap

The device is protected against Wash14ing a new Vrmware15 by another counter. This Counter-

Bootstrap counter is also increased monotonously, and out-dates the RIM-certiVcates for the

“old” Vrmware image. The “new” Vrmware image comes along with an external RIM-certiVcates

validating it. The CounterBootstrap counter limit is proposed to be 31. Both counters are placed

in PCRs to be shielded against manipulation. They are not increased, until all operations aUecting

counter-values or “counter-stamps” were performed successfully [Mtm, p.35, 50].

3.2.2 Keys

Endorsement Key

The Endorsement Key (EK16) is unique to each MTM. It is used to sign RIM-certiVcates for its

MTM and cannot be used for other MTMs. The EK is the private key part of the private-public-key

pair. This key is only known to authorised parties that are allowed to create RIM-certiVcates.

Depending on the conVguration of the MTM, if it is set to MLTM or MRTM, the EK can be stored

in a PCR, outside the MTM, or both [Mtm, p.8, 29, 82], [Tpm, p.29, 55].

VeriVcation Key

The veriVcation key is used by the MTM to verify RIM-certiVcates. Typically it is the correspond-

ing public-key part of the EK. VeriVcation keys can be stored and handled in a key hierarchy,

where the root key is called Root VeriVcation Authority IdentiVer (RVAI17). The RVAI key can be

the key authenticating RIM_auths to the MTM at the same time. The RVAI is also used to verify

other or new veriVcation keys in the named key hierarchy and to authenticate RIM-certiVcates

used to vouch a CounterBootstrap increment request, e.g. for Vrmware updates. [Mtm, p.21, 46].

14Wash or Washing is the process where data or software is transmitted and stored into the permanent memory of a
hardware component [Wikc].

15Vrmware is a stored software inside the permanent memory of a hardware component [Wikb].
16EK (Endorsement Key) is a key used by the MTM to sign RIM-certiVcates 3.2.2 [Mtm, p.8, 29, 82], [Tpm, p.41, 67].
17RVAI (Root VeriVcation Authority IdentiVer) is a key used by the MTM to verify new passed veriVcation keys to it.
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Storage Root Key

The Storage Root Key (SRK18) is used to sign certiVcates providing new veriVcation keys [Mtm,

p.29]. It is sealed inside the MTM and bound to an owner at manufature time. If the owner

changes a new SRK is generated for the new owner [Tpm, p.32].

Attestation Identity Keys

With the Attestation Identity Key (AIK19) the MTM signs measured PCR values, vouching the

platform’s integrity. The signed values are used to verify an intact integrity of the transmitted

values and their origin, e.g. to a remote service. A remote service would be able to verify and

trust the integrity of the values and treat them as a trusted measurement [Mtm, p.8]. The AIK is

an alias for the Endorsement Key [Tpm, p.56].

3.3 MRTM - Mobile Remote-owner Trusted Module

The MRTM is a MTM part conVgured at manufacturing time to enable remote attestation.

Its ownership is set to a remote entity and with it, the urgent secure boot is activated. This

conVguration enables essential mobile speciVc commands and optional features. These mobile

speciVc commands include the veriVcation of RIM-certiVcates and their checks. The installation

of RIMs and the ability to load keys and maintaining processes for the MTM. Verifying a RIM-

certiVcate is suXcient to trust into the RIM content because only RIM_auth parties can create

genuine RIM-certiVcates and will only do that for trusted content, e.g. for a tested program

with no malicious behaviour. A veriVed RIM-certiVcate extends the corresponding RIM in

a speciVed PCR deVned in this RIM-certiVcate. Loading a new veriVcation key, respectively

adding it to the MTM, causes the veriVcation of the given key before storing it in the PCRs. The

check can either be performed using a RIM-certiVcate, or directly using the hash and signature

veriVcation. The latter is usually used during the setup of the MTM at manufacturing time,

especially when assembling the RVAI. The RVAI can be sealed in a PCR by the MRTM to shield it

against manipulations [Mtm, p.13-15, 38, 62].

3.4 MLTM - Mobile Local-Owner Trusted Module

The ownership diUerentiates the MLTM (local-owner) from the MRTM (remote-owner). A MRTM

has to provide the functionalities mentioned above, especially the secure boot. The MLTM can

18SRK (Storage Root Key) is a key used by the MTM to sign other keys used by MTM.
19AIK (Attestation Identity Key) is an alias for the EK [Tpm, p.68].
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provide them optionally. The MLTM is considered to provide security for local access, similar to

the TPM for PCs. It can be set up from discretionary to mandatory security. The latter would

be equivalent to the MRTM setup, except for the owner attestation. For this veriVcation, an

endorsement key (EK) must be speciVed for the MLTM. This key is used to register certiVcates

for veriVcation keys. To authorise the device user to the MLTM a TPM owner authorisation data

is used, e.g. a password. After this data is veriVed, the user can perform commands with the

MLTM, e.g. let the MLTM create a RIM-certiVcate for a program.

The MLTM is allowed to enable, change, or delete the actual set ownership. In Contrary the

MRTM does not provide this. Without a deVned owner, the MLTM can accept a special RIM-

certiVcate allowing the device into boot to a state where the ownership can be set [Mtm, p.13-15,

38].
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This chapter covers the parts of the linux1 kernel, which are relevant for the proposed security

architecture.

The linux kernel is the core part of every linux operating system (OS). It provides services to all

other parts of the OS. Usually, the kernel handles the available hardware and their interrupts2. It

provides a scheduler to assign CPU3 time and resources to programs, has a memory-management-

system to manage the memory assigned to programs and provides many other diUerent system

services. The kernel is the base component enabling the execution of code (programs), managing

their execution and scheduling4. The linux kernel is executed in one address space, the kernel-

space. This address space represents a virtual memory5, pretending a coherent memory “block"

with the address starting at 0. All kernel functions and components share this memory. This

virtual memory is protected against access from outside running programs. The entire operating

system is running inside the kernel-space and provides a high-level virtual interface of the

underlying hardware to the currently running programs. This described characteristic is called

monolithic kernel. A secured-memory-management-unit6 provides the memory management

for the kernel’s virtual memory. This secured-memory-management-unit manages the access

to the virtual memory [Lov05, p.50]. The provided addresses are only addressable from within

the kernel-space. The user-space is protected of accesses of programs executed in non-kernel-

space. The user-space virtual memory is managed by a memory-management-unit. Similar to

the secured-memory-management-unit it pretends a coherent memory to user-space programs

starting at address 0. The addressed “real” memory (RAM7) by both memory-management-units

can be disordered and fragmented [Lov05, p. 33]. To connect these two address-spaces, the kernel

1linux is a free open source operating system [Lov05, p.31].
2interrupts is a state where the interrupting event perform its task imideatly preempting other actual running tasks
[Lov05, p.115].

3CPU (Central Processing Unit) is the hardware which processes the instructions of a program [EK11a].
4scheduling is a arbitration logic which manages the temporal execution of programs in operating systems [Lov05,
p.73].

5virtual memory is a possibly phisicly fragmnted memory pretending to processes being coherent and starting with
the adress 0.

6memory-management-unit arbitrates a virtual memory to the user. It protects the access to each virtual memory
[Lov05, p.50].

7RAM (Random Access Memory) is a volatile memory which loses its stored information when powered oU [EK11b].
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provides so called system-calls8 functions from the kernel-space to the user-space [Lov05, p.102].

Invoking system-calls from the user-space instruct the kernel to perform operations “in the name

of” the calling user-space program, e.g. to write to or read form Vles. The system-call interface

prevents the direct interaction and inWuence of user-space programs to the linux kernel workWow

and the hardware.

4.1 Device Nodes

The linux kernel abstracts (hardware) devices in terms of ordinary Vles. All Vles are accessible

through the system-call interface reading information from them or writing information to them

if allowed. To interact with the hardware from within the users-space, the kernel arbitrates and

uses device nodes. Device nodes are categorised as character or block devices. These categorised

devices diUers in the accessibility to their content. A character-device can only be accessed

sequentially. Reading from and writing to this Vle is like reading and writing to the PCs serial

interface. On the contrary the content of a block device can be accessed arbitrarily, similar to

the PCs hard disk. As the device Vles are “just” abstract representations of device categories,

system-calls on them have to be further diUerentiated. Therefore, the device Vles are connected

with kernel function system-calls used with/on the connected device Vle. The kernel handles

such requests (system-calls) from the user-space with the connected function. According to the

kind of device Vle and the user’s permissions the kernel performs the requested task (or not) and

informs the user about the results when Vnished. The kernel identiVes device Vles by major and

minor numbers which are assigned during creation of these special Vles. The major number

identiVes the device “family" to identify how to handle a request on a device Vle matching this

major number, e.g. handle a request for a device connected using USB9. The minor number

identiVes the actual device the kernel should perform the request with, e.g. read from the third

USB port. From within the user-space, the device Vles can be accessed by Vlename. Some (most)

device Vles are located in the /dev/ directory. Listing this directory with the ls -l command

reveals some information about the device Vles. For example:

brw-rw�� 1 root disk 8, 0 2011-10-07 10:35 sda

and

crw-rw�� 1 root dialout 4, 64 2011-10-07 10:35 ttyS0

The Vrst letter 'b' or 'c' identiVes the device as a block (b) or a character (c) device Vle. The

letters 'r', 'w' and the '-' identiVes the permissions for groups and users accessing the device

8system-calls is a set of functions arbitrated by the kernel to the user [Lov05, p.102].
9USB (Universal Serial Bus) is a connection standard for various external devices [UIF11].
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Vles. Both Vles shown are owned by root. The next entry identiVes the associated group of

the Vles, i.e. disk for the Vrst and dialout for the latter. The '8, 0' in the Vrst listed device

(disk) represents the major, minor number tuple10. The '8' represents the device family and '0'

represents the actual device attached to the device Vle /dev/sda. Analogue, '4' is the family

of /dev/ttyS0 and the attached device to this Vle is '64'. The device names (sda and ttyS0)

can be chosen freely during creation, as the kernel does not use the Vlenames but the major

and minor tuple for interaction [SBP07, p. 3.1.6]. A device Vle can be created using the mknod

command. The command creating a device Vle is used as follows:

mknod -m permissions name type major minor

For sda it would be:

mknod -m 60660 sda b 8 0

and for ttyS0:

mknod -m 20660 ttyS0 c 4 64.

Device Vles can, if permitted, be written to or data can be read from the same way as reading

and writing common Vles in the Vlesystem. Reading and writing to character or block device

Vles diUers in the oUset that has to be speciVed for block devices. The character device can only

be read or written at the actual position (pointer) and thus does not need an oUset speciVed.

Reading and writing to device Vles hooks11 up a system-call performing the requested task by the

kernel. This hook results in a kernel-function call attached to the major, minor number tuple (if

there is one attached). The register_chrdev( major, name, fileoperations ) function

is used by kernel functions to connect to a device Vle. As shown above, the major parameter

indicates the device family and the name diUerentiates the device families. The fileoperations

parameter is a pointer to a struct (struct file_operations fileoperations). This

struct contains a function pointer to functions provided by this device family, e.g. write to

a device. All operations supported by the device family are listed in this struct. The listed

functions represent a subset of or all possible functions supported by this kind of device (block or

character device) [SBP07, p. 4.1.1].

4.2 Kernel Modules

The linux kernel provides dynamic loading and unloading of kernel modules. Kernel modules

are dynamically loadable code providing new functions extending the kernel with additional

functionality. With this feature activated, the kernel is able to extend its functionality on

10tuple is a list of congeneric entires.
11hooks describes a point where a speciVc function is called.
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demand without the need of restart. The kernel’s ability to load kernel modules is conVgured

and activated at kernel’s compile time12. Kernel modules must have at last two functions, a

start and an end function. The start or init function is called when the module is loaded. It is

usually used to initialise the module. To make this entry point be recognisable by the kernel,

the module_init(...) function call is used with the function-pointer to the init function

used as parameter. Analogue, module_exit(...) is used for the ending function, called when

unloading this module. In addition, these functions are marked with __init and __exit.

Every kernel module has to include the <linux/module.h> to be loadable and to arbitrate the

named functions. Once loaded, the kernel is able to use all functions provided by this module.

Afterwards, the loaded module itself is part of the kernel and shares all functions with and from

the kernel [Lov05, p.37, 356], [SBP07, p. 1.1].

4.3 Process

A process is a program during its execution. It covers all its claimed resources like e.g. opened

Vles, attached signals13 and its private address space [Lov05, p.323]. The actual task of a program

is performed by threads. Threads are running inside a process and use the resources claimed by

the process to perform work. These resources are shared without restrictions between all threads

running inside a single process [Lov05, p.66,68]. Each thread has an unique program counter to

remember the actual instruction sequence. The program counter enables the thread to continue

when the process is scheduled, as described in 4.4.2. Each thread has the pointer to the process

stack14 and the claimed registers15 of the process. Threads are scheduled by the kernel’s scheduler

(cf. 4.5) for execution.

4.3.1 Process Creation

The linux kernel creates processes. To create a new process the fork() system-call is used, which

in turn calls do_fork(). Inside do_fork() various conditions are tested. If these conditions

are passed the calling process is duplicated and the copy is set up with new parameters. The

process calling fork() is labelled as parent-process while the duplicated process is labelled as

child-process. After calling fork(), the parent-process proceeds and the child-process executes.

The fork() system-call returns after successful execution into both processes (parent and child)

[Lov05, p.64]. If the child-process is designated to perform a diUerent task than its parent-process,

12compile time is the moment when source code of a program is beeing compiled into a binary Vle.
13signals is a short deVned operating system message for processes.
14stack is a memory where the last set (written) data is the Vrst data received from it when read.
15registers is a memory storage (hardware) inside the CPU [Wikh].
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it has to execute a new (diUerent) program. To avoid unnecessary and expensive copying of data

from the parent-process to the child-process for every fork() system-call, the kernel uses the

copy-on-write16 mechanism starting to copy the parent-process entries only if the child-process

tries to change (write) the initially shared data [Lov05, p.63]. After the copy is done the child-

process is a total independent process. Usually, this situation occurs when the child-process does

not perform the same task as its parent-process. In this case, the child-process has to be prepared

for the new task. The exec() system-call then reads the executable binary data of the new

program and copies the executable code to the child-process together into a new own address

space. Then this executable code (program) is used to start the child-process. Inside the linux

kernel, processes are labelled as Tasks.

4.4 Task

Tasks are managed by the linux kernel within a doubly linked list17. Each element of this list

is a process descriptor which contains all information about the associated task, e.g. an unique

identiVer for each task (cf. Section 4.4.1) or the opened Vles. This descriptor is called the struct

task_struct and is described in the <linux/shed.h> header Vle. The actual task is accessible

at execution time with the current macro, which avoids expensive iterations through the whole

list of tasks to reach the task that is currently executed. The current task is the actual process

currently executing that has been scheduled by the kernel [Lov05, p.56].

4.4.1 Process IdentiVcation Number (PID)

Tasks are identiVed by a unique process identiVcation number stored inside their task_struct.

When the system-call fork() is executed, it creates a child-process and assigns a new unique

PID to its task_struct (task->pid) as well as the pointer to the parent’s task_struct inside

its own task_struct (task->parent). This enables to directly inform the parent process

about the child’s process state without any overhead imposed by searching for the parent. The

pointer to the child’s task_struct is added to the parents children list (task->children).

This enables to e.g., terminate all child processes if the parent process has terminated, again,

without much overhead. The size of the datatype pid_t used for the PIDs thus represents the

maximum number of coexistent tasks inside the running system. The PIDs can be reused after a

16copy-on-write This mechnism is used to prevent unneccessary copy operations of one process to the other. Only
if the child process tries to write on the adress space shared by parent and child a copy operation is performed
[Lov05, p.63].

17doubly linked list Is a chained data structure where every element is connected with its predecessor and its
successor.
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task has ended its work. Usually the assigned PIDs are simply counted upwards one by one. For

this reason, PIDs are only reused after the maximum number, representable by a pid_t, for a

PID has been assigned during runtime and when another PID is required [Lov05, p.58].

4.4.2 Process State

The actual state of the task is stored inside the state Veld (task_struct->state) of this

process[Lov05, p.59]. Each task can be in any of the following Vve states:

TASK_RUNNING The task is currently running, or waits to be scheduled by the kernel.

TASK_INTERRUPTABLE The task sleeps and waits for a certain event or signal to wake up.

On such an event, the tasks state is set to TASK_RUNNING by the kernel.

TASK_UNINTERRUPTABLE This state is similar to TASK_INTERRUPTABLE with the diUer-

ence, that a signal cannot wake up the task.

TASK_ZOMBIE After a task calls the system-call exit(), which releases all resources gained

by this task, it switches to this state. The task_struct has to stay inside the doubly linked

list until its parent-process calls the system-call wait(). This is necessary, because the parent-

process must be informed about the exit() “event”. After the parent-processe’s wait() call,

the child-process task_struct is removed from the list.

TASK_STOPPED In this state, the task’s execution has ended. The task cannot be executed

again. This state is entered after the task receives signals from the debugger or other stop signals.

4.5 Thread Scheduling

The kernel’s scheduler is a subsystem managing the allocation of resources and CPU time for the

tasks. This scheduler allows multitasking pretending concurrent execution of programs to the user

on a single CPU and it allows the usage of multiple CPUs to execute threads. It solves the diXculty

of the opposed goals of maximum utilisation and fair resource sharing. It tries to solve situations

where a task is never executed (starvation18). The scheduler employs policies to calculate a fair

resource dispersion to a task, containing CPU time and memory. It calculates the priority of

each task asking for execution and reduces its priority again after the task has been executed

18starvation is the situation where a task is always preempted from execution by other tasks.
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for a period of time. The calculated priority is stored into the task_struct->prio and used,

besides other values like task_struct->sleep_avg indicating the time the task->state was

TASK_INTERRUPTABLE or TASK_UNINTERRUPTABLE, to calculate the at next task to be executed

[Lov05, p.73].
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The security architecture is elaborated to be used with the Android OS. The decision to use

Android OS for the development and the evaluation of the security architecture is based on the

fact that Android OS runs on a linux kernel. It is an open source operating system and free to

obtain and used in the major part of mobile devices on the mobile market.

The Android operating system is developed by Google1 for mobile devices. It is an operating

system tailored to be able to run on low-end resource-limited devices, compared to actual desktop

PCs and current Laptops. The initial version of Google’s Android OS was developed for systems

having a CPU running at less than 500MHz, 64MB RAM at max. and without available swap

space2. Android is build on top of a linux kernel, version 2.6.35. The kernel is extended with

mobile and android speciVc modules and drivers. Figure 5.1 shows the system architecture of

the Android OS. The following sections shortly describe the components of Figure 5.1 in terms

of the proposed security architecture. They are described upside down starting with the kernel

[Goo11c].

5.1 Android OS Kernel

Besides other additions to the kernel, such as mobile speciVc drivers and a more strict power

management module compared to the linux implementation, the Android OS kernel implements

a component for inter process communication3 (IPC) for its own, the Binder. The linux genuine

IPC component transmits data objects, containing the whole function range of the requested

operation, between the interacting processes. The object and its functions are then executed and

used on the requester side. Contrary, the Android OS IPC Binder acts as a proxy4 by transmitting

the requests and afterwards the computed results, between the communicating processes. The

computation of the results are performed by the process which was requested for the operation.

1google is an internet service provider and a software developpment company [Goo11b].
2swap space is a memory available on a non volatile storage. It is used to temporary store data from RAM to gain
free memory for other purposes/tasks.

3inter process communication is method utilized by processes and threads to communicate with each other. It is
used to pass information, requests and results [Wikd].

4proxy is a mediator service between diUerent entities..
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Figure 5.1: Android OS system architecture with its consisting separated layers

The Binder, designed for low-end resource-limited devices, is an essential part of the Android OS.

It lowers the memory consumption compared to the linux’s own IPC and enables Android OS

to share Android application parts and functions between diUerent Android applications. This

characteristic also enables to use Android OS speciVc shared libraries5 eXciently in Android

applications. These libraries are designed to arbitrate an eXcient handling of memory usage and

computation for essential functions such as displaying a list of elements on the display, e.g. a list

containing contact entries [Bra08a], [Bra08b, sld.8].

5.2 Android OS Library Layer

On top of the kernel, Android OS provides a layer of libraries written in the C/C++ programming

language. These libraries provide interfaces for functions used by the upper Android Runtime

layer (cf. Section 5.3). On the one hand this layer or barrier provides a consistent interface to the

upper layers (and to the developers) and on the other hand it separates the GPL6 licensed parts

of the kernel from these layers. This enables proprietary closed code to be used and distributed

for the Android OS. Beside other libraries, the library layer provides the Service Manager. The

5libraries is a loadable commulation of additional functions loadded at runtime by a program.
6GPL (GNU General Public License) forces programs/libraries using code written under GPL also to be released
under this license [FSF11].
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Service Manager allows to share services between diUerent applications. It closely interacts with

the Binder module [Bra08a], [Bra08b, sld.32-53].

5.3 Android OS Runtime

The Android OS runtime is located inside the library layer. It implements the most features of the

JAVA programming language (core libraries) and uses the above described Android OS libraries

to provide and arbitrate Android OS features to the upper layers. Another important part of the

Runtime layer is the Dalvik Virtual Machine7. Every Android application runs in its own process

running its own instance of the Dalvik Virtual Machine [Bra08a], [Bra08b, sld.55-58].

5.3.1 Dalvik VM

The Dalvik Virtual Machine (DVM) was developed for the Android OS to be eXcient on low-end

mobile devices, and to be able to run multiple instances of it on low-end mobile devices as

outlined above. It was designed to run on the RISC8 architecture platform like ARM9 based

platforms. It encapsulates each process within an individual Dalvik Virtual Machine. This

encapsulation ensures that each process, inside its virtual environment, is protected from other

processes within their virtual environments. It is also intended to protect the Android OS against

misbehaving processes and to guarantee stability despite the existence of misbehaving processes.

The DVM executes .dex (Dalvik executable) Vles. These Vles contain compiled and optimised

JAVA bytecode10 for Android OS [Bor08].

5.4 Android Application Framework

The Application Framework is located on-top of the library layer. It exposes the library layer’s

functions to the JAVA programming language. This layer represents the development API. It

provides services to applications and manages their life-cycles. Finally, it provides access to the

lower level (library layer 5.2) hardware APIs [Goo11a] [Bra08b, sld.61-75].

7Virtual Machine is a virtual computer with software representations of hardware components [Wikk].
8RISC (Reduced Instruction Set Computer) describes a CPUs design using a set of simple instructions [Wiki].
9ARM is an abbraviation for a Arcon RISC Machine CPU.
10bytecode is a collection of instructions for a Virtual Machine [Wikk].
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5.5 Android Applications

Android applications are written in the JAVA programming language and compiled into the dex

format executable by the DVM (cf. Section 5.3.1).

5.6 Android Boot Sequence

This Section describes the boot sequence of the Android OS. It is depicted in Figure 5.2 and

illustrates the boot sequence until the Vrst application can be started inside the Android OS. The

boot sequence of the linux kernel is shown at step 1 . It is assumed that all pre-procedures have

already been performed to start up the kernel, such as a battery or other checks. The following

bullet-points 1 to 13 describe the performed step(s) during the boot sequence of the Android

OS. They are associated with the corresponding points depicted in the Figure [Bra08b, sld.80-94].
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runtimedaemons
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Zygote Dalvik VM

System
Server

Display/audio
services

System
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Start Process

Register Service

Call function

x Sequence Number

Figure 5.2: Android OS boot sequence (cf. [Bra08b, sl.87]).

1 Starting a device having the Android OS installed executes the bootloader at Vrst. The

bootloader starts the kernel

2 The kernel starts the Vrst linux process INIT.
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3 INIT then starts common low-level daemons11, typically used to provide low-level hard-

ware services such as the USB device daemon (usbd). It also starts some Android speciVc

daemons such as the android debugger daemon (adbd)

4 Subsequently, INIT starts the Zygote12 process. This process initialises the DVM and

listens on sockets13 for requests to spawn further DVMs. If such requests arrive, the Zygote

process fork()s itself (cf. Section 4.3.1) and provides the fork()ed DVM to the requester.

This prevents recreation of a new DVM from the ground up every time when an Android

process requests to be executed.

5 After Zygote starts, the INIT process starts a runtime process which is used to establish

the IPC service, i.e. the Binder

6 The runtime process starts the Service Manager, which manages all services accessed and

used through the Binder.

7 Afterwards, the runtime calls Zygote to start the system server process.

8 Zygote fork()s a new DVM

9 and starts the System Server process inside this DVM.

10 The System Server starts the display and audio services for the device

11 and it starts all system services from the application framework (cf. Section 5.4).

12 The display and audio services are registered into the Service Manager to be accessible by

any other process through the Binder.

13 Equally the System services are registered into the Service Manager.

Finally the Android OS is ready to start a new activity (Android application). The System Server

shares the loaded services with all other upcoming Android applications.

11daemons is a service running in the background of the operating system.
12zygote is a core process in the Android OS which forks new Dalvik Virtual Machines to start new Android processes

(Activities).
13sockets is a data communication endpoint for exchanging data between processes [Wike].
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5.6.1 Android Application Start

The application start is illustrated in Figure 5.3. It shows the sequence how the Android OS starts

a new Android Application. It is assumed for this Vgure that the Android OS has been booted as

described above (cf. Section 5.6). Moreover, Figure 5.3 shows the Activity Manager within step

1 . The Activity Manager is a module which initiates new Activities (starting new applications).

The Package Manager manages all installed and available Android applications and handles all

available data about them. The following bullet-points 1 to 6 describe the performed step(s)

for an Android application start in the associated point depicted in the Figure 5.3.

Activity
Manager

Zygote DVM

Application.apk

Package
Manager

Execute .dex

1

2
3

5

4 6

Start Process

Pass App info

Call function
load .apk

x Sequence Number

Figure 5.3: Android OS application start

1 A request to start a new Android Application is send to the Activity Manager,

2 which in turn sends a request to Zygote to fork() a new DVM

3 The new DVM is then fork()ed by the Zygote

4 The information about the .apk Vle corresponding to the requested Android application

start is provided by the Package Manager

5 The Android application Vle is loaded from the Vle-system and extracted

6 The containing .dex (Dalvik executable) is started inside the new DVM
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This chapter discusses the proposed security architecture in detail. It illustrates the functionality

and work-Wow of the components of the security architecture. The communication and data Wow

between the components are described as well. The security architecture is divided into small

application modules. The implementation of those modules are described in Section 7.

This security architecture closely follows the assumptions and propositions made in Section 2.

The hardware requirements listed in Section 2 are covered by the MTM (cf. Section 3). Although

no MTM has been manufactured until now it is expected that MTM hardware implementations

will possibly emerge in the near future. The MTM is set up at manufacture time to MRTM mode

(cf. Section 3.3). This set-up provides remote ownership which cannot be changed afterwards.

The MRTM mode allows to the MTM to sign RIM-certiVcates. Administrators are vouched with

a secret shared with the MTM, that ensure them to exclusively be able to request operations from

the MTM. After this set-up at manufacture-time, the MRTM performs a secure boot (cf. Section

3.1) every time whenever the device is activated. The secure boot meets the requirements of

Section 2.2 and ensures the device’s integrity. As the secure boot checks the device’s integrity at

the boot time, malicious activities and other threats occurred during runtime cannot be detected

by the MTM until the next secure boot. Thus, the mobile device’s security has to be maintained

also during the runtime. A continuous scan and remote-integrity veriVcation using an Integrity

Measurement Architecture (IMA) [Sai+04] is not a satisfying option for mobile devices, due to

the high computation and energy demands. The same applies for anti-malware and cognate

programs. Instead of scanning for malicious programs and activities, which could be considered

as the scan for black-list1 entries, a probably less expensive approach is to allow the execution

of only trusted programs, which could be considered as a white-list2 veriVcation. Programs not

listed in the white-list are prevented from execution. An entry within the white-list consists of a

RIM-certiVcate (cf. Section 3.2) of the accepted program signed by the MRTM. This white-list

respectively trusted application list (TAPL3) is maintained by the administrator of the mobile

1black-list is a list of entries indicating not accepted entries.
2white-list is a list of entries indicating accepted entries.
3TAPL (Trusted Application List) contains all calculated and signed hash values of trusted applications.
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device. Corresponding to Section 2.3, the administrator can request the MRTM to create a

RIM-certiVcate for the program with a previously calculated hash (i.e. a reference hash value)

of this program. Before a program is executed, its hash value, computed at loadtime, is veriVed

against the RIM-certiVcates of the TAPL and only executed if a corresponding RIM-certiVcate

exists in it and the hash matches. According to Section 2.5, the MRTM’s functionality needs to

be extended to perform such runtime veriVcations. Additionally, the operating system, in this

case the Android OS, has to be enhanced to use the MRTM’s attestation abilities. Every request

for a program execution hooks up an attestation. Execution of a program leads to creation an

execution of a new process (cf. Section 6.2.1). The new process is created as a child of the calling

process. Another function is hooked to verify the calling process. This helps to avoid programs

slipped through the Vrst attestation to create child processes. To prevent the execution or even

kill4, a slipped-through program, the resource scheduler (cf. Section 4.5) hooks the same function

to verify a process before arbitrating resources to it. As stated in Section 5.1, the Android OS

is based on the linux kernel, but with additions and changes and Android OS speciVc libraries

performing low-level functions such as the Service Manager and the Binder module. All processes

are created by the kernel. Android applications are executed inside running DVMs. To secure

the process creation, the attestation functions are located inside the kernel and partly inside the

Android OS Runtime layers and the Dalvik Virtual Machine code. Both attestation points are

veriVed and protected by the secure boot (cf. Section 3.1). The secure boot prevents an undetected

manipulation of the systemVles, to bypass the veriVcations. Android applications started in

DVMs which are not handled by the kernel. They are handled by the Android OS which provides

functions to load and extract the corresponding Android Application Vle and start it inside the

DVM (cf. Section 5.6.1). The attestation, veriVcation, management as well as interfaces for the

security architecture are located and implemented mainly as kernel modules (cf. Section 4.2) and

partly outside the kernel. The Android OS DVM code is extended with functions required to

interact with these kernel modules when attempted to start an Android application. The DVM

always obeys the decision of the security architecture kernel modules. Native process creation is

fully handled by the kernel and veriVed directly by the security architecture modules. Hence, the

security architecture protects all possible process creation mechanisms on the Android OS.

4kill is a signal sent to a process causing the process receiving it to stop its task imideatly and to release its gain
ressources.
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6.1 Architecture Modules

The security architecture is based on Googles Android 2.3.3 operating system running on an

Android linux kernel 2.6.35. Figure 6.1 illustrates the modules of the security architecture and

their interaction inside of the Android OS. The following part of this section describes the

function of the modules. The Section 6.2 describes their interaction.
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Figure 6.1: Security architecture modules location and interaction

6.1.1 Security Architecture Keys

• KeyMTMAuth is used in the proposed security architecture to authenticate requests from an

administrator to the MTM.

• KeyHMAC is used for authentication and veriVcation by PAM and PVM.

• KeyPubSig is used by AVM to request the MTM to verify a hash against the signed TAPL

entries.

• KeyPrivSig is used to sign a given hash value. This key is private and exclusively usable and

accessible by the MTM. It is sealed inside the MTM and never released.

6.1.2 MRTMWrapper (MTM)

As there is currently no MTM hardware module available, this wrapper provides interfaces used

by the security architecture to decouple it from a real hardware MTM. This kernel module is
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loaded at power-on time together with the operating system. Once loaded, it acts as a substitute

for a real MRTM. After the secure boot (cf. Section 3.1), its task is to make keys from the key

hierarchy (cf. Section 3.2.2) accessible from within the kernel. It also provides cryptographic

functions for the signing and veriVcation mechanisms.

6.1.3 Trusted Application List (TAPL)

RIM-certiVcates are managed by this module. It provides functions to add a RIM-certiVcate to

the TAPL, to remove one from it and to handout the whole TAPL (all RIM-certiVcates) to a

requesting entity, e.g. to a kernel module.

6.1.4 Application VeriVcation Module (AVM)

This kernel module veriVes the computed hash value of a program against the RIM-certiVcates

listed in the TAPL. It requests the MTM to verify the calculated hash value against the RIM-

certiVcates and returns an error code if the veriVcation fails or a success code otherwise.

6.1.5 Application Signing User Interface (AppSigningUI)

This is the interface between the kernel and the user-space for the administrator. It is connected

to a character device (cf. Section 4.1) and passes signing requests to the MTM which contains the

hash of the program and the administrator’s shared secret5 (KeyMTMAuth
6). The MTM returns the

RIM-certiVcate if the authentication with the KeyMTMAuth succeeds, which is then added to the

TAPL. It also manages requests for getting the content of the TAPL.

6.1.6 Process Authentication Module (PAM)

The PAM computes the HMAC using the PID stored in the process’ task_struct. The

task_struct (cf. Section 4.4), i.e. the description of every process in linux, is endorsed

with the computed HMAC. PAM computes the HMAC using a secret key (KeyHMAC) stored in

the MTM.

6.1.7 Process VeriVcation Module (PVM)

This kernel module is used to verify the HMAC of a process. Like the PAM, it computes the

HMAC using the PID of the process stored in the task_struct. This HMAC is compared with

5shared secret is a secret known to all participating communication endpoints , such as a password or a secret key.
6A better option is sending a request authenticated with the shared secret instead of sending the Key itself
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the HMAC endorsed to this process by the PAM. If the HMACs match, a success code returns,

otherwise it returns an error code. A successful veriVcation of the endorsed HMAC indicates,

that the process is allowed to be scheduled as well as to create child processes.

6.2 System Integration

6.2.1 Process Creation

The do_fork() function is called (cf. Section 6.2.1) and just before the current process is cloned

the PVM is hooked. It requests the KeyHMAC from the MTM (cf. Figure 6.1 1 ) and computes an

actual HMAC from the PID of the process task_struct using the KeyHMAC (cf. Figure 6.1 2 ).

Success The PVM compares the computed HMAC with the endorsed HMAC and returns a

success code if they match. After this a new process is cloned, the child. The PAM is hooked then

and requests the KeyHMAC (cf. Figure 6.1 3 ) from the MTM to compute the HMAC for the new

process and endorses the child’s task_struct with the computed HMAC (cf. Figure 6.1 4 ).

Failure The PVM compares the HMAC with the endorsed HMAC and returns an error code.

The fork() call returns an error code and terminates.

6.2.2 Boot Sequence

It is assumed that the MTM has successfully completed its secure boot (cf. Section 3.1) up to the

state 8 in Figure 3.1. The modules of the security architecture are loaded into the kernel using

the insmod command. When the kernel has Vnished loading, the Vrst do_fork() is called for

the INIT7 process, which in turn calls do_fork(). The PVM is hooked here (cf. Section 6.1.7).

PVM identiVes the INIT process, as it is the Vrst process starting after the boot and its PID is 1

and skips its veriVcation. PAM computes and endorses INIT with a HMAC (cf. Figure 6.1 3 and

4 ) and returns a success code. No further veriVcation is skipped. It continues with the process

creation (cf. Section 6.2.1). This procedure repeats until the operating system is fully loaded.

6.2.3 Starting a new Program (Linux)

The operating system wants to start a new program. A new process is created as described above

in Section 6.2.1. Then the exec() system-call is called assuming that the new process performs a

diUerent task than its parent. The hash value of the program binary data is computed and the

7
INIT is a process directly “constructed” operating system. In this described case the OS is veriVed and trusted.
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AVM is hooked. It requests the KeyPubSig from the MTM (cf. Figure 6.1 5 ). It requests the TAPL

from the TAPL module (cf. Figure 6.1 6 ) and calls the MTM to verify each TAPL entry using the

KeyPubSig.

Success The veriVcation succeeds and returns a success code. This continues the exec() call

resulting in starting the new program.

Failure The veriVcation fails and returns an error code to the OS, resulting in the termination

of the program execution.

6.2.4 Starting a new Application (Android OS)

An Android Application is intended to be executed. This intent is passed to the Android OS

which initiates the start of a new application. A new process (DVM) is created as described in

Section 6.2.1. The DVM receives the information about the Android Application that is intended

to execute. The DVM computes the hash value of the Android Application binary and passes the

value to the AVM (cf. Figure 6.1 7 ). The AVM requests the KeyPubSig from the MTM (cf. Figure

6.1 5 ) and requests the TAPL from the TAPL module (cf. Figure 6.1 6 ). Then it calls the MTM

to verify each TAPL entry using the KeyPubSig.

Success The veriVcation succeeds and returns a success code, such that the DVM is allowed to

start the application.

Failure The veriVcation fails and returns an error code to the Android OS, such that the

Android application start terminates.

6.2.5 Administration

The administrator communicates with the security architecture using the character device

described in Section 6.1.5. The administrator sends the requested operation together with the

KeyMTMAuth to this device, which passes it to the AppSigningUI module. Then the MTM is called

by the AppSigningUI to verify the administrator using the passed KeyMTMAuth (cf. Figure 6.1 8 ).

Failure The veriVcation fails and returns an error code. The AppSIgningUI module passes the

error code to the character device. The administrator receives the error code from it.
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Success The veriVcation succeeds and returns a successcode. The AppSigningUI continues

processing the request (cf. Figure 6.1 9 ).

Receiving the TAPL

The AppSigningUI requests the TAPL from the TAPL module. Then passes it to the character

device. The administrator reads the TAPL from it.

Signing and Adding the signed Value to the TAPL

The AppSigningUI module reads the hash value from the character device, then requests the

MTM to create a RIM-certiVcate. The MTM passes it to the AppSigningUI module. Then the

RIM-certiVcate is passed to the TAPL module, which adds it in its list.

Removing a Signed Value from the TAPL

The AppSigningUI module reads the hash value from the character device and requests the TAPL

module to remove a matching RIM-certiVcate from it.

6.3 Security Analysis and Discussion

• The MTM is the trust anchor of this security architecture. It provides a trusted state of the

system, which cannot be compromised in an undetected manner. All other components of

this architecture rely on this trust anchor. According to the MTM speciVcations and partly

because it is a hardware based component, it is not feasible to manipulate it successfully.

The provided security by the MTM ends up in the secure boot and the ensured trusted

state.

• The PAM and PVM covers the process creation and the scheduling. They allow only

trusted processes to be executed or cloned/copied. They cannot access the binary Vles of

the application, from which a process was created. The trust and its veriVcation is derived

from the fact, that all processes are descendants of the INIT process that is directly trusted.

As only veriVed processes are allowed to create child processes and to be scheduled, no

untrusted or manipulated processes should be runable on the operating system. Processes

are inspected by the PVM of their trust and its children then authenticated by the PAM for

this reason.
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• The AVM is to verify the integrity of programs’ binary Vles at runtime and is consulted

whenever a new program or process tries to execute.

• The AppSignigUI is used to perform administrative tasks on the device. Its security depends

on the KeyMTMAuth (shared secret). A lost or stolen KeyMTMAuth compromises the security

of the whole architecture, as an attacker would get administrator privileges with this key.

The proposed security architecture secures a mobile device at boot, during runtime until the

device is shut down. Its security depends on the discipline of the administrator(s). This security

architecture assumes that a program which is installed at the Vrst time is not infected with a

malicious code. Once it is installed, its subsequent infections with a malware is detected by the

proposed architecture and the infected programs are prevented from execution. This architecture

cannot tell apart if a program or process has malicious behaviour or if it is exploitable. Hence,

careless signing of untested and untrusted programs or Android applications can compromise the

security architecture.
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This section presents the implementation of the described security architecture. It closely follows

the module descriptions from Section 6 and partly ties up with [UW11] and [UWL11]. The

implementation of the security architecture has been done on an Android OS, version 2.3.3

(Gingerbread) running on an Android linux kernel, version 2.6.35. As denoted in Section 6, the

Dalvik Virtual Machine located in the Android OS Runtime layer has been modiVed and the

kernel has been extended with the security architecture modules/functions. Besides the character

device Vle for the AppSigningUI module, an extra character device Vle has been created for the

communication between the kernel and the Android OS DVM. The execution of an Android

application in a fork()ed DVM (cf. Section 5.6.1 Figure 5.3 3 ) is performed inside the Android

OS. The Android OS DVM is extended with a security hook to a function that computes a

SHA2561 value from the .apk (Android Application binary) Vle which is about to be executed

and communicates with the kernel to check whether this application is trusted or not (cf. Section

6.2.4).

7.1 Kernel ModiVcations

The modiVcations are corresponding to the workWow described in Section 6.2. The kernel

modiVcations related to the program authentication and veriVcation are:

• kernelRoot/kernel/fork.c

The do_fork()method of this Vle is modiVed. Applications are veriVed and authenticated

using KeyHMAC using PAM and PVM.

• kernelRoot/include/linux/sched.h

The HMAC authenticating a process is stored in the struct task_struct->ucaHMAC.

This extension self manages the HMACs of each task as no list have to be maintained and

managed to store and verify the HMACs.

1SHA256 (Secure Hash Value) is a cryptographic hash representing a unique checksum of 256 bit length [MOV01,
ch.9.52].
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• kernelRoot/arch/arm/kernel/sys_arm.c

Native applications are veriVed within fork() and exec() system-calls via PVM, PAM

modules during fork() and via AVM during exec().

Additionally, kernel modules are used to perform the following tasks for this security architecture:

• sec_autoload.ko

loads and parses the sec_TAPL.txt from the Vlesystem which contains the signed SHA256

values of the trusted applications and adds them to the sec_tapl.ko module.

• sec_cryptoavm.ko

used by the do_fork() call and by the sec_verify_bridge.ko to verify signed SHA256s.

• sec_key_storage.ko

receives the keys from the sec_rsacryptomtm.ko after the secure boot (cf. Section 3.1)

and arbitrate them inside the kernel.

• sec_rsacryptomtm.ko

this is an MTM wrapper interfacing the security architecture with a real MTM hardware.

Right now it is implemented as a stub2 which performs the requests from the security

architecture with software elements.

• sec_tapl.ko

this module manages the TAPL entries.

• sec_ui.ko

used to process administrative tasks sent to the security architecture from the user-space.

This module is connected to the character device /dev/sec_device for this reason.

• sec_verify_bridge.ko

this module is necessary to verify Android Applications. Similar to the sec_ui.ko,

this module is connected with the character device /dev/sec_device_vb to establish

a communication between the modiVed Android OS DVM and the security modules

implemented in the kernel.

7.1.1 fork.cModiVcations

The following part describes modiVcations made on the fork.c Vle located in the kernelRoot/kernel/

directory. It contains beside other functions the do_fork() function which is called from the

2stub is a piece of code acting as a substitute for full implementation of a function or a program.
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system-call fork() and has been modiVed to perform the PAM and PVM authentication and

veriVcation operations. The modiVed behaviour of the do_fork() call is illustrated in Figure

7.1. The bulletpoints 1 to 7 describes the steps performed by PAM and PVM during process

creation. The Bulletpoint e represents the authentication failure state resulting in the return of

an error code.
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Figure 7.1: Execution of the do_fork() method hooked with PAM and PVM checks

1 A process calls the fork() system-call to create a child process. fork() in turn, calls the

do_fork() function of fork.c.

2 Just before the current (caller) process is copied/cloned, its HMAC Veld current->ucaHMAC

is veriVed by the PVM module using the KeyHMAC key.
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3 If the veriVcation succeeds, the current process continues with the copying/cloning the

current process.

4 This results in a copied but not running process namely the child process.

5 The HMAC for the child process is then computed by the PAM module using the KeyHMAC

key

6 and set into the child process’ task_struct->ucaHMAC Veld.

7 The child process is created and returned from the fork() function to be further used.

e At a veriVcation failure of the parent’s HMAC (current->ucaHMAC), the function returns

with -EACCESS error code, which terminates the creation process of the child.

The described procedure is identical for all processes except the INIT process. INIT is veriVed

by the secure boot and assumed as trusted automatically. Its HMAC is calculated and the

current->ucaHMAC Veld of INIT is directly set by the PAM module. This bypasses step 2 and

performs steps 5 and 6 for INIT before it continues with 3 . The security modules PAM and

PVM are directly implemented within the kernel.

7.1.2 sys_arm.cModiVcations

The functions implemented in sys_arm.c are the points where all linux process creations

start. This Vle includes, beside of other functions, the fork() and exec() system-calls. The

sys_arm.c is extended with the ability to load binary Vles from the Vlesystem and to compute

SHA256 values over them. This function is used for the binary Vles which are executed with

the exec() system-call. The computed SHA256 value is passed to the loaded security module

sec_cryptoavm.ko (sec_AVM) for veriVcation (cf. Figure 7.4 1 ). If veriVed, the process

execution is continued otherwise -EACCESS (error code) is returned which terminated the

execution request.

7.2 Security Architecture Modules

7.2.1 sec_tapl.koModule (sec_TAPL)

This module manages all TAPL entries. As no MTM hardware is aviliable to create genuine

RIM-certiVcates, each TAPL entry consists of the signed SHA256 value and the Vlename of the

corresponding binary Vle.
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7.2.2 sec_autoload.koModule

This module reads the sec_TAPL.txt from the Vlesystem and parses the entries to add them to

the sec_tapl.ko. It uses the interface provided by the sec_TAPL module to add these entries to

the TAPL. This module depends on sec_tapl.ko to be loaded before.

7.2.3 sec_cryptoavm.koModule (sec_AVM)

This module provides the veriVcation of a given SHA256 value. When the module is loaded

into the kernel, it requests the sec_key_storage.ko module to hand out the KeyPubSig used

for the veriVcation. Verifying a given SHA256 value requests the sec_tapl.ko (TAPL module)

to handout the TAPL content containing the signed SHA256 value of the program (cf. Fig-

ure 7.4 2 ). Each signed SHA256 value is then veriVed against the given SHA256 using the

sec_rsacryptomtm.ko module (sec_MTM) until the given SHA256 value matches one TAPL

entry. The result (1 match, 0 no match) of the veriVcation request is returned to the caller. This

module depends on sec_key_storage.ko and sec_tapl.ko modules.

7.2.4 sec_key_storage.koModule (sec_Key_Storage)

This module provides the keys, KeyPubSig and KeyHMAC, to the security architecture. Loading this

module into the kernel prompts a request to the sec_rsacryptomtm.ko (MTM) to reveal the

keys. Once stored, the module arbitrate these keys to the other modules. This module depends on

sec_rsacryptomtm.ko module.

7.2.5 sec_rsacryptomtm.koModule (sec_MTM)

This is the interface module between the security architecture and a real hardware MTM (cf.

Figure 7.4 4 ). It provides a function to let the MTM sign and verify a SHA256 and to reveal the

sealed keys from the MTM. When loaded, it Vrst performs an integrity check of the operating

system and compares it with the previously MTM computed values by asking the MTM to handout

the corresponding RIM. If the checks pass, the module requests the keys from the MTM. Otherwise

the module unloads itself. As no MTM is mounted on the device and the implementation was

made with no MTM available, the key request and the integrity check are skipped and asumed

as performed and successfull. The keys are hardcoded in the sec_rsacryptomtm.ko for this

reason.

Signing operations are protected using the KeyMTMAuth (shared secret) known only by the MTM

and the administrator to authenticate the administrator to the MTM. If the administrator is
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successfully authenticated to the MTM, this module returns the signed value back to the caller

otherwise an error code is returned indicating that no signing operation has been done.

7.2.6 sec_ui.koModule (sec_UI)

This module is the interface between the administarator and the security architeture. It uses the

character device Vle /dev/sec_device to connect with the user-space and provides operations

to the administrator to sign a given SHA256 value, to remove entries from the TAPL or to

receive the content of the whole TAPL. Communication is done using the IO control system-call

ioctl(...) on the /dev/sec_device Vle.

An administartive request consists of:

• the secret authentication key for the administrator KeyMTMAuth

• a command number indicating the type of request it is:

1 to sign a SHA256 value and include it to the TAPL

2 to remove one entry from the TAPL

3 to receive the content of the whole TAPL

• and Vnally, data necessary for the request (e.g., the SHA256 value that should be signed

and added to the TAPL)

Administrative requests, passed to this module, are marshall3ed into a special format. This format

uses structs as container and enums for the command numbers, deVned in sec_ui_commands.h

Vle.

The IO control system-call expects three passed parameters from the user-pace:

1. the Vlepointer to the device Vle, e.g. /dev/sec_device

2. a command parameter of type unsigned int

3. and a value parameter of the type unsigned long

The pointer to the marshalled request is stored into an unsigned long variable and used as

the value (third parameter). The enum indicating the request type is used as the command

(second parameter) and Vnally the pointer to the /dev/sec_device device Vle is used as the

Vrst parameter. Once the request is passed to the module, it unmarshalles the data according to

which command number (enum) has been passed.
3marshall is the conversion of data structures into a format used to transfer these structures between communicating
processes.
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Marshall Format UI

All data sent to or received from the character device (/dev/sec_device) is represented by

an unsigned char array. Together with the size of this array (number of used bytes) it is

saved in a struct stData. All stData structs used for one request, are stored in a struct

stParameterContainer together with their quantity. The type of the data is only identiVed by

the passed command (enum), indicating the type of the request.

7.2.7 sec_verify_bridge.koModule (sec_Verify_Bridge)

This module is used to establish the Android Application veriVcation from inside of a DVM. Sim-

ilar to sec_ui.ko, this module is connected to a character device Vle (/dev/sec_device_vb).

It is used to verify an Android application just before it is loaded into the DVM. The SHA256

value of this Android Application Vle (.apk) is marshalled together with a pointer to the variable

cCheckPassed which is used for storing the veriVcation result. The marshalled data is then

passed to /dev/sec_device_vb using the system-call write(...). If something is written to

this module, it locks4 the kernel function and disables all interrupt requests (IRQ5s). This avoids

a race condition between the Android process start in the DVM and the veriVcation in the kernel.

Then it unmarshalles the information and asks the sec_cryptoavm.ko (sec_AVM) to verify the

given SHA256 value. The result is stored inside the cCheckPassed variable. Subsequently the

module releases the lock and restores (re-enables) all IRQs [Lov05, p.173, 192].

Marshall Format VB

This format is a struct stVerificationSHA256 containing an unsigned char array with

the size of 32 bytes for a SHA256 value and a unsigned char* pointer pointing to the resut

variable cCheckPassed.

7.3 Android DVM Core ModiVcations

The Android OS Dalvik Virtual Machine is extended with a veriVcation function. This function is

hooked into the Dalvik_dalvik_system_DexFile_openDexFile(...) function, located in

the Vle androidOS/dalvik/vm/native/dalvik_system_DexFile.c, just before an Android

4locks is used by the kernel to secure critical sections. Only one process can have the lock and enter the critical
section. Other processes are forced to wait to enter the critical section until the process possessing the lock leaves
this section and releases the lock.

5IRQ an interrupt request initiates an interrupt which cause the actual running task in the CPU to suspend its work
and to let the interrupting task perform its work.
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Application is loaded from Vlesystem (cf. Figure 7.4 5 ). The veriVcation function loads the

binary Vle, calculates its SHA256 value and put it together with the pointer to the variable

cCheckPassed into a struct stVerificationSHA256. The value of cCheckPassed is set

to 0 by default which indicates a failed veriVcation. The passed pointer to this variable is

used to copy the veriVcation result from within the kernel to the cCheckPassed variable.

The marshalled data (stVerificationSHA256) is then written to the character device Vle

/dev/sec_device_vb connected with the sec_verify_bridge.ko module (cf. Figure 7.4

6 ). The value of cCheckPassed is then returned from the veriVcation function performed by

the sec_AVM. If the veriVcation succeeds (returned 1), the Android Application is loaded and

executed inside the DVM, otherwise an exception6 (IOException) is thrown to the Android OS

from within the DVM, which terminates the loading of this application.

7.4 Implemetation WorkWow

In this section the workWow of the security architecture is described in detail. First, a description

of the security operations performed in the linux kernel is made. Subsequently, a description of

the security architecture from the Android OS point of view is discussed.

7.4.1 WorkWow for the Linux Kernel

Figure 7.2 illustrates the workWow in the linux kernel. The PAM is labled as sec_PAM and the

PVM as sec_PVM in this Vgure. Steps 1 to 4 are performed during the boot process just before

the INIT process is started. The sec_autoload.ko module is not shown in the Vgure. It is

asumed that this module is loaded just after the sec_TAPL and Vlls the TAPL as speciVed in

Section 7.2.2.

1 The MTM performs a secure boot until the kernel is executed by the bootloader. The

corresponding entity MTM is faded out, as no MTM hardware is available and the

implementation have been done without such hardware. However, it is assumed that such

hardware will emerge soon in the mobile device industry.

2 Firstly, the security module sec_MTM is loaded,

3 Seccondly, the sec_TAPL module and just after it the sec_autoload.ko module, which

reads the sec_TAPL.txt Vle from the Vlesystem. sec_TAPL.txt Vle contains the signed

6exception is an information about a process state. An exception is “thrown” to other application layers [Lov05,
p.116].
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Figure 7.2: Overall Security Architecture WorkWow

SHA256 entries and the Vlnames that belongs to them. sec_autoload.ko module

parses this Vle and adds the parsed entries to sec_TAPL using the interfaces provided

by sec_TAPL.ko.

4 Thirdly, the sec_Key_Storage module is loded. It requests the sec_MTM to handout the

keys, KeyHMAC and KeyPubSig, to provide them to the other modules. After this step, all

remaining modules of the security architecture are loaded into the kernel.

5 A Linux process tries to create a new child process and calls the system-call fork().

6 The calling process’ (parent/current) task_struct is then passed to sec_PVM,

7 which requests the KeyHMAC from the sec_Key_Storge module and veriVes the current

process using this key.

8 Asuming that the current process was successfully veriVed by sec_PVM, the system-call

fork() continues and copies the parent process. The child process’ task_struct is then

passed to sec_PAM.

9 sec_PAM also requests KeyHMAC from the sec_Key_Storage module and computes the

HMAC of the child process task_stuct using this key. Then it stores the computed

HMAC into the child process task_struct->ucaHMAC Veld. The child process is then

returned by fork() and ready to be executed.
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10 Asuming the just created child process performs a diUerent task than the parent process, it

calls the system-call exec() to be prepared with the new executable code. The exec()

system-call hooks a function which

1 loads the binary of the new code and computes the SHA256 value from this binary. The

computed SHA256 value is then passed to the sec_AVM module to be veriVed.

2 The sec_AVM module requests the actual TAPL from the sec_TAPL module,

3 and requests KeyPubSig from sec_Key_Storage, which is stored inside sec_AVM, to be used

for further veriVcations. If the KeyPubSig has been already received from sec_Key_Storage

this step will be skipped and leads directly to 4 . Such approach lowers the communication

overhead and accelerates the veriVcation process for further veriVcations.

4 The sec_AVM module requests the sec_MTM module to verify a given SHA256 value

against the TAPL entries using the KeyPubSig one by one. This operation is repeated until

one TAPL entry matches, or all TAPL entries have been processed without any match.

11 With a successfull veriVcation the system-call exec() continues and starts the new process

continuing with the execution of the code from the binary Vle.

12 According to Section 7.3, the computed SHA256 value of the Android Application Vle is

marshalled together with the pointer to a variable and passed to the sec_Verify_Bridge mod-

ule (cf. Section 7.2.7). The attached SHA256 value is veriVed as described in the steps 1

to 4 . The result of this veriVcation is then copied to the result variable (cCheckPassed)

using the pointer from the marshalled request. With a successfull veriVcation, the Android

Application is started inside the DVM.

13 An administrator requests an operation from the sec_UI module, as described in Section

6.1.5. The administrator is authenticated using the passed KeyMTMAuth from the marshalled

request and

14 if the authentication succeeds, sec_UI requests the corresponding operation from the

sec_TAPL module.

7.4.2 WorkWow for Android OS Layer

Performing a secure boot (cf. Section 3.1) passes the trust of the MTM to the veriVed bootloader,

which then veriVes the operating system and passes the trust received from the MTM to it. Figure

7.3 illustartes the Android OS boot process with the implemented security architecture until
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Figure 7.3: Android OS boot sequence with security architecture

the Vrst Android Application can be started. The represents the points where a runtime

veriVcation is performed by the security architecture. The security architecture modules are

commulated displayed and marked with as one sec_architecture entity. It is aussumed that

all kernel modules from the implemented security architecture are loaded successfully at this

point. The bulletpoints 1 to 16 describes the performed step(s) in the associated point depicted

in Figure 7.3.

1 The MTM perform a self measurement and integrity check (cf. Figure 3.1 1 ).

2 After a succesful veriVcation of the device integrity including the MTM and the bootloader,

the bootloader is executed (cf. Figure 3.1 5 ).
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3 The bootloader is designated to calculate the SHA256 from the operating system binaries

and let them verify against values taken and stored by the MTM in a secure and trusted

state. Then, the bootloader executes the kernel which starts and prepares further operations.

4 The kernel loads drivers, kernel modules and the modules from the security architecture.

5 Subsequently, the INIT process is created. At the end of the MTM’s secure boot (cf. Figure

3.1 8 ). The involved secure boot parts are accented with a surrounding Vne dashed

rectangle.

6 Before starting any daemon or service, which implies a new linux process start, the binaries

are veriVed by the sec_AVM module (cf. Section 7.2.3).

7 - 16 All processes created and executed after 6 , until the Vrst Android Application can be

executed, are catch by the security architecture and veriVed using the sec_AVM module.

After the step 16 , the device is in a veriVed and a secure state. It can now perform further

runtime integrity veriVcations using the security architecture. Figure 7.4 illustates the interaction

between the Android OS DVM and the security architecture modules performing a runtime

integrity veriVcation. It shows the Activity Manager as step 1 which is an Android OS service

that initiates new Android Activities (new Android Application starts). The Package Manager is

an Android OS service which manages all installed and availiable Android Applications on the

mobile device. The bulletpoints 1 to 8 shows the workWow starting one Android Application

and the interaction with the security architecture in user-space. The further bulletpoints 1 to

5 show the veriVcation sequence of an Android Application accessing the security architecture

in kernel-space by using the /dev/sec_device_vb Vle and the sec_Verify_Bridge module.

The Vrst part covers the user-space part of an Android Application start.

1 A request to start a new Android Application is sent to the Activity Manager.

2 It sends a request to Zygote to fork() a new DVM.

3 Zygote sends a request to the kernel to fork() which starts the HMAC veriVcation as

depicted in Figure 7.1.

4 The kernel fork()s a new DVM.

5 The Package Manager passes information about the new Android Application to the DVM.

6 The DVM hooks a veriVcation function which loads the Android Application Vle and

computes a SHA256 value of it.
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7 The SHA256 value is marshalled and written to the /dev/sec_device_vb Vle according

to Section 7.2.7. This initiates a veriVcation process using the passed marshalled data in

kernel-space.

8 If the hooked veriVcation function returns a success code the .dex Vle is extracted from the

Vle and executed in the DVM. Otherwise an exception is thrown to the Android OS.

The following part coveres the kernel-space veriVcation of an Android application start.
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5 The sec_verify_bridge receives the written data from 7 and unmarshalles them. This

point is the entry and exit point to communicate through the /dev/sec_device_vb

device Vle. It locks the function and disables all IRQs.

1 The sec_verify_bridge calls the sec_AVM to verify the SHA256 passed from the DVM.

2 The sec_AVM requests the sec_TAPL module to receive the TAPL.

3 Then it requests then the KeyPubSig from sec_key_storge

4 and delegates the implemented MTM stub (sec_MTM) to verify the SHA256 using the

KeyPubSig against all TAPL entries.

5 The veriVcation result is copied to the result variable passed together with the marshalled

data from user-space. Then the IRQs are restored and the function is unlocked.
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This section discusses the assumptions made for this thesis at Vrst and the actual results grown

while researching and implementing the discussed security architecture. Later a conclusion

relying on the elaborated results is given and Vnally an outlook for further development and

improvement of this security architecture is made.

8.1 Development Assumptions

8.1.1 General Assumptions

The proposed security architecture was assumed for mobile devices running on a linux kernel

and to be protected primary by an MTM hardware module. It was well known at the beginning

of this thesis, that no MTM hardware is currently available. TPM modules are already used in

currently available Laptops it is expected that MTM modules for mobile devices be available in

the near future. Therefore, the proposed security architecture was developed while relying on an

MTM hardware. Microsoft1’s BitLocker Drive Encryption uses such a TPM module to secure

data on a harddisk when lost or stolen [Ltd10].

The speciVcation of the MTM meets the requirements for the proposed security architecture.

However, comparable hardware is already available, such as the ARM TrustZone. The ARM

TrustZone is a feature for special ARM family CPUs, e.g. the ARMv6KZ. It allows to separate

instructions from trusted and untrusted programs using a hardware based virtualisation and sep-

aration of the CPU and the stack for trusted and untrusted programs, which have to be classiVed

before execution. This virtualisation separates both environments from each other (trusted and

untrusted) such that they cannot physically interfere with each other. ARM TrustZone provides

immutable memory to store sensible information such as keys or other conVdential data. In

contrast to the MTM, it is not intended for remote attestation [Ltd11].

1microsoft is an operating system and software developpment company.
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Android OS

Because Android OS is running on a linux kernel and is a free and open source operating system,

the proposed security architecture is implemented on the Android OS. Furthermore, it is an estab-

lished system used by a widely range of mobile devices. DiXculties mainly arose while analysing

the Android OS and especially the Virtual Machine model used for Android application execution.

Linux programs were catch at the exec() call and veriVed by the proposed security architecture.

Android Applications are executed inside of a DVM, which is fork()ed from Zygote, but not

exec()ed by the kernel. The fork()ed DVM acts in the same way as Zygote, thus it does not

need to be exec()ed to to execute a code. The DVM bytecode provided by Android Applications

is directly interpreted inside of the DVM. This situation resulted adopting the proposed security

architecture for the the Android OS. As debugging of a whole operating system is a complex

task, the actual point (androidOS/dalvik/vm/native/dalvik_system_DexFile.c) with

the placed hook to connect with /dev/sec_device_vb was found mainly by reading and

analysing the source code of Android OS. However, it may be possible that there are alternative

positions Assuming that, there is possibly in the Android OS to hook into the security architecture

veriVcation. The used position of the hook has proven that it is at least one of the points applicable

for runtime veriVcation of the proposed and implemented security architecture.

8.1.2 Kernel ModiVcations

Data is read directly from the Vlesystem of the kernel-space by the security architecture. This

includes the sec_TAPL.txt Vle and the binary data of the processes calling the exec() system-

call, to be used in computing the SHA256 value of this binary. This behaviour is in conWict with

the principle, that kernel-space tasks should not perform user-space tasks and vice versa. It is

noted, that such tasks should be performed by a daemon providing the named abilities. Anyhow,

such daemon would have to be started directly after the INIT process and before any other

processes. Additionally, it would have to be assured that such daemon is not replaced or bypassed

during runtime. Directly accessing and reading Vles from within the kernel-space eases these

problems.

8.1.3 PAM and PVM

The authentication of processes with HMAC was proposed a an additional security feature for

execution control at runtime. This allows that only processes veriVed by the PVM are allowed to

fork() and to create child processes, that are in turn authenticated by the PAM. This process

veriVcation with PVM is also hooked into the scheduler. It was intended to prevent unveriVed
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processes from being scheduled and to kill them if not trusted. Tests were performed during

development using the implemented security architecture. The sec_AVM veriVcation caught

all untrusted programs and Android Applications during their creation . Therefore, there were

not untrusted processes running and trying to fork() or to be scheduled. The authentication

and veriVcation of “already” trusted processes with PAM and PVM increase the total security

overhead. However, this approach can be useful in scenarios where the processes are modiVed

during runtime. Moreover, the hooked points for PAM and PVM are possibly usable to perform

other checks on the task_structs, e.g. as a runtime code section analysis.

8.1.4 Cryptographic Abilities

At the beginning of the implementation phase the security architecture used stub functions

for cryptographic calculations such as the signature veriVcation, the SHA256 and the HMAC

computations. An attempt was made to use the OpenSSL library for this task. This library

provides all kind of hash functions. Unfortunately, this library cannot be used with the security

architecture, as it tries to obtain memory in a way that locks the whole kernel. Additionally,

the OpenSSL library does not provide any asymmetric cryptography functions, which would be

necessary to fully simulate the cryptographic abilities of the MTM. Therefore, some modiVed

parts of the OpenSSL library are used in the security architecture to compute SHA256 values.

The signature veriVcation (asymmetric cryptography) is still implemented as a stub function. It

extends a given SHA256 from 256 bits to 4096 bits and pad the additional bits with 0.

8.2 Development Platform and Prototyping

The development platform is the OMAP4430 Panda Board ES2.1 type(GP). This platform is

equipped with a 1.5 GHz dual core ARM Cortex-A9 processor and with 1GB Low Power DDR2

RAM (cf. Figure 8.1). The operating system is compiled from the source (Android OS Gingerbread)

with all patches applied for the OMAP4430 Panda Board. The kernel is (Android linux kernel

2.6.35) applied with all patches according to [OMA11].

8.2.1 Command Line ConVguration Tool - sec_conVgure Tool

The command line conVguration tool sec_conVgure tool was developed to perform administrative

tasks on the security architecture. Once loaded the user is welcomed with the main opening

screen as depicted in Figure 8.2.
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Figure 8.1: The OMAP4430 Panda Board Evaluation Platform (cf. [Pan])

Main Menu

It provides diUerent options to the administrator. The most important options are:

[r] this option reads the sha256_entries.txt Vle into a buUer. This Vle contains the list of

all SHA256 values from all executable Vles of the OS. The entries of this Vle are plain text

entries where each line contains the SHA256 stored in hexadecimal format and the binary

name separated by a white-space character, e.g.

90650013420cc42ae250a509d8c8e5f5d693447ebfa94aa5becee0ae9b5c5805 sec_configure

[m] this option reads the sha256_minimal_entries.txt into a buUer. This Vle contains a

subset of entries of the Vle used with [r], composed of hand-picked entries to improve the

readability.

[p] this option is used to go through a loaded (buUered) list and request the security architecture

to add each entry of the list to the TAPL one by one. The requests are marshalled according

to Section 7.2.6 and then passed to the /dev/sec_device using the ioctl(...) system-

call. The administrator is prompted to enter the authentication key KeyMTMAuth to be

authenticated by the MTM if not done before using the option [z].
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################################################################################
#                     ­= sec_configure Tool v.0.2 alpha =­                     #
#                               :::::::::::::::                                #
#                                 ###############                              #
#                               :::::::::::::::                                #
#                                 ###############                              #
#                               :::::::::::::::                                #
#                                 ###############                              #
#                               :::::::::::::::                                #
#                                 ###############                              #
################################################################################
################################################################################
#                                  Main Menu                                   #
#                                 ===========                                  #
#                                                                              #
#    [r] read sha256 file into buffer                                          #
#    [m] read minimal sha256 file into buffer                                  #
#    [p] add all sha256 from buffer to kernel TAPL                             #
#    [k] read TAPL from kernel and print it (for debug)                        #
#    [l] list all read sha256 entries (whole)                                  #
#    [n] list all read sha256 entries (names only)                             #
#    [x] Remove Menu (remove one entry from kernel TAPL)                       #
#    [a] Add Menu (add one entry to kernel TAPL)                               #
#    [z] enter Password                                                        #
#                                                                              #
#    [q] to quit tool                                                          #
################################################################################
: 

Figure 8.2: Security Architecture Command Line ConVguration Tool - Main Menu

[x] this option displays a new menu providing options to remove entries from the security

architecture’s TAPL

[a] this option displays a new menu providing options to add single entries to the security

architecture’s TAPL

[z] this option prompts the administrator to enter the authentication key KeyMTMAuth which is

saved to be used further in this session

[q] quits the sec_conVgure Tool

Remove Menu

[n] this option lists all entries from the actual loaded (buUered) list

[b] this option is used to return to the Main Menu

[x] this option prompts the administrator to enter the index of the entry which will be removed

from the TAPL
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################################################################################
#                                 Remove Menu                                  #
#                                =============                                 #
#                                                                              #
#    [n] list all read sha256 entries (names only)                             #
#    [b] back to main menu                                                     #
#    [x] remove one entry from kernel TAPL                                     #
#                                                                              #
################################################################################
:

Figure 8.3: Security Architecture Command Line ConVguration Tool - Remove Menu

Add Menu

################################################################################
#                                   Add Menu                                   #
#                                 ===========                                  #
#                                                                              #
#    [n] list all read sha256 entries (names only)                             #
#    [b] back to main menu                                                     #
#    [a] add one entry to kernel TAPL                                          #
#                                                                              #
################################################################################
: 

Figure 8.4: Security Architecture Command Line ConVguration Tool - Add Menu

The [n] and [b] options as in the Remove Menu.

[a] this option prompts the administrator to enter the index of an entry to add into the

TAPL. If KeyMTMAuth is not entered before, the administrator is prompted to enter it. The

administrator is informed whether the operation has succeeded with messages “adding

sec_configure to TAPL succeed!” and “adding sec_configure to TAPL failed!”.

8.2.2 GUI for the conVguration Tool - sec_ConVguration Tool

The sec_ConVguration Tool was implemented to make administration of the security architecture

more comfortable. It uses the same native implementation for accessing the security architecture

as the command line tool. In contrary to it, the GUI manages the security architecture using the

JAVA environment of Android OS and its native interface.

When the GUI is started, the admistrator is welcomed with the main window as depicted in Figure

8.5. In the upper-left part of the main window a password Veld is displayed ( 
 
 
 
 
 
 
 ). The

administrator enters the KeyMTMAuth here to be authenticated if requesting a signing operation

from the MTM. At the bottom-left of the main window, the type of the list to be displayed

53



8 Evaluation

can be chosen by setting one of the radiobuttons
Å

(SHA256 List) or
Å

(TAPL) to open a

corresponding view. The buttons below the radiobuttons are used to remove/add entries from or

to the TAPL.

View - SHA256 List

The SHA256 List view is used to display the list of SHA256 entries. One can request the security

architecture to sign selected entries from this list and add them to the TAPL. Activating theÅ
(SHA256 List) radiobutton calls a fuction to read the sha256_entries.txt Vle from the

Vlesystem. The read in text is then passed to the Android OS JAVA interface, where the entries

are parsed and prepared to be shown GUI as illustrated in Figure 8.5. This is similar to the [r]

option provided by the command line Main Menu. The 4 Filter (.apk) checkbox can be used to

display a subset of .apk Vles.

Figure 8.5: GUI - List showing the SHA256 of each program available on the device

Figure 8.6: The List-entry for the Calculator Application
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Each entry in the list contains the name of the program and below of the name the correspond-

ing SHA256 is displayed in red. This is illustated in Figure 8.6 for the Calculator.apk entry as an

example. On the right side of each entry a checkbox is displayed which can be checked to select

the entry ( 4 ).

Figure 8.7: The control boxes available by selecting the
Å

(SHA256 List)

As illustarted in Figure 8.7 in this view the : button is activated. Pressing this button requests

the conVguration Tool to collect all of the entries marked in the list and the KeyMTMAuth from

the password Veld. The marked entries and the KeyMTMAuth are passed to the underlying native

function requesting the security architecture to sign and add these entries to the TAPL one by one.

Figure 8.8 shows three entries marked to be signed and added to the TAPL. If the KeyMTMAuth

Figure 8.8: Marked entries in the SHA256 list

is already entered, pressing the : button will add the entries to the TAPL. The administrator

will be informed about the result of the request as depicted in Figure 8.9 and Figure 8.10. If no

password is set or no list entries are marked the admistrator is also informed about this situation.

The garbage button depicted in Figure 8.7 and 8.13 (rightmost button on the bottom) un-checks

all checked entries in the actually used list.

Figure 8.9: Request performed successfully
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Figure 8.10: Request not performed due to authorisation failure

8.2.3 View - TAPL

The TAPL view is used to show the actual TAPL and to request to remove entries from it. Once

activated, it calls the native function to request the actual TAPL form the security architecture.

When received, it is passed from the native function to the Android OS JAVA interface, to be

shown in the GUI as illustrated in Figure 8.11. The list shows the signed entries stored in the

TAPL (sec_TAPL) TAPL. The 4 Filter (.apk) checkbox can be checked to hide all non .apk Vles

in the displayed list. Each entry in the list shows the name of the program and below the name,

Figure 8.11: The TAPL view showing the list of all signed programs

the corresponding signed SHA256 value is displayed in green. This is illustated in Figure 8.12

for the Calculator.apk as an example. Corresponding to Section 8.2.2, these entries can also be

marked by activating the checkbox and unchecked all together by using the garbage button. In

this view, the 6 button is activated as illustarted in Figure 8.13. Pressing this button requests
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Figure 8.12: The signed List-entry for the Calculator Application

Figure 8.13: The controls boxes available by activating the
Å

(TAPL)

the conVguration Tool to collect all list entries and to request the security architecture to remove

the entries from the TAPL one by one.

8.2.4 Automated Build Script

During implementation of the security architecture, a bash script was developed. This script was

written to ease the build process and to make it conVgurable for future builds.

It comes along with a bundle of .diU Vles in addition to the security architecture source Vles.

Subfolders required during a build are generated automaticly by the script. The script can be

conVgured by changing variables at the very beginning of it. LogVles are generated and saved in

a separate subfolder for debugging purposes.

This script automates:

• fetching the compiler and third party drivers (e.g. WLAN and Bluetooth drivers) for the

OMAP4430 Panda Board

• fetching the sources for Android OS and the kernel for the OMAP4430 Panda Board

• fetching the bootloader

• fetching and applying the patches for the bootloader, e.g. to enable booting directly from

SDCard without the need of typing boot-options in the command line

• fetching the patches for the kernel and applying them

• fetching the patches for the Android OS and applying them

• applying additional OMAP4430 Panda Board changes/bugVxes not available with patches

• applying the security architecture patches, enabling the security architecture in the follow-

ing compiled build
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• compiling the bootloader

• compiling third party drivers

• compiling the kernel

• compiling the secutity architecture modules

• compiling the command line security architecture conVguration tool

• compiling the Android OS

• collecting the right data and conVguring the Android OS, e.g. edit the init.rc to automaticly

load the security architecture modules

• computing the SHA256 of all executable binaries and .apk Vles and storing them to the

sha256_entries.txt

• generating an initial TAPL to enable at least to boot into Android OS, including the

conVguration tools for the security architecture

• preparing the folderstructure to be used with the SDCard and copying the data to it

8.3 Performance Evaluation

Measuring the performance overhead caused by the security architecture during boot has been

measured on the OMAP4430 Panda Board. The operating system and all programs/Applications

are loaded from an SDCard2 of Class 63. The Android OS resides on an ext34 type partition on

the SDCard. Contrary a mobile device has to be Washed with the Android OS using an image Vle

(Washed image). The kernel and the boot loader are stored on a FAT325 type partition.

The time measurements were performed using the kernel’s high resolution timer deVned in

<linux/hrtimer.h>. The measurements were taken closely around the hooks from the security

architecture. That are:

• inside the exec() system-call measuring the time consumed by reading a Vle, computing

the SHA256 value and verifying it using the sec_AVM module.

2SDCard (Secure Digital Memory Card) a memory chip stored on a removeable card to Wash data to it and to read
the data from the card.

3this classiVcation informs about the minimal transfer rate when writing data to the card
4ext3 (third extended Vlesystem) a Vlesystem architecture that monitors changes done to Vles, which ensures
consistency if a writing operation was interrupted by e.g. a systemcrash.

5FAT32 (File Allocation Table) a Vlesystem architecture.
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Test Size in bytes Time
1 64 0 µs
2 128 0 µs
3 1024 30 µs
4 102400 (100KB) 3143 µs
5 102400 (100KB) 3144 µs
6 102400 (100KB) 3143 µs
7 1024000 (1000KB) 33234 µs
8 1024000 (1000KB) 32807 µs
9 1024000 (1000KB) 32288 µs

°
w/o 1+2 3380224 78789µs

Table 8.1: Time consumptions for computing SHA256 values

• while calling the sec_AVM module to verify a SHA256 value.

• while calling the sec_Verify_Bridge module from the DVM, to verify an Android Applica-

tion.

The resolution for all mesurements was µsec. A kernel module (sec_timeTetsts.ko) has been
used to perform reference masurements for computing SHA256s values. The SHA256 values
are computed from vmalloced heap. Loading this module into the kernel cause ot to perform 9
measuremnts. The measurements performed over data scaling from 64bytes to approximately
1MB an nine measurements are performed. The results of these reference measurements are listed
in Table 8.1. They indicate a performance overhead of 0, 023 µs

byte by computing a SHA256 value,
not including the Vrst two measurements of Table 8.1. Table 8.2 shows the measured times during
the boot and at the exec() system-call. Table 8.3 lists the measurements for verifying Android
Applications from within a DVM, using the sec_Verify_Bridge module. The measured times listed
in 1 and 2 had a duration < µs, so they are not considered in the foolowing calculations. The
total time ∆, produced by the veriVcation through the security architecture during boot, can
be calculated using the measured times from Table 8.2 and 8.3. Native linux processes consume
481203µs for a total of 825892bytes. The veriVcation of their SHA256 values consume 3725µs.
The required time to read a byte from Vlesystem and to compute a SHA256 over it is therefore
approximately

481203µs� 3725µs

825892bytes
� 0, 58

µs

byte
(8.1)

Compared to the result calculated from the time measurement test from Table 8.1 (0, 023 µs
byte ),

reading a byte of data from the Vlesystem takes � 24 times larger than the time to compute
a SHA256 of one byte data. The time calculated in Equation 8.1 is used to calculate the time
consumed by the veriVcation of Android Applications. There are 25 Android Applications
loaded during the boot, with a total size of 14127921bytes. The veriVcation process of these
Applications took 10416µs.

59



8 Evaluation

Time: Time:
Name Size in bytes 
 reading Vle 
 veriVcation sec_AVM


 computing SHA256


 veriVcation sec_AVM

ueventd 90084 5951µs 122µs
servicemanager 9940 3052µs 214µs

mediaserver 5488 2075µs 92µs
rild 9808 8697µs 122µs

app_process 5720 2319µs 122µs
vold 51700 19684µs 122µs
netd 41636 14069µs 122µs

dbus-daemon 22420 20721µs 91µs
installd 109504 30854µs 122µs
keystore 10112 8698µs 92µs

debuggerd 18112 18249µs 122µs
pvrsrvinit 5412 13428µs 183µs
insmod 81544 36224µs 153µs

uim-sysfs 13792 3754µs 122µs
adbd 113876 71320µs 183µs

bootanimation 23160 7233µs 214µs
wlan_loader 9716 140259µs 519µs

tc 67956 65308µs 214µs
tc 67956 4516µs 519µs
tc 67956 4792µs 275µs
°

825892 481203µs 3725µs

Table 8.2: Performance overhead during the boot (Linux Processes)

That is,
for the SHA256 computation for the Android Applications:

14127921byte � 0, 58
µs

byte
� 8194194, 18µs (8.2)

together with the time required for the veriVcation of these Vles:

8194194, 18µs� 10416µs � 8204610, 18µs (8.3)

which results, together with the time for verifying the linux native prorams, in a total of:

8204610, 18µs� 481203µs � 8685813, 18µs (8.4)

The absolute performance panelty is ∆ � 8, 7s, compared to an Android OS boot sequence

without the implemented security architecture. According to the result, the integrity measurement

for the operating system’s core libraries (� 24, 7MB) would take about � 15s. This would

produce a total penalty of � 23, 7s at startup, e.g. during a secure boot (cf. Figure 3.1 5 to 8 ).
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Time: Time:
Name Size in bytes 
 veriVcation sec_AVM 
 veriVcation sec_AVM


 copy from and to DVM

SettingsProvider.apk 45626 502µs 488µs
SystemUI.apk 225334 306µs 245µs
LatinIME.apk 773192 275µs 275µs
Launcher2.apk 841334 305µs 152µs

Phone.apk 2366837 336µs 275µs
TelephonyProvider.apk 59828 335µs 274µs

UserDictionaryProvider.apk 11119 335µs 305µs
ContactsProvider.apk 164367 824µs 275µs

ApplicationsProvider.apk 24077 305µs 275µs
DownloadProvider.apk 418969 366µs 305µs

MediaProvider.apk 55133 397µs 275µs
DrmProvider.apk 26655 305µs 305µs

Mms.apk 1188735 305µs 336µs
DeskClock.apk 373311 336µs 274µs
javax.obex.jar 26527 336µs 275µs
Bluetooth.apk 384212 244µs 214µs

VoiceDialer.apk 113824 306µs 274µs
android.test.runner.jar 76251 458µs 305µs
CalendarProvider.apk 367248 244µs 214µs

Email.apk 1212554 336µs 275µs
Music.apk 680915 367µs 336µs
Protips.apk 120068 336µs 305µs

QuickSearchBox.apk 569446 610µs 550µs
Gallery3D.apk 635488 641µs 275µs
Settings.apk 3978871 604µs 549µs

°
14127921 10416µs 7631µs

Table 8.3: Performance overhead during the boot (Android Applications)

8.4 Conclusion

The proposed security architecture is capable to detect code manipulations after the installaion

of the code. A hash value (SHA256) from a modiVed binary always diUers the hash value

computed from the same but unmodiVed binary. Signing the hashs using a secure signature

algorithm protects them against modiVcations. Accomplishing this, manipulated binaries are

always successfully detected and prevented from execution. Native linux programs are veriVed

by the security architecture when calling the exec() system-call (cf. Section 7.4 10 et seq.).

Android Applications are veriVed using the inserted security hook inside the DVM (cf. Section

7.4 12 et seq.). Both veriVcation points cover all program starts on the Android OS and protect it

to be harmed. Compared to anti-malware program, which analyses the behaviour of a process

at runtime, such a signature based approach is low-cost in terms of computation and power

consumption. As it is a white-list approach it has to verify a program against allowed entries.
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This is usually a subset of all programs runable on the mobile device. The security architecture

is not able to verify any runtime loaded library or code from actual executing code, which is

out of the scope of this security architecture. Opposed to that, the security architecture can

detect any manipulation on the veriVed binaries and prevent executing them without having

knowledge about the kind of manipulation and a possible malicious behavior. This protects

the mobile device from even zero-day malwares which are not detectable by anti-malware

programs, because unknown until then. Assuming a mounted MTM hardware module, a mobile

device is able to be remotely attested and to perform runtime veriVcation of executed program

binaries using the implemented security architecture. Moreover, the mobile device through the

MTM, is able to perform a secure boot providing the trust anchor for the security architecture.

An MTM hardware discharges the CPU to verify SHA256s from the TAPL using the KeyPubSig.

It also stores and protects the used keys in shielded locations, signs given SHA256s and can

authenticate administators. It is assumed that the costs for computation tasks are less as if

performed by software components of the operating system. This includes the overhead caused

by communicating with an MTM hardware module (cf. Section 8.3). The implementation of the

security architecture has shown, that the primary elaborated goals of runtime veriVcation and

manipulation detection have been reached. The performance overhead of the proposed security

architecture is also acceptable. Even without an MTM module mounted on the mobile device,

using the proposed security architecture grant an administrator to have full control of which

programms are executablbe on it.

8.5 Outlook

The kernel modules can be protected against reloading or be fully integrated into the kernel.

The communication between the administrator and the security architecture can be protected

through a daemon to disable the posibility to itercept messages passed to the kernel especially

the KeyMTMAuth.

The security architecture can possibly be “lifted” up into a higher layer without loosing its

atomic connection to the system. This could make the security architecture more lightweight.

The initial trust anchor provided by MTM could be replaced by a software driven trust anchor

providing the same or an acceptable level of trust which the security architecture could derive

from.

A dynamic loaded code veriVcation at runtime similar to the performed veriVcation could be

implemented additionally.
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Recycling the PAM and PVM to extend the exsisting security architecture to stop a process e.g.

reading manipulated libraries cleanly at scheduling.
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Glossary

AIK (Attestation Identity Key) is an alias for the EK [Tpm, p.68].

Apple is a company providing operating systems, mobile devices and home and business

computer [Www].

ARM is an abbraviation for a Arcon RISC Machine CPU.

black-list is a list of entries indicating not accepted entries.

boot describes the initial operations a computer performs when switched on [Wika].

bootloader manages the boot process [Wika].

bytecode is a collection of instructions for a Virtual Machine [Wikk].

compile time is the moment when source code of a program is beeing compiled into a binary

Vle.

copy-on-write This mechnism is used to prevent unneccessary copy operations of one process

to the other. Only if the child process tries to write on the adress space shared by parent

and child a copy operation is performed [Lov05, p.63].

CPU (Central Processing Unit) is the hardware which processes the instructions of a program

[EK11a].

daemon is a service running in the background of the operating system.

doubly linked list Is a chained data structure where every element is connected with its prede-

cessor and its successor.

EK (Endorsement Key) is a key used by the MTM to sign RIM-certiVcates 3.2.2 [Mtm, p.8, 29,

82], [Tpm, p.41, 67].
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exception is an information about a process state. An exception is “thrown” to other application

layers [Lov05, p.116].

ext3 (third extended Vlesystem) a Vlesystem architecture that monitors changes done to Vles,

which ensures consistency if a writing operation was interrupted by e.g. a systemcrash.

FAT32 (File Allocation Table) a Vlesystem architecture.

Vrmware is a stored software inside the permanent memory of a hardware component [Wikb].

Wash or Washing is the process where data or software is transmitted and stored into the

permanent memory of a hardware component [Wikc].

Washed image is a software component stored into a permanent memory [Wikc].

google is an multinational internet service provider and a software developpment company

[Goo11b].

GPL (GNU General Public License) forces programs/libraries using code written under GPL also

to be released under this license [FSF11].

hash is a function that calculates a key value from a set of data. This key value is typically

smaller in size than the size of the data. It can be used to accelerate sorting and searching

operations [KKP09, Ch.5], [MOV01, ch.9.2.1].

HMAC (Hash based Message Authentication Code) [MOV01, ch.9.67].

hook describes a point where a speciVc function is called.

integrity is a metric that indicates a well known state asumed as healthy.

inter process communication is method utilized by processes and threads to communicate

with each other. It is used to pass information, requests and results [Wikd].

interrupt is a state where the interrupting event perform its task imideatly preempting other

actual running tasks [Lov05, p.115].

IRQ an interrupt request initiates an interrupt which cause the actual running task in the CPU

to suspend its work and to let the interrupting task perform its work.

kernel is the core software component of the Linux operating system [Lov05, p.32].
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kill is a signal sent to a process causing the process receiving it to stop its task imideatly and to

release its gain ressources.

Laptop is a mobile PC with independent power supply.

library is a loadable commulation of additional functions loadded at runtime by a program.

linux is a free open source operating system [Lov05, p.31].

lock is used by the kernel to secure critical sections. Only one process can have the lock and

enter the critical section. Other processes are forced to wait to enter the critical section

until the process possessing the lock leaves this section and releases the lock.

marshall is the conversion of data structures into a format used to transfer these structures

between communicating processes.

memory-management-unit arbitrates a virtual memory to the user. It protects the access to

each virtual memory [Lov05, p.50].

microsoft is an operating system and software developpment company.

MLTM Mobile Local-owner Trusted Module is a MTM with local ownership setup.

MRTM Mobile Remote-owner Trusted Module is a MTM with remote ownership setup.

MTM (Mobile Trusted Module) is a hardware-based integrity assurance for mobile devices

[Mtm].

operating system “An operating system is a set of programs that manage computer hardware

resources and provide common services for application software” [Wikf].

PC (Personal Computer) is a small computer for individual personal use [Wikg].

PCR Platform ConVguration Registers are immutable storing registers only accessible by the

MTM.

proxy is a mediator service between diUerent entities..

RAM (Random Access Memory) is a volatile memory which loses its stored information when

powered oU [EK11b].
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register is a memory storage (hardware) inside the CPU [Wikh].

remote attestation Remote attestation describes a process where a service provider can attest

an entity calling a service as not manipulated without physically access this entity.

RIM (Reference Integrity Metric) is a calculated metric of an entity with further information

abut this entity [Mtm, p. 18].

RISC (Reduced Instruction Set Computer) describes a CPUs design using a set of simple instruc-

tions [Wiki].

RTM Root-of-Trust-Measurement is a measurement module inside the MTM.

RTV (Root-of-Trust-for-VeriVcation) is a veriVcation module inside the MTM.

runtime is the time after the boot process until the power oU. During this period of time non

operating system software can be used.

RVAI (Root VeriVcation Authority IdentiVer) is a key used by the MTM to verify new passed

veriVcation keys to it.

scheduling is a arbitration logic which manages the temporal execution of programs in operat-

ing systems [Lov05, p.73].

SDCard (Secure Digital Memory Card) a memory chip stored on a removeable card to Wash

data to it and to read the data from the card.

SHA256 (Secure Hash Value) is a cryptographic hash representing a unique checksum of 256 bit

length [MOV01, ch.9.52].

shared secret is a secret known to all participating communication endpoints , such as a

password or a secret key.

sign is a mathematical operation which assures the origin of a message/data [MOV01, ch.11.1].

signal is a short deVned operating system message for processes.

socket is a data communication endpoint for exchanging data between processes [Wike].

SRK (Storage Root Key) is a key used by the MTM to sign keys.

stack is a memory where the last set (written) data is the Vrst data received from it when read.
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starvation is the situation where a task is always preempted from execution by other tasks.

stub is a piece of code acting as a substitude for full implementation of a function or a program.

swap space is a memory available on a non volatile storage. It is used to temporary store data

from RAM to gain free memory for other purposes/tasks.

Symbian is an operating system for mobile devices [Wikj].

system-call is a set of functions arbitrated by the kernel to the user [Lov05, p.102].

TAPL (Trusted Application List) contains all calculated and signed hash values of trusted

applications.

TCG Trusted Computing Group is an organisation for standards.

TPM Trusted Platform Module is an integrity measurement and veriVcation module for desktop

PCs and Laptops [Tpm].

trust anchor describes a reliable well known and trusted state from which a latter state can

extend.

tuple is a list of congeneric entires.

USB (Universal Serial Bus) is a connection standard for various external devices [UIF11].

veriVed is a mathematical operation which veriVes the origin of a message/data[MOV01,

ch.11.1].

veriVes is a mathematical operation which veriVes the origin of a message/data [MOV01,

ch.11.1].

verify is a mathematical operation which veriVes the origin of a message/data [MOV01, ch.11.1].

Virtual Machine is a virtual computer with software representations of hardware components

[Wikk].

virtual memory is a possibly phisicly fragmnted memory pretending to processes being coher-

ent and starting with the adress 0.

white-list is a list of entries indicating accepted entries.
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zygote is a core process in the Android OS which forks new Dalvik Virtual Machines to start

new Android processes (Activities).
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